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I 

Abstract 

The emergence of multiple Global Navigation Satellite Systems (GNSSs) improves 

the observation redundancy and positioning accuracy, especially in areas where sky 

views are restricted. However, joint use of multi-GNSS observations also brings 

challenges to data processing due to the extra biases, systematic errors, heteroscedastic 

error structures, more frequent multiple-outliers and higher computational resources 

required. This study focuses on four aspects of multi-GNSS positioning. First, the 

advantages of using multi-GNSS observations in positioning are investigated. It is 

shown that compared with GPS-only solutions the total number of satellites in the case 

of the current multiple GNSS constellations increases by 280% and the position 

dilution of precision (PDOP) reduces by 52.4%. The improvements of the satellite 

number and PDOP will further rise to 340% and 57.1% respectively when all the 

satellite systems reach their full constellations. It is especially advantageous to use 

multiple GNSSs for positioning in difficult observational environments with 

significant blockage of satellite signals. The real-data static relative positioning test 

shows that the positioning error decreases by up to 52.4% when using the current 

quad-constellations (i.e. GPS, GLONASS, BeiDou, and Galileo). Simulation 

experiments show that when all four systems reach their full constellations the 

positioning accuracy can improve by 48.5–69.0%. 

Second, a new positioning model is developed to account for systematic errors in 

multi-GNSS positioning. Unmodeled systematic errors, such as multipath effects and 

residual atmospheric delays, can impact on the estimated positions and the variance 

components. A semiparametric estimation model is developed for better mitigation of 

the systematic errors. Test results with simulated systematic errors show that 

systematic errors can be accurately estimated with the proposed approach. A test with 

three-day real GNSS observations from a short baseline demonstrates that, compared 

with standard least-squares estimation, when combined with variance component 

estimation the proposed method can improve the accuracy of the estimated static 

baseline by 35.6%. A simplified procedure based on least-squares residuals is 
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proposed to enhance the determination of smoothing parameters, which has been 

proved practical and effective. Experimental results indicate that the proposed 

approach is about 100 times faster than the traditional generalized cross-validation-

based method. 

Third, a new model based on the mixed use of time-differenced and undifferenced 

carrier phase observations is developed for kinematic multi-GNSS precise point 

positioning (PPP). The approach can reduce the number of constant parameters to be 

estimated and effectively mitigates systematic errors. Test results show that when an 

accurate initial position is available the proposed approach can attain up to 71% 

improvement in positioning accuracy compared to the traditional PPP.  

Four, a two-step positioning approach is proposed whereby a subset of observations 

considered to be of high quality is first selected to estimate an initial position. The 

derived initial position is then used to remove outliers and ambiguities in the rest of 

the observations. All the available observations can be processed together after the 

removal of outliers and ambiguities to strengthen and refine the positioning. 

Experimental results show that the new approach outperforms the traditional multiple 

GNSSs approach by 4.8% and 21.4% in standard point positioning and static relative 

positioning respectively. The two-step method has a higher efficiency compared with 

the traditional method, the computation time can be reduced by 40.4% and 27.7% 

respectively in standard point positioning and static relative positioning. 

The research results contribute to an improved understanding of the impacts of 

systematic errors in multi-GNSS positioning, and enhancing the accuracy, reliability, 

and efficiency in such positioning applications. The study can be extended to long-

term and high-rate positioning applications, such as deformation monitoring and un-

manned aerial vehicle navigation.  
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Chapter 1 Introduction 

1.1 Background 

Efforts in integrating observations from multiple global navigation satellite systems 

(GNSSs) date back to the 1990s when GLONASS was developed as a competitor of 

the pioneer GPS (Vieweg and Lechner, 1994; Pratt et al., 1998; Zarraoa et al., 1998; 

Han et al., 1999). Since then some fundamental issues of multi-GNSS positioning, 

including mathematical modeling, ambiguity resolution (Wang, 2000; Wang et al., 

2001; Dai et al., 2003; Banville et al., 2018) and ephemeris determination (Weber and 

Springer, 2001) have been extensively studied. To handle the new GNSS signals, 

relevant data-processing software packages have also been developed/upgraded (e.g., 

Takasu, 2012; Dach et al., 2015). In recent years, in addition to the modernizing GPS 

and GLONASS (re-achieving a full constellation in 2011), other systems, including 

BeiDou and Galileo, have been rapidly developed (Hofmann-Wellenhof et al., 2008; 

Revnivykh, 2012; Bartolomé et al., 2015; CSNO, 2019). Consequently, more than 120 

satellites are anticipated to be available by 2020 (Dow et al., 2009; Montenbruck et 

al., 2013; Bock and Melgar, 2016). 

The increasing number of available satellites enhances signal continuity, integrity and 

geometry (Hofmann-Wellenhof et al., 2008; Yang et al., 2011; Leick et al., 2015; 

Kaplan and Hegarty, 2017). Improvements in aspects such as estimation accuracy, 

convergence time, and elevation angles have been widely reported in literature 

(Teunissen et al., 2014b; Li et al., 2015a; Lou et al., 2015; Odolinski et al., 2015). 

Multi-GNSS positioning also enables a trend of high spatial/temporal-resolution 

geodetic/geophysical applications (Bock and Melgar, 2016). For example, Geng et al. 

(2016) showed that GPS/BeiDou combination achieves an improvement of 

approximately 20% in velocity estimation compared with GPS-only solutions and the 

combination is beneficial to real-time geodetic applications, such as earthquake 

warning and tsunami forecasting.  
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1.2 Problem statement  

1.2.1 Mismodeling and estimability 

Combining observations from different satellite systems sometimes may not 

necessarily be more advantageous if errors in the observations cannot be well modeled. 

For instance, BeiDou signals may be more susceptible to multipath effects compared 

with GPS due to a mixed constellation structure. As presented by Ye et al. (2015), the 

multipath mitigated positioning precision of BeiDou is lower than that of GPS. Shi et 

al. (2013) observed that biases of GPS-only solutions are normally smaller than those 

of BeiDou-only solutions, and in some cases, multi-system solutions even enlarge the 

biases compared with solutions using data from GPS only. Another example is the 

integration of pseudolite and GPS (Meng et al., 2004). It has been reported that the 

accuracy is significantly degraded when pseudolite observations with strong multipath 

signals are used. 

Compared with the code-division multiple-access GNSSs, the frequency-division 

multiple-access GLONASS observations are more complicatedly affected by 

hardware delays that cause inter-frequency biases (IFBs) (Wanninger, 2012). Al-

Shaery et al. (2013) estimated IFBs in zero-baselines and recommended using the 

derived biases in pre-calibration. Henkel et al. (2016) and Banville et al. (2018) 

proposed ambiguity transformation methods that use two reference satellites to retain 

the integer nature of GLONASS double-differenced ambiguities, while a careful 

selection of reference satellites is required to avoid small wavelengths of the 

transformed ambiguities. Wang (2000) suggested a search process to obtain the 

GLONASS reference satellite’s single-differencing (SD) ambiguity and proposed to 

treat the SD ambiguity as a real-valued parameter in the final solution. Even for 

systems with overlapping frequencies (e.g. GPS/Galileo), hardware biases cannot be 

neglected when receivers of different types are involved (Paziewski and Wielgosz, 

2015). Tian et al. (2015) suggested a particle filter to estimate the IFBs and further 

extended the method in estimation of inter-system biases (ISBs) (Tian et al., 2019). 

Nadarajah et al. (2013) observed hardware-induced biases in BeiDou observations 
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formed across different satellite types, which can cause failures in ambiguity 

resolution. Hewitson and Wang (2006) pointed out that ISBs can lead to unreliable 

estimation when insufficient satellites from the corresponding systems are tracked. 

Although applying external corrections can eliminate some of the biases, such as inter-

system time offsets and hardware delays (Kouba, 2015; Teunissen and Khodabandeh, 

2015), certain latencies in producing external corrections hinder their real-time 

applications. For observations from some of the new satellite systems and low-cost 

mass-market receivers, precise calibrations have often not been done properly (Lou et 

al., 2014; Banville et al., 2018). In addition, hardware delays are in general assumed 

stable and estimated as daily constants, a higher resolution of estimation is suggested 

to account for their time variations (Dach et al., 2010).  

Multipath errors and unmodeled hardware delays can result in systematic errors that 

bias the least-squares estimation (Xu, 1991). Penalization estimation is widely 

employed to estimate the slowly varying or constant systematic errors. However, the 

penalization parameters are often inestimable due to their linear or near-linear 

dependence with other parameters. For instance, when introducing too many bias 

parameters to combine frequency division multiple access GLONASS signals, ill-

posed or even rank deficiency problems may occur (Banville et al., 2018). Imposing 

constraints and reparameterization are frequently done to make the systematic errors 

estimable (Leick et al., 2015; Teunissen and Khodabandeh, 2015). However, prior 

knowledge of the penalization parameters is in general limited. Although 

reparameterization can avoid the linear dependence, the definition of the 

corresponding parameter varies accordingly, i.e., relative to the base station, satellite, 

frequency, or system (Leick et al., 2015). This complicates the GNSS data processing 

sometimes. For example, undifferenced ambiguities in precise point positioning (PPP) 

are lumped together by the between-satellite single-differencing operation (Li and 

Zhang, 2014), while they are also non-integers due to the existence of hardware-

induced uncalibrated phase delays (Ge et al., 2008). Applying cross-system 

differencing can reduce the number of ISBs (Kubo et al., 2017; Li et al., 2017) whereas 

selecting a common reference satellite may lead to intersystem correlations that can 

considerably enlarge the minimal detectable biases (Yang et al., 2013). 
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1.2.2 Multiple outliers 

Another challenging issue is that more frequent multiple outliers may occur in the 

growing amount of observations. Conventional gross error mitigation methods assume 

a single outlier which may be unrealistic when processing a multi-GNSS dataset 

(Pozo-Pérez et al., 2017). Moreover, in a high-dimensional ambiguity resolution a 

subset of ambiguities generally can be reliably resolved compared with the full set 

(Brack, 2017). The ambiguities incorrectly fixed can cause large positioning errors. 

Dealing with multiple simultaneous outliers is an intractable task (Knight et al., 2010), 

in which some traditional methods such as autonomous integrity monitoring can be 

deteriorated (Angus, 2006). 

1.2.3 Computation complexity 

The increased observation diversity and redundancy can dramatically complicate the 

computation of multi-GNSS positioning. Integration of multi-GNSS observations 

expands the functional model to account for extra ambiguities, hardware biases, and 

inter-system discrepancies (Leick et al., 2015). This inefficiency can be more evident 

when handling GLONASS data (Banville et al., 2018) or a network in which a large 

number of ambiguities need to be estimated (Chen et al., 2014). In addition, traditional 

outlier controlling can become time-consuming. Outliers are unknown in practice and 

an iterative process is typically used in outlier-testing (Knight et al., 2010) or in the 

alternative approach, i.e. robust estimation (Yang et al., 2002). Much attention has 

been given to reducing the computation complexity of GNSS positioning. For 

example, when processing a large network that involves massive matrix operations 

and a large amount of parameters, the calculation is simplified technically by applying 

block-partitioned algorithms (Gong et al., 2018) and ambiguity elimination (Ge et al., 

2006). Another approach for reducing parameters is time-differing, which eliminates 

constant parameters such as ambiguity, intersystem time offsets, and hardware biases. 

The time-difference operation, however, enlarges the noise and requires an accurate 

initial position (Zhao, 2016). 
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1.3 Objectives and expected outcomes 

The achieved results of multi-GNSS positioning hitherto are considered promising, 

whereas unmodeled errors therein and the increasing computation complexity have 

yet to receive enough attention. For high-performance multi-GNSS positioning, this 

study aims to achieve the following objectives: 

• To mitigate the impacts of systematic errors on multi-GNSS positioning. 

• To enhance the combined positioning models by accommodating the 

requirements of high accuracy and efficiency. 

Special considerations will be given to designing practical procedures when 

implementing these objectives. The developed algorithms will be tested in positioning 

with simulated and real-world data. 

1.4 Dissertation outline 

The dissertation is composed of work shown in Figure 1-1. Chapter 2 investigates the 

benefits of using observations from multiple GNSSs, with current and future full 

operational constellations simulated. The benefits explain the necessity of multi-

GNSS integration. Chapter 3 presents the use of semiparametric estimation (SPE) that 

expands the parameter list to absorb systematic errors in multi-GNSS static relative 

positioning. Chapter 4 proposes to shrink the parameter list in multi-GNSS PPP, 

which is implemented by the mixed use of time-differenced and undifferenced carrier 

phases. Chapter 5 shows a two-step combination procedure that separates positioning 

into subset and full-set estimations. Chapter 6 finally provides some concluding 

remarks and possible future work. 
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Figure 1-1 Main research contributions 
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Chapter 2  Enhancement of positioning in challenging environments 

using multi-GNSS observations 

2.1 Motivation 

In monitoring crustal motion, landslides, structural deformation, subsidence, and 

volcano eruptions, GPS is complementary or an alternative to robotic total stations, 

leveling, interferometric synthetic-aperture radar (InSAR) and in-situ sensors. 

Therefore, it has been widely used in such applications (Bock et al., 1993; Motagh et 

al., 2007; Berrocoso et al., 2012; Crosta et al., 2014). However, a high performance 

of positioning is unattainable in some cases due to limited satellite geometry. For 

instance, the positioning accuracy degrades in the vertical direction in deep-cut valley 

areas (Yin et al., 2010) and in the north component due to the observability hole of 

satellites (Parkinson and Spilker, 1996). In addition, the radio signals of GPS satellites 

are vulnerable to ambient disturbances. A long-standing issue is the multipath effect 

(roughly including here signals of non-line-of-sight, reflection, and diffraction) 

(Hannah, 2001; Leick et al., 2015). Considerable research effort has been devoted to 

overcoming these inherited bottlenecks of GPS positioning from three main aspects. 

The first aspect is enhancing the geometry by using ground-based signal sources, such 

as pseudolite (Dai et al., 2002; Meng et al., 2004). The second is integrating GPS with 

non-GPS technologies, such as accelerometers (Meng, 2002; Chan et al., 2006; Tu et 

al., 2013) and InSAR (Komac et al., 2015; Hu et al., 2018). The third is developing 

advanced data processing algorithms (Han and Rizos, 2000; Zheng et al., 2005; Zhong 

et al., 2010; Dai et al., 2014; Dong et al., 2016). These approaches benefit positioning 

to a certain degree, but they also have their own limitations. For example, 

accelerometers present drifting errors (Im et al., 2013) and InSAR is expected to make 

frequent observations. The location of pseudolite and multipath mitigation techniques 

must be carefully addressed (Yi et al., 2013). Sophisticated data processing methods 

can complicate the monitoring systems. A trade-off between accuracy and complexity 

is thus generally required. 
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In recent years several non-GPS satellite systems, including BeiDou, GLONASS, and 

Galileo, have been rapidly developed. More than 120 satellites can be available by 

2020 (Bock and Melgar, 2016). Compared to GPS-only solutions, multi-GNSS 

integration has advantages such as higher positioning accuracy, larger cut-off angle, 

and faster convergence (Dai et al., 2003; Rizos, 2008; Cai and Gao, 2013; Chu and 

Yang, 2014; Teunissen et al., 2014a; Li et al., 2015b). GPS-only monitoring systems 

can be dramatically impacted by signal obstruction and the multipath effects that are 

often present in some challenging monitoring environments. Therefore, understanding 

the capabilities of the combination of multi-GNSS observations in monitoring 

applications is important, especially when the current four main satellite systems all 

run in full operational capacity. The impact of multipath effects on the applicability 

of multiple GNSSs is also worth investigation. 

The next section presents the simulation of multiple constellation observations and 

several typical scenarios in deformation monitoring. Experimental results based on 

simulated and real datasets are then presented, followed by summarized remarks. 

2.2 Constellations and observations 

Dilution of precisions (DOPs) and observation accuracy critically determine the 

positioning accuracy (Leick et al., 2015). DOPs depend on the number and distribution 

of satellites observed. At present GPS and GLONASS have full deployment of 31 and 

24 satellites respectively in their constellations (Table 2-1). The BeiDou system has a 

mixed constellation structure that consists of medium Earth orbits (MEO), 

geostationary Earth orbits (GEO), and inclined geosynchronous orbits (IGSO). 

BeiDou’s initial service was declared on Dec. 27, 2012. Six years later (i.e., on Dec. 

27, 2018), the preliminary system of 3rd generation of BeiDou was also announced 

(CSNO, 2019). At the time of writing, the BeiDou constellation consists of 33 

operational satellites: 5 GEOs, 7 IGSOs and 21 MEOs, with 18 MEOs being BeiDou-

3 satellites. BeiDou’s 3rd generation system is expected to be completed by 2020. The 
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initial open service of Galileo was declared operational on Dec. 15, 2016, and the 

Galileo constellation is on track to reach completion in 2020.  

To better understand the positioning performance with future full quad-GNSS 

constellations (i.e. GPS, BeiDou, GLONASS, and Galileo), observations are 

simulated. In addition, since the multipath effect is a major error source that affects 

the realistic observation accuracy, the geometric models are developed and then 

applied for multipath error simulation. Several typical signal-shadowing 

environments are also studied. 

