

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

OPTIMIZING BIG DATA SYSTEMS WITH NON-VOLATILE

MEMORIES: FROM GRAPH COMPUTING TO FLASH-

BASED SSD ARRAYS

HAN LEI

PhD

The Hong Kong Polytechnic University

2019

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

Optimizing Big Data Systems with Non-volatile

Memories: From Graph Computing to Flash-based

SSD Arrays

Han Lei

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

February 2019

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

(Signature)

(Name of Student)

ii

Han Lei

ABSTRACT

Big data has been exerting an increasingly pervasive and profound influence on everyday life.

For example, social networks, such as Facebook and Twitter, produce huge volumes of data

and analyze big data to learn relationships between users, which are usually linked as large-

scale graphs. However, as a huge collection of data over a time frame for processing and

managing, big data remains extraordinarily complex and large for current computing infras-

tructures, leading to high processing costs and high storage resource consumption. Graph

processing is an important part of big data analysis. Processing large-scale graphs on tra-

ditional platforms including CPU, GPU and FPGA is inefficient due to the many random

memory access. Moreover, high-variety information with various data characteristics has

significantly boosted. Persistently storing them on SSD-based arrays for high-velocity in-

curs high disk replacement rates due to the limited lifetime of SSDs. In addition, employing

erasure codes for data protection in storage systems consumes high computational resources,

further exacerbating the inefficiency of big data processing. In this thesis, we optimize big

data systems with non-volatile memories from several aspects, including improving the per-

formance of large-scale graph processing, extending the lifetime of SSD arrays and flash

chips, and improving the efficiency of erasure coding on SSD arrays.

In the first part, we focus on optimizing the computational performance of big data

with an emerging metal-oxide resistive random access memory (ReRAM). In the case of

large-scale graph traversal, processing breadth-first search (BFS) on traditional platforms

issues many random and irregular memory accesses, especially on CPU-based and GPU-

based platforms. This leads to a huge amount of data movement between memories and

processors, so that processors are always waiting for memories and executing instructions

slowly. Moreover, the off-chip main memory in traditional platforms is a major consumer

iii

of energy. To weaken these limitations, we propose a novel ReRAM-based processing-in-

memory architecture for BFS, called RPBFS. In RPBFS, the ReRAM-based memory banks

are separated into graph banks and master banks. We design an efficient graph mapping

scheme to distributively store a graph on multiple graph banks. To reduce data movement

overhead, we design an efficient traversal scheme that can constrain a graph search inside

the related graph banks through collaboration with a master bank. Moreover, we propose

an analytical performance model for RPBFS, which can help us identify bottlenecks and

provide optimization opportunities for our design. The experimental results show that the

proposed schemes can significantly improve graph traversal performance and achieve high

energy reductions compared with both CPU-based and GPU-based BFS implementations.

In the second part, we optimize the storage efficiency for big data systems with

NAND-based flash memory and ReRAM, achieving lower operational cost. Flash-based

SSD arrays are increasingly being deployed in data centers. Compared with hard disk drive

arrays, SSD arrays drastically enhance storage density and I/O performance, and reduce

power and rack space. However, SSDs suffer aging issues since a flash block can only

be experienced by a limited number of program/erase (P/E) cycles. The ability of storage

systems to maintain service in the time aspect is particularly relevant to operational cost,

frequently replacing failed drives makes service unstable. To optimize this, first, we propose

FreeRAID which applies approximate storage via the interplay of RAID and SSD controllers

to improve the lifetime of SSD-based RAID arrays. Our basic idea is to reuse faulty blocks

(which contain pages with uncorrectable errors) to store approximate data (which can toler-

ate more errors). FreeRAID integrates two key techniques: dual-space management, which

can efficiently allocate independent space for normal and approximate data, and adaptive-

FTL, which can dynamically switch FTL schemes for an SSD according to its lifespan

stage. We conduct experiments and compare our FreeRAID with conventional RAID and

FTL schemes. The experimental results show that we can significantly increase the lifetime

of SSD-based RAID arrays. Second, we extend the lifetime optimization to embedded stor-

iv

age systems. We propose Rebirth-FTL, a pure software management in the flash translation

layer for the lifetime optimization. Rebirth-FTL efficiently and effectively manages two s-

paces, approximate space and normal space, with approximation-aware address mapping,

coordinated garbage collection and differential wear leveling. We also develop a scheme to

pass approximate information from userland to kernel space in Linux, which can collaborate

with Rebirth-FTL to optimize the lifetime of flash memory. A lifetime model is also present-

ed for lifetime analysis. We implement Rebirth-FTL on an embedded development board

and a simulator. Evaluations across a wide variety of workloads show that Rebirth-FTL

significantly outperforms conventional FTLs in lifetime extensions and satisfies the work-

loads quality. Third, erasure codes such as Cauchy Reed-Solomon codes have been gaining

ever-increasing importance for fault-tolerance in SSD-based RAID arrays. However, erasure

coding on processor-based implementations such as a dedicated RAID controller relies on

Galois Field arithmetic to perform matrix-vector multiplication, increasing computational

complexity and leading to a huge number of memory accesses. We propose Re-RAID which

uses ReRAM as the main memory in both RAID and SSD controllers. In Re-RAID, era-

sure coding can be processed in ReRAM memory to achieve high throughput. To minimize

the overhead for recovering a single failure, we propose a confluent Cauchy-Vandermonde

matrix as the generator matrix, which allows ReRAM memory on SSDs to perform the re-

construction task for a single failure. Experimental results show that our Re-RAID has a

significant performance improvement in encoding and decoding compared with convention-

al processor-based implementation.

Keywords: Big data storage system, ReRAM, NAND flash memory, SSD, graph traversal,

RAID, FTL, erasure codes, lifetime

v

PUBLICATIONS

1. Lei Han, Zhaoyan Shen, Duo Liu, Zili Shao, H. Howie Huang, Tao Li, “A Nov-

el ReRAM-based Processing-in-Memory Architecture for Graph Traversal”, in ACM

Transactions on Storage (TOS), 2018.

2. Lei Han, Bin Xiao, Xuwei Dong, Zhaoyan Shen, and Zili Shao, “DS-Cache: A Re-

fined Directory Entry Lookup Cache with Prefix-Awareness for Mobile Devices”, ac-

cepted in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE

’19), Florence, Italy, March 25-29, 2019.

3. Fang Wang, Zhaoyan Shen, Lei Han, and Zili Shao, “ReRAM-based Processing-in-

Memory Architecture for Blockchain Platforms,” in Proceedings of the 24th Asia and

South Pacific Design Automation Conference (ASP-DAC ’19), Tokyo, Japan, Jan.21-

24, 2019.

4. Lei Han, Zhaoyan Shen, Zili Shao, and Tao Li, “Optimizing RAID/SSD Controller-

s with Lifetime Extension for Flash-based SSD Array”, in ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES ’18),

Philadelphia, Pennsylvania, United States, June 18-22, 2018.

5. Lei Han, Zhaoyan Shen, Zili Shao, H. Howie Huang, and Tao Li, “A novel ReRAM-

based processing-in-memory architecture for graph computing,” in 2017 IEEE 6th

Non-Volatile Memory Systems and Applications Symposium (NVMSA ’17), Hsinchu,

Taiwan, Aug.16-18, 2017.

vi

ACKNOWLEDGEMENTS

First and foremost, I feel so grateful to have Prof. Zili Shao and Prof. Bin Xiao as my

supervisors in the Hong Kong Polytechnic University (Polyu). I have learned a lot from

their insightful guidance, meticulous attitude and professional supervision. It is my great

pleasure to be a student of Prof. Shao, he has been giving me many elaborate suggestions

and guidance even though he is now with the Chinese University of Hong Kong. Especially

such a sentence “be a valuable member to society” has been affected me. I want to thank him

for supporting me over the years. I also want to thank Prof. Bin Xiao for his encouragement

and advice. Actually, without those fruitful discussions, I can hardly achieve the research

outcomes which constitute the main content of this thesis.

I must acknowledge Prof. Howie Huang at the George Washington University and

Prof. Tao Li at the University of Florida. I learned a lot from the discussions and interac-

tions with them in academic research. Their truly scientist intuitions and genial personalities

enrich my intellectual maturity. Besides, I want to thank Prof. Yi Lin at the Northwestern

Polytechnical University, for his guidance and encouragement. I also express my gratitude

to Prof. Shuai Li from the Polyu for his comments and suggestions on my research.

I would like to thank my research group in Polyu, including Dr. Yi Wang, Dr. Duo

Liu, Dr. Renhai Chen, Dr. Zhaoyan Shen, Chenlin Ma, Yuanjing Shi, Fang Wang, Dr. Shang

Gao, Dr. Zhe Peng, Zecheng Li, Songlin Hou and Lihao Liu. Thanks for their considerate

assistance on my research and daily life during my Ph.D. study. Another particular thanks

goes to my friends in Polyu, including Lei Xue, Zhijian He, Xingye Lu, Qiang Li, Yu Lei,

Quanyu Dai, Hui Li, Liang Zhang, Xinbo Yu, Runjie Tan, Wengen Li, Ruosong Yang, N-

ingning Hou, Qiang Zhang, Edison Chan, Sitong Mao, Yumeng Guo, Jin Xiao, Wangmeng

Xiang, Chuang Hu, Yinyan Zhang, Zhonghuang Yang, Jiaxing Shen, Jianrui Cai, Wenjian

vii

Xu, Bo Tang, Shuhang Gu, Bo Lu, Tian Lan, Yin Xiao, Jacob, Daniel, Shamsa, Prof. Cecilia

W.P. Li-Tsang and many others. The discussions and exchanges with them made my Ph.D.

study a nice journey.

I want to thank Prof. Man Lung Yiu from Hong Kong Polytechnic University for

kindly being the Chairman of the Board of Examiners (BoE). I also thank Prof. Tei-wei Kuo

from National Taiwan University, and Prof. Xiaowen Chu from Hong Kong Baptist Univer-

sity, for kindly taking time out from their busy schedule to serve as my external examiners.

I recognize that this thesis would not have been possible without the financial as-

sistance from the Polyu. I appreciate Prof. Shao and Prof. Xiao, and the Department of

Computing for offering me the travel grants to attend several international conferences. I al-

so acknowledge the student halls of residence of Polyu for providing me a cosy living space

for my stay.

Finally, my special thanks goes to my family, including my parents, my grandmother

and also in memory of my grandfather. Thanks for their endless love, support, and encour-

agement through my entire life. They are always on my side, and they always let me pursue

my dream for so long and so far away from home. Also, I am really grateful for my girl-

friend’s endless love, patience, and understanding.

viii

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY . ii

ABSTRACT . iii

PUBLICATIONS . vi

ACKNOWLEDGEMENTS . vii

LIST OF FIGURES . xiii

LIST OF TABLES . xv

CHAPTER 1. INTRODUCTION. 1

1.1 Related Work . 4

1.1.1 Processing-in-memory Accelerator . 5

1.1.2 Approximate Storage . 6

1.1.3 Software-managed RAID Arrays and Flash . 7

1.2 The Unified Research Framework . 9

1.3 Contributions . 10

1.4 Thesis Organization . 11

CHAPTER 2. A NOVEL RERAM-BASED PROCESSING-IN-MEMORY ARCHI-
TECTURE FOR GRAPH TRAVERSAL . 13

2.1 Introduction . 13

2.2 Background and Motivation . 16

2.2.1 Graph Representation . 17

2.2.2 Breadth-first Search . 18

2.2.3 ReRAM Basics . 19

2.2.4 Motivation Example . 19

2.3 ReRAM-based PIM Architecture for Graph Traversal . 21

2.3.1 Microarchitecture . 22

2.3.2 Mapping Graph to A ReRAM Crossbar . 22

2.3.3 Graph Layout in Multiple Crossbar Arrays . 24

ix

2.4 Breadth-first Search on ReRAM-based Main Memory . 26

2.4.1 Graph Mapping . 26

2.4.2 Graph Initialization . 26

2.4.3 Graph Traversal . 27

2.4.4 Extra Vertex Cache . 30

2.4.5 Software-hardware Interface . 30

2.4.6 Limitations . 31

2.5 Performance Analysis . 32

2.5.1 Performance Model . 32

2.5.2 Performance Analysis . 36

2.6 Experimental Evaluation . 37

2.6.1 Methodology . 37

2.6.2 Evaluation Results . 39

2.7 Other Related Work . 46

2.8 Summary . 47

CHAPTER 3. OPTIMIZING RAID/SSD CONTROLLERS WITH LIFETIME EX-
TENSION FOR FLASH-BASED SSD ARRAYS 48

3.1 Introduction . 48

3.2 Background . 51

3.2.1 SSD-Based RAID Arrays . 51

3.2.2 Existing Optimized RAID Schemes . 52

3.2.3 Approximate Storage . 53

3.3 FreeRAID . 53

3.3.1 Overview . 54

3.3.2 New Type: Exploitable Blocks . 55

3.3.3 Dual-Space Management . 56

3.3.4 Adaptive-FTL . 60

3.4 Evaluation . 65

3.4.1 Experiment Setup . 65

3.4.2 Evaluation Results . 66

3.5 Other Related Work . 71

3.6 Summary . 72

x

CHAPTER 4. REBIRTH-FTL: LIFETIME OPTIMIZATION VIA APPROXIMATE
STORAGE FOR NAND FLASH . 73

4.1 Introduction . 73

4.2 Background . 76

4.2.1 NAND Flash Memory . 76

4.2.2 Flash Translation Layer . 77

4.2.3 Approximate Storage . 78

4.3 Rebirth-FTL . 78

4.3.1 Overview . 78

4.3.2 Approximation-aware Address Mapping . 79

4.3.3 Coordinated Garbage Collection . 81

4.3.4 Differential Wear Leveling . 83

4.4 Data Attributes Cut-through. 83

4.5 Lifetime Model . 85

4.6 Experimental Evaluation . 88

4.6.1 Experiment Setup . 88

4.6.2 Evaluation Results . 89

4.7 Summary . 93

CHAPTER 5. OPTIMIZING CAUCHY REED-SOLOMON CODING VIA RERAM
CROSSBARS IN SSD-BASED RAID SYSTEMS 95

5.1 Introduction . 95

5.2 Background and Motivation . 98

5.2.1 SSD-based RAID System . 98

5.2.2 Erasure Coding Process . 98

5.2.3 Cauchy Reed-Solomon Codes . 99

5.2.4 ReRAM Basics . 100

5.2.5 Motivation Example . 101

5.3 Re-RAID: A New SSD-based RAID System with ReRAM-accelerated CRS Coding102

5.3.1 Overview . 102

5.3.2 Cauchy Reed-Solomon Coding on Re-RAID . 103

5.3.3 Reconstruction on Re-RAID . 105

5.3.4 Limitations . 107

5.4 Experimental Evaluation . 108

5.4.1 Experiment Setup . 108

xi

5.4.2 Evaluation Results . 109

5.5 Other Related Work . 112

5.6 Summary . 113

CHAPTER 6. CONCLUSION AND FUTURE WORK. 114

6.1 Conclusion . 114

6.2 Future Work . 116

REFERENCES . 117

xii

LIST OF FIGURES

1.1 Unified Research Framework. 9

2.1 An example graph G and one of its valid traversal trees. 17

2.2 ReRAM basics. 19

2.3 Activating one wordline can lead to the traversal of multiple vertices. 20

2.4 RPBFS architecture. 21

2.5 An example graph H with its adjacency list. 23

2.6 The layout of graph H involved with multiple banks. 24

2.7 The workflow of the extra vertex cache. 30

2.8 Performance of RPBFS and direction-optimizing GPU-based and CPU-based solu-
tions. 40

2.9 The breakdown of the execution time of BFS in RPBFS architecture. 41

2.10 Performance with the scalability of RPBFS. 42

2.11 Performance improvement with different graph partitioning schemes. 44

2.12 Energy saving results (vs. CPU and GPU). 45

2.13 Area breakdown of RPBFS. 45

3.1 Higher error tolerance can extend the endurance of a NAND flash block. 49

3.2 Three optimized RAID schemes. 52

3.3 Overview of FreeRAID. 54

3.4 The transitions of blocks in a lifecycle and their error rate. 55

3.5 The transitions of blocks in a lifecycle and their error rate. 56

3.6 An example of data allocation and error isolation. 58

3.7 Combination with existing RAID schemes. 59

3.8 Block Allocation in FreeRAID. 61

3.9 Total writes of FreeRAID and a conventional RAID with SSDs in balanced ages. 67

3.10 Total writes of FreeRAID and a conventional RAID with SSDs in differential ages. . . 67

3.11 Lifetime extensions under different ratios of error-relaxation workloads. 68

3.12 Comparisons of average system response time. 69

3.13 Comparisons of GC overhead. 70

4.1 A typical page-level FTL scheme. 77

xiii

4.2 NAND flash system architecture with Rebirth-FTL. 79

4.3 Block management in Rebirth-FTL. 80

4.4 Error-separated address mapping in Rebirth-FTL. 81

4.5 Data attributes cut-through in the Linux I/O stack. 84

4.6 The average write request response time from Rebirth FTL and PFTL. 90

4.7 Quality loss in PSNR with different percentage of error-relaxation requests. 91

4.8 One example of bad frames in the video. 92

4.9 Normalized served requests #: comparing baseline and Rebirth-FTL. 93

5.1 Encoding process with a generator matrix GT . 99

5.2 Decoding process with survivors and an inverse matrix. 99

5.3 The matrix-vector representation of a Cauchy Reed-Solomon code with k = 4,m =
2, w = 4. Each element is one bit. 100

5.4 Example of performing Cauchy Reed Solomon coding on a ReRAM crossbar. 101

5.5 Overview of Re-RAID and microarchitecture of a ReRAM memory bank. 103

5.6 Data flow with CRS encoding on Re-RAID. 104

5.7 (a). Traditional Cauchy matrix and its bit-matrix with a given k and w. If k ≤ 2w−1,
the matrix will be invertible. (b). An optimized code in our design. 105

5.8 Recovering a single failure in the ReRAM crossbars on SSDs. 106

5.9 Comparison of encoding performance. 110

5.10 Comparison of decoding performance for a single failure. 111

5.11 Comparison of decoding performance for multiple failures. 112

xiv

LIST OF TABLES

2.1 Software-hardware interface of RPBFS. 31

2.2 Analysis terminology . 33

2.3 Latency terminology . 34

2.4 The configurations of RPBFS architecture and hardware. 38

2.5 Graph specification . 39

2.6 Performance improvement by employing extra vertex cache 41

3.1 Workload characteristics . 66

4.1 Analysis terminology . 86

4.2 Workload characteristics . 89

4.3 Quality Loss of an example of bad frames in PSNR. 92

5.1 The Configurations of ReRAM-based RAID controller and SSD controller. . . 108

xv

CHAPTER 1

INTRODUCTION

The uses of big data have become ubiquitous in many areas of our daily life. For exam-

ple, there were 500 millions Tweets sent [6] and 300 millions photos uploaded to Face-

book [32] for storage each day in 2018. Although big data is increasingly becoming more

understandable to computers with sustainable technologies, it is still extraordinarily com-

plex and large for current computing infrastructures, leading to high data processing costs

and high storage resource consumption. In the case of large-scale graph processing, sim-

ply increasing the number of processor cores is ineffective in improving performance [1].

Moreover, high-volume and high-variety information has increased significantly, requiring

terabyte-level (TB) and petabyte-level (PB) storage systems for ongoing storage. SSD-based

Redundant Arrays of Independent Disks (RAID) can provide mass and high-speed storage,

and they rely on redundancy to protect data against data loss. Compared with hard disk drives

(HDDs), SSDs benefit from lower access latency and energy consumption, and smaller rack

space. However, SSDs suffer aging problems [121]. Especially in the RAID systems, parity

updates incur extra writes and garbage collections (GC), which further degrades the lifetime

of SSDs arrays. Reported from [47], 2%-7% SSDs develop at least one bad chip in the

deployment of a data center. Frequently replacing failed drives makes big data application

services unstable. In addition, among various methods for generating redundancy, several

storage systems have been employing erasure coding to protect data due to the lower stor-

age overhead. However, erasure coding on traditional processor-based implementations is

still computationally expensive, further exacerbating the inefficiency of big data processing.

Thus, it becomes extremely important to optimize big data storage systems in computing

performance and operational costs.

In this thesis, we focus on optimizing big data storage systems with non-volatile

1

memories in computing performance and operational cost. Specially, we employ two kind-

s of emerging non-volatile memories, metal-oxide resistive random access memory (R-

eRAM) [4] and NAND flash memory, to improve the performance of large-scale graph pro-

cessing and erasure coding, and to improve the lifetime of SSD-based arrays and flash chips.

ReRAM stores information according to the creation and destruction of the conductive fila-

ments in the metal oxide layer. ReRAM enjoys low access latency (programming latency is

less than 30ns), low energy consumption (0.1-3 pJ per bit) and long endurance (up to 1012

P/E cycles), so it can be a good candidate for main memory. Compared with other non-

volatile memories such as STT-RAM and phase-change memory (PCM) which either have

fast access or have high retention and endurance features, only the ReRAM crossbar struc-

ture has the computational capability of performing matrix-vector multiplication and sum

operations, which inherently fits the process-in-memory (PIM) concept. Moreover, NAND

flash memory has been widely adopted as the storage medium in many storage devices due to

its fast access speed, such as in SSDs and embedded boards. However, it is still challenging

to well utilize these non-volatile memories. First, processing data with ReRAM in a PIM

way needs to be carefully examined. In the case of processing large-scale graphs, the graph

mapping scheme and the execution mechanism on ReRAM memory should be properly de-

signed to reduce data movement overhead and richly utilize memory bandwidth. Second,

existing approaches that reducing the writes traffic on flash memory and redistributing parity

on SSDs gain few benefits to extend the lifetime of flash memory. With the huge-variety of

big data, some special data features, such as error-tolerance, are well worth exploring.

In the first part of this thesis, we investigate utilizing ReRAM to improve both com-

putational and I/O performance for large-scale graph processing. We study the algorithm

of breadth-first search (BFS). We propose a novel ReRAM-based processing-in-memory ar-

chitecture called RPBFS, in which graph data can be persistently stored and processed in

place. In RPBFS, the ReRAM-based memory banks are separated into graph banks and

master banks. We design an efficient graph mapping scheme, in which a graph bank stores

the adjacency list of a graph partition. We also propose an efficient graph traversal algorith-

m that works through collaboration with a master bank to traverse a graph. In RPBFS, the

2

data movement for a graph traversal is wrapped within graph banks, and the movement is

only related to the synchronization of vertex bitmaps. Moreover, we propose an analytical

performance model to analyze the graph traversal efficiency with RPBFS, which can help us

identify bottlenecks and provide optimization opportunities for our design.

In the second part, we optimize the storage efficiency of big data system with NAND

flash memory and ReRAM, achieving lower operational cost. The ability of storage systems

to maintain service in terms of time, such as the lifetime of storage devices, is particularly

relevant to the operational cost. Moreover, many storage systems have been employing era-

sure codes to protect data, with coding performance one of the key factors into the system

efficiency.

(1). We are the first to apply approximate storage, via the interplay of RAID and

SSD controllers, to optimize the lifetime of SSDs arrays. We explore the benefits of relaxing

the integrity constraints of flash blocks. Faulty flash blocks are reused to store approximate

data that can tolerate some errors. With the goal of extending lifetime of SSD-based RAID

arrays, we propose a cross-layer lifetime optimization framework, called FreeRAID (Flash-

resurrection RAID). FreeRAID tightly couples the components in both RAID and SSD con-

trollers. FreeRAID combines two techniques. First, with the knowledge of physical blocks

in SSDs, the RAID controller in FreeRAID efficiently allocates normal and faulty blocks to

serve data with different error-tolerances, and makes different types of data error-isolated.

Also, FreeRAID and the existing optimized RAID schemes can coalesce to further reduce

write traffic on SSDs. These optimized schemes include parity logging, parity caching and

elastic striping. Second, FreeRAID can dynamically switch FTL strategies on an SSD to

maintain access performance and storage efficiency. To determine whether data validity has

been accomplished on faulty blocks, two error rate assessment approaches are proposed by

considering two dominant errors sources of flash memory.

(2). For flash memory in embedded storage systems, we propose Rebirth-FTL, a

pure software management in flash translation layer (FTL) for lifetime optimization. With

an increasing amount of approximate data such as images and videos, Rebirth-FTL reuses

3

faulty blocks that contain uncorrectable errors to store these data. Rebirth-FTL efficiently

and effectively manages two addressable spaces, approximate space and normal space, with

efficient address mapping, coordinated garbage collection and differential wear leveling. To

make the flash devices approximate information-aware, we demonstrate how to pass the ap-

proximate information from applications to flash devices through the whole Linux operating

system (OS) in a top-down way. We analyze the benefits of a flash memory with Rebirth-FTL

using a lifetime model. We implement and deploy Rebirth-FTL on an embedded develop-

ment board and a simulator, and we demonstrate its effectiveness on them.

(3). The traditional processor-based RAID controller relies on Galois Field arithmetic

to perform matrix-vector multiplication for erasure coding, which is computationally expen-

sive on processors. We propose a novel ReRAM-optimized RAID system for accelerating

erasure coding, called Re-RAID. Re-RAID uses ReRAM as the main memory in both RAID

and SSD controllers, and it performs erasure coding on ReRAM crossbars. To minimize the

overhead for recovering a single failure, we propose a confluent Cauchy-Vandermonde ma-

trix as the generator matrix. Then, the SSDs can leverage their ReRAM memories to recover

a single failure, which can greatly alleviate the computing workloads of a processor-based

RAID controller. For multiple failures, processors and ReRAM memories in the RAID con-

troller work in close collaboration. The processors construct a decoding matrix, and map

the matrix to ReRAM memories, and then the ReRAM memories perform matrix-vector

multiplication to recover lost data.

The rest of this chapter is organized as follows. The next section presents the related

work. Section 1.2 discusses the unified research framework. We summary the contributions

of this thesis in Section 1.3. Finally, Section 1.4 gives the outlines of this thesis.

1.1 Related Work

In this section, we describe state-of-the-art work related to optimization approaches for big

data systems in computing and storage.

4

In the previous work, there has been work done in three main domains: (I) Processing-

in-memory accelerator, (II) Approximate storage, and (III) Software-managed flash and

RAID arrays. We briefly describe these techniques, and compare them with representative

techniques in respective chapters.

1.1.1 Processing-in-memory Accelerator

Processing-in-memory technique is an effective way to alleviate the bandwidth bottlenecks

by integrating computational logic within or near memory. Recent studies have proposed

in-memory accelerators for specialized applications. Mirzadeh et al. [80] push logic to-

ward memory by leveraging 3D-stacked DRAM designs. The logic layer integrated with

several DRAM dies can execute data-intensive operations. Jeddeloh et al. [50] propose a

three-dimensional DRAM architecture in which the DRAM is moved to the logic layer with

high-performance transistors. Timing, refresh and thermal management for DRAM can be

optimized locally. Akin et al. [3] propose a near-memory accelerator integrated within 3D

stacked DRAM, and Zhang et al. [143] move memory-intensive computations closer to mem-

ory in GPU. For large-scale graph processing, Ahn et al. [1] propose a programmable PIM

accelerator by integrating many logic cores into 3D-stacked memory to increase memory

bandwidth. The proposed architecture can process four graph algorithms, such as Single-

Source Shortest Path (SSSP).

Due to the inherent computational capability of ReRAM, some recent studies also

explore ReRAM to accelerate several kinds of applications in a PIM way. PRIME [19] is

a PIM architecture to accelerate neural network applications. In PRIME, ReRAM serves as

main memory and serves as computation units. The ReRAM crossbar is utilized to perfor-

m matrix-vector multiplication for neural network applications. ISSCC [113] and Pipelay-

er [119] are pipelined architectures with memristor crossbars for processing neural networks

computations, and different parallelism granularities on them are explored to accelerate com-

putation. ReRAM also has been studied for processing graph algorithms. Pinatubo [65] is a

processing-in non-volatile memory architecture for bulk bitwise operations. The read circuit-

5

ry redesigned for multi-row bitwise operations, is efficient for bitmap-based BFS processing.

GraphR [120] follows the principle of near-data processing, and utilizes ReRAM crossbars

to serve both storage and computational functions. The compressed graph data are persis-

tently stored in ReRAM memory, and then the graph data can be converted to sparse matrix

representation and mapped to other ReRAM memory for processing. However, the conver-

sion incurs high execution and transfer costs. This thesis proposes a novel ReRAM-based

PIM for graph processing without any conversion, and the data movement is wrapped within

memory by an efficient mapping scheme and an efficient traversal scheme.

