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Abstract

In this thesis, two applications in mathematical finance and economics are mod-

elled by a class of two-stage stochastic programs. The focuses are on the modeling

of the practical problems as well as their real life implementations with numeri-

cal implementations. The first application on portfolio selection is approached by

the construction of a relaxed second-order stochastic dominance (SSD) constrained

stochastic optimization problem. The second model concerns the equilibrium in the

world oil market share, which is treated as a solution of a two-stage stochastic Nash

equilibrium problem. General framework of a class of two-stage convex stochastic

optimization problems is analyzed in details, with special attentions paid to the

constructions of the Lagrangian together with its saddle-point characterization of

optimality.

The problem of portfolio selection aims to construct optimal assets allocation

strategies subject to constraints on risk management. More specifically, a portfolio

optimization model with relaxed SSD constraints is proposed and solved, and its

solution is the portfolio of choice. The proposed model uses Conditional Value at

Risk (CVaR) constraints at probability level � 2 (0, 1) to relax SSD constraints. The

relaxation is justified by theoretical convergence results based on sample average

approximation (SAA) method when sample size N ! 1 and CVaR probability
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level � tends to 1. SAA method is used to reduce infinite number of inequalities

of SSD constraints to finite ones and also to calculate the expectation value. The

proposed relaxation on the SSD constraints in portfolio optimization problem is

achieved when the probability level � of CVaR takes value less than but close to

1, and the model can be readily solved by cutting plane method. The performance

and characteristics of the constructed portfolios are tested empirically on three sets

of real market data, and the results obtained from the numerical experiments are

analyzed and discussed in details. It is shown that with appropriate choices of CVaR

probability level �, the constructed CVaR-SSD portfolios are sparse and outperform

both the benchmark portfolios and the portfolios constructed by solving the portfolio

optimization problems with SSD constraints.

The second application is an attempt to provide explanation and mechanism

about the stable patterns observed in market share of world’s crude oil trading over

the last several decades via a two-stage stochastic model of Nash equilibrium for

Cournot competition. To summarize, a convex two-stage non-cooperative multi-

agent equilibrium problem under uncertainty is formulated as a two-stage stochastic

variational inequality (SVI). Under standard assumptions, su�cient conditions for

the existence of solutions of the two-stage SVI are provided. A regularized SAA

method is proposed to solve it. The convergence of the method is proved as the

regularization parameter tends to zero and the sample size tends to infinity. In order

to explain the oil market share observation, a two-stage stochastic production and

supply planning problem with homogeneous commodity in an oligopolistic market

is constructed under the framework of two-stage SVI. Numerical experiments are

performed based on historical data. The data are used in-sample to aid the selection
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of parameters as well as the modification of the game model structure. Out-of-

sample tests are presented to demonstrate the e↵ectiveness of the proposed model in

its ability for describing the market share of oil producing agents.
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Chapter 1

Introduction

Embracing the challenges brought by the era of Big Data comes the great demand

in processing stochastic informatics. Techniques in the field of stochastic optimiza-

tion are of great demand if one intends to confront real life applications modelled by

stochastic models. Before discussing the solution process of the stochastic problems,

the construction of the mathematical models may be of even greater challenges. In-

deed, researches have seen many practical applications formulated under uncertainty.

For example, mathematical models have been widely used to describe observations

in finance and economics. Optimal solutions to these models are often character-

ized by the corresponding multi-stage stochastic variational inequalities (SVIs) and

stochastic complementarity problems (SCPs). SVIs and SCPs were studied exten-

sively over the last two decades [15,17,40,70,71,103]. In this thesis, two applications

are formulated and studied under the framework of a class of two-stage stochastic

optimization problems.

The first application under consideration is a popular topic in mathematical fi-

nance, namely the portfolio selection problem. The adopted approach involves the
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construction of the model whose solution concepts are of special properties required

or restricted by the practitioners. The goal of portfolio selection intends to provide

better assets allocation choices for investors.

The second application explores the mechanism behind the observation on the

stability global oil market share via a two-stage stochastic Nash equilibrium problem

(SNEP). Needless to say, deterministic non-cooperative game has a long history of

being an e↵ective model to describe market behaviour. In order to explore character-

istics of real markets, the presence of uncertainty is considered by the model in this

thesis. Note that the stochasticity plays vital roles not only in problem modelling

but also in proceedings of historical data.

1.1 Expected return maximization with relaxed

second-order stochastic dominance constraints

As per described, the problem of portfolio selection, one of the most popular and

widely discussed research topics in mathematical finance, is studied first. By means

of modelling and solving of a portfolio selection problem, investors seek to construct

one appropriate bundle of assets, the so-called portfolio, often based on solutions

of the proposed problem. Although the requirements and/or restrictions are usu-

ally user dependent, there exist many general rules that guide the construction of

the optimization model. For example, investors often evaluate the performance of a

portfolio by its anticipated profitability subject to the satisfaction of costumed con-

straints. On the other hand, to specific investors, e.g., insurance companies, pension

funds, the minimization of risk or anticipated loss is of much greater importance than

pursuing high returns. A rule of thumb is that, for any general risk-averse investors,

— 2 —
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the appropriately chosen problem constructions should be those with their formu-

lation set to balance the expected return and the risk simultaneously. In addition,

the modelling of such problems shall reflect distinctive characteristics of the targeted

market of assets, financial selection rules or objectives specified by the investors, etc.

It is no surprise then that the so-called mean-risk model is one of the most widely

adopted types of portfolio selection problems. Rooting from the mean-variance (MV)

rule proposed by Markowitz [58], its modifications are among the mostly recognized

classes of mean-risk models in financial mathematics research community. To list a

few, there are mean semi-variance model [59], mean-absolute deviation model [55],

mean-absolute deviation-skewness model [56]. While the expected returns over a

given length of investment horizon is widely adopted as the gauge for profitability,

numerous risk measures besides variance have been proposed to evaluate and quantify

the risks or uncertainties other than variances. For example, Value-at-Risk (VaR),

which indicates the maximum possible loss when certain proportion of the left tail

loss distribution is ignored, is a conventional adaptation among banks and investment

firms alike [48]. The Conditional-Value-at-Risk (CVaR) [1, 78] is also widely used,

which is more sensitive to the shape of the tail regarding the loss distribution.

For the first application in this thesis, a stochastic optimization problem with a

relaxed second-order stochastic dominance (SSD) constraint is proposed and shown

to be an e↵ective way for portfolio selection. SSD is a fundamental concept in deci-

sion theory and economics, which has seen many uses in portfolio selection problems

as the choice of constraint controlling the risks, see Mosler and Scarsini [61], Whit-

more and Findlay [99]. The relation between mean-semi-deviation model and SSD

was analyzed by Ogryczak and Ruszczyński [65] for the first time. The consistency
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of SSD with several other risk measures was demonstrated further in [66] under the

context of the mean-risk model. Stochastic programming problem with stochastic

dominance constraints was proposed by Dentcheva and Ruszczyński and they studied

optimality and duality along with other aspects of both the problem and its solution

structure, see [22–24]. As will be shown in later parts in the thesis, the computa-

tion of expectation is among several major di�culties when dealing with stochastic

programming problems. To this end, the convergence analysis of stochastic optimiza-

tion problem with SSD constraints under the sample average approximation (SAA)

has been studied in several papers [43, 57, 102], along with many e�cient methods

proposed for solving it. For example, a smoothing penalized SAA method was pro-

posed by Sun et. al. [100] to solve this problem. Homem-de-Mello and Mehrota [41]

proposed a sample average cutting surface algorithm for optimization problems with

multidimensional polyhedral linear SSD constraints. Rudolf and Ruszczyński [89],

Fábián et. al. [28] and Sun et. al. [101] proposed cutting plane methods for solving

stochastic programs with SSD constraints.

In the regime of portfolio selection, adoption of stochastic dominance constrained

optimization was firstly introduced by Dentcheva and Ruszczyński [25, 27]. Roman

et. al. [86] studied multi-objective portfolio selection models with SSD constraints

and target return distribution. The notion of stochastic dominance can be intuitively

understood as a restriction on the feasible set of portfolios “better” than the underling

or pre-specified benchmark. It follows that the reason behind the usage of stochastic

dominance constraints is to restrict a feasible set of solutions, stochastically dominate

that of the benchmark. Under the concept of portfolio selection, any portfolio in

the feasible set dominates the benchmark portfolio. It is worth emphasising that

— 4 —
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the dominance is viewed only from the perspective of risk control. In a mean-risk

model, the solution process is to find the portfolio strategy whose distribution of the

random returns dominates that of a benchmark portfolio strategy. For example, when

the benchmark portfolio is a financial index, the corresponding portfolio selection

problem becomes an enhanced indexation model. An enhanced indexation portfolio

manages to track and outperform a stock market index with limited number of

stocks, which is desired from a portfolio management prospective [104]. An enhanced

indexation model based on SSD was proposed by Roman et. al. [87] and produced

consistently good returns, sparsity and with minimal rebalancing required in the

constructed portfolios.

Viewed as one motivation of the constraint relaxation in the proposed model,

recall that the SSD constraints are equivalent to a continuum of CVaR constraints for

all probability level � 2 (0, 1], see [25]. The equivalent result was used by Dentcheva

and Ruszczyński [26], who proposed an equivalent stochastic optimization problem

with inverse dominance constraint and designed an inverse cutting plane methods

for solving it. The proposed portfolio selection problem in this thesis cooperates

the SAA method and CVaR approach. More specifically, the SAA method is used

to overcome the complicated calculations of expected value as well as to handle

the infinite number of inequalities resulted from SSD constraints, followed by the

CVaR approximation which later leads to possible relaxation. Recall the definition

on equivalence result between SSD and CVaR, the relaxation model is constructed

when the CVaR reformulation of SSD is used with some probability level � < 1.

In later part of this thesis, the proposed model is referred as SAA-based CVaR-

SSD relaxation model. Also note that SAA-based CVaR-SSD relaxation model is

— 5 —
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related to aforementioned stochastic optimization problem with inverse dominance

constraint studied in [26]. The key di↵erences are that

1. the stochastic optimization problem with inverse dominance constrain refor-

mulation is based on the equivalence relation between SSD constraints and a

continuum of CVaR constraints;

2. the proposed SAA-based CVaR-SSD relaxation model is a relaxation model

based on SAA scheme and CVaR relaxation of a max function proposed in [2]

with specific choices of probability level � < 1.

For a particular choice of probability level, the equivalence result between SSD and

CVaR no longer holds and the dominance constraints are relaxed. The idea be-

hind the modelling is that by solving the relaxed model, a less conservative portfolio

shall be obtained from an enlarged feasible set. For ease of explanation and illus-

tration, Example 4.1 will be shown in Chapter 4. The performance of the portfolio

constructed by solving the relaxed model was put to test under extensive empirical

studies.

1.2 Stable global oil market share via a two-stage

stochastic variational inequality

It is long known that many economical phenomena may be casted as a solution

of stochastic optimization problem. Researchers have studied various real markets

through SNEPs in recent years. Jofré, Rockafellar and Wets [47] investigated various

economic equilibria using stochastic variational inequalities. A scenario-based multi-

stage oligopolistic market equilibrium problem under uncertainty was discussed by

— 6 —
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the authors of [33]. A two-settlement oligopolistic equilibrium with uncertainty in the

future market was presented in [106]. For practical applications, electricity markets

with hydro-electric distribution have been studied by Philpott, Ferris and Wets [72]

in which the levels of water reserves were modelled under uncertainty. The contem-

porary treatment of classical equilibrium problems are investigated through finite-

dimensional variational inequalities (VIs) and complementarity problems (CPs) with

a wide range of applications under the assumption of deterministic and single-stage

decision, see [29, 39] and references therein. Chen and Fukushima in [11] considered

the stochastic linear CP by expected residual minimization (ERM) procedure. The

quasi-Monte Carlo method was adopted to generate scenarios of observation and thus

to obtain the discrete approximation problem. Chen, Wets and Zhang [17] investi-

gated SVI problems by the ERM procedure, and the SAA method was employed to

approximate the expected smoothing residual function. More recently, an extension

from single-stage to multi-stage decision processes was discussed by Rockafellar and

Wets [85]. In [12], Chen, Pang and Wets introduced the ERM procedure for two-stage

SVI problems and the Douglas-Rachford splitting method was used to demonstrate

numerical results. Chen, Sun and Xu [15] considered a two-stage stochastic linear

CP. Structural properties of the problem were studied under the assumption of strong

monotonicity, and a discrete scheme was conducted by partition of the support set

and the corresponding convergence assertion was established. More generally, Chen,

Shapiro and Sun [13] investigated the SAA of two-stage stochastic nonlinear general-

ized equations, which included two-stage SVI problems as special cases. Exponential

rate of convergence was derived by using the technique of perturbed partial lineariza-

tion.
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From the perspective of the computational implementation, the equilibria can

usually be rewritten as solutions of the corresponding minimization problems, mostly

nonsmooth. For this class of problems, the smoothing techniques can be employed

so that di↵erentiable methods, e.g., Newton’s method, become applicable in solving

the smoothing problem, see for instance [9,10,16,18,19]. Moreover, Rockafellar and

Sun extended the well-known progressive hedging method (PHM) for multi-stage

stochastic programming problems to multi-stage SVIs in [77].

The second application of interests concerns about one observation of world oil

market. More specifically, the stability of world oil market share is studied and ex-

plained as a result of market equilibrium of a two-stage non-cooperative multi-agent

game under uncertainty. The game is used to describe a multi-agent homogenous

commodity production and supply planning problem in an oligopolistic market. The

focus is of a J-player SNEP of Cournot competition, whose solution concept is char-

acterized by stochastic Cournot-Nash (C-N) equilibria. The decision vectors of pro-

duction and supply plan problems, so-called strategies, are distinguished into two

categories,

1. those of “here-and-now” type, which do not depend on outcomes of random

events in the future, and

2. those treated as responses, occur at a “wait-and-see” stage.

The goal of the second application of the thesis is to establish a model which describes

the market mechanism up to its ability of reproducing stable oil market share. It will

be shown that the real observation on market share can be reproduced when solution

concepts of the model assemble the strategies adopted by participants of the market
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to achieve C-N equilibrium.

1.3 Overview of the thesis

The main objective of this thesis is to propose and solve two models arise in math-

ematical finance, portfolio selection problem, and economics, oil market share de-

scription, respectively. Both problems can be viewed as from a class of two-stage

stochastic programs. In order to study the proposed models, the techniques in ana-

lyzing and solving the two-stage stochastic optimization problem are firstly studied

and developed to the specifics of proposed models. Starting with detailed descriptions

of the constructions of individual problems, along with appropriate assumptions, the

models aim to reflect distinguished features of practicality. Theoretical properties

of the models are studied as well as the properties of the corresponding solutions.

The solution concepts along with their structures are captured, in part describing

the insights about the corresponding problems. The theoretical results later lead to

developments of e↵ective solution methodology of the stochastic models. Extensive

numerical experiments are performed on both applications. In the case of portfolio

selection, the portfolios obtained by solving the proposed model lead to e↵ective and

better assets allocation. For the application in crude oil market, the stable market

share can be reproduced by obtaining the equilibrium of the proposed game. The

further research directions along with potential collaborations across other disciplines

are discussed in final part of the thesis.
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1.4 Contribution of the thesis

The properties of a class of two-stage stochastic optimization problems are studied.

In particular, di↵erent expressions of this class of two-stage stochastic optimization

problems are compared from the aspects of corresponding necessary and/or su�-

cient optimality conditions. The focuses are then moved to conduct explorations on

practical applications.

In the first application of portfolio selection problem,

• A relaxation model of portfolio optimization problem with SSD constraints

is proposed based on the SAA method and CVaR approximation, where the

relaxation is achieved with a specific choice of probability level � < 1. This

is motivated by the observation on the conservative performance of portfolios

constructed by solving the SSD constrained portfolio optimization problems,

and solving the relaxation model may lead to portfolios with better returns un-

der adequate risk control. This is called the SAA-based CVaR-SSD relaxation

model, whose solution is called the CVaR-SSD portfolio.

• The convergence analysis of the SAA-based CVaR-SSD relaxation model to

the original SSD constrained problem is presented based on theoretical re-

sults of stochastic optimization problem with SSD constraints [102] with the

re-proposed conditions in convex cases and CVaR approximation [2]. The con-

vergence is also demonstrated empirically when the CVaR probability level �

approaches 1 and the SAA sample size goes to infinity.

• The advantages of CVaR-SSD portfolios are demonstrated empirically based
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on three sets of historical data. The performance of the constructed portfolios

with probability level � < 1 is comparable to that of the SSD portfolio. It is

observed in the numerical experiments that, with appropriate choices of �, the

performance of CVaR-SSD portfolio is always better than the SSD portfolio

using the same benchmark portfolio. More specifically, empirical studies are

carried out with the benchmark portfolios being both the index portfolio and

the MV portfolio for three sets of historical market data separately, while all

CVaR-SSD portfolios and SSD portfolio outperform the corresponding bench-

marks in all the data sets. In addition, the resulting CVaR-SSD portfolios are

sparse which is advantageous from a portfolio management perspective since a

smaller sized trading basket generates less transaction costs.

For the second application on world oil market share,

• A two-stage stochastic Cournot-Nash equilibrium problem is proposed to sim-

ulate production and supply competition of a homogenous product under un-

certainty in an oligopolistic market. The model is recasted as two-stage SVIs

whose solutions characterize a C-N equilibrium. The practicality of global oil

market has the distinctive feature that the practitioners are not very sensitive

to changes in spotting price. Therefore, the oil suppliers do not compete with

lower selling prices but rather for greater market share.

• The equilibrium is described by a two-stage SVI and a regularized SAA method

is proposed to solve the two-stage SVIs with convergence properties under mild

assumptions. The inconvenience of non-unique second-stage solutions is dealt

with a partial regularization approach.
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• The model is tested numerically for its e↵ectiveness. Moreover, it is used to

reproduce the market share observation in the global market of crude oil. It

is observed numerically that the model is not only able to reproduce historical

in-sample market share but also capable of making out-of-sample predictions

based on real data sets.

• The construction of the model involves the estimation of parameters, both de-

terministic and stochastic. The deterministic parameters are learned using the

training data set, while the stochastic parameters are constructed empirically

in the sense of preserving distributions of observables.

1.5 Organization of the thesis

This thesis consists of the following parts.

• In Chapter 1, introductions and backgrounds of two applications are briefly

described. Literatures in relevant areas of researches are listed. The main

contributions and findings in both problems are summarized with the outline

of the contents presented.

• In Chapter 2, basic notations used in the thesis are presented and some of the

well-known theoretical results are presented.

• In Chapter 3, a general framework of a class of two-stage stochastic optimiza-

tion problem is demonstrated. Two di↵erent but related expressions of the

problem are analyzed and explained together with their Lagrangian formula-

tion and saddle-point characterization of optimality.
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• In Chapter 4, the problem of portfolio selection is developed. Theoretical

results of the problem structure are analyzed and the convergence analysis is

illustrated for demonstrating the approximation and relaxation results of the

proposed model.

• In Chapter 5, a two-stage SVI model is developed to characterize the SNEP

for the concerned application in oil market. A regularized SAA approach is

proposed to solve the SVI. Solution structure of the second-stage problem

is presented for analysis and the connection between the first-stage and the

second-stage problem is developed via the solution function of linear com-

plementarity problem (LCP). The convergence analysis of the regularization

approach is presented.

• In Chapter 6, the empirical studies of both problems are shown collectively,

including the algorithms used for numerical implementations and the experi-

ments results.

• In Chapter 7, the main results in this thesis are summerized and potential

future research directions are given.
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Chapter 2

Notation and Preliminaries

In this chapter, some basic notations used throughout this thesis are presented, and

some preliminary theoretical results in the literature are recalled.

2.1 Notation

Through out the thesis, unless otherwise stated, an optimal value or solution is

indicated by ⇤ while other given (possibly) non-optimal values or solutions are marked

by 0
, ,̂ .̄ 0 may denote zero matrix, zero vector of corresponding dimensions referring

to relevant contexts. e is used to present vector of 1. IX denotes the indicator

function of set X ⇢ Rn. Let ⌦ be the set of all random events with ! represents

random event i.e., ! 2 ⌦. A,F denote collections of subsets, while an event or a

subset is denoted by A or F , e.g., A 2 A ⇢ ⌦. Probability distribution of random

event is denoted by P . A random vector is denoted by ⇠ : ⌦ ! ⌅ ✓ Rd. To ease

of notation, ⇠ is used to denote the random vector ⇠(!) and realization of a random

vector ⇠ is denoted by ⇠ with its support set presented by ⌅. Y denotes the space of

measurable function defined on ⌅. The expectation operator E
⇥
⇠
⇤
is used through
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out this thesis, i.e., the Lebesgue integral of the A-measurable function ⇠ := ⇠(!)

with respect to (w.r.t.) the measure P , is denoted by

Z

⌦

⇠(!)P (d!).

Special symbols are in used for clearer demonstration of stochastic processes,

specially in dealing with two-stage problems. Tenders from first-stage to second-

stage are denoted by x, u, µ, and the second-stage stochastic decisions are presented

by y(⇠), v(⇠),�(⇠).  denotes the second-stage value function defined on tenders,

feasible second-stage decisions with random argument, e.g.,  (x, ⇠, y(⇠)). Optimal

second-stage objective function defined on tenders and with random argument is

given by  (x, ⇠) = sup(inf)y(⇠) (x, ⇠, y(⇠)). Inner products in the Hilbert space of

Rn ⇥ Y with L2-norm is denoted as follows.

h(x, y), (u, v)i := x
T
u+

Z

⌅

y(⇠)Tv(⇠)P (d⇠).

