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Abstract

of the thesis entitled
“Algorithms and Processor Structures for Motion Picture Compression”
submitted by HUI Wai-Lam
for the degree of Master of Philosophy
at The Hong Kong Polytechnic University in September, 1998.

‘Recent progress in video compression algorithms and VLSI teéhnology has made it
possible to store and transmit digital video in many applications. Related standard activities in
video compression are also moving rapidly. Two central components of these emerging
standards are the motion estimation and the Discrete Cosine Transform (DCT), which intend
to remove the spatial and temporal redundancies in video sources. And it is known that the
comgutational requirements are the most critical for real-time applications. It is necessary to
develop custom hardware and efficient algorithms to enable real-time applications while to
reduce the manufacturing cost of the Video Codec.

It is well known that the DCT approaches the statistically optimal KLT for highly
correlated signals. Fast algorith;rls for its implementation are developed to reduce the
computational complexity. With the growing applications of the DCT, it is desirable to
develop a modular and reusable DCT processor to reduce system cost. For this purpose, a low
hardware complexity Discrete Cosine Transform Proﬁessor, with high speed operation and
regular structure, is designed and implemented. The DCT processor features bit-serial
approach and parallel operation with multiple operation elements. With the use of signed digit
representation of the DCT coefficients technique, more than 75 percent reduction on the
hardware for the DCT kernel matrix multiplication can be saved. The optimized kernel matrix
multiplier exhibits highly pipeline operations and the maximum achievable operation



frequency of the processor is 45MHz. The implementation of the DCT processor including
external interface circuits uses about 4500 gates.

The widely used block motion estimation and compensation algorithms are considered
to be the most efficient and yet a simple technique for the reduction of temporal redundancies.
In this thesis, a new pixel decimation technique based on a set of the pixel patterns for block
motion vector estimation is proposed to compensate the drawback in the approach using pixel
decimation. For regular pixel decimation, regular patterns are used for computing the
matching criterion to estimate the motion vector. The results can easily be misled by some
image textures. Thus, we define some “most representative pixel patterns” and make the
selection according to the content in each image block for the matching criterion. Our
approach can efficiently compensate the drawback in uniform pixel decimation. Computer
simulations show that this technique is close to the performance of the full search, and has a
significant reduction on computational complexity as compared with other pixel decimation
algorithms in the literatures. Also, it is more convenient for hardware realization as compared
with the fully adaptive pixel decimation.

Adaptive algorithm has -many advantages over fixed strategy algorithms. However, the
variation on the execution time for different video scene is difficult for its realization. A
multiprocessor system is designed for the realization of the newly proposed Edge Oriented
Adaptive Motion Algorithm. With the technique of task decomposition and a predetermined
execution profile, a simple scheduling strategy is derived and the idling time of cach
processor is reduced dramatically. For the realization using ASIC design, a speedup of 3.5 1s
achievable by making use of four Processing Elements with an overhead of less than 15%
hardware complexity.

One of the problems of the block motion estimation is that blocks located on

boundaries of moving objects are not estimated accurately. It is considered to be the most



objectionable distortion by human observer. In this thesis, a new edge-masked matching
criterion for block motion estimation and its hardware architecture are also presented. The
proposed matching criterion makes use of edge features to modify the conventional matching
criterion for computing the motion information. Experimental results and a custom hardware
design show that the new matching criterion has removed the most visually disturbing
artifacts with a slight increase in hardware complexity, and the motion-compensated

prediction frames are virtually error-free.
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Chapter I Introduction and Motivation !

Chapter 1

Introduction and Motivation

1.1 Video Compression Development

Recent progress in digital technology has made the widespread use of compressed
digital video signals practical. Standardization has been very important in the developrﬁent of
common compression methods to be used in the new services and products that are now
possible. This allows the new services to interoperate with each other and encourages the
investment needed in integrated circuits to make the technology inexpensive. These
developments have been made possible by the convergence of VLSI technology with the
image and video compression theory developed in the past, with the support of international
standardization activities.

. With the integration of video in the computer environment, it has been made possible,
setting the starting point for muitimedia and virtual reality technologies. Application of data
compression is also possible in the development of fast algorithms where the number of
operations required to implement an algorithm is reduced by working with the compressed
data. There are two primary applications of data compression: transmission and storage of
information. For transmission, compression techniques are greatly constrained by real time
and on-line considerations which tend to limit severely the computational complexity of the
compression scheme. On the other hand, for storage applications, the requirements of the
encoder are less stringent because much of the processing can be done off-line. However, the
processing time for the decoding or decompression process should be minimized to reduce the

retrieval time. This asymmetrical compression scheme [17, 18] has benefited the video
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broadcast services since once the video is encoded, the encoded video bit-stream is then
broadcast to all subscribers and the decoding process is the same for each subscriber. The
reduced complexity in the decoder has leads to lower the manufacturing cost of the decoder
which is an important factor that affects the acceptance of digital video broadcasting services.

In recent years, video conferencing application is another evolved application which
requires real-time capability and symmetrical compression configuration. For practical
realization of video conferencing system, development of effective video compression
algorithms for real-time processing are required. The efficiency of a compression algorithm is
measured by its data compressing ability, the resulting distortion and as well by its
implementation complexity. The complexity of the compression algorithms is a particularly
importaht consideration in their hardware implementation. There are a number of proposed
compression schemes in the literature, namely, Discrete Cosine Transform (DCT) based
coding [1], Vector Quantization (VQ) [12] based coding, sub-band and wavelet coders [13].

Among these available video coding schemes, the most successful video coding
technique is the hybrid scheme formed by combining motion compensated prediction in the
temporal domain and a decorrelation technique in the spatial domain. The hybrid compression
scheme is also widely accepted as intemational- coding standards such as H.263 [16] targets
for low bit rate video conference applications, MPEG-1 [17] and MPEG-2 [18] target for
broadcast quality video compression.

The envisaged mass application of the discussed video communication services call for
coding equipment of low manufacturing cost and small size. The source coding schemes
recommended by international standardization groups are very sophisticated in order to
achieve high compression rate under the constraint of the highest possible picture quality.
These coding schemes will result in high computational complexity for real-time

implementation. However, general purpose processors are often not capable to handle such
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high computation rates. Thus, cost effective implementation of these high complexity systems
rely on custom designed VLSI.

The continuing trend of further increase in the level of integration (i.e. the number of
transistors) has lead to a huge ‘management of complexity’ problem in chip design.
Nowadays, VLSI design methodology has been moving into the direction of modularity and
reusability. With the aim of modular design, the system is decomposed into various small
functional blocks and each functional block is designed independently with predefined
specification. The well-designed and detailed documentation of each functional block has also
made it possible for future uses. Furthermore, with the decomposition of the compression
system into small functional blocks, programmability to adapt to different algorithms is

possible by changing the interconnection between different functional blocks.

1.2 Motivation and Research Objectives

The continuous development of sophisticated video coding techniques has contributes
to improved coding performance and better video quality. However, the required computation
rates are many orders of magnitude greater than those obtainable from a general purpose
processor. As a result, there is often demands for efficient implementation for real-time
applications.

The advances and decreased costs in Very Large Scale Integration (VLSI) technology
now allow many sophisticated algorithms to be implemented in a cost-effective manner in
hardware. There is also an increasing interest in the design of dedicated or application-
specific chips and chip sets. It is very clear that the VLSI technology will be available more
cheaply in the future, it is also true that the increase in complexity of the coding algorithm
will still make it necessary to develop architectures that map video coding algorithms with the

lowest complexity.
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Among other motion estimation technigues, block matching techniques have been
developed for video coding schemes based on the DCT such as those adopted by the recent
international video coding standards [14-19]. Hence, coding applications often rely on block
matching motion estimation techniques. Despite their widespread use, block matching
techniques share several common drawbacks: unreliable motion fields in the sense of the true
motion in the scene, block artifacts and poor motion compensated prediction along moving
edges. In addition, it is also difficult to incorporate the most important part of a video coding
system, the human visual system, into the coding model. The widely used mean square
distortion measure keeps little relation with the human visual system. It is desirable te
develop efficient algorithms that produce improved visual quality which is sensitive to human
observer while ma.intain the compatibility to current video coding standards [14-19].

Thus, in this thesis, we intend to develop efficient algorithms that made improvement
on the visual quality of the motion estimation predicted frame. Apart from this, architectures

that efficiently realize those algorithms are also our interest.

1.3 Organization Of The Thesis

It is important to review the basics in which the current video coding techniques are
established. Thus, a review on the video coding techniques that are commonly adopted in
various international video coding standards will be given in Chapter 2. Of course, there are
so many issues related to video coding, and we have confined the review that is related to our
works. This includes the background of the Discrete Cosine Transform (DCT) and the motion
estimation/compensation (ME/MC). Besides the discussion on some fast algorithms that can
reduce the computational complexity for both the DCT and ME/MC, some hardware

structures for their realization will also be introduced.
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In Chapter 3 we will show the design and the implementation of a Discrete Cosine
Transform processor. With the low gate count and high operating frequency features, the
architecture proposed is very suitable for low cost applications.

The ME/MC is the most important component in various video coding schemes, if
determines the coding efficiency and the performance of the video coder. Unfortunately, most
fast algorithms for the ME/MC have the commeon problem that the estimation process is easily
trapped by local minimum. Hence, in Chapter 4, we tried to tackle the problem by reducing
the number of pixels used in the matching criterion and by using a novel pixel pattern
selection scheme.

Adaptive algorithms for the ME/MC have the ability to reduce the computational
complexity while the prediction quality is improved as compared to other fast search
algorithms. However, the realization would be complicated. In Chapter 5, a multiprocessor
system with multiple-bus architecture for the realization of the Edge Oriented Adaptive
Motion Estimation algorithm is proposed.

The reason behind the wide adoption of the block based motion estimation technique 18
its simplicity. However, the loose relationship to Human Visual System produces annoying
artifacts, such as the discontinuities of the moving object’s edges caused by the segmentation
on the objects. In Chapter 6, we propose a scheme to produce an accurate prediction on the
motion vector along the moving edges.

Finally, the thesis is concluded in Chapter 7 with a summary of the work done.

Suggestions on the future directions of the present work are also discussed.
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Chapter 2

Video Coding Techniques

2.1 Introduction

The rapid development of VLSI tcchnol-ogics, computer architectures, communications,
advance techniques for video coding in the past decade emerged many applications has made
the transmission, storage and manipulation of digital video data in a more efficient way.
These emerged applications including digital TV, medical imaging, virtual fcality, multimedia
applications with video, audio and hypertext, but not to mention video-conferencing, which
challenge many researchers to develop algorithms that can achieve the highest compression
ratio while produce the best video quality.

Transmission of digital video data in its original form requires huge amount of
bandwidth. For example, to transmit .a CCIR-601 format video signal without any
compression, the required bandwidth would be:

Jframes

(720% 480+ 2x 360x 480)—2%_x30 = 20.7Mbytes/ sec

frames sec ond

Although the advancement of telecommunication technologies increases the transmission
bandwidth dramatically, it is still not economical to transmit the video data with such high
data rate. The huge data rate of the digital video data could be reduced if suitable video
coding algorithms are applied since there is a large amount of redundancies [1] resided in the
video data.

Redundancies in the video data are regarded as those signals which can be discarded or

can be transformed into another domain such that the number of bits required to represent
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those signals is the lowest and the system still maintains good video quality. In the framework
of video coding, categorize the statistical redundancies residing in the digital video data into
two classes, namely the spatial and the temporal redundancies. The former, also called
intraframe redundancy, refers to the redundancy that exists within a single frame of video,
while the latter, also called interframe redundancy, refers to the redundancy that exists
between consecutive frames within a video sequence.

Removing of spatial redundancy within a video frame is based on the fact that every
natural image exhibits high spatial correlation among neighbouring pixels and contains a
significant amount of perceptually irrelevant information. Statistical coding {3, 4] such as
Huffman coding, which assigns shorter code words to pixel values that occur more frequently
and longer code words to values that occur rarely. This kind of coding technique is known as
lossless image coding. Lossless image coding has the advantage that no distortion is imposed
into the original image. But the coding efficiency of lossless coding does not sufficient for
low bit rate video application. On the contrary, lossy image coding applies the rate distortion
theory [2] on the encoding process. The quality of the decoded image is proportional to the
o‘utput bit rate. In fact, lossy image coding is commonly used for the encoding of video
sequences since it can achieve a much higher compression ratio than lossless coding schemes.
Moreover, the information contained in the sequence, that is not perceived by a human
observer, can be eliminated.

In this chapter, a review on various techniques for video coding and their hardware
implementations will be given. First, an overview of the Discrete Cosine Transform (DCT),
its implementations and application to image coding are given. Second, the predictive coding
using block motion estimation will be discussed, including its implementation and several
techniques to reduce the computational complexity. Finally, a hybrid technique combined

with the transform and predictive coding will be discussed.
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2.2 Spatial Image Coding

Spatial image coding is the process to eliminate the statistical redundancy in an image
and there exist two main approaches: predictive approach and transform approach. In
predictive approach, the current image pixel is computed on the basis of previously processed
pixel samples, and the prediction error is encoded and transmitted. The performance of
predictive coding is highly related to the statistics of the image. An alternative for the
elimination of redundancy in the image is the transform approach where the image is
transformed into another domain and the redundancy can be easily identified and eliminated.

Transform coding has been found to have relatively good capability for bit-rate
reduction, which comes about mainly from two mechanisms. First, not all of the transform
d(;main coefficients need to be transmitted in order to maintain good image quality, and
second, the coefficients that are coded need not to be represented with full accuracy.

In a typical transform coding system, the image is divided into non-overlapped
rectangular blocks with block size of Nx N pixels, where size of 8x8 and 16x16 are most
commonly used. A larger block size offers a higher compression efficiency with the
disadvantage of an increased computationgl complexity. The purpose of using transformation
is to decompose the correlated image signal into a set of uncorrelated spectral coefficients
with energy concentrated in only a few of the coefficients. The performance of the transform
coding system depends on the ability of the transform used to decorrelate and compact the
image data.

The Karhunen-Loeve Transform (KLT) [7, 8], is an orthonormal transform whose base
vectors are the eigenvectors of the autocorrelation matrix of the image signal. The KLT is
optimal for a compression scheme based on discarding the coefficients of less energy. But the
direct use of KLT for decorrelation is difficult because of its dependency on the statistics of

the image signal and the lack of efficient algorithms for its computation. Both problems are
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partially solved by the Discrete Cosine Transform (DCT) [9]. In fact, the DCT has been
proven to be a very efficient transformation and has adopted as a standard component in
various international standards for image and video coding such as JPEG [14], H.261 [15],
H.263 [16], MPEG | [17] and MPEG 2 [18].

