
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

SEMIPARAMETRIC STATISTICAL INFERENCE 

FOR FUNCTIONAL SURVIVAL MODELS 

 

 

LIU, KIN YAT 

PhD 

 

 

The Hong Kong Polytechnic University 

2019 



The Hong Kong Polytechnic University

Department of Applied Mathematics

Semiparametric statistical inference
for functional survival models

Liu, Kin Yat

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

April 2019



ii



Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

Liu, Kin Yat (Name of student)

iii



iv



Abstract

This thesis focuses on the development of semiparametric inference for the functional

Cox proportional hazards model and the functional additive hazards model with

right-censored data.

We propose a penalized partial likelihood approach and a penalized pseudo-score

function approach to the estimation of the model parameters of the functional Cox

proportional hazards model and that of the functional additive hazards model, re-

spectively. We establish asymptotic properties which include the consistency, the

convergence rate, and the limiting distribution of the proposed estimators. To

this end, we investigate the joint Bahadur representation of finite-dimensional and

infinite-dimensional estimators in the Sobolev space with proper inner products.

One major contribution made to the study of the functional Cox proportional

hazards model and the functional additive hazards model is that the asymptotic joint

normality of the estimators of the functional coefficient and the scalar coefficient is

derived. Furthermore, the partial likelihood ratio test is developed and is shown to

be optimal under the functional Cox proportional hazards model.

These two important issues are not addressed in the previous research. Our

new results provide more insights and deeper understanding about the effects of

functional predictors on the hazard function. The theoretical results are validated

by simulation studies, and the applications of the proposed models are illustrated

with a real dataset. Some discussions and closing remarks are given.
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Chapter 1

Introduction

This chapter first introduces functional data and survival data. Reproducing kernel

Hilbert space (RKHS) and the related results, which are the main tools to study

functional data, are then described. Finally, the Bahadur representation of some

estimators and its significance are introduced.

1.1 Functional Data

Information technology has fueled the research and developement in functional data

analysis (FDA) in recently years. In the field of statistics, functional data analysis is

the statistical analysis of data observed from continuous time stochastic processes.

In practice, a sample function in a functional data set is recorded at some discrete

time points. A data set of n sample functions observed in a time interval [Tmin, Tmax]

can be described mathematically as

Xi(ti,j) ∈ R, ti,j ∈ [Tmin, Tmax], i = 1, 2, . . . , n, j = 1, . . . , Ji. (1.1)

Note that the values of the sample functions are available at ti,j’s only. This leads

us to focus on functions with certain properties, such as smoothness, or functions

existing in certain function space, such as Sobolev space.

Although a sample function is an infinite dimensional object theoretically, many

well-established statistical models are readily adapted to functional data with slight
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modification. For example, in classic linear regression model, one of the most fun-

damental tools in statistics, we have

Yi = β0 +

p∑
j=1

βjXij + εi, εi N(0, σ2), i = 1, . . . , n. (1.2)

One way to incorporate functional data to the regression model, is to replace Xij by

Xi(tj) where tj’s are the times of observations:

Yi = β0 +

p∑
j=1

βjXi(tj) + εi, εi N(0, σ2), i = 1, . . . , n. (1.3)

This method is limited to situations that all sample functions are recorded at same set

of tj. An alternative to this approach is introducing Xi(·) directly to the regression

model:

Yi = β0 +

∫
β(t)Xi(t) dt+ εi, εi N(0, σ2), i = 1, . . . , n. (1.4)

The use of integral is justified by the fact that

∫
β(t)Xi(t) dt = lim

∆t→0

∞∑
j=1

βjXi(tj)∆t. (1.5)

1.2 Survival Analysis

Survival analysis focuses on the time to an event of interest, for example, time from

disease onset to death.

1.2.1 Survival function and hazard rate function

The theory of survival analysis primarily concerns two entities — the survival func-

tion and the hazard rate function. The survival function, S(t), is a function of time

which specifies the probability that an individual does not experience an event by

2



time t. Formally, the survival function is defined as

S(t) = P (T > t). (1.6)

where T is a random variable representing the survival time.

The hazard rate function, h(t), is defined as

h(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+ ∆t|T ≥ t). (1.7)

Therefore, the hazard rate function represents the probability density of T given that

an individual has not experienced the event by time t.

Note that the survival function is non-increasing and nonnegative, and it satisfies

S(0) = 1, whereas the hazard rate function is nonnegative. There are two funda-

mental connections between the survival function and the hazard rate function:

1.

h(t) = lim
∆t→0

1

∆t

S(t)− S(t+ ∆t)

S(t)
= −S

′(t)

S(t)
. (1.8)

2.

S(t) = exp
{
−
∫ t

0

h(s) ds
}

(1.9)

Berkson and Gage (1952), Cutler and Ederer (1958), and Gehan (1969) first

propose to use life-time table for the estimation of survival function. One major

drawback of the life-time table approach, however, is that the estimator is biased

due to the arbitrary choice of groupings of event times. To circumvent this problem,

Böhmer (1912) extends the life-time table approach to the product limit estimator

(also known as the Kaplan-Meier estimator). The estimator, as shown by Kaplan and

Meier (1958), is a nonparametric maximum likelihood estimator. Efron (1967) and

Breslow and Crowley (1974) further shows that the estimator possess self-consistency
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and asymptotic normality properties. Dabrowska (1989), Bitouze et al. (1999), and

Wellner (2007) derive the exponential bound of the Kaplan-Meier estimator. Ware

and Demets (1976), Csörgö and Horváth (1980), Gomez et al. (1992) and Gómez

et al. (1994) propose left Kaplan-Meier estimator (LKM) to accommodate left cen-

sored data, and establish self consistency and asymptotic properties of the proposed

estimator.

Blum and Susarla (1980) and Földes et al. (1981) propose kernel methods to

obtain a smoothed survival function instead of a step function. In addition to the

kernel methods, Bezier curve smoothing and splines are proposed by Kim et al. (2003)

and Whittemore and Keller (1986) as smoothed nonparametric maximum likelihood

estimators of the survival function.

To ascertain the association of explanatory variables and time to certain event, we

consider regression models for survival data. The most common regression model for

survival data is the Cox regression model (Cox (1972, 1975)). This model specifies

that the hazard function of an individual with explanatory variables X1, . . . , Xp

assumes the form

h(t|X1, . . . , Xp) = h0(t) exp(β1X1 + · · ·+ βpXp). (1.10)

where h0(t) is called the baseline hazard function which is the hazard function of an

individual when X1 = · · · = Xp = 0.

An alternative to the Cox proportional hazards model is the additive regression

model due to Aalen (1989), which assumes that the hazard rate of an individual with

explanatory variables X1, . . . , Xp has the form

h(t|X1, . . . , Xp) = h0(t) + β1(t)X1 + · · ·+ βp(t)Xp. (1.11)

Similar to the baseline hazard function in the Cox model, h0(t) in the additive

model is the baseline hazard which is one’s hazard when X1 = · · · = Xp = 0.
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Note that in Aalen’s additive model, the regression coefficients are functions of

time. Lin and Ying (1994) propose an alternate additive hazards regression model

in which the time-varying regression coefficients are replaced by constants:

h(t|x1, . . . , xp) = h0(t) + β1X1 + · · ·+ βpXp. (1.12)

1.2.2 Censoring

One distinctive feature of survival data is that they are often incomplete. For in-

stance, to study the treatment effectiveness to inhibit cancer recurrence, one records

the time to recurrence after recovery within a study period, say, 5 years. If a par-

ticipant of the study has no cancer recurrence during the study period, the data is

incomplete in the sense that we do not know the exact recurrence time. Instead, we

know that the time is longer than 5 years.

The incomplete observations times are called censored survival times. In partic-

ular, it is called right-censored survival time because the exact time should appear

after the end of the study. Left-censored survival times are defined similarly. In

this case, the exact start times being unknown, but we only know that the start

time is before a particular time point. For example, to study the long expectancy of

HIV-infected patients, one does not know the exact time of HIV infection. Instead,

one only know that the time is before the start of the study.

1.3 Reproducing Kernel Hilbert Space

In this section, we introduce Reproducing Kernel Hilbert Space (RKHS), an impor-

tant functional space for functional data analysis. Essential concepts and important

properties of RKHS are also described.
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1.3.1 Linear Subspaces and Hilbert Spaces

Let L be a linear space. A functional, L(·), is defined as an operator of any element,

f ∈ L, such that L(f) ∈ R. Furthermore, if L(f + g) = L(f) + L(g) and L(αf) =

αL(f), for any f, g ∈ L and α ∈ R , L is a linear functional.

A bivariate form, J(·, ·), is defined as an operator of any two elements, f, g ∈ L,

such that J(f, g) ∈ R. J(·, ·) is bilinear if J(αf + βg, h) = αJ(f, h) + βJ(g, h) and

J(f, αg + βh) = αJ(f, g) + βJ(f, h), ∀f, g, h ∈ L and ∀α, β ∈ R.

A bilinear form is symmetric if it satisfies J(f, g) = J(g, f),∀f, g ∈ L. If, for

any f ∈ L, J(f, f) ≥ 0, J(·, ·) is said to be non-negative definite, and it is positive

definite if J(f, f) = 0 holds only when f = 0. An inner product defined on a linear

space is a positive definite bilinear form, denoted by (·, ·). A norm in a linear space

can be defined through an inner product by ‖f‖ =
√

(f, f).

If limn→∞ Lfn = Lf whenever limn→∞ fn = f , the functional L is said to be

continuous. A Cauchy sequence, fn, satisfies limn,m→∞ ‖fm − fn‖ = 0. If all Cauchy

sequences converge in a linear space, the linear space is complete. A complete inner

product linear space is called a Hilbert space.

1.3.2 Riesz Representation Theorem

Theorem 1.1. Let L be a continuous linear functional in a Hilbert space H. For

any f ∈ H, there exists a unique gL ∈ H such that Lf = (gL, f).

This theorem asserts that for every g in a Hilbert space H, Lgf = (g, f) defines

a continuous linear functional Lg. Conversely, every continuous linear functional L

in H has a representation Lf = (gL, f) for some gL ∈ H. gL is called the representer

of L.
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1.3.3 Reproducing Kernel and Non-Negative Definite Func-
tion

Let X be the domain of f and x ∈ X . A functional Lx defined as Lxf = f(x) is

called an evaluation functional. If, for all x ∈ X , the evaluation function Lxf is

continuous in H, then H is called a reproducing kernel Hilbert space.

By Riesz representation theorem, for every f ∈ H, there exists Rx ∈ H such

that Lxf = (Rx, f). Define a symmetric bivariate function R(x, y) as (Rx, Ry) for

x, y ∈ X . Note that (Rx, Ry) = Ry(x) = Rx(y) and (Rx, f) = f(x). In this case,

R(·, ·) is called the reproducing kernel of H. Knowing non-negative definite functions

helps to construct reproducing kernel Hilbert spaces as justified by the following

theorem.

Theorem 1.2. For any reproducing kernel Hilbert space H of functions defined on X ,

there exists a reproducing kernel R(x, y), which is unique and non-negative definite.

Conversely, there exists a unique reproducing kernel Hilbert space H for every non-

negative definite function R(x, y) on X .

1.3.4 Reproducing Kernel Hilbert Spaces and Penalized Re-
gression

Applying penalized regression procedures to the estimation of complex functions is

common (Wahba (1990); Eubank (1999); Hastie et al. (2001)). These procedures are

commonly employed in functional data analysis (Ramsay and Silverman (2005)). The

estimators in these procedures are defined as the solutions of optimization problems.

The solution of a minimization problem is the smoothing spline in a functional space.

If the minimization problem is formulated on a reproducing kernel Hilbert space, the

solution exists and is guaranteed to be unique.

The central roles in penalized regression are played by the reproducing kernel

Hilbert spaces (RKHS) and the corresponding reproducing kernels (RK). Wahba
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(1990); Gu (2002); Pearce and Wand (2006) provide comprehensive reviews of repro-

ducing kernel Hilbert spaces (RKHS) methods for regression analysis.

1.4 Bahadur Representation

An estimator admits a Bahadur representation if the estimator can be almost ex-

pressed a linear estimator, i.e.
∑n

i=1 hi(Xi) + Rn where Rn becomes negligible as

n → ∞. When a Bahadur representation of an estimator exists, the properties of

the estimator can be derived easily. For example, under some regularity conditions,

if X1, · · · , Xn are independent, we may conclude that
∑n

i=1 hi(Xi) follow Normal dis-

tribution asymptotically due to Central limit theorem. Bahadur (1966) first derives

the Bahadur representation of sample percentiles.

Theorem 1.3. Let ω = (X1, X2, ...) be a sequence of independent random variables

with each Xi distributed according to F . For each n = 1, 2, · · · , let Yn be the sample

pth-percentile when the sample is X1, · · · , Xn. Let Zn be the number of observation

Xi in the sample X1, · · · , Xn such that Xi > ξ. Then,

Yn = ξ +
Zn − n(1− p)

n f(ξ)
+Rn (1.13)

where Rn becomes negligible as n→∞.

Bahadur representations are also derived for more general estimators (See Carroll

(1978), He and Shao (1996), Bose (1998)).

1.5 Outline

The remainder of this dissertation is organized as follows. Chapter 2 presents a penal-

ized semiparametric maximum partial likelihood estimation and hypothesis testing

for the functional Cox model in analyzing right-censored data with both functional
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and scalar predictors. Deriving the asymptotic joint distribution of finite-dimensional

and infinite-dimensional estimators is a very challenging theoretical problem due to

the complexity of semiparametric models. For the problem, we construct the Sobolev

space equipped with a special inner product and discover a new joint Bahadur rep-

resentation of estimators of unknown regression function and coefficients. Using this

key tool, we establish the asymptotic joint normality of the proposed estimators and

then construct a local confidence interval for an unknown slope function. Further-

more, we study a penalized partial likelihood ratio test, show that the test statistic

enjoys the Wilks phenomenon, and also verify the optimality of the test. The the-

oretical results are examined through simulation studies, and a right-censored data

example from the Improving Care of Acute Lung Injury Patients study is provided

for illustration. In Chapter 3, the semiparametric inference of functional additive

hazard model is studied. In particular, the asymptotic joint distribution of finite-

dimensional and infinite-dimensional estimators is established. In addition, uniform

convergence of the infinite-dimensional estimator is developed. The main tool to

develop these result is the joint Bahadur representation of the estimators. The the-

oretical results are examined through simulation studies, and a right-censored data

example from the Improving Care of Acute Lung Injury Patients study is provided

for illustration. Finally, conclusion and future work are discussed in Chapter 4.

9
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Chapter 2

Semiparametric Inference for the

Functional Cox Model

2.1 Introduction

Advances in information technology enable collecting and processing of densely ob-

served data over some temporal or spatial domains. The resulting data are coined

functional data to differentiate them from the traditional, scalar data. Examples of

functional data include hippocampus radial distance data Li and Luo (2017), high

dimensional microarray gene expression data Chen et al. (2011), and the Sequential

Organ Failure Assessment data Gellar et al. (2014, 2015).

The explosion of functional data requires the development of functional data anal-

ysis. Recently, Crambes et al. (2009), Yuan and Cai (2010), Cai and Yuan (2012),

and Shang and Cheng (2015), among others, proposed roughness regularization meth-

ods to control the model complexity in a continuous manner. This overcomes the

imprecise control on the model complexity due to the truncation parameter in the

functional principal component analysis (FPCA)-based approaches, as pointed out

by Ramsay and Silverman (2005).

When time-to-event data are available, the proportional hazards model Cox

(1972) is commonly used for the analysis of such data. Under the Cox model, the
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hazard function of a failure time for a subject takes the form:

h(t|Z) = h0(t) expθ
′
0Z ,

where h0(·) is an unspecified baseline hazard function, Z ∈ Rp is a covariate vector

and θ0 ∈ Rp is an unknown parameter. This model was further studied by Cox

(1975), Tsiatis (1981), Andersen and Gill (1982), Johansen (1983), and Jacobsen

(1984), among others. When functional covariates are involved, Chen et al. (2011)

proposed the following functional Cox model:

h(t|Z,X(·)) = h0(t) exp

{
θ′0Z +

∫
I
X(s)β0(s)ds

}
, (2.1)

where X(·) is a functional covariate and β0(·) is an unknown coefficient function.

Clearly, this model takes into account the effect of the entire trajectory of X(·) on

the hazard function. Note that the Cox model with a time-dependent covariate only

considers the effect of X(t) on the hazards function at time t, where an overall effect

of a functional covariate on the hazard function cannot be explained. Chen et al.

(2011) applied the functional Cox model in studying the survival of diffuse large-B-

cell lymphoma (DLBCL) patients in relation to the high-dimensional microarray gene

expression of the patients, which is expressed as a functional predictor. Recently,

Kong et al. (2018) established the rate of convergence of the maximum approximate

partial likelihood estimator and conducted a score test for testing the nullity of the

slope function related to functional predictors. Qu et al. (2016) studied the asymp-

totic properties of the maximum partial likelihood estimator under the framework of

reproducing kernel Hilbert space and established the asymptotic normality and effi-

ciency of the estimator of scalar covariates. However, the asymptotic distribution of

the maximum partial likelihood estimator of the slope function has not been studied.

Another important issue is to study the partial likelihood ratio test, which has not

12



been addressed in the literature. Our goal is to address these challenging issues and

fill the gap in the study of the functional Cox model.

Motivated by Cheng and Shang (2015), we explored a joint Bahadur representa-

tion to derive the asymptotic joint distribution of the maximum partial likelihood

estimators of the slope function and coefficients in the functional Cox model. Com-

pared to that proposed in Cheng and Shang (2015), our model is focused on the

joint asymptotic study of the (generalized) partial functional survival model. Our

main contribution includes the following aspects: (1)we embedded the Sobolev space

with a special inner product, and deduced the joint Bahadur representation of the

maximum partial likelihood estimators of finite-dimensional and infinite-dimensional

parameters in the space; (2) we got the pointwise confidence interval of the functional

coefficient; (3) we investigated a penalized partial likelihood ratio test for testing

global effects of both scale and functional covariates on the hazard function.

The rest of this chapter is organized as follows. In Section 2.2, we construct the

Sobolev space and present a penalized estimation approach for unknown regression

parameters in the functional Cox model. In Section 2.3, we derive a joint Bahadur

representation (FBR) of the maximum partial likelihood estimators of scalar and

functional parameters in the space with a special inner product and establish the

asymptotic properties of the proposed estimators. In Section 2.4, we develop a

penalized likelihood ratio test for a global hypothesis. In Section 2.5, we present

simulation results to evaluate the performance of the proposed asymptotic inference

procedures. Section 2.6 illustrates an application of the proposed method to the data

obtained from the Improving Care of Acute Lung Injury Patients (ICAP) study

Needham et al. (2006). Some concluding remarks are made in Section 2.7. All

technical proofs are given in the Appendix.
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2.2 Estimation Method

Denote the covariates that are incorporated in the functional Cox model (1.1) by

W = (Z>, X(·)). Under the right censorship, let T be the survival time, C be the

censoring time, Y = min(T,C) be the observed time, ∆ = 1(T ≤ C) be the censoring

indicator, and N(t) = ∆1(T ≤ t) be the counting process, where 1(·) is the indicator

function. For simplicity, assume E(∆Z) = 0, E{∆X(t)} = 0 for any t ∈ I. Without

loss of generality, we take I = [0, 1]. As usual, assume that the survival time T

and the censoring time C are conditionally independent given W . Our goal is to

estimate α0 = (θ>0 , β0(·)) to reveal the relationship between W and T . Suppose that

β0(·) belongs to the mth-order Sobolev space H(m)(I), which is abbreviated as H(m)

for notational simplicity:

H(m)(I) = {β : I 7→ R|β(j) is absolutely continuous for j = 0, 1, . . . ,m−1, β(m) ∈ L2(I)},

where the constant m > 1/2 is known, β(j)(·) is the jth derivative of β(·) and L2(I)

is the L2 space defined in I.

Define ηα(W ) = θ>Z +
∫
IX(s)β(s) ds, and Y(t) = 1(Y ≥ t). The log partial

likelihood of the model (1.1) given the data {(Yi,Wi,∆i), i = 1, . . . , n} is given by

ln(α) =
1

n

n∑
i=1

∆i

[
ηα(Wi)− log

1

n

n∑
j=1

Yj(Yi) exp{ηα(Wj)}

]
.

To estimate α0, we propose to use the following penalized log partial likelihood

function

ln,λ(α) = ln(α)− λ

2
J(β, β),

where J(β1, β2) =
∫
I β

(m)
1 (s)β

(m)
2 (s) ds is the penalty function, and λ is the penalty

parameter which controls the balance between the bias and the smoothness of the pa-

rameter. Thus, the penalized estimator of α0 is defined by α̂n,λ = arg maxα∈H ln,λ(α),

where H = Rp ×H(m).
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2.3 Asymptotic Properties

Before stating the main results, we first introduce some notation and regularity

conditions. For any vector z, z⊗2 = zz>, z⊗1 = z, and z⊗0 = 1 with all of the

elements being 1. Define the semi-inner product for any αi = (θ>i , βi(·)) ∈ H, i = 1, 2

as

< α1, α2 >λ (2.2)

=E

∫ τ

0

[E{Y(t) exp(ηα0(W ))ηα1(W )ηα2(W )}
E{Y(t) exp(ηα0(W ))}

− E{Y(t) exp(ηα0(W ))ηα1(W )}E{Y(t) exp(ηα0(W ))ηα2(W )}(
E{Y(t) exp(ηα0(W ))}

)2

]
dN(t)

+ λJ(β1, β2),

where τ is the end of the study. Define

S
(k)
1 (t, α) =

1

n

n∑
i=1

[Yi(t) exp{ηα(Wi)}Z⊗ki ], k = 0, 1, 2,

s
(k)
1 (t, α) = E[Y(t) exp{ηα(W )}Z⊗k], k = 0, 1, 2,

S
(1)
2 (t, s, α) =

1

n

n∑
i=1

[Yi(t) exp{ηα(Wi)}Xi(s)],

s
(1)
2 (t, s, α) = E[Y(t) exp{ηα(W )}X(s)],

S
(2)
2 (t, s, v, α) =

1

n

n∑
i=1

[Yi(t) exp{ηα(Wi)}Xi(s)Xi(v)],

s
(2)
2 (t, s, v, α) = E[Y(t) exp{ηα(W )}X(s)X(v)],

Σ = E

{∫ τ

0

s
(2)
1 (t, α0)

s
(0)
1 (t, α0)

− s
(1)
1 (t, α0)⊗2

s
(0)
1 (t, α0)2

dN(t)

}
,

F (s, t) =

∫ τ

0

Cov{X(s), X(t)|T = v,∆ = 1}E[Y(v) exp{ηα0(W )}]h0(v) dv,
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where

Cov{X(s), X(t)|T = v,∆ = 1}

=E{X(s)X(t)|T = v,∆ = 1} − E{X(s)|T = v,∆ = 1}E{X(t)|T = v,∆ = 1}

=
s

(2)
2 (v, t, s, α0)

s
(0)
1 (v, α0)

− s
(1)
2 (v, s, α0)s

(1)
2 (v, t, α0)

s
(0)
1 (v, α0)2

.

