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Abstract 

 

Processing speed mediates cognitive declines due to aging. However, the 

neurophysiological mechanisms that compromise processing speed remain 

understudied. In addition, the processing-speed paradigms employed in existing 

studies may be confounded by sensory, motor, and executive functions, especially 

among old participants. 

In this study, a set of simple stimulus-response mapping tasks in two perceptual 

modalities were used to establish the contribution of functional activation and 

connectivities on processing speed in young and old participants; the aim was to 

minimize the influences of the sensory, motor, and executive functions. This study 

further divided processing speed into decision and non-decision components to 

characterize the contributions of the neurophysiological properties. The most 

significant set of predictors were then identified in both the young and older groups to 

facilitate comparisons between those groups. 

The final sample included 34 young (aged 18-28) and 20 old (aged 65-75) 

healthy adults. This study employed visual and audial forms of a stimulus-response 

mapping task at two levels of difficulty and with a simple response-time task to control 

for the sensorimotor-related processes. The processing time index (PTI), sensorimotor 

time index (STI) and cognitive time index (CTI) were statistically derived from 

reaction-time (RT) measures. Common regions of interests (ROIs) were identified for 

all the experimental conditions using anatomically defined brain parcellations. 

Estimated time series for these brain activations were then extracted, as were the 

effective connectivities. Multivariate structural autoregression was applied to all time 

series and all ROI (separately for each subject and for each task condition). 
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Bootstrapped mixed-effect lasso (least absolute shrinkage and selection 

operator) regressions were employed to select the local activations and the 

interregional effective connectivities so as to predict the values of the three speed 

indices. 

For both groups, the bilateral regions of the medial frontal cortex (MFC), 

anterior insula, superior frontal junction (SFJ), intraparietal sulcus, and cerebellum 

were activated in all mapping tasks; 13 total ROIs were selected. In the younger group, 

three local activation predictors and seven effective connectivities were associated 

with at least one of the three speed indices. Nearly all of these were associated with 

the right superior MFC and the cerebellum vermis VI and VII; only one causal 

influence was associated with the right SFJ and the left intraparietal sulcus, as reflected 

by decision speed (CTI). In the older group, seven activation predictors and five 

connectivity predictors were associated with speed indices. The predictors associated 

with the bilateral SFJ and bilateral intraparietal sulcus were unique to the older group. 

The younger participants’ processing speed was supported by the regions 

related to the MFC (which was implicated in sustained cognitive control), the vermis 

(which was presumably the automatic counterpart of different frontal functions), and 

the connection from the left SFJ to the left anterior intraparietal sulcus (which 

facilitated stimulus-response mapping). The MFC and vermis were also strong 

predictors of processing speed in the older group. However, the association in the 

vermis VI/VII/VIII demonstrated incompatible pattern, reflecting a cerebellar 

adaptive function in the older group. In addition, a more diverse network involving 

the SFJ and the intraparietal sulcus was also associated with the speed indices, 

suggesting that the older group engaged the attention function more than the younger 

group did.  
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Chapter 1 Introduction 

Cognitive decline has been associated with aging. A wealth of literature 

supports the idea that processing speed mediates the age-related decrement of 

cognitive constructs such as working memory, executive control, and complex 

cognition (Albinet, Boucard, Bouquet, & Audiffren, 2012; Schretlen et al., 2000; 

Verhaeghen, 2011). Despite the importance of processing speed in cognition, the 

neurophysiological mechanisms that determine the speed of information processing 

have not yet been well-established. Although neuroimaging researchers have 

examined the roles of regional and global deficits in gray and white matter, only a few 

have used functional imaging to evaluate the contributions of regional brain 

activations and the cross-talk among various neural substrates. Another issue with the 

current literature is the absence of examinations of the cerebellum. This gap is mainly 

due to the long history of associations between the cerebellum and motor control, as 

the most prominent theories have been built around the frontal and parietal lobes. 

However, researchers have recently shown the cerebellum’s role in cognition; in 

particular, the results of a large-scale volumetric study (Eckert, 2011) revealed the 

importance of the cerebellum in determining processing speed. The goals of this 

dissertation are threefold: dividing processing speed into cognitive- and sensorimotor-

related components, establishing neurophysiological and neuroanatomical correlates, 

and focusing on the fronto-parieto-cerebellar network’s role in processing speed.  

The sensorimotor and cognitive components of processing speed were thus 

separated. The majority of recent functional imaging studies of processing speed have 

utilized single measures (mainly visual paradigms). To this end, a two-by-two 

experimental design was adopted to minimize bias with regard to sensory modality 

and task demand, and the neural correlates were modeled using a multivariate 
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approach. Using this approach, the common associations among neurological and 

behavioral measures were maximized across the various task demands.  

The literature review (Chapter 2) contains a review of the research on 

processing speed as a psychological construct, including the neuroimaging studies on 

processing speed and the related experimental findings. Methodological and statistical 

considerations are also described in that chapter. Chapter 3 details the study’s research 

paradigm, as well as its data preprocessing and statistical analysis methods. The 

behavioral results for the young and older groups are reported in Chapter 4. Chapter 5 

reports the imaging results for the task-related activations and the selection of the ROIs. 

0 focuses on the predictors of activations and connectivities for the speed indices in 

the normal young adults and includes a discussion of the mechanisms that facilitate 

speedy processing in the younger participants. Chapter 7 contains the same results for 

the older participants and a discussion of the reasons for this group’s deficits and its 

possible compensatory mechanisms. Chapter 8 concludes the thesis, explicates the 

study’s limitations, and outlines future research directions. 
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Chapter 2 Literature Review 

 

Chapter Summary 

This chapter is divided into five sections. The first section introduces the 

theoretical foundations of processing speed in the context of cognitive aging. The 

second section contains a discussion of the methodological considerations, with a 

focus on the decision to use the behavioral paradigm and on the study’s aim. The third 

section is intended to explain the neurological foundations of processing speed. The 

fourth section provides a review of the statistical methods that are relevant to the 

investigation of this thesis’s research questions. The chapter ends with a list of 

hypotheses that address those research questions. 

 

Definitions of Processing Speed and the Related Research Traditions  

Processing speed is the speed of completing a task or process; it involves 

responding to a stimulus according to certain rules. There are two schools of thought 

in studies of processing speed (Jensen, 2006). The first takes an experimental 

perspective and employs various components of response time to make inferences 

regarding a hypothetical situation or a series of neural processes (Posner, 2005). The 

studies in this school of thought commonly involve systematic manipulations of a 

stimulus’s perceptual quality or the rules that govern the response outputs that a 

participant generates. The time involved in completing certain processes can be 

inferred from the differences in the response times. The second school of thought 

regards processing speed as a psychological construct that characterizes individual or 

group differences (McAuley & White, 2011; e.g. Nielsen & Wilms, 2014). 

Researchers have tended to rely on batteries of tests to examine processing speed (R. 
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D. Roberts & Stankov, 1999). The common latent factors that explain the results of 

these tests inform the construct of the processing speed. The relationships between 

these common latent factors and other psychological constructs (such as working 

memory, executive function, and long-term memory; Verhaeghen, 2011) or other 

external variables (such as gender, age, and clinical conditions) are explored through 

multivariate statistics such as structural equation modeling (e.g. Schmiedek, Oberauer, 

Wilhelm, Süß, & Wittmann, 2007). The current thesis is focused on exploring the 

potential differences in the neural mechanisms that underlie processing speed among 

both young and old participants. In particular, the focus is on understanding age-

related variability so as to enrich the knowledge gathered by both schools of thought 

in this field. 

 

Reasons to Study Individual Differences in Processing Speed 

In everyday life, people have to make quick responses in a wide variety of 

scenarios. Answering the phone when it rings, pressing the open-door button in an 

elevator, and keeping up with responses when engaging in a group game all require 

timely and spontaneous actions. Members of some occupations, such as bus drivers, 

athletes, and firefighters, require the ability to make quick responses as part of their 

day-to-day work. The Cattell–Horn–Carroll theory of human intelligence considers 

processing speed to be a broad ability that contributes to general intelligence (Carroll, 

1993; Schneider & McGrew, 2012). Processing speed is a predictor of academic 

achievement among students (Mulder, Pitchford, & Marlow, 2010; Rohde & 

Thompson, 2007). Slow processing speed is associated with various clinical 

conditions, including schizophrenia (Barch & Ceaser, 2012), attention deficit 

hyperactivity disorder (S. L. Calhoun & Mayes, 2005), traumatic brain injury (Hillary 
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et al., 2010), and multiple sclerosis (Costa, Genova, DeLuca, & Chiaravalloti, 2016). 

In one of the most prominent theoretical accounts of the impact of slowness in 

cognitive performance, (Salthouse, 1996; 2000) asserted that delays early processes 

limit the time that is available for later processes, which can lead to the decay of early 

processes before the later parallel processes are complete. The slowing of cognitive 

processes can thus impact a wide array of cognitive functions. 

In the course of life-span development, processing speed appears to follow an 

inverted-U-shaped trajectory (Kail & Salthouse, 1994; Verhaeghen, 2013a). 

Processing speed improves in childhood and adolescence before peaking in early 

adulthood (Hale, 1990) and declining through middle and old age (Verhaeghen, 

2013a). Furthermore, processing speed has been shown to be a precursor of other 

cognitive abilities. In adolescence (Coyle, Pillow, Snyder, & Kochunov, 2011) and 

old age (Finkel & Pedersen, 2010; Verhaeghen, 2011), processing speed has been 

proposed as a mediator of the development and decline across age groups of cognitive 

abilities such as working memory (Chiaravalloti, Christodoulou, Demaree, & DeLuca, 

2003), episodic memory (T. Lee et al., 2012), executive control (Verhaeghen, 2011), 

divergent thinking (Preckel, Wermer, & Spinath, 2011), and fluid intelligence 

(Schretlen et al., 2000; Wilhelm & Oberauer, 2006)—but not crystallized cognition 

(Verhaeghen, 2013a). Processing speed is also correlated with intelligence (Deary, 

2001; Der & Deary, 2003) and has been regarded as the key indicator of cognitive 

aging (Finkel, Reynolds, McArdle, & Pedersen, 2007). 

It is important to understand the neural basis underlying individual differences 

in cognitive aging. From an individual perspective, maintaining cognitive 

youthfulness is important to quality of life in late life. Because cognitive aging is 

associated with activities of daily living (Han, Gill, Jones, & Allore, 2016), it is 
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beneficial to identify the factors that could slow down such a decline, including the 

maintenance of cognitive (Bielak, Hughes, Small, & Dixon, 2007), social (Fratiglioni, 

Paillard-Borg, & Winblad, 2004), and physical (Rikli & Edwards, 1991) activity. From 

a societal perspective, average life expectancy has increased by 10 years in the past 

two decades (Murray et al., 2015), and poor cognitive aging has burdened both 

caregivers and community services (Han et al., 2016). It is worth mentioning that 

processing speed is also associated with the daily functioning of older adults, both 

with and without mild cognitive impairments (Bezdicek, Stepankova, Martinec 

Novakova, & Kopecek, 2016; Owsley, Sloane, McGwin, & Ball, 2002; Perneczky et 

al., 2006). 

 

Common Measures of Processing Speed 

Two types of instruments are involved in the operationalization of processing-

speed measures. The first type is psychometric tests, which are predominantly paper-

and-pen measures, such as the digit-symbol substitution task, symbol-search task, and 

cancellation task in the Wechsler Adult Intelligence Scale (Wechsler, 2008). In these 

tests, the participants receive a list of items (printed on paper) and must write their 

responses within a fixed amount of time. The number of accurately completed items 

is then converted into a score for the processing-speed test. The tasks in such tests are 

designed to be simple, with the assumption that the majority of the subjects will 

complete the entire task if given enough time to process all the items. The neural 

processes involved in this type of task commonly include visual search and the 

comparison of visual symbols. The most popular processing-speed measure in both 

functional neuroimaging studies (Baudouin, Clarys, Vanneste, & Isingrini, 2009; 

Genova, Hillary, Wylie, Rypma, & DeLuca, 2009; Habeck et al., 2015; Rypma et al., 
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2006; Salthouse et al., 2015) and structural MRI studies (Costa et al., 2016; Gazes et 

al., 2016; Miller et al., 2013; Nazeri et al., 2015; Turken et al., 2008) is the digit-

symbol substitution task. In the paper-and-pen version, this task includes a coding 

table that contains two rows and nine columns. The cells in the top row contain single-

digit numbers from 1 to 9, and those in the bottom row contain corresponding abstract 

symbols for each digit. The subject completes the test by examining each number in a 

separate table and writing the corresponding symbol for those numbers within a fixed 

duration. The number of accurate answers is considered that person’s processing speed.  

Another type of task that is used in measuring processing speed is a custom-

designed protocol, which involves presenting a stimulus and simultaneously recording 

the participant’s response and reaction time (RT, on a millisecond scale). The classic 

test is the one used in Donder’s (1969) seminal study of RT; another example is a 

modern computerize measures of elementary cognitive tasks (ECT; Jensen, 2006). In 

this type of measure, the subject receives instructions that define the rules for 

responding to the stimulus. The stimuli are then presented on a computer screen or 

through a speaker, and the subject’s responses are recorded with an input device such 

as a keypad, keyboard, or joystick. The subject’s RTs (the time between the stimulus 

onset and the recorded response) and accuracy are recorded for each of a given number 

of trials. Summary statistics are calculated for all trials, using the same conditions for 

each individual so as to facilitate group comparisons. 

In functional imaging settings (e.g. Rypma et al., 2006), the digit-symbol 

substitution task has been adapted to include a response pad inside a scanner. Because 

of this, the digit-symbol substitution task has been split into discrete trials. For each 

trial, the subject is shown a coding table in the top half of the screen and a digit-symbol 

pair in the lower half of the screen. The digit-symbol pair could be an exact match for 
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one of the pairs in the table, or the symbol could correspond to a different number. The 

subject responds to indicate if the stimulus is a match. Hence, this task involves a two-

choice response. The accuracy rate and the mean response time can then be used for 

further statistical comparisons. In this way, the computerized digit-symbol substitution 

task is a version of ECT. Hence, the boundary between psychometric tests and ECTs 

appears to be blurred among neuroimaging studies. 

 

Neurological Bases of Processing Speed 

A few questions remain unanswered in the context of aging effects on 

processing speed. Why are processing-speed measures sensitive to cognitive aging? 

What is the cause of this slowdown in the elementary processes?  

To address those questions, this thesis is divided into two studies. The first 

study is based on young adults’ results for the core components of processing speed 

using functional MRI. The young adults were chosen because the trajectory of the 

change in processing speed across the life span peaks in this age group. The neural 

substrates for which their activations contributed the most to the speed of information 

processing were identified by modeling the associations between the 

neurophysiological and speed measures. At the time of this writing, only a few 

researchers had explicitly studied the neurophysiological correlates of processing 

efficiency in normal young adults (Forn, Ripollés, et al., 2013a; Forn, Rocca, et al., 

2013b; Rypma et al., 2006)—sometimes as a control reference for clinical groups 

(Akbar et al., 2016; Genova et al., 2009; Leavitt, Wylie, Genova, Chiaravalloti, & 

DeLuca, 2012; Woodward, Duffy, & Karbasforoushan, 2013)—or for the aging 

population (Motes, Biswal, & Rypma, 2011). These studies employed modified digit-

symbol tests or visuospatial tasks such as visual searches and pattern comparisons 
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(Carlozzi, Beaumont, Tulsky, & Gershon, 2015; Salthouse, 2000). However, the 

results of previous behavioral studies challenged the idea that the digit-symbol test 

taps into not only processing speed but also executive control (Cepeda, Blackwell, & 

Munakata, 2013). The nonspecificity of the digit-symbol test with regard to processing 

speed is further aggravated among the older-adult population (Albinet et al., 2012). 

This challenge is corroborated by the activations of the dorsolateral prefrontal cortex 

(DLPFC; (Rypma et al., 2006), and the causal influence that the left DLPFC has on 

the ventral frontal and posterior brain (Biswal, Eldreth, Motes, & Rypma, 2010) is 

associated with RTs on the digit-symbol test. These findings lend support for the use 

of experimental tasks involving simple (rather than complex) cognitive processes in 

the studies in this thesis.  

