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ABSTRACT

Redundancy resolution is a critical problem in the control of parallel Stewart platform. The

redundancy endows us with extra design degree to improve system performance. In this

thesis, the kinematic control problem of Stewart platforms is formulated to a constrained

quadratic programming. The KKT conditions of the problem is obtained by considering

the problem in its dual space, and then a dynamic neural network is designed to solve the

optimization problem recurrently. Theoretical analysis reveals the global convergence of the

proposed neural network to the optimal solution in terms of the defined criteria. Simulation

results verifies the effectiveness in the tracking control of the Stewart platform for dynamic

motions.

Redundancy resolution of parallel manipulators is widely studied and have brought

many challenges in the control of robotic manipulators. The dual neural network, which

is categorized under the recurrent neural networks inherits parallel processing capabilities,

are widely investigated for the control of serial manipulators in past decades and has been

extended to the control of parallel Stewart platforms in our previous works. However, con-

ventional dual neural network solutions for redundancy resolution requires prior knowledge

of the robot, which may not be accessible accurately in real time applications. In this the-

sis, we establish a model-free dual neural network to control the end-effector of a Stewart

platform for the tracking of a desired spacial trajectory, at the same time as learning the

unknown time-varying parameters. The proposed model is purely data driven. It does not

rely on the system parameters as apriori and provides a new solution for stabilization of the

self motion of Stewart platforms. Theoretical analysis and results show that we can achieve

a globally convergent neural model in this thesis. It is also shown to be optimal under the

model free criterion. In this thesis, we carried out numerical simulations which highlight and

iv



illustrate relateable performance capability in terms of model-free optimization. Simulation

results provided, verify the tracking control of the end effector while controlling the dynamic

motion of the Stewart platform.

Keywords: Stewart platform, kinematic redundancy, recurrent neural networks, constrained

quadratic programming, redundancy resolution, kinematic control.
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CHAPTER 1

INTRODUCTION

Today we live in a world that is constantly accelerating. This is also the case of replacing the

human labor force with a machine. It has been developing very lately the use of industrial

(automated) robots in all sectors industry, they can replace even more workers and increase

productivity and efficiency of the production process.

This trend makes robot makers more efficient, more economical and produce safer

equipment in a shorter time, which is very costly, financially, for when utilizing human

employees. Solving these problems by using virtual models.

1.1 Related Work

1.1.1 History of industrial robots

The word robot was used for the first time by Karel Capek in his theater play Rosum Uni-

versal Robots (R.U.R) in 1920. Since then, this word expanded around the world and used

to name mechanical, automated devices that replace human activity. Exact definition of the

term robot does not exist because it is a very diverse and complex technical device.

According to International Organization for Standardization (ISO) 8373, an indus-

trial robot is defined as: “automatically controlled, re-programmable, multipurpose handling

machine, stationary or based on traction, intended for use in industrial automation.” [69]

Since the beginning of the word robot, people have been trying to construct devices

that would imitate them. In 1927, a Telovex robot appeared in the New York Exhibition with

a few basic moves. This example was followed by many other robots. They were always in

the shape of a man and their construction was at the top of that level. After the Second World
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War, when demand grew heavily above supply, it was born with the need for rapid production

in large series. For this reason, the development first began with industrial robots. In 1956

American engineers George Devol and Joshep Engelberg began with the development of its

robot Unimate 1900, which was already successful in 1961 and was put into operation at

General Motors as a replacement for workers operating pressurized casting machines. In

1962, he was followed by a second model Versatran. Robots have proven themselves well

and have licensed after patenting manufactured in developed countries around the world

such as the United Kingdom, Sweden, and Japan. Mechanically these robots were in good

condition, but their electronics and control systems were the cause of low-reliability [69],

[73].

A more detailed breakdown and description PRaM (Industrial robots and manipu-

lators) can be found in [69] and [73]. However, we will be particularly interested in the

division according to kinematic structures on:

• Serial robots

• Parallel robots

1.2 Serial robots

Robots with serial kinematics are characterized by their similar structure of the human limb,

are thus formed from series-ordered kinematic pairs that form an open-loop chain. The

resulting movement then consists of translation or rotation of individual members where

each the member moves independently, as can be seen on the open chain diagram fig. 1.1.

1.2.1 Disadvantages

Robots with serial kinematics have been in development for decades and their features are

constantly improving. However, they encounter limits that cannot overcome for their basic

design which is one of the main shortcomings of this type. The construction is such that
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Figure 1.1: Open string

most of the robot parts are stressed on the bend and also that every previous member carries

the weight of all the following members. To preserve the stiffness of the entire structure the

model must be very robust. As a result of this, the moving mass is limited by axial dynamics,

that is, speed and acceleration. Another unwanted feature is that the error in the end effector

position is given by the sum errors of all previous members. Because of this, they are high

in production accuracy requirements.

1.2.2 Benefits

The advantage of this type of construction is the large working area and the possibility of

zooming the end effector to the desired object at different angles. Together with simple

control and calibration, these features give serial kinematics high versatility of use. Approx-

imately 90% of robots used in industry have a construct based on serial kinematics.

1.3 Parallel robots

Robots with parallel kinematics are, unlike serial ones, made with closed kinematic chains.

In general, a parallel robot can be defined as follows: “It is closed kinematic chain mech-

anism whose end effector is connected to the base through several independent kinematic

chains.” [60]
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Figure 1.2: Closed string

This definition is not entirely accurate, as it includes, for example, redundant mecha-

nisms that have a greater number of actuators than controlled degrees of freedom of the end

effector. In Fig. 1.2 we can see a closed chain of parallel robot [60].

The following were introduced to define more precisely the term parallel robot char-

acteristics listed in [6]:

• At least two strings support the end effector, each of which string contains at least one

simple actuator (member allowing movement with one degree of freedom)

• The number of actuators is the same as the number of degrees of freedom of the end

effector (platforms)

• If all actuators are blocked (motion is prevented), the number of degrees of freedom is

zero

1.3.1 Disadvantages

Like any mechanism, a parallel robot has its drawbacks. The strings are stressed mainly on

tension and pressure so that with the increasing length of the shoulders there is a risk of loss

buckling stability. Long arm lengths combined with higher spindle speeds (machining center

only) causes an inaccuracy of the end effector, such as due to thermal dilation of the shoul-

ders. It is, therefore, necessary to monitor the change in shoulder length and compensate
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for these errors in the robot control program. Another disadvantage is small workspace in

proportion to the size of the device.

1.3.2 Benefits

Because the platform is supported by several arms it is a parallel robot to carry a heavier

burden and achieve greater speed and acceleration than a serial robot at a total lower weight

of the device. Also, the end-effector error is lower than the serial robot. Here the error is

given by the average of errors in each shoulder. This type of device also has the advantage

of having unified parts (all arms are identical), so their manufacture or repair is simpler.

1.4 History of parallel robots

The following chapter describes the history of parallel robots as outlined in [5]. The history

of parallel robots goes further than expected at first glance. It is unknown who first coined

the term parallel construction mechanism, but the first mention comes from 1645 English

architect Christopher Wren. Though it was only theoretical problems associated with par-

allel structure. In the 19th century, the researchers L.A. Cauchy, H. Lebesgue, R. Bricard

published work associated with a parallel mechanism.

1.4.1 First patents

In 1928, J. Gwinnet patented a movable platform. It was mounted on the spherical joint and

the movement was to provide three pneumotors. As you can see Fig. 1.3, the device serves

in the entertainment industry as a platform in the cinema. The patent was accepted in 1931,

but it is not known whether this facility was ever built. Gwinnet was ahead of its time, and

then the industry was not ready for such a complex mechanism.

The first industrial parallel robot is considered by Willard L. V. Pollard, which was

patented in 1942. It was a robot that sprayed or applied color through the pistols. As can
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Figure 1.3: Gwinnet’s patent [5]

Figure 1.4: Pollard’s varnishing robot [5]

be seen from Fig. 1.4, the robot had three arms that were the base is driven by head-space

motors in the space and the other two motors associated with the head using Bowden for the

shooting. This mechanism, therefore, had 5 degrees of freedom. However, this device has

never been built.

1.4.2 Gough, Stewart, or Cappel’s platform?

It was not until 1955 that a prototype of the octagonal hexapod, which can be seen in Fig

1.5. Dr. Eric Gough’s first proposal came already in 1947. The device was designed to test

drive for the company Dunlop Rubber Co. The design consists of a base and a platform that

is based on six arms (hexapod). The arms are attached to the platform using ball joints and

based on universal joints, according to their octagonal position (octahedron). The movement

6



Figure 1.5: Gough’s octahedral hexapod [5]

is ensured by a variable length shoulder. The device has a total of 6 degrees of freedom.

Later the machine was reconstructed and controlled digitally. Until 2000, it was used in

practice and is now exposed to the British National Museum.

However, as Dr. Gough research in his life, he worked on the idea of using six shoul-

ders/legs which was inspired by MAST (Multi-Axis Simulation Table). This mechanism has

three horizontal and three vertically positioned arms and used to simulate earthquakes or

vibrations in general. Devices of this species are still used today. The MAST at Minesota

University can be seen in Fig. 1.6.

In 1965, D. Stewart published his article describing the 6th gear of the freedom we

see in Fig. 1.7. This is a parallel design proposal of kinematics as an air simulator whose

platform has a triangular shape and is connected to three strings through ball joints. Each

string consists of two arms of varying length which are connected to the base and rotationally

connected to its binding. Gough suggested at the very end of his work, Stewart legs joining

all 6 arms to the platform, creates a hexapod. The irony is that Gough’s hexapod is now

generally referred to as the Stewart platform.
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Figure 1.6: MAST facility at Minnesota University [5]

Figure 1.7: Stewart’s Simulator Design [5]
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Figure 1.8: Cappel’s octahedral hexapod [5]

For the third time in 1962, the American engineer Klaus Cappel was given the task of

improving the MAST design to be suitable for use as a flight simulator. After unsuccessful

experiments on seven-string devices (complicated control that led to the destruction of the

machine) he came with the same octahedral such as Gough Fig. 1.8.

1.5 Industrial use

This chapter contains a selection of several parallel mechanism applications in industrial

practice.

1.5.1 Machine tools

One of the largest manufacturers of machining centers with parallel kinematics is German

company Metrom, which has developed a series of pentapod devices. Machine tool with 5

variable length strings where the spindle of the machine is the end effector. The strings are

positioned so that the spindle can be rotated in one axis by up to 90◦. So in combination with

the rotary table, the center is capable of full machining from 5 hillsides. One of the latest

models is Metro P1423 Fig. 1.9.

Metrom has also developed a compact and mobile version of its pentapod, PM1400

metric Fig. 1.10. It is designed to be simple and esay to be brought to a destination, to be

folded when used for a short time, eg for machining large-dimensional components. The
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Figure 1.9: Metrom German P1423 [3]

Figure 1.10: Metrom German PM1400 [3]
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Figure 1.11: Fraunhofer HexaBend [67]

design also allows the replacement of the terminal effector, eg for laser, grinding or painting

[3], [85].

1.5.2 Forming machines

Parallel mechanisms have also found their way into shaping. At the Institute of Fraunhofer it

has developed and patented HexaBend Fig. 1.11, which is a hydraulically controlled Stew-

art platform. You can move the platform shape, the preheated material emerging from the

stationary part of the machine. The advantage of this equipment lies in its flexibility. For a

given profile diameter, it is sufficient to bend of any radius of only one tool [67].

1.5.3 Positioning

The most common use of Stewart’s platform in practice is device positioning in space that is

used in various industries. In the examples that are described below, we will focus on space

research.

The first device is the Hexapod-Telescope (HPT), which is seen in Fig. 1.12. The

telescope, which developed between 1999 and 2006, is located in mountains in the north
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Figure 1.12: Hexapd Telescope [8]

of Chile is unique in its construction. A primary mirror with a diameter of 1.5 meters, is

placed on Stewart’s platform with very precise positioning. Against the adverse effects of

the dusty environment, its mechanics are stored in a carbon fiber-composite over-housing.

At the primary, the mirror is the second Stewart platform at the end of which is the secondary

optics [8].

The second is SAGE III - ISS (Stratospheric Aerosol and Gas Experiment III). It is

a device capable of measuring the gas content in the upper one using a spectrometer atmo-

sphere. This device is mainly focused on ozonosphere measurement. The decommissioning

is planned for 2016, but it is not a separate satellite, like its predecessors, but a module pre-

pared for assembly on ISS (International Space Station). Therefore, it is necessary to separate

its positioning so that the Stewart platform will take care of as seen in Fig. 1.13 [77].

1.5.4 Delta robot

In the early 1980s, Dr. Reymond Clavel developed an idea to use the parallelogram on the

assembly of a parallel 3-arm robot that has 3 translational degrees of freedom. This created

a delta robot. In the original proposal, the four shoulders were used for transmission rotation

between base and platform [4]. Delta robots have very quickly found their place in industrial
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Figure 1.13: Stratospheric Aerosol and Gas Experiment III [77]

practice and today most commonly used on so-called Pick and Place operations (take and

place), eg in the food industry. The leading manufacturer is Brown Boveri with a model

FlexPicker and Fanuc with M1iA / 0.5SL as shown in Fig. 1.14.

