

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

READ-MODIFY-WRITE OPTIMIZATION FOR
SHINGLED MAGNETIC RECORDING

STORAGE SYSTEMS

CHENLIN MA

PhD

The Hong Kong Polytechnic University

2019

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

Read-Modify-Write Optimization for Shingled

Magnetic Recording Storage Systems

Chenlin MA

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

April 2019

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

(Signature)

Chenlin Ma (Name of Student)

iii

ABSTRACT

Recently, Shingled Magnetic Recording (SMR) disks have been adopted to satisfy the ca-

pacity requirement for big data applications. Compared with traditional Hard Disk Drives

(HDDs), SMR disks are more cost-effective for its capacity and low cost (i.e., cost-per-

gigabyte is competitive). However, SMR disks have poor performance (e.g., low responding

time) due to internal unique characteristics (shingled tracks). That is, writing to a certain

track may destroy the stored data on the subsequent tracks. To avoid data loss, a read-

modify-write (RMW) operation is incurred to (1) read out all the stored data on the sub-

sequent tracks; (2) modify the required data; and (3) write back all the data one-track by

one-track sequentially. Such time-consuming RMWs can bring a significant negative effect

on the overall system performance and should be avoided as many as possible. In this thesis,

we address the RMW issue from several aspects including a decentralized approach with-

out the cache-assistance and two cache optimizations by the integration of NAND flash and

SMR disks.

First, we focus on optimizing the shingled magnetic recording storage system through

a decentralized approach to get rid of the need of RMW operations. To alleviate the RMW

effect, some previous works adopt a centralized over-provisioned persistent cache to tem-

porarily buffer incoming data and migrate the data back to the disk once the cache is full.

The persistent cache uses an out-of-place scheme to sequentially log writes on the tracks

from outside to inside in an appending mode. In this way, the persistent cache avoids RMWs

to some extent by supporting log-structured writes. However, when the persistent cache is

used up, the aggregated data will be written/cleaned back to the SMR disk recklessly which

still leads to a large number of RMWs. In this thesis, to eliminate the RMW effect, we

for the first time propose a decentralized approach called Tiler to manage the SMR disks.

iv

Our basic idea is to separate the whole SMR disk space into individual log-structured au-

tonomous regions (ARs). We propose a two-level mapping scheme to record the mapping

between SMR logical addresses and ARs and a three-state space management design to effi-

ciently manage AR spaces. In this way, we can maximize the efficiency of the SMR storage

system by eliminating/minimizing RMWs. We have built a trace-driven SMR disk simulator

and implemented our proposed Tiler mechanism with this simulator. The experimental re-

sults show that Tiler can shorten the overall average response time by 49% and the average

cleaning time can be reduced by 25 times.

Second, we propose a new cache management scheme named Dual-buffer to effec-

tively manage the persistent cache of SMR disks. There are several challenges to be con-

quered in order to effectively manage the persistent cache: first, the persistent cache does

not distinguish hot/cold data (related to frequently or infrequently updated requests, respec-

tively). Thus, when a cleaning operation is triggered, the hot data may introduce unnecessary

writes; second, it also incurs significant overhead by keeping the magnetic read/write heads

being routed between the persistent cache at the outer diameter and the native locations at

the inner diameter; third, the capacity of the persistent cache is on the scale of several gi-

gabytes. How to effectively manage the persistent cache remains an open problem. In this

thesis, we present Dual-buffer to solve the above-mentioned challenges. Different from con-

ventional single-buffer-based schemes, Dual-buffer partitions the persistent cache into two

separate buffers, namely the persistent buffer and the filter buffer, that are used to handle

incoming data requests and to hold hot data, respectively. The basic idea is to keep hot data

in the filer buffer as long as possible, instead of writing them back to their native locations

during a cleaning operation. In this way, cleaning operations only trigger a few RMW op-

erations, thereby alleviating the hot data write-back effect and reducing access latencies in

SMR disks. Specifically, to effectively manage the persistent buffer and the filter buffer, we

propose a prediction-based dynamic partitioning mechanism to reconfigure the sizes of the

persistent buffer and the filter buffer so as to cache hot data as much as possible by adapting

v

to different workloads. We also propose an address mapping scheme based on a B+ tree data

structure so the address mapping of the persistent buffer and the filter buffer and the address

transition during cleaning operations can be efficiently accomplished. The experimental re-

sults show that Dual-buffer can improve the access latency by 55.16% on average and reduce

the total RMW operations by 98.76% on average.

Third, we study the internals of SMR disks to solve the RMWs issues by integrate

NAND flash into the cache optimization. Some previous works devote 1%∼10% of the

overall disk space, as an over-provisioned persistent cache to alleviate the RMW effect. By

adopting the persistent cache, the performance can be improved to some extent. However,

once the persistent cache is full, a cleaning process is triggered to clean back all the ag-

gregated data to SMR disks recklessly which inevitably incurs a large number of RMWs.

Therefore, the persistent cache can be the performance bottleneck of the whole SMR sys-

tem. As the RMWs should be avoided as many as possible, in this thesis, we propose to

deploy built-in NAND flash as a cache (namely RMW-F cache) along with the SMR disk

and implement a dual-space management scheme that can eliminate the need for RMWs. we

propose to distribute the writes that will incur RMWs (if written back) to RMW-F while the

other writes are performed in the SMR disk directly. In this way, our design ensures that

no RMWs are needed and thus the system performance can be improved. The experimental

results show that RMW-F can shorten the overall system average response time by over 79%

and improve the cleaning efficiency by approximately 15.6 times.

In summary, we have proposed three main schemes to optimize the SMR storage

system including (1) a decentralized approach called Tiler to manage the whole SMR disk

space; (2) a cache optimization scheme called Dual-buffer to improve the overall perfor-

mance of the SMR storage system; and (3) an integration of NAND flash as cache (namely

RMW-F cache) to eliminate the need of RMWs and accelerate the SMR disk. Some different

directions can be explored in the future researches of our works. First, crash recovery is an

important issue of drive-managed SMR devices since the mapping are dynamically mapped

vi

and the system mainly relies on the address translation to perform reads/writes. How to

combine our schemes to effectively perform crash recovery can be a future direction for

us to explore. Second, we can combine our Dual-buffer and RMW-F schemes together for

key-value stores in the SMR device. How to design the key-value SMR caching system can

be an interesting direction in future work. Third, our RMW-F scheme is mainly based on

flash-based hardware. We will extend our approach to other emerging non-volatile-memories

(NVMs) to further improve the SMR storage system performance.

Keywords: Shingled magnetic recording, cache management, garbage collection, hot/cold

data, NAND flash memory.

vii

PUBLICATIONS ARISING FROM THE THESIS

Journal Papers

1. Chenlin Ma, Zhaoyan Shen, Yi Wang, Zili Shao, “Alleviating Hot Data Write Back

Effect for Shingled Magnetic Recording Storage Systems”, Accepted in IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2018.

2. Yong Guan, Guohui Wang, Chenlin Ma, Renhai Chen, Yi Wang, Zili Shao, “A Block-

Level Log-Block Management Scheme for MLC NAND Flash Memory Storage Sys-

tem”, IEEE Trans. Computers (TC) 66(9): 1464-1477 (2017).

3. Renhai Chen, Zhaoyan Shen, Chenlin Ma, Zili Shao, Yong Guan, “NVMRA: utilizing

NVM to improve the random write operations for NAND-flash-based mobile devices.”,

Softw., Pract. Exper., 46(9): 1263-1284 (2016).

4. Chenlin Ma, Zhaoyan Shen, Jihe Wang, Yi Wang, Renhai Chen, Yong Guan, Zili

Shao, “Tiler: An Autonomous Region-Based Scheme for SMR Storage”, Under Sub-

mission in IEEE Trans. Computers (TC), 2019.

Conference Papers

1. Chenlin Ma, Zhaoyan Shen, Lei Han, and Zili Shao, “FC: Built-in Flash-cache with

fast cleaning for SMR Storage”, Accepted in IEEE International Conference on Em-

bedded Software and Systems (ICESS’ 19), 2019.

2. Jihe Wang, Chenlin Ma, Zhaoyan Shen, Shahher Muhammad, and Zili Shao, “Tiler:

An Autonomous Region-Based Scheme with Fast Cleaning for SMR Storage”, The 6th

Non-Volatile Memory Systems and Applications Symposium (NVMSA’ 18), 2018.

viii

3. Chenlin Ma, Zhaoyan Shen, Lei Han, and Zili Shao, “RMW-F: A Design of RMW-

Free Cache Using Built-in NAND-Flash for SMR storage”, Under Submission in In-

ternational Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS’ 19), 2019.

ix

ACKNOWLEDGEMENTS

First of all, my sincere gratitude should be expressed to my supervisor, Prof. Zili Shao, who

has been watching over me for more than five years. I want to thank him for giving me an

opportunity to be a MPhill student at first and helping me to transfer to a Ph.D. student later.

I want to thank him for guiding me and never giving up on my research, his patience and

profession are my motivation to study. I want to thank him for his valuable time spent in the

weekly regular meeting and the discussions we had were something I would remember for

my whole life. This thesis would not have been possible without the kind considerations and

helps of Prof. Shao.

I also want to thank Prof. Shuai Li for giving me a chance to continue on my Ph.D.

study in the last few months. His advice, guidance, and encouragement are valuable treasure

during my Ph.D. study. I also express my gratitude to the other members of Prof. Shao’s

research group - Dr. Yi Wang, Dr. Duo Liu, Dr. Zhiwei Qin, Dr. Renhai Chen, Dr. Zhaoyan

Shen, Dr. Lei Han —for the assistance that they provided during my Ph.D. study. I also

would like to thank all of my teachers from whom I learned so much during my long journey

of acquiring a formal education.

I am grateful to Prof. Bin Xiao for his patience, encouragement, and valuable guid-

ances throughout my Ph.D. study. I appreciate his vast knowledge and skill in many areas

and his professional supervision.

I recognize that this thesis would not have been possible without the financial assis-

tance that I received from the Hong Kong Polytechnic University. I thank Prof. Shao and

the Department of Computing for offering me travel grants to attend several international

conferences. I acknowledge the grant for the Research Student Attachment Program from

the Hong Kong Polytechnic University.

x

Finally, I want to thank my family. Without their endless and selfless love, I would

not be able to complete and finish my Ph.D. study smoothly. I want to thank my father and

mother for educating me and supporting me in every aspect throughout my Ph.D. study. I

want to thank my wife, Yanfang, for taking good care of my son and daughter and not letting

me worry about them so that I can devote myself to the study. Thank my family for their

understanding and support.

xi

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY . iii

ABSTRACT . iv

PUBLICATIONS ARISING FROM THE THESIS . viii

ACKNOWLEDGEMENTS . x

LIST OF FIGURES . xv

LIST OF TABLES . xvii

CHAPTER 1. INTRODUCTION. 1

1.1 Related Work . 3

1.1.1 Device Management Optimization . 4

1.1.2 Cache Management Optimization . 4

1.1.3 Integration of NAND Flash as Cache . 5

1.2 The Unified Research Framework . 5

1.3 Contributions . 6

1.4 Thesis Organization . 7

CHAPTER 2. BACKGROUND . 8

CHAPTER 3. TILER: AN AUTONOMOUS REGION-BASED SCHEME FOR SMR
STORAGE . 10

3.1 Introduction . 10

3.2 Motivation . 12

3.3 Tiler: a decentralized approach for SMR disks . 13

3.3.1 Overview of ARs Design. 14

3.3.2 Address Mapping in Tiler . 15

3.3.3 Tiler Space Management . 18

3.4 Performance Analysis . 22

3.4.1 Data placement with different ARs configurations . 22

xii

3.4.2 Performance modeling . 23

3.4.3 Overhead analysis . 24

3.5 Evaluation . 25

3.5.1 Experimental Setup . 25

3.5.2 Performance Evaluation. 26

3.5.3 Performance evaluation with different configurations of S 29

3.6 Related Work . 32

3.7 Summary . 33

CHAPTER 4. ALLEVIATING HOT DATA WRITE BACK EFFECT FOR SHINGLED
MAGNETIC RECORDING STORAGE SYSTEMS 34

4.1 Introduction . 34

4.2 Motivation . 36

4.3 A Dual-Buffer Management Scheme for SMR Disks . 38

4.3.1 System Overview . 38

4.3.2 Dual-buffer Management . 40

4.3.3 Discussion . 46

4.4 Evaluation . 49

4.4.1 Experimental Setup . 49

4.4.2 Results and Discussion . 51

4.5 Related Work . 57

4.6 Summary . 58

CHAPTER 5. RMW-F: A DESIGN OF RMW-FREE CACHE USING BUILT-IN NAND-
FLASH FOR SMR STORAGE . 59

5.1 Introduction . 59

5.2 Motivation . 61

5.3 RMW-F Design . 62

5.3.1 System Overview . 62

5.3.2 Dual-space Management . 63

5.3.3 Sector Locator . 66

5.3.4 Address Translator. 67

5.3.5 Garbage Collector . 68

5.4 Evaluation . 70

5.4.1 Experimental Setup . 70

5.4.2 Results and discussion . 71

xiii

5.5 Related Work . 74

5.6 Summary . 76

CHAPTER 6. CONCLUSION AND FUTURE WORK. 77

6.1 Conclusion . 77

6.2 Future Work . 78

REFERENCES . 80

xiv

LIST OF FIGURES

1.1 The Unified Research Framework. 6

2.1 The layout comparison between HDD and SMR: (a) the conventional HDD,
(b) the SMR, and (c) the geometry tracks of the SMR.. 8

3.1 Preliminary Experiments. (a) A preliminary experiment to show the pro-
portion of track-seek count in cleanings (TS-C) and track-seek count in the
normal state (TS-N). (b) A preliminary experiment to show the proportion
of data copy with RMWs.. 13

3.2 System layout of Tiler. (a) Surface diagram of a disk platter in Tiler. (b)
Layout overview of an Autonomous Region (AR). 14

3.3 An illustrative example of static mapping. 16

3.4 An illustrative example of dynamic mapping and the format of the dynamic-
mapping-table (DMT). 16

3.5 The AR state machines for (a) a two-states space management design (b) a
three-state space management design adopted in Tiler. 18

3.6 An example to illustrate how an update request is served in logging write
process (a) before the update request is processed (b) after the update request
is processed. 19

3.7 The diagram of schedulable blocks when an AR is full. S=4 and write-head-
width/read-head-width=3. 20

3.8 An example of a cleaning process. (a) Before a cleaning process is triggered.
(b) After a cleaning process is triggered. 20

3.9 An example of different data placement in (a) Tiler with S=1 and (b) Tiler
with S=4. 22

3.10 The framework of the simulation platform. 24

3.11 Normalized average response time. 26

3.12 Normalized write amplification. 27

3.13 Normalized read/write-head movement. 27

3.14 Normalized average cleaning time. 27

3.15 Write requests distribution of logging write and lazy write. 29

3.16 Normalized average response time of Tiler with different S. 29

3.17 Normalized track-seek count of Tiler with different S. 30

3.18 Normalized cleaning count of Tiler with different S. 31

3.19 Normalized valid blocks copy of Tiler with different S. 31

xv

4.1 A motivation example to show the hot data write-back overhead. 36

4.2 The system layout of Dual-buffer. M% of the persistent cache (PC) serves
as the persistent buffer (PB), while the remaining (1-M%) serves as the over-
provisioned filter buffer (FB). 37

4.3 An example to illustrate how an LBA is parsed into a PBA within NDA. 40

4.4 An illustrative example of the dynamic partitioning model: line y1 models
the relationship between PB and FB; line y2 is the plotted curve of replaying
a sample trace; P1 and P2 are the corresponding points on line y1 and line
y2; Pn is the intersection point. 41

4.5 An illustration of dynamic partitioning. R1, R2, and R3 refer to Round 1,
Round 2, and Round 3, respectively; FB1 and FB2 are the last-round FB and
the current-round FB, respectively; M1 and M2 are the last-round partitioning
point and current-round partitioning point, respectively. PB starts at M1 and
ends at M2. 42

4.6 An example to illustrate how PB-ART and PC-Tree are updated when one
write request is handled. 44

4.7 An example to illustrate how FB-ART and FB-Tree are updated during clean-
ing. 45

4.8 An illustrative example of the crash recovery process. 48

4.9 Normalized performance improvement over the baseline Skylight [2]. 51

4.10 Normalized average response time. 53

4.11 Normalized worst case response time. 53

4.12 Normalized r/w head movement. 54

4.13 The space utilization (%) of filter buffer. 55

5.1 A preliminary experiment to measure write amplification brought by RMWs. 61

5.2 An overview of the system architecture of RMW-F. 63

5.3 (a) An example of logical sector numbers in an SMR disk. (b) An example of write
requests handling by the dual-space management module. Abbreviations: LSN:
logical sector number; T: track; S: sector; GR: Guard Region. 64

5.4 An example of static mapping used in the sector locator module. 66

5.5 An overview of block-level mapping. 68

5.6 An example to show a different write-back cost of a stored LSN within its flash
block. (a) writing back an LSN whose PSN resides in the outer track. (b) writing
back an LSN whose PSN resides in the inner track. 69

5.7 Classifying the LSN according to its write-back cost and data popularity. 70

5.8 Normalized average response time. 72

5.9 Normalized read/write-head movement. 72

5.10 Normalized write amplification factor. 73

5.11 Normalized average cleaning time. 74

xvi

LIST OF TABLES

3.1 The characteristics of the traces. 25

3.2 The worst-case response time of Tiler with different S. 32

4.1 The characteristics of the traces. 50

4.2 Variances between the ideal and predicted partition points. 51

4.3 The number of RMW operations. 52

4.4 RAM space overhead of Dual-buffer. 56

5.1 The characteristics of the traces. 71

xvii

CHAPTER 1

INTRODUCTION

Shingled Magnetic Recording [88,89,91,95,96] is a non-volatile media that can provide high

capacity for next-generation storage devices. By utilizing the overlapping shingle-like struc-

ture, SMR storage systems do not require a significant change but can provide two to three

times of capacity [22, 26] compared with the conventional hard disk drive. The increased

density of SMR disks provides a promising solution to satisfy the capacity requirement of

big data applications. However, with the asymmetric sizes of the write-head and read-head,

a write operation to one track will destroy the data on several adjacent tracks. This fea-

ture makes it challenging for SMR disks to effectively support random writes. To solve this

problem, RMW (Read-Modify-Write) operations are introduced to prevent data loss in SMR

disks. With RMW operations, all data involved in all tracks will be read out and modified

in the external storage space (e.g. RAM space) and then written back to the SMR disk.

Since multiple read and write accesses are involved, RMW operations inevitably increase

access latencies. Therefore, RMWs become the major performance challenge and should be

avoided as much as possible.

To alleviate the RMW effect, some previous works [2, 9, 90] focus on adopting an

over-provisioned cache to accelerate the system performance while leaving the underlying

SMR disk space unchanged. Therefore, the full optimization potential of the whole SMR

device is not exploited well and we advocate to reconsider the detailed design of the man-

agement of the SMR disk space. In terms of the cache designs [2,9], some further optimiza-

tions can be done with the following two aspects including (1) distinguishing different data

write-back behaviors and cache accordingly; and (2) integration of NAND flash to accelerate

performance.

1

We first advocate reconsidering the drive-managed scheme and for the first time pro-

pose a decentralized approach called Tiler to manage the SMR disk space. Our basic idea

is to separate the whole SMR disk space into individual log-structured autonomous regions

(ARs). In this way, not only the RMW effect can be eliminated but also get rid of a central-

ized over-provisioned cache. By reconsidering the drive-managed scheme, a variety of new

optimization opportunities can become true: (1) the SMR disk space is partitioned into indi-

vidual log-structured autonomous regions evenly; (2) a two-level mapping scheme is adopted

which includes a space-efficient coarse-grained mapping to statically map the SMR logical

addresses into ARs at the region-level and a fine-grained dynamic mapping is used to record

the mapping between logical-AR-offset and physical-AR-offset at the block level; and (3) a

three-state space management design including logging write, lazy write and common clean-

ing is adopted in managing the SMR space in which: a logging write process handles writes

in an AR with an append manner and thus ensures no RMWs are required; when there are

no more free blocks, a lazy write process is triggered to locate some schedulable data blocks

and postpone the triggering of a common cleaning; a common cleaning is triggered to re-

claim the space of an AR when there are no more schedulable data blocks. We have built an

SMR simulator and evaluated our proposed scheme with various real-world collected traces

to demonstrate the effectiveness of this scheme.

Second, to optimize the circular buffer/cache of the SMR disk, we propose a new

cache management scheme called Dual-buffer to manage the SMR storage system. Different

from conventional single-buffer-based schemes, Dual-buffer partitions the persistent cache

into two separate buffers, namely the persistent buffer and the filter buffer, that are used

to handle incoming data requests and to hold hot data, respectively. The basic idea is to

keep hot data in the filer buffer as long as possible, instead of writing them back to their

native locations during a cleaning operation. In this way, cleaning operations only trigger a

few RMW operations, thereby alleviating the hot data write-back effect and reducing access

latencies in SMR disks. Specifically, to effectively manage the persistent buffer and the filter

buffer, we propose a prediction-based dynamic partitioning mechanism to reconfigure the

sizes of the persistent buffer and the filter buffer so as to cache hot data as much as possible

2

by adapting to different workloads. We also propose an address mapping scheme based on a

B+ tree data structure so the address mapping of the persistent buffer and the filter buffer and

the address transition during cleaning operations can be efficiently accomplished. We have

implemented the proposed scheme inside the embedded controller of our SMR simulator and

evaluated the effectiveness of the scheme with different traces.

Third, in order to eliminate the RMW effect and to accelerate the SMR storage

system, we propose to integrate a promising cost-effect NAND flash as a persistent cache

(namely RMW-F cache). Specifically, for the writes to SMR disks, some writes will incur

RMWs while the other writes will incur no RMWs. Therefore, we propose to distribute

the writes that will incur RMWs (if written back) to the flash cache while the other writes

are performed in the SMR disk directly. In this way, our design ensures that no RMWs are

needed and thus the system performance can be improved. Three challenges have been tack-

led including: (1) a new internal architecture for both flash-cache and SMR disks is needed

to co-manage the system; (2) how to map the SMR logical spaces into the NAND flash phys-

ical spaces; (3) how to perform cleaning when the available spaces in the cache becomes low.

