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Abstract  

Robust and efficient vehicle detection, counting and tracking is an important task 

in Intelligent Transportation Systems. With the continuous development of 

computer vision technologies, remarkable progress has been made in vision-based 

vehicle detection. Comparing to other sensors, vision cameras provide rich 

information for driving understanding. At the same time, robust feature descriptors 

and efficient background models have been proposed for the purpose of accurate 

vehicle detection. In this thesis, a computationally efficient method for vehicle 

detection, counting and tracking under different environmental conditions is 

presented, with a special focus on adverse illumination and weather. The general 

framework is based on enhanced Three-Frame-Differencing (E-TFD). In a given 

video sequence, three consecutive frames are utilized to generate frame 

differencing images. With an efficient thresholding and removal of small noise 

regions, moving vehicles can be extracted in an efficient and accurate manner. 

Meanwhile, based on extracted regions of interest (ROIs), exact numbers of 

vehicles can be counted and displayed on the screen. The E-TFD method can detect 

and count vehicle candidates in both fine and inclement weather conditions, 

including sunny, rainy, foggy, snowy, blizzard, wet snow and nighttime conditions 

in this study. To evaluate the E-TFD detection approach, nine videos are collected 

from different sources. Six videos are selected from two public datasets, CDnet 
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2014 and KIT dataset, for the purpose of performance analysis. At the same time, 

three videos are recorded from different roads in Kowloon, Hong Kong using a 

digital camera. Of all 4532 tested frames, 10059 vehicles can be successfully 

detected out of 11556 vehicles, showing an average detection rate of 87.1%. The 

E-FTD method shows a significant improvement of detection rate in adverse 

conditions and can provide a efficient solution of all-time, all-weather detection, 

counting and tracking that can in future be embedded into a real-time traffic 

surveillance system.   
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CHAPTER 1 INTRODUCTION 

1.1 Background 

  Intelligent Transport Systems (ITS) is a popular field of research in recent years. 

By providing innovative services relating to different modes of transport and 

traffic management and enabling various users to be better informed and make 

safer, more coordinated and ‘smarter’ use of transport networks (PARLIAMENT 

and UNION, 2010), ITS aims to improve transportation safety, mobility, 

productivity and environmental performance for traffic planners and road users. 

With continuous urban road development and extensive construction of 

expressways, increasing interest is devoted to vehicle detection. As an essential 

task in ITS, vehicle detection aims to provide information assisting vehicle 

counting, vehicle speed measurement, identification of traffic accidents, traffic 

flow prediction and so on.  

  The interest in Intelligent Transportation Systems (ITS) technologies aroused 

about 20 years ago with respect to the problem of people and goods mobility. 

The field of ITS is now entering its second phase characterized by maturity in its 

approaches and by new technological possibilities which allow the development 

of the first experimental product (Bertozzi et al., 2000). 

  Various sensors have been utilized to collect continuous-generated traffic 
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information. Generally, the sensors can be categorized as hardware-based sensors 

and software-based sensors. Hardware-based sensors (also called active sensors), 

mainly include Lidar (Asvadi et al., 2017), Radar (Stevenson, 2011), and 

inductive-loop detectors (Ki and Baik, 2006). Designed for a special purpose, these 

detectors transmit and receive electromagnetic signals to measure traffic 

parameters. Hardware-based sensors have been widely used for vehicle detection 

in many earlier studies. The main drawbacks of hardware equipment are high 

maintenance cost and environmental effects. Software sensors mainly refer to 

cameras, which vary in position and type. Cameras can be either mounted on a 

vehicle or fixed along the roadside. At the same time, camera type can be 2D or 

3D (contain depth information). Comparing to hardware detectors, vision cameras 

are more advantageous in terms of cost and flexibility. At the same time, they 

provide a rich contextual information for human visualization and understanding. 

With the increasing coverage of traffic surveillance cameras and easier 

accessibility of traffic image, vision-based vehicle detection is one of the most 

promising techniques for driving environment understanding. In recent years, 

there is even a trend to fuse data from different sensors for accurate and efficient 

vehicle detection.  

  Apparently, vision-based vehicle detection takes full advantage of computer 
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vision technologies. The British Machine Vision Associate (BMVA) defines 

Computer Vision as “the automatic extraction, analysis and understanding of 

useful information from a single image or a sequence of images”(BMVA, 2016).   

In recent years, more and more studies have been focusing on deep learning 

technologies, contributing to blooming research to vehicle classification, tracking, 

speed measurement and vehicle type recognition.  

  Vision-based vehicle detection, counting and tracking have always been a 

significant research topic in Intelligent Transportation Systems. In fine 

illumination and weather conditions, many studies have provided comprehensive 

reviews and solutions to detect, count and track moving vehicles. However, when 

it comes to adverse conditions with low illumination and visibility, existing studies 

mainly focus on one or two conditions and discuss corresponding approaches. Till 

now, a complete understanding of all kinds of driving environment is yet to be 

achieved using traffic surveillance cameras. 

 

1.2 Objectives 

  Vehicle detection systems should be able to handle problems posed by bad 

weather (Nayar and Narasimhan, 1999). Current studies are found to be limited in 

providing solutions to one or two challenging cases, such as vehicle detection in 

low illumination (dusk and nighttime) or adverse weather (fog, rain, and snow) 
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conditions. Despite very high detection rate in some studies, these detection 

approaches lack robustness for implementation in all kinds of challenging 

environmental scenarios. Till now, a universal method for all-weather vehicle 

detection based on vision cameras has not been provided. The objectives of this 

study are: 

1) To propose an enhanced Three-Frame-Differencing (E-TFD) based 

computationally efficient method to detect, count and track vehicles within the 

visible road segment from images of traffic surveillance cameras under varying 

environments, including sunny, rainy, snowy, foggy and nighttime images; 

2) To evaluate the E-TFD detection approach in terms of accuracy and efficiency. 

True Positive Rate, False Positive Rate, Precision and Recall are used for 

performance analysis, followed by a comparison with other state-of-the-art 

methods.  

  

1.3 Scope of the Study 

  This study focuses on vehicle detection and counting in challenging 

environments. Different image sequences are tested, including rainy, snowy, foggy, 

blizzard and nighttime conditions. The tested images sequences are characterized 

by the presence of raindrops, snowflakes, fog and walking pedestrian. To show the 
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robustness of the enhanced TFD detection approach, sunny images have also been 

tested. 

  To evaluate the E-TFD method, both public datasets and self-collected video 

sequences of different sources of the recent two decades are used. Six videos are 

selected from two public-available datasets - CDnet 2014 and KIT Datasets. 

Besides, three videos are recorded from different roads in Kowloon, Hong Kong 

in rainy and nighttime conditions.  

  A successful vehicle detection approach is always in demand to monitor 

different traffic parameters (Mithun et al., 2016). In this study, ROIs of moving 

vehicles and exact counts of vehicle numbers in each frame are two major variables 

to be obtained. Regions of interest (ROIs) are obtained through the enhanced TFD 

approach. Based on ROIs detected in each frame, the number of vehicles can be 

obtained in real-time.  

 

1.4 Methodology and Significance of the Study 

  In this study, we aim to develop a possible solution of vehicle detection under 

varying environments. Given a video sequence, moving vehicles in each frame are 

extracted using imaging technologies from visible road segments captured by 

traffic surveillance cameras. The detection approach should be robust to operate in 

different environmental conditions, yet fast enough to be embedded into a real-
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time traffic surveillance system.  

  General vehicle detection approaches can be categorized as appearance-based 

method and motion-based methods. This study mainly uses a motion-based 

method for vehicle detection, counting and tracking. The detection framework is 

based on Three-Frame-Differencing (TFD). Among three consecutive frames, pre-

processing, frame differencing, fast thresholding, removal of small noise regions 

and morphological operations are major processing steps. Regions of Interest 

(ROIs) are generated using the aforementioned steps. Based on detection results, 

the exact numbers of vehicle can be displayed on the screen. 

 

  This study has provided a computationally-efficient method for vehicle 

detection, counting and tracking using traffic surveillance cameras, with a special 

focus on adverse conditions. Based on Three-Frame-Differencing, refinements are 

made in low illumination and adverse weather conditions. With a fast thresholding, 

removal of small noise regions and morphological operations, moving vehicles in 

various environmental conditions can be extracted efficiently. At the same time, 

counts in each frame can be obtained based on the presence of ROIs. The enhanced 

TFD method can also track vehicles in very inclement weather conditions.  

  To the best of our knowledge, vehicle detection in adverse conditions has only 
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been preliminarily explored. Current studies mainly solve one or two challenging 

cases, such as rain, fog, dusk or nighttime. Till now, a universal approach for all 

time, all-weather traffic surveillance system has not been proposed. This study 

provides a possible solution for all weather vehicle detection based on vision 

cameras and can in future be embedded into a real-time traffic surveillance system. 

Finally, we hope to evolve this E-TFD detection approach into commercial 

software. 

 

1.5 Thesis Layout 

The remainder of the thesis is organized as follows. Chapter 2 reviews the 

previous work of vision-based vehicle detection methods. The comprehensive 

review categorizes existing detection approaches as appearance-based methods 

and motion-based methods, followed by solutions under varying environments and 

different traffic surveillance objects. Chapter 3 provides a detailed explanation of 

the proposed enhanced Three-Frame-Differencing (E-TFD) method for vehicle 

detection in challenging environmental conditions. Chapter 4 elaborates 

experimental results using public datasets as well as self-collected video data. At 

the same time, the detection and counting approach is first discussed in terms of 

accuracy and efficiency, then compared with other state-of-the-art approaches. 

Chapter 5 summarize the whole thesis and give some perspectives on future work. 
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CHAPTER 2 A COMPREHENSIVE REVIEW ON 

VEHICLE DETECTION UNDER VARYING 

ENVIRONMENTS 

This section provides a comprehensive review of vision-based vehicle detection. 

The general detection approaches can be categorized as appearance-based methods 

and motion-based methods. Solutions under varying environments are reviewed in 

terms of illumination and weather. Then, several traffic surveillance objectives that 

can be achieved based on vehicle detection are summarized, such as solutions of 

major on-road driving problems and derivation of vehicle parameters.   

  In recent decades, many studies have presented detailed literature reviews 

related to vision-based vehicle detection, emphasizing different aspects of 

Intelligent Transportation Systems. Some focus on camera settings, such as multi-

camera video surveillance (Wang, 2013) and on-road vehicle detection with car-

mounted cameras (Sun et al., 2006b). Meanwhile, different fields of application 

are investigated, such as urban traffic analysis (Buch et al., 2011), driving behavior 

analysis (Sivaraman and Trivedi, 2013), vehicle detection techniques for Collision 

Avoidance Systems (CAS) (Mukhtar et al., 2015) and vehicle detection under 

varying environments (Yang and Pun-Cheng, 2018). These review papers have 

provided valuable information for further studies.  
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2.1 Appearance-based Methods 

The appearance of vehicles varies in size, shape and color. Based on that, 

appearance-based methods employ prior knowledge to segment foreground 

(contains objects of interest) and the background (its complementary set) (Barnich 

and Van Droogenbroeck, 2011).  

  In traffic surveillance videos, front view and rear view are the two major fields 

of view (FOV). Accordingly, the rectangular shape of vehicles could be very useful 

to extract candidates in image scenes. Symmetry, edge (horizontal/vertical) and 

corner are the three very important cues to identify rectangular shapes. In other 

fields of view, other features may be more useful, such as shadow, color, texture, 

etc. With the increasing installation of traffic surveillance cameras on road, more 

FOV is presented, illustrated in Figure 2-1.    

According to Sun et al. (2006b) and Sivaraman and Trivedi (2013), appearance-

based methods often follow two basic steps: 1) hypothesis generation (HG), where 

locations of possible vehicles are hypothesized, and 2) hypothesis verification 

(HV), where tests are performed to verify the presence of vehicles in the traffic 

scene.  
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(a) 

 

(b) 

 

(c) 

 

(d)  

Figure 2-1. Vehicles in different field of view. (a) Front view; (b) Side view; (c) 

Side view; (d) Front and rear view. 

Source: (Department, 2017).  

 

2.1.1 Hypothesis Generation (HG) 

  In this step, possible vehicle candidates are extracted using one or several 

appearance features. The features can be simple global features to extract all 

related information from the image, or local feature descriptors to extract 

information on a regional level. Global features extract all related contextual 

information by considering all pixels in an image. These features are simple and 

efficient, yet of great essentiality in vehicular information extraction. In the field 

of vehicle detection, symmetry, edge, corner, color and shadow are mainly used 

and discussed as follows.   

(a)  Symmetry: Vehicles usually have the property of symmetry in front or rear 

view. In appearance-based methods, symmetry is often utilized by defining a 
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geometric model (Collado et al., 2004), finding symmetry axes (Liu et al., 2007) 

or center points (Teoh and Bräunl, 2012) to identify vehicle location in an image. 

At the same time, symmetry is often combined with other cues such as shadow and 

texture (Khairdoost et al., 2013), edge (Zielke et al., 1993) for appearance-based 

Hypothesis Generation.  

  The major limitation of symmetry feature lies in that symmetry information 

works only in front view. If the FOV changes, rectangular shape of vehicles might 

not be very obvious in the image. At the same time, the presence of occlusion 

makes the use of symmetry more difficult. Now, the symmetry property becomes 

a less-used feature in state-of-the-art vehicle detection methods.  

(b) Edge: Horizontal and vertical edges of vehicles are important sources of 

contour information, especially in the front and rear view. Due to its low 

computational complexity, edge information can be extracted in real-time. Classic 

edge-based vehicle detection employ Sobel (1990), Canny (1986), or Prewitt 

(1970) operators to generate horizontal and vertical edge map. At the same time, 

Gaussian-based filter can extract edge information effectively. In related studies, 

edge feature can be either used as a single feature (Mu et al., 2016) or combined 

with other features, such as shadow (Chong et al., 2013) to locate target vehicles. 

Edge is an essential part of feature fusion as it provides contour information, while 
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other features provide contextual information for vehicle extraction.  