1.1.2 Approximate Storage

Approximate storage exploits the error-tolerance of applications to reduce I/O latency and

energy consumption of storage substrates. Bit-by-bit precision is costly for some applica-

tions; a small number of bit flips is acceptable to them, such as with videos and images.

Recent work have demonstrated that approximate storage has led to multi-aspect improve-

ments in solid state memories. Sampson et al. [109] propose reducing the number of write

steps on PCM, to achieve higher write performance and energy savings. Similarly, Cui et

al. [26] propose reducing the maximal threshold voltage for writes on 3D NAND flash mem-

ory, allowing write performance to be improved and the program disturbance in physical

blocks to be alleviated. Ranjan et al. [100] leverage the error-tolerance of data to improve

the energy-efficiency of spintronic memories. The quality on memory is configurable to

meet the accuracy requirements of applications. Sampson et al. [108] allow a programmer

to declare precise data or approximate data, and then store approximate data to approximate

storage including cheaper memory, cache, and registers, achieving significant energy saving

at very little accuracy loss.

Recent researches have proposed applying approximate storage for specific appli-

cations. Jevdjic et al. [51] compute bit-level reliability requirements for encoded video by

tracking coding dependencies, and they implement different levels of error correction for

streams reliability needs. Guo et al. [38] propose a selective error correction technique to

6

implement high-density image storage. Via a case study of JPEG images, they can signifi-

cantly increase the storage density of PCM with negligible quality loss. In [39], Guo et al.

use good error protection technique for the important parts of images and videos, while using

minimal effort to protect less important parts. The proposed unequal error protection tech-

nique can attain higher quality with lower computational complexity. Palomino et al. [90]

employ varying degrees of approximations at both the algorithmic and data levels to reduce

on-chip temperature when processing a video. The regions of a video can be classified by an

adaptive content-driven approximate technique, and then the regions with different approxi-

mate modes are processed with suitable approximate computing.

Our work shares a common principle with prior work of relaxing integrity constraints

of storage substrates, but we aim to extend the lifetime of SSD-based RAID arrays and flash

memories. This thesis focuses on software management at the RAID and FTL levels without

the hardware changes (such as modifying the threshold voltage [109] [26]) or dedicated error

correction codes (such as encoding videos with H. 264 [51]).

1.1.3 Software-managed RAID Arrays and Flash

An SSD-based RAID array provides a virtual logical disk by combining the space of the

SSDs. Striping and parity are two commonly-used RAID techniques in the RAID controller.

With striping, logically sequential data are divided into data chunks. Parity is a redundancy-

based protection scheme, by which parity data is generated based on a group of data chunks.

Write updates incur additional writes for parity updates. To efficiently reduce write traffic,

recent research has proposed various optimized schemes on RAID. Parity logging [122]

utilizes a journaling scheme to reduce small writes cost by augmenting a log device. Parity

caching scheme [21] delays parity updates by caching all incoming requests in a buffer, so the

number of reads and writes for generating parity can be reduced. Elastic parity logging [66]

encodes new incoming data chunks to form new stripes, and the parity for a partial stripe is

appended to a log device. For SSD-based RAID arrays, Li et al. [67] propose an analytical

model to quantify the reliability of arrays, which can help decide the appropriate parity

7

distribution. Pan et al. [91] propose a grouping-based elastic striping scheme to reduce both

write traffic and response time on SSDs. Koo et al. [59] propose a dual RAID scheme

which is a combination of RAID-5 and RAID-6 for maintaining high reliability and access

performance. Besides that, the lifetime of SSD-based RAID arrays remains a major concern.

Moon et al. [81] analyze the relationship between parity scheme and lifetime, and they find

that write amplification is a major factor in the lifetime of RAID arrays. Yongseok et al. [87]

use a log-structured cache to eliminate read-modify-write operations, and propose the use of

destaging to enhance the lifetime of SSD arrays. Different from prior work which mainly

focuses on reducing writes, our work explores the special features of big data, such as error-

tolerance, to significantly extend the lifetime of SSD-based RAID arrays.

RAID schemes are categorized into several levels based on parity, and the methods

for generating parity in a RAID system are varied. For example, with one to two parities gen-

erated for each stripe, RAID-5 and RAID-6 can tolerate one and two failed drive at any time,

respectively. Many parity implementations exist. Fu et al. [36] propose a new Maximum Dis-

tance Separable (MDS) code with new parity chains and new parity distributions for RAID-6

to optimize degraded reads and partial stripe writes. With the same goal, D-Code [35] uses

new kinds of horizontal parities to optimize I/O performance. Several codes are proposed to

optimize parity computational complexity, including Tier-code [63], EVENODD [14], RD-

P [24] and X-code [142]. Trifonov et al. [128] propose low-complex Reed-Solomon (RS)

codes to improve encoding and decoding performance. Guruswami et al. [41] propose re-

pair schemes for high-rate RS codes to optimize repair bandwidth in a cloud RAID system.

Zhang et al. [144] propose an efficient Cauchy Reed-Solomon coding approach, called Caco.

The flash translation layer in the SSD controller manages flash memory. Several prior

research studies specifically optimize FTL schemes in address mapping, garbage collection

and wear leveling. Qin et al. [98] propose MNFTL to reduce the number of valid page copies

for achieving low system response time. Liu et al. [70] propose RNFTL to improve the

endurance and space utilization of blocks. DFTL [40] is an on-demand page-level FTL with

one-level cache, with both the page-level mapping table and data blocks are stored in the flash

memory. A block associative sector translation [58] scheme allocates a log block for only one

8

Figure 1.1: Unified Research Framework.

data block for the efficiency of address translation. Jimenez et al. [52] relieve the weakest

pages to implement block lifetime extension with a wear unleveling technique. Chang et

al. [17] propose a typical static wear-leveling strategy called SWL to save the management

overhead of FTLs. In contrast to these prior works, our work leverages the special feature of

data to optimize the lifetime of flash memory without any hardware changes.

1.2 The Unified Research Framework

We present the unified research framework of this thesis in this section. Figure 1.1 illustrates

the sketch of our framework.

In this thesis, we optimize big data systems with non-volatile memories from graph

computing to flash-based SSD arrays, as shown in Figure 1.1. The data generated from big

data applications are classified into two types: normal data and approximate data. Normal

data are precise data, such as graph and text data. Approximate data can tolerate some errors,

such as video and image which can tolerate some died pixels. Our work contains two parts.

9

In the first part for computing efficiency, we study the graph processing which is an important

part of big data analysis. We investigate utilizing ReRAM to accelerate graph traversal. In the

second part for storage efficiency, we propose integrating the RAID and SSD management to

optimize the lifetime of flash memory by exploring the error-tolerance of approximate data.

In addition, to improve the performance of erasure coding on SSD-based RAID arrays, we

further propose leveraging ReRAM to achieve that.

In the first part, in Chapter 2, we propose a novel ReRAM-based processing-in-

memory architecture for graph traversal, in which graph data can be persistently stored and

processed in place. In the second part, in Chapter 3, we apply approximate storage via the

interplay of RAID and SSD controllers to optimize the lifetime of SSDs arrays. The inter-

play tightly couples the components in both RAID and SSD controllers to efficiently manage

the cross-layer space. In Chapter 4, we further explore approximate storage to optimize the

lifetime of flash memory in FTL. We also demonstrate how to pass the approximate infor-

mation from applications to flash devices in Linux OS. In Chapter 5, we use the ReRAM as

an alternative main memory in both RAID and SSD controllers. The ReRAM-based main

memory can perform erasure coding, which can greatly alleviate the computing workloads

of processors in the controllers.

1.3 Contributions

The contributions of this thesis are summarized as follows.

• To minimize data movement overhead, we investigate utilizing ReRAM to improve

the performance of large-scale graph processing. We propose a novel ReRAM-based

processing-in-memory architecture called RPBFS in which graph data can be persis-

tently stored and processed in place. An efficient graph mapping scheme is proposed

to map a graph on multiple ReRAM memory banks. We also design an efficient graph

traversal algorithm in RPBFS. In addition, we propose an analytical performance mod-

el to analyze the benefits of a graph traversal in RPBFS.

10

• We explore exploitable blocks in SSDs to serve approximate data in SSD-based RAID

arrays. We propose FreeRAID, which leverages the interplay between RAID and SSD

controllers to extend the lifetime of SSDs arrays. FreeRAID integrates two key tech-

niques: dual-space management which can efficiently allocate space for normal and

approximate data, and adaptive-FTL which can dynamically switch FTL schemes of

an SSD to improve its storage efficiency.

• For flash memory in embedded storage systems, we propose Rebirth-FTL, a pure soft-

ware management in flash translation layer for lifetime optimization. Rebirth-FTL

efficiently and effectively manages two spaces, approximate space and normal space,

with approximation-aware address mapping, coordinated garbage collection and dif-

ferential wear leveling. We also develop a scheme to pass approximate information

from userland to kernel space in Linux. A lifetime model is also presented for lifetime

analysis.

• We propose Re-RAID which uses ReRAM as the main memory in both RAID and SSD

controllers. The erasure coding in Re-RAID can be processed in ReRAM memory. To

minimize the overhead for recovering a single failure, we propose a confluent Cauchy-

Vandermonde matrix as the generator matrix, which allows ReRAM memory on SSDs

to perform the reconstruction task for a single failure.

• We implement prototypes with the proposed techniques, and demonstrate the effec-

tiveness of the proposed schemes by conducting a set of experiments.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, the first part of this thesis, we focus on optimizing the computational

performance for big data. We investigate utilizing ReRAM to improve the performance

of large-scale graph processing.

11

• In Chapter 3, the start of the second part, we optimize the storage efficiency of big data

systems with NAND flash memory and ReRAM to achieve lower operational cost. We

apply approximate storage via the interplay of RAID and SSD controllers to improve

the lifetime of SSD-based RAID arrays.

• In Chapter 4, to extend the lifetime of flash memory in embedded storage systems, we

propose Rebirth-FTL which reuses faulty blocks that contain uncorrectable errors to

store approximate data for lifetime optimization in FTL.

• In Chapter 5, to alleviate the computing workloads of the RAID controllers, we pro-

pose Re-RAID which uses ReRAM as the main memory in both RAID and SSD con-

trollers, and erasure coding can be processed in ReRAM memory.

• In Chapter 6, we present our conclusions and possible future directions for research

arising from this work.

12

CHAPTER 2

A NOVEL RERAM-BASED PROCESSING-IN-MEMORY ARCHITECTURE FOR

GRAPH TRAVERSAL

2.1 Introduction

The uses of graph-based computation for analyzing and understanding social networks, com-

plex engineering systems, and metabolic networks are ubiquitous. With the tremendous in-

crease in the amount of information, relationships between objects are often linked to form

large-scale graphs, such as the friend relationship in social networks. In the above areas of

applications, the common graph-theoretic algorithms on the large-scale graphs have been

becoming increasingly important. A well-known example of algorithms is the breadth-first

search that allows the peer-to-peer network BitTorrent to search all neighbors [22]. Curren-

t graph processing schemes mainly concentrate on CPU-based and GPU-based platforms.

These traditional platforms separate graph processing into memory processing and processor

processing, and it is still challenging to achieve good performance due to the many random

and irregular memory accesses. This mechanism leads to a huge amount of data movement

between memories and processors, so that the processors always wait for memories and ex-

ecute instructions slowly [12] [1]. Moreover, the off-chip main memory system is a major

consumer of energy due to the high capacitive load and power of buses and memory [115].

Although continuous efforts are being made to improve the multi-core parallelism and to

optimize memory access performance, the data transfer between memory and processor in

traditional platforms still represents one of the most significant bottlenecks for both perfor-

mance and energy when performing graph-based algorithms. The possibility of reducing the

data movement overhead in memory is therefore well worth exploring.

13

Processing-in-memory technique is an effective way to alleviate the bandwidth bot-

tlenecks by integrating the computation logic within or near memory, so the memory-intensive

computations can fully utilize the available memory bandwidth. Recent studies have pro-

posed in-memory accelerators for specialized applications to reduce data movements [19]

[125] [113] [119] [73] [143] [10] [149]. For example, Ahn et al. integrate PIM technology

into 3D-stacked memory to increase memory bandwidth for graph processing [1]. Ozdal et

al. propose an accelerator architecture to reduce the irregular access patterns and asymmet-

ric convergence [88]. Although they are architectural accelerators for graph analysis, they

cannot make graphs persistently stored in memory so as to involve slow secondary storage,

and they ignore the effect of graph mapping and distribution on performance.

An emerging non-volatile memory, metal-oxide resistive random access memory, has

the capability to perform arithmetic operations inside data storage [136], which inherently

fits the concept of PIM. ReRAM enjoys lower access latency, lower energy consumption,

and superior endurance than other non-volatile memories [139] [138] [134] [69]. Its most

novel aspect is that the ReRAM crossbar structure is efficient at performing matrix-vector

multiplication, which has been studied for neural network computation [19] [113] [119].

Furthermore, ReRAM crossbar has the potential to perform iterative graph processing al-

gorithms. First, graph processing algorithms are not computation-intensive but memory-

intensive [89] [72], and most of them (e.g., page-rank, graph traversal) can tolerate the im-

precision arising from analog-to-digital conversions. Moreover, considering the fact that

the size of cells keeps shrinking, multi-level cell (MLC) technology enables one ReRAM

cell to store more information [5] [141] [98], which is suitable as a storage device to store

large-scale graphs. Therefore, with the efficient capability in both storage and computation,

ReRAM crossbar exhibits the potential to accelerate graph processing.

In reconsidering the connection between the computation and storage aspects of R-

eRAM crossbars, it is still challenging to utilize ReRAM crossbars to perform graph process-

ing. First, a graph with several million vertices and edges needs to be mapped to multiple

ReRAM crossbars, so the graph representation needs to be carefully organized. There are

two major approaches to representing a graph: adjacent matrix and adjacency list. It is im-

14

practical to store the whole adjacent matrix in ReRAM, since the matrices of the real world

graphs are highly sparse. For adjacency list, there are a number of formats, and each with d-

ifferent storage cost, computational characteristics and organizations. Second, the execution

mechanism of ReRAM crossbars should be designed properly. Since most graph algorithms

are iterative, it is important to maintain correctness in processing and the consistency of the

intermediate data among all of the subgraphs located on the ReRAM crossbars. Some works

have integrated ReRAM for large-scale graph processing [120] [45]. GraphR follows the

principle of near-data processing, and it utilizes ReRAM crossbars for storage and computa-

tion [120]. The compressed graph data is persistently stored in ReRAM memory; however, it

needs to be converted to sparse matrix representation for graph processing in ReRAM cross-

bars. The conversion incurs execution cost and transfer cost. Therefore, the data movement

between ReRAM crossbars remains large, even the data do not need to pass through the

memory hierarchy as in traditional platforms.

In this work we focus on accelerating graph traversal, and propose a novel ReRAM-

based PIM architecture for BFS (RPBFS). RPBFS is a distinct ReRAM-based PIM archi-

tecture from recent PIM work. In this architecture, the ReRAM-based memory banks are

separated into graph banks and master banks. The compressed adjacency lists are persis-

tently mapped and scattered over multiple graph banks by an efficient mapping scheme.

The master bank is selected for a graph to perform graph traversal through collaboration

with graph banks. To reduce the data movement overhead, we design an efficient traversal

scheme that can constrain the graph expansions inside the memory bank, and can parallelly

perform the expansions on multiple memory banks. The movement of data in the RPBFS

is only related to the synchronization of vertex bitmaps, which is much smaller than that of

graph data. We also further explore the effect of graph distributions through an analytical

performance model.

We conduct a series of experiments to evaluate the RPBFS across a wide variety of

graphs compared with the state-of-the-art CPU-based and GPU-based parallel solutions [11]

[71]. Our architecture yields speedups of up to 33.8× on the graph traversal performance,

and achieves energy reductions of up to 142.8× over conventional systems. The results also

15

verify the improvement in the performance of different graph partitioning schemes as the

optimizing opportunity identified by an analytical model.

This work explores graph traversal based on ReRAM crossbars. We believe that our

proposed architecture can also benefit other graph algorithms, such as single source shortest

path. To summarize, this chapter makes the following contributions:

• We design a novel ReRAM-based PIM architecture with a set of peripheral circuits.

An efficient graph mapping scheme is proposed to map a graph on multiple ReRAM

memory banks.

• We design efficient graph traversal algorithms for graph banks and master banks, re-

spectively. Data movement is minimized and bank-level parallelism is explored to

effectively accelerate graph traversal.

• We propose an analytical performance model for our ReRAM-based PIM implemen-

tation. Finally, we evaluate our proposed scheme using a variety of real world graphs

and compare it with other state-of-the-art solutions.

The rest of this chapter is organized as follows. The next section gives basic back-

ground to this study and gives a motivation example. Section 2.3 describes the architecture

of RPBFS, as well as the graph mapping scheme. In Section 2.4, we briefly introduce how

graph traversal proceeds on the RPBFS architecture. An analytical performance model is p-

resented in Section 2.5, and we apply it to explore the optimization opportunity. Section 2.6

evaluates the performance of RPBFS in several key metrics. Finally, Section 2.7 discusses

related work, and Section 2.8 concludes this chapter.

2.2 Background and Motivation

In this section, we first present the background on graph representation, BFS traversal and

ReRAM basics. Then we use a motivation example to illustrate the traversal efficiency on a

ReRAM crossbar.

16

Vertex

Figure 2.1: An example graph G and one of its valid traversal trees.

2.2.1 Graph Representation

Assuming a graph G with vertex set V and edge set E, there are a number of popular graph

representations. Adjacency matrix and adjacency list are the most commonly used represen-

tations of graph, and the choice of the graph representation is situation specific.

An adjacency matrix consists of rows that represent the source vertices, and columns

that represent the destination vertices. The number of rows and columns equals the number

of vertex (|V |). The values in a matrix are generally filled with zeros and ones. If two vertices

are connected then the value in the source row and the destination column is represented by

one. For the efficiency of storage, the compressed sparse row (CSR) format is one of the

highest compression ratio representations. The CSR format puts the subsequent non-zeros

of the matrix rows in contiguous memory locations, and uses an index array to point the list

starts for describing the neighbors of each vertex. The size of the CSR representation of a

graph equals the total size of edges (|E|) and the index array (|V |). Figure 2.1(a) shows the

graph G of eight vertices and twelve edges with its adjacency list.

We argue that storing large-scale graphs in a matrix way is inefficient. First, it in-

curs enormous storage overhead, since the matrices of the real world graphs are highly s-

parse. Second, some graph algorithms do not rely on matrix representation, such as BFS

which can perform expansions by accessing adjacency lists. Even though some algorithms

like PageRank can be performed based on a |V |-by-|V | connectivity matrix, the high sparse

17

matrix-vector multiplication operations can be converted by performing with compressed

data formats, such as CSR and ELLPACK [74]. Thus we focus on the CSR format as graph

representation in this work.

2.2.2 Breadth-first Search

Breadth-first search starts the traversal from a given source vertex and systematically ex-

plores a graph to discover every vertex. In accordance with the frontiers queue that is initial-

ized with the source vertex, BFS explores their adjacent vertices and marks them as visited

with the shortest depth. One of the valid traversal trees of graph G is shown in Figure 2.1(b).

In addition, from Figure 2.1(a), it is easy to observe that some neighbors are contiguous ver-

tices. For example, contiguous neighbors Vertex 1 and Vertex 2 are both neighboring vertices

of Vertex 0. Suppose that Vertex 0 is a frontier in the current level of a breadth-first search,

after exploring its neighbors, Vertex 1 and Vertex 2 will be the frontiers for next level expan-

sions. We investigate the contiguous neighbors of six real world graphs summarized in Table

2.5 in Section 2.6. We calculate the proportion of vertices that are of at least an average

degree and have two contiguous neighbors. From Table 2.5, we can see that a number of ver-

tices have contiguous neighbors on a suite of real world graphs. The contiguous neighbors

may explore their neighbors at the same level in a graph traversal.

A top-down BFS, which aims at identifying the unvisited adjacent vertices of fron-

tiers, is a traditional traversal algorithm. In a later stage, the direction from top-down can

be switched to bottom-up. A bottom-up algorithm uses the unvisited vertices as frontiers to

identify the visited vertices, and performs traversals more efficiently when the current fron-

tiers are large [11] [71]. However, it still leads to random and irregular accesses of the graph

data. Thus, reducing data movements is critical to improve the traversal performance.

18

Vi
Wi1 Wij Win

S1 Sj Sn

V1

Vn
Sj= Vi ·Wij

Figure 2.2: ReRAM basics.

2.2.3 ReRAM Basics

ReRAM is an emerging non-volatile memory that stores data with resistance. A metal-oxide

ReRAM cell consists of a top metal electrode, a metal-oxide resistive switch, and a bot-

tom electrode [136], as shown in Figure 2.2 (a). By applying an external voltage across

the ReRAM, the properties of conductive filament inside it change, leading to different re-

sistances. A ReRAM array can be interconnected as a dense crossbar architecture without

transistors, which is better suited for main memory due to the small size of the area of a

ReRAM cell [82] [140]. Figure 2.2 (b) shows an area-efficient ReRAM crossbar array. If

the input voltages V1, V2, ..., Vn are applied on the wordlines, and the values Wi,j of cells are

programmed, the current Sj at the end of jth bitline will represent the sum result of the dot

product operations,
∑

Vi ·Wi,j . In our design, if the voltage of the selected wordline is set

to 1, while others are set to 0, the results at the output port in the bitlines will be the exact

conductances of the cells, which can be used to identify neighbors.

2.2.4 Motivation Example

To illustrate the motivation of using ReRAM crossbars for graph traversal, we discuss it in

two aspects. 1) The ReRAM crossbars can accelerate graph traversal. The neighbors related

to a vertex are placed sequentially on ReRAM cells similar to the CSR format. Besides

retaining the storage efficiency, by activating one wordline, all the cells on the wordline

can be attained, which contains the neighbors of a requested vertex. 2) The properties of

19

Vertex Vertex Vertex Vertex 3
Vertex Vertex 1 Vertex 2 Vertex 3

Figure 2.3: Activating one wordline can lead to the traversal of multiple vertices.

ReRAM, including its non-volatility, energy-saving feature, and fast access speed, make it a

good candidate for PIM.

We use an example to illustrate the traversal efficiency on a ReRAM crossbar. The

adjacency lists of the graph G are mapped to the ReRAM cells one after another on a 4*6

crossbar, as shown in Figure 2.3. Suppose that each cell can store one vertex, and that the

source of the traversal is Vertex 0. In Figure 2.3 (a), the neighbors of the source can be

attained by activating the first wordline and setting the input voltage of the rest to 0. Then,

the output ports would not only contain all of the neighbors of Vertex 0 (the first two bitlines),

but also all of the neighbors of Vertex 1 (the third to the fifth bitline), and one neighbor of

Vertex 2 (the last bitline). The next iteration is to explore the neighbors of Vertex 1 and

Vertex 2. Benefiting from the first activating wordline operation,it is only necessary to attain

the remaining neighbors of Vertex 2 , which can be done by activating the second wordline,

as shown in Figure 2.3 (b). After this operation, the adjacency list of Vertex 3 is also attained

for the next expansion task. Following this access pattern, the neighbors of all of the vertices

can be traversed without any extra access overhead. From Table 2.5 in Section 2.6, we

observe that some of neighbors are contiguous. Therefore, in a BFS traversal, activating

wordline operations on the ReRAM crossbars means that multiple neighbors of a vertex can

be attained, and it has a probability to attain the neighbors of its contiguous vertices.

20

WDD - Wordline Decider and Driver
S+H - Sample and Hold
SA - Sense Amplifier
S+A - Shift and Add
MR - Metadata Register ReRAM

Crossbar

Compute Capable Controller

Cache
(Partial Bitmap)

ReRAM
Crossbar

W
DD

W
DD

W
DD

W
DD

S+ASA

Graph
Bank

Graph
Bank

Graph
Bank

Graph
Bank

Graph
Bank

(Master)
Graph
Bank

Status BitmapStatus Bitmap
Shared Space

S+H S+ASAS+H S+ASAS+H

ReRAM
Crossbar

ReRAM
Crossbar

MR

Figure 2.4: RPBFS architecture.

2.3 ReRAM-based PIM Architecture for Graph Traversal

We propose a novel ReRAM-based processing-in-memory architecture for breadth-first search,

called RPBFS, which can efficiently accelerate graph traversal by minimizing data move-

ment overhead. Figure 2.4 depicts an overview of RPBFS. RPBFS architecture partitions

ReRAM-based memory banks into two types: master bank and graph bank. Due to the lim-

ited size of ReRAM crossbars, a graph with several millions vertices and edges could hardly

be stored in a single memory bank, so the multiple memory banks are involved. A graph

bank stores the adjacency list of a graph partition. A master bank is arbitrarily selected from

the memory banks to schedule expansion tasks for each individual graph. The master bank

stores the corresponding metadata of the graph banks, including the vertex range, and the s-

tarting row number of ReRAM crossbars for the adjacency lists and location pointers of each

graph partition. A memory bank can either be a master bank or a graph bank, and multiple

partitions from different graphs can be mapped on a same memory bank.

This section gives details of the RPBFS architecture, and then discusses how the

adjacency list can be mapped to a ReRAM crossbar. Finally we discuss how to map a graph

on multiple memory banks.

21

2.3.1 Microarchitecture

A ReRAM-based main memory chip is composed of a number of memory banks, as shown

in Figure 2.4. All of the memory banks are interconnected in a mesh network way with

on-chip communication. The shared memory is connected with all of the memory banks,

which enables high internal bandwidth. To implement computation and storage, a number

of digital components should be orchestrated with ReRAM crossbars. In a memory bank,

an integrated controller with computing capability is used to decode customized operations,

and to provide control signals for all the peripheral circuits. WDD is the wordline decoder

and writing driver, and is used to access data. For graphs, it can map the adjacency lists to

ReRAM crossbars, as well as set the input voltage for traversing graphs. Sample and hold

(S+H) receives the bitline current and holds the sample analog values before feeding it to

a shared sense amplifier (SA). The SA implements the similar function of analog-to-digital

converter (ADC), which provides high precision control [64]. Multiple ReRAM crossbars

share one SA component in order to reduce area overhead and energy consumption. Due

to the limited precision (up to 7-bit per cell) of ReRAM cells [5], shift-and-adds (S+A) is

provided to support higher precision for large-scale graphs. The aggregated results are then

stored in the cache for processing.

2.3.2 Mapping Graph to A ReRAM Crossbar

The adjacency list with the CSR format of a graph partition is mapped to a ReRAM crossbar,

one cell after another. The adjacent vertices of one vertex may involve multiple rows if it

is a hub vertex whose out-degree is large [71]. To indicate the starts of the corresponding

vertices on a ReRAM crossbar, a pointer is needed to indicate the row index and column

index of the ReRAM crossbar, which is similar to the indices in the adjacency list array. We

use the location pointer [row index, column index] to identify the adjacency lists mapped in

the ReRAM crossbars. Both adjacency lists of a graph partition and location pointers are

stored in the same ReRAM crossbar to maintain correspondence. After the mapping of the

neighbors for one vertex is complete, the location pointers for this vertex are also stored in

22

15

14

13

12

11

17

16 10

5

2

3

0

1

9 6

7

18
8

19

4

Adjacency list

1 2 5 0 2 7 9 0 1 5 12 4 5 3 11 0 2 3 6 9

0 1 2 3 4 5

5 8

6

1 8 18 6 7 9 10 19 1 5 8 18 8 11 15 4 10 12 16 2

7 8 9

11 15

14 15 13 15 10 12 13 14 16 17 11 15 18 15 18 7 9 16 17 19 8 18

10 11 12

13 14 15 16 17 18 19

Figure 2.5: An example graph H with its adjacency list.

the same ReRAM crossbar, and then the available space for both the adjacency lists and the

location pointers is re-computed. When there is not enough space on the current crossbar,

the mapping moves to the next crossbar.

Figure 2.5 shows an example of graph H with 20 vertices and 66 edges, and its

adjacency lists. Suppose that there are 6 × 6 ReRAM cells in one crossbar. Each vertex

occupies one cell, and location pointers are stored every two cells for a row and a column

index, respectively. The graph bank A demonstrates the mapping from Vertex 0 to Vertex 5

in Figure 2.6. When performing the mapping of Vertex 5 that has five neighbors (indicated

by red color), the third row in this ReRAM crossbar does not have enough cells to store all of

the adjacent vertices of Vertex 5, so its neighbors Vertex 6 and Vertex 9 are stored in the fourth

row. In this crossbar, the last two rows store the location pointers for this graph partition.

