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ABSTRACT 

Abstract of thesis entitled:  Adaptive Optimal Monthly Peak Building Demand Limiting 

Strategy considering Load Uncertainty 

Submitted by:  Xu Lei 

For the degree of:  Doctor of Philosophy  

at The Hong Kong Polytechnic University in March 2019  

Peak demand limiting is an efficient means to reduce the electricity cost over a billing cycle 

(typically a month) in cases where peak demand charge is applied. However, most previous 

studies focus on the daily peak demand limiting without considering load uncertainty, which is 

a big challenge in making proper and reliable decisions in applications. The daily peak demand 

limiting might not achieve the maximum cost saving in a month due to the partial/complete 

offset between the peak demand cost reduction and the costs of associated limiting efforts. 

Therefore, a monthly peak demand limiting strategy is needed. Besides, load prediction is 

usually an inevitable part of peak demand limiting strategy. For individual buildings, there 

exists great load uncertainty, mainly due to uncertain peak loads and uncertain weather 

conditions. As for load uncertainty, probabilistic load forecasting can provide more 

comprehensive information for decision-making compared with the traditional deterministic 

load forecasting and it draws increasing attention recently. 

This study presents an adaptive optimal monthly peak demand limiting strategy considering 

load uncertainty. The developed strategy includes the probabilistic load forecasting model, the 
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optimal threshold resetting scheme, and the proactive-adaptive demand limiting control 

scheme. A new probabilistic building load forecasting model is proposed considering 

uncertainties in weather forecasts and abnormal peak load. Two basic function components are 

developed, including the probabilistic normal load forecasting and the probabilistic uncertain 

peak load (or abnormal peak load) forecasting. The probabilistic normal load forecasting model 

is built using the artificial neural network (ANN) and the probabilistic temperature forecasts. 

The probabilistic abnormal peak load forecasting model consists of two models quantifying the 

probabilistic occurrence and magnitude of the peak abnormal differential load, respectively. 

Based on the building load model, an optimal threshold resetting scheme is proposed for 

monthly peak demand limiting considering load uncertainty, which involves two major 

functions as follows. The uncertain economic benefits (i.e., gains and losses) of a demand 

limiting control are quantified on the basis of probabilistic load forecasts. The optimal monthly 

limiting threshold is identified using the expectation metric based on the quantified economic 

benefits. The scheme optimizes and updates the monthly limiting threshold by adapting it to 

the ever-changing weather forecast and actual peak power use. Based on the building load 

model and the optimal threshold resetting scheme, a proactive-adaptive demand limiting 

control scheme is developed for online demand limiting threshold reset and online demand 

limiting control, which is especially effective when only small-scale storages are available.  

Validation tests are conducted on the probabilistic load forecasting model, the optimal threshold 

resetting scheme, and the proactive-adaptive demand limiting control scheme, respectively. 
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The test results show that the ANN deterministic load forecasting model can achieve 

satisfactory performance. The probabilistic occurrence model can forecast the occurrence 

frequency of the peak abnormal differential load with the satisfactory agreement, and the 

probabilistic magnitude model can well forecast the magnitudes of the peak abnormal 

differential load. Furthermore, real-time application case studies are conducted by different 

means of using probabilistic weather forecasts. Results show that the probabilistic normal load 

forecasts have satisfactory accuracies and the load forecasts based on the one-day-ahead 

probabilistic weather forecasts are the best. In validating the optimal threshold resetting scheme, 

case studies are conducted, and the results show that demand limiting based on this scheme can 

effectively reduce the monthly peak demand cost under load uncertainty in different seasons. 

Moreover, sensitivity analysis of the means of demand limiting and electricity demand charge 

on the cost benefits of demand limiting with the resetting scheme is conducted. In validating 

the proactive-adaptive demand limiting control scheme, case studies are conducted, and the 

results show that this proactive-adaptive demand limiting control scheme can effectively 

reduce the monthly peak demand cost for buildings with small-scale thermal storages under 

load uncertainty. 

In summary, an adaptive optimal monthly peak demand limiting strategy is proposed to reduce 

building peak demands over a month (or a billing cycle) considering load uncertainties, which 

includes the following three main components. A building load model is developed to quantify 

load uncertainties from weather forecasting uncertainty and uncertain peak loads. An optimal 
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threshold resetting scheme is developed to identify an adaptive optimal monthly limiting 

threshold. A proactive-adaptive demand limiting control scheme is developed to conduct 

proactively online demand limiting control, even when small-scale thermal storages are 

available. Validation tests are conducted, and the test results show the adaptive optimal monthly 

peak demand limiting strategy can achieve significant peak demand reduction under load 

uncertainties, even when only small-scale active thermal storages are available. 
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CHAPTER 1 INTRODUCTION 

1.1 Background and motivations  

Severe heat waves ravaged countries around the world in the summer of 2018. This extremely 

hot weather caused disastrous consequences, e.g., wildfires, health problems, and intolerable 

living conditions for citizens and animals. It again warns human of the severity in climate change 

and global warming. To relieve global warming (i.e., reduce CO2 emissions), fossil fuels as the 

major primary energy (e.g., petroleum, natural gas and coal) should be less consumed in the 

future. The confronted great challenge lies in how to balance cutting down the primary energy 

consumption together with CO2 emissions and guaranteeing human life quality.  

Renewable energies are increasingly and massively applied to cope with the challenges from the 

dramatic growth of energy demand and global climate change. Since the last decade, there has 

been an enormous interest in many countries on renewable energies for power generation (M. 

Singh et al., 2011). Additionally, the market liberalization and government’s incentives have 

further accelerated the renewable energy sector growth. The contribution of the renewable energy 

share of the global final energy consumption in 2014 was about 19.2% of the global electricity 

consumption. However, the electricity grids could suffer significant voltage fluctuations with 

integrating large amounts of renewable generation, for that renewable generation capacities 

heavily depend on unstable climate conditions, e.g., solar radiation and wind speed. Any 

significant imbalance might pose a threat to the electrical grid network in terms of reliability, 
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voltage regulation and power quality issues, even cause grid failures. 

In order to stabilize the electricity grid, the smart grid, a modern electrical power grid 

infrastructure, is proposed and used for improving the efficiency, reliability and safety of the grid. 

The smart grid is capable of smoothly integrating renewable and alternative energy resources 

through automated control and modern communication technologies. The smart grid can provide 

effective grid integration in distributed generation (including renewable generation) based on the 

demand side management (DSM) and energy storage technologies for load balancing (V. C. 

Gungor et al., 2011).  

DSM, an approach for matching supply and demand, plays a vital role in meeting the load 

imbalance challenges in smart grids. DSM commonly refers to programs implemented by utility 

companies to control energy consumption and peak load/demand on the consumer/demand side. 

In most of the DSM programs that have been deployed over the past three decades, the key focus 

has been on the interaction between the utility company and end consumers (i.e., the demand 

side) (P. Centolella, 2010; A. Gomes et al., 2007; K. Herter, 2007; C. Triki & A. Violi, 2009). 

Furthermore, flexibility requires electricity consumers on the demand side (e.g., buildings) to be 

“grid-friendly” and responsive to the requests or ever-changing conditions from power grids.  

Buildings, as the largest electricity consumer worldwide, account for 32% of global final energy 

consumption and one-third of the Green House Gas emissions (D. Ürge-Vorsatz et al., 2015), 

even over 90% of total electricity consumption in high-density urban areas like Hong Kong (E 
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MSD, 2018; D. Ürge-Vorsatz et al., 2015)Electrical and Mechanical Services Department, 2018). 

The large energy consumption in buildings poses a great challenge for governments and 

practitioners to achieve energy reduction and carbon dioxide reduction. Besides, peak building 

demand (load) is another significant issue which results in huge investment in the power grid 

development and reduces grid efficiency. J. Wells et al. (J. Wells & D. Haas, 2004) estimated that 

the capacity to meet peak demands during the top 100 hours in a year accounted for nearly 20% 

of the entire electricity cost. This is because the generation and transmission capacities of power 

grids have to be provided to meet these peak demands that occur occasionally (G. W. Arnold, 

2011). 

Tackling these two issues of large building energy consumption and huge peak building demand, 

utility companies (e.g., in Hong Kong) usually charge the monthly electricity bills of buildings 

based on these two parts. Although different price structures (including these two parts) are 

applied in different regions, the monthly peak demand cost of a commercial building always 

account for a significant part of the monthly electricity bill due to the high peak demand charge 

(J. E. Seem, 1995). Lowering the peak demand (power) and/or reducing the hours that a demand 

threshold is exceeded can drastically reduce demand charges (Y. Zhang & G. Augenbroe, 2018). 

John E. Seem reported that the monthly peak demand cost of a commercial building contributed 

a considerable part to the monthly electricity bill, sometimes even exceeding 50% in the US (J. 