For numerical experiments and analysis of the SAA method, N is used to present

sample size. C
�
[a, b]

�
denotes the space of continuous functions defined on [a, b]

with maximum norm with C ⇤([a, b]) the dual space of C
�
[a, b]

�
, space of regular

countably additive measures on [a, b] having finite variation. Let C
�
[a, b]

�
denote

the space of continuous functions defined on [a, b] with maximum norm. By the

Riesz’ representation theorem, the space dual to C
�
[a, b]

�
, denoted by C ⇤([a, b]), is

the space of regular countably additive measures on [a, b] having finite variation.Let

C ⇤
+([a, b]) denote the subset of C ⇤([a, b]) of positive measures and kµk the induced

norm of the mapping
R b

a ·µ(d⌘) : C ([a, b]) ! R with µ 2 C ⇤([a, b]).
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2.2 Probability space

Let ⌦ be a nonempty set of points !. A denotes a �-field of subset of ⌦, or A-

measurable subset. Denote a probability measure P : A ! [0, 1] be �-finite Borel

regular, complete, non-atomic on A. ⇠ : ⌦ ! Rd denotes a random vector defined

on (⌦,A, P ) with support set ⌅ ⇢ Rd. Y is the space of measurable functions on ⌅.

Let (R,B(R)) be the real line with the system B(R) of Borel sets with

P⇠(B) = P{! : ⇠(!) 2 B}, B 2 B(R),

and denote the probability distribution of ⇠ on (R,B(R)). The distribution function

of ⇠ is denoted by the function

F⇠(x) = P{! : ⇠(!)  x}, x 2 R.

It follows that the support of distribution function of ⇠, ⌅ is closed. In later part

in this thesis, the subscript ⇠ is sometimes omitted without causing confusion. Let

T ⇢ R be a subset of the real line. A set of random variable X = (⇠t)t2T is

called a random process with time domain T . For each given ! 2 ⌦ the function

(⇠t(!))t2T is said to be a realization of the process corresponding to the outcome !.

The expectation E
⇥
⇠
⇤
, the Lebesgue integral of the A-measurable function ⇠ = ⇠(!)

w.r.t. the measure P , is denoted as

Z

⌦

⇠(!)P (d!).

A property holds “P -almost surely” (a.s.) if there is a set N 2 A with P (N) = 0

such that the property holds for every point ! of ⌦ \N .
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Theorem 2.1 (Lebesgue’s Theorem on Dominated Convergence). Let ⌘, ⇠, ⇠1, ⇠2, ...

be random variables such that |⇠n|  ⌘,E
⇥
⌘
⇤
< 1 and ⇠n ! ⇠ a.s.. Then,

E
⇥
|⇠|
⇤
< 1,

E
⇥
⇠n
⇤
! E

⇥
⇠
⇤
,

and

E
⇥
⇠n � ⇠

⇤
! 0

as n ! 1.

Recall that the cumulative distribution function of a random vector ⇠ evaluated

at ⌘ is denoted as F1(⇠; ⌘), i.e.,

F1(⇠; ⌘) := P (⇠  ⌘),

and for any ⌘ 2 R define

F2(⇠; ⌘) :=

Z ⌘

�1
F1(⇠; t)dt.

Then, for two random variables ⇠1, ⇠2 : ⌦ ! Rd, the stochastic dominance is de-

scribed as follows.

1. ⇠1 is said to dominate ⇠2 in first order, denoted by ⇠1 ⌫1 ⇠2, if

F1(⇠1; ⌘)  F1(⇠2; ⌘), 8⌘ 2 R.

2. ⇠1 is said to dominate ⇠2 in second order, denoted by ⇠1 ⌫2 ⇠2, if

F2(⇠1; ⌘)  F2(⇠2; ⌘), 8⌘ 2 R. (2.1)
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It is not hard to observe that first order stochastic dominance implies second order

stochastic dominance.

SSD (2.1) can be reformulated, see [24], as

E[(⌘ � ⇠1)+]  E[(⌘ � ⇠2)+], 8⌘ 2 R, (2.2)

where (x)+ := max(0, x).
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Chapter 3

A class of two-stage stochastic

optimizations

In this chapter, the general frameworks of a class of two-stage stochastic optimization

problems are studied. More specifically, the order of decision execution is of special

interests when dealing with two-stage stochastic programming problems. Two inter-

related expression of two-stage stochastic optimization problems are presented and

analyzed. The framework of this class of two-stage stochastic optimization problems

will be specified in later chapters to construct applicable models that describe real

applications in finance and economics.

Duality theory for stochastic optimization problems with convex objective and

convex constraints was developed in a series of research works published in 1970s by

Rockafellar and Wets [79], [80] , [81], [82]. Recently, subsequent researches have been

focusing on the studies of more general systems of SVIs ( [11], [17], [12], [85], etc.)

and stochastic generalized equations (SGEs) [13]. More specifically, since determin-

istic VIs have been intensively studied and used in describing optimality conditions/

equilibria of deterministic problems, its stochastic analogy ought to be functioning
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for the corresponding stochastic optimization problems. Indeed, as will be presented

in later chapters, a specifically structured SVI is used to represent an economical

equilibrium and to explain the mechanism behind the stable oil market share obser-

vation. The processes that bridge the optimization problems and the SVIs, namely

the optimality conditions will also be sketched in this chapter.

3.1 Elementary stochastic models

Starting with an elementary optimization problem that aims to minimize a contin-

uously di↵erentiable function f(x) over feasible set D, and consider its first-order

necessary condition of a stationary point x, i.e.,

�rf(x) 2 ND(x). (3.1)

To explore more into the structure of the problem, let D be further specified by a

constraints system,

D = {x 2 X | G(x) 2 K} with G(x) =
�
g1(x), . . . , gm(x)

�
(3.2)

for a closed convex set X ✓ Rn1 and a closed convex cone K ✓ Rm, with gi being

continuously di↵erentiable for all i = 1, ...,m. It is standard to express the elementary

problem by its Lagrangian formulation,

L(x, µ) = f(x) +
mX

i=1

µigi(x),

and the feasibility condition (3.2) takes the form,

�rxL(x, µ) 2 NX(x), rµL(x, µ) 2 NK⇤(µ).
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where K
⇤ denotes the polar of K. Under appropriate constraint qualification (CQ),

the above condition on Lagrangian can be interpreted as to have some multiplier

µ = (µ1, ..., µm) 2 K
⇤ with G(x) 2 NK⇤(µ), the following holds.

v 2 ND(x),

where v =
Pm

i=1 µirgi(x) + u for some u 2 NX(x). Therefore, in deterministic set-

ting, the Lagrangian characterization of optimization problem can lead to optimality

conditions in the form of variational inequality.

Remark 3.1. The solution to a VI problem may not only involve that of the decision

variables in the corresponding optimization problems but also contains the “multipli-

ers” related to constraints.

A solution x
⇤ to problem (3.1) must exists when the feasible set D is bounded,

and thus the set of all solutions is closed. For an intersection of closed convex sets

D1 and D2 the following relation holds

ND1\D2(x) ◆ ND1(x) +ND2(x) = {v1 + v2 | v1 2 ND1(x), v2 2 ND2(x)}.

In addition, equality holds if both D1 and D2 are polyhedral, or the intersection of

relative interiors of D1 and D2 is nonempty, ri D1 \ ri D2 6= ;, see [80].

A natural expression of stochastic counterpart of the elementary optimization,

with slight abuse of notation, for almost every (a.e.) ⇠ 2 ⌅, considers the following

problem.

max
y(⇠)

 
�
⇠, y(⇠)

�

s.t. y(⇠) 2 D(⇠),

(3.3)
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where for any given ⇠ 2 ⌅,  (⇠, ·) is continuously di↵erentiable and D(⇠) is closed

and convex. More rigorously, a general decision to stochastic problem i.e., a response,

has to be measurable and defined as

y(·) : ⇠ 7! y(⇠) and for a.e. ⇠ 2 ⌅, y(⇠) 2 Rn2 ,

which responses to known information on realization of the random variable ⇠. For

the general description of two-stage stochastic optimization problems, one needs to

consider the mixed type of decision variables, especially when faced with practical

applications.

Remark 3.2. The term “two-stage” does not necessarily correspond to the orders of

decision executions in time. Instead, it emphasizes the fact that the decision vectors

are divided into two catagories. For example, if the decision vector y 2 Y needs to

be made after observing the realization of ⇠, the constraints restriction in (3.3) needs

to hold a.e. ⇠ 2 ⌅. On the other hand, if the decision vector is finalized before an

observation of ⇠ is made, the response y cannot di↵er with di↵erent realizations ⇠.

More specifically, in the later case, additional constraints are needed to ensure that

y(⇠) = y for a.e. ⇠ 2 ⌅. This is the well-known requirement of nonanticipativity,

which plays an important role in describing the dynamics of the multi-stage stochastic

optimization problem.

Note that the extension to multi-stage problems gives rise to additional restriction

on orders of information income described by a dynamic process (⇠)t which will not be

studied in this thesis. Another modification of the stochastic problem is when multi-

agents are involved in the structures of stochastic programming, in which case the

— 24 —



PhD Thesis CHAPTER 3. TWO-STAGE STOCHASTIC OPTIMIZATION

analytical aspects require more detailed analysis. In the remaining of this thesis, the

first-stage decision vector is denoted as x while the second-stage decision “vector”,

which responses to realizations of random vector ⇠, is denoted as y.

3.2 Two-stage stochastic optimization problems

In this section, two natural expressions of a class of two-stage stochastic optimization

models will be presented with their relations explained in details.

3.2.1 Intrinsic first-stage model

Consider the following “two-stage” stochastic optimization problem.

min
x2Rn1

f(x) + E
⇥
 (x, ⇠)

⇤

s.t. x 2 D1,

(3.4)

where  (x, ⇠) is the stochastic optimal value of the second-stage problem for a given

realization ⇠ 2 ⌅, i.e.,

 (x, ⇠) := inf
y(⇠)2Rn2

 
�
x, ⇠, y(⇠)

�

s.t. y(⇠) 2 D2(⇠).

(3.5)

A natural concern about the feasibility of the problem arises if it is seen from the

perspective of the entire problem.

• If there exist a first-stage decision x̄ with realized observation ⇠̄, so that the

second-stage problem (3.5) becomes infeasible, then  
�
x̄, ⇠̄, y(⇠̄)

�
= +1 by

definition.
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• It may also be that the second-stage problem becomes unbounded from below

and the second-stage optimal value can be improved infinitely. It follows that

 
�
x̄, ⇠̄, y(⇠̄)

�
= �1.

The pathological properties, e.g., the above cases, will lead to ill-defined problem and

should be avoided in the modelling process. However, there may exist problem with

features that cannot be altered w.r.t. real applications, e.g., second-stage problem

(3.5) has multiple solutions. In these cases, specific assumptions need to be imposed

as well as the adoption of, per say, regularization on the model.

3.2.2 Two-stage stochastic optimization problem with re-

course

Consider the following description of a two-stage stochastic optimization problem

with mixed decision strategies. At the first-stage, x 2 Rn1 is chosen to minimize a

cost represented by the expression f(x) subject to the first-stage constraints

x 2 D1 and g1i(x)  0, i = 1, ...,m1. (3.6)

Later on in the event horizon, one realization of uncertain event ⇠ 2 ⌅ is observed.

In response to this observation, which is called the second-stage, a vector y(⇠) 2 Rn2

is chosen subject to second-stage constraints.

y(⇠) 2 D2 and g2j

�
x, ⇠, y(⇠)

�
 0, j = 1, ...,m2, for a.e. ⇠ 2 ⌅, (3.7)

at a cost  
�
x, ⇠, y(⇠)

�
. Conventionally, one would expect that the choice of response

y(⇠) being subject to optimality rule, i.e., choose y
⇤(⇠) such that the corresponding

cost  
�
x, ⇠, y

⇤(⇠)
�
is minimized.
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Remark 3.3. Note that by imposing the choice y(⇠) to be made after the observa-

tion ⇠ 2 ⌅, one needs to further characterize the “dynamics” in deriving optimality

conditions. Moreover, the expression of the solution structures should also take into

account the e↵ects of facts that the decisions are made at di↵erent stages along the

event horizon.

Under the same setups, the two-stage stochastic optimization problem can be

viewed from a perspective other than the intrinsic first-stage approach. Let the

strategies of solving the two-stage stochastic optimization problem be viewed collec-

tively as to choose a decision pair

�
x 2 Rn1

, y : ⌅! Rn2
�
,

which satisfies the constraints (3.6) and (3.7), and minimizes the total cost view at

the first-stage, i.e.,

f(x) + E
⇥
 
�
x, ⇠, y(⇠)

�⇤
, (3.8)

where y denotes a measurable response function, and the expectation E
⇥
·
⇤
is well-

defined, e.g., if y 2 L1
n2 := L1(⌅,F , P ;Rn2),

E
⇥
 
�
x, ⇠, y(⇠)

�⇤
=

Z

⌅

 
�
x, ⇠, y(⇠)

�
P (d⇠).

This is a stochastic programming problem with recourse1 and the response function

y specifies the recourse decision.

Remark 3.4. The most noticeable di↵erence between the two di↵erent models is

the objective functions (3.4) and (3.8). In (3.4), the expectation is acting upon the

1 This notation follows from the works of Rockafellar and Wets, while other scholars may refer to
di↵erent problem types.
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stochastic optimal value functions defined by the corresponding optimal second-stage

decision as for the objective function (3.8) the decisions are made simultaneously for

both stages.

In order to ensure the well-defineness of the expectation calculation in (3.8), y

is required to be essentially bounded, measurable and the second-stage constraint

(3.7) is required to hold a.s.. For ease of expression, in the remaining of this thesis,

y(⇠) 2 Rn2 is reserved to specify the recourse function value where y 2 L1
n2 represents

the essentially bounded response function. Furthermore, the focus of this thesis is

mainly on stochastic convex programming where the assumptions on convexity apply

to both x and y, and Lagrangian function is introduced in terms of multipliers µ and

� for the first-stage and second-stage constraints, respectively. The analysis is then

based on the Lagrangian formulation which leads to a saddle-point condition for

optimality.

Remark 3.5. The optimal multipliers are solutions to a certain dual problem and

can be interpreted as “equilibrium prices” relative to perturbations in constraints.

3.2.3 Problem setting for two-stage stochastic optimization

problem

In this subsection, the structure of the two-stage stochastic optimization problem is

specified.

• D1 and D2 are convex, closed and nonempty subsets of Rn1 and Rn2 , respec-

tively.
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• g1i on Rn1 and g2j(·, ⇠, ·) on Rn1⇥Rn2 are convex, everywhere-defined and finite

for a.e. ⇠ 2 ⌅.

• For each decision pair
�
x, y(⇠)

�
, the functions g2j

�
x, ·, y(⇠)

�
are measurable on

⌅, and bounded for j = 1, ...,m2.

The above specifications imply that, with slight abuse of notation, if a strategy of

two-stage response functions

x : ⌅! Rn1 and y : ⌅! Rn2

are arbitrary bounded, measurable functions, then

⇠ 7! g2j

�
x(⇠), ⇠, y(⇠)

�
, j = 1, ...,m2,

are measurable, where x(⇠) are defined similarly to the second-stage response function

values y(⇠) with additional constraint x(⇠) = x for a.e. ⇠ 2 ⌅. Similar line of

argument can be seen in, for example [85], [93]. Moreover, the objective functions

f and  are summable and the constraint functions are essentially bounded. In

particular, the joint objective value in (3.8) is well-defined if y(⇠) is a bounded,

measurable function of a.e. ⇠ 2 ⌅.

3.2.4 Lagrangian formulation of two-stage stochastic opti-

mization problem

Let Z = Rn1 ⇥ L1
n2 denote the set of strategies and let the set of perturbations be

denoted by U = Rm1⇥L1
m2. Then, the perturbative functional F : Z⇥U ! R[{+1}
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can be defined in the following. If z = (x, y) 2 Z and u = (ux, uy) 2 U satisfy

x 2 D1 and g1i(x)  ux, i = 1, ...,m1,

y(⇠) 2a.s. D2 and g2j

�
x, ⇠, y(⇠)

�
a.s. uy(⇠), j = 1, ...,m2,

then F (z, u) is the original objective function (3.8); otherwise, F (z, u) = +1. Spec-

ify a space ⇤ = Rm1 ⇥ L1
m2

paired with U , and define the respective inner product2

as in [85], [15]

hu,�i := u
T
x�x +

Z

⌅

�
uy(⇠) · �y(⇠)

�
P (d⇠),

with

� = (�x,�y) 2 ⇤.

Recall that the two-stage stochastic programming problem with recourse under

consideration is to find a strategy z = (x, y) 2 Z which minimizes the cost function

(3.8), i.e.,

min f(x) + E
⇥
 
�
x, ⇠, y(⇠)

�⇤
,

s.t. x 2 D1 and g1i(x)  0, i = 1, ...,m1,

y(⇠) 2a.s. D2 and g2j

�
x, ⇠, y(⇠)

�
a.s. 0, j = 1, ...,m2.

(3.9)

Remark 3.6. The fact that “constraint on dynamics” is not explicitly expressed

in problem (3.9) leads to a “disconnection” between optimality conditions based on

Lagrangian approach and that of the (basic) Karush–Kuhn–Tucker (KKT) condition

[80]. Nevertheless, the Lagrangian based saddle-point condition serves as a valid

condition for analysis later in this thesis.

2 complementary results follows if L1
m2

is replaced by the dual Banach space (L1
m2

)⇤
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The Lagrangian associated with the system (3.9) is the function:

L : Z ⇥ ⇤! R [ {±1}

which can be expressed as

L(z,�) =

8
<

:

L1(x,�x) +
R
⌅ L2

�
x, ⇠, y(⇠),�y(⇠)

�
P (d⇠) if z 2 Z0 and � 2 ⇤0,

�1 if z 2 Z0 and � /2 ⇤0,

+1 if z /2 Z0,

where

Z0 = {z = (x, y) 2 Z | x 2 D1 and y(⇠) 2a.s. D2},

⇤0 = {� = (�x,�y) 2 ⇤ | �x � 0 and �y(⇠) �a.s. 0},

L1(x,�x) = f(x) +
m1X

i=1

(�x)ig1i(x),

L2(x, ⇠, y(⇠),�y(⇠)) =  
�
x, ⇠, y(⇠)

�
+

m2X

j=1

(�y)j(⇠)g2j(x, ⇠, y(⇠)).

It follows that the primal problem reads

min
z2Z0

sup
�2⇤0

L(z,�), (P )

while the dual problem is set to be

max
�2⇤0

inf
z2Z0

L(z,�). (D)

It is easily seen that the properties relating the optimal values and optimal solutions

of primal problem (P ) and dual problem (D) correspond to minimax properties of

the Lagrangian L(z,�). From the standard definitions of primal and dual problems,

the following results on saddle-point condition can be derived.
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Definition 3.1 (Saddle-points of the Lagrangian formulation). The pair (z⇤,�⇤) 2

Z⇥⇤ is a saddle-point of the Lagrangian L(z,�) if and only if z⇤ gives the minimum

in (P ), �⇤ gives the maximum in (D), and there holds minP = maxD.

Remark 3.7. The KKT condition of the solutions of the primal problem (P ) can be

derived from a duality theorem if the primal-dual relation of the type inf P = supD

can be established. z
⇤ 2 Z gives the minimum in (P ) if and only if there exists a

�
⇤ 2 ⇤ such that (z⇤,�⇤) is a saddle-point of L(z,�). One special case is that if

D1 and D2 are bounded, a solution � of the dual problem D may be attained, so

that minP = maxD holds and the KKT characterization of z to P is valid. In

general, the derivation of optimality based on Lagrangian system does not lead to

the KKT conditions but rather a saddle-point characterization of the solutions of the

Lagrangian formulation.

The detailed derivation of duality follows from standard “perturbation analysis”

(under certain restriction) that embeds the problem in a class of perturbed problems,

and the interested readers are referred to [80] and references therein.

3.3 Di↵erent perspectives of two-stage stochastic

optimization problem

Note that the intrinsic first-stage problem described in Subsection 3.2.1 is not suit-

able for deriving the Lagrangian since the two components in the strategy are not

simultaneously decided. Moreover, the space in which the decisions needed to be cho-

sen from di↵ers with di↵erent perspectives of the modelling approaches (3.4)-(3.5)

and (3.9). More specifically, when the observation of random vector is not known at
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the stage of strategy decision, as in problem (3.9), the second-stage decision vector

is chosen from the space of measurable functions y 2 Y . On the other hand, if the

two-stage model has explicit order in terms of the realization of random vector, as in

problems (3.4)-(3.5), the second-stage decision vector is chosen such that y(⇠) 2 Rn2.

Thus, before proceeding, the interchangeability of sup/inf and expectation operators

needs to be addressed.

A function h on ⌅ ⇥ Rn is called a normal convex integrand if, for each ⇠ 2 ⌅,

h(⇠, ·) is a lower semicontinuous convex function on Rn with values in (�1,1], not

identically +1, and if furthermore there exists a sequence of measurable functions

y
k : ⌅! Rn

, k = 1, 2, ...,

such that h
�
⇠, y

k(⇠)
�
is measurable in ⇠ for each k, while for each fixed ⇠ the set of

points of the form y
k(⇠) lying in dom h(⇠, ·) = {y 2 Rn | h(⇠, z) < +1} are dense in

the latter set. The above definition is given in [80] along with criteria for ensuring

the normality. One consequence of the normality is that h
�
⇠, y(⇠)

�
is measurable in

⇠ when y(⇠) is measurable, and the integral functional

Ih =

Z

⌅

h
�
⇠, y(⇠)

�
P (d⇠)

has a well-defined value for every measurable function y such that h
�
⇠, y(⇠)

�
is ma-

jorized by a summable function of ⇠. The following proposition is crucial in relating

problems (3.4)-(3.5) and (3.9).

Proposition 3.1. [76, Theorem 4] Let h be a normal convex integrand on ⌅⇥Rn.