The location pointer of Vertex 5 can be attained by calculating the offset from the starting

location pointer: [(V ertex number × 2)/row size + starting row, (V ertex number ×

23

Figure 2.6: The layout of graph H involved with multiple banks.

2)%column size], where row size and column size refer to the dimensions of cells in the

ReRAM crossbar, and starting row denotes the starting row number for location pointers.

In order to completely obtain the adjacent vertices of Vertex 5, we also need to get the location

pointers of its prior vertex. The location pointers of Vertex 4 are [2, 2], so the cells after

location [2, 2] to [3, 1] are adjacent vertices of Vertex 5.

2.3.3 Graph Layout in Multiple Crossbar Arrays

Multiple ReRAM memory banks are involved for large-scale graphs with several millions

vertices and edges due to the scale limitation of a ReRAM crossbar (maximum 1024*1024

cells). The adjacency lists of a graph is persistently mapped to multiple ReRAM-based mem-

ory banks, and one memory bank is selected to be the master bank for recording metadata

and scheduling expansion tasks. After finishing the adjacency list mapping in one graph

bank, the master bank records the metadata information of the graph bank, including the

vertex range information and the starting row number.

This is well illustrated with the example shown in Figure 2.5 and Figure 2.6. The

adjacency lists of graph H are mapped to four memory banks. For generality and simplic-

24

ity, in this example, we map the original adjacency lists with a greedy scheme to as many

ReRAM cells as possible. We focus on how the multiple banks coordinate for storage and

computation. Due to the symmetrical structure, here we arbitrarily select a memory bank

as the master bank. The graph banks A, B and C store the adjacency lists of six vertices,

respectively. The adjacency lists are mapped on the first four rows in graph banks A and B,

while they are mapped on the first three rows in graph bank C. Correspondingly, the loca-

tion pointers are stored from the fifth row in graph bank A and B, and from the fourth row

in graph bank C. The graph bank D only stores the adjacency lists of the last two vertices

of graph H , and the location pointers are stored in the third row. Considering the flexibility

of this data organization, the master bank uses a 4-tuple to record the metadata of involved

graph banks: (s v, e v, r adj, r ptr). s v and e v represent the vertex range from the starting

vertex to the ending vertex, and r adj and r ptr denote the starting row number of the adja-

cency lists and location pointers. In this example, the first row data (0, 5, 0, 4) in the master

bank indicates that the vertex range of graph bank A is from Vertex 0 to Vertex 5 (marked

in green), and “0” and “4” refer to the starting row number of the adjacency list and the

location pointer respectively. In RPBFS architecture, a graph bank contains several ReRAM

crossbars, the master bank records the tuples for each ReRAM crossbars of a graph bank in

the same row. This graph mapping scheme for RPBFS incurs few extra storage overhead

compared to the original CSR format. The metadata on the master bank is only related to the

number of involved graph banks. The storage overhead consumes less than 0.1% of space

for a graph with several millions vertices and edges.

The RPBFS supports customized graph distributions. A graph can either be dis-

tributed on more graph banks to improve the bank-level processing parallelism in the same

partitioning method, or can be distributed with different partitioning methods, such as parti-

tioning to balance the number of vertices, outgoing edges, and so on.

25

2.4 Breadth-first Search on ReRAM-based Main Memory

In this section, we describe the BFS traversal algorithm employed for our RPBFS archi-

tecture with the accompanying pseudo-code. Implementing a BFS traversal there involves

three stages from data storage to memory execution: graph mapping, graph initialization,

and graph traversal.

2.4.1 Graph Mapping

A graph is persistently mapped on multiple ReRAM-based memory banks, as discussed in

Section 2.3. If there are some updates to a graph, both the adjacency lists on the graph banks

and the metadata information on the master bank should be updated. In this work, we only

study on the static graph which consists of a fixed sequence of vertices and edges.

2.4.2 Graph Initialization

In the initialization stage, the status bitmap and level array for each vertex are initialized with

the source vertex. The status bitmap is a bitwise array where a single bit is used to indicate

whether one vertex is visited or not, and the level array maintains the shortest distances of

all the vertices from the source. Algorithm 2.4.1 and Algorithm 2.4.2 give the pseudo-code

of the initialization stage for the master and graph banks, respectively. Before starting a

graph traversal, the master bank sends the corresponding information (line 1), including the

vertex range information and the starting row number, to the graph banks involved. Then,

it creates a full status bitmap (FSB) and a level array (Level) in the shared memory, and

updates them with the source vertex s (lines 2-5). The last step is to initialize the number of

frontiers (frontier num) for determining whether or not the traversal has been completed.

The number of frontiers is initialized to 1.

The initialization stage in a graph bank is presented in Algorithm 2.4.2. Each graph

bank saves its own vertex range information and the starting row numbers related to all

of its ReRAM crossbars to the registers for accelerating an expansion (line 1). According

26

Algorithm 2.4.1 BFS in a master bank.

Input: Source vertex s.

Output: Level array Level.
BFS initialization:

1: Send the corresponding vertex range and the starting row number to each graph bank;

2: Full status bitmap in Shared Memory FSB ←− ∅;

3: Level array in Shared memory Level ←− ∅;

4: FSB[s] ←− 1;

5: Level[s] ←− 1;

6: The sum of frontiers for the next level expansion frontier sum ←− 1.

BFS traversal:

1: while frontier sum �= 0 do

2: Send start cmd to all graph banks;

3: frontier sum ←− 0;

4: Waiting for frontier num from each graph bank;

5: for each frontier num do

6: frontier sum ←− frontier sum+ frontier num;

7: end for

8: end while

to the vertex range information, each graph bank generates its own empty partial bitmaps

for exploring its own graph partition (lines 2-4). The level information (c level) is also

initialized at this stage (line 5).

2.4.3 Graph Traversal

In this stage, the master bank collaborates with the graph banks to perform BFS traversal.

It implements the synchronization barriers by sending a command signal to notify the sta-

tus of the traversal tasks, as shown in Algorithm 2.4.1. In the master bank, if the number

of frontiers for the next level of expansion is not equal to zero, the master bank sends a

27

Algorithm 2.4.2 BFS in a graph bank.

BFS Initialization:

1: Save the vertex range and the starting row number in the register;

2: Partial prior status bitmap in cache PPSB ←− ∅;

3: Partial status bitmap in cache PSB ←− ∅;

4: Partial frontier bitmap in cache PFB ←− ∅;

5: Current level information c level ←− 2.

BFS Traversal:

1: Waiting for start cmd from master bank;

2: PSB ←− FSB;

3: PFB ←− PSB ⊗ PPSB;

4: The number of frontiers in PFB frontier num ←− 0;

5: for each u is non-zero in PFB do

6: frontier num ←− frontier num+ 1 ;

7: Get location pointer of u in crossbar arrays;

8: Get adjacent vertices {A} in crossbar arrays;

9: for each v in A do

10: if FSB[v] �= 1

11: FSB[v] ←− 1;

12: Level[v] ←− c level;

13: end for

14: end for

15: PPSB ←− PSB;

16: c level ←− c level +1;

17: PFB ←− ∅;

18: Send frontier num, finish cmd to the master bank.

28

start cmd to inform all of the involved graph banks to perform a graph traversal. After

resetting the frontier sum, the master bank waits until it receives the number of partial

frontiers frontier num from all of the graph banks (line 4). Summing up those numbers,

the master bank determines whether or not the graph traversal has been completed (line 6).

Graph banks carry out the execution of expansions at this stage, as shown in Algorith-

m 2.4.2. In each iteration, once graph banks receive a start cmd, they access shared memory

without memory collision to fill the partial status bitmap PSB with FSB (line 2). The size

and offset of the PSB are determined by the vertex range information that has been assigned

from the master bank at the initialization stage. After that, graph banks perform the (PSB

⊗ PPSB) operation to generate frontiers in the current level (line 3). For example, there

are six vertices stored on a graph bank. Assume that the prior partial status bitmap PPSB

is “001101” in the preceding level, and the latest partial status bitmap PSB is “101111”.

Then the frontiers in the current level PFB is “100010” after executing (PSB ⊗ PPSB),

which means that the first and fifth vertex are valid frontiers. For each non-zero in PFB, the

graph bank issues an expansion task that involves attaining location pointers and attaining

adjacent vertices (lines 7-8). The graph banks containing the valid frontiers then activate the

corresponding wordlines of the ReRAM crossbars to explore the neighbors of the frontiers.

For each newly visited neighbor, the next step is to update status bitmap FSB and the level

array Level in the shared memory (lines 9-12). Since BFS inspects an adjacent vertex with

the shortest level, the graph bank will examine whether a neighbor of the frontiers is being

visited for the first time. If so, the graph bank marks it as a visited vertex by updating the

status bitmap, as well as recording its level information. After finishing all of the expansion

tasks of the valid frontiers, the graph bank replaces the PPFB with the PSB, and adds

one to the level information (lines 15-16). The final step is to send the number of partial

frontiers frontier num to the master bank. After completing the whole graph traversal, the

level array is the output, which can either be transferred to other memory or flushed to local

ReRAM memory for further use.

29

Figure 2.7: The workflow of the extra vertex cache.

2.4.4 Extra Vertex Cache

Besides attaining the adjacent vertices of a specified vertex, the partial or entire adjacent ver-

tices of its contiguous frontiers can also be discovered by activating wordlines, as discussed

in Section 2.2.4. Figure 2.7 presents the workflow of the extra vertex cache. RPBFS caches

the extra adjacent vertices with the corresponding location offset and sum. The graph bank

will first check whether the current frontier has been cached when starting a new expansion

task. If it hits, the controller recalculates the location pointers of the current frontier accord-

ing to the cached adjacent vertices. If only a portion of the neighbors is cached, then the

graph bank will attain the rest of the neighbors by activating wordlines in ReRAM crossbars.

Since graph banks explore the frontiers in order, the contiguous frontiers can benefit from

extra vertex cache. We use FIFO as the cache replacement policy to manage the extra vertex

cache.

2.4.5 Software-hardware Interface

RPBFS provides application programming interfaces (APIs) for developers so that they can

easily access and perform graph traversal on the RPBFS. Table 2.1 gives a detailed descrip-

tion of the functions for three stages from data storage to memory execution.

30

Table 2.1: Software-hardware interface of RPBFS.

Software-Hardware Interface Function description

Map graph(G(V,E),memory address, bank address) map a graph to graph banks

Put(memory address, bank address, size, vertex) transfer data to the destination address

Get(memory address, bank address, size, vertex) attain data from the destination address

Config graph(G(V,E), source, bank address) initialize a graph with the source vertex

Run graph(G(V,E), bank address) start a graph traversal from the master

Output graph(G(V,E),memory address, bank address) further process the output

In the graph mapping stage, the function Map graph is used to map a graph G to

the memory banks. The assigned memory bank works as the master bank for this graph.

The adjacency lists of a graph are provided to the master bank, and then routed to the proper

graph banks. In order to persistently map the graph to the memory banks, the Put and

Get calls are implemented for copying and attaining the adjacency lists to and from a graph

bank, respectively. If the destination graph bank has no space to store the adjacency lists, the

master then picks another graph bank in which to store it.

In the configuration stage, the Config graph function is provided to initialize the

status bitmap and level array with the source for an assigned graph.

Finally, the function Run graph is provided to perform graph traversal on RPBFS.

The processing result function Output graph is invoked to further process the output.

2.4.6 Limitations

Our proposed RPBFS has several limitations. First, RPBFS only considers the mapping

and distribution for unweighted graphs. It requires additional storage footprints to keep the

weight information associated with edges for weighted graphs. Second, RPBFS relies on a

master bank to implement the level-synchronized breadth first search. The synchronization

31

cost among all the graph banks varies depending on the graph distributions. We only consid-

er a graph with several millions vertices and edges in this work, which needs dozens of graph

banks with 4 crossbars (each has 1024*1024 cells). Third, RPBFS requires the elimination

of shared memory collision at a fine-grained level. And the intermediate data updating oper-

ations for a graph traversal are executed on the shared memory, the wear-out of ReRAM will

not be a concern. Finally, RPBFS only implements the breadth-first search algorithm; other

graph traversal algorithms such as depth-first search can also be achieved on the proposed

architecture but need new dedicated algorithm implementations.

2.5 Performance Analysis

In this section, we formulate the performance analysis of a graph traversal on the RPBFS

architecture we developed in previous sections. Since BFS is a memory-dominant algorithm,

we utilize the latency of the memory access operation to determine the total execution time on

the RPBFS. The graph traversal performance is determined by several parameters, including

graph distribution and hardware configuration. Some design choices are provided by our

RPBFS; thus, we propose this analytical performance model to analyze the performance.

The analysis can provide us with some insights to identify opportunities for improvement.

Table 2.2 and Table 2.3 list the major notations used in this analysis.

2.5.1 Performance Model

We focus on the key factors of the RPBFS, so we assume that there is no conflicts involving

parallel accesses to the different addresses in the shared memory, to avoid complexity [146].

Graph banks in one iteration begin by attaining their own frontiers from the shared memory,

they then concurrently execute the tasks involved in expanding the valid frontiers, and finally

finish the tasks of inspecting and updating the status array to the shared memory. Therefore,

we generally analyze the performance of one graph bank to model the RPBFS performance.

There are three steps to completing the expansion tasks in one traversal iteration in one

32

Table 2.2: Analysis terminology

Term Definition

G(V,E) Graph G with V vertices and E edges

L Maximum number of levels for which BFS operates

Fkl Number of the frontiers in the kth graph bank in level l

Ai Number of the adjacent vertex of ith vertex

Sil Number of the adjacent vertex of ith vertex in level l. Sil : 0, Ai

Vk Number of vertices whose adjacency list is stored in the kth graph bank

Ek Number of edges stored in the kth graph bank

S Number of ReRAM cells of a wordline in a crossbar

P Number of ReRAM cells to represent a vertex

B Shared memory bandwidth (bit/s)

graph bank. First, a graph bank attains frontiers from the status bitmap. Once there are valid

frontiers in the current level, the expansion tasks are issued. The neighbors of the frontiers

are explored on the ReRAM crossbars. At the final state, the status and the level array are

inspected and updated in the shared memory.

According to the Table 2.2 and Table 2.3, we can easily get Equation 2.1. Each vertex

can be a frontier only once in the whole traversal process, so the total number of frontiers

is the number of vertices in a graph. Similarly, since the neighbors of a vertex (Ai) will be

traversed only once, if the vertex is not a frontier in the current level, then we assume that it

has no adjacent vertex at this level. If it is a frontier, all of its adjacent vertex will be visited.

Therefore, the number of edges in a graph bank is the sum of the neighbors of the frontiers

in the whole traversal process.

Vk =
L∑

l=1

Fkl, Ek =

Vk∑

i=1

L∑

l=1

Sil (2.1)

33

Table 2.3: Latency terminology

Term Definition

treram Latency of activating one ReRAM wordline and passing peripheral circuits

tcache Latency of accessing a vertex in the cache of graph banks

tpro cache Latency of processing one bit in the cache of graph banks

tpro Latency of processing one bit in the shared memory

titem Latency of processing one item of an array in the shared memory

tsyn Average synchronization latency of graph banks in each level

Attaining frontiers: Attaining frontiers can be divided into two parts in one traversal

iteration. First, the graph banks access the shared memory without collision to get the corre-

sponding status bitmap which matches the vertex range. The kth graph bank has Vk vertex,

so it costs Vk/B to attain the status bitmap from the shared memory. After that, graph banks

perform XOR operations to attain frontiers with the current status bitmap and prior status

bitmap. Since processing XOR operations is linear with the number of vertex in a graph

partition, we can model the runtime for attaining frontiers in level l to be:

Tattain = Vk/B + Vktpro cache (2.2)

Exploring adjacent vertices: The expansions of the frontiers are capsuled in a R-

eRAM graph bank, and the latency of expansions is bounded by the number of frontiers.

According to Algorithm 2.4.2, we estimate the time spent on ReRAM crossbars in two parts:

attaining location pointers and attaining adjacent vertices.

Attaining the location pointers is needed before exploring the neighbors of a frontier

in the RPBFS. Due to the extra vertex cache, some of the location pointers are attained from

the ReRAM crossbars, while the rest are attained from the cache. Therefore, we can estimate

the total latency for attaining the location pointers in one iteration as:

34

Tlocation = αFkltcache + βFkltreram (2.3)

Here, α and β represent the proportion of attaining location pointers from the R-

eRAM crossbars and the cache in a level.

Similarly, a graph bank attains the adjacency lists of the frontiers either from the

ReRAM crossbars or from the extra vertex cache. The cost of passing the ReRAM crossbars

depends on the number of times that wordlines are activated, which is strongly associated

with the number of adjacency list of the frontiers in the current level. Suppose that a vertex

needs P ReRAM cells to store. In level l, the total number of ReRAM cells involved will

be P times of the number of adjacency list of the frontiers, which can be expressed with

∑Vk

i=0 Sil×P . The straightforward way of calculating the number of times that the wordlines

are activated is
∑Vk

i=0 Sil × P ÷ S. However, the adjacency list of the ith frontier may be

distributed more than Sil × P ÷ S wordlines. For example, two neighbors of a vertex may

be placed on two rows in the ReRAM crossbar. Thus, we time a coefficient θ (1, 2) before

the
∑Vk

i=0 Sil × P ÷ S. Furthermore, the adjacency list can also be attained from the cache,

and the time cost is linear with the number of adjacency lists. Therefore, we can estimate the

runtime for attaining the adjacency lists in level l to be :

Tadjacency =
γθP

∑Vk

i=1 Siltreram
S

+ δ

Vk∑

i=1

Siltcache (2.4)

The γ and δ represent the proportion at which the adjacent vertices are attained from

the ReRAM crossbars and cache in a graph bank, respectively.

Updating status bitmap and array: When an inspection is issued for a newly vis-

ited neighbor, both the status bitmap and level array will be updated in the shared memory.

Since the checking status bitmap is antecedent, the number of checking operations in level l

equals to the number of the neighbors of the frontiers. If a neighbor has been visited in previ-

ous levels, then the graph bank skip the update operation. The status bitmap and level array

35

are updated only for newly visited neighbors, so the runtime for an inspection and update in

level l can be modeled as follows:

Tupdate =

Vk∑

i=1

Siltpro + η(

Vk∑

i=1

Siltpro +

Vk∑

i=1

Siltitem) (2.5)

Here, η (0<η≤1) represents the proportion of newly visited neighbors in the current

level.

Based on above analysis, we can estimate the total execution time for traversing a

graph in the RPBFS architecture. Since all of the graph banks involved perform traversal

in a parallel way, the total execution time of a graph traversal is the sum of the maximum

latency of all of the graph banks in each level. For an arbitrary graph bank, we use tsyn to

represent the average synchronization time among all of the graph banks in one iteration.

The total latency to traverse a graph in the RPBFS architecture would then be:

Ttotal =
L∑

l=1

(Tattain + Tlocation + Tadjacency + Tupdate + tsyn)

= Vk(
L

B
+ Ltpro cache + αtcache + βtreram)

+ Ek(
γθPtreram

S
+ δtcache + tpro + ηtpro + ηtitem) + Ltsyn

(2.6)

2.5.2 Performance Analysis

The above model can help us to identify bottlenecks and provide opportunities for improving

the RPBFS. Typically, the graph bank with more vertices and edges has less synchronization

latency compared to the other banks, and the level L can be determined with the source

vertex. According to Equation 2.6, the latency of traversing a graph is mainly determined

by Vk and Ek in the RPBFS architecture, which is linear with the number of vertices and

edges of a graph partition. We can see that the traversal has a complexity of O(Vk + Ek),

which matches our expectation that the partial graph traversal is wrapped in a graph bank. In

contrast, conventional graph traversal solutions have a complexity of O(V +E), or O(V) for

sparse graphs. Our proposed framework reduces the time complexity. Moreover, following

36

the above model, it is easy to see that the improvements in performance can be achieved

through a better distribution of graphs that are evenly partitioned. A straightforward way of

partitioning graphs is to balance both the number of vertices and the number of edges among

the graph banks.

2.6 Experimental Evaluation

In this section, we evaluate our RPBFS design. We first introduce the experiment methodol-

ogy. Then, we present the performance and energy results.

2.6.1 Methodology

We compare our RPBFS with the state-of-the-art CPU-based parallel implementation and

GPU-based solution Enterprise [11] [71]. The RPBFS is modeled by heavily modified N-

VSim to simulate the peripheral circuit [30], as well as to implement the traversal scheme

attached by a controller, which provides the control signals to all of the peripheral circuits.

We modify the simulator as a trace-based system to evaluate its performance. CPU-based

implementation is a multithreading and direction-optimizing solution with OpenMP runtime

library [27]. Enterprise implements efficient threads scheduling and unique memory hierar-

chy on GPU platform. Both CPU-based and GPU-based solutions have the fitting memory

and computation capability for the test workloads.

The configurations of the RPBFS architecture and detailed configurations of other

platforms, from which the related timing parameters are derived [19] [113] [82], are illus-

trated in Table 2.4. There are four ReRAM crossbars per graph bank, each crossbar contains

1024 * 1024 ReRAM cells, and we assume that all of the cells have the same properties

without non-uniform drops in voltage [145]. The ReRAM cell is conservatively assumed to

be a 4-bit MLC, and we use eight cells to represent a vertex and four cells to represent a

location pointer for large-scale graphs. The high-R state (HRS) and low-R state (LRS) are

set to 2500KΩ and 50KΩ respectively, and the read and write voltage are set to 0.7V and 2V

37

Table 2.4: The configurations of RPBFS architecture and hardware.

Controller 16 registers; one Core at 1.2GHz

Cache 512KB

Shared Memory 16MB

Internal Bus 50GB/s

ReRAM-based memory

16 Banks/chip; 4 Crossbars/Bank;

1024*1024 Cells/Crossbar;

tRCD-tCL-tRP-tWR 18-9.8-0.5-30 (ns)

CPU Cores Inter Core2 Q9550 with 2.83GHz

CPU L1 Cache 32KB SRAM

CPU L2 Cache 6144KB SRAM

Main Memory 4GB with two channels

Graphics Card GTX TITAN X with 3072 CUDA cores

respectively. The cell currents of an LRS and HRS ReRAM are 40uA and 2uA, respectively.

The energy cost of reading and writing are 1.59pJ and 5.53nJ. To estimate the energy and

area cost of other digital components in the RPBFS, we use the data from [113].

All of the graphs for our evaluation are represented using a compressed sparse row

format. We perform a sorting operation on the vertex. This pre-processing operation does not

change the graph topology. The graph data is loaded into the ReRAM memory bank, DRAM

memory, and GPU memory ahead, respectively, which excludes the I/O time from secondary

storage device. The time switch from top-down to bottom-up on traditional platforms is

triggered by the ratio of hub vertices, and an integer array is maintained in the memory to

track the status of each vertex. The timing starts when the source vertex is given, and ends

when the search is completed. We use traversed edges per second (TEPS) as the metric for

the traversal performance. We also compare the energy consumption of the RPBFS with

other platforms for performing graph traversal. The power consumption of GPU is measured

38

Table 2.5: Graph specification

Graph Name (Abbr.) # Vertices (M) # Edges (M)
Proportion of

Contiguous vertices

Directed

Enron (ER) 0.04 0.37 23.8% N

Slashdot (SD) 0.08 0.95 12.9% Y

Wikipedia (WT) 2.39 5.02 7.2% Y

Web of

Berkeley&Stanford (WB)

0.69 7.60 36.5% Y

Amazon (AM) 0.40 3.20 70.6% Y

RoadNet (RA) 1.96 5.53 21.1% N

using the NVPROF [85], and the power consumption of CPU and DRAM is estimated using

the Intel Power Gadget for Linux [78].

We use six graphs with different kinds of connections as the workloads [62], as shown

in Table 2.5. The Amazon product co-purchasing network (AM) graph has 400 thousand

vertices and 3.20 million edges, while the Wikipedia talk network (WT) has 2.39 million

vertices and 5.02 million edges. The web graph of Berkeley and Stanford (WB) has more

than 7.60 million edges, but only 685 thousand vertices. Two related small graphs are also

tested: the email communication network from Enron (ER) which only has 36 thousand ver-

tices and 367 thousand edges, and the Slashdot social network (SD) which has 82 thousand

vertices plus 948 thousand edges. The other undirected graph road network of California

(RA) has 1.96 million vertices and more than 5.53 million edges.

2.6.2 Evaluation Results

We first show the speedup in the performance of our RPBFS algorithm compared with other

direction-optimizing solutions on traditional platforms. The direction-optimizing solutions

have been proved that they perform better than the top-down algorithm [11]. We then show

39

106

107

108

109

1010

RAAMWBWTSDER

TE
PS

(lo
g
sc
al
e)

RPBFS
GPU
CPU-Parallel

Figure 2.8: Performance of RPBFS and direction-optimizing GPU-based and CPU-based solutions.

the scalability of RPBFS by measuring the performance of the different scales of ReRAM

crossbars. We map the graphs to the memory banks with the scales of 256*1024, 384*1024,

512*1024, 768*1024 and 1024*1204 ReRAM cells, respectively. After that, we compare

the improvement in performance by employing different data partitioning schemes. Finally,

we evaluate the energy that was consumed.

• Traversal Performance.

Figure 2.8 compares the traversal performance of our RPBFS solution, the GPU-based frame-

work Enterprise, and CPU-based 64-thread parallelism implementations, respectively. The

RPBFS performs up to 16.0× better than the Enterprise, and up to 33.8× better than the

CPU-based solution.This is because our RPBFS wraps the adjacency list access within the

memory banks, so as to reduce the data movement overhead. The data movement among the

memory banks is related only to the synchronization of vertex bitmaps, and is far less than

the that in other solutions. Tracking the status of each vertex also incurs the data movement

overhead in both three platforms. As shown in Figure 2.8, RPBFS achieves a 33.8× and

22.2× speedup over CPU-based solution in graph WT and RA, because the status array for

those graphs with a large number of vertex needs to be maintained and inspected by passing

through CPU memory hierarchy. RPBFS achieves a smaller speedup in WT, AM, and RA

by 1.32×, 1.59× and 2.27× than the Enterprise, this is because the Enterprise optimizes the

40

33.9%

SD

48.8%

17.3% 11.2%
35.1%

53.7%

40.5%

52.7%

6.8%

27.3%
9.2%

63.5%

32.87%

52.55%

14.59%

RAAMWB

WT

21.6%

54.9%

23.5%

ER

Attain frontiers
Attain neighbors
Update status

Figure 2.9: The breakdown of the execution time of BFS in RPBFS architecture.

Table 2.6: Performance improvement by employing extra vertex cache

Graph (Abbr.) ER SD WT WB AM RA

Percentage improvement 1.62% 0.47% 0.31% 1.93% 2.98% 2.31%

scheme of scanning the whole status array which resides in GPU global memory.

Figure 2.9 presents the breakdown of the execution time of BFS traversal on the

RPBFS. The execution time for each graph is divided into three parts: attaining frontiers,

attaining neighbors, and inspecting status. We can see that attaining neighbors occupies the

majority of the execution time in all of the workloads, averagely it takes 54.4%. Moreover, it

costs 23.5% of the total time to attain frontiers in the workload RA. This is because RA has

the highest diameter so that it costs the graph banks a portion of time to access the shared

memory for attaining the frontiers of each level. In the WT, it costs 40.5% of the total time

to update status, since a small portion of vertices own the majority of edges, so that the cost

of inspecting and updating is somewhat higher than other workloads.

Employing extra vertex cache can further accelerate graph traversal. This is because

extra vertex cache reduces the number of redundant activating wordline operations. Table

2.6 shows the performance improvement of RPBFS when extra vertex cache can retain up to

41

108

109

3*109

4*107

256*1024 1024*1024768*1024512*1024384*1024
Crossbar Scale

TE
PS

(lo
g
sc
al
e)

ER
SD
WT
WB
AM
RA

Figure 2.10: Performance with the scalability of RPBFS.

fifteen extra adjacent lists on the ReRAM crossbars with 1024*1024 scale. We can see that

employing extra vertex increases the traversal performance by up to 2.98% compared to the

RPBFS without cache mainly due to the contiguous neighbors of vertices. The directed graph

WT has the lowest proportion of contiguous vertices, plus the simple cache replacement

policy, it shows only slight performance improvement.

• Scalability Performance.