E. Seem, 1995), and it is typically above 30% in Hong Kong according to the field survey. Under 

these price structures, peak demand reduction could contribute to the significant reduction of the 
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electricity cost over a billing period (e.g., a month). Therefore, peak demand management attracts 

increasing attention on both demand and the supply sides. For electricity consumers, if they take 

advantage of the different electricity tariffs, significant money saving and efficient system 

operation can be achieved by changing their power usages, e.g., limiting peak demands. For 

utilities, the peak demand of overall grids can be reduced accordingly, which could directly 

reduce the design capacity, an initial investment of systems in the grid side and increase the 

stability of power grids.   

To effectively develop and implement peak demand limiting/reduction in buildings, the precise 

building load prediction is needed. In practice, load uncertainty is inevitable due to uncertain 

weather conditions, special events, etc., and it significantly affects the economic performance of 

implementing demand limiting (D.-c. Gao et al., 2015). The load uncertainty significantly affects 

the identification of the proper/optimal or practically doable demand limiting threshold and the 

actual achievement of monthly peak demand cost reduction. In commercial or non-residential 

buildings, the energy consumption is mainly affected by the outdoor weather conditions and 

space usage schedules (e.g., schedule of occupants), and this kind of energy consumption is 

defined as the normal load in this study. And in a long period (e.g., more than one week), the 

building load forecasts would have great uncertainty due to the significant uncertainty in the 

long-period weather forecasts. Besides, the abnormal peak loads (e.g., due to extreme events) in 

a long period also have significant impacts on peak demand limiting. To achieve an effective 

demand limiting and maximize the actual cost saving in a month, the load uncertainty needs to 
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be considered sufficiently and properly. However, no existing study has considered the building 

load uncertainty from real-time weather forecasting uncertainty and uncertain peak loads in peak 

building demand limiting in the entire billing cycle of a month. 

As for peak demand management, different demand limiting control strategies have been 

developed to reduce monthly peak demands for commercial or non-residential buildings (T. Chen, 

2001; B. Cui et al., 2014; K. H. Drees & J. Braun, 1997; A. Hajiah & M. Krarti, 2012; G. P. 

Henze et al., 1997; G. P. Henze et al., 2004; K.-h. Lee & J. E. Braun, 2008; D. D. Massie et al., 

2004; S. Scalat et al., 1996; Y. Sun et al., 2013; P. Xu et al., 2005; Y. Zhang et al., 2007). These 

studies focus on the demand shifting/limiting control of the HVAC (heating, ventilation and air-

conditioning) systems, as a major part of the energy in commercial buildings is consumed by the 

HVAC systems (Y. Sun et al., 2013). Four different means have been widely used in the existing 

demand limiting/shifting control strategies concerning the HVAC systems. These means use the 

technologies including phase change material (PCM) (S. Scalat et al., 1996; Y. Zhang et al., 2007), 

the thermal energy storage (TES) (B. Cui et al., 2014; K. H. Drees & J. Braun, 1997; G. P. Henze 

et al., 1997; D. D. Massie et al., 2004), the building thermal mass (BTM) (T. Chen, 2001; K.-h. 

Lee & J. E. Braun, 2008; P. Xu et al., 2005), and the combination of TES and BTM (A. Hajiah 

& M. Krarti, 2012; G. P. Henze et al., 2004). However, most of the control strategies for demand 

limiting are conducted over a short period, e.g., one day rather than an entire billing cycle. These 

studies might not achieve the maximum cost saving due to the partial/complete offset between 

the peak demand cost reduction and the costs of associated limiting efforts in a month. And no 
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existing study has considered how to develop an optimal demand threshold for demand limiting 

control under load uncertainty over the billing cycle of a month.  

In actual building demand limiting control, small limiting capacity (e.g., using thermal storage) 

is preferred due to its low initial investment cost and low space cost. But demand limiting with 

small limiting capacity are very probable of a shortage of backup energy supply in the real-time 

demand limiting control. Currently, no existing study has concerned how to conduct real-time 

demand limiting control with small limiting capacity (e.g., using small-scale thermal storages) 

considering load uncertainty over the billing cycle of a month. 

To address the aforementioned issues, the research in this thesis focuses on developing an 

adaptive optimal monthly peak demand limiting (i.e., reduction) strategy considering load 

uncertainty for an individual building or buildings associated with a charging account. The major 

contributions include the development of a probabilistic load forecasting model for individual 

buildings, an optimal threshold resetting scheme for monthly peak demand limiting considering 

load uncertainty in a month and a proactive-adaptive demand limiting control scheme 

considering load uncertainty in a month with small storage capacities. 

In this study, active thermal storages integrated with the HVAC system and the billing structure 

in Hong Kong (with a high demand charge price) are adopted to illustrate the cost-benefit 

quantification of peak demand limiting. When using other approaches for demand limiting (e.g., 

indoor room temperature reset), modification should be made in the cost-benefit quantification 
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of peak demand limiting. Besides, this study can be widely applied for those regions, whose 

electricity billing structure contains the high demand charge price over the billing cycle. 

1.2 Aim and objectives  

The aim of this PhD project is to develop an adaptive optimal monthly peak building demand 

limiting strategy considering load uncertainty for individual buildings. The aim can be 

accomplished by addressing the following major objectives: 

1. To develop and validate a probabilistic normal load forecasting model for individual 

buildings considering weather forecasting uncertainty. The model parameters can be trained 

by using the historical building data (measured by the BMS (Building Management System)) 

and the HKO (Hong Kong Observatory) weather data. The developed load forecasting model 

is suitable for the applications of adaptive online decision-making and robust control of 

building energy systems.   

2. To develop and validate a probabilistic peak abnormal load forecasting model for individual 

buildings. The model parameters can be trained by using the historical building data. The 

developed load forecasting model is applicable for predicting the abnormal peak loads with 

significant fluctuations.   

3. To quantify the uncertainties of economic effect and the probability of success of 

implementing demand limiting over a billing cycle. This uncertainty quantification is the 

basis of decision-making for an optimal monthly limiting threshold.  
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4. To develop and validate an optimal threshold resetting scheme for peak demand limiting 

considering load uncertainty over the billing cycle of a month.  An optimal threshold 

resetting scheme is capable of identifying an adaptive optimal monthly limiting threshold 

under the constraints of building load uncertainty from input scenarios and the long limiting 

duration of a billing cycle. This adaptive optimal threshold would help reduce maximum or 

near-maximum monthly electricity bill for customers under the above constraints. 

5. To conduct sensitivity analysis of the effects of different means of demand limiting (reflected 

by demand limiting capacity, e.g., thermal storage capacity and limiting effort price, e.g., 

price of thermal energy use per kWh) and different electricity charge tariffs (e.g., demand 

charge price) on the monthly economic benefit using the developed optimal threshold 

resetting scheme for peak demand limiting in a month.   

6. To develop and validate a proactive-adaptive demand limiting control scheme for monthly 

peak demand limiting considering load uncertainty. This scheme is capable of resetting the 

limiting threshold online and proactively before using up the demand limiting capacity (e.g., 

thermal storage capacity).  

1.3 Organization of the thesis 

The thesis is divided into 8 chapters. Figure 1.1 shows the outline of the PhD study. 
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Figure 1.1. Outline of the PhD study. 

The main content of each chapter is presented as follows.  

Chapter 1: The background and motivation of the present research are outlined by describing 

the needs of probabilistic load forecasting and monthly peak demand limiting considering load 

uncertainty. The aim and main objectives are included in this chapter as well.  

Chapter 2: A comprehensive literature review is conducted on the state of the art of studies 

including building load prediction methods (both the deterministic and probabilistic prediction 

methods), different electric tariffs for demand limiting, existing demand limiting control 

strategies for buildings and decision-making for demand limiting under uncertainties. This 

chapter describes the research gaps which are intended to be bridged in this thesis as well.  
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Chapter 3: This chapter introduces the framework of the adaptive optimal monthly peak 

building demand limiting strategy. The building data preprocessing is also described in this 

chapter. Different methods for decomposing the load dataset are introduced and compared. The 

simple method for normalizing the decomposed load datasets is introduced.  

Chapter 4: This chapter presents the development of a new probabilistic building load 

forecasting model. Two basic function components are developed, including the probabilistic 

normal load forecasting and the probabilistic uncertain peak load (or abnormal peak load) 

forecasting. The probabilistic normal load forecasting model is built using the artificial neural 

network (ANN) and the probabilistic temperature forecast. The probabilistic abnormal peak load 

forecasting model consists of two models quantifying the probabilistic occurrence and magnitude 

of the peak abnormal differential load, respectively. The model parameter identification is also 

introduced. 