Define a bilinear operator V (·, ·) in H(m) as: V (β1, β2) =
∫
I

∫
I F (s, t)β1(s)β2(t) ds dt,

which is in fact one norm in the H(m) space. Set the projection of Z on X(·) as

G ≡ (G1, G2, · · · , Gp)
> with

Gk(·) =
∞∑
j=1

∫
I
E
[ ∫ τ

0

E[Y(t) exp{ηα0(W )}ZkX(u)]

E[Y(t) exp{ηα0(W )}]

− E[Y(t) exp{ηα0(W )}Zk]
E[Y(t) exp{ηα0(W )}]

E[Y(t) exp{ηα0(W )}X(u)]

E[Y(t) exp{ηα0(W )}]
dN(t)

]
hj(u) duhj(·)

≡
∞∑
j=1

Gjkhj(·).

We denote two positive sequences an and bn as an � bn if limn→∞(an/bn) = c > 0. If

c = 1, we denote a ∼ b. To construct a Hilbert Space and establish the theoretical

properties of the proposed estimator, we need the following regularity conditions:

(C1) (i) 0 < P (Y ≥ τ) < 1.

(ii) There exists a constant c1 > 0, for any α ∈ H, we have

E

∫ τ

0

[E{Y(t) exp{ηα0(W )}ηα(W )2}
E[Y(t) exp{ηα0(W )}]

− (E{Y(t) exp{ηα0(W )}ηα(W )})2(
E[Y(t) exp{ηα0(W )}]

)2

]
dN(t)

≥ c1E{ηα(W )}2.

(C2) There exists a sequence of functions {hj}j≥1 ⊂ H(m) such that ||hj||L2 ≤ chj
a

for each j ≥ 1, some constants a ≥ 0, ch ≥ 0, and

V (hi, hj) = δij, J(hi, hj) = ρiδij, for any i, j ≥ 1,
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where δij is the Kronecker’s notation, and ρi is a nondecreasing nonnegative

sequence satisfying ρi � i2k for some constant k > a+ 1/2.

(C3) Σ− V (G,G>) is positive definite. There exists b ∈ ((1 + 2a)/(2k), 1] such that∑
j |Gjk|2ρbj <∞ for k = 1, . . . , p.

(C4) There exist constants s ∈ (0, 1) and M0 > 0 such that E[exp{s(‖X‖L2 +

‖Z‖2)}] <∞, and E{|ηα(W )|4} ≤M0{E|ηα(W )|2}2 for any α ∈ H.

Remark 2.1. Condition (C1)(i) is used to is very common in survival analysis,

while Condition (C1)(ii) is trivial when β = 0 under Condition (C3).

Equipped with the inner product, H is a Hilbert space and H(m) is a reproducing

kernel Hilbert space (RKHS) with the inner product

< β1, β2 >m=

∫
I

∫
I
F (s, t)β1(s)β2(t) ds dt+ λJ(β1, β2). (2.3)

Denote the reproducing kernel inH(m) byK(s, t). Define a linear nonnegative definite

and self-adjoint operator Wλ as: < Wλβ1, β2 >m= λJ(β1, β2). Then, we have

< β1, β2 >m= V (β1, β2)+ < Wλβ1, β2 >m.

Remark 2.2. Under Condition (C2), the eigen-system can be derived from the fol-

lowing integro-differential equations (Shang and Cheng (2015)):

(−1)my
(2m)
j (t) = ρj

∫
I
F (s, t)yj(s) ds,

y
(i)
j (0) = y

(i)
j (1) = 0, i = m,m+ 1, · · · , 2m− 1.

Let hj = yj/
√
V (yj, yj), k = m + r + 1 and a = r + 1. Then hj and ρj, j = 1, 2, . . .

are the eigenvectors and eigenvalues, respectively, if one of the following additional

assumptions is satisfied:

(i) r = 0;
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(ii) r ≥ 1, and for any i = 0, 1, . . . , r − 1, F (i,0)(0, t) = 0 for any t ∈ I, where

F (i,0)(s, t) is the ith-order partial derivative with respect to s.

The relationships between (hj, ρj), K(·, ·) and Wλ are given as follows:

Kt(·) =
∞∑
j=1

hj(t)

1 + λρj
hj(·), (Wλhj)(·) =

λρj
1 + λρj

hj(·).

This can be referred to Shang and Cheng (2015).

Remark 2.3. Under Condition (C3), we have that V (G,WλG
>) → 0 with λ →

0. Furthermore, from the definition of G, we have G = 0 when X(·) and Z are

independent.

Remark 2.4. Condition (C4) on covariates is weaker than the conditions required

by Qu et al. (2016).

In the following, we set h = λ1/(2k).

Theorem 2.1. (Rate of Convergence) Suppose that Conditions (C1)-(C4) hold. If

h = o(1), n−1/2h−(a+1)− 2k−2a−1
4m {log(n)}2{log log(n)}1/2 = o(1),

then α̂n,λ is the unique estimate for α0 and ‖α̂n,λ − α0‖λ = Op(rn), where rn =

(nh)−1/2 + hk.

This theorem shows that when we choose λ = n−(2k)/(2k+1), the estimate enjoys

the same order of convergence as that in Qu et al. (2016).

For ease of interpretation, define Sn(α) and Sn,λ(α) be the Fréchet derivatives of

ln(α) and ln,λ(α), respectively. Direct calculation yields that the Fréchet derivatives

of ln,λ(α) at the direction of α1 is

Sn,λ(α)α1 =
1

n

n∑
i=1

∆i

[
ηα1(Wi)−

∑n
j=1 Yj(Yi) exp{ηα(Wj)}ηα1(Wj)∑n

j=1 Yj(Yi) exp{ηα(Wj)}

]
− λJ(β, β1)

≡ Sn(α)α1 − λJ(β, β1).
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Theorem 2.2. (Joint Bahadur Representation) Suppose that Conditions (C1)-(C4)

hold. If

n−1/2h−(a+1)− 2k−2a−1
4m {log(n)}2{log log(n)}1/2 = o(1),

nh2k(1+b) = o(1), and
∞∑
j=1

V (β0, hj)
2ρ2
j <∞,

then we have ‖α̂n,λ − α0 − Sn,λ(α0)‖λ = Op(an), where

an = n−1/2h−(4ma+6m−1)/4mrn{log log(n)}1/2 log(n)2+h−1/2r2
n, and rn = (nh)−1/2+hk.

Based on the joint Bahadur representation, we can establish the asymptotic joint

distribution of the proposed estimators of the slope function and the coefficients.

Theorem 2.3. (Asymptotic Joint Distribution) Suppose that the conditions of The-

orem 2.2 hold. Furthermore, assume that supj≥1 ‖hj‖∞ ≤ chj
a, n1/2anh

−(a+1/2) =

o(1), n1/2hk(1+b) = o(1),
∑∞

j=1 V (β0, hj)
2ρ2
j <∞, and h(2a+1)

∑∞
j=1

‖hj(t)‖2∞
(1+λρj)2

� σ2
t > 0.

Then we have [ √
n(θ̂n,λ − θ0)√

nhha{β̂n,λ(t)− β0(t)}

]
→ N(0,Φ),

where

Φ =

[
{Σ− V (G,G>)}−1 0

0 σ2
t

]
.

Here, Σ can be consistently estimated by

Σ̂ =
1

n

n∑
i=1

[∫ τ

0

V̂ar(Z|T = t,∆ = 1)Yi(t) exp{ηα̂(Wi)} dΛ̂0(t)

]

=
1

n

n∑
i=1

[∫ τ

0

[S(2)
1 (t, α̂)

S
(0)
1 (t, α̂)

− {S
(1)
1 (t, α̂)}⊗2

[S
(0)
1 (t, α̂)]2

]
Yi(t) exp{ηα̂(Wi)} dΛ̂0(t)

]
,

where

Λ̂0(t) =

∫ t

0

∑n
k=1 dNk(s)∑n

j=1 Yj(s) exp{ηα̂(Wj)}
.
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Theorem 2.3 implies that, under certain conditions, the asymptotic bias for the es-

timation of β0(t0) vanishes. Hence, Theorem 2.3 together with the Delta-method im-

mediately yields the point-wise confidence interval (CI) for some real-valued smooth

function of β0(t) at any fixed point t0 ∈ I, denoted by ρ
{
β0(t0)

}
. Let ρ̇(·) be the first

derivative of ρ(·). By Theorem 2.3, for any fixed point t0 ∈ I and ρ̇
{
β0(t0)

}
6= 0, we

have

P

ρ{β0(t0)
}
∈

ρ{β̂(t0)
}
± Φ ξ

2

ρ̇
{
β0(t0)

}√∑∞
j=1(|hj(t)|2/(1 + λρj)2)
√
n


→ 1− ξ,

as n→∞, where Φ(·) is the standard normal cumulative distribution function and

Φξ is the lower ξ-th percentile of Φ(·), that is Φ(Φξ) = 1− ξ.

2.4 Partial Likelihood Ratio Test

In this section, we consider testing the following “global” hypothesis:

H0 : α = α0 versus H1 : α 6= α0,

where α0 ∈ H. The penalized partial likelihood ratio rest (PLRT) statistic is defined

as:

PLRTn,λ ≡ ln,λ(α0)− ln,λ(α̂n,λ).

We next derive the null limiting distribution of PLRTn,λ.

Theorem 2.4. (Likelihood Ratio Test) Suppose that Conditions (C1)-(C4) hold.

Assume that

nh2k(1+b) = O(1), nh2 →∞, n1/2an = o(1), nr3
n = o(1),

∞∑
j=1

V (β0, hj)
2ρ2
j <∞,
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n1/2h−{a+1/2+(2k−2a−1)/(4m)}r2
n{log(n)}2{log log(n)}1/2 = o(1),

and

n1/2h−{2a+1+(2k−2a−1)/(4m)}r3
n{log(n)}3{log log(n)}1/2 = o(1).

Then under H0, we have

(2νλ)
−1/2(−2nγλPLRTn,λ − nγλ‖Wλβ0‖2

m − νλ)
d−−→ N(0, 1),

where σ2
λ ≡

∑∞
j=1 h/(1 + λρj), ρ2

λ ≡
∑∞

j=1 h/(1 + λρj)
2, γλ ≡ σ2

λ/ρ
2
λ, and νλ ≡

h−1σ4
λ/ρ

2
λ.

It follows from Theorem 2.3 that n‖Wλβ0‖2
m = o(nλ) = o(νλ). Therefore, we have

2nγλPLRTn,λ ∼ N(νλ, 2νλ), which is nearly χ2
νλ

as n→∞. This shows that PLRT

enjoys the Wilks phenomenon.

As suggested by one anonymous reviewer, our proposed method can handel some

composite hypothesis testing. In fact, by examining the proof of Theorem 2.4, we find

that the null limiting distribution derived therein remains the same even when the

hypothesized value α0 is unknown. An important consequence is that the proposed

likelihood ratio approach can also be used to test a composite hypothesis such as

H0 : θ = θ0, β has some linear or polynomial structure.

Under H0, the true slope function can be expressed as β0 =
∑d

j=0 t
jb0
j , where d is

the order the the polynomial. Denote b0 = (b0
0, b

0
1, . . . , b

0
d)
>. Then, (θ>0 ,b

>
0 )> can be

estimated through the following parametric optimization:

(θ̂0, b̂
0
) = arg max ln,λ(θ,

d∑
j=0

tjbj)

= arg max ln(θ,
d∑
j=0

tjbj)−
λ

2
b>Bb,

where B is a (d + 1) × (d + 1) matrix, with the i, j-th component being J(ti, tj).

After deriving the estimate of θ0 and b0, we can obtain the estimate of β0, denoted
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as β̂0 =
∑d

j=0 b̂
0
j t
j. Denote α̂0 = ((θ̂0)>, β̂0), and α0 is the unknown true parameter.

Under this scenario, the logical related to the asymptotic distribution of PLRT is

listed below:

PLRTcom
n,λ ≡ln,λ(α̂0)− ln,λ(α̂n,λ)

=ln,λ(α0)− ln,λ(α̂n,λ) + ln,λ(α̂
0)− ln,λ(α0)

=ln,λ(α0)− ln,λ(α̂n,λ) +Op(n
−1).

The last equality holds as traditional parametric theory leads to 2n{ln,λ(α̂0)−ln,λ(α0)} =

Op(1). As ln,λ(α0)− ln,λ(α̂n,λ) is exactly the same as that proposed in Theorem 2.4,

we have

−2nγλ{ln,λ(α0)− ln,λ(α̂n,λ)} ∼ χ2
νλ
.

Therefore, we conclude that the null limit distribution for testing the composite

hypothesis also follows χ2
νλ

. To conclude this section, we show that the PLRT achieves

the optimal minimax rate given by Ingster (1993). To this end, we consider the

alternative hypothesis H1n : α = αn0 , where αn0 = α0 + αn, α0 ∈ H and αn belongs

to the alternative value set A = {α ∈ H, ‖θ‖2 ≤ ζ, ‖β‖L2 ≤ ζ, J(β, β) ≤ ζ} for some

constant ζ > 0.

Theorem 2.5. Suppose that the conditions of Theorem 2.4 hold, and under H1n :

α = αn0, ‖α̂n,λ − αn0‖λ = Op

{
(nh)−1/2 + hk

}
holds uniformly over αn0 ∈ A. If

nh3/2+a/2 →∞ as n→∞, then, for any δ ∈ (0, 1), there exists positive constants b0

and N such that

inf
n≥N

inf
αn∈A,‖αn‖λ≥b0ηn

P (reject H0|H1n is true) ≥ 1− δ,

where ηn ≥
√
h2k + (nh1/2)−1. Moreover, the maximum lower bound of ηn is n−2k/(4k+1),

which can be achieved when h = h∗∗ = n−2/(4k+1).
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2.5 Simulation Studies

In this section, we conduct simulation studies to assess the finite-sample performance

of the estimated confidence interval given in Section 2.3 and the PLRT developed in

Section 2.4.

We used a setup similar to that in Qu et al. (2016). The functional covariate X

is defined as

X(s) =
50∑
k=1

ξkUkφk(s),

where Uk are independently sampled from the uniform distribution on [−3, 3], ξk =

(−1)k+1k−1/2, φ1 = 1, and φk+1(s) =
√

2 cos(kπs) for k ≥ 1.

The functional coefficient β0 is β0(t) = 9/(50−45t)−0.9, which is in the Sobolov

space H(2)(I). The penalty function is J(β, β) =
∫
I(β

(2)(t))2 dt. The scalar covariate

Z is set to be univariate with distribution N(0, 1) and the corresponding coefficient

θ = 1. The failure time T is generated from the functional Cox model:

h(t|W ) = h0(t) exp

{
θ′Z +

∫ 1

0

X(s)β0(s)ds

}
,

where h0(t) = t2. Given W , T follows a Weibull distribution. The censoring time C

is generated independently, following an exponential distribution with parameter γ

which controls the censoring rate. Here, γ = 15 and 3.9 lead censoring rates around

12% and 33%, respectively. We consider the sample sizes n = 200 and 400. We

adopt the cubic spline functions for the estimation of the functional covariate. The

number of knots is at the order of qn = [2n1/5], and the knots are equally spaced.

The smoothing parameter λ is 10−6 and the order m of Sobolev space is 2. For each

combination of censoring rate and n, the simulation is repeated 1000 times.

Figure 2.1 displays an instance of estimated β(·) and the pointwise 95% confidence

intervals among 1000 simulations. The pointwise average of the estimated β(·) and
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Figure 2.1: Graphical displays of β̂(·) and the pointwise 95% confidence intervals of β(t). The

dashed lines represent β(·) whereas the solid lines represent β̂(·).

the empirical coverage probability of the 95% pointwise confidence interval based

on 1000 simulations are shown in 2.2 and 2.3, respectively. Table 2.1 reports the

bias (BIAS), the sample standard error of the estimates (SSE), the average of the

estimated standard errors (ESE), and the empirical coverage probability (CP) at t =

0.1, 0.5, 0.9. The simulation results are consistent with Theorem 2.3. In particular,

these results suggest that the estimate β̂(·) is consistent. In general, it is apparent

that when n increases from 200 to 400 with a fixed censoring rate, the average bias
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Figure 2.2: Graphical displays of the pointwise averages β̂(·). The dashed lines represent β(·)
whereas the solid lines represent the pointwise averages of β̂(·).

and the standard error decrease steadily. Furthermore, the coverage probability also

approaches the theoretical value of 95%. The average ESE at 12% censoring rate

is lower in comparison to that at 33% censoring rate. This is consistent with the

expectation that the lower the censoring rate is, the more accurate the estimate

becomes.

For the regression coefficient of the scalar covariate, the BIAS, SSE, ESE, and

CP of the estimated θ̂ are given in Table 2.2 for each combination of censoring
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Figure 2.3: Graphical displays of the pointwise coverage probabilities (CP). The dashed lines
represent 95% whereas the solid lines represent the pointwise CP of β(·).

rate and n based on 1000 simulation. As the sample size increases, the average of

θ̂ approaches to the true value, the standard deviation reduces, and the coverage

probability approaches to 95% given a fixed censoring rate. Similarly, we observe

these trends when the censoring rate reduces for a given sample size.

In summary, the simulation results in Tables 2.1 and 2.2 suggest that the es-

timates of both scalar and functional parameters are consistent and the proposed

variance estimation procedure provides reasonable estimates. Furthermore, the re-
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sults on the empirical coverage probability suggest that the normal approximation

is appropriate.

To study the performance of the partial likelihood ratio test, we calculate the

estimated sizes and powers of the PLRT under H0 : α = (θ, β(·)), that is, the per-

centages of rejecting H0. We generate α under different signal strengths. Specifically,

α = (θ+c, β(·)+c), where c = 0.0, 0.1, 0.3, 0.5. Table 2.3 summarizes the percentages

of rejecting H0 over 1000 simulations. These results demonstrate the good perfor-

mance of the PLRT. The power of the test increases as sample size n increases, and

the power slightly decreases as the censoring rate increases.

Table 2.1: Simulation results for the proposed estimate of β(t).

n = 200 n = 400
0.1 0.5 0.9 0.1 0.5 0.9

12% BIAS -0.0504 -0.0431 -0.0747 -0.0189 -0.0218 -0.0400
SSE 0.1518 0.1372 0.1751 0.1042 0.1088 0.1223
ESE 0.1927 0.1602 0.2156 0.1343 0.1117 0.1501
CP 0.9750 0.9680 0.9740 0.9840 0.9510 0.9820

33% BIAS -0.0539 -0.0514 -0.0914 -0.0241 -0.0270 -0.0531
SSE 0.1704 0.1578 0.1919 0.1245 0.1269 0.1419
ESE 0.1999 0.1658 0.2238 0.1391 0.1158 0.1558
CP 0.9750 0.9510 0.9560 0.9690 0.9200 0.9570

Table 2.2: Simulation results for the proposed estimate of θ.

n = 200 n = 400
12% BIAS 0.0339 0.0154

SSE 0.1070 0.0717
ESE 0.1170 0.0811
CP 0.9520 0.9690

33% BIAS 0.0392 0.0212
SSE 0.1261 0.0811
ESE 0.1224 0.0849
CP 0.9240 0.9500
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Table 2.3: The simulated sizes and powers of the likelihood ratio test for H0 : α =
(θ, β).

c 200 400
12% 0.0 0.0510 0.0410

0.1 0.2320 0.5680
0.3 1.0000 1.0000
0.5 1.0000 1.0000

33% 0.0 0.0510 0.0490
0.1 0.1610 0.4570
0.3 0.9950 1.0000
0.5 1.0000 1.0000

2.6 An Application

In this section, we apply the proposed method to the Sequential Organ Failure Assess-

ment (SOFA) data collected from the Improving Care of Acute Lung Injury Patients

(ICAP) study (Gellar et al. (2014, 2015)). The primary goal of this prospective co-

hort study is to investigate the long-term complications of patients who suffer from

acute lung injury/acute respiratory distress syndrome (ALI/ARDS).
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Figure 2.4: Trajectories of the SOFA score of subjects who died after the first week of the ICU
hospitalization and those who survived. The red lines are the pointwise average of the SOFA score.

The ICAP study involves 520 subjects. Among them, 237(46%) subjects die in
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the intensive care unit (ICU). We are interested in the association between the SOFA

scores and survival among the subjects who were hospitalized in ICU for more than a

week. Out of the 520 subjects, 161 subjects (31.0%) died within the first week in ICU,

and they are excluded from the analysis. Therefore, the proposed method is applied

to the remaining 359 subjects. In the ICAP study, data were recorded once the

patients were admitted in the ICU, and then daily during hospitalization. The SOFA

score is one of the measurements recorded daily and it is a measure of the overall

organ function status of a patient. It is composed of respiratory, cardiovascular,

coagulation, liver, renal, and neurological components. Each component ranges from

0 to 4, with higher scores suggesting inferior organ function. The SOFA score, ranging

from 0 to 24, is then the sum of these six scores. We treat the history of each subject’s

SOFA scores, in the first week, as a functional covariate, X(s), where s is the number

of days since the admission to the ICU. Trajectories of the SOFA score of subjects

who died after the first week of ICU hospitalization and those who survived are

depicted in Figure 2.4. It is apparent that among patients who manage to survive,

the pointwise averages of SOFA scores are declining, whereas among patients who

died after the first week of ICU hospitalization, the averages are relatively stable.