The popularity of the DCT is based on the properties that the basis functions of the DCT
are image independent, which is a property different from the KLT. It is shown in [9] that the
DCT approximates the KLT for a first order Gauss-Markov process when the correlation
coefficient approaches one. In practices, for natural images, the DCT approximates the de-
correlation and energy compaction property of the KLT very well. Another advantage of the
DCT is that there exist fast algorithms that reduce the computational complexity for its

realization.

2.3 Discrete Cosine Transform

There are several different forms of the DCT. The one used in the standards is the DCT-

I which is of the following form,

m=0 n=0 2N 2N

x<_u,v):%c(u)c(v)”“fx(m,n)cos(”(z’"”)‘ ]cos( ”(2”“)”) @1

where X (u,v) is the spectral coefficient in the transform domain at location {(u,v),
0<u,v<N-1 and x(m,n) is the image signal in spatial domain at location (m,n),

0<m,n< N -1. The function C(i) is defined to be one except when i is equal to zero, In

which case C(0)=1/1/§. This definition of the scaling function C(i) results in a unitary

transform.
Direct realization of the 2-D DCT requires huge amount of computing power, hence,

fast algorithms [22-24] were developed to provide efficient realization of the 2-D DCT
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algorithm. Note that the DCT is separable, which means that higher dimension DCT can be
implemented by a series of 1-D DCT computations. Emerge of these fast algorithms and the
inherent properties of the DCT further increase the popularity the DCT on image coding

applications.

2.3.1 DCT Based Image Coder

Figure 2-1 and Figure 2-2 shows the simplified operations of the DCT based image

encoder and decoder respectively.

N

N _':i‘;-,:( 1‘4

P Compressed bit
—— | stream

| Forward . Entropy
20.pcT [P} Quantizer »  encoder

Guantization
Table

.

Source Tmage

Figure 2-1 : Block diagram of the DCT based image encoder

Compressed bit ﬁ 7
stream Entropy ) Inverse | "] e
- decodar Dequantizer 20-0CT

Cuanlization
Tabla

Reconstructed Image

Figure 2-2 : Block diagram of the DCT based image decodet

At the encoder side, the source image is divided into a number of NxN image blocks
before to perform the forward 2D-DCT. After performing forward 2D-DCT on the image

block, most of the energy is represented by the low frequency coefficients. For lossy coding,
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these coefficients can be scalar quantized independently using a uniform quantizer which is

specified by a quantization table Q, ., for i, j=0,.,N -1 with a different step size for each

it
coefficient. The lower frequencies are quantized more finely whereas a coarser quantization is
used for the higher frequencies. This weighting of the lower frequencies is an attempt to
incorporate some properties of the human visual system (HVS) into the coding scheme.

After quantization, most of the transform coefficients are zero and the coefficients are
scanned in a zig-zag order as depicted in Figure 2-3. The resulting string is then run-length
and entropy encoded which results in a very compact representation of the quantized DCT

coefficients.

B VA VA VN VA V4

v 7

/|

/|

Figure 2-3 : Zig-Zag scanning order for the DCT coefficients

As shown in Figure 2-2, the operations of the decoder perform the inverse processes of
the encoder. The received bit stream is feed into the entropy decoder and the decoded
quantized DCT coefficients are then dequantized according to the quantization table, and
finally, the inverse 2D-DCT is used to reconstruct the image. The inverse 2-D DCT is defined

as,

m=0 n=0 2N

x(wv) =2 Cl)Ct)S S X (mon COS( 2(2m+ }COS( n(zg ;l)v] 22)
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where C(i)=-1— for i=0 and C{i)=1 otherwise.

NG

The relationship of the DCT to the KLT, its energy compaction ability, and its fast
algorithms contribute to the popularity of the DCT used in various image coding standards.
However, the advances of VLSI technologies resulting in lower manufacturing cost and faster

development time also urge the applications of DCT to a wider area.

2.4 DCT Implementation

The 2D-DCT algorithm has become the standard component in various image
compression standards, efficient realization which can perform in real time, high speed
computing architecture is often preferred. Table 2-1 shows the processing time requirement of
the 2D-DCT of various international video compression standards. The hardware
implementation of an algorithm requires careful mapping of the aigorithm into an architecture
that can achieve small chip size, low power consumption and high processing throughput.

These criteria set an important guideline at the design stage of the implementation.

Standard Format Luminance | Chrominance | Frame pixel 8x8 8 pixels
(Y) (U/v) rate rate pixels (TR
(fps) (pps) (uS)
H.263 CIF 352x288 176x144 30 4.56M 14.03 1.754
QCIF 176x144 88x72 30 i.14M 56.117 7.015
MPEG-1 CIF 352x288 176x144 30 4.56M 14.03 1.754
SIF 352x240 176x120 30 3.8M 16.835 2.1044
MPEG-2 MP@ML 720x576 - 360x288 30 18.66M 3.4294 0.4287
(bTV)
MP@HL 1920x1152 960x576 60 200M 0.3215 0.04019
(HDTV)

Table 2-1 : Processing time requirement of various international video compression standards
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Most of the implementations of the 2D-DCT algorithm using either matrix
decompositions or based on the properties and fast algorithms of the 2D-DCT, can be
classified as row-column approach (RCA) and non-row-column approach (NRCA). RCA
utilizes the separability of the 2D-DCT property to separate the computation into 1D-DCT
over the rows, a matrix transposition and 1D-DCT over the columns. On the contrary, the
NRCA avoids the matrix transposition either using array of processors or fast algorithms to

implement the 2D-DCT algorithm directly.

2.4.1 Row-Column Approach

It is well known that the 2D-DCT is separable and the 1D-DCT is computed as,

N-L
zu - C(u)zx(m)cos(m] fO[' U :0,1,..---,N - l . (2-3)
2 = 2N

Tt can also be expressed in vector-matrix form as z=Tx", where T is an N XN matrix whose
elements are the cosine function values defined in equation (2-3), x = [xo, b AV xN_,] is a row

vector, and z is a column vector. From equation (2-1), the 2D-DCT can be expressed as,

X =Y E[C—(V*) S xtm n)COS(M H cos[-’im) (2-4)

2 4 2 & 2N 2N

The above equations imply that the 2D-DCT can be obtained by first performing 1D-DCT of

the rows of x(m,n) followed by 1D-DCT of the columns of the intermediate result. Hence,
the 2D-DCT of an image x(m,n) can be expressed in matrix notation,
X =TxT" (2-5)

The separability of the 2D-DCT reduces the implementation complexity dramatically

and most of DCT implementations [25-27,29] reported were based on the RCA. As shown in
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Figure 2-4 the 2D-DCT algorithm is separated as two independent ID-DCT operations. For
the first stage, a 1D-DCT operation is done on every row of the image block and the
intermediate result is transposed through the transposition memory. For the second stage, 1D-

DCT operations is done again for each column of the transposed intermediate result, to obtain

the transformed image.

I Timing Control ]
1-D e Transposilion ——— D L
Source ) OCT | Transformed
Image Image
ow column

Fifiure 2-4 - Block diagram of the row-column 2D-DCT processor

Row-Column approach enables an easy implementation of the 2D-DCT algorithm. Any
fast algorithm developed for the 1D-DCT can be easily converted into two-dimensional
architecture with additional control circuits and transpose memory. Since the 1D-DCT
algorithm involves many multiplications, butterfly structures with fewer multiplications can
be found in [20, 21] and many other proposed fast algorithms for reducing the number of
multiplications required for the computation of 1D-DCT can also be found in the literatures.
Sophisticated fast algorithms for the 1D-DCT reduce the computational complexity, but have
a drawback of complicated data-flow and irregular structure that may not be suitable for

hardware implementation.

2.4.1.1 Distributed Arithmetic

Implementation of DCT algorithm using the distributed arithmetic approach has been

reported in [27, 28]. Since distributed arithmetic is used for the computation of the matrix-
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vector product, and thus different fast algorithms are actually mapped into the hardware
structure. This type architecture exhibits multiple processing elements (PE) architecture, bit-
serial and bit-parallel data structures to implement the vector inner products concurrently.

The input data sequence x(i) in equation {2-3) can be expressed in 2’s complement

form
n—-2 . .
X, = —x{D2 2 x,(n” 27 (2-6)
=0

where x isthe j* bitof x, which has a value of either O or 1, n is the number of bits to

represent x,, and x"™ is the sign bit. By substituting equation (2-6) into (2-3),

N n-2  N-I
7, =— Z gl ¢ (2m+1)u7r N XU os (2m+ Nur 2-7)
m=0 =0 m=0 2N
=—F(x& uy2m +ZF(x(” u)2’ (2-8)
j=0
where
A u)—Zx(” oGt un for j=01,..,N—I (2-9)
2N
2m+ur

Note that F is a function of bit patterns of x, and the coefficients cos . Since the

coefficients are fixed, thus F can be pre-computed and stored in ROM for all possible bit

patterns of x, . Consequently, z, can be computed concurrently for u =0,1,...., N —1.
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Figure 2-5 - Architecture of distributed arithmetic DCT _aritechmetic DCT

As shown in Figure 2-5, the regularity of this approach results in an implementation that
is a direct matrix-vector multiplication architecture. The pre-computed look-up tables for
specific sizes of transforms are stored in ROMs. The shift register at the input stage shifts the
image data serially to form the look-up table address. The ROM and the accumulator perform

the matrix multiplications of the 1D-DCT concurrently.

2.4.1.2 Systolic Array

The key to VLSI parallel architecture design is to reduce the interconnection complexity
and to keep the overall architecture highly regular, parallel and pipelined operation. Systolic
array [10] architecture is very suitable for VLSI implementation because it features regularity,
modularity and local communications and is capable of achieve high degree of pipelining. A
systolic array is a network of processors which concurrently compute and pass data through

the system. For DCT algorithms which feature with regular and recursive properties and with
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the help of the derivation of the Dependence Graph (DG) [10] to give a regular structure can
be represented by a grid model for systolic realization.

Figure 2-6 shows a systolic array architecture for the 1D-DCT realization. This array
composes of adder/subtractor cells for the pre-processing of the input data. The
multiplier/adder cell stores the intermediate results and evaluates the data passed from the
neighbouring cells. Extension of this architecture to 2D-DCT has been proposed in [30]. This
new systolic array proposed for the 2D-DCT based on the row-column decomposition which
does not require matrix transposition. Instead, internal registers and different architectures for
evaluating the row and column transforms are used. Avoiding the matrix transposition will
lead to obvious reduction in chip area and latency between the input data and the oﬁtput result

can also be reduced.

e v,

o e v

Yy z —s| PE [+ zucC

Figure 2-6 : Systolic Array architecture of DCT processor

2.4.2 Non-Row-Column Approach

In contrast to the RCA, the NRCA manipulates the 2D data set directly and requires a

fewer number of multiplications. Many fast algorithms [22-24] have been proposed for the
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direct implementation of the 2D-DCT. In [22], Vetterli proposed to use an indirect
polynomial transform approach which saves the number of multiplications by 50 to 75 % as
compared to conventional RCA. Cho and Lee [23] proposed to use trigonometric
decomposition of the 2D-DCT which can reduce the number of multiplications to 50% of the
conventional RCA. In general, the NRCA architectures do not consist of matrix transposition.

However, they usually involve high communication complexity and irregular data flow.

2.5 Motion Compensated Video Coding

The main idea behind the motion estimation/compensated [5] video coding is to use the
temporal and spatial correlation such that the current frame can be predicted as accurately as .
possible from the previously decoded frames. The more accurate the prediction is, the smaller
is the entropy of the prediction error, which is usually transmiited using a lossy compression
scheme to remove the perceptual irrelevant information. If the entropy of the prediction error
is small, only a small amount of information needs to be transmitted and hence the
compression ratio can be very high.

In general, motion compensation is defined as the process of compensating the
displacement of moving objects from one frame to another. In practice, motion compensation
is preceded by motion estimation, the process of finding the motion information of the object
among image frames. Among other approaches, temporal redundancy can be efficiently

reduced by combining the motion estimation and compensation process.

2.5.1 Motion Estimation

Given a reference frame and the current video frame, the objective of the motion

estimation is to determine the image object in the reference frame that better matches the
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content of the image object in the current frame. The current frame is defined as an image at
time ¢, and the reference frame is either defined as an image at past time ¢—n, for forward

motion estimation or at future time ¢ + & for backward motion estimation.

t-n t t+ £k

—  time

Figure 2-7 : Temporal correlation in a videg sequence

Figure 2-7 shows that object X moves from left to the center of the image from time
t—n to t, and it moves to the uppér right corner after time ¢+ k . The motion of the object is
usually represented by a motion vector. Block based translation motion model {37] 1s
commonly used and this model does not consider any rotation and scaling of the objects,
which simplifies the motion estimation process at the expense of decreased accuracy. A
motion vector can be specified in integer or fractional pixel increments. Fractional pixel
motion compensation involves interpolation of the pixel values in the reference frame.

For block based motion estimation algorithm (BMA), each image frame is divided into
regular non-overlapping smal! blocks of NxN pixels as shown in Figure 2-8. For each block
in the current frame, its motion vector is estimated from the reference frame over a predefined
searching area by evaluating a matching criterion thz.lt yields the best matching. The relative

positions of the two blocks define a motion vector associated with the current image block.
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Figure 2-8 : Block Based Translation Motion Estimation

2.5;2 Matching Criteria

A matching criterion is used to measure the similarity between the current block and the
reference block to determine the accuracy of the motion estimation process. Block based
similarity measure is commonly used in the matching criterion since the block matching
estimation algorithm assumes that all pixels within an image block have the same amount of

movement.
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Figure 2-9 : Motion vector estimation process
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Let Ir(k,l) be the pixels of the image block with size NxN in the current frame at
position (k,l) and I, (k —u i - v) be the pixels in the reference frame where u, v are defined

in -p<u,v<p-1 and p is the search range of the searching window as depicted Figure

2.9. The motion vector, d , is chosen to minimize the matching criterion,

d arg r:nnZ"I i, j)—1_- u,j—v}| fori,j=0l...N-1 (2-10)

The widely used distance measures are the quadratic norm ||)c||:x2 and the absolute value

]|x|[ = |x| . Hence, the Mean Square Error (MSE) is defined as,

MSE’(u,v)_ ENZ' [1.G, )1 (i~u j-v)I @-11)
=0 j=0
and the Mean Absolute Difference (MAD) is defined as,
1 N-1N—
MAD(M,V)_I_V_—ZO‘Z&'I (i, )1 i—uj- v} (2-12)
The MSE measure gives the most robust result on the error measure between the current
block and the reference block. However, the MSE involves multiplication, which introduces
computational burden to the motion estimation process. Instead, MAD is usually employed
due to the fact that simple arithmetic is needed. The simplicity of the MAD enables the error
measure to be easily mapped into VLSI which further speedups the motion estimation
process. Other matching criteria such as the Pel Difference Classification (PDC) [38] have
been proposed. For the PDC, each pixel in the image block is classified as the matching pixel
and mismatched pixel, and a threshold is used to perform the classification on the pixels. The
displaced position from the current block with the maximum number of matched pixels in the

reference block is then chosen as the motion vector. This approach provides a low complexity

alternative to the traditionally used matching criterion since it involves counting and
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comparison, and no addition and multiplication is needed, which is greatly suitable for VLSI

implementation.