Table 2-1 GNSS constellations 

 GPS GLONASS BeiDou Galileo 

Status* 

(04/14/2019) 

31MEO 24MEO 21MEO+5GEO+7IGSO 22MEO 

Nominal constell. 31MEO 27MEO 27MEO+5GEO+3IGSO 30MEO 

MEO Model Irregular, 

27 

+4 spares 

Walker 

24/3/1 

+3 spares 

Walker 24/3/1 

+3 spares 

Walker 

24/3/1 

+6 spares 

Orbital planes 6 3 3 3 

Inclination 55° 64.8° 55° 56° 

Plane separation 60° 120° 120° 120° 

Inter-plane phase - ±45° ±45° ±45° 

Attitude [km] 20200 19140 MEO:21528, 

GEO/IGSO:35786 

23222 

Period [h] 11.967 11.262 12.890 (MEO) 14.117 

Coordinate frame WGS84 PZ-90.11 CGCS2000 GTRF 

Time frame GPST UTC (SU) BDT GST 
*www.gps.gov; www.glonass-iac.ru; www.beidou.gov.cn; www.gsc-europa.eu 

2.2.1 Simulation methods 

Simulation of GNSS constellations is implemented on the basis of the simplified 

perturbation models (Vallado et al., 2006). Earth-centered inertial orbits are calculated 

using two-line element (TLE) files published by the North American Aerospace 

Defense Command (NORAD). TLEs store the Keplerian orbital parameters (i.e. right 

ascension of ascending node, argument of perigee, inclination, eccentricity, semi-

major axis, and mean anomaly) of any known earth-orbiting object tracked (Kelso, 

https://www.gps.gov/
https://www.glonass-iac.ru/en/GLONASS/
http://www.beidou.gov.cn/
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2015). To obtain the nominal full GNSS constellations (see Table 2-1 above), TLEs 

of those planned to launch are generated using the calculation method of Walker 

constellation (Kaplan and Hegarty, 2017, p.232) and corresponding Interface control 

documents (ICDs) (RISDE, 2008; GPS Directorate, 2013; EU, 2016; CSNO, 2019). 

The simulated satellite orbits are stored in SP3 format (Hilla, 2010) and then used via 

interpolation. Coordinates and time frames are aligned to WGS84 and GPS time 

respectively. With the simulated constellations, the basic GNSS code (𝑃) and phase 

(𝜑) measurements are generated based on the following formulae and then stored in 

the RINEX format (Gurtner and Estey, 2013).  

 {

𝑃 = 𝜌 + 𝑐(𝜏 − 𝜏𝑠 + 𝜏0) + 𝑚𝑡𝑟𝑝𝑇 +𝑚𝑖𝑜𝑛𝐼 + 𝑠𝑃 + 𝜀
𝑐

𝑓
𝜑 = 𝜌 + 𝑐(𝜏 − 𝜏𝑠 + 𝜏0) + 𝑚𝑡𝑟𝑝𝑇 −𝑚𝑖𝑜𝑛𝐼 + 𝑠𝜑 + 𝜖

 (2-1) 

where 𝜌 = ‖𝒓 − 𝒓𝑠 + ∆𝒓𝑠‖ is the distance between receiver (𝒓) and satellite (𝒓𝑠), 

with orbit error (∆𝒓𝑠 ); 𝑐  stands for the light speed in vacuum; 𝜏 , 𝜏𝑠 , and 𝜏0  are 

respectively the receiver clock error, satellite clock error and inter-system time-offset 

(GPS time is selected as reference); 𝑇 and 𝐼 are the zenith delays in troposphere and 

ionosphere respectively, they are mapped to the slant direction through mapping 

functions 𝑚𝑡𝑟𝑝  and 𝑚𝑖𝑜𝑛 ; 𝑠𝑃  and 𝑠𝜑  are the multipath errors on code and phase 

measurements respectively; 𝜀 and 𝜖 are the observation errors for code and phase; and 

𝑓 is the signal frequency. Table 2-2 shows the frequencies of the simulated carrier 

phase observations. Additional detailed descriptions about the measurement 

characteristics can be found in relevant ICDs. 

Table 2-2 GNSS signals to simulate 

 Carrier phase frequency (MHz) 

GPS L1 1575.420 

GLONASS G1 1602+1125/2*k (k= -7 to +6) 

BeiDou B1 1561.098 

Galileo E1 1575.420 



11 

For short baselines in deformation monitoring, the differencing operation can 

considerably eliminate/mitigate most errors except for those from multipath effects. 

Therefore, instead of very accurately modeling all these errors, approximations shown 

in Table 2-3 are adopted in this study. Strategies for precise simulations can be found 

in previous studies (e.g. Dolgansky, 2010; Shu et al., 2017). Stochastic errors are 

assumed white, and those of multipath effects are designed to be proportional to the 

total multipath delays. Measurement noise is also modeled, and the noise term is 

applied to avoid the cancelation of generated delays in data processing. The UNB3m 

model and Neill mapping functions (Leandro et al., 2008) are used to generate 

tropospheric delays. Ionospheric delays are produced using the single-layer model and 

global mapping function. Other satellite systems share the same features of GPS 

except for the frequency-division multiple-access GLONASS, in which the 

ionospheric delays are modeled for each satellite separately depending on their 

officially published frequency numbers (www.glonass-iac.ru). Multipath errors are 

simulated based on the developed reflection and diffraction geometric models 

(Section 2.2.2 provides additional details). 

Table 2-3 Strategy for simulating GNSS errors 

Error source A priori value Noise (1 sigma) 

Orbit error 0 1.0 m 

Satellite clock bias 0 0.3 m 

Receiver clock bias 30 m 3.0 m 

Inter-system time offsets 3 m 0 

Tropospheric delay UNB3m + Neill 0.003 m (zenith) 

Ionospheric delay Single-layer + GMF 0.005 m (zenith) 

Code error 0 0.5 m 

Carrier phase error 0 0.01*wavelength 

Multipath delay Geometric models 0.01*delay 

2.2.2 Multipath geometric models 

To approximate a realistic environment of deformation monitoring, this section 

reviews the multipath geometry model and scenarios of signal blockage. Figure 2-1 

illustrates the ground bounce reflection model (Hofmann-Wellenhof et al., 2008) and 

the model with a vertical planar wall (Leick et al., 2015). Incident signals are assumed 
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as parallel due to the long satellite-receiver distance. Here, only the specular reflection 

is considered. A GNSS antenna receives reflected signals from the ground/wall in 

addition to a line-of-sight (LOS) signal.  

 

Figure 2-1 Traditional multipath reflection model 

The reflected signal travels an additional distance (∆𝑠), and it can be expressed as 

follows according to the geometric relationship. 

 {
∆𝑠wall = 2𝑑cos(𝜃)
∆𝑠ground = 2ℎsin(𝜃)

 (2-2) 

where ℎ is the antenna height; 𝜃 is the satellite elevation angle; and 𝑑 is the distance 

from the antenna to the vertical plane. For the impact from reflection on carrier phase, 

the interferential signal 𝑆𝑀 comprises the direct signal 𝑆𝐷 = 𝐴cos(𝜑) and reflected 

signal 𝑆𝑅 = 𝛽𝐴cos(𝜑 + ∆𝜑). Thus, they can be written as (Leick et al., 2015, p.287) 
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{
  
 

  
 
𝑆𝑀 = 𝑆𝐷 + 𝑆𝑅 = 𝛽𝑀𝐴cos(𝜑 + ∆𝜑𝑀)

𝛽𝑀 = √1 + 𝛽2 + 2𝛽cos(∆𝜑)

∆𝜑𝑀 = atan(
𝛽 sin(∆𝜑)

1 + 𝛽 cos(∆𝜑)
)

∆𝜑 =
2𝜋∆𝑠

𝜆

 (2-3) 

where 𝐴 is the amplitude of LOS signal; 𝛽𝑀  and ∆𝜑𝑀  are the damping factor and 

phase of the interferential signal respectively; ∆𝜑 is a phase delay due to extra path 

∆𝑠 of the multipath signal relative to the LOS signal; and 𝛽 ∈ (0,1) is the reflected 

signal’s damping factor, a function of geometric and physical factors (Lau and Cross, 

2007). This study focuses on modeling the path delay ∆𝑠 based on relevant geometry 

information, discussions of other factors that affect the multipath can be found in some 

classical references (Parkinson and Spilker, 1996; Hofmann-Wellenhof et al., 2008; 

Leick et al., 2015; Kaplan and Hegarty, 2017). 

The reflector’s azimuth and slope angles are further considered, as a result, the 

traditional 2D multipath reflection model is extended into:  

 {

∆𝑠 = 2𝑑sin(𝜃𝑒)

𝜃𝑒 = asin{sin(𝜃
′ + 𝜃𝑟)cos{atan[tan(𝛼 − 𝛼𝑟) cos(𝜃

′)]}}

𝜃′ = atan2(tan(𝜃) , cos(𝛼 − 𝛼𝑟))

 (2-4) 

where 𝜃𝑒 is an equivalent satellite elevation; 𝑑 is the perpendicular distance from the 

antenna to the reflector surface; 𝛼𝑟 and 𝜃𝑟 are the slope aspect and slope angle of the 

reflector respectively; and 𝛼  is the satellite azimuth angle (Appendix C provides 

details). The LOS signal will be either blocked or diffracted when 𝜃𝑒 is non-positive. 

The traditional ground bounce model (𝜃𝑟 = 0) and vertical plane model (𝜃𝑟 =
𝜋

2
) are 

two special cases of the above-mentioned model without the azimuth parameter (𝛼 =

𝛼𝑟). A vector form of reflection model can be found in (Lau and Cross, 2007). 

Another major interference is diffraction. It occurs when a signal is incompletely 

shadowed by an obstructing object that is bending the signal around its edges.  
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Figure 2-2 Traditional multipath diffraction model 

The path delay ∆𝑠𝑑 of a diffracted signal with respect to a direct signal blocked can 

be expressed as (Hannah, 2001, p.182) 

 {

∆𝑠𝑑 = (1 − cos(𝜃𝑑
′ ))𝑑𝑢

′

𝜃𝑑
′ = atan(

√(𝑑𝑢′ )2 − (𝑑′)2

𝑑′
) − 𝜃

 (2-5) 

where 𝑑𝑢
′  is the distance from the edge to the antenna; 𝜃𝑑

′  is the included angle of the 

diffracted signal and LOS signal; and 𝑑′ is the horizontal distance from the antenna to 

the location of the diffraction. Considering the azimuth and slope angles into the 

diffraction model yields (Appendix C provides details) 

 {

∆𝑠𝑑 = (1 − cos(𝜃𝑑
′ ))√𝑑𝑢2 + (sin(𝛼 − 𝛼𝑟)𝑑′)2

𝜃𝑑
′ = atan(

√𝑑𝑢2 − (cos(𝛼 − 𝛼𝑟)𝑑′)2

𝑑′
) − 𝜃

 (2-6) 

To restrict the diffraction delay within one phase cycle, the delay ∆𝑠𝑑 is empirically 

multiplied by a scale factor 
wavelength

𝑑𝑢_𝑚𝑎𝑥
′ . Here, 𝑑𝑢_𝑚𝑎𝑥

′  is the maximum path length 

from the edges to the antenna. This scaling operation will not affect the experimental 

results since the diffraction model is used only in identifying the diffracted signals, 

and no attempt is made to correct the diffraction errors. 

2.2.3 Typical monitoring environments 
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Figure 2-3 shows three scenarios with signal blockages that are often encountered in 

deformation monitoring, namely slopes, canyons, and bridge-crossing. The simulation 

of these scenarios can be implemented using elevation masks. To describe the location 

and two boundaries of an obstruction, the mask is designed in the form of “azimuth, 

elevation of the lower boundary, elevation of the higher boundary”. Data identified as 

being shadowed will be eliminated. 

 

Figure 2-3 Typical environments in GNSS deformation monitoring: (a) slope, (b) 

canyon, and (c) bridge crossing; corresponding signal masks: (d) one-side shadowing, 

(e) two-sides shadowing, and (f) middle-belt shadowing. 

2.3 Experiments and results 

2.3.1 Constellation simulation 

TLEs of 14 April 2019 were downloaded from NORAD to generate the current GNSS 

constellations (see Table 2-1 above). Simulation of the future full constellations is 

implemented by adding TLE records of nominal MEO vehicles to the current TLE set. 

The final satellite number may not precisely match what was designed (some current 

BeiDou GEO/IGSO satellites are not disabled. Spare satellites from non-GPS systems 

are also considered, they are nearly equally distributed to planes), while this condition 
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is considered acceptable for simulation. Figure 2-4 presents the distributions of 

simulated constellations. Figure 2-5 shows the global maps (1°×1° resolution, 5° cut-

off angle, at altitude of 10 m) of the satellite ground trajectories (24 h commencing 

00:00:00 04/14/2019 UTC), visible satellite number, and position DOP (PDOP) (at 

04/14/2019 00:00:00 UTC). Compared with GPS, multiple GNSSs have a more dense 

and higher signal coverage, thereby leading to lower PDOP values. This situation is 

especially true in the Asia Pacific areas, due to the contribution of BeiDou GEO/IGSO 

satellites. As summarized in Table 2-4 (in which G, R, C, and E denote GPS, 

GLONASS, BeiDou, and Galileo respectively) the global mean of the satellite number 

of GPS is 10 and the mean PDOP is 2.1. Combining other GNSSs considerably 

improves the satellite number by 2.8 times and reduces the PDOP by 52.4%. The 

current constellations are approaching their full conditions. When all these GNSSs run 

at full status, approximately 44 satellites can be observed globally and the mean PDOP 

is 57.1% smaller than that based on GPS alone. 

   

 

Figure 2-4 Current (04/14/2019) and simulated (red color) GNSS constellations  
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Figure 2-5 Satellite ground tracks (upper row, GPS in green, GLONASS in blue, BeiDou in red, and Galileo in yellow), visible satellite 

number (middle row) and PDOPs (bottom row) of GPS-only (left column), quad-GNSS (middle column), and full-constellation quad-

GNSS (right column) 
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 Table 2-4 Statistics of global constellation information 

System 
Mean sat. # Mean PDOP Impr. of sat. 

# [%] 

Reduction of PDOP 

[%] 

G 10 2.1 - - 

GRCE 38 1.0 280.0 52.4 

GRCE (full) 44 0.9 340.0 57.1 

 

2.3.2 Positioning tests 

To compare the performance in using observations from multi-GNSS and GPS, 23 h 

1-Hz multi-GNSS data from a baseline of approximately 4 m was collected from 

07:00:00, 16 May 2018 (GPS time), at the campus of Central South University. 

Trimble NetR9 receivers were used, with a “Zephyr” antenna for the rover and a 

“Zephyr Geodetic” antenna for the base. As shown in Figure 2-6, a multipath-strong 

environment was established by placing a metal reflector to the north of the rover’s 

antenna. The sizes and orientations of the reflector are provided in Table 2-5. These 

parameters are input to the empirical multipath geometric models. For simplicity, only 

single-reflection and single-edge (the upper edge within a bending angle of 40°) 

diffractions are considered. Note that the multipath models are used only to identify 

multipath events, although applying them as prior observation corrections is another 

useful and challenging topic.  

 
Figure 2-6 Installation of (a) rover with an open sky, (b) a vertical reflector, and (c) a 

reference station with a distance of approximately 4 m 
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Table 2-5 Geometry of the reflector 

𝜃𝑟 [deg] 𝛼𝑟 [deg] 𝑑 [mm] 𝑑𝑢 [mm] 

95 180 215 657 

Figure 2-7 illustrates the sky plots of double-differenced (DD) L1/G1/B1/E1 residuals 

and the simulated multipath errors (the damping factor 𝛽 is set to 0.15). In the DD 

residuals, major components of the multipath errors are reconstructed, and the 

diffraction effect is apparently dominant. Compared with the real DD residuals the 

simulation results have larger diffraction errors with more visible reflection Fresnel 

zones. Figure 2-8 shows DD residuals and simulated multipath errors from three 

satellites of different orbit types. A good agreement in the diffraction pattern can be 

observed between the measurements and simulation results although evident 

deviations exist, especially for the GEO C01, which may be caused by the adopted 

simplifications. 

(a) 

 

(b) 

 

Figure 2-7 Sky plots of (a) DD residuals and (b) simulated multipath delays  
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Figure 2-8 Examples of DD residuals (green) and simulated multipath delays (red) 

from satellites of different orbit types (a reference satellite is selected for each GNSS) 

The real dataset is sampled at 30 s and then divided into 23 1-h sessions. They are 

processed in static relative positioning. The results are compared with true baseline 

values computed based on an open-sky 1-h dataset acquired beforehand (Figure 2-6a). 

Diffracted signals are eliminated due to their large error magnitudes (Dai et al., 2017).  

Table 2-6 shows the baseline errors with different shadowing conditions controlled by 

signal masks (see Sect. 2.2.3). In the interference-rich environment, the results from 

all solutions show large errors in the north and up coordinate components. Compared 

with GPS-only solutions using quad-GNSS data remarkably reduces the 3D RMS 

errors by 44.5%. These improvement rates increase by 48.4–52.4% when signals are 

seriously shadowed. 
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Table 2-6 Baseline errors from different systems and masks 

Mask Systems 
Mean [mm] RMS [mm] 3D RMS 

[mm] 

Impr. 

[%] North East Up North East Up 

Non 
G 6.1 -0.5 0.1 11.8 4.2 11.3 16.9 

 

GRCE 3.9 -1.4 0.8 5.8 2.9 6.8 9.4 44.5 

One-

side 

G 6.4 -1.6 -1.5 12.3 5.8 15.5 20.6  

GRCE 4.1 -1.8 0.7 6.6 3.2 7.7 10.6 48.4 

Two-

sides 

G 6.3 -0.7 -0.5 14.3 6.2 23.8 28.4  

GRCE 3.1 -2.0 2.7 7.1 3.6 11.0 13.5 52.4 

Middle-

belt 

G 7.3 -2.7 -4.7 14.1 7.3 16.9 23.2  

GRCE 3.7 -2.2 -3.0 6.1 4.0 9.2 11.8 49.3 

Table 2-7 shows the baseline errors when observations identified as being 

contaminated by diffractions are retained in the dataset. The importance of eliminating 

the diffracted signals is evident. Compared with the results in Table 2-6 the 

positioning results are dramatically deteriorated without removal of the diffracted 

signals. Errors in the north and up components increase considerably, from the mm 

level to cm level. Using the multi-GNSS data is helpful in these adverse signal 

conditions. The position RMS errors are decreased by 8.1–42.4% compared with those 

of the GPS-only method. 