(c) Corner: The conspicuous corners of vehicles play an important role in vison-

based vehicle detection. It is a fact that a vehicle in front/rear view has four corners, 

the upper-left, upper-right, lower-left and lower-right. In computer vision, several 

corner detectors have been proposed, such as the Harris Corner Detector (Harris 

and Stephens, 1988). To detect rectangles in an image, Bertozzi et al. (1997) used 

template matching to locate the four corresponding corners. Alonso et al. (2007) 

separated vehicles from non-vehicles based on a simplified vehicle model 

characterized by corners, symmetry, and shadows.    

(d) Shadow: The presence of vehicles is often followed by the shadow it casts. 

Shadow is defined as a dark area where light is blocked by an opaque object. As 

one kind of local illumination changes, the shadow can cause vehicle merging, 

shape distortion and losses (Prati et al., 2003), but could be very useful for vehicle 

identification. In related studies, shadow regions can be identified and removed by 

building a color model based on contrast (Asaidi et al., 2014), brightness 

(Horprasert et al., 1999), mean and variance of all color components (Mikic et al., 

2000). Shadow can also be used as the only global feature (Yan et al., 2016) for 

real-time Hypothesis Generation.  

(e) Color: Color provides rich information on images based on different color 
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space. In vehicle detection, color has been utilized to detect visual features such as 

vehicle lights (Chen et al., 2012) and license plates (Abolghasemi and Ahmadyfard, 

2009). Traffic surveillance cameras often operate with the RGB model, but the 

three channels are highly correlated and individual value of red, green, blue 

depends on brightness strongly(Yang et al., 2011). To solve this problem, 

conversion from RGB color space to HSV (O'Malley et al., 2010), YCbCr (Wang 

et al., 2016), L*a*b* (Cabani et al., 2005) is operated to highlight red and white 

color and reduce the effect of illumination changes. Despite commonly-used color 

space, some studies even proposed some new color transformation models (Tsai et 

al., 2007) to identify specific vehicle color from images. Table 2-1 shows how 

color information is used in vehicle lights detection.  

Extraction of global features is fast and efficient, but the main drawback is that 

any one feature cannot extract all appearance information of vehicles. Meanwhile, 

some unrelated information is extracted, such as moving pedestrian, waving trees 

and varying background. To solve this problem, one solution is to detect 

distinguishable features of vehicle parts, such as number plates and vehicle lights, 

based on with ROI is located using color, edge, blob detectors, etc. Another 

solution is to fuse appearance features to detect the whole vehicle. With a 

combination of two or more than two features, contextual and contour information 
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of vehicles can be extracted more effectively. A brief summary of the feature fusion 

approaches in vehicle detection can be found in Table 2-4, Section 2. 

Table 2-1. The use of color in vehicle lights detection. 

Reference Color 

Space 

Corresponding 

component in 

RGB color space 

Field of Application 

Thammakaroon 

and Tangamchit 

(2009) 

RGB Red Tail-light detection at 

night 

O'Malley et al. 

(2010) 

HSV Red Tail-light detection at 

night 

O’Malley et al. 

(2008) 

HSV Red and White Tail-light detection at 

night 

Chen and Peng 

(2012) 

YCbCr Red Tail-light detection at 

night 

Wang et al. 

(2016) 

YCbCr Red Brake-light detection at 

daytime 

Skodras et al. 

(2012) 

L*a*b* Red Tail-light detection at 

daytime/adverse 

weather conditions 

Chen et al. 

(2016) 

L*a*b* Red Brake light detection at 

daytime 

 

  In recent studies, there has been a transition from simple global features to 

robust local feature descriptors. In general, these descriptors are designed for a 

specific purpose and allow a quick search of objects in an image. Ideally, 

descriptors should be able to deal with various objects and robust to varying 

background, but also be invariant to geometric and photometric transformation (Li 

and Allinson, 2008). A number of appearance features have been proposed in the 
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literature, among which two descriptors, the Histograms of Gradients (HOG) and 

Haar-like features, show increasing prevalence in modern vehicle detection.   

a) HOG: Histogram of Gradients (Dalal and Triggs, 2005) is a feature descriptor 

designed for object recognition. By capturing the gradient structure that is very 

characteristic of local shape, HOG was first applied in pedestrian detection, and 

then expanded to the field of vehicle detection. Based on the original HOG 

descriptor, several adjustments have been made to suit different scenarios. Yan et 

al. (2016) used a combination of two HOG vectors for real-time detection and 

classification of the front, left, right, distant vehicles. Arróspide et al. (2013) 

proposed three cost-effective configurations of HOG, namely horizontal (H-HOG), 

vertical(V-HOG) and concentric rectangular (CR-HOG) respectively to improve 

the computation efficiency. In Khairdoost et al. (2013),  Pyramid Histograms of 

Oriented Gradients (PHOG) features were extracted as basic features for front/rear 

vehicle detection. Principle component analysis (PCA) was then applied for 

dimension reduction.  

b) Haar-like features: Haar-like features was first proposed by Viola and Jones 

(2001) to detect human faces. The descriptor uses integral images to represent the 

characteristics of ROI instead of using image pixels. The computation of Haar-like 

features is easy and simple, and this descriptor has been used in many vehicle 
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detection studies for feature representation. Haar-like features have been utilized 

to represent vehicle edges and structures (Wen et al., 2015). Haselhoff and 

Kummert (2009) proposed a 2D triangle filer based on Haar-like features to detect 

vehicle and a general learning framework was provided by Sivaraman and Trivedi 

(2010). The computation of Haar-like features is fast, but the dimension of the 

feature vector generated from images is high (Wang et al., 2015). Therefore, an 

operation of dimension reduction is applied to decrease hardware storage, such as 

Non-negative Matrix Factorization (Wang et al., 2015). 

c) Other Local Feature Descriptors: Despite the HOG and Haar-like features, 

some other appearance features also show remarkable performance in collecting 

contextual information from a regional level. The descriptors include, but are not 

limited to: Gabor features (Tao et al., 2007), Speed-up Robust Features (Bay et al., 

2006), and Scale-Invariant Feature Transformation features(Lowe, 1999).  

  Gabor features have been used to extract taillights (Ming and Jo, 2011) with 5 

different scales and 8 orientations. Sun et al. (2006a) used Haar wavelet for vehicle 

detection in the rear view. Lin et al. (2012) used SURF point detector to capture 

the wheel on the rear half of the vehicle. Zhang et al. (2011) used the SIFT point 

detector to extract interest points in an image, which help to find the bounding box 

of a vehicle.  
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2.1.2 Hypothesis Verification (HV) 

  After locating possible vehicle candidates from HG, the next step is to verify 

the correctness of the hypothesis. Hypothesis Verification (HV) in machine 

learning is treated as a two-class pattern classification problem: vehicle versus 

non-vehicle. The verification step can be categorized as templated-based methods 

and appearance-based methods.  

(a) Template-based HV: Template-based methods extract morphological 

characteristics of a vehicle and compare them with a predefined model or template 

(Parodi and Piccioli, 1995). Some of the templates represent the vehicle in a ‘vague’ 

form (Ito et al., 1995), while others are more detailed.  

  Based on the observation that rear/front view a vehicle has a ‘U’ shape, 

templates with this U-shape is a commonly-used for Hypothesis Verification. 

Richter et al. (2008) used a U-shape contour chain to identify vehicle image. For 

construction vehicle detection, Ji et al. (2016) defined inverse-v feature template 

with specific angle ranges. To detect vehicles at daytime and nighttime, Cucchiara 

and Piccardi (1999) used moving edge closure as daytime templates, and 

headlights pairing as nighttime templates.  

The main limitation of templated-based methods is the lack or robustness and 

universality. Due to the particularity of the predefined shape type, the 



18 
  

template/model might not work if the FOV changes. Therefore, template-based 

Hypothesis Verification is not a popular method in state-of-the-art vehicle 

detection.   

(b) Appearance-based HV: Appearance-based HV methods, on the other hand, 

collect positive image samples (the vehicle class) and negative image samples (the 

non-vehicle class) and train them with classifiers. In all training samples, each 

image is represented on or several appearance features. Classifiers learn the 

characteristics of vehicle appearance in a statistical way and draw a decision 

boundary between the vehicle and non-vehicle class. In order to achieve the 

optimum performance, huge intra-class variability should be extracted. 

  Appearance-based Hypothesis Verification mainly relies on local feature 

descriptors mentioned in the HG part. Support Vector Machine (SVM), Adaboost 

and Neural Networks (NN) are three representative classifiers. SVM (Cortes and 

Vapnik, 1995) is a discriminative classifier that constructs a hyperplane and learns 

the decision boundary between two classes. Adaboost (Freund and Schapire, 1997), 

on the other hand, is a generative weak classifier that improves the performance of 

a simple classifier by combining local feature descriptors (Buch et al., 2011). 

Neural Networks (NN) (Bishop, 1995) has been a popular classifier in the past 

decade, which learns highly nonlinear decision boundaries (Sun et al., 2006a). 
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However, Neural Networks suffers from the computation of parameter tuning and 

is time-consuming. With the blooming of deep learning technologies, 

Convolutional Neural Networks(CNN) is widely used in vision-based vehicle 

detection. Fast R-CNN (Fan et al., 2016) was used for vehicle detection, where a 

region proposal network (RPN) significantly reduced the proposed cost. Zhou et 

al. (2016) proposed a shallow fully convolutional network called fast vehicle 

proposal network (FVPN) to localize all vehicle-like objects in real-time.  

  Recently, some specific feature-classifier pairs have been widely used in 

appearance-based HG and HV. The combinations of HOG features and SVM 

classifiers, and Haar-like features together with Adaboost classifiers are mostly 

used pairs. Based on existing algorithms, comparative studies have been carried 

out between features, classifiers and feature-classifier combinations. Negri et al. 

(2008) compared HOG and Haar-like features and utilized the features to construct 

a cascade of boosted classifiers for rear-view vehicle detection. SVMs and NNs 

were compared by Sun et al. (2006a) as appearance-based HV approaches in both 

simple and complex traffic scene. The HOG-SVM and Haar-Adaboost 

combinations were studied by Sivaraman and Trivedi (2014) as an active learning 

framework.  
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Table 2-2. Representative feature-classifier combinations for appearance-based 

Hypothesis Verification. 

Features Classifiers Field of view 

HOG SVM (Sivaraman and Trivedi, 2014, 

Cheon et al., 2012)  

Rear view 

Adaboost (Yan et al., 2016) Rear view 

Haar-like Artificial Neural Network (Naba et al., 

2016) 

Front/rear view 

Adaboost (Wen et al., 2015) Multiple 

Gabor Back propagation neural network 

(Ming and Jo, 2011) 

Rear view 

SVM (Sun et al., 2006a) Front/rear view 

   

It can be seen from Table 2-2 that nearly all features depict pixels in terms of 

orientation information, Gabor features provide the scale and orientation 

information, HOG features calculate gradient magnitude and orientation to 

construct the histogram, Haar-like features utilize rectangle filters to extract 

orientation information. At the same time, most combinations detect and classify 

vehicles based on rear view, only a small portion of detection is from the side view. 

Symmetry information could be very useful in the front/rear view, and edge 

features have been utilized in many studies to extract the symmetric appearance of 

moving vehicles. Both HOG-SVM and Haar-Adaboost combinations perform well 

in the rear-view image. Being sensitive to the edge and symmetric structures, Haar-

like features, combined with Adaboost classifiers, can perform a rapid detection 
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performance. Different from the Haar-Adaboost combination, HOG features focus 

more on extracting orientations of edges. Therefore, the field of view can be 

extended from the traditional front/rear view to multi-view vehicle detection. Yan 

et al. (2016) used HOG descriptors with different structures to classify left, right, 

distant and front vehicles. Another study  (Rybski et al., 2010) used HOG features 

to classify four different orientations of vehicles.  

 

2.2 Motion-based Methods 

  Vehicles on the road are typically in motion, introducing effects of ego and 

relative motion (Sivaraman and Trivedi, 2013). Without any prior knowledge, 

these methods mainly extract vehicles based on the inter-frame motion that 

differentiate from the background. Motion-based methods are often based on 

successive image sequence, while appearance-based methods perform either in a 

single image or consecutive sequences.  

 

2.2.1 Inter-Frame-Differencing  

  Inter-Frame-Differencing is a very efficient frame-based method to extract 

moving objects in consecutive image sequences. Conventional two-frame-

differencing method (Jain and Nagel, 1979) observes the difference of two 

successive image frames and generates first-order difference picture (FODP) by 
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subtracting the intensity between the previous frame 𝐼𝑛−1 and current frame 𝐼𝑛. 

Thresholding is then applied to segment the binary image, generating image 

background (do not contain vehicles) and foreground (contain vehicles). Frames 

selected for differencing can be consecutive (Celik and Kusetogullari, 2010) or 

inconsecutive (Ji et al., 2016). Inter-frame differencing can generate binary image 

map in a real-time manner, but the main drawbacks are: 1) the performance of the 

method is susceptible to illumination changes;2) the presence of holes in binary 

image when vehicles move slowly and 3) the ghost behind the moving vehicle 

(Zhang et al., 2010).  

  However, when vehicles move fast in video frames, contour information 

generated by two successive frames may overlap. In order to solve this problem, 

three-frame differencing (Weng et al., 2010) have been proposed. Based on three 

successive frames, two difference images can be obtained. Operating also in real-

time, three-frame-differencing achieves better performance than two-frame 

methods. In recent studies, three-frame-differencing has been operated with 

different thresholding values and kernel sizes. Morphological operations of 

“difference”, “dilate”, “and” (Xia et al., 2015) and “xor” (Lan et al., 2014) have 

been used to fill in the holes and connect the discontinuous edges in difference 

images.  
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  The Inter-Frame-Differencing method itself may have some limitations in on-

road vehicle detection. Therefore, it serves as the first step in many methods. Celik 

and Kusetogullari (2010) performed background subtraction based on results of 

inter-frame-differencing to detect moving pixels. Frame differencing was used in 

conjunction with a special-designed feature descriptor(Ji et al., 2016) to recognize 

part of a vehicle, and with the Gaussian Mixture Model (Fu et al., 2016) to get a 

better foreground image in crowded traffic scenes.  