Chapter 5: This chapter presents an optimal threshold resetting scheme for monthly peak 

demand limiting considering load uncertainty. The needs and functions of this developed scheme 

are discussed and illustrated first. Two basic function components are developed and introduced, 

including the monthly demand limiting threshold optimization and the quantification of 

economic benefit and probability of success of implementing a demand limiting control. The 

approach for combining the two kinds of probabilistic load forecasts (i.e., normal load and peak 

abnormal load forecasts) is introduced. 



11 

 

Chapter 6: This chapter presents a proactive-adaptive demand limiting control scheme for 

monthly peak demand limiting with small-scale thermal storages considering load uncertainty. 

Three major functions of the scheme are introduced, respectively. The daily profile prediction is 

online updated based on a moving average prediction error. The online demand limiting threshold 

is updated based on the updated demand profile prediction and remaining storage capacity. Based 

on the updated online limiting threshold, the online demand limiting control is conducted.  

Chapter 7: This chapter presents the validation tests of the probabilistic load forecasting model, 

the optimal threshold resetting scheme and the proactive-adaptive demand limiting control 

scheme. In the validation of the probabilistic load forecasting model, the ANN model and the 

probabilistic models of occurrence and magnitude are trained and validated, respectively. 

Additionally, real-time application case studies are conducted to validate the probabilistic normal 

load forecasting model by different means of using the probabilistic weather forecasts. In the 

validation of applying the optimal threshold resetting scheme for monthly peak demand limiting, 

real-time case studies are conducted in two different seasons (winter and summer). Additionally, 

sensitivity analysis on the cost benefits of the developed scheme using different means of demand 

limiting and different electricity demand tariffs is also conducted. In the validation of applying 

the proactive-adaptive demand limiting control scheme for monthly peak demand limiting, case 

studies are conducted using small-scale thermal storages in two different seasons.    

Chapter 8: Main contributions and conclusions are summarized. Recommendations for the 

future study are presented as well.  
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CHAPTER 2 LITERATURE REVIEW 

As this research attempts to develop an adaptive monthly peak building demand limiting strategy 

considering load uncertainty, previous research works are reviewed on building load prediction 

methods, building demand limiting studies and methods, and demand limiting control under 

uncertainty. Section 2.1 presents the existing studies on building load prediction methods in two 

categories: deterministic load prediction and probabilistic load prediction. Section 2.2 presents 

the building demand limiting studies and methods in two major aspects: demand limiting under 

different electricity tariffs and existing demand limiting control strategies. Section 2.3 presents 

an overview of demand limiting control under uncertainty. A summary of the above research 

reviews is presented in Section 2.4.  

2.1 Building load prediction methods 

Building load prediction plays a significant role in the optimal planning and control for energy 

management systems in buildings. In the proceeding years, the conventional deterministic load 

prediction enables reliable and robust operation of building energy systems, which results in 

continuous services (e.g., cooling, heating and lighting) to occupants. The operations of building 

energy systems, e.g., scheduling and maintenance, can be carried out efficiently with accurate 

load forecast. Effective planning/design of building energy systems depends on the accurate load 

prediction as well, which can save thousands of dollars. 
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Moreover, great variability of building use and working conditions, weather conditions as well 

as extreme events often lead to significant fluctuations of electricity load on the demand side, 

which results in the needs of the peak load management (or demand limiting) (X. Xue et al., 

2014). These fluctuant loads are hard to predict deterministically, sometimes due to lack of 

knowing precise information about the model inputs, e.g., weather forecasts in a long forecasting 

horizon like a week. In this case, probabilistic load forecasting has attracted increasing attention 

due to its capability of providing more comprehensive information in the decision-making 

process (T. Hong & S. Fan, 2016). 

2.1.1 Deterministic load prediction methods  

The conventional deterministic load prediction/forecasting can be classified into three categories 

on the basic time interval, which is acceptable by most of the researchers and shown as follows.  

o Short-term load forecast (1 hour to 1 day or 1 week ahead); 

o Medium-term load forecast (1 month to 1 year ahead); 

o Long-term load forecast (1 year to 10 years ahead). 

The short-term load forecast is the major concern in the preceding and existing literature, due to 

its significant role in the scheduling of energy systems, secure and robust operation of energy 

systems, cost-effective system control in demand response programs. The medium-term load 

forecast can be used for efficient operation and maintenance of the building energy systems. The 
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long-term load forecast can be used for the energy system planning according to the future energy 

demand prediction and energy policies in the long term.  

In the building load forecasting load field, the peak load forecasting in individual buildings is a 

tough and significant issue. The literature on the building peak load forecasting is quite limited. 

Most of the previous studies on the peak load forecasting try to construct deterministic models 

on related information such as weather and historical load data. In 2001, the EUNITE 

competition was organized aiming to predict the daily maximum load of the next 31 days and 

several computational techniques (e.g., the support vector machine (B.-J. Chen & M.-W. Chang, 

2004), the hybrid artificial intelligence scheme (J. Nagi et al., 2008) and ANN) are used. 

However, the standard datasets provided in the EUNITE competition only contain the daily 

maximum load data and the daily average temperature data, which cannot be used for building 

(i.e., training) the load forecasting model consisting of significant abnormal peak loads. Recently, 

a least square method is used to predict the monthly peak load based on the historical load data 

(J. R. G. Sarduy et al., 2016), which also has difficulty predicting the abnormal peak load with 

good accuracy. In summary, available deterministic models have difficulties in forecasting 

abnormal peak loads with large fluctuations and little correlation with the weather condition   

2.1.2 Probabilistic load prediction methods 

Compared to the deterministic load forecasting, the probabilistic load forecasting is presented in 

the form of density, quantiles, or intervals (T. Hong & S. Fan, 2016). Recently, a tutorial review 

has summarized the significant development in the probabilistic electric load forecasting, 
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including notable techniques, methodologies and evaluation methods (T. Hong & S. Fan, 2016). 

It also concludes that three aspects or any two or three of them can be used to generate the 

probabilistic load forecasts:  

o Simulating input scenarios: An integrated probabilistic electric load forecasting is proposed, 

which involves the forecast combination of deterministic load forecasting models and 

temperature scenarios based probabilistic forecasting (J. Xie & T. Hong, 2016).  

o Use of probabilistic models (e.g., quantile regression): The probabilistic load forecasts are 

generated by performing quantile regression averaging on a set of sister deterministic 

forecasts and the proposed approach leads to dominantly better performance measured by the 

pinball loss function (B. Liu et al., 2017).  

o Converting deterministic forecasts into probabilistic forecasts by residual simulation: A model 

is presented for probabilistic forecasts of both magnitude and timing (P. E. McSharry et al., 

2005). 

However, most existing studies on the probabilistic load forecasting for buildings implement 

temperature scenarios generated from historical climate data, instead of the real probabilistic 

temperature forecasts, which do not make use of updated online information on future weather 

condition and cannot provide the best prediction of the building load. In addition, most of these 

studies are conducted on an aggregation level or system-level loads (Y. Wang et al., 2019). There 

are very few studies on probabilistic load forecasting for individual load profiles, which have 

large uncertainties and therefore difficult to be predicted. Recently, a probabilistic individual load 
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forecasting using pinball loss guided LSTM has been conducted for both residential and 

commercial buildings (Y. Wang et al., 2019). Also, the probabilistic forecasting of residential 

electricity consumption of a single household is conducted using the Gaussian Processes (D. W. 

van der Meer et al., 2018). However, these models are only for short-term probabilistic load 

forecasting or probabilistic load forecasting of a residential building and neglect the uncertainty 

of peak load. As for individual commercial/non-residential buildings, the individual load 

uncertainty significantly depends on the uncertain peak load and the weather forecasting 

uncertainty (for that the HVAC load is highly related to weather conditions). And up to now, 

there exist very few existing studies for developing probabilistic forecasting models of uncertain 

building peak loads over the billing cycle of a month. 

2.2 Building demand limiting studies and methods 

Building demand limiting control refers to restricting the peak demand of a building in such a 

way that the maximum demand does not exceed the pre-defined demand in response to the high 

demand charge tariff. In most tariff mechanisms, high peaks contribute to a higher portion of 

electricity price. In Hong Kong, the bill mainly consists of two parts. One is the charge for the 

monthly electrical peak demand (e.g., 120 HK$/kVA), which refers to the maximum energy 

consumed in a demand interval (i.e., 30 min) for an entire month; the other one is the cost for the 

overall energy consumption in the month (e.g., 0.6 HK$/kWh). Figure 2.1(A) shows the recent 

monthly demand profile of a typical office building in Hong Kong, and Figure 2.1(B) shows the 

corresponding load duration curve. It can be seen that if the demand was controlled during the 
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5% of the period, there would be a large decrease in the monthly peak demand, and even more 

dramatic reduction of the monthly electricity charge.  

 

Figure 2.1. A typical office building in Hong Kong with: (A) a typical monthly electricity 

demand profile and (B) the corresponding the load duration curve in Aug/2015. 