Our model includes three scalar covariates as controls of a subject’s baseline risk.

They are age, gender, and Charlson co-morbidity index (Charlson et al. (1987)).

Our goal is to estimate the association between the trajectory of SOFA score

and mortality among subjects who are hospitalized in ICU for more than a week.

We adopt the cubic spline functions for the estimation of the functional covariate.

The number of knots is at the order of qn = [2n1/5] = 7, and the knots are equally

spaced. As pointed out in Verweij and Van Houwelingen (1993), typical optimization

criteria, such as Mallow’s Cp and Allen’s PRESS (predicted residual error sum of

squares) statistic, are inappropriate for the Cox model. Verweij and Van Houwelingen

(1993) proposed the cross-validated log likelihood (CVL) to optimize the smoothing
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parameter of a penalized partial likelihood. Let θ̂λ(−i) be the value of θ that maximizes

lλ,(−i), the penalized log partial likelihood when observation i is omitted. Given a

value of λ, the CV L is given by CV Lλ =
∑n

i=1 lλ,i(θ
λ
(−i)), where lλ,i(·) = lλ,i(·) −

lλ,(−i)(·) is the contribution of subject i to the penalized log partial likelihood. The

smoothing parameterλ = 10−3 leads to the optimal penalty according CV L. One

may also consider less computationally intensive methods such as AIC Gellar et al.

(2015) and GCV Qu et al. (2016).
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Figure 2.5: The estimated coefficient function β̂(·) and the pointwise 95% confidence interval for
the SOFA data analysis.

We plot the estimated coefficient function β̂(·) in Figure 2.5. The result suggests

that there is a functional association between time to death during the ICU stay and

the SOFA score function for t ∈ [0.75, 1], which corresponds to the sixth and the

seventh day of ICU stay. This implies that the SOFA score in last two days in the

first week of ICU stay may be used as an indicator of one’s hazard.

Table 2.4 summarizes the estimation of the regression coefficients of the scalar

covariates. In addition to the functional covariate, there seems to be a positive as-

sociation with two scalar covariates: patients’ age and Charlson co-morbidity index.
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Table 2.4: Estimation results of regression coefficients of scalar covariates for the
SOFA data analysis

θ̂ S.E. t-value p-value
Age 0.0151 0.0015 10.0667 < 0.0001

Gender (male=1) 0.1640 0.1331 1.2322 0.1089
Charlson Index -0.0348 0.0034 -10.2353 < 0.0001

On the other hand, the gender shows no significant association with the hazard of

death.

2.7 Appendix

For ease of presentation, we introduce some notations related to the Fréchet deriva-

tives. Let Sn(α) and Sn,λ(α) be the Fréchet derivatives of ln(α) and ln,λ(α), respec-

tively. Denote the asymptotic value of ln(α) as l(α), and l(α)− λJ(β, β)/2 as lλ(α).

Similarly, let S(α) and Sλ(α) be the Fréchet derivatives of l(α) and lλ(α), respec-

tively. Let D be the Fréchet derivative operator and αi = (θ>i , βi(·)), i = 1, 2, 3 ∈ H

be any direction. Then, we have

Sn,λ(α)α1 =
1

n

n∑
i=1

∆i

[
ηα1(Wi)−

∑n
j=1 Yj(Yi) exp{ηα(Wj)}ηα1(Wj)∑n

j=1 Yj(Yi) exp{ηα(Wj)}

]
− λJ(β, β1)

≡ Sn(α)α1 − λJ(β, β1),

DSn,λ(α)α1α2

= − 1

n

n∑
i=1

∆i

[∑n
j=1 Yj(Yi) exp{ηα(Wj)}ηα1(Wj)ηα2(Wj)∑n

j=1 Yj(Yi) exp{ηα(Wj)}

−
∑n

j=1 Yj(Yi) exp{ηα(Wj)}ηα1(Wj)
∑n

j=1 Yj(Yi) exp{ηα(Wj)}ηα2(Wj)

[
∑n

j=1 Yj(Yi) exp{ηα(Wj)}]2

]
− λJ(β1, β2)

≡ DSn(α)α1α2 − λJ(β1, β2),
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and

D2Sn,λ(α)α1α2α3 = − 1

n

n∑
i=1

∆i

[∑n
j=1 Yj(Yi) exp{ηα(Wj)}ηα1(Wj)ηα2(Wj)ηα3(Wj)∑n

j=1 Yj(Yi) exp{ηα(Wj)}

−
∑n

j=1 Yj(Yi) exp{ηα(Wj)}ηα1(Wj)ηα2(Wj)
∑n

j=1 Yj(Yi) exp{ηα(Wj)}ηα3(Wj)

[
∑n

j=1 Yj(Yi) exp{ηα(Wj)}]2

−
∑n

j=1 Yj(Yi) exp{ηα(Wj)}ηα1(Wj)ηα3(Wj)
∑n

j=1 Yj(Yi) exp{ηα(Wj)}ηα2(Wj)

[
∑n

j=1 Yj(Yi) exp{ηα(Wj)}]2

−
∑n

j=1 Yj(Yi) exp{ηα(Wj)}ηα1(Wj)
∑n

j=1 Yj(Yi) exp{ηα(Wj)}ηα2(Wj)ηα3(Wj)

[
∑n

j=1 Yj(Yi) exp{ηα(Wj)}]2

+ 2

∑n
j=1 Yj(Yi) exp{ηα(Wj)}ηα1(Wj)

∑n
j=1 Yj(Yi) exp{ηα(Wj)}ηα2(Wj)

[
∑n

j=1 Yj(Yi) exp{ηα(Wj)}]3

×
n∑
j=1

Yj(Yi) exp{ηα(Wj)}ηα3(Wj)
]

≡ D2Sn(α)α1α2α3.

There exists a sequence of functions ωk, k = 1, 2, . . . , p, such that < ωk, β >m=

V (Gk, β).A direct calculation yields that ωk(·) ≡
∑∞

j=1Gjk
hj(·)

(1+λρj)
. Let ω be (ω1, ω2, . . . , ωp)

>.

Then, ω = (id −Wλ)G. Further, following from the Riesz representation theorem,

there exists an element in H(m), denoted as πx, such that < πx, β >m=
∫
I x(t)β(t) dt.

Through direct calculations, we have πx =
∑∞

j=1

∫
I x(t)hj(t) dt/(1 + λρj)hj(·). If we

denote (Hw, Tw) with w = (z, x(·)) as Rw, where

Hw = {Σ− V (G,G>) + V (G,WλG
>)}−1{z − V (G, πx)},

Tw = πx − ω>{Σ− V (G,G>) + V (G,WλG
>)}−1{z − V (G, πx)}, and,

then we have < Rw, α >λ= θ>z +
∫
I x(t)β(t) dt.

Define R̃u as R̃u : u→ (H̃u, T̃u) ∈ H, where u = (z>, t),

H̃u = {Σ− V (G,G>) + V (G,WλG
>)}−1(z − ω(t)), and

T̃u = Kt − ω>{Σ− V (G,G>) + V (G,WλG
>)}−1(z − ω(t)).
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Then we have that < R̃u, α >λ= θ>z + β(t).

Define Pλα = (H̃α, T̃α), where

H̃α = −{Σ− V (G,G>) + V (G,WλG
>)}−1V (G,Wλβ), and

T̃α = Wλβ − {Σ− V (G,G>) + V (G,WλG
>)}−1V (G,Wλβ).

Then Pλα ∈ H and < Pλα, α1 >λ=< Wλβ, β1 >m for any α1 = (θ>1 , β1) ∈ H. It

follows from the Cauchy-Schwarz inequality that ‖Pλ‖λ ≤ 1 and Pλ is self-adjoint.

2.7.1 Proofs of Lemmas

Lemma 2.1. Under Condition (C1), we have DSλ(α0) = −id, where id is the

identity operator.

This result follows directly from the definitions of the inner product and DSλ(α0).

Denote ‖α‖e = ‖θ‖2 +‖β‖L2 . The following lemma provides the relationship between

the general Euclidean norm ‖ · ‖e and the norm ‖ · ‖λ.

Lemma 2.2. There exists a constant κ > 0 such that, for any α ∈ H, ‖α‖e ≤

κh−(2a+1)/2‖α‖λ.

Proof of Lemma 2.2 It follows from the definition of Kt that, ||Kt||λ . h−(a+1/2).

Follows the line of the proof of Lemma 2.4, we have that ||R̃u||λ . h−(a+1/2).

It follows from the fact that

||α||e =||θ||2 + ||β||L2

≤||θ||2 + ||β||sup

= sup
||z||2=1,t∈I

|β(t) + θ>z|

= sup
||z||2=1,t∈I

< R̃u, α >λ

≤||α||λ sup
‖z‖2=1,t∈I

‖R̃u‖λ

.h−(a+1/2)||α||λ.
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Lemma 2.3. Suppose that Conditions (C1)-(C4) hold. Then, for any α ∈ H,

E(| < RW , α >4
λ |) ≤ c4‖α‖4

λ.

Proof of Lemma 2.3 By Condition (C4) and Condition (C1)(ii), we have

EW (< RW , α >λ)
4 = EW

{
θ>Z +

∫
I
X(t)β(t) dt

}4

≤M0

{
EW |θ>Z +

∫
I
X(t)β(t) dt|2

}2

.

{∫ τ

0

V ar[ηα(W )|T = v,∆ = 1]E dN(v)

}2

. ‖α‖4
λ.

Lemma 2.4. Suppose that Conditions (C1)-(C3) hold. Then for any x ∈ L2([0, 1]),

there exists a universal positive constant cr such that

< RZ,x,RZ,x >λ≤ cr(‖Z‖2
2 + ‖x‖2

L2
h−2a−1) and E{‖RW‖2

λ} ≤ crh
−1.

Proof of Lemma 2.4 A direct calculation yields that

< Rw,Rw >λ= z>{Σ− V (G,G>) + V (G,WλG
>)}−1z+ < πx, πx >m +V (G,WλG

>)}−1

× V (G, πx) + V (G, πx)
>{Σ− V (G,G>) + V (G,WλG

>)}−1V (G, πx). (2.4)

It follows from Condition (C3) that {Σ − V (G,G>)}−1 is positive definite and

V (G,WλG
>) → 0. Let c denote the minimum eigenvalue of {Σ − V (G,G>) +

V (G,WλG
>)}. Then we have {Σ−V (G,G>)+V (G,WλG

>)}−1 ≤ c−11 with 1 being

the identity matrix. Thus, we have z>{Σ − V (G,G>) + V (G,WλG
>)}−1z . ‖z‖2

2.

A direct calculation yields that < πX , πX >m. ‖X‖2
L2h−2a−1 and V (G, πX) .

‖X‖L2h−a−1/2. Thus, there exists a constant cr > 0 such that

< RW , RW >λ≤ cr(‖Z‖2
2 + ‖X‖2

L2h−2a−1).

Besides, it follows from (3.17) and the proof of Lemma S.4 in Shang and Cheng

(2015) that

E < RW , RW >λ≤ crh
−1.
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The proof is completed.

Define Fpn = {α = (θ>, β(·)) ∈ H : ‖θ‖2 ≤ 1, ‖β‖L2 ≤ 1, J(β, β) ≤ pn},

Hn(α) =
1√
n

n∑
i=1

[φn(Yi,Wi;α)RWi
− Eφn(Yi,Wi;α)RWi

],

where φn(Yi,Wi;α) is a function on the data set and parameters, which might de-

pend on n. To derive the rate of convergence, we need the following concentration

inequality as a preliminary step.

Lemma 2.5. Suppose that Conditions (C1)-(C4) hold. If φn(Yi,Wi;0) = 0 a.s., and

there exists a constant Cφ > 0 such that

|φn(Yi,Wi;α1)− φn(Yi,Wi;α2)| ≤ Cφ‖α1 − α2‖e, for any α1, α2 ∈ H,

then we have

lim
n
P
(

sup
α∈Fpn

‖Hn(α)‖λ
p

1/(4m)
n ‖α‖γe + n−1/2

≤ {5h−1 log log(n)}1/2
)

= 1

where γ = 1− 1/(2m).

Proof of Lemma 2.5 Denote N(δ,Fpn , ‖ · ‖2) as the δ−covering number of the

function class Fpn , in terms of ‖ · ‖2− norm. Then it follows from Theorem 9.20 of

Kosorok (2008) that

logN(δ,Fpn , ‖ · ‖2) ≤ N(δ, p1/2
n F1, ‖ · ‖2)

≤ N(p−1/2
n δ,F1, ‖ · ‖2)

. max{(p−1/2
n δ)−1/m, (p−1/2

n δ)−1/p},

where p is the dimension of θ. Thus, the conclusion of this lemma follows from

exp(−cmax{(p−1/2
n δ)−1/m, (p−1/2

n δ)−1/p}) ≤ exp(−c(p−1/2
n δ)−1/m)

and the proof of Lemma 3.4 in Shang and Cheng (2015).
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2.7.2 Proofs of Theorems

Proof of Theorem 2.1

In order to prove Theorem 2.1, we need the following subset for H. Define

Fpn = {α = (θ>, β(·)) ∈ H : ‖θ‖2 ≤ 1, ‖β‖L2 ≤ 1, J(β, β) ≤ pn}.

First, we show that there exists a unique αλ such that Sλ(αλ) = 0. Let r1n =

2{J(β0, β0) + 1}1/2hk, and define the operator: T1h(α) = α + Sλ(α0 + α), α ∈ H.

Then,

‖T1h(α)‖λ = ‖α + Sλ(α + α0)‖λ ≤ ‖α + Sλ(α + α0)− Sλ(α0)‖λ + ‖Sλ(α0)‖λ.

Let B(ε) = {α ∈ H, ‖α‖λ ≤ ε} be the ball of radius ε in H. Note that S(α0) = 0,

which implies that Sλ(α0) = −Pλα0. It follows from the Cauchy-Schwarz inequality

that

‖Sλ(α0)‖λ = ‖Pλα0‖λ ≤ {λJ(β0, β0)}1/2 ≤ {J(β0, β0) + 1}1/2hk =
r1n

2
. (2.5)

By Lemma 2.1, we have

‖α + Sλ(α + α0)− Sλ(α0)‖λ =‖α +DSλ(α0)α +

∫ 1

0

∫ 1

0

sD2Sλ(α0 + ss′α)αα ds ds′‖λ

=‖
∫ 1

0

∫ 1

0

sD2Sλ(α0 + ss′α)αα ds ds′‖λ

≤
∫ 1

0

∫ 1

0

s‖D2Sλ(α0 + ss′α)αα‖λ ds ds′. (2.6)

From the definition of D2Sλ(α), Lemmas 2.2 and 2.4, and Condition (C1), we have

‖D2Sλ(α0 + ss′α)αα‖λ . {E < RW , α >
4
λ}1/2{E‖RW‖2

λ}1/2 . ‖α‖2
λc

1/2
r h−1/2.

(2.7)

From inequalities (2.5), (2.6), and (2.7), we have

‖T1h‖λ ≤ c‖α‖2
λc

1/2
r h−1/2 +

r1n

2
. (2.8)
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Since h = o(1) and k > a + 1/2 ≥ 1/2, we have r1nh
−1/2 = o(1). Then for any

α ∈ B(r1n), ‖T1h‖λ < r1n for large n. This implies T1h(B(r1h)) ⊂ B(r1h). Next, we

show that T1h is a contraction mapping. For any αj = (θ>j , βj(·)) ∈ H, j = 1, 2, we

have

T1h(α1)− T1h(α2) = α1 − α2 + Sλ(α0 + α1)− Sλ(α0 + α2)

=

∫ 1

0

[DSλ{α0 + α2 + s(α1 − α2)} −DSλ(α0)](α1 − α2) ds

=

∫ 1

0

∫ 1

0

s′D2Sλ[α0 + s′{α2 + s(α1 − α2)}](α1 − α2){α2 + s(α1 − α2)} ds ds′.

By the similar arguments adopted in proving inequality (2.8), we have

‖T1h(α1)− T1h(α2)‖λ

≤
∫ 1

0

∫ 1

0

s′‖D2Sλ[α0 + s′{α2 + s(α1 − α2)}](α1 − α2){α2 + s(α1 − α2)}‖λdsds′

.
∫ 1

0

∫ 1

0

s′{E < RW , α1 − α2 >
4
λ}1/4{E‖RW‖2

λ}1/2{E < RW , α2 + s(α1 − α2) >4
λ}1/4 ds ds′

. ‖α1 − α2‖λc1/2
r h−1/2(‖α1 − α2‖λ + ‖α2‖λ)

. r1n‖α1 − α2‖λc1/2
r h−1/2

≤ 1/2‖α1 − α2‖λ.

The last inequality follows from the fact that r1nh
−1/2 = o(1). Then T1h(α) is a

contraction mapping on B(r1n). By the Banach fixed-point theorem, there exists a

unique α′λ ∈ B(r1n) such that T1h(α
′
λ) = α′λ. Define αλ = α′λ + α0. Then Sλ(αλ) = 0

and ‖αλ − α0‖λ ≤ r1n.

Next, we show that there exists a unique α̂n,λ such that Sn,λ(α̂n,λ) = 0. Since

‖αλ − α0‖λ = O(r1n) = o(1) and DSλ(α0) = −id, it follows from the Taylor expan-

sion and inequality (2.7) that DSλ(αλ) is invertible. By applying similar arguments

employed in Shang and Cheng (2015), we have ‖DSλ(αλ)‖λ ∈ (1/2, 3/2). Now define
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the operator

T2h(α) = α− {DSλ(αλ)}−1Sn,λ(αλ + α)

= −{DSλ(αλ)}−1{DSn,λ(αλ)α−DSλ(αλ)α}

− {DSλ(αλ)}−1{Sn,λ(αλ + α)− Sn,λ(αλ)−DSn,λ(αλ)α} − {DSλ(αλ)}−1Sn,λ(αλ)

≡ I1 + I2 + I3.

It follows from the functional central limit theorem that uniformly in t ∈ I

∥∥ 1

n

n∑
j=1

Yj(t) exp{ηαλ(Wj)} − s(0)
1 (t, αλ)

∥∥
∞ = Op(n

−1/2). (2.9)

By Lemma 2.3 and the functional central limit theorem, we have

‖ 1

n

n∑
j=1

Yj(t) exp{ηαλ(Wj)}RWj
− E[Yj(t) exp{ηαλ(Wj)}RWj

]
∥∥
λ

= sup
‖α1‖λ=1

<
1

n

n∑
j=1

Yj(t) exp{ηαλ(Wj)}RWj
−E[Yj(t) exp{ηαλ(Wj)}RWj

], α1>λ

= Op(n
−1/2h−a−1/2). (2.10)

It follows from Sλ(αλ) = 0, Lemma 2.2, and equations (2.9) and (2.10) that E‖[DSλ(αλ)]I3‖2
λ =

O((hn)−1). This implies that ‖Sn,λ(αλ)‖λ = Op((nh)−1/2). Let c be a positive con-

stant satisfying P (‖Sn,λ(αλ)‖λ ≤ c(nh)−1/2) → 1. Define r2n = 2c(nh)−1/2 and

B(r2n) = {α ∈ H : ‖α‖λ ≤ r2n}. Then we have P (‖Sn,λ(αλ)‖λ ≤ r2n/2)→ 1. Define

Γ = ∩ni=1Ani, where

Ani = {‖Zi‖2 ≤ c log(n), ‖Xi‖L2 ≤ c log(n), exp{ηαλ(Wi)} ≤ c log(n)}

for a constant c. From Condition (C4), we choose c which is large enough such that
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P (Γ)→ 1 and P (Acni) = O(n−1). To handle I1, we have

‖[DSλ(αλ)]I1‖λ ≤
∥∥∥ 1

n

n∑
i=1

∆i

n−1
∑n

j=1 Yj(Yi) exp{ηαλ(Wj)}ηα(Wj)RWj

S
(1)
0 (Yi, αλ)

−
∫ τ

0

s
(0)
1 (t, α0)

E[Yj(t) exp{ηαλ(Wj)}ηα(Wj)RWj
]

s
(0)
1 (t, αλ)

h0(t) dt
∥∥∥
λ

+
∥∥∥ 1

n

n∑
i=1

∆i

∑n
j=1 Yj(Yi) exp{ηαλ(Wj)}ηα(Wj)

∑n
j=1 Yj(Yi) exp{ηαλ(Wj)}RWj

[nS
(1)
0 (Yi, αλ)]2

−
∫ τ

0

s
(0)
1 (t, α0)

E[Y(t) exp{ηαλ(W )}ηα(W )]E[Y(t) exp{ηαλ(W )}RW ]

[s
(0)
1 (t, αλ)]2

h0(t) dt
∥∥∥
λ

≡ I11 + I12. (2.11)

For I11, we have

‖I11‖λ ≤
∥∥∥ 1

n

n∑
i=1

∫ τ

0

n−1
∑n

j=1 Yj(t) exp{ηαλ(Wj)}ηα(Wj)RWj

s
(0)
1 (t, αλ)

−
E[Yj(t) exp{ηαλ(Wj)}ηα(Wj)RWj

]

s
(0)
1 (t, αλ)

dNi(t)
∥∥∥
λ

+
1

n

∥∥∥ n∑
i=1

∫ τ

0

n−1

n∑
j=1

Yj(t) exp{ηαλ(Wj)}ηα(Wj)RWj
{ 1

s
(0)
1 (t, αλ)

− 1

S
(0)
1 (t, αλ)

} dNi(t)
∥∥∥
λ

+
∥∥∥ 1

n

n∑
i=1

∫ τ

0

EYj(t) exp{ηαλ(Wj)}ηα(Wj)RWj

s
(0)
1 (t, αλ)

dNi(t)

−
∫ τ

0

s
(0)
1 (t, α0)

EYj(t) exp{ηαλ(Wj)}ηα(Wj)RWj

s
(0)
1 (t, αλ)

h0(t) dt
∥∥∥
λ

≡ I111 + I112 + I113.

For I113, we have

I113 =
∥∥∥∫ τ

0

EYj(t) exp{ηαλ(Wj)}ηα(Wj)RWj

s
(0)
1 (t, αλ)

1

n

n∑
i=1

{ dNi(t)− E dNi(t)}
∥∥∥
λ

= Op((nh)−1/2)‖α‖λ.
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To infer I111, we first define

φ(Yj,Wj;α) =
Yj(t0) exp{ηαλ(Wj)}ηα(Wj)

s
(0)
1 (t0, αλ)

IAnj .