 

 

 

 

(a) (b) 

Figure 2-2. Illustration of Two-Frame-Differencing (a) and Three-Frame-

Differencing (b). 

Source:  (Xia et al., 2015). 

 

2.2.2  Background Modelling 

  According to Barnich and Van Droogenbroeck (2011), background modelling 

should be able to deal with three problems: 1) what is the model and how does it 

behave? 2) how is the model initialized? 3) how is the model updated over time? 

The general background modeling algorithms follow the procedure of background 
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initialization, foreground detection and background maintenance.  

(a) Gaussian Mixture Model: The original Gaussian Mixture Model (GMM) was 

proposed by Stauffer and Grimson (1999). Being one of the most widely-used 

background models for moving objects detection, this method assumes that all data 

points are generated from a mixture of finite Gaussian distributions with unknown 

parameters. The GMM approach models each pixel using multiple, adaptive 

Gaussians and uses an on-line approximation to update the model. Two parameters 

are required in this model, the learning rate (α) and threshold (T). In the model 

matching procedure, GMM requires three Gaussian possibility operations and 

three comparison operations. In the modeling updating procedure, GMM requires 

one Gaussian possibility operation, four subtraction operations and eight 

multiplication operations (Zhang et al., 2007).   

  With regard to the Gaussian Mixture Model, some improvements have been 

proposed in vehicle detection literature for better handling of various scenarios to 

make it more efficient. An adaptive improved GMM was proposed by Zivkovic 

(2004). By automatically selecting the necessary number of components per pixel, 

this new approach could reduce processing time and improve segmentation 

performance. Another improvement was made by Varadarajan et al. (2015). By 

extending traditional pixel-based mixture modelling approaches over 
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neighborhood regions, the proposed generalized framework called Region-based 

Mixture of Gaussian (RMoG) could reduce false positives effectively. In Xia et al. 

(2016)’s study, the Gaussian Mixture Model was fused with the expectation-

maximization (EM) algorithm to improve the segmentation quality of moving 

vehicles.  

(b) Codebook: Codebook (Kim et al., 2004) is another typical background 

modelling approach. Each pixel is represented by a codebook. Sample background 

values at each pixel are quantized into codebooks which represent a compressed 

form of background model for a long image sequence. Five key parameters are 

involved in this model, four thresholds and one learning rate (Shah et al., 2015). 

Codebook of relevant light features was utilized together with Kalman filter to 

detect and track vehicle turning signals and brake lights (Almagambetov et al., 

2012).  

 

2.2.3 Optical Flow 

  Optical flow is a typical motion-based method for vehicle detection. Zhan and 

Ji (2011) proposed an algorithm using pyramidal optical flow estimation and a 

morphological transformation to extract vehicle targets. A tracking processed 

based on optical flow was applied to reduce the complexity of computing (Kuo et 

al., 2011). Liu et al. (2013) used optical flow to get the moving direction of the 
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vehicle in initial frames. Then, a distant factor and an accurate feature template 

were used to track the on-road vehicle in low-resolution videos. Batavia et al. 

(1997) calculated implicit optical flow to detect overtaking on highways.  

 

2.2.4 Other Methods 

  Despite the aforementioned approaches, some other motion-based models show 

remarkable performance in moving vehicle detection. Considering the motion 

property of dynamic textures in image background is quite different from moving 

vehicles, Zhang et al. (2010) used motion histogram to segment vehicles from the 

dynamic background. Jazayeri et al. (2011) built a vehicle motion model according 

to the scene characteristics. Parameters include average road width, distance to the 

target, the standard deviation of target distance, etc. Experiments were 

implemented in both daytime and nighttime, showing an 86.6% accuracy.  

  Motion-based methods not only play a significant part in detecting vehicles but 

also help to reduce the impact of varying backgrounds in real-world video images, 

such as swaying trees and flag fluttering (Zhang et al., 2007). These objects often 

exhibit certain stationary properties in time (Doretto et al., 2003), and sometimes 

change from quasi-periodic to irregular motion (Shah et al., 2015).  

  As the most common dynamic textures, swaying trees along the roadside are 
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often captured by video cameras. Zhang et al. (2010) used motion histogram to 

select a waving tree region as the dynamic background. The swaying tree problems 

were also studied by Seki et al. (2003) using the correlation between neighboring 

image blocks. 

 

 

  In a word, appearance-based methods are easy and fast, but the main drawback 

is its high dependence on prior knowledge of vehicles, such as local/global features 

and appearance-based templates. Features like symmetry and edge are very limited 

due to the field of view. In the case of low illumination and adverse weather, 

modifications are needed to make the methods work. Motion-based methods could 

be time consuming, but less affected by varying illumination and dynamic 

background. Therefore, we need specific solutions to solve all-kinds of on-road 

vehicle detection problems and achieve satisfactory performance.  

 

2.3 Solutions under Varying Environments 

  Section 2.1 and 2.2 summarized the general approaches of vehicle detection 

using traffic surveillance cameras. In real-world scenarios, there are many 

environmental factors that control the image background. This section summarizes 

vehicle detection methods under varying environments, where illumination and 

weather are two major concerns.  
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2.3.1 Illumination 

  Video cameras provide rich contextual information through measuring ambient 

light in real world. An image’s exposure determines how light or dark an image 

will appear when it has been captured by the camera (Martínez et al., 2014). Still 

a challenging problem in vision-based vehicle detection, the illumination issue has 

been carried out in many studies (Cucchiara and Piccardi, 1999, O'malley et al., 

2011). In urban or highway environments, traffic surveillance cameras are placed 

where illumination conditions vary through time (López-Rubio and López-Rubio, 

2015) and the change of which can be global or local. Global illumination changes 

refer to scenes such as different weather, the daytime/nighttime conditions. Local 

illumination changes, on the other hand, refer to shadows or highlights of moving 

objects in the scene.  

  At daytime, illumination of traffic images is clear, therefore, multiple 

appearance-based features can be utilized to extract possible vehicles. However, 

illumination changes drastically during the transition of dawn and dusk. At 

nighttime, illumination becomes extremely low. Ambient light, as an uncontrolled 

environmental factor, adds extra difficulty in identifying possible vehicle 

candidates under low light conditions.    

a) Low-lighting Conditions: In low-illumination images, contour and contextual 
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information of vehicles might be visible, but exhibit low levels of saliency and 

contrast. To solve this problem, a simple solution would be using specific detectors 

for specific illumination scenarios, e.g. a day time detector focusing on texture 

information and a nighttime detector extracting tail-light information (Acunzo et 

al., 2007). It is very difficult to develop a universal approach for vehicle 

identification under varying lighting conditions. For this reason, many studies 

focus on one or two illumination conditions and propose detection approaches 

based on corresponding cases.  

 

Figure 2-3. Traffic surveillance images captured during dusk (left) and night 

(right). 

Source: Schamm et al. (2010). 

 

  The low light condition was also mentioned by Acunzo et al. (2007). Four 

categories of lighting conditions (daylight, low light, night and saturation) were 

identified using a histogram-based clustering algorithm. Classifiers trained with 

AdaBoost were used for low light categories. Experiments showed a considerable 

improvement using the context-adaptive scheme.  
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  To deal with the low illumination issue, efforts not only focus on the arithmetic 

improvement but also the usage of different optical sensors. Low-light camera, as 

a useful tool to capture images under low illumination conditions, has been 

deployed in many studies for vision-based vehicle detection. According to Sun et 

al. (2006a), low-light camera provides a wider dynamic range than a normal 

camera. By setting a low static camera exposure value (O'malley et al., 2011), it 

can be ensured that headlamps appear in images as separate, distinct regions. Then, 

multiple vehicles can be detected and tracked in low-light conditions. In another 

study (Eum and Jung, 2013), low-exposure (LE) images were integrated with auto-

exposure (AE) images for headlights and taillights detection.   

  

  Figure 2-4. Normal exposure image (left) and low exposure image (right). 

  Source: O'malley et al. (2011). 

 

 

b) Nighttime: Vehicle detection at nighttime is a very challenging task in vision-

based vehicle detection, as vehicle appearance might not be very obvious in low 

illumination conditions. The only salient visual features are headlights, rear lights 
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and their beams (Cucchiara et al., 2000). Therefore, vehicle lights have been used 

as the major local feature for nighttime vehicle identification. Based on Nakagami-

m distribution, brake lights were modelled and then detected in a part-based 

manner by analyzing the signal in both spatial and frequency domain (Chen and 

Peng, 2012). Rainy images at nighttime have been tested in this study, with a 71% 

detection rate.  

  

Figure 2-5. Vehicles at nighttime. 

 

  To further study illumination changes and verify the robustness of the proposed 

algorithms, daytime and nighttime have been tested together in many studies. 

Cucchiara et al. (2000) performed a difference on three consecutive frames to 

detect moving vehicles at daytime. Headlights were extracted as the main features 

for nighttime vehicle detection. Shadows underneath vehicles were used by 

Iwasaki and Kurogi (2007) for side-view daytime and nighttime vehicle detection.  
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Figure 2-6. Vehicle detection using the same algorithm at daytime (left) and 

nighttime (right). 

Source: Iwasaki and Kurogi (2007) 

 

c) Special Illumination Conditions: Despite low-illumination and night vision, 

some studies carried out experiments on driving environments with special 

illumination, such as tunnels. Chan et al. (2007) categorized vehicle detection in 

tunnels as special lighting conditions. The overexposure due to high contrast 

makes vertical edges blurred and even disappear in images. In another study 

(Semertzidis et al., 2010), vehicles were detected in tunnels using stereo vision 

technologies. Betke et al. (2000) considered tunnels as reduced visibility condition, 

vehicles were detected and tracked using a combination of feature and motion 

information. 
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  Figure 2-7. Vehicle detection results in tunnels. 

  Left: Betke et al. (2000); Right: Chan et al. (2007). 

 

2.3.2 Weather 

  Ideally, computer vision systems are designed to perform in clear weather. 

However, outdoor scenes are not always perfect. In traffic surveillance videos, 

there are many environmental factors that control the image background. In bad 

weather conditions, the light reaching a camera is severely scattered by small 

particles in the atmosphere (Narasimhan and Nayar, 2003). Accordingly, vehicles 

captured by cameras exhibit different levels of vagueness, such as darkness, 

blurring and partial occlusion. Feature descriptors and background models that 

work in fine weather need to be modified to fit low illumination and varying 

background.  

  According to Padmini and Shankar (2016), weather can be categorized as static 

and dynamic. Static weather refers to the case of fog. Dynamic weather, on the 

other hand, refers to the case of rain and snow. From a brief summary of different 

weather and corresponding particle information, it is noticeable from Table 2-3 
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that raindrops have the largest radius, and haze has the largest concentration.  

Table 2-3. Weather conditions and associated particle types. 

Source: McCartney (1976) 

Condition Particle Type Radius (μm) Concentration (cm-3) 

Air Molecule 10-4 1019 

Haze Aerosol 10-2 - 1 103 - 10 

Fog Water Droplet 1 - 10 100 - 10 

Cloud Water Droplet 1 - 10 300 - 10 

Rain  Water Drop 102 - 104 10-2 – 10-5 

 

An all-time, all-weather traffic surveillance system must include mechanisms 

that enable users to function in the presence of haze, fog, rain and blizzard (Nayar 

and Narasimhan, 1999). In recent decades, more studies have conducted on-road 

experiments under adverse weather conditions to verify the robustness of proposed 

algorithms. Besides, vehicle detection in inclement weather conditions has been 

studied as individual cases, where the removal of raindrops and fog in the image 

are two major concerns.  

A rather simple case for bad-weather conditions is to detect vehicles on rainy 

days. Based on the rear view, rainy scene detection was carried out by Sun et al. 

(2006a) in many studies, daytime or nighttime (Chen and Peng, 2012).  
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(a) 

 

(b)  

 

(c) 

 

(d) 

Figure 2-8. Traffic images under different weather conditions. (a) Vehicles in the 

blizzard; (b) Vehicle in snowfall; (c) Vehicle in wet snow; (d) Vehicles in rain.  

Source: (Wang et al., 2014, Jia et al., 2016) 

(a) Fog: To detect vehicles in the foggy image, the first step is to reduce the impact 

caused by fog. The presence of fog has a global effect on images, making contrast 

decreases drastically. Studies on single image fog detection (He et al., 2011, Tan, 

2008) have made remarkable progress. By observing the relationship between 

visibility and contrast, these methods can achieve very high accuracy. However, 

the main drawback of single image haze removal is that these algorithms need 

complicated computation and cannot be performed in real-time. Therefore, single 

image dehaze methods cannot be embedded into a real-time traffic surveillance 

system.  
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In consecutive image frames, haze removal can be operated either in the time-

space domain or the time-frequency domain. In time-space domain, methods focus 

on extracting moving pixels based on robust global/local features, such as edge, 

line (Bronte et al., 2009), vehicle ego lights (Gallen et al., 2011). In the time-

frequency domain, wavelet transform (Busch and Debes, 1998) was used to 

analyze fog availability. Pavlic et al. (2013) performed Fourier transform to extract 

spectral features and used a simple linear classifier to distinguish fog scenes and 

fog-free scenes.  

(b) Rain and Snow: Rain and snow are categorized as dynamic weather. 

Accordingly, raindrops and snowflakes in outdoor scenes are often wrongly 

recognized as moving objects. To detect vehicles in the case of rain or snow, a step 

of raindrop/snowflake removal need to be applied before candidate extraction. In 

general, raindrops and snowflakes are detected using appearance-based methods.  

Huang et al. (2012) utilized the matching of gray intensity feature, appearance 

feature and temporal feature to identify raindrops. Raindrops and snowflakes 

removal were studied by Kim et al. (2015) using temporal correlation and low-

rank matrix completion. Xu et al. (2014) combined motion and appearance 

information to detect and remove raindrops in outdoor scenes.  

(c) Very Inclement Weather: To the best of our knowledge, vehicle detection under 
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very harsh conditions (e.g., heavy snow, blizzard) has not been studied thoroughly. 