Most of the demand limiting control issues in residential buildings can be categorized as an 

optimal scheduling problem (J. H. Yoon et al., 2014). In contrast, demand limiting control in 

commercial buildings and other non-residential buildings involves more complex demand 

management and attracts more attention (D.-c. Gao & Y. Sun, 2016). In commercial buildings, 

peak demand limiting could breed significant economic benefits to both building owners at the 

electricity demand side and utilities at the electricity supply side. The owner of a commercial 

building is charged by both the total amount of electricity it consumes and the peak demand over 

the billing cycle. Different demand usage profiles are treated with different electric tariffs by the 

utility company, which results in different means of demand limiting according to their economic 

benefits. Demand limiting control of the commercial sector is driven by electric tariffs and 
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achieved through optimizing the operation schedules and controls of the systems/devices. 

2.2.1 Demand limiting under different electricity tariffs 

The electric load balancing issue at the demand side can be relieved according to different 

electricity tariffs. These electricity tariffs can automatically induce the customers to limit the 

peak electric loads during the on-peak period. Several electric tariffs embedded in the demand 

response programs have already been developed and applied to alter their energy usage behaviors. 

With these tariffs, building electric demands can be limited based on the occupants’ own 

considerations (e.g., maximum cost saving). A brief introduction is presented on different 

electricity pricing mechanisms herein.   

o Time of use (ToU) denotes that the electricity prices are set for specific periods of the day, 

e.g., on-peak period and off-peak period. ToU aims to stimulate building owners to shift their 

power usage from the on-peak period to the off-peak period for economic benefits. Meanwhile, 

it helps the electrical grid to improve its load factor and reduce the system generation capacity.  

o Critical peak pricing (CPP) denotes that the ToU pricing is in effect but with high prices for 

peak demand hours/days when these prices could be several times of usual prices. CPP is 

different from the peak demand charge. The latter accounts for the kVA value consumed by 

the end-users over the billing cycle. The CPP could result in a quite different demand profile 

through demand limiting control, compared to that according to the ToU pricing.  

o Real-time pricing (RTP), also called dynamic pricing, denotes that the electricity prices might 
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change as often as hourly or even in a shorter time step (e.g., 15 min). The RTP is usually 

announced one day ahead or a few hours ahead. The actual power profile after the 

implementation of demand limiting under the day ahead RTP could be unusual and affect the 

RTP pricing in the next day.   

o Direct load control (DLC) program denotes that the electrical utilities own the right to directly 

regulate the amount of power of the specific building energy systems at certain times based 

on the previous signed agreements/contracts. The DLC is usually conducted during the on-

peak periods with high demand or emergency situations of the electrical grid. 

o Demand side bidding (DSB) program denotes that end-users provide their availabilities in 

demand reduction quantities and the corresponding expected economic benefits in advance, 

e.g., one day ahead or one hour ahead. Once the electricity market accepts the bid, the end-

users are expected to reduce peak demand as promised and will receive the corresponding 

payments. Otherwise, they will be penalized for breaking the promise to guarantee a certain 

amount of demand reduction. The DSB involves the short-term discrete alterations into 

individual load profiles of the end-users, while other electric tariffs for demand limiting 

involve continuous and permanent alterations into the load profiles. 

2.2.2 Existing demand limiting control strategies  

As aforementioned, the demand limiting control in commercial buildings is more complex and 

attracts more attention due to its significant economic benefits. As reported from the International 
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Energy Agency (IEA), peak demand management in commercial buildings could account for an 

annual $10-$15 billion for the U.S. market (S. B. Sadineni & R. F. Boehm, 2012). Moreover, the 

energy usage in the commercial sector increases at a higher speed than that in other sectors. In 

some high-density urban areas, e.g., Hong Kong, a large share of the total electricity (e.g., 60%) 

is consumed by commercial buildings, in which the HVAC systems account for about 50% (R. 

Qi et al., 2012).  

The total electric demand/load of a commercial building can be further divided into two major 

categories: inelastic demands and elastic demands. Generally, it is contributed by various 

building service systems including HVAC systems, lightings, lifts/elevators and other electrical 

equipment (C. Yan et al., 2012). Normally, electricity loads of lightings, electrical equipment, 

lifts and other appliances can be categorized as sheddable loads. In contrast, the electricity loads 

of HVAC systems are categorized as controllable loads which are possible to be changed via 

demand management. Load shedding and load shifting are two major means used for peak 

demand management. Load shedding control reduces peak building demand by turning off non-

essential electric loads. Load shifting reduces peak building demand by shifting the on-peak load 

to off-peak time is more commonly-used for peak demand management. 

To reduce the peak building demand, different demand limiting control strategies have been 

developed. These studies focus on the demand shifting/limiting control of the HVAC (heating, 

ventilation and air-conditioning) systems, as a major part of the energy in commercial buildings 

is consumed by the HVAC systems (Y. Sun et al., 2013). Moreover, thermal storages can be 
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solely used or combined with the HVAC systems to reduce fluctuations of daily demand profiles 

further and achieve more peak demand reduction. Four different types of thermal storages have 

been widely used, i.e., the phase change material (PCM) (S. Scalat et al., 1996; Y. Zhang et al., 

2007), the thermal energy storage (TES) (B. Cui et al., 2014; K. H. Drees & J. Braun, 1997; G. 

P. Henze et al., 1997; D. D. Massie et al., 2004), the building thermal mass (BTM) (T. Chen, 

2001; K.-h. Lee & J. E. Braun, 2008; P. Xu et al., 2005), and the combination of TES and BTM 

(A. Hajiah & M. Krarti, 2012; G. P. Henze et al., 2004). 

Optimal limiting control strategies using HVAC systems 

Building automation provides a convenient way for the supervisory and optimal controls of the 

devices/systems in conducting peak building demand management. In commercial buildings, it 

is simple and takes little efforts to conduct demand management in lightings, electrical 

appliances, escalators and elevators. For instance, proper interaction between the artificial light 

and the daylight can reduce the electric demand in the lighting systems. In contrast, it is more 

complex to reduce power demands in the HVAC systems and the amount of the corresponding 

demand reduction could be far larger. The optimal control of the HVAC systems in commercial 

buildings is more complicated than that in other building systems. 

Energy saving of the HVAC systems can be achieved by two major approaches: the global 

temperature adjustment and the HVAC system adjustment. The global temperature adjustment is 

carried out by resetting building zone temperature setpoints during the demand limiting periods. 
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HVAC system adjustment is conducted via the chiller quantity, duct static pressure set-point, fan 

quantity and so on to satisfy different demand reduction quantities as required. 

o Global temperature adjustment (GTA) allows building operators to adjust the space 

temperature set-points for an entire facility by a quest from a specific location. In field tests, 

GTA is demonstrated to be an effective control strategy for building demand limiting (M. 

A. Piette et al., 2004). In practice, the power consumption of the HVAC systems in 

commercial buildings is significantly determined by the indoor thermostat set-points (N. 

Wang et al., 2013).Figure 2.2 illustrates the control logic of indoor air temperature set-

point resetting strategy to limit the peak demand. In this case, the set-point at the kth time 

step is continuously updated according to the actual power demands of the chiller plant. 

This control strategy has the capability of achieving even reduction of service level among 

all zones and is easy and automatic to activate via remote signals and manually by building 

operators. 

 

Figure 2.2. Schematics of the PID control algorithm of demand limiting for indoor air 

temperature set-point reset (Y. Sun et al., 2010). 
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o Chiller consumes a significant share of the total electricity and has great potential in peak 

demand limiting. For instance, the power demand of chillers might dramatically increase 

during the precooling/morning start period. In such a period, the aggregated peak demand and 

high peak demand charges are derived. Therefore, the optimal start control and sequencing 

control of chillers are essential in the daily operation of the HVAC systems to restrict peak 

demand in commercial buildings. Different demand profiles could result from different 

combinations of the operating number of chillers and precooling lead time (Y. Sun et al., 2010). 

Identifying the optimal operating number of chillers is an efficient way to conduct electric 

demand limiting when a certain amount of demand is needed to be reduced. Green scheduling 

for chillers and thermal storages was adopted to achieve both higher COP by improving the 

PLR of chillers and the peak demand reduction. 

o Duct static pressure (DSP) set-points can be reduced for peak demand limiting without any 

sacrifice of the indoor thermal comfort. This is due to the fact that the DSP set-points are 

higher than actual demands and the openings of variable air volume (VAV) boxes approach to 

be fully closed. But the reduction of the DSP set-points would result in some VAV terminal 

boxes fully open due to the extremely low DSP set-points. 

o Fan quantity reduction can reduce the power demands of air-conditioning systems by shutting 

down some of the operating air delivery fans. As this approach might speed up the retained 

fans for the VAV system and brings the burden to these fans, it is solely recommended for the 

constant air volume (CAV) system, not the VAV system.   
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o Fan variable frequency drive limit can reduce the power demands of air delivery fans by 

slowing down the fan’s variable frequency drives (VFD). Generally, two major approaches 

are used for the fan’s VFD limit. The first one is to limit the speed of the VFD at a fixed 

percentage. The second one is to limit the speed of the VFD at a fixed percentage lower than 

the VFD% prior to the curtailment.   