A review of the functional brain-imaging studies on processing speed indicates 

that the majority have been based on visual-based paradigms. For instance, the digit-

symbol test, letter comparisons, and pattern comparisons involve visual search and the 

encoding of visual stimuli (Forn et al., 2009; Genova et al., 2009; Habeck et al., 2015; 

Rypma et al., 2006). In summary, the measured speed-related activity in those existing 

studies is biased toward the visual modality of processing and uses a limited set of 

mental operations. The first study in this thesis, therefore, was aimed at revealing the 

basic elements of processing speed by designing two simple and comparable cognitive 

tasks, as well as a control response task, using visual or audial stimuli. These simple 

cognitive tasks were anticipated to provide more control over other cognitive 

processes (apart from processing speed) as well as over the confounding variables, as 

they use of a single modality (visual or audial stimuli). The second study in this thesis 

employed the same experimental tasks—a simple cognitive process and two stimulus 

modalities—to explore aging’s effects on processing speed. The differences between 
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the young and the older groups could illuminate how age-related cognitive decline 

(and perhaps compensatory mechanisms) modulate processing speed among the older 

participants.  

Rypma (2006) conducted the first study on processing speed, using the digit-

symbol task and a functional imaging method; the same paradigm was later used in 

studies of processing speed among patients with multiple sclerosis (Akbar et al., 2016; 

Genova et al., 2009) and among older adults (Motes et al., 2011). A recent initiative 

on the Reference Ability Neural Network (RANN), researchers have incorporated the 

digit-symbol task with two other cognitive tasks to study the processing-speed 

construct (Habeck et al., 2015; 2016) with an event-related design. In each trial, a 

coding table and a digit-symbol pair were shown to the participants, who then used a 

response pad to indicate whether that test pair matched one of the nine digit-symbol 

pairs in the table. Not all researchers had participants respond by hand; others have 

adopted a form of the digit-symbol task that requires participants to respond orally 

(Forn et al., 2009; 2011; Forn, Ripollés, et al., 2013a; Forn, Rocca, et al., 2013b). In 

these studies, instead of a probing pair, the participant viewed a coding table and one 

of the abstract symbols from that table; the participant would then read the number 

corresponding to that symbol in the table. Another characteristic of these studies was 

the use of a block design with a short inter-trial interval (less than 2 s); the number of 

accurate trials was the indicator of processing speed. The results revealed that 

processing speed was associated with activations in the bilateral DLPFC, the ventral 

lateral prefrontal cortex (PFC), the SFJ (also referred to as the frontal eye field), the 

bilateral intraparietal sulcus, the superior MFC, and the occipital lobe.  

Back to the RANN series of studies (Habeck et al., 2015; 2016), the activations 

associated with the participants’ responses in a set of 12 cognitive tasks informed the 
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latent factors of four reference abilities: processing speed, episodic memory, fluid 

reasoning, and vocabulary. The common neural substrates showed activations 

associated with the RTs across all 12 cognitive tasks in the left postcentral gyrus, left 

inferior parietal gyrus, bilateral dorsal striatum (including the caudate and putamen), 

bilateral visual cortex, and left precentral gyrus (Habeck et al., 2016). Habeck et al. 

(2016) attributed these neural substrates’ activation patterns to visuomotor function 

(left postcentral gyrus and left inferior parietal gyrus), motor coordination (dorsal 

striatum), visual input (occipital), and motor output (precentral gyrus). Habeck and 

colleagues also found that all the tasks shared a common activation-and-deactivation 

network that resembled the task-positive network (Fox et al., 2005) and the default 

node network (Raichle & Snyder, 2007). The task-positive network is similar to those 

that have been reported in other studies of the digit-symbol paradigm (Forn, Rocca, et 

al., 2013b). The topography of the all these networks, including the ability-specific 

and ability-common networks, are invariant across the life span. For specific networks 

derived from the younger group (aged 20-30), the results were nonsignificant when 

tested on older groups (people in their 30s, 40s, 50s, 60s, and 70s). The participants of 

different age groups tended to recruit nondifferentiable neural substrates to mediate 

the processing speeds of each of the domain-specific tasks. Habeck et al. (2016) also 

used machine-learning techniques on functional MRI data (which was collected for 

the 12 tasks in the four domains) to verify the similarities. They trained the classifier 

to learn the activation patterns of the four reference domains and then tested the 

classifier with an independent set of data. Interestingly, they found that classification 

accuracy was associated with behavioral performance in the other three reference-

ability domains, but not in the speed domain. These findings suggest that speed 

performance is not particularly associated with speed-related substrates and is instead 
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more associated with the common network identified in the study: the task-positive 

network (Fox et al., 2005). 

Scholars who have reported speed-related neural correlates have further 

supported the argument that the common task-positive network is associated with 

processing speed. Neural networks seem to provide more meaningful interpretations 

than isolated neural substrates for task-related RTs. Among young adults, lower 

activations in the dorsal PFC and higher activations in the ventral PFC, as well as in 

the occipital and parietal regions, are all associated with shorter RTs on the digit-

symbol test (Rypma et al., 2006). Rypma et al. (2006) then conducted a Granger 

causality analysis on eight ROIs, including the dorsal PFC (BA9), posterior PFC 

(BA46), ventral PFC (BA44), and parietal cortex (BA40). Subjects with shorter RTs 

showed less interregional causal influence and fewer frontal-to-parietal connections. 

Rypma et al. suggested that higher activations in the ventral PFC and in the parietal 

and occipital cortices indicated efficient visual search processes and hence, lower 

frontal control requirements. Higher activations in the dorsal PFC reflected increased 

executive control and executive monitoring among those whose RTs were relatively 

slow. In contrast, the slow participants showed higher frontal activations and greater 

influence on posterior regions. More reciprocal frontal-to-parietal causal influences, 

according to Rypma et al., were related to the control and monitoring functions. 

Therefore, the speed-related activations were apparently driven by the control and 

processing modules within the task-positive network. The higher activations observed 

in the ventral PFC and parietal cortex among those who had faster RTs may have 

reflected a higher degree of automatic processing during the tasks (Rypma et al., 2006). 

However, as Rypma and colleagues (2009) noted in a later review, different 

task manipulations may have influenced the performance-related activations. Forn, 
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Ripollés, and colleagues (2013a) reported on the task-load manipulation of an oral-

response version of the digit-symbol task in which they manipulated the load by 

varying the frequency of the stimulus (using inter-trial intervals of 1.5, 2 and 2.5 s). 

Forn, Ripollés, and colleagues found that the activations of the medial superior frontal 

cortex and intraparietal sulcus increased with the task load; they also found that the 

frontoparietal control network (Cole, Repovs, & Anticevic, 2014b) and the two 

cerebellum networks (identified using independent component analysis) were also 

recruited at the highest load. Importantly, they reported two performance-related 

activities only at the highest load (inter-trial intervals of 1.5 s). The activation of the 

MFC (involving the pre-supplementary motor area and the anterior cingulate cortex) 

and the task-relatedness (degree of engagement) of the frontoparietal control network 

were both negatively associated with the percentage of correct answers, indicating that 

efficient subjects required less activation of the MFC and less interregional 

connectivity. Although the latter finding (less interregional connectivity for fast 

subjects) was consistent with Rypma and colleagues’ (2006) results, the former (less 

performance-related activation) was not. The discrepancy may be related to the task 

manipulations.  

In Rypma’s (2006) implementation, the participants had to encode both the 

symbol and the digit in working memory, but in Forn, Ripollés, and colleagues’ 

(2013a) implementation, the participants only had to encode the symbol, and the oral 

response was more intuitive than in Rypma’s (2006) implementation. The 

implementation in (Forn, Ripollés, et al., 2013a) adaptation involved scanning (the 

symbol) and reading (the digit), but that in Rypma’s (2006) adaptation required 

scanning (the digit), matching (the symbol), response selection (match or not match), 

and a motor response (left or right). The differences in working-memory load and 
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stages of processing explained the significant performance-related activations that 

were found in the DLPFC in Rypma’s (2006) study—but not in Forn, Rocca, and 

colleagues’ (2013b) study; these activations were attributed to cognitive control. On 

the other hand, performance-related activation occurred in the medial prefrontal cortex 

(Forn, Rocca, et al., 2013b) in the condition with the highest speed demands. 

According to (Forn, Rocca, et al., 2013b), medial prefrontal cortex was “implicated in 

finding relevant stimuli, being ready for action, feedback monitoring and response-

related processing, and is reinforced by activation of the anterior cingulate gyrus as a 

central structure of alertness and vigilance, which is activated during response 

selection mechanisms” (p. 158), and the pre-supplementary motor area was implicated 

in making response with time pressure (Forstmann et al., 2008). Because Rypma 

(2006) adapted an event-related design, the inter-trial interval ranged from 4 to 12 s; 

the lack of speed-related activation in was due to the small interval. Given that the 

original design of the paper-and-pen version of the digit-symbol test was constrained 

by time, the accelerated version that (Forn, Rocca, et al., 2013b) used was similar to 

the original. 

Motes and colleagues  (Motes et al., 2011) explored the aging effect using the 

same paradigm that Rypma et al. (2006) used. They reported significant age-by-

performance interactions in the bilateral dorsal PFC (anterior middle frontal gyrus, 

BA9 and 10), right SFJ (frontal eye field, BA6) as well as in the left temporal pole and 

cerebellum; younger participants demonstrated negative performance-activation 

correlations (lower activations for faster participants), and older participants 

demonstrated positive performance-activation correlations (higher activations for 

faster participants). Motes and colleagues (2011) suggested that the negative 

performance-activation correlations in the PFC for the younger group indicated that 
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these younger participants, who were more efficient, relied less on the control or 

coordination of the subprocesses of the PFC; this would be related to a higher degree 

of process automation among the younger participants. In the older group, Motes and 

colleagues interpreted the positive performance-activation correlations in the PFC as 

a consequence of that group having both less availability of prefrontal resources and 

degraded automaticity. There were also significant group differences in the task-

related activations. Older participants demonstrated stronger activation in the bilateral 

motor cortex (which may have been due to compensatory recruitment) and weaker 

activation in the visual cortex and right parahippocampus (which may have been due 

to functional loss). The roles of the left temporal pole and cerebellum in mediating the 

positive performance-activation correlations in the left lateral PFC (BA46) and 

occipital lobe in both groups remains unexplained, however.  

In a structural MRI study, Eckert et al. (2010) reported a neural network 

consisting of the DLPFC, the MFC, and a cerebellar component; this network was 

related to processing speed. Eckert and colleagues (2010) studied the structural 

correlates of processing speed in 42 adults (aged 19-79), using source-based 

morphometry to analyze the spatial volumetric covariations across the regional 

volumetric density, so as to study the age-related volumetric correlation of processing 

speed. Eckert and colleagues revealed seven neural components; of these, both the 

DLPFC and MFC component and the cerebellar component demonstrated age-related 

structural correlates, as measured with the Connect Simple Test (Salthouse, 2000). 

These findings fit with those of the previously reviewed functional imaging studies. 

Several studies of aging participants (e.g. Miller et al., 2013; Nadkarni et al., 2014) 

and those with multiple sclerosis (e.g. Moroso et al., 2017; Ruet et al., 2014) have also 

indicated cognitive slowing with reduced cerebellar volume. 
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The results of the studies reviewed above suggest that the efficiency of 

information processing during the digit-symbol task can be explained by at least two 

constructs: the cognitive-control mechanism (supported by activations of the anterior 

middle frontal gyrus or BA9, and of the pre-supplementary motor area or anterior 

cingulate cortex, as well as the connectivity of the frontoparietal control network) and 

the automaticity of processes (supported by the activation of the ventral PFC and of 

the parietal and occipital lobes). These results suggest that the digit-symbol task may 

be overly complex (Albinet et al., 2012; Cepeda et al., 2013) if the primary goal of the 

study is to measure processing speed, as the RTs of the responses in the task are likely 

to include the times taken for both executive control (such as sequencing subprograms) 

and actual execution. The frontoparietal network, which mediates the executive 

control, relates to programming (or breaking) a task into subprocesses and to 

supervising the timing of those subprocesses (see Dosenbach et al., 2007; Duncan, 

2010). In a meta-analysis of 119 studies, (Verhaeghen, 2011) concluded that 

processing speed explains a great amount of the variance in executive function, and 

associated that speed with cognitive declines due to aging. As suggested in factor-

analysis studies (Danthiir, Wilhelm, Schulze, & Roberts, 2005; R. D. Roberts & 

Stankov, 1999; Stankov & Roberts, 1997), simple speed measures (ECTs) and 

complex psychometric measures share a common variance. Putting this information 

together, the most common psychometric tests involve a considerable amount of 

executive control (Albinet et al., 2012; Cepeda et al., 2013), such that, in the meta-

analysis (Verhaeghen, 2011), processing speed was shown to mediate the relationship 

between aging and executive control. The results reviewed above further support the 

choice of simple ECT instead of psychometric tasks for studies of processing speed in 

old populations. 
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Another suggested component of processing speed is stable task-control 

processes, which are mediated by the medial frontal cortex (MFC) (Dosenbach et al., 

2006). Speed-activation correlations of the medial PFC reveal that task-control 

processes involve sustained attention, feedback monitoring, and response selection 

(Forn, Rocca, et al., 2013b). A further postulate is that these task-control processes 

sustain across trials within an entire block (Dosenbach et al., 2006). Fan (2014) used 

information-processing theory to explain that activations of the MFC demonstrate that 

speed is influenced by the amount of the information that the MFC processes in a fixed 

time unit, which is a bottleneck in task performance. This interpretation is 

corroborated by the observation that significant activations of the MFC are coupled 

only with the task blocks that are contained in a high number of trials (Forn, Rocca, et 

al., 2013b). 

The third candidate for the processing-speed component is the top-down 

attention-orientation system, as subserved by the dorsal attention network (Corbetta 

& Shulman, 2002). This network consists of the bilateral SFJ (or frontal eye field), 

and the bilateral intraparietal sulcus—a main portion of the task-positive network (Fox 

et al., 2005). Scholars have reported intra-network coactivation in studies of macaques 

(Vincent et al., 2007) and humans (Fox & Greicius, 2010) in a resting state; they have 

also observed task-induced activation and functional connectivity in broad categories 

of experimental paradigms (Cole, Bassett, Power, Braver, & Petersen, 2014a; Hugdahl, 

Raichle, Mitra, & Specht, 2015), including processing-speed paradigms (Forn, 

Ripollés, et al., 2013a; Habeck et al., 2016). In particular, Motes and colleagues’ 

(2011) observed activations in the right frontal eye field, thus demonstrating an age × 

speed interaction effect. Motes and colleagues also reported positive performance-

activation correlations in the older group but negative correlations in the younger 
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group. These results have been interpreted as the engagement of a compensation 

mechanism. I propose that the differences in the correlations are due to two 

mechanisms. First, in the younger group, the task is completed before the attention 

system becomes fully engaged, so the degree of activation is positively associated with 

on-task time. Second, in the older group, faster subjects engage the attention system 

to a greater degree so as to compensate for the loss of function in other brain areas, so 

higher activation is associated with greater effort and shorter processing time. 

An unexplained but consistent finding relates to the cerebellum’s contribution 

to processing speed. Activation (Motes et al., 2011); the task-relatedness of cerebellar-

related networks (Forn, Ripollés, et al., 2013a) and their structural correlates (Eckert 

et al., 2010) with processing speed have been reported. In particular, Hogan (2004), in 

the fronto-cerebellar aging hypothesis, suggested that control (automaticity) accounts 

for the cerebro-cerebellar interaction. Hogan also suggested that the cerebellum 

integrates sensory, motor, and cognitive information through feedforward and 

feedback mechanisms, with feedforward-feedback oscillation cycles creating a 

synchronization effect, and with the variability (or instability) disrupting the 

processing efficiency. This also provides a biological mechanism for the oscillation 

theory of cognitive slowing (Jensen, 2006). Shine and Shine (J. M. Shine & Shine, 

2014) provided an account along the same lines, suggesting that cognitive control 

could be made automatic through the delegation of control from the cortex to the 

cerebellum.  

The involvement of cerebellum in stimulus-response mapping tasks has been 

evidenced using functional imaging. First, Balsters et al, (2012) using different 

stimulus-response rules, found differentiable level of rule-specific activations, which 

suggested that the activation of cerebellar is modulated by the complexity of rule, but 



   

 

 19 

not exclusively motor coordination. Second, Brissenden et al. (2018) used the whole 

brain MVPA (multi-voxel pattern analysis) method to study the rule-specific brain 

activation pattern, and they found that cerebellum encoded the stimulus-response 

mapping rules. Third, by analyzing the activation pattern of visual working memory 

and attention task with different level of cognitive load, Pischedda et al (2017) found 

a dorsomedial-to-ventrolateral activation gradient in the cerebellar, and they also 

reported a similar gradient in the intraparietal sulcus, suggesting that the cerebellum 

hold a parallel representation as that in the parietal lobule. The authors interpreted that 

the cerebellar contained an internal model for similar cognitive processes as in the 

cortex. In general, recent imaging studies supported the cerebellum supported the 

stimulus-to-response mapping. 