Then, for any α1, α2 ∈ H, we have

|φ(Yj,Wj;α1)− φ(Yj,Wj;α2)| = 1

s
(0)
1 (t0, αλ)

Yj(t0) exp{ηαλ(Wj)}|{ηα1(Wj)− ηα2(Wj)}|IAnj

≤ c log(n)

s
(0)
1 (t0, αλ)

| < RWj
, α1 − α2 >λ |IAnj

≤ {c log(n)}2

s
(0)
1 (t0, αλ)

‖α1 − α2‖e.

Define φn(Yj,Wj;α) = s
(0)
1 (t0, αλ)c

−2{log(n)}−2φ(Yj,Wj;α1). Then

|φn(Yj,Wj;α1)− φn(Yj,Wj;α1)| ≤ ‖α1 − α2‖e.

For any α 6= 0 ∈ H, let α̃ = α/(dn‖α‖λ), where dn = κh−(2a+1)/2. It follows from

Lemma 2.3 that ‖α̃‖e ≤ dn‖α̃‖λ = 1. Then we have ‖θ̃‖2 + ‖β̃‖L2 ≤ 1. Meanwhile,

we have λJ(β̃, β̃) ≤ ‖α̃‖2
λ = d−2

n . Then J(β̃, β̃) ≤ λ−1d−2
n ≡ pn. By Lemma 2.5, we

obtain that for any α ∈ B(r2n),

lim
n
P (‖

n∑
j=1

[φn(Yj,Wj; α̃)RWj
− E{φn(Yj,Wj; α̃)RWj

}]‖λ

. (n1/2p1/(4m)
n + 1){h−1 log log(n)}1/2) = 1.

Therefore, we have

lim
n
P (‖

n∑
j=1

[φ(Yj,Wj;α)RWj
− E{φ(Yj,Wj;α)RWj

}]‖λ

.dn{log(n)}2‖α‖λ(n1/2p1/(4m)
n + 1){h−1 log log(n)}1/2) = 1.

It follows from the definition of Ani that∥∥∥EYj(t0) exp{ηαλ(Wj)}ηα(Wj)RWj
IAcnj

s
(0)
1 (t, αλ)

‖λ ≤ c1E‖ < RWj
, α > RWj

IAcnj

∥∥∥
λ

= O(P (Acni)
1/2h−1/2)‖α‖λ = o(1)‖α‖λ.
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Thus, we have I111 = Op(n
−1/2h−(a+1)− 2k−2a−1

4m {log(n)}2{log log(n)}1/2)‖α‖λ+op(1)‖α‖λ =

op(1)‖α‖λ. From Lemma 2.4, we have that

1

n

∥∥∥ n∑
i=1

∫ τ

0

E
[ 1

n

n∑
j=1

Yj(t) exp{ηαλ(Wj)}ηα(Wj)RWj

]
dNi(t)

∥∥∥
λ

= Op(h
−1/2‖α‖λ).

Then, by equation (2.9) and (nh)−1 = o(1), we have I112 = op(1)‖α‖λ.

Applying the approach in deriving I11, we have that I12 = op(1)‖α‖λ. Therefore,

for any α ∈ B(r2n), ‖[DSλ(αλ)]I1‖ ≤ r2n/18. For ‖[DSλ(αλ)]I2‖λ, we have

‖[DSλ(αλ)]I2‖λ = ‖{Sn,λ(αλ + α)− Sn,λ(αλ)−DSn,λ(αλ)α}‖λ

= ‖
∫ 1

0

∫ 1

0

sD2Sn,λ(αλ + ss′α)αα ds ds′‖λ.

It follows from inequality (2.7) that

‖D2Sn,λ(αλ + ss′α)αα‖λ

≤ ‖D2Sn,λ(αλ + ss′α)αα−D2Sλ(αλ + ss′α)αα‖λ + ‖D2Sλ(αλ + ss′α)αα‖λ

= ‖D2Sn,λ(αλ + ss′α)αα−D2Sλ(αλ + ss′α)αα‖λ +O(h−1/2)‖α‖2
λ.

By employing the arguments in obtaining I111, we have that

‖D2Sn,λ(αλ + ss′α)αα−D2Sλ(αλ + ss′α)αα‖λ

= Op

(
n−1h−(2a+1)− 2k−2a−1

4m log(n)3{log log(n)}1/2{1 + n−1/2}
)
‖α‖λ

+Op

( 1

h1/2
+

1
√
nh(a+1)+ 2k−2a−1

4m

{log(n)}2{log log(n)}1/2h−1/2(1+ {nh2}−1/2)

+ n−1/2 log(n)h−(2a+1)/2 + n−1/2h−(a+1)− 2k−2a−1
4m {log(n)}2{log log(n)}1/2 + n−1/2h−1

)
‖α‖2

λ.

It follows from α ∈ B(r2n) and the conditions in the theorem that ‖D2Sn,λ(αλ +

ss′α)αα − D2Sλ(αλ + ss′α)αα‖λ = op(1)‖α‖λ. Then we have ‖[DSλ(αλ)]I2‖λ ≤

11‖α‖λ/18. Therefore, for any α ∈ B(r2n), ‖T2h(α)‖λ ≤ ‖I1‖λ + ‖I2‖λ + ‖I3‖λ ≤
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11r2n/12. That is, T2h(B(r2n)) ⊂ B(r2n). Using the same argument above, we have

that T2h is a contraction mapping in B(r2n). Therefore, there exists a unique α′ ∈

B(r2n) such that T2h(α
′) = α′ and this implies Sn,λ(αλ +α′) = 0. Let α̂n,λ = αλ +α′.

Then Sn,λ(α̂n,λ) = 0. Therefore, with probability approaching to 1, we have

‖α̂n,λ − α0‖λ ≤ r1n + r2n = OP ((nh)−1/2 + hk).

Proof of Theorem 2.2

It follows from Theorem 2.1 that there exists a constant M > 0 such that, with

probability approaching to one, ‖α̂n,λ−α0‖λ ≤Mrn. For simplicity, denote α̂n,λ−α0

as α. We assume that ‖α‖λ ≤ Mrn since its complement is negligible in terms of

probability. Let dn = κMh−(2a+1)/2rn, α̃ = d−1
n α, and pn = κ−2h1−2k, where κ is

a constant given in Lemma 2.3. Since h → 0 with n → ∞ and 1 − 2k < 0, we

have that pn ≥ 1 when n is large enough. It can be shown that ‖α‖λ ≤ Mrn and

this implies α̃ ∈ Fpn . To see this, write α̃ = (θ̃>, β̃(·)). Then ‖α̃‖e = d−1
n ‖α‖e ≤

d−1
n κh−(2a+1)/2‖α‖λ ≤ d−1

n κh−(2a+1)/2Mrn = 1. Thus, we get

J(β̃, β̃) = d2
nλ
−1{λJ(β, β)} ≤ d2

nλ‖α‖2
λ ≤ d−2

n λ−1(Mrn)2 = κ−2h1−2k = pn.

Besides, we have

‖Sn,λ(α + α0)− Sn,λ(α0)− {Sλ(α + α0)− Sλ(α0)}‖λ

=‖Sn(α + α0)− Sn(α0)− {S(α + α0)− S(α0)}‖λ. (2.12)
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On the right hand side of equation (2.12), we have

‖Sn(α+ α0)− Sn(α0)− {S(α+ α0)− S(α0)}‖λ

=
∥∥∥ 1

n

n∑
i=1

∆i

[
RWi −

n−1
∑

j Yj(Yi) exp{ηα+α0(Wj)}RWj

S
(0)
1 (Yi, α+ α0)

]

− 1

n

n∑
i=1

∆i

[
RWi −

n−1
∑

j Yj(Yi) exp{ηα0(Wj)}RWj

S
(0)
1 (Yi, α0)

]
− {S(α+ α0)− S(α0)}

∥∥∥
λ

≤
∥∥∥ 1

n

n∑
i=1

∫ τ

0

[{∑
j Yj(t) exp{ηα+α0(Wj)}RWj

nS
(0)
1 (t, α0 + α)

−
∑

j Yj(t) exp{ηα0(Wj)}RWj

nS
(0)
1 (t, α0)

}

+

{
EY(t) exp{ηα+α0(W )}RW

s
(0)
1 (t, α0 + α)

− EY(t) exp{ηα0(W )}RW
s

(0)
1 (t, α0)

}]
dNi(t)

∥∥∥
λ

+ (nh)−1/2

≤
∥∥∥ 1

n

n∑
i=1

∫ τ

0

[{∑
j Yj(Yi) exp{ηα+α0(Wj)}RWj

ns
(0)
1 (t, α0 + α)

−
∑

j Yj(t) exp{ηα0(Wj)}RWj

ns
(0)
1 (t, α0)

}

+

{
EY(t) exp{ηα+α0(W )}RW

s
(0)
1 (t, α0 + α)

− EY(t) exp{ηα0(W )}RW
s

(0)
1 (t, α0)

}]
dNi(t)

∥∥∥
λ

+Op

(
1

(nh)1/2
+

1

h1/2+an1/2

)
.

Define Γ = ∩ni=1Ani, where

Ani = {‖Zi‖2 ≤ c log(n), ‖Xi‖L2 ≤ c log(n), exp{ηαλ(Wi)} ≤ c log(n)}.

For any t0, define ϕ(Yj;α) = [Yj(t0) exp{ηα+α0(Wj)} − Yj(t0) exp{ηα0(Wj)}], Dn =

{c log(n)}2d−1
n , and ϕn(Yj; α̃) = Dnϕ(Yj; dnα̃)1Ani . Then |ϕn(Yj; α̃1)− ϕn(Yj; α̃2)| ≤

‖α̃1 − α̃2‖e. Since ‖α‖λ ≤ Mrn, α̃ ∈ Fpn , it follows from Lemma 2.5 that with

probability approaching to one, we have

n−1/2‖
n∑
j=1

ϕn(Yj; α̃)RWj
− Eϕn(Yj; α̃)RWj

‖λ . (p1/(4m)
n ‖α̃‖γe + n−1/2){h−1 log log(n)}1/2

. (p1/(4m)
n + n−1/2){h−1 log log(n)}1/2, (2.13)
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where γ = 1 − 1/(2m). On the other hand, by the Taylor expansion, the Cauchy-

Schwarz inequality, Lemma 2.2 and Theorem 2.1, we have

‖E{ϕ(Yj; dnα̃)RWj
IcAnj }‖λ ≤ {E|ϕ(Yj; dnα̃)IcAnj |

2}1/2{E‖RWj
‖2
λ}1/2

.[E{Yj(t0) exp(ηα0(Wj)) < RWj
, α̃ >λ}2]1/2c1/2

r h−1/2

.[E{Yj(t0) exp{ηα0(Wj)}}4]1/4P (Acnj)
1/4[E{(‖Z‖2 + ‖Xj‖L2)}4]1/4crh

−1/2.

From Condition (C4), we choose c large enough such that

n1/2h−1/2P (Acni)
1/4 = o(p1/(4m)

n {h−1 log log(n)}1/2).

Then

n1/2‖E{ϕ(Yj; dnα̃)RWj
IcAnj }‖λ . p1/(4m)

n {h−1 log log(n)}1/2.

Thus, on Γn, as n approaches ∞, we have

n−1/2Dn‖Sn(α + α0)− Sn(α0)− {S(α + α0)− S(α0)}‖λ . p1/(4m)
n {h−1 log log(n)}1/2.

(2.14)

On the left hand side of equation (2.12), we have

‖Sn,λ(α + α0)− Sn,λ(α0)− {Sλ(α + α0)− Sλ(α0)}‖λ

=‖ − Sn,λ(α0)−DSλ(α0)α−
∫ 1

0

∫ 1

0

sD2Sλ(α0 + ss′α)αα ds ds′‖λ

=
∥∥∥α− Sn,λ(α0)−

∫ 1

0

∫ 1

0

sD2Sλ(α0 + ss′α)αα ds ds′
∥∥∥
λ

≥
∥∥∥α− Sn,λ(α0)‖λ − ‖

∫ 1

0

∫ 1

0

sD2Sλ(α0 + ss′α)αα ds ds′
∥∥∥
λ
. (2.15)

It follows from Lemma 2.3 that∥∥∥∫ 1

0

∫ 1

0

sD2Sλ(α0 + ss′α)αα ds ds′
∥∥∥
λ
≤
∫ 1

0

∫ 1

0

s‖D2Sλ(α0 + ss′α)αα‖λ ds ds′

.‖α‖2
λc

1/2
r h−1/2 . h−1/2r2

n. (2.16)

Therefore, it follows from (2.12),(2.14), (2.15), and (2.16) that

‖α− Sn,λ(α0)‖λ ≤ Op(an).

The proof of Theorem 2.2 is completed.
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Proof of Theorem 2.3

Define α̂hn,λ = (θ̂n,λ, h
a+1/2β̂n,λ), α

∗
0 = (id − Pλ)α0, α∗0

h = (θ∗0, h
a+1/2β∗0), R̃h

u =

(H̃u, h
a+1/2T̃u), and

Remn = α̂n,λ − α∗0 −
1

n

n∑
i=1

∫ τ

0

[
RWi

−
n−1

∑n
j=1 Yj(t) exp{ηα0(Wj)}RWj

n−1
∑n

j=1 Yj(t) exp{ηα0(Wj)}

]
dNi(t).

It follows from Theorem 2.2 that ‖Remn‖λ = Op(an). Thus, we have

‖θ̂n,λ−θ∗0−
1

n

n∑
i=1

∫ τ

0

[
HWi

−
n−1

∑n
j=1 Yj(t) exp{ηα0(Wj)}HWj

n−1
∑n

j=1 Yj(t) exp{ηα0(Wj)}

]
dNi(t)‖2 = Op(an).

Define

Remh
n = α̂hn,λ − α∗0

h − 1

n

n∑
i=1

∫ τ

0

[
Rh
Wi
−
n−1

∑n
j=1 Yj(t) exp{ηα0(Wj)}Rh

Wj

n−1
∑n

j=1 Yj(t) exp{ηα0(Wj)}

]
dNi(t).

Then it is easy to show that ‖Remh
n − ha+1/2Remn‖λ = Op(an). It follows from

an = o(n−1/2) that

‖Remh
n‖λ ≤ ‖Remh

n − ha+1/2Remn‖λ + ha+1/2‖Remn‖λ = op(n
−1/2).

Next, we will use Remh
n to obtain the target joint limiting distribution. The idea

is to employ the Cramér-Wold device. For any u = (z>, t) ∈ Rp × I, we obtain the

limiting distribution of n1/2z>(θ̂n,λ−θ∗0)+n1/2ha+1/2{β̂n,λ(t)−β∗0(t)}. Note that this

is equivalent to getting the asymptotic result of n1/2 < R̃u, α̂
h
n,λ−α∗0h >λ . It follows

from Theorem 2.2 that n1/2| < R̃u, Rem
h
n >λ | = Op(n

1/2h−(a+1/2)an). Thus, we need

to get the limiting distribution of

n1/2 < R̃u,
1

n

n∑
i=1

∫ τ

0

[
Rh
Wi
−
n−1

∑n
j=1 Yj(t) exp{ηα0(Wj)}Rh

Wj

n−1
∑n

j=1 Yj(t) exp{ηα0(Wj)}

]
dNi(t) >λ .
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A direct calculation yields that

n1/2 < R̃u,
1

n

n∑
i=1

∫ τ

0

[
Rh
Wi
−
n−1

∑n
j=1 Yj(s) exp{ηα0(Wj)}Rh

Wj

n−1
∑n

j=1 Yj(s) exp{ηα0(Wj)}

]
dNi(s) >λ

=n−1/2

n∑
i=1

∫ τ

0

[
z>HWi

+ ha+1/2TWi
(t)

−
∑n

j=1 Yj(s) exp{ηα0(Wj)}{z>HWj
+ ha+1/2TWj

(t)}∑n
j=1 Yj(s) exp{ηα0(Wj)}

]
dMi(s)

≡Un.

Define Ki(u) ≡ z>HWi
+ ha+1/2TWi

(t). Therefore, we have

Un =n−1/2

n∑
i=1

∫ τ

0

{Ki(u)− EYj(s) exp{ηα0(Wj)}[Kj(u)]

EYj(s) exp{ηα0(Wj)}
} dMi(s) +Op(n

−1/2h−a−1/2)

≡n−1/2

n∑
i=1

Ui + op(1).

A direct calculation yields that

V ar(Ui) = E

∫ τ

0

[
Ki(u)− EYj(s) exp{ηα0(Wj)}Kj(u)

EYj(s) exp{ηα0(Wj)}

]2

dNi(s)

= h2a+1E

∫ τ

0

[
πXi(t)−

EYj(s) exp{ηα0(Wj)}πXj(t)
EYj(s) exp{ηα0(Wj)}

]2

dNi(s)

+2ha+1/2(z − ha+1/2ω(t))>{Σ− V (G,G>) + V (G,WλG
>)}−1

×E
∫ τ

0

[
πXi(t)−

EYj(s) exp{ηα0(Wj)}πXj(t)
EYj(s) exp{ηα0(Wj)}

]

×
[
{Zi − V (G, πXi)} −

EYj(s) exp{ηα0(Wj)}{Zj − V (G, πXj)}
EYj(s) exp{ηα0(Wj)}

]
dNi(s)

+(z − ha+1/2ω(t))>{Σ− V (G,G>) + V (G,WλG
>)}−1

×E
∫ τ

0

[
{Zi − V (G, πXi)} −

EYj(s) exp{ηα0(Wj)}{Zj − V (G, πXj)}
EYj(s) exp{ηα0(Wj)}

]⊗2

dNi(s)

×{Σ− V (G,G>) + V (G,WλG
>)}−1(z − ha+1/2ω(t)),
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and

E

∫ τ

0

[
{Zi − V (G, πXi)} −

EYj(s) exp{ηα0(Wj)}{Zj − V (G, πXj)}
EYj(s) exp{ηα0(Wj)}

]

×
{
πXi(t)−

EYj(s) exp{ηα0(Wj)}πXj(t)
EYj(s) exp{ηα0(Wj)}

}
dNi(s)

=
∞∑
j=1

{
Gj

1 + λρj
hj(t)−

Gj

(1 + λρj)2
hj(t)

}

=
∞∑
j=1

λρjGj

(1 + λρj)2
hj(t) = Wλω(t).

It follows from similar arguments adopted in the proof of Theorem 2.1 in Shang

and Cheng (2015) that ha+1/2ω(t) → 0, ha+1/2Wλω(t) → 0,
√
n{θ∗0 − θ0} → 0, and

√
nha+1/2{β∗0(t)− β0(t) + {Wλ(β0)}(t)} → 0. Then, as λ→ 0, we have

V ar(Ui)→σ2
t + 2(z + γ0)>{Σ− V (G,G>)}−1ξ0 + (z + γ0)>{Σ− V (G,G>)}−1(z + γ0)

≡(z>, 1)Φ(z>, 1)>,

It follows from the Lindeberg’s central limit theorem that[ √
n(θ̂n,λ − θ0)√

nhha{β̂n,λ(t)− β0(t) + (Wλβ0)(t0)}

]
→ N(0,Φ).

Since n1/2hk(1+b) = o(1), we can get that nh4k = o(1). Then, we have

|(Wλβ0)(t0)| =
∣∣∣ n∑
j=1

bjλρj
1 + λρj

hj(t0)
∣∣∣

≤ chλ

{
∞∑
j=1

b2
jρ

2
j

}1/2{∑
j=1

j2a

(1 + λρj)2

}1/2

= O(λh−a−1/2)

= o(1).

Hence, it leads to
√
nha+1/2{Wλ(β0)}(t) = o(1). Thus, the conclusion follows directly.
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Proof of Theorem 2.4

Define α = α̂n,λ − α0. It follows from Theorem 2.1 that for some M > 0, we have

‖α‖λ ≤ Mrn with probability approaching to one. Therefore, we assume ‖α‖λ ≤

Mrn. Applying the Taylor expansion, we have

ln,λ(α0)− ln,λ(α̂n,λ) = −Sn,λ(α̂n,λ)α +

∫ 1

0

∫ 1

0

sDSn,λ(α̂n,λ − ss′α)αα ds ds′

=

∫ 1

0

∫ 1

0

s{DSn,λ(α̂n,λ − ss′α)−DSn,λ(α0)}αα ds ds′ + 1

2
DSn,λ(α0)αα. (2.17)

It follows from Lemma 2.1 that

ln,λ(α0)− ln,λ(α̂n,λ) =

∫ 1

0

∫ 1

0

s[DSn,λ(α̂n,λ − ss′α)−DSn,λ(α0)]αα ds ds′

+
1

2
[DSn,λ(α0)−DSλ(α0)]αα− 1

2
‖α‖λ

≡I1 + I2 −
1

2
‖α‖λ.

48



To get the order of I1, we define α′ = α̂n,λ−ss′α−α0 = (1−ss′)α, where 0 ≤ s, s′ ≤ 1.