Onsite generation such as the CCHP (combined cooling, heating and power) systems can 

significantly reduce the peak demand and total energy consumption (P. J. Mago & A. K. Hueffed, 

2010; K. Siler-Evans et al., 2012) as well. It was reported that using cogeneration could achieve 

13% peak demand reduction and 16% total energy consumption reduction while using 

cogeneration together with thermal storages could achieve 23% peak demand reduction and 21% 

total energy consumption reduction (K. Khan et al., 2004). 

Building automation system (BAS) is an effective energy management system in the commercial 

buildings, which allows both the local control and supervisory control of the energy systems. 

BAS functions to not only record the specific energy information such as heating/cooling loads 

of buildings and the power demands of other devices/systems for further analysis but also to 

conduct the optimal controls of electric demands in different levels, i.e., buildings, systems and 

system components. With the help of the information and communication technologies, BAS can 

conduct the overall optimization in both the power supply and demand sides by considering the 

power reliability, energy efficiency and economic benefits. An agent-based building energy 

simulation process was demonstrated to interact with the aggregate load profile of individual 
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buildings and the electricity prices of the grid (F. Zhao et al., 2010). The building energy usage 

behaviors and power demand reduction potentials that are greatly sensitive to electricity prices 

can significantly affect the aggregate effect of the demand response. 

Optimal limiting control strategies using thermal storages 

Recently, thermal storages are regarded as one promising technology for peak demand limiting 

in commercial buildings, which also treated as supplementary sources when integrating with 

renewable energies (M. Ban et al., 2012; P. Tatsidjodoung et al., 2013). The optimal control of 

thermal storages is a significant issue in peak demand management since building thermal 

demand is considered as one of the potential building power demand responses. Generally, 

thermal storages in commercial buildings can be categorized into two categories: passive thermal 

storages (e.g., building thermal mass and decentralized PCM) and active thermal storages (e.g., 

ice storage, water storage and centralized PCM). The passive thermal storages are usually 

controlled with limitations from the indoor/outdoor conditions. In contrast, the active thermal 

storages can be controlled on the basis of a stable control variable, e.g., a fixed temperature for 

energy charging/ discharging, which is free from the constraints of the indoor/outdoor conditions.  

Building thermal mass 

Existing studies and applications of the building (thermal) mass (BTM) mainly focus on two 

functions, i.e., night precooling and diurnal peak demand reduction, which are driven by the 

different electricity usage costs during day and night and primarily stimulated by the ToU prices 
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and/or CPP prices (Y. Sun et al., 2013). The charge control strategies of the BTM during the 

precooling period and the discharge control strategies of the BTM during the on-peak period 

significantly affect the cooling load profile, the power demands of the HVAC systems and the 

corresponding total energy cost. For instance, the peak load can be effectively reduced by 25% 

of the cooling capacity by implementing the precooling strategy (K. R. Keeney & J. E. Braun, 

1997). Moreover, the indoor air temperature could be maintained at the lower temperature 

boundary of the comfort region during the office hours and allowed to float to the upper-

temperature boundary during the peak hours (P. Xu et al., 2004). Based on this strategy, the 

chiller power was reduced by 80%-100% without causing any thermal discomfort and complaints. 

Detailed precooling tests were carried out in eleven buildings, and it was reported that 15%-30% 

peak demand reduction was achieved during peak hours (R. Yin et al., 2010). Most of the control 

strategies for demand limiting was conducted over a short period, e.g., one day. These strategies 

did not consider the tradeoff between the peak demand reduction and the total used energy cost 

over the billing cycle. This tradeoff might contribute to no economic benefits based on how much 

this tradeoff could be. Considering such a tradeoff, a power demand limiting strategy was 

developed based on the prediction of the building monthly peak demand, 8.51%-10.45% of the 

electricity cost saving could be achieved through peak demand limiting via the BTM (Y. Sun et 

al., 2010). Figure 2.3 illustrates a typical precooling and discharging control strategies of the 

BTM during the unoccupied and occupied periods, respectively. The indoor air temperature set-

point is reset to a low value aiming to store cold energy in the BTM and then reset to a high value 

to release that stored cold energy.  
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Figure 2.3. Indoor air temperature set-points of (A) conventional night setup control strategy; 

(B) precooling and demand limiting strategy (K.-h. Lee & J. E. Braun, 2008; Y. Sun et al., 

2013). 

As demand limiting using the BTM depends on the variations of the indoor air temperature, the 

actual performance of demand limiting is constrained by several factors such as the performance 

of the HVAC systems, the thermal capacitance of the BTM, the electricity pricing structure, 

occupancy thermal comfort, weather conditions, etc. Due to these constraint factors, it is more 

complicated to develop control strategies of the BTM compared with the active thermal storages. 

To relieve such complexity, the active thermal storages combined with the passive thermal 

storages for peak demand limiting were investigated (G. P. Henze et al., 2004; G. Zhou et al., 
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2004). Results showed the combined use of the active and passive thermal storages for demand 

limiting could save energy cost up to 26% compared with the case without the active thermal 

storage. Moreover, the predictive optimal control of active and passive thermal storages is also 

significant for the building peak load management due to the fact that building loads suffer the 

uncertainties from the weather conditions, special events and especially the forecasting models 

(G. P. Henze, 2005; S. Liu & G. P. Henze, 2004; S. Morgan & P. Moncef Krarti PhD, 2010).   

Ice and water storages 

Generally, both ice and water storages are implemented as the centralized thermal storages to 

achieve peak demand limiting. In the U.S., the peak demand cost could be reduced by 27%-31% 

by using ice storage in different climates (F. Sehar et al., 2012). As for employing the chilled 

water storage, the chiller capacity and peak demand could be decreased by 50% and 31.2% 

respectively (S. Boonnasa & P. Namprakai, 2010). Figures 2.4 and 2.5 illustrate the operation 

principle of a typical thermal storage system for the purpose of cooling. The thermal storages 

usually charge the cold energy during the off-peak time and discharge the cold energy during the 

on-peak time to achieve cooling load shifting/ peak demand limiting. It is worth mentioning that 

the power demand of the HVAC systems usually depends on their provided cooling loads. Hence, 

the power demand limiting of the HVAC systems is determined by the cooling demand limiting 

of the systems.  
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Figure 2.4. Schematics of charging or discharging processes using the thermal storage system 

(Y. Sun et al., 2013). 

 

Figure 2.5. Storage capacity based control strategies of the thermal storage system for peak 

demand limiting (Y. Sun et al., 2013). 

Different optimal control strategies and algorithms have been developed to improve the 

performance of the ice/water storage systems (K. H. Drees & J. E. Braun, 1996). However, most 

of these optimal control strategies are mainly implemented on day-ahead electricity prices and 

operation management. These control strategies/algorithms might not fulfill the requirements of 

peak demand limiting in a long period (e.g., a month), which concerns a different electricity 
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billing structure and the issue of compromise between the peak demand reduction and 

accumulated limiting efforts in the long period. 

Phase change material 

Phase change materials (PCM) are considered as a promising energy storage on the basis of four 

major functions: utilizing the free cooling at night for daily peak cooling load limiting, reducing 

diurnal temperature fluctuations concerning the indoor thermal comfort, narrowing the 

difference between the on-peak and off-peak loads of electricity/energy demand and saving the 

operation cost of building energy systems under specific tariffs e.g., ToU and CPP (W. A. Qureshi 

et al., 2011; A. Waqas & Z. U. Din, 2013; Y. Zhang et al., 2007). Many studies have been 

conducted on the modeling and optimal control of the building integrated PCM. An idealized 

model for peak load shifting and a simplified EC-model have been respectively developed for 

investigating the indoor thermal performance, and the results showed that developed models 

were capable of representing the thermal characteristics of the PCM (A. Waqas & Z. U. Din, 

2013; N. Zhu et al., 2010). Studies also pointed out that the occupancy and ventilation patterns 

could significantly influence the energy performance of the PCM-enhanced envelope (B. M. 

Diaconu, 2011). It was reported that 67% reduction during the chiller peak-time operation could 

be achieved by implementing the PCM tank with free-cooling (B. P. Walsh et al., 2013). In the 

application of PCM into the air supply side of the HVAC systems, three different operation modes 

(i.e., charging, ordinary and discharging operations) are respectively presented based on the 

specific requirement (M. Yamaha & S. Misaki, 2006). It is worth mentioning that the indoor air 
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temperature and the phase change temperature are the major variables for the 

charging/discharging control of the building integrated PCM.  