Delta robot has other uses. For example, ISIS (Intelligent Surgical Instruments and

Systems) introduced its SurgiScope Fig. 1.15. This is a delta robot that carries a 20 kg

weighing microscope and other tools used in neurosurgery [4].

Parallel mechanisms have found their place in 3D printing as well. Lightly modified

a delta robot that uses a linear feed instead of a rotary drive is used as a 3D printer. One of

the first series-produced models to be used for home use is the Orion Delta 3D Printer Fig.

1.16 which has a linear displacement robot extended work area in height [56].

1.5.5 Tricept

PKMTricept is a Spanish company that develops and manufactures robots of the Tricept se-

ries. It is there are hybrids with hybrid kinematics, where they are on a parallel tripod (tripod)

a serial string is provided to ensure rotation of the end effector. The whole mechanism has 5

or 6 degrees of freedom as required. Thanks to their large work area and good dynamics have

found their way in many industries. Most of all, however, they are used in the automotive
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Figure 1.14: The FlexPicker 340 [4]

14



Figure 1.15: Surgical-Scope [4]

Figure 1.16: Orion Delta 3D Printer [56]
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Figure 1.17: Orion Delta 3D Printer [71]

industry where they are in the production line to support a wide range of operations such as

machining, welding and grinding.

1.5.6 Simulator

As mentioned above, Stewart’s platform was invented as an air simulator and is used for

this purpose today. Its been already 70 years that Canadian Aviation Electronics (CAE)

developed and operates simulators for both civilian and military purposes. Recently, FFS

(Full-Flight Simulator) has been increasingly used. This simulator is capable of simulating

all possible implications during the flight. In Fig. 1.17, there is a CEA simulator of Boeing

737 [71].

1.5.7 Cable robot

The IPAnem cable robot Fig. 1.18 is a special kind of parallel mechanism, which was de-

veloped at the Fraunhofer Institute INA. It uses the transformation to move the length of the

arms formed from the cable wound on the drum. This robot, for now, found no industrial use

and is still in development [68].
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Figure 1.18: Orion Delta 3D Printer [68]

Figure 1.19: Orion Delta 3D Printer [63]

However, in 2016 China completed the FAST (Five-hundred-meter Aperture Spher-

ical Telescope). It is the biggest and the most sensitive radio telescope in the world. As

is already apparent from the title, the primary reflector will have a diameter of 500 meters

and will consist of approximately 4400 triangular mirrors. Secondly, focusing optics will be

placed in the cab to be positioned using a cable parallel mechanism consisting of 6 cables

suspended at 6 towers. They will be evenly spaced in a circle with a diameter of 600m. Exact

position of the secondary optics will be fine-tuned using the Stewart platform located in the

cabin. Fig. 1.19 [63].
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1.6 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, the kinematic control problem of Stewart platforms is formulated to a

constrained quadratic programming. The KKT conditions of the problem is obtained

by considering the problem in its dual space, and then a dynamic neural network is

designed to solve the optimization problem recurrently. Theoretical analysis reveals

the global convergence of the proposed neural network to the optimal solution in terms

of the defined criteria. Simulation results verifies the effectiveness in the tracking

control of the Stewart platform for dynamic motions.

• In Chapter 3, the dual neural network, which is categorized under the recurrent neural

network inherits parallel processing capabilities, are widely investigated for the control

of serial manipulators in past decades and has been extended to the control of parallel

Stewart platforms in our previous work. However, conventional dual neural network

solutions for redundancy resolution requires prior knowledge of the robot, which may

not accessible accurately in real applications. In this thesis, we establish a model-free

dual neural network to control the end-effector of a Stewart platform for the tracking

of a desired spacial trajectory, at the same time as learning the unknown time-varying

parameters. The proposed model is purely data driven. It does not rely on the system

parameters as a priori and provides a new solution for stabilization of the self motion

of Stewart platforms. Theoretical analysis and results show that we can achieve a

globally convergent neural model in this thesis.

• In Chapter 4, we propose for the first time the application of Stewart platform in the

field of therapy to design and develop the rocking chair to improve the performance of

mechanical rocking chairs and thereby offering convenient, portable and comfortable

experience.

• In Chapter 5, we present conclusions and possible future directions of research arising

from this work.
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CHAPTER 2

DYNAMIC NEURAL NETWORKS FOR KINEMATIC REDUNDANCY

RESOLUTION OF PARALLEL STEWART PLATFORMS

2.1 Introduction

Kinematically redundant manipulators are referred to those which have more degrees of free-

dom than acquired for the position and orientation. The redundancy of parallel manipulators

can be utilized to overcome the obstacles, singularities [69], increasing workspace, improv-

ing dexterity and to optimize the performance and to achieve a smooth end-effector motion

task [58]. As redundant robots have more degree-of-freedom (DOF) than required, there

usually exists multiple solutions, which motivates us for the consideration of exploiting the

extra DOFs to improve the control performance.

The inverse kinematics problem is one of the fundamental task in understanding the

operability of parallel manipulators i.e., to find the actuator inputs, provided the desired end-

effector trajectories. Conventional design of the parallel mechanisms often encounter singu-

larity problem. The intentional design of redundancy in parallel mechanism often provides a

effective remedy. In [43], the authors proposed a new 3-DOF symmetric spherical 3-UPS/S

parallel mechanism with three prismatic actuators, and studied the kinematics, statics, and

workspace of the mechanism. In [43], a 2(SP+SPR+SPU) serial-parallel manipulators was

considered. Based on the analysis, they designed three new types of kinematically redun-

dant parallel mechanisms, including a new redundant 7-DOF Stewart platform. In [62], the

damped least square method was utilized to tackle singularity problem. However, it only

modifies the end-effector path in terms of velocity. It was shown in [76] that it is important
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to analyze the inverse dynamic of parallel manipulators to find the joint friction and actuator

dynamics.

Soft computing techniques, including neural networks [65, 96], fuzzy logic [55, 70],

and genetic algorithm [11, 24] have been extensive used for robotic control and modeling.

Due to the outstanding performance in parallel processing and recursive computation, dy-

namic neural networks, as a special type of neural networks, have long been employed as a

powerful tool for the control of conventional serial robot arms. In [82], an adaptive recur-

rent neural network was employed for the control of a mobile manipulator with unknown

dynamics. It was shown that the control strategy guarantees the asymptotical convergence

to the desired motion. In [101], a unified quadratic-programming-based dynamical system

approach was proposed to optimize the joint torque of serial manipulators. A minimum-

energy redundancy resolution methodology was proposed in [102] for the recurrent neural

networks control of serial manipulators. Periodic oscillations of the various neural networks

were reported in the thesis. In order to reduce the network complexity and further increase

the computational efficiency, [99] introduced a single layered dual neural network was pro-

posed for the control of kinematically redundant manipulators. In [26], the recurrent neural

network approach was extended to solve the cooperation of multiple manipulators organized

in a distributed network.

In spite of the great success of dynamic neural networks in the control of robotic

systems, especially in controlling serial robot manipulators, there is rarely report on using

dynamic neural network to address the kinematic resolution problem of stewart platform,

which is a typical parallel robot platform. In this thesis, we make progress along this di-

rection and propose a dynamic neural solution to solve the kinematic resolution problem of

Stewart platform in compliance with the physical constraints. Actually, for the Stewart plat-

form, its forward kinematics are highly nonlinear and heavily coupled, which impose great

challenges to the neural dynamic design to reach the same control goal.

The remainder of the chapter is organized into eight sections. Section II describes

the preliminaries of the Stewart platform. Section III provides the background information
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on the robotic kinematics of the constrained manipulators. Section IV describes the problem

formulation as constrained optimization for the physically constrained manipulators. Sec-

tion V provides a dynamic neural network model for the kinematic redundancy resolution

problem of the parallel manipulator. Section VI presents the theoretical results on global op-

timality and dynamic convergence. Section VII illustrates the simulation results for position

tracking and orientation tracking and their performance. Section VIII concludes the chapter.

2.2 Preliminaries

The pose (position and orientation) of a rigid body in three-dimensional space is uniquely

determined by a translation, represented by a three-dimensional vector, and a rotation, rep-

resented by a 3 × 3 rotational matrix in terms of three Euler angles. The rotational matrix

Ω ∈ R3×3 defined by the Euler angles [φx, φy, φz]
T ∈ R3 has the following property for its

time derivative,

Ω̇ΩT =

 0 −φ̇z φ̇y
φ̇z 0 −φ̇x
−φ̇y φ̇x 0

 (2.1)

This property holds for all rotational matrices. Additionally, the rotational matrix is orthog-

onal, i.e., ΩΩT = I , Ω−1 = ΩT with I denoting a 3× 3 identity matrix.

For two vectors u = [u1, u2, u3]T ∈ R3 and v = [v1, v2, v3]T ∈ R3, their cross-

product, denoted as ‘×’, is defined as, u1

u2

u3

×
 v1

v2

v3

 =

 u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 . (2.2)

The triple product of three vectors in three-dimensional space is defined based on

the cross product. For three vectors u = [u1, u2, u3]T ∈ R3, v = [v1, v2, v3]T ∈ R3, and

w = [w1, w2, w3]T ∈ R3, their triple product is defined as (u×v)Tw, and equals the following

in value,

(u× v)Tw = det

 uT

vT

wT

 . (2.3)
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The triple product is invariant under circular shifting:

(u× v)Tw = (v × w)Tu = (w × u)Tv (2.4)

The matrix on the right-hand side (2.1) is a 3 × 3 skew-symmetric matrix. For a

general 3× 3 skew-symmetric matrix, as can be simply verified, 0 −z y
z 0 −x
−y x 0

α =

 x
y
z

× α (2.5)

always holds for any x, y, z ∈ R, α = [α1, α2, α3]T ∈ R3. Due to the above relation, it is

common to use [x, y, z]T× to represent a three-dimensional skew-symmetric matrix as, 0 −z y
z 0 −x
−y x 0

α =

 x
y
z


×

. (2.6)

2.3 Robot Kinematics

The Stewart platform is a typical parallel mechanism and can be extended to different forms

by modifying its mechanisms. It includes a mobile platform on the top as shown in Fig.

2.1, a fixed base, and six independent driving legs connecting the aforementioned two parts.

The two ends of each leg are fixed on the mobile platform and the fixed based respectively

using universal joints. Each leg can be actuated to change its length for the adjustment of the

distance between the two fixed points on the platform and the base. All together, the six legs

collaborates to adjust the orientation and position of the mobile platform by changing their

lengths.

2.3.1 Geometric Relation

For the Stewart platform, the global coordinate is fixed on the base and the platform coor-

dinate is fixed on the mobile platform. ai ∈ R3 for i = 1, 2, ..., 6 represents the position in

global coordinates of the ith connection point on the base. b′i ∈ R3 for i = 1, 2, ..., 6 rep-

resents the position in platform coordinates of the ith connection point on the platform. We
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Figure 2.1: A schematic of the Stewart platform.
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use bi to represents its position in the global coordinate, as shown in Fig. 2.1. di = bi−ai for

i = 1, 2, ..., 6 represents the vector corresponding to the ith leg, which points from the base

to the platform. For a point x′ ∈ R3 in the platform coordinate, its position x ∈ R3 in global

coordinate can be obtained after a rotational and translational transformation as follows,

x = p+Qx′ (2.7)

where p = [xp, yp, zp]
T ∈ R3 is the global coordinate of the zero position in the platform

coordinate, and it corresponds to the translational transformation, Q ∈ R3×3 is the rotational

matrix, which is uniquely defined by the Euler angles θ = [θx, θy, θz]
T ∈ R3,

Q = QzQyQx

Qx =

 1 0 0
0 cos θx sin θx
0 − sin θx cos θx


Qy =

 cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy


Qz =

 cos θz sin θz 0
− sin θy cos θy 0

0 0 1

 (2.8)

Following (2.7), as to the ith connection point on the platform, i.e., the ones with

x = bi in the global coordinates or the ones with x′ = b′i in the platform coordinates, we

have,

bi = p+Qb′i (2.9)

Therefore, the ith leg vector can be further expressed as,

di = bi − ai = p+Qb′i − ai (2.10)

For the vector di, we define ri = ‖di‖ to represent its length. Accordingly, we have

ri = ‖p+Qb′i − ai‖ (2.11)

Notice that both ai and bi are constants and are determined by the geometric structure. p =

[xp, yp, zp]
T defines the translation of the platform, and Q as a function of the Euler angles
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θ = [θx, θy, θz]
T , defines the rotation of the platform. Overall, the right-hand side of (3.14)

depends on the pose variables of the platform π = [xp, yp, zp, θx, θy, θz]
T ∈ R6 while the

left-hand side of (3.14) is the length of the leg, which is controlled for actuation. In this

sense (3.14) for i = 1, 2, .., 6 defines the kinematic relation between the actuation variables

and the pose variables. For a six-dimensional reference pose, the desired leg length ri can

be directly obtained from (3.14). However, in real applications, the reference are usually

not six-dimensional. For example, for surgical applications of Stewart platform, people may

only care about the position of an end-effector on the platform, instead of its orientation.

In this situation, the reference is three-dimensional and we have three additional degree of

freedom as redundancy. For such a situation, we usually have infinite number of feasible

solutions of ri for i = 1, 2, ..., 6 to reach the reference. Among the feasible solutions, we may

be able to identify one, which outperforms others in terms of certain optimization criteria.