In summary, processing speed probably has four components: moment-to-

moment adaptive control (supported by the DLPFC and lateral frontal-parietal 

network), stable task-set control (supported by the MFC), top-down attention 

orientation (supported by the SFJ and intraparietal sulcus), and automaticity 

(supported by the cerebellum).  

 

Summary of Neurophysiological Speed-correlate 

Previous fMRI study of processing speed reported several factors contributed 

to better performance in the younger group, including lower activation of the 

dorsolateral prefrontal cortex, the medial frontal cortex and right frontal eye-field, less 

causal influence from dorsolateral prefrontal cortex and less dorsal attention network 

task-related coactivation, and higher activation of task-related processes in the 

posterior parietal and cerebellum. The findings were attributed to less top-down 

cognitive control, less top-down attention control and more automaticity of task-
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specific processes. In the old group, higher activation of dorsolateral prefrontal cortex 

and right frontal eye-field were associated with better performance, which was 

ascribed to compensatory mechanism of the prefrontal cortex.  

 

 

Reaction Time Measures 

For RT-based measures, mean and median RT are the most popular ways to 

obtain scores for an individual; some studies have also utilized the standard deviation 

of RTs to explore intra-subject variability in task performance. As the RT distribution 

is usually positively skewed, some researchers fit RTs to various distribution models 

so as to estimate and to describe the non-Gaussian properties of the distribution. Ex-

Gaussian (Dawson, 1988), ex-Wald (Schwarz, 2001), gamma (Dolan, van der Maas, 

& Molenaar, 2002), and Weibull (Logan, 1992) distributions have been popular in 

behavioral studies of RTs (Palmer, Horowitz, Torralba, & Wolfe, 2011). Most 

researchers have derived mathematical models to mimic the negative Gaussian tail 

and the positive exponential tail of the RT distribution using a few parameters, while 

fitting the RT data for the correct trials to the model and estimating the parameters for 

each individual. However, there is no consensus about the interpretation of the 

parameters. For example, there are differing opinions regarding whether the 

exponential tail of the ex-Gaussian distribution is free from the decision component 

(Palmer et al., 2011).  

(Ratcliff, 1978) diffusion model has received the most attention of any model 

in the field, and researchers have used that model to separate the decision component 

from the perceptual component so as to identify the association between white-matter 

integrity and decision speed. However, this method was not applicable to the current 



   

 

 21 

study, as several subjects achieved 100% accuracy in the experimental tasks, and as 

the diffusion model requires the RTs of the inaccurate trials to infer the speed of 

information accumulation. 

 

Mass-Univariate Analysis, Multiple Regression and Variable Selection 

To make a prediction regarding behavior based on a neuroimaging data set, the 

neuroimaging community must overcome the problem of data with a large p (many 

predictors) and a small n (small sample size), as the number of observations (voxels) 

is far larger than the number of subjects in these data sets. Mass-univariate analysis 

has been the most popular method since the introduction of the SPM package in 1999. 

The standard procedure for whole-brain correlational analysis involves normalizing 

an individual statistical map to a template space, fitting a linear model to each voxel, 

and statistically correcting for multiple comparisons (Ashburner & Friston, 2000). 

However, there are several drawbacks to this method.  

First, the mass-univariate analysis relies on Gaussian random field theory to 

conduct cluster-based, family-wise corrections that control for type I errors. Gaussian 

random field theory is based on the smoothness of the data, the cluster size, and the 

clusters’ significance values. The drawbacks of this theory include its arbitrary 

clustering parameters, its collapse of spatially connected but functionally orthogonal 

regions into one cluster, and its favoring of large clusters over smaller ones.  

Second, the relative contributions of various neural substrates in behavioral 

measures can only be inferred qualitatively—by comparing the significance levels of 

the behavioral correlates. In recent years, scholars have adapted several statistical 

techniques in imaging studies.  
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Third, a variable’s contribution could be suppressed by other variables, causing 

the simple correlation to fail to detect the association between the brain marker and 

the behavioral measure (R. L. Smith, Ager, & Williams, 1992). In particular, creating 

a response to a stimulus involves a train of cognitive processes, such as sensory 

registration, recognition, attention orientation, binding a rule to a mental 

representation, action selection, and motor execution; these processes contribute to the 

RT. Assuming that RT is just a linear combination of processing time of those 

components, the process that takes longest time could mask the effect of the processes 

that take less time. To this end, multiple regression is used in this study instead of 

mass-univariate analysis. 

However, the problem of having a large p and small n cannot be resolved. In 

particular, there are more than 200,000 voxels in the Montreal Neurological Institute 

(MNI) template, and even when the whole brain is parcellated using the Desikan atlas 

(Desikan et al., 2006), there are still 34 cortical regions, which could cause overfitting 

and thus hamper the generalizability of the selected model (McNeish, 2015). A popular 

approach is to use stepwise regression to select the predictors that have the most 

predictive power; however, the collinearity of the predictors is a known problem for 

stepwise regression. The efficiency of the processing modules could be affected by a 

common factor, such as the integrity of white matter (e.g. Nazeri et al., 2015) or genes 

(e.g. Laukka et al., 2015), such that the processes’ performances are not orthogonal. 

To this end, this study used lasso regression (Tibshirani, 1996; 2011) to explore the 

contribution of neurophysiological factors. Lasso regression deals with both variable 

selection and regularization, and it provides a sparse solution to improve the model’s 

interpretability (McNeish, 2015). Regularization, specifically, involves adding a 

penalizing term to the cost function of the ordinary least square such that the 
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magnitudes of the coefficient estimates shrink. Modifying the weight (l) of the 

penalizing term causes the coefficients of the less relevant variables to shrink to zero. 

In this study, the best model was chosen by searching for the l that would minimize 

prediction errors through cross-validation. Statistically, a sparse model is one that 

contains a small number of predictors. Ridge regression (Hoerl & Kennard, 2012), 

another regularized regression technique, assigns a coefficient for every predictor, so 

it is not sparse. Researchers have recently advocated for the use of such a technique in 

studies of the genome (e.g. T. T. Wu, Chen, Hastie, Sobel, & Lange, 2009) and those 

that use imaging (Abram et al., 2016; Bunea et al., 2011), as sparse models outperform 

other regression methods in searches for biomarkers. To further improve model 

selection, the current study included bootstrapping for the lasso regression (Bunea et 

al., 2011; Laurin, Boomsma, & Lubke, 2016), as this method has been shown to 

improve models by removing predictors that have small effects. 

  

The Knowledge Gap 

As illustrated above, there are a few gaps in the existing literature on 

processing speed. First, few researchers have directly explored individual differences 

in processing speed using functional MRI. Second, the majority of the existing 

literature on individual differences in processing speed relates to the digit-symbol task, 

in which the task processes are likely to be contaminated by executive functions 

(specifically, the demand for adaptive control). This contamination is more serious if 

the participants choose to employ individualized strategies when searching, matching, 

and responding during the task. Third, the speed measure is likely to be dominated by 

the use of visual stimuli. The visual processing involved in the task would bias the 

speed-activation associations in such functional brain imaging studies. Fourth, the role 
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of the cerebellum and the cerebro-cerebellar interactions in processing speed are 

underresearched.  

Aim  

This thesis revisits the mechanisms that underlie processing speed with tasks 

that involve a low level of executive control. The experimental tasks used in this study 

were based on a two-choice RT paradigm that is sensitive enough to measure speed. 

The design of the task also incorporated better control of the sensory, motor, and task-

specific processes. To control for sensory registration and motor response, as Jensen 

(1990) suggested, the control condition was a simple RT task. To control for the task-

taking processes, the contrast condition was another two-choice RT task (with a lower 

level of difficulty). To reduce the bias toward a single perceptual modality, each of 

three task conditions had visual and audial versions of perceptual modalities. The task 

content was modified from the arrow task (T. M. C. Lee et al., 2006; 2005)—a visual 

stimulus-response choice RT task—and converted into three task conditions (control, 

1-rule, and 2-rule), each with two modality versions (visual and audial). 

In this study, the various components were embedded in the behavioral RTs 

through the use of a CTI that was derived by subtracting the sensorimotor time (simple 

RT) from the processing time (stimulus-response mapping RT, Figure 2-1) by means 

of lasso regression. The concept and the method behind the CTI computation are 

covered in the method section of this thesis. 
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Figure 2-1 Conceptual illustration of operationalization of behavioral indices 

 

Hypotheses 

The hypotheses in this study are as follows: 

1. In the younger group, faster processing speed is associated with relatively 

low activations in the frontal lobe and relatively high activations in the 

parietal lobe and the cerebellum. 

2. In the younger group, faster processing speed is associated with less causal 

influence. 

3. In the older group, faster processing speed is associated with more frontal 

activations. 

4. For the older group, as compared to the younger group, faster processing 

speed is associated with more activations due to the causal influence of the 

frontal-to-parietal and frontal-to-cerebellar interactions. 
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Chapter 3 Method 

Participants 

Forty healthy young adults aged 18-28 and forty healthy old adults aged 65-75 

participated in the study. The final sample contained 34 young (21.5±2.1 years, 14 

females) and 20 old (66.8±2.7 years, 12 females) adults as six young and twenty old 

participants were excluded due to premature response more than 40% of trials in any 

condition (<150ms, 1 young) or missing more than 40% of the trials in any condition 

(2 young, 18 old), or below 70% accuracy in any condition (4 young, 2 old). All 

participants had normal vision and audition, were right-handed as screen by the 

Edinburgh handedness questionnaire (Oldfield, 1971), and had high school education 

or higher. They were recruited from the local communities close to the Fujian 

University of Traditional Chinese Medicine where the study was conducted. The 

exclusion criteria were: cognitive impairment (Montreal Cognitive Assessment, 

Beijing Version (Yu, Li, and Huang 2012), MoCA<26), depressive mood (Hamilton 

Rating Scale for Depression, Frank et al. 1991, HAMD>=7), neurological diagnosis 

which could affect cognitive functions (such as brain injury and post-stroke), 

substance abuse/smoking, sub-normal audio-visual function or MRI scan 

contraindications. E Standard Logarithm Eyesight Table was used to ensure the 

subjects have normal or correct-normal vision. For the audition, we use the pure-tone 

detection to test the hearing abilities of subjects. Pure-tone detection thresholds at 

octave frequencies ranging from 300 to 1000 Hz were within normal limits in both ear 

(Collignon et al. 2011, Böhr et al. 2007). All participants were explained the purpose 

of the study. Their informed consent was obtained prior to the training and 

experimental procedures. Ethics approval was obtained from the Ethics Committee of 

the Fujian University of Traditional Chinese Medicine. 
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Experimental Tasks 

The Arrow task (T. M. C. Lee et al., 2005; 2006) was modified into three task 

conditions: two two-choice reaction time tasks with different task-taking rules, and a 

simple reaction task as the control (Figure 3-1). The two-choice tasks involved 

participants to encode and discriminate the visual or audial stimuli, and give motor 

responses according to the rule set out in the task. The 1-rule condition was to press 

the “UP” button upon viewing an “upward” arrow (for visual stimuli) or upon listening 

to a “high-pitch” tone (for audial stimuli); or press the “DOWN” button upon viewing 

a “downward” arrow or listening to a “low-pitch” tone (Figure 3-1). The 2-rule 

condition was to give responses which are the reverse of those in the 1-rule condition, 

i.e. “UP” button for a “downward” arrow or a “low-pitch” tone, or “DOWN” button 

for an “upward” arrow or a “high-pitch” tone. The control condition was to press any 

button upon viewing a vertical line without an arrow head (or listening to a “mid-pitch 

tone”). It was anticipated that a control trial would involve vigilance and focused 

attention, and motor response processes. The 1-rule trial would involve discrimination 

and response selection, in addition to those for the control trial. The 2-rule trial would 

further require binding of the stimulus-response mapping rule (seeing “upward” arrow 

for pressing “DOWN” button), of which the original 1-rule representation itself 

(seeing “upward” arrow for pressing “UP” button) contained the response rule 

(Wilhelm & Oberauer, 2006). 

The design of visual and audial stimuli in each of the three task conditions was 

to tackle the potential confounds of modality commonly committed in previous studies 

on processing speed. The task trials were presented using a block design. The visual 

and audial versions of the tasks were organized in two separate runs. For each run, 
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there were 15 task blocks. Each block had 10 of 1-rule, 2-rule or control trials. The 15 

task blocks were randomized and counter-balanced in each run. The total number of 

trials in each condition was 50. Preceding each block, the subject was reminded about 

the button-press response by showing the instruction on the screen for four seconds. 

For each trial, the stimulus was presented for 800 ms, followed by a fixation of 1000 

ms during which the response was made. The duration of each block was 18-s. The 

total duration for each run was 250-s There was a 10-s resting period after the first run 

and before the second run begun. 

 

 

Figure 3-1 Visual and audial version of the Arrow Task 

 

Reaction Time Measures 

The mean reaction times for each of the six conditions were calculated. For the 

rest of the thesis, the reaction times for the control conditions will be termed “control 

RT”, and the reaction times of the four stimulus-response mapping tasks will be termed 

“mapping RT”. Trials with response time below 150ms were omitted from the 

calculation of mean RT and accuracy rate, and if omitted trials were more than 40%, 

the participants were omitted from the study. Participants with accuracy rate below 

70% in any task condition were excluded from the analysis. The choice of 70% as cut-

off was to ensure the correct responses would not have been due to random chance. 

2-Rule Task

Visual Stimulus Audial Stimulus

(Low Pitch)

(High Pitch)

(Press “UP”)

(Press “DOWN”)

Response

Control Task

Visual Stimulus Audial Stimulus

(Mid Pitch)

Response

(Random)

1-Rule Task

Visual Stimulus Audial Stimulus

(Low Pitch)

(High Pitch)

(Press “DOWN”)

(Press “UP”)

Response
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The mean reaction time for each task condition was entered in a 2 (group) × 2 

(modalities) × 3 (task conditions) linear mixed model using the R package lme4, and 

subject was entered to the model as random effect. Significant main and interaction 

effects were followed with post-hoc analysis using the R package multcomp, with p-

level corrected with Tukey’s procedure. 

 

MRI Scanning Parameters and Data Pre-processing 

MRI images were acquired using GE Signa HDxt 3T scanner (General Electric, 

Milwaukee, WI, USA) with 8-channel phased-array head coil. High-resolution T1-

weighted images were acquired using magnetization-prepared rapid gradient-echo 

(MP-RAGE) sequence (Axial acquisition, field-of-view 240 x 240 mm, slice thickness 

1 mm without gap, 160 slices, acquisition matrix 256 x 256, TR 5556 ms, TE 1764 

ms, inversion time 450 ms, flip angle 15 degree). During both auditory and visual task, 

175 volumes of BOLD-fMRI images were acquired using T2*-weighted echo-planar 

imaging (EPI) sequence (Axial acquisition, field-of-view 240 x 240 mm, slice 

thickness 4mm without gap, 40 slices per volume, acquisition matrix 64 x 64, TR 2000 

ms, TE 30 ms, 175 volumes, flip angle 90 degree). 

Functional data were preprocessed with FMRIB Software Library (FSL 

version 5.0.9, (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; S. M. Smith 

et al., 2004). In each run, first five volumes of the fMRI time series were removed to 

minimize magnetic field instability. The remaining 170 volumes were high-pass 

filtered with frequency 1/90 Hz to remove scanner drifting. The volumes were then 

rigidly aligned to the middle volume to correct for movement artifact. Gaussian spatial 

filter of 5mm full-width-half-maximum was applied. The images were then 

decomposed into independent components using FSL/MELODIC (Multivariate 
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Exploratory Linear Optimized Decomposition into Independent Components) with 

single-session Independent Component Analysis (ICA) option. Components were 

visually inspected using FSL/melview and classified as signal and different artifacts 

(R. E. Kelly et al., 2010). Denoised sessions were analyzed with general linear model, 

for which boxcar function for the three task conditions were convoluted with 

haemodynamic response functions. Temporal derivatives and motion parameters were 

entered to the model as additional regressors. Three task contrasts (Control, 1-Rule 

and 2-Rule) and two difference contrasts (1-Rule minus Control and 2-Rule minus 

Control) were obtained for subsequent group analyses.  