Figure 2.10 evaluates the scalability of RPBFS. When a graphs are mapped to the ReRAM

crossbar with the scale decreasing from 1024*1204 to 256*1024 cells, more graph banks are

involved. For the relatively large graphs WT and WB, the RPBFS with small scale crossbars

outperforms those with a bigger scale up to 2.7× and 2.3×, respectively. The reason for

this is that the diameter in these two graphs is small, so that the frontiers are sufficient

in each level. Thus, more graph banks are involved in concurrently performing expansion

tasks with the small scale crossbars. The same situation applies to AM due to the sufficient

frontiers. By contrast, for another graph RA, where the proportion of vertex numbers and

edge numbers accounts for around 35% and not enough benefits can be obtained from the

small scale crossbars, the improvement in performance is only 1.5×. This is because most

42

of vertices have few neighbors, so there are a limited number of frontiers in a level. For

the workloads ER and SD, which have only several thousands of vertices and edges, the

improvement in performance with small scale crossbars is almost imperceptible due to the

low level of parallelism and the insufficient number of frontiers. It should be noticed that,

involving more graph banks can improve bank-level parallelism, but the parallelism of the

processing graph traversal still depends on the distribution of frontiers in each level. The

optimal situation is one where the frontiers in each level can be evenly distributed on all

the ReRAM crossbars, as the parallelism of the ReRAM crossbars can be fully utilized.

However, it is not practical to distribute the optimal frontiers, since a graph traversal can

start any vertex, and the topology of a graph is unknown.

• Effect of Graph Distributions.

According to the RPBFS performance model described in Section 2.5, the total execution

time is strongly associated with the number of vertices and edges in an individual graph

bank. Therefore, employing better data partitioning schemes can improve computing paral-

lelism and minimize the synchronization time among all of the graph banks [55] [107] [18].

Since the adjacency lists are mapping to a graph bank with the greedy algorithm, the number

of edges in each bank is almost equal. The optimized partitioning method is to balance the

number of vertices, which means evenly spreading the vertices and edges to the graph banks.

To show the effect of the graph partitioning schemes on the traversal performance, we re-

order the vertex where the out-degree is in an ascending order, so as to generate the worst

case (RPBFS+WC) and the optimized case (RPBFS+OC). In the worst case, the adjacency

list of vertices will be mapped to the graph banks from the lowest number of out-degree ver-

tices, so that the first graph bank owns the maximum number of vertices, while the last graph

bank has the minimum number of vertices as a graph partition. By contrast, both vertices

and the corresponding adjacency lists are almost evenly distributed on the graph banks in the

optimized case, which is implemented by mapping the adjacency lists with the out-degree

in ascending order from both ends. We evaluate the expansion time of three different graph

distributions without the execution time of the partitioning. Figure 2.11 shows the results of

the performance of three graph distributions. We can see that employing optimized graph

43

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

TE
PS

N
or
m
.t
o
or
ig
in
al
pa
rti
tio
n

RPBFS
RPBFS+WC
RPBFS+OC

AMWBWTSDER RA

Figure 2.11: Performance improvement with different graph partitioning schemes.

distribution can further improve the performance of RPBFS on WT and AM, which have

sufficient frontiers in each level, with the improvement being up to 1.85× and 1.97× that

of the original scheme. The performance gap of AM between the optimized and the worst

scheme aggravates to 4.7×, because the worst partition limits graph bank parallelism, and

the traversal depth incurs more synchronization time, including the cost of scanning fron-

tiers. The optimized scheme reduces the synchronization time and improves the graph bank

parallelism to some extent, since all of the graph banks nearly have balanced vertices and

frontiers. For the graphs ER and SD, due to the simple topology, better graph partitioning

shows only a slight improvement in performance. We also validate our performance model

by comparing values improvement ratio analyzed through our model with that of the exper-

iments. The maximum number of vertices of graph RA partition mapped on a graph bank

in the worst case is around 131 thousand, which is almost 1.9× than the average number

of vertices in the optimized case, around 70 thousand. This situation also appears on the

number of edges. From the result of RA in Figure 2.11, we can see that our model accurate-

ly estimates the performance within 8% difference. The results show that our model is an

accurate analyzer of traversal performance for a number of graphs.

• Energy and Area.

The energy saving results of the RPBFS are presented in Figure 2.12. We see that RPBFS

44

0.0

0.2

0.4

0.6

0.8

1.0
CPU
GPU
RPBFS

ER SD WT WB AM RA

En
er
gy

N
or
m
.t
o
C
PU

Figure 2.12: Energy saving results (vs. CPU and GPU).

19.3%

15.5%

16.8% 6.5%

23.3%

18.6%

decoder and driver
sense amplifier
sample and hold
shift-and-adds
reram crossbars
others (controllers, cache, etc)

Figure 2.13: Area breakdown of RPBFS.

is more energy-efficient than other solutions due to less data movement overhead and the

property of the ReRAM crossbars. The RPBFS consumes up to 142.8× and 11.4× less

energy than the CPU and GPU solutions, respectively. For the small graphs ER and SD, the

energy savings of RPBFS over the CPU solution are 11.1× and 8.3×, while GPU has energy

savings of only up to 1.47× over CPU. For the large graph RA, the bigger diameter incurs

a vast number of accesses from random neighbors. Thanks to the localization of processing

expansions in the RPBFS architecture, the transfer cost and computation cost of RPBFS are

reduced.

Figure 2.13 shows the area breakdown of a ReRAM memory bank. The ReRAM

crossbars make up 15.5%, while the sense amplifier and the shift-and-adds which are the

shared components make up 40.1% of the whole area.

45

2.7 Other Related Work

In this section, related work involving graph accelerators and architectural designs for data-

intensive workloads is discussed.

Graph Accelerators. There are several existing studies on implementing graph ac-

celerators. Disk-based GPUs are common platforms for accelerating graph traversals [147]

[48] [71] [133] [79]. Hong et al. [48] proposed new methods for parallel breadth-first search

implementations by efficiently utilizing memory bandwidth. Enterprise is a GPU-based so-

lution that leverages the streamlined scheduling of GPU threads and workload balancing to

improve the parallelism of the processors [71]. Merrill et al. [79] presented a BFS implemen-

tation on the GPUs with a memory-access-efficient data representation. Moreover, Zhang et

al. [146] implemented a graph processing system on a FPGA-HMC platform based on the

co-design and co-optimization of software/hardware. They optimized the bitmap scheme to

reduce the memory access, and they proposed a performance model to generalize the total

execution time of BFS. Graphgen is an FPGA-based framework that uses a vertex-centric

model [84], while X-stream is an edge-centric approach to stream partitions for graph pro-

cessing [104]. Although these studies have provided a considerable computation units, and

have optimized the memory hierarchy to some extent, they still suffer from relatively long

random accesses and short computations.

Some architectural works examined large-scale graph processing on processing-in-

memory [88] [1] [120]. Tesseract maximized the available memory bandwidth by integrating

PIM technology into 3D-stacked memory [1], while Ozdal et al. proposed an accelerator ar-

chitecture to reduce irregular access patterns and asymmetric convergence [88]. GraphR

utilized ReRAM crossbars to store graphs, and realize the massive parallelism to accelerate

processing [120]. RPBFS is a distinct ReRAM-based PIM architecture from GraphR [120].

Instead of partitioning ReRAM memory into different regions, RPBFS integrates both stor-

age and computation capability on ReRAM memory. Thus, RPBFS reduces the transfer cost.

Moreover, RPBFS implements a level-synchronized graph traversal with compressed graph

representations, while GraphR realizes it as a special case of single-source shortest path in

46

a matrix way which needs to perform an extra graph conversion [25]. In addition, RPBFS

aims at a specific graph application, and implements it on a dedicated architecture and the

corresponding algorithm. GraphR is a general graph processing accelerator, thus it needs to

consider difference access and mapping patterns.

Processing-in-memory. PIM integrates the computation units inside memory to re-

duce the data movement overhead. The concept of PIM has been proposed for many years.

Because of the intolerable cost of the integration, the industry concentrated on off-chip mem-

ory. PIM is resurgent by putting logic layer into 3D-stacking memories where data resides,

which can alleviate the bandwidth bottleneck between the logic and the memory, and re-

duce the energy cost [10] [147] [112] [148] [143] [3] [95] [80]. Zhu et al. [148] designed

a 3D-stacked memory within the logic to accelerate graph algorithms by performing ma-

trix multiplication. Similarly, Mirzadeh et al. [80] adopted a 3D-stacked logic-in-memory

architecture for computation. PRIME is a PIM architecture to accelerate neural network

applications [19], and it utilized the inherent matrix-vector multiplication capability of the

ReRAM crossbars. ISSCC [113] and Pipelayer [119] are pipelined architectures with mem-

ristor crossbars to process computations. Ann et al. [2] proposed PIM-enabled instructions to

implement processing in memory; this approach is compatible with existing cache coherence

and virtual memory mechanisms.

2.8 Summary

In this chapter, we have proposed a novel ReRAM-based processing-in-memory architecture

for breadth-first search, called RPBFS. RPBFS can accelerate large-scale graph traversals

by reducing data movement overhead. Graph data movement are wrapped within graph

banks. Benefiting from the data-mapping scheme in the ReRAM crossbars and the efficient

graph traversal algorithms among memory banks, our architecture can effectively achieve

improvement in traversal performance compared with other solutions, and significant energy

saving under various workloads.

47

CHAPTER 3

OPTIMIZING RAID/SSD CONTROLLERS WITH LIFETIME EXTENSION FOR

FLASH-BASED SSD ARRAYS

3.1 Introduction

SSD-based RAID arrays have been gaining ever-increasing prevalence in enterprise, such

as XtremIO from EMC [31] and VSP from Hitachi Data System [126]. Compared with

traditional HDD-based RAID arrays, SSD-based RAID arrays feature lower access latency,

rack space and energy consumption. However, SSDs suffer aging problems. Flash blocks

inside SSDs can only be experienced by a limited number of Program/Erase cycles before

they are discarded. An accumulation of discarded blocks sacrifices the lifetime of an SSD.

For example, 30% - 80% of SSDs in a data center develop bad blocks during their lifespan

[47]. Parity updates incur extra writes in the RAID system, which aggravates the aging

issue. Although existing techniques, such as delay writes and parity redistribution, can ease

this problem, effective techniques are still urgently needed to extend the lifetime of SSDs in

the RAID system. The interplay between RAID and SSD controllers which are the center

controls of storage systems opens a new door for this issue through the exploitation of the

special features of data.

The benefits of exploring data inaccuracies have been extended to non-volatile mem-

ories with increasing demand for persistently storing data. Small amounts of bit flips are

acceptable for some applications. For instance, images or videos become prominent con-

sumers of storage, and they can tolerate an error rate of around 10% [105]. Instead of chang-

ing data to imprecise in approximate computing, such as omitting mantissa bits in floating

point operations, relaxing integrity constraints exhibits huge potential to significantly extend

48

0.0

4.0x10-5
8.0x10-5
1.2x10-4

1.0x10-2

2.0x10-2

3.0x10-2

4.0x10-2

5.0x10-2

6.0x10-2

3.49% with 60,000 P/E cycles

1.88% with 50,000 P/E cycles

0.014% with 10,000 P/E cycles
(the recognized maximum number)

7000060000500000 10000//40000

Bi
tE

rro
rR

at
e

P/E Cycles

5.75% with 70,000 P/E cycles

Figure 3.1: Higher error tolerance can extend the endurance of a NAND flash block.

the lifetime of flash memory. Figure 3.1 shows the experimental results we have conducted

based on an MLC NAND flash chip [110]. It can be observed that the maximum error rates

(obtained from the page with the highest error rate among all pages in a block) are 0.014%

with 10,000 and 5.75% with 70,000 P/E cycles, respectively. The results demonstrate that

the maximum endurance of a block can be extended by more than six times with more error-

tolerance.

Controllers in an SSD-based RAID system are the key parts to improving system

performance. RAID controller managing data and parity chunks is built on top of a number of

SSDs. SSD controller mainly handles functions of address mapping, garbage collection and

wear leveling, and the FTL in an SSD controller manages flash memory [98] [70]. Although

SSD controllers have been well studied for improving the lifetime of flash memory [75],

this is not the case with RAID controllers, which are not completely involved in extending

the lifetime of SSDs. First, a RAID controller is unaware of the age conditions of SSDs,

resulting in incompatible traffic, which in turn aggravates the aging rate of some SSDs.

Second, a semantic gap exists between the RAID controller and the SSD controller. The

semantic gap eliminates the interactions between the two controllers. For example, the parity

distribution strategy only works in a RAID controller, and the garbage collection scheme is

49

only controlled by an SSD controller. Third, simple storage management in both RAID and

SSD controller ignores the special features of data. Many applications have a mix of error-

free and error-relaxation data, and the tolerance of error-relaxation data varies. However,

the stripping technique in RAID breaks up error-free/error-relaxation data groups, making it

inefficient to explore the benefits of relaxing integrity constraints of flash memory.

In this chapter, we optimize the lifetime of SSD arrays via the interplay between

RAID and SSD controllers. We propose a cross-layer lifetime optimization framework,

Flash-resurrection RAID (FreeRAID). Our design rationale is to add a new phase, i.e., the

exploitable phase, in the lifecycle of a block besides normal and bad phases. Exploitable

blocks can be used to store error-relaxation data, even though uncorrectable errors will be

persistent. With the goal of extending the lifetime of an SSD-based RAID array, FreeRAID

combines the following two techniques. First, with the knowledge of physical blocks in SS-

Ds, the RAID controller in FreeRAID efficiently allocates normal and exploitable blocks to

serve data with different error-tolerances, and makes different types of data error-isolated.

In addition, FreeRAID and the existing optimized RAID schemes can coalesce. Second,

FreeRAID employs Adaptive-FTL to maintain performance and storage efficiency by dy-

namically switching FTL strategies. The lifespan of an SSD in FreeRAID is divided into

three stages by the proportion of different types of blocks, and the space allocation and

garbage collection schemes in FTL can be dynamically switched in accordance with the

stage that an SSD stays in.

We conduct a series of experiments to evaluate FreeRAID compared with conven-

tional RAID solutions and FTLs. Evaluations across a wide variety of workloads show that

FreeRAID can significantly extend the lifetime of SSDs arrays and maintain I/O perfor-

mance. To summarize, this chapter makes the following contributions:

• We explore exploitable blocks in SSDs to serve error-relaxation data for lifetime ex-

tension.

• We propose FreeRAID, which leverages the interplay between RAID and SSD con-

trollers to extend the lifetime of SSD-based RAID arrays.

50

• We evaluate FreeRAID with various workloads on a simulator, and the results show

that we can significantly increase the lifetime of SSD-based arrays by up to 2.17×
compared with conventional RAID solutions and FTLs.

The rest of this chapter is organized as follows. The next section gives the basic

background of this study. In Section 3.3, we describe exploitable blocks. We also describe

the architecture of FreeRAID, and its two key techniques. The performance of FreeRAID in

several key metrics is evaluated in Section 3.4. Finally, Section 3.5 discusses other related

work, and Section 3.6 concludes this chapter.

3.2 Background

This section briefly presents background on SSD-based RAID arrays, optimized RAID schemes

and approximate storage.

3.2.1 SSD-Based RAID Arrays

An SSD is composed of an array of flash chips, which includes multiple blocks. A block

is further divided into multiple pages [97]. Each block can endure a finite number of P/E

cycles. The error detection/correction codes (EDC/ECC) in an SSD controller can detect

and correct some of errors. Any uncorrectable failures even one bit will exhaust the whole

block which is then marked as a bad block. An SSD is replaced when the number of bad

blocks in it reaches a certain number [67].

An SSD-based RAID array consists of a RAID controller and multiple SSDs, and

provides a virtual logical disk by combining the space of the SSDs. Striping and parity are

two commonly-used RAID techniques. With striping, logically sequential data are divided

into chunks. These chunks are stored on different physical devices and can be accessed con-

currently. Parity is a redundancy-based protection scheme, by which parity data is generated

based on a group of data chunks for data recovery. According to the redundancy, RAID

schemes are categorized into several levels, such as RAID-5 and RAID-6. We will focus on

51

Figure 3.2: Three optimized RAID schemes.

RAID-5 in which one parity is generated for each stripe so that the system can tolerate one

failed drive at any time. Figure 3.2(a) shows an example of a RAID-5 scheme. The data

chunks {D0, D1, D2}, and {D3, D4, D5} construct two stripes Str 0 and Str 1, with the

corresponding parity chunks {P0} and {P1} generated to protect these stripes. The chunks

in each stripe are placed on different physical devices.

3.2.2 Existing Optimized RAID Schemes

A primary issue arises when deploying RAID on SSD-based arrays: the write updates. In

particular, parity chunks within the same stripe need to be updated for every data update.

These extra updates incur more garbage collection operations and delay access performance

on SSDs. In order to mitigate the update overhead, various optimized RAID schemes have

been studied. These schemes have been grouped into three categories: parity logging, parity

caching and elastic striping [122] [21] [66]. Figure 3.2 illustrates how three optimized RAID

schemes work. Suppose that an incoming stream of requests {D1’, D2’, D3’} will update

two stripes Str 0 and Str 1. With the parity logging scheme, as shown in Figure 3.2(b),

data chunks will be out-of-place updated at the flash level, and the log chunks generated by

the old and new data will be appended to a log device. Parity caching delays parity updates

by caching all incoming requests in a buffer. In Figure 3.2(c), new parity P0’ is generated

when {D0, D1} are updated together. To further reduce parity traffic, elastic parity logging

is introduced by encoding new data chunks to form log chunks, and the parity for a partial

stripe is appended to a log device. As shown in Figure 3.2(d), three new requests are gathered

to construct a new stripe Str 2.

52

3.2.3 Approximate Storage

Approximate storage exploits the error-tolerance of applications to reduce I/O latency and

energy consumption. Approximate storage is enough for these applications which can toler-

ate a small portion of persistent errors. Attempts have been made in prior studies to utilize

data inaccuracies to improve writing performance and relieve capacity constraints [109] [8]

[26]. Sampson et al. [109] and Jinhua et al. [26] propose reducing the number of write steps

on non-volatile memories to achieve high write performance and energy saving. Moreover,

Jinhua et al. [26] propose extending the lifetime of SSD by reducing maximal threshold volt-

age, but a reduced voltage can only extend dozens of erase operations of a block. Azevedo

et al. [8] extend the lifetime of PCM blocks by pairing spare blocks in disabled pages. Our

proposed scheme is a distinct solution for lifetime optimization from recent work. First, we

focus on the lifetime extension of SSD-based RAID systems which have parity updates. Sec-

ond, we propose reusing faulty blocks to store error-relaxation data, and we can significantly

extend the endurance of blocks.

3.3 FreeRAID

We present FreeRAID which leverages the interplay of RAID and SSD controllers to enhance

the lifetime of SSD-based arrays. The basic rationale behind the FreeRAID system is that a

new phase is added, i.e., the exploitable phase, in the life cycle of a block besides normal and

bad phases. The exploitable blocks can be used to store error-relaxation data, even though

errors will be persistent. To efficiently utilize exploitable blocks, FreeRAID integrates two

key techniques:

• Dual-spacemanagement to efficiently allocate space for ordinary and error-relaxation

data, and make them error-isolated.

• Adaptive-FTL to dynamically switch FTL schemes to optimize access performance

in line with the age status of SSDs.

53

Figure 3.3: Overview of FreeRAID.

3.3.1 Overview

Figure 3.3 shows the general architecture of FreeRAID. FreeRAID tightly couples the com-

ponents in both RAID and SSD controllers. In particular, FreeRAID implements the Dual-

space management to efficiently allocate space for ordinary and error-relaxation data. Via

the interplay between RAID and SSD controller, SSDs expose the information about their

physical blocks to the RAID controller, and the RAID controller delivers data along with its

error type to SSD controllers. Error-free data is gathered to construct ordinary stripes, while

error-relaxation data is gathered to construct error-relaxation stripes. Dual-space manage-

ment makes different kinds of stripes error-isolated for data reliability. Moreover, FreeRAID

can collaborate with existing optimized RAID schemes, further extending the lifetime of

SSDs by reducing write traffic. In addition, to improve storage efficiency and weaken the

effect of garbage collection on performance, Adaptive-FTL is integrated into FreeRAID.

FreeRAID divides the lifespan of an SSD into three stages, and Adaptive-FTL switches FTL

strategies in accordance with the stage an SSD remains at.

54

Figure 3.4: The transitions of blocks in a lifecycle and their error rate.

3.3.2 New Type: Exploitable Blocks

SSDs are assembled using NAND flash chips which contain a number of blocks. There

are usually two types of blocks in an SSD: normal blocks and bad blocks. Normal blocks

protected by ECC are intact, and they can degrade and wear out over time. Thus, some

of normal blocks will be marked as bad blocks if they contain uncorrectable errors, and

then they will be dismissed and replaced by reserved normal blocks. Instead of abandoning

faulty blocks which contain a handful of uncorrectable errors, we reuse them as exploitable

blocks to store error-relaxation data, as shown in Figure 3.4. Exploitable blocks still belong

to the user addressable block area, and they are preferentially assigned for error-relaxation

data. For reliability, we adopt an error model or employ a powerful error detection code

to evaluate the validity of data on exploitable blocks. When the uncorrectable errors in an

exploitable block exceeds a threshold, this exploitable block finally turns out to be a bad one.

All blocks follow a lifecycle from the normal phase to the bad phase. It is easy

to identify a normal block only if a block is error-free under the protection of ECC. As

for exploitable blocks and bad blocks, both have exhausted their error-correction resources,

we use error rate to distinguish them. To satisfy different requirements of various error-

relaxation applications, exploitable blocks are classified into three levels by error rate: low,

55

Figure 3.5: The transitions of blocks in a lifecycle and their error rate.

middle, and high, respectively. As shown in Figure 3.5, exploitable blocks in the low level

are faulty blocks with an error rate that is no more than a pre-set error threshold Low ER.

The error rate of exploitable blocks in the middle level is larger than Low ER but no more

than the error threshold Middle ER. Similarly, the error rate of exploitable blocks in the

high level stays between the threshold of Middle ER and High ER. For reliability, we

conservatively reserve a guard space between the thresholds High ER and Max ER. All

error thresholds can be configured to accommodate the requirements of various applications.

The classification of exploitable blocks can be determined by a “read-after-write”

scheme. The SSD controller writes the pre-defined data on an exploitable block, and then

reads data from it, and finally erases it for use. By counting the number of corrupted bits,

the exact error rate of this exploitable block can be attained. The SSD controller then inserts

it into a free block list according to its error rate level. Note that it is too costly in terms of

I/O bandwidth and computational resources to perform an error rate assessment at each erase

operation. Thus, we argue that it is acceptable to assess the error rate of an exploitable block

on a periodic basis, such as every 50 erase operations.

3.3.3 Dual-Space Management

Block transitions in SSDs occur, and application requirements vary. FreeRAID maintains

two data pools for data allocation by obtaining the information about the physical blocks of

SSDs: ordinary pool and error-relaxation pool. FreeRAID employs a stripe store and a dual-

space manager to manage the data allocation in the RAID controller. The error-relaxation

56

pool is specifically targeted at serving error-relaxation data, which is almost a free lunch

compared with conventional allocation schemes.

• Dual-Space Manager.

The ordinary pool in FreeRAID is a scarce resource since it can serve all kinds of appli-

cations, while the error-relaxation pool is specifically targeted at serving error-relaxation

applications. The dual-space manager can regulate the space of two data pools by moni-

toring the physical block information of SSDs, which requires close cooperation between

RAID and SSD controllers. If the RAID controller needs more normal blocks for the ordi-

nary pool, it will inform an SSD to release more normal blocks, and then the SSD controller

will use reserved blocks to replace the faulty blocks. In addition, the dual-space manager

can develop the age differential among SSDs to reduce the possibility of correlated failures.

It adopts an uneven parity distribution to control the aging rates of SSDs. In the case of an

SSD having a large number of faulty blocks, which makes an SSD array less reliable, the

dual-space manager will assign more parity write to it for a quick disk replacement.

• Stripe Store.

An SSD-based RAID array is composed of (N + 1) SSDs numbered from 0 to N . Mul-

tiple chunks form a stripe which is a collection of n data chunks and k parity chunks

(n + k <= N + 1), and will then be distributed on different SSDs. Once a data chunk

fails, the RAID controller requests other chunks in the same stripe to recover it. Taking data

validity into consideration, ordinary data and error-relaxation data should be separated to

construct stripes.

The stripe store collaborates with the Dual-space manager to implement error isola-

tion for stripes. A stripe in FreeRAID is divided into multiple sub-stripes. Each sub-stripe

contains data segments and parity segments. FreeRAID distinguishes between ordinary and

error-relaxation requests by the error-tolerance knowledge of applications, and then groups

requests into corresponding sub-stripes. The error-relaxation requests stored on exploitable

blocks must be isolated with ordinary requests, unless they are treated as ordinary requests.

We further illustrate data allocation and error isolation via an example, as shown in Figure

57

Figure 3.6: An example of data allocation and error isolation.

3.6. Ordinary requests {D0, D2, D4} are gathered to construct an error-free sub-stripe, while

the requests {D1, D3, D6} are gathered to construct an error-relaxation sub-stripe, and its

error rate is the maximum error rate among the data segments {D1}, {D3} and {D6}. Since

the parity segment has heavy updates, thus the parity segment in each sub-stripe must be an

ordinary segment. From this figure, we can see that the ordinary segment {D5} may become

an acnode segment if future requests are error-relaxation ones. The stripe store can gather

multiple acnode segments of cross-stripes to construct a sub-stripe. The stripe store main-

tains a segment mapping table to record the mapping information of sub-stripes, and records

the type of each segment. A segment is the unit of allocation, and the size of a segment is

aligned with multiple physical flash pages, thus the write performance can converge with

sequential write performance in the SSD.

• Combination with Existing Optimized RAID Schemes.

FreeRAID and the existing optimized RAID schemes can coalesce. Ordinary stripes are

processed in the same way as in existing optimized RAID schemes, while in case of error-

relaxation stripes it is necessary to consider their error rates for the reliability of data when

there are write updates.

Figure 3.7 illustrates how FreeRAID works in collaboration with existing optimized

RAID schemes. Suppose that six error-relation requests are gathered to construct two stripes

Str 0 and Str 1, and they are stored on exploitable blocks. Since the parity segments are

58

ER = max
ER = max

ER = max
ER = max

ER = max
ER = max

ER = max
ER = max

ER = max
ER = max
ER =

ER = max
ER = max

ER = max
ER = max

Figure 3.7: Combination with existing RAID schemes.

calculated by data segments in the buffer, and they are stored on normal blocks, thus they

are intact at this moment. The error rates of Str 0 and Str 1 are the maximum error rate of

their data segments, as shown in Figure 3.7 (a).

Assume that three update requests arrive sequentially, Figure 3.7 (b) illustrates how

the parity logging scheme handles write updates. The delta {L1} and {L2} for updating

{D1} and {D2} are logged on the log device. Since errors are persistent in {D1} and {D2}
when reading them from exploitable blocks, the delta {L1} and {L2} are inaccurate after the

computations. Thus, after updating parity {P0’} with {L1} and {L2}, {P0’} is inaccurate

even though it is stored on a normal block, and its error rate is not more than the sum of the

error rates of {D1} and {D2}. In order to restrict the error rate of a stripe, the new incoming

data {D1’} and {D2’} are placed on normal blocks. Similarly, the update {D3’} is placed on

a normal block. In the next stage, new requests {D0’} and {D3”} come to update two stripes.

Since the parity {P0’} in Str 0 has been associated with two error-relaxation segments, it

needs to be re-calculated. The parity is updated with the new {D0’}, and {D1’} and {D2’}
read from normal blocks, thus, all of the segments are error-free. To improve the block

efficiency, the data segments in Str 0 can be moved on exploitable blocks. For new updated

59

data {D3”} in Str 1, since it updates the old data read from a normal block, a delta can be

computed on the log device in this traditional way.

Figure 3.7 (c) illustrates an example of the parity caching scheme in FreeRAID. The

incoming requests {D1’, D2’, D3’} are cached. New parity {P0’} is calculated by requests

{D0, D1’, D2’} with the minimum number of error-relaxation segments. Since {P0’} only

connects to one error-relaxation segment, the request {D1’} can be assigned to an exploitable

block. The update with {D3’} in Str 1 is processed the same way as in the parity logging

scheme. In the next stage, considering the reliability of stripe Str 0, the parity {P0”} is

updated by {D0’, D1’, D2’}. Since it still only connects to one error-relaxation segment, the

{D0’} can be stored on an exploitable block.

Figure 3.7 (d) gives an example of how elastic parity works in FreeRAID. The in-

coming requests on different SSDs form a log stripe. We can see that the incoming requests

{D1’, D2’, D3’} are gathered to construct a new stripe Str 2. After that, {D0} can be treated

as an acnode segment, and it can be moved to the log device. Since {D0} has persistent

errors, it turns to be the normal data for the termination of its errors propagation. Subsequent

requests {D0’, D3”} are gathered to construct a partial stripe Str 3 following the elastic

parity scheme, and the new generated parity is appended to the log device.