This intuitive analysis motivates us to model it as an optimization problem and identify the

optimal one for improved performance. However, due to the nonlinearity of (3.14), direct

treatment of (3.14) is technically prohibitive. Instead of direct solution in position space, we

turn to solve the problem in its velocity space to exploit the approximate linearity.

2.3.2 Velocity Space Resolution

For easy treatment, we convert (3.14) into the following equivalent form,

r2
i = (p+Qb′i − ai)T (p+Qb′i − ai). (2.12)

To obtain the velocity space relations, we first compute time derivative on both sides of

(2.12), which yields,

riṙi = (p+Qb′i − ai)T (ṗ+ Q̇b′i +Qḃ′i − ȧi)

= (p+Qb′i − ai)T (ṗ+ Q̇b′i). (2.13)

Recall that both ai and b′i are constants and their time derivatives, ȧi and ḃ′i, are equal to zero.

For the rotational matrix Q, according to the preliminary equations (2.1) and (2.6), it has the
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following property for its time derivative,

Q̇QT =

 0 −θ̇z θ̇y
θ̇z 0 −θ̇x
−θ̇y θ̇x 0

 =

 θ̇x
θ̇y
θ̇z


×

= θ̇×· (2.14)

Therefore, Q̇ writes as follows,

Q̇ = θ̇×(QT )−1 = θ̇×Q· (2.15)

Substituting (2.15) into (2.13) yields,

riṙi = (p+Qb′i − ai)T (ṗ+ θ̇×Qb
′
i)

= dTi (ṗ+ θ̇×Qb
′
i)

= dTi ṗ+
(
(θ̇×(Qb′i)

)T
di

= dTi ṗ+
(
(Qb′i)× di

)T
θ̇

=
[
dTi

(
(Qb′i)× di

)T ] [ ṗ
θ̇

]
. (2.16)

In the above equation, (2.10) and (2.4) are used for the derivation in the second line and

the derivation in the second last line, respectively. Noticing that ri = ‖di‖ > 0 could be

guaranteed by the mechanical structure, we have the following result:

ṙi =
1

ri

[
dTi

(
(Qb′i)× di

)T ] [ ṗ
θ̇

]
=

1

ri

[
dTi

(
(Qb′i)× di

)T ] π̇. (2.17)

For the six-dimensional vector r = [r1, r2, ..., r6]T , we have the compact matrix form as

follows,

ṙ = A1π̇, (2.18)

where

A1 =


1
r1
dT1

1
r1

(
(Qb′1)× d1

)T
1
r2
dT2

1
r2

(
(Qb′2)× d2

)T
... ...

1
r6
dT6

1
r6

(
(Qb′6)× d6

)T


=


1
r1

(p+Qb′1 − a1)T 1
r1

(
(Qb′1)× (p− a1)

)T
1
r2

(p+Qb′2 − a2)T 1
r2

(
(Qb′2)× (p− a2)

)T
... ...

1
r6

(p+Qb′6 − a6)T 1
r6

(
(Qb′6)× (p− a6)

)T
 .

(2.19)
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Equation (2.18) gives the kinematic relation of a six-degree-of-freedom Stewart platform

from the velocity of the pose variables to the speed of the legs.

2.4 Problem Formulation as Constrained Optimization

Compared to (3.14), (2.18) significantly simplifies the problem as ṙ in (2.18) is now affine to

the π̇ while the relation between ri and π (or p and Q) in (3.14) are nonlinear, or even non-

convex to the pose variables. Similar to our analysis before, in the case that the reference

pose velocity is given in six dimensions, the solution of ṙ can be solved directly from (2.18).

However, in the situation that the reference pose velocity is described in lower dimensions

that six, the extra redundancies are available to reach improved performance. The following

equality model the reference velocity constraint in reduced dimensions,

α = A2π̇ (2.20)

where the reference vector α ∈ Rm with 0 < m < 6 is pre-given, the matrix A2 ∈ Rm×6

is the transformation matrix and is also pre-given. As an example, if we would like to

maintain the platform at a given height, i.e., ṗz = 0, we set α = 0 with m = 1 and A2 =

[0, 0, 1, 0, 0, 0]T in (2.20). Due to the extra design freedom, the value of π̇ usually cannot be

uniquely solved from (2.20). We thus define the following criteria to optimize the solution,

min(π̇,τ)
1

2
π̇TΛ1π̇ +

1

2
τTΛ2τ (2.21)

where Λ1 ∈ R6×6 and Λ2 ∈ R6×6 are both symmetric constant matrices and are both pos-

itive definite, τ = ṙ is the controllable speed of the platform legs. In application, the term

π̇TΛ1π̇ can be used to specify the kinematic energy (including translational kinetic energy

and rotational kinetic energy) by choosing proper weighting matrix Λ1 (say choosing Λ1 as

one formed from the mass of the platform and its moment of inertia for the kinematic energy

case), and the term τTΛ2τ characters the input power consumed by the robotic system. This

objective function also follows the convention of control theory [74]. The decision variable

τ , which is controlled by the actuators, is subjected to physical constraints. In this thesis, we
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model the physical constraints as linear inequalities in the following form,

Bτ ≤ b (2.22)

where B ∈ Rk×6 and b ∈ Rk with k being an integer. Note that constraints are not imposed

to the variable π̇ since its value usually is specified as a feasible one in the planning stage.

In summary of (3.16) as the object function, (2.18) as the mapping relation, (2.20) to fulfil

the reference tracking requirements, and (3.17) as physical constraints, we can formulate the

kinematic control problem of the Stewart platform as the following constrained,

min(π̇,τ)
1

2
π̇TΛ1π̇ +

1

2
τTΛ2τ (2.23a)

s.t. τ = A1π̇ (2.23b)

α = A2π̇ (2.23c)

Bτ ≤ b. (2.23d)

Due to the presence of both equation and inequality constraints in the optimization problem

(2.23), usually it cannot be solved analytically. Conventional approaches introduces extra

penalty terms formed by the constraints to the objective function and solve the problem

numerically using gradient descent along the new objective function. However, penalty based

approaches only reaches an approximate solution of the problem and thus are not suitable for

error-sensitive applications. Instead of using this approximate approach, in the next section,

we will propose a dynamic neural network solution, which asymptotically converges to the

theoretical solution.

2.5 Dynamic Neural Network Model

In this section, we first consider the optimization problem (2.23) in its dual space and then

present a neural network to solve it dynamically. After that, we investigate the hardware

realization of the proposed model.
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2.5.1 Neural Network Design

According to the Karush-Kuhn-Tucker (KKT) conditions [6], the solution of problem (2.23)

satisfies,

Λ1π̇ − AT1 λ1 − AT2 λ2 = 0 (2.24a)

Λ2τ + λ1 +BTµ = 0 (2.24b)

τ = A1π̇ (2.24c)

α = A2π̇ (2.24d){
µ > 0 ifBτ = b

µ = 0 ifBτ < b
(2.24e)

where λ1 ∈ R6, λ2 ∈ Rm (m is the number of rows in matrix A2), and µ ∈ R6 are dual

variables to the equation constraint (2.23b), the equation constraint (2.23c) and the inequality

constraint (2.23d), respectively. The expression (2.24e) can be simplified to the following

one by introducing an saturation function,

µ = (µ+Bτ − b)+ (2.25)

where the nonlinear mapping ‘(·)+’ is a function which maps negative values to zero and

non-negative values to themselves. From (2.24a), π̇ can be solved as,

π̇ = Λ−1
1 (AT1 λ1 + AT2 λ2). (2.26)

Substituting π̇ in (2.26) to (2.24c) and (2.24d) yields,

τ = A1Λ−1
1 (AT1 λ1 + AT2 λ2), (2.27)

α = A2Λ−1
1 (AT1 λ1 + AT2 λ2). (2.28)

To eliminate τ , we first represent it in terms of λ1 and µ according to (2.24b) as,

τ = −Λ−1
2 (λ1 +BTµ) (2.29)

then substitute (2.29) into (2.24c) and (2.27), which results in,

−Λ−1
2 (λ1 +BTµ) = A1Λ−1

1 (AT1 λ1 + AT2 λ2), (2.30)
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µ = (µ−BΛ−1
2 λ1 −BΛ−1

2 BTµ− b)+. (2.31)

We use the following dynamics for the solutions of λ1, λ2 and µ in (2.28), (2.30) and (2.31):

ελ̇1 = −Λ−1
2 (λ1 +BTµ)− A1Λ−1

1 (AT1 λ1 + AT2 λ2)

ελ̇2 = −A2Λ−1AT1 λ1 − A2Λ−1AT2 λ2 + α

εµ̇ = −µ+ (µ−BΛ−1
2 λ1 −BΛ−1

2 BTµ− b)+ (2.32)

where ε > 0 is a scaling factor. Overall, the proposed dynamic neural network has λ1, λ2 and

µ as state variables and τ in (2.27) as the output, which is expressed as follows in summary,

State equations:

ελ̇1 = −Λ−1
2 λ1 − A1Λ−1

1 AT1 λ1 − A1Λ−1
1 AT2 λ2

−Λ−1
2 BTµ (2.33a)

ελ̇2 = −A2Λ−1AT1 λ1 − A2Λ−1AT2 λ2 + α (2.33b)

εµ̇ = −µ+ (−BΛ−1
2 λ1 + µ−BΛ−1

2 BTµ− b)+ (2.33c)

Output equation:

τ = A1Λ−1
1 AT1 λ1 + A1Λ−1

1 AT2 λ2 (2.33d)

About the proposed neural network model (3.18) for the kinematic redundancy resolution

problem (2.23) of parallel manipulator, we have the following remark.

Remark 1. Fig. 2.2 shows the architecture of the proposed model, for the situation with

m = 3, k = 4(m is the dimension of α, k is the number of rows of matrix B). From this

figure, it is clear that this neural network (3.18) is organized in a two-layer architecture. The

first layer(feedback layer), which is composed of 6 + m + k neurons , is a nonlinear layer

with dynamic feedback. This layer of neurons is associated with the state variables λ1 ∈ R6,

λ2 ∈ Rm and µ ∈ Rk, and get input from the input variable α. It follows Eqs. (3.18a),

(3.18b) and (3.18c) for dynamic updates. The second layer (output layer) is a static layer

with linear mapping as described by (3.18d). It consists of 6 neurons and maps the state

variables to the output, which is the platform leg speed τ .
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Figure 2.2: Two layer neural network architecture

2.6 Theoretical Results

In this section, we present theoretical results on the proposed neural networks for solving the

redundancy resolution problem of parallel manipulators.

2.6.1 Optimality

In this part, we show the equilibrium point of the dynamic neural networks (3.18) ensures

that the corresponding output τ given by (3.18d) is identical to the optimal solution of the

problem (2.23). On this point, we have the following theorem,

Theorem 1. Suppose (λ∗1, λ
∗
2, µ

∗) is the equilibrium point of the dynamic neural network

(3.18). Then the corresponding output τ ∗ obtained from the output equation (3.18d) is opti-
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mal to the constrained programming problem (2.23).

Proof. Letting the right-hand sides of the state equations (3.18a), (3.18b) and (3.18c) equal

to zero, we find the following conditions about the equilibrium point (λ∗1, λ
∗
2, µ

∗):

−Λ−1
2 λ∗1 − A1Λ−1

1 AT1 λ
∗
1 − A1Λ−1

1 AT2 λ
∗
2 − Λ−1

2 BTµ∗ = 0 (2.34)

−A2Λ−1AT1 λ
∗
1 − A2Λ−1AT2 λ

∗
2 + α = 0 (2.35)

−µ∗ + (−BΛ−1
2 λ∗1 + µ∗ −BΛ−1

2 BTµ∗ − b)+ = 0 (2.36)

and the corresponding output is,

τ ∗ = A1Λ−1
1 AT1 λ

∗
1 + A1Λ−1

1 AT2 λ
∗
2 (2.37)

Define an auxiliary value,

π̇∗ = Λ−1AT1 λ
∗
1 + Λ−1AT2 λ

∗
2 (2.38)

To show that τ ∗ is optimal to (2.23), we only need to show that (λ∗1, λ∗2, µ∗, τ ∗, π̇∗) satisfy

the KKT condition (2.24) of the optimization problem (2.23), or equivalently the equation

set composed of (2.26), (2.27), (2.28), (2.30) and (2.31) according to the analysis in Section

2.5.1, we can conclude that the equation set composed of (2.26), (2.27), (2.28), (2.30) and

(2.31) is equivalent to the KKT condition (2.24). Comparing the equation set composed of

(3.24), (3.25), (3.26), (3.27), (3.28), and the one composed of (2.26), (2.27), (2.28), (2.30)

and (2.31), we find that they are identical and therefore are equivalent. The above procedure

implies that the solution (λ∗1, λ∗2, µ∗, τ ∗, π̇∗) is optimal to (2.23). Therefore, we conclude that

τ ∗ is optimal to the problem (2.23).
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2.6.2 Stability

In this part, we present theoretical results on the stability of the proposed dynamic neural

network model. In Section 2.6.1, we have concluded that the equilibrium point of the neural

network (3.18) is optimal solution of (2.23). Generally speaking, a dynamic system may not

converge to its equilibrium points. It may happen for a dynamic system to evolve towards

divergence, oscillation, or even chaos. It is necessary for the proposed neural network to

converge for effective computation purpose. Before presenting the convergence results, we

first present a lemma about a general projected dynamic system as shown below.

u̇ = −u+ PΩ(u− F (u)) (2.39)

where µ ∈ Rl, Ω is a closed convex set of Rl, PΩ(·) is the projection operator onto the set Ω.