Spatial coregistration from functional space to structural space, and 

normalization from structural space to MNI template space were performed using 

Advanced Normalization Tools (ANTs) version 2.2.0 (Avants et al., 2014). The mean 

functional image obtained from FSL preprocessing described above, and it was then 

corrected for intensity inhomogeneity introduced by bias field using 

N4BiasFieldCorrection. The rigid-body transformation matrix was calculated using 

the script antsIntermodalityIntrasubject.sh using default settings. Structural-to-

template deformations were obtained using the script antsRegistrationSyN.sh using 

default parameters. SyN is a high dimension diffeomorphic registration algorithm 

(Avants, Epstein, Grossman, & Gee, 2008) which achieved highest rank among 

existing tools (Klein et al., 2009).  

 

Identifying Common Neural Substrates: Conjunction analysis 

To identify neural substrates which were engaged in all the four experimental 

conditions, conjunction analyses were conducted. The contrasts (COPE) and variance 

(VARCOPE) of the first level parameter estimates (1-Rule minus Control, 2-Rule 
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minus Control, for both audial and visual modalities) were normalized to template 

space by merging functional-to-structural transformation and structural-to-template 

deformations in the previous step. They were then analyzed using FSL/FEAT using 

FLAME 1 higher level mixed-effect analysis in four separate models. To account for 

differences in group variance between younger and older group and imbalance number 

of participants, the two groups were modelled as different subject groups. Two 

explanatory variables were specified for each group to obtain the mean activation. Two 

contrasts were specified to capture the group mean for younger and older group 

separately. The activation maps for the 4 experimental conditions for both groups were 

entered into a conjunction analysis (Nichols, Brett, Andersson, Wager, & Poline, 

2005). However, since the aim for this step was not to make statistical inference but 

to assist the selection of ROI, the conjunction map was only created by thresholding 

the voxel significance at Z>2.3, and no cluster-wise correction was performed. Since 

there would be differences in the activations in the younger and older group, the 

conjunction analysis was performed separately in each group. The maps from the 

younger and older group were then analyzed qualitatively, as the aim of this step was 

not to compare the differences in group activation, but only to serve the selection of 

ROI. 

 

Cerebrum and Cerebellum Parcellation and ROI selection 

To avoid bias towards a specific task and a specific group, I used the 

conjunction map to inform the selection of anatomically defined ROI. The structural 

images for each subject was parcellated using Human Connectome Project 

Multimodal Parcellation (Glasser et al., 2016), HCP-MMP version 1.0, downloaded 

from https://balsa.wustl.edu/WN56) and Cerebellum Lobule Segmentation Using 
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Graph Cuts (Yang et al., 2016), downloaded from 

http://www.iacl.ece.jhu.edu/index.php/Resources). The former parcellated the 

cerebral cortex into 180 regions by obtaining sharp boundaries using cortical structure, 

task fMRI, functional connectivity and myelination. Previous parcellation schemes 

used only structural landmarks to identify the boundaries for parcellation, without 

acknowledging the functional segregations. The latter parcellated the cerebellum into 

22 regions by integrating multi-atlas labeling (15 hand-labelled T1 images), tissue 

classification and boundary classification using graph cut to achieve better 

segmentation accuracy. The T1 structural images were subjected to surface 

reconstruction using Freesurfer version 5.3.0 (Fischl & Dale, 2000). The HCP-MMP 

template was converted to Freesurfer fsaverage template, and then projected onto each 

individual subject. The cerebellum segmentation algorithm also required 

reconstructed surface from Freesurfer. The classifier was trained with the 15 hand-

labelled images come with the software package. The same procedure was also 

performed on the MNI template for ROI selection. After the MNI template was 

parcellated, the parcellation map was overlaid on the binarized conjunction map for 

ROI selection. Selected ROIs were used to extract first level parameter estimates of 

task activation and extract timeseries for effective connectivity coefficient estimation 

as described below. 

 

Activation Estimation 

After the parcellations were selected as ROIs, the mean parameter estimates 

from the first level activation analysis task contrasts (1-rule and 2-rule versus implicit 

baseline) were extracted from each subject space. The parcellation masks were 

inversely transformed from structural space back to functional space using ANTs with 
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the transformation matrix generated in previous step. The parameter estimates were 

extracted from the contrast images (COPE), and the mean values were calculated 

within each of the selected mask. 

 

Effective Connectivity Estimation – Vector Auto-Regressive Modelling 

The strength of effective connectivity was estimated with vector auto-

regressive modelling (VAR) using 1dGC.R (G. Chen et al., 2011) from AFNI. VAR 

was a causality analysis method which could be regarded as a multivariate version of 

Granger Causality (Granger, 1969). The idea behind the causality inference was, 

between two timeseries A and B, A “Granger caused” B if A demonstrated a temporal 

correlation with a lagged (or delayed) version of B, and the correlation with the lagged 

B was higher than the correlation with non-lagged (the original timeseries) of B. VAR, 

instead of only bivariate relationship between two timeseries, it took multiple 

timeseries into account. Since the brain regions were interconnected, the fluctuation 

in region was influenced by the its own current state and the signal coming from 

multiple neural substrates. Hence, VAR could uncover causal influence masked by 

multiple sources, and at the same time reduce the effect of common cause. 

Raw functional MRI data for each session was preprocessed with only motion 

correction and spatial smoothing with 5mm FWHM. As suggested by the author, the 

signal drifting was better removed with polynomial nuisance regressors, as bandpass 

filtering would introduce irregularities to the signal and possibly create spurious 

results. The path coefficients were first estimated from each of the four experimental 

condition. First, the mean signal within the ROI for each timepoint in the timeseries 

extracted from the mask generated from the previous step. Those timeseries were enter 

to the model as target variables. Haemodynamic response function was convoluted to 
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the boxcar function to create regressors to remove the irrelevant timepoints. For 

example, to estimate the path coefficient of 1-Rule condition, the regressors for resting 

block, control block and 2-rule block, the movement regressors and the polynomial 

drifting regressors were entered to the model as nuisance variable. Conceptually, this 

was similar to psychophysiological interaction (PPI), but there was lagging in the 

timeseries. The stationery of timeseries were examined, and the degree of lagging was 

determined to be 1 TR with AIC criteria. 

After the session-level analysis, the path coefficients and t-statistics estimated 

were subjected to a group level analysis, and paths with p-value less than 0.0001 were 

to be selected for subsequent analysis. There was two reason for choosing a stringent 

p-value. First, the significance values were not corrected for the VAR and the number 

of paths to be estimated was huge, as the number of paths would be the square of the 

number of ROI. For instance, if 15 ROIs were selected, there would be 225 pairwise 

connections. Therefore, a smaller number of more robust paths were selected for 

subsequent variable selection procedure. 

 

Quantification of Speed – Time Indices 

Three time indices (TIs) were derived from the response-mapping reaction 

times for the regression analyses: processing (PTI), sensorimotor (STI) and cognitive 

(CTI). The concept underling these times indices is to dissect the mapping RT into two 

compartments: time to complete decision processes and time to complete non-decision 

processes (Jensen & Reed, 1990). Non-decision time was defined as the time involved 

in carrying out the perceptual processes associated with the incoming stimuli and 

selecting and executing the motor response. Decision time was defined as the time 

involved in carrying out operations related to the 1- and 2-rule decisions. PTIs 
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therefore were standard scores of mapping RTs; while STIs were standard scores on 

control RTs. CTIs were the standard score of residuals in terms of standard scores after 

the control RT were partialled out from the mapping RT using the following linear 

mixed model (Jensen, 2006): 

 

Yij = xij
tβ + uij

tγi + ϵij 

 

where Yij=mean RT of the experimental task of jth subject of task i, x=mean 

RT of the control task of jth subject of task i, u=random effect factor for task condition 

(Modality x Task, factor with 4 levels), ϵij=residual of jth subject of task i. The 

residulization procedure ensured that STI and CTI were statistically orthogonal to each 

other, and therefore there were zero correlations between two indices. The time indices 

were normalized as a standard procedure for lasso regression (Tibshirani, 2011). 

Model fitting was done with R package lme4 to obtain the residuals. 

Reaction time of the Arrow Task, equivalent to the PTI of the current study, 

has been used in various studies to examine the RT-activation correlates, such as 

go/no-go (Barber, Pekar, & Mostofsky, 2016), stimulus-response congruency (Barber 

& Carter, 2004), stimulus-stimulus congruency (K. Kim, Carp, Fitzgerald, Taylor, & 

Weissman, 2013), oddball (H. Kim, 2014), spatial-cueing (Domagalik, Beldzik, Oginska, 

Marek, & Fafrowicz, 2014), N-back (Takeuchi et al., 2012) and digit-symbol task 

(Rypma et al., 2006). In general, cognitive control regions demonstrated RT-related 

activations, suggesting that the activation of regions associated with supervisory 

processes. It is likely due to the activation of those regions sustained through the 

sensory input stage, processing stage, and motor output stage. The activation of stage-
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specific regions, however, could tend to engage in a fraction of the entire reaction time 

period, in other word, those regions demonstrated phasic engagement.  

 

The CTI was designated to capture the processing time with sensorimotor time 

suppressed, and the statistical procedure “residualization” was applied.  Previous 

studies adapted residualization to study brain correlates. For example, to study the 

structural correlates of cerebellum in motor and cognitive function, Kansal et al. 

administered 9 pairs of tasks to their subjects. To isolate a specific cognitive domain, 

the performance of a control task was regressed from the intended task. Take the trail 

making task for example, they administered TMT-A (connecting numbers in ascending 

sequence i.e. 1-2-3-…) and TMT-B (connecting alternate number and alphabet, i.e. 1-

A-2-B…) to their subjects. The intended measure for TMT-A was visual search speed 

while TMT-B included an addition component of executive function. They regressed 

TMT-A scores from TMT-B scores to establish a cleaner measure of executive 

function domain. After establishing the adjusted scores for a particular domain, they 

did a sparse partial lease square on the cerebellar sub-region volumes to establish 

domain-specific correlates. Given that the stimulus-response mapping conditions of 

the Arrow task involved both sensorimotor and cognitive (stimulus-response rule 

mapping) components, and the control condition (simple reaction time) incorporated 

mainly sensorimotor components without processing of stimulus-response rule, 

should be a better measure of the cognitive processing speed than the measures used 

in previous studies, such as reaction time (Rypma et al., 2006), accuracy rate (Forn et 

al., 2009) and composite score calculated with reaction time and accuracy rate (Motes 

et al., 2013). The residualized score constitute the time to make the mapping decision, 

i.e. “cognitive time index (CTI)”. 
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The STI, which was literally the reaction times of the control task (i.e. simple 

RT task), was also included in the analysis. The STI played a less important role in the 

current study. The main reason for including the index is for the completeness of the 

analysis. In Barber and colleague’s (2016) study, they also reported the RT-activation 

of a simple RT task, and the regions involved visual cortex and motor cortex, but not 

control- or attention-related regions. Hence, the simple RT task could have been 

relied solely on sensorimotor processes, and the response could be completed 

automatically, without heavy involvement of cognitive control and attention 

processes. In other words, the STI should have captured only automatic aspects of 

the sensorimotor components of the stimulus-to-response process. 

 

Linear Mixed-effect Model and Variable Selection 

Mixed-effects model was fitted for predictions of the three speed indices (PTI, 

STI and CTI) with brain activations and path coefficients as fixed effects, and 

experimental conditions (Audial 1-Rule, Visual 1-Rule, Audial 2-Rule and Visual 2-

Rule) as random effects. A previous study also used multiple regression to predict 

response time from regional activations (Madden, Whiting, Provenzale, & Huettel, 

2004). For all linear mixed-effects model regression analysis, we adopted the “least 

absolute shrinkage and selection operator” (lasso) in the variable selection instead of 

stepwise regression (Madden et al., 2004), which is meant to enhance prediction 

accuracy and interpretability (Groll & Tutz, 2014; Tibshirani, 1996). The main aim 

for using lasso was to identify the most informative predictors to describe the 

individual differences. Lasso was also found useful for controlling the possible 
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overfitting problems arisen throughout the procedure and therefore it was preferred 

over stepwise regression (McNeish, 2015). Linear mixed model lasso regressions were 

performed using R package glmmlasso (Groll & Tutz, 2014). Since we are interested 

in the commonalities among all experimental conditions, the task condition was 

entered to the model as random effect. All predictors were normalized before model 

fitting. Optimal regularization parameter λ was determined iteratively from 100 to 1 

with step size of 1, and the model with smallest AIC value was selected. Coefficients 

for all parameters were shrunk to 0 with λ equals 100 in the current study. To further 

improve potential instability of the variable selection, the variable inclusion 

probability procedure was applied (Bunea et al., 2011). The lasso regression was 

repeated with 5000 bootstrap sample, and the probability of selecting a particular 

variable were counted. Those predictors passed 50% probability were then regarded 

as selected predictors. 

Predictors retained in the reduced models were random effects using restricted 

maximum likelihood with R package lme4, as coefficients estimated by lasso would 

bias towards zero (Hastie, Tibshirani, & Friedman, 2008). For each predictor, 95% 

confidence interval were calculated using parametric bootstrap with 1000 simulations, 

local effect sizes were calculated with Cohen’s f² (Selya, Rose, Dierker, Hedeker, & 

Mermelstein, 2012). Marginal R² for all reduced models were obtained with R package 

MuMIn. Significance of overall models were estimated by comparing the reduced 

model with corresponding null models which contained only intercept and random 

effects. 

Six models were constructed for each group of the subjects. For each of the 

time indices (Processing Time Index, Sensorimotor Time Index, Cognitive Time 
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Index), a set of activation predictors and a set of path predictors were subject to the 

variable selection procedure.  
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Chapter 4 Behavioral Results 

The behavioral measures in terms of reaction times and accuracy rates are 

presented in Figure 4-1 and Table 4-1. The reaction times in here refer to raw 

behavioral data collected from the subjects when they performed the 6 task conditions 

inside the scanner. A linear mixed model was performed to investigate the effect of the 

Group, Modality, Task effects and their interactions with subject as random effect to 

correct for the repeated measures on the variables of interest. For reaction times, there 

was a significant main effect of Group (F(1,52)=20.59, p<0.0001) and Task 

(F(1,260)=275.8, p<0.0001), while the main effect of Modality (F(1,260)=0.05, 

p=0.81) was not statistically significant. The following interaction effects were 

significant:  Group × Task (F(2,260)=8.05, p<0.001) and Modality × Task 

(F(2,260)=5.54, p=0.004). Others were not statistically significant Group × Modality 

(F(2,260)=2.07, p=0.15) and Group × Modality × Task (F(2,260)=2.31, p=0.10). Post-

hoc test corrected with Tukey procedure on Group and Task showed that the older 

group had significantly slower reaction times than the younger group (β=41.03, 

p=0.03), the 1-Rule condition had reaction times significantly slower than the control 

condition (β=142.1, p<0.0001), and the 2-rule condition had significantly slower 

reaction times than the 1-Rule condition (β=32.9, p=0.0033). Further post-hoc tests 

were performed to compare the differences in the reaction times by each of the six 

conditions. The older participants were not significantly slower than younger group in 

the  audial control (β=41.03, p=0.09) and visual control conditions (β=31.57, p=0.28). 

The older participants were significantly slower than their younger counterparts in the 

audial 1-Rule (β=62.71.03, p=0.002), audial 2-Rule (β=72.72, p<0.001), visual 1-Rule 

(β=63.36, p<0.002) and visual 2-Rule conditions (β=105.87, p<0.001). 
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Accuracy Rate 

In the control task, since the participants were not required to make a 

judgement based on the task rules in the other experimental conditions, response rate 

was used to describe the reaction times yielded. For simplicity, response rate in the 

control task was referred as accuracy rate in the text below.  For accuracy rate, there 

was a significant main effect of Task (F(2,260)=42.0, p<0.0001). Main effects of 

Group (F(1,52)=1.60, p=0.21) and Modality (F(1,260)=0.25, p=0.62) were not 

significant. The Group × Task (F(2,260)=6.06, p=0.002), Modality × Task 

(F(2,260)=3.37,p=0.035) and Group × Modality × Task (F(2,260)=3.317,p=0.038) 

were significant. The  Group × Modality (F(2,260)=2.61, p=0.107) was not 

statistically significant. Post-hoc analysis on the task effect with Tukey procedure 

showed that the accuracy rates for the 1-rule and 2-rule conditions were significantly 

lower than the control condition (β=4.08, p<0.001, 2-rule: β=3.8, p=0.003).  Another 

post-hoc analysis on Modality × Task effect on the older group showed that the 

accuracy rate of the visual 2-Rule condition was significantly lower than those of the 

other conditions for the older group (β=4.20-8.73, p<0.01).  

Table 4-1 Behavioral measures of the Arrow Task performance. See also Figure 4-1 
for visualization. 