Table 2-7 Baseline errors from different systems and masks without removal of 

diffracted signals 

Mask Sys. 
Mean [mm] RMS [mm] 3D RMS 

[mm] 

Impr. 

[%] North East Up North East Up 

Non 
G -24.3 1.3 15.0 29.6 10.9 23.2 39.2 

 

GRCE -24.0 1.3 13.6 26.2 9.6 22.7 36.0 8.1 

One-

side 

G -25.0 1.6 16.5 30.5 12.8 27.8 43.2  

GRCE -24.7 2.3 16.2 27.0 10.4 24.8 38.2 11.6 

Two-

sides 

G -28.8 -2.7 33.5 35.1 13.2 55.5 67.0  

GRCE -26.7 -0.1 25.3 29.2 10.5 34.1 46.1 31.1 

Middle-

belt 

G -37.6 -7.4 26.9 47.4 23.6 58.1 78.6  

GRCE -28.8 -3.3 18.5 30.9 12.1 30.8 45.3 42.4 

Simulation experiments are also conducted to understand the benefit of using quad-

constellation data in deformation monitoring. The same setup of the baseline shown 
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in Figure 2-6 is applied. Twenty-four 1-h sessions are simulated. Table 2-8 

summarizes the baseline errors, based on the simulated observations of current quad-

constellation and future full quad-constellation. Compared with the results based on 

real data, the diffracted signals can be more accurately identified in the simulated 

observations. This accurate identification results in minimal influences of diffractions 

and considerable contributions from satellite DOPs to positioning solutions. As shown 

in Table 2-8 using the current quad-constellation reduces the positioning RMS errors 

by 39.4% when compared with the GPS-only solution, and the improvement 

remarkably increases to 48.6–63.8% in environments with severe signal blockages. 

When the four GNSSs are all completed, 48.5–69.0% improvements in positioning 

accuracy can be achieved. 

Table 2-8 Baseline errors from different systems and masks based on simulated 

constellations 

Mask Sys. 

Mean [mm] RMS [mm] 3D 

RMS 

[mm] 

Impr. 

[%] North East Up North East Up 

Non 

G -0.3 0.1 -1.1 1.4 1.1 2.8 3.3 
 

GRCE -0.1 0.0 -0.8 0.7 0.6 1.7 2.0 39.4 

GRCE(full) -0.2 0.0 -0.5 0.7 0.6 1.4 1.7 48.5 

One-

side 

G -0.1 0.1 -0.8 1.9 1.1 3.0 3.7  

GRCE -0.2 0.1 -0.7 0.7 0.7 1.6 1.9 48.6 

GRCE(full) -0.4 0.1 -0.4 0.8 0.7 1.4 1.8 51.4 

Two-

sides 

G 0.2 -0.4 -0.5 2.7 1.5 4.9 5.8  

GRCE -0.2 0.1 -0.8 0.8 0.7 1.8 2.1 63.8 

GRCE(full) -0.3 0.1 -0.4 0.9 0.7 1.5 1.9 67.2 

Middle-

belt 

G -0.2 0.4 0.2 2.2 2.9 4.5 5.8  

GRCE -0.1 0.1 -1.1 0.7 0.8 2.2 2.5 56.9 

GRCE(full) -0.3 0.0 -0.6 0.9 0.7 1.4 1.8 69.0 

2.4 Summary 

GNSS signals are vulnerable to ambient perturbations. For current GPS-only 

deformation monitoring systems, high-accuracy positioning results are unattainable in 

some cases due to harsh environments that are often present in monitoring practice. 
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Using additional satellites can enhance spatial geometry. Therefore, understanding the 

improvements that will be introduced by using multi-GNSS observations becomes 

necessary. This study uses deformation monitoring as an example and presents several 

comparison experiments of relative positioning in real and simulated datasets. 

Experimental results confirm the advantages of multi-GNSS integration. Compared 

with the GPS-only approach, using existing additional constellations (i.e., GLONASS, 

BeiDou, and Galileo) increases the satellite availability globally by 280% and the 

value can increase to 340% in the foreseeable future when the four systems all reach 

their full constellations. Quad-GNSS integration can result in 52.4% reduction in 

PDOP at present, and 57.1% in the future compared to GPS alone scenarios. 

Deformation monitoring benefits from multiple GNSS observations, especially in 

challenging monitoring environments. The relative positioning results of a 4 m 

baseline imply that using quad-constellation data can reduce positioning errors by up 

to 52.4%. Improvements in positioning accuracy are also demonstrated in simulation 

experiments, in which the positioning errors decrease by 39.4–63.8% with the current 

four constellations. These indices increase to 48.5–69.0% when the constellations 

operate in their full status. 
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Chapter 3 Mitigation of systematic errors in multi-GNSS positioning 

based on semiparametric estimation 

3.1 Motivation 

Much research efforts have been put into the various problems in positioning with 

data from multiple GNSSs (Wang et al., 2001; Shi et al., 2013; Cai et al., 2014; 

Teunissen et al., 2014b; Li et al., 2015a), including refining the weighting schemes. 

However, less attention has been given to the impacts of systematic errors that can 

come from unmodeled atmospheric refraction, multipath signals, orbit error, and 

hardware delay (Schüler, 2006; Hoque and Jakowski, 2007; Wanninger, 2012; Dong 

et al., 2016). The conventional parametric estimation and variance component 

estimation (VCE) based on the least squares (LS) principle require that the 

observations are free from systematic errors. Therefore, when systematic errors are 

present, the quality of the solutions will be deteriorated (Xu et al., 2006; Teunissen 

and Amiri-Simkooei, 2008). 

In GNSS data processing, four approaches have been employed to mitigate the 

systematic errors, 

(1) Differencing and linear combinations of observables (Hofmann-Wellenhof et 

al., 2008; Leick et al., 2015). The approach cancels out the effects of common 

errors (e.g. clock errors) and reduces the effects of correlated or frequency-

sensitive errors (e.g. tropospheric and ionospheric errors); 

(2) Applying corrections based on empirical models and precise products 

(Satirapod et al., 2003; Meng et al., 2004; Kouba, 2015; Dong et al., 2016);  

(3) Parameterization in the functional model (Paziewski and Wielgosz, 2015; Tian 

et al., 2015). For example, when GNSS receivers of different types are 

involved, additional parameters can be used to estimate the biases. 

Penalization parameters can be added when different GNSSs are not 

compatible (Yang et al., 2011); and 
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(4) Stochastic modeling (Wang et al., 2001; Schüler, 2006). Once the major parts 

of systematic errors have been removed, the remaining parts can be treated by 

stochastic modeling. In practice, approaches (3) and (4) are often used after 

applying approaches (1) and (2). 

The abovementioned methods all have their limitations in mitigating the systematic 

errors. In (1), errors such as the higher-order ionospheric effects cannot be mitigated 

using linear combinations of observables (Hoque and Jakowski, 2007). The 

differencing approach becomes ineffective in removing the orbit errors and 

atmospheric refraction when the baselines are long, and the multipath errors even in 

short baselines (Schüler, 2006; Dong et al., 2016). For (2), apart from the problem of 

time delay in producing precise products (Kouba, 2015), systematic errors cannot be 

modeled accurately, especially when over-relying on residuals. In (3), 

parameterization is not always effective in estimating and mitigating the systematic 

errors due to problems of estimability and mismodeling. For (4), knowledge about the 

remaining systematic errors is usually insufficient to stochastically model them well. 

Semiparametric estimation (SPE) model requires almost no a-priori knowledge about 

the effects and the statistical properties of systematic errors (Green and Silverman, 

1994). It was introduced by Jia (2000) for mitigating GPS multipath. Various other 

systematic errors including atmospheric delays have since then also been studied using 

SPE (Jia et al., 2001; Alves, 2004; Durmaz and Karslioglu, 2015). 

This study proposes to extend the SPE approach to multi-GNSS positioning. The 

application of SPE in double difference (DD) GNSS positioning will be discussed first, 

followed by a simulated GPS/BeiDou/GLONASS zero-baseline experiment and an 

example using a real GPS/BeiDou dataset over a short baseline affected by strong 

multipath signals, to demonstrate the advantages of the proposed method. 

3.2 Impacts of systematic errors on multi-GNSS positioning 

The linearized observation equation with systematic errors can be written as 
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 𝐋 = 𝐀𝐗 + 𝐒 + 𝛜, 𝐸(𝛜) = 𝟎, 𝐷(𝛜) = 𝜎2𝐏−1, (3-1) 

where 𝐋 ∈ ℝ𝑚 , 𝐀 ∈ ℝ𝑚×𝑡 , 𝐗 ∈ ℝ𝑡 , 𝐒 ∈ ℝ𝑚 , 𝛜 ∈ ℝ𝑚 , 𝜎2 , 𝐏 ∈ ℝ𝑚×𝑚  are the 

observations, design matrix, unknown parameters, systematic errors, observation 

errors, variance factor and weight matrix, respectively; 𝑚 and 𝑡 are the number of 

observations and the number of parameters to be estimated respectively, with 𝑚 > 𝑡; 

𝐸(⋅) and 𝐷(⋅) respectively denote the expectation and dispersion operators. When 

𝐒 = 𝟎, Eq. (3-1) becomes the conventional parametric estimation model and can be 

resolved based on LS principle  

 �̂�T𝐏�̂� = min (3-2) 

where �̂� is the vector of residuals. The LS solution can be expressed as 

 {
�̂�LS = 𝐐�̂�LS𝐀

T𝐏𝐋, 𝐐�̂�LS
−1 = 𝐍 = 𝐀T𝐏𝐀

�̂�LS = 𝐆𝐋, 𝐆 = 𝐈 − 𝐀𝐍
−1𝐀T𝐏

 (3-3) 

where �̂�LS  is the LS estimation of the parameters with cofactor matrix 𝐐�̂�LS ; �̂�LS 

denotes the LS residuals; 𝐈 is an identity matrix. If 𝐒 ≠ 𝟎, the LS solution has the 

following biases 

 {
𝐛�̂�LS = 𝐍

−1𝐀T𝐏𝐒

𝐛�̂�LS = 𝐆𝐒
 (3-4) 

where 𝐛{∙} represents the estimation biases. Thus, when systematic errors exist, the LS 

is biased, and the estimated residuals are not random with zero mean. 

Systematic errors can also impact on VCE that is based on the posteriori residuals (Xu 

et al., 2006). Considering that there are ℎ types of observations in Eq. (3-1), i.e., 

 {
𝐋
𝑚×1

= { 𝐋𝑖
𝑚𝑖×1

} , 𝑖 ∈ {1,2, … , ℎ},

𝐷(𝛜𝑖) = 𝜎𝑖
2𝐏𝑖

−1, Cov(𝛜𝑖, 𝛜𝑗) = 𝟎, (𝑖 ≠ 𝑗)

 (3-5) 

where 𝐋𝑖 is the 𝑖th subset with 𝑚𝑖 observations, with weight matrix 𝐏𝑖; 𝜎𝑖
2 is the 𝑖th 

variance component to be estimated; Cov(⋅) stands for the covariance operator. Here 

the observations from different subsets are assumed to be uncorrelated, leading to a 
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block-diagonal weight matrix 𝐏. The following Helmert VCE has been frequently 

used for weight determination in such cases (Xu et al., 2006; Cai et al., 2014), 

 

{
 
 
 

 
 
 

�̂� = 𝚽−1𝛀, 𝛉 = [𝜎1
2, 𝜎2

2, … , 𝜎ℎ
2]T,

𝚽(𝑖, 𝑖) = 𝑚𝑖 − 2 𝑡𝑟(𝐍
−1𝐍𝑖) + 𝑡𝑟(𝐍

−1𝐍𝑖𝐍
−1𝐍𝑖),

𝚽(𝑖, 𝑗) = 𝑡𝑟(𝐍−1𝐍𝑖𝐍
−1𝐍𝑗), (𝑖 ≠ 𝑗)

𝐍 =∑𝐍𝑖

ℎ

𝑖=1

, 𝐍𝑖 = 𝐀𝑖
T𝐏𝑖𝐀𝑖,

𝛀(𝑖) = �̂�𝑖
T𝐏𝑖�̂�𝑖,

 (3-6) 

where 𝛉 denotes the vector of ℎ variance components to be estimated; and 𝑡𝑟(⋅) is the 

matrix trace operator. VCE is carried out iteratively until the estimated variance 

factors converge. When systematic errors are present in the observations, inserting Eq. 

(3-4) into Eq. (3-6), one gets 

 {
𝐛𝛺(𝑖) = 𝐒

T𝐆𝑖
T𝐏𝑖𝐆𝑖𝐒

𝐛
�̂�
= 𝚽−1𝐛𝛺

 (3-7) 

where 𝐛𝛺 and 𝐛
�̂�

 represent the biases in 𝛀 and �̂�, respectively; 𝐆𝑖 denotes the rows in 

𝐆 (Eq. 3-3) corresponding to the 𝑖 th subset of the observations. Apparently, 𝛀 is 

biased when systematic errors appear in the observations, resulting in biased variance 

components. 

3.3 Semiparametric estimation (SPE) 

3.3.1 SPE model  

In surveying data processing, Eq. (3-1) has been frequently used as the functional 

model in SPE (Fischer and Hegland, 1999; Jia, 2000; Ding et al., 2015). The flexibility 

of the SPE model is due to its nonparametric components 𝐒. However, since of these 

𝑚 additional unknowns, the SPE model cannot be resolved by LS directly. Instead, it 

can either be regularized to obtain a sub-optimal solution (Xu, 1998; Hu, 2005; Xu et 

al., 2006), or add realistic prior information from a Bayesian viewpoint to generate an 

optimal solution (Fischer and Hegland, 1999; Koch and Kusche, 2002; Ding et al., 
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2015). The latter approach is not preferred when the true values of 𝐒 are significantly 

different from zero (Xu and Rummel, 1994), although this is not considered a 

significant issue in GNSS relative positioning as the remaining systematic errors are 

in general close to zero after data pre-processing (e.g., differencing and applying 

corrections). For simplicity, the estimation is reduced to a generalized LS (GLS) 

problem (Menke, 2015), by using the prior information as pseudo-observations (𝐒 is 

considered deterministic) 

 𝐂𝐒 + 𝛜c = 𝟎, 𝐸(𝛜c) = 𝟎, 𝐷(𝛜c) = 𝜎
2𝐏c

−1, Cov(𝛜, 𝛜c) = 𝟎 (3-8) 

where 𝐂 ∈ ℝ𝑢×𝑚 , 𝛜c ∈ ℝ
𝑢  and 𝐏c ∈ ℝ

𝑢×𝑢  are, respectively, the design matrix, 

observation errors and weight matrix of the pseudo-observations, with 𝑢 > 𝑡. The 

systematic errors are also usually assumed to be smooth. The smoothness can be 

controlled by applying a discrete differentiation technique, e.g., making the second 

differences of 𝐒 small (Green and Silverman, 1994, p.76).  

Combining the prior information of both smoothness and magnitude of 𝐒 gives 

 𝐂 = [
𝐅d
𝐈
] , where 𝐅d

(𝑚−2)×𝑚
= tridiag(−0.5,1,−0.5), 𝐏c = [

𝛼𝐏d 𝟎

𝟎
𝜎2

𝜎𝑠2
𝐈
] (3-9) 

where 𝐅d  is a second difference operator; 𝛼  is a positive scalar called smoothing 

parameter; 𝐏d is a pre-given symmetric positive definite matrix, which is empirically 

designed as 𝐏d(𝑖, 𝑖) = 𝐏(𝑖 + 1, 𝑖 + 1), 𝑖 ∈ {1,2, … ,𝑚 − 2} ; and 𝜎𝑠  represents the 

magnitude values of 𝐒. Systematic errors of satellites with high elevations may be 

negligibly small and the corresponding parameters can be removed from the model by 

adjusting their 𝜎𝑠  to very small values. The magnitude prior information of 𝐒  is 

sometimes necessary since uniquely solving Eq. (3-1) requires (Fischer and Hegland, 

1999) 

 rank(𝐂T𝐏c𝐂𝐀) = 𝑡 (3-10) 

In addition, the SPE model can become ill-posed due to over-parameterization and 

highly-correlated parameters. Using the magnitude pseudo-observations is also more 

straightforward in preventing the ill-posedness compared with techniques such as 
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truncated singular value decomposition and ridge regression (Xu, 1998; Hu, 2005). 