— 33 —



CHAPTER 3. TWO-STAGE STOCHASTIC OPTIMIZATION PhD Thesis

Then the infimum of h(⇠, ·) over Rn is measurable as a function of ⇠ and one has

inf
y2Lp

n

E
⇥
h
�
⇠, y(⇠)

�⇤
=

Z

⌅

h
inf

y(⇠)2Rn
h(⇠, y(⇠))

i
P (d⇠),

for any p 2 [1,+1] such that the expectation is well-defined.

Note that in cases where the inf / sup can be obtained, i.e., be replaced by

min /max, the optimality conditions leads to the concepts of subdi↵erentiability.

The issue of subdi↵erentiability in stochastic optimization is related to various defi-

nitions on optimality conditions. Recently, the equivalence between alternative order

of approaches was investigated in depth by Burke et. al. [7]. Recall that the essential

objective function in (3.9) is expressed as

F (x, y) := f(x) + E
⇥
 
�
x, ⇠, y(⇠)

�⇤
for (x, y) 2 Z = Rn1 ⇥ L1

n2
. (3.10)

As seen from the first-stage, the induced first-stage problem by (3.9) is to minimize

the function

J(x) := inf
y2L1

n2

F (x, y) (3.11)

over Rn1 subject to constraints (3.6) and (3.7).

Take a step back and consider the problem as seen from second-stage, at when

for any first-stage decision x 2 Rn1 and realization of random vector ⇠ 2 ⌅, let

 (x, ⇠) := inf
y(⇠)2Rn2

 
�
x, ⇠, y(⇠)

�
,

s.t. second-stage constraints (3.7) hold,

(3.12)

i.e., given any pair (x, ⇠),  (x, ⇠) is the infimum of the second-stage cost over all

recourse y satisfying the second-stage constraints. Thus, the intrinsic first-stage
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problem is recovered, with the second-stage objective specifically expressed in terms

of (x, ⇠), as to solve

min j(x) := f(x) + E
⇥
 (x, ⇠)

⇤
,

s.t. first-stage constraints (3.6) hold.
(Q)

Remark 3.8. From the above process, the intrinsic first-stage problem requires that

the second-stage decision needs to be made after x has been decided, hence includes

the aforementioned constraints on decision dynamics, commonly known as the re-

quirement of nonanticipativity.

Remark 3.9. Note that from the expression (3.12), the optimal second-stage has its

formulation with given (x, ⇠). However, in problem (Q), the optimal first-stage deci-

sion variable x needs to be obtained by solving the problem. This “cyclic expression”

may lead to not-well-defined problem setup if its structure is not arranged carefully.

The following results are of basic needs in dealing with di↵erent approaches of

solving these types of two-stage stochastic problems, especially for the exploration

of relation between induced and intrinsic first-stage problems.

Proposition 3.2. [80, Proposition 4] For each x 2 Rn1 , (x, ⇠) is measurable as a

function of ⇠ 2 ⌅.

Theorem 3.1. [80, Theorem 1] Suppose that for each intrinsically feasible first-stage

decision x,

⇢(x, ⇠) := inf{|y| |  
�
x, ⇠, y(⇠)

�
< 1, s.t. second-stage constraints (3.7) hold}
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is essentially bounded in ⇠. Then,

j(x) = inf
y2L1

n2

F (x, y) for all x 2 Rn1 . (3.13)

In particular, x gives the minimum in the intrinsic first-stage problem (Q) if and

only if it gives the solution of the induced problem of minimizing (3.11).

More specifically, the following results hold true under mild conditions.

• Solving the primal problem (P ) may yield the same optimal value as to solve

the intrinsic problem (Q).

• The optimal solution of the intrinsic first-stage problem agrees with that of the

induced first-stage problem.

It then follows that the solution of the intrinsic first-stage problem (Q) can be ob-

tained by analyzing the Lagrangian formulation of the two-stage stochastic optimiza-

tion problem with recourse (P ), provided that the solutions can be obtained.

The rationale behind the formulation of intrinsic first-stage relies on the concept

of complete recourse, see [93].

Definition 3.2.

• Simple recourse: the feasible set of second-stage decisions is always non-empty.

• Complete recourse: for any x 2 Rn1, the feasible set of second-stage decisions

is non-empty.

• Relative complete recourse: for any feasible first-stage decision x 2 X0, the

feasible set of second-stage decisions is non-empty.
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The assumptions on relative complete recourse are usually made for ease of anal-

ysis as well as in the modelling stage of the problem, especially in building up the

inter-relation between first-stage and second-stage decisions. For the purpose of mod-

elling two-stage stochastic optimization problems (Q) and (P ), the following results

are given by Rockafellar and Wets.

Theorem 3.2. [80, Theorem 2] Let D2 be bounded, then the infimum in (3.13) is

attained for each x 2 Rn1 by at least one y 2 L1
n2
, i.e.,

j(x) = min
y2L1

n2

F (x, y) for all x 2 Rn1 .

Corollary 3.1. [80, Corollary] Let D2 be bounded, then x 2 Rn1 gives the minimum

in problem (Q) if and only if there exists y 2 L1
n2

such that z = (x, y) gives the

minimum in problem (P ).
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Chapter 4

Portfolio selection problem with

relaxed SSD constraints

In this chapter, the application of portfolio selection problem with relaxed SSD con-

straints is considered under the framework of the class of two-stage convex program-

ming developed in the previous chapter. For portfolio selection, the returns of the

assets are not known at the stage of portfolio selection so that the investment de-

cision is seen as a first-stage variable, while the random returns are realized at the

second-stage. Note that there are no second-stage decision variables in this special

case. For any given time in a random process of portfolio selection, investor solves

a portfolio selection problem whose solution will be his/her trading basket until a

realization of random return in future is revealed. The process of portfolio selection

can be repeated towards a finite investment horizon. Since the transaction costs are

not considered in this model, a side benefit would be that if the size of the basket is

small. Namely, a sparse portfolio is always favourable.
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4.1 CVaR Approximation of Portfolio Optimiza-

tion with SSD constraints

Based on the classic SSD constrained portfolio optimization problem, the proposed

SAA-based CVaR-SSD relaxation model is constructed in this section. In short, the

CVaR constraint under SAA is treated as an approximation of the SSD constraints

when CVaR probability level � tends to 1 under. It then follows that the relaxation

of CVaR constraint can be realized by lowering the CVaR probability level � to a

pre-specified value smaller than 1.

Remark 4.1. It is clear from the above expression, one interpretation of SSD is

the partial order of distribution functions. Then, one can expect the advantage of

SSD, see for example [25], over other comparing criteria from the perspective that

it can fully use the information of random variables, thus “reasonably” choose more

realistically than, e.g., MV model.

The portfolio optimization problem with SSD constraints is formulated as follows.

max
x

E[xT⇠]

s.t. x 2 X0,

x
T⇠ ⌫2 Y (⇠),

(4.1)

where x 2 Rn presents the fractions of capital invested in n assets, i.e., a portfolio. In

this setting, portfolio can only take long position, and then set of feasible portfolios

is denoted as X0 = {x 2 Rn
+, x1 + . . . + xn = 1}. The constraint in (4.1) is the

second order stochastic dominance of random return x
T⇠ over a given random return

Y (⇠), refereed to as a benchmark. Intuitively, the benchmark Y (⇠) corresponds to
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a pre-specified benchmark portfolio x̄ 2 Rn, i.e., Y (⇠) := x̄
T⇠. Note that there may

exist multiple benchmark portfolios for a given benchmark. The portfolio selection

problem with SSD constraints (4.1) seeks a portfolio x
⇤ in the sense of maximizing

the expected return while the SSD constraints, (x⇤)T⇠ ⌫2 x̄
T⇠, is satisfied.

For purposes of approximation, SSD constrained portfolio optimization problem

(4.1) is subject to reformulation.

Let H(⇠, x, ⌘) := (⌘�x
T⇠)+�(⌘�Y (⇠))+ and h(x, ⌘) = E[H(x, ⌘, ⇠)]. Recall the

equivalence relation (2.2) and the definition of SSD, problem (4.1) can be rewritten

as

min
x

E[�x
T⇠]

s.t. x 2 X0,

h(x, ⌘)  0, 8⌘ 2 R.
(4.2)

Problem (4.2) is a stochastic semi-infinite problem as well as problem (4.1). From

a numerical optimization perspective, the form of the constraints in problem (4.2)

does not provide much convenience since it does not satisfy the checkable Slater-type

constraint qualification (CQ). Consequently, one often considers a relaxed form of

problem (4.2) [22]:

min
x

�E[xT⇠]

s.t. x 2 X0,

h(x, ⌘)  0, 8⌘ 2 [a, b],

(4.3)

with a  b 2 R. In this chapter, the above problem is denoted as the SSD problem.

In order to solve problem (4.3), one needs to handle the expectation functions

in both its objective and constraints, and the SAA method is applied for a valid

computational implementation of the expectation calculation. Let ⌅ := {⇠1, · · · , ⇠N}
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be the independent and identically distributed (i.i.d.) samples of random vector ⇠

with a, b chosen such that Y (⇠) 2 [a, b], 8⇠ 2 ⌅. Thus, the SAA of the SSD problem

(4.3) is in the following form,

min
x

� 1
N

PN
i=1 x

T
⇠i

s.t. x 2 X0,

1
N

PN
i=1

�
(⌘j � x

T
⇠i)+ � (⌘j � Y (⇠i))+

�
 0, j = 1, · · · , N,

(4.4)

where ⌘j := Y (⇠j). Let the hN(x, ⌘) :=
1
N

PN
i=1

⇣
(⌘ � x

T
⇠i)+ � (⌘ � Y (⇠i))+

⌘
, and

the SAA of SSD constraints in problem (4.4) is satisfied if

max
j2{1,··· ,N}

hN(x, ⌘j)  0. (4.5)

The constraint function (4.5) can be relaxed for the purpose of enlarged feasible set

which may lead to better portfolio construction. A CVaR reformulation is firstly

adopted and recall that the equivalence relation holds true in a continuum of CVaR.

Before proceeding, be reminded that the definition of VaR of a random variable ⇣ is

VaR�(⇣) := min
�2R

{� : Prob{⇣  �} � �},

where � is the VaR probability level. The definition of CVaR used in this thesis is

adopted as in [78],

CVaR�(⇣) := min
�2R

(� +
1

1� �
E[(⇣ � �)+]).

Then, if ⌘j is treated as a scenario of a random variable ⌘, it follows that

CVaR�

�
hN(x,⌘)

�
= min

⇣2R

�
⇣ +

1

1� �
EP⌘ [(hN(x,⌘)� ⇣)+]

�
, (4.6)
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where P⌘ denotes the discrete probability measure of random variable ⌘. It follows

that problem (4.4) is approximated by

min
x

� 1
N

PN
i=1 x

T
⇠i

s.t. x 2 X0,

CVaR�(hN(x,⌘))  0.

(4.7)

In addition, when ⌘ is uniformly distributed, i.e., Prob{⌘ = Y (⇠i)} = 1
N , the con-

straint function of problem (4.7) is expressed as,

CVaRN
� (hN(x,⌘)) = min

⇣2R

�
⇣ +

1

1� �

1

N

NX

j=1

(hN(x, ⌘j)� ⇣)+
�

= min
⇣2R

 
⇣ +

1

1� �

1

N

NX

j=1

 
1

N

NX

i=1

⇣
(⌘j � x

T
⇠i)+ � (⌘j � Y (⇠i))+

⌘
� ⇣

!

+

!
.

(4.8)

In turn, the SAA-based CVaR-SSD relaxation problem based on problem (4.4) is of

the following form

min
x

� 1
N

PN
i=1 x

T
⇠i

s.t. x 2 X0,

CVaRN
� (hN(x,⌘))  0.

(4.9)

Similar approximation scheme was recently considered by Anderson et. al. [2].

In the context of portfolio optimization, SSD constraints (4.5) are regarded as an

extremely robust risk measure, while the CVaR reformulation in problem (4.9) can

lead to a relaxation of SSD, achievable via particular choice of probability level

�. More specifically, SSD constraints are relaxed in problem (4.9) by choosing the

probability level � < 1. This can be seen from the fact that SSD requires all choices
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of � 2 (0, 1] to be satisfied, and it is relaxed if some inequalities of the constraints

of problem (4.4) with index j 2 {1, . . . , N} can be violated. This in turn can be

understood as an enlargement of the feasible set in the SSD problem (4.1) by omitting

part of the support set of ⌘. In comparison with the full obedience of SSD, a less

conservative solution that violates some of the inequalities may result in possibly

better portfolio.

To demonstrate the e↵ects of this relaxation, an illustrative example is presented

as follows.

Example 4.1. Consider the problem

min
z

E[G(z, ⇠)]

s.t. E[(⌘ �G(z, ⇠))+]  E[(⌘ � Y (⇠))+], 8⌘ 2 R,
z 2 [1, 2],

(4.10)

where ⇠ ⇠ U[0, 1], G(z, ⇠) = z⇠ and

Y (⇠) :=

⇢
i
20 , ⇠ 2

⇥
0.05⇥ i, 0.05⇥ (i+ 1)

�
i = 0, . . . , 19,

1, ⇠ = 1.
(4.11)

Then for any ⌘ < 0.1 and any z 2 [1, 2], the constraint E[(⌘ � G(z, ⇠))+]  E[(⌘ �

Y (⇠))+] cannot be satisfied. Thus, problem (4.10) has no feasible solution. On the

other hand, if ⌘ is treated as a random variable ⌘ uniformly distributed over [0, 1],

there is only 10% chance that Y (⇠) cannot be “dominated” by G(z, ⇠). The relaxation

of the proposed model can be seen analogously as if this “10% chance” is omitted.

Thus, z = 2 becomes a feasible solution, as it obeys the relaxed CVaR constraint (4.6),

and the corresponding expected loss �E[G(2, ⇠)] = �1, is better than the benchmark

loss �E[Y (⇠)] = �0.5.
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4.2 Convergence analysis

In this section, the convergence analysis is presented for both the optimal values and

the behaviour of optimal solutions of SAA-based CVaR-SSD relaxation problem (4.9)

as CVaR probability level � ! 1 and sample size N ! 1. The convergence analysis

between the SSD problem (4.3) and its SAA (4.4) is considered in this section. The

convergence analysis of the SAA method of general stochastic optimization problem

with SSD has been studied in several papers [43, 57, 100, 102]. More specifically,

in [102], the exponential rate of convergence has been built under mild conditions.

The convergence results were constructed for stationary points, which is of greater

interests in nonconvex cases. In convex cases, stronger results can be achieve under

similar conditions compared to that in the aforementioned references. The work flow

of proofs in this section follows that in [102] applying to SSD problem (4.3) with the

re-proposed condition more suitable for convex cases.

The SAA of SSD problem (4.4) (SAA-SSD problem) can be rewritten as

min
x

� 1
N

PN
i=1 x

T
⇠i

s.t. x 2 X0,

1
N

PN
i=1

�
(⌘ � x

T
⇠i)+ � (⌘ � Y (⇠i))+

�
 0, ⌘ 2 [a, b],

(4.12)

and the convergence properties of optimal values and optimal solutions of SAA based

problem (4.12) as N ! 1 are considered.

Before proceeding to further theoretical results, the following assumption on CQ

holds for the remaining of this chapter.

Assumption 4.1. Slater-type CQ is satisfied in the SSD problem (4.3), i.e., there

exists a point x0 2 X0 such that
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sup
⌘2[a,b]

h(x0, ⌘) < 0.

Let µ 2 C ⇤
+([a, b]) and define the Lagrange function of the SSD problem (4.3) as

L(x, µ) = E[�x
T⇠] +

Z b

a

h(x, ⌘)µ(d⌘),

and similarly for the SAA based problem (4.12)

LN(x, µ) = � 1

N

NX

i=1

x
T
⇠i +

Z b

a

hN(x, ⌘)µ(d⌘).

Lemma 4.1. Suppose E[|⇠|] < 1, then for all x 2 X0 and ⌘ 2 [a, b], E[|xT⇠|] < 1,

h(x, ⌘) < 1 and E[krx(xT⇠)k] < 1.

The above simple result ensures the properties of the objective and the constraint

functions required for the convergence proofs. The following first-order necessary

optimality conditions of problem (4.3) and problem (4.12) follow from [102, Section

2], [5, Theorem 5.107] and [22, Theorem 4.2].

Theorem 4.1 (first-order necessary conditions). Suppose E[|⇠|] < 1 and let x⇤ 2 X0

be an optimal solution to the SSD problem (4.3). Then there exists µ
⇤ 2 C ⇤

+([a, b])

such that

8
<

:

0 2 �E[⇠] +
R b

a @xh(x
⇤
, ⌘)µ⇤(d⌘) +NX0(x

⇤),
h(x⇤

, ⌘)  0, 8⌘ 2 [a, b],R b

a h(x
⇤
, ⌘)µ⇤(d⌘) = 0,

(4.13)

where @xh(·, ⌘) denotes the Clarke subdi↵erential [20] of h, and

Z b

a

@xh(x, ⌘)µ(d⌘) =

⇢Z b

a

�(⌘)µ(d⌘) : �(⌘) 2 @xh(x, ⌘) and �(⌘) is integrable

�
.
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Similarly, the optimality conditions and first-order necessary conditions of the

SAA problem (4.12) can be shown as follows.

Theorem 4.2 (first-order necessary conditions). Suppose E[|⇠|] < 1 and let xN 2

X0 be any optimal solution to the SAA-SSD problem (4.12). Then, w.p.1 problem

(4.12) satisfies the Slater-type CQ and there exists µN 2 C ⇤
+([a, b]) such that

8
<

:

0 2 � 1
N

PN
i=1 ⇠

i +
R b

a @xhN(xN , ⌘)µN(d⌘) +NX0(xN),
hN(xN , ⌘)  0, 8⌘ 2 [a, b],R b

a hN(xN , ⌘)µN(d⌘) = 0.

(4.14)

A tuple (xN , µN(·)) satisfying (4.14) is called a KKT pair of problem (4.12),

where xN is a Clarke stationary point and µN(·) denotes the corresponding Lagrange

multiplier.

Proposition 4.1. Consider the SAA-SSD problem (4.12). Suppose E[|⇠|] < 1 and

Assumption 4.1 holds. Then, the sequence of the Langrange multipliers {µN} is

bounded w.p.1.

Proof. Note that the dual problem of (4.12) is

max
µ2C ⇤

+([a,b])
TN(µ) := min

x2X0

LN(x, µ). (4.15)

It is then su�cient to show (4.15) satisfies the boundedness condition of upper level

set in the weak topology w.p.1 when the sample size N is su�ciently large, i.e., there

exists m0 such that W(m0, N) := {µ 2 C ⇤
+([a, b]) : TN � m0} is a bounded and

nonempty set for N su�ciently large w.p.1.

Let

D0 := {x 2 X0, h(x, ⌘)  0, 8⌘ 2 [a, b]}
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be the feasible set of problem (4.3). Assume for the sake of a contradiction that

the boundedness result does not hold. Then, for every m0 2 R such that W(m0, N)

is nonempty for N su�ciently large w.p.1, there exists a sequence {mk} satisfies

mk � m0, and a sequence (Nk, µk) such that Nk ! 1, µk 2 W(mk, Nk) for each k

and kµkk ! 1. Since µk 2 W(mk, Nk), then

LNk
(x, µk) � mk � m0, 8x 2 D0.

Let µ̂k = µk/kµkk and since µ̂k is a Borel measure defined on compact set [a, b], by

Helly-Bray’s theorem (see Theorems 9.2.1-9.2.3 and Remark 9.2.1 in [4]), it has a

weakly convergent subsequence. Take a subsequence if necessary, assuming without

loss of generality (wlog) that µ̂k ! µ̂, which yields kµ̂k = 1. Dividing both sides

of the above inequality by kµ̂kk and driving k ! 1, and it is easy to observe that

w.p.1 1
Nk

PNk
i=1 x

T
⇠
i ! EP [xT⇠], hN(x, ⌘) ! h(x, ⌘) uniformly w.r.t. ⌘ 2 [a, b] and

then
Z b

a

h(x, ⌘)µ̂(d⌘) � 0, 8x 2 D0.

Note that since Slater-type CQ holds, there exists x0 2 D0 such that h(x0, ⌘) < 0

for all ⌘ 2 [a, b]. Then it holds

Z b

a

h(x0, ⌘)µ̂(d⌘) � 0,

which implies kµ̂k = 0. This contradicts the fact that kµ̂k = 1. 2

Sun and Xu [102] investigated the boundedness of Lagrange multipliers {µN}

under nonzero abnormal multipliers constraint qualification (NNAMCQ) in more
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general cases. Due to the convexity of problem (4.3), the easily checkable Slater-

type CQ can be used to prove the following result.

Theorem 4.3. Assume ⇠ is a continuous random variable, E[|⇠|] < 1 and its

support set ⌅ is bounded. Then, sequence {(xN , µN)} has cluster points and any

cluster point of the sequence, denoted as (x⇤
, µ

⇤) is a KKT pair of problem (4.3) w.p.1.

Moreover, for any ↵ > 0, there exist positive constants C(↵) and �(↵) independent

of N such that

Prob{d(xN,X⇤) � ↵}  C(↵)e�N�(↵)
,

where X
⇤ denotes the set of Clarke stationary points characterized by (4.13).

Remark 4.2. The results follow from [102, Theorem 5 and Theorem 7]. With the

benefit of convexity of problem (4.3) and linearity of xT⇠, together with Proposition

4.1, the conditions in [102, Theorem 7] can be simplified. Note also that the condition

of the continuously di↵erentiablility of h(x, ⌘) w.r.t. x for every ⌘ 2 [a, b] in [102,

Theorem 5] can be weaken to the continuity of h
o(x, ⌘, u) w.r.t. (x, u), which is

guaranteed by [102, Proposition 4], where h
o(x, ⌘, u) denotes the Clarke directional

derivative with direction u 2 Rn, see [20].