Lemma 1 (Xia, 2004 [87]). If ∇F (u) is symmetric and positive semi-definite in Rl, then

the dynamic system (2.39) is stable in the sense of Lyapnov and is globally convergent to its

equilibrium.

The above lemma gives a general convergence results on dynamic systems with the

presence of projection operators. In our system, the operator (·)+ is also a projection opera-

tor, which projects input values to non-negative ones. With Lemma 1, the following stability

results on the proposed model (3.18) is provable.

Theorem 2. The dynamic neural network (3.18) is stable in the sense of Lyapunov and is

globally convergent to the optimal solution of (2.23).

Proof. As we have proved that the output τ associated with the equilibrium points is optimal

to problem (2.23) in Theorem 1, to draw the conclusion in this theorem we only need to

show the convergence of (3.18) to its equilibrium points. To leverage the results presented

in Lemma (1), we first convert (3.18) into a similar form as (2.39). Define a vector function
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F = [F T
1 , F

T
2 , F

T
3 ]T , with F1, F2 and F3 defined as follows,

F1 = Λ−1
2 λ1 + A1Λ−1

1 AT1 λ1 + A1Λ−1
1 AT2 λ2 + Λ−1

2 BTµ

F2 = A2Λ−1
1 AT1 λ1 + A2Λ−1AT2 λ2 − α

F3 = BΛ−1
2 λ1 +BΛ−1

2 BTµ+ b (2.40)

and define a set Ω as,

Ω = {(λ1, λ2, µ), λ1 ∈ R6, λ2 ∈ Rm, µ ∈ Rk, µ ≥ 0} (2.41)

where µ ≥ 0 is defined in the piece-wise sense. We also define a new variable,

x =

[
λT1 λT2 µT

]T
. (2.42)

With the above definitions of F , Ω and x, the proposed neural network (3.18) can be con-

verted as,

εẋ = −x+ PΩ(x− F (x)). (2.43)

Define a new time scale φ = t
ε
. With the new time scale, εẋ = εdx

dt
= dx

dφ
, and the neural

dynamic (2.43) converts to,

dx

dφ
= −x+ PΩ(x− F (x)) (2.44)

which are in the nominal form of the projected dynamic systems. To prove the convergence,

we only need to show the symmetricity of∇F defined in (2.40) and its positive semi-definite.

∇F =


Λ−1

2 + A1Λ−1
1 AT1 A1Λ−1

1 AT2 Λ−1
2 BT

A2Λ−1
1 AT1 A2Λ−1

1 AT2 0

BΛ−1
2 0 BΛ−1

2 BT

 . (2.45)
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Clearly,∇F is symmetric. As to the positive semi-definiteness, we decompose∇F in (2.45)

into the following form,

∇F =


A1Λ−1

1 AT1 A1Λ−1
1 AT2 0

A2Λ−1
1 AT1 A2Λ−1

1 AT2 0

0 0 0

+


Λ−1

2 0 Λ−1
2 BT

0 0 0

BΛ−1
2 0 BΛ−1

2 BT



=


A1Λ

− 1
2

1

A2Λ
− 1

2
1

0




A1Λ

− 1
2

1

A2Λ
− 1

2
1

0



T

+


Λ
− 1

2
2

0

B2Λ
− 1

2
2




Λ
− 1

2
2

0

B2Λ
− 1

2
2

 . (2.46)

The above expression implies that ∇F is indeed positive semi-definite. In summary, as ∇F

defined in this proof is symmetric and positive semi-definite, the dynamic system (2.44),

i.e., the proposed neural network (3.18) is stable and is convergent to the optimal solution of

(2.24) according to Lemma 1.

2.7 Numerical Investigation

To validate the effectiveness of the proposed approach, in this section we apply the neural

network model to the redundancy resolution of a physically constrained Stewart platform.

2.7.1 Simulation Setups

In the simulation, we consider a Stewart platform with the leg connectors on the mobile plat-

form locating around a circle with radius 1.0m at b′1 = [0.7386, 0.1302, 0], b′2 = [0.7386,−0.1302, 0],

b′3 = [−0.4821, 0.5745, 0],b′4 = [−0.2565, 0.7048, 0], b′5 = [−0.2565,−0.7048, 0], and

b′6 = [−0.4821,−0.5745, 0] in the platform coordinate, and the leg connectors locating

around a circle with radius 0.75m at a1 = [0.3750, 0.6495, 0], a2 = [0.3750,−0.6495, 0],
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a3 = [−0.7500, 0.0000, 0], a4 = [0.3750, 0.6495, 0], a5 = [0.3750,−0.6495, 0], a6 =

[−0.7500, 0.0000, 0] on the fixed base. For simplicity, the end-effector is put at the origin

of the platform coordinate (this can always be achieved by defining the platform coordinate

with its origin at the end-effector position). In the situation for position tracking in three

dimensional space, the total redundancy is 3 as the input dimension is 6 while the output

dimension is 3.

In the simulation, we use the tracking error, defined as the difference between the

desired position and the real position at time t, to measure the tracking performance in both

the circular motion tracking and the square motion tracking situation.

2.7.2 Circular Trajectory

In this part, we consider the tracking of a smooth circular path using the proposed method.

The desired motion of the end-effector is to follow a circular trajectory at the speed of 2m/s.

The desired circle trajectory is centered at [−0.04, 0.06, 1.05] with an radius of 0.08m, and

has a revolute angle around the x-axis for 45 degrees. In the simulation, we simply choose Λ1

and Λ2 as an identity matrix. The value of the matrix A1 is computed in real time according

to (2.19). The matrix A2 is chosen as A2 = [I3×3, 03×3] such that the position tracking

requirements can be achieved. In practice, the actuation speed of each leg is limited within

a range due to the physical constraints of the actuators. To capture this property, we impose

the constraint that the speed tau is no greater than η > 0 in its absolute value, i.e., |τi| ≤ η

for i = 1, 2, ..., 6, which is equivalent to −η ≤ τi ≤ η. Organizing to a matrix form yields

an inequality in the form of (2.23d) with B =

[
I6×6

I6×6

]
, b = η112 with 112 representing

a twelve-dimensional vector with all entries equal one. In the simulation, we set the speed

bound η = 0.25m/s. The scaling factor ε is chosen as ε = 0.01. The tracking results

are shown in Fig. 2.3 by running the simuation for 2 seconds. As shown in the Fig.2.3(a),

the end-effector successful tracks the circular path with a small tracking error (as shown in

Fig.2.3(b), where e(1), e(2), and e(3) denotes the components of the position tracking error

e, respectively, along the x, y, and z axes of the base frame, the errors are less than 0.015m
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Figure 2.3: Tracking of a circular motion. (a). The trajectory of the end-effector; (b). Time

history of the position tracking error.

in amplitude). The circular-path following experiments demonstrated the capability of the

proposed dual neural network for online resolving of kinematic redundancy of physically

constrained manipulators. Considering the input motion for the 6 legs, the Fig.2.4 show

the time profile of the Stewart platform state variables, i.e., the 3 Euler orientations of the

mobile platform (Fig.2.4(a)), the end-effector position (Fig.2.4(b)), the speed of each leg

(Fig.2.4(c)) and the length of each leg (Fig.2.4(d)). The attached moving frame to the upper

platform is exactly in the middle and the p(1) and p(2) coordinates started from zero and

the p(3) oscillates between almost 0.005 meters and -0.006 meters. The p(2) coordinate

started from approximately 0.125 meters which is the altitude of the upper platform before

the motion of the actuators. It was observed that the harmonic response is repeated every

37



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

time/s

 

 

 

 

 

 

 

 

θ(1)

θ(3)

θ(2)

(a) Orientation of the platform θ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time/s

 

 

 

 

 

 

p(3)

p(1)

p(3)

(b) Position of the end-effector p

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time/s

 

 

 

 

τ(3)τ(1)
τ(5)

τ(6)τ(2) τ(4)

(c) Control action τ

 

 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.05

1.1

1.15

1.2

1.25

1.3

time/s

 

 

r(1)

r(5)

r(6)r(4)r(3)

r(2)

(d) Leg length r

Figure 2.4: The time evolution of the Stewart platform state variables in the case of circular

motion tracking.
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1.25 seconds or 2π after that the cycle is repeated again. From Fig.2.4(a), it is observed

that there is a small drift from the neutral position. Although the presence of this drifting

in orientation, the desired motion, which is given in terms of end-effector positions, are still

achived as shown in Fig.2.3. This in turn validates the robustness of the proposed scheme in

the presence of orientation drifting. The red dash line in Fig.2.4(c) depicts the bound ±0.25

(η = 0.25), which is the bound for the action speed. It can be observed that τ converges

to the region [−0.25, 0.25] very fast and stays approximately inside this region through the

runtime, except some short period (e.g., τ(6) at around time t = 1.7s) due to the dynamics of

the desired motion. The neural network state variable are plotted in Fig.2.5. From this figure,

we can clearly observer the dynamic evolution of the neural activities. It is noteworthy that

the neural activities do not converge to a constant value. Instead, they varies with time as

they are utilized to compensate and regulate the dynamic motion of the robot.

2.7.3 Square Trajectory

In this section, we investigate the square trajectory tracking using the proposed approach.

Different from the case of smooth circular motion tracking, the desired square path is non-

smooth at the four corners and poses challenges to the controller on its real-time perfor-

mance. In the simulation, the desired motion of the end effector is to follow a square tra-

jectory, which is centered at [0.15, 0.075, 0.74] with the edge length of 0.08m, at the deisred

speed 1.0m/s. The square has a revolute angle around the x-axis for 60 degrees. We choose

the parameterers Λ1 and Λ2, A2 and B the same values as in the situation for circular motion

for simplicity. The parameter A1 is computed in real time according to (2.19). The speed

limit bound η is chosen as η = 0.6m/s, and b is accordingly chosen as b = 0.6112 with 112.

The scaling factor ε is chosen as ε = 0.001. The tracking results are shown in Fig. 2.6 by

running the simuation for 2 seconds. As shown in the Fig. 2.6(a), the end-effector successful

tracks the square motion with a small tracking error (as shown in Fig.2.6(b), where e(1),

e(2), and e(3) denotes the components of the position tracking error e, respectively, along

the x, y, and z axes of the base frame, the errors are less than 0.006m in amplitude). Remark-
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Figure 2.5: The time evolution of the neural network state variables in the case of circular

motion tracking.
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Figure 2.6: Tracking of a square motion. (a). The trajectory of the end-effector; (b). Time

history of the position tracking error.

ably that the error curves have jerks at time t = 0.3s, 0.6s, 0.9s, 1.2s, 1.5s, 1.8s, which is a

result of the velocity switching from one direction to another one around the corner of the

square. Despect of the existence of the jerks, due to the nonlinear feedback mechanism in the

neural network, the errors reduces swiftly to a very low value (much lower than 0.001m as

shown in Fig. 2.3(b) after the jerk). The above observation in turn validates the effectiveness

of the propsed neural scheme in dealing with non-smooth tracking problem. The real-time

values on the Stewart platform states are shown in Fig. 2.7. Similar to the situation for circle

tracking, the presence of drifting in orientations, as observed in Fig. 2.7(a), does not affect

the tracking performance. The end-effector position evolves without drifting (Fig. 2.7(b)),

and remains a very small error from its desired trajectory (Fig. 2.3(b)). Fig. 2.3(c) shows the
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time profile of the control action, which is the speed of each leg. It is clear that the control

action is approximately regulated inside the range [−0.6, 0.6], which in turn validates the

effect of the proposed solution in fulfilling the inequality regulation. The dynamic evolution

of the neural activities are shown in Fig. 2.8.