We have built a trace-driven flash and SMR simulator and implemented our scheme with this

simulator. The performance of the system is evaluated with collected traces from Microsoft

Research Cambridge [1].

1.1 Related Work

In this section, we briefly discuss previous approaches to optimizing the SMR storage sys-

tem. In previous studies, work has been done in three main domains: (I) device management

optimization, (II) cache management optimization, and (III) integration of NAND flash as

cache. We briefly describe these techniques and present detailed comparisons with represen-

tative techniques in the respective chapters.

3

1.1.1 Device Management Optimization

For the device management optimization of SMR disk, log-structured writes have been

widely adopted to elminate the needs of RMWs. Log-structured write naturally coincides

with the unidirectional writing of SMR head, thus, the data layout on disk is researched

in [5,6] to amplify the logging benefit.+ HiSMRfs [36] designs and implements a file system

that is suitable for SMR drives. Data and meta data are sepated and managed independently.

The work in [90] partitions the whole disk into multiple zones and manages the SMR disk

in zone-based API in a host-aware mode. Since accurately modeling a drive-managed SMR

disk is challenging, the work in [71] presents a simulation model to evaluate drive-managed

SMR disks. Algorithms can be teested and implemented within the simualtor of [71] and

therefore, some device management optimizations can be evaluated. A shingled-aware per-

sistent cache management scheme has been implemented in [98] to frist merges cached up-

dated by flashing writes that can be safely written to the SMR disk and then reclaim more

cache spaces by another cache merging process.

1.1.2 Cache Management Optimization

The work in [95] proposes a virtual persistent cache design to reduce the long latency of host-

aware SMR drives. The idea is to involve the host to adaptively reshape the access patterns

to SMR drives as as to avoid the occurrences of long latencies. Skylight [2] performs reverse

engineering to figure out the internal managerial operations of SMR devices. Specifically,

Skylight manages the shingled persistent cache by implementing an indirection system to

eliminate RMW operations [2]. The work in [9] proposes to manage the SMR disk by using

an S-block structure and presents a workable dynamic mapping to manage the persistent

cache of SMR disk. A hybrid wave-like shingled recording disk-cache is designed to improve

both the performance and the capacity of a shingled-write-disk [54].

4

1.1.3 Integration of NAND Flash as Cache

FlashTier [69] proposes a system architecture built upon flash-based cache and designs an

interface for caching. The work in [40] can improve the NAND flash based disk caches by

separating read and write regions and improve reliability by a programmable flash memory

controller. I-CASH [97] adopts SSD to store seldom changed and mostly read data and uses

HDD to store logs, the idea is to utilize the high read performance of SSDs. SMRC [94] pro-

poses to filter out sequential writes and non-sequential writes and then direct non-sequential

writes to the SSD as a cache layer. The work in SMRC mainly focuses on optimizing the

cache performance of host-aware SMR drives. Some [81] proposes to use SSD as the first-

level cache of the SMR device, that is, all incoming writes will be performed in the SSD

first. The authors in [81] is able to reduce the write amplification factor to some extent by

restricting the write range of logical block addresses (LBAs) of zones. HS-BAS [92] also

uses SSD as the first-level write buffer cache for SMR devices and focuses on reducing the

cleaning/collection cost by adopting different policies. An application aware hybrid storage

system named (Apas), consists of SSDs and SMR disks, has taken the application character-

istics into account to mitigate the write amplification problem. A hrbrid wave-like shingled

recording disk system (HWSR) proposes to use SSD as a disk cache to mainly improve

random read performance rather than write performance [55, 80].

1.2 The Unified Research Framework

In this section, we present the unified research framework for the proposed techniques. A

sketch of our research framework is given in Figure 1.1.

In this thesis, our works are mainly implemented inside the SMR device and run

as the software layers. As shown in Figure 1.1, in Chapter 3, we propose a decentralized

approach to manage the whole SMR disk independently and separately in an autonomous

way. In Chapter 4, we propose a new cache management scheme to improve the overall

system performance of the SMR device. The underlying storage media of our first two works

is mainly SMR disk as shown in Figure 1.1. In Chapter 5, we distinguish data according to

5

Tiler: An Autonomous
Region-Based Scheme for
SMR Storage

CHAPTER 3

Underlying Storage Media NAND Flash

SMR Disk

Filesystem I/O Scheduling Device Driver

Operating System

SMR Device

Big Data Applications

RMW-F: A Design of RMW-
Free Cache Using Built-in
NAND-Flash for SMR
storage

CHAPTER 5

Alleviating Hot Data Write
Back Effect for Shingled
Magnetic Recording Storage
Systems

CHAPTER 4

Figure 1.1: The Unified Research Framework.

their write-back behavior and integrate NAND flash as part of the underlying storage media

to accelerate the SMR device.

1.3 Contributions

The contributions of this thesis are summarized as follows.

• We propose a decentralized approach which separates SMR disks into individual log-

structured ARs to eliminate the time-consuming RMW effect. A two-level mapping

scheme is proposed to record the mapping between SMR logical addresses and ARs.

A three-state space management design to efficiently manage AR spaces.

• We present a novel cache management scheme by which the persistent cache is par-

titioned into a persistent buffer and a filter buffer and hot data can be cached in the

filter buffer as much as possible. We propose a prediction-based dynamic partitioning

mechanism so hot data can be cached as much as possible by reconfiguring the sizes

of the two buffers in the persistent cache. An address mapping scheme is developed to

6

achieve effective and efficient space management for the persistent cache.

• We propose a new architecture within which adopts built-in NAND flash as the RMW-

free cache of the SMR system. Some new modules are implemented to accelerate

the management efficiency of the hybrid storage system. A hybrid two-level mapping

scheme is proposed to handle the address translations between the SMR logical ad-

dresses and the NAND flash physical addresses. We improve the cleaning efficiency

by a heuristic model that takes both write-back cost and data popularity into account.

• We have built an SMR and flash simulator and evaluated our proposed techniques with

various traces and the experimental results prove the effectiveness of the proposed

techniques.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we introduce some background information about the SMR disk.

• In Chapter 3, we for the first time propose a decentralized approach to partition the

whole SMR disk space into autonomous self-managed regions evenly. Optimizations

can be done within the SMR device.

• In Chapter 4, to optimize the persistent cache of the SMR disk, we propose a new

cache management scheme called Dual-buffer to manage the SMR storage system.

The basic idea is to keep hot data in the cache as long as possible, instead of writing

them back to their native locations during a cleaning operation.

• In Chapter 5, in order to eliminate the RMW effect and to accelerate the SMR storage

system, we propose to integrate a promising cost-effect NAND flash as a persistent

cache (namely RMW-F cache).

• In Chapter 6, we present our conclusions and propose possible future directions of

research arising from this work.

7

CHAPTER 2

BACKGROUND

In this chapter, we will introduce the detailed characteristics of SMR disks.

SMR disks can achieve high density with minimal changes to the functionality of

hard disk drives. Similar to conventional disk drives, an SMR disk also consists of multiple

tracks. Each track includes multiple blocks (or sectors), and a block is the basic read/write

unit in an SMR disk. The major difference between SMR disks and conventional hard disks is

the adoption of the shingle-like structure (as shown in Figure 2.1(b)). An SMR disk overlaps

one track onto another to provide more condensed space. This new infrastructure does not

affect read operations since the overlapped track is adequate to cater the read operations with

a very small magnetic read head.

However, the magnetic write head is typically 3-8 times larger than the read head [50].

This wider and stronger write head will cover a large number of physical tracks. Then, a write

operation to one track will destroy data on the adjacent tracks.

In Figure 2.1(c), the write-head (i.e., W head) width is k (=3) times as large as the

Hard Disk Drive (HDD)

Non-overlapped tracks

Traditional

Read/Write
Heads

SMR Disk

Overlapped tracks

..

..

(a) (b)

Read/Write
Heads

SMR PC

NDA

(c)

W_head

R
_head

Guard
Region

track 1

track 5 PC

track 3

track 7

Guard
Regions

Band N

Band N + 1

Band N + ...

………

NDA

Figure 2.1: The layout comparison between HDD and SMR: (a) the conventional HDD, (b) the SMR,
and (c) the geometry tracks of the SMR.

8

read-head (i.e., R head) width. Therefore, writing to track 1 will damage the data stored

in the subsequent two tracks (i.e., track 2 and track 3). This unique property of the SMR

disk limits its ability to perform random writes and makes in-place updates more difficult.

In order to update the data on track 1, the data on track 2 and track 3 should be firstly read

out and written back once the update is done. Two tracks (i.e., k-1) containing no data are

provided as a guard region. Rewriting the data tracks before the guard region (e.g., track 7)

will not affect any tracks following the guard region.

In Figures 2.1(b) and 2.1(c), the SMR disk consists of the native data area and the

persistent cache. Usually, 1%∼10% of the SMR disk space is devoted to constructing the

persistent cache [2]. The native data area is placed at the inner diameter, and this area will

be used to store the native data. The persistent cache is located at the outer diameter and is

served as the write buffer of native data. The persistent cache contains 7 data tracks followed

by a guard region with a width of two (i.e., k-1) tracks. The native data area is partitioned

into multiple bands (each band size is 15∼40MB [2]), separated by the guard regions.

9

CHAPTER 3

TILER: AN AUTONOMOUS REGION-BASED SCHEME FOR SMR STORAGE

3.1 Introduction

SMR [17,31,42,67,77,88,89,91,95,96] has been provided as a promising solution to satisfy

the capacity requirement of big data applications. Compared with conventional HDDs, SMR

disks benefit in higher density and lower cost. However, SMR disks [8, 19, 61, 63, 71] also

suffer from lower responding time due to their intrinsic overlapped-track limitation. That is,

writing to a track leads to damage to the original data stored on the subsequent tracks [29,

33, 46]. To prevent data loss, a time-consuming RMW is performed to firstly copy out the

involved data and then to write them back after the modification is done. In this chapter,

we for the first time propose to divide the whole SMR space into decentralized autonomous

regions to eliminate the need for RMWs.

To alleviate the RMW effect, some previous works [2,9,90] adopt a centralized over-

provisioned persistent cache to temporarily buffer incoming data and migrate the data back

to the disk once the cache is full. The persistent cache uses an out-of-place scheme to se-

quentially log writes on the tracks from outside to inside in an appending mode. In this way,

the persistent cache avoids RMWs by supporting log-structured writes. A dynamic mapping

table is used to record the addresses of stored data in the persistent cache. However, when the

cache is used up, the aggregated data will be written/cleaned back to the SMR disk recklessly

which still leads to a large number of RMWs.

To eliminate the RMW effect, In this chapter, we for the first time propose a decen-

tralized approach called Tiler to manage the SMR disks. Our basic idea is to separate the

whole SMR disk space into individual log-structured ARs. Writes to each AR are done in

an appending mode along with the shingled direction which guarantees no RMWs are in-

10

curred. However, the proposed approach brings three new challenges: (1) how to partition

the SMR disk space with ARs; (2) a mapping table is required to record the mapping be-

tween SMR logical addresses and AR blocks; (3) how to manage the AR space including

space allocations and reclamation (e.g., cleanings).

To handle the first challenge, we propose an AR design to evenly partition the whole

SMR disk space. Unlike the centralized approach that aggregates data in the persistent cache,

data are written to their corresponding ARs in Tiler in a decentralized manner.

To address the second challenge, we propose a space-efficient coarse-grained map-

ping to statically map the SMR logical addresses into ARs at the region level. Within each

AR, a fine-grained dynamic mapping is used to record the mapping between logical-AR-

offset and physical-AR-offset at the block level. Specially, we store the block level dynamic

mapping on a track where in-place update is supported. Each AR’s dynamic mapping will be

loaded into memory space on-demand for fast-accessing and memory-saving. Note that the

static mapping requires no memory and the dynamic mapping consumes little memory space.

Thus, our two-level mapping (including region-level and block-level) is space-efficient.

To conquer the third challenge, Tiler adopts a three-state space management design

including logging write, lazy write and common cleaning. A logging write process handles

writes in an AR with an append manner and thus ensures no RMWs are required. When there

are no more free blocks, a lazy write process is triggered to locate some schedulable data

blocks and postpone the triggering of a common cleaning. A common cleaning is triggered

to reclaim the space of an AR when there are no more schedulable data blocks.

We have built a trace-driven SMR disk simulator and implemented our proposed Tiler

mechanism with this simulator. We have evaluated Tiler with several real-world traces col-

lected from data centers organized by Microsoft Research Cambridge [1]. The experimental

results show that compared with Skylight [2], Tiler shortens the overall average response

time by 49%. The average cleaning time can be reduced by 25X.

The main contributions of this chapter are summarized as follows:

11

• We propose a decentralized approach which separates SMR disks into individual log-

structured ARs to eliminate the time-consuming RMW effect.

• We propose a two-level mapping scheme to record the mapping between SMR logical

addresses and ARs. We propose a three-state space management design to efficiently

manage AR spaces.

• We have built an SMR simulator and evaluated our proposed Tiler with various traces.

The rest of this chapter is organized as follows. Section 3.2 gives the motivation

for this work. Section 3.3 describes the design and implementation details of our proposed

scheme. Section 3.4 presents the performance analysis of Tiler. Experimental results are

provided in Section 3.5. Section 3.7 concludes the chapter.

3.2 Motivation

By accommodating update/write operations in an appending mode along with the rotate di-

rection, the centralized the persistent cache reduces the negative effect of RMWs to some

extent. However, when the persistent cache is full, the aggregated data within the cache will

be written back into the native data area in a cleaning process to reclaim the space of the per-

sistent cache. Writing the data back to their native locations (i.e., a certain block of a track)

will inevitably incur RMW operations and therefore, all the stored data on the subsequent

tracks will be affected. Thus, this may lead to two issues: First, writing back data from the

persistent cache to the native data area will keep the read/write-head busy with shifting back

and forth and these head movements can significantly degrade system performance; Second,

the large number of incurred RMW operations are time-consuming since all the affected data

should be copied out and written back.

As a motivational example, we have conducted some preliminary experiments on

three of the collected traces and the results are shown in Figures 3.1a and 3.1b. The experi-

mental results are collected from the environment described in Section 3.5 and the detailed

characteristics of the traces can be found in Table 5.1.

12

r s r c h _ 0

s r c 2 _ 0

s t g _ 0

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

T S - C
T S - N

(a)

r s r c h _ 0

s r c 2 _ 0

s t g _ 0

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

D a t a C o p y w i t h R M W s

(b)

Figure 3.1: Preliminary Experiments. (a) A preliminary experiment to show the proportion of track-
seek count in cleanings (TS-C) and track-seek count in the normal state (TS-N). (b) A preliminary
experiment to show the proportion of data copy with RMWs.

In order to perform a quantitative analysis on the negative effect brought by RMWs,

we count the total volume of data copy with RMWs during the cleaning process and compare

that with the total amount of data written to SMR. As shown in Figure 3.1b, the proportion of

data copy with RMWs contributes to over 70% of the total amount of data written to SMR.

Among the three evaluated traces, the proportion of data copy has a contribution of 64% on

average. Therefore, RMWs are significant overheads that we should try to alleviate.

On operating data in SMR disks, the read/write head needs to be moved from the

source track to the destiny track. This positioning is called track seek and the delay of track

seek dominates. Therefore, to measure the negative effect of a large number of read/write

head movements, we evaluate the total track-seek count involved in the cleaning (denoted

as TS-C) and track-seek count without cleaning (denoted as TS-N). The corresponding pro-

portion of both TS-C and TS-N among three traces are calculated. As shown in Figure 3.1a,

TS-C contributes to over 96% of the total track-seeks on average. Therefore, by reducing

the number of read/write head movements (i.e., track-seeks), the system performance can

potentially be improved.

3.3 Tiler: a decentralized approach for SMR disks

In this section, we first present an overview of our design of ARs in Section 3.3.1. Then,

we describe our two-level mapping including static mapping and dynamic mapping in Sec-

tions 3.3.2-3.3.2, respectively. Finally, we discuss the space management in Tiler which

involves three processes including logging write, lazy write and cleaning in Sections 3.3.3-

13

4.3.2.

3.3.1 Overview of ARs Design

In this section, the overview of ARs design will mainly introduce the system layout of Tiler

and the functionality of each system components (i.e., zone, AR). Each zone on each disk

surface is partitioned into different individual ARs. An AR consists of three major compo-

nents including a data region, a map region, and a guard region. The detailed illustrations

are as follows:

As Figure 3.2 depicts, an SMR disk has multiple platters (two surfaces on each) and in

Tiler, we partition each surface space into NZone number of zones as shown in Figure 3.2 (a).

The capacity of each track within a zone is identical (i.e., each track consists of an identical

number of blocks) according to Zone-Bit-Recording (ZBR) [83], As shown in Figure 3.2

(b), each zone is further partitioned into different individual ARs along with the rotational

direction. Since the number of blocks on each track within each zone varies due to ZBR, the

number of ARs within each zone is different.

As mentioned above, an AR has three regions with different functionality. As shown

in Figure 3.2, in a data region, there is M number of data tracks along with the shingled

direction(i.e., Track0 - TrackM−1) which are used to store data and each track in an AR

consists of S number of data blocks along with the rotational direction. Writes/updates into

an AR are served in an append mode along the rotational direction in the data region.

Block0 …
Track0

Guard
 Region

…

Map Region

…

(b)

Block1 BlockS-1

Track1

Track2

Track3

TrackM-1

ARx

(a)

S blocks

M
 t

ra
ck

s

Rotate direction

A A' A'' B
B'

S
hi

ng
le

d
di

re
ct

io
n

Figure 3.2: System layout of Tiler. (a) Surface diagram of a disk platter in Tiler. (b) Layout overview
of an Autonomous Region (AR).

14

Note that the number of tracks within each zone is identical and the number of blocks

on each track varies. Therefore, the parameter M indicating the number of tracks is fixed

while the parameter S is adjustable. A larger S indicates that each track within an AR can

allocate more blocks to serve data requests within one rotational operation. The sequential-

accessing within one rotational operation can potentially reduce the number of the track-seek

counts and therefore improve system performance. However, more data are aggregated in

each AR with a larger S, it may take longer to clean up an AR. Thus, the worst case response

time can be enlarged as S increases. Detailed analysis for how to determine S is introduced

in Section 3.4 and evaluations are included in Section 3.5.3.

The map region consists of k tracks (e.g., three tracks). We use the last track (called

map track) to store the mapping information and keep the first two tracks empty. A guard

region (containing two tracks store no data) follows the map region. Therefore, the map

track supports in-place updates since writes to this track will not affect others. Note that

each zone is separated by the guard regions.

3.3.2 Address Mapping in Tiler

Based on the above-mentioned design, the whole SMR disk space is partitioned into indi-

vidual ARs, therefore, the second challenging issue is how the data associated with a logical

block address can be mapped into its corresponding AR. To address this issue, Tiler adopts

a two-level mapping scheme to manage the translation information between SMR logical

block addresses (LBAs) and AR physical block addresses (PBAs). The two-level mapping

includes a static mapping at the region-level to statically map the LBA into a corresponding

AR and a dynamic mapping at the block level to locate the allocated PBA.

• Static mapping

An LBA is at a block/sector level while AR is at region-level, therefore, to map

a given LBA into its corresponding AR, we adopt a static mapping design. The range of

both logical block addresses and that of SMR physical block address are equal. For the SMR

physical block addresses, we know the exact number of ARs as well as address ranges within

15

logical block address

SMR physcial
block address

…………

AR0 …………AR1

Zone 0 Zone 1

ARx …

……… Zone i

50

50

0 32 64 N

0 32 64 N

Figure 3.3: An illustrative example of static mapping.

each zone. Therefore, given an LBA, knowing the range of an AR, we can determine which

AR the LBA should be mapped into.

As an example in Figure 3.3, given an LBA=50, since the addresses of AR1 is from

32 to 63, we can determine that LBA=50 should be mapped into AR1 of Zone0. Since

the mapping between an LBA and the corresponding AR is fixed and can be calculated

logically, no memory overhead is needed to maintain this static mapping. Note that the

offset of 50 from 32 is 18, therefore, the logical block offset (L-ARO) of LBA=50 within

AR1 is 18. Let the logical AR id and the logical block offset within an AR be L-AR and

L-ARO, respectively. By adopting a static mapping, given an LBA, we can directly calculate

the corresponding L-AR (e.g., AR1) and L-ARO (e.g., 18).

logical block address

SMR physical
block address

…………

AR0 …………AR1

Zone 0 Zone 1

ARx …

……… Zone i

0 32 64 N

0 32 64 N

B0 B2

T0

… …

B1 B3

T1

T2

T3

T7

AR1

S=4 blocks

M
=

8
tr

a
ck

s

Write request (LBA): 50

18

L-AROs: 18

DMT

18
P-ARO
T0,B0

L-ARO

S
hi

ng
le

d
di

re
ct

io
n

Figure 3.4: An illustrative example of dynamic mapping and the format of the dynamic-mapping-
table (DMT).

16

• Dynamic mapping

The above mentioned static mapping addresses the issue of how the data associated

with an LBA can be mapped into the corresponding AR. Since writes/updates are served in

an append mode along the rotational direction in the data region of an AR, the mappings

between an LBA and an allocated PBA is dynamically changing. Therefore, the next issue is

how LBAs are mapped within an AR. Note that a PBA is represented by the physical block

offset within an AR (denoted as P-ARO).

Given an LBA, the corresponding L-ARO of an AR is obtained by the above men-

tioned static mapping. To serve a write/update request in the AR, an available P-ARO is

allocated. Therefore, the L-ARO is dynamically mapped to a P-ARO within an AR. We

implement a dynamic mapping called the dynamic-mapping-table (DMT) in our design.