    Younger (N=34) Older (N=20) 

  Auditory Visual Auditory Visual 
  Task Mean SD Mean SD Mean SD Mean SD 
  Control 310 77.8 308 51 351 71.5 339 73.6 

Reaction Time (ms) 1-Rule 452 65.2 428 47.1 514 50 501 65.6 

  2-Rule 485 67.1 485 54.2 548 60 591 72.8 

 Control 100 0 100 0 100 0 100 0 

Accuracy (%) 1-Rule 95.9 6.48 96.8 4.66 96.3 6.39 97.6 3.03 

  2-Rule 96.2 3.73 96.8 2.82 95.5 6 91.3 8.88 
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Figure 4-1 Behavioral performance of the Arrow task by younger and older group 

 

Speed-Accuracy Tradeoff 

Possible speed-accuracy tradeoff of the behavioral measures was examined 

using simple correlation test (Figure 4-2,Table 4-2). For the younger group, no 

significant reaction time-accuracy correlations were revealed (r<0.04 and p>0.05 for 

all conditions). For the older group, although the correlation coefficients for the 1-

Rule conditions were moderate, they were not statistically significant (r=0.42, 

p=0.0655 for audial, r=0.44, p=0.0502 for visual). 

Table 4-2 Correlation tests between reaction time and accuracy for each condition 

    Younger Older 
    r p r p 

 Control - - - - 

Audial 1-Rule 0.00 0.997 0.42 0.0655 

 2-Rule 0.01 0.939 0.21 0.3827 

 Control - - - - 

Visual 1-Rule 0.03 0.855 0.44 0.0502 

 2-Rule -0.02 0.905 0.17 0.4790 
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Figure 4-2 Scatter plot with regression lines for reaction time and accuracy 

 

Discussion 

Consistent with the results of Lee et al.’s (2006) study and of other studies that 

used stimulus-response compatibility tasks (Cieslik, Zilles, Kurth, & Eickhoff, 2010), 

the RT for the 2-rule condition (incompatible response) was significantly larger than 

that for the 1-rule condition (compatible response). This suggests that the 1-rule and 

2-rule tasks recruited different cognitive processes, which supports our goal of 

identifying the neural substrates associated with processing speed. It is noteworthy 
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that no significant differences were observed in the RTs (in either the younger or the 

older group) due to perceptions of the audial and visual modalities in the control 

condition. However, differences were observed between the two age groups in terms 

of performance in the 1-rule and 2-rule conditions. Verhaeghen (2013b) conducted a 

meta-analysis on the behavioral performance of the aging population and concluded 

that simple sensorimotor tasks that involve no decision component show little or even 

no age-related slowing. This result suggests that aging does not affect processing speed 

for basic sensory and simple motor tasks, such as the simple RT task in this study’s 

control condition. This result further supports the validity of splitting the mapping RT 

into individual components and then conducting comparisons between younger and 

older groups. In the subsequent analyses, the control RT was used as a suppressor of 

the RT measures so as to partial out the time spent on the sensory and motor processes 

during the tasks. As there were no significant differences between the younger and 

older groups, the variation of the simple RT was likely due to individual differences 

among the participants in terms of psychophysical processing. Therefore, after 

subtracting the control RT from the mapping RT, the result could be an estimate of the 

cognitive processing time. 
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Chapter 5 Conjunction Analysis and Region of Interest Selection 

Introduction 

This chapter describes the procedures to identify the region of interest for 

subsequent best predictor selection. The task-independent activation map for both the 

younger and older groups were used to guide the selection of the anatomically defined 

regions. The results of the conjunction analyses and the selected ROIs are described. 

 

Conjunction Analysis 

Three conjunction analyses were performed to locate the modality- and task-

independent activation regions in the younger and older group, and their overlapping 

regions. Four task contrasts (Audial 1-Rule minus Control, Visual 1-Rule minus 

Control, Audial 2-Rule minus Control and Visual 2-Rule minus Control) were entered 

into the conjunction analysis (Table 5-1and Figure 5-1). For the younger group, the 

bilateral superior frontal junction (or commonly referred to as frontal eye-field), 

bilateral superior medial cortex (including pre-supplementary motor area and anterior 

cingulate), anterior insula, intraparietal sulcus, cerebellar lobule 6/8 and cerebellar 

vermis were significantly activated in all the task conditions, except that the 

activations in the right intraparietal sulcus and bilateral anterior insula were not 

statistically significant after the cluster-wise FWE correction.  

In the older group, the activation patterns observed were by and large similar 

to those of the younger group, except in the left anterior insula of which the activation 

was not statistically significant at the voxel z threshold of 2.3. In some regions, the 

older participants were observed to recruit similar neural substrates but to a wider 

spatial extent. Those regions included the bilateral superior frontal junction extending 

along the precentral sulcus to the inferior frontal junction, medial frontal cortex, and 
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bilateral intraparietal sulcus. In other regions, the older participants recruited the 

similar cluster but to a lesser spatial extent than the younger participants. Those 

substrates included the right anterior insula and the bilateral cerebellum lobule 6, crus 

1 and 8, and vermis. 

 

 

 

Figure 5-1 Conjunction Maps for Younger and Older group and Their Overlapping 
Area.  

Red: conjunction map of 4 experimental contrasts (task-control) for the younger group, green: 
the same map for the older group, blue: overall conjunction map of all experimental contrasts 
for both groups 
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Table 5-1 Conjunction analysis for all task contrasts of younger and older group 

Contrasts / Region Lateral 
Volume Cluster 

Peak Z 
Peak MNI 

(Vox) -log(p) X Y Z 
Conjunction Map of Younger group     
Cerebellum Vermis, Left Lobule 6, 

8, Right Lobule 8 

B 4445 11.3 5.26 0 -66 -18 

Left Intraparietal Sulcus L 2200 6.38 5.08 -42 -42 50 

Left Superior Frontal Junction, 

Bilateral Medial Frontal Cortex 

L 1717 5.12 5.76 -28 -6 48 

Right Superior Frontal Junction R 1284 3.89 4.67 28 -2 58 

Right Intraparietal Sulcus R 491 n.s. 3.7 38 -44 48 

Right Insula R 156 n.s. 4.02 32 24 2 

Left Insula L 122 n.s. 3.73 -36 16 4 

Conjunction Map of Older group 
Left Intraparietal Sulcus L 3313 9.77 4.37 -26 -66 58 

Left Superior Frontal Junction, 

Bilateral Medial Frontal Cortex 

L 2462 7.67 5.02 -28 -2 48 

Right Superior Frontal Junction R 1523 5.03 3.86 28 -4 46 

Right Intraparietal Sulcus R 1323 4.41 4.04 40 -48 54 

Cerebellum Vermis, Left Lobule 

Crus 1, 8 

L 842 2.75 3.87 -8 -70 -34 

Cerebellum Right Lobule 6, Crus 1 R 188 n.s. 3.48 42 -56 -32 

Right Anterior Insula R 92 n.s. 3.03 44 12 2 

Cerebellum 8R R 67 n.s. 2.92 18 -64 -58 

Conjunction Map of both Younger and Older group    
Left Intra-parietal Sulcus L 1924 5.95 3.94 -28 -62 60 

Left Superior Frontal Junction L 1132 3.59 4.86 -28 -2 50 

Right Superior Frontal Junction R 1054 3.34 3.86 28 -4 46 

Cerebellum Vermis, Left Lobule 6, 

Crus 1, 8 

L 601 1.7 3.87 -8 -70 -34 

Right Intra-parietal Sulcus R 405 n.s. 3.69 40 -42 48 

Bilateral Medial Frontal Cortex L 255 n.s. 3.64 -4 8 48 

Cerebellum Right Lobule 6, Crus 1 R 145 n.s. 3.4 36 -48 -34 

Cerebellum Left Lobule 6, Crus 1 L 126 n.s. 2.91 -36 -56 -30 

Cerebellum Right Lobule 8 R 51 n.s. 2.77 16 -66 -56 

Cerebellum Left Lobule 8 L 46 n.s. 2.74 -22 -60 -52 

Right Insula R 41 n.s. 2.99 32 24 2 

Note: although the decision for region-of-interest selection did not reference to the cluster-
wise significance test, a family-wise (FWE) correction was performed at voxel Z>2.3 and 
cluster p<0.05 for reference. n.s: not significant.  
   
 
Cortical and Cerebellum Parcellations 

The cortical parcellation generated from the Human Connectome Project was 

successfully projected on the Freesurfer fsaverage surface template (Figure 5-2). The 

parcellation was further projected on each particpant based on the surface-based 

registration. Surface reconstructions and projections were visually verified for quality. 
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The cortical labels were projected on the structural images. Figure 5-3 shows the result 

of one of the young participant . Parcellation of the cerebellum using multi-atlas 

labelling and graph cuts were also performed and visually checked, see also Figure 

5-3 for an exemplar of the result. The same procedure was applied on the MNI 

template to guide the selection of ROIs. 

 
Figure 5-2 Projection of Human Connectome Project parcellations on Freesurfer 
template 

 
Figure 5-3 Final cortical and cerebellum parcellations on one subject.  

Left: cortical parcellation with HCP-MM1 template. Right: Multi-atlas-based cerebellum 
parcellation with Graph Cuts. 
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ROI selection 

Region-of-interests were selected based on visual inspection of the conjunction 

maps and the parcellations generated from the previous analytical procedures. 

Selected cortical parcellations for the medial frontal cortex were the LSCEF (left) and 

RSCEF (right), which appeared to cover the pre-supplementary motor area and 

anterior cingulate. For the superior frontal junction, L6a (left) and R6a (right) were 

selected, which was also referred to as frontal eye-field in the literature. For anterior 

insula, the LAVI (left) and RAVI (right) were selected. Although the older group did 

not show significant activation in the left anterior insula, it was still considered to be 

an important ROI as it was associated with the stable task-set maintenance network 

which involved medial prefrontal cortex which facilitated top-down control 

(Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008). For intraparietal sulcus, two 

pairs of ROIs were selected due to the massive volume and functional segregation. 

Specifically, using a similar response-compatibility task, Cieslik and colleagues’ study 

(2010) suggested that the anterior IPS facilitated top-down reorienting attention while 

more posterior part demonstrated bottom-up properties. For anterior IPS, LAIP (left) 

and RAIP (right) were selected, while LLIPv (left) and RLIPv (right) were selected 

for posterior IPS. Although left posterior IPS was not significantly activated in the 

younger group, the ROI was also entered in the subsequent analysis to facilitate 

comparison for younger and older group. For cerebellum, vermis VI/VII/VIII were 

selected. It was selected as the activation in the vermis was the highest in the 

cerebellum in both groups. Also, vermis size was consistently related to cognitive 

decline in aging populations (Bernard, Leopold, Calhoun, & Mittal, 2015; Miller et 

al., 2013; Paul et al., 2009). Selected ROIs were overlaid on MNI template for 



   

 

 50 

visualization (Figure 5-4). The extraction of timeseries and parameter estimates were 

performed on individual subjects’ parcellation maps.  

 

 

Figure 5-4 Region of Interests Selected from Anatomically Defined Regions.  

LSCEF: left medial frontal, L6a: left superior frontal junction, LAVI: left insula, LAIP: left 
anterior intraparietal, LLIPv: left posterior intraparietal, RSCEF: Right medial frontal, R6a: 
right superior frontal junction, RAVI: right insula, RAIP: right anterior intraparietal, RLIPv: 
right posterior intraparietal, CV6/7/8: Cerebellum Vermis VI/VII/VIII. Labels for cortical 
ROIs were adapted from HCP-mmp1 atlas. 

 

Discussion 

The conjunction analyses revealed the neural substrates that were grouped 

under a common network for all the task conditions: the bilateral SFJ, MFC, anterior 

insula, intraparietal sulcus, and cerebellum. The MFC and bilateral insula have been 

associated with stable cognitive control, which mediates task-set maintenance to 

facilitate goal-related behavior (Dosenbach et al., 2008; Petersen & Posner, 2012). 
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The bilateral SFJ and intraparietal sulcus have been known to serve top-down attention 

functions (Corbetta & Shulman, 2002; Corbetta, Patel, & Shulman, 2008), and 

together, they are known as the dorsal attention network. The activations of the 

cerebellar vermis in this study are consistent with those in other studies involving 

sustained attention during simple cognitive tasks (see Langner & Eickhoff, 2013 for 

review and meta-analysis). In particular, Langner et al. (2013) suggested that the 

vermis supported the preparatory and anticipation processes during the occurrence of 

an event. Regions related to adaptive cognitive control, including the DLPFC and 

lateral parietal lobule (Vincent, Kahn, Snyder, Raichle, & Buckner, 2008), were not 

found to be statistically significant in this conjunction analysis, which suggests that 

the experimental tasks used in the study involved minimal adaptive cognitive control. 

The ROIs selected for this study, based on the stipulated analyses, provide useful 

information on the processing speed. 

In a similar study of a spatial stimulus-response compatibility task (Cieslik et 

al., 2010), there were activations in the right temporoparietal junction—a part of the 

ventral attention network, which is responsible for bottom-up attention (Corbetta et 

al., 2008; Corbetta & Shulman, 2002). The postulate in this study is that the absence 

of temporoparietal junction activation in this task was grounded in a lack of overt 

spatial orientation. In their (Cieslik et al., 2010) experimental paradigm, the semantic 

representation was delivered in the visuospatial domain, with a red dot on either the 

left or right side of the screen; the subjects had to orient their attention to a spatial 

location and construct a modal-free representation from the spatial information. In this 

study, detecting and encoding the stimuli in both modality conditions should not have 

involved significant audio- or visuospatial orientation. For the visual stimuli, the arrow 

sign was always presented in the same location. For the audial stimuli, the sound was 
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delivered to both ears simultaneously. Therefore, the current paradigm should have 

involved minimal spatial orientation, and the processing time related to the bottom-up 

orientation should have been minimized.  

In summary, 13 ROIs were selected: the left and right regions of the MFC, SFJ, 

anterior insula, anterior intraparietal sulcus, and posterior intraparietal sulcus; as well 

as the cerebellum vermis VI, VII, and VIII. 
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Chapter 6 Neurophysiological Correlates of Processing Speed in the Younger 

Adult 

Effective Connectivity Path Estimation 

The timeseries of the 13 selected ROIs were extracted from the anatomically 

defined ROI in each younger participant’s native space. They were analyzed with 

multivariate vector autoregression implemented in the 1dGC.R script from AFNI to 

estimate the path coefficients for the four experimental conditions (Audial/Visual 1-

Rule/2-Rule) for each participant. The time series extracted from the ROIs passed both 

KPSS and ADF tests for their stationarity and met the AIC 1-TR (2s) degree of lagging 

criteria. Group analysis was then performed by entering path coefficients and p-values 

of all the four experimental conditions into 1dGC.R in group analysis mode. Among 

the 169 pairwise pathways, 13 self-loops were excluded from further analysis. 

Seventy-two out of the 157 effective connectivity paths passed the p<0.00001 

threshold and selected for further analyses.  