3.3.4 Adaptive-FTL

SSDs in FreeRAID manage normal and exploitable blocks for allocation, and expose their

block information to the RAID controller. The inequality of the numbers in the two types

of blocks among SSDs results in a mismatch between I/O performance and reliability, such

as the effect of garbage collection on read and write performance. FreeRAID coordinates

Adaptive-FTL to optimize I/O performance. We elaborate on the functioning of Adaptive-

FTL in this sub-section.

• Block Manager.

Figure 3.8 shows the block management in Adaptive-FTL. The addressable space consists

of normal blocks and exploitable blocks. With regard to exploitable blocks for different

60

Figure 3.8: Block Allocation in FreeRAID.

requirements, the block manager divides them into three types according to their error rates.

Besides that, according to the proportion of normal, exploitable and bad blocks on an SSD,

we further divide the lifespan of an SSD into three stages: young, middle-aged, and old, as

shown in Figure 3.3. When an SSD begins, we assume that all blocks are normal, and the

initial stage is young. Normal blocks can degrade overtime, and exploitable blocks and bad

blocks will appear. An SSD enters the middle-aged stage when there are a certain number of

exploitable blocks. At this stage, error-relaxation data are preferably stored on exploitable

blocks. At the old stage, an SSD contains more exploitable blocks and bad blocks than

previous stages. FreeRAID tends to accelerate aging for reducing the possibility of correlated

failures of SSDs. Proactively replacing superfluous exploitable blocks on an SSD can quickly

consume the reserved good blocks, so as to accelerate its aging.

The block manager relies on a simplified page-level FTL, and severs requests in

accordance with the error tolerance of requests. Read requests are directly served after trans-

lating a logical address to a physical address. For write requests, the block manger allocates

free pages according to the stage that an SSD lives in. In youth, all writes are assigned to

normal blocks. The block manager allocates free pages from normal blocks to serve all kind-

s of requests. At the middle-aged and old stages, the exploitable blocks are in service for

error-relaxation requests. The block manager first identifies the error-tolerances of requests

61

delivered from the RAID controller, and then selects an appropriate allocator of exploitable

blocks to allocate pages. For example, a request with a high error-tolerance tag will be as-

signed to the High ER allocator. If there are no free exploitable blocks for error-relaxation

requests, the normal block allocator can assign a free page for requests. Moreover, the num-

bers of normal blocks and exploitable blocks hover with the demands of applications. If free

normal blocks are not plentiful, the RAID controller can collaborate with the SSD controller

to replace faulty blocks with reserved blocks from the backup space.

• Adaptive Garbage Collection.

Adaptive-FTL employs adaptive-GC to reduce the impact of the inequality of blocks among

SSDs on performance. Adaptive-GC switches GC strategies in accordance with the stage that

an SSD stays. At the stage of young age, adaptive-GC only reclaims normal blocks, and the

GC process is triggered when free normal blocks are below a watermark called GC normal.

At the middle-aged stage, adaptive-GC executes different collection strategies for normal

blocks and exploitable blocks, respectively. Normal blocks are a scarce resource at this stage,

so adaptive-GC uses a radical way to reclaim them. A higher watermark for normal blocks

called GC radical is set. For exploitable blocks, copying valid data to other places also

carries persistent errors, so adaptive-GC copies the living data from a Low ER or Middle ER

victim block to an available Low ER exploitable block so that the maximum error rate of the

copied data is no more than {L ER+M ER}. The targeted block will then turn out to be a

High ER exploitable block, and the SSD controller will inform the RAID controller about

the change in reliability issue for future updates. To reclaim H ER exploitable blocks, valid

pages will be copied to a normal block to terminate their error propagation. Correspondingly,

the watermarks GC low, GC middle and GC high are set for reclaiming different levels of

exploitable blocks, and they are much lower than GC radical to reduce the impact of GC

on the quality of data. At the old stage, a victim High ER exploitable blocks will be marked

as bad, and then will be replaced by a reserved block to accelerate aging of an SSD.

Adaptive-FTL redesigns block management, address mapping, and garbage collec-

tion in SSD’s controller to collaborate the RAID controller for exploring the special feature

62

of data. In addition, Adaptive-FTL can be compatible with existing wear leveling schemes,

such as static and dynamic wear leveling.

• Error Rate Assessor.

Normal blocks rely on ECC to determine whether the validity of intact data has been ac-

complished, while it is still challenging for exploitable blocks, which have exhausted error-

correction resources, to judge the validity of data for error-relaxation applications. Many

sources can cause flash memory errors, such as P/E cycling and retention time [37] [135]

[124]. Flash memory P/E cycling incurs the shift and fluctuation of threshold voltage in a

memory cell. The retention error is caused by charge leakage over time after a flash memory

is programmed, and it has a positive correlation with the number of P/E cycles. Thus, by

considering two dominant sources of errors, we propose two schemes to implement early

error detection of exploitable blocks.

Error-Assess Model. We generalize an exponential growth equation derived from

[135] [124] to predict the errors caused by P/E cycling and retention time on an exploitable

block:

RBER(n, t) = RBERcycles(n) +RBERretention(n, t)

= AeBn + C

+ (a0 + a1n+ a2n
2 + a3n

3)t

+ (b0 + b1n+ b2n
2 + b3n

3)

where n is the number of P/E cycles, t is the retention time whose unit is a day, and

A, B, C are correlation coefficients derived from the parameters for 3x nm MLC in [124].

RBERcycling denotes the bit error rate caused by P/E cycling, and it is dependent on the

P/E cycles n. RBERretention denotes the bit error rate caused by retention time, and it is

related to the both P/E cycles n and retention time t. In the model of retention errors, we

use a polynomial curve fitting with a least-square calculation to generalize the correlation

between the retention errors and P/E cycles from [135]. ai and bi (0 ≤ i ≤ 3) are correlation

63

coefficients, and they are calculated as follows: -0.018, 0.016, -0.0018, 0.0001, 0.1752, -

0.04, 0.0323, -0.001. By validating the results with the motivation experiment shown in

Figure 3.1, we find that our model can accurately analyze the error rate of exploitable blocks.

Error Detection Code. To guarantee reinforced reliability for exploitable blocks,

more powerful and stronger error detection codes can be employed in FreeRAID to obtain

the exact error rates. For example, EG-LDPC [102], a class of LDPC codes constructed

deterministically using the points and lines of Euclidean geometry over a Galois field, is a

good candidate for detecting high errors with few decoding cycles. In a 255-bit EG-LDPC

codeword that contains 175 information bits, there is only a small possibility that the errors

affecting up to 12 bits (6.8%) cannot be detected. However, such codes with excellent detec-

tion capability incur a fantastic amount of storage overhead, for example, 80 parity bits are

needed in a 255-bit codeword. We believe that a proper error detection code for FreeRAID

exists, which satisfies the requirements of detection capability and has low storage overhead.

The design of efficient error detection codes is beyond the scope of this chapter; thus, we use

the error-assess model to judge errors on exploitable blocks.

FreeRAID employs the error rate assessor to guarantee the reliability of exploitable

blocks. The error rate assessor serves two main functions. First, it judges the quality of

error-relaxation data by using the error-assess model. For a read request on an exploitable

block, the error rate assessor first calculates the error rate of the exploitable block with its

best knowledge, and then compares the calculated error rate with the error-tolerance of the

request. The data will be returned to applications if the quality is qualified. Otherwise, a

block failure will be reported to the RAID controller which will use redundancy to recov-

er the failure. Second, the error rate assessor can proactively predict the validity of data.

Risky data will be reported to the RAID controller even if the data has not been accessed.

Proactive recovery can reduce the number of degraded reads, and consequently, improve the

responsiveness of applications.

64

3.4 Evaluation

In this section, we present the experimental methodology and the experimental results of our

proposed FreeRAID.

3.4.1 Experiment Setup

We evaluate FreeRAID via a trace-driven simulator, and compare it with conventional RAID

and FTL schemes. FreeRAID is modeled by heavily modified Flashsim [13] to implement

RAID schemes and the components in both the RAID controller and SSD controller. We

implement a RAID-5 scheme with five devices on the simulator, and add a log device for the

existing optimized RAID schemes. We simulate each SSD with 16GB of raw capacity, in

which 15% of flash blocks are over-provisioning space. Each block has 128 pages, and each

page is of 4KB. A stripe contains four sub-stripes, and each chunk in a sub-stripe is 64KB.

We use the erase number as the lifetime of normal blocks, and use the error rate

to identify exploitable blocks and bad blocks in the simulator. The error rate thresholds

Low ER, Middle ER, High ER for three kinds of exploitable blocks are set to 0.0004,

0.0006 and 0.0010, respectively. These thresholds are set based on persistent-storage bench-

marks presented in [109], by which the endurance of a flash block can be significantly ex-

tended. These thresholds reflecting the potentials of lifetime extensions can be configured to

accommodate the requirements of applications. To develop reasonable error rate fluctuation-

s, we initialize the error rates of exploitable blocks and set the increase of error rates after

each erase operation following the Gaussian distributions with different parameters. The

mean of initialized error rate is 0.00009 with 0.0025 variance; and the means of increase of

error rates for three kinds of exploitable blocks are (23 ∗ 10−9) with 0.005, (33 ∗ 10−9) with

0.01, and (50 ∗ 10−9) with 0.015.

We consider four real-world I/O traces [34] [131], as shown in Table 3.1. Financial1

and Websearch capture the workload from OLTP applications running at two large financial

institutions. The original Websearch is a read dominant workload. We invert all read requests

65

Table 3.1: Workload characteristics

Workloads # of requests Write Ratio
Average

request size

Financial1 5334987 76.8% 3466B

In-Web 9896966 100.0% 15589B

Webmail 7795815 81.8% 4096B

Online 5700499 73.8% 4096B

to writes to generate a new trace called In-Web, choosing it because of its ample accesses

and large address space. Webmail and Online traces are collected from a department mail

server and a course management system, respectively. Note that there is no error-tolerance

tag in these traces; we chose them because they are popular workloads and they have a large

number of writes. In order to evaluate the performance of FreeRAID, we plug in error flags

to random entries of these original traces. The mixed data containing both ordinary and

error-relaxation data can reflect the overarching features of the applications.

3.4.2 Evaluation Results

• Lifetime Extension.

We use the number of writes before the first device failure happens to evaluate the lifetime

of an SSD-based RAID array. Although each trace spans a very large address space, only

a small proportion of address ranges is accessed. Therefore, in order to trigger more erase

operations, we compact the whole addressable space of RAID to 4GB, and allocate extra

an 5% of blocks as reserved space. The first failure happens when one of the SSDs has

exhausted all reserved blocks. We generate two sets of age groups of SSDs to simulate

different scenarios in a data center. The first array is an age-balanced group in which all the

SSDs have the same wear-out rate. The remaining erase number of each normal block is set

to 5. The other array has differential ages derived from [9]. One of the SSDs in the different-

aged array is younger than the others, and it will handle more parity writes. All blocks in the

66

35×105

30×105

Parity Logging
In-WebWebmailOnline

25×105

20×105

15×105

5×105

0

10×105

N
um

be
ro
fW

rit
es

be
fo
re
Fi
rs
tF
ai
lu
re

Financial

Con.RAID
FreeRAID

Parity Caching

N
um

be
ro
fW

rit
es

be
fo
re
Fi
rs
tF
ai
lu
re

Financial In-WebWebmailOnline

35×105

30×105

25×105

20×105

15×105

5×105

0

10×105

Con.RAID
FreeRAID

Financial

N
um

be
ro
fW

rit
es

be
fo
re
Fi
rs
tF
ai
lu
re

Elastic Parity

Con.RAID
FreeRAID

In-WebWebmailOnline

35×105

30×105

25×105

20×105

15×105

5×105

0

10×105

Figure 3.9: Total writes of FreeRAID and a conventional RAID with SSDs in balanced ages.

N
um

be
ro
fW

rit
es

be
fo
re
Fi
rs
tF
ai
lu
re

Con.RAID
FreeRAID

Parity Logging
In-WebWebmailOnlineFinancial

15×105

35×105

45×105

40×105

30×105

25×105

20×105

5×105

0

10×105

15×105

35×105

N
um

be
ro
fW

rit
es

be
fo
re
Fi
rs
tF
ai
lu
re

Con.RAID
FreeRAID

Parity Caching
In-WebWebmailOnlineFinancial

45×105

40×105

30×105

25×105

20×105

5×105

0

10×105

Con.RAID
FreeRAID

N
um

be
ro
fW

rit
es

be
fo
re
Fi
rs
tF
ai
lu
re

Elastic Parity
In-WebWebmailOnlineFinancial

15×105

35×105

45×105

40×105

30×105

25×105

20×105

5×105

0

10×105

Figure 3.10: Total writes of FreeRAID and a conventional RAID with SSDs in differential ages.

younger SSD have 15 remaining erase number, while the remaining erase number of blocks

in the other SSDs is set to 5. We compare FreeRAID with a conventional RAID (Con.RAID)

in which blocks are marked as bad if their remaining erase number is zero. In FreeRAID, bad

blocks are generated after the transitions of exploitable blocks. We set the maximum ratio of

exploitable blocks in an SSD at 30%, meaning that the superfluous exploitable blocks will

be marked as bad blocks, and then will be replaced. In this experiment on FreeRAID, we

feed it workloads with half error-tolerated requests and half normal requests.

Figure 3.9 shows the total number of writes before the first failure happens in FreeRAID

and a conventional RAID under three existing optimized schemes. When all SSDs share the

same wear-out rate, FreeRAID achieves a lifetime extension of up to 65% across different

traces. Compared with the conventional RAID, 65% and 50.7% extra writes can be realized

in FreeRAID in In-Web and Financial workloads, respectively. FreeRAID gains 29.4% and

27.8% extra writes in Online and Webmail, respectively. The main reason for this increase

is that FreeRAID distributes most of the error-relaxation data on exploitable blocks, which

67

100%75%25%0% 50%

N
um

be
ro
fW

rit
es

be
fo
re
Fi
rs
tF
ai
lu
re

Proportion of Error Injection

Finanical
Online
Webmail
In-Web

35×105

30×105

25×105

20×105

15×105

5×105

0

10×105

Figure 3.11: Lifetime extensions under different ratios of error-relaxation workloads.

significantly reduces the worn-out rate of normal blocks. Among the existing optimized

schemes, the elastic parity scheme can respond with more writes since it reduces more write

traffic and GC operations on SSDs than other schemes.

Figure 3.10 shows the lifetime extension of SSDs with the differential ages. FreeRAID

increases the total writes by up to 46.7% compared to the conventional RAID scheme in three

existing optimized schemes. This implies that FreeRAID can significantly improve the life-

time of an SSD-based RAID array beyond parity redistribution.

Figure 3.11 shows the total number of writes before the first failure happens at various

error injection levels in FreeRAID without any optimized RAID schemes. We can see that

FreeRAID significantly extends the lifetime of an array under four workloads containing

more ratios of error-relaxation data. In the In-Web, FreeRAID extends the lifetime by up to

2.17×. Averagely, FreeRAID achieves 1.31× and 1.63× lifetime extensions with 50% and

100% ratios compared to the traditional RAID (all data is error-free), thereby demonstrating

the effectiveness of our proposed techniques.

• Average Response Time.

To evaluate the effectiveness of Adaptive-FTL in FreeRAID, we compare it with the state-

68

3×104

7×104

Av
er

ag
e

Sy
st

em
 R

es
po

ns
e

Ti
m

e
(u

s) RAID+Page
 FreeRAID
 RAID+BAST
 RAID+DFTL

6×104

5×104

4×104

1×104

0

2×104

In-WebWebmailOnlineFinancial

Figure 3.12: Comparisons of average system response time.

of-the-art FTLs in a standard RAID-5 scheme. DFTL is an on-demand page-level FTL

with one-level cache, both page-level mapping table and data blocks are stored in the flash

memory [40]. Block associative sector translation (BAST) scheme allocates a log block for

only one data block [58]. Page FTL is an ideal page-level FTL without any constraints.

The major performance metric to be evaluated is the average request response time. Since

DFTL, BAST, and Page FTL only work on normal blocks, we feed the original workloads

to them. For FreeRAID, we use the error-injected workloads to evaluate the effectiveness of

Adaptive-FTL. We set the initial proportion of exploitable blocks of five SSDs to 0, 10%,

15%, 25%, and 30% respectively. Figure 3.12 presents the experimental results of average

write response time with different FTLs. We can see that FreeRAID with Adaptive-FTL

has an obviously lower response time than the conventional RAID with BAST and DFTL

schemes, with a reduction by up to 57.6%. The main reason for this result is that Adaptive-

FTL in FreeRAID is based on a simplified page-level FTL which has no extra log reads

and writes than BAST and DFTL. However, Adaptive-FTL brings some overhead compared

with the Page FTL, the overhead mainly includes extra writes for moving error-relaxation

data from normal blocks to exploitable blocks, and the error-assess process for exploitable

blocks.

69

G
C

 O
ve

rh
ea

d
N

or
m

. t
o

Pa
ge

 F
TL

 RAID+Page
 FreeRAID
 RAID+BAST
 RAID+DFTL

4.5

4.0

3.0

1.0

0

2.0

In-WebWebmailOnlineFinancial

Figure 3.13: Comparisons of GC overhead.

• GC Overhead.

We measure the average number of GC requests across all SSDs in terms of the GC overhead.

The victim blocks are picked by a default greedy algorithm on FTLs. We distribute the SSDs

into different stages in FreeRAID, and initialize a portion of invalidated blocks so as to

quickly trigger garbage collection. A GC trigger happens when the number of normal blocks

drops below 25% of normal space in the young stage, and 35% in the middle and old stages.

Garbage collection for three kinds of exploitable blocks is triggered when the numbers of

free blocks drop below 15%, 10%, and 5% of the total blocks. Since DFTL, BAST, and

Page FTL can only reclaim normal blocks, while Adaptive-FTL can work on both normal

and exploitable blocks, thus we feed a portion of the workload to them to lower the effect of

different parameters and differences in blocks. The GC overhead normalized to the Page FTL

is shown in Figure 3.13. We can see that FreeRAID with Adaptive-FTL significantly reduces

the number of GC requests over that in DFTL and BAST. It reduces 1.8× of GC requests

compared with DFTL in Webmail workload. The reason for this result is that Adaptive-FTL

efficiently performs garbage collection with different schemes in accordance with the stage

an SSD stays, and it is a lightweight page-level implementation when compared with DFTL

and BAST.

70

• Overhead Discussions.

Our proposed scheme incurs performance overhead which mainly comes from three parts:

adaptive-GC, error-relaxation data migration, and mapping table lookups. First, adaptive-GC

processes for normal and exploitable blocks are triggered by different watermarks in accor-

dance with the stage an SSD stays at. Adaptive-GC for normal blocks in middle age is more

radical than at a young age. The higher watermark generates more GC operations, resulting

in a performance gap with the ideal Page FTL, as shown in Figure 3.13. Second, for nor-

mal block efficiency, migrating error-relaxation data from a normal block to an exploitable

block incurs extra writes and reads. We can schedule the migration tasks to accommodate

a trade-off between space efficiency and I/O performance, such as blocking the migrations.

Third, the mapping table lookups and the flag checks in both RAID and SSD controllers

incur minor performance overhead.

3.5 Other Related Work

SSD-based RAID is a reliable storage system with the redundancy-based protection tech-

nique. Several existing studies have focused on improving the lifetime of a RAID array.

Jimenez et al. [52] relieve the weakest pages to implement block lifetime extension. They

operate on healthy blocks in a proactive way, but this incurs a loss of capacity. Moon et

al. [81] analyze the relationship between the parity protection and the lifetime of SSD ar-

rays, and they find that the write amplification is a major factor in the lifetime of RAID.

Yongseok et al. [87] use a log-structured cache to eliminate read-modify-write operations,

they propose the use of destaging, instead of garbage collection to enhance the lifetime of

SSDs. Both of these existing work focus on reducing write traffic, while we explore the

special features of data to extend the lifetime of SSD-based RAID.

Exploiting the error resilience in modern applications has led to multi-aspect im-

provements in storage. Sampson et al. [109] and Azevedo et al. [8] explore data inaccuracies

to optimize the performance and storage efficiency of PCM, and Jinhua et al. [26] optimize

them on 3D flash-based SSDs. For specific applications, Jevdjic et al. [51] compute bit-level

71

reliability requirements for encoded video by tracking coding dependencies, and implements

different levels of error correction for streams’ reliability needs, and Guo et al. [38] propose

selective error correction technique to implement high-density image storage.

3.6 Summary

In this chapter, we proposed FreeRAID, which leverages the interplay of RAID and SSD

to extend the lifetime of SSDs arrays. The exploitable blocks are explored to store error-

relaxation data in FreeRAID, even though uncorrectable errors will be persistent. FreeRAID

employs Dual-space management and Adaptive-FTL to improve block efficiency and main-

tain data reliability and I/O performance. Our experiments show that we can significantly

increase the lifetime of SSD-based arrays compared to conventional RAID solutions and

FTLs.

72

CHAPTER 4

REBIRTH-FTL: LIFETIME OPTIMIZATION VIA APPROXIMATE STORAGE

FOR NAND FLASH

4.1 Introduction

NAND flash memory has been widely adopted as a storage medium in embedded storage

devices (e.g. smartphones, tablets, etc.) and enterprise storage systems (e.g. SSDs, flash

array, etc.). With feature-size reductions and multi-level cell technology, the density of flash

memory is dramatically improved. However, the lifetime of memory cells inevitably deterio-

rates. For instance, with 2x-nm technology, MLC (Multi-Level Cell) and TLC (Triple-Level

Cell) can only endure 3,000 and 1,000 Program/Erase (P/E) cycles, respectively [76]. This

life-deterioration trend will continue as we move to smaller feature size (e.g. 7-nm) and QL-

C (Quad-Level Cell) technology. Therefore, the declining lifetime of NAND flash memory

exhibits challenges for memory management.

Today, we are storing more and more approximate data that can be more error-tolerant

than regular data which needs bit-by-bit precise, such as image and video. Approximate data

can accept a small number of bit flips. For instance, edge detection on an image can stand

up to 16.9% error rate [116]. The error tolerance shows the potential to improve the lifetime

of flash memory. Figure 3.1 in Section 3.1 shows the relationship between the P/E cycles

and the corresponding bit error rates on an MLC NAND flash chip [110]. Based on this

observation, in this chapter we further explore the error-tolerance of data to optimize the

lifetime of flash memory in embedded storage system.

Recent work have demonstrated that approximate storage has led to multi-aspect im-

73

provements in solid state memories. Sampson et al. [109] and Jinhua et al. [26] propose re-

ducing the number of write steps on non-volatile memories, so as to achieve higher write per-

formance and energy saving. Azevedo et al. [8] explore the error-tolerance of approximate

data to optimize storage efficiency in PCM. Guo et al. [38] propose the selective error correc-

tion codes for high-density image storage, and Jevdjic et al. [51] implement different levels of

error corrections for encoding video. Distinguished from these prior work, our work focuses

on flash memory management at the flash translation layer without the hardware changes

(such as the incremental step pulse programming strategy to reduce writes [109] [26]), or the

dedicated ECC techniques (for encoding images with the progressive transform codec [38]

and videos with H. 264 [51]).

In reconsidering the connection between the FTL and approximate storage for life-

time extension, it is still challenging to apply approximate storage into embedded storage

system without the involvement of hardware. First, a page-level FTL needs to manage two

separated spaces, i.e., normal space and approximate space, and it needs to consider the error

rate at block-level. The approximate space which consists of the faulty blocks can be used to

store error-relaxation data, and it should be separated with normal space which serves error-

free data. Second, two spaces vary dynamically since some flash blocks will turn into faulty

ones with the increase of P/E cycles, so the garbage collection (GC) and wear leveling (WL)

in the FTL should be orchestrated to maintain good I/O performance. Moreover, coping valid

pages from a victim faulty block to another faulty block may double the error rate of approx-

imate data in both GC and WL schemes, thus the GC and WL need to be carefully examined

for the reliability of approximate data. Third, there exists an approximation-awareness bar-

rier between applications and flash devices drivers in embedded operating systems. The

OS is layered into several distinct subsystems, and the separations between them make it

challenging to deliver the special features of data through the whole OS.

In this chapter, we present Rebirth-FTL, which reuses faulty blocks to improve the

lifetime of flash memories. We propose a new kind of blocks, approximate blocks that con-

tain a handful of uncorrectable bit errors to store error-relaxation data. Rebirth-FTL manages

two separated spaces to serve applications. Normal space serves all kinds of data and guar-

74

antees the integrity of data, while approximate data is specifically targeted at serving error-

relaxation requests. Three key components as pure software management are redesigned to

accommodate two separated spaces in Rebirth-FTL. The approximation-aware address map-

ping scheme manages both normal and approximate spaces, and allocates blocks for the cor-

responding data. To maintain I/O performance and validity of data, we propose coordinated

garbage collection which collaboratively reclaims free blocks with data migration between

two spaces. Differential wear leveling, with the different strategies, is proposed to spread

the wearing of two spaces evenly. We also propose a lifetime model for lifetime analysis to

evaluate the benefits of reusing faulty blocks. In addition, to eliminate the approximation-

awareness obstacle, we demonstrate how to pass approximate information from applications

to flash devices in Linux.

We have prototyped Rebirth-FTL on an embedded development board and a simula-

tor, and we have conducted a series of experiments to evaluate its performance. Evaluations

across a wide variety of workloads show that Rebirth-FTL significantly outperforms conven-

tional FTLs in lifetime (up to 3.46× improvement). To summarize, this chapter makes the

following contributions:

• We propose Rebirth-FTL, which reuses faulty blocks for lifetime optimization, with

three key components in FTL that are redesigned.

• We present how to pass approximate information from userland to kernel space with

minimum OS modification and overhead.

• We analyze the lifetime benefits of Rebirth-FTL in a lifetime model.

• We demonstrate the effectiveness of our technique by conducting a set of experiments.

The rest of this chapter is organized as follows. The next section gives basic back-

ground to this study. Section 4.3 describes the overview of our proposed Rebirth-FTL, as

well as its three key components. In Section 4.4, we briefly introduce how the approximate

information of data is delivered through the whole Linux OS in a top-down way. An analyt-

ical lifetime model is presented in Section 4.5, and we apply it to explore the optimization

75

opportunity. Section 4.6 evaluates the performance of Rebirth-FTL in several key metrics.

Finally, Section 4.7 concludes this chapter.

4.2 Background

This section briefly presents the background on NAND flash memory, flash translation layer,

and approximate storage.

4.2.1 NAND Flash Memory

A typical NAND flash memory is partitioned by blocks, and a block is further divided into

multiple pages. A page is the basic unit of read and write operations, while a block is the

basic unit of erase operations. Read, write and erase are three basic operations in NAND

flash memory. The write operation writes data to an available page, and the data can be read

from it. Due to the out-place update, the page can be re-written after an erase operation

which is performed on a block basis. ECC is employed to accomplish the required reliability

of blocks while reading and writing, and normally it can perform single or multiple bit-error

corrections. A flash block can endure a finite number of P/E cycles. An increasing number

of P/E cycles incurs the shift and fluctuation of the threshold voltage of a memory cell,

and then uncorrectable errors occur. Any uncorrectable failures with even one bit error will

exhaust an entire normal block which is then marked as a bad block. Bad blocks will be

dismissed and replaced by reserved good ones. Typically, a single-level flash memory cell

can tolerate 10,000 P/E cycles [16]. With multi-level cell technology, the density of flash

memory is dramatically improved, while the endurance reduces. The MLC and TLC can be

reprogrammed for 3,000 P/E cycles and 1,000 P/E cycles, respectively. The storage systems

normally have strict requirements on reliability. This life-deterioration trend will continue to

challenge current systems as we move to smaller feature size and QLC technology.

76

Figure 4.1: A typical page-level FTL scheme.

4.2.2 Flash Translation Layer

The FTL layer emulates a flash memory as a block device, so a file system can access flash

memories transparently. FTL serves major management functions: for address translation, an

address mapping table is utilized to translate addresses between logical and physical address-

es; for garbage collection, the obsolete spaces are reclaimed by erasing blocks, the process

involves reading, rewriting and erasing; for wear leveling, a technique to prolong the lifetime

by distributing erasures and writes evenly across memories. Various FTL algorithms have

been proposed, and they can be grouped into three types: page-level, block-level, and hybrid

mapping schemes. The page-level mapping scheme allocates any physical page on the flash

memory to a logical page, as shown in Figure 4.1. The disadvantage is that the mapping

table consumes large amounts of space since it maintains an entry for each logic page. The

block-level mapping scheme first consults the table to find a physical block, then goes to the

corresponding page according to the offset. Although it reduces the size of mapping table,

it may waste storage space due to its inflexibility. A trade-off between the page-level and

block-level mapping schemes is a hybrid mapping scheme, which uses block-level mapping

for data blocks, and page-level mapping for log blocks. However, performance reduction is

unavoidable since it increases the algorithmic complexity of address mapping schemes. In

this chapter, we focus on the page-level mapping scheme.