Note that the mentioned map track in the map region supports in-place update. There-

fore, the corresponding DMT of each AR is stored on its own map track. The DMT is loaded

into memory for fast accessing at runtime and will be written back to the map track periodi-

cally.

An example is shown in Figure 3.4 to show how an LBA is mapped within an AR.

For illustration, let M and S be 8 and 4, respectively. Thus, there are 8 data tracks along with

the shingled direction and 4 blocks on each along with the rotational direction (i.e., 32 data

blocks in total). For a write request with LBA=50, the L-ARO is 18 (i.e., offset from 32) in

AR1 of Zone0. The first available data block (P-ARO in the form of track T0, block B0) is

allocated to serve the request. Thus, the mapping between L-ARO=18 and P-ARO (T0, B0)

is recorded in DMT.

A read request (e.g., read(50)) can now be handled to access the required data by

looking up the DMT. More details about how a read request is served are shown in Algo-

rithm 1.

17

Algorithm 1: Tiler Read
Input: LBA.
Output: The data stored in a P-ARO.

1: Obtain the corresponding L-AR and L-ARO
by the static mapping.

2: Look up the L-ARO in the corresponding DMT of L-AR.
Retrieve the P-ARO.
Read data from the P-ARO.

3: Return the obtained data.

3.3.3 Tiler Space Management

The third challenging issue to be addressed is how space is managed within an AR. The

space management of Tiler consists of the following three processes: 1) a logging-write

process, which ensures no RMWs are needed when handling writes within an AR; 2) a lazy-

write process, which keeps locating some schedulable blocks for future writes and acts as

an intermediate process to effectively postpone triggering a common cleaning process; 3) a

common cleaning process, which is used to reclaim the invalidated spaces within an AR.

As shown in Figure 3.5 (a), when an AR is full during a logging write process (i.e., no

more free spaces), a common cleaning should be triggered to reclaim the invalidated space to

make room for incoming writes. However, we place a lazy write process between a logging

write process and a common cleaning process as shown in Figure 3.5 (b) that can effectively

reduce the triggering rate of a cleaning by postponing the cleaning. The details about the

three processes are discussed as follows:

• Logging write

During a logging write process, to handle write requests, Tiler will keep writing to a

Common
cleaning

Lazy
write

Logging
write

(b)

Logging
write

Common
cleaning

(a)

Figure 3.5: The AR state machines for (a) a two-states space management design (b) a three-state
space management design adopted in Tiler.

18

next available free data block on each track along with the rotation direction in an appending

mode. When a track is full, the adjacent subsequent track will be used to serve incoming

write requests. Following this allocation order, no RMWs are needed during the logging

write process.

An example is shown in Figure 3.6. The write requests sequence are handled accord-

ingly and the corresponding DMT is updated correspondingly as shown in Figure 3.6 (a).

For instance, as track T0 of AR1 is full, the first block B0 on track T1 is allocated and the

associated mapping is recorded in the DMT. Figure 3.6 (b) illustrates how an update request

with LBA=32 is handled. Since there are still some free blocks that can be allocated on

track T1, Tiler allocates the next available free block on track T1 which is (T1, B1) to serve

the update request with L-ARO=0 (by calculation). In this way, the corresponding entry of

DMT is updated accordingly. Note that the update request will invalidate the previous data

block.

Eventually, there will be no more free blocks allocated, then a lazy write process will

be triggered. We will introduce the details about the lazy write next.

• Lazy Write

The lazy write process is SMR-aware since it exploits the asymmetric read/write-

(a)

logical block address

SMR physical
block address

…………

AR0 …………AR1

Zone 0 Zone 1

ARx …

……… Zone i

0 32 64 N

0 32 64 N

B0 B2

T0

… …

B1 B3

T1

T2

T3

T7

AR1

S=4 blocks

M
=

8
tr

a
ck

s

Write requests (LBA): 50,32,35,37,42

18

L-AROs: 18,0,3,5,10

DMT

18
P-ARO
T0,B0

L-ARO0 3 5
10

0 T0,B1

3 T0,B2

5 T0,B3

10 T1,B0

logical block address

SMR physical
block address

…………

AR0 …………AR1

Zone 0 Zone 1

ARx …

……… Zone i

0 32 64 N

0 32 64 N

B0 B2

T0

… …

B1 B3

T1

T2

T3

T7

AR1

S=4 blocks

M
=

8
tr

a
ck

s

Write requests (LBA): 50,32,35,37,42 32

18

L-AROs: 18,0,3,5,10 0

DMT

18
P-ARO
T0,B0

L-ARO0 3 5
10 0 T1,B1

3 T0,B2

5 T0,B3

10 T1,B0

0

(b)

Free block
Invalid block

Valid blocknum

num

Figure 3.6: An example to illustrate how an update request is served in logging write process (a)
before the update request is processed (b) after the update request is processed.

19

head width characteristic of SMR disks. For illustration, let k (the ratio of the write-head

width over the read-head width) be three. With SMR-aware, if there are three adjacent

invalidated blocks along with the shingled direction, writing to the first one will not introduce

data loss since the two subsequent data blocks have been invalidated already.

A partial diagram (i.e., not including all the tracks) of an AR is shown in Figure 3.7,

where three blocks including (T1, B0), (T1, B3) and (T2, B3) are schedulable (i.e., can be

allocated to serve incoming write requests) since writes to these blocks will not cause data

loss. Note that schedulable data blocks may be generated by invalidating blocks. For exam-

ple, when the block on (T2, B1) is invalidated, two more schedulable blocks including (T0,

B1) and (T1, B1) can be regarded as schedulable. A common cleaning will not be triggered

until no more schedulable blocks can be found in the lazy write process. The effectiveness

of the lazy write will be demonstrated in Section 3.5.2.

• Cleaning

B0 B2

T0
B1 B3

T1
T2
T3
T4… … … … …

write-head

read-head

Valid Invalid Schedulable

Figure 3.7: The diagram of schedulable blocks when an AR is full. S=4 and write-head-width/read-
head-width=3.

Valid Invalid

T0

T1

T2

T3

T4

B0 B2

T0

B1 B3

T1

T2

T3

T4… … … … …

(a)

B0 B2B1 B3

… … … … …

(b)

Before common cleaning
is triggered

Valid Free

After common cleaning
is triggered

Figure 3.8: An example of a cleaning process. (a) Before a cleaning process is triggered. (b) After a
cleaning process is triggered.

20

When there are no more schedulable data blocks (i.e., three adjacent invalidated

blocks) within an AR, a cleaning process is triggered to reclaim the invalidated spaces. By

looking up the DMT, Tiler can determine the locations of valid data blocks (e.g., blocks in

gray color as shown in Figure 3.8). With a common cleaning, the associated data are copied

out and then rearranged back into the AR as shown in Figure 3.8 (b). Since the rearrange-

ment is along with the shingled direction (similar to writes in the logging write process), no

RMWs are incurred in the cleaning process. As there will be some free data blocks after a

cleaning process, Tiler can enter into logging write process to continue on serving new write

requests. We describe the detailed cleaning process in Algorithm 2 below.

Algorithm 2: Cleaning
Input: DMT
Output: AR (cleaned) and new DMT.

1: for each entry (L-ARO→P-ARO) in DMT.
Read out the corresponding valid data
and buffer it into the memory space. do

2: Write/append the valid data one after another
into the AR.
Update the corresponding entry in the DMT.

3: end for

The three above mentioned processes related to the space management of Tiler are

depicted in algorithm 3 for write operations in Tiler.

Algorithm 3: Tiler Write
Input: LBA and the data
Output: Write data to the allocated PBA.

1: if Logging write then
2: Tiler allocator allocates a next free data block as the P-ARO.

Write data to this P-ARO and update the DMT.
3: Return.
4: end if
5: if Lazy write then
6: A schedulable data block serves as the PBA.

Write data to this P-ARO and update the DMT.
7: Return.
8: else
9: Trigger a common cleaning.

10: end if
11: Return.

21

…

(b) Tiler with S=4

… …

Write requests: (8,12,0,4,21,3,27,21,20)

…

8 12 0 4
21 3 27 21
20

…… … …

0 8 21 27
4 12 21
3

(a) Tiler with S=1

S
hi

ng
le

d
di

re
ct

io
n

T0

…

T1

T2

T3

T7

T0

…

T1

T2

T3

T7

B0 B2B1 B3B0 B2B1 B3

AR0 AR1 AR2 AR3 AR0

Figure 3.9: An example of different data placement in (a) Tiler with S=1 and (b) Tiler with S=4.

3.4 Performance Analysis

In this section, we will first discuss the data placement with different configurations in Tiler

in Section 3.4.1. For data access patterns with different ARs, the corresponding performance

modeling will be given in Section 3.4.2. Finally, performance overhead will be analyzed in

Section 3.4.3.

3.4.1 Data placement with different ARs configurations

With different configurations, the data placement will be different and the corresponding

data access pattern may vary. As shown in Figure 3.2, within a data region of an AR, there

are M number of data tracks along with the shingled direction and S number of data blocks

along with the rotate direction on each track. M is a fix value which indicates an identical

number of data tracks in every zone. The parameter S is a tunable and configurable parameter

of AR in our design. A larger S indicates that each track within an AR can allocate more

blocks to serve data requests within one rotate operation. The sequential-accessing within

one rotate operation can potentially reduce the number of track-seek count and therefore

improve system performance.

We show an example of how the data are mapped under two configurations of S=1

and S=4 in Figure 3.9. Tiler with S=1 is shown in Figure 3.9 (a), there are four ARs in-

cluding AR0, AR1, AR2 and AR3 with addresses range of [0,7], [8,15], [16,23] and [24,31],

22

respectively. Since the requests with the LBAs including 0,4,3 are within the range [0,7],

they are mapped into AR0 in an appending mode. Similarly, other writes are mapped within

their ARs accordingly.

Tiler with S=4 is shown in Figure 3.9 (b) and the AR0 has an address range of [0,31].

Therefore, all write requests are appended along with the rotate direction within the AR.

3.4.2 Performance modeling

In this section, we analyze the system response time in Tiler to explore the effect of parameter

S on the system performance. The accessing of AR can be classified into two major states

including normal state (i.e., without triggering a cleaning process) and cleaning state.

• Normal state. For the normal state, no cleaning process occurs when read/write requests

are handled. Symbols are listed below.

Ts The avg time to seek the required track
Tr The avg time to rotate to the required block
Tt The avg time to transfer data
S Each track consists of S number of blocks
M The number of data tracks within an AR

As shown in Figure 3.2 (b), M × S blocks are sequentially accessed. Therefore, the

average response time in the normal state can be modeled by the following equation:

TavgN =
(M − 1)× Ts +M × (S− 1)× Tr + Tt

M × S
(3.1)

Since M is a fixed value, Equation 3.1 indicates that the average response time TavgN

is negatively correlated with parameter S.

•Cleaning state. As shown in Figure 3.8, a cleaning process will detect the valid data blocks

within the AR and rearranged them into the AR sequentially. Therefore, the time consumed

is associated with the number of valid data blocks. Let NV be the total number of valid data

blocks to be rearranged. The average response time in the clean state can be modeled by the

following equation:

23

TracesMSR

SMR
Simulator

ControllerInput
Parameters

Results

Figure 3.10: The framework of the simulation platform.

TavgC =
(M +

NV

S
)× Ts + 2NV × (Tr + Tt)

NV
(3.2)

As shown in equation 3.2, the performance overhead of a cleaning is mainly affected

by the total number of valid data blocks (i.e., NV). On one hand, enlarging parameter S will

potentially aggregate more valid data blocks compared with a smaller S. On the other hand,

with a larger S, there is more opportunity for the lazy write process to find more schedulable

data blocks that can postpone triggering of a cleaning. As different workloads can have

different behaviors, we will evaluate the effect of parameter S on cleaning efficiency with

different traces in the evaluation part.

3.4.3 Overhead analysis

Since Tiler uses a dynamic mapping table to record the translation information between

LBAs and physical AR blocks, and stores the mapping stable in both memory and disk. So,

Tiler introduces the memory and disk space overheads. Besides, the AR cleaning process

will include valid data copy operations and thus incur write amplification. However, the write

amplification is acceptable since Tiler eliminates all the RMW effect, which is exhibited in

our experiments.

On the other hand, for SMR read operations, in the worst-case, when the required

DMT is not presented in RAM, an additional map track read is required to first load the

DMT before reading the data. This process may sacrifice some read performance.

24

3.5 Evaluation

To evaluate Tiler, we conduct a series of experiments. For comparison, we have implemented

Skylight in [2] as a baseline. Tiler is implemented with four different AR configurations,

namely, Tiler with S=1, S=2, S=4 and S=8, respectively.

In this section, we first introduce the experimental environment and traces. Then, we

present the results and analysis.

3.5.1 Experimental Setup

We developed a simulator which simulates a Segate ST8000AS0011 8TB SMR disk based

on the description in [2]. The framework of our simulation platform is shown in Figure 3.10.

The management scheme of both Tiler and Skylight are implemented in the embedded con-

troller of our simulated SMR disk. The following parameters are inputted into the simulator:

1) the write/read-head width ratio, k is set as three, which indicates that the write-head is

two times larger than the read-head; 2) The rotation speed is set at 5900 rpm and the disk

has 16 surfaces; thus, each surface has a capacity of 512 GB. 3) M is set as 4096 which

indicates there are totally 4096 data tracks within each zone. 4) PC in Skylight occupies

around 1%∼10% of the overall space [2], and we use 1% to construct PC (i.e., 5 GB on each

surface) while the remaining space is NDA.

We have evaluated the proposed scheme with different traces. The traces are collected

from data centers organized by Microsoft Research Cambridge [1]. The detailed characteris-

Table 3.1: The characteristics of the traces.

Traces Data Size Percentage of Percentage of
(GB) Write Operations Update Operations

rsrch 0 8.6 91.82% 96.34%
src1 2 36.2 83.70% 89.56%
src2 0 6.9 86.56% 94.13%
src2 2 53.3 68.21% 22.64%
stg 0 12.6 77.51% 94.46%
stg 1 46.5 20.88% 91.33%
ts 0 8.6 84.28% 95.81%

usr 0 21.0 61.41% 91.47%
web 0 15.9 63.32% 93.93%
web 2 18.8 1.88% 42.83%

25

tics of the traces including data size (GB), write ratio (%) and update ratio (%) are shown in

Table 5.1. Among these traces, four traces represent write-intensive workloads and the other

four represent write-medium workloads. The remaining two traces represent read-intensive

workloads. Each trace is named in a hostname disknumber form. For example, the stg trace

is for web staging and the disk number is 0.

3.5.2 Performance Evaluation

In this Section, we compare the following five performance metrics for both Tiler and Sky-

light: 1) average response time; 2) write amplification; 3) read/write-head movements; 4)

average cleaning time; 5) write requests distribution.

• Average response time

We firstly evaluate the system overall performance improvement by comparing the

average response time of Skylight and Tiler with S=1. The experimental result is shown

in Figure 5.8. Tiler benefits from the reduction of read/write-head movements, getting rid

unnecessary RMWs and the postponed AR cleaning process. We can observe that Tiler can

shorten the average response time by up to 49% and 34% on average comparing to that of

Skylight.

•Write amplification

In this section, we compare the write amplification of both Skylight and Tiler with

1 1 1 1 1 1 1 1 1 1

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

No
rm

aliz
ed

Av
era

ge
Re

sp
on

se
Tim

e S k y l i g h t
T i l e r w i t h S = 1

r s r c h
_ 0

s r c 1
_ 2

s r c 2
_ 0

s r c 2
_ 2

s t g _ 0
s t g _ 1 t s _ 0

u s r _ 0
w e b _ 0

w e b _ 2

Figure 3.11: Normalized average response time.

26

1 1 1 1 1 1 1 1 1 10
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0 S k y l i g h t

T i l e r w i t h S = 1

No
rm

aliz
ed

Wr
ite

Am
plif

ica
tio

n

r s r c h
_ 0

s r c 1
_ 2

s r c 2
_ 0

s r c 2
_ 2

s t g _ 0
s t g _ 1 t s _ 0

u s r _ 0
w e b _ 0

w e b _ 2

Figure 3.12: Normalized write amplification.

1 1 1 1 1 1 1 1 1 10
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

S k y l i g h t
T i l e r w i t h S = 1

No
rm

aliz
ed

Re
ad

/W
rite

-he
ad

Mo
ve

me
nts

r s r c h
_ 0

s r c 1
_ 2

s r c 2
_ 0

s r c 2
_ 2

s t g _ 0
s t g _ 1 t s _ 0

u s r _ 0
w e b _ 0

w e b _ 2

Figure 3.13: Normalized read/write-head movement.

S=1. The write amplification of Skylight consists of two parts including the valid data copy

and RMWs triggered when writing to NDA. Since our AR design eliminates the need of

RMWs, the write amplification of Tiler only consists of the valid data copy during the AR

cleaning processes.

1 1 1 1 1 1 1 1 1 1
0

5

1 0

1 5

2 0

2 5

3 0
S k y l i g h t
T i l e r w i t h S = 1

No
rm

aliz
ed

Av
era

ge
Cle

an
ing

Tim
e

r s r c h
_ 0

s r c 1
_ 2

s r c 2
_ 0

s r c 2
_ 2

s t g _ 0
s t g _ 1 t s _ 0

u s r _ 0
w e b _ 0

w e b _ 2

Figure 3.14: Normalized average cleaning time.

27

We normalize the write amplification value of Skylight to that of Tiler with S=1. As

shown in Figure 3.12, the write amplification can be reduced by up to 99.31% and 99.03%

on average, which shows the effectiveness of our proposed approach.

• Read/write-head movements

As each read/write request will route the read/write-head to the required position, we

count the total read/write-head movements for comparison. We normalize the read/write-

head movements of Skylight to that of Tiler with S=1.

During a cleaning, Skylight cleans all the valid data from PC to NDA, thus, resulting

in a frequent head movements between the PC at OD and the NDA at ID. Rather than rotat-

ing the head between PC and NDA back and forth, Tiler is capable of restricting the head

movements within different ARs. As shown in Figure 5.9, the maximum reduction is 81X

and the average reduction is 51X.

• Average cleaning time

Since both Skylight and Tiler adopt an out-of-place scheme to manage part of their

spaces, cleaning is periodically triggered to reclaim invalidated spaces. At runtime, the sys-

tem is paused and cannot serve incoming requests until a cleaning process is finished. The

average cleaning time is the total time spent on cleaning over the total cleaning count. In this

section, we normalize the average cleaning time of Skylight to that of Tiler with S=1.

As shown in Figure 5.11, the average cleaning time can be reduced by up to 25X and

a reduction of 10X on average. Compared to Skylight, Tiler spends less time in cleaning

ARs and thus is more cleaning-efficient.

•Write requests distribution

We count the write/update requests served in the logging write process and the lazy

write process. The write request distribution is shown in Figure 3.15. If a lazy write process

is not triggered, common cleaning will be triggered and pause the system. By invoking a

lazy write, as shown in Figure 3.15, a lot more write requests can be served until a common

cleaning is finally triggered. Postponing a common cleaning can potentially aggregate more

28

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
w e b _ 0
u s r _ 0

t s _ 0
s t g _ 1
s t g _ 0

s r c 2 _ 2
s r c 2 _ 0

r s r c h _ 0
s r c 1 _ 2

L o g g i n g w r i t e
L a z y w r i t e

Figure 3.15: Write requests distribution of logging write and lazy write.

1 1 1 1 1 1 1 1 1 1

r s r c h _ 0
s r c 1 _ 2

s r c 2 _ 0
s r c 2 _ 2 s t g _ 0 s t g _ 1 t s _ 0 u s r _ 0

w e b _ 0
w e b _ 2

0 . 9 0

0 . 9 2

0 . 9 4

0 . 9 6

0 . 9 8

1 . 0 0

1 . 0 2

1 . 0 4

No
rm

aliz
ed

Av
era

ge
Re

sp
on

se
Tim

e S = 1
S = 2
S = 4
S = 8

Figure 3.16: Normalized average response time of Tiler with different S.

update requests and therefore, the valid data get more chances to be updated. Thus, the

cleaning overhead can be reduced.

3.5.3 Performance evaluation with different configurations of S

We design a set of experiments to show the influence of parameter S on the system perfor-

mance in Tiler. Tiler is implemented with four different configurations of S, namely, S=1,

S=2, S=4 and S=8. We compare the following performance metrics: 1) average response

time; 2) track-seek count; 3) cleaning count; 4) valid blocks copy; 5) worst-case response

time.

• Average response time

29

We normalize the average response time to the one of Tiler with S=1 and the results

are shown in Figure 3.16. It can be observed that with a larger parameter S, the average

response time is shortened. The performance gains mainly come from two aspects including

more sequential accessing along rotate direction and the reduced cleaning overheads.

• Track-seek count

Among three time-related components including Ts, Tr and Tt as mentioned in Sec-

tion 3.4.2, the time spent on track-seek (i.e., Ts) dominates, therefore, by reducing the num-

ber of track-seek, the system average response time can be shortened. We evaluate the total

track-seek count of Tiler with different S and normalize the results to the one of S=1. As

shown in Figure 3.17, as S increases, the total track-seek count is significantly reduced.

• Cleaning count

A common cleaning is triggered to reclaim the invalidated spaces when there are no

more schedulable blocks in the lazy write process. We count the corresponding triggered

cleaning count of Tiler with different parameter S and normalize the results to the one of

S=1. As shown in Figure 3.18, the triggered cleaning count can be significantly reduced as

S increases. An AR with a larger S can potentially increase the opportunities to locate more

schedulable blocks in the lazy write process. Therefore, the postponed triggering of common

cleanings contribute to reducing cleaning count.

• Valid blocks copy

1 1 1 1 1 1 1 1 1 1

r s r c h _ 0
s r c 1 _ 2

s r c 2 _ 0
s r c 2 _ 2 s t g _ 0 s t g _ 1 t s _ 0 u s r _ 0

w e b _ 0
w e b _ 2

0 . 8

0 . 9

1 . 0

1 . 1 S = 1
 S = 2
 S = 4
 S = 8

No
rm

aliz
ed

 Tr
ac

k-s
ee

k C
ou

nt

Figure 3.17: Normalized track-seek count of Tiler with different S.