According to the GLS principle (Menke, 2015) 

 �̂�T𝐏�̂� + �̂�c
T𝐏c�̂�c = min (3-11) 

the GLS solution can be expressed as (Fischer and Hegland, 1999) 

 

{
 
 

 
 �̂� = (𝐀

T𝐏(𝐈 − 𝐍s
−1𝐏)𝐀)−1𝐀T𝐏(𝐈 − 𝐍s

−1𝐏)𝐋

�̂� = 𝐍s
−1𝐏(𝐋 − 𝐀�̂�), 𝐍s = 𝐏 + 𝐂

T𝐏c𝐂

𝐐�̂��̂� = 𝐍
−1 + 𝐍−1𝐀T𝐏𝐐�̂��̂�𝐏𝐀𝐍

−1

𝐐�̂��̂� = (𝐍s − 𝐏𝐀𝐍
−1𝐀T𝐏)−1

 (3-12) 

In order to know the condition when SPE can improve the estimation accuracy, the 

mean square error (MSE) performances of LS and GLS are compared as follows, 

considering Eqs. (3-3), (3-4) and (3-12), 

 
𝑀𝑆𝐸(�̂�LS) = 𝜎

2 𝑡𝑟 (𝐐
�̂�LS
) + 𝐛

�̂�LS

T 𝐛
�̂�LS

= 𝜎2 𝑡𝑟(𝐍−1) + 𝑡𝑟(𝐍−1𝐀T𝐏𝐒𝐒T𝐏𝐀𝐍−1) 
(3-13) 

 𝑀𝑆𝐸(�̂�) = 𝜎2 𝑡𝑟(𝐐�̂��̂�) = 𝜎
2 𝑡𝑟(𝐍−1 + 𝐍−1𝐀T𝐏𝐐�̂��̂�𝐏𝐀𝐍

−1) (3-14) 

 
if𝑀𝑆𝐸(�̂�LS) − 𝑀𝑆𝐸(�̂�) > 0, 

i. e. , 𝑡𝑟(𝐍−1𝐀T𝐏(𝐒𝐒T − 𝜎2𝐐�̂��̂�)𝐏𝐀𝐍
−1) > 0 

(3-15) 

we obtain 

 𝐒T𝐒 > 𝜎2𝑡𝑟(𝐐�̂��̂�) (3-16) 

It reveals that the rationale behind the linear model expansion exists when significant 

systematic errors present in the data. 

3.3.2 Determination of smoothing parameters 

For the purpose of choosing the smoothing parameter α, numerical methods such as 

L-curve (Hansen, 1992) and generalized cross-validation (GCV) (Golub et al., 1979) 

are widely used. L-curve method chooses the closest point to the origin, or the corner 

of an L-shaped curve consisting of norms of residuals and signals. This method has 

been reported to produce an over-smoothed solution (Xu, 1998; Kusche and Klees, 

2002). GCV is a criterion minimizing the norm of residuals (Green and Silverman, 

1994, p.71) 
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{
 
 

 
 GCV(𝛼) =

�̂�T𝐏�̂�

[𝑡𝑟(𝐆s)/𝑚]2
=
𝐋T𝐆s

T𝐏𝐆s𝐋

[𝑡𝑟(𝐆s)/𝑚]2
 

𝐆s = 𝐈 − (𝐈 − 𝐍s
−1𝐏)𝐀(𝐀T𝐏r𝐀)

−1𝐀T𝐏r − 𝐍s
−1𝐏

𝐏r = 𝐏(𝐈 − 𝐍s
−1𝐏)

 (3-17) 

However, the determination of the smoothing parameter using GCV and L-curve is 

time-consuming (Kusche and Klees, 2002; Satirapod et al., 2003). 

The smoothing parameter α can also be interpreted as a weight ratio (Koch and Kusche, 

2002) and estimated through the VCE. The following simplified procedure is 

proposed for enhancing the computation efficiency in determining the smoothing 

parameter based on the LS residuals (the conventional LS solution is derived 

beforehand): 

Step (a). Estimate the approximate variances based on LS residuals (Appendix B 

provides more details, 𝐏d(𝑖, 𝑖) = 𝐏(𝑖 + 1, 𝑖 + 1), 𝑖 ∈ {1,2, … ,𝑚 − 2}  is 

empirically adopted), 

 

{
 
 

 
 

�̂�d = 𝐅d�̂� ≈ 𝐅d𝐅L�̂�LS, �̂� ≈ 𝐅H�̂�LS

�̂�d
2 ≈ 𝛾d

�̂�d
T�̂�d

𝑚 − 2
≈ 𝛾d

�̂�LS
T 𝐅L

T𝐅d
T𝐅d 𝐅L �̂�LS
𝑚 − 2

�̂�2 ≈ 𝛾
�̂�T�̂�

𝑚 − 1
≈ 𝛾

�̂�LS
T 𝐅H

T𝐅H �̂�LS
𝑚 − 1

 (3-18) 

where 𝐅L ∈ ℝ
𝑚×𝑚 and 𝐅H ∈ ℝ

(𝑚−1)×𝑚 are the low-pass and high-pass filter 

operation matrices given in (B-2) and (B-5) respectively; 𝛾 and 𝛾d are positive 

scalars that represent the errors in �̂�d and �̂� caused by the simplification of the 

weight matrix respectively. 

Step (b). Finally, assuming 𝛾 ≈ 𝛾d , the approximate calculation formula of the 

smoothing parameter is 

 �̂� =
�̂�2

�̂�d
2 ≈

𝑚 − 2

𝑚 − 1

�̂�LS
T 𝐅H

T𝐅H �̂�LS

�̂�LS
T 𝐅L

T𝐅d
T𝐅d 𝐅L �̂�LS

 (3-19) 

3.3.3 Hypothesis test for systematic errors 
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In addition to applying pseudo-observations in tackling the problems of ill-posedness 

and rank-deficiency of the SPE, since a trade-off between the model expansion and 

estimation accuracy is required, fictitious parameters should be avoided (Kotsakis, 

2005). This can be realized through hypothesis testing the significance of the 

systematic errors, using techniques such as model validations (Teunissen, 1998; Leick 

et al., 2015) and Durbin-Watson method (Jia et al., 2002). If no significant systematic 

error is detected, the corresponding nonparametric terms can be eliminated, or 

equivalently, fix 𝑠  to zero and set 𝛼  to a relatively large value (e.g. 1015  in our 

experiments). To simplify the computation required, the following procedure is 

adopted to directly detect systematic errors related to individual satellites based on LS 

residuals only (outliers have been pre-screened). The null and alternative hypotheses 

are given as  

 𝐇0: 𝐸(�̂�a
2) = 𝐸(�̂�r

2) against 𝐇1: 𝐸(�̂�a
2) < 𝐸(�̂�r

2) (3-20) 

where �̂�a
2 =

1

2(𝑚−1)
∑ (𝑚−1
𝑖=1 ϵ𝑖+1 − ϵ𝑖)

2, and �̂�r
2 =

1

𝑚
∑ ϵ𝑖

2𝑚
𝑖=1 . The ratio between these 

two variables satisfies the following distribution when there are enough samples (e.g. 

𝑚 > 20) (Zar, 2010, p.601), 

 
�̂�a
2

�̂�r2
∼ N(1,

1

𝑚 + 1
) (3-21) 

 A Z-test statistic thus is formed as  

 𝑧 = √𝑚 + 1(1 −
�̂�a
2

�̂�r2
) ∼ N(0,1) (3-22) 

The rejection region is 𝑧 > 𝑧0.99 (a critical value of standard normal distribution with 

significance level 0.01). It helps to reduce the risk of introducing too many unknown 

parameters when modeling the systematic errors. 

3.4 Processing multi-GNSS data with SPE 

A multi-GNSS double-difference (DD) carrier phase observation can be expressed as 

(Wang et al., 2001) 
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 𝐿𝑎𝑏
𝑖𝑗
(𝑘) = 𝜌𝑎𝑏

𝑖𝑗
(𝑘) + 𝜆𝑖𝑁𝑎𝑏

𝑖𝑗
+ (𝜆𝑖 − 𝜆𝑗)𝑁𝑎𝑏

𝑗
+ 𝜀𝑎𝑏

𝑖𝑗
(𝑘) (3-23) 

where 𝐿𝑎𝑏
𝑖𝑗
(𝑘) is the DD carrier phase (scaled to meters) of site pair 𝑎-𝑏 and satellite 

pair 𝑖-𝑗 at epoch 𝑘; 𝑗 indicates the reference satellite; 𝜌 is the geometric distance; 𝜆 is 

the wavelength; 𝑁 is the phase ambiguity, including DD ambiguity 𝑁𝑎𝑏
𝑖𝑗

, and single-

difference (SD) ambiguity 𝑁𝑎𝑏
𝑗

 that cannot be canceled in multi-frequency case. In 

ambiguity resolution, pseudoranges are used to calculate the approximate SD 

ambiguities, which will be eventually determined when fixing the DD ambiguities; 𝜀 

is the observation error. 

A term of systematic errors will be added to the basic DD observation Eq. (3-23). 

Since model errors will be partially absorbed by the float ambiguities (Wang et al., 

2001), it is necessary to remove the systematic errors before fixing the ambiguities to 

get float ambiguities closer to integers. The extended DD observation equation 

therefore becomes  

 𝐿𝑎𝑏
𝑖𝑗
(𝑘) = 𝜌𝑎𝑏

𝑖𝑗
(𝑘) + 𝜆𝑖𝑁𝑎𝑏

𝑖𝑗
+ (𝜆𝑖 − 𝜆𝑗)𝑁𝑎𝑏

𝑗
+ 𝑠𝑎𝑏

𝑖𝑗
(𝑘) + 𝜀𝑎𝑏

𝑖𝑗
(𝑘) (3-24) 

where 𝑠 is the compensation parameter that depends on the satellite, site and time.  

GNSS data processing requires vector semiparametric models (Fessler, 1991; Jia, 

2000) since the observations contain a set of satellites. Assuming that 𝑛sat satellites 

have been simultaneously tracked for 𝑚 epochs, and denoting 𝑛ref as the number of 

reference satellites and 𝑛 as the number of smoothing parameters (𝑛 = 𝑛sat − 𝑛ref, a 

reference satellite is selected for each satellite system), additional 𝑚 × 𝑛 

compensation parameters need to be estimated. The criterion in (3-8) is extended into  

 

{
 
 
 
 
 

 
 
 
 
 ∑ �̂�𝑘

T

1×𝑛

𝑚

𝑘=1

𝐏𝑘�̂�𝑘 + �̂�
T

1×𝑚𝑛
𝐂
T
𝐏c𝐂 �̂� = min

𝐒
𝑚𝑛×1

= { 𝐒𝑘
𝑛×1
} , 𝑘 ∈ {1,2, … ,𝑚}

𝐂
𝑢𝑛×𝑚𝑛

= 𝐂
𝑢×𝑚

⊗ 𝛼
1
2

𝑛×𝑛

𝐏c = blockdiag(𝐏c,1, 𝐏c,2,⋯ , 𝐏c,𝑚)

𝛼 = diag(𝛼1, 𝛼2, ⋯ , 𝛼𝑛)

 (3-25) 
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where 𝑚 and 𝑛 are the number of observation epochs and the number of smoothing 

parameters respectively; 𝑢, 𝐂 and 𝐏c,𝑘 are respectively the number, design matrix and 

weight matrix of the pseudo-observations defined in Eq. (3-9); 𝑘 is the epoch index; 

⊗ denotes the Kronecker operator. 

3.5 Experiments and results 

Two experiments (one with simulated and one with real multiple GNSS data) are 

carried out to investigate the performance of the proposed SPE approach when 

combined with VCE in processing the GNSS data. For simplicity, the combined use 

of SPE and VCE will be referred to hereafter as semiparameter and variance 

estimation (SVE). For comparison, conventional LS estimation and VCE based on 

results from the conventional LS are also carried out. In the conventional LS 

estimation, the inter-system weight ratios are set equal to 1. The SPE is carried out 

before the VCE. A smoothing parameter is added for each satellite pair and adjusted 

individually based on Eq. (3-19). SVE is applied in both float and ambiguity fixed 

solutions. 

The results are evaluated with the aforementioned Z test and the following baseline 

quality indicators (Blewitt, 1989) 

 Lengtherror = (𝛿𝑁
2 + 𝛿𝐸

2 + 𝛿𝑈
2)1/2 (3-26) 

 Repeatability(𝛿) = (
∑ 𝛿𝑖

2 𝜎𝛿𝑖
2⁄

𝑛𝑠
𝑖

∑ 1/𝜎𝛿𝑖
2𝑛𝑠

𝑖

)

1/2

 (3-27) 

where 𝛿 stands for baseline errors with respect to the truths, with subscripts N, E and 

U denoting the corresponding north, east and up coordinate components; 𝑖 indicates 

the session number (𝑛𝑠 in total); and 𝜎𝛿 is the standard deviation (STD) of 𝛿.  

LAMBDA (Teunissen, 1995) is used in all the above three methods for ambiguity 

resolution with R-ratio as the validation indicator (Euler and Schaffrin, 1991). The 

computer time is recorded to assess the computation efficiency. Different SVEs are 

carried out, including those based on the traditional iterative and search methods 



34 

discussed above, i.e., the VCE and GCV (with and without magnitude prior 

information where the latter is referred to as GCV-free). The Golden Section technique 

(Press et al., 2007) is applied in the search process of GCV (in the range from 10−15 

to 1015). Note that the GCV-free-based SVE is used only in the fixed-ambiguity 

solution, since criterion in Eq. (3-10) is violated when the design matrix 𝐀 is based on 

(3-24), and (3-9) only contains the smoothness of 𝐒 (i.e. 𝐂 = 𝐅d and 𝐏c = α𝐏d). Initial 

values of the smoothing parameters in the VCE-based SVE are specified by the 

approximate formula (3-19) to accelerate the convergence. 

3.5.1 A simulated experiment 

Sinusoidal systematic errors (in cycles) are simulated using Eq. (3-28) and added to 

the raw GNSS observations of a zero baseline. The session length is 3h with a data 

sampling interval of 90 s (a relatively large interval being used to reduce the 

computation load). A cut-off angle of 10 degree is used. The dataset contains 

L1/B1/G1 observations from 9/9/7 satellites of G/C/R (hereafter G, C, and R stand for 

GPS, BeiDou and GLONASS respectively). The systematic errors simulated have 

different periods (1.5h for G12, 2.5h for both G22 and C02) but the same amplitudes 

(0.05 cycles, considering the general phase noise (Leick et al., 2015, p. 420) and the 

error level of the zero-baseline used), 

 

{
 
 

 
 G12: 0.05 sin(

𝑡𝑜𝑤

1.5 × 3600
2𝜋)

G22: 0.05 sin(
𝑡𝑜𝑤

2.5 × 3600
2𝜋)

C02: 0.05 sin(
𝑡𝑜𝑤

2.5 × 3600
2𝜋) + 0.10

 (3-28) 

where 𝑡𝑜𝑤 is time of week in seconds. A constant offset of 0.1 cycles is also added to 

C02. When applying the SPE in this experiment, the constraints for the systematic 

errors are set as 0.2 cycles (a relatively loose constraint to avoid possible distortion of 

the results), i.e., 𝜎s = 0.2 × wavelength in Eq. (3-21). 

Figure 3-1 shows length errors of the baseline from the different estimators. The 

simulated systematic errors have introduced nearly up to 7 mm length error to the 

zero-baseline. The VCE method then reduces this discrepancy to 3 mm through raising 
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GLONASS’s weight from 1.0 to 2.9 (see Table 3-1), while this improvement is 

achieved at the cost of roughly down-weighting the observations from all the other 

satellites, both GPS and BeiDou, including those without systematic errors. Compared 

with the results of VCE that based on raw data (see Table 3-2), apparently the weight 

ratios are seriously falsified as the Z test statistics are all increased. The SVE approach 

has significantly reduced the length error to about 0.5 mm (over 90% improvement 

compared with LS and over 80% compared with VCE) and improved the R-ratio from 

16.4 to 58.5, indicating a much more reliable solution. The weight ratios obtained by 

SVE are closer to those obtained based on the raw data without systematic errors.  

 

Figure 3-1 Baseline length errors from different estimators (session length: 3h) 

 

Table 3-1 Solutions of zero baseline with simulated systematic errors from different 

estimators (session length: 3h) 

 LS VCE SVE 

Baseline bias 

(X/Y/Z) [mm] 
-4.6/3.2/3.6 -1.8/1.8/1.6 -0.4/0.0/0.3 

Weight ratio (G/C/R) 1.0/1.0/1.0 1.0/0.4/2.9 1.0/0.4/0.7 

R-ratio 16.4 16.4 58.5 

Z test : G12-G18 10.0 10.0 -0.4* 

Z test : G22-G18 9.8 9.8 -2.2* 

Z test : C02-C07 10.8 10.8 -1.0* 

             *Residuals that passed the Z test (significance level 0.01) 
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Table 3-2 Solutions of zero baseline without simulated systematic errors from 

traditional different estimators (session length: 3h) 

 LS VCE  

Baseline bias 

(X/Y/Z) [mm] 
-0.2/0.6/0.2 -0.1/0.4/-0.1 

Weight ratio (G/C/R) 1.0/1.0/1.0 1.0/0.5/0.6 

R-ratio >1000.0 >1000.0 

Z test : G12-G18 1.6* 1.6* 

Z test : G22-G18 -0.3* -0.3* 

Z test : C02-C07 -0.1* -0.1* 

                       *Residuals that passed the Z test (significance level 0.01) 

Figure 3-2 shows the residuals from the different solutions. LS and VCE do not cope 

with the systematic errors well. The SVE models much better the systematic errors 

and the residuals become more random, all the residuals have finally passed the Z test 

(see Table 3-1). According to the Z test results, SVE works better with low-frequency 

systematic errors than high-frequency errors. The LS residuals may appear very 

inconsistent, particularly in Figure 3-2c where an offset clearly exists between them.  

 

Figure 3-2 Residuals of (a) G12-G18, (b) G22-G18, (c) C02-C07 estimated by the 

different estimators, and systematic errors simulated and estimated by SVE 

(observation session length: 3h) 
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To understand the performance when using different SVEs, the results of different 

session lengths (from 0.5 h to 3.0 h, increasing 0.5 h gradually) are compared. As 

shown in Figure 3-3, the baseline accuracy obtained by the simplified approach is 

similar to those obtained based on VCE and GCV, and they are superior to those using 

the GCV-free method. The advantage of adding prior information on the magnitude 

of the systematic errors is more evident in sessions of shorter lengths (with weaker 

model strength), where the results based on GCV-free approach are dramatically 

deteriorated. The time consumption of the GCV-based SVEs raises exponentially as 

the session length increases. The VCE-based SVE reduces the mean calculation time 

from about 9 h to less than 3 h (see Table 3-3), while the simplified approach further 

shortens it by almost 30 times to about 0.1h. These results indicate that compared with 

conventional search and iterative algorithms, the simplified approach can achieve 

comparable baseline solutions with a considerably higher efficiency. 