To clarify the notations, let vN and XN denote the optimal value and optimal

solution sets of (4.4) respectively. v⇤ and X
⇤ denote the optimal value and optimal

solution set of problem (4.3) respectively. Similarly, let vN(�) and XN(�) be the

optimal value and optimal solution sets of (4.9) with given �.

Theorem 4.4. Assume ⇠ is a continuous random variable, E[|⇠|] < 1 and its
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support set ⌅ is bounded. Then,

lim
N!1

lim
�!1

vN(�) ! v
⇤
, (4.16)

and

lim sup
N!1

lim sup
�!1

XN(�) ⇢ X
⇤
, (4.17)

w.p.1.

Proof. By Assumption 4.1 , for N su�ciently large, problem (4.4) satisfies Slater-

type CQ. Then by [2, Theorem 4], w.p.1,

vN(�) ! vN as � ! 1 and lim sup
�!1

XN(�) ⇢ XN .

The statements (4.16) and (4.17) follow when combining Theorem 4.3. 2

Remark 4.3. The theoretical results mainly focus on the “approximation” part of

the proposed model. The results on relaxation are mainly left in later chapters about

numerical experiments where an application on portfolio selection will be presented

to demonstrate the e↵ectiveness of the proposed relaxation model.

In a short summary, the convegence results show that the SAA approach to solve

the proposed model (4.9) can be viewed as to solve the SSD problem (4.3) with

N ! 1 and probability level � ! 1.

Remark 4.4. The general framework of two-stage stochastic model involves a re-

sponse decision once a realization of random vector is revealed. In application de-

scribed by solving the proposed portfolio selection problem, the underling mechanism
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of revenue generating is that all assets will be sold. More specifically, the second-stage

decision is equal to the first-stage decision regardless of the realization of random re-

turn vector. Under this specific setting, no recourse decision is needed as responses.

4.3 Investment over finite horizon

In later chapter on numerical experiments, the concern will be the process of making

portfolio decisions over a finite time investment horizon. The portfolio selection

method based on the investment strategy proposed in this chapter can be viewed as

to form a unit fraction of the entire investment horizon upon the choices of decision

makers. For example, a rolling window investment strategy reviews the components

of portfolio with, per say, daily basis. For every trading day, a portfolio is generated

by solving the proposed problem (4.9), seen as the first-stage decision. Note that,

although not explicitly formulated in the section of construction, the conventional

assumption in the literature of portfolio selection holds that the portfolio can be

bought at the market with the cost at the closing price of the previous trading day.

At the end of the concerned trading day, the return of the portfolio is observed

since the closing prices of components became available. Similar assumption at the

construction stage of the portfolio holds at the selling stage where all the assets are

assumed to be sold at their closing prices, and the changes in assets’ prices can be

treated as a realization of the random daily return vector. In this example, the daily

return of the portfolio is realized by calculating the di↵erence in capital before and

after the concerned trading day. The strategy can be executed periodically through

out the investment horizon.
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Chapter 5

Two-stage stochastic

Cournot-Nash game: oil market

share

In this chapter, an application of two-stage stochastic C-N game of the world’s crude

oil market is presented. In particular, the random observation a↵ecting the spot

price of oil trading is observed only after the execution of first-stage decision, the

extraction quantity of oil, while a second-stage decision, the supply quantity to the

market, needs to be made as to respond to the realization of the random event.

Moreover, the oil market is treated as an oligopolistic market in which the price

is dominantly determined by the total supply to the market contributed by all the

suppliers.

5.1 Two-stage stochastic Cournot-Nash game

The model proposed and studied in this section explores a real application in which

the inherently “ordered” components over decision horizons are of great importance.
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In particular, the decisions in the proposed stochastic strategy partially respond to

the information that is available only at the time of decision making. The model

is casted as a J-agent two-stage stochastic C-N equilibrium problem, which extends

the classical deterministic C-N equilibrium problem (see [62]) to a more general

stochastic setup.

Let ⇠ : ⌦ ! Rd be a random variable with compact support set ⌅ ✓ Rd, and

let (⌅,F , P ) denote the induced probability space. A two-stage strategy of agent

j 2 J := {1, ..., J} is denoted as

(xj 2 R, yj : ⌅! R,F -measurable), (5.1)

where xj is a first-stage decision vector and yj 2 Y denotes a measurable second-

stage response function with Y being the space of F -measurable functions defined on

⌅. Let Ln be the Lebesgue space of Rn-valued functions with L1
n denotes the class of

measurable essentially bounded functions. Following a similar treatment as in [12],

the second-stage response function of random variable is required to be essentially

bounded, i.e., yj 2 L1
1 . Collectively, the vector of strategies of all agents can be

written as

(x 2 RJ
, y : ⌅! RJ

,F -measurable). (5.2)

A strategy
�
x
⇤
j , y

⇤
j

�
2 R⇥L1

1 is said to be an C-N equilibrium if it solves the following
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problem for all agents j 2 J .

max
(xj ,yj)

W
1
j (xj, x

⇤
�j) + E

⇥
W

2
j

�
⇠, yj(⇠), y

⇤
�j(⇠)

�⇤
, (objective function)

s.t. xj 2 Xj, (first-stage constraints)

yj(⇠) 2a.s. Yj, gj

�
⇠, xj, yj(⇠)

�
a.s. 0 (second-stage constraints)

(5.3)

where

x
⇤
�j = (x⇤

1, . . . , x
⇤
j�1, x

⇤
j+1, . . . , x

⇤
J),

y
⇤
�j(⇠) = (y⇤1(⇠), . . . , y

⇤
j�1(⇠), y

⇤
j+1(⇠), . . . , y

⇤
J(⇠)),

with yj(⇠) denotes the value of response yj to realization ⇠, with

• W
1
j : R ⇥ RJ�1 ! R a first-stage wealth function of agent j, concave and

continuously di↵erentiable w.r.t. xj.

• W
2
j : ⌅ ⇥ R ⇥ RJ�1 ! R a second-stage wealth function of agent j, concave,

well-defined and finite.

• Xj, Yj nonempty, closed and convex subsets of R and the second-stage con-

straints hold a.s..

• gj : ⌅⇥R⇥R ! R a continuously di↵erentiable function w.r.t.
�
xj, yj(⇠)

�
for

a.e. ⇠ 2 ⌅ and F -measurable.

The model (5.3) is formulated under the assumption that all relevant uncertainty

can be described by a random vector ⇠ with known distribution.

Remark 5.1. The problem at concern needs to be solved by individual agent of the

system, although the modelling relies on information that is not available to each
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agent, e.g., optimal decision of other agents. However, from the perspective of the

entire system, the market1 “chooses” x 2 RJ before a realization ⇠ 2 ⌅ is revealed

and later “selects” y(⇠) 2 RJ with known realization, which solves the entire system.

5.1.1 Stochastic commodity production and supply planning

The general application of commodity production and supply in an oligopolistic

market is considered in this subsection, and it serves as a motivation as well as the

practical economic problem of interest. A stochastic game is presented in such a way

that the strategy of each agent in supply-side of the market can be described as the

solution of the stochastic optimization problem (5.3).

The decision process follows that agent j 2 J decides an optimal production

quantity xj of the commodity at the production stage, the first-stage decision vector.

At the sales stage, each agent decides a supply quantity yj(⇠) to the market after a

realization ⇠ is observed. It then follows that a total quantity T (y(⇠)) :=
PJ

j=1 yj(⇠)

is supplied to the oligopolistic market. Complication arises since the price of the

commodity depends on the entire supply in the market, contributed by all J agent at

the supply-side. Moreover, the price is not assumed to follow a deterministic inverse

demand curve. Indeed, the market is treated under the condition that even with

known quantity of total supply, the spot price is still subject to uncertainty. Recall

that the study focuses on modelling oligopolistic markets behaviour which means

that the price is dominantly a↵ected by the supplied quantity in the market T (y(⇠)).

Therefore, it follows that all the trades occur at the spot price p : ⌅ ⇥ R ! R+,

1 A “social planner” is commonly termed in literature of economics, and can be interpreted as one
individual who oversees the system and assigns strategy to each agents.
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determined by a stochastic inverse demand curve p(⇠, T (y(⇠)).

Further assumptions need to be restricted upon production and supply quantities

for each agent, e.g., capability of production plant, logistic restriction, etc., and they

are denoted as i.e., xj 2 Xj and yj(⇠) 2a.s. Yj. Note that the second-stage decision

on supply need to hold for a.e. ⇠ 2 ⌅. For example, it is natural to have non-

negative requirements for both production and supply quantities, i.e., Xj = R+ and

Yj = R+. The relations between stage-wise decision variables xj and yj are captured

by constraints gj
�
⇠, xj, yj(⇠)

�
a.s. 0 in (5.3). For example, it is reasonable to require

agent j’s supply to the market cannot exceed that of his/her production quantity,

i.e., yj(⇠) � xj a.s. 0. This can be interpreted as the fact that agents may have no

stock to supply initially, or they need to preserve certain reserved quantities prior

to each decision process. Nevertheless, every agent needs to formulate and solve

a two-stage stochastic programming problem with recourse in the sense of achieving

equilibria of a J-agents non-cooperative game of the market.

Problem (5.3) can also be viewed from the perspective of the intrinsic first-stage

problem. As seen from the first-stage, agent j 2 J wants to find a production

quantity xj � 0 that maximizes

W
1
j (xj, x

⇤
�j) + E

⇥
 j(xj, x

⇤
�j, ⇠)

⇤
, (5.4)

where,

 j(xj, x
⇤
�j, ⇠) = sup

yj(⇠)�0
{W 2

j (⇠, yj(⇠), y
⇤
�j(⇠)) | xj � yj(⇠), for a.e. ⇠ 2 ⌅}. (5.5)

Objective function in (5.4) can be seen as the expected profit of agent j’s and prob-

lems (5.4)-(5.5) are formulated following the discussion in previous chapter. Recall
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that the key feature of intrinsic first-stage problem compares to formulation (5.3) is

the requirement on precise orders of decision execution, commonly known as the con-

straints of nonanticipitivity. In (5.4)-(5.5), the second-stage decisions are explicitly

determined after the first-stage decision, provided for each xj the second-stage prob-

lem is well-defined [93]. However, the study of optimality condition of (5.4)-(5.5),

in the case of a general induced probability space2 (⌅,F , P ), is very complicated

since one needs to characterize the order of the decision process explicitly. For ease

of analysis, assuming that there exists a multiplier �j 2 L1
1 corresponds to second-

stage constraint. Therefore, the study of saddle-point condition of the Lagrangian

formulation of problem (5.3) can be carried out. It is worth mentioning that the

basic KKT condition of problem (5.3) (see [79]) introduces a second-stage multiplier

�̃j 2 (L1
1 )⇤ for every j 2 J which incorporates the two-stage decision making pro-

cess. It has been shown by Rockafellar and Wets in [81] that any element of the dual

space (L1
1 )⇤ can be decomposed into a component of L1

1 and a “singular” component,

corresponding to the multiplier of nonanticipativity. The saddle-point condition is

shown to be su�cient and “almost” necessary for optimality of problem (5.3), and

the interested readers may refer to [79–82,85] for more details.

The Lagrangian formulation of problem (5.3) associated with agent j is of the

following form

Lj(xj, x
⇤
�j, yj, y

⇤
�j,�j) = L

1
j(xj, x

⇤
�j) + E

⇥
L
2
j

�
xj, ⇠, yj(⇠), y

⇤
�j(⇠),�j(⇠)

�⇤
,

2 In cases of finitely supported distribution, the equivalence between intrinsic first-stage problem
and the original recourse problem can be established, and the optimality condition of the recourse
problem can be applied, see for example [85].
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where

L
1
j(xj, x

⇤
�j) = W

1
j (xj, x

⇤
�j),

L
2
j

�
xj, ⇠, yj(⇠), y

⇤
�j(⇠),�j(⇠)

�
= W

2
j (⇠, yj(⇠), y

⇤
�j(⇠)) + �j(⇠)(xj � yj(⇠)) for a.e. ⇠ 2 ⌅.

Remark 5.2. The constraints yj(⇠) a.s. xj can be interpreted as the situation under

which the profit maximizing supply y
⇤
j (⇠) of agent j is not necessarily equal to the

total production quantity xj. Recall the application in portfolio selection in previous

chapter can be seen as a special case in which all the first-stage assets are sold after

the random returns are realized. This feature of the proposed model di↵ers from con-

ventional requirement on production-clearing condition, i.e., all the produced goods

are expected to supply to the market, and is only allow if one takes the dynamics of

decisions into account.

5.1.2 Construction of two-stage cost functions

The remaining of this section is devoted to specify and clarify the structures of wealth

functions, W 1
j and W

2
j , suitable for describing oligopolistic markets of homogeneous

commodity.

• The production cost for j-th agent is assumed to be quadratic, i.e., for each

j 2 J the cost of producing xj amount of production is 1
2cjx

2
j + ajxj, for some

cj > 0, aj > 0.

• The cost function of the supply or second-stage is linear and of stochastic

nature, i.e., for each j 2 J the cost of supplying yj(⇠) amount of commodity

is hj(⇠)yj(⇠) for a.e. ⇠ 2 ⌅.
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• A classic stochastic inverse demand curve is chosen, see for example [44], which

takes the expression p
�
⇠, T (y(⇠))

�
= p0(⇠)� �(⇠)T (y(⇠)) for the spot price for

a.e. ⇠ 2 ⌅.

Remark 5.3. The intuitive choice of linear cost function with an upper bound on

first-stage decision in the production stage is not adopted. The linear cost model

is commonly used by practitioners in business studies of oil industry but not widely

accepted by researchers in economics, see [95]. Moreover, in the numerical experi-

ments, it is found that the linear cost of the first-stage problem behave badly in the

sense that the real market share cannot be reproduced.

The model in turn requires two sets of parameters to be chosen, namely the deter-

ministic parameters of the first-stage wealth model, cj, aj and stochastic parameters

in the second-stage of the problem, p0(⇠), �(⇠), hj(⇠).

Remark 5.4. Although the cost of the production, characterized by cj and aj, and

the cost in supply, controlled by hj(⇠) are di↵erent for each agent, the spot price at

which the trading occurs is common for all the agents.

As will be described in later chapters on numerical experiments, the stochastic

benchmark price excluding the e↵ect of supply to the market p0 : ⌅ 7! R+ is estimated

via statistical approaches based on real data. The supply discount � : ⌅! R+ acts

as a market mechanism to adjust and reflect uncertainty in quantity in the market

is also generated from historical data sets.

In order to respect the market mechanism of supply-demand relation, the follow-

ing assumption is made through out this study.
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Assumption 5.1. There exists a �0 > 0 such that �(⇠) � �0 for a.e. ⇠ 2 ⌅.

The assumption holds naturally for common goods, i.e., the price of common

goods drops with larger quantity becomes available in the market provided the de-

mand is always greater or equal to the supply, a condition always ensured under

the oligopolistic market setting. Once the stochastic parameters are chosen to obey

that of the historical observation, deterministic parameters are specified from an

in-sample learning process dedicated to reduce the observation error to those of the

known data sets. The detailed discussion is presented in later chapters.

Thus, agent j’s stage-wise wealth functions are,

W
1
j (xj, x

⇤
�j) = �1

2
cjx

2
j � ajxj,

and

W
2
j (⇠, yj(⇠), y�j(⇠)) =

�
pj(⇠)� �(⇠)T (y(⇠))

�
yj(⇠),

where the short-handed notation of the risk-adjusted spot price of agent j’s is denoted

by pj(⇠) := p0(⇠)� hj(⇠). Thus, for every agent j 2 J the ordered decision problem

reads

max
xj

E[ j(x, ⇠)]�
1

2
cjx

2
j � ajxj

s.t. 0  xj,

(5.6)

where

 j(⇠, x) = max
yj(⇠)

⇣
pj(⇠)� �(⇠)

⇣ JX

i 6=j

y
⇤
i (⇠) + yj(⇠)

⌘⌘
yj(⇠)

s.t. 0  yj(⇠)  xj, for a.e. ⇠ 2 ⌅.

(5.7)
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Note that the requirements in problem (5.7) hold almost surely in accordance with

the a.s. constraints of the second-stage in problem (5.3). Similar to that of the

intrinsic first-stage problems (5.4)-(5.5), problems (5.6)-(5.7) are also not easy to

solve, especially in an SNEP with J � 2, see [13]. Further complication arises since

the j-th agent’s problem contains those of the other agents’ strategies, not known at

the decision horizon.

The approach adopted for this problem is to recast problems (5.6)-(5.7) of each

agent as a stochastic equilibrium problem of the entire system of J agents. It follows

that obtaining an equilibrium of the convex J-player game (5.6)-(5.7) is equivalent

to finding solutions for all agents. It is well-known that stochastic equilibrium has

been shown to be an e↵ective approach to study and to solve two-stage multi-players

stochastic game problems, see for instance [15,70,77,85,98]. In the remaining of this

chapter, the saddle-point condition of the problem (5.6)-(5.7) is studied, rewritten

in the form of two-stage stochastic problem (5.3). More specifically, assuming that

for all j 2 J there exists �̄j(⇠) 2 L1
1 with �̄(⇠) �a.s. 0 so that a strategy

�
x̄j, ȳj

�
2

R+ ⇥ L1
+ solves the following system.

� cjx̄j � aj + E
⇥
�̄j(⇠)

⇤
2 N[0,1)(x̄j),

pj(⇠)� �(⇠)
JX

i 6=j

ȳi(⇠)� 2�(⇠)ȳj(⇠)� �̄j(⇠) 2a.s. N[0,1)(ȳj(⇠)), (stationality)

x̄j � 0, ȳj(⇠) �a.s. 0, x̄j � ȳj(⇠) �a.s. 0, (feasibility)

�̄j(⇠) �a.s. 0, (dual feasibilty)

�̄j(⇠) ?a.s. (x̄j � ȳj(⇠)). (complementarity)

In particular, stationarity is defined for the first-order necessary optimality condition
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under the assertion @xE
⇥
 j(x, ⇠)

⇤
✓ E

⇥
@x j(x, ⇠)

⇤
. The details about the above

assertion are discussed recently in [7], and it is not hard to see that the above system

is viewed as a weaker condition for optimality.

Rewritten in a compact form as an SVI, the optimal strategy-multiplier triplet

(xj, yj,�j) 2 R+ ⇥ L1
+ ⇥ L1

+ must satisfy,

0  xj ? cjxj + aj � E
⇥
�j(⇠)

⇤
� 0,

0 a.s. yj(⇠) ?a.s. � pj(⇠) + �(⇠)
JX

i 6=j

yi(⇠) + 2�(⇠)yj(⇠) + �j(⇠) �a.s. 0,

0 a.s. �j(⇠) ?a.s. xj � yj(⇠) �a.s. 0.

(5.8)

It then follows that since all agents in oligopolistic market act non-cooperatively,

the collective equilibrium can be interpreted as that of the whole market. More

specifically, let

x = (x1, . . . , xJ)
T

be the first-stage decision vectors of the system, and for a.e. ⇠ 2 ⌅, second-stage

decision vector

y(⇠) =
�
y1(⇠), . . . , yJ(⇠)

�T

and the corresponding multiplier vector

�(⇠) =
�
�1(⇠), . . . ,�J(⇠)

�T

are denoted respectively. Analogously, parameter vectors can be written as

a = (a1, . . . , aJ)
T
,

p(⇠) =
�
p1(⇠), . . . , pJ(⇠)

�T
.
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Then, the SVI for all agents can be treated as a two-stage SCP:

0  x ? Cx� E[�(⇠)] + a � 0,

0 
✓
y(⇠)
�(⇠)

◆
?
✓
⇧(⇠) I

�I 0

◆✓
y(⇠)
�(⇠)

◆
+

✓
�p(⇠)
x

◆
� 0, for a.e. ⇠ 2 ⌅,

(5.9)

where

C = diag(c1, c2, ..., cJ),

⇧(⇠) = �(⇠)(eeT + I).

It follows that for the whole system, a J-tuple of triplets

�
x
⇤
, y

⇤
,�

⇤� =
�
(x⇤

1, y
⇤
1,�

⇤
1), . . . , (x

⇤
J , y

⇤
J ,�

⇤
J)
�
2 RJ ⇥ L1

J ⇥ L1
J

is called a solution of the two-stage SCP (5.9).

5.2 Structure of two-stage stochastic complemen-

tarity problem

In this section, the focus is on characterizing solutions of two-stage stochastic linear

complementarity problem (5.9). From the derivation of first-order necessary opti-

mality conditions of problem (5.6)-(5.7) and the monotonicity of problem (5.9), the

following results can be derived on existence of solutions.

Proposition 5.1 (Theorem 2, [88]). For any given fixed pair (x, ⇠) 2 RJ
+ ⇥ ⌅, the

second-stage problem (5.7) has a unique solution.

Remark 5.5. If the second-stage problem (5.7) is treated with given first-stage deci-

sion, one can write down its first order necessary optimality condition. The di�culty
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is that in the saddle-point characterization of the Lagrangian formulation of problems

(5.6)-(5.7) the first order necessary condition cannot be written. However, the whole

system (5.9) can be regarded as a necessary condition for achieving an equilibrium of

problems (5.6)-(5.7).

Considering the entire two-stage decision process, represented by the two-stage

stochastic linear complementarity problem (5.9), the following proposition holds.

Proposition 5.2. The two-stage stochastic linear complementarity problem (5.9)

has relatively complete recourse, i.e., for any x 2 RJ
+ and a.e. ⇠ 2 ⌅ the second-stage

problem of (5.9) is solvable.

Proof. The coe�cient matrix of the second-stage part of (5.9)

M(⇠) =

✓
⇧(⇠) I

�I 0

◆

is positive semidefinite for a.e. ⇠ 2 ⌅. For any given x 2 RJ
+, it follows that there

always exists a pair
�
ŷ(⇠), �̂(⇠)

�
2 RJ ⇥ RJ , such that

✓
ŷ(⇠)
�̂(⇠)

◆
� 0,

✓
⇧(⇠) I

�I 0

◆✓
ŷ(⇠)
�̂(x)

◆
+

✓
�p(⇠)
x

◆
� 0, for a.e. ⇠ 2 ⌅.