77

4.2.3 Approximate Storage

Approximate storage exploits the error tolerance of applications to reduce I/O latency and

energy consumption. A small number of bit flips is acceptable for some applications such as

image processing, and the overall quality of service is satisfied. For example, a high fidelity

image read from the approximate storage substrates still can be applied for face recognition,

which leverages the fact that human senses can tolerate imperfections in output. Even with

a certain degree of quality reduction in an image, users can still recognize the character.

Recent research has proposed applying approximate storage for images and videos [51] [39]

[90] [38]; the principle is to employ unequal error protection techniques to implement lower

computational complexity and higher storage efficiency.

4.3 Rebirth-FTL

In this section, we present Rebirth-FTL, a lifetime optimization scheme in the flash transla-

tion layer, which gives a second birth of a faulty block to store data. We first give an overview

of our scheme, and then we present its three key components.

4.3.1 Overview

Figure 4.2 shows the general architecture of our NAND flash memory storage system. Rebirth-

FTL, a pure software management in the flash translation layer, resides above the MTD sub-

system, and manages two separated spaces: normal space and approximate space. Rebirth-

FTL is aware of the approximate information from applications, and it can efficiently allo-

cate the corresponding blocks for requests in accordance with their approx flags. Error-

relaxation requests with valid approx flags can tolerate a small amount of bit flips, thus

Rebirth-FTL preferentially allocates approximate space to serve them. In order to achieve

high block efficiency, Rebirth-FTL integrates approximation-aware address mapping, coor-

dinated garbage collection, and differential wear leveling.

Normal blocks protected by ECC are error-free, and some will be developed to faulty

78

approx_flag

Figure 4.2: NAND flash system architecture with Rebirth-FTL.

ones if they have been experienced excessive P/E cycles. We reuse some faulty blocks (de-

noted as approximate blocks) to store error-relaxation data, which seems to promise a rebirth

for these faulty blocks. Approximate blocks will turn out to be bad ones if they have more bit

errors which exceed a pre-set threshold. The error rate of a faulty block can be determined

by a “read-after-write” scheme [46]; thus, we use the error rate to distinguish approximate

blocks and bad blocks.

4.3.2 Approximation-aware Address Mapping

Rebirth-FTL adopts an approximation-aware address mapping approach to allocate normal

blocks and approximate blocks for requests. It allocates space at the page granularity, but

it ensures that the pages for requests with same approx flags can be grouped physically

at the block granularity. Figure 4.3 shows the block management in Rebirth-FTL. Normal

blocks can serve both error-free and error-relaxation requests; thus, two allocator heads are

79

Figure 4.3: Block management in Rebirth-FTL.

maintained for normal blocks. If there is no more approximate block for error-relaxation

requests, the data will be stored on the normal block (normal-transient blocks). Later, data

on the allocated normal-transient blocks can be migrated to available approximate blocks

for block efficiency. The approximate blocks specifically target at serving error-relaxation

requests, and an allocator head is maintained to allocate free pages from an approximate

block.

The approximation-aware address mapping approach relies on a page-level mapping

table. The logical page of a request sent to the flash memory is mapped to a physical page

in accordance with its flags. This is well illustrated with the example shown in Figure 4.4.

Suppose there are two normal and two approximate blocks, and each block contains two

pages. The error-free data ‘A’ and ‘B’ are assigned to the physical page 0 and 1 in the first

normal block, and their approximate flags are set to 0. Accordingly, the error-relaxation data

‘C’, ‘D’, and ‘E’ are assigned to the pages on approximate blocks, and their approximate

flags are set to 1. Moreover, we add a moving flag in the table to restrict the error rate

propagation for the pages in approximate blocks, since the error rate of data migrated from

80

Approx_flag

Figure 4.4: Error-separated address mapping in Rebirth-FTL.

an approximate block to another block may increase. For example, suppose ‘F’ is being

copied to physical page 7 from a victim approximate block due to a garbage collection,

and its moving flag is set to 1. For the next garbage collection, ‘F’ will be delivered to a

normal block to terminate the error rate propagation by checking its moving flag. When

error-relaxation request ‘G’ comes, the physical page 2 in a normal-transient block will be

assigned to it, and its approximate flag is set to 0 since there is no available page slot in

other approximate blocks. Later the request ‘G’ can be migrated to an available approximate

block.

4.3.3 Coordinated Garbage Collection

Coordinated garbage collection collaboratively reclaims normal and approximate blocks in

different manners they see fit, as shown in Algorithm 4.3.1. First, the coordinated garbage

collection processes for two kinds of blocks are triggered by different watermarks. Specif-

ically, the coordinated GC is triggered when free blocks below the watermark GC normal

and GC approx, respectively. Second, in contrast to the conventional FTLs in the selec-

tion scheme of a victim normal block, coordinated GC preferentially selects an allocated

normal-transient block as a victim block (lines 3-6). If a normal-transient block is selected

as the victim, the migration of valid pages from the victim to an available approximate block

is executed, and the approximate flag of these pages will be updated in the mapping table.

81

Algorithm 4.3.1 Coordinated Garbage Collection.

Input: Invalid physical normal/approximate block BKinvalid.

Output: Perform the garbage collection operation.

Normal blocks:

1: if BKinvalid exists then

2: Perform GC on BKinvalid

3: else if Allocated normal-transient blocks exist

&& Available approximate blocks exist then

4: Select a victim block BKtransient containing the least valid pages.

5: Migrate valid pages to an approximate block

6: Perform GC on BKtransient end

7: else if Allocated normal blocks exist then

8: Select a victim block BKnormal containing the least valid pages.

9: Perform GC on BKnormal end

10: end if

Approx blocks:

1: if BKinvalid exists then

2: Perform GC on BKinvalid

3: else if Allocated approximate blocks exist then

4: Select a victim approximate block BKvictim

5: for each valid page PGvalid in BKvictim do

6: if PGvalid has been moved then

7: Copy PGvalid to a free page in a normal block

8: else

9: Copy PGvalid to a free page in an approximate block

10: end if

11: end for

12: Perform GC on BKvictim end

13: end if

82

Third, when the garbage collection for approximate blocks is triggered, reclaiming a victim

approximate block needs to consider the error propagation of valid pages by checking their

moving flags. If a valid page in the victim has a valid moving flag, it will be copied to a

normal block for the termination of the error propagation (lines 5-7). This can guarantee the

validity of data on approximate blocks.

4.3.4 Differential Wear Leveling

Differential wear leveling spreads the wears of normal and approximate blocks in a well con-

trolled manner. Dynamic and static wear leveling are adopted for normal blocks, while only

dynamic wear leveling is adopted for approximate blocks. This is because the static wear

leveling which copies data from a least-worn approximate block to a most-worn approximate

block may double the error rate of data due to persistent errors. Moreover, differential wear

leveling regulates allocation strategies for normal blocks. When normal blocks are sufficien-

t, and the number of approximate blocks is lower than a pre-set threshold Napprox, a most-

worn normal block is picked as a normal-transient block. The normal-transient block will be

erased more frequently than other normal blocks due to the migration, which can accelerate

the transition from a normal block to an approximate one. With an increasing number of ap-

proximate blocks, the free normal blocks are pressed. If the number of approximate blocks

exceeds the threshold Napprox, the differential wear leveling reverses the allocation strategy

for normal blocks: a least-worn normal block is assigned as a normal-transient block.

4.4 Data Attributes Cut-through

The Linux OS is layered into a number of distinct subsystems, the separations between them

make it challenging to pass the approximate information of data from userland to kernel s-

pace. This section introduces how the approximate information of data is delivered through

the whole Linux OS in a top-down way. Figure 4.5 shows the data attributes cut-through

in the Linux I/O stack. Applications normally work on their own files; thus, we label the

83

approx_flag

 approx_flag

approx_flags

approx_flag

approx_flag

approx_flag

Figure 4.5: Data attributes cut-through in the Linux I/O stack.

approximate information of data through the file I/O operations. We add the approx flag to

the Linux kernel data structures “inode” and “file” after invoking “open(create)” and “fcntl”

functions. The structure “inode” contains metadata about a file, and it represents a file in the

virtual file system (VFS) which is an abstraction layer on top of individual file system. The

structure “file” represents an open file, and it can pass any operation on the file, until the last

close. With the user-space programs on a file, the write requests related to the file will in-

herit its approximate information. When an error-relaxation application invokes the “write”

function to write data to a file, the structure “buffer head” will inherit the approx flag from

the data structure “inode” in the file system layer. To cover different write mechanisms, we

label the approximate information to requests at an assembly point before the requests en-

ter the generic block I/O layer. Correspondingly, the data structures “bio” and “req” will

successively inherit the flag in the generic block I/O layer. In the I/O scheduler layer, we

prevent the merge of different types of requests by modifying the elevator algorithm. The

84

error-relaxation data will not be merged with the error-free data even though they are adja-

cent to each other. In the MTD driver layer, we modify the driver to inform Rebirth-FTL to

allocate the approximate or normal blocks for the corresponding requests according to their

approx flag.

Our approach makes flash devices approximation-aware with minor OS modification

and overhead. For example, disabling the merge of requests in the I/O scheduler has little

effect on performance, due to the non-mechanical property of flash memories. Our approach

keeps the original data access pattern, and provides compatibility across applications and the

storage medium.

4.5 Lifetime Model

In this section, we formulate the lifetime analysis of a flash memory with Rebirth-FTL. We

use the number of served write requests before the flash memory fails as the lifetime metric.

The worn-out process of blocks is referred from [57]. Flash memory failure happens when

the memory has exhausted all reserved good blocks. We focus on the benefits of reusing

faulty blocks, thus we make the following assumptions. First, we assume that the lifetime of

a flash block is only related to the P/E cycling. P/E cycling is the dominant error source, and

other error sources have a positive correlation with it. Second, we assume that all the blocks

evenly wear out.

According to the Table 4.1, we can easily obtain actual number of page writes occur-

ring in the flash as being (1+WAF) ·Nr for a request [49] [132]. Write amplification factor

(WAF) is a numerical value that represents the amount of data written to the flash memory

in relation to the amount of data that the OS has to write. Then we can obtain the number of

erase operations incurred by a request:

Eblk = (1 +WAF) ·Nr/Np (4.1)

Conventional FTLs. Both normal blocks and reserved blocks can be used to store

85

Table 4.1: Analysis terminology

Term Definition

WAF Write Amplification Factor

Nr Average page size requested from a write

Np Number of page in a block

Nn Number of normal blocks in flash memory

Nr Number of reserved blocks

En Average allowed P/E cycles of a normal block

Er Average allowed P/E cycles of a reserved block

Ea Average allowed P/E cycles of an approximate block

P (α) Proportion of error-relaxation data written on normal-transient blocks

Q(α) Migration probability induced by P (α)

δ Proportion of approximate blocks transformed from normal blocks

data in conventional FTLs. By summing up the allowed P/E cycles of all the blocks, we

derive Nori, the total number of allowed P/E cycles of the flash memory as follows:

Nori = Nn · En +Nr · Er (4.2)

Further, we can derive the number of served write requests before a flash memory

fails with a perfect wear leveling:

Tori = Nori/Eblk

=
(Nn · En +Nr · Er) ·Np

(1 +WAF) ·Nr

(4.3)

Rebirth-FTL. Rebirth-FTL can serve both error-free and error-relaxation data. To be

fair, given a write requesting Nr pages, let (1−α)·Nr denote the number of requested normal

pages, then α ·Nr denotes the number of requested approximate pages. In the Rebirth-FTL,

86

if approximate space is not enough to serve the requested approximate pages, part of the

error-relaxation data will be stored on normal-transient blocks. Later, the data on normal-

transient blocks can be migrated to the approximate blocks for block efficiency. Thus, the

write traffic on normal blocks contains the requested normal pages and a part of the requested

approximate pages, while the traffic on approximate blocks contains the rest of the requested

approximate pages and the migration, and the migration traffic is a portion of the data stored

on normal-transient blocks. Now, we can derive On and Oa, the actual number of normal

and approximate page writes occurring in flash for a request, receptively.

On = (1 +WAF) · ((1− α) ·Nr + α ·Nr · P (α)) (4.4)

Oa = (1 +WAF) · (α ·Nr · (1− P (α))) + α ·Nr · P (α) ·Q(α)) (4.5)

Hence, we can calculate the number of erase operations on normal (Enor) and ap-

proximate (Eappr) blocks incurred by a request:

Enor = On/Np, Eappr = Oa/Np (4.6)

The total number of allowed erase operations in Rebirth-FTL contains two parts:

Nnor for normal blocks and reserved blocks, and Nappr for approx blocks which are transited

from a part of normal blocks.

Nnor = Nn · En +Nr · Er

Nappr = δ ·Nn · Ea

(4.7)

Therefore, we can derive the number of served write requests before the flash fails

by achieving a minimum on normal and approximate blocks:

Trebirth = min{Nnor/Enor, Nappr/Eappr}

= min{ (Nn · En +Nr · Er) ·Np

(1 +WAF) ·Nr · (P (α) · α + (1− α))
,

Nn · δ ·Np

(1 +WAF) ·Nr · α · (1− P (α) + P (α) ·Q(α))
}

(4.8)

87

Lifetime Analysis. The above model compares the lifetime of a flash memory with

conventional FTLs and Rebirth-FTL. According to Equation 4.8, if we set α to 0, which

means that all the requests are error-free, the lifetime of a flash memory with Rebirth-FTL is

the same as that of conventional FTLs. For mixed requests, the lifetime improvement ratio

for normal blocks with Rebirth-FTL is 1/(1 + (P (α) − 1) · α). It is easy to see that im-

provements can be achieved by increasing the percentage of error-relaxation requests, and

by reducing write traffic on normal-transient blocks. A straightforward way is to accommo-

date the supply relationship between the number of error-relaxation requests and the number

of approximate blocks.

4.6 Experimental Evaluation

In this section, we evaluate our Rebirth-FTL design. We first introduce the experiment

methodology, and then we present the performance results in several key metrics.

4.6.1 Experiment Setup

We use an embedded developing board to conduct our experiments. The board is equipped

with a Cortex A8 processor, 512MB RAM, and 1G NAND flash memory. Each block has

128 pages, and each page is of 4KB. This board has Linux V3.0.8, and the flash memory is

formatted with Ext2. Due to the hardware restrictions, we generate 32 approximate blocks

which have up to a 2.4% bit error rate by continuously performing a number of erase op-

erations without ECC. The approximate blocks with the specified error rate are determined

by performing “read-after-write” in each erase operation. We mainly consider two type-

s of workloads on the embedded board. First, the image and video are partially selected

from [33] [54] as the error-relaxation applications, and the quality is measured by a metric:

average peak-signal to noise ratio (PSNR). Second, the text files with random characters are

error-free applications.

We use a simulator to evaluate the lifetime performance. The metric is the number

88

Table 4.2: Workload characteristics

Workloads Function # of requests Write Ratio
Average

write size

Mds Media server 2848747 41.5% 7680B

Hm Hardware monitoring 4602627 56.5% 8192B

Prn Print server 16819297 46.0% 10240B

Proj Project directories 65841031 15.2% 36352B

Prxy Web Proxy 181157932 38.8% 11776B

of served write requests before a flash memory exhausts all of the reserved blocks. The

Rebirth-FTL is modeled by heavily modified Flashsim [13]. We simulate a flash memory

with 2GB raw capacity in which 20% of blocks are reserved space, and the memory initially

only contains normal blocks. We use the erase number as the lifetime of a flash block. To

accelerate aging, the remaining erase number for normal blocks is set to 1, and the numbers

for reserved blocks and approximate blocks are set to 10,000 and 50,000 (the related error

rate is 1.88% in Figure 3.1 in Section 3.1). Moreover, Rebirth-FTL allows up to 40% of

normal blocks which will be transformed into approximate blocks. The threshold Napprox is

set to the number of 20% of blocks. We conduct experiments using I/O traces from [7], as

shown in Table 4.2. We randomly plug the approx flag into the original traces according to

the different ratios of the error-relaxation data.

4.6.2 Evaluation Results

We first show the comparisons of average write response time with different FTLs on the

embedded board. Then we show the quality loss in varied proportions of error-relaxation

requests on the embedded board. An image and a video with the approx flag are accessed

from the embedded board with Rebirth-FTL, which makes flash devices approximate-aware.

After that, we demonstrate the improvement in lifetime by employing our Rebirth-FTL.

89

Text & TextVideo & Text

2000

�
�
�
��
�
�
�
�	

�

�
�
�

�
�
�
�
�
	�
�
��
�
� PFTL

Rebirth
PFTL with GC
Rebirth with Coordinated GC

4000

3000

Image & Text

Figure 4.6: The average write request response time from Rebirth FTL and PFTL.

• Response Time.

Different from prior approximate storage techniques and FTL schemes, our Rebirth-FTL

does not change any physical property, and it roots in a page-level mapping scheme. Con-

sidering the fairness, we compare our proposed Rebirth-FTL with an ideal page-level FTL

(PFTL) on the embedded board. In order to fairly compare the response time with GC, we

compact the whole addressable space to 16MB approximate space and 32MB normal space.

Once the free space drops below 50%, the garbage collection process is triggered. Four

obsolete blocks and normal-transient blocks are generated in advance for GC. The error-

relaxation data (image and video) and error-free data (text) with the same size are repeatedly

written in parallel to the flash memory, and the size of each write in sync mode is 4KB. Figure

4.6 presents the average response time of writes on normal and approximate blocks, while

the writes for the file system metadata are excluded. Compared to the ideal PFTL scheme,

Rebirth-FTL incurs up to 1.1% write overhead without GC in different applications. With

coordinated GC, our Rebirth-FTL experiences a longer average response time than PFTL in

the mixed workloads, with additional 5.9% and 3.9% latency. This is because Rebirth-FTL

preferentially migrates valid pages from normal-transient blocks to approximate blocks for

reclaiming obsolete blocks. Normally, most pages in the normal-transient blocks are valid,

90

Figure 4.7: Quality loss in PSNR with different percentage of error-relaxation requests.

which involves extra copies compared to those in PFTL. Due to the pre-set normal-transient

blocks, our Rebirth-FTL preferentially reclaims these blocks and migrates valid pages. Thus,

it incurs 1.8% additional latency in the text&text workloads compared with PFTL.

• Impact on Quality.

We first evaluate the quality of an image output on the embedded board with Rebirth-FTL.

We store “Lenna” on the flash blocks in varied proportions of error-relaxation requests. The

“Lenna” is a bitmap without any image compression technology. Figure 4.7 shows the qual-

ity loss of the image when it is read from the memory with Rebirth-FTL. It can be observed

that the quality loss is 39.91dB at PSNR when only 25% of requests are delivered to the

approximate blocks. The quality is reduced to 29.60dB when the image is totally stored

on approximate blocks. Even so, the image is still acceptable for applications such as face

recognition which normally consider a good image at PSNR of more than 28dB. The results

91

Figure 4.8: One example of bad frames in the video.

Table 4.3: Quality Loss of an example of bad frames in PSNR.

Signal PSNR

Luma 27.1dB

Chrominance 46.1dB

Chroma 37.7dB

verify that the lifetime of a flash memory can be significantly extended with the involvement

of more approximate blocks, which also mirrors our proposed model.

To evaluate the quality of a video output with Rebirth-FTL, we use the “MSU Video

Quality Measurement Tool” (VQMT) from [129]. A part of a video as the error-relaxation

requests is stored on the embedded board, and then we read it out with Rebirth-FTL. Since

the video is encoded by a compression technique, some frames are completely destroyed if

the base part and the deltas both have errors. Figure 4.8 shows an example of the visible

bad frames from the video. We can see that the frame only has two obvious parts of dead

pixels (labeled by the red circle), and it is acceptable for users who are watching a boxing

match. The video signal consists of three separate signals: Y for “Luma”, U for “Chromi-

nance”, and V for “Chroma”. The VQMT tool evaluates the quality of bad frames at PSNR

with those three signals, Table 4.3 shows the results of signals at PSNR. It can be observed

that the quality losses are 27dB, 46.1dB, and 37.7dB at PSNR with three separate signals.

Kan et al. [56] discuss that 27dB is the minimum Quality of Service (QoS) requirement for

videos. Thus, some frames read from the embedded board with Rebirth-FTL meet the QOS

92

PrxyPrn

0.5

2

2.5

Ratio of error-relaxation data

N
or
m
al
iz
ed

se
rv
ed

re
qu
es
ts
#:

0% 10% 20% 30% 40%

4

3.5

3

1

0

1.5

MdsProjHm

Figure 4.9: Normalized served requests #: comparing baseline and Rebirth-FTL.

requirements.

• Lifetime.

As it takes too long to reach the lifetime of NAND flash on the board, and the GC cost is

insufficient within a limited space, for effective comparison, we use a simulator to evaluate

lifetime performance when adopting Rebirth-FTL and the baseline PFTL. The normalized

results with the different ratios of error-relaxation data are shown in Figure 4.9. It can be

seen that Rebirth-FTL significantly increases the number of served requests before a flash

memory fails over the baseline. On average, Rebirth-FTL achieves 1.26×, 1.67×, 2.54×
and 3.01× improvement for the ratios of error-relaxation data equaling to 10%, 20%, 30%

and 40% respectively. Rebirth-FTL maximizes the lifetime to 3.46× in workload Prxy. The

results also verify our model: the lifetime extensions along with the ratios of error-relaxation

data in Rebirth-FTL.

4.7 Summary

In this chapter, we have proposed Rebirth-FTL for lifetime optimization of flash memories

by exploring the error-tolerance of data. Rebirth-FTL manages two spaces, and redesigns

three key components in FTL: approximation-aware address mapping, coordinated garbage

collection, and differential wear leveling. We also have developed a scheme that can pass

93

approximate information from userland to kernel space in Linux. Moreover, a lifetime model

has been presented for lifetime analysis. We have prototyped Rebirth-FTL on an embedded

board and a simulator. The experimental results have shown that Rebirth-FTL can signifi-

cantly improve the lifetime of flash memories, and maintain the service.

94

CHAPTER 5

OPTIMIZING CAUCHY REED-SOLOMON CODING VIA RERAM CROSSBARS

IN SSD-BASED RAID SYSTEMS

5.1 Introduction

SSD-based RAID arrays, such as FlashArray from PureStorage [123] and XtremIO from

EMC [31], have become ubiquitous,. They have exhibited superior performance to meet

ever-increasing low-latency and high-throughput I/O requirements for big data applications.

The fault-tolerance schemes employed by SSD-based RAID arrays provide data protection

and maintain high-level service performance. For example, XtremIO introduces both row

and diagonal parity calculations to protect data [31].

Methods for generating redundancy in a RAID system are varied, such as mirroring

and erasure coding. More RAID systems have been employing erasure coding to protec-

t data due to the lower storage overhead compared to other coding policies. In particular,

erasure coding is a storage process through which a data object is separated into smaller

fragments, and each of those fragments is encoded to generate the redundancy for fault-

tolerance. Reed-Solomon (RS) codes are the most popular among erasure codes, which en-

code and decode with matrix multiplications [28]. RS codes have been extensively employed

in cloud storage system such as Hadoop since they save significant storage space compared

to 3-replication [117]. With the superior I/O performance of SSD-based RAID arrays, parity

calculation performance becomes more and more important, especially for degraded read

which requests data from unavailable SSD disks. In the period between failure and recovery,

the coding efficiency for reconstructions remains worthy exploring.

95

Reed-Solomon coding, building on the matrix multiplications for a RAID system,

challenges current processor-based implementations such as a FPGA-based hardware con-

troller [43]. First, the implementation of matrix multiplication involves Galois Field (GF)

arithmetic [29], termed GF (2w) for w-bit words, which is computationally expensive on

processors. Multiplication and division operations over GF (2w) rely on multiplication ta-

bles or discrete logarithms to perform. Cauchy Reed-Solomon (CRS) code [68] [94] coverts

RS codes to a code with 1-bit words, and it replaces the expensive multiplications with ad-

ditional XOR operations. However, it is still fussy, since processors need the special MMX

and SSE instruction set extensions for speedup [118]. Second, the current processor-based

implementations separate data coding into memory access and processor processing, which

leads to a huge amount of data movement between memories and processors. Using the

specific hardware accelerator may exacerbate the data movement overhead. In the case of

GPU [68], utilizing GPUs to accelerate CRS coding requires reading bitmatrix from constant

memory and read data from shared memory. Third, the reconstructions with RS coding is

sub-optimal in RAID systems because of the repair problem [111]. Even a single chunk is

failed in a RS-encoded stripe, other survivors with the equal number of data chunks require

to be transferred to the RAID controller for reconstruction, incurring many times overhead

in repair bandwidth and disk I/O.

ReRAM can efficiently perform matrix-vector multiplication and sum operation in a

crossbar structure, which inherently fits CRS coding. With the efficient capability in both

storage and computation, ReRAM crossbar has been widely studied to accelerate several

kinds of applications, including graph processing [44] [120] and neural network [19] [113]

[119]. Our work shares the common principle of leveraging ReRAM crossbars to accelerate

computations, but we aim at accelerating erasure coding in an SSD-based RAID system.

In this chapter, we propose a novel ReRAM-optimized RAID system for accelerat-

ing CRS coding, called Re-RAID. First, Re-RAID uses the ReRAM as an alternative main

memory in both RAID and SSD controllers. ReRAM enjoys low latency and low energy con-

sumption to be a good candidate for main memory, and ReRAM has the non-volatile feature

of protecting data against an unexpected power loss. In addition to being storage memory,

96

a portion of ReRAM memories in our design are configured in computational mode to ac-

celerate erasure coding. Second, to alleviate the computing workloads of a RAID controller

for a single failure, we propose a confluent Cauchy-Vandermonde matrix as the generator

matrix for encoding, by which the first parity is the bitwise XOR-summing results with all

the data chunks. When a single failure happens, Re-RAID can distribute the reconstruction

task to other surviving data disks, and these data disks can leverage the ReRAM memory to

recover lost data by performing XOR-summing with the first parity and other surviving data

chunks within a stripe. Thus, the computing workloads on traditional processor-based im-

plementation for recovering a single failure can be greatly alleviated, including constructing

a decoding matrix and performing matrix-vector multiplication.

We conduct a series of experiments to compare our Re-RAID with a conventional

processor-based implementation for CRS coding. The evaluation results show that Re-RAID

can significantly improve encoding performance by up to 598×, and improve decoding per-

formance for a single failure and multiple failures by up to 44.6× and 251×, respectively.

To summarize, this chapter makes the following contributions:

• We propose Re-RAID which uses ReRAM as the main memory in both RAID and

SSD controllers. Re-RAID leverages ReRAM crossbars to accelerate erasure coding.

• We propose a confluent Cauchy-Vandermonde matrix as the generator matrix for en-

coding. Re-RAID can distribute the reconstruction task to ReRAM memory of SSDs

to recover a single failure without the decoding matrix.

• We demonstrate the effectiveness of Re-RAID by conducting a set of experiments.

The rest of this chapter is organized as follows. The next section gives basic back-

ground to this study and gives a motivation example. Section 5.3 describes the framework of

Re-RAID, and presents how to perform Cauchy Reed-Solomon coding on ReRAM memory.

Section 5.4 evaluates the performance of Re-RAID in several key metrics. Finally, Section

5.5 discusses other related work, and Section 5.6 concludes this chapter.

97

5.2 Background and Motivation

In this section, we first briefly present the background of the SSD-based RAID system,

Cauchy Reed-Solomon codes, and ReRAM basics. Then we use a motivation example to

illustrate the efficiency of performing CRS coding on an ReRAM crossbar.

5.2.1 SSD-based RAID System

An SSD-based RAID storage system consists of a RAID controller and multiple SSDs. Strip-

ing and parity are two commonly-used RAID techniques. The RAID systems add redundan-

cy for fault-tolerance, and the parity data is generated by a module called Parity Generator

inside a RAID controller. For example, the RAID-6 in which two parties are generated for

each stripe can tolerate up to two failed drives at any time. In storage arrays, the frequency

of a single failure is much higher than multiple failures, occupying more than 90% of fail-

ures [101] [114] [137]. A typical SSD includes an SSD controller, a DRAM buffer, and flash

memory controllers connecting to flash memory. The DRAM-based buffer is used to buffer

the read and write data to accelerate access speed.