 

Figure 3-3 Baseline length errors from different semiparametric estimators and 

different observation session lengths 

Table 3-3 Solutions of the simulated zero-baseline and systematic errors from different 

semiparametric estimators (session lengths: 0.5, 1.0, 1.5, ..., 3.0h) 

Mean value SVE 
SVE  

(VCE) 

SVE  

(GCV) 

SVE  

(GCV-free) 

Length error [mm] 0.8 0.8 0.8 2.9 

R-ratio  36.3 36.2 23.3 9.4 

Time useda [h] 0.1 2.9 9.6 9.2 
a Configuration of PC: 64-bit Windows 7 with IntelXeon E5-1660v3 CPU of 3.0 GHz 

and memory of 16 GB 
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3.5.2 Experiments with real datasets 

The multi-GNSS dataset consists of GPS/BeiDou single frequency (L1/B1) 

observations covering three consecutive days (DOYs 320–322 in 2014). It is from a 

baseline of about 10 m on the roof of Wenfa Building at The Central South University, 

China. The points are referred to as CSUA and CSUB, respectively. A reflective 

environment was created by placing tinfoil paper on the north wall near site CSUA, 

and therefore, the multipath signals are considered strong (Figure 3-4). The 

observations were divided equally into 24 sessions, and each session was sampled at 

90 s to reduce the computation load. Observations below elevation angle of 10 degree 

were not used. The baseline components are estimated based on all the GPS data and 

used as the truths in evaluating the performances of the methods. In SPE, the 

systematic errors are empirically constrained to be within 0.15 cycles (three times as 

large as the normal amplitude of DD residuals in short baselines, i.e. 0.05 cycles). 

 

Figure 3-4 Observation sites at CSUA (upper right diagram) and CSUB (lower right 

diagram); Tinfoil paper was placed on the north wall near site CSUA to enhance the 

signal reflection 

Figure 3-5 shows the sky plots and signal strengths. The satellite signals (especially 

GPS) from the north direction were blocked significantly and have much lower signal 
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strength. BeiDou system contributes more to both the number of the satellites and the 

signal quality (Figure 3-5b). 

 

Figure 3-5 Sky plots and C/N0 signal strengths of (a) GPS satellites and (b) BeiDou 

satellites at site CSUA on DOY 320, 2014 

Figure 3-6 illustrates the time series of L1/B1 C/A code multipath combination (Shi 

et al., 2013) from data of different types of satellite. As the multipath signals increase 

with descending elevations, the Median Earth Orbit (MEO) G31 (Figure 3-6a) with a 

bell-shaped elevation pattern has larger multipath effect at the two ends. The effect 

becomes smaller at the two peak elevations of the camelback-shaped Inclined 

Geosynchronous Orbit (IGSO) C10 (Figure 3-6b). The elevation of the 

Geosynchronous Orbit (GEO) C05 (Figure 3-6c) varies slowly in a sinusoidal pattern 

and its multipath effects were more stable compared with those of the MEO and IGSO. 

Signals from GEO presented a higher continuity as it stayed on the southern sky, those 

from MEO and IGSO were partially shadowed by the northern wall (Figure 3-4) when 

they traveled to the back side (during the hours of about 14–17 for G31, and about 
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15–19 for C10 respectively). More frequent and larger multipath errors can be seen 

near about 60° elevation when the satellites were nearly blocked. 

 

Figure 3-6 L1/B1 C/A code multipath vs. elevations of (a) MEO G31, (b) IGSO C10, 

(c) GEO C05 satellites at site CSUA on DOY 320, 2014; the signals of G31 and C10 

were blocked by the north wall near the site during the hours of about 14-19 

Figure 3-7 shows the length errors of the baseline from the different processing 

methods. It can be seen that compared with LS method, the VCE approach has 

produced lower baseline errors in 14 out of 24 of the observation sessions. As shown 

in Table 3-4, the length repeatability is improved by 19.4% by the VCE approach as 

BeiDou’s mean weight is increased by 4.1 times. The SVE solution has further 

improved the length repeatability by 35.6% when adjusting BeiDou’s mean weight to 

1.8. For both VCE and SVE, significant improvements can be seen in the north and 

vertical directions, while the repeatability of the east component is lowered slightly 

by the SVE approach. The R-ratios are improved by using the SVE approach in the 

ambiguity resolution. 
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Figure 3-7 Baseline length errors of different observation sessions and from different 

estimators 

The VCE-based SVE approach has produced similar baseline solutions as those of the 

simplified approach, with the differences between the baseline components being 

smaller than 0.1 mm. The results are superior to those produced by GCV-based SVE. 

Results from GCV-free SVE are not presented here due to its unsatisfactory 

performance (see Sect. 3.5.1). A great advantage of the proposed simplified approach 

is in its high computation efficiency. The average computation time (see Table 3-4 for 

the configuration of the PC used) used for a baseline solution (session length is 3h) is 

0.1h, over 20 times faster than the VCE-based SVE, and over 100 times faster than 

the GCV-based SVE. 

Table 3-4 Solutions of real GNSS dataset from different estimators (3 h×24 sessions) 

 LS VCE SVE 
SVE 

(VCE) 

SVE 

(GCV) 

Repeatability, North [mm] 9.6 7.1 5.5 5.5 5.7 

Repeatability, East [mm] 1.2 0.9 1.4 1.4 1.4 

Repeatability, Up [mm] 8.9 7.9 6.3 6.4 6.9 

Repeatability, baseline length [mm] 12.9 10.4 8.3 8.3 8.8 

Impr. over LS (baseline length) [%] - 19.4 35.6 35.6 31.5 

Mean weight ratio (BeiDou/GPS) 1.0 4.1 1.8 1.6 1.0 

Mean R-ratio 12.1 12.1 20.1 20.1 17.4 

Mean time useda 2.2 s 2.3 s 0.1 h 2.2 h 10.5 h 
a Configuration of PC: 64-bit Windows 7 with IntelXeon E5-1660v3 CPU of 3.0 GHz 

and memory of 16 GB 
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The 5-th session is selected to show some further details of the results. The number of 

satellites in view is relatively less in this session, and there appear apparently some 

systematic errors in the GNSS observations. The DD residuals from the LS and the 

SVE solutions as well as the systematic errors estimated from the SVE solution are 

shown in Figure 3-8, and some statistics of the residuals are given in Figure 3-9. The 

residuals from standard LS and VCE approaches are not presented here as they cannot 

resist the systematic errors so that the results are not very satisfactory. From the 

residuals shown in Figure 3-8a, it is apparent that there exist some significant 

systematic errors varying over time. For example, residuals from G31-G22 and C10-

C03 satellite pairs fluctuated obviously over time, and those from C05-C03 are fairly 

constant. After the SVE approach is applied, systematic errors in the LS residuals have 

been accurately estimated (Figure 3-8b) and removed. Therefore, residuals from the 

SVE solution appear much more random (Figure 3-8c), with both the biases and the 

STDs being significantly reduced (see Figure 3-9). The results clearly indicate that the 

proposed SPE approach is effective in mitigating the systematic errors and that the 

application of the approach can significantly improve the results of VCE. 

 

Figure 3-8 DD L1/B1, (a) Residuals from LS, (b) estimated systematic errors from 

SVE, (c) residuals from SVE of the 5-th session 
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Figure 3-9 (a) Means, (b) STDs of DD L1/B1 residuals of the 5-th session 

Three typical satellites of different orbits (i.e. MEO, IGSO, GEO) are selected to 

assess the performances of SVE and LS. The residuals from the experiments are given 

in Figure 3-10, and the corresponding Z test statistics and the smoothing parameters 

(both from float and fixed-ambiguity solutions) from the SVE are given in Table 3-5. 

By extracting the systematic errors, the mean of the residuals becomes much closer to 

zero and the histogram of the residuals is more concentrated around the center. Similar 

improvements can be seen in the results of the Z test where the test statistics decrease 

significantly and the residuals of most of the satellite pairs pass the test. In addition, 

systematic errors with larger magnitudes are generally penalized with smaller 

smoothing parameters (when using the z statistic as an indicator in the analysis, the 

numbers of the observations should be similar). The smoothing parameters of the 

float-ambiguity solution are similar to those from the fixed-ambiguity solution except 

those set to large values since their residuals from the float solution pass the Z test. 

For some satellite pairs (e.g. G31-G22 in Figure 3-10a), the high-frequency systematic 

errors remain although the magnitudes are small. There are apparent inconsistencies 

between the estimated systematic errors and the LS-derived residuals (e.g. C05-C03 

in Figure 3-10c). This indicates that (see also Figure 3-2c), it is sometimes not 

appropriate to determine the systematic errors based on the residuals only.  
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Figure 3-10. DD L1/B1 residuals of the 5-th session, satellite pairs (a) G31-G22, (b) 

C10-C03 and (c) C05-C03 before and after extraction of systematic errors 

 

Table 3-5 Z test results and SPE-derived smoothing parameters (the 5th session) 

Satellite pairs # of epochs 
Z test 

�̂� (float solution) �̂� 
LS SVE 

G12-G22 40 6.1 2.5 218.2 215.7 

G14-G22 48 6.1 1.0* 373.8 374.2 

G18-G22 99 7.2 3.0 215.1 214.7 

G25-G22 88 7.9 2.6 179.8 179.3 

G29-G22 40 4.9 1.0* 319.2 322.1 

G31-G22 91 8.6 4.1 278.1 278.6 

C01-C03 119 6.3 -0.3* 1015 437.9 

C02-C03 119 8.9 -0.1* 1015 343.8 

C04-C03 119 8.9 0.5* 1015 269.7 

C05-C03 119 10.1 0.3* 1015 341.2 

C06-C03 119 9.0 2.0* 230.5 230.2 

C07-C03 103 9.5 1.0* 357.2 357.9 

C09-C03 119 9.9 0.4* 397.1 396.7 

C10-C03 119 10.1 -0.4* 335.8 335.8 

*Residuals that passed the Z test (significance level 0.01) 
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To investigate the stability of the proposed method, the estimation results of the three 

satellite pairs in the same time period in the following two days, i.e. the 13-th and 31-

th sessions, are also selected and presented in Figure 3-11. Evident sidereal 

repeatability of the multipath errors can be seen. The multipath patterns of the satellite 

pairs are similar with those presented in the first day (see the 5-th session in Figure 

3-10).  

 

Figure 3-11 DD L1/B1 residuals of the 13-th session (left) and the 21-th session (right), 

satellite pairs (a) G31-G22, (b) C10-C03 and (c) C05-C03 before and after extraction 

of systematic errors 

Figure 3-12 compares the estimated systematic errors from the three consecutive days. 

Estimation results of G31-G22 and C10-C03 show a good agreement between 

different days, while some small offsets exist in the results of the GEO satellite pair 

C05-C03, and obvious shifts present in the non-GEO satellite pairs G31-G22 and C10-

C03. The differences may be caused by the between-day changes of the satellite 

geometry and inaccurate priori information used. Despite the small changes, the high 

repeatability of the estimated systematic errors confirms the stability of the proposed 

method in extracting the systematic errors. It is also encouraging to consider the 
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possibility of applying the derived systematic errors as corrections to the subsequent 

observations. 

 

Figure 3-12 Systematic errors estimated over three consecutive days (i.e., the 5-th, 13-

th and 21-th sessions), from satellite pairs (a) G31-G22, (b) C10-C03 and (c) C05-

C03  

3.6 Summary 

A semiparametric estimation (SPE)-based approach has been proposed for processing 

observations from multiple GNSSs. Results from a zero-baseline experiment (with 

GPS/BeiDou/GLONASS data) with simulated systematic errors have shown that 

systematic errors can be accurately estimated based on the proposed approach. The 

approach when combined with VCE can significantly improve the accuracy of VCE 

and the accuracy of the baseline (over 80% improvement compared to results of VCE 

and over 90% improvement over the results of LS). Experiments using a real dataset 

gathered from a GPS/BeiDou baseline of about 10 m in a multipath dominant 

environment have shown a 35.6% improvement in accuracy when SPE was applied. 

The determination of the smoothing parameters used in the SPE based on search 
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algorithms like generalized cross-validation (GCV) is computationally intensive. A 

method based on LS residuals has been proposed for this purpose and has been proved 

practical and effective. Results of both simulation and real-data experiments show that 

the proposed approach is about 100 times faster than the traditional GCV-based 

methods. 
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Chapter 4 Multi-GNSS kinematic PPP with mixed use of time-

differenced and undifferenced carrier phases  

4.1 Motivation 

Using observations from multiple GNSSs complicates the data processing models 

since extra ambiguities and various biases have to be considered (Zumberge et al., 

1997; Ge et al., 2008; Dach et al., 2010; Cai and Gao, 2013; Teunissen and 

Khodabandeh, 2015; Håkansson et al., 2016). Moreover, an ill-posed problem due to 

poor satellite geometry in kinematic applications (Li et al., 2010) or correlations 

among parameters (Wang et al., 2016) can make the estimation more complicated than 

before.  

Time-differenced carrier phase (TDCP) observations (Van Graas and Soloviev, 2004) 

can help to eliminate time-invariant parameters such as phase ambiguities and 

hardware biases. TDCP has been widely used to smooth noisy pseudoranges 

(Hofmann-Wellenhof et al., 2008) and to estimate velocities (Van Graas and Soloviev, 

2004; Freda et al., 2015). A few mm/s velocity accuracy is achievable based on TDCP 

compared with cm/s and dm/s accuracies from Doppler measurements and 

differencing between positions (Soon et al., 2008; Traugott et al., 2008; Freda et al., 

2015). TDCP approach has been used in both standalone GPS receivers (Bisnath and 

Langley, 2002; Serrano et al., 2004a; Serrano et al., 2004b; Van Graas and Soloviev, 

2004; Traugott et al., 2008) and coupled GPS/INS (inertial navigation system) systems 

(Moafipoor et al., 2004; Wendel et al., 2006; Han and Wang, 2012; Zhao, 2016). 

Deploying TDCP in the single-receiver mode is especially useful for low-cost 

positioning systems where fixing the ambiguity is unrealistic (Serrano et al., 2004b; 

Traugott et al., 2008). Another advantage of applying TDCP is that the impacts of 

some systematic errors that are usually intractable can be reduced (Serrano et al., 

2004b; Soon et al., 2008). This enhances the performance of GNSS positioning in 

adverse scenarios such as in environments with significant signal interference, 
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dominant multipath signals, or without differential GNSS. Improved positioning 

performance via exploiting TDCP has been reported in experiments conducted in 

urban canyons (Ford and Hamilton, 2003).  

TDCP measurements lack absolute position information and are vulnerable to 

accumulative errors (Wendel et al., 2006; Traugott et al., 2008; Colosimo et al., 2011; 

Han and Wang, 2012). Absolute position information can be introduced by using a 

known starting point (Soon et al., 2008; Traugott et al., 2008; Zhao, 2016), or by 

incorporating pseudorange observations in the positioning calculation (Ding, 2007; 

Han and Wang, 2012). The pseudorange-aided approach may however only achieve 

standard point positioning accuracy (i.e., m-level), since the pseudorange observations 

can dominate the positioning process (Zhao, 2016). To reduce the accumulation of 

errors, TDCP observations need to be carefully corrected. For instance, the use of 

high-rate precise ephemeris is helpful (Traugott et al., 2008). The accumulated errors 

can also be linearly de-trended (Colosimo et al., 2011), while the linearity assumption 

is limited to a few minutes (Li et al., 2013). In addition, TDCP observations connect 

two state vectors. Therefore, the delayed state errors need to be accounted for in the 

Kalman filter model, or sequential least-squares model (Bisnath and Langley, 2002; 

Ford and Hamilton, 2003; Serrano et al., 2004a; Wendel et al., 2006).  

In this Chapter, the TDCP is extended into multi-GNSS PPP. Next Section presents 

the mathematical models of TDCP-based PPP, including a mixed model where TDCP 

is aided with low-rate undifferenced carrier phase (UDCP) observations, followed by 

two tests with different kinematics and time lengths.  

4.2 TDCP-based multi-GNSS PPP  

For brevity, pseudorange is not discussed here since the carrier phase is in general 

dominant in PPP. The undifferenced ionosphere-free carrier phase observations in 

length units can be expressed as: 

 𝒍 = 𝑨𝒙 +𝒎𝑇 + 𝝉0 + 𝒂 + 𝝐 (4-1) 
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where𝒍 is the misclosure vector. Corrections projected to the line of sight are applied 

for satellite clock errors, Earth rotation, tidal loadings, relativistic effects, antenna 

phase center corrections, tropospheric delays, and wind-up effects (Kouba, 2015); 𝒙 

is the correction to the approximate state vector that comprises receiver position and 

clock errors; 𝑨 is the partial derivative matrix of the observations with respect to 𝒙, or 

the so-called design matrix; 𝒎  and 𝑇  are respectively the mapping function and 

residual zenith tropospheric delays that should be estimated even for PPP with short 

observation spans (Kjørsvik et al., 2006);𝝉0 stands for ISBs in meters relative to a 

reference system, e.g., GPS. The intersystem time offsets are lumped to 𝝉0, if the time 

of ephemeris products used is not aligned to GPS time; 𝒂  represents the float 

ambiguities scaled to meters, which are designed to absorb the various biases 

(including hardware delays of the satellites and receivers, and other unmodeled 

systematic biases) that need to be isolated when fixing the ambiguities, as daily-

constant or slowly-varying parameters (Dach et al., 2010); and 𝝐 indicates observation 

errors, assumed zero-mean and Gaussian unless contaminated by significant 

unmodeled errors (Yu et al., 2017).  