2.6 Fast Algorithms For Motion Estimation

Apart from the reduction on the computational complexity of the matching criterion, the
searching process still requires to find the best-matched block within the search window.
However, the optimal motioﬁ vector can only be guaranteed by performing an exhaustive
search which evaluates the matching criterion over the search window for every possible
candidate displacement vectors. This is called the Full SAearch Algorithm (FSA). The FSA
appears to be able to find the global minimum of the MAD value but is highly
computationally expensive. To perform motion estimation in real time, the number of
operations required by the FSA is often too high. To reduce the computational complexity, a
number of fast search algorithms have been proposed [33, 39-43, 47-50]. These algorithms
reduce the number of operations by either limiting the number of locations searched or by
computing fewer pixel differences per search location to find the motion vector but may not
be able to guarantee securely the minimum MAD value can be found. Moreover, these
techniques rely on an assumption that the MAD monotonically increases as the search
location moves away from the direction of global optimal distortion.

The computational requirement of the FSA can be estimated as follows. For each image

block with NxN pixels and has a search range of *p for both horizontal and vertical
directions. Then for each motion vector there are (2 p+1Y search locations. At each search

location (u,v), NxN pixel errors have to be computed. Each pixel error computation

requires three operations, namely, a subtraction, an absolute value evaluation and one

addition. If we assume these three operations require the same computational resources, then
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the total number of operations per image block is (2p+1)2><N x N x3 operations. For an

image with 720%x480 at 30 frames per second and the image block with 16x16 pixels, the

number of operations required would be 29.89 GOPS and 6.99 GOPS for p=15 and p=7

respectively. With this extremely high computational complexity requirement of the FSA, it 1s
infeasible to implement the motion estimation algorithm in real-time application. Hence,
several fast Block Matching Algorithm (BMA) have been developed to reduce the heavy
computations of FSA, such as three-step hierarchical search algorithm [43], parallel
hierarchical one dimensional search {44], pixel decimation [33], the adaptive approach [47-
50}, etc. In the following of this section, we will discuss some of the fast algorithms that are

widely used in video coding applications.

2.6.1 Three-Step Hierarchical Search

Many fast block matching algorithms have been developed successfully to reduce the
computational complexity of the motion estimation process. Among all of these BMAs, the
three-step hierarchical search (TSHS) [43] is considered as one of the best algorithms in terms
of its significant reduction on the computational complexity and its block matching
performance. The TSHS algorithm reduces the number of computations by limiting the
number of locations searched to find the motion vector in a coarse-to-fine manner. Figure
2-10 illustrates the procedures of the TSHS algorithm, with an example of motion vector
{=7,5). In the first step, nine sparsely located candidates are picked out and their MAD is
computed. In the second step, the search is focused on the area centered at the winner of the
first step (L2) which has the lowest MAD among the nine candidates, but the distance
between candidate locatioﬁs are shortened by half. In the same manner, step three compares

MAD’s of nine locations around the winner of the second step and then gives the final motion
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vector. For a larger search window, additional search steps may be incorporated. The
maximum number of search location is reduced to 8k+1 where & is the number of steps

involved in the searching process. Hence, the computational compiexity can be dramatically

reduced.
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Figure 2-10 : The Three-Step Hierarchical Search (TSHS) block matching algorithm

It is no doubt that the TSHS greatly reduces the motion estimation computational effort,
however, the checking points in the first step of TSHS are allocated uniformly in the search
window which may not be very appropriate for some blocks in which small motions are -
present. Therefore a new three-step search algorithm (NTSS) [41] was proposed (o
accommodate this problem. In this algorithm, eight extra checking points are added, which
are the eight neighbours of the search window center in the initial step. Due to this center-
biased checking point pattern in the first step, the NTSS is more robust, and produces smaller

motion compensation errors as compared to the TSHS.
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2.6.2 Pixel Decimation

Hierarchical search algorithms such as TSHS and NTSS rely on a monotonically
increasing MAD around the location of the optimal vector to iteratively determine the current
block displacement location. However, the searching process may be trapped by local
minimum since not all the search locations are visited. The final motion vector estimated
might have a higher MAD than that of the optimal motion vector. Different from limiting the
search locations, we may reduce the number of pixels that are involved in the computation of
the matching criterion. This is another approach that can effectively reduce the computational
complexity of the motion estimation process. Since block matching is based on the
assumption that all pixels within a block have the same amount of motion, the motion of the
block can be estimated by using only a fraction of pixels in the block in principle. However, if
too few pixels are used, this will eventually reduces the accuracy of the motion vector
estimated. Hence, pixel decimation must be done in a careful manner so as not to reduce the
motion estimation accuracy. In [43], Koga et al. proposed to subsample an unfiltered image
by a factor of 4 as shown in Figure 2-11. Only the shaded pixels are used in the computation
of the matching criterion. As mentioned before, since only a uniform fraction of pixels enters

into the matching criterion, the error of the motion vector estimated could be increased.
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Figure 2-11 : 4-to-1 pixel decimation
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In order to reduce the drawback introduced by the pixel decimation technique, Liu and
Zaccarin [33] proposed to use an alternating pixel decimation pattern scheme such that all
pixels in the image block will be used in the computation of the matching criterion. Figure
2-12 shows a block of 8x8 pixels with each pixel labelled as a, b, ¢, or d in a regular pattern.
Then A, B, C and D are the subsampled pattern that consist of all the a, b, ¢, and d pixels
respectively. If only one ﬁattem of pixels, e.g. A is used in the block matching, the
computation complexity is reduced by a factor of 4 as compare t0 the full search. However, if
only one fixed pattern is used in the block matching, the accuracy of the motion vector
estimated will be degraded. Thus, by alternating the pixel patterns and associating a different
pattern for each neighbouring search location, all the pixels within the image block are

covered within four search locations.

Figure 2-12 : Pattern of pixels used for computing the matching criterion with a 4-to-1 pixel

decimation

The alternating pattern pixe! decimation process is explained as follows. If pattern Als

used in the search location (x, y), then it is also used at (x+2i, y+2j) for i, j integers within
the search area. Similarly, pattern B, C and D are used for locations (x+2i,y+l+2j),

(x+l+2i,y+1+2j) and (x+1+2i,y+2j) respectively. For each of the subsampling
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patterns, we choose the displaceinent that minimizes the MAD over the search locations
where the pattern is used as the motion vector for that pattern. Then for each of the four
motion vectors obtained, we compute the matching criterion again but using all the pixels.
The one that has the minimum MAD among the four is selected as the final motion vector.

Besides to reduce the search locations and pixel subsampling techniques, hierarchical
motion estimation techniques [34-36] are also considered to be efficient schemes to improve
the performance of the motion estimation process. By using muiti-resolution approach, a
typical Gaussian pyramid is formed and the motion search ranges are allocated among
different pyramid levels. The block matching is started at the lowest resolution pyramid level
to obtain an initial estimation of the motion vectors. The computed motion vectors are then
propagated to the next higher resolution level, where the motion vector is refined and again
propagated to the next level until the highest resolution level is reached and the final motion
vector is obtained.

Although many fast algorithms were proposed to reduce the computational complexity
of the block matching algorithm, the number of operations required is still very high that is
difficult to implement in software fof real time applications. Table 2-2 shows the number of
operations per second requil—'cd to perform the motion estimation using various block
matching algorithms. Recent advances of VLSI technology enable many applications that
require high computational complexity can be efficiently implemented using hardware. The
BMA which require huge computational is desirable to implement in VLSI to reduce the

computational burden of the processor.
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Operations per second

Search Algorithm Operations per block | For 720x480 at 30 frames/s

P=7 P=15
Full Search (2p+ I x NxNx3 6.998 GOPS 29.891 GOPS
3-Step Search [43] (8k + )X Nx Nx3 0.7776 GOPS 1.026 GOPS

Pixel Decimation [33] 2 1.7495 GOPS 7.4727 GOPS
(2p+1)xNXNx3
4

Adaptive pixel (2p + 1) x44x3 1.203 GOPS 5.1375 GOPS

decimation based on

neighbour pixels [48)

Table 2-2 : Operations requirement of various block matching algorithms using MAD error

criterion

2.7 Motion Estimation Processor Implementation

The BMA is computationally very demanding and it is always desirable to develop
special VLSI architectures for the BMA. A large number of architectures have been proposed
for various BMAs [53-61]. Most of these architectures use array of Processor Elements (PE)
to achieve high computation rates. FSA is the algorithm that is commonly implemented in
VLSI architectures [53-58] due to the fact that its data access pattern is highly regular and
lends itself naturally to paratlel processing. Among other fast algorithms, three-step search
algorithm also has many proposed implementations [60, 61] since it is computationally less
intensive. In this section, we will Aiscuss two typical VLSI architectures for block matching
algorithm used in motion estimation. The first architecture maps the full search algorithm into
VLSI architecture that is based on data-flow designs and allows sequential inpuis but

performs parallel processing with 100 percent efficiency of resources utilization. For the
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second architecture, three-step search algorithm is mapped into a fully pipelined parallel
architecture with sophisticated data arrangement and memory configuration. Furthermore, the

memory interleaving technique of the approach reduces the memory access bandwidth.

2.7.1 Full Search Motion Estimation Processor

Several dedicated hardware implementations of the BMA have been reported and most -
of the realizations are concern full search because of its regular data flow and low control
overhead. Principally, these realizations are systolic array with high local communication and
exhibit regular structure. In {54], a VLSI architecture of FSBMA utilizing multiple processor
elements (PE) which perform subtraction, absolute value evaluation and accumulation was
proposed. Special data flow has been derived to keep the PE’s as busy as possible. As shown

in Figure 2-13, a(k,{} and b(u,v) are the pixels from the current block and the search area
respectively. p and p' denote sequences of previous frame data from different portions of

the searching area.
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Figure 2-13 ; Data access (a) From current block, (b) From previous frame
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The pixel, b(K,.L, + 15), is used at 16 different searching positions in the computation

of the matching criterion MAD(u,v).

15 15
MAD(u,v) = ZZIG(Ka +u,L, + vi-b(K, +u+i,L, +v+ j] for v=0,--15

i=0 j=0
The computation of MAD(u,v) for all values of v can be computed in parallel with multiple
PEs while the pixel b(K,,L, +15) is broadcasted to all processors that need it. Since the
reference frame pixel is being broadcast to all processors, the memory access to the reference
block is greatly reduced. Moreover, with careful arrangement on data flow of the pixel data,
both of the pixel data from current block and reference block can be input sequentially to the
motion estimation processor. The novel data flow arrangement and broadcast of the reference
frame pixel data to all PEs contribute to a regular architecture and achieve 100 percent

efficiency.
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Ficure 2-14 : Implementation of the ESBMA (broadcast reference frame data)
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Figure 2-14 shows the implementation of the FSBMA with reference frame data
broadcasted to all PE’s. As shown in the figure, the pixel data of the current block and
reference block are inputted sequentially. The current block pixel ¢ is fed into a common bus
structure with delay elements where the pixel data are availabie to one PE during one cycle

and available to the next PE in the next clock cycle. The reference pixel data p and p' are

broadcasted through two common buses and one of them will be input to all PE through a 2-
to-1 multiplexer. For each PE, the absolute difference between the current pixel and reference

pixel is computed and accumulated. The block diagram of a PE is shown in Figure 2-15. .
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Figure 2-15 : Architecture of the PE

v

The broadcast reference frame motion estimation processor exhibits regular data flow
and low control overhead that is suitable to implement in VLSI. However, the number of
clock cycle required to evaluate the motion vector for one image block would be 256 for

p =17 and even longer with a wider search range.

2.7.2 Three-Step Search Motion Estimation Processor

The tow complexity and the possibility for high accuracy of the TSHS is a potential
solution for high-speed video applications. However, some architectural considerations
prevent this algorithm from being widely used in real-time systems. The variable distances
between candidate locations and the unpredictable data access pattern complicate the control

scheme which will lower the efficiency of computation kemel, and make it difficult to reuse
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data for reducing the number of external memory accesses. Moreover, for the dependence
between successive steps, the execution must be in sequential, so the latency of each step
needs to be as short as possible to achieve high-speed operation.

The regular and continuous data flow of the FSBMA allows the data buffer to be
distributed within or nearby the PE's. However, for TSHS, the variable distances between
candidate locations break the continuity of the data flow and hence a memory buffer with
multi-port access is more suitable. John et al. [60] proposed a hardware architecture that maps
the TSHS using pipeline with 9 PE’s. The architecture addressed the problem of complex data
addressing by (1) using on chip buffer to reduce external memory access, (2) the residual
memory interleaving for parallel data accesses, and (3) the PE function redistribution for

eliminating the interconnection overheads between PE’s and on-chip buffers.
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Fieure 2-16 : 9-PE TSHS architecture with PE function redistribution

The architecture shows in Figure 2-16 scquentially inputs current block pixels and
broadcasts them to all PE’s. MO ~ M9 are on chip buffers to store the search area pixels and

they are internally available to the corresponding PE. The on chip memory buffer reduces the
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external access to the reference pixel, while a residual memory interleaving scheme is used to
allow 9 PE’s to access the search area pixels from the memory buffer simultaneously. Instead
of evaluating a certain candidate location using a fixed PE, each PE evaluate partial results of
different candidate locations at different clock cycles. This function redistribution technique
eliminates the need of switching network between the memory modules and PE’s.

Hardware implementation of the DCT algorithms and block matching algorithms bridge
the gap between the advanced video coding techniques and real-time application requirement.
A generic hybrid video coding scheme {15-18] was developed which removes the spatial and
temporal redundancies by combining the use of the DCT and ME/MC algorithm respectively

and this scheme is widely used in various video compression standard.

2.8 Hybrid Video Coding

The Discrete Cosine Transform (DCT) and Motion Estimation/Compensation
techniques have been successfully applied into various international video compression
standards [15-19]. A mixed scheme using these techniques as a generic hybrid video coding
scheme is found to be effective and efficient in terms of its compression capability and
decoded video quality. A block diagram of the generic hybrid video coder is shown in Figure
2-17. At a higher level, the encoder first decides whether it is going to code the input frame
using intraframe or interframe coding [45, 46]. For intraframe coding, 2D-DCT will be
applied to the image blocks of the video frame where the transform coefficients are quantized,
zig-zag scanned and run-length / Huffman coded. If interframe coding is selected, the encoder
performs motion estimation to find the motion vector for each macro block within the video

frame.
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Figure 2-17 : Generic Hybrid Video Coder

An advanced technique called bi-directional prediction [15-19] which make uses of two
reference frames, one for forward and one for backward motion predictions, and interpolates
the results to form the predicted frame. In practices, multiple frame buffers are needed to store
the reference frames for backward prediction and a certain delay will be imposed to the
encoding and decoding process. However, for real-time applications, such as video-
conferencing, the distance between successive reference frames is kept small to reduce the
delay. Figure 2-18 illustrates various frame types and the frame dependencies in the motion

prediction process.