Nine ROIs showed significant causal influences on other brain regions in the 

younger group. Bilateral medial frontal ROIs (LSCEF, RSCEF), right anterior insula 

(RAVI), right anterior intraparietal sulcus (RAIP) and vermis VIII (CV8) showed 

positive causal influence to multiple brain regions, implying that the increased (or 

decreased) activations in the source regions caused an increase (or decrease) in the 

activations of the neural substrates in the destination regions among the younger 

participants. Right posterior intraparietal sulcus (RLIPv) and vermis VI (CV6) 

demonstrated negative influences on other regions. Left posterior intraparietal sulcus 

(LLIPv) and right superior frontal junction (R6a) showed mixed result, but both of 

them showed negative causal influence to their contralateral counterparts.  
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Table 6-1 Path coefficients of effective connectivity in the younger group 

 CV6 CV7 CV8 LSCEF L6a LAVI LAIP LLIPv RSCEF R6a RAVI RAIP RLIPv 
CV6 0.116 0.044 0.057 -0.114 -0.082 -0.080 -0.068 -0.145 -0.094 -0.104 -0.128 -0.129 -0.145 
CV7 0.005 0.020 -0.047 -0.044 -0.049 -0.028 -0.046 -0.014 -0.026 -0.042 -0.033 -0.047 -0.064 

CV8 0.136 0.080 0.147 0.058 0.062 0.044 0.044 0.057 0.044 0.060 0.036 0.049 0.070 
LSCEF 0.209 0.162 0.186 0.514 0.274 0.164 0.168 0.174 0.093 0.316 0.215 0.143 0.148 
L6a 0.021 0.005 0.008 -0.027 0.325 -0.004 0.018 -0.006 -0.016 -0.046 -0.035 -0.031 -0.021 

LAVI -0.029 0.015 0.012 0.004 0.006 0.098 -0.056 -0.035 0.046 0.007 -0.069 -0.017 0.006 

LAIP 0.033 -0.002 0.020 0.042 0.017 0.022 0.202 0.012 -0.053 -0.006 0.040 0.004 -0.012 

LLIPv 0.070 0.030 0.026 -0.036 0.039 -0.006 0.000 0.341 -0.010 0.015 -0.035 -0.077 -0.113 
RSCEF 0.188 0.129 0.110 0.116 0.352 0.070 0.052 0.090 0.419 0.297 0.111 0.103 0.167 
R6a -0.010 -0.025 -0.040 -0.009 -0.079 0.021 0.033 0.004 -0.013 0.257 0.029 0.026 0.017 

RAVI 0.027 0.053 0.038 0.028 0.018 0.028 -0.005 0.023 0.034 0.079 0.231 0.047 0.072 
RAIP 0.138 0.135 0.118 0.177 0.213 0.124 0.108 0.138 0.103 0.288 0.184 0.592 0.642 
RLIPv -0.114 -0.105 -0.077 -0.150 -0.218 -0.094 -0.086 -0.098 -0.104 -0.219 -0.132 -0.170 0.040 

Note: the table read from column to row. For example, index of the path from L6a to CV6 is 
the fifth row of the first column. Boldfaced path coefficients denoted p<0.00001. CV6/7/8: 
Cerebellum Vermis VI/VII/VIII, LSCEF: left medial frontal, L6a: left superior frontal 
junction, LAVI: left insula, LAIP: left anterior intraparietal, LLIPv: left posterior intraparietal, 
RSCEF: Right medial frontal, R6a: right superior frontal junction, RAVI: right insula, RAIP: 
right anterior intraparietal, RLIPv: right posterior intraparietal.  
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Figure 6-1 Diagram for the effective connectivity.  

Each diagram was labelled with the source of the causal influence. Blue arrow: 
negative influence, higher (or lower) activation in the source region Granger caused a 
lower (or higher) activation in the destination region. Red arrow: positive causal 
influence, higher (or lower) activation in the source region Granger caused a higher 
(or lower) activations in the destination region. 

 

Parameter estimates of the task activation contrast with implicit baseline for 

the four experimental conditions of 13 ROIs were subjected to three separate linear-

mixed lasso regression model models. The results yielded were to predict the three 

time-indices in processing speed among the younger participants: PTI (processing), 

STI (sensorimotor) and CTI (cognitive). The final model which predicted the PTI was 
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significant (!²(3)=17.208, p=0.0006, R²=0.0998), and it contained the cerebellar 

vermis VI ("²=0.248, β=0.390, p=0.001), right medial frontal cortex ("²=0.204, β=-

0.249, p=0.009), and vermis VII ("²=0.197, β=0.316, p=0.011). The final model 

predicted STI was significant (!²(3)=21.416, p<0.0001, R²=0.1429), and it involved 

left superior frontal junction (L6a)("²=0.16219, β=-0.26719, p=0.058), right medial 

frontal cortex (RSCEF, "²=0.14098, β=-0.20549, p=0.096), and left Intraparietal, 

Anterior (LAIP, "²=0.13438, β=0.15998, p=0.11). However, the variables were not 

significant. The final model predicted CTI was significant (!²(4)=20.491, p=0.0004, 

R²=0.1363). It involved vermis VII ("²=0.377, β=-0.56274, p<0.001), vermis VI 

("²=0.29526, β=0.43941, p<0.001) which were significant, and left superior frontal 

junction (L6a, "²=0.14424, β=0.19981, p=0.09) and right superior frontal junction 

(R6a, "²=0, β=-0.03976, p=0.71) which were not significant. 

 

Speed-related connectivity analysis 

Estimated 72 path coefficients were subjected to three separate models as 

explanatory variables to predict the three time-indices for the younger group as above. 

The final model which predicted PTI was significant (!²(2)=15.902, p=0.0004, 

R²=0.0921). Both selected paths right anterior intraparietal to vermis VII (RAIP to 

CV7, "²=0.25812, β=-0.25583, p=0.001), and vermis VI to right superior frontal (CV6 

to R6a, "²=0.21452, β=-0.21217, p=0.007) were significant. The final model which 

predicted STI was significant (!²(3)=37.575, p<0.0001, R²=0.2373). The paths right 

anterior intraparietal sulcus to vermis VII (RAIP to CV7, 	"²=0.3042, β=-0.27358, 

p<0.001), right medial frontal to right posterior intraparietal sulcus (RSCEF to RLIPv, 

"²=0.18972, β=0.22844, p=0.026), and right medial frontal to Vermis VII (RSCEF  to 
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CV7, "²=0.16899, β=0.20602, p=0.046) were significant. The final model which 

predicted CTI was also significant (!²(2)=12.690, p=0.0017, R²=0.0879). The selected 

paths right superior frontal to left anterior intraparietal (R6a to LAIP, "²=0.20139, 

β=0.20009, p=0.02), and right medial frontal to vermis VI (RSCEF to CV6, 

"²=0.18028, β=-0.17947, p=0.037) were significant. 
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Table 6-2 Best predictors selected by lasso regression on three time-indices in the 
younger group 

 	   95% CI  
Model / Selected Variable "² β se lwr upr P 
 
Younger group: Predict Processing Time Index (PTI) with Activations 
Cerebellar Vermis VI 0.248 0.390 0.120 0.166 0.639 0.001 ** 

Right Medial Frontal Cortex (RSCEF) 0.204 -0.249 0.094 -0.439 -0.050 0.009 ** 

Cerebellar Vermis VII 0.197 -0.316 0.123 -0.536 -0.071 0.011 * 

				Model	summary:	!²(3)=17.208, p=0.0006, R²=0.0998 
 

Younger group: Predict Sensorimotor Time Index (STI) with Activations 
Left Superior Frontal Junction (L6a) 0.162 -0.267 0.140 -0.546 0.026 0.058 . 

Right Medial Frontal Cortex (RSCEF) 0.141 -0.205 0.123 -0.429 0.036 0.096 . 

Left Intraparietal, Anterior (LAIP) 0.134 0.160 0.100 -0.068 0.345 0.11   
				Model	summary:	!²(3)=21.416, p<0.0001, R²=0.1429 

 

Younger group: Predict Cognitive Time Index (CTI) with Activations 
Cerebellar Vermis VII 0.377 -0.563 0.128 -0.826 -0.284 <0.001 *** 

Cerebellar Vermis VI 0.295 0.439 0.128 0.165 0.668 <0.001 *** 

Left Superior Frontal Junction (L6a) 0.144 0.200 0.117 -0.010 0.443 0.09 . 

Right Superior Frontal Junction 

(R6a) 0.000 -0.040 0.108 -0.277 0.167 0.71   

Model	summary:	!²(4)=20.491, p=0.0004, R²=0.1363 
 

Younger group: Predict Processing Time Index (PTI) with Connectivity 
Right Anterior Intraparietal (RAIP) 

to Vermis VII (CV7) 

0.258 -0.256 0.077 -0.413 -0.118 0.001 ** 

Vermis VI (CV6) to Right Superior 
Frontal (R6a) 

0.215 -0.212 0.077 -0.369 -0.064 0.007 ** 

Model	summary:	!²(2)=15.902, p=0.0004, R²=0.0921 
 

Younger group: Predict Sensorimotor Time Index (STI) with Connectivity 
Right Anterior Intraparietal (RAIP) 

to Vermis VII 

0.304 -0.274 0.077 -0.425 -0.114 <0.001 *** 

Right Medial Frontal (RSCEF) to 

Right Posterior Intraparietal (RLIPv) 

0.190 0.228 0.102 0.021 0.406 0.026 * 

Right Medial Frontal (RSCEF) to 

Vermis VII (CV7) 

0.169 0.206 0.102 0.018 0.401 0.046 * 

Model	summary:	!²(3)=37.575, p<0.0001, R²=0.2373 
 

Younger group: Predict Cognitive Time Index (CTI) with Connectivity 
Right Superior Frontal Junction 
(R6a) to Left Anterior Intraparietal 

(LAIP) 

0.201 0.200 0.085 0.031 0.362 0.02 * 

Right Medial Frontal (RSCEF) to 

Vermis VI (CV6) 

0.180 -0.179 0.085 -0.356 0.002 0.037 * 

Model	summary:	!²(2)=12.690, p=0.0017, R²=0.0879 
	

Note: "²: effect size, se: standard error, lwr/upr: lower/upper bound at 95% confidence interval, 
*<0.05, **<0.01, ***<0.01 
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Figure 6-2 Significant activation and connectivity predictors selected by lasso 
regression in the younger group.  

Note: Sections on the track represented the activation of the ROI. Blue: higher activation 
predicted shorter time. Red: higher activation predicted longer time. Arrows connecting 
different ROIs were the significant paths. Blue arrow: Decreased positive influence predicted 
longer time. Cyan arrow: Decreased negative influence predicted longer time. Red arrow: 
Increased positive influence predicted longer time. 

 

Discussion 

This study explored the mechanisms underlying processing speed by 

employing visual and audial stimuli in a simple response-selection paradigm. The 

results suggested the use of a common task-positive neural network composed of the 

bilateral MFC, bilateral anterior insula, bilateral SFJ, left intraparietal sulcus, and 

cerebellum. Effective connectivity analysis revealed that the bilateral MFC, right 

anterior insula, right anterior intraparietal sulcus, and cerebellum vermis VIII exerted 

positive causal influences on other substrates, suggesting that higher activations in one 

substrate caused higher activations in other substrates within the network (Figure 6-1, 
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Table 6-1). By contrast, the right posterior intraparietal sulcus and vermis VI exerted 

negative influences on the system. Additional analyses newly revealed the 

cerebellum’s roles in influencing speed. Before the non-decision processes were 

partialled out, processing speed was associated with activations in the right medial 

PFC, vermis VI, and vermis VII, but only the latter two were retained in CTI. Of these 

activations, increases in the right MFC and vermis VII, as well as decreases in the 

vermis VI, were each independently associated with faster (smaller) CTI. These results 

suggest that vermis VII plays a facilitating role and that its activations are associated 

with faster (smaller) PTI and CTI. Second, the identified reciprocal fronto-parietal-

cerebellar pathways were associated with decision speed. In particular, increased 

negative influence of the vermis VI on the right SFJ and decreased influence of the 

right anterior intraparietal sulcus on vermis VII were the best predictors of accelerated 

PTI. Faster CTI, on the other hand, was associated with increased positive influence 

of the right MFC on the left anterior intraparietal sulcus and by reduced positive 

influence of the right SFJ on the same region. Our findings suggest that interactions 

between the cognitive-control processes (mediated by the frontal neural substrates) 

and the control-to-automatic perceptual decision processes (mediated by the cerebellar 

neural substrates) play important roles in facilitating processing speed. 

 

Justification for Variable Selection with the Three Time Indices  

The CTI was derived by parceling out the control RT from the mapping RT so 

as to capture the time spent on the endogenous processes that are associated with 

mapping the stimulus-to-response rules. The validity of this method was substantiated 

via the clustering of the neural substrates associated with STI and CTI. The results of 

the regression analysis indicated that CTI was more strongly associated with 
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activations of the focal neural substrates in the cerebellar vermis, whereas the MFC 

was not associated with decision speed once the non-decision component was 

removed. MFC activations have been shown to be best explained by the time-on-task 

effect, which describes the associations between response time and the intra-subject 

variability of brain activations (Carp, Fitzgerald, Taylor, & Weissman, 2012; 

Weissman & Carp, 2013). In particular, in those studies, congruency, stimulus–

stimulus conflict, response conflict, and error effect were eliminated after controlling 

for response time. This suggests that the MFC plays a more general supervisory role 

in the entire task, which governed the sensory input stage, rule-based decision stage 

and motor stage. In other words, the activation of MFC begins at the onset of stimulus 

and sustains until completion of motor response and evaluation of the performance. 

Therefore, after removing the non-decision components, that is processing time spent 

on sensory and motor stages, the time spent on decision processing (estimated with 

CTI) was not significantly correlated with the activation of the MFC. In contrast, the 

vermis activations were not only remained associated to decision speed (CTI), but the 

beta estimates and effect sizes were also greater than that of the PTI. Therefore, it is 

asserted that CTI had captured the decision processes. For instance, the vermis VI/VII 

was considered to substantiate specific task processes such as oculomotor (Kleine, 

Guan, & Buttner, 2003), rule-based visuomotor decision making (Deverett, Koay, 

Oostland, & Wang, 2018; Owens et al., 2018), adaptive control (Herzfeld, Kojima, 

Soetedjo, & Shadmehr, 2018), and performance monitoring (Peterburs & Desmond, 

2016). Consequentially, the speed-related activation results supported the partitioning 

of decision speed. 

In addition, dividing RT into two orthogonal compartments (decision or non-

decision) unmasked the brain-behavior relationships. In fact, the time spent on rule-
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based decision occupied around one-third of the entire processing time (under the 

assumption that the decision time = (Mapping RT - control RT)/Mapping RT). The 

covariance associated with the decision processing and activations could have been 

masked by the noise introduced by the variance of sensorimotor processing time. Right 

MFC connectivities were not sufficient predictors of PTI, but they did differentially 

contribute to non-decision speed (STI) and decision speed (CTI) after bootstrap 

resampling. Therefore, the method used in this study could be used to extract the 

decision component of processing speed or to unmask brain correlates by suppressing 

the non-decision components of speed. 

 

Processing Speed of Stimulus-Response Rule Mapping 

In this study, increased right MFC activation predicted accelerated processing 

speed (PTI). The MFC findings are consistent with those of previous studies, which 

further supports the positive speed-activation association across a variety of cognitive 

tasks: digit-symbol tasks (Forn, Ripollés, et al., 2013a), stop-signal tasks (C. S. R. Li, 

2006), response-inhibition tasks (Wager et al., 2005), and simple sustained-attention 

tasks (Hilti et al., 2013). By comparing the brain activations of fast and slow 

performers using a simple sustained-attention task, Hilti and colleagues (2013) found 

that fast performers maintained higher MFC activations than slow performers. The 

function of the MFC in cognitive control has also been related to vigilance and 

alertness (Mottaghy et al., 2006), which was facilitated by task-set maintenance 

(Dosenbach et al., 2006). That conjecture matches with one of this study’s hypotheses. 

Langner and colleagues (2011) also presented a vigilant (simple RT) task with three 

perceptual modalities (audial, visual, and vibrotactile), and they reported that the 

resulting network contained the MFC and vermis. That network was also reported in 
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another meta-analysis that encompassed simple paradigms such as zero-back, go/no-

go, and response-mapping tasks (Langner & Eickhoff, 2013). In addition, causal 

influence of the right MFC on vermis VI, vermis VII, and the right posterior 

intraparietal sulcus were associated with non-decision (STI) and decision (CTI) speed 

(Langner & Eickhoff, 2013). These findings further support the claim that the MFC 

plays a role in cognitive control.  

In this study, activations in vermis VI and vermis VII were differentially 

associated with processing speed (PTI) and decision speed (CTI); these activations 

were the only activation predictor of decision speed. These results signify the 

importance of the cerebellar vermis in mediating the processes that are involved in a 

simple stimulus-response mapping task. Common attributions of the cerebellum’s 

roles include an influence on general cognition (Koziol et al., 2014) and on the 

processing of auditory and visual information (Kansaku, Hanakawa, Wu, & Hallett, 

2004; Langner et al., 2011). Specific to this study, a higher volume of vermis was 

correlated with faster RTs (Bernard & Seidler, 2013) and higher digit-symbol coding 

scores (Nadkarni et al., 2014); in addition, higher BOLD responses for the vermis (Rao, 

Motes, & Rypma, 2014) correlated with longer RTs on the digit-symbol task among 

younger adults. According to other researchers, the vermis also may play a role in the 

automaticity of a new action. For example, lesions in the vermis have been found to 

impair the habituation of new behaviors in mice (Callu, Puget, Faure, Guegan, & 

Massioui, 2007), and suppressive stimulation of the vermis has been shown to reverse 

the practice effect for a lexical-decision task in humans (Argyropoulos, Kimiskidis, & 

Papagiannopoulos, 2011). These results show that stronger activation of vermis VII 

predicts faster decision speed (smaller CTI) and processing speed (smaller PTI). 