30

1 1 1 1 1 1 1 1 1 1

r s r c h _ 0
s r c 1 _ 2

s r c 2 _ 0
s r c 2 _ 2 s t g _ 0 s t g _ 1 t s _ 0 u s r _ 0

w e b _ 0
w e b _ 2

0 . 0

0 . 5

1 . 0

1 . 5 S = 1
 S = 2
 S = 4
 S = 8

No
rm

aliz
ed

 Cl
ea

nin
g C

ou
nt

Figure 3.18: Normalized cleaning count of Tiler with different S.

In a common cleaning process, the valid blocks are rearranged back into an AR and

therefore, the cleaning efficiency is mainly affected by the total number of valid blocks copy

operations. We count the corresponding number of valid blocks copy and normalize the

results to the one of S=1. A larger S indicates a larger capacity of an AR and thus, more

write/update requests can be served in an AR which can potentially decrease the total number

of valid data blocks. Therefore, valid blocks copy decreases as S increases as shown in

Figure 3.19.

• worst-case response time

We also quantitatively evaluate a shortage of Tiler with large S. The worst-case re-

sponse time refers to the maximum time spent on a cleaning. Tiler with larger S indicates

that ARs are of larger capacity, therefore, the data volume to be cleaned in the worst-case

1 1 1 1 1 1 1 1 1 1

r s r c h _ 0
s r c 1 _ 2

s r c 2 _ 0
s r c 2 _ 2 s t g _ 0 s t g _ 1 t s _ 0 u s r _ 0

w e b _ 0
w e b _ 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4 S = 1
S = 2
S = 4
S = 8

No
rm

aliz
ed

Va
lid

Blo
cks

Co
py

Figure 3.19: Normalized valid blocks copy of Tiler with different S.

31

Table 3.2: The worst-case response time of Tiler with different S.

Traces S=1 S=2 S=4 S=8
time (ms) time (ms) time (ms) time (ms)

rsrch 0 3.44 6.32 11.62 30.25
src1 2 2.39 4.28 8.44 15.76
src2 0 3.27 6.26 13.04 33.55
src2 2 2.86 6.51 20.01 0
stg 0 3.68 6.87 12.88 34.57
stg 1 4.89 9.40 20.86 43.91
ts 0 3.60 4.87 13.14 20.74

usr 0 6.88 13.37 21.55 37.16
web 0 4.16 7.33 14.31 34.18
web 2 0.95 1.10 0 0

increases. As shown in Table 3.2, in the worst-case, the cleaning time keeps increasing as

S increases. Therefore, Tiler with larger S can potentially pause the system longer. We can

find some zeros in the table since the triggered cleaning count of some traces are zero.

3.6 Related Work

There are three dimensions to accelerate SMR-disk, i.e. device-management, host-management,

and host-awareness.

The device-management techniques minimize the negative effects of SMR properties,

e.g. track overlapping and RMWs, to achieve a high throughput of disk. Log-structured write

naturally coincides with the unidirectional writing of SMR head, thus, the data layout on disk

is researched in [5, 6] to amplify the logging benefit. Based on the logging technique, the

disk surfaces are further partitioned into cache regions and native region [2, 9] to obtain the

tradeoff between fast logging and slow writing-back. However, more and more researches

[38] recognize that common cleaning has become the most severe overhead of logging that

keeps SMR-disk busy even without data request. Therefore, some researches [32, 79] focus

on how to increase the proportion of in-place updates so that a heavy workload of cleaning

could be mitigated.

The host-management techniques enable hosts to govern SMR disks by utilizing the

host resources, e.g. RAM and SSD, as the unshingled space for random writes [20]. With

the overall view by hosts, the in-place update slots can be quickly found in memory [18],

32

which gives the designer more chance to optimize the LBAs stream for SMR-disk. Thus, the

shingled-friendly file system [44] is built up in the host. As one of the simplest instances,

ShingledFS [75], used for Hadoop, follows Strictly Append design, which allows host writes

to occur only at the append point of a band. Also, SSDs are another potential choice in hosts

to accelerate random accessing, and some hybrid architectures [23, 36, 82] cache active data

into SSDs and write inactive data back to SMR-disks.

The host-awareness techniques are the compromising designs between the above

two, which manages hot data by hosts for high efficiency and cold data by devices for huge

capacity. The work in [37] uses write frequency accumulated in the host to classify data into

hot and cold, and some band-occupancy-aware algorithms can determine which band to be

cleaned by checking the hot ratio of the band. The work in [46] designs a window-based hot

data identification to effectively manage data in the hot bands and the cold bands such that

it can significantly reduce the cleaning overhead while preventing the random write/update

interference.

3.7 Summary

In this chapter, we present the motivation, design, analysis, and evaluations of Tiler. To over-

come lengthy cleaning operation (i.e., the major bottleneck of SMR disks performance), we

divide the whole disk surfaces into individual small autonomous regions and design a two-

level mapping mechanism to manage these ARs. The first-level mapping statically locates

an AR in the disk, and the second-level mapping dynamically logs the write requests within

each AR. Furthermore, a lazy write process is invoked to select those schedulable blocks so

as to postpone the cleanings and reduce the cleaning frequency. Our experimental results

show that Tiler can shorten the overall system average response time by up to 49% and 34%

on average. The average cleaning time can be reduced by up to 25X and 10X on average.

33

CHAPTER 4

ALLEVIATING HOT DATA WRITE BACK EFFECT FOR SHINGLED
MAGNETIC RECORDING STORAGE SYSTEMS

4.1 Introduction

SMR [7, 16, 24, 25, 27, 49, 51, 66, 68, 78, 94, 100] is a non-volatile media that can provide

high capacity for next generation storage devices. By utilizing the overlapping shingle-like

structure, SMR storage systems do not require a significant change but can provide two to

three times of capacity [22, 26] compared with conventional HDD. The increased density

of SMR disks provides a promising solution to satisfy the capacity requirement of big data

applications. However, with the asymmetric sizes of the write-head and read-head, a write

operation to one track will destroy the data on several adjacent tracks. This feature makes it

challenging for SMR disks to effectively manage in-place updates.

To solve this problem, RMW operations are introduced to prevent the data loss in

SMR disks. With RMW operations, all data involved in all tracks will be read out and mod-

ified in the external storage space (e.g. RAM space) and then written back to the SMR disk.

Since multiple read and write accesses are involved, RMW operations inevitably increase

access latencies. In order to reduce this overhead, previous work utilizes a log-based persis-

tent cache (the persistent cache) to temporarily hold the data before writing them to the SMR

disk [2]. The log-based shingled the persistent cache serves incoming write/update requests

along the rotation direction in an appending mode from outer tracks to inner tracks so as

to avoid RMW operations. Since update requests will invalidate the stored data, a cleaning

procedure is introduced to reclaim the invalidated space.

Several challenges need to be conquered in order to effectively manage the persistent

cache. First, the persistent cache does not distinguish hot/cold data (related to frequently or

infrequently updated requests, respectively). Thus, when a cleaning operation is triggered,

34

the hot data may introduce unnecessary writes. Second, it also incurs significant overhead by

keeping the magnetic read/write heads being routed between the persistent cache at the outer

diameter and the native locations at the inner diameter. Third, the capacity of the persistent

cache is on the scale of several gigabytes. How to effectively manage the persistent cache

remains an open problem.

In this chapter, we present Dual-buffer that is a cache management scheme for the

persistent cache. Different from conventional single-buffer-based schemes, Dual-buffer par-

titions the persistent cache into two separate buffers, namely the persistent buffer and the

filter buffer, that are used to handle incoming data requests and to hold hot data, respectively.

The basic idea is to keep hot data in the filter buffer as long as possible, instead of writing

them back to their native locations during a cleaning operation. In this way, cleaning opera-

tions only trigger a few RMW operations, thereby alleviating the hot data write-back effect

and reducing access latencies in SMR disks. Specially, to effectively manage the persistent

buffer and the filter buffer, we propose a prediction-based dynamic partitioning mechanism

to reconfigure the sizes of the persistent buffer and the filter buffer so as to cache hot data as

much as possible by adapting to different workloads. We also propose an address mapping

scheme based on a B+ tree data structure so the address mapping of the persistent buffer

and the filter buffer and the address transition during cleaning operations can be efficiently

accomplished.

We simulate a Seagate drive-managed SMR disk described in Skylight [2] and im-

plement our proposed scheme in the embedded controller. We evaluate the performance of

Dual-buffer based on a variety of traces. The traces are collected from benchmarks in Mi-

crosoft Research Cambridge [1]. Skylight is selected as the baseline scheme for comparison.

The experimental results show that Dual-buffer can improve the access latency by 55.16%

on average and reduce the total RMW operations by 98.76% on average compared with

Skylight.

The main contributions of this chapter are:

• We present a novel cache management scheme by which the persistent cache is parti-

35

tioned into a persistent buffer and a filter buffer and hot data can be cached in the filter

buffer as much as possible.

• We propose a prediction-based dynamic partitioning mechanism so hot data can be

cached as much as possible by reconfiguring the sizes of the two buffers in the persis-

tent cache.

• An address mapping scheme is developed to achieve effective and efficient space man-

agement for the persistent cache.

• Simulation results show that the proposed technique can effectively alleviate the hot

data write-back effect in SMR disks and minimize the read/write head block move-

ment.

The remainder of this chapter is organized as follows. Section 4.2 depicts the motiva-

tion. Section 4.3 presents the proposed Dual-buffer cache management scheme. Section 4.4

shows the experimental results with analysis. Section 4.5 discusses the related work. Finally,

Section 4.6 concludes the chapter and discusses future work.

4.2 Motivation

In order to fully exploit the unique aspects of an SMR disk and take advantage of its persistent

cache, several issues have to be considered. Writing the data back to their native locations

will incur RMW operations and affect the stored data on subsequent tracks. We call this

phenomenon the interference effect. Given multiple cleanings, the hot data may remain hot

mds_0

proj_0

proj_2

0.0 0.2 0.4 0.6 0.8 1.0

 HWB

Figure 4.1: A motivation example to show the hot data write-back overhead.

36

and be written back more frequently than the cold data, leading to more severe interference

effect.

To demonstrate the interference effect, we conduct the preliminary experiments on

three of the collected traces (in Figure 4.1) as a motivational example. The experiments

are conducted based on the environment described in Section 4.4 and the characteristics of

the traces can be found in Table 5.1. For each trace, we count the total number of RMW

operations (denoted as T-RMW) triggered and the ones introduced by writing back hot data

(denoted as HWB), respectively. We show the ratio of HWB over T-RMW for each trace in

Figure 4.1. As shown, the RMW operations introduced by writing back hot data contribute

to 73% of the total number of RMW operations on average among the evaluated traces.

Therefore, we propose to leave as much hot data as possible in the persistent cache.

However, leaving hot data in the persistent cache requires over-provisioned space.

This reserved space should be dynamically changed to cater for hot data among multiple

cleanings, so the space partition of the persistent cache should not be fixed. Besides, the

capacity of the persistent cache is on the scale of several gigabytes. Managing such large-

scale address translations and space allocations becomes a critical issue. These observations

motive us to propose a cache management scheme to alleviate the hot data write-back effect

for SMR disks.

Persistent Buffer Filter Buffer shingle
 directionFB

PB

NDA

0 M 100

Native Data Area

M

Write requests: (0,4,8,3,2,0,4,5,1)

0 4 8 3
2 0 4 5

invalid
free

valid

1

Figure 4.2: The system layout of Dual-buffer. M% of the persistent cache (PC) serves as the persistent
buffer (PB), while the remaining (1-M%) serves as the over-provisioned filter buffer (FB).

37

4.3 A Dual-Buffer Management Scheme for SMR Disks

In this section, we first present a system overview in Section 4.3.1. Then, we describe our

Dual-buffer management scheme including partitioning, space management and cleaning in

Sections 4.3.2, Section 4.3.2 and Section 4.3.2, respectively. Finally, we discuss the reliabil-

ity, overhead issues and alternative solutions in Section 4.3.3.

4.3.1 System Overview

The system overview consists of the following two parts: 1) an architectural overview, which

depicts the system layout and the functionality of each system components (i.e., PC, PB,

FB, and NDA); 2) read/write operations and address mapping, which presents how logical

addresses are mapped to physical addresses and how read/write operations are operated in

Dual-buffer.

• Architectural overview with Dual-buffer

In the system architecture of our design, an SMR disk consists of the native data area

and the persistent cache. Both of them adopt the SMR technology with compact data tracks.

NDA occupies the majority of the disk spaces. PC is used to cache incoming write requests

and is served as the write buffer of NDA.

As Figure 4.2 depicts, in Dual-buffer, PC is further partitioned into two separate

buffers, namely the persistent buffer and the filter buffer. The partition point within a round

is decided either statically or dynamically by our partitioning process (see Section 4.3.2 for

details).

PB serves as the write buffer of NDA in our design. Once PB is full, Dual-buffer

will issue a cleaning operation to migrate the hot and cold data in PB to FB and NDA,

respectively. In other words, FB is used as the eviction buffer of PB, and hot data will be

held in FB instead of being written back to NDA. Thus, we can alleviate the hot write-back

effect and eliminate unnecessary write operations to NDA.

• Read/write operations and address mapping In Dual-buffer, read/write operations are

38

Algorithm 4: Dual-buffer write
Input: LBA and the data
Output: PBA.

1: if PB is full then
2: Trigger cleaning.
3: end if
4: Allocate the next available block in PB as PBAPB .
5: Write the data to PBAPB .
6: Update the next available block in PB,

and record the mapping (LBA→PBAPB) in PC-Tree.
7: Return PBAPB .

Algorithm 5: Dual-buffer Read
Input: LBA
Output: The data stored in LBA.

1: Search LBA in PC.
2: if LBA is found in PC-Tree then
3: Obtain the corresponding PBAPC as PBA.
4: else
5: Based on the static mapping,

translate LBA into PBANDA as PBA.
6: end if
7: Read from PBA and return the data.

handled differently. A write request will be served with an appending mode in PB first.

Writes to FB and NDA will only occur during a cleaning operation (e.g., cleaning data from

PB to FB and NDA accordingly). On the other hand, a read request may involve PC (i.e.,

PB and FB) and NDA. Specially, for a read request, we will first search it in PC, and if it

cannot be found, we will locate it in NDA. The detailed processes of read operations and

write operations can be found in Algorithms 5 and 4, respectively.

The address mappings in PC and NDA are managed with different manners. For PB

and FB in PC, as data are written in an appending manner, we propose one B+-tree-based data

structure (called PC-Tree) so a logical block address (LBA) given by operating systems can

be efficiently mapped to a physical block address (PBA) in PB or FB (See Section 4.3.2 for

details). In contrast, a static mapping mechanism is adopted in NDA, in which the mapping

between LBAs and PBAs is fixed.

By assigning a native location (a PBA) to each LBA within NDA, no memory space

is needed for maintenance (unlike dynamic mapping approaches). Therefore, this static map-

ping approach is adopted. Figure 4.3 shows an example of the static mapping in NDA. An

39

SMR disk normally consists of multiple 2-surface platters, indexed by the first most signif-

icant bits (i.e., the first 4 bits). Each surface has several bands indexed by b bits, and each

band consists of some tracks indicated by t bits. A track contains multiple blocks and the

last e bits are used to index the block offset within the track. A block is the basic access

unit from operating systems. The static mapping is a four-level mapping to track the map

information for surface, band, track, and block.

Given an LBA, in Figure 4.3, the leftmost 4 bits are directly routed to the disk con-

troller and used to select a surface in one of the sixteen surfaces. For example, 1100 can

route all disk operations to the twelfth surface. The b-bits in the second segment indicate the

band on which the operations reside. Then parsing the t-bits in the track segment routes the

operation to the specific track and finally, the e-bits indicates the actual block offset within

the track. In this way, a particular LBA is translated into a specific PBA in the NDA.

4.3.2 Dual-buffer Management

Our Dual-buffer management mainly consists of three components: 1) partitioning is to

manage how to partition PB and FB in the persistent cache; 2) space management is for how

to allocate space and perform address mapping in PB and FB; 3) cleaning is to manage the

data movement from PB to FB and NDA when PB is full.

• Partitioning

The physical space partition of PB and FB can be decided either by static partition-

4 bits b bits t bits e bits

Platter Band Track Offset

Band 0
Band 1
Band 2
Band 3

...

 Requests
(LBA, DATA)

Static-map

Tn
DATA

Native Data Area

1

2

3

4

Figure 4.3: An example to illustrate how an LBA is parsed into a PBA within NDA.

40

y2 = V(x)

NPC

(0,0) NPC

y1 = -x + NPC

Pn

P1 (XP,NFB)

P2 (XP,VXP)

XP

y

x

y1
y2

Xi

Figure 4.4: An illustrative example of the dynamic partitioning model: line y1 models the relationship
between PB and FB; line y2 is the plotted curve of replaying a sample trace; P1 and P2 are the
corresponding points on line y1 and line y2; Pn is the intersection point.

ing or dynamic partitioning.

• Static partitioning: Dual-buffer-static indicates that the partitioning of PC is predefined

in advance. The partitioning point M is fixed (e.g., at 60%) and will not be changed between

multiple rounds of request serving. Although this static partitioning scheme gains some

improvement over the baseline, it cannot adapt to the access behavior of different workloads.

Thus, we propose a dynamic partitioning scheme for further optimization next.

• Dynamic partitioning: As mentioned above, PB is the write buffer to serve incoming

write requests in an appending mode and FB is utilized to hold hot data in cleaning. Let

NPC , NPB and NFB be the total available data blocks in PC, PB and FB, respectively. When

NFB is small, it is not sufficient to cache all the valid data during cleaning. When NFB is

large, space may not be used up, which incurs storage space waste. Besides, in terms of the

capacity of PB, the smaller NPB is, the earlier cleaning process is triggered. Therefore, we

should find a good partitioning point.

The relationship for space partition can be modeled in Equation 4.1.

NFB = −NPB +NPC (4.1)

Given an NPB, we have a corresponding NFB. For example, line y1 in Figure 4.4

41

FB2

PB

R 1

FB1
FB1

PB

FB2

M
2 FB1

M
1

M2

FB2

PB

R 2 R 3

Figure 4.5: An illustration of dynamic partitioning. R1, R2, and R3 refer to Round 1, Round 2, and
Round 3, respectively; FB1 and FB2 are the last-round FB and the current-round FB, respectively;
M1 and M2 are the last-round partitioning point and current-round partitioning point, respectively.
PB starts at M1 and ends at M2.

illustrates this relation, in which, point P1 indicates that given x = XP , and the corresponding

NFB can be obtained by subtracting XP from NPC .

When PB is filled up, a cleaning process is triggered. For any allocated blocks (x-

values on line y2), we can obtain the amount of valid data (y-values on line y2). By replaying

a trace named rsrch 0 (detailed characteristics can be found in Table 5.1), we plot every

allocated block (x-value) in the PB and corresponding valid data (y-value), then we obtain

line y2 in Figure 4.4. For instance, the point P2 on line y2 indicates that when XP blocks are

allocated, there are VXP valid data blocks.

XP is the partitioning point and at the same time, it also serves as the cleaning trig-

gering point since there are only XP blocks that can be allocated. By analyzing points P1

and P2, we can conclude that when cleaning is triggered at XP , NFB exceeds VXP . This

indicates that (NFB - VXP) blocks are wasted. As shown in Figure 4.4, the intersection point

Pn, is the best partitioning point as well as the cleaning triggering point since VX equals to

NFB at this intersection. For any point following Pn, NFB will be smaller than VX , which

means that the amount of valid data cannot be fitted into FB. As a result, a portion of the data

need to be transferred to NDA which incurs the interference effect.

Although we know the intersection of the two lines (i.e., Pn) is the ideal point, ob-

taining it at runtime is challenging. We adopt a prediction process to find the golden point.

By collecting some sampling points, we are capable of fitting a curve, y′2, to closely approach

line y2. By finding the intersection of y′2 and line y1, a predicted partitioning point can be

42

generated.

At runtime, for every allocation in PB, we form each point (X, VX) as a sampling/prediction

point. Since the data block allocation is along with the rotating direction, the partition should

be accomplished before the allocation of the first track ends. Therefore, the sampling points

can only be picked within the first track.

As shown in Figure 4.5, in each round, FB1, which is the last-round FB, occupies

a portion of PB (i.e., M1∼0). The next available PBA starts from position 0 in PB and

after allocating S% (e.g., 50%) of the first track of PB as sampling points, we determine the

current-round partitioning point M2. FB2 (i.e., the current-round FB) is reserved for cleaning

and it will become the FB1 of next-round. For example, FB2 of R1 becomes FB1 of R2 and

FB2 of R2 becomes FB1 of R3.

• Space allocation and address mapping

The unique architectural layout of Dual-buffer makes the space management chal-

lenging for two major aspects. First, the total available space is partitioned into a dual-buffer

(i.e., PB and FB), which needs a special space allocation scheme. Second, since PC adopts

a dynamic address mapping between LBAs and PBAs, another challenging issue is to effi-

ciently manage this dynamic address mapping. To this end, we adopt the persistent buffer

allocation range table (PB-ART) and the filter buffer allocation range table (FB-ART) to ad-

dress the first issue and the persistent cache tree (PC-Tree) and the filter buffer tree (FB-Tree)

for the second issue as shown below.

• Management of PB: PB-ART manages the allocation of free blocks in PB. It contains

three indexes, Physical-Track-Number (PTN), Range and Offset. From the rotating-direction

point of view, Range is utilized to indicate a consecutive region of a particular track.