Forward predictian of
P-Frame

Backward prediclion
of B-Frame

Figure 2-18 : Frame types and dependencies for forward/backward prediction
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A digital signal processor (DSP) is expected to give a good solution for a flexible
hardware implementation of the generic hybrid video coding scheme. However, due to the
high computational complexity of the compression scheme, it is not possible to achieve real-
time operation using conventional DSP’s. Owing to the rapid advances in Very Large Scale
Integrated Circuits (VLSI), dedicated VLSI chips [65] have been developed for various parts
of the video coding applications. Special purpose video coding DSP’s [66, 67] have also been

developed which are capable to encode the real-time video into compressed bit streams.
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Chapter 3

Discrete Cosine Transform Processor Realization

3.1 Introduction

The application of the Discrete Cosine Transform [9] has been spread over various
fields of signal processing, especially for speech, image and video processing. This is mainly
due to the fact that the DCT approaches the statistically optimal Karhunen-Loeve Transform
(KLT) [7, 8] for highly correlated signals. With the recent advances of VLSI technology, the
real-time video processing for the multimedia applications appears possible. Several
international standards for image and video coding algorithms, such as CCITT H.263 [15,
16], MPEG [17-19] have been recommended. These standards are based on the hybrid video
coding scheme that combines the transform coding and predictive coding techniques.

For high transform rates, highly parallel data-flow architectures are used, and for low
transform rates, the main focus has been on designing processor based architectures for the
DCT. In the later case, typically one multiplier-accumulator block is re-used for computing all
DCT operations, which leads to the problem of efficient pipelining, register design, 1/O design
and scheduling policies. Considering the VLSI implementation for the DCT in the literature,
the distributed arithmetic [26-29] is the most widely used technique since it provides an
efficient way to realize the multiplications involved in the DCT computation by read only
memory (ROM).

Bit-paralle! data-flow architecture is the key to achieve high transform speed.
However, for applications that the transform speed is not high enough to justify a bit-parallel

data-flow architecture, the alternative is to map the algorithm execution such that operational
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elements are re-used for different operations. Two methods exist for carrying this out. The
operations of the algorithm can be implemented at the word-level, leading to processor
architectures or the algorithms that can be implemented using the bit-level, leading to a bit-
serial architecture. The advantages of a bit-serial architecture implementation are that the
interconnection overhead becomes almost negligible since only one wire is needed for each
interconnection. In the contrary, word-level design needs a large number of buses for
interconnection where each bus contains multiple wires which consume a large amount of
chip area. In addition to using serial approach, the DCT processor hardware complexity can
be further reduced by using fixed coefficient multipliers.

In this chapter, a Discrete Cosine Transform Processor architecture which uses bit-serial
approach and features low complexity, high speed operation and regular structure will be
presented. Although data conversion buffers are required at the input and output stage, a large
amount of hardware complication can be saved with the use of bit-serial approach. The use of
signed digit representation of the DCT coefficient also leads to an efficient architecture while
preserving the speed performance of the serial multiplier. An interface circuit is specially
designed to provide convenient data input/output arrangement that is suitable to interface to
the PCI bus controller. A prototype of the processor is implemented using a EPLD device to

evaluate the real-time performance.

3.2 Serial Multiplier

In order to meet the demand for high speed operations, many DCT processor were
implemented making use of parallel array multiptiers [29]. However, parallel array multiplier
requires a large amount of hardware and consequently consume a large amount of power [70].
With applications that the chip area is critical, serial multiplier is often the preferred

alternative. The shift-add with the carry propagation technique performs the multiplication
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one row at a time as illustrated in Figure 3-1. The multiplicand & is to multiply a for each
row with one digit shifted after each operation. By using this natural process, one can
implement the multiplier using shift-add in parallel. However, the carry generated from each
partial product must be propagated at full length for every row multiplication, which
introduces excess delay and reduces the speed of the multiplier. Carry look-ahead adder can
be used to improve the speed of the carry propagation adder with the expenses of additional

hardware.

ab,  ab  ab
ab, ab, ab, ab,
ab, ab, ab, ab,

Y, Vs Vs Ya Y3 Y2 ) Yo

Figure 3-1 : Multiplication matrix

Serial multiplier using Carry Save Add Shift (CSAS) [68] technique directly maps the
multiplication using simple hardware. Due to its inherent structure, high speed operation and
low hardware complexity can possibly be achieved. With the pipeline register between
consecutive adder, no carry propagation is needed for every row multiplication. The block
diagram of a 4-bit by n-bit CSAS serial multiplier is shown in Figure 3-2 with a and b as the

multiplicands and the resultis y, .

Figure 3-2 : 4 by n-bit serial multiplier
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The multiplicand a is parallel input for every multiplication while & is serially shifted
into the multiplier with LSB first and the product y, is serially shifted out from the serial
multiplier with LSB first. The shaded area performs the binary multiplication between a and
b,.l as shown in Figilre 3-1. The flip-flop FF, is the pipeline register and FF, is used to store
the carry of the previous partial product. The multiplier completes one multiplication using
L, + L, clock cycles, where L, and L, is the wordlength of muitiplicands a and b
respectively. The complexity of the serial multiplier with serial-in-serial-out configuration is
O(n) which is greatly reduced as compared wilth O(nz) of the parallel multiplier. Reduction
on the hardware complexity also leads to lower power consumption but at the expense of

tonger computation time. The computation time can be reduced if L, -bit carry look-ahead

parallel adder is used after L, clock cycles {68].

3.3 Signed Digit Representation

Serial multiplier offers reduction on the hardware complexity for general multiplication.
Since the DCT kemel coefficients are fixed, further simplification on the multiplier is
possible. When we consider to represent the DCT coefficients using the radix-2 signed digit

(SD) which is represented in the general form as,

c=3 5,27 3-1)
=0

where 5, € {—-1,0,1}. The number of nonzero bits used to represent the fractional number

determines the accuracy of the representation. Most numbers can be represented with fewer
nonzero digits by using the SD representation. Since only a finite number of nonzero digits is

used to represent the coefficients, certain error will be introduced to the multiplication result.
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However, the multiplication result is also represented in a fixed-point format. With enough

number of nonzero bits, the error magnitude can be reduced to an acceptable level.

From equation (2-3), the DCT kemel matrix can be writlen as,

“oe Ra oo R

d d d
¢ € g
f -f -b
-g -—a -—e&
~-d -d d
-a g <
-6 b -f
- ¢ -a

d d d d"
-g —e =-c -—a .
44

-b - b

fof where b
€ a g -c c
~d -d d 4
-c —g a -—e e
-f b -b f f
a -c¢ e -gf i

(3-2)

The coefficients of the DCT matrix consist of seven distinct values: a, b, ¢, d, e, f, and g.

These are coefficients existing in every column of the matrix T with different permutations.

By using the SD representation, the number of addition or subtraction needed and the error for

each DCT kernel coefficients are shown in Table 3-1.

Coetficient value SD representation No.of | Error Magnitude
' additions
a 0.49039264 27t —277 27 427" = 0.490356 4 3.619%107
b 0.461939766 2-'--2-5 ~27 427 =0.461914 4 2.5703x107°
c 0415734806 | 22427 4+27% 427427 -2 =0415771 6 3.66782x107°
d 0.35355339 2724274 +2% 427427 =0.353516 5 3.77656x107°
e 0.277785116 272425284271 =0.277832 4 4.69147x10°
f 0:191341716 27 4274270 27 = 0.191345 4 3.49861x107°
g 0.097545161 270+ 27+ 270 — 278 = 0.097534 4 1.09813x107°

Table 3-1 : Signed digit representation of the cosine coefficients

As shown in the above table, four to six nonzero bits are sufficient to represent the DCT

wernel coefficients with the accuracy conformed to the specification that is derived in section

3.5.




Chapter 3 Discrete Cosine Transform Processor Realization 41

With the bit-serial approach and SD representation of the DCT kemel coefficient
technique, a bit-serial parallel DCT processor architecture was implemented and the

architecture features regular structure and highly parallel operation.

3.4 Serial DCT Processor Architecture

The DCT algorithm (equation 2-3) requires 64 multiplications, for which the parallel
implementation requires a large amount of multipliers. Several fast algorithms [20, 21] have
been proposed to reduce the number of multiplications required. However, most of them
require complex data flow and are not suitable for hardware implementation. Hence, in our
implementation, only one stage of matrix decomposition base(i on the DCT kernel property 1s
carried out to reduce the number of multiplications required and to maintain the regularity of
the DCT processor.

By observing the coefficients of the DCT kernel matrix in equation (3-2), the even rows
are even-symmetric and odd rows are odd-symmetric. Thus, by separating the even and odd

rows of the kernel matrix 7 , we have

(20)] [d d d d [x0+x(7)
| (6 f —f =b|x)+x6) (3-3)
@) |d ~-d -d d | x(2)+x(5)
(z(6)] | f -b b — 1 x(3)+x(4)
(z)] [a ¢ e g xO-xD
3| _le -8 —a -e x(1) — x(6) (3-4)
72(5) e —a g ¢ || x(2)-x(5)
Lz g -e ¢ —a_\_x(3)—x(4)

The number of multiplications required is reduced to half since the N x N matrix
e N N . e . :
multiplication is replaced by two > x-2— matrix multiplications. Since the computation of the

even and odd kernel is independent of each other, the even and odd kernel multiplications can
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be computed in parallel. By using the same technique, further decomposition on the even
kernel matrix is possible but will lead to a more complicated data flow architecture. The
overall architecture of the serial DCT processor is shown in Figure 3-3. The processor
consists of four operation stages 1) parallel to serial conversion, 2) data pre-processing, 3)

kernel matrices multiplication and 4) serial to parallel conversion.

en-1
x(l) —’@ + —— ' Sertal-Paralle] (1 z(2)
\\ / Even Kemel
x(2) _’.@ Serial-Farallel (4) 24)

Parallel-Seria (1) Serial-Paralkel (6) o6

#

x(3)

Serial-Paratiel {L) z(1)

0 —p] s} 7 \:E >

x(8) _’.@ / x - — Sertal-Paraliet (1) 25
/ / \\ ODD Kernel

x4 M / \Gﬂ_’ Serial-Parallel (T 2(7)
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Serial-Parallel (5) 2(%)

D
=
;"-
3
N
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Figure 3-3 : Block diagram of the serial DCT processor

The first stage converts the parallel input data into serial format that will be used in the
rest of the computation. At the second stage, the input data is pre-processed according to
equations (3-3) and (3-4). Since the data is already in serial format, serial adders/subtractors
are used with very low hardware complexity. After pre-processing the input data, the even
and odd kernels have to perform the matrix multiplication that will be discussed in the
following section. At the last stage, the transformed result is converted back into parallel form

by the serial-to-parallel shift register.
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3.4.1 Kernel Matrix Multiplication

The decomposition of the DCT algorithm results in two 4x4 matrices. The first matrix
has three distinct values b, d and f and the second matrix has four distinct values a, ¢, e and g.
The two matrix multiplications are independent of each other and hence can be computed in
parallel. Figure 3-4 and Figure 3-5 show the odd and even kernel respectively. For the even
kernel, it accepts the pre-processed data even-0, even-1, even-2 and even-3 and the odd kenrel
accepts 0dd-0, odd-1, odd-2 and odd-3 from the second stage. The multiplication of the pre-
processed data and the coefficients is performed by a bank of kernel multipliers which are
optimized to achieve the optimal performance and chip area. The even and odd parts of the
transformed results are outputted parallelly from the even and odd kernels respectively and
will be converted back to parallel form at the last stage.

Even kemet multiplier

E-0
E-1
¢ E-2
E-]

even-f —— el x

ED
E-t

¢ E2
E-)

even-f ————————® X

E-0
E-1
¢ E-2
E.3

even-2 ——————™»1

E-0
E-l

¢ E-?
E-3

even-3 ————————— &

Figure 3-4 : Even Kernel
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(Odd kemel multiplier
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Figure 3-5 : Odd Kermnel

In order to reduce the chip area and to achieve high performance, optimization on the
kernel multipliers is carried out. With the SD representation of the DCT kernel coefficients as
discussed in the previous section. A fewer number of nonzero digits is used to represent the
coefficients as compared with the fixed point representation. When we rearrange the SD
representation of the DCT kernel coefficients, the addition/subtraction can be implemented in
a tree structure. The even and odd DCT coefficients can be written as,

Even coefficients:

belr 2 20)- (2 +27)
P O
f= (2'3 + 2'4)—(2'8 - 2-'4)

Qdd coefficients:
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With the rearranged DCT coefficients with SD representation, we can map the
coefficient multiplication into a structure that takes the advantage of the SD representation.
Figure 3-6 and Figure 3-7 shows the even and the odd kernel multipliers respectively. As
shown in the figures, each kernel multiplier performs four multiplications at a time and the
hardware required is about 25 percent of the serial multiplier as described in section 3.2. The

even kernel multiplier accepts the input x, and is serially shifted into the flip-flop to generate
the shifted version of the multiplicand. The shifted version of x, inputted to a series of

adder/subtractors corresponding to the SD representation as shown in Table 3-1. The products

b-x,d-x and f-x are available in parallel. The odd kernel multiplier performs exactly the
same operation as the even kernel multiplier but it outputs the a-x, ¢-x, e-x and g-x in

parallel.

—* E0

Figure 3-6 : Even Kernel Multiplier
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Figure 3-7 : Odd Kernel Multiplier

Since the multipliers consume most of the hardware resources in the whole architecture,
a simplification of the multiplier structure ‘should contribute greatly to an efficient
implementation of the serial DCT processor. With a special arrangement, the input buffers
and the parallel-to-serial shift register are merged together to reduce the hardware complexity.
With the optimization on the kernel multiplier and the reduction of input buffers, a low

complexity DCT processor architecture is achieved.

3.4.2 Processor Interface

The processor architecture described above accepts parallel data and outputs the
transformed results in parallel. However, in general processor architecture, it is usually to
have a common data path for the input and output data. In a common data bus structure, the
data are input/output sequentially to and from the processor. Hence, a special circuitry should
be designed to allow a convenient interface to the processor. Figure 3-8 shows the interface
circuit for the processor. Input buffers are required to hold the input data since the DCT

processor requires the data available in parallel. In fact, the DCT processor consists of a bank
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of parallel-to-serial registers and can be used as buffers to store the input data. The input data
x(0), x(1}, ....... and x(7) are inputted to the corresponding register which is selected by the
logic controller. The transformed results 0), z(1), ....... and z{7) are output sequentially

through the multiplexer and is also controlled by the logic controller. The sequence of input

and output data is shown in Figure 3-9.