There may be two reasons. On one hand, it is difficult to record videos in very 

harsh weather, as setting up digital cameras could be dangerous and recorded data 

might be unstable. Traffic surveillance cameras installed along the road are likely 

to be damaged by strong wind and severe cold. On the other hand, only a few 

public datasets provide video sequences in inclement weather, leading to a lack of 

enough data. Vehicles in blizzard were tested by Varadarajan et al. (2015) using 

Region-based Gaussian Mixture Models, with no specific detection rate.  

 

2.4 Vehicle Detection for Traffic Surveillance  

  In recent decades, increasing emphasis has been given to issues related to on-

road traffic safety. The endeavors in solving these problems have triggered the 

interest towards the field of Advanced Driving Assistance Systems (ADAS), where 

several on-road tasks have been proposed (Bertozzi et al., 2000). These tasks 

include, but not limited to, vehicle counting, vehicle tracking, vehicle speed 

measurement, traffic flow estimation, traffic violation detection, vehicle type 

recognition and incident detection.  
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Table 2-4. A brief summary of vehicle detection approaches based on feature 

fusion. 

Reference Number 

of 

Features 

Features Field 

of 

View 

Application Domain 

Chan et al. 

(2007) 

4 Underneath, 

vertical edge, 

symmetry 

Rear Highway scene 

detection 

Li and Wang 

(2015) 

4 Sketch, 

texture, color, 

flatness 

Front Complex urban traffic 

conditions (with 

occlusion) 

Tsai et al. 

(2007) 

3 Color, corner 

and edge 

Up-

down 

Parking area 

Wang and 

Cai (2015) 

4 Vertical edge, 

symmetry, 

HOG and 

Haar-like 

features 

Rear Freeway 

Chong et al. 

(2013) 

2 Shadow, 

illumination 

entropy, edge 

Rear Overtaking 

Sun et al. 

(2006a) 

2 Rectangular 

feature and 

Gabor filter 

Rear Complex scenes 

including rainy and 

congested traffic 

conditions. 

Lin et al. 

(2012) 

2 Appearance 

based feature 

&edge-based 

feature 

Side Blind-spot detection 
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2.4.1 Major On-road Driving Problems 

  Real world traffic surveillance sequences capture complex interactions between 

vehicles. Based on various vehicle detection approaches, multiple on-road driving 

tasks can be achieved using traffic surveillance cameras.  

(a) Overtaking Detection: Overtaking is a common phenomenon in everyday on-

road driving. Blind spot areas will occur when vehicle overtaking happens, which 

increase the possibilities of traffic accidents. To solve this problem, Zhu et al. 

(2006) detected vehicle overtaking using an integration of dynamic scene 

modeling, hypothesis testing and information fusion. Based on the rear view, the 

detection showed robust performance in various traffic environments (highways, 

suburban roads and city streets). In another study (Garcia et al., 2012), overtaking 

was detected by using two sensors, Radar and the camera. Daytime and nighttime 

were tested on rear view with all overtaking scenarios detected. RGB-D camera 

provides another solution for overtaking detection, as lost vehicular visual 

information can be recovered using depth information. Based on the observation 

that grayscale in image changes with depth value, Xia et al. (2015) used depth data 

to recognize poster change for overtaking detection.  

To prevent the occurrence of changing lanes and overtaking, several blind-spot 

detection systems have been proposed. Blanc et al. (2007) used a combination of 
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edge features and support vector machine learning for the detection of blind-spot. 

Ra et al. (2018) used a side-rectilinear image to detect side parts of the vehicles. 

Both vehicles and motorcycles were detected.  

  

  

 Figure 2-9. Illustration of different overtaking scenarios. 

 Source: Xia et al. (2015). 

 

(b) Occlusion Handling: In real-world video sequences, interactions among 

vehicles result in fully or partial occlusion. When occlusion happens, vehicles can 

only be partly seen in images. In general, vehicle occlusion can be categorized as 

occlusion among vehicles, and occlusion between vehicle and multi non-vehicle 

objects.  

Several solutions have been proposed to handle the problem of occlusion. Senior 

et al. (2006) modelled vehicle appearance to handle the occlusion problem. Vans 

with partial occlusion were tracked at intersections. Zhao et al. (2016) proposed 
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an adaptive partial occlusion segmentation method (APPOS) for multiple vehicles 

tracking. Occlusions were detected occlusion by finding abnormal foreground and 

evaluated by the contour’s optical flow. Tian et al. (2015) handled partial occlusion 

by designing a novel grammar model. Structure, deformation and pairwise SVM 

were utilized to construct the model. Then, occluded vehicles were tested using 

the sub-set of semantic parts. 

  

2.4.2 Derivation of Vehicle Parameters 

  Another important aspect of traffic surveillance is to derive traffic parameters 

for the purpose of vehicle tracking, counting, classification and speed 

measurement. By using a combination of hardware sensors and vision cameras, 

various traffic parameters can be derived. In this part, derivation of three main 

traffic parameter are reviewed: a) traffic volume, b) trajectories of vehicles and c) 

average speed of moving vehicles.  

(a) Vehicle Counting: Counting vehicles in traffic scenes is very helpful in 

evaluating traffic status. Based on the counted number of moving vehicles on the 

road, traffic flow can be estimated. Conventional counting methods rely on 

electromagnetic-based devices, such as inductive-loop detectors (Cheung et al., 

2005) for counting. In computer vision, a majority of vehicle counting methods 

rely on clustering of points or adaptive background subtraction to count vehicles 
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in image sequences. Zhao and Wang (2013) proposed an approach of counting 

vehicles by tracking clustering feature points in the scene. In each path, average 

vehicle size was estimated and feature points were clustered into vehicles. Bas et 

al. (2007) used adaptive background subtraction and Kalman filter for vehicle 

detection, tracking and counting in nighttime and adverse weather conditions. 

Vehicle counting on highways has been studied by Liu et al. (2016) in the 

compressed domain.  

In recent decades, more methods combine hardware-based detectors with videos 

cameras for accurate vehicle counting. Rabbouch et al. (2017) used a virtual sensor 

and counted vehicle numbers based on Infinite Mixture Models. A user-defined 

virtual loop was used by Barcellos et al. (2015) for vehicle counting after vision-

based vehicle detection. This enhancement makes vehicle counting more reliable.  

(b) Vehicle Tracking: The majority of existing on-road vehicle tracking systems 

follow a detect-then-track scheme (Sun et al., 2006a). The tracking procedure aims 

to trace extracted vehicle candidates in consecutive frames. An adaptive partial 

occlusion segmentation method (APPOS) was proposed by Zhao et al. (2016) for 

multiple vehicles tracking. Kim et al. (2005) proposed a method for daytime and 

nighttime tracking using vision and sonar sensors. Daytime vehicles were tracked 

based on on-line template matching whereas nighttime vehicles were tracked using 
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observations of several consecutive frames. Anandhalli and Baligar (2017) 

implemented on-road vehicle tracking with Raspberry Pi and USB camera.  

(c)Vehicle Speed Measurement: Vehicle speed is an important parameter to provide 

information related to traffic volume and density, for the purpose of on-road traffic 

analysis. Different sensors have been utilized to accurately measure the driving 

speed of moving vehicles, where inductive loop detectors (Ki and Baik, 2006) and 

vision cameras are the mainly-used equipment. 

From images, the vehicle speed can be derived by calibrated (Lan et al., 2014) 

or uncalibrated camera (Nguyen et al., 2011). Madasu and Hanmandlu (2010) 

estimated vehicle speed based on motion tracking through a sequence of images. 

Luvizon et al. (2017) detected moving vehicle based on license plates. Vehicle 

speed was measured by comparing trajectories of tracked features to associated 

ground truth speeds obtained by an inductive loop detector.  

 

 

(a) 

 

(b) 

Figure 2-10 To be continued on next page 
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(c)  

 

 

(d)  

Figure 2-10. Vehicle counting and tracking in recent studies. (a) Counting vehicles 

on each of the intersecting paths separately (Zhao and Wang, 2013). (b) Headlight 

trajectories in colored lines and pairing results connected by white lines at 

nighttime (Zou et al., 2015). (c) Tracking Results in Congested urban 

environments (Liu et al., 2013). (d) Vehicle Counting on Highways (Liu et al., 

2016).  

 

2.5 Summary 

  To sum up, a comprehensive review of vision-based vehicle detection 

approaches is presented in this section. First, existing vehicle detection approaches 
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are categorized as appearance-based methods and motion-based methods. Then, 

solutions under varying environments are provided, where illumination and 

weather are the two major concerns. Last but not least, representative traffic 

surveillance objectives are summarized in terms of major on-road driving 

problems and derivation of vehicle parameters. From the exhaustive review, we 

get the following conclusions: 

Vision-based vehicle detection still faces many challenging problems, such as 

occlusion in congested urban scenes, swaying flags and leaves in the case of 

varying background and the presence of raindrops and snowflakes in adverse 

weather conditions. 

With the continuous development of computer vision technologies, vision-based 

vehicle detection has achieved remarkable progress in expansion of FOV (from 

the conventional front/rear view to multiple FOVs), running time (real-time 

detection can be achieved even in very complex traffic scenes) and accuracy.  

Despite exhaustive efforts in exploring efficient and accurate algorithms for 

vehicle detection, most studies are limited in providing solutions in just a few 

adverse conditions. There has not been a universal vehicle detection approach for 

all-time, all-weather traffic surveillance, especially under adverse conditions.  
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CHAPTER 3 METHODOLOGY ON VEHICLE 

DETECTION UNDER ADVERSE WEATHER 

CONDITIONS 

  In this section, an enhanced Three-Frame-Differencing (E-TFD) approach to 

detect and count moving vehicles in adverse environmental conditions is proposed. 

This method involves several innovative mechanisms and refines some classic 

methods for better implementation in challenging environments. First, the basic 

characteristics of vehicular images under varying environments are summarized, 

followed by a detailed methodology of vehicle detection and corresponding 

refinements in low illumination and adverse weather conditions. In the end, two 

main traffic surveillance objectives, namely, vehicle counting and tracking, are 

elaborated in this study. 

 

3.1 Basic Characteristics of Traffic Images under Varying Environments 

In outdoor scenes, many environmental factors may affect the quality of traffic 

surveillance videos. Under bad weather conditions, the light reaching a camera is 

severely scattered by small particles in the atmosphere (Narasimhan and Nayar, 

2003). Due to the particles, the contrast of images degraded severely. The presence 

of raindrops and snowflakes adds difficulty in accurate detection of moving 
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vehicles.  

Traffic surveillance cameras are often operated in RGB color model, but the 

three color channels are highly related and individual values of red, green and blue 

rely on brightness strongly (Yang et al., 2011).To measure the intensity of light at 

each pixel, conversion from RGB color images to the grayscale image is operated. 

With a range from 0 to 255, histogram could be the most direct representation of 

pixel distributions.  

3.1.1 Intensity Histogram 

 

 

 

 

 

 

Figure 3-1 To be continued on next page 
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Snowy 

Blizzard 
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Figure 3-1 To be continued on next page 

Foggy 
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Figure 3-1. Intensity histogram of traffic images under varying environments. 

 

  From histograms shown in Figure 3-1, it is observed that histograms of bad-

weather images show uneven distributions. Intensity histograms of snowy, rainy 

and blizzard images have a more concentrated distribution. There are barely any 

pixels that are smaller than 50 and larger than 200. In foggy images, pixels are 

more concentrated in larger intensity values. Apart from sunny and nighttime 

images, histograms of almost all bad weather conditions denote a lack of pixel 

distribution between 0 and 50. Nighttime images show no obvious lack of 

distribution between 0-100. In each condition, more than 100 frames are tested, 

based on which intensity histogram are drawn and analyzed. Therefore, uneven 

distribution and larger numbers of high-intensity pixels are the characteristics of 

bad-weather images. 

3.1.2  Intensity Distribution of Specific Pixel Ranges 

  From Figure 3-2, the sum of pixels of a grayscale image is calculated and 

categorized as 0 – 100 (dark blue part) and 101 – 256 (yellow part). Different 

environmental conditions are calculated and shown in Figure 3-2 in the form of 

 

 

Rainy 
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pie charts. Figure 3-3 shows a clearer intensity distribution in different pixel ranges. 

In the case of fog, image intensity between 0 – 100 takes up a very small portion 

of total pixel values, generally less than 1%. In other conditions, image intensity 

between 0 – 100 takes up more than 1% of all intensity values. This observation 

can be employed to categorize input image as fog or non-fog conditions, for the 

methods described in the later section.  

  

  

  

Figure 3-2 To be continued on next page 
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Figure 3-2. Intensity distribution of grayscale image under different weather 

conditions. 

 

3.2 The Enhanced Three-Frame-Differencing Method  

  To deal with challenging cases of vehicle detection under adverse illumination 

and weather, the detection framework is proposed to implement in all conditions. 

Then, refinements under low illumination and adverse weather conditions are 

provided in Section 3.2.2 and 3.2.3, respectively. The goal of this study is to 

accurately detect moving vehicles in consecutive image sequences and to derive 

the count in real-time (Figure 3-3).  
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(a) 

 

(b) 

Figure 3-3. Sample illustration of enhanced TFD detection approach. Input images 

and detection results are shown in the case of Snow on lane (a) and Nighttime (b). 

 

 

3.2.1 The Detection Framework 

  The detection framework of vehicle detection under varying environments is 

shown in Figure 3-4. In a given video sequence, every three consecutive frames 

are utilized to generate frame differencing images. The detection step can be 

divided into 6 steps, pre-processing, frame-differencing, thresholding, removal of 

small noise regions, morphological operations and removal of walking pedestrian. 

Based on the detection framework, moving vehicles can be extracted in an efficient 

way. Due to the challenging illumination and weather, however, different pre-
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processing steps need to be applied in individual scenario. At the same time, 

different criteria are set to remove small noise regions in different environmental 

conditions.  

 

Figure 3-4. Flowchart of the enhanced Three-Frame-Differencing method. 