A direct calculation yields that

|[DSn,λ(α̂n,λ − ss′α)−DSn,λ(α0)]αα| = |D2Sn,λ(α0 + δα′)ααα′|

�
∣∣∣ 1
n

n∑
i=1

∆i

[∑
j Yj(Yi) exp{ηα0(Wj)}ηα(Wj)ηα(Wj)ηα′(Wj)

nS
(0)
1 (Yi, α0)

−
∑

j Yj(Yi) exp{ηα0(Wj)}ηα(Wj)ηα(Wj)
∑

j Yj(Yi) exp{ηα0(Wj)}ηα′(Wj)

[nS
(0)
1 (Yi, α0)]2

− 2

∑
j Yj(Yi) exp{ηα0(Wj)}ηα(Wj)ηα′(Wj)

∑
j Yj(Yi) exp{ηα0(Wj)}ηα(Wj)

[nS
(0)
1 (Yi, α0)]2

+ 2
{
∑

j Yj(Yi) exp{ηα0(Wj)}ηα(Wj)}2
∑

j Yj(Yi) exp{ηα0(Wj)}ηα′(Wj)

[nS
(0)
1 (Yi, α0)]3

]∣∣∣
. sup

t∈I

∣∣∣∑j Yj(t) exp{ηα0(Wj)}ηα(Wj)ηα(Wj)ηα′(Wj)

ns
(0)
1 (t, α0)

∣∣∣
+ sup

t∈I

∣∣∣∑j Yj(t) exp{ηα0(Wj)}ηα(Wj)ηα(Wj)
∑

j Yj(Yi) exp{ηα0(Wj)}ηα′(Wj)

{ns(0)
1 (t, α0)}2

∣∣∣
+ 2 sup

t∈I

∣∣∣∑j Yj(t) exp{ηα0(Wj)}ηα(Wj)ηα′(Wj)
∑

j Yj(t) exp{ηα0(Wj)}ηα(Wj)

{ns(0)
1 (t, α0)}2

∣∣∣
+ 2 sup

t∈I

∣∣∣{∑j Yj(t) exp{ηα0(Wj)}ηα(Wj)}2
∑

j Yj(t) exp{ηα0(Wj)}ηα′(Wj)

[ns
(0)
1 (t, α0)]3

∣∣∣
≡ I11 + I12 + I13 + I14,

where 0 ≤ δ ≤ 1. Define Γ = ∩ni=1Ani, where

Ani = {‖Zi‖2 ≤ c log(n), ‖Xi‖L2 ≤ c log(n), exp{ηα0(Wi)} ≤ c log(n)}
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for a constant c. For I11, we have

I11 = sup
t∈I

∣∣∣n−1
∑n

j=1 Yj(t) exp{ηα0(Wj)}ηα(Wj)ηα(Wj)ηα′(Wj)

s
(0)
1 (t, α0)

∣∣∣
≤
∣∣∣n−1

∑n
j=1 exp{ηα0(Wj)}ηα(Wj)ηα(Wj)ηα′(Wj)

s
(0)
1 (τ, α0)

∣∣∣
≤ Mrn

ns
(0)
1 (τ, α0)

∣∣∣ n∑
j=1

exp{ηα0(Wj)}ηα(Wj)ηα(Wj)‖RWj
‖λ
∣∣∣

≤ Mrn

ns
(0)
1 (τ, α0)

∣∣∣ < n∑
j=1

exp{ηα0(Wj)}ηα(Wj)‖RWj
‖λRWj

, α >λ

∣∣∣.
Let dn = κMh−(2a+1)rn, and α̃ = d−1

n α, where κ is given in Lemma 2.3. Note that

α̃ ∈ Fpn , where pn = κ−2h2a+1−2k > 1 when n is large enough. Denote

φn(Yi,∆i,Wi; α̃) =
exp{ηα0(Wi)}ηα̃(Wi)‖RWi

‖λRWi√
2cr{c log(n)}3h−(a+1/2)

IAni .

Then it can be shown that

|φn(Yi,∆i,Wi; α̃1)− φn(Yi,∆i,Wi; α̃2)| ≤
√

2cr{c log(n)}3h−a−1/2

√
2cr{c log(n)}3h−(a+1/2)

‖α̃1 − α̃2‖e.

It follows from Lemma 2.5 that with probability approaching to one,∥∥∥n−1/2

n∑
j=1

[
exp{ηα0(Wj)}ηα̃(Wj)‖RWj

‖λRWj
IAnj − E exp{ηα0(Wj)}ηα̃(Wj)‖RWj

‖λRWj
IAnj

] ∥∥∥
λ

.p1/(4m)
n {h−1 log log(n)}1/2{c log(n)}3h−(a+1/2).

Therefore, we have∥∥∥ n∑
j=1

[exp{ηα0(Wj)}ηα(Wj)‖RWj
‖λRWj

IAnj − E exp{ηα0(Wj)}ηα(Wj)‖RWj
‖λRWj

IAnj ]
∥∥∥
λ

.n1/2p1/(4m)
n {h−1 log log(n)}1/2{c log(n)}3h−(a+1/2)dn

=c3Mrnn
1/2κ1−1/(2m)h−(2a+3/2)+(2a+1−2k)/(4m){log(n)}3{log log(n)}1/2.
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It follows from the Cauchy-Schwarz inequality, Lemma 2.2 and Lemma 2.4 that

|E exp{ηα0(Wj)}ηα(Wj)‖RWj
‖λ < RWj

, α >λ |

≤
(
E[exp{ηα0(Wj)}]2

)1/2{E‖RW‖2
λ}{E < RWj

, α >4
λ}1/2

.
(
E[exp{ηα0(Wj)}]2

)1/2√
crh
−1/2

√
‖α‖4

λ

.
(
E[exp{ηα0(Wj)}]2

)1/2
h−1/2M2r2

n.

Thus, with probability going to one,

|I11| . (r3
nn
−1/2h−(2a+3/2)+(2a+1−2k)/(4m){log(n)}3{log log(n)}1/2 + h−1/2r3

n).

Similarly, we can prove that

I12 = Op(r
3
nn
−1/2h−(2a+3/2)+(2a+1−2k)/(4m){log(n)}3{log log(n)}1/2 + h−1/2r3

n),

I13 = Op(r
3
nn
−1/2h−(2a+3/2)+(2a+1−2k)/(4m){log(n)}3{log log(n)}1/2 + h−1/2r3

n),

I14 = Op(r
3
nn
−1/2h−(2a+3/2)+(2a+1−2k)/(4m){log(n)}3{log log(n)}1/2 + h−1/2r3

n). There-

fore, we have

I1 = Op(r
3
nn
−1/2h−(2a+3/2)+(2a+1−2k)/(4m){log(n)}3{log log(n)}1/2 + h−1/2r3

n) = op(n
−1h−1/2).

It follows from equation (2.11) that

2|I2| = |[DSn,λ(α0)−DSλ(α0)]αα|

= Op(n
−1/2h−(a+1)− 2k−2a−1

4m {log(n)}2{log log(n)}1/2r2
n) = op(n

−1h−1/2).

Therefore, we have

−2nPLRTn,λ = n‖α̂n,λ − α0‖2
λ + op(h

−1/2).

It follows from Theorem 2.2 and n1/2an = o(1) that

−2nPLRTn,λ = n‖Sn,λ(α0)‖2
λ(1 + op(1)) + op(h

−1/2).
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A direct calculation yields that

n‖Sn,λ(α0)‖2
λ

=
1

n

∥∥∥ n∑
i=1

∫ τ

0

[
RWi

−
n−1

∑n
j=1 Yj(t) exp{ηα0(Wj)}RWj

S
(0)
1 (t, α0)

]
dMi(t)− Pλα0

∥∥∥2

λ

=
1

n

∥∥∥ n∑
i=1

∫ τ

0

[
RWi

−
n−1

∑n
j=1 Yj(t) exp{ηα0(Wj)}RWj

S
(0)
1 (t, α0)

]
dMi(t)

∥∥∥2

λ

− 2 <
1

n

n∑
i=1

∫ τ

0

[
RWi

−
n−1

∑n
j=1 Yj(t) exp{ηα0(Wj)}RWj

S
(0)
1 (t, α0)

]
dMi(t),Pλα0 >λ +n‖Pλα0‖2

λ

≡J1 + J2 + J3.

For J1 and J2, it follows from Condition (C1) that

J1 =
1

n

∥∥∥ n∑
i=1

∫ τ

0

[
RWi

−
n−1

∑n
j=1 Yj(t) exp{ηα0(Wj)}RWj

S
(0)
1 (t, α0)

]
dMi(t)

∥∥∥2

λ

=
1

n

∥∥∥ n∑
i=1

∫ τ

0

[
RWi

−
EYj(t) exp{ηα0(Wj)}RWj

s
(0)
1 (t, α0)

]
dMi(t)

∥∥∥2

λ
+Op(n

−1h−1−2a)

=
1

n

∥∥∥ n∑
i=1

∫ τ

0

[
RWi

−
EYj(t) exp{ηα0(Wj)}RWj

s
(0)
1 (t, α0)

]
dMi(t)

∥∥∥2

λ
+ op(1),

and∣∣∣J2

2

∣∣∣ =
∣∣∣ < 1

n

n∑
i=1

∫ τ

0

[
RWi

−
n−1

∑n
j=1 Yj(t) exp{ηα0(Wj)}RWj

S
(0)
1 (t, α0)

]
dMi(t),Pλα0 >λ

∣∣∣
≤
∣∣∣ < 1

n

n∑
i=1

∫ τ

0

[
RWi

−
EYj(t) exp{ηα0(Wj)}RWj

s
(0)
1 (t, α0)

]
dMi(t),Pλα0 >λ

∣∣∣
+
∣∣∣ < 1

n

n∑
i=1

∫ τ

0

[EYj(t) exp{ηα0(Wj)}RWj

s
(0)
1 (t, α0)

−
n−1

∑n
j=1 Yj(t) exp{ηα0(Wj)}RWj

S
(0)
1 (t, α0)

]
dMi(t),Pλα0 >λ

∣∣∣
=
∣∣∣ < 1

n

n∑
i=1

∫ τ

0

[
RWi

−
EYj(t) exp{ηα0(Wj)}RWj

s
(0)
1 (t, α0)

]
dMi(t),Pλα0 >λ

∣∣∣+Op(n
−1/2h−1/2−a)‖Pλα0‖λ.
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Denote β0 =
∑

j bjhj. Since J(β0, β0) =
∑

j b
2
jρj <∞, and λ = o(1), it follows from

the Lebesgue dominated convergence theorem that

E

[
n∑
i=1

∫ τ

0

{
RWi

−
EYj(t) exp (ηα0(Wj))RWj

s
(0)
1 (t, α0)

}
dMi(t),Pλα0 >

2
λ

]

=nE

[∫ τ

0

{∫
I
{X(t)− E(X(t)|T = v,∆ = 1)}Wλ(β0)(t) dt

}2

Y(v) exp{ηα0(W )}h0(v) dv

]

=nV (Wλ(β0),Wλ(β0)) ≤ n‖Wλ(β0)‖m = nλ
∑
j

b2
jρj

λρj
(1 + λρj)

= op(nλ).

Therefore, we have J2 = op((nλ)1/2)(1 + (nh)−1/2) = op((nλ)1/2). Note that J3 =

n‖Pλα0‖2
λ = n‖Wλ(β0)‖2

m = o(nλ). Hence, we have

− 2nPLRTn,λ

=
1

n

∥∥∥ n∑
i=1

∫ τ

0

[
RWi

−
EYj(t) exp{ηα0(Wj)}RWj

s
(0)
1 (t, α0)

]
dMi(t)

∥∥∥2

λ
+ n‖Wλ(β0)‖2

m + op(h
−1/2).

Denote Ri(t) = RWi
− EYj(t) exp{ηα0 (Wj)}RWj

s
(0)
1 (t,α0)

. To obtain the asymptotic result of

−2nPLRTn,λ, we need to investigate the properties of

1

n

∥∥∥ n∑
i=1

∫ τ

0

Ri(t) dMi(t)
∥∥∥2

λ
=

1

n

n∑
i=1

∫ τ

0

∫ τ

0

< Ri(t), Rj(s) >λ dMi(t) dMi(s) +
1

n

∑
1≤i<j≤n

Wij,

where Wij = 2
∫ τ

0

∫ τ
0
< Ri(t), Rj(s) >λ dMi(t) dMj(s). Write Wn =

∑
1≤i<j≤nWij.

So, Wn is clean Jong (1987). Next, we aim to derive the limiting distribution of Wn.

Let σ2
n = V ar(Wn). Then

σ2
n =

n(n− 1)

2
E(W 2

ij) = 2n(n− 1)E

{∫ τ

0

∫ τ

0

< Ri(t), Rj(s) >λ dMi(t) dMj(s)

}2

� 2n(n− 1){
∞∑
l=1

1

(1 + λρl)2
+ 1} � 2n2h−1σ4

λ/ρ
2
λ.
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Define M1, M2 and M3 as follows:

M1 ≡
∑
i<j

E(W 4
ij), M2 ≡

∑
i<j<k

{
E(W 2

ijW
2
ik) + E(W 2

jiW
2
jk) + E(W 2

kiW
2
kj)
}
, and

M3 ≡
∑

i<j<k<l

{E(WijWikWljWlk) + E(WijWilWkjWkl) + E(WikWilWjkWjl)} .

By Proposition 3.2 of Jong (1987), if M1,M2,M3 are all of order lower than σ4
n, then

σ−1
n Wn converges weakly to the standard normal distribution. Now, we study the

order of each Mi, i = 1, 2, 3. First, observe that

E
(
W 4
ij

)
= 16E

{∫ τ

0

∫ τ

0

< Ri(t), Rj(s) >λ dMi(t) dMj(s)

}4

= 16

∫ τ

0

∫ τ

0

∫ τ

0

∫ τ

0

∫ τ

0

∫ τ

0

∫ τ

0

∫ τ

0

E < Ri(t1), Rj(s1) >λ< Ri(t2), Rj(s2) >λ< Ri(t3), Rj(s3) >λ

< Ri(t4), Rj(s4) >λ

{
dMi(t1) dMj(s1) dMi(t2) dMj(s2) dMi(t3) dMj(s3) dMi(t4) dMj(s4)

}
= O(h−4),

which implies M1 = O(n2h−4). Next, by the Cauchy-Schwarz inequity,

E(W 2
ijW

2
ik) ≤ {E(W 4

ij)}1/2{E(W 4
ik)}1/2 = O(h−4),

which yields M2 = O(n3h−4). A straightforward calculation yields that

E(WijWikWljWlk) ∼ 16
∞∑
j=0

1

(1 + λρj)4
= O(h−1).

Therefore, M3 = O(n4h−1). Combining the fact that σ4
n = (σ2

n)2 = O(n4h−2) with

the assumptions that nh2 →∞ and h = o(1), we have that M1,M2,M3 are of order

lower than that of σ4
n. Hence, by Jong (1987), σ−1

n Wn
d−−→ N(0, 1) as n→∞. Recall

that ρ2
λ =

∑∞
j=0 h/(1 + λρj)

2. We have

1√
2h−1nρλ

Wn
d−−→ N(0, 1). (2.18)
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Finally, we consider n−1
∑n

i=1

∫ τ
0

∫ τ
0
< Ri(t), Rj(s) >λ dMi(t) dMi(s). Through a

direct calculation, we obtain

E

{∫ τ

0

∫ τ

0

< Ri(t), Rj(s) >λ dMi(t) dMi(s)

}2

= O({E‖RWi
‖2
λ}2) = O(h−2).

Then,

E

{
n∑
i=1

∫ τ

0

∫ τ

0

< Ri(t), Rj(s) >λ dMi(t) dMi(s)− h−1σ2
λ − 1

}2

≤ nE

{∫ τ

0

∫ τ

0

< Ri(t), Rj(s) >λ dMi(t) dMi(s)

}2

= O(nh−2),

where σ2
λ =

∑∞
j=0 h/1 + λρj. Combining these results, we have

1

n

n∑
i=1

∫ τ

0

∫ τ

0

< Ri(t), Rj(s) >λ dMi(t) dMi(s) = 1 + h−1σ2
λ +Op{(n1/2h)−1}.(2.19)

By (2.18) and (2.19), we have n‖Sn,λ(α0)‖2
λ = Op(h

−1) and, therefore, n1/2‖Sn,λ(α0)‖λ =

Op(h
−1/2). As a result,

−2nPLRTn,λ = {n1/2‖Sn,λ(α0)‖λ + op(1)}2 + op(h
−1/2) (2.20)

= n‖Sn,λ(α0)‖2
λ + op(h

−1/2). (2.21)

In view of (2.18), (2.19) and (2.20), we conclude that as n→∞,

(2h−1σ4
λ/ρ

2
λ)
−1/2

{
−2nγλPLRTn,λ − nγλ‖Wλβ0(t)‖2

λ − h−1σ4
λ/ρ

2
λ

} d−−→ N(0, 1).

The proof of Theorem 2.4 is completed.

Proof of Theorem 2.5

Throughout this proof, we only consider αn0 = α0 + αn for αn ∈ A in H1. To prove

the theorem, we write

−2n · PLRTn,λ = −2n{ln,λ(α0)− ln,λ(αn0)} − 2n{ln,λ(αn0)− ln,λ(α̂n,λ)} ≡ I1 + I2.
(2.22)
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We first consider I1. For simplicity, we denote

Ri = ∆i

[
ηα0(Wi)− log

1

n

n∑
j=1

Yj(Yi) exp{ηα0(Wj)}

]

−∆i

[
ηαn0 (Wi)− log

1

n

n∑
j=1

Yj(Yi) exp{ηαn0 (Wj)}

]

= −
∫ τ

0

[
ηαn(Wi)−

∑n
j=1 Yj(t) exp{ηα0+s′αn(Wj)}ηαn(Wj)∑n

j=1 Yj(t) exp{ηα0+s′αn(Wj)}

]
dNi(t)

= −
∫ τ

0

[
ηαn(Wi)−

EYj(t) exp{ηα0+s′αn(Wj)}ηαn(Wj)

EYj(t) exp{ηα0+s′αn(Wj)}

]
dNi(t)

+

∫ τ

0

[∑n
j=1 Yj(t) exp{ηα0+s′αn(Wj)}ηαn(Wi)∑n

j=1 Yj(t) exp{ηα0+s′αn(Wj)}
− EYj(t) exp{ηα0+s′αn(Wj)}ηαn(Wj)

EYj(t) exp{ηα0+s′αn(Wj)}

]
dNi(t)

= −
∫ τ

0

[
ηαn(Wi)−

EYj(t) exp{ηα0+s′αn(Wj)}ηαn(Wj)

EYj(t) exp{ηα0+s′αn(Wj)}

]
dNi(t) + op(‖αn‖λ),

where 0 ≤ s′ ≤ 1. Then

E{R2
i } � E

∫ τ

0

V ar{ηαn(W )|T = t,∆ = 1}Y(t) exp{ηα0(W )}h0(t) dt = O(‖αn‖2
λ).

Therefore, we get

E


∣∣∣∣∣
n∑
i=1

(Ri − ERi)

∣∣∣∣∣
2
 ≤ nE{R2

i } = O(n‖αn‖2
λ).

Combining these gives

n [ln,λ(α0)− ln,λ(αn0)− E{ln,λ(α0)− ln,λ(αn0)}] = Op(n
1/2‖αn‖λ).
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On the other hand, since DSλ(α)αnαn < 0 for any α ∈ H, there exists a constant

c > 0 such that {DSλ(α∗n0
)αnαn} ≤ c{DSλ(αn0)αnαn} = −c‖αn‖2

λ. Then, we have

E{ln,λ(α0)− ln,λ(αn0)} = E

{
Sn,λ(αn0)(−αn) +

1

2
DSn,λ(α∗n0

)αnαn

}

≤ λJ(αn0 , αn)− c‖αn‖2
λ

2
≤ {J(αn, αn) + J(α0, αn)} − c‖αn‖2

λ

2

≤ {J(αn, αn) + J(α0, α0)1/2J(αn, αn)1/2} − c‖αn‖2
λ

2

= O(λ)− c‖αn‖2
λ

2
.

It then follows that

I1 ≥ n‖αn‖2
λ +Op(nλ+ n1/2‖αn‖λ+) = n‖αn‖2

λ{1 +Op(λ‖αn‖−2
λ + n−1/2‖αn‖−1

λ )}.
(2.23)

Next, we consider I2. Under the alternative hypothesis, ‖α̂n,λ−αn0‖ = Op{(nh)−1/2+

hk} . It then follows by the joint functional Bahadur representation in Theorem 2.2

that

inf
n≥N

inf
αn∈A

Pαn0 (‖α̂n,λ − αn0 − Sn,λ(αn0)‖λ ≤Mrn)→ 1, (2.24)

where rn = (nh)−1/2 + hk, and Pαn0 is the probability which depends on αn0 . Note

that, under the alternative hypothesis H1n, I2 is the same as (2.17) except one

constant term −2n. Along the lines of Theorem 2.4, we can show that I2 has the

same limiting distribution as that in Theorem 2.4, uniformly for any αn ∈ A. In

other words, uniformly over all αn ∈ A, we have

(2νn0)
−1/2(I2 − n‖Wλβn0‖2

m − h−1σ2
n0,λ

) = Op(1), (2.25)

where νn0 = h−1σ4
n0,λ

/ρ2
n0,λ

, σ2
n0,λ

and ρ2
n0,λ

are same as σ2
λ and ρ2

λ but with eigenvalues

and eigenvectors obtained under αn0 . Next, let Vn0(f, g) =
∫
I

∫
I Fαn0 (s, t)f(t)g(s) dt ds

and V0(f, g) =
∫
I

∫
I Fα0(s, t)f(t)g(s) dt ds, where Fα0(s, t) = F (s, t), while Fαn0 (s, t)
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has the same formula as Fα0(s, t) with α0 replaced by αn0 . Thus, for any f ∈ H(m),

there exists a constant c such that

|Vn0(f, f)− V0(f, f)| =
∣∣∣∣∫

I

∫
I

[
Fαn0 (s, t)− Fα0(s, t)

]
f(t)f(s) dt ds

∣∣∣∣
≤ E‖ exp{αn(W )}‖∞V0(f, f)‖αn‖∞ = cV0(f, f)‖αn‖∞.

It follows from the Supplementary Material (page 56) of Shang and Cheng (2015)

that

σ2
n0,λ
− σ2

λ = O(h−(a+1)/2‖αn‖λ). (2.26)

Combining (2.23), (2.25) and (2.26) gives

(2νn)−1/2(−2nrλPLRTn,λ − νn) = (2νn)−1/2{−rλ(I1 + I2)− νn}

=(2νn)−1/2rλ(I2 − n‖Pλαn0‖2
λ − h−1σ2

n0,λ
) + (2νn)−1/2rλn‖Pλαn0‖2

λ

+ (2νn)−1/2rλI1 + (2νn)−1/2rλh
−1(σ2

n0,λ
− σ2

λ)

≥Op(1) + (2νn)−1/2rλn‖αn‖2
λ{1 +Op(λ‖αn‖−2

λ + n−1/2‖αn‖−1
λ )}

+O(h−3/2−a/2‖αn‖λ),

where Op(1) holds uniformly in A, νn = h−1σ4
λ/ρ

2
λ, and rλ is defined in Theorem 2.4.