DCT Processor Multiplexer
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Figure 3-8 : Interface circuit for the DCT processor
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Ficure 3-9 : Timing diagram of the DCT processor

3.4.3 DCT Processor Prototype

After a thorough simulation and verification on the techniques and architectures
described above, a serial DCT processor has been designed and implemented using the
ALTERA EPF10K50-3 EPLD device [72]. The EPLD device features RAM based look-up-
table (LUT) for flexible interconnection configuration. The estimated gate count for the
overall architecture including the serial DCT processor core and the control circuits for
external interface is about 4500 gates. The critical path of the processor determines the
maximum obtainable operating frequency. In most of the DCT processor implementations,

the critical path is mainly located at the muitiplier or the adder/accumulator [25-27, 29] since
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they use bit-parallel approach. However, due to bit-serial approach which is used in our
implementation, the critical path is mainly located at the interface circuitry. The serial
adder/subtractor, including implicit pipeline registers that the accumulate gate delay is equal
to the total gate delay of the full-adder. The simulated maximum operating frequency of the
overall architecture including the interface circuit is above 45SMHz.

The PCI bus has become a standard bus in the PC architecture and breaks the PC data
transfer bottleneck. With a PCI bus controller, our serial DCT processor is interfaced to the
PC through the PCI bus and the data transfer rate is above 66 Mbytes/sec. Figure 3-10 shows

the interconnections between the DCT processor and the PCI bus controller.

o

AMCC 55933 . ALTERA FLEXI0K50
i
D{11..01
4 Y PCI Bus Controller DCT Procassor

PCI Bus 4 )

Conra! Signals

Figure 3-10 : PCI Bus Interface

The PCI bus controller is configured as bus master which means that the data transfer is
originated and controlled by the PCI bus controller rather than the PC. This configuration
relieves the burden on the PC CPU. Figure 3-11 and Figure 3-12 show the prototype board of

the DCT Processor and the PCI bus controller board respectively.
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Figure 3-12 : PCI Interface board

3.4.4 DCT Processor Specification

According to the architecture that is described in the previous section, the DCT
processor accepts 12-bits signed digit input and output 12-bits signed digit results. The total
clock cycles to complete one 1D-DCT is 32 which include the input and output data
conversion and internal delay. The summarized characteristics of the DCT processor are

shown in Table 3-2.
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Inputs 12 bits
Outputs 12 bits
Max. Clock Rate 45MHz
Clock cycles to complete one 1D-DCT 32

No. of gates 4500

Table 3-2 : Serial DCT processor characteristics

3.5 Error Analysis

Fixed-point arithmetic is usually employed>in hardware implementation of digital signal
processing algorithms because of high speed and small area requirement. In order to reduce
the hardware complexity, short fixed-point wordlength is usually preferred. However, the
balance between shorter wordlength and better accuracy must be carefully adjusted to achieve
the optifnal performance. Recently, there has been a number of fixed-point error analyses on
several DCT algorithms [74, 75]. For the completeness of our DCT processor
implementation, an analysis on the errors produced from the finite wordlength effect and the
signed digit representation of the DCT coefficients will be discussed in the rest of this section.
The error model used in our analysis is based on the assumptions that all error sources are
uncorrelated with each other and all errors are uncorrelated with the input.

There are two sources of error in our implementation, namely the coefficient
quantization and the finite wordlength effect. The coefficient quantization error is due to the
signed digit representation of the coefficients. Since bit-serial approach is used in our
implementation, internal wordlength during computation will not be truncated, however, the

truncation of wordlength of the result generates the second error.
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3.5.1 Signed Digit Representation Error

Since direct form of the DCT algorithm is used for our implementation, the fixed-
point error analysis is rather straightforward. In our implementation, the signed digit
representation is used to represent the DCT coefficients to reduce the hardware complexity of
the kernel multiplier. However, due to a finite number of nonzero digits is used and the error
imposed will affect the accuracy of the computation result and the computation error should
be minimized to an acceptable level. Moreover, the computation results are also represented
in fixed-point, and the maximum error should be less than 1 LSB. The upper bound of the
maximum allowable error ensured that the error of the transform resuits should not exceed 1

LSB. The error produced due to the quantization on the coefficient can expressed as,

o JE g imr ) SO i |

2 ~ 16

(3-3)

(m(2m+u
16

where [cos

]jl is the quantized coefficient. Minimization of e, required to
\ q

minimze the error of the quantized coefficients, When we consider the maximum error that

will be introduced from the quantization error, equation (3-5) can be modified to,

ofeme ofemen]

The above error expression assumed that all coefficients have equal probability to contribute

9

€= D Ko X

e

(3-6)

errors to the computation and e, will become maximum when the input is maximum. From

the above derivation, the maximum error of each quantized coefficient should be,

e = tu (3-7)

™ x. X8
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The upper bound of the quantization error for each coefficient guarantees that the maximum

error of e, will not exceed 1 LSB. The minimum number of nonzero bits (o represent the

DCT kernel coefficients is based on this criterion.

3.7 Experimental Results

In order to verify the correctness and to evaluate the performance of the DCT processor,
a series of experiments were carried out to measure the speedup for using the DCT processor
as compared to software implementation. Throughout these experiments, we have used a
Pentium PC with 133 MHz operation frequency and PCI bus interface. With the use of a
custom device driver for the PCI bus interface controller (AMCC §5933) and a prototype
board for the DCT processor, the execution time of each step involved in the computation of
the 2D-DCT is measured.

For software implementation of the 2D-DCT computation, row-column decomposition

approach is used and the computation time is £, pcr =3064.5. There are three distinct
steps necessary for the computation c;f the 2D-DCT using the DCT processor.
Step 1 : Setup and in;|tiate the DMA transfer using the PCI bus controfler (£, py, )
Step 2 : Compute the 2D-DCT in the DCT processor (¢, yuare_per )

Step 3 : Check interrupt status from the PCI bus controller (¢, )

The speedup for using the DCT processor can be computed as,

Lsoprware_per X1

(3-8)

Speedup =

setup _DMA + (tharn‘ware_DCT )X n+ tslarus

where n is the number of 8x8 blocks used in each computation. The more the blocks used,
the higher the efficiency for computation since the time required to setup the DMA transfer

and checking the status from the PCI interface controller is saved. The time used in each step
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and the speedup when using different numbers of 8x8 blocks in each computation is

illustrated in Table 3-3.

tump_DMA = 14,“‘9

thardware _Dcr = 325fa5

t.lm!u.l = 9:[1‘5'
n, number of 8x8 blocks Speedup
1 ' 5.514
5 8.248
20 0.0936

Table 3-3 : Speedup when using differene number of 8x8 blocks

Apart from measuring the speedup in a perfect situation, we also consider the speedup

in a real environment where a MPEG-2 software encoder is used to measure the actual

speedup to be achieved when the DCT processor is in use. The time required to encode a

352x 240 video sequence with 150 frames, and using I-frame only, is 139 second when we

use software DCT implementation. When we use the DCT processor, only 75second is

needed and the speedup is 1.853 when n=20. The reason for achieving a lower speedup as

compared to the ideal case for using the MPEG-2 encoder is that the computation time of the

DCT involved in the encoding process is-about 40%. This shows that a further development

on efficient algorithms to reduce the computation time of the remaining encoding process,

such as the motion estimation, coefficients quantization, variable length coding (VLC), etc. is

necessary.

3.8 Summary

A low hardware complexity with high speed operation and regular structure Discrete

Cosine Transform Processor architecture is presented in this chapter. The DCT takes the
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advantages of simple hardware and low interconnection complexity of the bit-serial approach
and parallel operation with multiple operation elements. With the signed digit representation
of the DCT coefficients technique, more than 75 percent reduction on the hardware for the
DCT kernel matrix multiplication can be saved. The optimized kernel matrix multiplier
exhibits highly pipeline operations and the maximum achievable operation frequency of the
processor is 4SMHz. The implementation of the DCT processor including external interface
circuits uses about 4500 gates. Experimental results show that the maximum speedup is above
. 9 when using 20 8x8 blocks in each computation. The computation time of the DCT is about
40% of the entire enceding process, the achievable speedup for the whole system should be
lower than this figure since most of the computation time, in this case would spend on the
motion estimation process when full MPEG mode is employed (with P-frame and B-frame).
In order to reduce the computation time of the overall encoding process, efficient algorithms
and hardware structures for the motion estimationr should be developed and we will show
some of our work to relief the computation burden of the motion estimation in the following

Chapters.
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Chapter 4

Adaptive Motion Estimation Algorithm

4.1 Introduction

As mentioned in chapter 2, Discrete Cosine Transform (DCT) [9] and motion
estimation/compensation (ME!MC)l [5] are very efficient to remove the spatial and temporal
redundancies respectively. Hybrid video coding that combines the aforementioned algorithms
is widely adopted in international video coding standards [14- 19]. However, the computation
complexity of the DCT and ME/MC is very high that real-time implementation using
software algorithm is almost infeasible. Hence, many fast algorithms have been proposed to
reduce the computational complexity of the DCT [20- 24] and ME/MC [33- 42]. Also,
architectures for the DCT [25- 31] and ME/MC [53-61] are proposed. Most of these
architectures use bit-parallel approach and require a large amount of hardware resources.
However, a low complexity implementation of the DCT algorithm is often desired. For this
purpose, a DCT processor features low complexity, high performance and regular structure
has been discussed in Chapter 3.

ME/MC video coding technique achieves high compression ratio by applying the rate
distortion theory '[2]. The quality of the decoded image is directly proportional to the output
bit rate. Thus in the motion compensated coding scheme, the coding performance depends
- heavily on the accuracy of the estimated motion vector. Block based motion estimation
algorithm has been widely used in video coding because of its simplicity and coding
efficiency of mc.)tion vectors. For the block matching algorithm, the present frame is divided

into two-dimensional small blocks of NxN pixels. Each block in the current frame estimates
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its motion vector by evaluating some matching criteria over the blocks in the reference frame
and selecting the block which yiclds the closest matching. Currently, the mean absolute
difference (MAD) criterion is considered as a good candidate for low bit-rate video
applications. This is mainly due to its relative ease of hardware implementation, although it
may suffer from degraded performance. More robust criteria such as the mean square error
(MSE) require multiplications and are not suitable for hardware realization.

As mentioned before, the accuracy of the motion estimation process affects the coding
performance heavily. Hence, the trade-off between quality and speed of the motion estimation
algorithms must be carefully justified. Among all search algorithms, the Full Search
Algorithm (FSA), for which all possible displaced candidates within the search area in the
reference frame are searched, gives the best solution in the viewpoint of prediction error.
However, it is well known that the FSA requires extensive computations. Thus, many fast and
efficient algorithms [33- 40] have been developed to reduce the computational complexity by
limiting the number of search locations. Nearly all algorithms rely on the assumption that the
distortion function increases monotonically as the search location moves away from the
global optimum location. However, this assumption does not always hold exactly true for
some image sequences that have multiple local minima. As a consequence, the fast search
algorithm would easily be trapped at a local minimum and this results inaccurate estimate on
the motion vector.

The drawback of limiting the number of search locations has been partly resolved by
using hierarchical search algorithmé [35, 36]. An alternative approach that reduces the
number of pixels contributing to the computation of the matching criterion was proposed by
Koga et al. [43] that uses a pixel decimation technique to reduce the computational
complexity. However, since only a regular fraction of the pixels enters into the matching

computation, the use of these regular subsampling techniques can seriously affect the
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accuracy of motion vector detection. Liu and Zaccarin (33] have successfully improved the
simple pixel decimation technique by using a scheme with alternating pixel decimation
patterns. The subsampling patterns are alternated over the locations searched so that all pixels
of a block contribute to the computation of the motion vector. This approach could gives a
good estimation of the motion vector when the image block has a nearly uniform intensity.
However for some image blocks that have high activities, some details may be neglected and
it probably would introduce excess prediction errors.

In [48], an adaptive pixe! decimation for block motion vector estimation is firstly
introduced. This approach adaptively selects a set of representative pixels in each block for
matching. Only one pixel among its neighbours is selected and sufficiently enough when the
neighbour pixels have similar intensity. But if the pixels have significantly distinct value, all
pixels are used in order to prevent the image edges to give misleading results for the matching
criterion. However, the drawback is that the number of selected pixels has large variation in
each block and it is difficult to implement in practice.

Thus, in this chapter, a number of pixel patterns are predefined which are based on the
edge content of possible .blocks. Since the selected pixel patterns used here have to be
predefined before the actual implementation, it is easy for hardware realization. Furthermore,
the prediction error as compared with the uniform pixel decimation is significantly reduced by
devising the predefined pattern set properly. The resuit is very close to the exhaustive search
without pixel decimation. Furthermore, the performance of our algorithm is better than that of
Liu and Zaccarin's [33] algorithm.

Details of the algorithm are shown in the following sections while part of the results of

this chapter have been published in [49].
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4.2 Pattern Based Pixel Decimation

In regular pixel decimation, a regular pixel pattern is usually used for the computation
of the matching criterion. However, it could easily be misled by some image textures that
would probably introduce excessive prediction errors. Thus, an adaptive pixel decimation {48]
was proposed which is to vary the number of selected pixels to be used for the computation of
the matching criterion. The algorithm uses less pixels when the block has a uniform intensity.
But for high activity blocks, more pixels are employed for the MAD matching criterion. This
adaptive approach can reduce the pred_iction error as compared with the regular pixel
decimation. However, due (o the adaptive nature of the algorithm, the variation of the number
of pixels selected is very large and is not suitable for real-time implementation. In order to
resolve the difficulty for a practical realization of thi-s adaptive technique, a predefined set of
pixel patterns is employed in our algorithm.

Each pixel! pattern of an image block represents a certain local activity such as textures
and edges. Hence the number of possible patterns increases exponentially with the size of the
image block. Unfortunately, recent video coding standards [14-19] often use 8x8 or 16x16
block sizes. Our strategy to be adopted for devising the pixel patterns is that, the pattern sizg
is chosen such that the corresponding image part of which could at most have one edge. It i1s
reasonable to assume that a ‘block of 4x4 pixels would only contain a single edge, and let us
refer it to as a “sub-block”. In our algorithm, we firstly divide the 8x8 or 16x16 image biock
into four or sixteen 4x4 sub-blocks respectively. Then, each 4x4 sub-block selects its
corresponding predefined pixel pattern according to the information contained such as the
intensity and edge direction. Finally, these four or sixteen selected pixel patterns will give the
most representative pixels for the image block. And also, these representative pixels are to be

involved in the MAD matching criterion to compute the motion vector. The selected
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representative pixels greatly affect the accuracy of the estimated motion vector and hence a

pixel selection scheme should be devised.