PC-Tree records the mapping (between an LBA and the corresponding allocated

PBA) and the update count (denoted as Cnt) of the LBA. It is a B+ tree using LBAs as

the index and {LBA, PBA, Cnt} as the leaf node. Given an LBA, with {LBA, PBA, Cnt},

we can find the physical block allocated as well as the update count of this LBA. Once an

43

Tn-1

Tn

Tn+1

0 M

Tn-1

PTN Range Offset

Tn

Tn+1

[0,M]
[0,M]
[0,M]

M+1
1

Persistent Buffer Allocation
Range Table (PB-ART)

Free-block management Serve (LBA,DATA)

PTN: Physical Track Number

Persistent Cache
Tree (PC-Tree)

Index-tree for mapping

LBA Tn,Cnt,Offset

1 2

Tn: The nthTrack
Cnt: UpdateCnt of LBA

DATA

2

16 surfaces

...
 controller

head

4 bits

Surface

3
4

LBA

1
 Request

(LBA,DATA)

File system

Used block Free block

LBA: Logical Block Address

Figure 4.6: An example to illustrate how PB-ART and PC-Tree are updated when one write request
is handled.

incoming request is served, the corresponding Cnt will be increased by one. In this way, we

can utilize Cnt to identify hot and cold data in cleaning.

An example is shown in Figure 4.6. In the beginning, the leftmost bits of the LBA

will be retrieved to route the operation into one of the platter surface. As the predicted

partitioning point is at M as assumed in Section 4.3.2, each track of PB can allocate up to M

blocks. PB-ART will keep tracking the next available offset (block) on one particular track.

Therefore, offset (M+1) of track Tn+1 indicates that this track is full. Since offset 0 of track

Tn is used, offset 1 will be used to serve the request. The pair (Tn, offset) represents a unique

PBA so that our PC-Tree records the LBA to PBA mapping. If LBA exists in the tree, then

the Cnt will be increased by 1; otherwise, Cnt will be initialized as 0.

• Management of FB: The allocation and address mapping in FB are similar to those of

PB. The FB-ART is in charge of the space allocation while the address mapping is recorded

in FB-Tree. There are also three indexes in FB-ART. One major difference is the range that

indicates the available write region of one track. For example, if one track has a total N

blocks following the rotation direction, PB’s range is from 0∼M while the remaining M∼N

is served as the allocation pool of FB.

44

Tn-1

Tn

Tn+1

M

Tn-1

PTN Range Offset

Tn

Tn+1

[M,N]
[M,N]
[M,N]

N+1
N+1

Filter Buffer Allocation
Range Table (FB-ART)

Free-block management Serve (LBA,DATA)

Used block Free block

LBA: Logical Block Address

Filter Buffer
Tree (FB-Tree)

Index-tree for mapping

LBA Tn,Offset

N

Tn: The nthTrack

3

4

PC-TreeRead (PBA)
Obtain Valid Data Retrieve (LBA,PBA)

1
(LBA, DATA) request

2

M

DATA

PTN: Physical Track Number

Figure 4.7: An example to illustrate how FB-ART and FB-Tree are updated during cleaning.

As shown in Figure 4.7, every single track shares the same range from offset M∼N

and the entry offset indicates that the next available block can be allocated. Offset N+1 of

track Tn−1 and Tn means the tracks are full. Therefore, offset M of track Tn+1 is allocated

for the data. FB-Tree is responsible for recording the address mapping between LBAs and

PBAs.

Note that the FB-Tree and the FB-ART are only utilized in a cleaning operation.

As shown in the cleaning below, after a cleaning is finished, the FB-Tree becomes the new

PC-Tree in next-round.

• Cleaning

When PB is full, a cleaning operation is triggered and Algorithm 6 depicts the de-

tailed process as follows:

Hot/cold data are classified based on Cnt that is the update count of LBA in {LBA,

PBA, Cnt} in PC-Tree. Let Nleafnodes and NFB be the total valid data blocks in PB and the

available free blocks in FB, respectively. 1) When Nleafnodes > NFB, it indicates that the

valid data blocks cannot be all migrated to FB. In this case, we sort the leaf nodes in PC-Tree

by Cnt in descending order. Then the first sorted NFB valid data blocks are treated as hot

data and migrated into FB. The remaining (Nleafnodes - NFB) valid data blocks are treated as

cold data and are migrated into NDA; 2) If FB is available to cater all the valid data blocks

in PB (i.e., Nleafnodes 6 NFB), these valid data blocks will all be treated as hot data and

thereby be held in FB. Once a cleaning operation is accomplished, PB is empty and hot data

45

Algorithm 6: Cleaning
Input: PC-Tree
Output: PB (empty), FB (hot data) and new PC-Tree.

1: Nleafnodes← The number of leaf nodes in PC-Tree;
2: NFB ← The total block number in FB .
3: if Nleafnodes > NFB then
4: Sort the leaf nodes in PC-Tree by Cnt

in descending order.
5: for each sorted leaf node with {LBA, PBAPC , Cnt} do
6: Read the data from PBAPC .
7: if FB is not full then
8: Move the data to FB.

Update FB-Tree.
9: else

10: Move the data to NDA.
11: end if
12: end for
13: else
14: for each leaf node in PC-Tree do
15: Move the data to FB.

Update FB-Tree.
16: end for
17: end if
18: PC-Tree← FB-Tree.

are moved to FB.

During the cleaning process, FB-Tree is built up to record all data in FB with the

format {LBA, PBA, Cnt}, in which Cnt is reset to zero. After one cleaning operation is

accomplished, the previous PC-Tree is abandoned and the FB-Tree becomes the new PC-

Tree. In this way, PC-Tree can index all hot data. Accordingly, hot data in FB can be

invalidated or updated by utilizing PB as the write buffer.

4.3.3 Discussion

• Reliability

To handle reliability issues, we reserve multiple innermost tracks within the ID as

Reliability Region (R-Region). Our allocation tables and address mapping are periodically

checkpointed (every 10 seconds in the experiments) to R-Region. When the system boot-up,

the information stored in R-Region will be loaded into memory so the normal operations can

be supported.

46

There is a potential risk that the mapping tables may be modified when the system

crashes. Since the allocation is in a deterministic manner, we adopt a crash recovery scheme

similar to [103]. Note that to support the crash recovery, the LBA is stored along with the

data into each allocated PBA in PB.

An illustrative example is given in Figure 4.8 to show how the system can be recov-

ered from a crash by using the last checkpoint and the Dual-buffer allocation strategy. In

Figure 4.8 (a), the first track T0 is allocated to serve the write requests and the corresponding

PC-Tree has been checkpointed. Assume that the write-head width is three times as large as

the read-head width (same as track width), thus the data (in gray color) will also be stored

on track T1 and track T2.

In Figure 4.8 (b), three additional write requests (i.e., LBAs 0, 0 and 1) are served

on the blocks of track T1 between the checkpoint A and crash point B and thus, the data on

the first three blocks of track T1, track T2, and track T3 have been updated. Upon the crash,

inconsistency occurs since data are updated but the up-to-date PC-Tree (at point B) stored in

RAM is lost.

During the crash recovery process, we firstly scan the first block after checkpoint at

(T1, Off 0) and notice that the data has been modified since originally it should store LBA

9. Based on this deterministic behavior, since the last blocks of track T1 and track T2 are

still storing LBA 1 while the different data pattern can be found from (T1, Off 3), we can

conclude that the last update/write stops at (T1, Off 2). By knowing these updates between

the checkpoint and crash point, we can update the corresponding entries (associated with

the obtained LBAs) of the last-checkpointed PC-Tree so as to rebuild the up-to-date one

(PC-Tree at point B).

• Overhead analysis

In order to distribute the write requests based on the access behavior, Dual-buffer

adopts a different allocation scheme for dealing with valid data. This introduces a new layer

of indirection in order to maintain address mapping. Therefore, it will introduce time and

memory space overhead. Dual-buffer uses PC-Tree and PB-ART to manage the address map-

47

Persistent Buffer

9 4 0 1

(a) Dual-buffer metadata and
PB state at checkpoint A

(b) Dual-buffer metadata and
PB state at crash point B

Checkpoint A Crash point B

9
PBA

4
0
1

T0,Off 0
LBA

PC-Tree

Write requests: (9, 4, 0, 1, 0, 0, 1)

T0,Off 1
T0,Off 2
T0,Off 3

9
PBA

4
0
1

T0,Off 0
LBA

PC-Tree

T0,Off 1
T1,Off 1
T1,Off 2

Persistent Buffer

9 4 0 1
0 0 1

……… ………

9 4 0 1
9 4 0 1 0 0 1

0 0 1

1
1

Figure 4.8: An illustrative example of the crash recovery process.

ping and space allocation information in the persistent cache. These mapping information

are maintained as the leaf nodes in the data structure.

The major memory space required by Dual-buffer is for PC-Tree and PB-ART, in

which the address mapping and space allocation information in the persistent cache are

stored. To save memory space, Dual-buffer can adopt the demand-based strategy to se-

lectively cache the mapping information to RAM.

For example, given an 8TB SMR disk, the total amount of the space required to

maintain the whole mapping information needs several tens megabytes. Our experimental

results in Table 4.4 show that Dual-buffer uses a maximum 11.57 MB memory space for

management.

In terms of the performance overhead, Dual-buffer uses a B+ tree structure to facil-

itate the address translation. Since the B+ tree support efficient search, this does not incur

significant time overhead. Our proposed Dual-buffer aims to use FB to capture the hot data

and prevent the unnecessary accesses to NDA in the SMR disk. This strategy can effectively

reduce the read-modify-write operations.

As Dual-buffer can supplement the current SMR design and significantly reduce the

time consuming read-modify-write operations, the system performance can be improved sig-

nificantly.

• Alternative solutions

48

There are other possible solutions, for example, to statically partition PC into multi-

log based caches [70, 84]. When one of the buffers is full and needs to be cleaned, another

empty buffer can be directly allocated. Two issues need to be solved to adopt this scheme:

first, the partitioning of PC is determined in advance, by which it may not well adapt to the

variations of workloads; second, the smaller the capacity of a cache becomes, the more fre-

quently a cleaning is triggered. How to make the multi-log caching approach more adaptive

with optimal partitioning can be an interesting problem for future research.

Another possible solution is dynamic caching transferring. The dynamic caching

scheme [101] mainly focuses on caching data that are frequently accessed/read but not writ-

ten. It can be an interesting research direction to investigate how to integrate dynamic

caching transfer mechanisms into persistent cache management so as to further alleviate

the hot data write-back effect in SMR disks.

4.4 Evaluation

4.4.1 Experimental Setup

We simulate a Seagate ST8000AS0011 8TB SMR disk and use Skylight [2] as the baseline

scheme for comparison. The simulated SMR disk has a rotation speed of 5900 rpm and the

write head width is 2 times larger than that of the read head. A guard region consists of 2

tracks and is located adjacent to the data tracks [2]. The Seagate SMR disk has 8 platters and

16 surfaces (each platter has 2 surfaces), thus for an 8 TB disk, each surface has a capacity

of 512 GB . Since around 1%∼10% [2] space will be used as the persistent cache, we choose

around 1% of 512 GB for evaluation and therefore, each surface’s 5 GB persistent cache is

located at the outermost part and the remaining space is NDA in the SMR disk.

The smallest read/write unit is a 4 KB physical block and there are around 1 million

blocks in the persistent cache on each surface. The persistent cache contains 9 tracks which

are followed by a guard region. The guard region consists of 2 tracks. Log-structure is

used in the persistent cache, and it adopts a dynamic mapping strategy. We implemented the

dynamic mapping using B+ tree (PC-Tree and FB-Tree) to manage the address translation of

49

Table 4.1: The characteristics of the traces.

Traces Data Written Data Read Writes Updates
(GB) (GB) (%) (%)

rsrch 0 7.63 0.94 91.82% 96.34%
src1 2 33.48 2.76 83.70% 89.56%
src2 0 5.83 1.11 86.56% 94.13%
src2 2 32.63 20.68 68.21% 22.64%
stg 0 10.53 6.09 77.51% 94.46%
stg 1 5.47 10.94 20.88% 91.33%
ts 0 7.69 1.89 84.28% 95.81%

usr 0 11.06 15.42 61.41% 91.47%
web 0 13.17 10.78 63.32% 93.93%
web 2 1.33 45.21 1.88% 42.83%
mds 0 19.35 3.17 85.91% 96.12%
proj 0 22.01 4.27 51.37% 92.76%
proj 2 28.76 46.93 21.79% 32.08%

1 million blocks. In the native data area, parsing a given LBA by the static mapping guides

the header to locate the particular PBA.

A representative STL scheme called Skylight [2] is selected for comparison. The

traces we used are collected from enterprise data centers by Microsoft Research Cambridge [1].

The detailed characteristics of traces are presented in Table 5.1 that includes the unique data

size of the trace, the write ratio and corresponding update ratio among writes. Each trace

file is named in the <hostname> <disknumber> form. Trace rsrch is collected from the

research project server while traces src are representing source control related traces. The

stg traces are collected for web staging and ts is the abbreviation of a terminal server. Traces

web are collected mainly from the web/SQL server. The number following the trace name

indicates the disk-number, rsrch 0 was traced on the 0-th disk of the research project server.

Other traces follow the similar format. The total number of requests of the first ten traces

is 1,000,000, in which the data written range from 1.33 GB to 33.48 GB and the data read

range from 0.94 GB to 45.21 GB. The total number of requests of mds 0, proj 0 and proj 2

are 919,569, 1,537,898 and 3,624,879, respectively, in which the data written range from

19.35 GB to 28.76 GB and the data read range from 3.17 GB to 46.93 GB.

The percentage of write operations show the write ratio among all the requests while

the percentage of update operations indicate the update ratio among the write requests. Ten

of the thirteen traces are write-intensive while the other three traces are read-intensive (i.e.,

50

Table 4.2: Variances between the ideal and predicted partition points.

Traces Ideal Predict Gap
M (%) M (%) over ideal(%)

rsrch 0 95.89 94.83 -1.06
src1 2 95.95 87.85 -8.10
src2 0 90.80 96.02 5.22
src2 2 79.05 89.83 10.78
stg 0 95.77 97.41 1.64
stg 1 92.93 92.63 -0.30
ts 0 94.40 92.05 -2.35

usr 0 88.80 95.64 6.84
web 0 57.24 57.40 0.16
mds 0 94.55 96.18 1.63
proj 0 81.89 93.19 11.30
proj 2 60.12 65.79 5.67

web 2, stg 1 and proj 2).

4.4.2 Results and Discussion

In order to evaluate the effectiveness of the proposed Dual-buffer scheme, we use perfor-

mance metrics including performance improvement, read-modify-write operations, worst

case response time, average response time, filer buffer space utilization, ram space over-

head and r/w head movement to compare it with Skylight. We implemented the proposed

Dual-buffer scheme as a shingled translation layer in the embedded controller in an SMR

disk. To perform a comprehensive evaluation for different partitioning schemes, we further

implemented Dual-buffer-static and Dual-buffer-dynamic in which the static and dynamic

partitioning schemes are adopted, respectively.

• Performance improvement.

0 . 0

0 . 4

0 . 8

1 . 2

1 . 6

2 . 0

p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

s t g _ 1
w e b _ 0

u s r _ 0t s _ 0
s t g _ 0

s r c 2
_ 2

s r c 2
_ 0

s r c 1
_ 2

r s r c h
_ 0

D u a l - b u f f e r - d y n a m i c
S k y l i g h t

Figure 4.9: Normalized performance improvement over the baseline Skylight [2].

51

We first evaluate the overall system performance and the normalized results are

shown in Figure 4.9. Note that the cleaning counts of each trace are summarized as fol-

lows: 1, 5, 1, 5, 2, 1, 1, 5, 5, 0, 4, 4, 5. The experimental results show that Dual-buffer

can improve overall system performance by up to 55.13%. We can also observe from the re-

sults that the average performance improvement is 51.66% among all traces compared with

Skylight. The performance gain mainly comes from our locating well-predicted partitioning

points during runtime of each trace. Since PB and FB are well partitioned, upon the trigger-

ing of cleaning, almost all the valid data can be fitted into FB. In this case, the write-back

effect is significantly alleviated.

Table 4.2 shows the variances between the ideal points and our predicted partition

points. The variance is calculated by subtracting the ideal M from predicted M. A positive

value indicates that predicted M falls behind ideal M so that the total volume of valid data

(Vx) exceeds the capacity of the FB (NFB). On the opposite, a negative value shows that the

reserved FB is sufficient to cater for all the valid data. Most of the variances have a value

within 10% and the maximum is 11.30%.

• Read-modify-write operations.

When data are written back to NDA, RMW operations are introduced. Therefore, we

count the total number of RMW operations of both Dual-buffer and Skylight for comparison.

Table 4.3: The number of RMW operations.

Traces Dual-buffer-dynamic Skylight Reduction (%)(times) (times)
rsrch 0 2,106 206,466 98.98
src1 2 9,266 506,330 98.17
src2 0 4,680 292,482 98.40
src2 2 19,056 3,175,932 99.40
stg 0 3,052 265,356 98.85
stg 1 841 109,282 99.23
ts 0 3,524 214,874 98.36

usr 0 7,898 319,748 97.53
web 0 162 231,560 99.93
mds 0 3,280 196,358 98.33
proj 0 231,384 3,225,692 92.83
proj 2 38,250 546,478 93.00

52

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2
2 . 4

 p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

w e b _ 0
u s r _ 0t s _ 0

s t g _ 1
s t g _ 0

s r c 2
_ 2

s r c 2
_ 0

s r c 1
_ 2

r s r c h
_ 0

D u a l - b u f f e r - s t a t i c
D u a l - b u f f e r - d y n a m i c
S k y l i g h t

(a) PB = 20% of PC.

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2
2 . 4

 p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

w e b _ 0
u s r _ 0t s _ 0

s t g _ 1
s t g _ 0

s r c 2
_ 2

s r c 2
_ 0

s r c 1
_ 2

r s r c h
_ 0

D u a l - b u f f e r - s t a t i c
D u a l - b u f f e r - d y n a m i c
S k y l i g h t

(b) PB = 40% of PC.

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2
2 . 4

 p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

w e b _ 0
u s r _ 0t s _ 0

s t g _ 1
s t g _ 0

s r c 2
_ 2

s r c 2
_ 0

s r c 1
_ 2

r s r c h
_ 0

D u a l - b u f f e r - s t a t i c
D u a l - b u f f e r - d y n a m i c
S k y l i g h t

(c) PB = 60% of PC.

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2
2 . 4

 p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

w e b _ 0
u s r _ 0t s _ 0

s t g _ 1
s t g _ 0

s r c 2
_ 2

s r c 2
_ 0

s r c 1
_ 2

r s r c h
_ 0

D u a l - b u f f e r - s t a t i c
D u a l - b u f f e r - d y n a m i c
S k y l i g h t

(d) PB = 80% of PC.

Figure 4.10: Normalized average response time.

As there is an acceptable accuracy gap between the exact ideal partitioning point and

our predicted partition point, there exists some cold data which needs to be written back to

NDA and thus introduces read-modify-write operations.

Table 4.3 shows the experimental results. From the results, it can be concluded that

the total number of RMW operations is reduced by up to 99.93% for trace web 0 and re-

duced by 98.76% on average among all the traces. As web 2 is a read-intensive trace in

which cleaning operations do not occur, no read-modified-write operations are observed for

both Dual-buffer and Skylight. Therefore, the result for this trace result is not shown in the

Table 4.3.

•Worst case response time.

0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

D u a l - b u f f e r - d y n a m i c
S k y l i g h t

p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

s t g _ 1
w e b _ 0

u s r _ 0t s _ 0
s t g _ 0

s r c 2 _ 2
s r c 2 _ 0

s r c 1 _ 2
r s r c h _ 0

Figure 4.11: Normalized worst case response time.

53

1 1 1 1 1 1 1 1 1 1 1 1 1
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

 p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

w e b _ 0
u s r _ 0t s _ 0

s t g _ 1
s t g _ 0

s r c 2
_ 2

s r c 2
_ 0

s r c 1
_ 2

r s r c h
_ 0

D u a l - b u f f e r - s t a t i c
D u a l - b u f f e r - d y n a m i c
S k y l i g h t

(a) PB = 20% of PC.

1 1 1 1 1 1 1 1 1 1 1 1 1
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

 p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

w e b _ 0
u s r _ 0t s _ 0

s t g _ 1
s t g _ 0

s r c 2
_ 2

s r c 2
_ 0

s r c 1
_ 2

r s r c h
_ 0

D u a l - b u f f e r - s t a t i c
D u a l - b u f f e r - d y n a m i c
S k y l i g h t

(b) PB = 40% of PC.

1 1 1 1 1 1 1 1 1 1 1 1 1
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

 p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

w e b _ 0
u s r _ 0t s _ 0

s t g _ 1
s t g _ 0

s r c 2
_ 2

s r c 2
_ 0

s r c 1
_ 2

r s r c h
_ 0

D u a l - b u f f e r - s t a t i c
D u a l - b u f f e r - d y n a m i c
S k y l i g h t

(c) PB = 60% of PC.

1 1 1 1 1 1 1 1 1 1 1 1 1
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

 p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

w e b _ 0
u s r _ 0t s _ 0

s t g _ 1
s t g _ 0

s r c 2
_ 2

s r c 2
_ 0

s r c 1
_ 2

r s r c h
_ 0

D u a l - b u f f e r - s t a t i c
D u a l - b u f f e r - d y n a m i c
S k y l i g h t

(d) PB = 80% of PC.

Figure 4.12: Normalized r/w head movement.

The worst case response time is the metric used to measure the longest time of fin-

ishing a read/write request.

In this section, we compare the worst case response time of Dual-buffer-dynamic

and Skylight. The experimental results are normalized and shown in Figure 4.11. We can

observe that our optimized Dual-buffer scheme can shorten the worst case response time by

up to 2.1x and 1.8x on average. The minimum reduction is from web 2 trace and no cleaning

operations are triggered, so the reduction on worst-case response time is small.

• Average response time.

The average response time refers to the time that for the system to respond to each

request on average. For the average response time, we compare the results from Dual-buffer-

static, Dual-buffer-dynamic and Skylight. Dual-buffer-static adopts 4 configurations of the

persistent buffer at 20%, 40%, 60% and 80% of the total available capacity of the persistent

cache. Since the persistent cache has a capacity of 5 GB on every surface, PB of Dual-buffer-

static is partitioned at 1 GB, 2 GB, 3 GB and 4 GB while FB is the remaining capacity,

respectively.