Functionally, vermis VII has also been associated with adaptive cognitive control (Fan, 
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McCandliss, Fossella, Flombaum, & Posner, 2005; Q. Li et al., 2015b; Weissman, 

Woldorff, Hazlett, & Mangun, 2002) and executive function (E, Chen, Ho, & 

Desmond, 2014). In particular, the vermis VII encodes a representation of mapping 

rules (Balsters et al., 2012). Structurally, in a viral tracing study in monkeys, a direct 

connection has been  found between vermis VII and area 46 (R. M. Kelly & Strick, 

2003), which is the equivalent of the DLPFC in humans. In a measure of resting-state 

functional connectivity in humans, vermis VII has been found to connect to the 

frontoparietal control network (Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011; 

Habas et al., 2009). Thus, vermis VII was predicted to function as a counterpart of the 

frontoparietal control network. 

These results suggest that lower activations in the vermis VI are associated 

with faster processing speed (smaller PTI) and decision speed (smaller CTI). In fact, 

vermis VI has been associated with response readiness (Langner et al., 2011), vigilant 

attention (Langner & Eickhoff, 2013), and the automatization of cognitive processes 

(Balsters et al., 2012; Callu, Lopez, & Massioui, 2013; Lang & Bastian, 2002). In 

resting-state functional connectivity studies, researchers (Buckner et al., 2011; Habas 

et al., 2009) have reported that vermis VI is functionally connected to the frontoinsular 

network, which has been associated with stable task-set maintenance (Dosenbach et 

al., 2007). For instance, to perform a task successfully, according to Dosenbach et al. 

(2006), the task-set maintenance system sends a top-down bias signal to engage the 

relevant input, processing, and output subsystems, and it then receives bottom-up 

feedback. In the mapping task in this study, the cognitive processes involved loading 

and maintaining appropriate mapping rules, attending to mental representations in the 

sensory cortex, binding the stimulus to the action rules, forming an action 

representation, and executing the action. Hypothetically, as the task involved no spatial 
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orientation, no bias signal would be sent to the bottom-up attention reorienting system. 

The effective connectivity analysis also showed a reciprocal connection between the 

MFC (the core substrate of the frontoinsular network) and vermis VI. The task-related 

effective connectivity analysis revealed that the right MFC reinforced the activation 

of vermis VI and that vermis VI augmented the activation of the right MFC. These 

results reveal that higher MFC activation, lower vermis VI activation, and increased 

positive influence of the MFC on vermis VI are all associated with faster (smaller) 

CTI. Higher medial frontal activation induced stronger influence on vermis VI. 

Stronger synchronization with vermis VI thus reduced the workload of vermis VI 

(reduced activation), which in turn reduced the workload by speeding up the 

subprocesses. The interacting connections of vermis VI to the medial frontal region 

could thus reflect a control-automatic interaction between the two regions. 

Notably, increased negative influence of vermis VI on the right SFJ (also 

referred to as the frontal eye field) also facilitated faster processing speed (smaller PTI) 

in this study. The SFJ is known to be a core substrate for the top-down orientation of 

attention (dorsal attention network, Corbetta and Shulman, 2002). The right SFJ, in 

particular, has been activated across various sensory modalities in a simple vigilant 

task (Langner et al., 2011) and has maintained the spatial localization of visual and 

auditory cues, even for cues outside of the visual field (Tark & Curtis, 2009). 

Therefore, the SFJ contributes to not only the visual but also the supra-modal 

orientation of attention. Since the finding was related to PTI but not CTI, and SFJ 

encoded the representation of the stimulus, it is assumed that the process was more 

associated with the translation of sensory information to attention system but not the 

rule-based decision process. The association between faster speed and increased 
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negative influence indicated more inhibitory modulation from the vermis VI to SFJ 

facilitated faster sensory representation to an abstract representation of the stimulus.   

Increased positive influence from Right AIP to vermis VII also facilitated 

faster PTI. Right AIP is a component in the dorsal attention network. It formed abstract 

representations of numerical magnitude regardless of the presentation of the stimulus 

(number of dots, Arabic number, English word, Roman numeric system) (Ansari, 

2007) and representations of objects regardless of perceived modality (visual and 

tactile) (Grefkes, Weiss, Zilles, & Fink, 2002). Therefore, anterior IPS demonstrated 

symbolic and amodal representation of the transformed stimulus. On the other hand, 

recent brain stimulation (Esterman et al., 2017) and resting state connectivity studies 

(Habas:2009bj; Buckner et al., 2011) showed that vermis VII is a cerebellar node of 

the dorsal attention network. In particular, stimulation on vermis VII improved 

attention and the reaction time of a continuous performance task (Esterman et al., 

2017). The causal influence from right AIP to vermis VII is hence interpreted as a 

cerebro-cerebellar modulation.   

Increased positive influence from right MFC to vermis VI facilitated faster 

decision speed. MFC and Vermis VI has been found to be functionally connected to 

the cingulo-opercular network (Dosenbach:2006ij; Habas:2009bj; Buckner et al., 

2011). Cingulo-opercular network is considered to facilitate task-set maintenance, and 

cerebellum acts as an internal model for the corresponding cortical region, which 

operates in a fast, effortless and automatic, but less flexible copy of the same mental 

processes in the cortex (Ito:2008bw; Ramnani, 2014). Hence, the positive influence is 

regarded as stronger communication of effortful task-set control to the automatic 

counterparts. Interestingly, fast decision speed was related to both enhanced 

MFCàCV6 connectivity and enhanced MFC and reduced CV6 activations. It is 
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speculated that more effortful control (MFC) and less automatic control (vermis VI) 

were both associated with faster cognitive processes and it stronger communication 

reduced the engagement of automatic control. 

The decreased positive influence of the right SFJ on the left AIP facilitated 

faster decision speed (CTI) in this study. The SFJ has been associated with spatial 

representation, and the left AIP, different from right AIP, has been related to goal 

representation (Hamilton & Grafton, 2006; Rice, Tunik, & Grafton, 2006). Rice and 

colleagues (Rice et al., 2006) applied transcranial magnetic stimulation to the anterior, 

middle, and caudal intraparietal sulcus, finding that stimulation in the anterior area, 

but not the middle or caudal areas, disrupted the execution and online adjustments of 

motor behavior. Rice and colleagues thus asserted that the connection of the right SFJ 

to the left intraparietal sulcus plays a role in translating spatial representations to action 

representations. The association between decreased fronto-to-parietal influence 

reflected that the selection of target action schema from the action set required less 

incoming information. It is postulated that the strength of task-set maintenance 

facilitated top-down attention processes, possibly by enhancing the stimulus set in SFJ 

and action set in AIP. First, the stronger stimulus set in SFJ speeded up the 

accumulation of evidence from sensory processes and hence the formation of 

representation of the target stimulus. The information conveyed from SFJ to AIP then 

consisted less noise and converged at a faster rate. Second, the action set in the 

intraparietal sulcus was more vivid so that the decision threshold for action schema 

was reached at a shorter time. Therefore, Further studies have to be conducted to 

examine the interplay of task-set control and top-down attention control for the 

facilitation of processing speed. 
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Conclusion 

The findings of this study indicate that processing speed, decision speed and 

non-decision speed were influenced by facilitative and inhibitory processes that are 

mediated by neural substrates in the fronto-parieto-cerebellar network. This study’s 

simple discrimination task enabled the differentiation of cognitive and non-decision 

processing speed. The use of both audial and visual stimuli further reduced the bias of 

the results through task specificity. The speed-related activation of and causal 

connectivities between the MFC and vermis VI/VII suggested that cognitive control 

played an important role in engaging the appropriate functional module in performing 

the action. Therefore, the strength of activations and connections were associated with 

differentiable components of processing speed. These findings further reveal the 

contributions of the cerebellum in modulating the controlled and automatic 

interactions of a task set related to cognitive control in processing speed.  
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Chapter 7 Neurophysiological Correlates of Processing Speed in Aging 

Population 

Effective connectivity path estimation 

The timeseries of the 13 selected ROIs were extracted from the older 

participant’s ’s anatomical space and input to the 1dGC.R script from AFNI to estimate 

path coefficients for each experimental condition. The extracted timeseries were 

analyzed for their stationarity using both KPSS and ADF tests and determined to use 

1-TR of lagging using the AIC. Results for first level path analysis for each of the four 

experimental conditions and all twenty older participants were subjected to group 

analysis using 1dGC.R script. Both path coefficients and p-values were entered into 

1dGC.R in group analysis mode. After removing 13 self-connecting paths out of the 

169 possible pairwise connections, 26 effective connectivity paths retained for 

p<0.0001, and they were entered to the lasso regression model for further analysis for 

the older group (Table 7-1 and Figure 7-1). 

Table 7-1 Path coefficients of effective connectivity in the older group 

 CV6 CV7 CV8 LSCEF L6a LAVI LAIP LLIPv RSCEF R6a RAVI RAIP RLIPv 
CV6 -0.003 -0.003 0.002 -0.062 -0.071 -0.064 -0.069 -0.071 -0.044 -0.093 -0.121 -0.091 -0.106 
CV7 -0.017 -0.067 -0.029 -0.024 -0.060 -0.009 -0.014 -0.028 -0.018 -0.030 0.046 -0.010 0.001 

CV8 0.145 0.081 0.063 -0.017 0.036 0.022 0.060 0.036 0.007 0.052 0.009 0.009 0.026 

LSCEF 0.156 0.145 0.133 0.298 0.236 0.230 0.171 0.097 0.043 0.235 0.357 0.064 0.051 

L6a 0.108 0.043 0.060 0.065 0.272 -0.010 0.049 0.049 0.051 0.055 -0.029 0.054 0.071 

LAVI 0.010 0.064 0.117 -0.025 -0.037 0.047 -0.032 0.007 -0.013 -0.006 -0.054 -0.004 -0.010 

LAIP 0.104 0.016 -0.068 0.043 0.046 0.003 0.064 0.020 0.009 -0.022 -0.013 -0.031 -0.024 

LLIPv 0.109 0.075 0.036 0.038 0.001 0.025 0.035 0.283 -0.007 -0.024 0.046 -0.003 -0.034 

RSCEF 0.119 0.054 0.091 0.037 0.122 0.014 0.009 0.025 0.181 0.062 0.009 0.005 -0.018 

R6a 0.032 -0.018 0.020 0.156 0.069 0.049 0.069 0.098 0.100 0.246 0.075 0.137 0.165 
RAVI -0.009 0.024 0.046 -0.009 0.073 -0.028 -0.017 0.030 0.008 0.049 0.005 0.059 0.051 

RAIP 0.120 0.049 0.014 0.101 0.045 0.116 0.059 0.029 0.090 0.183 0.214 0.317 0.235 
RLIPv 0.066 0.106 0.141 -0.148 -0.146 -0.018 0.007 -0.093 -0.121 -0.102 -0.009 -0.037 0.117 

Note: the table read from column to row. For example, index of the path from L6a to CV6 is 
the fifth row of the first column. 
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Figure 7-1 Diagram for the effective connectivity in the older group. 

Note:  Each diagram was labelled with the source of the causal influence. Blue arrow: negative 
influence, higher (or lower) activation in the source region Granger caused a lower (or higher) 
activation in the destination region. Red arrow: positive causal influence, higher (or lower) 
activation in the source region Granger caused a higher (or lower) activations in the destination 
region. 

 

Speed-related activations analysis 

Parameter estimates of the four experimental conditions for the thirteen 

selected ROIs were entered into separate linear mixed linear lasso regression model 

for variable selection on the three speed indices processing time index (PTI), 

sensorimotor time index (STI) and cognitive time index (CTI). The final model for 
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prediction of PTI in the older group was significant (!²(2)=30.981, p<0.0001, 

R²=0.2532). Activation of the left posterior intraparietal (LLIPv, "²=0.57234, 

β=0.61162, p<0.001), and the right anterior intraparietal (RAIP, "²=0.41543, β=-

0.44151, p<0.001) were significant predictors. The final model for prediction of STI 

was significant (!²(3)=38.753, p<0.0001, R²=0.3874). All predictors were significant, 

and included left posterior intraparietal (LLIPv, "²=0.75296, β=0.74568, p<0.001), 

right medial frontal cortex (RSCEF, "²=0.29075, β=-0.33631, p=0.01), and right 

anterior intraparietal (RAIP, "²=0.28004, β=-0.33867, p=0.014). The final model for 

prediction of CTI was significant (!²(5)=20.046, p=0.0012, R²=0.2106). The model 

contained four significant predictors, including cerebellar vermis VII (CV7, 

"²=0.31768, β=0.46415, p=0.006), right anterior intraparietal (RAIP, "²=0.28442, β=-

0.34829, p=0.013), left superior frontal junction (L6a, "²=0.26912, β=0.35421, 

p=0.018), and cerebellar vermis VIII (CV8, "²=0.23603, β=-0.29399, p=0.037), and 

one non-significant predictor cerebellar vermis VI (CV6, "²=0, β=-0.00404, p=0.98). 

 

Speed-related connectivity analysis 

Estimated path coefficients for the 26 selected paths were input to three 

separate linear mixed effect lasso regressions for variable selection in the older group 

(Table 7-2 and Figure 7-2). The final model to predict PTI was significant 

(!²(3)=26.368, p<0.0001, R²=0.2146). The three included paths were left medial 

frontal to left superior frontal junction (LSCEF to L6a, "²=0.35626, β=0.32298, 

p<0.001), left medial frontal to cerebellar vermis VII (LSCEF to CV7, "²=0.25824, 

β=-0.23295, p=0.009), and right superior frontal to right anterior intraparietal (R6a to 

RAIP, "²=0.25339, β=0.23462, p=0.009). The final model to predict STI was 
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significant (!²(2)=13.396, p=0.0012, R²=0.1509). The two significant paths were right 

superior frontal to right medial frontal cortex (R6a to RSCEF, "²=0.36808, β=0.34488, 

p=0.002) and left medial frontal cortex to vermis VII (LSCEF to CV7, "²=0.23509, 

β=-0.22244, p=0.038). The final model predicting CTI was significant (!²(1)=14.289, 

p=0.0002, R²=0.1618) and it involved only one significant path left medial frontal 

cortex to left superior frontal (LSCEF to L6a, "²=0.43941, β=0.40444, p<0.001). 
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Table 7-2 Best predictors selected by lasso regression on three time-indices in the older 
group 

Model / Selected Variable "² β se lwr upr p  
 
Older group: Predict Processing Time Index with Activations 
Left Posterior Intraparietal (LLIPv) 0.572 0.612 0.103 0.403 0.813 <0.001 *** 

Right Anterior Intraparietal (RAIP) 0.415 -0.442 0.101 -0.644 -0.251 <0.001 *** 

Model	summary:	!²(2)=30.981, p<0.0001, R²=0.2532 
 
Older group: Predict Sensorimotor Time Index with Activations 
Left Posterior Intraparietal (LLIPv) 0.753 0.746 0.110 0.522 0.949 <0.001 *** 
Right Medial Frontal Cortex (RSCEF) 0.291 -0.336 0.128 -0.573 -0.072 0.01 * 

Right Anterior Intraparietal (RAIP) 0.280 -0.339 0.134 -0.583 -0.100 0.014 * 

Model	summary:	!²(3)=38.753, p<0.0001, R²=0.3874 
 
Older group: Predict Cognitive Time Index with Activations 
Cerebellar Vermis VII (CV7) 0.318 0.464 0.164 0.131 0.776 0.006 ** 

Right Anterior Intraparietal (RAIP) 0.284 -0.348 0.137 -0.613 -0.065 0.013 * 
Left Superior Frontal Junction (L6a) 0.269 0.354 0.147 0.062 0.643 0.018 * 

Cerebellar Vermis VIII (CV8) 0.236 -0.294 0.138 -0.551 0.001 0.037 * 

Cerebellar Vermis VI (CV6) 0.000 -0.004 0.158 -0.294 0.303 0.98   

Model	summary:	!²(5)=20.046,p=0.0012, R²=0.2106 
 
Older group: Predict Processing Time Index with Connectivity 
Left Medial Frontal (LSCEF) to Left 

Superior Frontal Junction (L6a) 

0.356 0.323 0.089 0.137 0.484 <0.001 *** 

Left Medial Frontal (LSCEF) to 

Cerebellar Vermis VII (CV7) 

0.258 -0.233 0.087 -0.407 -0.049 0.009 ** 

Right Superior Frontal (R6a) to Right 

Anterior Intraparietal (RAIP) 

0.253 0.235 0.088 0.056 0.427 0.009 ** 

Model	summary:	!²(3)=26.368, p<0.0001, R²=0.2146 
 
Older group: Predict Sensorimotor Time Index with Connectivity 
Right Superior Frontal (R6a) to Right 

Medial Frontal Cortex (RSCEF) 

0.368 0.345 0.105 0.141 0.581 0.002 ** 

Left Medial Frontal Cortex (LSCEF) 

to Vermis VII (CV7) 

0.235 -0.222 0.105 -0.426 -0.001 0.038 * 

Model	summary:	!²(2)=13.396, p=0.0012, R²=0.1509 
 
Older group: Predict Cognitive Time Index with Connectivity 
Left Medial Frontal Cortex (LSCEF) 

to Left Superior Frontal (L6a) 

0.439 0.404 0.104 0.188 0.612 <0.001 *** 

Model	summary:	!²(1)=14.289, p=0.0002, R²=0.1618 

  
Note: "²: effect size, se: standard error, lwr/upr: lower/upper bound at 95% confidence interval, 
*<0.05, **<0.01, ***<0.01  
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Figure 7-2 Significant activation and connectivity predictors selected by lasso 
regression in the older group 

Note: Sections on the track represented the activation of the ROI. Blue: higher activation 
predicted shorter time. Red: higher activation predicted longer time. Arrows connecting 
different ROIs were the significant paths. Blue arrow: Decreased positive influence predicted 
longer time. Red arrow: Increased positive influence predicted longer time. 