4.2.1 Pixel Selection In Uniform Sub-Block And Edge Sub-Block

The predefined set of pixel patterns should be designed such that important information
within the sub-block can be represented. Based on the nature of sub-blocks, they can be
classified as uniform sub-block and edge sub-block. For uniform sub-block, only the simplest
comparison is required. Since the sub-block has uniform intensity, only two pixels as shown
in Figure 4-1 could contribute to the computation of the matching criterion and this could be
sufficiently enough. For blocks that have sufficient intensity variation are classiﬁed as edge
sub-block. For this type of sub-blocks, more pixels have to be involved in the matching

criterion to reduce the prediction error.

Selected .pixel

Figure 4-1 : Predefined pixel pattern for uniform sub-block

There are an excessively large number of possible physical situations for a sub-block
that contains an edge. Since small blocks are used, the edge within the block is confined to a
resolution of 45°. Eight basic edge patterns (c;: where [ is the edge orientation) with
orientations 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315° are defined. Figure 4-2 shows the
0°, 45°, 90° and 135° edge patterns. The remaining orientations are 180°, 225°, 270° and 315°
which have contrast in the opposite direction. These are defined in order to devise a set of

pixel patterns to be used as edge sub-blocks for the matching criterion.
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Figure 4-2 : Edge patterns with_different orientations

A small set of predefined pixel patterns containing the important edge information is
constructed and is according to the assumption that only a single edge is contained within
each sub-block. The derivation of the predefined edge patterns is similar to those used in
classified DCT or adaptive DCT image coding, however, the edge patterns defined here are
used for the computation of the matching criterion, but not for the coding of the image. As
depicted in Figure 4-3, we define the normal lines to different edge orientations. Since these
lines contain significant intensity variations, a pair of pixels is selected along a normal line for
the case that two adjacent pixels are in different intensity regions. As a result, different pixel

patterns have been designed as shown in Figure 4-3.
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Figure 4-3 : Possible edge patterns with its corresponding pixel pattemn
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4.2.2 Edge Pattern Matching

The matching scheme to maps each 4x4 sub-block into their corresponding pixel
patterns must be of low computational complexity that does not introduce excessive burden to
the motion estimation process. For each 4x4 sub-block, we denote the intensity of each pixel

as I(i,j) where 0<i,j<3. A natural measure of the edge is the discrete gradient

VIG, j)=1{A 16 )D.A 16, D) where the directional derivative can be approximated as [11],

33 L3
NIHE NI EDWRICT) 4-1)

i=1 j=0 i=0 j=0

and

31 3 1 1
NI EDN I EDNIT) ' (4-2)

i=0 j=2 =0 j=0
The gradient magnitude and gradient orientation with each image sub-block are given

respectively by,

Vi, i= (A, 1G ) +(8,1G, ) (4-3)
and
ZVI(i, j)=tan™ A’I(':’ j ) (4-4)
' A J)

The gradient magnitude is used to determine the type of the sub-block. If
(IVI(i,j)I)ZS(IVIIm)Z, where VIl is the minimum value of the discrete gradients

containing edge feature, the block is determined to be a uniform sub-block; otherwise it is an
edge sub-block. The gradient orientation ZVI(i, j) is quantized by an increment of 45° and it
maps the sub-block into their corresponding edge pattern subspace, ¢;. A unique mapping is
achieved by selecting the distribution of shaded and unshaded pixels in the edge pattern, as

depicted in Figure 4-2, to be the closest to that of the sub-block. This can easily be

accomplished by simply counting the number of shaded and unshaded pixels in the sub-block,
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and choosing the edge patterns having the best match. And then, an appropriate pixel pattern
according to Figure 4-3 is assigned for the sub-block.

After we can assign appropriate pixel patterns to a number of 4x4 sub-blocks within
each 8x8 or 16x16 block, the most representative pixels are obtained. Only these pixels
contribute to the computation of the matching criterion (MAD). We select k& motion vectors
which are the ones to give the smallest MAD for further comparison. Then, we compute the
MAD matching criterion for each of the k motion vectors using all pixels. The one that has

the minimum MAD among & motion vectors is selected as the final motion vector.

4.3 Computational Complexity

The computational complexity of an algorithm affects the feasibility of its
implementation. The improvement on the performance should not introduce a large amount of
extra computational effort. The computational complexity of a motion estimation algorithm
can be described by a function in terms of the number of search locations and the number of
selected pixels. To measure the computation complexity of our adaptive pixel decimation
algorithm, we denote the number of pixels selected as §. If all candidate locations are
searched, the total number of search locations required is (2 p+1)2 with * p search range for

both vertical and horizontal directions. Then the total number of pixels required for evaluation

is Sx(2p+1). To compute the MAD of each candidate location, each pixel involve three

operations namely subtraction, absolute value and accumulation. If we assume the three

operations require the same amount of computational complexity, the total number of
operations to evaluate one motion vector is 3X§ x{2p+ 1)2. In our algorithm, the edge pattern

matching requires to compute the gradient magnitude and gradient orientation of each 4x4
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sub-block as defined in equations (4-1) to (4-6). This extra computation complexity can be
estimated as follows.

To compute the discrete gradient VI, j) for each 4x4 sub-block, we have to compute
A @, j) and A LG, ) first. [f we consider to precompute part of the summations first, then
only 18 additions are needed to compute both A I(,j) and A I(, /). Then equation (4-1) and
(4-2) can be written as,
A G, H=(a+b)-(c+d)

AL, jy=b+d)-(a+c)

13

3y J 2 11
where =3 3 16, ), b=Y. Y (G, ) e= Y, X 1G.j) and d =Y 1. j)
ial

=0 i=2 f=2 = f=0 i=0 j=2
After we compute the discrete gradient, the computation of the gradient magnitude
(vig, j) [ for each 4x4 sub-block requires two multiplications and one addition. No

further computation is required if the sub-block is classified as uniform sub-block; otherwise
if the sub-block is classified as edge block, one addition multiplication is required to compute

the gradient orientation ,v(; j). Table 4-1 shows the number of operations required for

pattern matching of each 4 x 4 sub-block.

No. of additions | No. of multiplications

Uniform sub-block 19 2
Edge sub-block 19 3

Table 4-1: Number of operations required for pattern matching of each 4 x 4 sub-block

If the 16x16 block size is used, then there are totally 304 additions and 48
multiplications required for the worst case situation. However, the operations for the pixel
pattern matching can be neglected since the computation of the matching criterion dominates
the computation complexity. The number of operations required for the FSA and 4-to-1

regular pixel decimation are shown in Table 4-2.
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Algorithm No. of operations No. of operations
(p=7) (p=15)
Full Search (FSA) 57600 246016
Regular 4-to-1 pixel decimation 14400 61504

Table 4-2 : Number of operations required for different motion estimation algorithms

4.4 Experimental Results

In order to evaluate the performance of the pattern based pixel decimation algorithm,
many sequences of motion pictures have been tested; these include 80 frames of the
“football”, “tennis” and “salesman” sequences with 352x240 pixels. The maximum allowed
displacement (p) is set to & with a block size of 16x16. We compare different algorithms
using the prediction errors (MSE) of the motion-compensated frames. Although the
simulations were run using many sequences, we only present the results on “football”
sequence since they are typical ones among all results from the sequences.

The prediction errors (MSE) of a regular 4-to-1 pixel {43] and that of the pattern based

pixel decimation algorithm with 1V11_, = 20 and k=4 are shown in Figure 4-4. It is seen that

our pattern based algorithm is significantly better than that of the regular 4-to-1 pixel
decimation [43]. Note that, the performance of the FSA without pixel decimation, the Liu and
Zaccarian’s [33] pixel decimation and adaptive pixel [48] are also shown in Figure 4-4. It 13
seen that the pattern based pixel decimation algorithm has an MSE very close to other pixel
decimation approaches. In Table 1, the average numbers of selected pixels for different pixel
decimation algorithms are shown. The average numbers of pixels used for our pattern based
pixel decimation are 1.6 less than that of the regular 4-to-1 pixel [43] and the Liu and
Zaccarin's [33] approach. The results also show that the pattern based pixel decimation

algorithms are very effective.




Chapter 4 Adaptive Motion Estimation Algorithm

Algorithm Average pixel selected

Without pixel decimation 256

Regular 4-to-1 pixel decimation [43] 64

Liu and Zaccarian’s pixel decimation 64

(33]

Adaptive pixel decimation based on 44
neighbour pixels [48]

Pattern based pixel decimation 40

Table 4-3 : Comparison of average selected pixels for different algorithms
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Figure 4-4 : MSE produced by different pixel decimation algorithms for the “Football”
sequence
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4.5 Summary

In this chapter, a new pixel decimation block matching algorithm is proposed to
compensate the drawback in regular pixel decimation techniques. We define some “most
representative pixel patterns” and make the selection according to the image content in each
block for the matching criterion. The pattern matching requires very low computational
complexity by the use of discrete gradient measure. Our approach can efficiently compensate
the drawback in uniform pixel decimation. Computer simulations show that this technique is
close to the performance of the full search, and is about 1.6 times faster than that of the
famous approach given by Liu and Zaccarin [33]. Also, it is more convenient for hardware

realization as compared with the fully adaptive pixel decimation.
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Chapter 5

Multiprocessor Realization of Adaptive Motion Estimation Algorithm

5.1 Introduction

It is no doubt that many fast algorithms {33-40] for the Block Motion Vector Estimation
have successfully reduced the computational complexity to an acceptable level as compared
to the Full Search Algorithm. Some VLSI implementations of these fast algorithms have also
been reported in [53- 61]. However, the limited searching location or the reduction oﬁ the
number of pixels involved in the matching criterion has posed the common problem that the
searching process would be trapped into a local minimum easily. Adaptive algorithms [47-49]
have been proposed to solve the aforementioned problem by adjusting the position and the
number of selected pixels to be used in the matching criterion according to the features of the
image block. Since block based motion model is assumed and the matching criterion is
computed using the pixel intensity difference between two image blocks. Objects are
segmented and resided in different blocks, the inconsistent prediction of these blocks will
create serious problems.

Overlapped window approach [52] could be used to overcome the problem of blocking
artifacts in the motion compensated frame. However, it is not compatible with the current
video coding standards [14-19] which employ non-overlapped blocks with a fixed size. The
edge-oriented motion estimation algorithm [50] using a fixed block size can obtain more
accurate motion prediction along moving edges and produce better visual quality as compared

with the FSA.
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In this chapter, a multiprocessor structure is proposed for the realization of a new
adaptive algorithm [50] for Block Motion Vector Estimation in motion picture compression.
It is found that edge information is extremely important for enhancing the picture quality,
which could even outperform the Full Search Algorithm. Since the algorithm is adaptive, it
appears that the realization of the approach could be complicated. However, this problem can
be resolved by making use of a multiprocessor system with multiple-bus structure. With
multiple buses, the bottleneck of data transfer between the Processing Elements and memory
modules has been reduced. With a predetermined execution profile and the decomposition on
the algorithm into several distinct tasks, the idling time of each processor is reduced. For the
realization using ASIC design, a speedup of 3.5 is achievable by making use of four
Processing Elements with overheads of less than 15% hardware complexity for the switching
network.

Some preliminary results in this chapter have been reported in [63].

5.2 Edge Oriented Adaptive Motion Estimation Algorithm

Let us begin to review a basic problem of the motion vector estimation. It is commonly
known that the block size of a block matching algorithm gives a significant effect to its
realization. If the block size is too small, there could be too many blocks that match to the
block under question while if the block size is too large, it is more likely to have blocks with a
mixture of stationary background and moving objects. The latter problem is significant in
many situations, including cases using commonly used block sizes, such as 8x8 and 16x16.
This becomes worse if the stationary background occupies a larger share of the block while
the moving object only shares a smaller part of the block. It is often that the moving object is
the major target of the scene to be observed by the observer. In this case, the motion vector

estimated will be the motion vector of the background instead of the object, which gives rise
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to annoying artifacts of having some disconnected objects. We resolve this problem by
extracting the edge patterns of the current and the previous frames. The major idea is that the
edge can help us to track the motion object such that we can use the information to form the
motion vector which could reflect the motion more accurately. Four types of blocks are
classified which are based on the characteristics of the blocks. The procedures to identify the

type of each block of the algorithm are summarized as shown below.

1. To form edge frames

Since the detection of boundary edges of the image sequence is an important factor, a
simple gradient mask as shown in equation (5-1), the Sobel Operator is used to obtain the
edge frame, with the gradients equal to §, (i, j). Before finding the approximated directional”
derivatives [11], the image must be smoothed so that the ripples, spikes and high frequency

noises from the image may be removed.

12 1 10 -1
g.={0 0 0| g=[20 -2 (5-1)
-1 -2 -1 1 0 -1

8, (i, )= 16 j)*g,| (5-2)

I ) g |+

2. To detect the level of motion inside blocks

This step is to classify blocks of the current frame into three types according to the

contents of the block using the following Frame Difference equation,

N-1N-I
FD, =22

=0 j=0

LG, j)-1,.6 ) (5-3)

where n is the frame number, and 1, (i, j) is the intensity at location (i, j) of the n* frame.

This is an initial check to see possible motion in the frames. Should the value of FD, is lower
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than a predefined threshold value, we assume it as a block without much motion and the
normal MAD matching criterion will be used for locating the motion vector of the block.
Should FD, is larger than a predefined value, it is a block containing some level of activities

and the following edge matching criterion will be used.

3. To identify the block containing moving edges

Since the FD, is larger than the predefined value, we have to check if it contains some
major moving edges. This is achieved by converting the corresponding block of the edge
frame, S {i,/), to become a binary edge block (with 0 or 1 value only, and with an

appropriate thresholding value).

1 if $(.j)>T,
0 othwise

(5-4)

B(,-,,-)z{

Z

-1 N-1

= B, (5-5)

count
j=0

I
>
-~

If the sum of this binary edge block B, is larger than another predefined value, it is

considered as a block with active moving edges. The Binary Edge Mean Absolute Difference,
BEMAD, as shown in equation (5-6) is used as the matching criterion to locate the motion

vector (instead of the normal MAD).

-1
BEMAD(x, y): |B, (i, 1)~ B, (i +x, j+¥) (5-6)

=
=
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4. Blocks on moving objects

If the sum of the elements in the binary edge block is smaller than the predefined value,
it is considered as a block inside a moving object. In this case some neighboring motion
vectors could be used to shorten the searching range for using the MAD for motion vector

estimation.
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5.2.1 Task Decomposition
With the procedures described above, the complete operation of the Edge-Oriented
Adaptive Motion Estimation Algorithm can be illustrated by a flowchart as shown in Figure

5-1.
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Figure 5-1 : Flowchart of the Edge-Oriented Adaptive Motion Estimation Algorithm
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As indicated in the above flowchart, the algorithm consists of several distinct tasks and

is decomposed as follows.