54

Figure 4.10 illustrates the normalized average response time of three schemes. The

experimental results indicate that even using a static configuration, Dual-buffer outperforms

Skylight. The response time of Dual-buffer-static is reduced by 33% on average. The perfor-

mance gain mainly comes from caching valid data in FB during the cleaning operations so

as to avoid unnecessary writes. Dual-buffer-dynamic performs the best among all the traces

since almost all the valid data can be cached in FB and the write-back operations can be

eliminated.

• FB utilization.

The filer buffer space utilization is used to measure the utilization rate of the reserved

FB.

To further demonstrate the effectiveness of our prediction-based dynamic partitioning

scheme, we calculate the actual space utilization among all the evaluated traces and show the

results in Figure 4.13. We can conclude from the results that in the traces including src2 0,

src2 2, stg 0, usr 1, web 0 and web 2, the space of FB is 100% utilized. The remaining

traces show a space utilization at around 98% on average. It indicates that among these

remaining traces, a very small portion of space is wasted since the capacity of FB is slightly

less than the size required to hold all valid data.

•Memory overhead.

The RAM space overhead is quantified by measuring the actual usage of the memory

space of Dual-buffer.

Dual-buffer maintains a B+ tree (PC-Tree) to perform data management in the per-

9 5

9 6

9 7

9 8

9 9

1 0 0

p r o j _ 2
p r o j _ 0

m d s _ 0
w e b _ 2

w e b _ 0
u s r _ 0t s _ 0

s t g _ 1
s t g _ 0

s r c 2
_ 2

s r c 2
_ 0

s r c 1
_ 2

r s r c h
_ 0Fil

ter
Bu

ffe
rS

pa
ce

Uti
liza

tio
n(

%)

Figure 4.13: The space utilization (%) of filter buffer.

55

sistent buffer. The number of leaf nodes represents the space overhead to conduct the address

mapping. We capture the maximum live leaf nodes during runtime of all the traces and the

results are shown in Table 4.4. The corresponding RAM space overhead is quantified. From

the results, in the worst case, we need to hold as many as 758,555 nodes and the related RAM

space overhead is 11.57 MB. For read-intensive workload, e.g. web 2, the minimum size of

PC-Tree is observed which indicates a RAM space overhead of 0.13 MB. Skylight adopts a

block-level mapping scheme and yields a 160 MB mapping table [2]. As a comparison, our

proposed scheme is more memory-efficient than Skylight.

• Read/Write head movement.

Since each read/write request needs to route the read/write-head to the required PBA,

we count the total read/write-head movement for comparison.

The experimental results of the read/write head movement during cleaning are shown

in Figure 4.12. During cleaning, Skylight will clean up all the valid data in PC into NDA,

the R/W head will keep shifting from PC to NDA back and forth. On the other hand, as our

Dual-buffer-dynamic scheme well reserve FB to cache almost all the valid data, few head

movement is required to transfer cold data back to NDA. For Dual-buffer-static, a medium

volume of cold data filtered out from the valid data needs to be cleaned up to NDA, thus it

incurs some r/w head movement overhead.

Table 4.4: RAM space overhead of Dual-buffer.

Traces #. of leaf nodes in PC-Tree Memory Used (MB)
rsrch 0 758,555 11.57
src1 2 709,671 10.83
src2 0 745,778 11.38
src2 2 453,473 6.91
stg 0 749,323 11.43
stg 1 756,566 11.54
ts 0 755,539 11.53

usr 0 731,794 11.17
web 0 749,131 11.43
web 2 8,859 0.14
mds 0 759,799 11.59
proj 0 736,165 11.23
proj 2 519,772 7.93

56

4.5 Related Work

SMR File Systems. File systems can be designed to provide support to manage SMR

disks [59, 102]. In SFS [44], a 64 MB band is assumed and sequential-write-required bands

similar to the persistent cache are used to store data. Manglogs [65] improve the disk band-

width by implementing scattered logs within the magnetic recording file system. SMRfs is

an effective user-level file system designed for managing SMR disks in the host [38]. Ext4-

lazy [3] applies a small change to the Linux Ext4 file system to significantly improves the

throughput of SMR disks. Since these file systems are tailored for SMR disks, they require

supports and changes from the host side which is not the focus of our work.

Hybrid System. Some schemes integrate RAM and solid-state drive (SSD) [10, 34]

in current SMR infrastructures as over-provisioning space to avoid the read-modify-write

effect [20, 29]. Other schemes utilize SSD to replace the persistent cache to effectively

manage SMR disks [81]. For example, in HS-BAS [93], they use SSD as the cache to reduce

the effect of high cleaning cost of the persistent cache. All these schemes well utilize high-

performance memory devices to address the random update and write amplification issues of

SMR disks.

Drive-Managed. A drive-managed mode SMRs includes an embedded controller to

hide its unique characteristics from the upper layers (e.g., operating system). The embed-

ded controller deals with the read-modify-write (RMW) operations inside SMR disks with

various management schemes [5, 6]. Similar to the flash translation layer in flash memory

management [11, 74], drive-managed techniques conceal the unique characteristics of SMR

disks. The drive-managed SMR disks are compatible with the block-layer interface since

SMR disks normally incorporate the persistent cache to temporally store the data. Opti-

mization of the cache region and a cleaning of the cache are proposed for drive-managed

techniques [32, 79].

Different architectural layouts are designed to accelerate data management in SMR

disks. The SMR disk in Skylight manages the shingled persistent cache by implementing

an indirection system to eliminate RMW operations [2]. The work in [9] not only adopts a

57

workable dynamic mapping to manage the persistent cache but also optimizes the native data

area management by using an S-block structure. Our work focuses on alleviating the hot-

data write-back effect and can be combined with S-block [9] to improve the performance of

both the persistent cache and the native data area of SMR disks. A hybrid wave-like shingled

recording disk system is designed to improve both the performance and the capacity of a

shingled-write-disk [54]. The work in [90] partitions the whole disk into multiple zones and

manages the SMR disk in zone-based API in a host-aware mode.

Some previous studies suggest classifying data into cold and hot data [33, 45]. For

example, the work in [37] uses write frequency to separate hot and cold blocks to reduce

data movement. SMORE [58] develops an efficient cold data storage in order to achieve

full disk bandwidth when ingesting data. Our proposed scheme adopts the write frequency

to rank the active valid LBAs when the filter buffer is not capable of caching all the valid

data. The focus of our scheme is predicting the ideal partitioning point at runtime but not

classifying hot/cold data. There exist some prediction-based schemes in [21, 41, 104] which

can be combined with our work.

4.6 Summary

In this chapter, we proposed Dual-buffer, a cache management scheme for the SMR disk.

Dual-buffer uses a two-level buffer cache architecture to postpone the frequent write-back

operations of hot blocks. Based on this architecture, we present a prediction-based dynamic

configuration to partition the persistent cache. The proposed fine-grained prediction model

is a promising work as it can maximize the space utilization ratio. An efficient dual-buffer-

aware space management and allocation is introduced to effectively manage the data stored

in the persistent cache. Experimental results show that our scheme can significantly reduce

unnecessary read-modify-write operations by up to 99.93% and therefore achieve a better

access latency (i.e., up to 55.13% performance improvement). In terms of the future work,

we plan to extend Dual-buffer to host-managed and host-aware SMR management schemes,

which may require different architectural and operating system optimization strategies.

58

CHAPTER 5

RMW-F: A DESIGN OF RMW-FREE CACHE USING BUILT-IN NAND-FLASH
FOR SMR STORAGE

5.1 Introduction

Recently, SMR disks [15, 43, 52, 53, 56, 57, 62, 64, 76, 98] have been proposed to be an al-

ternative to satisfy the capacity requirement for big data applications. Compared with tradi-

tional HDDs, SMR disks are more cost-effective for its capacity and low cost (i.e., cost-per-

gigabyte is competitive). However, SMR disks have poor performance (e.g., high responding

time) due to the internal unique characteristics (shingled tracks). That is, writing to a cer-

tain track may destroy the stored data on the subsequent tracks [6, 29]. To avoid damaging

the data, a time-consuming operation named RMW is incurred to read out the stored data

and write them back with the modified data in sequential order. In this chapter, for the

writes to SMR disks that can incur RMWs, we propose to leave them in a built-in NAND

flash [12–14, 28, 30, 35, 39, 47, 48, 72, 73, 85–87, 99] to eliminate the need of RMWs.

Previous works use SSDs [2, 49, 81] or SMR disks [9, 90] as a first-level persistent

cache to buffer all incoming writes without introducing RMWs. Since an SMR disk is usually

of terabytes-level, the persistent cache is relatively small to buffer all the writes and can be

full frequently. A cleaning process is triggered to move the data from the cache back to

the SMR disk and this write-back procedure will inevitably incur a large number of RMWs

within the SMR disk. Therefore, the overall system performance can be degraded by the

RMWs significantly.

In this paper, we no longer regard the persistent cache as a first-level cache but change

the functionality of the cache by taking the intrinsic characteristic of SMR disks into con-

siderations. Specifically, we distinguish data according to their write-back (to SMR disks)

behavior, i.e., for the writes to SMR disks, some writes will incur RMWs while the other

59

writes will incur no RMWs. Therefore, we propose to leave the writes that can incur RMWs

into our built-in NAND flash cache while the remaining writes are performed directly to the

SMR disk. In this way, our design not only can ensure that no RMWs are needed but also

can reduce the cleaning frequencies so as to improve the system performance. However, the

proposed design brings some new challenges: (1) a new internal architecture for both flash-

cache and SMR disks is needed to co-manage the system; (2) how to map the SMR logical

spaces into the NAND flash physical spaces; (3) how to perform cleaning when the available

spaces in the cache becomes low.

To address the first challenge, we propose a dual-space management module within

the controller of the SMR device to co-manage the system efficiently. Writes to the SMR

device will be classified into two main categories and handled accordingly.

To handle the second challenge, we propose to use a hybrid two-level mapping to

record the mapping between SMR logical addresses and physical flash addresses. The first-

level block mapping is used to map the same set of sectors within a zone into a single physical

flash block which is statically assigned. After the sector is mapped, within the block, the

SMR logical sector is dynamically associated with a flash physical page.

To conquer the third challenge, when one of the blocks of RMW-F becomes full

(i.e., the remaining free flash block reach a low watermark), a cleaning process is triggered.

Instead of cleaning up the whole flash-cache that can significantly hurt system performance,

flash-cache is cleaned at the flash-block level. A heuristic model which takes both write-back

cost and data popularity is adopted to further improve the cleaning efficiency.

We have built a trace-driven flash and SMR simulator and implemented our scheme

with this simulator. The performance of the system is evaluated with collected traces from

Microsoft Research Cambridge [1]. The experimental results show that compared with

Skylight-SMR-2 [2], RMW-F can shorten the overall system average response time by over

79% and improve the cleaning efficiency by approximately 15.6 times.

The main contributions of this chapter are summarized as follows:

60

• We propose a new architecture which adopts built-in NAND flash as the RMW-free

cache of the SMR system. Some new modules are implemented to accelerate the

management efficiency of the hybrid storage system.

• We propose a hybrid two-level mapping scheme to handle the address translations

between the SMR logical addresses and the NAND flash physical addresses.

• We improve the cleaning efficiency by a heuristic model that takes both write-back

cost and data popularity into account.

• We have built an SMR and flash simulator and evaluated our proposed RMW-F with

various traces.

The rest of this chapter is organized as follows. Section 5.2 gives the motivation

for this work. Section 5.3 describes the design and implementation details of our proposed

scheme. Experimental results are provided in Section 5.4. Related works are presented in

Section 5.5. Section 5.6 concludes the chapter.

5.2 Motivation

r s r c h _ 0
s r c 1 _ 2

s r c 2 _ 0
s r c 2 _ 2 s t g _ 0 s t g _ 10

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

Wr
ite

Am
plif

ica
tio

nR
ate

Figure 5.1: A preliminary experiment to measure write amplification brought by RMWs.

By serving write requests in an appending mode, no RMW is needed in PC and thus

reduces the negative effect to some extent. However, when PC is full, all the still valid data

in the cache will be moved back to the SMR disk during a cleaning process to clean up

61

the cache. Writing the data back to their native tracks within the SMR disk will inevitably

incur RMW operations since all the stored data on the subsequent tracks will be affected.

Therefore, the write amplification rate brought by the RMWs can be large and the system

performance is degraded significantly.

We have conducted a preliminary experiment to show the negative effect brought by

RMWs by measuring the write amplification rate among some collected real-world traces.

The write amplification rate is calculated as the ratio of the total inputted data over the total

amount of data written to the SMR disk (includes the written data involved in RMWs).

As shown in Figure 5.1, all the collected traces achieve very high write amplification

rate ranging from 73∼145 and thus RMWs can be the system performance bottleneck and

should be avoided as many as possible.

5.3 RMW-F Design

In this section, we first present an overview of our RMW-free architecture. After that, we

present the dual-space management in both NAND flash and SMR disk followed by the

sector locator in the SMR disk and the address translator along with the garbage collector in

the flash.

5.3.1 System Overview

Figure 5.2 shows the general architecture of RMW-free cache. RMW-free cache tightly

couples the components in both of the NAND flash and the SMR disk. In particular, RMW-

F implements a dual-space management module to efficiently allocate spaces in the hybrid

storage (including NAND flash and SMR disk) to ensure no RMWs are needed. Both NAND

flash and SMR disk expose their information about the physical blocks and the internal layout

of SMR disk platters to the controller and thus, the controller can pass the data along with

its characteristic to different locations. Especially, our RMW-free cache no longer serves as

a centralized first-level cache of the SMR disk.

To ensure no RMWs are needed in the SMR device, the dual-space management

62

Operating System

File System Block Device

Controller

Dual‐space ManagementAddress Translator

Garbage Collector

Applications

I/O Requests

NAND Flash
Blocks

SMR device

SMR platters

Read/Write Read/Write

Sector Locator

Figure 5.2: An overview of the system architecture of RMW-F.

module is responsible for distinguishing different types of writes, that is, writes to the SMR

disk can only be performed when RMW operation is not needed while writes that can incur

RMW in the SMR disk will be cached in the NAND flash. When writes are performed

accordingly, the address translator of NAND flash and the sector locator of the SMR disk

should be updated to record the mappings between the logical sector addresses (LSA) of the

SMR disk and the physical locations (including physical page number in flash and physical

sector number in the SMR disk). Although not every writes is cached in the NAND flash

cache, it will be eventually filled up with RMW-free data and the garbage collector should

be invoked to reclaim the spaces of NAND flash to make room for incoming writes.

5.3.2 Dual-space Management

In order to ensure no RMW is needed when performing writes in the SMR disk, one of the

key functionalities of our dual-space management module is to distinguish writes according

to their write-back behavior. For those write-back (to SMR) which will not incur RMW,

63

they can be performed in the SMR disk directly and a dual-space manager will allocate

the associated physical sectors for them via sector locator (which detailed mechanism is

introduced in the later section). Otherwise, for those data which will incur RMW when

writing back, they will be sent to the NAND flash for caching.

We use an example as shown in Figure 5.3 (a) to show the logical sector number

(LSN) representation within an SMR disk. There are totally four data tracks and five sectors

on each track, therefore, LSNs range from 0 to 19 as shown in Figure 5.3 (a). To interpret a

certain LSN, for example, LSN equals to 6, it is indicating the position on (track T2, sector

S2).

As shown in Figure 5.3 (b), a write requests sequence is handled by our dual-management

module. Since the first six writes will incur no RMW operation within the SMR disk, they

can be directly performed on the track T1 and (track T2, sector S1).

However, for those writes that will incur RMW if performed in the SMR disk, they

will be directed to the NAND flash cache instead. A block containing some free pages will be

selected to append the writes and the corresponding mapping will be recorded in the address

translator (which will be included in the following section). As shown in Figure 5.3 (b), for

the second identical LSN=0, it is regarded as an update operation and since rewriting it to

position (track T1, sector S1) will destroy the data on the following tracks, this write will be

routed to NAND flash cache. Another write associated with LSN=7 should not be performed

T1

T2

T3

T4

GR

0

(a)

1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

num LSN

(b)

0 1 2 3 4

5 6

11 12

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
T1

T2

T3

T4

GR

0
7

SMR disk SMR disk NAND flash blocks

0,1,2,3,4,5,0,6,12,7,11writes

Figure 5.3: (a) An example of logical sector numbers in an SMR disk. (b) An example of write re-
quests handling by the dual-space management module. Abbreviations: LSN: logical sector number;
T: track; S: sector; GR: Guard Region.

64

in the SMR disk either since writing to position (track T2, sector S3) will destroy stored data

on position (track T3, sector S3) and thus will introduce RMW.

In order to determine a certain write to be performed in the SMR disk or the NAND

flash cache, the dual-space management module should tell whether there are stored data on

the subsequent tracks or not (e.g., the example of writing LSN=0 and LSN=7 as shown in

Figure 5.3 (b)). Therefore, each set of sectors should have a track pointer to record the last

written track (i.e., T2,T2,T3,T1,T1 for S1,S2,S3,S4,S5, respectively).

The details about the above mentioned dual-management module to handle write

requests can be also found in algorithm 7.

Algorithm 7: Dual-space management write
Input: write (LSN, data)
Output: The data stored in a physical SMR sector or flash page.

1: Distinguish the write according to their write-back behavior:
parse LSN into (track Ti, sector Si) form via sector locator.

2: Obtain the track pointer Tp of sector Si.
3: if Tp ¿ Ti then
4: send to NAND flash cache to be handled by address translator.
5: Return.
6: else
7: instruct disk-head to write data to (track Ti, sector Si) directly.
8: update track pointer: Tp = Ti.
9: Return.

10: end if

After the data have been placed in the dual-space, on accessing/reading the data for

a given LSN, the dual-space manager will lookup the required data in the flash-cache at the

first place via the assistance of address translator (which will be introduced in the follow-

ing section). If the data can be found in flash-cache, it will be returned from the physical

flash page indicated by the address translator. Otherwise, if the data is not found, this case

indicates that the data resides in the SMR disk and the sector locator is involved to parse the

LSN into the actual physical SMR sector (i.e., PSN). Then, by routing the read-head to that

PSN, the data can be read out directly. The read requests handling by the dual-management

module can be concluded in algorithm 8.

65

Algorithm 8: Dual-space management read
Input: read (LSN)
Output: The data associated with this LSN.

1: Look up flash-cache with the assistance of address translator.
2: if The LSN is recorded in address translator, return the physical flash page number (PPN). then
3: Perform flash read on the PPN to get the stored data.
4: Return.
5: else
6: Parse LSN into track Ti, sector Si form via sector locator.
7: Instruct the read-head to locate Ti, Si and perform the read operation to get the data.
8: Return.
9: end if

5.3.3 Sector Locator

For a given LSN, our sector locator module is responsible for parsing the given LSN into

physical sector via a fixed mapping (known as static mapping) to manage the mapping be-

tween SMR logical addresses and SMR physical addresses. As shown in Figure 5.4, the

geometry layout of zone 0 in the SMR disk consists of M tracks and N sectors on each track,

therefore, there will be M×N sectors within zone 0. Given an LSN, as the addresses ranges

are exposed to the sector locator, the zone which the LSN belongs to can be determined.

Dividing the LSN by N, the quotient plus one will be the track number while the remainder

plus one will be the sector number.

For example, as shown in Figure 5.3 (a), given an LSN=11, dividing 11 by 5, the

quotient and the remainder are 2 and 1, respectively. Therefore, the corresponding track

number and sector number are T3 and S2, respectively. On receiving an LSN, the sector

S1 …
T1

GR

… …

S2 SN

T2
T3
T4

TM

N sectors

M
 t

ra
ck

s

Rotate direction

S
hi

ng
le

 d
ire

ct
io

n

Figure 5.4: An example of static mapping used in the sector locator module.

66

locator can always transform the LSN into its corresponding track number along with its

sector number. The read/write-head router can then perform track seek and can rotate to the

destiny sector to access the physical sector in the SMR disk.

5.3.4 Address Translator

One key issue to be handled by the address translator module is address translation between

SMR logical addresses and NAND flash physical addresses. We propose a block-level map-

ping to statically map the same set of SMR sectors into an independent NAND flash block

as shown in Figure 5.5. For example, within zone 0 of the SMR disk, there are N sectors on

each track and the same group of sectors along with the shingled direction can be denoted

as S1, S2, S3, up to SN as shown in the upper part of Figure 5.5. The address translator

statically associates a physical flash block (ranging from B1 to BN) to the same set of SMR

sectors as shown in the lower part of Figure 5.5 (i.e., S1→B1,S2→B2...SN→BN). Note that,

for illustrations, we only show the block-level mapping by using zone 0 as an example, other

zones adopt the same mapping mechanism. Since this static mapping is fixed which requires

no memory overhead, it is space-efficient.

A page-level dynamic mapping is used when an LSN is mapped into the flash block to

record the sector-to-page mapping (S2P-map). As shown in Figure 5.5, LSN including 100,

102 and 104 have been originally stored into the SMR disk sequentially without introducing

RMW. When the next incoming writes associated with LSN including 101 and 103 arrive,

they will be sent by the dual-management module since they will affect the stored data in the

SMR disk when writing back. Therefore, LSNs including 101 and 103 will be logged into

the next free page of flash block B2 and the corresponding entry of the B2: S2P-map will be

updated accordingly as shown in the lower-right-part of Figure 5.5. The popularity of each

LSN will be varied according to different workloads, therefore, the address translator also

keeps tracking of the access count of each LSN. The access count will be recorded in the

S2P-map so as to distinguish hot and cold data. Specifically, a predefined threshold (denoted

as T) is used to perform a comparison with the access count, the access count larger than T

will be classified as hot data while the others will be regarded as cold data.