Let λ‖αn‖−2
λ ≤ 1/c, n−1/2‖αn‖−1

λ ≤ 1/c, ch−3/2−a/2‖αn‖λ ≤ n‖αn‖2
λ, and ‖αn‖2

λ ≥

c(nh1/2)−1 for some sufficiently small constant c. In other words,

|(2νn)−1/2(−2nrλPLRTn,λ − νn)| ≥ cα,

where cα is the critical value (based on N(0, 1)) to Hglobal
0 at nominal level α. This

leads to

‖αn‖2
λ & {h2k + (nh1/2)−1}. (2.27)

Combining (2.24) and (2.27), we complete the proof of Theorem 2.5.
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Chapter 3

Semiparametric Statistical

Inference for Functional Additive
hazard Model

3.1 Introduction

When hazard differences are of focus, the additive hazards model is often preferred

over the Cox proportional hazards models. O’Neill (1986) discovers that if the ad-

ditive hazards model is appropriate but the proportional hazards model is assumed,

there is a significant bias.

The additive hazards model attracts many research interests. The large-sample

theory is developed in Lin and Ying (1994) by utilizing the martingale approach.

Andersen and Gill (1982) originally develops this approach for the Cox model. Lin

et al. (1998) and Martinussen and Scheike (2002) extend the additive hazards model

to handle interval censored data. Kulich and Lin (2000) considers measurement error

problems in the additive hazards model. Huffer and Mckeague (1991) investigates

the weighted least squares estimation for a nonparametric additive risk model. A

partly parametric additive hazards model incorporating time-dependent and constant

regression coefficients is developed by Mckeague and Sasieni (1994).

Recently, Chen et al. (2011) proposes the functional Cox model by incorporating
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functional predictors and scalar predictors. The goal is to study the survival of diffuse

large-B-cell lymphoma (DLBCL) patients. The study considers the gene expression

as a functional parameter to handle the high-dimensional problem. It is of interest

to consider the additive hazards model which is compatible with functional data in

order to avoid potential serious bias resulting from the use of the Cox proportional

hazards model.

Introducing functional data to additive hazards costs more difficult theoretical

investigation. One major contribution of this work is the derivation of the Bahadur

representation of the estimators in the additive hazards model. When an estimator

can be almost expressed as a sum of identical and independent variables, the estima-

tor admits a Bahadur representation. Bahadur (1966) first establishes an asymptotic

almost sure representation of a sample quartile for independent and identically dis-

tributed random variables. The major incentive of deriving Bahadur representation

is that the asymptotic normality can be immediately established with the central

limit theorem under some appropriate regularity conditions. In this chapter, we de-

velop a new technical tool, called a joint Bahadur representation (JBR), for studying

the joint asymptotic results. As far as we know, our joint asymptotic theories and

inference procedures are new. The only relevant references of which we are aware are

Shang and Cheng (2015) and Cheng and Shang (2015), which focus on generalized

functional linear models and semi-nonparametric regression models with partially

linear structure, respectively.

3.2 Estimation Method

The functional additive hazards model with a p-dimensional covariate vector Z =

(Z1, Z2, . . . , Zp)
> and a functional covariate X(·) defines the hazard function by

h(t|W) = h0(t) + {θ>0 Z +

∫
I
X(s)β0(s) ds}, (3.1)
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where W = (Z>, X(·))>. Without loss of generality, we assume that I = [0, 1].

We focus on right censored data. Let T be the survival time, C be the censoring

time, Y = min(T,C) be the observation time, and ∆ = I(T ≤ C) be the censoring

indicator, where I is the indicator function. Let {(W>
i , Yi,∆i)

>, i = 1, 2, · · · , n} be

the observations.

Our goal is to estimate α0 = (θ>0 , β0(·))> in order to ascertain the relationship

between W and the survival time T . We assume that β0(·) belongs to the mth-order

Sobolev space H(m)(I) which is abbreviated as H(m):

H(m) = {β : I 7→ R|β(j) is absolutely continuous for j = 0, 1, . . . ,m− 1,

β(m) ∈ L2(I)},

where m is a known constant which is > 1/2, β(j) is the jth derivative of β, and

L2(I) is the L2 space defined in I. Then, we have α0 ∈ Rp×Hm and denote Rp×Hm

as H. Define ηα(W) = θ>Z +
∫
IX(s)β(s) ds, Y(t) = I(Y ≥ t), and J(β1, β2) =∫

I β
(m)
1 (t)β

(m)
2 (t) dt. Let N(t) be the counting process ∆I(Y ≤ t), and M(t) be the

martingale process N(t)−
∫ t

0
Y(s)h(s|W) ds. For any αl = (θ>l , βl(·))> ∈ H, l = 1, 2,

define the semi-inner product as:

< α1, α2 >λ

=

∫ τ

0

[E{Y(t)ηα1(W)ηα2(W)} − E{Y(t)}η̃α1(t)η̃α2(t)] dt+ λJ(β1, β2), (3.2)

where τ is end of the study time, and η̃α1(t) is the asymptotic value of η̄α1(t) which

is defined as

η̄α1(t) =

∑n
j=1 Yj(t)ηα1(Wj)∑n

j=1 Yj(t)
.

For any vector z, define z⊗0 = 1, z⊗1 = z, z⊗2 = zz>. Furthermore, we impose the

following assumptions to construct a Hilbert space and to establish the asymptotic

results.
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Assumption A1.

(a) The survival time T and the censoring time C are conditionally independent

given W.

(b) P (Y ≥ τ) > 0.

(c) There exists a constant c1 > 1 satisfying that:∫ τ

0

[E{Y(t)ηα(W)2} − E{Y(t)}η̃α(t)2] dt ≥ c1E[{ηα(W )}2],

for any α ∈ H.

Assumption A1(a) is very common in right censored data to guarantee the non-

informative censoring mechanism. Assumption A1(b) is used to make η̃α(t) mean-

ingful. Assumption A1(c) is easy to verify under the scenario that β(s) = 0 and the

following Assumption (A3) holds. Define

S
(k)
1 (t) =

1

n

n∑
i=1

{Yi(t)Z⊗ki }, s
(k)
1 (t) = E{Y(t)Z⊗k}, k = 0, 1, 2,

S
(2)
2 (t, s, v) =

1

n

n∑
i=1

{Yi(t)Xi(s)Xi(v)}, s(2)
2 (t, s, v) = E{Y(t)X(s)X(v)},

S
(1)
3 (t, s) =

1

n

n∑
i=1

{Yi(t)Xi(s)}, s(1)
3 (t, s) = E{Y(t)X(s)},

F (s, t) =

∫ τ

0

Cov{X(s), X(t)|T = v,∆ = 1}E{Y(v)} dv,

where

Cov{X(s), X(t)|T = v,∆ = 1}

=E{X(s)X(t)|T = v,∆ = 1} − E{X(s)|T = v,∆ = 1}E{X(t)|T = v,∆ = 1}

=
s

(2)
2 (v, t, s)

s
(0)
1 (v)

− s
(1)
2 (v, s)s

(1)
2 (v, t)

s
(0)
1 (v)2

.
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Then, H is a Hilbert space and H(m) is a Reproducing Kernel Hilbert Space

(RKHS) with the inner product

< β1, β2 >m=

∫
I

∫
I
F (s, t)β1(s)β2(t) ds dt+ λJ(β1, β2). (3.3)

Denote the reproducing kernel in H(m) as K(s, t), and ‖ · ‖m as the norm induced by

the inner product < ·, · >m. Define a bilinear operator V (·, ·) in H(m) as:

V (β1, β2) =

∫
I

∫
I
F (s, t)β1(s)β2(t) ds dt (3.4)

and a linear nonnegative definite and self-adjoint operator Wλ as:

< Wλβ1, β2 >m= λJ(β1, β2). (3.5)

Define a linear operator Sn as:

Sn(α)α1 =
1

n

n∑
i=1

∫ τ

0

{ηα1(Wi)− η̄α1(t)}{ dNi(t)− Yi(t)ηα(Wi) dt}.

for any (α, α1) ∈ H×H → R. It follows from Lin and Ying (1994) that Sn(α) is the

pseudo-score function for α. Define a least square-type loss function ln(α) as:

ln(α)

=− 1

2n

n∑
i=1

∫ τ

0

{ηα(Wi)− η̄α(t)}2Yi(t) dt+
1

n

n∑
i=1

∫ τ

0

{ηα(Wi)− η̄α(t)} dNi(t).

Then the first Fréchet derivative of ln(α) with respect to α at α1 is Sn(α)α1. Thus,

to maximize ln(α) is equivalent to solve Sn(α) = 0. To obtain a smoothed estimate

for β, we introduce a penalty term to the loss function. The objective function is

then defined as:

lnλ(α) ≡ ln(α)− λ

2
J(β, β),
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where J(β, β) is the penalty function and λ is the smoothing parameter which con-

trols the balance between the smoothness of β and the fit to data. The estimate for

α is defined as:

α̂nλ = arg max lnλ(α).

Let D be the Fréchet derivative operator. Then the first Fréchet derivative of lnλ(α)

with respect to α at any direction α1 = (θ>1 , β1(·))> ∈ H is:

Snλ(α)α1

=
1

n

n∑
i=1

∫ τ

0

{ηα1(Wi)− η̄α1(t)}{ dNi(t)− Yi(t)ηα(Wi) dt} − λJ(β, β1). (3.6)

The first and the second Fréchet derivatives of Snλ(α) are:

DSnλ(α)α1α2 = − 1

n

n∑
i=1

∫ τ

0

Yi(t){ηα1(Wi)− η̄α1(t)}ηα2(Wi) dt− λJ(β1, β2),

and

D2Snλ(α)α1α2α3 = 0,

respectively. Denote the asymptotic value of Snλ(α)α1 and that of DSnλ(α)α1α2 as

Sλ(α)α1 and DSλ(α)α1α2, respectively.

Then we have

Sλ(α)α1 = E

∫ τ

0

{ηα1(W)− η̃α1(t)}{ dN(t)− Y(t)ηα(W) dt} − λJ(β, β1),

DSλ(α)α1α2

=− E
∫ τ

0

[Y(t){ηα1(W)− η̃α1(t)}ηα2(W)] dt− λJ(β1, β2)

=−
∫ τ

0

[E{ηα1(W)ηα2(W)Y(t)} − E{Y(t)ηα2(W)η̃α1(t)}] dt− λJ(β1, β2)

=−
∫ τ

0

[
E{ηα1(W)ηα2(W)Y(t)}

E{Y(t)}
− η̃α2(t)η̃α1(t)

]
E{Y(t)} dt− λJ(β1, β2).
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Proposition 3.1. Under Assumption A1 and the definition of the inner product, we

have that for any α ∈ H, DSλ(α) = −id, where id is the identity operator.

This result directly follows from the definition of the inner product and the defi-

nition of DSλ(α).

We denote two positive sequences an and bn as an � bn if limn→∞(an/bn) = c > 0.

If c = 1, we have an ∼ bn.

Assumption A2.

There exists a sequence of functions {hj}j≥1 ⊂ H(m) such that ‖hj‖L2 ≤ chj
a for

each j ≥ 1, some constants a ≥ 0, ch ≥ 0 and

V (hi, hj) = δij, J(hi, hj) = ρiδij, for any i, j ≥ 1, (3.7)

where δij is the Kronecker’s notation, and ρi is a nondecreasing nonnegative sequence

satisfying ρi � i2k for some constant k > a+ 1/2. Furthermore, for any β ∈ H(m), β

admits the Fourier expansion β =
∑∞

i=1 V (β, hi)hi.

Following the ideas from Shang and Cheng (2015), we derive the eigen-system

with the following integro-differential equations:

(−1)my
(2m)
j (t) = ρj

∫ 1

0

F (s, t)yj(s) ds,

y
(i)
j (0) = y

(i)
j (1) = 0, i = m,m+ 1, · · · , 2m− 1. (3.8)

Let hj = yj/
√
V (yj, yj), with k = m + r + 1 and a = r + 1. We have that hj and

ρj are the eigenvector and eigenvalue, respectively, if one of the following additional

assumptions is satisfied:

1. r = 0;

2. r ≥ 1, and for any i = 0, 1, . . . , r − 1, F (i,0)(0, t) = 0 for any t ∈ I, where

F (i,0)(s, t) is the ith-order partial derivative with respect to s.
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The relationships between (hj, ρj) and K(·, ·) or Wλ are given as follows:

Kt(·) =
∞∑
j=1

hj(t)

1 + λρj
hj(·), (Wλhj)(·) =

λρj
1 + λρj

hj(·).

This can be referred to Shang and Cheng (2015).

On the basis of the Riesz representation theorem, there exists an element πx ∈

H(m) such that < πx, β >m=
∫ 1

0
x(t)β(t) dt. Through a direct calculation, we have

πx =
∑∞

j=1

∫
I x(t)hj(t) dt/(1 + λρj)hj. In addition, there exist ωk, Gk ∈ H(m) such

that the following relationship holds:

V (Gk, β) = < ωk, β >m

=

∫
I

∫ τ

0

[
E{Y(t)ZkX(s)}

s
(0)
1 (t)

−
s

(1)
1,k(t)

s
(0)
1 (t)

s
(1)
3 (t, s)

s
(0)
1 (t)

]
s

(0)
1 (t) dtβ(s) ds,

where s
(1)
1,k is the kth element of s

(1)
1 . Denote ω = (ω1, ω2, . . . , ωp)

>, G = (G1, G2, . . . , Gp)
>.

A direct calculation yields

G =
∞∑
j=1

∫
I

∫ τ

0

[
E{Y(t)ZX(s)}

s
(0)
1 (t)

− s
(1)
1 (t)

s
(0)
1 (t)

s
(1)
3 (t, s)

s
(0)
1 (t)

]
s

(0)
1 (t) dthj(s) dshj

=
∞∑
j=1

<

∫ τ

0

Cov(ZπX |T = t,∆ = 1)s
(0)
1 (t) dt, hj >m hj

≡
∞∑
j=1

V (G, hj)hj.

ω =
∞∑
j=1

∫
I

∫ τ

0

[
E{Y(t)ZX(s)}

s
(0)
1 (t)

− s
(1)
1 (t)

s
(0)
1 (t)

s
(1)
3 (t, s)

s
(0)
1 (t)

]
s

(0)
1 (t) dthj(s) ds

hj
1 + λρj

=
∞∑
j=1

<

∫ τ

0

Cov(ZπX |T = t,∆ = 1)s
(0)
1 (t) dt, hj >m

hj
1 + λρj

≡
∞∑
j=1

V (G, hj)
hj

1 + λρj
.
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Thus, we have ω = (id−Wλ)G. It follows from the definition of G and ω that if

X(·) and Z are independent, we have G = ω = 0. Define Σ =
∫ τ

0
Var[Z|T = t,∆ =

1]s
(0)
1 (t) dt, and Ω = V (G,G>). Let h = λ1/(2k).

Assumption A3.

Σ − Ω is positive definite. There exists b ∈ ((1 + 2a)/(2k), 1] such that V (G, hj)

satisfies that:
∞∑
j=1

‖V (G, hj)‖2
2ρ
b
j <∞.

It follows from Assumption A3 that V (G,WλG
>)→ 0 with λ→ 0.

Proposition 3.2. For any w = (z>, x(·))>, define Rw : w→ (Hw, Tw) ∈ H, where

Hw = {Σ− Ω + V (G,WλG
>)}−1{z− V (G, πx)} and

Tw = πx − ω>{Σ− Ω + V (G,WλG
>)}−1{z− V (G, πx)}.

Then, we have < Rw, α >λ= θ>z +
∫ 1

0
x(t)β(t) dt.

It follows from the fact V (G,WλG
>) → 0 that the definition of {Σ − Ω +

V (G,WλG
>)}−1 is meaningful. In fact, {Σ−Ω+V (G,WλG

>)} = {Σ− < ω,ω> >m

} is positive definite with λ→ 0.

Denote u = (z>, t)>.

Proposition 3.3. For any u ∈ Rp × I, define R̃u : u→ (H̃u, T̃u) ∈ H, where

H̃u = {Σ− Ω + V (G,WλG
>)}−1{z− ω(t)} and

T̃u = Kt − ω>{Σ− Ω + V (G,WλG
>)}−1{z− ω(t)}.

Then, we have < R̃u, α >λ= θ>z + β(t).

Proposition 3.4. For any α ∈ H, define Pα : α→ (H∗α, T
∗
α) ∈ H, where

H∗α = −{Σ− Ω + V (G,WλG
>)}−1V (G,Wλβ) and

T ∗α = Wλβ + ω>{Σ− Ω + V (G,WλG
>)}−1V (G,Wλβ).

Then, Pλα ∈ H and < Pλα, α1 >λ=< Wλβ, β1 >m for any α1 = (θ>1 , β1)> ∈ H.
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It follows from the Cauchy-Schwarz inequality that

‖Pλα‖λ = sup
‖α1‖λ=1

< Pλα, α1 >λ

= sup
‖α1‖λ=1

λ|J(β, β1)|

≤ sup
‖α1‖λ=1

√
λJ(β1, β1)

√
λJ(β, β) ≤ ‖α‖λ.

Thus, we have that ‖Pλ‖λ ≤ 1 and Pλ is self-adjoint.

Lemma 3.1. Suppose Assumptions A1-A3 are satisfied. Then, for any x ∈ L2([0, 1]),

we have

< Rw,Rw >λ

=z>{Σ− Ω + V (G,WλG
>)}−1z+ < πx, πx >m −2z>{Σ− Ω + V (G,WλG

>)}−1

× V (G, πx) + V (G, πx)
>{Σ− Ω + V (G,WλG

>)}−1V (G, πx).

Furthermore, there exists a universal positive constant cr such that

< Rw,Rw >λ≤ cr(‖z‖2
2 + ‖x‖2

L2
h−2a−1), E{‖RW‖2

λ} ≤ crh
−1.

3.3 Joint Bahadur Representation

Let ‖α‖e = ‖θ‖2 + ‖β‖L2 . The following lemma states the relationship between the

general Euclidean norm ‖ · ‖e and ‖ · ‖λ.

Lemma 3.2. The exists a constant κ > 0 such that for any α ∈ H, ‖α‖e ≤

κh−(2a+1)/2‖α‖λ.

Assumption A4.

There exists a constant s ∈ (0, 1) such that

E[exp{s(‖X‖L2 + ‖Z‖2)}] <∞. (3.9)
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Moreover, there exists a constant M0 > 0 such that for any α ∈ H,

E
{∣∣∣ηα(W)

∣∣∣4} ≤M0

[
E
∣∣∣ηα(W)

∣∣∣2]2

.

Assumption A4 allows more relax conditions on the covariates than that in Qu

et al. (2016).

Lemma 3.3. Under Assumptions A1-A4, we have that for any α ∈ H, E{| <

RW, α >4 |} ≤ c2‖α‖4
λ, where c2 is a positive constant that is independent of α.

Theorem 3.1. (Rate of Convergence) Under Assumptions A1-A4,

h = o(1), and n−1/2h−(a+1)− 2k−2a−1
4m {log(n)}{log log(n)}1/2 = o(1),

we have that α̂nλ is the unique estimate for α0 and ‖α̂nλ − α0‖λ = Op(rn), with

rn = (nh)−1/2 + hk.

This theorem shows that when we choose λ = n−(2k)/(2k+1), the estimate enjoys

the same order of convergence as that in Qu et al. (2016).

Theorem 3.2. (Joint Functional Bahadur Representation) Suppose that Assump-

tions A1-A4 hold. If n → ∞, n−1/2h−(a+1)− 2k−2a−1
4m {log(n)}{log log(n)}1/2 = o(1),

h = o(1), and nh2 →∞, we have that

‖α̂nλ − α0 − Snλ(α0)‖λ = Op(an)

with

an = n−1/2h−(4ma+6m−1)/4mrn{log log(n)}1/2 log(n)

and rn = (nh)−1/2 + hk.

On the basis of the joint functional Bahadur Representation, we derive the asymp-

totic properties of the estimators of the functional coefficient and the scalar coeffi-

cient.
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Theorem 3.3. (Joint Asymptotic Normality) Suppose that Assumptions A1-A4

hold. Furthermore, suppose

h2a+1E

(∫ τ

0

[
πX(t)− E{Y(s)πX(t)}

E{Y(s)}

]2

dN(s)

)
→ σ2

t > 0,

ha+1/2E

{∫ τ

0

(
{Z− V (G, πX)} − E[Y(s){Z− V (G, πX)}]

E{Y(s)}

)
×
(
πX(t)− E{Y(s)πX(t)}

E{Y(s)}

)
dN(s)

}
→ ξ0, and

E

{∫ τ

0

(
{Z− V (G, πX)} − E[Y(s){Zj − V (G, πX)}]

E{Y(s)}

)⊗2

dN(s)

}
→ B0,

where B0 is positive definite. In addition, if n → ∞,nh2 → ∞, n1/2hk(1+b) = o(1),∑∞
j=1 V (β0, hj)

2ρ2
j <∞, n1/2anh

−(a+1/2) = o(1), h = o(1), with

an = n−1/2h−(4ma+6m−1)/4mrn{log log(n)}1/2 log(n),

and rn = (nh)−1/2 + hk, we have that, for any fixed t,[ √
n(θ̂nλ − θ0)√

nhha{β̂nλ(t)− β0(t)}

]
→ N(0,Φ),

with

Φ =

[
(Σ− Ω)−1B0(Σ− Ω)−1 (Σ− Ω)−1ξ0

ξ>0 (Σ− Ω)−1 σ2
t

]
.

Next, we can derive the uniform convergence result about β̂nλ(s) in I.

Theorem 3.4. Assume that the conditions in Theorem 3 are satisfied, we have that

√
nh{β̂nλ(s)− β0(s)}
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converges to a mean zero Gaussian process G(s) in the Hilbert space H(m)(I) with the

inner product V (·, ·). The covariance for G(s) at s1, s2 is

Γ(s1, s2) =h2a+1E

(∫ τ

0

[
πX(s2)− E{Y(s)πX(s2)}

E{Y(s)}

]
[
πX(s1)− E{Y(s)πX(s1)}

E{Y(s)}

]
dN(s)

)
.