5.2.2 Erasure Coding Process

Erasure coding is usually specified in an (k+m) format: k data chunks and m parity chunks

are spread over (k + m) SSDs, and any k of those can recover data. Reed-Solomon codes

use sophisticated linear algebra operations to generate parity. As shown in Figure 5.1, a

codeword vector with 5 data chunks and 3 parity chunks is generated by multiplying a vector

of 5 data chunks with a generator matrix GT . Each chunk is a w-bit word in this example.

The Vandermonde matrix [60] is usually used as a part of the generator matrix GT in an

encoding process.

A stripe with an RS (k,m) erasure coding can tolerate up to m failures. Figure 5.2

shows the decoding process to recover two lost data chunks. Suppose D0 and D3 fail, then

the rows in GT corresponding to the failed chunks should be deleted before inverting the

98

* =k+m

k

w-bit

Figure 5.1: Encoding process with a generator matrix GT .

* =

GT

*

GT

=

Figure 5.2: Decoding process with survivors and an inverse matrix.

GT , represented as (GT)’. In this figure, we choose three data chunks (D1, D2, D4) and two

parity chunks (C0, C2) as the survivors. According to the rule of matrix multiplication, the

data can be recovered by multiplying a vector of k survivors and the inverse matrix of (GT)’.

5.2.3 Cauchy Reed-Solomon Codes

Erasure coding partitions original data into stripes that involve data and coding information.

Reed-Solomon codes are the most popular ones among erasure codes. RS codes treat data

with w-bit words, and operate them as a number between 0 and 2w-1 in GF (2w) arithmetic.

Encoding and decoding with RS codes require matrix-vector multiplication and matrix in-

version operations, these operations are much computational expensive in GF (2w).

99

GT

k*w

m*w

(k+m)*wk*w

k*w

Figure 5.3: The matrix-vector representation of a Cauchy Reed-Solomon code with k = 4,m =

2, w = 4. Each element is one bit.

Cauchy Reed-Solomon codes covert RS codes to a code with 1-bit words. Thus, the

expensive arithmetic in GF (2w) turns to be the bitwise AND and XOR operations in GF (2).

Figure 5.3 shows an encoding example of a CRS code. All k ∗ w data chunks are gathered

to generate m ∗w equal sized parity chunks by performing bitmatrix-vector multiplications.

The set of (k+w)∗w data and parity chunks are separately delivered into different disks for

fault-tolerance. The generator matrix usually consists of a k ∗w× k ∗w identity matrix and

a m ∗ w × k ∗ w submatrix from an invertible matrix.

5.2.4 ReRAM Basics

A metal-oxide ReRAM cell consists of a top metal electrode, a metal-oxide resistive switch,

and a bottom electrode [136]. By applying an external voltage across the ReRAM cell,

the properties of conductive filament inside it change, leading to different resistances. A

set of ReRAM cells can be interconnected as a dense crossbar architecture by wordlines

and bitlines, which is better suited for main memory due to the small size of the area of

a ReRAM cell [82] [140]. Figure 2.2 (b) in Section 2.2 shows an example of an ReRAM

crossbar. When applying vector voltages V1, V2, ..., Vn to the wordlines, the current Sj at the

end of jth bitline will represent the result of dot product operations,
∑

Vi ·Wi,j .

100

BG

Figure 5.4: Example of performing Cauchy Reed Solomon coding on a ReRAM crossbar.

5.2.5 Motivation Example

The non-volatility, energy-saving and fast access make ReRAM memory a good candidate to

be the main memory. Besides the storage capability, the ReRAM crossbars inherently have

the capability of performing logic and arithmetic operations. We use an example to illustrate

how to perform CRS encoding within a ReRAM crossbar, as shown in Figure 5.2.5. We

choose a 16*8 ReRAM crossbar, each cell is a 1-bit SLC [83]. The input voltage at each

wordline has 2 levels (1-bit), so the output at each bitline will be 6-bit (1-bit for SLC cell,

1-bit for input, and 4-bit for the number of wordlines on this 16*8 crossbar). In the encoding

process, we only need the bottom m∗w rows of the generator matrix GT presented in Figure

5.3, denoted as BGT . The transpose of BGT is mapped on this ReRAM crossbar, and the

data d0 − d3 as the input are placed at the left side of wordlines. By activating the wordlines

101

related to the input data, the outputs are the results of dot products in the ReRAM crossbar.

We only take the lowest bit of the outputs as the XOR-summing result. The outputs are

correct, the same as in GF (2) by limiting the output to 1-bit precision at each bitline. For

example, the current flowing in the first bitline is value ‘2’, which is the current sum across

each cell in the first bitline, then we can obtain the result ‘0’ for c0,0 after attaining the lowest

bit of the value.

5.3 Re-RAID: A New SSD-based RAID System with ReRAM-accelerated CRS Cod-

ing

In this section, we present a new SSD-based RAID System with ReRAM-accelerated erasure

coding. We first give an overview of our work, and then we present how to perform encoding

and decoding with ReRAM.

5.3.1 Overview

We propose Re-RAID: a new SSD-based RAID system with ReRAM-accelerated erasure

coding. Figure 5.5 depicts an overview of Re-RAID, and shows the micro-architecture of

a ReRAM memory bank with a number of digital components. The traditional DRAM in

both RAID and SSD controllers, a cache for holding data until it can be written to the drives,

is replaced with ReRAM in the Re-RAID. Besides the non-volatile features of ReRAM,

such as protecting data in the event of an unexpected power loss [77], ReRAM is also u-

tilized to perform erasure coding so that the coding performance can be improved and the

computing workloads of processors in the controllers can be alleviated. Re-RAID partitions

the ReRAM memory into two modes: storage mode and computation mode. The ReRAM

memory in storage mode serves NVcache function, and the memory that enters computation

mode is used to encode and decode user data. In the encoding process, the transpose of a

generator bitmatrix configured by the processor in the RAID controller is mapped to the mul-

tiple ReRAM crossbars in computation mode. Then the parity for a stripe can be obtained

102

Figure 5.5: Overview of Re-RAID and microarchitecture of a ReRAM memory bank.

after activating the wordlines related to the input data and performing bitmatrix-vector mul-

tiplication on ReRAM crossbars. Similarly, in the decoding process for multiple failures,

the transpose of a decoding matrix is mapped to multiple ReRAM crossbars for recovery. To

further alleviate the computing workloads of the RAID controller, Re-RAID uses a confluent

Cauchy-Vandermonde matrix as the generator matrix for encoding, thus the first parity is the

bitwise XOR-summing results with all of the data chunks. When a single failure happens,

Re-RAID can distribute the reconstruction task to other surviving data disks, and these data

disks can leverage their ReRAM memory to recover lost data by performing XOR-summing

with the first parity and other surviving data chunks within a stripe.

5.3.2 Cauchy Reed-Solomon Coding on Re-RAID

Figure 5.6 shows the data flow when performing CRS encoding in the RAID controller.

When user data is delivered to the RAID controller, two main components, Stripping

Manager and Parity Generator, create stripes by slicing data into chunks and calculating

parity with a CRS coding scheme. The data chunks within a stripe sliced by the Stripping

Manager are cached on the ReRAM memories in storage mode. Different from the tra-

ditional methods of generating parity on processors, parities are generated on the ReRAM

memories in computation mode to which the data chunks within a stripe will be sent. The

103

Figure 5.6: Data flow with CRS encoding on Re-RAID.

bottom m ∗ w rows of the generator matrix GT will be mapped to the ReRAM crossbars in

advance for computation, and the data chunks are turned into w-bit words at wordlines. Pari-

ty then can be attained by performing bitmatrix-vector multiplications on ReRAM crossbars.

When the CRS encoding is finished for a stripe, a stripe including data part and parity part

will be flushed into different SSD drives for fault-tolerance.

Re-RAID maps the transpose of BGT on ReRAM crossbars for encoding. A BGT

bitmatrix comprises k ∗ w rows and m ∗ w columns (usually k > m). The values of k, m

and k should be selected to accommodate various requirements of applications, including

the scale, the devices layout, and the access performance [92]. Usually the values of k,

m and k are not very large, so the BGT bitmatrix can be fitted in one ReRAM crossbar.

For example, Hadoop 3.0 normally adopts Reed-Solomon codes with (k = 10,m = 4 or

k = 6,m = 3) [42]. Considering an 8-bit word in RS (10, 4) or RS (6, 3), a 512*512

crossbar can contain the entire BGT bitmatrix. Moreover, Re-RAID can replicate the BGT

to multiple ReRAM crossbars, thus the encoding computation can be accelerated in a parallel

way, and the memory bandwidth can be fully explored.

104

k

k*k
ai,j < 2w-1

kw*kw
is either 0 or 1

k*k

1s

kw*kw
w w*w

a0,0 a0,1 a0,k-1

ak-1,0 ak-1,1 ak-1,k-1

k

a1,0 a1,1 a1,k-1

1 1 1

ak-1,0 ak-1,1 ak-1,k-1

k

a1,0 a1,1 a1,k-1k

w

k*w

w

k*w

Figure 5.7: (a). Traditional Cauchy matrix and its bit-matrix with a given k and w. If k ≤ 2w−1, the

matrix will be invertible. (b). An optimized code in our design.

5.3.3 Reconstruction on Re-RAID

• Single Failure.

A traditional way for recovering a single failure needs to construct a decoding matrix, which

causes extremely high computation complexity, especially the inversion part. Moreover, the

entire recovery process is executed in the processor-based RAID controller, which is not

efficient if the RAID controller needs to handle other I/O tasks. To alleviate the computation

workloads of a RAID controller, we propose a confluent Cauchy-Vandermonde matrix as

the generator matrix for encoding by filling ones in the first row of BGT . Then, we can

distribute the reconstruction task for a single failure to SSDs, and each SSD can perform

the task on ReRAM without the decoding matrix. Figure 5.7(a) shows a traditional Cauchy

matrix and its k ∗ w dimension bitmatrix, and Figure 5.7(b) shows our proposed confluent

Cauchy-Vandermonde matrix which comprises of k− 1 rows of a Cauchy matrix, and a row

105

Figure 5.8: Recovering a single failure in the ReRAM crossbars on SSDs.

of ones which can be viewed as a part of Vandermonde matrix. Correspondingly, the first

w rows in the bitmatrix are filled with the w dimension identity matrix. Therefore, the first

parity is the XOR result of all the data chunks in the encoding process. If a single failure

happens, Re-RAID can perform the bitwise XOR-summing with the first parity and other

k−1 surviving data disks to recover. Note that filling ones in a coding matrix is not new, our

contributions are that we fill ones on a CRS matrix and we decode it on ReRAM crossbars

of SSDs.

The RAID controller in Re-RAID divides a reconstruction process for a single failure

into a set of sub-tasks, and then delivers them to multiple SSDs which can utilize their

ReRAM to recover a single failure. With the Cauchy-Vandermonde bitmatrix encoding, the

first parity chunk is the XOR result of all the data chunks. Re-RAID recovers a single failure

on ReRAM crossbars. The data chunks of a stripe from the surviving data disks, and its first

parity chunk are gathered on a ReRAM crossbar in an SSD. Each chunk (k ∗w bit) occupies

one row in a crossbar. By activating wordlines related to a stripe with input voltage 1, the lost

data can be obtained from the output at each bitline (k ∗ w bit). This is well illustrated with

the example shown in Figure 5.8. Suppose the SSD D0 in Figure 5.3 is failed. To recover it,

Re-RAID requests the other surviving data d1−d3 and the parity data c0 to an available SSD,

106

for example, the SSD D1. Each chunk is mapped on a row in a ReRAM crossbar, the lost

data d0,0−d0,3 can be attained by setting the input voltage of wordlines within this stripe to 1.

The lowest 1-bit XOR-summing results in the bitlines are the lost data d0,0−d0,3. In addition,

the recovery process can be performed with multi-level parallelism. First, Re-RAID can use

ReRAM crossbars with massive memory bank-level parallelism. Second, a single failure can

be recovered on different SSDs in a disk-level parallelism. This also reduces the overhead in

repair bandwidth and disk I/O.

• Multiple Failures.

Re-RAID keeps the basic decoding rule for multiple failures: the decoding matrix multi-

plied by the survivors equals the original data. A confluent Cauchy-Vandermonde matrix

is always invertible [130], so it can be formed into a decoding matrix for multiple failures.

To recover multiple failures in Re-RAID, the collaboration between processors and ReRAM

memories in a RAID controller is a promising solution. The processors construct a decoding

matrix, and then map it to ReRAM memories in computation mode. By multiplying a vector

of survivors and the decoding matrix on ReRAM memories, the multiple failures can be re-

covered. The decoding process for multiple failure is similar to the encoding process in the

RAID controller.

5.3.4 Limitations

Our propose Re-RAID has several limitations. First, Re-RAID only considers a straightfor-

ward mapping scheme in which the transpose of BGT is mapped to a ReRAM crossbar by

rows. This mapping scheme incurs a low utilization rate of ReRAM crossbars if the BGT

is small-scale and the numbers of rows and columns in the BGT are not equal. Second, Re-

RAID only considers the small-scale encoding matrix so that it can fit on a single crossbar.

If the encoding matrix is a large-scale one, such as k=500 and m=11 which is adopted in

enterprise-level storage arrays, multiple memory banks are involved. They are challenging

issues to implement a scheme that multiple ReRAM crossbars can collaborate to encode a

stripe, and to design a pipeline for the computation efficiency. Third, Re-RAID fixes the

107

Table 5.1: The Configurations of ReRAM-based RAID controller and SSD controller.

RAID Controller
Quad-core at 1 GHz; 256MB Buffer;

600MB/s SATA Interface

SSD Controller
Quad-core at 400 MHz;

64GB Capacity; 128MB Buffer;

ReRAM
512*512 SLC Cells/Crossbar;

4 Crossbars/Bank; read & write latency 48(ns)

number of ReRAM banks in both storage and computation mode, which is not efficient with

the variation of memory usage in the controller.

5.4 Experimental Evaluation

In this section, we present the experimental setup and the evaluation results of our proposed

Re-RAID.

5.4.1 Experiment Setup

The RAID and SSD controller in Re-RAID are modeled by heavily modified NVsim. The

simulator implements the peripheral circuit, and encoding and decoding scheme on ReRAM

crossbars. The detailed configurations of our Re-RAID system, from which the related tim-

ing parameters are derived [99] [20], are illustrated in Table 5.1. One-half of ReRAM mem-

ory is set in computation mode on both the RAID and SSD controllers.

We focus on the performance of CRS coding, and we compare our Re-RAID with a

dedicated hardware RAID controller. We use a modern CPU (Intel Q9550 with 2.83GHz)

with the Jerasure library to simulate the processor-based implementation [93]. Note that this

CPU outperforms any dedicated processor on a RAID card. We use “cauchy good” as the

coding techniques in the Jerasure library, and we only collect the coding performance to

108

eliminate the effect of secondary storage I/O operations on different platforms. The perfor-

mance is given in MB/Sec. The CRS coding performance is related to k, m, w, packet size

and buffer size. Considering fairness, the packet size is set to 8Bytes due to the 64-bit

machine word of CPU. The sum k +m must be less than or equal to 2w to make the coding

matrix invertible, and we set k = 10, 20, 30, 40 and m = 2, 4, 6, 8. The buffer size is the

size of workload to be read at a time, and it is viewed as the level of parallelism to achieve

a high throughput. The buffer size is fixed to 8MB. We use a 1.37GB video from [86] as

the input file.

5.4.2 Evaluation Results

We first show the comparisons of encoding performance in Re-RAID and a conventional

processor-based RAID implementation. Then we show the reconstruction performance for a

single failure and multiple failures with two implementations.

• Encoding Performance.

We evaluate the encoding performance of Re-RAID and a conventional processor-based

RAID implementation (Con. RAID). Figure 5.9 displays the encoding performance of d-

ifferent coding schemes. With our proposed Re-RAID, the encoding performance has a

noteworthy improvement than the processor-based implementation, from 35× to 598×. This

is because our Re-RAID inherently leverages the computational capability of ReRAM cross-

bars for XOR-based CRS encoding, and it wraps the data access within the memory, so as to

reduce the data movement overhead. From the figure, we can see that the encoding perfor-

mance of the processor-based implementation drops a little when m is fixed. When m = 2,

the performance drops from 210.5MB/s with k = 10 to 168.7MB/s with k = 40. However,

the performance dramatically drops from 210.5MB/s with m = 2 to 13.8MB/s with m = 16

if the k is fixed to 10. This is because the increase of m adds more access to data chunks,

which brings more performance penalties in processor-based implementation. On the con-

trary, the encoding performance in Re-RAID improves up to 27% with the increase of k.

Since the times of activating wordlines can be reduced with a larger k, thus the encoding

109

0

100

200

6000

7000

8000

9000

10000

11000

m=8m=6m=2

En
co
di
ng

Pe
rfo
rm
an
ce

(M
B/
se
c)

m=4

Re-RAID
Con. RAID with Jerasure

(a) k=10

0

100

200

6000

7000

8000

9000

10000

11000

m=8m=6m=2

En
co
di
ng

Pe
rfo
rm
an
ce

(M
B/
se
c)

m=4

Re-RAID
Con. RAID with Jerasure

(b) k=20

0

100

200

6000

7000

8000

9000

10000

11000

m=8m=6m=2

En
co
di
ng

Pe
rfo
rm
an
ce

(M
B/
se
c)

m=4

Re-RAID
Con. RAID with Jerasure

(c) k=30

0

100

200

6000

7000

8000

9000

10000

11000

m=8m=6m=2

En
co
di
ng

Pe
rfo
rm
an
ce

(M
B/
se
c)

m=4

Re-RAID
Con. RAID with Jerasure

(d) k=40

Figure 5.9: Comparison of encoding performance.

performance will be improved with the same parallelism. Moreover, the performance reduc-

tion with the increase of m is not overly large, up to 25.3%. The reduction is mainly related

to more parity writes on ReRAM memory, since Re-RAID flushes the whole stripe until all

parity chunks have prepared.

• Decoding Performance for A Single Failure.

Re-RAID performs reconstruction tasks for a single failure on SSDs, and we assume that the

reconstruction task for a failed disk is evenly distributed to all the data disks. We encode a

video by a confluent Cauchy-Vandermonde bitmatrix with k = 10, 20, 30, 40 and m = 4, and

then make one of the data disks fail. Figure 5.10 shows the decoding performance to recover

a single failure under the Re-RAID and the Con. RAID. We can see that our proposed

Re-RAID outperforms the conventional processor-based implementation, by up to 44.6×.

110

33.4X

44.6X

15.3X

5000

D
ec
od
in
g
Pe

rfo
rm
an
ce

fo
rS

in
gl
e
Fa

ilu
re
(M
B/
s)

Re-RAID
Con. RAID with Jerasure

20000

15000

15.3X

0

10000

k=40k=30k=20k=10

Figure 5.10: Comparison of decoding performance for a single failure.

The reason is that our Re-RAID performs the reconstruction tasks on ReRAM memory in

SSDs, and achieves high parallelism on both memory-level and disk-level. Moreover, we can

observe that the decoding performance drops a little with the increase of k in processor-based

implementation, while our Re-RAID achieves the highest decoding performance when k is

the largest. This is because a larger k makes more data chunks to perform XOR operations

for recovery on an ReRAM crossbar, so the number of activating wordlines is reduced.

• Decoding Performance for Multiple Failures.

Re-RAID performs reconstruction tasks for multiple failures with the collaboration between

processors and ReRAM memories in RAID controller. The decoding matrix related to the

surviving data is mapped to multiple ReRAM crossbars with computation mode by the pro-

cessors. With the (k = 10, 20, 30, 40) and (m = 4) encoding schemes, we fail four data

disks among the disks. Figure 5.11 shows the comparison of the decoding performance for

multiple failures. We can see that the decoding performance of Re-RAID is much higher

than that in processor-based implementation, from 166× to 251×. This is because Re-RAID

recovers lost disks by multiplying a vector of survivors and the decoding matrix on ReRAM

memories with high parallelism.

111

10000

223X

251X

196X

2000

D
ec
od
in
g
Pe

rfo
rm

an
ce

fo
rM

ul
tip
le
Fa
ilu
re

(M
B/
s)

Re-RAID
Con. RAID with Jerasure

8000

6000

166X

0

4000

k=40k=30k=20k=10

Figure 5.11: Comparison of decoding performance for multiple failures.

5.5 Other Related Work

In this section, related work involving erasure coding accelerator and active storage are dis-

cussed.

Erasure Coding Accelerator. The efficiency of performing erasure coding on tradi-

tional platforms considerably depends on the implementation of Galois field arithmetic. To

accelerate erasure coding, some recent work for optimization has been studied. Kalcher et

al. [53] presented a vectorized implementation for the streaming SIMD units of modern x86

processors, they implemented the table-less Galois filed multiplication on a GPU and demon-

strated its efficiency. Liu et al. [68] proposed a GPU-based implementation of CRS called

G-CRS. They also explored the memory access and parallelism to optimize coding perfor-

mance. Brinkmann et al. [15] proposed a micro-driver architecture for CUDA-based accel-

erators from Linux kernel to accelerate encoding and decoding of Reed Solomon. Moreover,

Lee et al. [61] and Roy et al. [106] proposed new hardware accelerator to implement Reed

Solomon coding.

Active Storage. Active storage allows the computation on data inside the storage

devices. Riedel et al. [103] proposed Active Disks which can run application-level code

112

on processors of disk drives. They explored the computational power of commodity disks

to execute four real-world data-intensive applications. Tiwari et al. [127] proposed Active

Flash to perform data analysis on the SSD. The SSD controllers are explored to operate the

resident data. Qin et al. [96] proposed an active storage framework for object-based storage

device, they also proposed a hybrid approach of request-driven and policy-driven model for

method execution.

5.6 Summary

In this chapter, we proposed Re-RAID for improving Cauchy Reed-Solomon coding perfor-

mance of in the SSD-based RAID arrays by exploring the computation capability of ReRAM

crossbars. Re-RAID uses ReRAM as the main memory in both RAID and SSD controllers,

and performs encoding and decoding in ReRAM crossbars. To minimize the overhead of

recovering a single failure, Re-RAID uses a confluent Cauchy-Vandermonde matrix as the

generator matrix, and distributes the reconstruction task into multiple SSDs. The experi-

mental results have shown that Re-RAID can achieve a significantly higher encoding and

decoding performance compared with conventional processor-based implementation.

113

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we investigate utilizing non-volatile memories, ReRAM and NAND flash, to

improve the performance of large-scale graph processing and erasure coding, and to im-

prove the lifetime of SSD-based RAID arrays and flash memories. Specifically, this thesis is

comprised of two parts for the optimization of big data applications:

• In the first part, we use ReRAM as the main memory to improve both computation and

I/O performance for large-scale graphs processing. We propose a new ReRAM-based

processing-in-memory architecture called RPBFS, in which graph data can be persis-

tently stored and processed in place. We study the problem of breadth-first search. In

RPBFS, we design an efficient graph mapping scheme in which a graph is distribu-

tively stored on multiple ReRAM memory banks, and we propose an efficient graph

traversal algorithm with minimal data movement overhead. Moreover, we propose

an analytical performance model to analyze the graph traversal efficiency on RPBFS,

which can help us to identify bottlenecks and provide opportunities for our design. Ex-

perimental results show that the proposed RPBFS yields significant speedups on graph

traversal performance.

• In the second part, we optimize the efficiency of big data storage with the NAND flash

memory and ReRAM, resulting in a lower operational cost. In Chapter 3, we apply

approximate storage via the interplay of RAID and SSD controllers to optimize the

lifetime of SSDs arrays. We propose a cross-layer lifetime optimization framework,

114

called FreeRAID. FreeRAID reuses faulty flash blocks to store approximate data, and

it tightly couples the components in both RAID and SSDs controllers. With the goal

of extend the lifetime of SSDs, FreeRAID combines the two techniques. First, with

the knowledge of physical blocks in SSDs, FreeRAID efficiently allocates normal and

faulty blocks to serve data with different error-tolerances, and makes different types

of data error-isolated. Also, FreeRAID and the existing optimized RAID schemes can

coalesce to further reduce write traffic on SSDs. Second, FreeRAID can dynamically

switch FTL strategies on an SSD to maintain access performance and storage efficien-

cy. Experimental results with various workloads show that FreeRAID outperforms

conventional RAID solutions and FTLs.

In Chapter 4, we propose Rebirth-FTL, a pure software management in flash trans-

lation layer for the lifetime optimization of flash memories. Rebirth-FTL efficiently

manages two address space, approximate space and normal space, with efficient ad-

dress mapping, coordinated garbage collection and differential wear leveling. To pass

the approximate information of data from userland to kernel space, we demonstrate

how to pass the approximate information from applications to flash devices through

the whole Linux OS in a top-down way. Moreover, we analyze the benefits of the life-

time of a flash memory with Rebirth-FTL by a lifetime model. We have implemented

and deployed Rebirth-FTL on an embedded development board and a simulator to

demonstrate its effectiveness.

In Chapter 5, we propose Re-RAID to optimize erasure coding performance with R-

eRAM in SSD-based RAID arrays. Re-RAID uses ReRAM as main memory in both

RAID and SSD controllers, which allows erasure coding can be processed in ReRAM

crossbars. To minimize the overhead for recovering a single failure, we propose a

confluent Cauchy-Vandermonde matrix as the generator matrix, in which SSDs can

leverage their ReRAM memory to recover a single lost disk, which can greatly allevi-

ate the computing workloads of a RAID controller. For multiple failures, processors

and ReRAM memories in the RAID controller work in close collaboration to recover

lost data. Experimental results show that the proposed scheme improves both encoding

115

and decoding performance compared with conventional processor-based implementa-

tions.

6.2 Future Work

The work presented in this thesis can be extended in different directions in the future.

• First, we plan to explore an optimized graph distribution scheme by considering the

effect on traversal performance and the issue of storage efficiency.

• Second, we plan to explore the possibility of performing the high sparse matrix-vector

multiplication operations with compressed format to support other graph algorithms,

such as page-rank algorithm.

• Third, the mobile phone is a typical embedded storage system with flash memory.

We will explore how to leverage the approximate storage to improve the efficiency of

TrustZone in Android [23].

• Finally, we will examine the interference of erasure coded stripes from multiple clients

in cloud storage systems.

116

REFERENCES

[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

A scalable processing-in-memory accelerator for parallel graph processing. ACM

SIGARCH Computer Architecture News, 43(3):105–117, 2016.

[2] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. Pim-enabled instruc-

tions: A low-overhead, locality-aware processing-in-memory architecture. In Com-

puter Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium

on, pages 336–348. IEEE, 2015.

[3] Berkin Akin, Franz Franchetti, and James C Hoe. Data reorganization in memory

using 3d-stacked dram. In ACM SIGARCH Computer Architecture News, volume 43,

pages 131–143. ACM, 2015.

[4] Hiroyuki Akinaga and Hisashi Shima. Resistive random access memory (reram)

based on metal oxides. Proceedings of the IEEE, 98(12):2237–2251, 2010.

[5] Fabien Alibart, Ligang Gao, Brian D Hoskins, and Dmitri B Strukov. High preci-

sion tuning of state for memristive devices by adaptable variation-tolerant algorithm.

Nanotechnology, 23(7):075201, 2012.

[6] Salman Aslam. Twitter by the numbers: Stats, demographics & fun facts. Internet

Stats, 2019.

[7] Storage Networking Industry Association. Snia iotta repository. Microsoft Enterprise

Traces, Colorado Springs, Colorado (iotta. snia. org/traces/130), 2011.

[8] Rodolfo Azevedo, John D Davis, Karin Strauss, Parikshit Gopalan, Mark Manasse,

and Sergey Yekhanin. Zombie memory: Extending memory lifetime by reviving

117

dead blocks. In ACM SIGARCH Computer Architecture News, pages 452–463. ACM,

2013.

[9] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia Malkhi. Differ-

ential raid: Rethinking raid for ssd reliability. ACM Transactions on Storage (TOS),

6(2):4, 2010.

[10] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H Moreno, Richard

Murphy, Ravi Nair, and Steven Swanson. Near-data processing: Insights from a

micro-46 workshop. IEEE Micro, 34(4):36–42, 2014.

[11] Scott Beamer, Krste Asanović, and David Patterson. Direction-optimizing breadth-

first search. Scientific Programming, 21(3-4):137–148, 2013.

[12] Scott Beamer, Krste Asanovic, and David Patterson. Locality exists in graph process-

ing: Workload characterization on an ivy bridge server. In Workload Characterization

(IISWC), 2015 IEEE International Symposium on, pages 56–65. IEEE, 2015.

[13] Matias Bjørling. Extended flashsim. 2011.

[14] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon. Evenodd: An efficient

scheme for tolerating double disk failures in raid architectures. IEEE Transactions on

computers, 44(2):192–202, 1995.