2.3 Demand limiting control under uncertainty  

The operation/control processes of building energy systems for demand/load management are 

irrevocably affected by uncertainty, with the stochastic nature of climate conditions and human 

behavior. The definition of uncertainty is regarded as “any deviation from the unachievable ideal 

of completely deterministic knowledge of the relevant system” by Walker et al.(W. E. Walker et 

al., 2003).  

In a computational model, the uncertainties can be categorized into two locations: model-

inherent uncertainty and parameter uncertainty. Models are an abstraction of reality in the form 

of a simplified mathematical representation. Any insufficient knowledge about the specific 

physical processes presented in a model could contribute to the model-inherent uncertainty (L. 

Uusitalo et al., 2015). In terms of the model-inherent uncertainty, there is no generic 

methodology to deal with such uncertainty due to the model-specific nature (E. Rajabally et al., 

2002). It is even more difficult to deal with the model uncertainty for energy system models since 

energy models are claimed to be non-validatable by several authors (S. Pfenninger et al., 2014; 

J. M. F. Rager & F. Maréchal, 2015). Due to these facts, this thesis will not consider model-

inherent uncertainty. In terms of model parameter uncertainty, it corresponds to the process of 

assigning values to the model’s input parameters and might be derived due to lack of knowledge, 

unreasonable assumptions, etc. with regards to the parameters’ real values. This type of 
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uncertainty has been the focus of most studies related to the domain of optimal building energy 

system controls (e.g., for demand management or peak demand limiting). This thesis will also 

focus on this type of uncertainty. However, quite few existing studies on demand limiting 

consider the uncertainty in the operation/control action.  

Based on the uncertainty quantification techniques, such as uncertainty analysis and sensitivity 

analysis, modelers can better comprehend the behavior of the model under uncertain conditions. 

Instead of making a single operation/design decision for energy systems, these techniques 

provide more information for modelers to make decisions themselves. Therefore, demand 

limiting under load uncertainty is based on the optimization principles and techniques for 

optimization under uncertainty. There are two main representatives for optimization under 

uncertainty, i.e., stochastic programming (SP) and robust optimization (RO), which are presented 

as follows. A general review for the optimization methods under uncertainty is presented in (N. 

V. Sahinidis, 2004). In addition, reviews on the application of optimization methods under 

uncertainty into the energy systems can be found in (M. Aien et al., 2016; A. Soroudi & T. 

Amraee, 2013; Y. Zeng et al., 2011).   

Stochastic programming 

Generally, stochastic programming (SP) is a commonly-used method of optimization under 

uncertainty. Stochastic programs are mathematical programs, in which some of the parameters 

suffer uncertainty. The basic assumption in SP is that uncertainty is probabilistic, and the 
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probability distributions of the parameter are known or can be estimated. With such probability 

distributions, the optimization for a measure of performance can be conducted using different 

criteria from the Decision Theory as follows (J. R. Birge & F. Louveaux, 2011).  

Expectation criterion is the most common criterion in stochastic programming, which would 

appeal to risk-neutral decision-makers (G. Mavromatidis et al., 2018). The expectation value is 

represented as the weighted average of the possible values of the parameter. 

Maximum criterion is very conservative and risk-averse and would appeal to the pessimistic 

decision-maker, which uses the maximum possible value of the parameter. 

Minimum criterion, in full contrast to Maximum criterion, presents the point of an extremely 

optimistic and risk-seeking decision-maker, who seeks to minimize the adjusted threshold in the 

best situation and ignores the possibility of the extremely worst situation.  

Hurwicz criterion seeks a compromise between the extremely pessimistic criterion and the 

extremely optimistic criterion, which is applicable for neither too optimistic nor too pessimistic 

decision-makers. The Hurwicz criterion weighs the Maximum criterion and the Minimum 

criterion using w and (1-w) as weights. Where, w represents the decision-maker’s optimism level. 

(1-w) represents the decision-maker’s pessimistic level.  

Value-at-Risk (VaR) criterion is also a risk-averse decision-making criterion. Compared to the 

aforementioned Maximum criterion, the VaR criterion is less conservative and considers the 

probability of the worst situation for the hourly threshold adjustment. The VaRα is defined as the 
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adjusted threshold, which corresponds to the α quantile and will be exceeded with a probability 

of (1-α) %. Where α is a given value in the range of [0,1]. Figure 2.6(A) shows the VaRα value 

for the hourly adjusted threshold (△PDset,adj) distribution. When α equals to 0, the VaR criterion 

is equal to the Minimum criterion, while when α equals to 1, the VaR criterion is equal to the 

Maximum criterion.   

Conditional Value-at-Risk (CVaR) criterion is an additional risk measure for risk-averse 

decision-making (R. T. Rockafellar & S. Uryasev, 2000), which takes an average of the extreme 

values in the tail of the distribution of the hourly adjusted threshold, beyond the VaR value. Given 

a value α (0≦α≦1), the CVaRα is defined as the expected value of the hourly possible adjusted 

thresholds that are larger than the VaRα. Figure 2.6(B) shows the CVaRα value for the hourly 

adjusted threshold (△PDset,adj) distribution. It can be seen that the decision-maker use the CVaRα 

value for hourly threshold adjustment according to the average effect of the (1-α)•100% worst 

situations at the tail of the △PDset,adj distribution, instead of the VaRα value at the α quantile.  
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Figure 2.6. Definitions of (A). CVaRα and (B). VaRα for the hourly adjusted threshold 

(△PDset,adj) distribution. 

The main disadvantage of the stochastic programming is that it requires the probabilistic 

information for each uncertain parameter in the form of either scenario with associated 

probabilities or a probability distribution. However, such information might be difficult or even 

impossible to obtain. 

Robust optimization 

Robust optimization is a relatively new approach for optimization under uncertainty, which is an 

alternative to stochastic programming and can address the main drawback associated with 

stochastic programming. Instead of probabilistic information, robust optimization only requires 

a set-based representation of uncertainty, usually in the form of an interval around the nominal 

value. An overview of robust optimization can be referred to (A. Ben-Tal et al., 2009; D. 
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Bertsimas & A. Thiele, 2006). It aims to optimize the objective function against worst-case 

realizations of the unknown-but-bounded uncertain parameters (A. Thiele et al., 2009). The 

drawback of this approach could lead to overly conservative solutions (D. Bertsimas & M. Sim, 

2004). 

2.4 Summary 

This chapter presents a review on building load prediction methods, building demand limiting 

studies and methods, and demand limiting control under uncertainty. From the above review, the 

following research gaps are identified: 

i. Research studies on probabilistic load forecasting for individual buildings considering real-

time weather forecasting uncertainty and uncertain peak loads and monthly peak building 

demand limiting control considering load uncertainty over the billing period of a month are 

seriously insufficient and need more efforts.    

ii. Most existing studies on the probabilistic load forecasting for buildings implement 

temperature scenarios generated from historical climate data, instead of the real probabilistic 

temperature forecasts, which do not make use of updated online information on future 

weather condition and cannot provide the best prediction of the building load. There are 

limited studies on probabilistic load forecasting for individual building load profiles, but 

they are only applicable for short-term probabilistic load forecasting or a residential building.  

In terms of uncertain building peak loads (vital to peak demand limiting), no existing study 



37 

 

considers them in developing probabilistic forecasting models over the billing cycle of a 

month. 

iii. Most existing studies on building demand limiting control strategies are conducted over a 

short period, e.g., one day rather than an entire billing cycle. These control strategies might 

not achieve the maximum cost saving when the peak demand charge is a major factor over 

the billing cycle, due to the fact that the partial/complete offset is not considered between 

the peak demand cost reduction and the costs of associated limiting efforts over a billing 

period. Moreover, no existing study has considered the building load uncertainty in peak 

building demand limiting over the billing cycle of a month.  

iv. In the real-time building demand limiting control over a period, a small limiting capacity 

(e.g., using small-scale storages ) is preferred but could lead to the shortage of backup energy 

supply for peak demand limiting when the actual peak demands are much larger than the 

predicted peak demands. In the situation of very limited capacity, proactive-adaptive control 

is needed for peak demand limiting before using up the storage capacity. No existing study 

has considered the peak building demand limiting under the situation of demand limiting 

duration of a billing cycle (e.g., a month), load uncertainty and small-scale thermal storages 

simultaneously. 
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CHAPTER 3 FRAMEWORK OF ADAPTIVE OPTIMAL 

MONTHLY PEAK BUILDING DEMAND LIMITING 

STRATEGY AND BUILDING DATA ACQUISITION 

This chapter presents the overall framework of the proposed adaptive optimal monthly peak 

building demand limiting strategy together with building data acquisition. Section 3.1 introduces 

the overall framework. Section 3.2 describes the building and data acquisition concerned in 

model training and validation case studies of the models and strategies developed.  