N=LN-I

1,0, 1)~ 1. J)

Task 1 - Evaluate the Frame Difference, FD, =

i=0 j=0
Task 2: Smooth the Current Frame , 7, (i, j)=smooth{I (i, j)}
Task 3 : . Perform the edge detection, S, (x, )= |I'(x, yj xg +|I'(x, y)* g)_l

Task 4: Generate the binary edge, B(x, y)= Threshold{S(x, y)}

N-
Task 5: Count the binary edges within the block, B, = 2
_0

a,Mz

N-I

Task 6 : Compute the MAD, MAD(x y)=

i=0

2

=1

G, )1 Gi+x,j+y)

-
H
(=}

N-IN-I

Task 7: Compute the BEMAD, BEMAD(x,y)=3.> |B,

,i=0 j=0

-B _(i+xj+y)

With these seven distinct tasks, we can implement the algorithm using multiple processors
with a proper scheduling policy to perform parallel processing to speedup the motion
estimation process. However, the data dependence between tasks should be carefully
identified. The data dependence graph of the algorithm can be obtain from its operation flow.

The flowchart illustrated in Figure 5-1 shows the sequence of different tasks of the algorithm.

5.3 ASIC Realization

Since the algorithm is adaptive, the realization of the approach using hardware could
be complicated. We resolve this problem by making use of a multiprocessor system with
multiple-bus structure. The major idea is that since the algorithm is adaptive, the realization

times for different blocks would be different. A system with multiple buses connected to
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different memory modules could resolve the problem of idling time of processors. By
decomposing the algorithm into several distinct tasks and with proper task scheduling, the
idling time of each processor can be used to perform other outstanding task. This is because
the processing time of each distinct task is fixed but wifh different combinations for each
block. Thus, the processing time for each task can be pre-determined and the scheduling can
be easily adopted. Furthermore, the present of our design can allow the searching of motion
vectors to be done very quickly since multiple processors are used. The data dependence
graph of the algorithm derived from the flowchart as shown in Figure 5-1 is illustrated in
Figure 5-2 which forms the basis of the task scheduling policy.

, S5, (xy)
16, ) B,(x.y}

Current .
I,

Figure 5-2 : Task dependence graph of the Edge Oriented Adaptive Motion Estimation

Algorithm

There are two possible approaches for its parallelism that can be implemented using
the multiprocessor structure: 1) frame level parallelism and 2) block level parallelism. In the
former approach, coarse-level parallelism is explicitly achieved by using each processor (o
perform the motion estimation of one entire frame. The implementation of this approach is
straightforward. Multiple and identical copies of modules consisting of processing elements
and memory modules with simple connections are sufficient for the simple dataflow of the
system. However, the processing time for each frame varies significantly and the

synchronization between the input frame sequence and output sequence will introduce a large
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amount of idling time. Furthermore, the excess delay between the input frame and the output
motion vector is not acceptable in many applications such as video conferencing. On the
contrary, the second approach, fine-grain parallelism is obtained by distributing each block
into an idling processor. This fine-grain approach is very attractive for the implementation
since the idling time of processors can be minimized and the delay between the input frame
and the output motion vector is reduced dramatically. However, it would be very complicated
for the implementation since the data access pattern is very irregular. The balance point of the
parallelism should be carefully selected such that the resulting architecture can be efficiently

implemented with a reasonable amount of extra hardware.

5.3.1 The Multiprocessors System

The general architecture of the whole system is illustrated in Figure 5-3. As shown in
the figure, the memory is divided: into equal size memory blocks. Connections between the
processors and the memory modules are achieved via a switching network. The switching
network should ensure that each processor receives their required data in each clock cycle and
the time delay between the input and output should be minimized. Two separate switching
networks are needed in the system: one is used to connect up the data bus from the memory
modules to the processor, while another is used to connect up the appropriate address bus of

the processor to the memory module.
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Figure 5-3 : Architecture of the multiprocessors system

5.3.2 Design And Implementation Of The Switching Network

The Performance of multiprocessor system always bounded by the switching network.
Since we intent to implement block level fine-grain parallelism, low latency through the
network is particularly important. The switching network is the most important part of the
architecture, which affects the performance of the whole system. As stated in the early part,
the switching network which is used to connect up the data from each memory block to the
appropriate processor and to guarantee that each processor can receive correct data through
the data bus in each clock cycle. Note that the subject network topology is a well-understood
problem among researchers of high performance parallel computing using multiprocessors.

There are many techniques for the implementation of the switching network, including
multi-stage networks and crossbar network. At the same level of complexity, multi-stage
networks have longer latency than single-stage (crossbar) network. Moreover, in order o
avoid the entire system to be stalled due to network conflicts, non-block multi-stage network

is a commonly used technique to guarantee there is always connection between the memory
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and the processor. On the other hand, irregular structure of the network makes it difficutt for
its implementation.

From a system-level perspective, single-stage (crossbar) network is more preferable
than the switching network implementation. However, the delay and hardware complexity of
the crossbar network scale up exponentially with the number of ports. We, however, believed

that the crossbar network can be implemented efficiently using customized ASIC design.

5.3.2.1 Multiplexer Based Crossbar Network

There are many implementation approaches [76, 77] for the crossbar network. Among
the four possible impleméntations of the multiplexer cell as described in {77], a tree of OR
gates has the optimal speed and area performance. The resulfing structure of the crossbar
network also exhibits regular structure which is very suitable for VLSI implementation. An

example of a 4x4 crossbar network is illustrated in Figure 5-4.
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Figure 5-4 : The implementation of the crossbar network using multiplexer , (a) mutiplexer
cell, (b) cell matrix of 4x4 crossbar
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When we consider the overall performance, implementation cost and available technologies,

the multiplexer is the most reasonable choice if the architecture is implemented using either

Erasable Programmable Logic Device (EPLD) or Field Programmable Gate Array (FPGA).
The 2-to-1 multiplexers based design of the crossbar network features a

[logz(k)—l]—stage multiplexer at each output to provide switching. In order to realize a n -

bit network, the single-bit design as shown in Figure 5-4 is replicated n—1 times. The
implementation of the crossbar network with P processors requires P -column of
multiplexers and the implementation cost of each multiplexer should be estimated.

For the purpose of illustration, the implementation cost of a 4-to-1 multiplexer is used
as an example and it is shown in Figure 53-5.
[Cinpu1 )
(Cinper )
(ingui3 )

Sekect Input ¢

Sefect Input 1

Selac! Input 2
D

Figure 5-5 : 4-to-1 multiplexer

The 4-to-1 multiplexer here uses 7 logic gates and in general, the multiplexer is

implemented as a tree structure, the cost of the multiplexer can be formulated as,

tag, (&) k
Costmulliplexcr = 2 (5_7)

= 2

where k is the number of inputs to the multiplexer.
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5.3.3 Implementation Cost Of The Switching Network
Since there are two separate switching networks which are required for the
architecture, two types of multiplexers should be used. The cost functions of these two types

of multiplexer are as shown in the following equations.

log, (k)
COStData Bus multiplexer "( Z . )XPX Bits per word (5'8)
2 p
Cost Address Bus multiplexer = ( E ? ]X kX lng (B) (5 '9)
i=0

where P is the number of processors, B is the memory block size and k is the number of
memory modules used. Hence the total cost of the switching network is the sum of the two

costs.

lag, (k) k log, (P} P
COSt g igcting Network = 2 o % PxBits per word + 2 o x k x log,(B) (5-10)

i=0 i=0
Usually the absolute cost of the switching network does not reflect much idea on the amount
of resources used for the whole system. Hence the ratio between the cost of the switching

network and the cost of the whole system is used as a relative measure.

Cost of Processors + Cost of Memory + Cost of Switching Netwark
Cost of Processors + Cost of Memory

Cost Ratio =




Chapier 5 Multiprocessor Realization of Adaptive Motion Estimation Algorithm 79

23 \
2

\
A
Cost Ratio \\\\\

o

=~

Memory block size(b) 2°

Figure 5-6 : Cost ratio of the switching network when using multiplexer

The cost ratio was computed by assuming that the memory size is 2'® or 65536 words
with 8 bits per word. Cost ratio using 1 to 16 processors are shown using different curves with
P = ] for the lowest curve, P = 16 for the highest curve. The graph in Figure 5-6 shows that
the cost ratio is exponentially decreasing as the number of memory block is reduced. For
example, if the number of processors to be used is 4 and the size of each memory block is 8 x

8 words, then the cost ratio is equal to 1.12.




Chapter S Multiprocessor Realization of Adaptive Motion Estimation Algorithm 80

5.4 Results

With the algorithm and the architecture described above, the algorithm is realized via
block-level parallelism using the multiprocessor architecture. The efficiency of the
architecture depends on the reduction of the idling time of each processor. As illustrated in
Figure 5-2, there are four possible execution paths in the algorithm. The exccution time of
each execution path is derived from the sequential execution of the algorithm. Since the
execution time of each execution path is deterministic, straightforward scheduling strategy
based on the derived execution time of each task can be used. The four execution paths are
identified as,

Path a: Task I, Task 6

Path b ; Task 1, Task 5, Task 6

Path ¢ ; Task 1, Task 5, Task 7

Path d : Task 1, Task 5, Task 7, Task 6

The data dependence graph shown in Figure 5-2 indicated that the edge detection
process is preceded the motion estimation processor. This dependence requirement introduces
some idling time on the processor which is needed to wait for the completion of the edge
detection process. The relative execution time of the four execution paths a, b, ¢ and d is

measured as shown in the follow table, and the data of which are used for the task scheduling

decision.
Path Relative execution time
¢, 0.032595
t 0.30335
L, 0.7191
t ]

Table 5-1 : Relative execution time for different paths
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The performance of the multiprocessor system is simulated using different number of
processors and the speed-up for the realization of the edge oriented adaptive motion

estimation algorithm for the sequence “table tennis” is shown in Figure 5-7.

ast 1

Speedup
3 L

25} ' .

i 1 i L L

1 2 3 4 5 6 7
MNo. of processors

Figure 5-7 : Speed-up_for the "table tennis" sequence

5.5 Summary

It is seen that we have presented an algorithm using edge mean absolute difference for
motion estimation and its realization using an efficient multiprocessor structure using
multiple-bus. The algorithm is more efficient as compared to other algorithms, including the
Full Search Algorithm, in the literature, while the realization using the multiple-bus system
requires little overheads. With task decomposition and block-level parallelism, the idling time
of each processor is reduced and the speedup of the realization approaches 3.5 when four

processors are used, with less than 15% of hardware overhead for the switching network.
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Chapter 6

Edge Masked Motion Estimation

6.1 Introduction

As we have discussed in the previous chapters, Block Matching Algorithms (BMA)
[37] divide the image frame into regular blocks and do not consider any rotation and scaling
of the objects to simplify the motion estimation process. Although this approach may produce
poor results for some scenes that contain a large amdunt of zoom, object translation and
camera panning, the simplicity and coding efficiency for motion information are the primary
consideration and adopted by a number of video coding standards [15-19]. Many fast search
algorithms [33, 35-42] have been developed to reduce the computational complexity by either
limiting the search location or reducing the pixel involved in the matching criterion. The
advances in VLSI technology also facilitate a cost effective hardware realization of the BMA
even to implement the full search which requires the highest hardware complexity.

The objective measure of the matching determines the accuracy of the estimated
motion vector. The Mean Absolute Difference (MAD) [43] criterion has been considered as a
good candidate for low bit rate video applications for it requires simple operations. More
accurate criteria such as the cross-correlation and the Mean Squared Error (MSE) [51] are too
complex for hardware realization. By the use of the above mentioned objective measures, the
error between the current block and the reference block is evaluated in a point by point
manner. However, the human visual system (HVS) perceives an image as a whole rather than
individual pixel. Thé most annoying problem is that blocks located on boundaries of moving

objects are not estimated accurately. The discontinuity of the edges of the object may be
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considered as the most objectionable distortion by human observers. Thus the conventional
matching criteria cannot produce the best subjective result that is closely related to the HVS
even using the full search algorithm. Some adaptive algorithms [47, 49] had tried to reduce
the drawback of reducing the number of pi.xels in the matching criterion by considering the
block activities to select the “most representative pixels”. The disadvantage of using intensity
matching criterion which was pointed out in [50] is that even for the global optimum full
search approach, it may lead to the “missing edge effect”, and which making use of edge
features in consecutive frames could result in better motion-compensated prediction frames.

In this chapter, an edge-masked matching criterion has been found to be most suitable
for low bit-rate video applications. The proposed matching criterion makes- use of edge
features to modify the conventional matching criterion for computing the motion information.
Experimental results show that the proposed matching criterion performs as well as the more
complex criteria and is able to remove the most visually disturbing artifacts with a slight
increase in hardware complexity. In the following sections of this chapter, we will establish
some preliminaries related to the study and define the problem. Details of the new matching

criterion will be discussed and a custom architecture will be given.

6.2 Conventional Matching Criterion for Block Motion Estimation

Let us start to recall that the motion model for block matching algorithms (BMA)
usually assumes that an image is composed of rigid objects in translational motion, while the
motion field over the blocks of pixels moves as a group. The present frame is divided into
two-dimensional small blocks of NxN pixels. For each block in the current frame, we
evaluate a certain matching criterion over nearby blocks in the reference frame and select the

block which yields the closest matching. This closest matching block is then used as a
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predictor for the present block. The relative position of these two blocks defines ‘a motion
vector associated with the present block.

Let us assume [, (m, n) to be the intensity of the pixel at locatioﬁ, (m,n) (upper most
left in the block) of the current frame, £, and /, (m+k,n+l) to be the intensity of the pixel
on the reference frame, ¢ —1, displaced by the & pixels and { lines within the search window.
The displacement {k,/) which has the closest matching with the current block is selected as

the motion vector. The accuracy of the estimate depends on the matching criterion applied in

the search. Let us recall some of these matching criteria.

Mean Squared Error (MSE) [51]

N-I N1
MSE (k,1) =#ZZ[I‘(m,n)—It_,(m+k,n+l)]2 (6-1)

m=0 n=0

In this measure, the smallest MSE(k,[) within the search window, p<k,/<-p,
represents the best match. That is, the estimation of the motion vector (1,v) is taken to be the

value of (k,{) which minimizes the MSE.