 

(1) Preprocessing  

  To deal with the challenging issues of low illumination and bad weather, a 

preprocessing step is applied in each condition. At nighttime, we use a color space 

conversion from RGB color space to L*a*b* color space to extract the red color 

of vehicle taillights. In the case of fog, Histogram Equalization is applied to restore 

the contrast of foggy images. In self-collected videos, Gaussian Pyramid (Adelson 

et al., 1984) is applied to reduce image resolution and improve processing speed. 

Detailed elaboration of preprocessing will be discussed in Section 3.2.2. and 

Pre-processing

Frame Differencing

Thresholding

Removal of Small Noise Regions

Morphological Operations

Removal of Walking Pedestrian
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Section 3.2.3. 

(2) Frame Differencing 

  Next, moving vehicles are segmented based on Three-Frame-Differencing. 

Traditional frame differencing is operated between two frames. Here, three 

consecutive frames are used to generate binary image maps. The basic idea of 

Three-Frame-Differencing is adopted from Weng et al., (2010), based on which 

several refinements have been made. First, 𝐹𝐷1 , 𝐹𝐷2  and 𝐹𝐷3  are used to 

calculate difference image maps using Equation (1), (2) and (3). Based on that, 

two difference images, 𝐼𝑡1 and 𝐼𝑡2 are generated.  𝐼𝑡1 and  𝐼𝑡2 are then added 

to get the enhanced difference image, 𝐼𝑡. From a simple illustration in Figure 3-5, 

it is obvious that the binary images generated by three frames characterize moving 

vehicles with clearer outlines. In adverse conditions, three-frame-differencing can 

better extract moving vehicles.  

𝐼𝑡1 =  |𝐹𝐷2 − 𝐹𝐷1|                      (1) 

𝐼𝑡2 =  |𝐹𝐷3 −  𝐹𝐷2|                      (2) 

𝐼𝑡 =  𝐼𝑡1 + 𝐼𝑡2                         (3) 
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  Figure 3-5. Simple illustration of the Three-Frame-Differencing approach.  

 

(3) Thresholding 

  Based on the contour of difference images, thresholding is applied to segment 

foreground (contain vehicle candidates) and background (do not contain vehicle 

candidates) images to generate binary image maps. Equation (4) gives a brief 

criterion to determine the thresholding value of each binary image. The quality of 

segmentation relies highly on the cautious selection of thresholding values.  

  In this experiment, three different thresholding methods are used to deal with 

different illumination and weather conditions, which are 1) Otsu thresholding, 2) 

Fixed level thresholding and 3) Self-defined statistical thresholding to deal with 

different scenarios.  

𝐵𝑖𝑚𝑔 =  {
255，𝑖𝑓 𝐼𝑡 > 𝑇

0,   𝑖𝑓 𝐼𝑡 ≤ 𝑇
                      (4) 
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Otsu Thresholding: Otsu thresholding method (Otsu, 1979) has been used been 

many studies for the purpose of efficient object segmentation. In sunny images, 

the illumination of image sequences is fine. Accordingly, intra-class variance 

among pixels is huge. Therefore, Otsu thresholding is suitable for foreground 

generation in fine illumination conditions.  

Fixed Level Thresholding: In the case of fog and snow on lane, a fixed thresholding 

value is applied to segment moving vehicles. Based on empirical knowledge, a 

thresholding value of 45 is chosen in both cases. Other thresholding methods such 

as Otsu thresholding and thresholding based on statistics as mean and standard 

deviation have been tried, but none of them perform well in foggy images. The 

main reason may be the small intra-class variance of pixels. Therefore, knowledge-

based thresholding is applied in foggy and snow-on-lane images.  

Statistical Thresholding: In inclement weather conditions, however, the Otsu 

method might not work. Due to poor illumination and the presence of 

raindrops/snowflakes, the intra-class variance is not obvious in image scenes. 

Therefore, self-defined statistical thresholding based on statistics of intensity 

histograms is used to determine the threshold value. Accumulative nonzero pixels 

in the whole image are calculated and the value is set to 99%. The detailed steps 

are as follows: 
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Step 1: Calculate total numbers of pixels in the image based on rows and 

columns and set the thresholding value based on statistics. 

𝑁 = 𝑚 ∗ 𝑛 ∗ 0.99;                       (5) 

Step 2: For each intensity level, compute accumulative nonzero pixels in FD 

ℎ𝑥(𝑖) = ∑ 𝑝𝑥(𝑗), 0 ≤ 𝑖 ≤ 𝐿𝑖
𝑗=0                  (6) 

Step 3: Find the intensity level T, where accumulative pixels reaches N. 

T = J  where ℎ𝑥(𝑗) = 𝑁                     (7) 

(4) Removal of Small Noise Regions 

  In different environmental conditions, the size of image noise could be different. 

On one hand, the variation could be caused by different sizes of raindrops and 

snowflakes. On the other hand, image noise size varies due to various FOV of 

traffic surveillance cameras. In the case of bad weather, the presence of raindrops 

and snowflakes might increase the possibility of False Positive. Accordingly, if 

small noise regions are not removed, vehicle counting based on the presence of 

ROIs might be inaccurate.  

  Here, instead of commonly-used operations of morphological opening and 

closing (Weng et al., 2010), small noise regions are removed based on region size 

using Equation (8). Based on a selection of specific region size in corresponding 

conditions, small noise regions can be removed efficiently. If the area of non-zero 
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pixels is larger than 𝑃 , the area is categorized as possible vehicle candidates, 

otherwise will be categorized as image noise and removed. The selection of P in 

different weather conditions is determined manually, shown in Table 3-1.  

𝐵𝑊 =  {
𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ，𝑖𝑓 𝐼𝑡 > 𝑃

𝐼𝑚𝑎𝑔𝑒 𝑁𝑜𝑖𝑠𝑒,   𝑖𝑓 𝐼𝑡 ≤ 𝑃
         (8) 

 Table 3-1. Parameters selection for removal of small regions. 

Weather  Dataset Parameter for 

Small Area 

Removal 

Sunny CDnet 2014 10 

Wet snow CDnet 2014 100 

Blizzard CDnet 2014 50 

Snowfall CDnet 2014 50 

Fog KIT  10 

Snow on Lane KIT 10 

Rainy_DSC_0652 Self-collected data 10 

Nighttime_DSC_0376 Self-collected data 10 

Nighttime_DSC_0546 Self-collected data 10 

   

  In the case of wet snow, the camera is covered with the presence of large 

raindrops. Therefore, a large area criterion (100) is selected. In the case of sunny 

highways, a small threshold (10) is selected due to the small outline of moving 

vehicles. Figure 3-6 shows the image after region removal and some representative 

detection results.  

 



59 
  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3-6. Illustrations of small region removal in the case of wet snow (frame 

157,158 and 159). (a) Binary image map after statistical thresholding and removal 

of regions that containing fewer than 30 pixels; (b) ROI of (a); (c) Binary image 

map after statistical thresholding and removal of regions that containing fewer than 

50 pixels; (d) ROI of (c); (e) Binary image map after statistical thresholding and 

removal of regions that contain fewer than 100 pixels; (f) ROI of (e). 

 

(5) Morphological Operations 

  Based on binary image map BW, morphological operations are implemented to 

connect discontinuous edges. Common frame differencing algorithms use 

morphological open and closing (Weng et al., 2010, Kim and Kim, 2003) to 
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eliminate small noise regions and connect small apertures. In inclement weather 

conditions, however, morphological open might enlarge unwanted noise region in 

the image. Region growing (Adams and Bischof, 1994) is also an effective method, 

but the main drawback is its long processing time. To meet the requirement of real-

time and accurate processing, operations of closing and dilation are used to finalize 

ROIs of vehicle candidates. The selection of kernel size is listed in Table 3-2. For 

all operations, the kernel shape is considered as ‘square’, and kernel size is 

adjusted in different conditions.  

 Table 3-2. Parameters selection for morphological operations.  

Weather  Dataset Kernel Size for Closing 

and Dilation 

Sunny CDnet 2014 12 

Wet snow CDnet 2014 50 

Blizzard CDnet 2014 50 

Snowfall CDnet 2014 50 

Fog KIT  15 

Snow on Lane KIT 15 

Nighttime_DSC_0376 Self-collected data 50 

Nighttime_DSC_0546 Self-collected data 50 

Rainy_DSC_0652 Self-collected data 50 
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1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

Figure 3-7. A square-shaped structuring element with a size of 5*5. 

(6) Removal of Waking Pedestrian  

  Through the aforementioned five steps, possible ROIs of moving vehicles can 

be obtained in every single image sequence. However, the presence of moving 

pedestrian could also be wrongly detected as vehicles. To solve this problem, the 

removal of small noise regions is added as the last processing step to reduce False 

Positives Rate and improve detection rate using Equation (9). With this operation, 

walking people appeared in images can be removed efficiently.  

ROI =  {
𝑉𝑒ℎ𝑖𝑐𝑙𝑒, 𝑖𝑓 𝑅𝑂𝐼 𝑎𝑟𝑒𝑎 <> 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑖𝑛 𝑙𝑖𝑠𝑡

𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛, 𝑖𝑓 𝑅𝑂𝐼 𝑎𝑟𝑒𝑎 = 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑖𝑛 𝑙𝑖𝑠𝑡
          (9) 

 

3.2.2 Refinements under Low Illumination Conditions 

  At daytime, the illumination of traffic images is good. During the transition from 

daytime to nighttime, illumination degrades drastically. At nighttime, vehicles are 

detected by a combination of enhanced TFD method and L*a*b*-color-space-

based taillight detection. The detection step is illustrated in Algorithm 1.  
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Algorithm 1 Vehicle Detection in Low Illumination Conditions 

Problem: 

For a given video sequence, determining whether the ROI of vehicles exists 

in each frame.  

Solution: 

A taillight based method is used to extract vehicle candidates.  

1: for each Framei do 

2:  Convert orginal image from RGB color space to L*a*b* color space, 

get L*, a*, b* color channel.  

3:  Binary L* component based on statistical thresholidng (99%), get 

Limg. 

4:  Binary a* component based on statistical thresholding (99%), get 

Aimg.  

5:  Calculate the absolute difference value of Framei-1 & Framei in 

grayscale to get difference image FD1. 

6:  Calculate the absolute difference value of Framei & Framei+1 in 

grayscale to get difference image FD2. 

7:   Add FD1 and FD2, get FD. 

8:  Binary FD based on statistical thresholding, get It. 

9:  Operate logical AND between It and Aimg, get Bimg. 

10: Remove small noise regions caused by bad weather based on setting 

critera of area, get BW. 

11: Perform morphological dilation and closing on BW to connect 

discontinous regions, get Dimg.   

12: Based on Dimg, determine the precense of moving vehicles.  

13: end for 

   

  To extract the red color of vehicle taillights at nighttime, a color space 

conversion is operated as the first step. The L*a*b* color space is chosen as the 

target space, as the a* component can extract and represent red color effectively. 

The L*a*b* color space was first defined by Hunter (1958) and specified by CIE 

(Commission Internationale de I’Eclairage). Based on opponent color theory, the 
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L*a*b* space is a three-dimensional real number space that contains infinite 

representation of colors. Accordingly, the L*, a* and b* values have a specific 

range, shown in Table 3-3. Of all three components, the red/green opponent color 

can be represented using the a* axis. When b* = 0; positive values of a* correspond 

to red color (Cabani et al., 2005). Based on the pre-defined range of a* component, 

128 is added to each pixel of this color channel to make all pixel values an integer 

value.  

Table 3-3. A brief illustration of color components of the L*a*b* color space. 

Layer Meaning  Range 

L* Luminance 0 to 100 

a* The color variance between red and green -128 to 128 

b* The color variance between yellow and blue -128 to 128 

   

  Before applying the method on self-collected videos, we test the method first in 

a dataset containing only salient vehicles in the rear view. The dataset used here is 

Caltech Cars 1999 and 2001 dataset (Fe-Fei, 2003), which includes 126 images 

and 526 cars from the rear, respectively. The field of view is the rear view, and in 

each image, only one vehicle is included. Salient vehicle candidates are estimated 

based on L*a*b* color space and the detailed processing steps are illustrated in 

Algorithm 2.  

𝑙𝑒𝑛𝑔𝑡ℎ𝑅𝑂𝐼 = 𝑙𝑒𝑛𝑔𝑡ℎ𝑅𝑂𝑇                    (10) 
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ℎ𝑒𝑖𝑔ℎ𝑡𝑅𝑂𝐼 = ℎ𝑒𝑖𝑔ℎ𝑡𝑅𝑂𝑇 ∗ 0.8                 (11) 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑅𝑂𝐼 =  𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑅𝑂𝑇                 (12) 

  From binary image map generated from color space conversion and Otsu 

thresholding, ROT of each salient vehicle can be obtained using x-axis and y-axis 

projection. Non-zero points are first calculated, from which the minimum and 

maximum coordinates in x-axis and y-axis are recorded, respectively. Using 

equations (10), (11) and (12), Region of Interest (ROI) can be confirmed based on 

the presence of Region of Taillights (ROT). Figure 3-9 shows a simple illustration 

of this method. 

 

Algorithm 2 Salient Vehicle Detection based on L*a*b* Color Space 

Problem: 

For a given video sequence, determine whether the ROI of vehicles exists 

in each frame.  

Solution: 

A taillight based method is used to extract vehicle candidates.  

1: for each Framei do 

2:  Convert orginal image from RGB color space to L*a*b* color space, 

get L*, a*, b* color channel respectively. 

3:  Convert the value of a* component from double to integer, get Aimg. 

4:  Segment Aimg using Otsu thresholding method, get Bimg. 

5:  Perform morphological opening on Bimg with kernel shape ‘square’ 

and size ‘5’, get Oimg. 

6:  Generate Region of Taillights (ROT) based on pixel projection in x-

axis and y-axis. 

7:  ROI of vehicle candidates is finally ascertained based on the presence 

of ROT.      

8: end for 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-8. Simple illustration of taillight-based vehicle Detection. (a) Original 

image; (b) Binary image map of segmented taillights; (c) Region of Taillights 

(ROT); (d) Region of Interest (ROI).  