2.8 Conclusion

In this chapter, a dynamic neural network is designed to solve the redundancy resolution

problem of Stewart platforms. The physical constraints and actuation are rigorously mod-

elled as a constrained quadratic programming problem. To solve this problem in real time, a

recurrent neural network is proposed to reach the equality constraints, inequality constraints,

and optimality criteria simultaneously. Rigorous theoretical proof are supplied to verify the

convergence of the proposed model. Simulation results validate the effectiveness of the pro-

posed solution.
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Figure 2.7: The time evolution of the Stewart platform state variables in the case of square

motion tracking.
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CHAPTER 3

SIMULTANEOUS LEARNING AND CONTROL OF PARALLEL STEWART

PLATFORMS WITH UNKNOWN PARAMETERS

3.1 Introduction

Kinematically redundant manipulators [103] are those manipulators that prove to have suf-

ficiently higher degrees of freedom (DOF) than required for positioning and for orientation

of the platform. With the advancement in the field of robotic technologies, robotic manipu-

lators are widely used in the applications of factory automation which are required to carry

out continuous and delayed work, such as lifting and transporting radioactive substances

and executing the work in a hazardous, scattered or packed environments. In comparison to

non-redundant manipulators, redundant ones offers extra DOFs [20,25,44,95], and are often

used to improvise the dexterity, in order they work efficiently by avoiding collisions with the

obstacles. The research interests in the field of kinematically redundant manipulators [72]

have gained popularity due to their ability to avoid obstacles, internal singular configurations,

optimize the performance of the workspace and the end-effector motion task [59]. Among

various types of redundant manipulators, parallel ones, which usually feature higher rigidity,

higher precision and higher response speed than serial ones, have received popular appli-

cations in flight simulators, electrostatic magnetic lenses, etc. However, how to efficiently

control the motion of redundant parallel manipulators, especially in the situation with pa-

rameter uncertainties, or even unknown, sets great practical significance but also remains

as a challenging research problem. Parallel redundant manipulators [59] are broadly classi-

fied as parallel manipulators for whose the the task space coordinates and are lower/lesser

than the number of actuators. These manipulators found many industrial applications like
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robotics arms, surgical robots and so on. These manipulators offer greater advantages when

incorporated because it makes the structure flexible, faster and lighter thereby improving the

Cartesian stiffness and optimizing the distribution of the force. Due to the advantages of

high speed and high acceleration, parallel manipulators have been studied and implemented

widely.

Redundant manipulator holds the similar dynamic equation [83] like the serial one.

Therefore, extending design works of serial manipulators to parallel manipulators becomes

relatively obvious. Though, the designing the dynamics of the parallel manipulator becomes

more complicated. Moreover, its become quite challenging to identify the unknown param-

eter which describes the dynamic behavior or properties of the system. Hence, the control

schemes of the existing traditional methods for serial manipulators cannot be extended in

real-time control applications to parallel redundant manipulators.

Parallel manipulators are confined to age-old and basic problems of identification and

classification of singularities [2, 106]. A lot of work is developed along mathematical tools

borrowed from serial manipulators for local analysis and to resolve the problem of singulari-

ties. Gosselin et. al were the first to define, study, analyze and report the singularity problem

for the closed-loop kinematic chains. The structure and behavior of singularity problem for

the parallel manipulator is indeed complex and challenging. Many works are incorporated

to address the kinematic manipulability measure for design and control of parallel mech-

anisms. Actually, many methods dealing with nonlinear control [37, 79–81, 104, 109, 110]

and nonlinear optimization [38, 45–51, 51–53, 98, 105] are potentially applicable to Stew-

art platform control. To name a few, a series of neural network approaches are established

to solve serial robot control and extended to address multiple robot coordination problems

[15,17–19,31,40,41,57]; some of the representative works in serial manipulator control are

also extended to parallel robot control [61, 107]; recent works on winner-take-all neural net-

works, and their applications to address competitive control of multiple robots cast lights to

the competition control of multiple Stewart platforms [14,34,35,42]; works on multiple mo-

bile robot cooperation and consensus help us understand the control principle of coordinated

systems and investigate their applications to Stewart control [21–23, 27–30, 32, 36];.con-
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vergence acceleration techniques may also applicable to speed up the control performance,

resulting in a timely and accurate solution [89–92, 94]; the universal nonlinear approxima-

tion power of feed-forward neural networks allow us to consider them as candidates to fit the

nonlinearity of Stewart platform [33, 39].

Recurrent neural networks [13, 93, 100], as a powerful parallel computation method,

are proven effective and efficient for the applications of real-time solutions to the inverse

kinematics problem. In the literature of past decade, a variety of dynamical system solvers

are proposed to resolve the problems of online constrained quadratic programming, includ-

ing primal dual network, Lagrange neural networks, the gradient network and projected net-

work [93,100,111]. For example, in [108], joint-constrained inverse kinematics, redundancy

resolution have employed numerical algorithms with inclusion of physical constraints. By

incorporating the velocity and the joint constraints Jacobian matrix augmented in the con-

straints are violated. There are also traditional approaches which considers joint and velocity

constraints. For expressing a general solution in the form of redundant join velocities Gram-

Schmidt orthogonalization procedure is utilized. Cheng [7] formulates the quadratic pro-

gramming form from a constrained kinematic redundancy problem. This methods improved

the computational efficiency by incorporating Gaussian eliminations with partial pivoting.

Generally speaking, the numerical solutions to redundant kinematics are computationally

intensive.

Constraints in soft computing techniques [16, 66, 97], introduce majorally two cat-

egories of difficulties in obtaining the solution to the problem. Firstly, the challenge is of

the independence where the coordinate are not independent and secondly, a prior informa-

tion of the constraints forces is not sufficiently provided and they are regarded among the

unknowns of the system. Hence, control of Stewart platform as a constraint system becomes

complicated due to the complex nature of the neural dynamics [10]. Another limiting fac-

tor in conventional robotic manipulation researches using dual neural network approaches

is the requirement for the design model, which involves constructing a mathematical model

that highlights the controlled dynamics of the model [12, 78]. The initial stage of the design

usually requires to establish the inter dependence between different parts and their histori-
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cal dependence on previous states. Later stage requires the analytical controller design with

the mathematically modeled system dynamics. Although the designed control law gives a

promising performance for the mathematical model, this might not be the case in real time

applications as the exact representation of the model is hard to obtain. This may be due to

various reasons, .e.g., the fact of sheer complexity of the designed model or the uncertainty

involved in the area [9]. However, modeling of the feedback control for the physical system

brings out the tradeoff between the ease of model and its precision of the physical system

in matching. Due to the improvement of the parameters in the controller depending upon

the convergence and stability factors, adaptive techniques usually demonstrate outstanding

results in the face of complex systems. This motivates us to devise an adaptive and model

free neural controller to steer the motion of a Stewart platform.

In this chapter we enlighten the close gap between two disjoint research areas of

model-free recurrent neural networks for machine learning and model-based dual neural

networks for accurate model control. The proposed network interacts with the learning and

control parts [64]. An excitation noise is added to avoid the learning degradation. This

deliberate design offers precise convergence of the estimated variables to their true values.

The stability of the network is proved theoretically and by simulations and is proved that the

bounded error is achieved to be arbitrarily small by scaling the additive noise.

The rest of the chapter is structured as defined; Section II is about the mathematical

foundation of the parallel stewart system. Section III reviews the literature on the structural

geometry and kinematics of the system. Section IV formulate the problem of model-free re-

dundancy resolution as an optimization problem. This sections further elaborates the global

stability of the proposed neural network. Section V describes the mathematical conclusions

on the convergence to optimal solutions. Section VI illustrates the simulation results. Section

VII gives the conclusion of this chapter.
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Figure 3.1: The schematic of a Stewart platform.

3.2 Kinematic Modeling of Stewart Platforms

A Stewart platform, as sketched in Fig. 3.1, consists of a six DOFs platform comprising two

plates namely a fixed base plate and a flexible or moving top plate, which is in turn connected

with the series of prismatic actuators and passive joints. Each of the prismatic actuators are

connected by a spherical joint to the base plate. A base plate is connected by universal joints

to each of its actuators. This specific arrangement of actuators and joints allows the top

moving plate to move on either sides depending upon the lengths of the prismatic actuators

or leg joints.

3.2.1 Geometric Relation

There are two coordinate systems associated with a Stewart platform, namely, base coor-

dinate system which is fixed as a global system and a moving coordinate system of the

platform [86]. We use x′ to distinguish a variable defined in the base coordinate system from

the corresponding one defined as x in global coordinate . The diagram shown in Fig. 3.2,

the position vectors bi indicates the position of the center of the universal joint of the leg.

Thus, ai, defined as the position vectors, represents the moving platform positions in global

coordinates of the base’s ith connection point. The vector di = bi − ai represents the ith
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Figure 3.2: Stewart platform geometric representation. The red triangle on the top and the

red hexagon below it represent the moving top plate and the fixed base plate, respectively.

leg of the actuator pointing from the base to the platform. The global coordinates and the

platform coordinates are fixed to the base and the mobile platform, respectively. ai ∈ R3

for i = 1, 2, · · · , 6 dictates the position in global coordinates of the ith connection point on

the base. b′i ∈ R3 for i = 1, 2, · · · , 6 denotes the position in platform coordinates of the

ith connection point on the platform. Hence bi is defined to represents the global coordinate

(see Fig. 3.2). di = bi − ai for i = 1, 2, · · · , 6 is defined to represent the ith leg vector

from the base to the platform. For x′ ∈ R3 in platform coordinate, the corresponding global

coordinates x ∈ R3 in can be derived after a translational and rotational transformation:

x = p+Qx′, (3.1)

where p = [xp, yp, zp]
T ∈ R3 representing the global coordinates of the origin position in the

platform coordinate, and corresponding to the translational transformation, Q ∈ R3 is the

rotational matrix, which is predominantly defined by the Euler angles θ = [θx, θy, θz]
T ∈ R3,

Q = QzQyQx,

Qx =

1 0 0
1 cos θx sin θx
1 − sin θx cos θx
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Qy =

cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy


Qz =

 cos θz sin θz 0
− sin θy cos θy 0

0 0 1

 . (3.2)

Following (3.1), as to the ith connection point on the platform, i.e., the ones with x = bi in

the global coordinates or the ones with x′ = b′i in the platform coordinates, we have

bi = p+Qb′i, (3.3)

Therefore, the ith leg vector can be further expressed as

di = bi − ai = p+Qb′i − ai (3.4)

For the vector di, we define ri = ‖di‖ to represent its length. Accordingly, we have

ri = ‖p+Qb′i − ai‖, (3.5)

It is to be observed that both ai and bi are constants. Henceforth, they can be derived

by the geometric structure. p = [xp, yp, zp]
T denotes the coordinate frame which defines

the translation of the platform, and Q is representing a function of the Euler angles θ =

[θx, θy, θz]
T, denoting the rotation of the Stewart platform. Taking into consideration, the

righthand side of (3.5) which depends on the pose variables of the Stewart platform π =

[xp, yp, zp, θx, θy, θz]
T ∈ R6 while the left-hand side of the (3.5) is the distant-length of the

leg, which is in turn controlled for actuation. Hence we highlight that in this way, (3.5) for

i = 1, 2, · · · , 6 defines the relationship of kinematics between the actuation variables and the

pose variables. Now, for a defined six-dimensional reference position, the desired leg length

ri can be directly obtained from (3.5). However, in real-time applications, the reference are

usually not defined in six-dimensional. This could be explained as for example, in medical

industry say; for use of surgical applications which includes Stewart platform, doctors only

care about the position of an end-effector on the platform, and are not eagerly motivated to its

orientation. Owing to this fact usually in these scenarios, the reference is three-dimensional

and therefore we have three additional degrees of freedom as redundancy. For these kind
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of upcoming challenges, we ultimately have infinite number of feasible solutions of ri for

i = 1, 2, · · · , 6 to reach the reference. Among all of the feasible options and solutions, we

may be able to identify a unique solution, which outperforms others and existing solutions in

terms of certain criterion of optimization. This intuitive and mathematical approach analyzes

and motivates for modeling of optimization problem and to identify the optimal solution for

the improvised performance. Due due to presence of the nonlinearity of (3.5), treating of

(3.5) directly is technically impractical and prohibitive. Hence, we formulate the problem

in terms of velocity space to explore the linearity approximation rather than studying the

problem in position space for a direct solution.

3.2.2 Velocity Space Resolution

For easy of simplicity and for the treatment, (3.5) is re-arranged as follows

r2
i = (p+Qb′i − ai)T(p+Qb′i − ai). (3.6)

We define, represent and obtain the velocity space relations by computing the time derivative

on both sides of (3.6), which yields

riṙi = (p+Qb′i − ai)T(ṗ+ Q̇b′i +Qḃ′i − ȧi) = (p+Qb′i − ai)T(ṗ+ Q̇b′i). (3.7)

Therefore, if we recollect and recall that both ai and b′i are constants and their time deriva-

tives, ȧi and ḃ′i, are equivalent to zero. For achieving the purpose rotational matrix Q, we

consider the above discussed preliminary equations, and the following represent the time

derivative property

Q̇QT =

 0 −θ̇z θ̇y
θ̇z 0 −θ̇x
−θ̇y θ̇x 0

 =

θ̇xθ̇y
θ̇y


×

= θ̇×. (3.8)

In this way, the moving platform rotation matrix coordinate system with respect to base

platform is achieved. However, the position vector specified at origin of the moving platform

denotes the translation vector with respect to the base platform.