In details, the special choices of ŷ(⇠) = 0 and �̂(⇠) = max{0, p(⇠)} can always be

taken, where the max function is taken component-wise. Then, the corresponding

quadratic programming problem of the linear complementarity problem is feasible

regardless of the choice of x. Thus, it follows from [74, Lemma 3.1.1, Theorem 3.1.2]

that there exist at least one solution which solves the second-stage problem for any

given pair (x, ⇠) 2 RJ
+ ⇥ ⌅. 2
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Although the second-stage problem (5.7) has a unique equilibrium for any given

(x, ⇠) 2 RJ
+ ⇥ ⌅, the equilibrium system (5.9) may admit multiple solutions. This

can be easily shown with an illustrative example.

Example 5.1. Consider a duopoly game, i.e., x = (x1, x2)T � 0, and �p(⇠) �a.s. 0.

If then follows that the corresponding second-stage part of complementarity system

(5.9) reads

0 

0

BB@

y1(⇠)
y2(⇠)
�1(⇠)
�2(⇠)

1

CCA?

0

BB@

2�(⇠) �(⇠) 1 0
�(⇠) 2�(⇠) 0 1
�1 0 0 0
0 �1 0 0

1

CCA

0

BB@

y1(⇠)
y2(⇠)
�1(⇠)
�2(⇠)

1

CCA+

0

BB@

�p1(⇠)
�p2(⇠)
x1

x2

1

CCA � 0, for a.e. ⇠ 2 ⌅.

(5.10)

Then, the solution set of (5.10) takes the form
(
(0, 0, �̃1(⇠), �̃2(⇠)) : �̃1(⇠) =

(
0, x1 > 0

�1(⇠), x1 = 0
, �̃2(⇠) =

(
0, x2 > 0

�2(⇠), x2 = 0
, for a.e. ⇠ 2 ⌅

)
,

where �1(⇠) �a.s. 0,�2(⇠) �a.s. 0.

In Example 5.1, multiplier � may admit multiple values when there exist some

zero-valued components of x.

Technically, the multiple solutions of the second-stage problem will cause trou-

ble when handling the two-stage stochastic complementarity system (5.9), both in

computation and analysis, see [93] for more detailed discussion. To avoid this, the

assumption ensuring the uniqueness of second-stage solution is usually made, see for

instance [13, 15].

Remark 5.6. In literatures in finance and economics, the terms “equilibrium price”

or “shadow price” are used to denote multipliers corresponds to the constraints. In-
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terpreted as an “equilibrium price” associated with agents’ production clearing, mul-

tiple values of � would have ambiguous economical interpretations.

Motivated by these, a partial regularization modification is proposed to seek for

one particular choice of equilibrium prices. For any ✏ > 0, let

M
✏(⇠) =

✓
⇧(⇠) I

�I ✏I

◆
and q(x, ⇠) =

✓
�p(⇠)
x

◆

and thus, the regularized second-stage SCP can be written as

0 
✓
y(⇠)
�(⇠)

◆
?M

✏(⇠)

✓
y(⇠)
�(⇠)

◆
+ q(x, ⇠) � 0, for a.e. ⇠ 2 ⌅. (5.11)

Then, the corresponding regularized SCP of (5.9) is in the following form.

0  x ? Cx� E[�(⇠)] + a � 0,

0 
✓
y(⇠)
�(⇠)

◆
? M

✏(⇠)

✓
y(⇠)
�(⇠)

◆
+ q(x, ⇠) � 0, for a.e. ⇠ 2 ⌅.

(5.12)

For a given pair (x, ⇠) 2 RJ
+⇥⌅, the second-stage problem of (5.9) and the regular-

ized second-stage problem (5.11) are denoted by LCP(q(x, ⇠),M(⇠)) and LCP(q(x, ⇠),M ✏(⇠))

respectively. Their solution functions are chosen from the respective solution sets

and expressed by z(q(x, ⇠)) and z
✏(q(x, ⇠)), detailed analysis can be seen in [16]. In

the sequel, the expression ⇠ and x are omitted without causing any confusion, i.e.,

LCP(q,M) := LCP(q(x, ⇠),M(⇠)) and LCP(q,M ✏) := LCP(q(x, ⇠),M ✏(⇠)).

For clearer demonstration, recall that the illustrative Example 5.1, and consider

its partially regularized approach. Thus, the second-stage of the regularized problem
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takes the following form

0 

0

BB@

y1(⇠)
y2(⇠)
�1(⇠)
�2(⇠)

1

CCA?

0

BB@

2�(⇠) �(⇠) 1 0
�(⇠) 2�(⇠) 0 1
�1 0 ✏ 0
0 �1 0 ✏

1

CCA

0

BB@

y1(⇠)
y2(⇠)
�1(⇠)
�2(⇠)

1

CCA+

0

BB@

�p1(⇠)
�p2(⇠)
x1

x2

1

CCA � 0, for a.e. ⇠ 2 ⌅.

(5.13)

Under the same condition as in Example 5.1, the unique solution of (5.13) can be

obtained. In this example, the trivial solution (ỹ1, ỹ2, �̃1, �̃2)T = (0, 0, 0, 0)T for a.e.

⇠ 2 ⌅ is the unique solution. Due to the positive definiteness of C, it follows that

the unique solution of the first-stage problem is (x1, x2)T = (0, 0)T . Then, for any

✏ > 0, one particular solution of the original problem is obtained, the trivial solution

in this example.

Remark 5.7. The key feature of regularized method is that it promises the existence

and uniqueness of solution due to the strongly monotone of regularized two-stage

problem.

In the remaining of this section, the relation between the first-stage and second-

stage solutions are explored via the solution z
✏ of LCP(q,M ✏). It will later help to

analyze the structure of the second-stage solution.

Proposition 5.3. For any fixed ✏ > 0, the regularized problom (5.12) has a unique

solution (x✏
, y

✏
,�

✏) 2 RJ ⇥ Y ⇥ Y.

Proof. The result can be obtained via a similar procedure as in [15, Proposition 2.1

(i)] and one needs to show that the condition in [15, Assumption 1] holds. Recall
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that from Assumption 5.1, for a.e. ⇠ 2 ⌅, it holds that

0

@
x

u(⇠)
v(⇠)

1

A
T 0

@
C 0 �I

0 ⇧(⇠) I

I �I ✏I

1

A

0

@
x

u(⇠)
v(⇠)

1

A � ⌧(kxk2 + ku(⇠)k2 + kv(⇠)k2),

where ⌧ = 2min{c̄, �0(J + 1), ✏} with c̄ denoting the minimum diagonal element of

C. 2

The following result gives the potential expressions of the second-stage decision,

provided the first-stage decision is made and the observation of ⇠ is realized. This

can be understood as if the agent has advanced in the decision horizon as to observe

the second-stage execution of the market.

Theorem 5.1. For any fixed ✏ > 0, x � 0 and a.e. ⇠ 2 ⌅, the j-th component of the

solution of problem (5.11)
�
(y✏)j, (�✏)j

�
is either (0, 0), or one of the following two

forms:
✓
��(⇠)T

✏ � pj(⇠)

�(⇠)
, 0

◆
,

✓
�✏(�(⇠)T

✏ � pj(⇠))� xj

✏�(⇠) + 1
,

�(⇠)(T ✏ + xj)� pj(⇠)

✏�(⇠) + 1

◆ (5.14)

for j 2 J , where

T
✏ :=

JX

i=1

(y✏)i =
�(⇠)

P
i2I3 xi + ✏�(⇠)

P
i2I2[I3 pi(⇠) +

P
i2I2 pi(⇠)�

✏�(⇠)(|I2|+ |I3|+ 1) + |I2|+ 1
�
�(⇠)

(5.15)

with

I2 = {j 2 J : �(⇠)T ✏ + (�✏)j � pj(⇠) < 0, (y✏)j � xj  0} ,

I3 = {j 2 J : �(⇠)T ✏ + (�✏)j � pj(⇠) < 0, (y✏)j � xj > 0} ,
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where |I2| and |I3| denote the cardinality of I2 and I3 respectively.

The detailed proof of the Theorem 5.1 is given in Appendix. For detailed discus-

sion on the expression of the second-stage solution, the interested readers are referred

to the Ph.D thesis of Mr. Jie Jiang [46], a collaborator of the author who partly

contributed to the theoretical analysis in the study of oil market share. Note that the

above theorem gives the forms of the unique solution of the second-stage regularized

problem (5.11). However, it may not be used to aid numerical calculation since the

partition of the index sets Is is not known in advance. Nevertheless, it is su�ce for

the purposes of deriving structural properties of the solutions.

Due to the positive definiteness of M ✏ and special structure of problem (5.11),

the following Lipschitz continuous property can be seen, following [16, Corollary 2.1].

Lemma 5.1. There exists L > 0 such that for any fixed ✏ 2 (0, 1], it holds

kz✏
�
q(x1, ⇠)

�
� z

✏
�
q(x2, ⇠)

�
k  Lkx1 � x2k, for x1, x2 2 RJ

+ and a.e. ⇠ 2 ⌅.

An interesting result derived from the proposed model is that an upper bound of

the total supply to the market can be expressed for any given first-stage decision x

and realization ⇠ 2 ⌅.

Lemma 5.2. For any fixed ✏ > 0 and (x, ⇠) 2 RJ
+ ⇥ ⌅, T ✏ has the following upper

bound:

T
✏  kxk1 +

✓
✏+

1

�(⇠)

◆
kp(⇠)k1.
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Proof. The following derivation follows from (5.15) that

T
✏ =

�(⇠)
P

i2I3 xi + ✏�(⇠)
P

i2I2[I3 pi(⇠) +
P

i2I2 pi(⇠)

(✏�(⇠)(|I2|+ |I3|+ 1) + |I2|+ 1) �(⇠)

�(⇠)
PJ

i=1 xi + (✏�(⇠) + 1)
PJ

i=1 |pi(⇠)|
(✏�(⇠)(|I2|+ |I3|+ 1) + |I2|+ 1) �(⇠)

�(⇠)
PJ

i=1 xi + (✏�(⇠) + 1)
PJ

i=1 |pi(⇠)|
�(⇠)

=kxk1 +
✓
✏+

1

�(⇠)

◆
kp1(⇠)k1.

2

As seen at the time before second-stage decisions are made, the convergence result

of the second-stage LCP(q,M ✏) solutions can be established as ✏ # 0 for any given

pair (x, ⇠) 2 RJ ⇥ ⌅.

Proposition 5.4. For any fixed ✏ > 0 and (x, ⇠) 2 RJ
+ ⇥⌅, let z✏(⇠) = (y✏(⇠),�✏(⇠))

denote the unique solution of the regularized problem LCP(q,M ✏). Then

lim
✏#0

kz✏(⇠)� z̄(⇠)k = 0,

where z̄(⇠) = (ȳ(⇠), �̄(⇠)) denotes the unique least l2-norm solution of the LCP(q,M).

Moreover, the j-th component of the least l2-norm solution of problem (5.9) has one

of the following three forms:

⇢
(0, 0),

✓
��(⇠)T̄ � pj(⇠)

�(⇠)
, 0

◆
,

⇣
xj,��(⇠)(T̄ + xj) + pj(⇠)

⌘�
(5.16)

for j 2 J , where

T̄ := lim
✏#0

T
✏ =

JX

i=1

ȳi.
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Furthermore, for a.e. ⇠ 2 ⌅ there exists ̄(⇠) > 0, such that

k�✏(⇠)� �̄(⇠)k  ̄(⇠)✏. (5.17)

The details on the proof of Proposition 5.4 is given in Appendix.

5.3 Convergence analysis

In this section, the convergence of the unique solution of the regularized problem

(5.12) to the solution set of the original problem as the regularized parameter ✏

decreases to zero is provided. The SAA method is used to solve the regularized

problem for fixed choice of regularization parameter, similar approach can be seen in

[14]. Combined with the results from the regularization approaches, the convergence

property of the solution of the regularized SAA model as the number of samples goes

to infinity is demonstrated.

5.3.1 Convergence of the regularized model

For any given first-stage decision, the convergence results for the second-stage have

been shown in previous subsection. Thus, only the convergence properties of the first-

stage decision vector needs to be considered in this part of the thesis, i.e., x✏ 2 RJ
+

that solves problem (5.12) when the regularized parameter ✏ tends to zero. Then,

the convergence property of the solution (x✏
, y

✏
,�

✏) follows. From Proposition 5.3,

for fixed ✏ > 0 problem (5.12) admits a unique first-stage solution x
✏.

In the following, we consider the sequence of accumulation points of {x✏} as ✏ # 0.

For the existence of accumulation points, the following result about the bound-

edness of the first-stage solutions can be shown.
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Proposition 5.5. Suppose there exists p0 > 0 such that for all j 2 J , pj(⇠) a.s. p0.

Then, with ✏ # 0, {x✏} is bounded.

Proof. From the condition on pj(⇠), there must exist a su�ciently large ↵ > 0 such

that for any j 2 J

�0↵� pj(⇠) > 0, for a.e. ⇠ 2 ⌅.

Then it holds

��(⇠)(T
✏ + ↵)� pj(⇠)

✏�(⇠) + 1
< 0, for a.e. ⇠ 2 ⌅.

Assume that {x✏} is unbounded for the purpose of achieving a contradiction. Then,

it follows that there exist some indices j 2 J , such that (x✏)j � ↵. Considering the

j-th component of the first-stage complementarity relation,

0  (x✏)j?cj(x
✏)j � E

⇥�
�
✏(⇠)

�
j

⇤
+ aj � 0,

which can be expressed, from (5.14), as

0  (x✏)j?cj(x
✏)j + aj � 0.

However, this complementarity relation cannot be obtained because (x✏)j > 0 and

cj(x✏)j + aj > 0. This completes the proof. 2

Remark 5.8. Note that the conditions pj(⇠) a.s. p0 can be easily satisfied in many

practical applications. For example, with finite data set of p(⇠) with given ⇠ 2 ⌅, it

can always find an upper bound p0 := maxj{pj(⇠)}.

The next lemma concerns about the convergence results on the expected equilib-

rium price.
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Lemma 5.3. Suppose there exists a constant p0 > 0 such that, for all j 2 J ,

pj(⇠) a.s. p0. Then, there exists a subsequence {✏k}1k=1 with ✏k # 0 as k ! 1 such

that with �k = �
✏k ,

lim
k!1

E[�k(⇠)] = E[�̄(⇠)].

Proof. From the results of Proposition 5.5, there must exist an accumulation point

of {x✏} as ✏ # 0, denoted by x̂. Taking a subsequence {✏k}1k=1 with ✏k # 0 as k ! 1

if necessary. Deriving from Proposition 5.5 and inequality (5.17) that
��E[�k(⇠)]� E[�̄(⇠)]

��


���E[�k(⇠)]� E[�̂(⇠)]

���+
���E[�̂(⇠)]� E[�̄(⇠)]

���

 E[̄(⇠)]✏k +
���E[�̂(⇠)]� E[�̄(⇠)]

���,

where for given ⇠ 2 ⌅, �̂(⇠) denotes the multiplier component of the least norm

solution of problem (5.9) with x̂. It follows from Lemma 5.1 that for a.e. ⇠ 2 ⌅

����̄(⇠)� �̂(⇠)
��� = 0.

Furthermore, the estimation
����̄(⇠)� �̂(⇠)

��� 
���̄(⇠)

��+
����̂(⇠)

���

 4
p
J
�
�(⇠)kwk1 + kp(⇠)k1

�
, for a.e. ⇠ 2 ⌅,

can be derived where the last term comes from (5.16) with some w > 0. It then

follows from the Lebesgue Dominated Convergence Theorem,
���E[�̂(⇠)]� E[�̄(⇠)]

��� = 0.

2
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Theorem 5.2. Any accumulation triplet of {x✏
, y

✏
,�

✏} as ✏ # 0 is a solution of

problem (5.9).

Proof. The proof requires to verify that for any ✏k # 0, the accumulation point x̂ of

subsequence {x✏k} is a first-stage solution of (5.9). Since x✏k is the first-stage solution

of problem (5.12) for any ✏k > 0, it has with x
k = x

✏k

0  x
k?Cx

k � E[�k(⇠)] + a � 0,

which, by using the ‘min’ NCP function (see, for example, [74]), can be rewritten as

min{xk
, Cx

k � E[�k(⇠)] + a} = 0.

By Lemma 5.3, it holds

0 = lim
k!1

min{xk
, Cx

k � E
⇥
�
k(⇠)

⇤
+ a} = min{x̂, Cx̂� E[�̄(⇠)] + a}

as k ! 1. Thus we obtain that

min{x̂, Cx̂� E[�̄(⇠)] + a} = 0.

The statement then follows from Proposition 5.4. 2

5.3.2 Convergence of the regularized SAA model

In this subsection, the SAA scheme for solving the regularized problem (5.12) is

studied and the focus is on the convergence of the regularized SAA approach. It

is noteworthy that Chen, Sun and Xu considered a discrete approximation scheme

in [15], which also leads to an approximation of the response variable in the second-

stage problem.
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Let ⇠1, ⇠2, . . . , ⇠N denote N independent identically distributed (i.i.d.) samples.

Then, with slight abuse of notation, the following formulation of problem (5.12) with

SAA can be obtained:

0  x?Cx� 1

N

NX

`=1

�(⇠`) + a � 0,

0 
✓
y(⇠`)
�(⇠`)

◆
?
✓
⇧(⇠`) I

�I ✏I

◆✓
y(⇠`)
�(⇠`)

◆
+

✓
�p(⇠`)

x

◆
� 0, ` = 1, . . . , N.

(5.18)

Or, the problem can be written collectively for all N samples

0 

0

BBB@

x

v1
...
vN

1

CCCA
?

0

BBB@

C
1
NB . . .

1
NB

�B
T

D
✏
1

...
. . .

�B
T

D
✏
N

1

CCCA

0

BBB@

x

v1
...
vN

1

CCCA
+

0

BBB@

a

q1
...
qN

1

CCCA
� 0, (5.19)

where C 2 R
J⇥J

, B =
�
0 �I

�
2 R

J⇥2J , and for ` = 1, . . . , N ,D✏
` =

✓
⇧(⇠`) I

�I ✏I

◆
2

R
2J⇥2J , v` = (y(⇠`), �(⇠`))T , q` = (�p(⇠`), 0)T . Thus, (5.19) is treated as a large-scale

deterministic linear complementarity problem:

0  z?H
✏
z + q̄ � 0, (5.20)

where z = (x, v1, ..., vN)T , q̄ = (a, q1, · · · , qN)T , and H
✏ denotes the coe�cient matrix

in (5.19).

The following assertion of existence and uniqueness of problem (5.18) follows

from [74, Theorem 3.1.6].

Proposition 5.6. For any fixed ✏ > 0 and positive integer N , there exists a unique

solution of problem (5.18).
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Recall the result of Lemma 5.1 and the following proposition can be shown in a

similar way as in [14, Proposition 3.7].

Proposition 5.7. Let (y✏(⇠),�✏(⇠)) be the unique solution of the regularized second-

stage problem (5.12) for any (x, ⇠) 2 RJ
+ ⇥ ⌅. Then,

1

N

NX

`=1

�
✏(⇠`) ! E[�✏(⇠)]

with probability (w.p.) 1 as N ! 1 uniformly on B(x, �) \ RJ
+ for any � > 0,

Let x✏
N denote the first J-components of the unique solution of problem of (5.18),

and the following assertion holds.

Lemma 5.4. Suppose there exists p0 > 0 such that for all j 2 J , pj(⇠) a.s. p0.

Then, with ✏ # 0, {x✏
N} is bounded.

The proof is omitted since it can be shown analogously as in Proposition 5.5.

Theorem 5.3. Suppose there exists p0 > 0 such that for all j 2 J , pj(⇠) a.s. p0.

Then, for any fixed ✏ > 0, x✏
N ! x

✏ w.p. 1 as N ! 1.

Proof. From Propositions 5.3, Proposition 5.6, and Lemma 5.4, for any fixed ✏ > 0,

both the regularized problem (5.12) and its SAA-regularized problem (5.18) have

solutions and contained in some compact subset in RJ
+. Known from Proposition 5.7

that

1

N

NX

`=1

�
✏(⇠`) ! E[�✏(⇠)]
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as N ! 1, uniformly w.r.t. x on any compact set. Then, x✏
N ! x

✏ w.p. 1 as

N ! 1 by [92, Proposition 19]. 2

Combining Theorem 5.2 with Theorem 5.3, the following convergence result re-

lates the original problem and the solution approach of the proposed model.

Theorem 5.4. Suppose there exists p0 > 0 such that for all j 2 J , pj(⇠) a.s. p0.

Then,

lim sup
✏#0

lim
N!1

x
✏
N ✓ S

⇤
,

w.p. 1, where S
⇤ denotes the optimal solution set of the first-stage problem of (5.9).

— 78 —



Chapter 6

Numerical Results on Applications

The practical applicability of the model is a great concern for researches in the field

of applied mathematics. In this chapter, two models developed in previous chapters

are put to test where the historical data are used for both in-sample demonstration

and out-sample predictions.

In the application of portfolio selection, the SAA-based CVaR-SSD relaxation

model is formulated against di↵erent portfolio construction methods in three stock

exchange markets. The solutions of the model are then used directly for constructing

assets allocation within a series of portfolios. The performances of the portfolios

within an investment horizon will be demonstrated and analyzed, compared to both

the benchmark portfolios and the solutions of di↵erent variations of the proposed

SAA-based CVaR-SSD relaxation model. More specifically, one feature that is not

obviously apparent in the theoretical formulation of the model is that it allows, to

certain extend, flexibility in its formulation stage to be tuned to better perform in

specific financial market.