3.1 Framework of adaptive optimal monthly peak building demand limiting 

strategy  

The overall framework of the developed adaptive optimal peak building demand limiting strategy 

is illustrated in Figure 3.1. It comprises three major components: the building load forecasting 

model, the optimal threshold resetting scheme and the proactive-adaptive demand limiting 

control scheme. The building load forecasting model is developed to forecast the probabilistic 

loads based on the weather forecast and calendar information, which includes two basic functions: 

the probabilistic normal load forecasting and the probabilistic uncertain peak load (or abnormal 

peak load) forecasting. The optimal threshold resetting scheme is developed to identify the 

optimal limiting threshold based on the forecasted probabilistic demand profiles, which includes 

the quantification of uncertain economic benefits (i.e., cost savings) of implementing a demand 

limiting control and the monthly demand limiting threshold optimization. The proactive-adaptive 
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demand limiting control scheme is developed to online update the limiting threshold for online 

demand limiting control, which includes the online update of the demand profile prediction, the 

online demand limiting threshold reset and the online demand limiting control. The adaptive 

optimal monthly peak demand limiting strategy works in an adaptive manner over the billing 

cycle of a month and starts again at a new billing cycle.  

 

Figure 3.1. The overall framework of the adaptive optimal peak demand limiting strategy. 
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3.2 Description of the building and data acquisition 

Description of the building 

An educational building, i.e., Phase 7, on the campus of The Hong Kong Polytechnic University 

(in Hong Kong within the sub-tropic climate zone), is selected in the study and shown in Figure 

3.2. It is equipped with different research facilities, laboratories, classrooms, lecture theaters and 

staff offices. The gross floor area is 26,264 m2.  

 

Figure 3.2. An educational building (named Phase 7) on the campus of The Hong Kong 

Polytechnic University. 

Data acquisition 

The facility management office (FMO) of the campus uses the BMS (building management 

system) to monitor and control building energy systems. The electricity consumption of a campus 

building can be recorded at the 1-minute interval based on a particular communication protocol, 
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e.g., the BACnet. The electricity demand is measured via the power metering system in the 30-

minute interval, which is the average weighted value of power demands in 30 minutes and also 

used to charge the monthly peak demand by the CLP company in Hong Kong.      

In Hong Kong, the peak load (demand) of commercial buildings usually occurs during the on-

peak time (i.e., from 9:00 AM to 21:00 PM, excluding Sundays and public holidays), which 

results in a critical issue for peak demand limiting and contributes to the high monthly electricity 

cost. For simplicity and forecast precision, the historical datasets only during the on-peak time 

(i.e., office hour) are used for model training and validation tests, and the load spikes from 

chillers’ starting in the morning before 8:00 AM are not considered in this study. There are two 

reasons for this choice. Firstly, these spikes occur during the off-peak time, during which the 

demand charge price is much lower than that during the on-peak time in Hong Kong. Secondly, 

these load spikes are not the effective causes of actual monthly peak loads based on analyzing 

the practical load profiles of many buildings. The electrical load profile of the Phase 7 building 

shows a seasonal variation and uncertain peak loads in each month, as shown in Figure 3.3. 

Moreover, the daily electrical demand/load profiles of the Phase 7 building in both 1-min and 

30-min intervals show daily variation and abnormal peak loads during office hours on different 

workdays, as shown in Figure 3.4. In Hong Kong, the monthly peak billing demand is based on 

30-min average demand. Once the 1-min peak demands are well controlled, the monthly peak 

billing demand will be well limited. 
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Figure 3.3. The electrical load profile of the Phase 7 building in the year 2013. 

 

Figure 3.4. 1-min and 30-min average electrical demand profiles of the Phase 7 building during 

office hours on typical workdays.  

1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

Time (hour)

L
o

a
d

 (
k

V
A

)



43 

 

The weather forecast from the Hong Kong Observatory (HKO) includes the deterministic 

outdoor dry-bulb temperature and relative humidity forecasts at the 1-hour interval and the 

probabilistic daily maximum and minimum temperature forecasts in the 1-day interval. The 

forecast horizon for these deterministic forecasts is 9 days, while that for these probabilistic 

forecasts is 14 days. In each month, the 9-day weather forecast data reported daily by the HKO 

are recorded daily. These 1-hour interval weather forecasts are used to forecast building loads at 

the 1-hour time interval. As outdoor temperature and relative humidity during the on-peak time 

are much stable at each hour, the forecasted peak load at the 1-hour time interval is assumed to 

equal that at 30-min time interval. 

3.3 Summary 

This chapter introduces the framework of the adaptive optimal monthly peak building demand 

limiting strategy and the building data acquisition. The developed strategy includes three major 

functions: the probabilistic building load forecasting, the optimal threshold resetting scheme and 

the proactive-adaptive demand limiting control scheme.    
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CHAPTER 4 DEVELOPMENT OF PROBABILISTIC LOAD 

FORECASTING MODEL 

This chapter presents the development of a probabilistic load forecasting model for buildings. 

This model is capable of quantifying load uncertainties derived from weather forecasting 

uncertainty and abnormal peak load. Section 4.1 introduces the data preprocessing for model 

building. Section 4.2 introduces the modeling approach for probabilistic load forecasting. In 

Section 4.3, a probabilistic normal load forecasting model is built using the artificial neural 

network (ANN), which uses the probabilistic weather forecast and the calendar information. In 

Section 4.4, a probabilistic peak abnormal differential load forecasting model is built using 

statistical methods to quantify two major parameters: occurrence and magnitude. Section 4.5 

introduces the model parameter identification approaches.  

4.1 Data preprocessing-load dataset decomposition method 

To train a building load model with satisfactory prediction accuracy, it is necessary to preprocess 

the raw data to fulfill the needs in the model training process. In this study, the original load 

dataset needs to be decomposed into the normal load dataset and the abnormal load dataset for 

model training. The normal load is mainly affected by outdoor weather conditions and general 

space usage schedule, which would not experience much change in magnitude comparing its 

neighboring loads. The abnormal load is affected by not only outdoor weather conditions and 

space usage schedule but some unpredictable extreme events. Two commonly-used methods (i.e., 
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the linear regression (LR) and the local outlier factor (LOF)) are first introduced. The LR method 

can decompose the abnormal loads which have little correlation with the outdoor weather 

conditions among the whole load dataset, but it has weakness in detecting the abnormal loads in 

the local time series load dataset (such as load data in a day). The LOF method can well detect 

the discontinuous abnormal load from its neighboring loads, but it might fail when a group of 

abnormal loads occurs continuously. Therefore, taking the advantages of both methods, a hybrid 

method integrating the LR and the LOF is proposed to decompose the original load dataset.    

4.1.1 Linear regression 

In the decomposition of the load dataset using the LR method, the sensitivity analysis is firstly 

conducted using the Pearson correlation (J. Benesty et al., 2009) between the load and each 

weather variable (dry-bulb temperature, relative humidity, and enthalpy). Next, the datasets of 

the load together with the selected sensitive weather variable are clustered according to the hour 

of the day, and then the linear regression model is built between the two variables in each cluster. 

Clustering the load data by time period is to consider the fact that the dominating factors on the 

load are not only the weather but also the pattern of activities which are regarded to be time 

dependent. Finally, the Kernel density estimation (KDE) function is used to analyze the residuals 

between the actual loads and the estimated loads in each cluster and decompose the abnormal 

loads. 

The enthalpy represents the combined weather effects of the outdoor dry-bulb temperature and 

humidity. It is worth noticing that the sensitivity analysis was conducted between the load and 
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each weather variable (i.e., T, RH, and h) in kth order based on the Pearson correlation coefficient, 

which is widely used in the measure of the linear relationship between two variables (J. Cohen 

et al., 2013). The enthalpy is found to be the best representative weather variable, as shown in 

Table 3.1, when only one is to be selected. Table 3.1 shows that the enthalpy in the second order 

is the most sensitive to the load, with the largest Pearson coefficient of 0.914. Hence, the linear 

regression model is built between the load and the enthalpy in the second order in each cluster. 

Table 4.1. Computed Pearson correlation coefficients between load and each weather variable 

 T T2 T3 RH RH2 RH3 h h2 h3 

Pearson 

coefficient 

0.876 0.880 0.870 0.246 0.211 0.177 0.910 0.914 0.902 

To obtain the estimates of the loads which are highly correlated to the outdoor weather conditions, 

a linear regression model in each cluster is established as expressed by Eq. (3.1). Then, the 

residual εt between the actual load and the estimated load is calculated using Eq. (3.2). 