Assuming 𝑇, 𝝉0 and 𝒂 are invariant from epoch 𝑡 − 1 to epoch 𝑡, differencing the two 

consecutive epochs in kinematic PPP gives the TDCP, 

 ∆𝒍𝑡 = 𝑨𝑡𝒙𝑡 − 𝑨𝑡−1𝒙𝑡−1 + ∆𝒎𝑡𝑇𝑡 + ∆𝝐𝑡 (4-2) 

where Δ is the time-difference operator. Constant values (𝝉0 and 𝒂) are eliminated in 

the TDCP observables and the effects of slowly varying systematic errors are reduced, 

although the observation covariance is amplified, e.g., 𝑪∆𝜖𝑡 ≈ 𝑪𝜖𝑡 + 𝑪𝜖𝑡−1  (Soon et al., 

2008), where 𝑪 represents an observation covariance matrix. TDCP connects two 

states therefore is related to the dynamic model of the Kalman filter (Bisnath and 

Langley, 2002; Ford and Hamilton, 2003) if Kalman filter is used to estimate the 

positions. The term 𝑨𝑡𝒙𝑡 − 𝑨𝑡−1𝒙𝑡−1  is commonly approximated by 𝑨𝑡∆𝒙𝑡  by 

neglecting ∆𝑨𝑡𝒙𝑡−1 when the change of 𝑨 from epoch 𝑡 − 1 to 𝑡 is small (Van Graas 

and Soloviev, 2004; Ding and Wang, 2011; Freda et al., 2015). TDCP-based 

positioning can be affected by the quality of the initial state vector, and the positioning 

accuracy may degrade with time when the systematic errors cannot be mitigated well 
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(Colosimo et al., 2011; Li et al., 2013; Zhao, 2016). Obtaining an accurate prior state 

is often not difficult when a base station is near the starting point, or for some 

applications such as GNSS seismology, the receiver position before the earthquake is 

available (Li et al., 2013). In this case, the term 𝑨𝑡𝒙𝑡 − 𝑨𝑡−1𝒙𝑡−1  can be directly 

reduced to 𝑨𝑡𝒙𝑡 by using the state of epoch 𝑡 − 1 as the nominal values of epoch 𝑡 

(Soon et al., 2008). The TDCP thus is rewritten as  

 

∆𝒍𝑡 = 𝑨𝑡𝒙𝑡 + ∆𝒎𝑡𝑇𝑡 + 𝝃𝑡, 

𝝃𝑡 = −𝑨𝑡−1𝒙𝑡−1 + ∆𝝐𝑡, 

𝑪𝜉𝑡 = 𝑨𝑡−1𝑪�̂�𝑡−1𝑨𝑡−1
′ + 𝑪∆𝜖𝑡 

(4-3) 

When there are significant biases in the previous state or inter-epoch systematic errors 

present, the observation quality estimated via Eq. (4-3) can be over-optimistic. 

Discussion of the effect of inaccurate prior information on the estimation can be found 

in (e.g., Xu, 1991). The temporal variability of the GNSS errors (Olynik et al., 2002) 

needs to be accounted for in either the stochastic model or the functional model (e.g., 

Yu et al., 2017). 

It is proposed to aid the TDCP-based positioning with low-rate UDCP observations 

to prevent error accumulation. Figure 4-1 depicts the data processing chain that is 

based on Kalman filtering. 1-Hz multi-GNSS UDCP observations are time-

differenced (Eq. 4-3), except those from GPS are mixed with non-GPS TDCPs every 

60 s. Consequently, in the proposed approach multi-GNSS observations can be 

exploited without expanding the number of parameters in the traditional GPS-only 

PPP (i.e., coordinates, receiver clock error, residual tropospheric delays, and GPS 

phase ambiguities). The accuracy of the results from the simplified PPP model can be 

better maintained with fewer satellites, which is useful in urban areas in which 

multipath signals are abundant and signal blockage often occurs. Lower rate 

undifferenced observations are used to limit the impact of their systematic errors (Han 

and Wang, 2012).  

The mixed PPP approach can at least be used in two scenarios. First, in applications 

that have a “static-start” process, such as drones, racing, sports, and seismology, an 

accurate initial position can be obtained by a nearby base station or historical 
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information. Second, for moving platforms such as cars, ships, and buoys, an accurate 

initial point can be obtained by traditional converged PPP or RTK. Once an accurate 

starting position becomes available, applying the mixed-PPP has some obvious 

advantages over the existing multi-GNSS PPP method. For instance, fewer parameters 

need to be estimated, leading to a simplified positioning model. The computation 

burden of high-rate kinematic positioning can also be reduced. In addition, the 

accuracy can be retained with fewer satellites, which is useful in urban areas where 

signal shadowing often occurs. Using the TDCP observations can also reduce the 

impacts of systematic errors such as multipath errors and residual atmospheric delays. 

This allows a simplified mitigation of systematic errors in the rapidly-changing 

environments encountered by moving platforms. 

 

Figure 4-1 Processing chain of the Mixed PPP approach, function frac(∙) returns the 

fractional part of a real number 

4.3 Experiments and results 

To investigate the performance of the proposed TDCP-based multi-GNSS positioning 

approach, two 1-Hz dual-frequency datasets collected with Trimble R10 receivers are 

analyzed. The first dataset has 34-min GPS/BeiDou/GLONASS observations. It was 

acquired with a vehicle at a site shown in Figure 4-2, where there are tall buildings 
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and trees along the road. The second dataset contains quad-GNSS (i.e. GPS, BeiDou, 

GLONASS and Galileo) observations acquired from an 83-min running exercise at a 

site as shown in Figure 4-3. There is a high slope to the north of the site. Both datasets 

are affected by interferences such as multipath errors (Leick et al., 2015) as shown in 

Figure 4-4. Atmospheric delays are considered another major error source as the sites 

are near the coast that is usually very humid. The dynamics of the two rovers are 

shown in Figure 4-5 by their velocities.  

 

Figure 4-2 Driving trajectories in Shatin area of Hong Kong (denoted as PUST) on 

June 11, 2015, 08:00:00–08:33:59 (GPS time). The data is processed with HKSS as 

base station, about 7 km from PUST 
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Figure 4-3 Running trajectories near a high slope in Homantin area of Hong Kong 

(denoted as PUHM) on July 4, 2018, 12:50:00–14:13:00 (GPS time). The data is 

processed with HKPU as base station, which is about 0.7 km from PUHM 

 

  

Figure 4-4 Pseudorange multipath combination (MPC1) of rovers at PUST (left) and 

at PUHM (right), respectively. Here G, C, R and E respectively stand for GPS, BeiDou, 

GLONASS and Galileo 
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Figure 4-5 Velocity time series of rovers at PUST (up) and PUHM (bottom), 

respectively 

Observations below 5 degrees of elevation angle and those identified containing cycle 

slips (Blewitt, 1990) are not used. GNSS error sources are carefully corrected (Kouba, 

2015) to avoid error accumulation. The 5-min orbit and 30-s clock products provided 

by the German Research Centre for Geoscience (GFZ) are used. The predicted 

tropospheric delays are applied (Leandro et al., 2008) while the residual zenith delays 

are computed in the estimation process. The a priori variance-covariance matrix of the 

undifferenced observations is determined by the elevation-dependent model 

(Hofmann-Wellenhof et al., 2008). In setting up the parameters to be estimated, the 

coordinates and the clock errors in 𝒙 are modeled as white noise with the variances 

being 106m2  and 1010m2  respectively. The residual zenith tropospheric delays 𝑇 

and the ISBs 𝝉0 are treated as random walk processes with the power spectral densities 

being 4 cm2/h and 1 cm2/h, respectively. 

The results from three types of data processing strategies are compared. They are 

based on undifferenced observations, TDCP, and TDCP aided with low-rate (60 s) 

undifferenced GPS observations, as denoted by UnDiff, TDiff, and Mixed, 

respectively. Accurate initial positions obtained from relative positioning (1-cm 

uncertainty is assumed for each coordinate component) are input to all the three 

approaches. The data processing is carried out on a laptop (64-bit Windows 10 with 

Intel i7-3520M CPU of 2.9 GHz and memory of 8 GB), and the time consumed is 

recorded to understand the efficiency of each of the approaches.  
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Figure 4-6 shows the coordinate errors (with respect to the results of post-processed 

kinematic relative positioning) when applying the UnDiff PPP based on GNSS and 

GPS-only observations. It can be seen that UnDiff positioning errors fluctuate 

significantly, which is considered due to multipath signals and some inaccurate initial 

parameters (including phase ambiguities, residual zenith atmospheric delays, and 

ISBs). For the rover at PUST, the height errors are significantly larger than the 

horizontal errors, perhaps due to the significant atmospheric delays. For the rover at 

PUHM, although it moved much slower than that at PUST, the coordinate errors 

exhibit smaller fluctuations while the drift errors become dominant especially in the 

north and up components. This may be due to the larger multipath effects and the 

longer data length. It is clear that the GNSS solutions outperform those based on GPS-

only data in almost all directions. Faster convergences can be seen in the GNSS 

coordinates compared with those of GPS-only in PUHM. Therefore, hereafter only 

GNSS solutions are discussed. Figure 4-7 further gives the coordinate errors from 

TDiff- and Mixed-PPP approaches. Figure 4-8 and Table 4-1 compare the position 

root-mean-square (RMS) errors. In the TDiff approach, the ambiguities and ISBs are 

eliminated and therefore there is no need to initialize them, and the effects of the 

atmospheric delays on the height coordinates are remarkably reduced. The TDiff 

approach suppresses the fluctuations while the results contain some apparent drifts in 

the east direction. The position RMS errors are reduced by 41.1%, from 25.0 cm to 

14.7 cm compared to UnDiff. The Mixed approach can effectively reduce the drifts 

seen in the TDiff solution, although some small jumps appear occasionally in the north 

direction. These jumps are considered due to the introduction of the absolute position 

information from the undifferenced observations. The proposed approach achieved 

52.8% improvements in the position accuracy over the UnDiff approach. For the rover 

at PUHM, the TDiff solution cannot resist the accumulative errors well and thus drifts 

significantly over time. The results are finally worse than those of the UnDiff solution. 

The Mixed approach effectively diminishes the drifts and the position RMS error is 

reduced by 28.3% compared to that of UnDiff. 



57 

  

Figure 4-6 Coordinate errors of rovers at PUST (left) and PUHM (right) from UnDiff 

PPP based on GNSS and GPS-only data 

 

  

Figure 4-7 Coordinate errors of rovers at PUST (left) and PUHM (right) from different 

PPP approaches 
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Figure 4-8 Position RMS errors of rovers at PUST (left) and PUHM (right) from 

different PPP approaches 

 

Table 4-1 Statistics of kinematic PPP errors from different processing approaches 

Rover Method 
Mean [cm] RMS [cm] 3D RMS 

[cm] 

Impr. 

[%] North East Up North East Up 

PUST 

UnDiff 3.3 -2.3 21.9 3.9 3.7 24.4 25.0  

TDiff 1.5 -2.2 11.4 2.5 3.1 14.2 14.7 41.1 

Mixed -3.4 -0.9 7.0 3.9 1.8 11.0 11.8 52.8 

PUHM 

UnDiff 6.3 -3.3 12.9 6.8 4.2 15.5 17.4  

TDiff -5.8 16.1 58.8 7.2 19.5 71.1 74.1 -325.3 

Mixed -0.1 -1.1 -7.4 3.4 3.8 11.4 12.5 28.3 

Figure 4-9 shows the ionosphere-free carrier phase residuals of the UnDiff and TDiff 

solutions. The residuals from the Mixed approach consist of both the TDCP and 

UDCP and therefore are not presented. The TDCP residuals appear more random as 

the observations contain much less systematic errors than the undifferenced 

observations. Therefore TDCP-based PPP can produce superior results in 

interference-rich areas over the traditional PPP approach. 
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Figure 4-9 Ionosphere-free carrier phase residuals of observations from different 

satellite systems for rovers at PUST (left) and PUHM (right). The green and red colors 

represent the residuals of UDCP and TDCP, respectively 

For the TDCP-based positioning, an accurate initial state vector is critical, especially 

the residual zenith tropospheric delays and the initial position. Table 4-2 shows the 

PPP RMS errors when tropospheric delays are corrected using only the a priori 

tropospheric model. The height RMS errors of the UnDiff solution increase 

significantly to 42.1 and 23.2 cm respectively for the rovers at PUST and PUHM, 

compared to 24.4 and 15.5 cm when the residual zenith delays are estimated (see Table 

4-1). Comparing the height RMS errors in Table 4-1 and Table 4-2, it can also be seen 

that without parameterizing the residual zenith refraction, most of the height RMS 

errors increase slightly (sub-cm level) when the TDiff and Mixed methods are used. 

Results for PUHM are not satisfactory when TDiff method is used since they are 

affected by significant drift errors. This indicates that the TDCP can effectively 

mitigate the impacts of time-varying systematic errors in a short term (the data interval 

is 1 s in this experiment). It also confirms that estimating the residual tropospheric 

delays is necessary for the TDCP-based approaches to achieve a high positioning 

accuracy. 
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Table 4-2 Performances of different kinematic PPP approaches when the residual 

zenith tropospheric delays are not parameterized 

Rover Method 
Mean [cm] RMS [cm] 3D RMS 

[cm] 

Impr. 

[%] North East Up North East Up 

PUST 

UnDiff 4.2 -3.9 39.5 4.7 4.8 42.1 42.7  

TDiff 1.5 -2.1 11.6 2.5 3.1 14.3 14.8 65.3 

Mixed -3.4 -1.3 7.7 3.9 2.2 11.5 12.4 71.0 

PUHM 

UnDiff 4.8 -0.3 -20.1 5.2 2.2 23.2 23.8  

TDiff -5.8 16.3 57.4 7.1 19.7 69.2 72.3 -203.1 

Mixed 2.6 -5.7 -8.1 5.0 7.4 11.8 14.8 38.0 

To investigate the impact of the initial position accuracy, the two datasets are tested 

with varying initial position errors (adding 5, 10, 30, 50, 100 and 200 cm errors 

respectively to each coordinate component). As shown in Figure 4-10, the position 

errors of the three processing approaches grow differently when the errors in the initial 

position are added. The undifferenced observations allow the solution to converge 

more rapidly. In contrary, TDiff-derived results are significantly affected by the initial 

position errors. The Mixed approach is more robust than TDiff. Figure 4-11 and Table 

4-3 show the position RMS errors with respect to varying initial position errors. 

Except for the TDiff solution at PUHM where the drifting errors are dominant, the 

TDCP-based approaches can provide better positioning results than the UnDiff 

approach when the initial position errors are within about 1 m. The mixed use of 

UDCP and TDCP observations improves the positioning accuracy over the TDiff 

approach. When an accurate initial position is unavailable, undifferenced observations 

may be preferred. One can overcome the problem by starting the TDCP-based PPP 

once an accurate position is available, or empirically down-weight the TDCP in the 

Mixed approach until the solution converges.  
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Figure 4-10 Position error time series of PUST (left) and PUHM (right) from different 

approaches and with varying initial position errors, from a to f, 8.6, 17.3, 51.9, 86.5, 

173.2 and 346.4 cm position errors, respectively 

 

  

Figure 4-11 Initial position errors vs. position RMS errors of PUST (left) and PUHM 

(right) 
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Table 4-3 Position RMS errors from different processing approaches and with varying 

initial position errors 

Initial position error [cm] 

3D RMS [cm] 

PUST PUHM 

UnDiff TDiff Mixed UnDiff TDiff Mixed 

8.6 48.5 22.2 15.6 30.6 74.0 12.6 

17.3 61.4 30.6 21.3 40.8 78.0 17.2 

51.9 84.1 65.8 50.1 49.9 89.9 42.9 

86.5 97.3 100.9 84.9 53.4 107.1 61.4 

173.2 110.2 185.4 151.3 53.7 164.8 91.3 

346.4 117.0 335.4 312.1 56.1 300.3 104.4 

 

Table 4-4 shows the time consumption of the different PPP processing approaches. 

The TDiff and the Mixed approaches consumed about 2.9 % to 6.3 % less time than 

the UnDiff approach. This advantage will be more obvious when handling a high-rate 

dataset, or in applications where the ambiguities are to be fixed.  

Table 4-4 Average time consumed by different processing approaches 

Rover Method Mean time used [ms] Improvements [%] 

PUST 

UnDiff 50259.4  

TDiff 47070.7 6.3 

Mixed 48033.7 4.4 

PUHM 

UnDiff 134114.7  

TDiff 128180.6 4.4 

Mixed 130256.7 2.9 

4.4 Summary  

Precise point positioning (PPP) with observations from multiple GNSSs is both 

advantageous and challenging, considering the ample redundant observations 

available and the difficulties in optimally deriving the position solutions in the 

presence of various biases. This study has presented an approach that is based on the 

mixed use of time-differenced carrier phase (TDCP) and low-rate undifferenced 
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carrier phase observations. Test results have shown that when an accurate initial 

position is available, the approach can achieve 28–71 % improvement in positioning 

accuracy over the traditional PPP approach. The TDCP-based approaches are also 

efficient in computation, an advantage in high-rate positioning applications. A 

drawback of the TDCP-based approaches is the requirement for an accurate initial 

position. The issue can however be overcome by adopting various techniques such as 

using a lower weight for the TDCP observations until an accurate solution is achieved. 
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Chapter 5 Two-step robust multi-GNSS positioning 

5.1 Motivation 

Integrating multi-GNSS observations benefits positioning, while a growing number 

of parameters increase the computation complexity, and unmodeled errors (including 

outliers, residual systematic errors, and impropriate stochastic modeling) may 

sometimes degrade the solutions (Banville and Langley, 2013; El-Mowafy, 2014; 

Pozo-Pérez et al., 2017; Yang et al., 2017). Much research efforts have also given to 

subset-estimation. Observation geometry plays an important role in positioning 

applications (Meng et al., 2004) and it has been used as a criterion for selecting a 

subset of observations when sufficient satellites exist (Teng and Wang, 2016). Subset-

estimation is also applied for ambiguity resolution. Ambiguities are often partially 

resolved (Teunissen et al., 1999; Brack, 2017) to reduce the calculation, although a 

fixed solution is preferred in terms of accuracy (Ge et al., 2008). Another example of 

subset-estimation is the robust estimation, which essentially attempts to separate data 

into a “clean” subset and a complementary subset that is discarded or down-weighted 

(Yang et al., 2002). However, these subset-estimation methods cannot fully exploit 

the observations offered by multiple GNSSs and achieve only suboptimal solutions.  