The second application focuses more on the exploration of market mechanism
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behind the observation of oil market share behaviour. Namely, one explanation of

the interesting fact of stable market share through out the entire history of crude

oil trading is approached from the aspects of the Cournot-Nash equilibrium, char-

acterized by solutions of stochastic C-N games. The model is formulated obeying

observed facts in crude oil extraction and trading together under mild conditions,

widely accepted in both stochastic optimization literatures and economic studies of

oil market. Through the numerical experiments attempting to reproduce historical

oil market share, certain features in the modelling part of the two-stage stochastic

game can be understood more clearly. Moreover, the insights of the numerical results

further reflect the specialty of the game theory explanation of the world oil market.

For both applications, the particular computational methods used are firstly de-

scribed. The data sets used for the experiments are explained in detail which is of

research values on its own. One feature worth emphasising for the numerical ex-

periments on general stochastic optimization problems is the method of sampling

scenarios of random vectors. More specifically, history as seen at the present stage

has already be determined while the realization in the future is not observable.

6.1 Portfolio selection via SAA-based CVaR-SSD

relaxation problem

The holy grail of the problem of portfolio selection is, by definition, the construc-

tion of better portfolio over a given benchmark. In this section, the results of the

empirical studies on SAA-based CVaR-SSD relaxation model are presented. The

methodology of identifying advantageous portfolio construction strategies is to com-

pare the resulting portfolios in terms of their performance, and in turn, to analyze
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and compare the corresponding strategies of constructing them. All the portfolios

under comparison are obtained by solving the corresponding portfolio optimization

problems, e.g., index tracking, MV model, SSD model and SAA-based CVaR-SSD

relaxation model. More specifically, index portfolios are drawn straightly from data

sets as the perfect tracking of the corresponding index values, while MV portfolios

are obtained by solving the standard non-shorting MV model, see problem (6.1.1).

For each data set, both index portfolio and MV portfolio are used as benchmarks

for constructing and solving SSD problem and SAA-based CVaR-SSD relaxation

problem. SSD portfolios are the solutions of SSD problems (4.3) with correspond-

ing benchmarks, and CVaR-SSD portfolios are constructed by solving SAA-based

CVaR-SSD relaxation problems (4.9) with both benchmarks and di↵erent choices

of probability level �. As will be seen in later section, the probability level � may

take a range of di↵erent values. Note that also lower values of � may be regarded

as further relaxation of the SSD constraints, the best �, corresponding to the best

CVaR-SSD portfolio, is dependent on particular data structure as well as market

characteristics..

The performance of portfolio is quantified in terms of average daily returns, cu-

mulated returns and risk control abilities, measured by standard deviation, Sharpe

Ratio and Sortino Ratio1. The main finding from the empirical study is that the

CVaR-SSD portfolio obtained by solving the proposed SAA-based CVaR-SSD relax-

ation problem with probability level � < 1 demonstrates comparable performance

1 Sortino Ratio [96] is a modification of the Sharpe Ratio but penalizes only those returns falling
below a required rate of return, while the Sharpe Ratio penalizes both upside and downside volatility
equally. The ratio S is calculated as S = R�T

DR , where R is portfolio expected return, T is target
rate of return, and DR is target semi-deviation.
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w.r.t. SSD portfolio using the same benchmark. Moreover, with appropriate choice

of probability level �, it outperforms SSD portfolio in most cases. A rule of thumb

is to choose the value of � be less than but close to 1, while the “best fit“ value

depends on the data set as well as the choice of benchmarks.

6.1.1 Numerical implementation and data sets

The cutting plane algorithm:

The cutting plane method, proposed by Kelley [50], is used to solve SAA-based

CVaR-SSD relaxation problem (4.9). By (4.6) and (4.9), let the problem be re-

written as the following,

min
x,⇣

� 1
N

PN
i=1 x

T
⇠i

s.t. x 2 X0, ⇣ 2 R,

⇣ +
1

(1� �)N

NX

j=1

⇣ 1

N

NX

i=1

((⌘j � x
T
⇠i)+ � (⌘j � Y (⇠i))+)� ⇣

⌘

+
 0.

For simpler notation, let

�i(x, ⇣) :=

 
1

N

NX

j=1

⇣
(⌘j � x

T
⇠i)+ � (⌘j � Y (⇠i))+

⌘
� ⇣

!

+

,

and denote

 (x, ⇣) := ⇣ +
1

(1� �)N

NX

j=1

�j(x, ⇣).

In addition, the following functions are defined for the usage of the cutting plane

algorithm,

⇢(x, ⇣) 2 @x (x, ⇣), %(x, ⇣) 2 @⇣ (x, ⇣),
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and

bj(x, ⇣) 2 @x�j(x, ⇣), dj(x, ⇣) 2 @⇣�j(x, ⇣).

More specifically, they can be computed as follows,

⇢(x, ⇣) =
1

(1� �)N

NX

j=1

bj(x, ⇣), %(x, ⇣) = 1 +
1

(1� �)N

NX

j=1

dj(x, ⇣),

bj(x, ⇣) =

⇢
0, �j(x, ⇣) = 0,PN

i=1 �ij, others,
�ij(x, ⇣) =

⇢
0, ⌘j � x

T
⇠i  0,

�⇠j, ⌘j � x
T
⇠i > 0,

dj(x, ⇣) =

⇢
0, �j(x, ⇣) = 0,
�1, others.

Algorithm 1: Cutting Plane Method

Step 0. Set iteration t = 0, tolerance ✏, S0 = {(x, ⇣)|x 2 X0, ⇣ 2 R}.
Step 1. Solve the linear programming problem

min
(x,⇣)

� 1
N

PN
i=1 x

T
⇠i

s.t. (x, ⇣) 2 St.

(6.1)

Let (xt, ⇣t) denote the optimal solution of problem (6.1).
Step 2. If  (xt, ⇣t)  ✏, (xt, ⇣t) is the optimal solution, stop; otherwise, go to Step
3.
Step 3. Set

St+1 = St \ {(x, ⇣)| (xt, ⇣t) + (⇢(xt, ⇣t)
T
, %(xt, ⇣t))((x� xt)

T
, ⇣ � ⇣t)

T  0}.

Step 4. t=t+1, go to Step 1.

Algorithm 1 is the standard cutting plane algorithm proposed in [50], where the

details and convergence analysis of the algorithm are presented. All the numerical

tests in this section are carried out in MATLAB R2014a installed on a Lenovo PC
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with Windows 7 operating system and Intel Core i7 processor. IBM ILOG CPLEX

Studio 12.4 solver is used for solving the subproblems (6.1) with cutting plane al-

gorithm. The stoping criteria is set to be ✏ = 10�5 for all cases in this section of

empirical studies.

Scopes of the experiments and data sets:

In this subsection, the specifications of the numerical experiments are explained and

the description of data sets is stated. As per stated, the aim of portfolio selection is

to construct portfolios by solving specially designed optimization problems subject to

constraints, which reflect the underlining strategies of portfolio construction models.

The analysis mainly investigates the following aspects of constructed portfolios.

• Validity of approximation results is tested empirically by comparing CVaR-SSD

portfolios and SSD portfolios in-sample.

• Comparisons of the mean, standard deviation, Sharpe Ratio, Sortino Ratio

of daily out-of-sample returns, and cumulated returns among SSD portfolios,

CVaR-SSD portfolios and their corresponding benchmark portfolios.

• Sparsity results of CVaR-SSD portfolios, SSD portfolios and MV portfolios.

The data sets used are the historical data of three financial indices.

• National Association of Securities Dealers Automated Quotations 100 index

(NDX),

• Standard and Poor’s (S&P 500),

• Financial Times Stock Exchange 100 Index (FTSE 100),
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within the period 01/03/2016 � 30/09/2016. These indices are treated as (bench-

mark) portfolios while all other portfolios are constructed based on real data of daily

closing prices of the component stocks of the corresponding index. More specifically,

as on 30/09/2016, NDX is calculated from the weighted sum of 100 largest non-

financial companies based on market capitalization listed on NASDAQ. The daily

closing prices of these stocks are publicly available from 01/03/2016 to 30/09/2016,

and they form the pool of assets from which MV portfolios, SSD portfolios and CVaR-

SSD portfolios are constructed from. Similarly, data sets of daily closing prices are

obtained for all the 500 component stocks contributing to S&P 500 index, excepts

for Fortive, whose was listed within the investigation period after spinning o↵ from

Danaher in July 2016, and Westrock, who was merged with MeadWestvaco before

listing in The New York Stock Exchange. 100 assets listed in the London Stock Ex-

change contributing to FTSE 100 are available for portfolio constructions, except B

share of Royal Dutch Shell. It is not included because of the lack of full pricing data

due to di↵erent taxation issues than the A share of the company, which is also one of

the 101 contributing stocks to the index. Besides the usage of indices as the choice of

benchmark, constructions of the classical MV portfolios served as alternative choices.

For n risky securities, the classical non-shorting MV portfolio has minimal vari-

ance for a given expected return ⇢ and can be obtained by solving the following

problem.

min x
T
Cx

s.t. x
T
µ = ⇢,

x
T
e = 1,

x � 0,

where e is an n-dimensional vector with all entries being one, random variable ri :
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⌦! R is the return of the i
th security, µi = E[ri] is its expected return and r(⇠) =

(r1, r2, · · · , rn)T , µ = (µ1, µ2, · · · , µn)T , the covariance matrix of the returns C =

E[(r � µ)(r � µ)T ]. Note that C is an n⇥ n positive semi-definite matrix. The MV

portfolios are constructed and revised at daily basis with rolling window sampling

strategy.

6.1.2 Methods and results of empirical studies

In-sample verification of convergence:

The first part of empirical studies is devoted to verify the theoretical analysis on the

convergence of SAA-based CVaR-SSD relaxation problem to SSD problem as CVaR

probability level � ! 1. Historical data within the period 01/03/2016�31/05/2016 is

used as the in sample data set and the returns of the portfolios obtained by solving

SSD problem (4.3) and proposed SAA-based CVaR-SSD relaxation problem (4.9)

within this period are back-tested. The daily returns calculated from the di↵erence

between the closing prices of adjacent trading days are used to form the observation

of random vector of return rates in-sample. Figure 6.1 shows the results in terms

of returns in sample with NDX index as benchmark. CVaR-SSD portfolios obtained

by solving SAA-based CVaR-SSD problems with di↵erent probability levels � =

0.9, 0.8, 0.7 are shown, and the SSD portfolio in sample returns are also plotted

with the same choice of benchmark for comparison. It can be observed that as the

probability level � tends to 1, the return plots of CVaR-SSD portfolios converge to

that of the SSD portfolio, as demonstrated theoretically in Chapter 4. Note that

In-sample tests are also carried out for both the S&P 500 and the FTSE 100 data

sets and the same conclusion regarding the in-sample convergence in term of the
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tendency of return plots are observed. Due to the similarity of the plots, only the

in-sample test for the NDX data set is shown.
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Figure 6.1: In-sample back testing with NDX data with NDX index as benchmark

Portfolio performance of out-of-sample tests:

The main numerical results are shown in this subsection, demonstrations of the

results of out-of-sample testing for three sets of market data and with di↵erent choices

of probability levels � for the SAA-based CVaR-SSD relaxation problem (4.9) are

presented. At disposal, the three historical data sets cover the period 01/03/2016�

30/09/2016. At any point of portfolio construction, the corresponding data set is

divided into two categories. For a specific date of portfolio construction, the training

part consists of all the available information prior to that date, while the remaining

part of the data set is assumed unknown.
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The comparisons of out-of-sample performance among portfolios are presented in

daily basis. For all the portfolio constructions in this subsection, a “rolling one day”

investment period is adapted. Portfolio optimization problems are consistent in the

way that on any given date, a fixed size sampling window prior to the decision date

is used as training data. More specifically, the daily closing prices of each of the

component stocks and the corresponding benchmark portfolio are used within the

training data as scenarios to construct current day portfolio. Based on these, di↵erent

portfolio optimization problems are constructed and solved and their corresponding

solutions are the decided portfolios for the trading day following the last day in the

training sampling window. The investment horizon is from 01/06/2016 to 30/09/2016

and the portfolio is revised before every trading day, recall the detailed description

in Chapter 4.

The indices are firstly used as benchmarks and the MV portfolios are standard to

construct. For the first day of out-of-sample portfolio decisions on 01/06/2016, the

training data covers the period 01/03/2016� 31/05/2016. Within the first period of

training data sets, there are 64 trading days for NDX and S&P 500, while there are

62 trading days for FTSE 100. The returns of the portfolio obtained with data in this

sampling window is evaluated using the closing prices of the component stocks on

that day. Thus, the daily return of the first out-of-sample portfolio can be obtained.

For the next trading day, the real closing prices on 01/06/2016 becomes known,

and the real data within period 02/03/2016 � 01/06/2016 is used as the training

data set and the portfolio obtained with this data set is evaluated as the second

out-of-sample portfolio. By analogy, with a daily rolling window sampling method,

training data set will always have 64, for NDX and S&P 500, or 62, for FTSE 100,
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scenarios, based on which the next-day portfolio is constructed and evaluated. Thus,

for each portfolio optimization model, either 86 portfolio optimization problems or 87

portfolio optimization problems are solved and the performance of portfolios obtained

are evaluated on the next working day’s historical closing price. Correspondingly,

each data set results in 86 or 87 out of sample daily portfolio decisions, covering the

period 01/06/2016� 30/09/2016.

Concerning the benchmarks, within the training data set, the corresponding in-

dices are available and the MV portfolios are standard to construct. For both bench-

marks, the results are presented.

mean std Sharpe Ratio Sortino Ratio
Benchmark: index 0.0009 0.0088 0.1030 0.1389

SSD 0.0032 0.0118 0.2717 0.4501
CV aR�=0.9 0.0033 0.0118 0.2784 0.4670
CV aR�=0.8 0.0032 0.0117 0.2724 0.4486
CV aR�=0.7 0.0033 0.0119 0.2810 0.4652

Benchmark: MV 0.0005 0.0078 0.0658 0.0841
SSD 0.0026 0.0102 0.2545 0.4129

CV aR�=0.9 0.0027 0.0118 0.2696 0.4442
CV aR�=0.8 0.0030 0.0117 0.2931 0.4916
CV aR�=0.7 0.0030 0.0102 0.2943 0.5004

Table 6.1: NDX: average daily return, standard deviation, Sharpe Ratio, Sortino
Ratio

Table 6.1 shows the average daily return rate, standard deviation, Sharpe Ratio

and Sortino Ratio of the out-of-sample returns of 8 constructed portfolios as well as

two benchmark portfolios using NDX data. With both benchmarks, SSD portfolios

and CVaR-SSD portfolios perform better than the corresponding benchmarks with
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higher mean, Sharpe Ratio and Sortino Ratio of returns, although with slightly less

attractive standard deviation. Note that with NDX index as benchmark, solving

SAA-based CVaR-SSD relaxation problem (4.9) with � = 0.7, 0.9 result in portfo-

lios with slightly larger mean, Sharpe Ratio and Sortino Ratio than SSD portfolio.

When � = 0.8, the performance of CVaR-SSD portfolio is comparable to that of

SSD portfolios using the same comparison criteria. In the case of MV benchmark,

the CVaR-SSD portfolios behave better than the SSD portfolio for all choices of

probability levels for NDX data.

The out-of-sample compounded returns are computed over the period 01/06/2016

- 30/09/2016 and both SSD portfolios and CVaR-SSD portfolios perform better

than the corresponding benchmark portfolios as shown in Figure 6.2 and Figure 6.3,

respectively. In particular, both the index portfolios and MV portfolios have very

small accumulative return, less than 8% for index and less than 5% for MV portfolio,

while the CVaR-SSD portfolios perform consistently better though out the whole

out of sample period, thus having a cumulated gain of over 30% for our choices of �

with index benchmark. In addition, through out almost all the period 01/06/2016 -

30/09/2016, CVaR-SSD portfolios with � = 0.9 have the best compounded returns

in the index benchmark case. For the benchmark being the MV portfolio returns,

the portfolios with � = 0.8, 0.7 behave better than the SSD portfolio and the CVaR-

SSD portfolio with � = 0.9 behaves similar to SSD portfolio in the cumulated return

plots.
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Figure 6.2: NDX: out-of-sample compounded daily returns (01/06/2016 - 30/9/2016),
index returns as benchmark
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Figure 6.3: NDX: out-of-sample compounded daily returns (01/06/2016 - 30/9/2016), MV
returns as benchmark

Table 6.2 shows the out-of-sample performance of comparison portfolios with

S&P 500 data. Similar to the results of the NDX data, both SSD portfolios and
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CVaR-SSD portfolios have better performance than the corresponding benchmarks.

In the index benchmark case, CVaR-SSD portfolios with probability level � = 0.9

produce better results than that of other CVaR-SSD portfolios. Indeed, Figure 6.4

shows that CVaR-SSD portfolios with probability level � = 0.9 also have the best

compounded return of 17.1% on the final day of test period, which is much better than

the index return and maintaining advantageous over the other portfolios including

the SSD portfolio. The plots for MV benchmark portfolios shown in Figure 6.5 are

rather di↵erent in the sense that the MV portfolio, despite being the benchmark,

behaves better than other portfolios in earlier stage of out-of-sample testing period.

Both SSD portfolio and CVaR-SSD portfolios behave better than MV portfolio when

long term observation is of consideration. Moreover, all CVaR-SSD portfolios with

di↵erent values of � taken behave better than the SSD portfolios by the end of the

out-of-sample testing period. It is observed that even the SSD portfolios seems to

“fail” for relatively short investment horizon and only gain in a longer investment

window. This is due to the structure of SSD constraints (respectively, the SAA-based

CVaR-SSD constraints ) takes account over a period of volatility of stock prices

while remains not very sensitive to sudden and rapid changes in price fluctuation. In

this particular example, on 23/06/2016, the sudden event occurred when people of

the United Kingdom voted to leave EU, catching the financial markets by surprise,

resulted in days of stock prices’ free-fall.
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mean std Sharpe Ratio Sortino Ratio
Benchmark: index 0.0004 0.0079 0.0534 0.0705

SSD 0.0017 0.0112 0.1490 0.2264
CV aR�=0.9 0.0018 0.0111 0.1606 0.2444
CV aR�=0.8 0.0016 0.0114 0.1442 0.2171
CV aR�=0.7 0.0017 0.0115 0.1477 0.2241

Benchmark: MV 0.0003 0.0060 0.0421 0.0573
SSD 0.0009 0.0110 0.0802 0.1103

CV aR�=0.9 0.0012 0.0110 0.1086 0.1517
CV aR�=0.8 0.0013 0.0107 0.1196 0.1702
CV aR�=0.7 0.0015 0.0110 0.1383 0.2001

Table 6.2: S&P 500: average daily return, standard deviation,Sharpe Ratio, Sortino
Ratio
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Figure 6.4: S&P 500: out-of-sample compounded daily returns (01/06/2016 - 30/9/2016),
index returns as benchmark
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Figure 6.5: S&P 500: out-of-sample compounded daily returns (01/06/2016 - 30/9/2016),
MV returns as benchmark

Similar behaviours can also be observed in the case of the FTSE 100 market

data, shown in Table 6.3, Figure 6.6 and Figure 6.7. The SSD portfolio and CVaR-

SSD portfolios with 3 di↵erent � have better out-of-sample performance than the

benchmark portfolios. The best of such, the CVaR-SSD portfolio with confidence

� = 0.7 has the best performance with 18.5% cumulated gain in the end of the

index benchmark case. As for the case of MV portfolio returns as benchmark, the

CVaR-SSD portfolios with � = 0.8, 0.9 behave comparable to the SSD portfolio and

the relaxation leads to better portfolio when � = 0.7. This observation suggests

that although with � < 1 a relaxation model of portfolio optimization problem can

produce better portfolios than the conservative SSD portfolio. The “best” choice of

�, or “level” of relaxation, is not universal across di↵erent data sets and benchmarks.

From the results of empirical tests, it seems that the choice of � is subject to di↵erent

data structure and benchmark choices.
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The SSD portfolios and CVaR-SSD portfolios have been demonstrated to have an

overall better performance than the corresponding benchmarks, especially the CVaR-

SSD portfolios with probability levels � less but close to 1. CVaR-SSD portfolios

with � = 0.9 is the best for NDX and S&P 500 data sets, and with � = 0.7, the

portfolio outperforms the rest in the case of FTSE 100 data. With MV benchmarks,

the portfolios corresponding to � = 0.7 behave the best over all three sets of data.

To summarize, the CVaR-SSD portfolios always behave comparable to that of the

SSD portfolios and, in most cases, much better with the same training sets.

mean std Sharpe Ratio Sortino Ratio
Benchmark: index 0.0012 0.0112 0.1080 0.1685

SSD 0.0017 0.0158 0.1094 0.1848
CV aR�=0.9 0.0017 0.0155 0.1099 0.1836
CV aR�=0.8 0.0020 0.0157 0.1254 0.2131
CV aR�=0.7 0.0021 0.0164 0.1269 0.2185

Benchmark: MV 0.0018 0.0095 0.1901 0.3418
SSD 0.0023 0.0141 0.1606 0.2925

CV aR�=0.9 0.0021 0.0134 0.1568 0.2747
CV aR�=0.8 0.0021 0.0136 0.1578 0.2755
CV aR�=0.7 0.0024 0.0141 0.1703 0.3058

Table 6.3: FTSE 100: average daily return, standard deviation, Sharpe Ratio,
Sortino Ratio
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Figure 6.6: FTSE 100: out-of-sample compounded daily returns (01/06/2016 -
30/9/2016), index returns as benchmark

0 10 20 30 40 50 60 70 80 90
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
return

time

co
m

po
un

de
d 

re
tu

rn

 

MV
SSD
CVaRβ=0.9
CVaRβ=0.8
CVaRβ=0.7

Figure 6.7: FTSE 100: out-of-sample compounded daily returns (01/06/2016 -
30/9/2016), MV returns as benchmark
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Sparse portfolios:

Another observation of the constructed portfolios is the number of stocks in the com-

position of the e�cient portfolios (Table 6.1.2). It is observed that the cardinalities

of the portfolios have slight variations among di↵erent models within the same mar-

ket. For example, considering the portfolios constructed by solving the SAA-based

CVaR-SSD relaxation model with probability level � = 0.9 in the case of NDX data

set with index as benchmark, 19 stocks are “selected” to construct the portfolios

over the out-of-sample investment horizon of 86 trading days. On average, daily

optimal portfolio has 4.6511 component stocks with the largest basket has 10 stocks.