 

Discussion 

The aim of this study was to explore the aging effect by comparing older adults 

to younger counterparts in terms of processing speed on a simple stimulus-response 

mapping task. The activation analysis revealed that, although the activation 

topography of the older and younger groups appeared to be comparable, the older 

participants tended to recruit more extensive frontal and parietal substrates and less 

extensive insular and cerebellum substrates than did the younger group. The effective 

connectivity analysis demonstrated that the older group had fewer interactions among 

brain regions than did the younger group. The bilateral MFC, intraparietal sulcus, and 

cerebellum had less influence on the rest of the system among older adults than among 
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younger adults, but the bilateral SFJ exerted more causal influence. The speed-related 

activation analysis showed that, in the younger and older groups, increased activity in 

the right MFC predicted faster processing speed (smaller PTI) and faster non-decision 

speed (smaller STI), respectively. However, in the older group, reduced SFJ activity 

and enhanced intraparietal sulcus activity were associated with faster decision speed 

(smaller CTI), which was not found in the younger group. Vermis VII activation was 

found to be related to decision speed in both groups, but higher activation was 

associated with higher speed in the younger group and with lower speed in the older 

group. The speed-related effective connectivity analysis identified two lateralized 

frontal-to-frontal pathways in the older group—reduced left-MFC-to-left-SFJ 

influence (i.e., reduced positive influence predicted both faster processing and 

decision speed) and reduced right-SFJ-to-right-MFC influence (i.e., reduced positive 

influence predicted faster non-decision speed)—neither of which was found in the 

younger group. The increased medial frontal-to-vermis VII pathway in the older group 

was associated with faster processing speed and non-decision speed, but the reverse 

relationship occurred in the younger group.  

Only one similar speed-brain correlation was found in both the younger and 

older groups: Higher right MFC activation predicted faster processing speed in the 

younger group and non-decision speed in the older group, both of which were 

interpreted as non-decision. The MFC was the primary substrate for implementing a 

stable task-set (Dosenbach et al., 2006) and to support vigilance (Langner & Eickhoff, 

2013). However, the effective connectivities that interacted with the MFC differed 

considerably between the two groups. First, reduced positive influence of the right SFJ 

on the MFC was related to faster non-decision speed in the older group. These results 

suggest that, among the older participants who showed slower non-decision speed, the 
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cognitive-control processes relied on input from the attention system. One possible 

explanation is that the older group adopted a reactive control strategy due to a decline 

in the functions of the cognitive-control system (Paxton, Barch, Racine, & Braver, 

2008). Paxton and colleagues (2008) found that, in the younger group, the cognitive-

control regions—MFC in particular—demonstrated more sustained activations, as 

compared to a more transient pattern among the older participants. Therefore, Paxton 

and colleagues postulated that the cognitive-control function remained more intact in 

those older participants who had relatively fast non-decision speed.  

In the younger group, vermis VII was postulated to support adaptive control, 

as it encoded rules (Balsters et al., 2012) and pertained to the frontoparietal control 

network (Buckner et al., 2011; Habas et al., 2009); in addition, higher activation of 

this area was associated with faster decision speed (smaller CTI). In the older group, 

lower vermis VII, higher vermis VIII, and higher right anterior intraparietal activations 

all predicted faster decision speed. Lobule VIII of the cerebellum is known for its 

participation in sensorimotor function (Stoodley & Schmahmann, 2010). In this study, 

intrinsic connectivity analysis revealed that vermis VIII functionally is coupled with 

the sensorimotor network, which also involves the anterior intraparietal sulcus 

(Buckner et al., 2011; Yeo et al., 2011). The result suggests that the older group, 

ironically, recruits the sensorimotor system in order to perform a simple cognitive task. 

In addition, this result indicates that the bilateral SFJ and intraparietal sulcus 

were involved in predicting at least one of the three speed indices. The SFJ and 

intraparietal sulcus form the dorsal attention network (Corbetta et al., 2008; Corbetta 

& Shulman, 2002), which performs a top-down attention-orientation function. The 

dorsal attention network remains intact relative to the frontoparietal control network 

(Grady, Sarraf, Saverino, & Campbell, 2016). A meta-analysis (H.-J. Li et al., 2015a) 
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surveyed a hundred task-based functional MRI studies to compare the differences in 

activations among younger and older adults. Li and colleagues (2015a) found that, 

among older adults who were performing executive control tasks, the ventral attention 

network was hypo-activated, and the dorsal attention network was hyper-activated. Li 

and colleagues also asserted that older adults recruited the dorsal attention network to 

compensate for the functional loss of the ventral attention network, and this was 

associated with bottom-up attentional functioning. Older adults may thus require a 

higher degree of attentional control than younger adults when performing a task. 

In this study, faster decision speed (smaller CTI) was associated with reduced 

left SFJ activity, increased right anterior intraparietal sulcus activity, and reduced 

positive influence of the left MFC on the left SFJ. For the younger group, it was 

postulated that decision speed involved the translation process in both rule and action 

representations (right superior frontal to left anterior intraparietal connectivity), as 

mentioned in Chapter 6. For the older group, the lower activation of the left SFJ and 

the reduced positive influence of the MFC on the left SFJ were each associated with 

faster decision speed. As these regions are contralateral to the translation pathway, this 

result is consistent with the delateralization model (Cabeza, 2002), which described a 

general pattern that the lateralized activation of a particular task in the younger group 

becomes less lateralized and has a more symmetric activation pattern with age. 

Although this phenomenon explains the differences between young and old, it also 

explains how relatively youthful older adults demonstrate less symmetric patterns 

(Eyler, Sherzai, Kaup, & Jeste, 2011). These results suggest that more efficient people 

recruit less of the left SFJ to compensate for the formation of representation. 
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Conclusion 

This study’s results are consistent with those of previous studies, which 

postulated that the cognitive control and automatic processes influence processing 

speed (Motes et al., 2011; Rypma et al., 2006). Using a set of simple stimulus-response 

mapping tasks and dividing the processing speed into decision and non-decision 

components, this study further refined the contributions of various neural substrates. 

The results indicate that, instead of adaptive control in the dorsal PFC (Motes et al., 

2011; Rypma et al., 2006), stable task-set control in the MFC, automaticity in the 

cerebellar vermis, and compensatory mechanisms in the left SFJ influence processing 

speed in older adults. 
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Chapter 8 General Discussion 

Cerebello-frontoparietal Network 

The cerebello-frontoparietal network can be observed in both younger and 

older groups. It is contended that the cerebello-frontoparietal network suggested by 

the current result is valid. First, recent effective connectivity studies has showed 

cerebellum issue causal influence to frontoparietal substrates in biological motion 

(Sokolov et al., 2018), verbal working memory (Sobczak-Edmans et al., 2019) and 

verbal learning task (Cabeza, McIntosh, Tulving, Nyberg, & Grady, 1997). In 

Dosenbach’s study (2008) several cerebellar nodes interpose those network. In the 

current study, we found the vermis node was connected to both cinguloopercular and 

dorsal attention network. It is likely that cerebellar also facilitates communication 

among different functional networks. However, this require further study to clarify. 

 

Age-related modulations of Cerebello-frontoparietal Network 

CTI captured the cognitive processing time, which was specifically related to 

the processes which facilitated the phasic engagement of the rule-based decision 

process. In the young group, fronto-cerebellar and fronto-parietal influences were 

identified. The fronto-cerebellar influence, that is medial frontal to vermis 6 

(RMFCàCV6) was found. The MFC was a core region in the cinglo-opercular 

network, which was associated with the maintenance of task-set, including engaging 

task-specific regions according to the current goal, monitoring the task performance 

and performance feedback. Similar to MFC, CV6 was engaged in vigilance tasks 

(Langner & Eickoff, 2013), which suggested that the CV6 was associated with a 

similar function. Also, a resting-state fMRI study reported that CV6 was intrinsically 

connected to the cinglo-opercular network, which further supported the functional 
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coupling between MFC and CV6. Therefore, it is postulated that the connectivity serve 

as updating the internal model of task-set according to current performance, which 

facilitates delegation of effortful control to automatic control.  

On the other hand, the right frontal eye-field to left anterior intraparietal sulcus 

(RSFJàLAIP) was associated with CTI in the younger group. Since the SFJ 

subserved target feature selection and the LAIP was responsible for action 

representation, the causal influence possibly signified to the process to translate 

stimulus representation to goal representation, which is tentatively ascribed to the 

stimulus-response mapping process. The lower RSFJàLAIP influence predicted 

faster speed, suggested that those fast subjects required less frontal influence to 

complete the mapping process. In the old group, fronto-frontal influence was observed. 

It is posited that LMFCàLSFJ influence is related to the refurbishment of stimulus-

set representations. The SFJ served top-down attention control by maintaining the set 

of targets that the subject has to response to. In the old group, the stimulus-set 

representations could have been degraded from time to time, and the MFC monitored 

and reinstated the degraded contents.  

The processing speed could reflect a tonic maintenance of task-set as indicated 

by the PTI. Tonic processes included what stimulus to focus, what rules to apply, what 

action to perform, before the onset of the stimulus. In the young group, cerebello-

fronto and parieto-cerebellar influences are found. The vermis to frontal eye-field 

(CV6àRFEF) influence supported the automatic update of stimulus set, and the right 

anterior intraparietal to vermis VII (R AIPàCV7) implied the update of internal 

model for goal-related rule sets.  
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Interplay of Control and Automaticity for Cognitive Speed  

In the young group, it appeared that the control and automaticity interact to 

enhance processing speed. First, stronger medial frontal facilitation to vermis 6 could 

be understood as monitoring of performance and update the automatic control.  

Stronger automatic control in vermis 6 then facilitate the maintainence of stimulus-set 

to attend to. This further reduce the effort for rule mapping. Further study shall be 

done to verify this speculation. In the old group, only fronto-frontal connectivity 

predicted faster cognitive speed, and it is the only significant result. In the young group, 

frontal eye-field recieves influence from vermis 6, but for the older subjects, frontal 

eye-field receives influence from medial frontal cortex. First, in the young group, the 

attention processes were right lateralized, and in the older group, the left hemisphere 

kicks in for the process. It is in general agree with the hemispheric assymetry reduction 

in older adult (HAROLD) model. Second, it is stipulated that the older subject required 

more effortful process to main stimulus set in the eye-field, as the . Furthermore, the 

lower influence predicted faster speed in the older group. It is suggested that slower 

subjects in the older group required more frontal-to-frontal compensation. 

 

Roles of Cerebellum in Cognitive Speed  

Previous study only reported vermis activation was associated with speed, but 

the mechanism remains unknown. The results of the current study suggested 

differential mechanisms for the vermis subdivisions. Vermis 6 possibly interfaces 

cingulo-opercular network and dorsal attention network, which is supported by 

previous study. Second Vermis 7 receive influence from major speed-related task 

regions. Therefore, vermis 7 likely to integrate information and update the internal 

model for the stimulus-response translation. However, Vermis 8 remain unclear, 
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possibly associated with motor representation. Previous study suggested vermis 8 was 

connected to motor cortex. 

 

Limitations 

Inter-Trial Interval 

In this study, the results based on simple cognitive control tasks (i.e. modified 

Arrow Test) on the contributions of the medial frontal cortex to  cognitive processing 

speed were found similar to those reported using various paradigms, such as digit-

symbol task (Forn, Ripollés, et al., 2013a), stop-signal task (C. S. R. Li, 2006), 

response inhibition tasks (Wager et al., 2005) and Rapid Visual Information 

Processing Task Zero (Hilti et al., 2013). The similarities in the results are somewhat 

counter-intuitive as the tasks cited are more complex in nature than the tasks used in 

this study. A close look at the design of the cited tasks revealed that all of them 

employed short inter-trials or inter-stimulus intervals. As the activations of the medial 

frontal cortex (MFC) has been reported to be responsive to trials when completed 

under an explicit time pressure (Forstmann et al., 2008), it is plausible that the MFC 

results associated with the cited tasks could have confounded by their short inter-trials 

or inter-stimulus intervals. Further study should examine the robustness of the role of 

MFC in cognitive processing speed by replicating the study using shorter and longer 

inter-trial interval designs. 

One observation made in the older participants is that a good proportion of 

them did not meet the performance threshold set for the experimental tasks. This 

resulted in relatively small number of older participants entered into the analyses, and 

compared less favorable with the younger participants. The low performance among 

the older participants could have been attributed by the relatively short inter-trial 
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intervals adopted in the tasks.  Similarly, this could have confounded the results and 

future study should adjust the inter-trial intervals so that similar difficult level of the 

tasks can be comparable between the younger and older groups. 

 

Potential Cognitive Control Involvement in the Control Task  

Completion of the simple cognitive task of this study involved input, process 

and output. The control task, namely the reaction time task, was intended to capture 

the time spent on encoding of the visual and audial stimuli (sensory input) and making 

responses by pressing on a key (motor output). The “process” component of the simple 

cognitive task can then be partial out by removing the “input” and “output” 

components. The concept of generating the three time indices in this study—cognitive 

(CTI), sensorimotor (STI), and processing (PTI)—were based on the assumption that 

the reaction times of the simple cognitive task were to be dissociated into the 

sensorimotor and cognitive components with the contrast using the reaction times of 

the control task. Our result showed that in the younger group, activations of the MFC 

predicted PTI, but not STI and CTI. The results suggest that the activations of the MFC 

were not unique to the cognitive processing speed but also in the sensorimotor-related 

processing speed. Recent studies postulated that a top-down cognitive control 

component, namely task-set maintenance, could modulate the entire task (Dosenbach 

et al., 2006, Figure 8-1). It is plausible that the control task used in this study could 

have involved the task-set maintenance. On the same token, the control task, a simple 

reaction time, could have involved a certain extent of cognitive control.  Future study 

is to extend the behavioral measures to quantify latencies of the encoding process 

(sensory input) and the motor generation separately using electroencephalography and 

electromyogram.  
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Figure 8-1 Task-set maintenance modulates input, process and output stages 

 

The extent which the older participants would have recruited compensatory 

mechanisms in the experimental tasks is worth to be further explored. The results 

indicated that in the older group the activations of the MFC were associated with STI 

but not PTI and CTI. They suggest that the MFC would modulate the sensorimotor 

processes in the older group. Previous study reported even in very simple tasks such 

as those employed in this study,  the task representation was found to activate the 

fronto-insular task-set control network (Dosenbach et al., 2006). Another study also 

demonstrated the sustained activations of the fronto-insular network throughout a 

block of trials, despite more transient patterns were shown in the (Paxton et al., 2008). 

Future study is to consider using a time-resolved brain imaging method to examine 

the time course of activations of the MFC and fronto-insular network to further 

validate the proposition made on its involvement in cognitive processing speed.  

 

Statistical Concerns 

Due to the small sample size and hence the effect size, limited number of ROIs 

were entered when developing the effective connectivity paths was limited. As a result, 

the ROIs related to the default mode network were not included in the current study 

despite the network was reported have influence on task performance in both younger 

(Weissman, Roberts, Visscher, & Woldorff, 2006) and older (Sambataro et al., 2010) 

Input Process Output

Task-set
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adults. The default mode network was also found to interact with the control network 

causing a decay in the performance on tasks (Sridharan, Levitin, & Menon, 2008). 

This is a limitation of the results of this study and future study is to have a large sample 

size for testing more ROIs for the model of cognitive processing speed.    
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