 

3.2.3 Refinements under Adverse Weather Conditions 

  To deal with the inclement weather, vehicle detection is based on Three-frame-

differencing for two public datasets (Wang et al., 2014, Karlsruhe, 1997) and self-

collected videos. The weather conditions tested in the experiment include sunny, 

rain, fog, blizzard, snow on lane and wet snow. The detection approach is based 

on those described in Section 3.2.1. Algorithm 3 provides a brief summary of 

vehicle detection approach in challenging weather conditions.  
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Algorithm 3 Vehicle Detection in Adverse Weather Conditions 

Problem: 

For a given video sequence, determine whether the ROI of vehicles exists 

in each frame.  

Solution: 

Frame-difference algorithm is used to extract foreground regions. 

1: for each Framei do 

2:  For each frame, apply a quick histogram judgement to define whether 

it is fog.  

3:  In the case of fog, apply Histogram Equalization on Framei-1, Framei 

and Framei+1, to restore the contrast of foggy images. 

4:  Calculate the absolute difference value of Framei-1 & Framei in 

grayscale to get 

difference image FD1. 

5:  Calculate the absolute difference value of Framei & Framei+1 in 

grayscale to get difference image FD2. 

7:   Add FD1 and FD2, get FD. 

8:  Binary FD based on statistical thresholding, get It. 

9:  Remove small noise regions caused by bad weather based on setting 

critera of area, get BW. 

10: Perform morphological dilation and closing on BW to connect 

discontinous regions, get Dimg.   

11: Based on Dimg, determine the precense of moving vehicles.  

12: end for 

   

  Before Hypothesis Generation, the input video images can be categorized into 

fog scene and non-fog scene based on a quick judgement of grey-level histograms. 

From the observation in Figure 3-2 (Section 3.1.2), the criterion is described as 

follows: if intensity value of pixels between 0 – 100 takes up less than 1% of all 

pixels, the image is categorized as fog, otherwise non-fog condition.  



67 
  

 

  Figure 3-9. Processing flow of the histogram judgement.  

 

  In the case of fog, Histogram Equalization (HE) is applied as a pre-processing 

step to dehaze the image. As a widely-used operation of photometric correction, 

Histogram Equalization (Hummel, 1977) is a technique to enhance image contrast 

by adjusting image intensities. In early studies, histogram equalization was utilized 

in medical images for contrast enhancement. Now the method is expanded its 

applications to computer vision, where different types of images can be processed 
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in an efficient manner.  

  In Figure 3-2, single color channel (R, G, B or grayscale), histograms of foggy 

images show uneven distributions. Therefore, the main objective of HE is to 

restore the pixel distributions, thus recovering the contrast of images in fog. The 

detailed description is provided below.  

  Step 1: Calculate the probability of the presence of a pixel in level 𝑖.  

𝑝𝑥(𝑖) = 𝑝(𝑥 = 𝑖) =  
𝑛𝑖

𝑛
, 0 ≤ 𝑖 ≤ 𝐿               (13) 

  Step 2: Compute cumulative distribution function (𝑐𝑑𝑓) corresponding to each 

pixel level. 

𝑐𝑑𝑓𝑥(𝑖) = ∑ 𝑝𝑥(𝑗)𝑖
𝑗=0                     (14) 

  Step 3: Create a transformation to produce a new image, where 𝑘 is in the range 

[0, L].  

𝑐𝑑𝑓𝑦(𝑦′) = 𝑐𝑑𝑓𝑦(𝑇(𝑘)) = 𝑐𝑑𝑓𝑥(𝑘)               (15) 

  Step 4: Use a simple transformation to map the values back to their original 

range.  

𝑦′ = 𝑦 ∙ (max{𝑥} − min{𝑥}) + min {𝑥}             (16) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3-10. Illustrations of Histogram Equalization. (a) Original image (sequence 

0013); (b) Grayscale image of (a); (c) Histogram of (b); (d) Synthesized color 

image of (a) after Histogram Equalization; (3) Grayscale image of (d); (f) 

Equalized histogram of (b). 

 

  The advantage of Histogram Equalization is that it can adjust pixel distribution 

of a single channel image automatically and perform in real-time. Figure 3-10 

shows the implementation of Histogram Equalization of a single image captured 

in the Karlsruhe Institute Technology dataset. It is obvious that image after HE 

(Figure 3-10 (d)) is much clearer than the original image (Figure 3-10 (a)). 

Therefore, Histogram Equalization is a quick and efficient method for fog removal 

in traffic images and can be embedded into a real-time traffic surveillance system.  

 

3.2.4 Vehicle Counting and Tracking  
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  Based on the presence of ROIs using the enhanced Three-Frame-Differencing 

detection approach, the exact numbers of vehicles can be counted and displayed in 

each image frame. This step is implemented in MATLAB based on the summation 

of detected bounding boxes. Vehicle counting has been well studied in many 

research papers, but few of them provided exact counting in each frame. Compared 

to other studies, this step gives a clear value into a real-time Driver Assistance 

System.  

 

3.3 Summary 

  In this section, an enhanced TFD approach for vehicle detection is presented, 

followed by refinements in low illumination and challenging weather conditions, 

respectively. To deal with the challenging environments, three major refinements 

have been made for accurate and efficient detection of moving vehicles.  

  First, statistical thresholding is applied after the procedure of Three-Frame-

Differencing for fast segmentation of moving vehicles. This enhancement 

significantly improves the segmentation results by eliminating redundant non-zero 

pixels. 

  However, some small noise regions still exist in binary image maps. To remove 

them, an area-based image noise removal operation is used. Instead of 
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morphological opening, a criterion based on the area of non-zero pixels is defined 

to remove small noise regions under varying environments.  

  Last but not least, morphological operations with a large kernel size is used for 

fast acquisition of Regions of Interest. With a square-shaped structuring element, 

morphological dilation and closing are applied to connect discontinuous edges, 

based on which ROIs of moving vehicles is finalized.   
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CHAPTER 4 EXPERIMENTAL RESULTS AND 

ANALYSIS 

  In the experiment, the enhanced TFD method has been tested in various traffic 

sequences to evaluate the accuracy and efficiency of algorithms. To start with, 

sample image data collected from different sources are introduced. With a special 

focus on varying environments, different illumination and weather conditions are 

tested, including sunny, rainy, foggy, snowy, blizzard, wet snow and nighttime 

images. The proposed statistical thresholding method works very well in even very 

adverse weather conditions.  

4.1 Tested Datasets  

  In this study, video sequences containing different environmental conditions are 

gathered from two main sources, public datasets and self-collected videos. To the 

best our knowledge, many studies evaluate the performance of the proposed 

methods using only one category of source data, which share similar image size, 

resolution, illumination and field of view. Accordingly, detection results could be 

less convincing. A combination of tested data from multiple sources could be more 

challenging to test yet more robust for performance analysis, as more variations of 

images are presented. Here, the collected video sequences are characterized by 

multiple moving vehicles, non-ideal weather conditions and presence of fog, 
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shadows, raindrops or snowflakes, some of which are with strong reflections on 

the ground and walking pedestrians. MATLAB R2016a is the software used to 

process data and run the algorithm. The processor used in this experiment is an 

Intel i7- 7700 CPU with a 64-bit operating system.  

4.1.1 Public Datasets 

  Numerous datasets have been provided publicly for the implementation of 

vehicle detection. The main problem, however, is that not many public datasets 

contain traffic sequences in adverse conditions. ChangeDetection (CDnet) 2014 

(Wang et al., 2014) and Karlsruhe Institute of Technology (KIT) (Karlsruhe, 1997) 

are the two major datasets that include traffic sequences in low illumination and 

bad weather conditions. In general, images from public datasets are recorded from 

a stationery camera, showing vehicles in different environmental conditions with 

various field of view, as listed in Table 4-1.  

 

Table 4-1. A brief summary of tested data in public datasets. 

Weather  Dataset Image 

Resolution 

Field of View Number of 

Tested 

Frames 

Fog  KIT Dataset 768 * 576 Top 338 

Snow on lane  KIT Dataset 768 * 576 Top 300 

Sunny CDnet 2014 320 * 240 Front 1699 

Blizzard  CDnet 2014  720 * 480 Rear 7000 

Snowfall  CDnet 2014 720 * 480 Rear 6500 

Wet snow CDnet 2014 720 *540 Side 3000 
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4.1.2 Self-collected Videos 

  On the other hand, self-collected data of different environmental conditions are 

also used (Table 4-2). Nikon D5600 is the device used to record videos. The 

captured videos have a resolution of 1920 * 1080 and a frame rate of 60 frames 

per second. The captured videos are characterized by the presence of strong 

reflections on the road, low illumination at nighttime and swaying trees (Figure 4-

1). To ensure fast computation, each original image is resized to 920 * 540 using 

the Gaussian Pyramid. The processing steps are as follows: 

Step 1: Segment recorded videos to image sequences with a frame rate of 60 

frame/second;  

Step 2: Use the Gaussian pyramid to reduce the resolution of recorded images 

from 1920 * 1080 to 960 * 540. 

Table 4-2. A brief summary of self-collected videos. 

Weather  Video Length Image Size Number of 

Tested 

Frames  

Descriptions 

Nighttime  

DSC_0546 

10:14 1920 * 1080 93 Nighttime video 

captured in Kowloon, 

Hong Kong  

Nighttime 

DSC_0376 

5:05 1920 * 1080 328 Nighttime video 

captured in Kowloon, 

Hong Kong 

Rainy 

DSC_0652 

5:29 1920 * 1080 187 Rainy video captured in 

Kowloon, Hong Kong 
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(a)  

 

(b) 

 

(c) 

 

(d) 

Figure 4-1. Sample of self-collected images. (a) Nighttime image in front view; 

(b) Rainy image with two driving lanes; (c) Nighttime image in rear view; (d) 

Rainy image in the rear view.  

 

4.2 Performance of the E-TFD Method  

  In this section, the enhanced TFD method is evaluated in terms of several ROC 

parameters. ROC (Receiver Operating Characteristics) graph have long been used 

in vehicle detection to describe the tradeoff between hit rates and false alarm rates 

of classifiers (Fawcett, 2006). Four basic metrics are commonly used to evaluate 

the performance of the proposed method, namely, True positive rate (TPR), False 

Positive Rate (FPR), True Negative Rate (TNR) and False Negative Rate (FNR). 

A brief description of these four parameters can be found in Table 4-3. Based on 

these four metrics, metrics such as Precision, Recall, F Measurement (Equation 

(21), (22) and (23)) are further utilized to evaluate the enhanced TFD method.  
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Table 4-3. Performance indicators for evaluation.  

Parameters Description 

True Positive The number of vehicles that are correctly detected. Also 

known as recall/detection rate.  

True Negative The number of moving non-vehicles that are correctly 

detected. 

False Positive The number of moving non-vehicles that are incorrectly 

detected as moving vehicles. Also known as false alarms. 

False Negative The number of moving vehicles that are incorrectly detected 

as moving non-vehicles. Also known as miss detections.  

TPR =  
𝑇𝑃  

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑣𝑖𝑛𝑔 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
                  (17) 

FPR =  
𝐹𝑃

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑣𝑖𝑛𝑔 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
                  (18) 

TNR =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑣𝑖𝑛𝑔 𝑛𝑜𝑛−𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠  

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑣𝑖𝑛𝑔 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
                  (19) 

FNR =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑣𝑖𝑛𝑔 𝑛𝑜𝑛−𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠  

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑣𝑖𝑛𝑔 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
                  (20) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (21)  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                          (22)                                                 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                     (23) 

  In this study, True Positive Rate, False Positive Rate, Precision and Recall are 

used for performance evaluation. Table 4-4 shows the results of the enhanced TFD 

method tested in 9 image sequences of different environmental conditions. With a 

total number of 11556 vehicles in tested sequences, the E-TFD method can 

successfully extract 10059 vehicles, achieving an average detection rate recall rate 

of 87.1% and average precision of 92%. The method performs best in self-
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collected nighttime image sequences DSC_0376, where a 100% FPR can be 

achieved. The E-TFD method has the worst performance in the case of fog, with a 

recall rate of 55.3% and precision of 92.0%.  

Table 4-4. Performance of the enhanced TFD method in different environmental 

conditions. 

Source 

Image 

Number 

of 

Vehicles 

True 

Positive 

False 

Positive  

Recall 

Rate 

Precision False 

Alarm 

Rate 

Sunny 3765 3298 100 87.6% 97.1% 2.7% 

Snowfall 755 755 209 75.5% 78.3% 27.7% 

Blizzard 1184 1177 10  99.41% 99.2% 0.8% 

Wet snow 557 540 59 97.3% 90.2% 10.59% 

Foggy 1661 919 52 55.3% 94.6% 3.13% 

Snow on 

lane 

1900 1685 419 88.7% 80.1% 22.1% 

Nighttime 

DSC_0376 

572 527 6 92.1% 98.9% 1.0% 

Nighttime 

DSC_0546 

171 171 9 100% 95% 5.3% 

Rainy 

DSC_0652 

1064 1056 19 99.3% 98.2% 1.8% 

Total 11556 10059 883 87.1% 92.0% 7.6% 

 

4.2.1 Accuracy 

  It is illustrated in Figure 4-2 that the E-TFD method can accurately extract 

moving vehicles in both fine and low illumination, sparse and congested 

conditions and even with the presence of raindrops, snowflakes, walking 

pedestrian and swaying trees. In some very adverse conditions, e.g., blizzard, wet 

snow, fog, moving vehicles can be extracted in an accurate and efficient manner.  
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(a) 

  

(b) 

  

(c) 

  

(d) 

  

(e) 

  

(f) 

  

Figure 4-2. Successful detection and counting results using public datasets. (a) 

Highway; (b) Blizzard; (c) Snowfall; (d) Wet snow; (e) Snow on lane; (f) Fog; 
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  Figure 4-3 shows detection results using self-collected data. The E-TFD method 

not only performs well at nighttime but also in the case of rain. At nighttime, 

vehicle candidates were extracted based on a combination of Three-Frame-

Differencing and L*a*b*-color-space-based taillights extraction. On rainy days, 

despite the strong reflections on the ground and low illumination in video 

sequences, the enhanced TFD detection approach is able to extract moving 

vehicles with high accuracy. 