Q̇ = θ̇×(QT)−1 = θ̇×Q. (3.9)
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Substituting (3.9) into (3.7) yields

riṙi = (p+Qb′i − ai)T(ṗ+ θ̇×Qb
′
i)

= dT
i (ṗ+ θ̇×Qb

′
i)

= dT
i ṗ+ (θ̇×Qb′i)Tdi

= dT
i ṗ+ ((Qb′i)×di)Tθ̇

= [dT
i ((Qb′i)×di)T]

[
ṗ

θ̇

]
. (3.10)

As mentioned, in the above equation (3.4) are used for the derivation in the second line and

the derivation in the second last line, respectively. Noticing that ri = ‖di‖ > 0 could be

guaranteed by the mechanical structure, we have the following result

ṙi =
1

ri
[dT
i ((Qb′i)×di)T]

[
ṗ

θ̇

]
=

1

ri
[dT
i ((Qb′i)×di)T]π̇. (3.11)

For the six-dimensional vector r = [r1, r2, · · · , r6]T, we have the compact matrix form as

follows

ṙ = A1π̇, (3.12)

where

A1 =


1
r1
dT

1
1
r1

((Qb′1)×d1)T

1
r2
dT

2
1
r2

((Qb′2)×d2)T

· · · · · ·
1
r6
dT

6
1
r6

((Qb′6)×d6)T

 =


1
r1

(p+Qb′1 − a1)T 1
r1

((Qb′1)×(p− a1))T

1
r2

(p+Qb′2 − a2)T 1
r2

((Qb′2)×(p− a2))T

· · · · · ·
1
r6

(p+Qb′6 − a6)T 1
r6

((Qb′6)×(p− a6))T

 . (3.13)

Equation (3.12) projects the kinematic relation of a Stewart platform with six-degree-of-

freedom from the velocity of the pose variables to the speed of the legs.

3.3 Recurrent Neural Network Design

3.3.1 Problem Formulation from an Optimization Perspective

In this section, we introduce a numerical and non-linear [54] gradient decent optimization

method to resolve the real kinematic parameters from the measurement data. The digital

indicator are defined as measurement devices in order to rectify and verify the location of
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Figure 3.3: The control diagram of the Stewart robot using the proposed neural network.

end-effector of the stewart platform. This in turn can determine the error between the desired

and actual locations. The equation corresponding to kinematics of parallel stewart platform

can be expressed as follows

ri = ‖p+Qb′i − ai‖ (3.14)

where ai representing the ith position vector in the mobile platform with respect to A and bi

representing the ith position vector with respect to the base B. ri representing the ith link

length. This equation denotes the peculiar inverse kinematic equation of a stewart platform.

In general, it is infeasible to derive a forward kinematic model for the parallel manipula-

tors due to non-availability of close form solution, and some numeral algorithms must be

incorporated to derive the parameters of the forward kinematics.

The non-linear or non-convex relationship between ri and π to the position variable

is affine to π̇. We observed in our analysis that ṙ can be solved directly from compact matric

form equation ṙ = A1π̇. The reference velocity constrained in reduced dimensions for the

equality model is defined as

α = A2π̇ (3.15)

where α ∈ Rm is the reference vector with 0 < m < 6. The pre-given transformation matrix

A2∈Rm×6. The optimized solution is defined as follows:
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min(π̇,τ)
1

2
π̇TΛ1π̇ +

1

2
τTΛ2τ (3.16)

where the symmetric matrices Λ1 ∈ R6×6 and Λ2 ∈ R6×6 are both constant and positive

definite, the speed of the platform legs to be control is denoted asτ = ṙ. In practice, the

term π̇TΛ1π̇, which is in a quadratic form, specify the kinematic energy when choosing Λ1

properly, and the term the input power can be characterized by τTΛ2τ . The formulation of

the objective function is consistent with the convention of control theory in defining quadratic

cost functions [75]. The actuator can directly change the value of the decision variable τ . Its

value is under physical constraints, which are modeled as inequalities in the form below,

Bτ ≤ b. (3.17)

In this expression, B ∈ Rk×6 and b ∈ Rk with k as an integer. It is noteworthy that it is not

imposed to the variable π̇ for the constraint as in the planning stage it usually has already been

specified. In summary of (3.16) as the object function, and (3.17) as physical constraints,

and also with the nonlinear dynamic equation constraints, a constrained programming can

thus be formulated to solve the control as mentioned in (2.23) Since there is a presence

of two types of constraints, namely equality and inequality constraints it is not feasible to

solve the optimization analytically. By incorporating traditional approaches it incurs extra

penalty in terms formed by the constraints to the objective function. Hence to resolve the

problem numerically using approach of gradient descent along the new objective function

is also expensive. Hence we conclude that penalty based approaches are expensive and can

only reach an approximate solution of the problem and therefore are not feasible to tackle

error-sensitive applications [88]. Hence, it worths attempt to devise a dynamic differential

equation in the type of neural networks to approach the solution iteratively.

3.3.2 Neural Network Dynamics

In this part, we present the neural network model used in this chapter. This is adynamic

neural model that can be described by an ordinary differential equation. The dynamics is as
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follows:

State equations:

ελ̇1 = −Λ−1
2 λ1 − Â1Λ−1

1 ÂT
1λ1 − Â1Λ−1

1 AT
2λ2

−Λ−1
2 BTµ (3.18a)

ελ̇2 = −A2Λ−1ÂT
1λ1 − A2Λ−1AT

2λ2 + α (3.18b)

εµ̇ = −µ+ (−BΛ−1
2 λ1 + µ−BΛ−1

2 BTµ− b)+ (3.18c)

Output equation:

τ̄ = Â1Λ−1
1 ÂT

1λ1 + Â1Λ−1
1 AT

2λ2 (3.18d)

τ = τ̄ + w (3.18e)

ζ
˙̂
A1 = −(Â1π̇ − τ)π̇T (3.18f)

where ζ > 0 is a scaling factor. By replacing A1 with Â1 as obtained in (3.1), the whole

system obtained so far can be expressed as

ζ
˙̂
A1 = −(Â1π̇ − τ)π̇T. (3.19)

Consider a special case when the initial value of Â1 and π at time t=0 are both set a t 0. In

this situation, the immediate derivative of state variables can be obtained as Ȧ1 = 0. Then

ζȦ1 = −(A1π̇ − τ)π̇T). (3.20)

Subtracting (3.2) from (3.3) yields

ζ(
˙̂
A1 − Ȧ1) = (A1 − Â1)π̇πT. (3.21)

Since, Â1 − A1 = Ã1,

ζ
˙̂
A1 = (−Ã1)π̇πT. (3.22)

The state variables of the neural network are plotted in fig. 3.4. These figures depicts

the dynamic redundancy of neural network.
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Figure 3.4: Architecture of the proposed neural network.

3.3.3 Stability

Stability is the most important issue in the dynamic systems. Non-stable systems may oscil-

late or even diverge. In this section we discuss the stability of the proposed architecture in

namely learning convergence as follows.

Define Â1 − A1 = Ã1 and use V1 = ‖Ã1‖2
F = trace(ÃT ˙̂

A1)/2, where ‖.‖F denotes

the Frobenius norm of a matrix, as an estimation error metric. The time derivative of V1

along the system dynamic is V̇1 = trace(ÃT ˙̂
A1) = −1

ζ
trace[ÃT(Â1π̇ − τ)π̇T ]

Note that the equality trace(E(AB)) = trace(E(BA)) for any A and B of appro-

priate sizes is utilized in the above derivation. Thus, V̇1 = −1
ζ
trace(Ãπ̇T). For C = Ã1π̇

V̇ = −1
ζ
trace(C+C) = −1

ζ
‖Ã1π̇‖2

F ≤ 0. Note that V ≥ 0 and is monotonically decreasing

according to above equations.

We have

τ = A1π̇

τ = τ̄ + w

τ̄ + w = A1π̇

π̇ = A+(τ̄ + w).

We know that Ãπ̇ = 0, we can multiply ÃT
1 , (τ̄ + w)T and computing the expected

value yields

E[trace[ÃT
1Ã1Ã

+
1 (τ̄ + w)(τ̄ + w)T]] = 0. (3.23)
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We note that since (τ̄ +w)(τ̄ + w)T = E[(τ̄ τ̄T) +wτ̄T + τ̄wT +wwT]⇒ τ̄ τ̄T +E(wwT) =

τ̄ τ̄T + σ2I . These two equations upon equating result as follows: E[trace[ÃT
1Ã1(τ̄ τ̄T +

σ2I)]] = 0

= trace(ÃT
1Ã1τ̄ τ̄

T) + trace(ÃT
1Ã1σ

2I), which further implies ‖A1τ‖2
F + ‖Ã1σ‖2

F = 0.

3.3.4 Optimality

This part shows the optimal solution of the original optimization problem can be arrived at

by converging to the equilibrium point of the dynamic neural networks (3.18).

Theorem 1. For dynamic neural network (3.18) with (λ∗1, λ
∗
2, µ

∗) as the equilibrium point,

the output τ ∗ from (3.18d) is optimal to the constrained programming (2.23).

Proof 1. The equilibrium point (λ∗1, λ
∗
2, µ

∗) meets the following condition according to state

equations (3.18a):

−Λ−1
2 λ∗1 − A1Λ−1

1 AT1 λ
∗
1 − A1Λ−1

1 AT2 λ
∗
2 − Λ−1

2 BTµ∗ = 0 (3.24)

−A2Λ−1AT1 λ
∗
1 − A2Λ−1AT2 λ

∗
2 + α = 0 (3.25)

−µ∗ + (−BΛ−1
2 λ∗1 + µ∗ −BΛ−1

2 BTµ∗ − b)+ = 0 (3.26)

and the corresponding output is,

τ ∗ = A1Λ−1
1 AT1 λ

∗
1 + A1Λ−1

1 AT2 λ
∗
2 (3.27)

Define an auxiliary value,

π̇∗ = Λ−1AT1 λ
∗
1 + Λ−1AT2 λ

∗
2 (3.28)

τ ∗ is optimal to (2.23) can be obtained by showing the satirisation of KKT conditions. Com-

paring the equation set composed of (3.24), (3.25), (3.26), (3.27), (3.28) we find that they are

identical and therefore are equivalent. The above procedure implies that the solution (λ∗1,
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λ∗2, µ∗, τ ∗, π̇∗) is optimal to (2.23). Therefore, we conclude that τ ∗ is optimal to the problem

(2.23).

3.4 Numerical Investigation

To demonstrate the efficiency and effectiveness of the proposed model free neural network

approach applied to redundancy resolution of the stewart platform, we implemented it in

MATLAB.

3.4.1 Setups

A Stewart platform with the following specifications will be considered: leg connectors

are located around a circle with radius of 1.0 meter at b′1 = [0.7386, 0.1302, 0], b′2 =

[0.7386,−0.1302, 0] b
′
3 = [−0.4821, 0.5745, 0], b′4 = [−0.2565, 0.7048, 0], b′5 = [−0.2565,−0.7048, 0],

b
′
6 = [−0.4821, 0.5745, 0] are specifically the platform coordinates and the leg connectors lo-

cated around the circle with radius 0.75 metres at a1 = [0.3750, 0.6495, 0], a2 = [0.3750,

−0.6495, 0], a3 = [−0.7500, 0.0000, 0], a4 = [0.3750, 0.6495, 0], a5 = [0.3750,−0.6495, 0],

a6 = [−0.7500, 0.0000, 0] are placed on the fixed base. For the ease of simulations the end

effector is rotated and placed at origin with respect to the platform coordinate. The total ex-

pected redundancy is assumed to be 3, for the position tracking in the 3-D space. The input

and output dimensions are 6 and 3, respectively.

The desired angular motion speed is set as 0.2 rad/s. The control scaling factor ε of

the neural model is set as ε = 10−2 and the learning scaling factor ζ is set as ζ = 10−4. The

excitation signal w is set as random noise with zero mean and deviation of 10−3. The basic

idea is to set the noise at small value to ensure a minimal impact to the system performance.

In the simulation, we consider two tracking trajectories, namely, a square path and a

circular path.
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Figure 3.5: Tracking of a circular motion.

3.4.2 Circular Path

In this section we simulate the tracking of smooth path around circular trajectory using the

model-free approach. It is desired to follow the path of a circle at the minimal speed of 2m/s.

The circle is centered at [−0.04, 0.06, 1.05] with an radius of 0.08m, and has a revolutionary

angle around the x-axis for 45 degrees. In the simulation setup, Λ1 and Λ2 are chosen as

identity matrix. The values of the matrixA1 is computed in real time accordingly. The matrix

A2 is chosen as A2 = [I3x3, 03x3] so that the position tracking requirements are obtained. In

real time, the legs actuation speed is limited to a certain range as it is associated with the real

time constraints of the actuators.

The results are obtained by executing the simulation for 2 s. The Fig. 3.5(a) shows the
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Figure 3.6: Stewart platform state variables at different time in case of circular motion track-

ing.
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Figure 3.7: Tracking of a square motion.

completed tracks in circular motion of an end effector with a least tracking error as shown

in Fig. 3.5(b). The position tracking error components e(1), e(2), e(3) are plotted against

x, y and z axes of the base frame of the platform. The errors depicted from the figure are

less than 0.015 m in terms of the amplitude. This path tracking simulation demonstrated the

capability of the proposed model for resolving the kinematic redundancy of the physically

constrained Stewart platform. The input motion for the legs are shown in Fig. 3.6 which

depicts the time evolution of the Stewart platform state variables, e.g., 3 Euler orientations

of the platform, the position of the end effector and the leg speed and its related length. The

coordinates p(1) and p(2) of the attached moving frame starting from zero and p(3) varies

between 0.005 and -0.006 m. Fig. 3.6(c) states the bound±0.25 (η = 0.25) for action speed.