67

S1 …

T1

GR

…

S2 SN

T2
T3
T4

TM

N sectors

M
 t

ra
ck

s

Zone 0

……

B1 B2 BN…… …… ……

N blocks

SMR

NAND
Flash
Block

100

102

104

101
103

B2: S2P-map

101
PPN

103
1
2

LSN

Figure 5.5: An overview of block-level mapping.

On handling the lookup request sent by the dual-space manager, the following algo-

rithm 10 concludes the process. Given an LSN, it will be mapped into its assigned physical

flash block by the above mentioned block-level mapping. Then, the S2P-map of the block

can be accessed to locate the corresponding entry. If the recorded PPN can be found, it will

be returned to the dual-space management module. Otherwise, a NULL flag is returned to

indicate the lookup failure.

5.3.5 Garbage Collector

As mentioned in section 5.3.4, we adopt a two-level mapping to map the sparse SMR logical

spaces into the flash physical spaces at the unit of blocks. For the same set of sectors within a

zone, when there are no available pages within the assigned physical flash block, the garbage

collector is invoked to reclaim spaces so as to serve future incoming writes. However, the

garbage collector is well aware of the dual-space underlying storage. Therefore, for those

still valid LSNs within a block during the garbage collection period, one key decision of our

garbage collector to make is determining which LSNs should be written back to the SMR

disk and the remaining ones should be rearranged back into the physical block.

Based on observation, for the same set of sectors (e.g., Si), the write-back cost of

each LSN is different. As shown in Figure 5.6, the same set of sectors S3 is mapped into

68

Algorithm 9: Address translator allocation
Input: dual-mgt-write (LSN,data)
Output: write data to a PPN.

1: Map the LSN into its assigned physical flash block Bi via the block-level mapping scheme.
2: Obtain the associated page-level mapping Bi:S2P-map and get the next available physical page

number (PPN).
3: if Bi is not full. then
4: Write data to the PPN.
5: update the mapping of LSN→PPN in the S2P-map.
6: else
7: Trigger garbage collector.
8: Allocate the first available page of Bi as PPN.
9: Write data to the PPN.

10: Update the mapping of LSN→PPN in the S2P-map.
11: end if
12: Return.

Algorithm 10: Address translator lookup
Input: dual-mgt-look-up (LSN)
Output: a recorded PPN or not found.

1: Map the LSN into its assigned physical flash block Bi via the block-level mapping scheme.
2: Obtain the associated page-level mapping Bi:S2P-map.
3: Obtain the corresponding entry of LSN within the S2P-map.
4: if the associated PPN is found. then
5: return PPN.
6: else
7: return NULL.
8: end if

Track 1

Track 2

Track 3

Track 4

Guard
Region

 B12

(a)

Track 1

Track 2

Track 3

Track 4

Guard
Region

 B14

(b)

Figure 5.6: An example to show a different write-back cost of a stored LSN within its flash block.
(a) writing back an LSN whose PSN resides in the outer track. (b) writing back an LSN whose PSN
resides in the inner track.

block B12. The valid data is represented in white color and its native location in the SMR

disk resides in the outermost track. Therefore, if writing back this valid data to the SMR

disk, all the subsequent sectors (i.e., three sectors in gray color) will be affected as shown in

Figure 5.6 (a). However, in Figure 5.6 (b), the same set of sectors S5 are mapped into block

69

B14. The valid data in white color whose native location resides in the inner track, writing it

back will only affect the following one sector in gray color.

Besides, the popularity of each LSN within the same set will be varied according

to different workloads. The accessing count of each LSN is recorded in the S2P-map as

mentioned in section 5.3.4. Without considering the write-back cost, the hotter data should

be left in the flash cache while the colder data should be written back to make space for

future incoming writes.

By taking both write-back cost and popularity into considerations as shown in Fig-

ure 5.7, the garbage collector will selectively choose those cold data with a low write-back

cost to be written back at the first priority. The remaining ones will be rearranged back into

the physical flash block.

5.4 Evaluation

In this Section, we will introduce the experimental setup in Section 5.4.1 and then present

the results and discussion in Section 5.4.2.

5.4.1 Experimental Setup

We simulate a Seagate ST8000AS0011 8TB SMR disk based on the described description

in [2]. Then, our flash-cache with the controller is built-in along with the SMR disk in the

simulator. In our simulated disk, we use the following parameters: The write-head width is

as 3 times large as the read-head width which indicates that writing to a track will affect the

Popularity

Write‐back cost

Cold, HighCold, Low

Hot, HighHot, Low

Figure 5.7: Classifying the LSN according to its write-back cost and data popularity.

70

Table 5.1: The characteristics of the traces.

Traces Data Written Data Read Writes Updates
(GB) (GB) (%) (%)

rsrch 0 7.63 0.94 91.82% 96.34%
src1 2 33.48 2.76 83.70% 89.56%
src2 0 5.83 1.11 86.56% 94.13%
src2 2 32.63 20.68 68.21% 22.64%
stg 0 10.53 6.09 77.51% 94.46%
stg 1 5.47 10.94 20.88% 91.33%
ts 0 7.69 1.89 84.28% 95.81%

usr 0 11.06 15.42 61.41% 91.47%
web 0 13.17 10.78 63.32% 93.93%
web 2 1.33 45.21 1.88% 42.83%

subsequent two tracks. Thus, the guard region consists of two tracks which store no data so

as to separate bands in the native data area. The rotation speed is set at 5900 rpm and the

disk has 16 surfaces, thus, each surface has a capacity of 512 GB.

The management schemes of RMW-F are implemented within the controller. To

perform a fair comparison, we implement the described scheme which utilizes NAND flash

as cache (named emulated-SMR-2) in Skylight [2] as the baseline (we denote the baseline

scheme as SMR-2 hereafter). Both RMW-F and SMR-2 have an identical flash cache size of

20GiB. The flash page size is 4KB which is of the same size as an SMR sector size (4KB) in

our environment. We perform evaluations with real-world traces collected from data centers

of Microsoft Research Cambridge [1]. The detailed characteristics of the traces including

total data written/read to the SMR device (GB), write ratio (%) and update ratio (%) are

shown in Table 5.1. The total number of requests of the traces is 1,000,000, in which the

data written range from 1.33 GB to 33.48 GB and the data read range from 0.94 GB to 45.21

GB. Each trace is in a hostname disknumber form. For example, the stg trace is for web

staging and the disk number is 0.

5.4.2 Results and discussion

In this Section, we evaluate the effectiveness of RMW-F with the following performance

metrics for both RMW-F and Skylight: 1) average response time; 2) read/write-head move-

ments; 3) write amplification factor; 4) average cleaning time.

71

• Average response time

1 1 1 1 1 1 1 1 1 1

0

1

2

3

4

5

6

No
rm

aliz
ed

 Av
era

ge
 Re

sp
on

se
 Ti

me

 S M R - 2
 R M W - F

r s r c h
_ 0

s r c 1
_ 2

s r c 2
_ 0

s r c 2
_ 2

s t g _ 0
s t g _ 1 t s _ 0

u s r _ 0
w e b _ 0

w e b _ 2

Figure 5.8: Normalized average response time.

In order to perform quantitative analysis on the overall system performance, we mea-

sure the average response time of both SMR-2 and RMW-F. The average response time is

calculated as the ratio of total time spent on carrying out all the read/write requests over

the total number of requests. The metric of SMR-2 is normalized to that of RMW-F and

the results are shown in Figure 5.8. We can observe that RMW-F can shorten the overall

average response time by over 79% when comparing to that of SMR-2. The performance

improvement mainly comes from the significant reduction of write amplification factor (re-

duced RMWs). Besides, the cleaning process which takes both write-back cost and data

popularity into account can also improve the overall system performance. Therefore, the

result shows the effectiveness of RMW-F.

1 1 1 1 1 1 1 1 1 1
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

 S M R - 2
 R M W - F

No
rm

aliz
ed

 Re
ad

/wr
ite

-he
ad

 M
ov

em
en

ts

r s r c h
_ 0

s r c 1
_ 2

s r c 2
_ 0

s r c 2
_ 2

s t g _ 0
s t g _ 1 t s _ 0

u s r _ 0
w e b _ 0

w e b _ 2

Figure 5.9: Normalized read/write-head movement.

• Read/write-head movements

72

In order to measure the cleaning efficiency at the SMR disk side, we have performed

quantitative analysis on the read/write-head movements. During a cleaning, SMR-2 needs to

clean up all the valid data in the first-level persistent cache to the SMR disk which incurs a

large number of RMWs. Such RMWs keep the read/write head busy shifting between differ-

ent tracks. Since every operation in the SMR disk requires the read/write-head to engage, the

movements of head dominate the performance. RMW-F can eliminate the needs of RMWs

while performing writes to the SMR system and only introduce very little RMWs during

a cleaning process. Therefore, the read/write-head movements of RMW-F can be reduced

significantly.

We normalized the read/write-head movements of SMR-2 to that of RMW-F and the

results can be found in Figure 5.9. The maximum reduction is 41X and the average reduction

is 16X. As a comparison, RMW-F performs a faster cleaning than SMR-2 since it benefits

from the reduction in head movements.

1 1 1 1 1 1 1 1 1 10
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

 S M R - 2
 R M W - F

No
rm

aliz
ed

 W
rite

 Am
plif

ica
tio

n

r s r c h
_ 0

s r c 1
_ 2

s r c 2
_ 0

s r c 2
_ 2

s t g _ 0
s t g _ 1 t s _ 0

u s r _ 0
w e b _ 0

w e b _ 2

Figure 5.10: Normalized write amplification factor.

•Write amplification factor

As our dual-space management module mainly responsible for avoiding the read-

modify-write operations so as to reduce write amplification factor (WAF), we measure the

WAF of both SMR-2 and RMW-F in the experiment. We normalized the WAF of SMR-2

to that of RMW-F and the results can be found in Figure 5.10. The write-amplification of

SMR-2 mainly comes from the RMWs introduced by the data write-back behaviors. Since

RMW-F reduces the need of RMW when performing writes and can reduce write-back cost

73

within the garbage collector module, the write-amplification factor is much smaller than that

of SMR-2. As shown in Figure 5.10, the reduction of WAF ranges from 62 to 132 which

shows the effectiveness of RMW-F.

• Average cleaning time

1 1 1 1 1 1 1 1 1 1
0

5

1 0

1 5

2 0

2 5

3 0
S M R - 2
R M W - F

No
rm

aliz
ed

Av
era

ge
Cle

an
ing

Tim
e

r s r c h
_ 0

s r c 1
_ 2

s r c 2
_ 0

s r c 2
_ 2

s t g _ 0
s t g _ 1 t s _ 0

u s r _ 0
w e b _ 0

w e b _ 2

Figure 5.11: Normalized average cleaning time.

We use the average cleaning time to compare the cleaning efficiency of both SMR-2

and RMW-F. The average cleaning time is calculated as the total time spent on the cleaning

processes over the total cleaning counts of the system. During a cleaning process, the system

is paused and cannot serve incoming requests until a cleaning is finished. Therefore, the

average cleaning time plays an important role in the user experience. We normalized the

average cleaning time of SMR-2 to that of RMW-F and collected the results as shown in

Figure 5.11.

From the results, we can observe that much more time is spent in a cleaning process

of SMR-2 than that of RMW-F with an average ratio of 15.6X. Since RMW-F only performs

cleaning at the unit of flash block, the cleaning scale is much smaller than that of SMR-2

and thus the pausing time is shorter. Besides, the reduction of the average cleaning time also

shows the effectiveness of our write-back cost and hot/cold data popularity model.

5.5 Related Work

A lot of works have been done to improve the performance of SMR storage systems in-

cluding the following three aspects: (1) SMR file system solutions, (2) SMR-based cache

74

optimizations and (3) flash-based cache optimizations.

SMR File System Solutions. The file system layer which is in the middle of the

system architecture between applications and SMR devices can be tailored and redesigned to

provide support and optimizations. An effective file system called HiSMRfs mainly focus on

improving the performance in the host by managing metadata and data storage separately on

a hybrid system including SSDs and SMR disks [36]. By doing so, data writing to the SMR

storage is ensured to be sequential and thus, no random writes are allowed to incur RMW

operations. Another host-side file system named SFS is tailored for specific workloads like

videos and implements different managerial policies for random write shingled zone and

sequential write shingled zone [44]. ZEAFS [60] provides high-level abstractions for KV

stores and builds an SMR compatible KV store system. The work in [4] adopts a legacy file

system (EXT4) to DM-SMR drive to make it a promising SMR-friendly file system which

requires little modifications on existing SMR devices.

SMR-based Cache Optimizations. Some works seek to reduce the random writes

performance penalty by reconsidering the design of the SMR-based cache. A disk cache

based architecture is proposed in [9] and an indirection buffer named S-blocks are managed

to always map incoming data to the head of a circular buffer. A cleaning process is needed

to move the still valid blocks back to the head when the buffer is full. E-region [29] is also

a circular cache buffer that ensures data will not be destroyed by writes to support random

writes in SMR devices.

The cleaning efficiency can be the system bottleneck of the SMR system. By using a

mechanism named zone-oriented reordering, the cache cleaning efficiency can be improved

greatly as mentioned in the work [90, 91]. Some work also considers performing data clas-

sification into hot data and cold data and then write them to different bands separately so as

to improve cleaning efficiency [37]. By doing so, long-term data migration can be reduced.

Another work in [46] also proposes to perform hot data identification and manage data in hot

bands so as to reduce cleaning overhead.

Flash-based Cache Optimizations. Flash-based storage has been deployed to ac-

75

celerate the performance of HDDs and SMR disks due to their promising behaviors and

cost-effective characteristics. ROCO [49] proposes to adopt an SSD to improve the perfor-

mance of a host-aware SMR drive. Since the optimization is mainly based on a host-aware

SMR disk, writes can be classified with the assistance of host. However, our work focuses

on drive-managed SMR disk and adopts a built-in NAND flash memory rather than an SSD

and optimizations are done inside the SMR device and thus, our work is different from the

ROCO work. The work in [81] proposes to use SSD as the first-level cache of the SMR

device, that is, all incoming writes will be performed in the SSD first. By restricting the

write range of logical block addresses (LBAs) of zones, [81] is able to reduce the write am-

plification factor to some extent. HS-BAS [92] also uses SSD as the first-level write buffer

cache for SMR devices and focuses on reducing the cleaning/collection cost by adopting

different policies. A hybrid wave-like shingled recording disk system (HWSR) proposes to

use SSD as a disk cache to mainly improve random read performance rather than write per-

formance [55, 80]. An application-aware hybrid storage system named (Apas), consists of

SSDs and SMR disks, has taken the application characteristics into account to mitigate the

write amplification problem.

5.6 Summary

In this chapter, we present the motivation, design, analysis, and evaluation of RMW-F. To

avoid RMWs as many as possible, which is the major challenge of SMR disks, we propose

a dual-space management scheme to distinguish writes according to their write-back behav-

ior. A dual-space management module is implemented to handle write/read requests into the

SMR system. The address translator is responsible for handling the mappings between the

NAND flash and SMR addresses. The garbage collector adopts a heuristic scheme to deter-

mine whether a certain sector should be written back to the SMR disk or be left in the flash.

Our experimental results show that RMW-F can shorten the overall system average response

time by over 79% and improve the cleaning efficiency by 15.6 times.

76

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

SMR has recently been provided as a promising solution to satisfy the capacity requirement

of big data applications. Compared with conventional HDDs, SMR disks benefit in higher

density and lower cost. However, SMR disks also suffer from lower responding time due

to their intrinsic overlapped-track limitation. That is, writing to a track leads to damage to

the original data stored on the subsequent tracks. To prevent data loss, a time-consuming

RMW is performed to firstly copy out the involved data and then to write them back after

the modification is done. In this thesis, in order to avoid RMW effect, we optimize the

SMR storage system in three main schemes, namely a decentralized approach without the

cache-assistance and two cache optimizations by the integration of NAND flash and SMR

disks.

For the first scheme, we first advocate reconsidering the drive-managed scheme and

for the first time propose a decentralized approach called Tiler to manage the SMR disk

space. Our basic idea is to separate the whole SMR disk space into individual log-structured

ARs. We have built an SMR simulator and evaluated our proposed scheme with various real-

world collected traces to demonstrate the effectiveness of this scheme. Our experimental

results show that Tiler can shorten the overall system average response time by 49% and

reduce the average cleaning time by 25X.

For the second scheme, to optimize the cache of the SMR disk, we propose a new

cache management scheme called Dual-buffer to manage the SMR storage system. Different

from conventional single-buffer-based schemes, Dual-buffer partitions the persistent cache

into two separate buffers, namely the persistent buffer and the filter buffer, that are used to

77

handle incoming data requests and to hold hot data, respectively. The basic idea is to keep

hot data in the filter buffer as long as possible, instead of writing them back to their native

locations during a cleaning operation. We have implemented the propose scheme inside the

embedded controller of our SMR simulator and evaluated the effectiveness of the scheme

with different traces. Experimental results show that our Dual-buffer scheme can shorten the

average response time by 51.66% on average and reduce the total number of read-modify-

write operations by 98.76% on average compared to the previous work.

For the third scheme, in order to eliminate the RMW effect and to accelerate the SMR

storage system, we propose to integrate a promising cost-effect NAND flash as a persistent

cache (namely RMW-F cache). Specially, for the writes to SMR disks, some writes will

incur RMWs while the other writes will incur no RMWs. Therefore, we propose to distribute

the writes that will incur RMWs (if written back) to the flash cache while the other writes

are performed in the SMR disk directly. In this way, our design ensure that no RMWs are

needed and thus the system performance can be improved. Our experimental results show

that RMW-F can shorten the overall system average response time by over 79% and improve

cleaning efficiency by approximately 15.6 times.

6.2 Future Work

The work presented in this thesis can be extended to different directions in the future as

follows:

• Crash recovery is an important issue of drive-managed SMR devices since the mapping

are dynamically mapped and the system mainly relies on the address translation to perform

reads/writes. How to combine our schemes to effectively perform crash recovery can be a

future direction for us to explore.

• Applying machine learning (ML) techniques to optimize the management of Dual-buffer

will be an interesting direction. For example, ML techniques can be applied to locate an

ideal partitioning point of the persistent buffer and the filter buffer.

• There are other possible solutions to partition the circular persistent cache, such as multi-

78

log based caches. How to make the multi-log caching approach more adaptive with optimal

partitioning can be an interesting problem for future research.

• Our proposed schemes are evaluated mainly on our built simulator, in the future works, we

can explore and extend our works to the actual SMR device.

• We can combine our Dual-buffer and RMW-F schemes together for key-value stores in

the SMR device. How to design the key-value SMR caching system can be an interesting

direction in the future work.

• Our RMW-F scheme is mainly based on flash-based hardware. We will extend our ap-

proach to other emerging non-volatile-memories (NVMs) to further improve the SMR stor-

age system performance.

• New challenges and problems will arise by adopting SMR devices as RAID. How to ad-

dress these issues to effectively deploy SMRs as RAID will be a future direction of our

works.

79

REFERENCES

[1] MSR Cambridge Block I/O Traces. http://iotta.cs.hmc.edu/traces/388.

[2] Abutalib Aghayev, Mansour Shafaei, and Peter Desnoyers. Skylight:a window on

shingled disk operation. ACM Transactions on Storage (TOS), 11(4):16, 2015.

[3] Abutalib Aghayev, Y Theodore, Garth Gibson, and Peter Desnoyers. Evolving ext4

for shingled disks. In 15th USENIX Conference on File and Storage Technologies

(FAST), pages 105–120, 2017.

[4] Abutalib Aghayev, Theodore Tso, Garth Gibson, and Peter Desnoyers. Evolving ext4

for shingled disks. In FAST, pages 105–120, 2017.

[5] Ahmed Amer, JoAnne Holliday, Darrell DE Long, Ethan L Miller, Jehan-François

Pâris, and Thomas Schwarz. Data management and layout for shingled magnetic

recording. IEEE Transactions on Magnetics, 47(10):3691–3697, 2011.

[6] Ahmed Amer, Darrell DE Long, Ethan L Miller, Jehan-Francois Paris, and SJ Thomas

Schwarz. Design issues for a shingled write disk system. In Mass Storage Systems

and Technologies (MSST), 2010 IEEE 26th Symposium on, pages 1–12. IEEE, 2010.

[7] Nadia Awad. On reducing the decoding complexity of shingled magnetic recording

system. University of Plymouth, 2013.

[8] Jorge Campello. Smr: The next generation of storage technology. In Storage Devel-

opment Conference, SNIA, Santa Clara, CA, 2015.

[9] Yuval Cassuto, Marco AA Sanvido, Cyril Guyot, David R Hall, and Zvonimir Z

Bandic. Indirection systems for shingled-recording disk drives. In Mass Storage Sys-

80

tems and Technologies (MSST), 2010 IEEE 26th Symposium on, pages 1–14. IEEE,

2010.

[10] Li-Pin Chang, Yu-Syun Liu, and Wen-Huei Lin. Stable greedy: Adaptive garbage col-

lection for durable page-mapping multichannel SSDs. ACM Trans. Embed. Comput.

Syst., 15(1):13:1–13:25, January 2016.

[11] Renhai Chen, Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, and Yong Guan. On-demand

block-level address mapping in large-scale NAND flash storage systems. IEEE Trans-

actions on Computers, 64(6):1729–1741, June 2015.

[12] Renhai Chen, Zhaoyan Shen, Chenlin Ma, Zili Shao, and Yong Guan. Nvmra: utiliz-

ing nvm to improve the random write operations for nand-flash-based mobile devices.

Software: Practice and Experience, 46(9):1263–1284, 2016.

[13] Renhai Chen, Yi Wang, Jingtong Hu, Duo Liu, Zili Shao, and Yong Guan. Unified

non-volatile memory and nand flash memory architecture in smartphones. In The 20th

Asia and South Pacific Design Automation Conference, pages 340–345. IEEE, 2015.

[14] Renhai Chen, Yi Wang, Duo Liu, Zili Shao, and Song Jiang. Heating dispersal for

self-healing nand flash memory. IEEE Transactions on Computers, 66(2):361–367,

2017.