(a) 

  

(b) 

  

(c) 

  

Figure 4-3. Vehicle detection results using self-collected data. (a) 

Nighttime_DSC_0376; (b) Nighttime__DSC_0546; (c) Rainy_DSC_0652.  

 

4.2.2 Efficiency  

  To be embedded in a workable traffic surveillance system, the proposed 
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algorithm needs to be computationally efficient, preferably running in at least near 

real-time. Running time is an important evaluation factor for computer vision 

algorithms. Table 4-5 summarizes the running time of the enhanced TFD detection 

approach. For different environmental conditions, this system allows processing 

approximately 100 frames in one second for different categories of input videos.   

Table 4-5. Running time in different conditions. 

Test Frame Running Time (s) 

Sunny 0.010 

Blizzard 0.009 

Snowfall 0.010 

Wet snow 0.008 

Fog 0.011 

Snow on lane 0.009 

Nighttime_DSC_0376 0.016 

Nighttime_DSC_0546 0.013 

Rainy_DSC_0652 0.014 

   

  To make it more intuitive, the running time of each image frame is converted to 

the number of frames that the E-TFD method can process in each second (Figure 

4-3). It is observed that the enhanced TFD approach performs best in wet snow 

images, in which 125 frames can be processed every second. The E-TFD method 

has the lowest performance in self collected sequences nighttime_DSC_0376, in 

which only 63 frames can be processed per second. The processing time would be 

affected by different resolutions of images in different datasets.  
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Figure 4-4. Processing speed of the E- TFD method under varying environments. 

 

4.2.3 False Detection  

  False detection is inevitable in vision-based vehicle detection algorithms, 

especially under adverse conditions. As shown in Figure 4-5, some false detection 

results are caused by the presence of fog (d), raindrops, snowflakes (left image of 

(b)), swaying trees (left image of (e)) and flags (right image of (b)), walking 

pedestrian (right image of (d)) and occlusion among vehicles ((c) and right image 

of (e)). Figure 4-4 (a) shows a distant vehicle in the blizzard that cannot be 

extracted due to low illumination. In Figure 4-5 (f), the right image shows the 

wrong ROI caused by reflections of taillights due to rain. Reasons for false 

detection can vary, but typically there are three categories: global factors, local 

factors and occlusion. 
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(a) 

  

(b) 

 
 

(c) 

 
 

(d)  

  

(e) 

  

(f) 

  

Figure 4-5. False detection under varying environments. (a) Blizzard; (b) Snowfall 

(left) and wet snow (right); (c) Highway (left) and blizzard (right); (d) Fog; (e) 

Nighttime_DSC_0376; (f) Rainy_DSC_0652; 
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Global Factors: In traffic surveillance videos, global factors mainly refer to the 

presence of fog and low illumination conditions such as dusk and nighttime. The 

presence of fog severely degrades the contrast of the image. After Histogram 

Equalization, the effect of fog can be reduced to a certain extent but not eliminated 

completely. At dusk or nighttime, moving vehicles cannot be detected accurately 

due to low visibility. Accordingly, some wrong ROIs are shown in Figure 4-5 (d). 

False detection caused by global factors can be reduced and eliminated by a total 

adjustment of image contrast or intensity. This step has been implemented in 

Section 3.2.3 using Histogram Equalization to restore the contrast of foggy images.  

Local Factors: The presence of snowflakes, raindrops in the case of bad weather 

are major reasons for false detection. Accordingly, raindrops and snowflakes are 

wrongly identified as ROIs and counted as vehicle candidates. At nighttime images, 

swaying trees might also cause false detection (Figure 4-5 (e)). Impacts of local 

environmental factors can be reduced and eliminated by removal of small noise 

regions. In the case of urban conditions, walking pedestrian, falling leaves and 

waving flags could also be local factors that cause false detection.  

Occlusion: In urban environments, occlusion is a major reason for false detection. 

When two or more vehicles are driving near, the outline of vehicles might be vague 

due to the FOV of a fixed traffic surveillance camera. As a result, two or more 
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vehicles are possibly identified and counted as one vehicle. Figure 4-4 (c) and (e) 

(right image) show three sample results caused by occlusion. At nighttime, on the 

highway, even in the case of the blizzard, occlusion occurred in the image 

sequences and resulted in false detection. Till now, occlusion is a very challenging 

problem, and there is no universal solution that can flexibly adapt to different 

conditions.  

 

4.3 Comparison with Other Methods 

  Here, the E-TFD detection and counting approach are compared with classical 

Two-Frame-Differencing method, then a typical Three-Frame-Differencing 

method. After that, the proposed statistical thresholding is compared with several 

state-of-the-art methods.  

 

4.3.1 Two-Frame-Differencing versus Three-Frame-Differencing 

  Inter-Frame-Differencing mainly differs in the choice of frame numbers. It 

can be two consecutive frames, three consecutive frames or three inconsecutive 

frames. First of all, we compare the enhanced Three-Frame-Differencing method 

with Two-Frame-Differencing (Jain and Nagel, 1979). Frame-Differencing images 

are generated using two frames and three frames as a comparison, followed by the 

proposed statistical thresholding method. It can be observed from Figure 4-6 that  
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(a) Snowfall 

  

(b) Blizzard 

  

(c) Wet snow 

  

(d) Highway 

Figure 4-6. Frame-Differencing image generated by two frames (left columns) and 

three frames (right columns).  
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in both fine and challenging environmental conditions, three frames generate 

clearer outlines of moving vehicles with less image noise. The calculations in Table 

4-4 also show that Three-Frame-Differencing generated less non-zero pixels in 

corresponding binary image maps. From the comparison of Two-Frame-

Differencing and Three-Frame-Differencing, we get the conclusion that the 

enhanced TFD approach has better performance in extracting moving vehicles 

than conventional Two-Frame-Differencing methods.  

Table 4-6. Calculation of pixels in Frame-Differencing. 

Condition Number of Non-zero 

Pixels using 2FD 

Number of Non-zero 

Pixels using 3FD 

Snowfall 7477 3033 

Blizzard 6705 2969 

Wet snow 8012 3414 

Highway 1352 750 

 

4.3.2 Three-Frame-Differencing versus The Enhanced Three-Frame-

Differencing 

As mentioned in Section 3.2.1, the enhanced Three-Frame-Differencing 

approach is comprised of 6 processing steps. It is based on typical Three-Frame-

Differencing and some refinements are made. In this part, the E-TFD approach is 

compared with a typical Three-Frame-Differencing method. 

As mentioned in some studies (Ji et al., 2016, Weng et al., 2010), a typical TFD 
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detection approach follows the procedure of frame differencing, thresholding and 

morphological opening and closing.  

  

  

  

  

  

Figure 4-7 To be continued on next page 

Snow on Lane, TFD 

Sunny, E-TFD 

Wet snow, E-TFD 

Sunny, TFD 

Blizzard, TFD Blizzard, E-TFD 

Wet snow, TFD 

Snow on Lane, E-TFD 
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Figure 4-7. A comparison of detection and counting results generated from typical 

Three-Frame-Differencing (left columns) and the enhanced Three-Frame-

Differencing (right columns). 

 

From the comparison in Figure 4-7, it is obvious that the typical Three-Frame-

Differencing approach does not have satisfactory performance in adverse 

environmental conditions. The tested results show that moving vehicles are partly 

detected and the numbers wrongly counted in sunny, blizzard and wet snow, snow-

on-lane and nighttime images.  

The main reason of the wrong generation of ROIs using typical Three-Frame-

Differencing is that morphological opening cannot efficiently eliminate the noise 

of Frame Differencing images, comparing to the step of small noise regions 

removal in the E-TFD approach.  

4.3.3 Thresholding Methods 

  On the other hand, different thresholding techniques in the existing literature are 

compared with the proposed statistical thresholding method. Method 1 and 

Method 2 utilize two statistics, the mean and standard deviation to determine the 

Nighttime_DSC376, TFD Nighttime_DSC376, E-TFD 
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thresholding value. Method 3 is the Otsu thresholding method which calculates the 

optimal thresholding separating two classes (foreground and background) to make 

sure that intra-class variance is minimal. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Figure 4-8. Comparison of statistical thresholding and Otsu thresholding in the 

case of Blizzard. From three consecutive image sequences (a), (b) and (c), binary 

image maps are generated using statistical thresholding (d) and Otsu thresholding 

(g), followed by results after morphological operations (e) and (h) and generated 

ROIs (f) and (i), respectively.  

 

From a comparison of statistical thresholding and Otsu Thresholding (Figure 4-

8) in blizzard images, it is observed that Otsu thresholding does not has satisfactory 
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segmentation results. Comparing to Figure 4-8 (g), binary image map generated 

by statistical thresholding (Figure 4-8 (d)) segments moving vehicles with a clearer 

outline. Accordingly, ROI generated using statistical thresholding (Figure 4-8 (f)) 

captures the vehicle successfully.  

Table 4-7. Comparison of different thresholding methods. 

Method ID  References Thresholding 

Method 

Testing Results under 

Different Weather  

Method 1 Lan et al. 

(2014) 

𝑇

= 𝑚𝑒𝑎𝑛 − 𝑠𝑡𝑑 

Fog: ⨂ 

Snow on lane: ⨂ 

Blizzard: ⨂ 

Snowfall: ⨂ 

Wet snow: ⨂ 

Nighttime: ⊙ 

Method 2  Celik and 

Kusetogulla

ri (2010) 

𝑇

= 𝑚𝑒𝑎𝑛 + 𝑠𝑡𝑑 

Fog: ⨂ 

Snow on lane: ⨂ 

Blizzard: ⨂ 

Snowfall: ⨂ 

Wet snow: ⨂ 

Nighttime: ⊙ 

Method 3  

 

Otsu (1979) T = largest 

within-class 

variance  

Fog: ⨂ 

Snow on lane: ⊙ 

Snow fall: ⨂ 

Blizzard: ⨂ 

Wet snow: ⨂ 

Nighttime: ⊙ 

The proposed 

statistical 

thresholding  

N/A  T = 99% of total 

intensity 

distributions  

Fog:⊙ 

Snow on lane: ⊙ 

Blizzard: ⊙ 

Snowfall: ⊙ 

Wet snow: ⊙ 

Nighttime: ⊙ 

⊙: Satisfactory  

 ⨂: Unsatisfactory 
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Table 4-5 shows a comparison of different thresholding methods. After testing in 

six different conditions, the statistical thresholding performs well in segmenting 

vehicles of all cases, while method 1, 2 and 3 show unsatisfactory performance 

and cannot extract moving vehicles effectively.  

Table 4-6 also summarizes different thresholding level generated by statistical 

thresholding and Otsu thresholding. In sunny images, statistical thresholding 

generates lower values for segmentation. In challenging environments, statistical 

thresholding (99%) generates higher value than Otsu thresholding and has better 

performance in foreground segmentation.   

      

Table 4-8. Thresholding level selected by different methods. 

Condition Statistical 

Thresholding 

Otsu 

Thresholding 

Highway 30 65 

Blizzard 7 2 

Wet snow  23 9 

Snowfall 24 10 

Rainy_DSC_0652 78 43 

 

4.4 Discussions and Improvements 

Based on the performance of the E-TFD approach (Section 4.2) in different 

datasets, discussions are carried out in terms of obtained results, limitations of the 

study and benchmarking vehicular datasets.  
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4.4.1 Obtained Results 

Recall Rate and Precision Rate 

The performance of the E-TFD approach is evaluated in terms of accuracy and 

efficiency in Section 4.2. The recall rate tries to answer what proportions of 

extracted ROIs are correct. Based on the detection and counting results, an average 

recall rate of 87.1% can be achieved in all environmental conditions. The top three 

recall rate appeared in the case of self-collected nighttime DSC_0376 images 

(100%), blizzard images (99.41%) and rainy DSC_0652 images (99.3%). The E-

TFD detection approach had the worst performance in foggy images, 919 ROIs 

were extracted out of 1661vehicles, with a detection rate of 55.3%.  

Precision, as one of the ROC parameters, attempts to find what proportion of 

positive extractions are correct. The overall precision rate of the experiment is 92%. 

The top three precision rate in tested scenarios are 99.2% in blizzard images, 98.9% 

in nighttime (DSC_0376) images and 98.2% in rainy (DSC_0652) images. Despite 

the low detection rate, foggy images can achieve a precision of 94.6%. 

In addition to the ROC parameters evaluation and running time calculation 

presented in Section 4.2, removal of walking pedestrian and vehicle tracking are 

discussed here as part of obtained results. 

Removal of Walking Pedestrian 
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  In many datasets, walking pedestrians were recorded together with moving 

vehicles. The presence of walking people in traffic scenes could be a great 

challenge in vision-based vehicle detection, as moving people might be wrongly 

detected as vehicles. To deal with this issue, we propose a simple method to 

eliminate the impact of moving pedestrian, thus improving the detection rate. 

Based on existing bounding boxes, we observe that the area of moving pedestrian 

is obviously smaller than moving vehicles. Therefore, a criterion is set to remove 

the walking pedestrian. Each image according to its scale is identified a smallest 

ROI for vehicle detection, less than which is considered as walking people and 

such ROI will be deleted from the bounding box list. For example, in wet snow 

images, if the area of the smallest ROI is less than 5050 pixels, the ROI will be 

deleted from the bounding box list. In the case of snow on lane, the threshold of 

small ROI is set as 1050 pixels.  

  Figure 4-9 shows an improved result of detection and counting after small noise 

region removal. After applying Equation (9) in Section 3.3.1, walking pedestrian 

detection in Figure 4-9 (a) and (c) can be eliminated effectively. At the same time, 

wrong counting of vehicles is corrected, shown in Figure 4-9 (b) and (d).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-9. Detection results before and after removal of the walking pedestrian.  

Counting results with the walking pedestrian in wet snow and snow-on-lane image 

are shown in (a) and (c), with corrected counting results in (b) and (d).  