Baskets of similar size are traded for all SSD portfolios and CVaR-SSD portfolios

with di↵erent probability levels � with both benchmarks in all three data sets, see

Table 6.1.2.

Although MV portfolios can also achieve index-like performance with less compo-

nents, desired under e.g., enhanced indexation setting [104]. Both SSD portfolios and

CVaR-SSD portfolios contain much less number of stocks in their compositions, typ-

ically less than one tenth of the available stocks, while dominate the corresponding

benchmarks in terms of performance.
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NDX (100)
Index MV
avg. min. max. avg. min. max.

SSD 4.60 3 9 5.55 3 9
CV aR�=0.9 4.65 3 10 5.53 2 9
CV aR�=0.8 4.65 3 10 5.51 2 8
CV aR�=0.7 4.64 3 9 5.50 3 8

FTSE (100)
Index MV
avg. min. max. avg. min. max.

SSD 4.05 2 9 5.16 2 9
CV aR�=0.9 3.98 2 9 5.11 2 9
CV aR�=0.8 3.90 2 8 5.01 2 8
CV aR�=0.7 3.91 3 9 5.17 2 9

S&P (500)
Index MV
avg. min. max. avg. min. max.

SSD 5.87 3 10 6.62 4 11
CV aR�=0.9 6.07 3 11 6.49 3 12
CV aR�=0.8 6.07 3 12 6.70 4 12
CV aR�=0.7 6.30 3 11 6.74 4 12

Table 6.4: Average, minimum and maximum of daily traded basket sizes of di↵erent
models with both benchmarks in three data sets

Empirical study results of portfolio selection:

To conclude this section, it is found empirically that:

1. the portfolios obtained by solving SAA-based CVaR-SSD relaxation problem

(4.9) converge to that obtained by solving problem (4.3) as � ! 1;

2. both SSD portfolios and CVaR-SSD portfolios have overall better performance

than the corresponding benchmarks;

3. the performance of CVaR-SSD portfolios are always comparable to that of SSD

portfolios, and when � is less but close to 1, the performance of CVaR-SSD

portfolios is better than the more conservative SSD portfolios in most cases;
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4. both SSD portfolios and CVaR-SSD portfolios are sparse portfolios.
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6.2 Global oil market share

In this section, the numerical experiments of the second application are carried out

firstly using randomly generated data to illustrate the e↵ectiveness of the game model

and its solution approach. Furthermore, the proposed two-stage stochastic Nash

equilibrium problem is used to describe market share competition over the history

of crude oil market. The results show that the model is capable of reproducing the

actual oil market share based on in-sample data. Moreover, it is also shown that the

model can make good out-of-sample predictions using historical data. All the tests

are run in MATLAB 2016b on a personal computer with 32GB RAM and 8-core

processor (3.6⇥ 8GHz).

6.2.1 Progressive hedging method

Randomly generated problems are used for testing the regularized SAA approach to

solve the two-stage stochastic Nash equilibrium problem. Recall that the model of

interests takes the form of a scenario-based linear complementarity problem (5.18) or

its equivalent expression (5.19) with su�ciently small ✏. The solution process adopts

the well-known methods of progressive hedging. The PHM is globally convergent

and the convergence rate is linear for problem (5.19) with SAA approach.

The classical PHM to solve (5.19) is as follows
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Algorithm 2: Progressive hedging method

Step 0. Given an initial point x0 2 RJ , let x0
` = x

0 2 RJ
, v

0
` 2 R2J and w

0
` 2 RJ ,

for ` = 1, . . . , N , such that 1
N⌃

N
`=1w

0
` = 0. Set the initial point z0 = (x0

, v
0
1, . . . , v

0
N)

T .
Choose a step size r > 0. Set k = 0.
Step 1. If the point zk satisfies the condition

kmin(zk, H✏
z
k + q̄)k  10�6

,

output the solution z
k and terminate the algorithm; otherwise, go to Step 2.

Step 2. For ` = 1, . . . , N , find (x̂k
` , v̂

k
` ) that solves linear complementarity problems

0  x`?Cx` +Bv` + a+ w
k
` + r(x` � x

k
` ) � 0,

0  v`?� B
T
x` +D

✏
`v` + q` + r(v` � v

k
` ) � 0.

(6.2)

Then let x̄k+1 = 1
N

PN
`=1 x̂

k
` , and for ` = 1, . . . , N, update

x
k+1
` = x̄

k+1
, v

k+1
` = v̂

k
` , w

k+1
` = w

k
` + r(x̂k

` � x
k+1
` ),

to get point zk+1 = (x̄k+1
, v

k+1
1 , . . . , v

k+1
N )T .

Step 3. Set k := k + 1; go back to Step 1.

The PHM involves solving N independently sample-based LCP (6.2) at each

iteration, Problem (6.2) is well-defined, since for ` = 1, . . . , N, the coe�cient matrix

✓
C + rI B

�B
T

D
✏
` + rI

◆
2 R3J⇥3J

is positive definite for any ✏ > 0. Thus, it has a unique solution for each ` = 1, . . . , N .

For simplicity, denote (6.2) as

0  z`?H̃
✏
`z` + q̃` � 0, (6.3)

where z` =

✓
x`

v`

◆
, H̃

✏
` =

✓
C + rI B

�B
T

D
✏
` + rI

◆
, q̃` =

✓
a+ w

k
` � rx

k
`

q` � rv
k
`

◆
with ` =

1, 2, . . . , N. Then, a large-scale LCP can be equivalently written for all N samples
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and solve

0 

0

BBB@

z1

z2
...
zN

1

CCCA
?

0

BBB@

H̃
✏
1

H̃
✏
2

. . .

H̃
✏
N

1

CCCA

0

BBB@

z1

z2
...
zN

1

CCCA
+

0

BBB@

q̃1

q̃2
...
q̃N

1

CCCA
� 0. (6.4)

The structure of problem (6.4) enables us to use block computation to solve it, which

can significantly improves the e�ciency of the PHM. For example, suppose N = mL

with m,L being positive integer number. The equivalent m-block reformulation for

(6.4) reads

0 

0

BBB@

zi1

zi2
...

zim

1

CCCA
?

0

BBB@

H̃
✏
i1

H̃
✏
i2

. . .

H̃
✏
im

1

CCCA

0

BBB@

zi1

zi2
...

zim

1

CCCA
+

0

BBB@

q̃i1

q̃i2
...

q̃im

1

CCCA
� 0, (6.5)

where ij = iL+ j, j = 1, . . . ,m, i = 0, . . . , (m� 1)L.

Remark 6.1. The main computation cost of the PHM is in Step 2 due to the

large sample size N despite the relative low cost in solving for one sample. Block

implementation speeds up the computation by better exploring and rebalancing the

computational load. In practice, the number of blocks are adjusted so that the overall

computation time is minimized.

To improve the e�ciency of the PHM, the warm-start technique is also adopted, as

suggested in [77] in choosing an initial point for subproblem (6.2). More specifically,

the solution z
k of subproblem (6.2) at the k-th iteration is used as a starting point

for the (k + 1)-th iteration.
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In the remaining of this subsection, the problem (6.3) for a given sample is an-

alyzed in detail and the subscription ` is omitted for ease of expression. In order

to take advantage of the sparse structure of the subproblem (6.3), the smoothing

Newton method proposed by Chen and Ye [18] is used. In what follows, a brief

description of the smoothing Newton method is presented. It is well-known that

solving (6.3) for a given sample is equivalent to solving the nonsmooth equation

F (z) = min(z, H̃✏
z + q̃) = 0. (6.6)

The main idea of the smoothing Newton method is to use a smooth approximation

function to approximate the nonsmooth function F and then solve the corresponding

linear system. The smoothing is achieved by using the smooth Gariel-Moré approx-

imation function f : R3J ⇥ R++ ! R3J to approximate the nonsmooth function F .

In numerical tests, the j-th component of f reads

fj(z, �) = (z)j �
1

2

✓q
(H̃✏z + q̃ � z)2j + 4�2 + (z � H̃

✏
z � q̃)j

◆
, j = 1, . . . , 3J,

where the corresponding j-th diagonal element of the Jacobian D̄(zi) is

D̄jj =
1

2

0

@ (z � H̃
✏
z � q̃)jq

(z � H̃✏z � q̃)2j + 4�2
+ 1

1

A , j = 1, . . . , 3J.

Then, the smoothing Newton method for solving subproblem (6.6) requires to solve

a linear equation to determine d
k at each iteration, namely

rzf(z
k
, �k)d

k + F (zk) = 0, (6.7)

where �k decreases to 0 according to the criterion in article [18]. To guarantee the

well-defineness of the (6.7), the following result needs to be applied.
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Theorem 6.1. [32] For any diagonal matrix D̃ = diag(D̃jj) 2 RJ⇥J with 0 

D̃jj  1, j = 1, 2, . . . , J , the matrix I � D̃(I � A) is nonsingular if and only if A is

a P-matrix.

For any given sample, it is known that H
✏ is positive definite and hence a P-

matrix. Moreover, the D̄(z) is a diagonal matrix with its element on the interval [0, 1]

for any (z, �) 2 R3J ⇥ R++. Therefore, using Theorem 6.1, the Jacobian rzf(z, �)

is nonsingular for any (z, �) 2 R3J ⇥ R++. Thus, the linear equation (6.7) is well-

defined.

Denoting the matrix D̄(z) = diag(D̄1(z), D̄2(z), D̄3(z)), the Jacobian rzf(z, �)

at the point z is of the following structure

rzf(z, �) = (I � D̄(z)) + D̄(z)H̃✏)

,

0

@
⇤1(z) 0 �D̄1(z)
0 u1(z)eT + ⇤2(z) D̄2(z)

D̄3(z) �D̄3(z) ⇤3(z)

1

A , (6.8)

where ⇤1(z) = D̄1(z)(C + (r � 1)I) + I, ⇤2(z) = (�(⇠) + (r � 1))D̄2(z) + I, ⇤3(z) =

(✏+(r� 1))D̄3(z)+ I are all diagonal matrices, and u1(z) = �(⇠)D̄2(z)e. The sparse

structure of (6.8) is used in its inverse computation. Specifically, rzf(z, �) consists

of only diagonal sub-matrix and the matrix u1(z)eT +⇤2(z), where the later is a sum

of a diagonal sub-matrix and a rank-one matrix.

Noticing from (6.8), linear equation (6.7) is of the following form

0

@
⇤1 0 ⇤2

0 u1u
T
2 + ⇤3 ⇤4

⇤5 ⇤6 ⇤7

1

A

0

@
s1

s2

s3

1

A =

0

@
b1

b2

b3

1

A , (6.9)
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where ⇤i 2 RJ
, i = 1, 2, . . . , 7 are diagonal matrices with ⇤1 and ⇤3 being non-

singular, si 2 RJ
, bi 2 RJ

, i = 1, 2, 3, u1, u2 2 RJ
. For ease of notation, we use

⇤̂ = diag(1/⇤11, . . . , 1/⇤JJ) to represent the inverse of any invertible diagonal ma-

trix ⇤ = diag(⇤11, . . . ,⇤JJ). Given the sparse structure of the coe�cient matrix,

(6.9) can be solved e�ciently. More specifically, by the first two equations of (6.9),

it follows

s1 = ⇤̂1(b1 � ⇤2s3), (6.10)

s2 = (u1u
T
2 + ⇤3)

�1(b2 � ⇤4s3). (6.11)

Directly substituting (6.10) and (6.11) into the third equation of (6.9), then

(⇤7 � ⇤5⇤̂1⇤2 � ⇤6(u1u
T
2 + ⇤3)

�1⇤4)s3 = b3 + const, (6.12)

where const = �(⇤5⇤̂1b1+⇤6(u1u
T
2 +⇤3)�1

b2). For computing the inverse matrix of

(u1u
T
2 + ⇤3), the Sherman-Morrison formula is used in the following form.

(u1u
T
2 + ⇤3)

�1 = ⇤̂3 �
⇤̂3u1u

T
2 ⇤̂3

1 + u
T
2 ⇤̂3u1

. (6.13)

Substituting (6.13) into (6.12), and it can be expressed

(⇤0 + ↵ũ1ũ
T
2 )s3 = b3 + const,

where ↵ = 1/(1 + u
T
2 ⇤̂3u1),⇤0 = ⇤7 �⇤5⇤̂1⇤2 �⇤6⇤̂3⇤4, ũ1 = ⇤6⇤̂3u1, ũ2 = ⇤4⇤̂3u2.

Then, if ⇤0 is nonsingular, using the Sherman-Morrison formula again, the solution

of s3 can be got immediately

s3 =

 
⇤̂0 �

↵⇤̂0ũ1ũ
T
2 ⇤̂0

1 + ↵ũ
T
2 ⇤̂0ũ1

!
(b3 + const). (6.14)
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Then, substituting the s3 into (6.10) and (6.11), the solution of s1 and s2 are obtained,

respectively.

From (6.14), one can see that the computation cost of s3 is minimal, since only the

inverse of several diagonal matrices are needed to be computed, namely, ⇤0,⇤1, and

⇤3. Once s3 is obtained, the calculation of s1 and s2 just needs to perform matrix-

vector production. Therefore, the linear equation (6.9) can be solve e�ciently.

Randomly generated problems:

For the first part of numerical test of this application, the problem of the form

(5.19) are randomly generated. More specifically, a set of i.i.d. samples {⇠`}N`=1

are randomly generated from a uniformly distribution over the interval [0, 1]. For

` = 1, . . . , N , set

p(⇠`) = ((⇠`)1, (⇠`)2, . . . , (⇠`)J)
T
, ⇧(⇠`) = �(⇠`)(ee

T + I) , (⇠`)1(ee
T + I).

Diagonal matrix C 2 RJ⇥J and a 2 RJ are generated with its elements uniformly

distributed over the interval [1, 2]. All the numerical results presented are the average

value calculated from 10 independent runs.

To show the feasibility of the solution of the regularized problem compared to

that of the original problem, the following residual value is constructed

Res = kmin(z,Hz + q̄)k,

where H denotes the coe�cient matrix (5.19) with ✏ = 0.

Numerical results for J = 10 were listed in the Table 6.5 and 6.6. The first

table is the solution obtained by PHM without block computation, while table 6.6
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illustrates results with block implementation. For our generated experiments, it is

found that N = 50 is the best block choice, measured by CPU time, for J = 10.

The average number of iterations, the average cpu time, and the average value of

Res were recorded in both tables. It is easy to see that the block implementation

greatly reduces the cpu time. For the same value of ✏, the number of iterations

increases slightly when the sample size N increases. In cases where the sample size

N is kept constant and the values of regularization parameter ✏ are chosen from

✏ = 10�3 to ✏ = 10�12, the iteration numbers are barely influenced as well as the cpu

time. Furthermore, we observe the convergence of our regularization approach with

decreasing values of ✏, as have been proved in previous sections. Also notice that,

the value of Res decreases when the ✏ diminishes from 10�3 to 10�12. Numerically, it

shows that the solution of the regularized problem is also that of the original problem

when ✏ = 10�12.

Figure 6.8 illustrates the performance of the PHM measured by the number of

iterations and cpu time for 10 players. It is also worth mentioning that although one

might expect the problem to be more di�cult to solve for a small ✏, the numerical

performance in our experiments remain roughly una↵ected with decreasing values of

✏.

Figure 6.9 demonstrates the convergence property of the first-stage solution x

when the sample size gets large for the case J = 10. The convergence trend can

be seen component-wisely as the solution x converges when the sample size N gets

large.
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N J(1 + 2N) Iter CPU time/s Res Iter CPU time/s Res
✏ = 10�3 ✏ = 10�6

10 210 146.30 0.26 4.42e-01 176.20 0.32 3.88e-04
50 1010 194.70 1.81 9.35e-01 197.40 1.83 9.32e-04
500 10010 208.70 26.72 3.00e+00 212.20 27.21 2.99e-03
2000 40010 222.60 154.97 5.93e+00 220.50 153.54 6.00e-03
5000 100010 224.70 623.53 9.49e+00 226.40 627.53 9.48e-03

✏ = 10�9 ✏ = 10�12

10 210 152.70 0.27 1.08e-06 169.40 0.30 9.49e-07
50 1010 197.20 1.83 1.41e-06 194.40 1.80 9.75e-07
500 10010 212.70 27.21 3.21e-06 209.70 26.85 9.59e-07
2000 40010 220.30 153.34 6.16e-06 220.70 153.73 9.51e-07
5000 100010 226.70 628.89 9.60e-06 226.20 627.58 9.60e-07

Table 6.5: Numerical results for di↵erent regularization parameter ✏ and sample size
N , J = 10 with individual sample.

N J(1 + 2N) Iter CPU time/s Res Iter CPU time/s Res
✏ = 10�3 ✏ = 10�6

10 210 162.60 0.21 4.04e-01 155.50 0.20 4.14e-04
50 1010 180.60 0.94 9.42e-01 184.00 0.93 9.31e-04
500 10010 203.30 10.67 2.97e+00 204.10 10.61 2.98e-03
2000 40010 213.80 42.38 5.89e+00 213.70 42.36 5.91e-03
5000 100010 218.20 115.15 9.36e+00 219.60 115.63 9.36e-03

✏ = 10�9 ✏ = 10�12

10 210 143.20 0.19 1.08e-06 149.50 0.19 9.59e-07
50 1010 197.40 1.02 1.38e-06 191.10 0.97 9.58e-07
500 10010 205.10 10.58 3.19e-06 202.40 10.67 9.52e-07
2000 40010 214.10 42.46 6.07e-06 213.40 42.62 9.73e-07
5000 100010 219.00 115.35 9.50e-06 219.70 115.58 9.74e-07

Table 6.6: Numerical results for di↵erent regularization parameter ✏ and sample size
N , J = 10 with block implementation.
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Figure 6.8: Numerical comparisons among di↵erent ✏, J = 10.
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Figure 6.9: Convergence property of x with increasing N , J = 10.
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6.2.2 Oil market share reproduction

In this subsection, the real application of interest: a two-stage stochastic Nash equi-

librium model is tested in describing the crude oil market share. Namely, the strate-

gies of crude oil exporting agents via solutions of reformulated SVI problem are

investigated so as to recreate actual market shares. Based on historical data on

crude oil market, in-sample back-tracking test is made to establish the e↵ectiveness

and validity of the model while explaining the market behaviour. Furthermore, the

out-of-sample prediction capability of the proposed model is demonstrated when the

results from the in-sample training data is used to specify model parameters. From

the results of numerical tests, it is concluded that the proposed model is suitable to

reproduce, predict and potentially capable to explain stable market shares of crude

oil.

Facts on the crude oil market:
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Figure 6.10: Market shares of di↵erent oil-producing countries, 1965-2017.
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Figure 6.11: Inflation adjusted oil price in US $, 1861-2017.

Crude oil market is one of the most widely studied commodity market in the world.

The market has long been described as of an ‘intermediate between monopoly and

perfect competition [42]”, supported by extensive historical data and market ob-

servation. When the market encounters large sudden events, it took “oil shocks”

[36, 37, 51]. Conceptually, consequences of supply and demand fluctuation, along

with many other factors, are reflected most directly in dramatic changes in oil price.

One interesting observation is that the market share behaves rather smoothly even

during periods of oil shocks [51]. Majority of the world’s crude oil is supplied by a

few large oil exporting countries and they are viewed collectively as a finite number

of large agents from which price-taking consumers purchase product at the same

price [95]. Hence, it is no surprise that Cournot-Nash approaches have been adopted

from earlier days of study in this field, see [90]. The study of oil shock gives rise to

rich field of economic researches in oil market structure and as well as factors a↵ect-

ing oil price, see [6, 49, 52], etc. Note that the proposed model does not attempt to

make explanation or future predictions on oil shocks but rather aims to make sense of
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the stable characteristics of supply-side of oil market share: major agents acting non-

cooperatively to achieve market equilibrium. The main focus is on the supply factor

of oil, while treating other factors, e.g., demand, world economic situation, popula-

tion, etc., as known information with uncertainty. The proposed model is found to

be able to reproduce the market shares as well as to forecast future production plans

of di↵erent oil-producing countries based on historical data.

In short, historical data are firstly used to determine model parameters as well

as to approximate distribution for uncertainty in observations of the market. Model

parameters are tested within a fixed sampling window so that the in-sample results

obtained by solving our model matches that of training data set. It then follows

that over a short decision horizon in the future, the trained model can be adopted to

predict future production plans. More specifically, i.i.d. samples are taken using a

fixed-size rolling window sampling method while the results are obtained by solving

the proposed model with the adjusted set of parameters obtained by in-sample tests

within the training window.

Data set, parameter selection and uncertainty description:

The data set used in this study are from

• Statistical Review of World Energy2, yearly data from 1984, published every

June by bp. Inc;

• Oil Price Dynamics Report3, weekly by Federal Reserve Bank of New York

since 1986;

2
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html

3
https://www.newyorkfed.org/research/policy/oil price dynamics report

— 113 —



CHAPTER 6. NUMERICAL RESULTS PhD Thesis

• U.S. Energy Information Administration4, weekly by United States Depart-

ment of Energy.