62



0 0.2 0.4 0.6 0.8 1 1.2
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 

θ(1)

θ(2)

θ(3)

(a) Orientation of the platform θ

0 0.2 0.4 0.6 0.8 1 1.2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

τ(1)

τ(2)

τ(3)

τ(4)

τ(5)

τ(6)

(b) Control action τ

0 0.2 0.4 0.6 0.8 1 1.2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

 

 

l1

l2

l3

l4

l5

l6

(c) Leg length r

Figure 3.8: Stewart platform state variables at different times in case of square motion track-

ing.
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It is to be observed that τ converges within the boundary region of [-0.25, 0.25].

3.4.3 Square Trajectory

In this section we will discuss the simulated results of the square trajectory incorporating

our model-free approach, which are shown in Figs. 3.7 and 3.8. In circular motion the path

traveled by the end effector in 360o. However, in square trajectory the path is non-smooth

when switches from one straight line to the next and how to reach timely control becomes

a challenging issue. The end effector follows the trajectory which is places in the center at

[0.15, 0.075, 0.74] where the length of the edge is defined as 0.08 m, at 1.0 m/s as the speed.

The revolute angle of the square around the x-axis is 60 degrees. The chosen parameters

Λ1 and Λ2, A2 and B have the similar values as that mentioned for the circular motion. The

parameter A1 is computed in real-time. The limit of speed η = 0.6 m/s and b = 0.6I12 and

ε = 0.001. The tracking results for the square trajectory is shown in figures below (position

tracking error vector [e(1), e(2), e(3)], which is very small).

3.5 Conclusions

A model free dual neural network is proposed to investigate and resolve the redundancy

resolution problem of manipulators. In this chapter we also establish dynamic model for

an model-free network which is designed for a general case of modular manipulator. The

proposed controller model is designed such that priori knowledge is not required for dy-

namic parameters and can suppress bounded external disturbances effectively in presence of

the external noise added. The instability problem caused by self-motions of the redundant

robot can be resolved by the presented dual-neural control algorithm. Theoretical results

are presented to verify the stability of the proposed models. The simulation is carried out

on a redundant manipulator, which has verified the effectiveness of the dynamic modeling

method and the controller design method. In our future work, the following aspects will be

considered:
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1. In this chapter, we only considered deterministic uncertainty that can be learned. In

applications, there may exist some non-deterministic uncertainties that demonstrate stochas-

tic or probabilistic properties that cannot be learned directly. We consider to use robust con-

trol strategy to optimize the control parameters such that the L2 gain from the non-learnable

uncertainty to the resulting control error could be minimized.

2. The controller developed in this chapter is in a continuous time form. In imple-

mentation with micro-controllers, the control actions need to be truncated into discrete time.

However, the selection of a proper sampling period for control becomes an issue. To re-

solve this problem, we consider to employ event-triggered control mechanism to design an

improved version of this control for adaption of the sampling period.

3. One trend in the research of parallel robots is to design a hybrid structure with

both serial and parallel mechanisms involved. How to extend the current results to hybrid

mechanisms remains to be a challenging issue.

4. This chapter considers a single Stewart platform. For complicated tasks, more than

one platforms may be required and the coordination of them emerges to be a challenging

issue.
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CHAPTER 4

STEWART PLATFORM CONSTRUCTION AND ALGORITHM VERIFICATION

4.1 Design a 6 DOF Rocking Chair Mechanism for Rocking Chair

This chapter deals with the design of a driving chair simulator for real-time simulation time.

Under this proposal, the intention is to build the simulator and it will be necessary to carry

out some other strength analysis based on the dynamics of the moving part, which, as shown

in Fig. 4.1. In the future, we plan to improvise the control units, rocking chair behavior and

also the rider under certain conditions and possibly for simulation and analysis for minor

accidents.

A power-driven 6-DOF rocking chair is designed for people with a sleeping disorder

that enables them to fall asleep in short duration is one of the medical applications. The rock-

ing chair, in turn, can be classified as a therapy. Furthermore, the power-driven rocking chair

also provides people (elderly, adults, kidult and new-born) whose act of sleeping is incon-

venient, a comfortable, economic and portable moving means. Generally, the base platform

of the power-driven rocking chairs has fewer degrees of freedom. The motivation leads to

less applicability when the rocking chair is operating in different terrains. To adapt different

criteria (in terms of flexibility, portability, and weight carrying capacity) and promise a good

comfortable and convenient performance, we propose the design of the 6 DOF rocking chair.

4.1.1 Evaluation of existing solutions and selecting an appropriate variant

Based on a search in the related parts of the work we can find out that there are currently

differences in the implementation of driving simulators with varying degrees of freedom.
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The simplest and the most elaborate are the significant differences in the complexity of the

construction. Generally, the higher the degree of the simulator’s freedom, its construction is

more complicated, its dimensions and total weight increase. This results in a higher price and

a more demanding management of the movement system. Usually, the weight is increased at

the same time as the moving mass, which increases the energy needed to perform the motion

and therefore requires a more powerful movement system (motors).

As mentioned above, various simulators use a different approach to modulate the

movement of the human mind. Each variant has its advantages and disadvantages, and there

is probably no clear answer to the question of which one is better or the most simulating

reality. It can be argued that the most advanced driving simulators (National Advanced

Driving Simulator (NADS) and so on) use the widest possible anabolic mobility options

(hexapod, which is optionally dop). However, as reported by researchers, according to some

studies, the use of fewer than 6 degrees of freedom in a driving simulator could be more

appropriate in terms of more realistic simulation experience. Even in the field of aerospace

simulators, there is no clear view of the need to use all 6 stages of freedom [29]. It depends on

the specific purpose and task to which the simulator is intended, and of course, no movement

is always better than a poorly tuned motion.

As we planned to build a simulator using the financial resources of the department,

it would be inconceivable to deal with too complicated design solutions under the given

conditions and taking into account the scope of this thesis. Taking into account the above

circumstances, a variant of the “seat” simulator was chosen. This is a 6-degree simulator

with a movable seat and a stationary rest the frame on which the controls and the screen are

clamped. Its advantage is simple construction, relatively simple control of the movement

system, small dimensions that allow its operation, for example, in the home, office and the

low weight of the moving mass, which reduces the demands on battery performance.
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(a) The skeleton of a rocking chair

Figure 4.1: The mechanical construction of a rocking chair Skeleton.

4.1.2 Building a Stewart Platform

The motivation for building this robot is to connect the digital world to the exciting physical

world. This chapter describes the 3D models and the necessary equipment and technique

required to create the Stewart platform.

Stewart platforms find ways in numerous industry and social applications like flight

simulators, civil constructions, sorting of vehicles, and many other fields and for various

purposes.

A Stewart platform is usually defined as a parallel robot with six degrees of freedom

(6 DOF). The six degrees of freedom describes its movement and direction. The movement

along the three axes and the rotation along with the three directions. The axis is denoted as

X , Y , and Z and the directions are referred to as yaw, roll, and pitch.
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4.1.3 Building Material

Ordering, building and testing the parts and material is the most time consuming and chal-

lenging task. The building material could be classified as into three main streams;

• The mechanical parts in the construction of the Stewart Platform (Table 4.1)

• The electronics; including relays, servo motors, hinges, boards, plates, wiring (Table

4.2)

• The computer for programming, controlling and testing the platform (Table 4.3)

The estimated cost of all the required material and equipment is approximated 10k

Hong Kong dollars. Due to the presence of a 3D printer, the cost is minimized. The 3D

printer helps in printing the brackets and other required hinges for connecting actuators.

4.1.4 Mechanical Equipment

The mechanical equipment required for constructing the Stewart platform includes the 2

platforms; top plate and bottom plate, actuators (acting as controlling rods) connecting servo

motors and the 3D brackets connected as hinges and joints.

The estimated market price of this mechanical equipment is approximated 2k Hong

Kong dollars.

4.2 Creating a Solid Works Model

This section deals with the creation of a Stewart platform for subsequent export into one

complete package.
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(a) Parts of Stewart Platform

(b) The Leg of the Stewart Platform

(c) Power Supply

Figure 4.2: The material and equipment for Stewart Platform.
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Table 4.1: Top and Base Plate of Stewart Platform

S.No. Qty Name Description

1 20 Aluminum bar 20 bars of 0.5m with 20X20mm for the intersection

2 20 Aluminum connection hinge 20x20mm Angle Bracket Aluminum alloy

3 20 Aluminium board 200*250*2mm aluminum alloy sheet aluminum plate

4 100 Slider on the aluminum bar aluminum pre-installed nut T-type

5 20 Connection hinge Narrow strip hinge multi-purpose

6 30 Connector Corner fittings right angle connector

7 100 Screws special round head bolt screw

8 200 Screw washer cylindrical head Hexagon socket bolts

Table 4.2: The Leg of Stewart Platform

S.No. Qty Name Description

1 10 Linear actuator 20 bars of 0.5m with 20X20mm for the intersection

2 20 Linear actuator connector rod bracket for motor mounting

3 50 Bearings Edge bearings ball bearings

4 20 distance sensors Infrared distance sensor 10 80cm

4.2.1 Selection of suitable design

When creating a simulation model, several factors have to be taken into account. The model

should not be too complicated (may not contain all the elements that are part of a real ma-

chine). At the same time, however, all factors should be taken into account affecting its

functionality.
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Table 4.3: Power Supply

S.No. Qty Name Description

1 1 Charger Multi-function battery charger

2 2 Batteries 5200mah lithium battery

3 20 Drivers L298N motor drive board module

4.2.2 Linear actuator

The main part of Stewart’s platform is his shoulders/legs. These consist of joints and linear

actuators to ensure their movement. It can be implemented in several versions:

• Hydraulic or pneumatic drive

• Linear electric motor

• Mechanical drive (conversion from rotary motion to sliding motor movement of the

matrix)

As a model, the DLA 200 linear actuator has been selected from the company Trans-

motec. It is an actuator driven by a DC electric motor, upon rotation whose movement is

converted to a sliding ball screw. The conversion between the engine and the screw are made

with a gearbox fitted with aluminum gears.

4.2.3 Joints

As mentioned above, the shoulders are connected to the platform using joints. Attach the

knee joint to the base. A joint GLK 2 (Gelndewagen Luxus Kompaktklasse) Fig. 4.3 was

chosen which has the possibility of moving in one axis±45◦ and in the other±90◦, which is

more than sufficient for this model. When calculating degrees of freedom, we considered the

second link as a ball joint, but to simplify the design and use the cardan joint design which
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(a) Prismatic Actuators - The skeleton of

a rocking chair

Figure 4.3: Linear Transmotec Actuator

is identical to the GLK 2 model, thereby using a combination axial radial bearing which

enables rotation of the third axis.

4.2.4 Platform and Base

When designing a platform and base shape, we try to place adjacent joints closer to each

other, so that the structure approaches the octave as suggested by Gough. We will choose the

shape of Stewart’s platform from the French of the Symmetry company, which is visible in

Fig. 4.1.

4.2.5 Model Actuator

For simulation purposes, several adjustments were made to the actuator model. For sim-

plicity, gearboxes have been replaced by gears toothed belt transmission. Also, most of the

components were omitted that are not necessary for the actuator function.
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4.2.6 User position in the simulator

Of course, ergonomics also plays an important role in designing the simulator. The goal is

to secure its convenient control for people of different ages. As has already been mentioned,

the effort is adapted to control the chair seat for user’s comfort. For maximum convenience,

it is advisable to observe certain ranges of these angles, which are defined by standards in

the field of ergonomics [37].

4.3 Background of the Invention

This section describes the need for the invention of automated rocking chairs and the market

demand value and supply needs.

4.3.1 Open Challenges

50-70 million US adults have a sleeping disorder according to the Institute of Medicine.

Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. [1]

The report [1] highlights sleeping deprivation statistics:

• 37% of 20-39 year-old reports short sleep duration

• 40% of 40-59 year-old reports short sleep duration

• 35.3% adults reports < 7 hours of sleep during a typical 24-hour period.

Over 1,00,000 deaths occur each year in US hospitals due to sleep deprivation, which

has been shown to make a significant contribution.

4.3.2 Expected Outcomes

Rocking chair therapy has a positive effect on the mental and physical well-being inpeople

with dementia [84] according to a Journal of Alzheimers Disease. Research studies of Rock-
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ing chairs show a measurable increase in well-being in people suffering from dementia and

also prove to be effective for anti-anxiety medication. Improved quality of life without the

need for medication is yet another addition to the development of the rocking chair. Rocking

Chair Therapy contributes to a calmer environment for dementia sufferers and proves out to

be a quicker recovery factor [84]

4.3.3 Market Demand

Rocking chairs are broadly classified into mechanical and electronic rocking chairs. The

mechanical rocking chairs have a strong market than electronic ones due to high maintenance

cost, durability, relativity, and portability.

The mechanical chairs are usually made from materials like cut-wood, bent-wood,

metal, laminated constructive material, a combination of paper and composites, etc. The

biggest competition market for mechanical chairs is IKEA. Fig. 4.1 shows the top 10 market

chairs in the market and their market price. The figure shows the market demand of the

rocking chairs where 71% is captured by the elderly and 23% is captured by the mid-aged

group. This is viable from the figure that these chairs have high demand ranging from elderly

to kidults as presented in Fig. 4.5.