In practice, to construct the simultaneous confidence band in a closed subset

[ζ, 1 − ζ], we employ the resampling method of Lin et al. (1993) for distributional

approximation. For illustration, let (ε1, . . . , εn) be independent standard normal

random variables, independent of the data (Yi,∆i,Z
>
i , Xi(·)), i = 1, . . . , n. It can be

shown that the distribution of the limiting process G(s) can be approximated by the

distribution of the following zero-mean Gaussian process

Ĝ(s) ≡ 1√
nh−a−1/2

n∑
i=1

∫
I
Kt(s) dW̃i(t)εi, (3.10)

with

W̃i(s) =

∫ τ

0

{
Xi(s)−

∑n
j=1 Yj(t)Xj(s)∑n

j=1 Yj(t)

}
dMi(t).

Specifically, we obtain a large number of realizations of Ĝ(s) by repeatedly gen-

erating the standard normal random samples (ε1, . . . , εn) while fixing the data. One

may use the empirical distribution of these random samples to approximate the dis-

tribution of G(s). In particular, the α-percentile of supζ≤s≤1−ζ |G(s)| can be approxi-

mated by the empirical percentile of a large number of realizations of supζ≤s≤1−ζ |Ĝ(s)|,

denoted by Ĝα. Finally, we can construct the global confidence band of β0(·) as fol-

lows: (
β̂nλ(·)−

1√
nhha

Ĝα, β̂nλ(·) +
1√
nhha

Ĝα
)
.
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3.4 Simulation Studies

In this section, we conduct simulation studies to assess the finite-sample performance

of the estimated confidence interval given in Section 3.2 and the uniform convergence

result developed in Section 3.3.

We used a similar setup as that in Qu et al. (2016). The functional covariate X

is defined as

X(s) =
50∑
k=1

ξkUkφk(s),

where Uk are independently sampled from the uniform distribution on [−1, 1], ξk =

(−1)k+1k−1/2, φ1 = 1, and φk+1(s) =
√

2 cos(kπs) for k ≥ 1.

The functional coefficient β0 is β0(t) = sin(3πt)+2t+1.5, which is from a Sobolov

space H(2)(I). The penalty function is J(β, β) =
∫
I(β

(2)(t))2 dt. The scalar covariate

Z is set to be univariate with distribution N(0, 1) and the corresponding coefficient

θ = 1. The failure time T is generated from the functional Cox model:

h(t|W ) = h0(t) + θ′Z +

∫ 1

0

X(s)β0(s) ds,

where h0(t) = t + 5. The censoring times, τ , are 0.4 and 0.2 which lead censoring

rates around 10% and 30%, respectively. We consider the sample sizes n = 250, 500

and 1000. We adopt the cubic spline functions for the estimation of the functional

coefficient. The number of knots is at the order of qn = [2n1/5], and the knots are

equally spaced. The smoothing parameter λ is 10−6 and the order m of Sobolev

space is 2. For each combination of censoring rate and n, the simulation is repeated

1000 times.

Figure 3.1 displays an instance of estimated β and that of the pointwise 95%

confidence intervals. The pointwise average of the estimated β(·) and the empirical

coverage probability of the 95% pointwise confidence interval based on 1000 simu-
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Table 3.1: Simulation results for the proposed estimate of θ.

10% 30%
n=250 BIAS 0.0817 0.0787

SSE 0.5030 0.5680
ESE 0.7146 0.6224
CP 0.9520 0.9360

500 BIAS 0.0484 0.0418
SSE 0.3351 0.3881
ESE 0.3650 0.3721
CP 0.9570 0.9350

1000 BIAS 0.0126 0.0182
SSE 0.2456 0.2720
ESE 0.2513 0.3126
CP 0.9430 0.9340

lations are shown in Figures 3.2 and 3.3, respectively. The simulation results are

consistent with Theorem 3.3. In particular, these results suggest that the estimate

β̂(t) is consistent. In general, it is apparent that when n increases from 250 to

1000 with the censoring rate fixed, the average bias and the standard error decrease

steadily. Furthermore, the coverage probability also approaches the theoretical value

of 95%. The average ESE at 10% censoring rate is lower in comparison to that

at 30% censoring rate. This is consistent with the expectation that the lower the

censoring rate is, the more accurate the estimate becomes.

For the regression coefficient of the scalar covariate, the BIAS, SSE, ESE, and CP

of the estimated θ̂ are given in Table 3.1 for each setting of censoring rate and n over

1000 repetitions. As the sample size increases, the average of θ̂ approaches to the true

value, the standard deviation reduces, and the coverage probability approaches to

95% given a fixed censoring rate. Similarly, we observe these trends as the censoring

rate reduces for a given sample size.

Table 3.2 reports the coverage probability and the average width of the global

confidence band derived from the uniform convergence result. Figure 3.4 displays an

instance of estimated β and that of the global 95% confidence bands. The simulation
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Figure 3.1: Graphical displays of β̂(·) and the pointwise 95% confidence intervals of β(t). The

dashed lines represent β(·) whereas the solid lines represent β̂(·).

results suggest that the coverage probability approaches the theoretical value of 95%.

In summary, the simulation results suggest that the estimates of both scalar and

functional parameters are consistent and the proposed variance estimation procedure

provides reasonable estimates. Also the results on the empirical coverage probability

suggest that the normal approximation seems to be appropriate.

74



10% 30%

250
500

1000

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

1.5

2.0

2.5

3.0

3.5

4.0

1.5

2.0

2.5

3.0

3.5

4.0

1.5

2.0

2.5

3.0

3.5

4.0

t

b̂(
t)

Figure 3.2: Graphical displays of the pointwise averages β̂(·). The dashed lines represent β(·)
whereas the solid lines represent the pointwise averages of β̂(·).

3.5 An Application

In this section, we apply the proposed method to the Sequential Organ Failure Assess-

ment (SOFA) data obtained from the Improving Care of Acute Lung Injury Patients

(ICAP) study Gellar et al. (2014, 2015). The primary goal of this prospective cohort

study is to investigate the long-term complications of patients who suffer from acute

lung injury/acute respiratory distress syndrome (ALI/ARDS).
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Figure 3.3: Graphical displays of the pointwise coverage probabilities (CP). The dashed lines
represent 95% whereas the solid lines represent the pointwise CP of β(·).

The ICAP study involves 520 subjects, with 237 (46%) dying in the intensive

care unit (ICU). We are interested in the association between the SOFA scores and

survival among the subjects who were hospitalized in ICU for more than a week.

Out of the 520 subjects, 161 subjects (31.0%) died within the first week in ICU,

and they are excluded from the analysis. Therefore, the proposed method is applied

to the remaining 359 subjects. In the ICAP study, data were recorded once the

patients were admitted in the ICU, and then daily during hospitalization. The SOFA
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Table 3.2: Simulation results for the proposed estimate of β(t).

10% 30%
(ξ, 1− ξ) CP Width CP Width

n=250 (0.00, 1.00) 0.998 49.1589 1.000 59.468
(0.05, 0.95) 0.999 27.038 1.000 32.309
(0.10, 0.90) 0.992 13.688 0.991 16.078
(0.15, 0.85) 0.978 11.309 0.975 13.155
(0.20, 0.80) 0.969 10.576 0.963 12.233
(0.25, 0.75) 0.959 9.864 0.961 11.269
(0.30, 0.70) 0.951 9.398 0.962 10.631
(0.35, 0.65) 0.952 9.059 0.957 10.228
(0.40, 0.60) 0.942 8.487 0.945 9.589
(0.45, 0.55) 0.948 7.499 0.949 8.452

500 (0.00, 1.00) 1.000 47.884 1.000 36.882
(0.05, 0.95) 1.000 21.563 0.999 21.053
(0.10, 0.90) 0.989 10.873 0.992 10.749
(0.15, 0.85) 0.970 9.072 0.969 8.646
(0.20, 0.80) 0.956 7.870 0.958 8.124
(0.25, 0.75) 0.959 6.932 0.959 7.660
(0.30, 0.70) 0.953 6.560 0.950 7.331
(0.35, 0.65) 0.941 6.308 0.944 7.064
(0.40, 0.60) 0.949 5.888 0.952 6.627
(0.45, 0.55) 0.947 5.188 0.939 5.881

1000 (0.00, 1.00) 1.000 22.632 1.000 28.385
(0.05, 0.95) 1.000 12.816 0.998 15.912
(0.10, 0.90) 0.986 6.438 0.982 8.037
(0.15, 0.85) 0.959 5.271 0.954 6.477
(0.20, 0.80) 0.946 4.997 0.934 6.079
(0.25, 0.75) 0.933 4.714 0.919 5.689
(0.30, 0.70) 0.927 4.517 0.913 5.421
(0.35, 0.65) 0.938 4.349 0.926 5.225
(0.40, 0.60) 0.927 4.087 0.927 4.883
(0.45, 0.55) 0.916 3.617 0.917 4.300

score is one of the measurements recorded daily. SOFA is a measure of the overall

organ function status of a patient. It is composed of respiratory, cardiovascular,

coagulation, liver, renal, and neurological components. Each component ranges from

0 to 4, with higher scores suggesting inferior organ function. The SOFA score,

ranging from 0 to 24, is then the sum of these six scores. We treat the history of
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Figure 3.4: Graphical displays of β̂(·) and the global 95% confidence band of β(·). The dashed

lines represent β(·) whereas the solid lines represent β̂(·).

each subject’s SOFA scores, in the first week, as a functional covariate, X(s), where

s is the number of days since the admission to the ICU. Trajectories of the SOFA

score of subjects who died after the first week of ICU hospitalization and those who

survived are depicted in Figure 4. It is apparent that among patients who manage to

survive, the pointwise averages of SOFA scores are declining, whereas among patients

who died after the first week of ICU hospitalization, the averages are relatively stable.

Our model includes three scalar covariates as controls of a subject’s baseline risk.
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They are age, gender, and Charlson co-morbidity index (Charlson et al. (1987)).

Our goal is to estimate the association between the trajectory of SOFA scores

and mortality among subjects who are hospitalized in ICU for more than a week.

We adopt the cubic spline functions for the estimation of the functional coefficient.

The number of knots is at the order of qn = [2n1/5] = 7, and the knots are equally

spaced. We apply 5-fold cross validation to optimize the smoothing parameter of a

penalized pseudo-score function.

We plot the estimated functional coefficient β̂(·) in Figure 3.6. The result suggests

that there is a functional association between time to death during the ICU stay and

the SOFA score function for t ∈ [0, 0.1]∪ [0.75, 1], which corresponds to the first two

days and the last two days of ICU stay. This implies that the SOFA score in the

these days in the first week of ICU stay may be used as an indicator of one’s hazard.

Table 3.3 summarizes the estimation of the regression coefficients of the scalar

covariates. In addition to the functional covariate, there seems to be a positive as-

sociation with two scalar covariates, patients’ age gender, and a negative association

with Charlson co-morbidity index.
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Figure 3.5: Trajectories of the SOFA score of subjects who died after the first week of the ICU
hospitalization and those who survived. The red lines are the pointwise average of the SOFA score.
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Figure 3.6: The estimated functional coefficient β̂(·) and the pointwise 95% confidence interval
for the SOFA data analysis.

Table 3.3: Estimation results of regression coefficients of scalar covariates for the
SOFA data analysis

θ̂ S.E. t-value p-value
Age 0.0003 0.0252× 10−3 10.6148 < 0.0001

Gender (male=1) 0.0023 0.7685× 10−3 2.9308 0.0017
Charlson Index −0.0007 0.0887× 10−3 −8.4146 < 0.0001
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Figure 3.7: The estimated functional coefficient β̂(·) and the global 95% confidence band for the
SOFA data analysis.

3.6 Appendix

In the following, we use c to denote different positive constants in different places.

In addition, a . b means a ≤ cb and a & b means a ≥ cb.

3.6.1 Proofs of Lemmas

Proof of Lemma 3.1

The first part of Lemma 3.1 follows from a direct calculation. It follows from
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Assumption A3 that {Σ−Ω+V (G,WλG
>)}−1 is asymptotic positive definite. Denote

c as the minimum eigenvalue of it. Then we have {Σ−Ω + V (G,WλG
>)}−1 ≤ c−11

with 1 being the identity matrix. Thus, we have

z>{Σ− Ω + V (G,WλG
>)}−1z . ‖z‖2

2. (3.11)

A direct calculation yields that

< πx, πx >. ‖x‖2
L2h−2a−1.

Besides, it follows from Cauchy-Schwarz inequality that

V (Gk, πx) ≤ ‖Gk‖m‖πx‖m . ‖x‖L2h−a−1/2,

and hence, there exits a constant cr > 0 such that

< RW,RW >λ≤ cr(‖Z‖2
2 + ‖X‖2

L2h−2a−1).

Finally, it follows from (3.11) and the proof of Lemma S.4 in Cheng and Shang (2015)

that

E < RW,RW >λ≤ crh
−1.

Proof of Lemma 3.2 By the definition of Kt, we have ‖Kt‖λ . h−(a+1/2). Following

the idea in the proof of Lemma 3.1, we have that ‖R̃u‖λ . h−(a+1/2).

It follows from the fact that

‖α‖e =‖θ‖2 + ‖β‖L2

≤‖θ‖2 + ‖β‖sup

= sup
‖z‖2=1,t∈I

|β(t) + θ>z|

= sup
‖z‖2=1,t∈I

< R̃u, α >λ

≤‖α‖λ sup
‖z‖2=1,t∈I

‖R̃u‖λ

.h−(a+1/2)‖α‖λ.
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Proof of Lemma 3.3 It follows from Assumptions A1 and A4 that

EW{< RW, α >λ}4 = EW[{θ>Z +

∫
I
X(t)β(t) dt}4]

≤M0[EW{|θ>Z +

∫
I
X(t)β(t) dt|2}]2

≤ c1‖α‖4
λ.

3.6.2 Proofs of Theorems

Proof of Theorem 3.1 In order to prove Theorem 3.1, we need the following subset

of H:

Fpn = {α = (θ>, β(·))> ∈ H : ‖θ‖2 ≤ 1, ‖β‖L2 ≤ 1, J(β, β) ≤ pn}.

It follows directly from D2Snλ(α) = 0 = D2Sλ(α) that there exists a unique value αλ

which satisfies Sλ(αλ) = 0, and a unique value α̂nλ which satisfies Snλ(α̂nλ) = 0. It

follows from Proposition 3.1 and Assumption A1(c) that α̂nλ is the global maximum

of lnλ(α) asymptotically. In the following, we show the uniqueness of the estimate

and derive the order of convergence of the estimate.

Let r1n = 2{J(β0, β0) + 1}1/2hk, and define the operator:

T1h(α) = α + Sλ(α0 + α), α ∈ H.

Then,

‖T1h(α)‖λ =‖α + Sλ(α + α0)‖λ

≤‖α + Sλ(α + α0)− Sλ(α0)‖λ + ‖Sλ(α0)‖λ.

Let B(ε) = {α ∈ H, ‖α‖λ ≤ ε} be a ball of radius ε in H. Note that S(α0) = 0. This

implies that Sλ(α0) = −Pλα0. Then

‖Sλ(α0)‖λ = ‖Pλ(α0)‖λ ≤ {λJ(β0, β0)}1/2 ≤ {J(β0, β0) + 1}1/2hk =
r1n

2
. (3.12)
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Following Proposition 3.1, we have that

‖α + Sλ(α + α0)− Sλ(α0)‖λ =‖α +DSλ(α0)α +

∫ 1

0

∫ 1

0

sD2Sλ(α0 + ss′α)αα ds ds′‖λ

=‖
∫ 1

0

∫ 1

0

sD2Sλ(α0 + ss′α)αα ds ds′‖λ

=0. (3.13)

From (3.12) and (3.13), we have that

‖T1h‖λ ≤
r1n

2
. (3.14)

This implies T1h(B(r1n)) ⊂ B(r1n). Next, we show that T1h is a contraction mapping.

For any αj = (θ>j , βj(·))> ∈ H, j = 1, 2, we have

T1h(α1)− T1h(α2) = α1 − α2 + Sλ(α0 + α1)− Sλ(α0 + α2)

=

∫ 1

0

[DSλ{α0 + α2 + s(α1 − α2)} −DSλ(α0)](α1 − α2) ds

= 0.

Therefore, T1h(α) is a contraction mapping on B(r1n). By the Banach fixed-point

theorem, there exists a unique element α′λ ∈ B(r1n) such that T1h(α
′
λ) = α′λ. Define

αλ = α′λ + α0. We have Sλ(αλ) = 0 and ‖αλ − α0‖λ ≤ r1n.

Now, we show that there exists a unique value α̂nλ which satisfies Snλ(α̂nλ) = 0.

As ‖αλ − α0‖ = O(r1n) = o(1) and DSλ(α0) = −id, from Proposition 3.1, we have

that DSλ(αλ) = −id is invertible. Next, define the operator

T2h(α) =α− [DSλ(αλ)]−1Snλ(αλ + α)

={DSnλ(αλ)α−DSλ(αλ)α}

+ {Snλ(αλ + α)− Snλ(αλ)

−DSnλ(αλ)α}+ Snλ(αλ)

≡I1 + I2 + I3.
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It follows from the functional central limit theorem that uniformly in t ∈ I, we have

∥∥ 1

n

n∑
j=1

Yj(t)− s(0)
1 (t)

∥∥
∞ = Op(n

−1/2), (3.15)

It follows from Lemma 3.2 and the functional central limit theorem that

‖ 1

n

n∑
j=1

Yj(t)RWj
− E[Yj(t)RWj

]
∥∥
λ

= sup
‖α1‖λ=1

<
1

n

n∑
j=1

Yj(t)RWj
− E[Yj(t)RWj

], α1 >λ

=Op(n
−1/2h−a−1/2). (3.16)

It follows from the Taylor expansion that

‖ 1

n

n∑
j=1

Yj(t)RWj

S
(0)
1 (t)

−
E[Yj(t)RWj

]

s
(0)
1 (t)

∥∥
λ

=Op(n
−1/2h−a−1/2). (3.17)
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It follows from Sλ(αλ) = 0, Lemma 3.1 and formula (3.15 – 3.17) that

E‖I3‖2
λ

= E{‖Snλ(αλ)− Sλ(αλ)‖λ}2

= E
{∥∥∥ 1

n

n∑
i=1

∫ 1

0

[
RWi

− E{Y(t)RW}
s

(0)
1 (t)

]
dMi(t)

− E
(∫ 1

0

[
RWi

− E{Y(t)RW}
s

(0)
1 (t)

]
dMi(t)

)∥∥∥2

λ

}
+O(n−1h−2a−1(n−1 + h2k))

≤ 2E
{
‖ 1

n

n∑
i=1

[
∆iRWi

− E∆iRWi
]‖2
λ

+ ‖ 1

n

n∑
i=1

∫ 1

0

E{Y(t)RW}
s

(0)
1 (t)

{ dNi(t)− E dNi(t)}‖2
λ

+ ‖[ 1

n

n∑
i=1

∫ 1

0

E{Y(t)RW}
s

(0)
1 (t)

[Yi(t)ηα0(Wi)− E{Yi(t)ηα0(Wi)}] dt‖2
λ

+ ‖[ 1

n

n∑
i=1

∫ 1

0

[RWi
Yi(t)ηα0(Wi)− E{RWi

Yi(t)ηα0(Wi)}] dt‖2
λ

}

+ ‖[ 1

n

n∑
i=1

∫ 1

0

E[Yj(t)RWj
]

s
(0)
1 (t)

[Yi(t)− E{Yi(t)}]h0(t) dt‖2
λ

+ ‖[ 1

n

n∑
i=1

∫ 1

0

[RWi
Yi(t)ηα0(Wi)− E{RWi

Yi(t)h0(t)}] dt‖2
λ

}
+ o(n−1h−1)

= O((hn)−1).

This implies that ‖Snλ(αλ)‖λ = Op((nh)−1/2). Let c be a positive constant such that

P (‖Snλ(αλ)‖λ ≤ c(nh)−1/2) → 1. Define r2n = 2c(nh)−1/2 and B(r2n) = {α ∈ H :

‖α‖λ ≤ r2n}. Then we have P (‖Snλ(αλ)‖λ ≤ r2n/2)→ 1. Define Γ = ∩ni=1Ani, where

Ani = {‖Zi‖2 ≤ c log(n), ‖Xi‖L2 ≤ c log(n)},
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and c is positive definite. Under Assumption A4, we choose c large enough such that

P (Γ)→ 1, and P (Acni) = O(n−1). To handle I1, we have that

‖I1‖λ

= ‖DSnλ(αλ)α−DSλ(αλ)α‖λ

≤
∥∥∥ 1

n

n∑
i=1

∫ τ

0

[Yi(t)ηα(Wi)RWi
− E{Yi(t)ηα(Wi)RWi

}] dt
∥∥∥
λ

+
∥∥∥ 1

n

n∑
i=1

∫ τ

0

[Yi(t)RWi
− E{Yi(t)RWi

}]E{Y(t)ηα(W)}
s

(0)
1 (t)

dt
∥∥∥
λ

+
∥∥∥ 1

n

n∑
i=1

∫ τ

0

{Yi(t)RWi
}
[E{Y(t)ηα(W)}

s
(0)
1 (t)

−
n−1

∑n
j=1{Yj(t)ηα(Wj)}

S
(0)
1 (t)

]
dt
∥∥∥
λ

≡ I11 + I12 + I13. (3.18)

For I11, we have that

I11 =
∥∥∥ 1

n

n∑
i=1

∫ τ

0

[Yi(t)ηα(Wi)RWi
− E{Yi(t)ηα(Wi)RWi

}] dt
∥∥∥
λ
.

To infer I11, we define

φ(Yj,Wj;α) =
Yj(t0)ηα(Wj)

s
(0)
1 (t0)

IAnj .

Then for any α1, α2 ∈ H, we have that

|φ(Yj,Wj;α1)− φ(Yj,Wj;α2)|

=
1

s
(0)
1 (t0)

Yj(t0)|{ηα1(Wj)− ηα2(Wj)}|IAnj

≤ 1

s
(0)
1 (t0)

| < RWj
, α1 − α2 >λ |IAnj

≤ c log(n)

s
(0)
1 (t0)

‖α1 − α2‖e.
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Let φn(Yj,Wj;α) = s
(0)
1 (t0)c−1{log(n)}−1φ(Yj,Wj;α1). Then |φn(Yj,Wj;α1) −

φn(Yj,Wj;α1)| ≤ ‖α1 − α2‖e. For any α 6= 0 ∈ H, let α̃ = α/(dn‖α‖λ), where

dn = κh−(2a+1)/2. It follows from Lemma 3.2 that ‖α̃‖e ≤ dn‖α̃‖λ = 1. Then

we have ‖θ̃‖2 + ‖β̃‖L2 ≤ 1. Meanwhile, we have λJ(β̃, β̃) ≤ ‖α̃‖2
λ = d−2

n . Then

J(β̃, β̃) ≤ λ−1d−2
n ≡ pn. Then, we have that for any α ∈ B(r2n),

lim
n
P (‖

n∑
j=1

[φn(Yj,Wj; α̃)RWj
− E{φn(Yj,Wj; α̃)RWj

}]‖λ

. (n1/2p1/(4m)
n + 1){h−1 log log(n)}1/2) = 1.