Scenarios of the random vectors used in the numerical experiments are obtained

from the empirical distributions generated by the data sets. More specifically, the

empirical distributions of percentage price change, along with the contributions from

demand changes, supply changes and the other e↵ects are generated from the contents

of oil dynamic report, consists of time series of weekly percentage change of Brent

spot price and its corresponding components’ contributions, i.e., those from demand,

residual, and supply. The percentage change in price in k + 1-th5 week compared

to that of the k-th week is denoted by 4p
k, while the contribution of demand and

supply changes are denoted as 4D
k and 4S

k respectively. The contribution to the

price change that does not correspond to demand and supply is denoted as residual

4R
k. Therefore, for any week within the oil price dynamics report, it holds that the

historical Brent price change is deterministicly represented by

4p
k = 4D

k +4T
k +4R

k
. (6.15)

Parameter determination:

In order to implement real market data into the proposed model (5.6)-(5.7), cost

parameters cj, aj need to be determined correspond to production costs of j-th agent

by analyzing training set. In practice, model parameters are adjusted via a brute

force learning process in-sample. More specifically, if the training set consists only

one trading day of information, the parameters are adjusted so that the solution,

4
https://www.eia.gov

5 k is used to denote the order in time, distinguished from that of i.i.d. samples
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i.e., production quantities of J agents, matches the estimated historical observation.

When more data become available, the parameters are adjusted so that the average of

solutions is close to the real estimate. It is found from numerical implementation that

the best fit solutions are obtained when values of cj and aj are taken to be inversely

proportional to known market share within the sampling period. It is firstly learned

that the common belief of “lower unit cost would lead to large sale” does not hold in

the proposed game model, which also motivates the choice of quadratic production

cost in the first-stage of the model.

Figure 6.12: Oil market reproduction results with linear cost in the production over
the chosen years.

Moreover, it is found in numerical experiments that the smaller the quadratic cost

parameters cj the greater market share the agent would have. This can be under-

stood from the fact that the large oil producing agents are more flexible in adjusting
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their production quantities as compared to smaller agents. A more mathematical in-

terpretation is to think of cj as related to the penalty parameters of the augmented

Lagrangian formulation corresponding to production constraints of each agent: pro-

duction cost is upper bounded with some unit production cost ãj. In this way, one

can think of this observation been that the countries have greater reserve of oil su↵er

less when the production upper bound gets violated. Nevertheless, the quadratic

cost is found to be more than adequate to reproduce historical observations.

Remark 6.2. The linear cost function at the stage of production works badly espe-

cially in times where the oil price fluctuates violently. Conceptually, it was believed

that the major oil producing agents control greater proportion of the entire supply

due to their abilities to produce at low unit cost. It is not the case in the proposed

game model, and it can be seen in Figure 6.12 that the low unit cost along may not

be able to reproduce to certain level of satisfactory. A nature question to ask is that

of the interpretation of the quadratic cost parameter cj. One possible approach is to

consider an additional constraint on the maximum production quantity. By reformu-

lating such a constraint into an augmented Lagrangian function, the appearing of the

quadratic term is related to the choice of penalty parameter of the aforementioned

constraint on production cap. That is, the cj can be interpreted as the “weight” of

the penalization of extra quantity of production. In turn, it is concluded from both the

analysis and the numerical results that the reason behind the stable global oil mar-

ket share may be that the major producers are capable of producing “unscheduled”

quantity without su↵ering too much of their profits. Hence, they have far greater

advantages over other agents of the Nash game to adjust profit maximizing quantity
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of production x.

The scenarios of stochastic parameters are taken from empirical distribution of

the sampling data set, guided by the analysis of [38]. In detail, i.i.d. samples are

drawn to generate scenarios of market’s supply discounting factor �(⇠) and j-th

agent’s adjusted price pj(⇠) = p0(⇠) � hj(⇠). Recall that the adopted expression

for (scenario-based) inverse demand function of quantity o↵ered to the market for a

given scenario ⇠` is in the following form

p
k(⇠`)� �

k(⇠`)T
k(y⇠`).

In accordance with data structure, pk(⇠`) corresponds to the adjusted predicted price

from contributions other than supply, i.e.,

p
k(⇠`) = p

k
0

�
1 +4d

k(⇠`) +4r
k(⇠`)

�
,

where p
k
0 denotes the known Brent spot price prior to that of the concerned time.

Both 4d
k(⇠`) and 4r

k(⇠`) are random scenarios taken from empirical distributions

of historical demand and residual distributions within the sampling set respectively.

To estimate �k(⇠), corresponding to k-week data, the data of spot quantity supplied

to the market, T k, is needed. In practice, it is very di�cult to obtain reliable data

on total supply to the market over short observation window. Rather, the trust-

worthy estimate on daily oil supply based on annual data is available along with the

observation that a steady growth of about 1% per year over the last four decades,

according to Statistical Review of World Energy. Therefore, realization of random

instances of daily market supply T
k(y⇠) which are taken from a uniformly distributed

interval between 99% and 101% of yearly based daily estimate, is used. Then, a set
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of data of stochastic excessive supply discount factor {�k(⇠`)},

�
k(⇠`) =

|pk(⇠`)� p
k
0|

T k(y⇠)
,

is generated, where p
k
0 is known with certainty within the testing data set, and the

| · | ensures that increase in quantity has a negative influence on price.

6.2.3 Performance in reproducing of the observed results

The results for numerical experiments on reproduced oil market share are presented.

As shown in Fig 6.15, the in-sample results over the periods of oil shocks 2007,

2009 and 2014 are reproduced using solely from the available information within

that year. For example, the in-sample experiment of 2009 uses all the available

data obtained within 2009, e.g., daily price from 01/01/2009 to 31/12/2009. For the

generation of random instances in-sample, the weekly price contribution covering

the year 2009 is used to form empirical distributions for supply excluded spot prices

p(⇠k), and discounting factor �(⇠k), from which i.i.d. samples are taken to represent

random scenarios. Hence, for in-sample experiments, the goal is to reproduce known

market share with the adjustments of cost parameters aj, cj corresponding to j-th

oil producing agent.

The out-of-sample tests cover the period from 2007 to 2017 with the one year

length equivalent of sampling window in Figure 6.15. Note that one year sampling

window is adopted since independent numerical results of selected years demon-

strated that the market has a short memory in the sense that longer historical data

would not provide extra information, at least in the setup of the proposed model

and approaches. Prior to the date of interests, all the historical data are assumed to
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be available while the rolling window sampling permits the usage of newly acquired

data as soon as it becomes available. From the construction and interpretation of

the two-stage model, it is reasonable to assume that cost of oil production remains

unchanged over a short decision horizon. Furthermore, di↵erent lengths of the sam-

pling window are tested for the tunings of parameters, especially during times of oil

shocks for better in-sample fitting, and the best fit sampling window length is used

in out-of-sample tests. For example, in order to obtain the market share of 2009,

during times of the latest financial crisis, fixed length sampling windows are tested

whose length varies from one year to five years.
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Figure 6.13: Out-of-sample results over 2009 with di↵erent length of historical data
window.
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Figure 6.14: Out-of-sample results over 2014 with di↵erent length of historical data
window.

Another interesting observation arises from the numerical tests is that the repro-

duction results vary very little with di↵erent lengths of memories of historical data.

Numerical tests are carried out for the reproduction of years with great fluctuations

in price. The di↵erent lengths of training data sets result into di↵erent empirical dis-

tributions, yet the reproduction quantity sees no significant di↵erences. The results

agree with the observations as seen in Figure 6.15 and Figure 6.11 that there is no

clear connection between them.

If one wants to predict the production on 01/01/2009 using a sampling window of

one year, one year sampling window from 01/01/2008 to 31/01/2008 is used to obtain

empirical distributions from which scenarios of �(⇠k), p(⇠k) are sampled. Taking N

samples, the solutions method follows that described in previous subsection. For

the result on 02/01/2019, the sampling window rolls forward using the data from

02/01/2008 to 01/01/2009 since the last day information becomes known, while the

model remains unchanged. Therefore, for the market share prediction of any given
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year, the daily market share results are obtained by taking the average of 250 runs,

while the yearly estimate is formed in turn by taking the average on daily results.

From Figure 6.15, it is observed that fairly good prediction quantities is achieved

through out the testing period. However, it is worth mentioning that during the

numerical experiments across that decision horizon the computational cost is much

higher during periods over oil shocks compare to those of relative stable oil prices.
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Figure 6.15: Real, in-sample and out-of-sample market shares results, 2008-2017.
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Chapter 7

Concluding Remarks

7.1 Summary of the thesis contents

In this thesis, two models closely related to real world problems in the field of stochas-

tic optimization are proposed and analyzed.

The first problem arises in the field of mathematical finance which searches for

better asset allocation strategies. An e↵ectively chosen portfolio is constructed by

solving the proposed SAA-based CVaR-SSD relaxation model. The proposed model

adopts and relaxes the well-known model of portfolio selection with SSD constraints.

SAA method is firstly used to reduce the infinite number of SSD constraints to finite

ones. A CVaR approximation of the SAA of SSD constraints enables the process

of relaxation by specifically chosen probability level �. The proposed model can be

regarded as a special problem in a class of problems with the level of SSD relaxation

controlled by the values of �. The convergence analysis is demonstrated as the sample

size N goes to infinity and the probability level � tends to 1. The choice of � which

corresponds the best portfolio construction depends greatly on the structure of the

data sets and thus the characteristics of the financial market. As a general guidance,
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it should be chosen so that � is less but close to 1. Empirical tests are carried out

on three sets of market data, and the model is of great promises for it provides

consistently good results measured by di↵erent performance judges. The fact that

the model is closely related to the portfolio selection model with SSD constraints is

reflected in its overall outperforming of the benchmark portfolios.

Instead of the proposal of mathematical models to solve practical problems, the

second application aims to explore the mechanism behind observation in economics.

Rooted from literatures in the field of oil market analysis and classical game theoret-

ical description of oligopolistic market, a two-stage stochastic Cournot-Nash game

is formulated in attempt to provide an answer to the problem of stable oil market

share regardless of the violent changes in oil price. The solution to the game is

characterized by those of a two-stage SVI problem and studies are made to reveal

its problem structure as well as properties of its solutions. Di↵er from the two-stage

game, the nonuniquenss of solutions of two-stage SVI may cause trouble in the so-

lution process not to mention the ambiguity it might bring when referring back to

the economical interpretation of a particular solution. A regularization approach is

developed to overcome this di�culty and theoretical properties of the solution of the

regularized problem are derived. Furthermore, it is proved in the convergence anal-

ysis that the solution of the regularized problem is always one of the solutions of the

original SVI. The numerical experiment is carried out after the adoption of the SAA

method on the expectation calculation in the regularized SVI. The PHM method is

used along with modification to better explore the special structure of the proposed

SVI model. The validity of the game model is shown empirically by its ability to

replicate historical observations in the oil market share. In-sample tests are ran to
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best estimate parameters that characterizes the model, while stochastic parameters

are drawn from formulated empirical distributions of historical data. Out-of-sample

test is then performed with di↵erent scales of training sets over ten years period, and

the reproduced results are in agreement of historical observations.

7.2 Future research directions

Future research directions will have two potential variations: better formulations of

the models studied in this thesis; or extensions to other applications approachable

by similar methodologies.

• The greatest e↵orts in presenting satisfactory results within this study are paid

to the learning of parameters. For example, the CVaR probability level � in the

application of portfolio selection is chosen with brute force by trails and errors.

If one faces the problem of actual stock trading dynamics, it would be very

di�cult, if not entirely impossible, to decide the appropriate investment horizon

beyond which the parameter needs to be reconsidered. Same problem arises in

the application of oil market as well. The assumption that the cost parameter

is revised with yearly basis may have worked in this particular example and

reasonable following common sense but nevertheless an “educated” guess at

its best. On the other hand, one thing that there is no shortage of is the

flow of information. With more and more promising results appear from the

researches of machine learning, one can try not to build the model based on

grand assumptions but to adopt methods of learning to find a more realistic

model for the formulation of the model.
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• The techniques used in this thesis can be extended to other applications where

similar mechanism may work as well. Indeed, as have seen in previous chap-

ters, the theoretical analysis are often derived under more general framework

than that of the problem of interests. In particular, the two-stage SVI prob-

lem arises from the two-stage SNEP but itself is a more general description of

equilibrium system. One may use the technique of “reverse engineer” to work

out the corresponding situations behind di↵erent variates of the two-stage SVI.

For example, the cost function in the first-stage problem is set to be quadratic

simply because the linear cost function with upper bound in production can

never replicate the actual market share. It of course does not mean that the

actual cost is of quadratic nature. This problem can also be related to the pre-

vious potential research direction of cooperating machine learning techniques

a prior to the modelling process.

• Parallel computation and dynamic decisions can also be of great interests along

with its potential for further researches. One bottleneck faced with numerical

implementation of stochastic programming problems is the fact that in order

to realize the situation under stochastic nature. Many scenarios need to be

drawn which increases the computational load specially when high accuracy

is required. In the calculation of second application in oil market, a block

implementation is used under the PHM framework along with the smoothing

technique for fast solving of subproblems. One can further explore the tech-

nique of parallel computation to speed up the entire load while the individual

scenario is not so hard to solve. Also, if the data set is updated dynamically,
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more scenarios can be drawn as the available data sets enlarge. The compu-

tation on these new scenarios may take equal amount of e↵ort compare to the

“old” scenarios but how to implement the newly coming results with the old

ones while keeping the final solution dynamically consistent is also of great

interests.
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Appendices

Proof of Theorem 5.1. The proof was mainly contributed by Mr. Jie Jiang and is

included for the completeness of the project. More details can be found in the Ph.D

thesis [46].

Proof. By direct computation, it holds that
✓
M

✏(⇠)

✓
y
✏

�
✏

◆
+ q(x, ⇠)

◆

j

=

(
�(⇠)(y✏)j + �(⇠)T ✏ + (�✏)j � pj(⇠), j = 1, . . . , J ;

xj�J � (y✏)j�J + ✏(�✏)j�J , j = J + 1, . . . , 2J.

Then, problem (5.11) can be rewritten as below:

(
0  (y✏)j?�(⇠)(y✏)j + �(⇠)T ✏ + (�✏)j � pj(⇠) � 0,

0  (�✏)j?xj � (y✏)j + ✏(�✏)j � 0,
(1)

for j 2 J . From the first complementarity condition in (1), it has (y✏)j is of the

following:

(y✏)j =

8
<

:
��(⇠)T

✏ + (�✏)j � pj(⇠)

�(⇠)
, �(⇠)T ✏ + (�✏)j � pj(⇠) < 0;

0, �(⇠)T ✏ + (�✏)j � pj(⇠) � 0
(2)
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for j 2 J . Similarly, it can be derived that

(�✏)j =

8
<

:

(y✏)j � xj

✏
, (y✏)j � xj > 0;

0, (y✏)j � xj  0
(3)

for j 2 J . Note that (y✏)j = 0 implies (y✏)j = 0  xj, and we have (�✏)j = 0. Then,

based on (2) and (3), for all three cases:

8
>>>><

>>>>:

(y✏)j = 0, (�✏)j = 0 for j 2 I1;

(y✏)j = ��(⇠)T
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�(⇠)
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�(⇠)
, (�✏)j =

(y✏)j � xj

✏
for j 2 I3,

where

I1 := {j 2 J : �(⇠)T ✏ + (�✏)j � pj(⇠) � 0, (y✏)j � xj  0} ,

I2 := {j 2 J : �(⇠)T ✏ + (�✏)j � pj(⇠) < 0, (y✏)j � xj  0} ,

I3 := {j 2 J : �(⇠)T ✏ + (�✏)j � pj(⇠) < 0, (y✏)j � xj > 0} .

It follows that,

((y✏)j, (�
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8
>>>><

>>>>:
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which verifies (5.14). For the remaining of the proof, let j 2 I2, and

��(⇠)(y✏)j = �(⇠)T ✏ � pj(⇠)

and thus

��(⇠)
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pi(⇠). (4)
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Analogously, it can be derived from

(y✏)j = ��(⇠)T
✏ + (�✏)j � pj(⇠)

�(⇠)
and (�✏)j =
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Combining that of (4) and (5), it is obtained
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Substituting (6) into (5), and
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that is,

T
✏ =

�(⇠)
P

i2I3 xi + ✏�(⇠)
P

i2I2[I3 pi(⇠) +
P

i2I2 pi(⇠)
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.

This completes the proof. 2
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Proof of Proposition 5.4.

Proof. Let ẑ = (ŷ, �̂) be any solution of LCP(q,M) and

0 � (z✏ � ẑ)T (M ✏
z
✏ + q � (Mẑ + q))
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◆
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✓
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◆
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where the second inequality follows from the positive semidefiniteness of M . Then,

k�✏k2  �̂
T
�
✏  k�̂kk�✏k,

which implies the boundedness of �✏,

k�✏k  k�̂k. (7)

It follows from (7) that any accumulation point of {�✏} as ✏ # 0 is the least l2-

norm solution. Since M is positive semidefinite, we know from [74, Theorem 5.6.2]

that there is a unique least l2-norm solution. On the other hand, we know from

Proposition 5.1, for any fixed (x, ⇠), ŷ is unique. Therefore, the limit of z✏ exists as

✏ # 0 and converges to the least l2-norm solution of LCP(q,M).

Due to the existence of limit for z✏ as ✏ # 0, (5.16) can be derived directly from

(5.14). In what follows, we focus on deriving the expression (5.17). To this end, for
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each j 2 J , three cases are discussed:

�(⇠)T ✏ + (�✏)j � pj(⇠) � 0, (y✏)j � xj  0, (8)

�(⇠)T ✏ + (�✏)j � pj(⇠) < 0, (y✏)j � xj  0, (9)

�(⇠)T ✏ + (�✏)i � pj(⇠) < 0, (y✏)j � xj > 0. (10)

Case 1: If there exists a sequence {✏k}1k=1 converging to 0 such that (8) holds,

lim
k!1

�
(y✏k)j, (�

✏k)j
�
= (0, 0).

Thus,
��(�✏k)j � �̄j

�� = 0.

Case 2: If there exists a sequence {✏k}1k=1 converging to 0 such that (9) holds,

an estimation holds

lim
k!1

�
(y✏k)j, (�

✏k)j
�
= lim

k!1

✓
��(⇠)T

✏k � pj(⇠)

�(⇠)
, 0

◆

=

✓
��(⇠) limk!1 T

✏k � pj(⇠)

�(⇠)
, 0

◆

=

✓
��(⇠)T̄ � pj(⇠)

�(⇠)
, 0

◆
.

Thus,
��(�✏k)j � �̄j

�� = 0.

Case 3: If there exists a sequence {✏k}1k=1 converging to 0 such that (10) holds,

lim
k!1

�
(y✏k)j, (�

✏k)j
�
= lim

k!1

✓
�✏k�(⇠)T

✏k � xj � ✏kpj(⇠)

✏k�(⇠) + 1
,��(⇠)(T

✏k + xj)� pj(⇠)

✏k�(⇠) + 1

◆

=
�
xj,��(⇠)(T̄ + xj) + pj(⇠)

�
.
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Thus,

��(�✏k)j � �̄j

��

=
��(�✏k)j + �(⇠)(T̄ + xj)� pj(⇠)

��

=

�����
�(⇠)(T ✏k + xj)� pj(⇠)

✏k�(⇠) + 1
+ �(⇠)(T̄ + xj)� pj(⇠)

����

=

����(⇠)(T ✏k + xj) + pj(⇠) + �(⇠)(T̄ + xj)� pj(⇠) + ✏k�(⇠)(�(⇠)(T̄ + xj)� pj(⇠))
��

✏k�(⇠) + 1


�(⇠)

��T ✏k � T̄
��+
���(⇠)(�(⇠)(T̄ + xj)� pj(⇠))

��✏k
✏k�(⇠) + 1

.

Collectively, it is known from Case 1, Case 2 and Case 3 that

(y✏k)j � ȳj = 0, (11)

(y✏k)j � ȳj = �(T ✏k � T̄ ), (12)

(y✏k)j � ȳj =
��(⇠)T ✏k + pj(⇠)� �(⇠)xj

✏k�(⇠) + 1
· ✏k. (13)

Furthermore, it has that T ✏k � T̄ � 0 always holds. For the purpose of arriving at a

contradiction, assume that T ✏k � T̄ < 0. Then (12) implies that

y
✏k)j � ȳj > 0.

Moreover, (11) and (13) induce

(y✏k)j � ȳj = 0,

(y✏k)j � ȳj � xj � ȳj � 0,

respectively. Clearly, it arrives at T
✏k � T̄ � 0, which contradicts our assumption.
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In addition,

T
✏k � T̄  ��(⇠)T ✏k + kp(⇠)k1 + �(⇠)kxk1

✏k�(⇠) + 1
· ✏k

 (kp(⇠)k1 + �(⇠)kxk1) ✏k.

Then, it follows that

��(�✏k)j � �̄j

��


�(⇠)

��T ✏k � T̄
��+
���(⇠)(�(⇠)(T̄ + xj)� pj(⇠))

��✏k
✏k�(⇠) + 1


�(⇠) (kp(⇠)k1 + �(⇠)kxk1) +

���(⇠)(�(⇠)(T̄ + xj)� pj(⇠))
��

✏k�(⇠) + 1
· ✏k


✓
�(⇠) (kp(⇠)k1 + �(⇠)kxk1) + �(⇠)2

✓
kxk1 +

kp(⇠)k1
�(⇠)

+ kxk1
◆
+ �(⇠)kp(⇠)k1

◆
✏k

 3
�
�(⇠)2kxk1 + �(⇠)kp(⇠)k1

�
✏k,

where the third inequality follows Lemma 5.2 and the continuity of T ✏ that

T̄  kxk1 +
kp(⇠)k1
�(⇠)

.

To summarize, for each j 2 J , it always holds

��(�✏)j � �̄j

��  3
�
�(⇠)2kxk1 + �(⇠)kp(⇠)k1

�
✏.

Then, according to the definition of l2-norm, for any given x 2 RJ
+ one can compute

̄(⇠) := 3
p
J
�
�(⇠)2kxk1 + �(⇠)kp(⇠)k1

�
.

2
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