4.3.4 Our Invention Claims

An automated wellness rocking chair is developed. We use the term “wellness” as this chair

also contributes to therapy in the field of medical engineering. The model pose is shown in

Fig. 4.6. The automated rocking chair consists of;

• a ground contraction base for supporting and maintaining the balance of the cushion

seat

• the joints mounted at the six legs/shoulders are apex uppermost to the rocking chair

• a pair of straight flat-metal reinforced ball joints for movement and rotation
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(a) IKEA Rocking chair

Figure 4.4: Mechanical rocking chairs

(a) The skeleton of a rocking chair

Figure 4.5: Market demand
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(a) 3-legs driven model

Figure 4.6: Model pose

• affixing the top and bottom ends of these joints to rearward and forward shoulder

surfaces which connects the top of the box seat

4.4 Experimental setup discussion and results

In this section, we describe the stages of testing and the modeling of the setup followed with

discussions made in section 4.2. The rocking chair platform is controlled via Bluetooth using

Arduino and working with relays.

To observe the movement and rotation of the shoulders a sine wave signal is passed as

the input of the virtual prototyping rocking chair model and the speed of the chair was main-

tained between 0.1to0.5 Km/h. The chair produces 2-DOF vibration, acceleration (vertical)

and pitch.

The platform is confirmed with the loading capacity and the maximum requirement
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of the load that can be implanted on the chair that generates the required movements. The

idea is to test the capability of the chair that can hold the maximum weight of a human. As

an average person weight between 65to85 Kg. In the process of testing the seating capacity,

the weight is determined by placing a 100 Kg load given 1 Hz frequency sine signal. When

the frequency of the signal is increased (up to 5 Hz) the platform still handles a higher weight

capacity. This is because of the shoulders electric cylinders.

In the experimental results, we applied various weights as inputs to test the strength

of the rocking chair. These weights inputs will lead our study of the platform vibration in

different conditions of weight applications. The results of the real vibration will be compared

to that of the existing real-time Stewart platform and thus the outcome will be analyzed and

compared with the smoothness of the rocking chair movement.

4.4.1 Simulation Results

In the initial stage, we applied a pure sine wave signal to the platform as shown in Fig. 4.7 as

the input. The speed of the moving platform is fixed to 20 km/h. All the signals are transmit-

ted via Arduino and in connection with the relays attached to the platform. The rocking chair

platform gives a 2-DOF vibration output with vertical acceleration and pitch. The output of

the platform is sketched in Fig. 4.8. It is observed that the number value decreases in the case

of pitch acceleration. However, there is a gradual increase in comparison to the resonance

point.

A point of reference is highlighted in the above figure where there is continuous all

time increase in the vertical acceleration. Fig. 4.9 shows this vividly. These vibrations and

the output waves are the results of computer simulation.

The vibrations produced by the moving rocking chair Stewart platform can be mea-

sured by using a 6-DOF Inertial Measuring Unit sensor. The following figures Fig. 4.10

and Fig. 4.11 captures and highlights the real vibrations produced by the platform through

simulation. This shows a similarity between the two vibrations. The sensor produced a
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Figure 4.7: Sine wave signal as input model

Figure 4.8: The pitch acceleration produced by mechanical platform

Figure 4.9: The vertical acceleration produced by moving platform
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Figure 4.10: The pitch acceleration produced by moving platform

Figure 4.11: The pitch acceleration produced by moving platform

noisy signal wave on the vertical acceleration, it can be easily sighted that the obtained curve

matches to that generated by computer simulation.

The vibrations of the mechanical rocking chair with speed of 20km/h movement by

a 70kg person are recorded and the simulation results can be seen from the graphs below in

Fig. 4.12 and Fig. 4.13. These two figures show the acceleration in terms of vertical and

pitch acceleration.

We also study the vibrations of the automated rocking chair controlled via a handheld

mobile device and the vibrations of the movements are displayed in Fig. 4.14 and Fig. 4.15.

The results of the mechanical chair to that of the automated chair show that the actual move-

ment of the chair matches that of the automated chair. Thereby proving that an automated
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Figure 4.12: The pitch acceleration produced by mechanical platform

Figure 4.13: The vertical acceleration produced by moving platform
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Figure 4.14: The pitch acceleration produced by moving platform

Figure 4.15: The vertical acceleration produced by moving platform

chair is as effective as a mechanical chair. However, there are many added advantages to the

automated chair like flexibility, automation, portable, etc.

The results above also highlight that the rocking chair Stewart platform can produce

the necessary vibrations according to the movement of the human body (input value). This

is to say, that the quality of the rocking chair control system depends on the accuracy of the

simulation model and to that of the design of the Stewart platform that can precisely measure

the vibrations of the moving chair.
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Figure 4.16: The output results of load capacity comparison

4.4.2 Loading rocking chair platform and studying reaction and capacity

In this section, we study if the designed platform is capable of meeting the sitting load

capacity of an individual human body ranging from a newborn to an elderly where the weigh

deviates from 10 pounds to 180 pounds. We also study the required vibrations necessary for

movements thereby providing the comfort of sleeping.

In the process of load testing of the seat, the weight of approximately 220 pounds

was tested to see the upper limit of the platform. After a weight of 220 pounds is applied

with the frequency of 1 HZ and 7 to 8 mm sine wave amplitude, the rocking chair vibration,

and the generated input signal appear to overlap as shown in Fig. 4.16

We also experimented to change the frequency signals to say 5 HZ and provided a

sine wave single of 2mm the sine wave signals for the moving platform overlap perfectly

with each other. The vibration is assumed to be the encoder output. This is reflected in Fig.

4.17.

In the next level, the data values deviate for higher number values of 7 HZ with a sine

wave signal of 3mm as in Fig. 4.18. The waves in the figure dont overlap perfectly to that of

the generated input. The vibration produced by the moving platform was lagging behind the
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Figure 4.17: The output results of load capacity comparison - 5HZ and 2mm

input sine wave.

This is to conclude that the weight of the load on the moving platform plays a vital

role in giving a satisfactory performance of the platform. The reason for these deviations is

due to the cylinder/actuator of the platform that could not tolerate the rated power provided

as input.

The generated results lag behind the input sine wave signals in the frequency domain

as drawn in Fig. 4.19. However, upon inspection, it is observed that the amplitude of the

vibration produced by the rocking chair platform was considerably lesser than that of the

input sine wave signal.

4.5 Remarks

Rocking chairs are usually designed not only to provide comfort but to also provide to relax

the lower limb areas of the people; especially the elderly. The research studies show that

the fundamental designs of both automated rocking chair and mechanical rocking chair are

neither fully adapted nor do they offer the same benefits. The rocking chair manufacturers

in the United States are of mass production for imports and exports, thought these lack of
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Figure 4.18: The output results of load capacity comparison - 7HZ and 3mm

Figure 4.19: The output and input results comparison in frequency domain

85



research and participation of clinical therapists and mechanical engineers. There are still

many open challenges in the field of rocking chairs and moreover, these automated rocking

chairs prove to be more efficient, reliable and cheaper than mechanical rocking chairs. The

main purpose of the study on the automated rocking chair is to design new mechanisms for

the existing rocking chairs in the market. With the present research of mechanisms, rocking

chair advantages can overcome simple daily obstacles that help the elderly and people with

sleeping disorders to fall asleep in a shorter duration. In this chapter, we demonstrate the 6-

DOF rocking chair automated mechanism and the workspace analysis in the above chapters

demonstrates that the mechanisms can be good design tactics. This design can be used as a

benchmark resource for the designers to update the automated rocking chair.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

• In the first scheme, a dynamic neural network is designed to solve the redundancy

resolution problem of Stewart platforms. The physical constraints and actuation are

rigorously modelled as a constrained quadratic programming problem. To solve this

problem in real time, a recurrent neural network is proposed to reach the equality con-

straints, inequality constraints, and optimality criteria simultaneously. Rigorous theo-

retical proof are supplied to verify the convergence of the proposed model. Simulation

results validate the effectiveness of the proposed solution.

• For second scheme, a model free dual neural network is proposed to investigate and

resolve the redundancy resolution problem of manipulators. In this thesis we also es-

tablish dynamic model for an model-free network which is designed for a general case

of modular manipulator. The proposed controller model is designed such that priori

knowledge is not required for dynamic parameters and can suppress bounded exter-

nal disturbances effectively in presence of the external noise added. The instability

problem caused by self-motions of the redundant robot can be resolved by the pre-

sented dual-neural control algorithm. Theoretical results are presented to verify the

stability of the proposed models. The simulation is carried out on a redundant manip-

ulator, which has verified the effectiveness of the dynamic modeling method and the

controller design method. In our future work, the following aspects will be considered:

1. In this work, we only considered deterministic uncertainty that can be learned. In

applications, there may exist some non-deterministic uncertainties that demonstrate
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stochastic or probabilistic properties that cannot be learned directly. We consider to

use robust control strategy to optimize the control parameters such that the L2 gain

from the non-learnable uncertainty to the resulting control error could be minimized.

2. The controller developed in this thesis is in a continuous time form. In imple-

mentation with micro-controllers, the control actions need to be truncated into discrete

time. However, the selection of a proper sampling period for control becomes an issue.

To resolve this problem, we consider to employ event-triggered control mechanism to

design an improved version of this control for adaption of the sampling period.

3. One trend in the research of parallel robots is to design a hybrid structure with both

serial and parallel mechanisms involved. How to extend the current results to hybrid

mechanisms remains to be a challenging issue.

4. This work considers a single Stewart platform. For complicated tasks, more than

one platforms may be required and the coordination of them emerges to be a challeng-

ing issue.

5.2 Future Work

The work presented in this thesis can be extended in different directions in the future.

• First, Stewart-Gough platform is an important mechanism of studying the dynamics of

the system. How to combine our approach to effectively do redundancy resolution of

multi-degree of freedom of parallel stewart platform can be a future direction for us to

explore.

• Second, our approach is how kinematic control problem of Stewart platforms is for-

mulated to a constrained quadratic programming based on the KKT conditions. We

will extend our approach to other non-constrained conditions. We will explore how to

integrate these into rocking chair mechanism to further improve their performances.

• Third, tracking control of the Stewart-platform with multiple edges is critical for erros.
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We will further explore how to integrate to customize new effective dynamic motion

with least errors.

• Finally, efficiently control the motion of redundant parallel manipulators, especially

in the situation with parameter uncertainties, or even unknown, sets great practical

significance but also remains as a challenging research problem. In the future, we will

extend the Stewart design to make its translation more efficient and complete.
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[55] Jose Luis M., V. Santibáñez, R. Soto, and M.A. Llama. Fuzzy self-tuning

pid semiglobal regulator for robot manipulators. Industrial Electronics, IEEE

Transactions on, 59(6):2709–2717, 2012.

[56] Joseph Madamesila, Philip McGeachy, J Eduardo Villarreal Barajas, and Rao Khan.

Characterizing 3d printing in the fabrication of variable density phantoms for quality

assurance of radiotherapy. Physica Medica: European Journal of Medical Physics,

32(1):242–247, 2016.

[57] Mingzhi Mao, Jian Li, Long Jin, Shuai Li, and Yunong Zhang. Enhanced discrete-

time zhang neural network for time-variant matrix inversion in the presence of bias

noises. Neurocomputing, 207:220–230, 2016.

[58] O. Masory and W. Jian. Workspace evaluation of stewart platforms. Advanced

Robotics, 9(4):443–461, 1994.

[59] Oren Masory and Jian Wang. Workspace evaluation of stewart platforms. Advanced

robotics, 9(4):443–461, 1994.

96



[60] Jean-Pierre Merlet. Parallel robots, volume 128. Springer Science & Business Media,

2006.

[61] Aquil Mirza Mohammed and Shuai Li. Dynamic neural networks for kinematic re-

dundancy resolution of parallel stewart platforms. IEEE transactions on cybernetics,

46(7):1538–1550, 2016.

[62] Y. Nakamura and H. Hanafusa. Inverse kinematics solutions with singularity ro-

bustness for robot manipulator control. Trans. ASME Journal of Dynamic System,

Measures and Control, 108, 1986.

[63] Rendong Nan, Di Li, Chengjin Jin, Qiming Wang, Lichun Zhu, Wenbai Zhu, Haiyan

Zhang, Youling Yue, and Lei Qian. The five-hundred-meter aperture spherical radio

telescope (fast) project. International Journal of Modern Physics D, 20(06):989–1024,

2011.

[64] Zhen Ni, Haibo He, Xiangnan Zhong, and Danil V Prokhorov. Model-free dual

heuristic dynamic programming. IEEE transactions on neural networks and learning

systems, 26(8):1834–1839, 2015.

[65] N. Nikdel, P. Nikdel, M.A. Badamchizadeh, and I. Hassanzadeh. Using neural net-

work model predictive control for controlling shape memory alloy-based manipulator.

Industrial Electronics, IEEE Transactions on, 61(3):1394–1401, 2014.

[66] Nazila Nikdel, Parisa Nikdel, Mohammad Ali Badamchizadeh, and Iraj Hassanzadeh.

Using neural network model predictive control for controlling shape memory alloy-

based manipulator. IEEE Transactions on Industrial Electronics, 61(3):1394–1401,

2014.

[67] Viera Poppeova, Vladimir Bulej, and Juraj Uricek. Parallel kinematic structures and

their innovative applications. Annals of DAAAM & Proceedings, pages 353–355,

2011.

97
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