[15] André Brinkmann and Dominic Eschweiler. A microdriver architecture for error cor-

recting codes inside the linux kernel. In Proceedings of the Conference on High Per-

formance Computing Networking, Storage and Analysis, page 35. ACM, 2009.

[16] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. Error patterns in mlc nand flash

memory: Measurement, characterization, and analysis. In Proceedings of the Confer-

ence on Design, Automation and Test in Europe, pages 521–526. EDA Consortium,

2012.

118

[17] Yu-Ming Chang, Yuan-Hao Chang, Jian-Jia Chen, Tei-Wei Kuo, Hsiang-Pang Li, and

Hang-Ting Lue. On trading wear-leveling with heal-leveling. In Proceedings of the

51st Annual Design Automation Conference, pages 1–6. ACM, 2014.

[18] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra: Differentiated

graph computation and partitioning on skewed graphs. In Proceedings of the Tenth

European Conference on Computer Systems, page 1. ACM, 2015.

[19] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang,

and Yuan Xie. Prime: A novel processing-in-memory architecture for neural network

computation in reram-based main memory. In Proceedings of the 43rd International

Symposium on Computer Architecture, pages 27–39. IEEE Press, 2016.

[20] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan Kim, Youngmin Yi, and Grego-

ry R Ganger. Active disk meets flash: A case for intelligent ssds. In Proceedings of

the 27th international ACM conference on International conference on supercomput-

ing. ACM, 2013.

[21] Ching-Che Chung and Hao-Hsiang Hsu. Partial parity cache and data cache manage-

ment method to improve the performance of an ssd-based raid. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 22(7):1470–1480, 2014.

[22] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Economics of

Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[23] Tim Cooijmans, Joeri de Ruiter, and Erik Poll. Analysis of secure key storage solu-

tions on android. In Proceedings of the 4th ACM Workshop on Security and Privacy

in Smartphones & Mobile Devices, pages 11–20. ACM, 2014.

[24] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James

Leong, and Sunitha Sankar. Row-diagonal parity for double disk failure correction.

In Proceedings of the 3rd USENIX Conference on File and Storage Technologies,

pages 1–14. USENIX Association Berkeley, CA, USA, 2004.

119

[25] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[26] Jinhua Cui, Youtao Zhang, Liang Shi, Chun Jason Xue, Weiguo Wu, and Jun Yang.

Approxftl: On the performance and lifetime improvement of 3d nand flash based ssds.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

2017.

[27] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-

memory programming. IEEE computational science and engineering, 5(1):46–55,

1998.

[28] Hoang Dau, Iwan Duursma, Han Mao Kiah, and Olgica Milenkovic. Repairing reed-

solomon codes with multiple erasures. IEEE Transactions on Information Theory,

2018.

[29] Leonard Eugene Dickson. Linear groups: With an exposition of the Galois field theo-

ry. Courier Corporation, 2003.

[30] Xiangyu Dong, Cong Xu, Norm Jouppi, and Yuan Xie. Nvsim: A circuit-level per-

formance, energy, and area model for emerging non-volatile memory. In Emerging

Memory Technologies, pages 15–50. Springer, 2014.

[31] Dell EMC. Introduction to dell emc xtremio x2 storage array, 2018.

[32] Facebook. Facebook reports third quarter 2018 results. Technical report, Facebook,

2018.

[33] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from

few training examples: An incremental bayesian approach tested on 101 object cate-

gories. Computer vision and Image understanding, 106(1):59–70, 2007.

[34] Amherst Laboratory for Advanced System Software. Umass trace repository, 2012.

[35] Yingxun Fu and Jiwu Shu. D-code: An efficient raid-6 code to optimize i/o loads and

read performance. In Parallel and Distributed Processing Symposium (IPDPS), 2015

IEEE International, pages 603–612. IEEE, 2015.

120

[36] Yingxun Fu, Jiwu Shu, Xianghong Luo, Zhirong Shen, and Qingda Hu. Short code:

An efficient raid-6 mds code for optimizing degraded reads and partial stripe writes.

IEEE Transactions on Computers, 66(1):127–137, 2017.

[37] Jie Guo, Zhijie Chen, Danghui Wang, Zili Shao, and Yiran Chen. Dpa: A data pattern

aware error prevention technique for nand flash lifetime extension. In 2014 19th Asia

and South Pacific Design Automation Conference, 2014.

[38] Qing Guo, Karin Strauss, Luis Ceze, and Henrique S Malvar. High-density image

storage using approximate memory cells. In ACM SIGPLAN Notices, volume 51,

pages 413–426. ACM, 2016.

[39] Zhaohui Guo, Yuuki Nishikawa, Roberto Yusi Omaki, Takao Onoye, and Isao Shi-

rakawa. A low-complexity fec assignment scheme for motion jpeg2000 over wireless

network. IEEE Transactions on Consumer Electronics, 52(1):81–86, 2006.

[40] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a flash translation

layer employing demand-based selective caching of page-level address mappings, vol-

ume 44. ACM, 2009.

[41] Venkatesan Guruswami and Mary Wootters. Repairing reed-solomon codes. IEEE

Transactions on Information Theory, 63(9):5684–5698, 2017.

[42] Hadoop and Apache. Hadoop 3.0, 2017.

[43] Volker Hampel, Peter Sobe, and Erik Maehle. Experiences with a fpga-based

reed/solomon-encoding coprocessor. Microprocessors and Microsystems, 32(5-

6):313–320, 2008.

[44] Lei Han, Zhaoyan Shen, Duo Liu, Zili Shao, H Howie Huang, and Tao Li. A novel

reram-based processing-in-memory architecture for graph traversal. ACM Transac-

tions on Storage (TOS), 2018.

[45] Lei Han, Zhaoyan Shen, Zili Shao, H Howie Huang, and Tao Li. A novel reram-based

processing-in-memory architecture for graph computing. In Non-Volatile Memory

121

Systems and Applications Symposium (NVMSA), 2017 IEEE 6th, pages 1–6. IEEE,

2017.

[46] Lei Han, Zhaoyan Shen, Zili Shao, and Tao Li. Optimizing raid/ssd controllers with

lifetime extension for flash-based ssd array. In Proceedings of the 19th ACM SIG-

PLAN/SIGBED International Conference on Languages, Compilers, and Tools for

Embedded Systems, pages 44–54. ACM, 2018.

[47] Robin Harris. Ssd reliability in the real world: Google’s experience. Technical report,

ZDNet, 2016.

[48] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient parallel graph explo-

ration on multi-core cpu and gpu. In Parallel Architectures and Compilation Tech-

niques (PACT), 2011 International Conference on, pages 78–88. IEEE, 2011.

[49] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.

Write amplification analysis in flash-based solid state drives. In Proceedings of SYS-

TOR 2009: The Israeli Experimental Systems Conference, page 10. ACM, 2009.

[50] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new dram architecture increases

density and performance. In VLSI Technology (VLSIT), 2012 Symposium on, pages

87–88. IEEE, 2012.

[51] Djordje Jevdjic, Karin Strauss, Luis Ceze, and Henrique S Malvar. Approximate

storage of compressed and encrypted videos. In Proceedings of the 22nd Internation-

al Conference on Architectural Support for Programming Languages and Operating

Systems, pages 361–373. ACM, 2017.

[52] Xavier Jimenez, David Novo, and Paolo Ienne. Wear unleveling: improving nand

flash lifetime by balancing page endurance. In Proceedings of the 12th USENIX con-

ference on File and Storage Technologies, pages 47–59. USENIX Association, 2014.

122

[53] Sebastian Kalcher and Volker Lindenstruth. Accelerating galois field arithmetic for

reed-solomon erasure codes in storage applications. In 2011 IEEE International Con-

ference on Cluster Computing, pages 290–298. IEEE, 2011.

[54] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,

and Li Fei-Fei. Large-scale video classification with convolutional neural networks.

In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,

pages 1725–1732, 2014.

[55] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392,

1998.

[56] Asiya Khan, Lingfen Sun, and Emmanuel Ifeachor. Video quality assessment as im-

pacted by video content over wireless networks. International Journal on Advances

in Networks and Services, 2(2&3), 2009.

[57] Jaeho Kim, Jongmin Lee, Jongmoo Choi, Donghee Lee, and Sam H Noh. Improving

ssd reliability with raid via elastic striping and anywhere parity. In 2013 43rd Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),

pages 1–12. IEEE, 2013.

[58] Jesung Kim, Jong Min Kim, Sam H Noh, Sang Lyul Min, and Yookun Cho. A space-

efficient flash translation layer for compactflash systems. IEEE Transactions on Con-

sumer Electronics, 48(2):366–375, 2002.

[59] Sohyun Koo, Se Jin Kwon, Sungsoo Kim, and Tae-Sun Chung. Dual raid technique

for ensuring high reliability and performance in ssd. In 2015 IEEE/ACIS 14th Inter-

national Conference on Computer and Information Science (ICIS), pages 399–404.

IEEE, 2015.

[60] Jérome Lacan and Jérome Fimes. Systematic mds erasure codes based on vander-

monde matrices. IEEE Communications Letters, 8(9):570–572, 2004.

123

[61] Jung H Lee, Jaesung Lee, and Myung H Sunwoo. Design of application-specific

instructions and hardware accelerator for reed-solomon codecs. EURASIP Journal on

Applied Signal Processing, 2003:1346–1354, 2003.

[62] Jure Leskovec and Andrej Krevl. {SNAP Datasets}:{Stanford} large network dataset

collection. 2015.

[63] Bingzhe Li, Meng Yang, Soheil Mohajer, Weikang Qian, and David J Lilja. Tier-

code: An xor-based raid-6 code with improved write and degraded-mode read per-

formance. In 2018 IEEE International Conference on Networking, Architecture and

Storage (NAS), pages 1–10. IEEE, 2018.

[64] Jing Li, Chao-I Wu, Scott C Lewis, Jackie Morrish, Tien-Yen Wang, Richard Jordan,

Tom Maffitt, Matthew Breitwisch, Alejandro Schrott, Roger Cheek, et al. A novel

reconfigurable sensing scheme for variable level storage in phase change memory. In

Memory Workshop (IMW), 2011 3rd IEEE International, pages 1–4. IEEE, 2011.

[65] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. Pinatubo:

A processing-in-memory architecture for bulk bitwise operations in emerging non-

volatile memories. In Proceedings of the 53rd Annual Design Automation Conference,

page 173. ACM, 2016.

[66] Yongkun Li, Helen HW Chan, Patrick PC Lee, and Yinlong Xu. Elastic parity logging

for ssd raid arrays. In 46th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks, pages 49–60. IEEE, 2016.

[67] Yongkun Li, Patrick PC Lee, and John CS Lui. Analysis of reliability dynamics of

ssd raid. IEEE Transactions on Computers, 65(4):1131–1144, 2016.

[68] Chengjian Liu, Qiang Wang, Xiaowen Chu, and Yiu-Wing Leung. G-crs: Gpu ac-

celerated cauchy reed-solomon coding. IEEE Transactions on Parallel & Distributed

Systems, (7), 2018.

124

[69] Duo Liu, Tianzheng Wang, Yi Wang, Zili Shao, Qingfeng Zhuge, and Edwin H-M

Sha. Application-specific wear leveling for extending lifetime of phase change mem-

ory in embedded systems. IEEE Transactions on Computer-Aided Design of Integrat-

ed Circuits and Systems, 33(10):1450–1462, 2014.

[70] Duo Liu, Yi Wang, Zhiwei Qin, Zili Shao, and Yong Guan. A space reuse strategy for

flash translation layers in slc nand flash memory storage systems. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 20(6):1094–1107, 2012.

[71] Hang Liu and H Howie Huang. Enterprise: Breadth-first graph traversal on gpus.

In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, page 68. ACM, 2015.

[72] Hang Liu, H Howie Huang, and Yang Hu. ibfs: Concurrent breadth-first search on

gpus. In Proceedings of the 2016 International Conference on Management of Data,

pages 403–416. ACM, 2016.

[73] Xiaoxiao Liu, Mengjie Mao, Beiye Liu, Hai Li, Yiran Chen, Boxun Li, Yu Wang,

Hao Jiang, Mark Barnell, Qing Wu, et al. Reno: A high-efficient reconfigurable neu-

romorphic computing accelerator design. In Design Automation Conference (DAC),

2015 52nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2015.

[74] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. Efficient sparse

matrix-vector multiplication on x86-based many-core processors. In Proceedings of

the 27th international ACM conference on International conference on supercomput-

ing, pages 273–282. ACM, 2013.

[75] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending the lifetime of flash-based

storage through reducing write amplification from file systems. In Proceedings of the

11th USENIX conference on File and Storage Technologies, pages 257–270. USENIX

Association, 2013.

[76] Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu. Warm: Im-

proving nand flash memory lifetime with write-hotness aware retention management.

125

In Mass Storage Systems and Technologies (MSST), 2015 31st Symposium on, pages

1–14. IEEE, 2015.

[77] Bill Lynn and Ansh Gupta. Non-volatile cache for host-based raid controllers. Dell

Technical Write Paper, 2011.

[78] Dimitrov Martin and Strickland Carl. Intel power gadget. Intel Corporation, 7, 2016.

[79] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu graph traver-

sal. In ACM SIGPLAN Notices, volume 47, pages 117–128. ACM, 2012.

[80] Nooshin Mirzadeh, Yusuf Onur Koçberber, Babak Falsafi, and Boris Grot. Sort vs.

hash join revisited for near-memory execution. In 5th Workshop on Architectures and

Systems for Big Data (ASBD 2015), number EPFL-TALK-209111, 2015.

[81] Sangwhan Moon and AL Reddy. Does raid improve lifetime of ssd arrays? ACM

Transactions on Storage (TOS), 12(3):11, 2016.

[82] Dimin Niu, Cong Xu, Naveen Muralimanohar, Norman P Jouppi, and Yuan Xie. De-

sign of cross-point metal-oxide reram emphasizing reliability and cost. In Computer-

Aided Design (ICCAD), 2013 IEEE/ACM International Conference on, pages 17–23.

IEEE, 2013.

[83] Dimin Niu, Qiaosha Zou, Cong Xu, and Yuan Xie. Low power multi-level-cell re-

sistive memory design with incomplete data mapping. In Computer Design (ICCD),

2013 IEEE 31st International Conference on, pages 131–137. IEEE, 2013.

[84] Eriko Nurvitadhi, Gabriel Weisz, Yu Wang, Skand Hurkat, Marie Nguyen, James C

Hoe, José F Martı́nez, and Carlos Guestrin. Graphgen: An fpga framework for vertex-

centric graph computation. In Field-Programmable Custom Computing Machines

(FCCM), 2014 IEEE 22nd Annual International Symposium on, pages 25–28. IEEE,

2014.

[85] NVIDIA. Cuda toolkit documentation. Technical report, NVIDIA, 2017.

126

[86] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen,

Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal, Hyungtae Lee, Larry Davis, et al.

A large-scale benchmark dataset for event recognition in surveillance video. In Com-

puter vision and pattern recognition (CVPR), 2011 IEEE conference on. IEEE, 2011.

[87] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H Noh. Improving perfor-

mance and lifetime of the ssd raid-based host cache through a log-structured approach.

In 1st Workshop on Interactions of NVM/FLASH with Operating Systems and Work-

loads, page 5. ACM, 2013.

[88] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,

Steven Burns, and Ozcan Ozturk. Energy efficient architecture for graph analytics

accelerators. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual Inter-

national Symposium on, pages 166–177. IEEE, 2016.

[89] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank

citation ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[90] Daniel Palomino, Muhammad Shafique, Altamiro Susin, and Jörg Henkel. Thermal

optimization using adaptive approximate computing for video coding. In Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2016, pages 1207–

1212. IEEE, 2016.

[91] Yubiao Pan, Yongkun Li, Yinlong Xu, and Zhipeng Li. Grouping-based elastic strip-

ing with hotness awareness for improving ssd raid performance. In 2015 45th annu-

al IEEE/IFIP international conference on dependable systems and networks (DSN),

pages 160–171. IEEE, 2015.

[92] James S Plank, Kevin M Greenan, and Ethan L Miller. Screaming fast galois field

arithmetic using intel simd instructions. In FAST, pages 299–306, 2013.

[93] James S Plank, Scott Simmerman, and Catherine D Schuman. Jerasure: A library in

c/c++ facilitating erasure coding for storage applications-version 1.2. University of

Tennessee, Tech. Rep. CS-08-627, 23, 2008.

127

[94] James S Plank and Lihao Xu. Optimizing cauchy reed-solomon codes for fault-

tolerant network storage applications. In Network Computing and Applications, 2006.

NCA 2006. Fifth IEEE International Symposium on, pages 173–180. IEEE, 2006.

[95] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijayalaksh-

mi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li. Ndc: Analyzing the

impact of 3d-stacked memory+ logic devices on mapreduce workloads. In Perfor-

mance Analysis of Systems and Software (ISPASS), 2014 IEEE International Sympo-

sium on, pages 190–200. IEEE, 2014.

[96] Lingjun Qin and Dan Feng. Active storage framework for object-based storage de-

vice. In Advanced Information Networking and Applications, 2006. AINA 2006. 20th

International Conference on, volume 2, pages 97–101. IEEE, 2006.

[97] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. Demand-based block-level address

mapping in large-scale nand flash storage systems. In Proceedings of the eighth

IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-

tem synthesis, pages 173–182. ACM, 2010.

[98] Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, and Yong Guan. Mnftl: An efficient flash

translation layer for mlc nand flash memory storage systems. In Proceedings of the

48th Design Automation Conference, pages 17–22. ACM, 2011.

[99] Morteza Ramezani, Nima Elyasi, Mohammad Arjomand, Mahmut T Kandemir, and

Anand Sivasubramaniam. Exploring the impact of memory block permutation on per-

formance of a crossbar reram main memory. In Workload Characterization (IISWC),

2017 IEEE International Symposium on. IEEE, 2017.

[100] Ashish Ranjan, Swagath Venkataramani, Xuanyao Fong, Kaushik Roy, and Anand

Raghunathan. Approximate storage for energy efficient spintronic memories. In De-

sign Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pages 1–6. IEEE,

2015.

128

[101] KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and

Kannan Ramchandran. A hitchhiker’s guide to fast and efficient data reconstruction

in erasure-coded data centers. ACM SIGCOMM Computer Communication Review,

44(4):331–342, 2015.

[102] Pedro Reviriego, Juan A Maestro, and Mark F Flanagan. Error detection in majority

logic decoding of euclidean geometry low density parity check (eg-ldpc) codes. IEEE

transactions on very large scale integration (VLSI) systems, 21(1):156–159, 2013.

[103] Erik Riedel, Garth Gibson, and Christos Faloutsos. Active storage for large-scale

data mining and multimedia applications. In Proceedings of 24th Conference on Very

Large Databases, pages 62–73. Citeseer, 1998.

[104] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph

processing using streaming partitions. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, pages 472–488. ACM, 2013.

[105] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. Asac: Automat-

ic sensitivity analysis for approximate computing. In ACM SIGPLAN Notices, vol-

ume 49, pages 95–104. ACM, 2014.

[106] Sourav Roy, Martin Bucker, W Wilhelm, and BS Panwar. Reconfigurable hardware

accelerator for a universal reed solomon codec. In Circuits and Systems for Communi-

cations, 2002. Proceedings. ICCSC’02. 1st IEEE International Conference on, pages

158–161. IEEE, 2002.

[107] Semih Salihoglu and Jennifer Widom. Gps: A graph processing system. In Pro-

ceedings of the 25th International Conference on Scientific and Statistical Database

Management, page 22. ACM, 2013.

[108] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis

Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general low-

power computation. In ACM SIGPLAN Notices, volume 46, pages 164–174. ACM,

2011.

129

[109] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate storage

in solid-state memories. ACM Transactions on Computer Systems (TOCS), 32(3):9,

2014.

[110] Samsung. 16gb f-die nand flash multi-level-cell (2bit/cell). 2011.

[111] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexan-

dros G Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. Xoring ele-

phants: Novel erasure codes for big data. In Proceedings of the VLDB Endowment,

volume 6, pages 325–336. VLDB Endowment, 2013.

[112] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarung-

nirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B Gibbons, Michael A

Kozuch, et al. Rowclone: Fast and energy-efficient in-dram bulk data copy and initial-

ization. In Microarchitecture (MICRO), 2013 46th Annual IEEE/ACM International

Symposium on, pages 185–197. IEEE, 2013.

[113] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,

John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. Isaac: A

convolutional neural network accelerator with in-situ analog arithmetic in crossbars.

In Proceedings of the 43rd International Symposium on Computer Architecture, pages

14–26. IEEE Press, 2016.

[114] Zhirong Shen, Jiwu Shu, Patrick PC Lee, and Yingxun Fu. Seek-efficient i/o opti-

mization in single failure recovery for xor-coded storage systems. IEEE Transactions

on Parallel and Distributed Systems, 28(3):877–890, 2017.

[115] Hojun Shim, Yongsoo Joo, Yongseok Choi, Hyung Gyu Lee, and Naehyuck Chang.

Low-energy off-chip sdram memory systems for embedded applications. ACM Trans-

actions on Embedded Computing Systems (TECS), 2(1):98–130, 2003.

[116] Majid Shoushtari, Abbas BanaiyanMofrad, and Nikil Dutt. Exploiting partially-

forgetful memories for approximate computing. IEEE Embedded Systems Letters,

7(1):19–22, 2015.

130

[117] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. In Mass storage systems and technologies (MSST),

2010 IEEE 26th symposium on, pages 1–10. Ieee, 2010.

[118] Peter Sobe and Peter Schumann. A perfomance study of parallel cauchy reed/solomon

coding. In Architecture of Computing Systems (ARCS), 2014 Workshop Proceedings.

VDE, 2014.

[119] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. Pipelayer: A pipelined reram-

based accelerator for deep learning. In High Performance Computer Architecture

(HPCA), 2017 IEEE International Symposium on, pages 541–552. IEEE, 2017.

[120] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. Graphr: Accel-

erating graph processing using reram. arXiv preprint arXiv:1708.06248, 2017.

[121] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wobber.

Extending ssd lifetimes with disk-based write caches. In FAST, volume 10, pages

101–114, 2010.

[122] Daniel Stodolsky, Garth Gibson, and Mark Holland. Parity logging overcoming the

small write problem in redundant disk arrays. In ACM SIGARCH Computer Architec-

ture News, volume 21, pages 64–75. ACM, 1993.

[123] Pure Storage. Everything in one all-flash array.

[124] Hairong Sun, Pete Grayson, and Bob Wood. Quantifying reliability of solid-state

storage from multiple aspects. Proceedings of the Storageconference., 2011.

[125] Yuliang Sun, Yu Wang, and Huazhong Yang. Energy-efficient sql query exploiting

rram-based process-in-memory structure. In Non-Volatile Memory Systems and Ap-

plications Symposium (NVMSA), 2017 IEEE 6th, pages 1–6. IEEE, 2017.

[126] Hitachi Data Systems. Hitachi virtual storage platform g series. Technical report,

2018.

131

[127] Devesh Tiwari, Simona Boboila, Sudharshan S Vazhkudai, Youngjae Kim, Xiaosong

Ma, Peter Desnoyers, and Yan Solihin. Active flash: towards energy-efficient, in-situ

data analytics on extreme-scale machines. In FAST, pages 119–132, 2013.

[128] Peter Trifonov. Low-complexity implementation of raid based on reed-solomon

codes. ACM Transactions on Storage (TOS), 11(1):1, 2015.

[129] Dmitriy Vatolin, Alexey Moskvin, Oleg Petrov, and Nicolay Trunichkin. Msu video

quality measurement tool, 2009.

[130] Zdeněk Vavřı́n. Confluent cauchy and cauchy-vandermonde matrices. Linear algebra

and its applications, pages 271–293, 1997.

[131] Akshat Verma, Ricardo Koller, Luis Useche, and Raju Rangaswami. Srcmap: energy

proportional storage using dynamic consolidation. In Proceedings of the 8th USENIX

conference on File and Storage Technologies. USENIX Association, 2010.

[132] Wei-Lin Wang, Tseng-Yi Chen, Yuan-Hao Chang, Hsin-Wen Wei, and Wei-Kuan Shi-

h. Minimizing write amplification to enhance lifetime of large-page flash-memory

storage devices. In 2018 55th ACM/ESDA/IEEE Design Automation Conference

(DAC), pages 1–6. IEEE, 2018.

[133] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and

John D Owens. Gunrock: A high-performance graph processing library on the gpu.

In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, page 11. ACM, 2016.

[134] Yi Wang, Zhiwei Qin, Renhai Chen, Zili Shao, Qixin Wang, Shuai Li, and Laurence T

Yang. A real-time flash translation layer for nand flash memory storage systems.

IEEE Transactions on Multi-Scale Computing Systems, 2(1):17–29, 2016.

[135] Debao Wei, Libao Deng, Liyan Qiao, Peng Zhang, and Xiyuan Peng. Peva: A

page endurance variance aware strategy for the lifetime extension of nand flash.

132

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(5):1749–1760,

2016.

[136] H-S Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-Shiu

Chen, Byoungil Lee, Frederick T Chen, and Ming-Jinn Tsai. Metal–oxide rram. Pro-

ceedings of the IEEE, 100(6):1951–1970, 2012.

[137] Liping Xiang, Yinlong Xu, John Lui, and Qian Chang. Optimal recovery of single

disk failure in rdp code storage systems. ACM SIGMETRICS Performance Evaluation

Review, 38(1):119–130, 2010.

[138] Cong Xu, Pai-Yu Chen, Dimin Niu, Yang Zheng, Shimeng Yu, and Yuan Xie. Archi-

tecting 3d vertical resistive memory for next-generation storage systems. In Proceed-

ings of the 2014 IEEE/ACM International Conference on Computer-Aided Design,

pages 55–62. IEEE Press, 2014.

[139] Cong Xu, Xiangyu Dong, Norman P Jouppi, and Yuan Xie. Design implications of

memristor-based rram cross-point structures. In Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2011, pages 1–6. IEEE, 2011.

[140] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao Zhang,

Shimeng Yu, and Yuan Xie. Overcoming the challenges of crossbar resistive memory

architectures. In High Performance Computer Architecture (HPCA), 2015 IEEE 21st

International Symposium on, pages 476–488. IEEE, 2015.

[141] Cong Xu, Dimin Niu, Naveen Muralimanohar, Norman P Jouppi, and Yuan Xie. Un-

derstanding the trade-offs in multi-level cell reram memory design. In Design Au-

tomation Conference (DAC), 2013 50th ACM/EDAC/IEEE, pages 1–6. IEEE, 2013.

[142] Lihao Xu and Jehoshua Bruck. X-code: Mds array codes with optimal encoding.

IEEE Transactions on Information Theory, 45(1):272–276, 1999.

[143] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse, Li-

fan Xu, and Michael Ignatowski. Top-pim: throughput-oriented programmable pro-

133

cessing in memory. In Proceedings of the 23rd international symposium on High-

performance parallel and distributed computing, pages 85–98. ACM, 2014.

[144] Guangyan Zhang, Guiyong Wu, Shupeng Wang, Jiwu Shu, Weimin Zheng, and Keqin

Li. Caco: An efficient cauchy coding approach for cloud storage systems. IEEE

Transactions on Computers, 65(2):435–447, 2016.

[145] Hang Zhang, Nong Xiao, Fang Liu, and Zhiguang Chen. Leader: Accelerating reram-

based main memory by leveraging access latency discrepancy in crossbar arrays. In

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016, pages

756–761. IEEE, 2016.

[146] Jialiang Zhang, Soroosh Khoram, and Jing Li. Boosting the performance of fpga-

based graph processor using hybrid memory cube: A case for breadth first search. In

FPGA, pages 207–216, 2017.

[147] Jianlong Zhong and Bingsheng He. Medusa: Simplified graph processing on gpus.

IEEE Transactions on Parallel and Distributed Systems, 25(6):1543–1552, 2014.

[148] Qiuling Zhu, Berkin Akin, H Ekin Sumbul, Fazle Sadi, James C Hoe, Larry Pileg-

gi, and Franz Franchetti. A 3d-stacked logic-in-memory accelerator for application-

specific data intensive computing. In 3D Systems Integration Conference (3DIC),

2013 IEEE International, pages 1–7. IEEE, 2013.

[149] Qiuling Zhu, Tobias Graf, H Ekin Sumbul, Larry Pileggi, and Franz Franchetti. Ac-

celerating sparse matrix-matrix multiplication with 3d-stacked logic-in-memory hard-

ware. In High Performance Extreme Computing Conference (HPEC), 2013 IEEE,

pages 1–6. IEEE, 2013.

134