Previous research has mainly focused on a suboptimal solution as a compromise to 

the computation complexity. Few studies have explored an optimal solution by 

substituting subset-estimation-derived results into the positioning. This chapter 

presents such a two-step strategy that attempts to fully use observations from multiple 

GNSSs. The next section addresses the implementations of the two-step strategy in 

both single-point positioning and static relative positioning. Evaluations are then 

performed, based on one-week multi-GNSS data in which the measurements present 

frequent interferences of multipath effects and blockages. Finally, concluding remarks 

are presented. 
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5.2 Traditional positioning method 

5.2.1 Observation equations 

The linearized pseudorange equation reads 

 𝑙𝑝 = 𝒖 ∙ 𝒓 + 𝜏 + 𝑏 + 𝑒𝑝 (5-1) 

where 𝑙𝑝  is the misclosure (i.e. observation-minus-computed value), where 

corrections of satellite clock error, Sagnac, and relativity effects are applied, and 

tropospheric and ionospheric delays are corrected using the UNB3m (Leandro et al., 

2008) and single-layer model (Hofmann-Wellenhof et al., 2008) respectively; 𝒖 ∈

ℝ1×3 is the unit LOS vector; 𝒓 ∈ ℝ3 represents the increment in the nominal receiver 

position; 𝜏 stands for the receiver clock error in meters; 𝑏 represents ISB relative to a 

reference system, e.g. GPS; and 𝑒𝑝 contains pseudorange noise and other unmodeled 

errors, such as multipath effects. 

For a short baseline with the base station fixed, the DD carrier phase observation in 

length units can be written as (Wang, 2000) 

 

𝑙∇∆𝜑
𝑖𝑗

= ∇𝒖𝑖𝑗 ∙ 𝒓 + 𝜆𝑖∇∆𝑁𝐹
𝑖𝑗
+ 𝑒∇∆𝜑

𝑖𝑗
 ,  

 ∇∆𝑁𝐹
𝑖𝑗
= ∇∆𝑁𝑖𝑗 + (1 −

𝜆𝑗

𝜆𝑖
)∆𝑁𝑗  

(5-2) 

where 𝑙∇∆𝜑
𝑖𝑗

 is the misclosure of DD carrier phase observation between the 𝑖-th and 𝑗-

th satellites. Here, ∇ and ∆ are cross-satellite and cross-receiver single-differencing 

(SD) operators respectively. A reference satellite is selected for each GNSS involved, 

except that double-differenced (DD) BeiDou observations are formed between either 

GEO-type or non-GEO-type satellites to avoid inter-satellite-type biases when using 

different receiver hardware (Nadarajah et al., 2013). 𝜆 denotes the wavelength, ∇∆𝑁 

is the DD integer ambiguity, Δ𝑁 is the cross-receiver SD integer ambiguity, and 𝑒∇∆𝜑 

represents the DD observation errors. The frequency inconsistency of the satellite pair 

destroys the integer nature of DD ambiguities (i.e. ∇∆𝑁𝐹
𝑖𝑗

 are float if 𝜆𝑖 ≠ 𝜆𝑗), which 

is the main obstacle faced by the GLONASS ambiguity resolution. To reduce the 
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impacts, pseudoranges are used to estimate the initial values of ambiguities. A search 

process is also applied to obtain the final GLONASS SD ambiguity ∆𝑁𝑗  when 

determining the DD ambiguities (Wang, 2000). 

5.2.2 Outlier mitigation 

Methods for outlier mitigation can be categorized as two types. The (co)variance-

inflation method iteratively reduces the weights of observations that are contaminated 

by gross errors (Yang et al., 2002). Its alternative is based on the mean-shift model 

that exhaustively tests the significance of possible combinations of the outliers (Koch, 

2015). The former is adopted in this study since the mean-shift model in general 

assumes a single outlier, whereas determining the number of outliers that exist in a 

dataset remains an open problem (Ding and Coleman, 1996; Knight et al., 2010). 

The least-squares solution can be expressed as 

 {

�̂� = (𝑨′𝑷𝑨)−1𝑨′𝑷𝒍, 𝑸�̂� = (𝑨′𝑷𝑨)
−1

�̂� = 𝑨�̂� − 𝒍, 𝑸�̂� = 𝑷
−1 − 𝑨𝑸�̂�𝑨′

�̂� = √�̂�′𝑷�̂� (𝑛 − 𝑡)⁄

 (5-3) 

where 𝑨 ∈ ℝ𝑛×𝑡 , �̂� ∈ ℝ𝑡 , and 𝒍 ∈ ℝ𝑛  are the design matrix, unknown parameter 

vector, and misclosure vector, respectively, with 𝐷(𝒍) = 𝜎2𝑷−1, where 𝜎2 and 𝑷 are 

the variance factor and weight matrix respectively; �̂� ∈ ℝ𝑛 is the residual vector with 

𝐸(�̂�) = 𝟎 and 𝐷(�̂�) = �̂�2𝑸�̂�; �̂� is the estimate of 𝜎. The LS solution is considered 

being distorted at a preselected significance level 𝛼 if  

  𝜒(𝑛−𝑡)
2 = (𝑛 − 𝑡)�̂�2 > 𝜒(𝑛−𝑡),𝛼

2  (5-4) 

In the (co)variance inflation model, outliers are considered zero-mean and random, 

with large variances. The weight matrix is updated by reducing relevant elements 

(Yang et al., 2002) 

 𝑝𝑖𝑗
+ = 𝛾𝑖𝑗𝑝𝑖𝑗

−  , with 𝛾𝑖𝑗 = √𝛾𝑖𝑖𝛾𝑗𝑗 (5-5) 

where 𝑝𝑖𝑗  is the element in weight matrix 𝑷  at the 𝑖 th row and 𝑗 th column; 𝛾 

corresponds to the reduction factors and can be empirically set as (Yang et al., 2002) 
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 𝛾𝑖𝑖 =

{
 
 

 
 

1 |�̃�𝑖| ≤ 𝑘0

𝑘0
|�̃�𝑖|

(
𝑘1 − |�̃�𝑖|

𝑘1 − 𝑘0
)

2

𝑘0 < |�̃�𝑖| ≤ 𝑘1

0 |�̃�𝑖| > 𝑘1

 (5-6) 

where �̃�𝑖 is the standardized residual, i.e. �̃�𝑖 = �̂�𝑖/[�̂�√𝑸�̂�(𝑖, 𝑖)]; the initial value of �̂� 

can be obtained through �̂� = 1.483med(|�̃�|), and then �̂� = √
�̂�′𝑷�̂�

𝑛−𝑡
 in the iterations; 𝑘0 

and 𝑘1 are two constants empirically set to 1.5 and 3.5 respectively. The process of 

(co)variance inflation is iterated until no change is required.  

5.3 Two-step positioning method 

A two-step strategy has been developed to enhance multi-GNSS positioning. Figure 

5-2 depicts the processing chains of the traditional SPP and the proposed two-step 

SPP. 𝜒2 test is used to detect outliers. The first step of the new method is similar to 

the traditional SPP, while a more “exclusive” estimation in which only GPS 

observations considered to be of “high quality” is carried out. Stringent satellite 

selection is implemented through increasing data-masking thresholds and/or removing 

observations identified as outliers in the misclosure vector. Selecting high-quality 

observations can lead to a robust estimation of the initial solution. Only a limited 

number of outliers can be detected and identified based on the mean-shift model 

(Knight et al., 2010) or alternatively inflating the corresponding (co)variance elements 

of the stochastic model (Yang et al., 2002). Although involving more observations in 

general leads to a higher reliability of outlier detection, using observations from a 

single GNSS enables removing outliers directly from the misclosure vector. 

Prescreening observations before including them in an integrated adjustment has been 

reported to be useful (Banville and Langley, 2013) especially in the case of 

encountering extra-large outliers (Leick et al., 2015, p.70). In a single-GNSS 

pseudorange misclosure vector, a big outlier can be identified if the following 

condition is fulfilled, 
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|𝑙𝑝 − �̅�𝑝| = |(𝒖 − �̅�) ∙ 𝒓 + 𝑒𝑝 − �̅�𝑝| > 10 ∗ 𝜎𝑙𝑝 

𝜎𝑙𝑝 = 1.48 ∗ Med(|𝑙𝑝 −Med(𝒍𝑝)|) 
(5-7) 

where function Med(∙) returns the median value of an input vector. A relatively large 

error threshold, i.e. 10, is used due to the geometric terms 𝒖 and 𝒓. Based on the initial 

position obtained in the first step, the second step first estimates non-position 

parameters, i.e. intersystem biases. This allows prescreening outliers in the misclosure 

vector for each non-GPS system. The second step then refines the results through an 

“inclusive” estimation that reduces the masking thresholds and includes the remaining 

observations, aiming at a high-accuracy solution. Small outliers can be removed since 

the redundant observations strengthen the model geometry and the resultant high 

reliability lead to more sensitive outlier detection.  

 

Figure 5-1 Processing chains of the traditional and proposed two-step standard point 

positioning methods 
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Compared to the traditional positioning method, the two-step method can preserve the 

observation redundancy and is computationally more efficient especially if multiple 

outliers present. The two-step method can prescreen some big outliers, and this 

reduces the number of iterations of the robust estimation required in the traditional 

positioning method. 

 

Figure 5-2 shows the processing chains of traditional static DD positioning and the 

one realized based on the concept of the two-step method. The first step of the new 

method is the same as the traditional approach, while higher observation masking 

thresholds and only GPS data are used. In DD positioning, ambiguity resolution plays 

a critical role. Incorporating the initial baseline components derived from the first step 

allows the elimination of ambiguities in the second step. Assuming the position 

correction vector 𝒓 in Eq. (5-2) is small enough we obtain, 

 ∇∆�̂�𝐹
𝑖𝑗
≈ 𝜆𝑖

−1𝑙∇∆𝜑
𝑖𝑗
, 𝐷

∇∆�̂�𝐹
𝑖𝑗 ≈ 𝜎2𝜆𝑖

−2𝑷−1(𝑖, 𝑖) + �̂�2∇𝒖𝑖𝑗𝑸�̂�(∇𝒖
𝑖𝑗)′ (5-8) 

where 𝐷
∇∆�̂�𝐹

𝑖𝑗  is the approximate variance of the estimate ∇∆�̂�𝐹
𝑖𝑗

. Ignoring the 

reference satellite’s SD ambiguity considering the small coefficient (Wang, 2000), 

once the uncertainty of the estimated ambiguity has dropped below a certain fraction 

of a wavelength (e.g., 0.3 cycles in this study), the ambiguity can be fixed via rounding 

to its nearest integer, 

 ∇∆�̆�𝑖𝑗 = ROUND(∇∆�̂�𝐹
𝑖𝑗
), when√𝐷∇∆�̂�𝐹

𝑖𝑗 < 0.3 (5-9) 

Observation with inaccurate estimated ambiguities (the fraction part is larger than 0.3 

cycles of the wavelength) will be down-weighted or removed. For GLONASS 

observations, the fraction components of DD ambiguities induced by the reference 

satellites’ SD ambiguity errors are considered as observation errors, therefore the 

noise level is empirically inflated by 1.5 times.  

In the multi-GNSS DD carrier phase misclosure vector, once the ambiguities are fixed 

and removed, an outlier can be identified if 
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|∇∆𝑙𝜑 − ∇∆�̅�𝜑| = |(∇𝒖 − ∇�̅�) ∙ 𝒓 + ∇∆𝑒𝜑 − ∇∆�̅�𝜑| > 10 ∗ 𝜎𝑙𝜑  

𝜎𝑙𝜑 = 1.48 ∗ Med(|∇∆𝑙𝜑 −Med(∇∆𝒍𝜑)|) 
(5-10) 

For some small outliers that remain in the measurements, their detection is applied in 

conjunction with adjustment based on the analysis of the residuals. This technique 

utilizes the total redundancy and strength provided by the overall geometry and is thus 

sensitive to small outliers (Leick et al., 2015, p. 70). 

 

Figure 5-2 Processing chains of the traditional and proposed two-step double-

difference positioning methods 

5.4 Experiments and results 

One-week quad-GNSS data (DOYs 157–163) was acquired at two stationary sites on 

the rooftop of Block Z of Hong Kong Polytechnic University to investigate the 

effectiveness of the proposed two-step algorithm. Trimble R9 receivers were deployed 
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with TRM59800.00 choke antenna for the PUZA and Zephyr Geodetic antenna for 

the base PUZB. As shown in Figure 5-3, high barriers exist in the south of the site 

PUZA, which result in an interference-rich environment. Figure 5-4 shows the signal 

strengths of the different satellite systems. The signals are highly impacted by ambient 

interferences, especially for those from low elevation angles and the southern sky. 

BeiDou contributes considerably in the median-high-elevation sky considering the 

developing MEO constellation. 

 
Figure 5-3 Multi-GNSS sites PUZA (up left) and PUZB (up right) with a distance of 

approximately 50 m 
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Figure 5-4 Sky plots of C/N0 signal strengths at site PUZA on DOY 157, 2018 

The data of PUZA was sampled at 30 s and processed in single-frequency SPP and 

static relative positioning. The corresponding processing configurations are given in 

Table 5-1 and Table 5-2. The “exclusive” positioning step uses higher cut-off angles 

and signal-to-noise ratio masks than those of the “inclusive” step. For the “exclusive” 

relative positioning, a data interval of 60 s is used to reduce the computation burden 

and the one of 30 s is used in the “inclusive” step for a strong model geometry. The 

ground-true position is estimated based on the entire datasets. Weights of the 

observations are determined by the elevation-based model, the zenith noise of the 

pseudorange is set to 0.5 m and the zenith noise of carrier phases is 1% of their 

wavelengths. Inter-system weight-ratios of GPS/BeiDou/GLONASS/Galileo systems 

are empirically set to 1.0/0.5/0.25/1.0. For the relative positioning, the data is divided 

into 3-h sessions. LAMBDA (Teunissen, 1995) is used for ambiguity resolution, and 

R-ratio is utilized as the validation indicator (Euler and Schaffrin, 1991).  
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Table 5-1 Processing configurations for single-frequency single-point positioning 

(data interval: 30 s, length: 7 days) 

Settings Exclusive Inclusive Traditional 

Cut-off angle [deg] 20 5 10 

SNR mask [dBHz] 35 25 30 

Systems used GPS All All 

 

Table 5-2 Processing configurations for static short-baseline single-frequency static 

DD positioning (3 h × 56 sessions) 

Settings Exclusive Inclusive Traditional 

Cut-off angle [deg] 20 5 10 

SNR mask [dBHz] 35 25 30 

Sampling interval [s] 60 30 30 

Systems used GPS ALL ALL 

Ambiguities resolution LAMBDA Rounding LAMBDA 

Three processing strategies, namely positioning based on the traditional GPS-only 

method, the traditional multi-GNSS method, and the proposed two-step method are 

compared. Some outliers are artificially added to the pseudoranges to test the 

robustness of different methods: three 20 m gross errors (assuming the pseudorange 

noise is 3 m) are added every 10 min to the pseudoranges of satellites randomly 

selected, including one GPS satellite and two non-GPS satellites. The magnitude of 

gross errors is enlarged to 100 m from the third day to understand the positioning 

performance under large outliers. In addition, in the last three days the number of 

outliers for non-GPS systems is increased to five to investigate the effectiveness of 

different methods in the presence of outliers. Given that there are many low-quality 

carrier phases already due to the ambient interferences, no artificial outliers are added 

to the carrier phases. 

Figure 5-5 to Figure 5-7 show the SPP errors of different positioning methods and the 

corresponding statistic results are summarized in Table 5-3. As shown in Figure 5-5 

the traditional GPS-only SPP produces noisy positioning results, in which the 

influences of gross errors are noticeable. Using multi-GNSS data strengthens the 

positioning model and the results are clearly smoothened (Figure 5-6). In addition, the 
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multi-GNSS approach resists well three outliers simultaneously, even though the 

outlier magnitudes become larger from the third day. Compared with the GPS-only 

solution, the multi-GNSS method reduces the 3D RMS error from 7.9 m to 6.3 m (see 

Table 5-3). However, multi-GNSS positioning is complicated when the number of 

outliers is increased to six. Frequent jumps present in the results of traditional quad-

GNSS SPP, obviously in the last three days where six outliers simultaneously exist. 

When the proposed two-step method is applied, as shown in Figure 5-7, nearly all the 

outliers are successfully removed. The positioning RMS is decreased by 4.8% to 6.0 

m compared to that of traditional multi-GNSS approach. The improvement can be 

more obvious if the outliers become more frequent. 