 

Vehicle Tracking under Inclement Weather Conditions 

  The enhanced TFD method can not only efficiently detect moving vehicles but 

also track them in even very inclement weather conditions. Based on existing ROIs, 

centroids of vehicles can be extracted as well. Figure 4-10 and 4-11 show sample 

results of successful tracking in the blizzard and wet snow. Of all tested data in our 

experiments, the method can track the vehicle in very adverse conditions for up to 

56 frames.  



95 
  

 

    

    

    

    

    

    

 Figure 4-10. Successive tracking of a vehicle in blizzard. 

 

 

 

 

 

 

 

 

 



96 
  

    

    

    

    

    

    

 Figure 4-11. Successive tracking of vehicles in wet snow image sequences.  

 

4.4.2 Limitations of the Study 

In Section 4.2.3, global factors, local factors and occlusion are considered as 

three major causes of false detection. Despite false detection, the main limitation 

of the E-TFD approach lies in that the average detection rate is not very high. 

Studies that utilize HOG features and SVM classifiers combinations show better 

performance in vehicle detection, where a detection rate of 98.6 % can be achieved 
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(Wei et al., 2018). Meanwhile, the combinations of Haar-like features and 

Adaboost classifiers can achieve a detection rate of 95.47 %, as stated by Wen et 

al. (2015). However, the two-stage vehicle detection approach suffered from very 

long training time and the time length can be more than 100 hours (Wen et al., 

2015). 

4.4.3 Benchmarking Vehicular Datasets 

  Benchmarking numerous vehicular data is an essential part of vision-based 

vehicle detection. DAS-related studies rely on Ground Truth (total number of 

vehicles in an image) to evaluate the performance of an algorithm. Appendix II 

and III provide a summary of publicly-available datasets that have been widely 

used in recent studies. Of all public-available datasets, only a few of them provide 

vehicular images in adverse conditions. At the same time, many studies still prefer 

to collect their own video data to train classifiers and test proposed algorithms. 

The fact that past work often reported results on nonpublic sequences made a fair 

comparison an elusive goal (Wang et al., 2014). Therefore, a systematic 

benchmark is required to further conduct research on transport monitoring under 

varying environments, especially in challenging conditions.  

 

4.5 Summary 

  This section provides detection and counting results of the enhanced TFD 
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method. First, the performance of the E-TFD detection approach is analyzed using 

ROC parameters. Extensive quantitative evaluation and related comparisons 

demonstrate that the enhanced TFD method can detect and count moving vehicles 

in real-time, yet able to achieve an average recall rate of 87.1%. Meanwhile, the 

E-TFD approach can also track vehicles in successive image frames.  

Then, the problems that vehicle detection may encounter in challenging 

environments are discussed with corresponding solutions. Vehicle detection in 

adverse conditions suffers from some common challenges, such as the presence of 

fog, raindrops, snowflakes, walking pedestrian and falling leaves. In low 

illuminations conditions (rainy or nighttime images), strong reflections on the 

ground and the presence of taillights often lead to false detection. In congested 

urban traffic conditions or at intersections, occlusion might also cause false 

detection. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

  In conclusion, we would like to highlight some recurring themes that cropped 

up repeatedly throughout the whole thesis. First, we summarized the contributions 

that have been made in this study. Then, we pointed out the deficiencies in this 

work that can be improved in the near future. 

 

5.1 Contributions  

  First and foremost, we have made the following contributions in advancing the 

study of vehicle detection, counting and tracking under varying environments. 

(1) We have provided a comprehensive review of vision-based vehicle detection 

approaches. The detection approaches are categorized as appearance-based 

methods and motion-based methods, based on which solutions under varying 

environments are provided (Yang and Pun-Cheng, 2018). Meanwhile, different 

traffic surveillance objectives that can be achieved base on vehicle detection are 

discussed in terms of major driving problems and derivation of traffic parameters.  

(2) We have proposed an enhanced TFD approach for vehicle detection, counting 

and tracking in adverse conditions. Based on Three-Frame-Differencing (TFD), 

fast thresholding, removal of small noise regions and morphological operations, 

vehicle candidates in different environmental conditions can be extracted in an 
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efficient and accurate manner. The exact number of vehicles in each image can be 

counted and displayed on each image sequence. By and large, this study has 

provided a possible solution of vehicle detection, counting and tracking in all-

weather conditions, which can be embedded into a real-time traffic surveillance 

system.  

(3) We have tested the enhanced TFD detection approach in both public-available 

datasets and self-collected videos. Different weather conditions are tested, 

including sunny, rainy, foggy, snowy, wet snow, blizzard and nighttime images. In 

the experiment, we have tested over 11556 vehicles. Comparing to other studies 

that containing adverse conditions (Mu et al., 2016, Ershadi et al., 2018), the image 

frame numbers that we have tested are huge. 

(4) From the quantitative evaluation of the E-TFD method, it is shown that the 

proposed detection approach can achieve an average detection rate of 87.1% of all 

cases. The highest detection rate was achieved in self-collected nighttime video 

DSC_0546, where a 100% detection rate can be achieved. We have provided the 

exact value of True Positive and False Positive, Precision and Recall in every 

condition, which has not been provided in other studies, especially in adverse 

conditions. The enhanced TFD method is computationally efficient. It can process 

approximately 100 frames per second on a desktop computer, which meets the 
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requirement of real-time processing. At the same time, the enhanced TFD detection 

approach can track successive frames in adverse weather conditions for up to 56 

frames.  

 

5.2 Future Work 

5.2.1 Algorithmic Improvements 

  With the continuous development of computer vision technologies, significant 

enhancement in algorithms has been made. Classic approaches rely on robust 

local/ global features and efficient background models to extract driving-related 

information from traffic environments. In recent years, deep learning algorithms 

have been widely used in the field of Driver Assistance Systems, where car license 

plate recognition (Li et al., 2018), vehicle type recognition (Hu et al., 2017) and 

background subtraction (Babaee et al., 2017) have been explored using Neural 

Networks.  

  To evaluate an algorithm, accuracy is a significant factor. The common fact, 

however, is that false detection is inevitable in all studies. A negative result occurs 

when the outcome of an experiment or a model is not as what is expected (Borji, 

2017). Obviously, computer vision cannot outperform the sensing ability of human 

eyes. In very inclement conditions, vision-based detection approaches may not 

work very accurately (e.g., vehicle detection, counting and tracking in foggy 



102 
  

images), but still helps to understand different driving environments and prevent 

traffic accidents. 

  Comparing to the state-of-the-art methods, this study focuses on vehicle 

detection under challenging environments, which comprises a small part of the 

Driver Assistance System and Intelligent Transportation Systems. Based on 

existing detection and counting results, ROIs extracted in different environmental 

conditions can be cropped and used for training. In the future, we hope to integrate 

existing extracted ROIs with robust local descriptors such as HOG features, Haar-

like features for further analysis and make the current detection architecture more 

robust. Meanwhile, the enhanced TFD approach can be combined with other 

background models to improve detection accuracy. 

 

5.2.2 Implementation of Various Traffic Surveillance Objectives 

  The promising results of on-road experiments in this study demonstrate that a 

full implementation of all-time, all-weather traffic surveillance based on traffic 

surveillance cameras is totally feasible. With the auxiliary of robust feature 

descriptors and efficient models, real-time identification of vehicles can be 

achieved, at the same time multiple traffic surveillance objectives can be achieved, 

such as tracking, counting and classification of vehicles, derivation of driving 

speed, traffic flow analysis, etc.  
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  In this thesis, we mainly focus on the implementation of vehicle detection in 

adverse conditions based on traffic surveillance cameras. Vehicle counting and 

tracking are also studied and tested using different datasets. In the future, we hope 

to extend the achieved objectives to a total implementation of on-road Driver 

Assistance Systems (DAS) with multiple functionalities, such as collision 

avoidance systems, brake assistance systems, adaptive cruise control and lane 

departure systems. 

 

5.2.3 Ultimate Goal: All-time, All-weather Traffic Surveillance System 

  Since the 1980s, a long-term evolution of research in Driver Assistance Systems 

(DAS) has been witnessed. It took three decades for DAS to find the way from 

research to production (Bengler et al., 2014). But sadly, few examples of camera-

based driver assistance systems have entered the automotive market (Ranft and 

Stiller, 2016). Meanwhile, despite very mature computer vision algorithms and a 

wide variety of applications, the automotive industry is facing the new challenge 

of developing a universal method for all-time, all-weather vehicle detection, 

especially in poor visibility conditions, such as fog, rain, snow and nighttime 

(Pinchon et al., 2016).  

  In this work, we have provided a possible solution of all-weather vehicle 

detection, counting and tracking that can be embedded into a traffic surveillance 
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system. Several adverse conditions have been tested and analyzed. The results are 

found promising in providing recall rate in the case of fog, which has not been 

investigated in other studies.  

  As the compensation for human error, the ultimate goal of Intelligent 

Transportation System, in all, is to achieve the best possible performance of 

detection, yet able to inform road users and traffic managers of real-time driving 

status under different conditions, especially challenging environments.  
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Glossary 

Abbreviation  Full Name 

ADAS Automotive Driver Assistance System 

CDnet Change Detection  

E-TFD Enhanced Three-Frame-Differencing 

FN False Negative 

FOV Field of View  

FP False Positive 

GMM Gaussian Mixture Model 

GT Ground Truth 

HE Histogram Equalization 

HG Hypothesis Generation 

HOG Histogram of Gradients 

HV Hypothesis Verification 

ITS Intelligent Transportation System 

KIT Kalsruhe Institute of Technology 

NN Neural Networks 

ROC Receiver Operating Characteristics 

ROI Region of Interest 
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ROT Region of Taillights 

SIFT Scale-Invariant Feature Transformation 

SURF Speeded Up Robust Features 

SVM Support Vector Machine  

TN True Negative 

TP Ture Positive 
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Appendixes 

Appendix I. Selected Work on vehicle detection in adverse weather conditions. 

Reference Methodology Weather conditions Detection rate 

included? 

Number of tested samples 

provided? 

Tsai et al. (2007) Appearance-based Cloudy, rainy Yes Yes  

Mu et al. (2016) Appearance-based  Cloudy, rainy, 

foggy, snowy 

Yes  Yes 

Jia et al. (2016) Appearance-based  Rainy, foggy No  No 

Sun et al. (2006a) Appearance-based Rainy No  No 

Shen (2007) Appearance-based  Cloudy, rainy, 

misty 

Yes Yes 

Chen and Peng (2012) Appearance-based Rainy (nighttime) Yes Yes 

Rabbouch et al. (2017) Motion-based  Snowy, foggy No No 

Varadarajan et al. 

(2015) 

Motion-based  Blizzard  No  No 
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Appendix II. Vehicle Detection Benchmarks with Special Focus on Different Weather Conditions. 

Weather conditions Reference Dataset Category Number of 

frames 

Field of View Description 

 

 

 

 

 

Fine 

Goyette et 

al. (2012) 

Change Detection 

2012 

Baseline  highway 1700 Front The sequences present 

vehicle-related scenes in 

fine weather scenarios. 

Camera Jitter boulevard 2500 Side 

Traffic  1570 Side rear 

Dynamic 

background  

fall 4000 Side 

boats 7999 Side 

Intermittent 

object motion 

Abandoned 

box 

4500 Multi-view 

Street light 3200 Side 

Tram stop 3200 Side 

Shadow bungalows 1700 Front/rear 

Wang et 

al. (2014) 

Change Detection 

2014 

Low Frame 

rate 

Tram 

crossroad 

900 Intersection 

PTZ Intermittent 

pan 

3500 Side 

Rain  Wang et 

al. (2014) 

Change Detection 

2014 

PTZ Two 

position 

2300 Multi-view, 

intersection 

This category provides 

vehicle-related images 
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PTZ camera on rainy days.  

Fog  Karlsruhe 

(1997) 

Karlsruhe 

Institute of 

Technology 

Dtneu_nebel Heavy fog 290 Up-down, 

intersections 

This category includes 

image sequences taken 

on foggy days. The 

camera is mounted high, 

so vehicles look tiny. 

Snow Goyette et 

al. (2012) 

Change Detection 

2012 

Intermittent 

object motion 

 

Winter 

driveway 

2500 Front/side The ‘bad weather’ and 

‘intermittent object 

motion’ category 

provides sequences 

taken on snowy days. 

Due to the weather, 

backgrounds with white 

color. 

Wang et 

al. (2014) 

Change Detection 

2014 

Bad weather Blizzard 7000 Side rear 

Snowfall 6500 Side rear 

Wet snow 3500 Side front 

Karlsruhe 

(1997) 

Karlsruhe 

Institute of 

Technology 

dtneu_schnee Heavy 

snowfall 

300 Up-down, 

intersection 

The two categories show 

scenes at intersections 

on snowy winter days.  dtneu_winter Snow on 

lanes 

300 Up-down, 

intersection 
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Appendix III. Vehicle Detection Benchmarks with Special Focus on Different Illumination Conditions. 

Illumination 

conditions 

Reference Dataset Category Number 

of frames 

Field of 

View 

Description 

Low Wang et al. (2014) Change 

Detection 

2014 

Low 

Frame 

rate 

Tunnel exists 4000 Front The camera captured vehicles 

moving out of a tunnel with low 

illumination  

Nighttime Wang et al. (2014) Change 

Detection 

2014 

Night 

videos 

Bridge entry 2499 Multi-view The ‘night videos’ category 

provides on-road night scene. 

Due to the low illumination at 

nighttime, image sequences 

show different levels of 

vagueness. 

Busy boulvard 2760 Intersection 

Fluid highway 1364 Front/rear 

Street corner 

at night 

5200 Side 

front/rear 

Tram station 3000 Side 

Winter street 1785 Multi-view 

Chen (2014) SYSU Vehicle 

Detection 

dataset 

 

Nighttime 

 

5575 

 

Rear 

This category contains nighttime 

vehicles driving on the urban 

road at nighttime. 

Special 

illumination 

Jensen et al. (2016) LISA Traffic 

Light Dataset 

Vid 2 492 Rear The image sequences contain 

videos with bright background, 

which can be considered as 

special illumination.  

Vid 5 540 Rear 
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