Therefore, we have

lim
n
P (‖

n∑
j=1

[φ(Yj,Wj;α)RWj
− E{φ(Yj,Wj;α)RWj

}]‖λ

.dn{log(n)}‖α‖λ(n1/2p1/(4m)
n + 1){h−1 log log(n)}1/2) = 1.

It follows from the definition of Ani that

‖
E{Yj(t0)ηα(Wj)RWj

IAcnj}

s
(0)
1 (t)

‖λ

≤ c1E‖ < RWj
, α > RWj

IAcnj‖λ = O(P (Acni)
1/2h−1/2)‖α‖λ = o(1)‖α‖λ.

Thus, we have I11 = Op(n
−1/2h−(a+1)− 2k−2a−1

4m {log(n)}{log log(n)}1/2)‖α‖λ+op(1)‖α‖λ =

op(1)‖α‖λ.

Similarly to I11, we obtain

I12

=
∥∥∥ 1

n

n∑
i=1

∫ τ

0

[Yi(t)RWi
− E{Yi(t)RWi

)}]E{Y(t)ηα(W)}
s

(0)
1 (t)

∥∥∥
λ

= Op(n
−1/2h−a−1/2)‖α‖λ.
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For I13, we have

I13 =
∥∥∥ 1

n

n∑
i=1

∫ τ

0

{Yi(t)RWi
}
[E{Y(t)ηα(W)}

s
(0)
1 (t)

−
n−1

∑n
j=1{Yj(t)ηα(Wj)}

S
(0)
1 (t)

]
dt
∥∥∥
λ

= Op(n
−1/2h−a−1)‖α‖λ.

Therefore, for any α ∈ B(r2n), we have ‖I1‖λ ≤ r2n/18 and For ‖I2‖λ, we have

‖I2‖λ = ‖{Snλ(αλ + α)− Snλ(αλ)−DSnλ(αλ)α}‖λ

= ‖
∫ 1

0

∫ 1

0

sD2Snλ(αλ + ss′α)αα ds ds′‖λ

= 0.

Therefore, for any α ∈ B(r2n),

‖T2h(α)‖λ ≤
r2n

2
.

That is, T2h(B(r2n)) ⊂ B(r2n). Using the arguments above, we show that T2h is a

contraction mapping in B(r2n). Therefore, there exists a unique element α′ ∈ B(r2n),

such that T2h(α
′) = α′. This implies Snλ(αλ + α′) = 0. Let α̂nλ = αλ + α′. Then

Snλ(α̂nλ) = 0. Finally, with probability going to 1, we have

‖α̂nλ − α0‖ ≤ r1n + r2n = OP ((nh)−1/2 + hk).

Proof of Theorem 3.2

It follows from Theorem 3.1 that there exists a constant M > 0 such that, with

probability approaching to one, ‖α̂nλ−α0‖λ ≤Mrn. For simplicity, denote α̂nλ−α0

as α. We assume that ‖α‖λ ≤ Mrn as its complement is negligible in terms of

probability. Let dn = κMh−(2a+1)/2rn and α̃ = d−1
n α. Let pn = κ−2h1−2m, where

κ is the constant given in Lemma 3.2. When n is large, h → 0 and 1 − 2k < 0.

Hence, pn ≥ 1 as n → ∞. It can be shown that ‖α‖λ ≤ Mrn implies α̃ ∈ Fpn .

To see this, write α̃ = (θ̃>, β̃)>. Then ‖α̃‖e = d−1
n ‖α‖e ≤ d−1

n κh−(2a+1)/2‖α‖λ ≤
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d−1
n κh−(2a+1)/2Mrn = 1. Thus, it follows from

J(β̃, β̃) = d−2
n λ−1{λJ(β, β)}

≤ d−2
n λ−1‖α‖2

λ ≤ d−2
n λ−1(Mrn)2 = κ−2h1−2m = pn.

Thus we have that

‖Snλ(α + α0)− Snλ(α0)− {Sλ(α + α0)− Sλ(α0)}‖λ

=‖Sn(α + α0)− Sn(α0)− {S(α + α0)− S(α0)}‖λ. (3.19)

On the left hand side of equation (3.19), we have that

‖Snλ(α + α0)− Snλ(α0)− {Sλ(α + α0)− Sλ(α0)}‖λ

=‖ − Snλ(α0)−DSλ(α0)α−
∫ 1

0

∫ 1

0

sD2Sλ(α0 + ss′α)αα ds ds′‖λ

=‖α− Snλ(α0)−
∫ 1

0

∫ 1

0

sD2Sλ(α0 + ss′α)αα ds ds′‖λ

=‖α− Snλ(α0)‖λ. (3.20)

It follows from D2Sn(α) = 0 and D2S(α) = 0 that, on the right hand side of equation

(3.19), we have

‖Sn(α + α0)− Sn(α0)− {S(α + α0)− S(α0)}‖λ =‖DSn(s′α + α0)α−DS(s′′α + α0)α‖λ

=‖DSn(αλ)α−DS(αλ)α‖λ

=‖DSnλ(αλ)α−DSλ(αλ)α‖λ

Finally, it follows from equation (3.19) and the lines of the proof of Theorem 3.1 that

‖α− Snλ(α0)‖λ ≤ Op(an).

The proof of Theorem 3.2 is completed.

Proof of Theorem 3.3
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Define α̂hnλ = (θ̂>nλ, h
a+1/2β̂nλ)

>, α∗0 = (id−Pλ)α0 ≡ (θ∗0
>, β∗0)>, α∗0

h = (θ∗0
>, ha+1/2β∗0)>,

and Rh
Wi

= (HWi
, ha+1/2TWi

). Denote

Remn

=α̂nλ − α∗0 −
1

n

n∑
i=1

∫ τ

0

{
RWi

−
n−1

∑n
j=1 Yj(t)RWj

n−1
∑n

j=1 Yj(t)
}
{ dNi(t)− Yi(t)ηα0(Wi) dt}.

It follows from Theorem 3.2 that ‖Remn‖λ = Op(an). Thus, we have

‖θ̂nλ − θ∗0 −
1

n

n∑
i=1

∫ τ

0

{
HWi

−
n−1

∑n
j=1 Yj(t)HWj

n−1
∑n

j=1 Yj(t)
}
{ dNi(t)− Yi(t)ηα0(Wi) dt}‖2

=Op(an).

Define

Remh
n

=α̂hnλ − α∗0
h − 1

n

n∑
i=1

∫ τ

0

{
Rh

Wi
−
n−1

∑n
j=1 Yj(t)Rh

Wj

n−1
∑n

j=1 Yj(t)
}
{ dNi(t)− Yi(t)ηα0(Wi) dt}.

Then, we have

‖Remh
n − ha+1/2Remn‖λ

≤(1− ha+1/2)‖θ̂nλ − θ∗0 −
1

n

n∑
i=1

∫ τ

0

{
HWi

−
n−1

∑n
j=1 Yj(t)HWj

n−1
∑n

j=1 Yj(t)
}
{ dNi(t)− Yi(t)ηα0(Wi) dt}‖2

=Op(an).

It follows from an = o(n−1/2) that

‖Remh
n‖λ ≤ ‖Remh

n − ha+1/2Remn‖λ + ha+1/2‖Remn‖λ

= op(n
−1/2).
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Next, we use Remh
n to obtain the target joint limiting distribution. The idea is to

employ the Cramér-Wold device. For any u = (z>, t)> ∈ Rp × I, we obtain the

limiting distribution of n1/2z>(θ̂nλ− θ∗0) +n1/2ha+1/2{β̂nλ(t)− β∗0(t)}. Note that this

is equivalent to obtaining the asymptotic result of n1/2 < R̃u, α̂
h
nλ − α∗0

h >λ . It

follows from Theorem 3.2 that

n1/2| < R̃u, Rem
h
n >λ | = Op(n

1/2h−(a+1/2)an).

Thus, we need to derive the limiting distribution of

n1/2 < R̃u,
1

n

n∑
i=1

∫ τ

0

{
Rh

Wi
−
n−1

∑n
j=1 Yj(t)Rh

Wj

n−1
∑n

j=1 Yj(t)
}
{ dNi(t)− Yi(t)ηα0(Wi) dt} >λ .

A direct calculation yields that

n1/2 < R̃u,
1

n

n∑
i=1

∫ τ

0

{
Rh

Wi
−
n−1

∑n
j=1 Yj(s)Rh

Wj

n−1
∑n

j=1 Yj(s)
}
{ dNi(s)− Yi(s)ηα0(Wi) ds} >λ

=n−1/2

n∑
i=1

∫ τ

0

{z>HWi
+ ha+1/2TWi

(t)

−
n−1

∑n
j=1 Yj(s)[z>HWj

+ ha+1/2TWj
(t)]

n−1
∑n

j=1 Yj(s)
} dMi(s)

≡Un.

A direct calculation yields that

K(Wi)

≡z>HWi
+ ha+1/2TWi

(t)

=z>{Σ− Ω + V (G,WλG
>)}−1{Zi − V (G, πXi)}

+ ha+1/2[πXi(t)− ω>(t){Σ− Ω + V (G,WλG
>)}−1{Zi − V (G, πXi)}]

=ha+1/2πXi(t) + {z− ha+1/2ω(t)}>{Σ− Ω + V (G,WλG
>)}−1{Zi − V (G, πXi)}.

It follows from ‖Kz‖m ≤ h−a−1/2 that ‖πX‖2
m ≤ ‖X‖2

L2h−2a−1. And it follows from
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V (G,WλG
>)→ 0 that WλG→ 0. Thus, we have

|V (Gk, πx)| =| < Gk, πx >m − < (WλGk), πx >m |

=|
∫
I
x(s)Gk(s) ds−

∫
I
x(s)(WλGk)(s) ds|

�|
∫
I
x(s)Gk(s) ds|

.‖x‖L2 .

Thus, we have |K(Wi)| . {‖Xi‖L2 + ‖Zi‖2} a.s. Therefore, we have

Un

=n−1/2

n∑
i=1

∫ τ

0

[
K(Wi)−

E{Yj(s)K(Wj)}
E{Yj(s)}

]
dMi(s)

+Op(n
−1/2)

=n−1/2

n∑
i=1

∫ τ

0

[
K(Wi)−

E{Yj(s)K(Wj)}
E{Yj(s)}

]
dMi(s) + op(1)

≡n−1/2

n∑
i=1

Ui + op(1).
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A direct calculation yields that

V ar[Ui]

=E

∫ τ

0

[
K(Wi)−

E{Yj(s)K(Wj)}
E{Yj(s)}

]2

dNi(s)

=h2a+1E

∫ τ

0

[
πXi(t)−

E{Yj(s)πXj(t)}
E{Yj(s)}

]2

dNi(s)

+ 2ha+1/2(z− ha+1/2ω(t))>

× {Σ− Ω + V (G,WλG
>)}−1E

∫ τ

0

[
πXi(t)−

E{Yj(s)πXj(t)}
E{Yj(s)}

]

×
(
{Zi − V (G, πXi)} −

E[Yj(s){Zj − V (G, πXj)}]
E{Yj(s)}

)
dNi(s)

+ {z− ha+1/2ω(t)}>{Σ− Ω + V (G,WλG
>)}−1E

∫ τ

0

(
{Zi − V (G, πXi)}

−
E[Yj(s){Zj − V (G, πXj)}]

E{Yj(s)}

)⊗2

dNi(s){Σ− Ω + V (G,WλG
>)}−1(z− ha+1/2ω(t)).

Assume ha+1/2ω(t)→ −γ0. Thus, as λ→ 0, we have

V ar[Ui]→ σ2
t + 2(z + γ0)>(Σ− Ω)−1ξ0 + (z + γ0)>(Σ− Ω)−1B0(Σ− Ω)−1(z + γ0)

≡(z>, 1)Φ∗(z>, 1)>,

with

Φ∗ =

[
(Σ− Ω)−1B0(Σ− Ω)−1 (Σ− Ω)−1(γ0 + ξ0)
(γ0 + ξ0)>(Σ− Ω)−1 σ2

t + 2γ>0 (Σ− Ω)−1ξ0 + γ>0 (Σ− Ω)−1γ0

]
.

It follows from the Lindeberg’s CLT that[ √
n(θ̂nλ − θ∗0)√

nhha{β̂nλ(t)− β∗0(t)}

]
→ N(0,Φ∗).

From the fact that there exists b ∈ ((1+2a)/(2k), 1] such that V (G, hj) satisfies that∑
j

‖V (G, hj)‖2
2ρ
b
j <∞,
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we have that

‖ha+1/2ω(t)‖L2

=ha+1/2‖
∞∑
j

V (G, hj)/(1 + λρj)hj(t)‖L2

≤ha+1/2{
∞∑
j

‖V (G, hj)‖2
2(1 + ρj)

b}1/2{
∞∑
j=1

{ j2a

(1 + λρj)2(1 + ρj)b
}}1/2

=O(ha+1/2).

This implies that γ0 = 0. Thus, we have Φ∗ → Φ as n goes to infinity. Furthermore,

we have that

‖ < ω,Wλβ0 >m ‖2 =|
∞∑
j=1

GjV (β0, hj)
λρj

1 + λρj
|

≤
∞∑
j=1

‖Gj‖2
λρj

1 + λρj

∞∑
j=1

V (β0, hj)
2 λρj
1 + λρj

. λ
∞∑
j=1

‖Gj‖2ρ
b
j

λρ1−b
j

1 + λρj

. λ1+b.

Thus, we have ‖ < ω,Wλβ0 >m ‖2 = Op(λ
1+b) = op(n

−1/2), and so,
√
n{θ∗0−θ0} → 0

and
√
nha+1/2[β∗0(t) − β0(t) + {Wλ(β0)}(t)] → 0. As n1/2hk(1+b) = o(1), we have

nh4k = o(1). Thus, if we define β0 =
∑∞

j=1 bjhj with
∑∞

j=1 b
2
jρ

2
j <∞, we have

|(Wλβ0)(t)|

=|
n∑
j=1

bjλρj
1 + λρj

hj(t)|

≤chλ{
∞∑
j=1

b2
jρ

2
j}1/2{

∑
j=1

j2a

(1 + λρj)2
}1/2

=O(λh−a−1/2).
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Hence, this leads to

√
nha+1/2{Wλ(β0)}(t) = O(

√
nh2k) = o(1).

Thus, the conclusion follows directly.

Proof of Theorem 3.4

By Theorem 3.2 and the proof of Theorem 3.3, we have

n1/2ha+1/2 sup
s∈I
|β̂n,λ(s)− β0(s)− S̃n(α0)(s)| = op(1), (3.21)

where

S̃n(α0)(s) ≡ 1

n

∫ τ

0

n∑
i=1

(
TWi

(s)− E[Y(t)TW (s)]

E[Y(t)]

)
dMi(t)

=
1

n

∫
I
K(s, u)

∫ τ

0

n∑
i=1

(
Xi(u)− E[Y(t)X(u)]

E[Y(t)]

)
dMi(t) du

− ω(s){Σ− Ω + V (G,WλG
>)}−1 1

n

n∑
i=1

∫ τ

0

{Zi − V (G, πXi)} dMi(t)

≡S̃n1(α0)(s)− S̃n2(α0)(s).

(i) Denote Hn(s) =
√
nhhaS̃n1(α0)(s). Our first step is to show that Hn(s) converges

to the Gaussian process G(s) in the Hilbert SpaceH(m) with the inner product V (·, ·),

where hj, j = 1, 2, · · · , are the orthonormal basis. Direct calculation yields

Hn(s) =
h1/2+a

√
n

∫
I
K(s, u)

∫ τ

0

n∑
i=1

(
Xi(u)− E[Y(t)X(u)]

E[Y(t)]

)
dMi(t) du

=
1√
n

∞∑
j=1

∫
I

hj(u)hj(s)h
1/2+a

1 + λρj

∫ τ

0

n∑
i=1

(
Xi(u)− E[Y(t)X(u)]

E[Y(t)]

)
dMi(t) du.

It follows from Theorem 1.8.4 in van der Vaart and Wellner (1996) that to proveHn(t)

converges to the Gaussian process G(t) in the Hilbert Space H(m), we just need to

prove Hn(·) is asymptotic finite-dimensional and V (Hn, hj) converges in distribution
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of V (G, hj). It follows from the definition of Hn(·) that

∞∑
j=1

V (Hn, hj)
2 =

∞∑
j=1

h1+2a

(1 + λρj)2

{
1√
n

n∑
i=1

∫
I
hj(u)

∫ τ

0

(
Xi(u)

−E[Y(t)X(u)]

E[Y(t)]

)
dMi(t) du

}2

.

It is easy to verify that

1√
n

n∑
i=1

∫
I
hj(u)

∫ τ

0

(
Xi(u)− E[Y(t)X(u)]

E[Y(t)]

)
dMi(t) du

is asymptotic tight and bounded by cja. Besides, we have
∑

j
h1+2aj2a

(1+λρj)2
�
∫∞

0
x2a

(1+x2k)2
dx <

∞. Then for every ε > 0, there exits J0, which satisfies that
∑

j≥J0
h1+2aj2a

(1+λρj)2
< ε.

Thus, we have for any ε > 0,

lim sup
n
P (
∑
j≥J0

V (Hn, hj)
2 > ε)→ 0.

Namely, Hn is asymptotic finite-dimensional.

Furthermore, it follows from the definitions of hj and V (·, ·) that

V (Hn, hj) =
h1/2+a

(1 + λρj)

{
1√
n

n∑
i=1

∫
I
hj(u)

∫ τ

0

(
Xi(u)− E[Y(t)X(u)]

E[Y(t)]

)
dMi(t) du

}

d−−→ N

(
0,

h1+2a

(1 + λρj)2
E
(∫ τ

0

[

∫
I
X(u)hj(u)du−

E{Y(t)
∫
IX(u)hj(u)du}
E[Y(t)]

]2 dN(s)
))

.

(3.22)

Following Karhunen-Loéve theorem (Alexanderian (2015)), we can get that:

G(t) =
∑
j

ajηjφj(t),

where ηj, j = 1, 2, · · · are i.i.d standard normal random variables, φj(t) are the

standard orthogonal basis in the Hilbert space L2(I). It follows from the proof of
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Karhunen-Loéve theorem that under our case, φj(t) ∈ H(m)(I). Direct calculations

yield that

V (G, hj) =
∑
k

akηkV (φk, hj).

Then, EV (G, hj) = 0. It follows from Fubini’s theorem that

EV (G, hj)2 =
h1+2a

(1 + λρj)2
E
(∫ τ

0

[

∫
I
X(u)hj(u)du−

E{Y(t)
∫
IX(u)hj(u)du}
E[Y(t)]

]2 dN(s)
)
.

Thus, we have V (G, hj) follows

N

(
0,

h1+2a

(1 + λρj)2
E
(∫ τ

0

[

∫
I
X(u)hj(u)du−

E{Y(t)
∫
IX(u)hj(u)du}
E[Y(t)]

]2 dN(s)
))

.

It follows from equation (3.22) that V (Hn, hj) converges to V (G, hj). The proof of

the first step is completed.

(ii)The next step is to prove that
√
nh1/2+aS̃n2(α0)(s) uniformly in s converges to

zero. It follows from the arguments in Cheng and Shang (2015) that sups |ω(s)| =

O(1). Besides, since h→ 0, {Σ−Ω+V (G,WλG
>)}−1 → {Σ−Ω}−1, n−1/2

∑n
i=1

∫ τ
0
{Zi−

V (G, πXi)} dMi(t) is asymptotic to a normal distribution, we have ha+1/2
√
nS̃n2(α0)(s)

d−−→

0.

Theorem 3.4 directly follows from Slutsky’s theorem, step (i) and step (ii).
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Chapter 4

Conclusion and future work

This chapter draws conclusion on the thesis, and suggest some possible future re-

search directions.

4.1 Conclusion

This thesis focuses on the development of semiparametric inference for the functional

Cox model and the functional additive hazards model with right-censored data.

We propose a penalized partial likelihood approach for the estimation of model

parameters for the functional Cox proportional hazards model and penalized pseudo-

score function approach for the functional additive hazards model. We establish

the asymptotic properties including the consistency, the convergence rate, and the

limiting distribution of the proposed estimators. To this end, we investigate the joint

Bahadur representation of finite-dimensional and infinite-dimensional estimators in

the Sobolev space with a proper inner product.

One major contribution made to the study of the functional Cox model and the

functional hazards model is that the asymptotic joint normality of the estimators of

the functional and scalar coefficients is derived. Furthermore, the partial likelihood

ratio test are developed and its optimality is shown under the functional Cox model.

We also discover the Wilks phenomenon.
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These two important issues are addressed in the previous research. Our new re-

sults will provide more insights and deeper understanding about effects of functional

predictors on the hazard function of failure time. Simulation studies demonstrate

that the proposed estimators perform well and the penalized partial likelihood ratio

test has good power.

4.2 Future Work

A further interesting research is to explore other useful functional survival models

such as the functional accelerated failure time models where a partial likelihood is

unavailable. In addition, it is of interest to extend the analysis for other censoring

schemes which often occur in medical studies. For instance, we can explore the

functional Cox model, the functional additive hazards model, and the functional

linear model in the presence of interval censoring.

It is also of interest to consider the semiparametric additive transformation model

with current status data Cheng and Wang (2011):

H(U) = Z ′β +
d∑
j=1

hj(Wj) + ε,

where H(·) is a monotone transformation function, hj(·)’s are smooth regression

functions, and ε is a random variable with a known distribution F (·) with support

R. This model is a general transformation framework which covers a wide range of

survival models and econometric models.
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