(u,v)=arg %161 MSE(k,1) - (6-2)

Mean Absolute Difference (MAD) [43]

However, the MSE criterion is not commonly used in VLSI implementations because

it is difficult to realize the square operation in hardware. Instead, the MAD criterion, defined

as

=

a,M
aMz

MAD(k,D) = |1 (m,n)—1,_,(m+k,n+1) (6-3)

L
N?
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is the most popular choice for VLSI implementations because it does not require any

multiplication and produces similar performance as the MSE criterion. Then the motion

vector {u,v) is given by
(u,v) = arg min MAD(k,]) (6-4)

Matching Pixel Count (MPC) [38]

“Another alternative is the Matching Pixel Count (MPC) criterion. In this approach,
each pixel within the block is classified as either a matching pixel or a mismatching pixel

according to

I iftl (mnt)y=1_(m+kn+l)i<a

) (6-5)
0 otherwise

T(m,n;k,l)z{

where a is a predetermined threshold. Then the number of maiching pixels within the block

is given by
N-IN-]
MPC(k,l)=Y Y T(m,n;k,0) (6-6)
m=0 n=0
and
(u,v)=arg max MPC(k,b) (6-7)

That is, the motion vector (u,v} is the value of (k,l) which gives the highest number of

matching pixels. The MPC criterion requires a threshold comparator, and a Iogz(N 3) counter.

Among the above matching criteria, the MSE requires multiplications, thus it is costly
to implement in real time processing. The MAD is the most widely used in matching criterion
for the BMA due to its lower complexity. Although the MPC requires less hardware than
MAD does, it is less appropriate to use in existing coding due to the degradation of the

performance.
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6.3 Edge-Masked Matching Criterion

Although the above criteria have a good physical and theoretical basis, they correlate
poorly with the subjective measure of two successive blocks. Much of the reason for this is
due to the fact that the human visual system does not process the image in a point-by-point
fashion, but extracts certain spatial features. Thus, the conventional criteria cannot reflect the
image characteristics such as edge fidelity, image contrast, efc. Consequently, certain spatial
features are also very important to predict the compensated frame. Our proposed edge-masked
matching criterion tries to obtain more accurate motion prediction along moving edges to
which human visual system is very sensitive.

In our proposed scheme, an edge mask is used to enhance the conventional MAD
matching criterion such that the motion-compensated prediction frames are tied more closely
to the physical features. An edge detector is used to generate the edge mask. For choosing an
edge detection algorithm, we consider its speed and precision. Before finding the directional
derivatives, we have to smooth the image. For the smoothing, ripples, spikes or high
frequency noises from the image could possibly be removed. A simple mean smoothing fitter
that performs equally weighted smoothing using a square window with the size of 5 has been
employed in our work. Theﬁ the edge detection algorithm is applied to the smoothed current
frame. For simplicity, the 3x3 Sobel gradient convolution masks, as shown in equation (6-8),

have been used.

12 1 1 0 -1
g.=|0 0 0]g=|2 0 -2 (6-8)
-1 -2 -1 1 0 -1

Then edge frame S, is obtained from equation (6-9).

S (mn)=A1/(mn)*g \+11(mn)*g | (6-§)
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where I’ is the smoothed image with the dimension same as the original image. Let us define

the edge mask, B, , as shown in equation (6-10)

B if S,(mn)>T

. (6-10)
! otherwise

B .(m,n) ={

where T is a predefined threshold and f is the edge enhancement factor.

Then the Edge-Masked Mean Absolute Difference, EMMAD(k,!), is defined as

follows,
1 N—IN-=I
EMMAD(k,l) = FZEU, (m,n)—1,_,(m+k,n+1D)|xB,(m,n) (6-11)
m=0 n=0

From equation (6-11), we should observed that an increase in f§ will enhance the influence of
edge features in the matching criterion. The selection criterion of B also depends on the

architecture for its realization as described below.

6.4 The Architecture

The Edge-Masked Motion Estimator consists of two stages in which the function of the

mask generating stage is to form the edge mask, B,. It includes a 55 smooth filter, a 3x3

Sobel Operator and a comparator. The second stage estimates the motion vector of the current
block from the reference searching window with the matching criterion enhanced by the edge
mask. The proposed general architecture of the edge-masked motion estimator is shown in

Figure 6-1, which obviously consists of the first and the second stages.
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Figure 6-1 : Architecture of the Edge-Masked Motion Estimator

6.4.1 Smooth Filter
The proposed structures of the mask generating stage includes the smooth filter and the
Sobel edge detector. The 5x5 smooth filter performs the smoothing on the input image block

through a convolution operation and the smoothed image can be expressed as,

I (m,n)=1(mn)*s (6-12)
(1 1 1 1 1]
1 1111
where s=[1 1 1 11
I 1111
AN BN Y

From equation (6-12), the convolution can be implemented by a series of addition, and
the partial result of each row can be reused. Figure 6-2 shows the architecture of the 5x5

smooth filter.
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Figure 6-2 : 5x5 Smooth Filter

6.4.2 Edge Detector

The Sobel Operator performs similar operations as the smooth filter. With the derivation
as shown below, the architecture for the Sobel Operator is obtained and is greatly simplified.

Equation (6-9) can be rewritten as,

S, (m,n)=

b, (m,m)| + B, (m,m)| (6-13)
where h (m,n)=1I (mn)*g, and,
hy(m,n)=1,'(m,n)*gy
Let I (m,n) be a 16x16 image block. The image pixel enters into the system

sequentially from left to right and top to bottom, the 2-D index 7 ,(m,n) can be mapped onto a
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20

1-D time index, i.e. [,(k). Then the computation of & and / can be expressed as shown in

the following equations.

and,

h(ky=1k—17)+21'(k—16)+1'(k I =[Ik+I5)+ 28k +16)+ 'tk +17)]

h},(k)=l'(k—l7)—l'(k —ISY+2'k =D =21k + N+ 'k +15)-1'"(k +17)

Apply the Z-transform to equations (6-14) and (6-15), we have

and,

H()=z2"I@+2:7"TI'(0)+z27"I' @) - [z”r(z) +221 () + z”l'(z)]

H @)=+ 2 T @+ P @@+ 227 )+ r'@|

H(=7"I'@-" I+ 227" (@ -2d (9 + 2 I'"(2) - " 1'(2)

7@ =@ - Ik 2 ro-raklero-re)
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Figure 6-3 : 3x3 Sobel Operator
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Equations (6-16) and (6-17) can be directly mapped onto hardware realization where
7', of course, stands for a delay of 1 clock cycle. The implementation of the 3x3 Sobel

Operator is shown Figure 6-3.

6.4.3 Motion Vector Detector

In this proposed algorithm, the introduction of the edge enhancement factor improves
the visual quality significantly at the expenses of just a minor modification of the MAD
computation. Thus, the implementation of the motion estimator can be achieved from the
conventional architecture with a slight modification. In our work, we modify the broadcasting
architecture proposed in [54], and only the modifica-tion is shown here. The complete data
flow and control timing of the architecture are the same as [54].

As shown in Figure 6-4, the edge mask B, generated from the Sobel edge detector

enters into the system in synchronization with the bit-stream of the current frame to each PE.
In each PE, as shown in Figure 6-5, the absolute difference is multiplied by the edge
enhancement factor 3 according to the edge mask and is accumulated to form the EMMAD.
In order to reduce the complexity to implement the multiplication of the absoluie difference
and B, we choose the values of § to be multiples of 2, as depicted in the following equation,
p=2" (6-18)

where # is any positive integer. A simple Barrel Shifter is used in our design where the value
of the absolute difference has either to shift left by n bits or just pass through to the
accumulator. The shaded areas in Figure 6-4 and Figure 6-5 indicate the modified portion of

the original architecture.
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Figure 6-5 : PE with edge enhancement factor

6.5 Simulation Results

In our simulations, motion vectors using full-search were estimated according to the
MSE, the MAD, the MPC and the proposed EMMAD. We have tested the performance of the
proposed algorithms for a large variety of real image sequences, including the “Table Tennis”,
the “Football” and the “Mobile & Calendar”. We have examined the performances of these
algorithms in terms of their Mean Square Errors as well as the visual quality of the motion-

compensated prediction frames. The Mean Square Error at frame ¢ (MSE,), defined in terms
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of the motion-compensated prediction frame f,(x, v} and the original frame I, (x,y}, is given
as shown below:

P-f L-} ]

EZ[E(X,)’)—I;(LJ’)

MSE, =222 (6-19)
PxL

where P is the number of pixels per line and L is the number of lines in each frame.

The maximum displacement p was set to /5 and a block size of 16x16 was considered.
Parameter T in equations (6-10) for the mask generation of the proposed EMMAD was set (0
40, and the enhancement factor § was set to 4 (i.e. n=2 in equation (6-18)).

The MSE results are shown in Figure 6-6, Figure 6-7 and Figure 6-8 for the “Table
Tennis”, the “Football” and the “Mobile & Calendar” respectively. The MSE performance for
the MSE, the MAD and the EMMAD appear to be very close. These results also show that the
MPC is inferior to other matching criteria though it requires less hardware. Typically, the
MSE is not a good metric for subjective measurement since the MSE relates little to the
response of the human visual system. In fact, due to the sophisticated psychovisual behaviour
of human beings, there is a lack of benchmark to objectively measure the subjective image
quality of any image. In comparing the visual behaviour of different matching criteria, human
evaluation could be the best judgement. In this chapter, the proposed EMMAD tries to obtain
more accurate motion prediction along moving edges to which human visual system is very
sensitive. Figure 6-9 shows the formation of the motion-compensated prediction frames of the
“Table Tennis” sequence using the MSE, the MAD, the MPC and the EMMAD. Figure
6-9(b), Figure 6-9(c) and Figure 6-9(d) show the incorrect prediction of the ball and the bat
along the edge using the traditional MSE, MAD and MPC, while the edge of the ball and the
bat can be preserved by using the proposed EMMAD as shown in Figure 6-9(e). This visual

inspection indicates that the EMMAD is even better than the MSE in terms of subjective
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view, though the MSE obtains the most optimal result in terms of objective measurement. The
major reason is that the EMMAD can remove most of the visually disturbing artifacts of
motion estimation and compensation, hence frames produced by this approach are virtually
error free. In low bit rate applications, for which there is insufficient bandwidth to reconstruct
the prediction error adequately, the artifact produced by the motion estimation can remain in

the final decoded frame of the traditional approach. However, our proposed EMMAD can

definitely achieve a good subjective quality.
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Figure 6-7 : MSE produced by motion estimation and compensation using different matching criteria for the
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(c) Motion-compensated prediction frame using MAD
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(e) Motion-compensated prediction frame using EMMAD

Figure 6-9 : Motion-compensated prediction frame in “Table Tennis”

6.6 Summary

We have presented a new matching criterion for motion estimation based on
the edge features and given the architecture for its hardware implementation. The edge-
masked matching criterion (EMMAD) is proposed to compute the motion vectors such that
better motion-compensated prediction along moving edges is obtained. The computed motion
vectors are more reliable, especially for edge portions of the moving objects. Experimental
results show that our new EMMAD has comparable mean square error performance as

compared to the traditional matching criterion with only a slight increase in hardware
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complexity, while the poor prediction along the moving edges, which is very annoying around
moving objects, is substantiaily reduced. In addition, since edges are more closely tied to
physical features in a scene as compared to individual pixel intensities, accurate moving edges

are likely to be useful in other processing parts of a video compression system.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

The success of video coding relies heavily on an efficient implementation of the video
coding scheme. In the domain of video coding, the spatial and temporal redundancies can be
efficiently reduced by using transform coding and block based motion estimation techniques.
The aim of this thesis is to develop efficient hardware architectures and algorithms which can
provide efficient implementation of various video coding schemes.

In Chapter 3, a low complexity and high-speed processor structure for the Discrete
Cosine Transform is described. The key to reduce the hardware complexity of the structure is
by the use of bit-serial approach. With careful optimization on the DCT kernel
multiplications, more than 75 percent of hardware resources has been saved. The realization
of the DCT processor using EPLD achieves a high operating frequency of 45MHz and used
only 4500 gates.

An adaptive pattern based pixel decimation algorithm as described in Chapter 4 which
makes use of the information contained in the image block to select a predefined set of pixel
pattern for the block matching has been introduced. In conventional pixel decimation
technique, a fixed set of pixel is usually used in the matching criterion computation, some
details of the image block will be neglected and hence the accuracy of the predicted motion
vector is degraded. In our approach, a predefined set of pixel patterns is designed to represent
most of the properties of the sub-block. The “most representative pixels” are selected based

on the classification of each sub-block and the results show that the performance of the
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algorithm is comparable to the full search and is 1.6 times faster than the regular pixel
decimation algorithm.

Adaptive algorithm has many advantages over fixed strategy algorithms. However, the
variation on the execution time is difficult for its realization. In Chapter 5, we have mapped
the Edge Oriented Adaptive Motion Algorithm into a multiprocessor system. With the
technique of task decomposition, the execution profile of each possible execution pattern can
be determined. With a simple scheduling strategy using the predetermined execution profile,
the idling time of each processor is reduced. The multiprocessor system when it is using four
processors, up to 3.5 times of speedup is achieved and only 15% of extra hardware
complexity is needed for the switching network.

Many fast algorithms for the block matching have done a very good job to reduce the
computational complexity of the motion estimation process. Nearly all of the fast algorithms,
even the full search algorithm, use the objective measurement to determine the accuracy of
the motion vector. It is well known that the Human Visual System (HVS) is very sensitive 10
object continuities rather than individual pixel intensity. The reliability of the predicted
motion vector is doubtful for some images that contain large amount of -moving objects. Thus,
in Chapter 6, we proposed a scheme which modifies on the conventional matching criterion to
improve the visual quality of the predicted frame. With the introduction of the enhancement
factor, an emphasis on the object edges is achieved in the computation of matching criterion.
We have emphasized to use edges of objects for the computation of the matching criterion
and, as a result, the motion vectors can be accurately predicted. Although the simulation
results show that the objective quality has a little degradation as compare to the full search,
the subjective quality of the predicted frame using our new matching criterion has been

improved.
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7.2 Future Directions

As video coding algorithms become more and more sophisticated. The computational
complexity of the algorithm has grown into a level that the general purpose processor and
even specially designed video processor cannot handle this huge computational requirement.
Special hardware with programmability should be developed as a co-processor to general
purpose processor, which provides flexible configuration to adapt to different video coding
algorithms and high speed processing capability to achieve real-time operations.

For many years, the block-based hybrid video coding approaches as discussed in
Chapter 2 have been the most successful video coding techniques that exhibits simple and
efficient coding performance. However, the absence of consideration for the Human Visual
System (HVS) in the design of the coder which leaves many problems, such as the blocking
effect, which are annoying to viewers. Furthermore, this block-based coding scheme has
many limitations to low bit-rate application. Although we have shown that the modification
on the conventional matching criterion improves the visual quality of the estimated frame, it
is still desirable to develop a more generic video coding techniques to further improve the
visual quality and is suitable for low bit-rate applications.

Mode! based video coding which has been considered as one of the candidate that
provides both coding efficiency and visual quality improvement. However, the very high
computational complexity has limited the wide spread application of the model based coding
algorithm and hence efficient algorithms to reduce the computational complexity should be

developed.
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