 
Figure 5-5 Standard SPP errors based on GPS data with artificial outliers 



75 

 

Figure 5-6 Standard SPP errors based on quad-GNSS data with artificial outliers 

 
Figure 5-7 Two-step SPP errors based on quad-GNSS data with artificial outliers 

Table 5-3 Statistics of position errors of different SPP approaches with artificial 

outliers (data interval: 30 s, length: 7 days) 

SPP Method 
Mean [m] RMS [m] 

3D RMS [m] 
North East Up North East Up 

Trad. (GPS) 1.0 2.0 -2.6 2.5 3.1 6.8 7.9 

Trad. (quad-GNSS) 0.9 1.0 -2.8 1.6 1.8 5.8 6.3 

New (quad-GNSS) 0.9 0.9 -2.7 1.5 1.8 5.5 6.0 
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Table 5-4 summarizes the mean statistics when different SPP methods are used. The 

computer time is also recorded to assess the computation efficiency. The number of 

observations in multi-GNSS solutions is about three times more than that only based 

on GPS, resulting in 55% smaller PDOP values. The two-step SPP is advantageous, it 

has more observations, slightly lower PDOPs, and a significantly higher computation 

efficiency. The mean time consumed decreases 40.4% compared to that of the 

traditional multi-GNSS. 

Table 5-4 Mean statistics of different SPP approaches (data interval: 30 s, length: 7 

days) 

Method Obs.# used PDOP  Time used [ms] 

Trad. (GPS) 9 2.0  1.1 

Trad. (quad-GNSS) 29 1.0  17.1 

New (quad-GNSS) 31 0.9  10.2 

The static baseline errors from different positioning methods are shown in Figure 5-8 

to Figure 5-10. Table 5-5 provides the baseline repeatability (the definition is given in 

Eq. 3-27) and Table 5-6 presents the mean statistics. The traditional GPS-only solution 

produces evident noisy baseline errors especially in the up component (Figure 5-8). 

They are considered to be caused by the limited satellite geometry and systematic 

errors in observations from low elevation angles. When multi-GNSS data is used, the 

repeatability in the up component is considerably decreased. In contrast, the 

repeatability in the east direction is slightly deteriorated, which may be due to the 

inaccurate a priori stochastic model and the disturbances of outliers and systematic 

errors (Figure 5-4). Applying the two-step approach mitigates these impacts, and the 

repeatability in up component is further decreased. Compared to the traditional multi-

GNSS solution, the new method reduces the 3D position repeatability by 21.4% from 

5.6 mm to 4.4 mm. As summarized in Table 5-6, the improvement mainly partially 

lies in smaller PDOPs (obtained based on SPP at PUZA) since more observations are 

used in the proposed method. Compared with GPS-only solution, multi-GNSS 

approach lowers the R-ratios since there are more ambiguities to be fixed. The two-

step method needs only to partially resolve the ambiguities (i.e. those of GPS) and 
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applying the new method improves the mean R-ratio, indicating a more reliable 

solution. Another advantage of the proposed method is the high computation 

efficiency, it consumed 27.7% less time than employed by the traditional multi-GNSS.  

 
Figure 5-8 Static relative positioning errors based on GPS data 

 
Figure 5-9 Static relative positioning errors based on quad-GNSS data 
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Figure 5-10 Two-step static relative positioning errors based on quad-GNSS data 

Table 5-5 Baseline repeatability of different approaches (3 h×56 sessions) 

Method 
North 

[mm] 

East  

[mm] 

Up  

[mm] 

3D Position 

[mm]  

Trad. (GPS) 1.7 1.7 6.0 6.9 

Trad. (quad-GNSS) 1.6 1.9 4.7 5.6 

New (quad-GNSS) 1.7 1.3 3.8 4.4 

Table 5-6 Mean statistics of different approaches in static relative positioning (3 h×56 

sessions) 

Method Obs.# used PDOP  R-ratio Time used [s] 

Trad. (GPS) 2079 2.4  155.2 1.7 

Trad. (quad-GNSS) 4953 1.4  7.6 17.7 

New (quad-GNSS) 6643 1.1  333.6 12.8 

5.5 Summary 

Using observations from multiple GNSSs can enhance the positioning accuracy 

compared with traditional GPS-only solutions. However, extra ambiguities and biases 

need to be accounted for and the situation of multiple outliers may become more 
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frequent. This inevitably complicates the positioning data processing, in particular for 

time-consuming processes including ambiguity resolution and outlier mitigation. To 

fully use the multi-GNSS observations with an acceptable computation complexity, a 

two-step positioning strategy has been developed. A subset estimation is firstly 

applied to generate an initial position. The known position thus obtained is then used 

to screen outliers and remove ambiguities in the observations. The second step 

performs a full-set estimation and includes all available observations to derive an 

improved solution. One-week multi-GNSS real data was used to validate the proposed 

method in both SPP and static relative positioning. Experimental results demonstrate 

that the proposed approach is more robust and efficient than the traditional positioning 

approach. Compared with the traditional GPS-only approach, the proposed method 

can improve the positioning accuracy in both SPP and static relative positioning with 

a higher computation efficiency.  
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Chapter 6 Conclusions and recommendations 

6.1 Results and contributions 

Positioning applications benefit from a higher observation redundancy provided by 

multiple GNSSs (including GPS, GLONASS, BeiDou, Galileo and other systems). 

However, integrating the growing amount of observations without complicating the 

positioning model is intrinsically challenging. A cumbersome cause of the increasing 

model complexity is that extra phase ambiguities, various biases and some unmodeled 

errors (such as residual systematic errors and frequent presence of multiple outliers) 

have to be considered. In response to the challenge, enhancing multi-GNSS 

positioning become imperative and the main efforts of this study have contributed to 

the following aspects: 

(1) Evaluation of benefits of multi-GNSS positioning 

This study has first investigated the benefits of using multi-GNSS datasets, with both 

current existing GNSSs and their future full constellations. Multipath errors and 

typical signal-shadowing environments were simulated to understand the performance 

of multi-GNSS positioning in GNSS-restricted areas. The results show that the 

satellite availability can increase globally by 280% compared to GPS alone when 

observations from the other existing GNSSs (i.e. GLONASS/BeiDou/Galileo) are 

used. With their future full constellations, the satellite availability can further increase 

to 340%. Accordingly, the quad-GNSS combination reduces the GPS PDOP by 52.4% 

at present and 57.1% when their full constellations are reached. Tests of static relative 

positioning with real and simulated datasets are conducted to understand the 

improvement in multi-GNSS positioning performance compared to GPS alone. The 

experimental results based on a 4-m short real baseline show that using quad-GNSS 

data, compared with the GPS-only approach, can reduce the position errors by up to 

52.4%. The simulation also demonstrates the advantages of multi-GNSS integration, 

in which the position errors decrease by 48.6–63.8% with the current four 
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constellations. These indices will increase to 48.5–69.0% when their full 

constellations are reached. 

(2) Mitigation of systematic error based on semiparametric estimation (SPE) 

in multi-GNSS positioning 

To refine the multi-GNSS positioning model a new positioning method has been 

proposed to take residual systematic errors into account. Systematic errors can bias 

both traditional least-squares (LS) and variance component estimation (VCE). A SPE-

based approach is proposed to mitigate such influences. Results from a zero-baseline 

(GPS/BeiDou/GLONASS) experiment with simulated systematic errors demonstrate 

significant improvements in baseline accuracy (over 80% when compared with VCE 

and over 90% regarding LS) and higher R-ratios in ambiguity resolution. Experiments 

using real datasets from a short GPS/BeiDou baseline in a multipath-dominant 

environment obtain 35.6% improvements in accuracy for the baseline when the SPE 

approach is applied. The SPE should be carried out before a VCE that can be seriously 

falsified when systematic errors are present. The determination of the smoothing 

parameters using L-curve and generalized cross-validation methods is 

computationally intensive, thereby hindering the application of SPE. An approximate 

procedure to estimate the smoothing parameters based on LS-derived residuals is 

adopted and proven to be practical. The experiments with simulated and real-data 

show that the proposed method can be about 100 times faster than the traditional 

generalized cross-validation-based methods.  

(3) Kinematic multi-GNSS PPP based on a mixed differencing method  

A mixed differencing method has been developed for the kinematic multi-GNSS PPP. 

The new concept is based on the mixed use of time-differenced and undifferenced 

observations. The distinctive characteristics of the proposed algorithm lie in three 

main aspects. First, the time-differencing operation eliminates constant parameters, 

including ambiguities and hardware biases. Second, quasi-constant systematic errors 

that can come from residual atmospheric refractions and multipath effects are 

mitigated. Third, a subset of observations can be retained undifferenced to suppress 
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the position divergence of the time-differencing technique. The effectiveness of the 

proposed approach is validated in some kinematic PPP tests. Up to 71% improvements 

in position accuracy with respect to the traditional PPP is achieved with the proposed 

approach. The time-differenced approach is efficient in computation, which is of 

critical concern regarding high-rate applications. A major drawback of time-

differenced observations in positioning is the request for an accurate initial position, 

which is unnecessarily a major problem if the initial state can be supplied by RTK or 

converged PPP.  

(4) Multi-GNSS positioning based on a two-step positioning procedure 

A new two-step multi-GNSS positioning approach has been proposed. First, a subset 

of observations considered to be of “high quality” (from higher elevation angles or 

with larger signal strengths) is selected to robustly estimate an initial position. Second, 

the initial position derived is used to remove outliers and ambiguities. All available 

observations are finally processed together to strengthen and refine the positioning. 

The effectiveness and efficiency of the proposed method are validated in SPP and 

static relative positioning. The two-step procedure has achieved 4.8% and 21.4% 

improvements in SPP and static relative positioning accuracy respectively when 

compared to the traditional positioning approaches. A higher efficiency of the two-

step method has also been confirmed in the experiment, with the computation time 

reduced by 40.4% and 27.7% respectively in standard point positioning and relative 

positioning. 

6.2 Recommendations 

Future research efforts are anticipated to be devoted to the following aspects: 

(1) Enhancement and application of SPE 

The proposed SPE approach has issues that deserve further study. For example, the 

proposed SPE approach may be applied to dynamic applications in which may have 

challenging issues such as changing observation environments. The regularizer is 
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application-dependent and therefore its adaptive selection, such as searching in a 

prebuilt regularizer database, requires exploration. A robust SPE may be desirable 

when real datasets contain gross errors. The SPE approach is suitable for deformation 

monitoring in which unmodeled errors from multipath effects and residual 

tropospheric delays are often present. 

(2) Application of mixed-differencing positioning approach with moving 

platforms 

Future studies of mixed-differencing positioning are expected to cover diverse 

applications, ranging from high-rate (e.g. 10–100 Hz), long-term (e.g. buoys), and 

long-range (e.g. unmanned aerial vehicles) PPP to standard positioning involving 

single-frequency receivers using broadcast ephemeris. Further research efforts are 

needed on the convenient acquisition of an accurate initial position, e.g., by using RTK 

or convergent PPP, to facilitate the practical use of the mixed-differencing method. 

Another interesting use of the time-differenced observations is the integration with 

INS. GNSS signals are prone to interruptions. This weakness in kinematic 

environments where signal outages often occur, can be prevented by incorporating 

INS. In addition, the inherent trending drifts of time-differenced PPP need further 

study, e.g., to refine the weighting schemes, and to develop flexible satellite selection 

algorithms and models that account for the residual systematic errors.  

(3) Application of the two-step positioning approach in deformation 

monitoring  

The two-step multi-GNSS positioning approach can be applicable to deformation 

monitoring where the positioning reliability is of primary concern. The site 

environments in deformation monitoring often have limited sky views with severe 

signal interferences. The two-step method is therefore useful in such situations. To 

attain reliable and accurate positioning results, more studies are required in selecting 

a high-quality subset of observations to generate the initial position, as well as in more 

rigorous hypothesis testing for eliminating ambiguities and outliers before a full-set 
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adjustment. The proposed two-step method can also be extended to post processing 

kinematic and PPP. 
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Appendix A Semiparametric estimation based on generalized 

least-squares 

This section presents a generalized least-squares (GLS)-based approach for solving 

the semiparametric model. It is essentially accomplished by the parameterization of 

nonparametric components through using prior information (in the form of pseudo-

observations). More thorough discussions of different estimators can be found in (Xu, 

1992; Fischer and Hegland, 1999; Kusche and Klees, 2002; Kotsakis, 2005; Xu et al., 

2006; Teunissen and Amiri-Simkooei, 2008; Ding et al., 2015), among others. 

The GLS model that contains the semiparametric model can be expressed as 
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 (A-1) 

where 𝐋c is a vector of 𝑢 pseudo-observations, with design matrix 𝐂, error vector 𝛜c 

and weight matrix 𝐏c; both the design matrix 𝐀 and expanded design matrix 𝐁 have 

full column rank; errors from observations and those from pseudo-observations are 

assumed being uncorrelated, resulting in a block-diagonal weight matrix 𝐖 . 

According to the GLS inversion principle (Menke, 2015) 
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Thus, the GLS solution can be written as 
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where the cofactor matrices 𝐐{∙} can be yielded via applying matrix calculus 
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Substituting (A-5) into (A-4) gives  
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Appendix B Estimation of the signal and variance of a data 

sequence  

Considering an 𝑚 data-points series 𝑦(𝑖) = 𝑠(𝑖) + 𝑒(𝑖), where 𝑖 ∈ {1,2, … ,𝑚} and 𝑠 

denotes signals vary slowly in time/space, 𝑒 is white noise with variance 𝜎2. Applying 

a low-pass operation, typically, the following window averaging technique, one can 

extract the signal as (Evans and Jones, 2008) 

 �̂� (𝑖) =
1

2𝑤 + 1
∑ 𝑦(𝑗)

𝑖+𝑤

𝑗=𝑖−𝑤

 (B-1) 

where 𝑤 denotes window size at 𝑖th data point. Thus, an (𝑚 ×𝑚) low-pass operation 

matrix can be written as (here 𝑤0 is a pre-given window size), 
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 (B-2) 

Using a high-pass operation to remove the signal, e.g., the first difference,  

 �̂� (𝑖) =
𝑦(𝑖 + 1) − 𝑦(𝑖)

√2
, 𝑖 ∈ {1,2,⋯ ,𝑚 − 1} (B-3) 

then one can estimate the variance via the following mean square successive 

difference, which is insensitive to the signal,  
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 Correspondingly, the (𝑚 − 1) ×𝑚 difference operation matrix is  

 𝐅H = bidiag(−
1

√2
,  
1

√2
) (B-5) 
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Appendix C 3D multipath geometric models 

(1) Reflection model 

 

Figure 6-1 3D multipath reflection model 

Consider a reflection surface CDF with slope angle 𝜃𝑟  and slope aspect 𝛼𝑟 , the 

antenna simultaneously receives the direct and duplicate signals from a satellite S at 

elevation angle 𝜃 and azimuth angle 𝛼. O is the image of the antenna with respect to 

the reflector surface. According to the antenna-reflector geometry, the additional path 

delay ∆𝑠 with respect to the direct signal can be deduced as follows:  

denoting ∆𝛼 = ∠S′OD = 𝛼 − 𝛼𝑟, 𝜃𝑒 = ∠CES and 𝜃′ = ∠BOB′, since 

 

{
 
 

 
 

∆𝑠 = 2𝑑sin(𝜃𝑒)

sin(𝜃𝑒) = sin(∠FBO) cos(∠BOE)

∠FBO = 𝜃′ + 𝜃𝑟
tan(∠BOE) = tan(∆𝛼) cos(𝜃′)

tan(𝜃) = tan(𝜃′) cos(∆𝛼)

 (C-1) 

the delay can be obtained as 
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 {

∆𝑠 = 2𝑑sin(𝜃𝑒)

𝜃𝑒 = asin{sin(𝜃
′ + 𝜃𝑟)cos{atan[tan(𝛼 − 𝛼𝑟) cos(𝜃

′)]}}

𝜃′ = atan2(tan(𝜃) , cos(𝛼 − 𝛼𝑟))

 (C-2) 

Conditions when the reflection occurs relate to the reflector’s dimensions and its 

geometry-relationship with the antenna. These parameters should be accurately 

measured before applying the model.  

(2) Diffraction model 

 

Figure 6-2 3D multipath diffraction model 

Consider a blockage object surface BCDE, with slope angle 𝜃𝑟 and slope aspect 𝛼𝑟, 

since 

 {
CA′ = 𝑑/sin(𝜃𝑟)

B′C = cos(𝜃𝑟)BC = cos(𝜃𝑟) √𝑑𝑢2 − 𝑑2
 (C-3) 

one can obtain 

 B′A′ = B′C + CA′ = cos(𝜃𝑟) √𝑑𝑢2 − 𝑑2 +
𝑑

sin(𝜃𝑟)
 (C-4) 

Denoting ∆𝛼 = ∠B′A′E′ = 𝜋 − 𝛼𝑟 − 𝛼 and due to  
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 {
𝑑′ = E′A′ =

B′A′

cos(∆𝛼)

𝑑𝑢
′ = EA = √𝑑𝑢2 + (E′B′)2, E′B′ = sin(∆𝛼)𝑑′

 (C-5) 

 

we get 

 

{
 

 
𝑑′ =

cos(𝜃𝑟) √𝑑𝑢2 − 𝑑2 +
𝑑

sin(𝜃𝑟)

cos(∆𝛼)

𝑑𝑢
′ = √𝑑𝑢2 + (sin(∆𝛼)𝑑′)2

 (C-6) 

Substituting 𝑑′ and 𝑑𝑢
′  into Eq. (C-3) yields 

 {

∆𝑠𝑑 = (1 − cos(𝜃𝑑
′ ))√𝑑𝑢2 + (sin(∆𝛼)𝑑′)2

𝜃𝑑
′ = atan(

√𝑑𝑢2 − (cos(∆𝛼)𝑑′)2

𝑑′
) − 𝜃

 (C-7) 
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