[15] Shuo Han Chen, Wei Shin Li, Min Hong Shen, Yi Han Lien, Tseng Yi Chen,

Tsan Sheng Hsu, Hsin Wen Wei, and Wei Kuan Shih. An update-overhead-aware

caching policy for write-optimized file systems on smr disks. In IEEE International

Performance Computing Communications Conference, 2017.

[16] K. Chooruang and M. M. Aziz. Experimental studies of shingled recording using

contact recording test system. In International Conference on Electrical Engineer-

ing/electronics, 2013.

81

[17] Benixon Arul Dhas, Erez Zadok, James Borden, and Jim Malina. Evaluation of nilfs2

for shingled magnetic recording (smr) disks. Stony Brook University, Tech. Rep. FSL-

14-03, 2014.

[18] Albert Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electrody-

namics of moving bodies]. Annalen der Physik, 1905.

[19] Moulay Rachid Elidrissi, Kheong Sann Chan, and Zhimin Yuan. A study of smr/tdmr

with a double/triple reader head array and conventional read channels. IEEE Trans-

actions on Magnetics, 50(3):24–30, 2014.

[20] Tim Feldman and Garth Gibson. Shingled magnetic recording: Areal density increase

requires new data management. USENIX; login: Magazine, 38(3), 2013.

[21] Björn Forsberg, Andrea Marongiu, and Luca Benini. GPUguard: Towards supporting

a predictable execution model for heterogeneous SoC. In Design, Automation & Test

in Europe Conference & Exhibition (DATE), pages 318–321, 2017.

[22] Garth Gibson and Greg Ganger. Principles of operation for shingled disk devices.

In 3rd USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage),

pages 1–5, 2011.

[23] Garth Gibson and Milo Polte. Directions for shingled-write and twodimensional mag-

netic recording system architectures: Synergies with solid-state disks. Parallel Data

Lab, Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-PDL-09-014, 2009.

[24] Steven Granz, Jason Jury, Chris Rea, Ganping Ju, Jan Ulrich Thiele, Tim Rausch,

and Edward C. Gage. Areal density comparison between conventional, shingled, and

interlaced heat-assisted magnetic recording with multiple sensor magnetic recording.

IEEE Transactions on Magnetics.

[25] Steven Granz, Tue Ngo, Tim Rausch, Richard Brockie, Roger Wood, Gerardo Bert-

ero, and Edward Gage. Definition of an areal density metric for magnetic recording

systems. IEEE Transactions on Magnetics, 53(2):1–4, 2017.

82

[26] Simon Greaves, Yasushi Kanai, and Hiroaki Muraoka. Shingled recording for 2–3

tbit/in2. IEEE Transactions on Magnetics, 45(10):3823–3829, 2009.

[27] Simon John Greaves, Yasukazu Kanai, and Hiroaki Muraoka. Shingled thermally

assisted magnetic recording for 8 tbit/in. Magnetics IEEE Transactions on, 50(11):1–

4, 2014.

[28] Yong Guan, Guohui Wang, Chenlin Ma, Renhai Chen, Yi Wang, and Zili Shao. A

block-level log-block management scheme for mlc nand flash memory storage sys-

tems. IEEE Transactions on Computers, 66(9):1464–1477, 2017.

[29] David Hall, John H Marcos, and Jonathan D Coker. Data handling algorithms for

autonomous shingled magnetic recording hdds. IEEE Transactions on Magnetics,

48(5):1777–1781, 2012.

[30] Lei Han, Zhaoyan Shen, Zili Shao, and Tao Li. Optimizing raid/ssd controllers with

lifetime extension for flash-based ssd array. In Proceedings of the 19th ACM SIG-

PLAN/SIGBED International Conference on Languages, Compilers, and Tools for

Embedded Systems, pages 44–54. ACM, 2018.

[31] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, Andrew A

Chien, and Haryadi S Gunawi. The tail at store: A revelation from millions of hours

of disk and {SSD} deployments. In 14th {USENIX} Conference on File and Storage

Technologies ({FAST} 16), pages 263–276, 2016.

[32] Weiping He and David HC Du. Novel address mappings for shingled write disks. In

HotStorage, 2014.

[33] Weiping He and David HC Du. SMaRT: An approach to shingled magnetic recording

translation. In FAST, pages 121–134, 2017.

[34] Sheng-Min Huang and Li-Pin Chang. Exploiting page correlations for write buffering

in page-mapping multichannel SSDs. ACM Trans. Embed. Comput. Syst., 15(1):12:1–

12:25, January 2016.

83

[35] Yichen Jia, Zili Shao, and Feng Chen. Slimcache: Exploiting data compression op-

portunities in flash-based key-value caching. In 2018 IEEE 26th International Sym-

posium on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS), pages 209–222. IEEE, 2018.

[36] Chao Jin, Wei-Ya Xi, Zhi-Yong Ching, Feng Huo, and Chun-Teck Lim. Hismrfs: A

high performance file system for shingled storage array. In Mass Storage Systems and

Technologies (MSST), 2014 30th Symposium on, pages 1–6. IEEE, 2014.

[37] Stephanie N Jones, Ahmed Amer, Ethan L Miller, Darrell DE Long, Rekha Pitchu-

mani, and Christina R Strong. Classifying data to reduce long-term data movement in

shingled write disks. ACM Transactions on Storage (TOS), 12(1):2, 2016.

[38] Saurabh Kadekodi, Swapnil Pimpale, and Garth A Gibson. Caveat-scriptor: Write

anywhere shingled disks. In HotStorage, 2015.

[39] Yimei Kang, Xingyu Zhang, Zili Shao, Renhai Chen, and Yi Wang. A reliability

enhanced video storage architecture in hybrid slc/mlc nand flash memory. Journal of

Systems Architecture, 88:33–42, 2018.

[40] Taeho Kgil, David Roberts, and Trevor Mudge. Improving nand flash based disk

caches. In ACM SIGARCH Computer Architecture News, volume 36, pages 327–338.

IEEE Computer Society, 2008.

[41] Seungwon Kim, SangGi Do, and Seokhyeong Kang. Fast predictive useful skew

methodology for timing-driven placement optimization. In 54th Design Automation

Conference (DAC), pages 1–6, 2017.

[42] SPM Chi-Young Ku and Stephen P Morgan. An smr-aware append-only file system.

In Storage Developer Conference, Santa Clara, CA, USA, 2015.

[43] Quoc Minh Le, Ahmed Amer, and JoAnne Holliday. Smr disks for mass storage sys-

tems. In 2015 IEEE 23rd International Symposium on Modeling, Analysis, and Simu-

lation of Computer and Telecommunication Systems, pages 228–231. IEEE, 2015.

84

[44] Damien Le Moal, Zvonimir Bandic, and Cyril Guyot. Shingled file system host-side

management of shingled magnetic recording disks. In Consumer Electronics (ICCE),

2012 IEEE International Conference on, pages 425–426. IEEE, 2012.

[45] Yongkun Li, Biaobiao Shen, Yubiao Pan, Yinlong Xu, Zhipeng Li, and John CS

Lui. Workload-aware elastic striping with hot data identification for SSD raid arrays.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

36(5):815–828, 2017.

[46] Chung-I Lin, Dongchul Park, Weiping He, and David HC Du. H-SWD: Incorporating

hot data identification into shingled write disks. In Modeling, Analysis & Simulation

of Computer and Telecommunication Systems (MASCOTS), 2012 IEEE 20th Interna-

tional Symposium on, pages 321–330. IEEE, 2012.

[47] Duo Liu, Tianzheng Wang, Yi Wang, Zhiwei Qin, and Zili Shao. A block-level flash

memory management scheme for reducing write activities in pcm-based embedded

systems. In Proceedings of the Conference on Design, Automation and Test in Europe,

pages 1447–1450. EDA Consortium, 2012.

[48] Duo Liu, Lei Yao, Linbo Long, Zili Shao, and Yong Guan. A workload-aware flash

translation layer enhancing performance and lifespan of tlc/slc dual-mode flash mem-

ory in embedded systems. Microprocessors and Microsystems, 52:343–354, 2017.

[49] Wen Guo Liu, Ling Fang Zeng, Dan Feng, and Kenneth B. Kent. Roco: Using a

solid state drive cache to improve the performance of a host-aware shingled magnetic

recording drive. Journal of Computer Science and Technology, 34(1):61–76, 2019.

[50] Wenguo Liu, Dan Feng, Lingfang Zeng, and Jianxi Chen. Understanding the SWD-

based RAID system. In Cloud Computing and Big Data (CCBD), 2014 International

Conference on, pages 175–181. IEEE, 2014.

[51] Wenguo Liu, Lingfang Zeng, and Feng Dan. Apas: An application aware hybrid

storage system combining ssds and swds. In IEEE International Conference on Net-

working, 2016.

85

[52] Wenguo Liu, Lingfang Zeng, and Dan Feng. Cass: A cooperative hybrid storage

system consisting of an ssd and a smr drive. In 2018 Sixth International Conference

on Advanced Cloud and Big Data (CBD), 2018.

[53] Wenguo Liu, Lingfang Zeng, and Dan Feng. Cldm: A cache cleaning algorithm for

host aware smr drives. In International Conference on Algorithms and Architectures

for Parallel Processing, 2018.

[54] Dan Luo, Jiguang Wan, Yifeng Zhu, Nannan Zhao, Feng Li, and Changsheng Xie.

Design and implementation of a hybrid shingled write disk system. IEEE Transac-

tions on Parallel and Distributed Systems, 27(4):1017–1029, 2016.

[55] Dan Luo, Jiguang Wan, Yifeng Zhu, Nannan Zhao, Feng Li, and Changsheng Xie.

Design and implementation of a hybrid shingled write disk system. IEEE Transac-

tions on Parallel and Distributed Systems (TPDS), pages 1017–1029, 2016.

[56] Chenlin Ma, Zhaoyan Shen, Yi Wang, and Zili Shao. Alleviating hot data write

back effect for shingled magnetic recording storage systems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems.

[57] Liuying Ma and Xu Lu. Hmss: A high performance host-managed shingled storage

system based on awareness of smr on block layer. In IEEE International Conference

on High Performance Computing Communications; IEEE International Conference

on Smart City; IEEE International Conference on Data Science Systems, 2017.

[58] Peter Macko, Xiongzi Ge, J Kelley, D Slik, et al. SMORE: A cold data object store for

SMR drives. In Proceedings of the 33rd International Conference on Massive Storage

Systems and Technology (MSST), pages 1–13, 2017.

[59] Adam Manzanares, Noah Watkins, Cyril Guyot, Damien Le Moal, Carlos Maltzahn,

and Zvonimir Bandic. ZEA, a data management approach for SMR. In 8th USENIX

Workshop on Hot Topics in Storage and File Systems (HotStorage), pages 1–5, 2016.

86

[60] Adam Manzanares, Noah Watkins, Cyril Guyot, Damien LeMoal, Carlos Maltzahn,

and Zvonimr Bandic. Zea, a data management approach for smr. In HotStorage,

2016.

[61] George Mathew, Euiseok Hwang, Jongseung Park, Glen Garfunkel, and David Hu.

Capacity advantage of array-reader-based magnetic recording (armr) for next genera-

tion hard disk drives. IEEE Transactions on Magnetics, 50(3):155–161, 2014.

[62] Junpeng Niu, Mingzhou Xie, Jun Xu, Lihua Xie, and Xia Li. Smr drive perfor-

mance analysis under different workload environments. Control Engineering Prac-

tice, 75:8697, 2018.

[63] Junpeng Niu, Jun Xu, and Lihua Xie. Analytical modeling of smr drive under different

workload environments. In 2017 13th IEEE International Conference on Control &

Automation (ICCA), pages 1113–1118. IEEE, 2017.

[64] Junpeng Niu, Jun Xu, and Lihua Xie. A deep look at smr performance via simulation

approach. In 2017 13th IEEE International Conference on Control & Automation

(ICCA), pages 713–718. IEEE, 2017.

[65] Tiratat Patana-anake, Vincentius Martin, Nora Sandler, Cheng Wu, and Haryadi S Gu-

nawi. Manylogs: Improved cmr/smr disk bandwidth and faster durability with scat-

tered logs. In Mass Storage Systems and Technologies (MSST), 2016 32nd Symposium

on, pages 1–16. IEEE, 2016.

[66] Rekha Pitchumani. Data management for shingled magnetic recording disks. Disser-

tations Theses - Gradworks, 2015.

[67] Rekha Pitchumani, Andy Hospodor, Ahmed Amer, Yangwook Kang, Ethan L Miller,

and Darrell DE Long. Emulating a shingled write disk. In 2012 IEEE 20th Interna-

tional Symposium on Modeling, Analysis and Simulation of Computer and Telecom-

munication Systems, pages 339–346. IEEE, 2012.

87

[68] M. Salo, T. Olson, R. Galbraith, R. Brockie, B. Lengsfield, H. Katada, and Y. Nishida.

The structure of shingled magnetic recording tracks. IEEE Transactions on Magnet-

ics, 50(3):18–23, 2014.

[69] Mohit Saxena, Michael M Swift, and Yiying Zhang. Flashtier: a lightweight, consis-

tent and durable storage cache. In Proceedings of the 7th ACM european conference

on Computer Systems, pages 267–280. ACM, 2012.

[70] Sudipta Sengupta, Jin Li, Cheng Huang, Timothy Andrew Pritchett, and Christo-

pher Broder Wilson. Multi-tiered cache with storage medium awareness, 2013. US

Patent App. 13/531,455.

[71] Mansour Shafaei, Mohammad Hossein Hajkazemi, Peter Desnoyers, and Abutalib

Aghayev. Modeling drive-managed smr performance. ACM Transactions on Storage

(TOS), 13(4):38, 2017.

[72] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. Optimizing flash-based key-

value cache systems. In 8th {USENIX} Workshop on Hot Topics in Storage and File

Systems (HotStorage 16), 2016.

[73] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. Didacache: An integration

of device and application for flash-based key-value caching. ACM Transactions on

Storage (TOS), 14(3):26, 2018.

[74] Liang Shi, Kaijie Wu, Mengying Zhao, C.J. Xue, Duo Liu, and E.H. Sha. Retention

trimming for lifetime improvement of flash memory storage systems. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 35(1):58–71,

Jan 2016.

[75] Anand Suresh, Garth Gibson, and Greg Ganger. Shingled magnetic recording for big

data applications. Carnegie Mellon University Parallel Data Lab Technical Report

CMU-PD L-12–105, 2012.

88

[76] R. Suzutou, Y. Nakamura, M. Nishikawa, H. Osawa, Y. Okamoto, Y. Kanai, and

H. Muraoka. A study on relationship between recording pattern and decoding reli-

ability in smr. IEEE Transactions on Magnetics, PP(99):1–1, 2017.

[77] Sophia Tan, Weiya Xi, Zhi Yong Ching, Chao Jin, and Chun Teck Lim. Simulation

for a shingled magnetic recording disk. In 2012 Digest APMRC, pages 1–7. IEEE,

2012.

[78] Kim Keng Teo, Moulay Rachid Elidrissi, Kheong Sann Chan, and Yasushi Kanai.

Analysis and design of shingled magnetic recording systems. Journal of Applied

Physics, 111(7):657–01, 2012.

[79] Kalyana Sundaram Venkataraman, Tong Zhang, Wenzhe Zhao, Hongbin Sun, and

Nanning Zheng. Scheduling algorithms for handling updates in shingled magnetic

recording. In Networking, Architecture and Storage (NAS), 2013 IEEE Eighth Inter-

national Conference on, pages 205–214. IEEE, 2013.

[80] Jiguang Wan, Nannan Zhao, Yifeng Zhu, Jibin Wang, Yu Mao, Peng Chen, and

Changsheng Xie. High performance and high capacity hybrid shingled-recording disk

system. In CLUSTER, 2012.

[81] Chunling Wang, Dandan Wang, Yupeng Chai, and D Sun. Larger cheaper but faster:

SSD-SMR hybrid storage boosted by a new SMR-oriented cache framework. In Pro-

ceedings of the 33rd International Conference on Massive Storage Systems and Tech-

nology (MSST), pages 1–16, 2017.

[82] Chunling Wang, Dandan Wang, Yupeng Chai, Chuanwen Wang, and Diansen Sun.

Larger, cheaper, but faster: Ssd-smr hybrid storage boosted by a new smr-oriented

cache framework. In Proc. 33rd Int. Conf. Massive Storage Syst. Technol.(MSST),

2017.

[83] Jun Wang and Yiming Hu. PROFS-performance-oriented data reorganization for log-

structured file system on multi-zone disks. In Modeling, Analysis and Simulation of

89

Computer and Telecommunication Systems, 2001. Proceedings. Ninth International

Symposium on, pages 285–292. IEEE, 2001.

[84] Rui Wang, Qun Guo, Yixue Zhu, and Michael E Habben. De-duplication and com-

pleteness in multi-log based replication, 2012. US Patent 8,108,343.

[85] Yi Wang, Lisha Dong, Zhong Ming, Yong Guan, and Zili Shao. Virtual duplication

and mapping prefetching for emerging storage primitives in nand flash memory stor-

age systems. Microprocessors and Microsystems, 50:54–65, 2017.

[86] Yi Wang, Zhiwei Qin, Renhai Chen, Zili Shao, and Laurence T Yang. An adaptive

demand-based caching mechanism for nand flash memory storage systems. ACM

Transactions on Design Automation of Electronic Systems (TODAES), 22(1):18, 2016.

[87] Yi Wang, Zili Shao, Henry CB Chan, Luis Angel D Bathen, and Nikil D Dutt.

A reliability enhanced address mapping strategy for three-dimensional (3-d) nand

flash memory. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

22(11):2402–2410, 2014.

[88] Roger Wood, Mason Williams, Aleksandar Kavcic, and Jim Miles. The feasibility

of magnetic recording at 10 terabits per square inch on conventional media. IEEE

Transactions on Magnetics, 45(2):917–923, 2009.

[89] Chun-Feng Wu, Ming-Chang Yang, and Yuan-Hao Chang. Improving runtime per-

formance of deduplication system with Host-Managed SMR storage drives. In Pro-

ceedings of the 55th Annual Design Automation Conference, page 57. ACM, 2018.

[90] Fenggang Wu, Ziqi Fan, Ming-Chang Yang, Baoquan Zhang, Xiongzi Ge, and

David HC Du. Performance evaluation of host aware shingled magnetic recording

(HA-SMR) drives. IEEE Transactions on Computers, 66(11):1932–1945, 2017.

[91] Fenggang Wu, Ming-Chang Yang, Ziqi Fan, Baoquan Zhang, Xiongzi Ge, and

David HC Du. Evaluating host aware smr drives. In HotStorage, 2016.

90

[92] Wenjian Xiao, Huanqing Dong, Liuying Ma, Zhenjun Liu, and Qiang Zhang. HS-

BAS: A hybrid storage system based on band awareness of shingled write disk. In

ICCD, pages 64–71, 2016.

[93] Wenjian Xiao, Huanqing Dong, Liuying Ma, Zhenjun Liu, and Qiang Zhang. HS-

BAS: A hybrid storage system based on band awareness of shingled write disk. In

2016 IEEE 34th International Conference on Computer Design (ICCD), pages 64–

71, 2016.

[94] Xuchao Xie, Liquan Xiao, Xiongzi Ge, and Qiong Li. Smrc: An endurable ssd

cache for host-aware shingled magnetic recording drives. IEEE Access, 6(99):20916–

20928, 2018.

[95] Ming-Chang Yang, Yuan-Hao Chang, Fenggang Wu, Tei-Wei Kuo, and David HC Du.

Virtual persistent cache: Remedy the long latency behavior of host-aware shingled

magnetic recording drives. In Computer-Aided Design (ICCAD), 2017 IEEE/ACM

International Conference on, pages 17–24. IEEE, 2017.

[96] Ming-Chang Yang, Yuan-Hao Chang, Fenggang Wu, Tei-Wei Kuo, and David HC Du.

On improving the write responsiveness for Host-Aware SMR drives. IEEE Transac-

tions on Computers, 2018.

[97] Qing Yang and Jin Ren. I-cash: Intelligently coupled array of ssd and hdd. In 2011

IEEE 17th International Symposium on High Performance Computer Architecture,

pages 278–289. IEEE, 2011.

[98] Tianming Yang, Haitao Wu, Huang Ping, and Zhang Fei. A shingle-aware persistent

cache management scheme for dm-smr disks. In IEEE International Conference on

Computer Design, 2017.

[99] Lei Yao, Duo Liu, Kan Zhong, Linbo Long, and Zili Shao. Tlc-ftl: Workload-aware

flash translation layer for tlc/slc dual-mode flash memory in embedded systems. In

2015 IEEE 17th International Conference on High Performance Computing and Com-

munications, pages 831–834. IEEE, 2015.

91

[100] Ting Yao, Zhihu Tan, Jiguang Wan, Huang Ping, Yiwen Zhang, Changsheng Xie, and

Xubin He. A set-aware key-value store on shingled magnetic recording drives with

dynamic band. In IEEE International Parallel Distributed Processing Symposium,

2018.

[101] Jiang Yu, Chun Tung Chou, ZongKai Yang, Xu Du, and Tai Wang. A dynamic

caching algorithm based on internal popularity distribution of streaming media. Mul-

timedia Systems, 12(2):135–149, 2006.

[102] Lingfang Zeng, Zehao Zhang, Yang Wang, Dang Feng, and Kenneth B Kent. CosaFS:

A cooperative shingle-aware file system. ACM Transactions on Storage (TOS),

13(4):1–23, 2017.

[103] Chi Zhang, Yi Wang, Tianzheng Wang, Renhai Chen, Duo Liu, and Zili Shao. Deter-

ministic crash recovery for nand flash based storage systems. In Proceedings of the

51st Annual Design Automation Conference (DAC), pages 1–6, 2014.

[104] Grace Li Zhang, Bing Li, and Ulf Schlichtmann. Effitest: Efficient delay test and

statistical prediction for configuring post-silicon tunable buffers. In 53rd Design Au-

tomation Conference (DAC), pages 1–6, 2016.

92