 𝐿𝑡
′ = a0 + a1ℎ𝑡

2 + a2ℎ𝑡  (4.1) 

 𝜀𝑡 = 𝐿𝑡 − 𝐿𝑡
′  (4.2) 

where, 𝐿𝑡
′

 represents the estimated hourly load at the time t using the linear regression model. 

a0, a1, and a2 are the constant coefficients, which can be identified by the least square method 

using the historical data. Lt is the hourly actual load at the time t. 
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To decompose the abnormal loads from normal loads, the actual loads with a large discrepancy 

with the estimated loads are separated by analyzing the residuals using the Kernel density 

estimation function. The Kernel density estimation function is a non-parametric estimate of the 

distribution shape (B. J. Worton, 1989), as expressed by Eq. (3.3). Where the bandwidth hbw is 

optimized and identified using Eq. (3.4) (B. W. Silverman, 1986).  

 𝑓ℎ𝑏𝑤
(𝜀) =

1

𝑛ℎ𝑏𝑤
∑ 𝐾(

𝜀−𝜀𝑖

ℎ𝑏𝑤
)𝑛

𝑖=1   (4.3) 

 ℎ𝑏𝑤 = (
4�̂�5

3𝑛
)

1

5
  (4.4) 

where, ε1, ε2, …, and εn are the random residual samples. n is the sample size. K (•) is the Kernel 

smoothing function. hbw is the bandwidth. �̂� is the standard deviation of the residual samples. 

The actual loads, with their corresponding residuals out of the 95% confidence interval of the 

KDE function, are decomposed as the abnormal loads in each cluster. Finally, the decomposed 

abnormal loads of all clusters are united as the total abnormal load dataset. 

4.1.2 Local outlier factor 

In the decomposition of load dataset using the local outlier factor (LOF) method, the LOF value 

of each time series load is firstly calculated. Then all LOF values of loads are analyzed using the 

empirical cumulative distribution function (ECDF) to decompose the abnormal loads.  

The LOF method is a classic outlier detection strategy (M. M. Breunig et al., 2000). With the 

LOF method, the anomaly degree of the load Lt in the dataset is measured with the LOF value 
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(J. Wang & X. Su, 2011), as given by Eq. (3.5). 

 𝐿𝑂𝐹(𝐿𝑡) =
∑ 𝑙𝑟𝑑𝑘(𝑖) 𝑙𝑟𝑑𝑘(𝐿𝑡)⁄𝑖∈𝑁𝑘(𝐿𝑡)

|𝑁𝑘(𝐿𝑡)|
 (4.5) 

where, lrdk(i) is the local density the object i from its neighbors. lrdk(Lt) is the local density of 

the load Lt in its k-distance neighborhood Nk(p). |Nk(p)| is the size of Nk(p). k is the number of the 

minimum points in the neighborhood, typically set to be not less than 10 (M. M. Breunig et al., 

2000). LOF(Lt) reflects the degree of the load Lt as a local outlier. A value of approximately 1 

indicates that the load at the time t is very close to its neighbors and thus not an abnormal load, 

while values significantly larger than 1 indicate abnormal loads. 

To decompose the abnormal loads with the larger LOF values, all loads’ LOF values are analyzed 

with the empirical cumulative distribution function (S. Coles et al., 2001). Let (x1, …, xn) be the 

random values (i.e., loads in this study) with the common cumulative distribution function F(l). 

Then the empirical cumulative distribution function is defined by Eq. (3.6). 

 �̂�𝑛(𝑙) =
number of elements in the sample≤𝑙

𝑛
 (4.6) 

where, n is the number of all the random values (loads). l is a particular value of the random 

values (loads). When n approaches ∞, �̂�𝑛(𝑙) approaches F(l). The LOF value significantly larger 

than 1 corresponds to the larger cumulative probability, which means that the abnormal loads 

with the larger LOF values have larger cumulative probabilities. Hence, the actual loads with 

their LOF values’ cumulative probability over 95% are decomposed as the abnormal load dataset. 
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4.1.3 Hybrid method developed 

Assuming that Set A is the abnormal load dataset decomposed using the LR method and Set B 

is the abnormal load dataset decomposed using the LOF method, the combined abnormal load 

dataset is the union of the two sets, as expressed by Eq. (3.7). After the combined abnormal load 

dataset is decomposed from the original load dataset, the gaps in the original time series load 

dataset are filled by the “recovered normal loads” using the linear interpolation method, as 

expressed by Eq. (3.8), for the convenience of using the dataset. 

 𝑨 ∪ 𝑩 = {𝑥: 𝑥 ∈ 𝑨 or 𝑥 ∈ 𝑩} (4.7) 

 
𝐿𝑔𝑎𝑝,𝑡−𝐿𝑡−𝑖

𝑖
=

𝐿𝑡+𝑗−𝐿𝑔𝑎𝑝,𝑡

𝑗
 (4.8) 

where, Lgap,t is the gap in the original time series load dataset at the time t after load dataset 

decomposition. Lt-i and Lt+j are the two nearest neighboring time series loads from the Lgap,t. The 

original time series load dataset with the abnormal loads replaced by their recovered normal 

loads is regarded and used as the updated normal load dataset.  

After the decomposition of the load dataset, the abnormal differential load is defined as the 

deviation between the abnormal load and the updated normal load at the same time. Then, the 

dataset of the abnormal differential load with a positive value is regarded as the peak abnormal 

differential load dataset. The decomposed datasets of normal load and peak abnormal differential 

load are used to train and validate the normal load forecasting model and peak abnormal load 

forecasting model, respectively. 
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After the decomposition of the original load dataset, the datasets for model training are 

normalized using Eq. (3.9), which helps reduce data redundancy and improve data integrity. 

Where y is a variable. yi is a random value of the variable y. ynoz,i is the normalized value. max(y) 

and min(y) are the maximum and minimum values in the dataset, respectively. 

 𝑦𝑛𝑜𝑧,𝑖 =
𝑦𝑖−min(𝒚)

max(𝒚)−min (𝒚)
 (4.9) 

4.2 The modeling approach for probabilistic load forecasting 

The approach of the proposed probabilistic load forecasting model is illustrated in Figure 4.1. It 

comprises two basic components for two major functions: the probabilistic normal load 

forecasting and the probabilistic peak abnormal differential (PAD) load forecasting. For the 

probabilistic normal load forecasting, a model is built using the artificial neural network (ANN), 

which uses the probabilistic weather forecasts (e.g., Tmin and Tmax) from the Hong Kong 

Observatory and the calendar information. For the probabilistic PAD load forecasting, statistical 

methods are used to quantify two major probabilistic characteristic parameters, i.e., the 

probability of the occurrence and the probability distribution of magnitude. The probabilistic 

forecasts of the occurrence and magnitude of the PAD load are generated based on the calendar 

information.  

https://en.wikipedia.org/wiki/Data_redundancy
https://en.wikipedia.org/wiki/Data_integrity
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Figure 4.1. Components and steps of the proposed probabilistic load forecasting model. 

This model considers the weather forecasting uncertainty and uncertain peak load, which are the 

major factors for uncertainties in individual buildings. Two basic load forecasts can be obtained 

using this model: the hourly probabilistic normal load forecast and the hourly probabilistic peak 

abnormal differential load forecast. They are regarded independent with each other, due to the 

fact that the normal load is mainly affected by outdoor weather conditions while the peak 

abnormal differential (PAD) load is usually the result of extreme and random events In this study, 

the probabilistic load forecast concerns the probabilistic forecasts of the normal load and the 

peak abnormal differential load, as only the abnormal peak load is involved in peak demand 

management. In an actual load simulation of a particular moment, the probabilistic load forecast 

might equal to the normal load forecast (absence of abnormal load) or the normal load forecast 
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plus the peak abnormal differential load forecast. 

In this thesis, the term ‘load’ represents the building electric load. The term ‘normal load’ 

represents the load which has no significant deviation from its neighboring loads in magnitude. 

The term ‘abnormal load’ represents the load, which has a significant deviation from its 

neighboring loads in magnitude. The term ‘abnormal peak load’ represents the load has a 

significant and positive deviation from its neighboring loads in magnitude. The term ‘peak 

abnormal differential load’ is defined as the differential between the abnormal peak load and the 

normal load at a time step. 

4.3 Probabilistic normal load forecasting model 

The electricity consumption in commercial buildings is dominantly affected by outdoor weather 

conditions and space usage. The relationship between the load and the outdoor weather variables 

can be described using various models, e.g., the linear regression model. But the influence of 

space usage on the electric load is difficult to quantify as space usage needs to be described by 

many variables. When only the data of building electricity use and weather variables are 

accessible, it is difficult to construct white (physical) models concerning space usage schedule. 

However, the calendar information potentially reflects space usage schedule, e.g., the operation 

schedule of a building and schedule of uses/occupants. Hence, the ANN, a data-driven method, 

is adopted to model the relationship between the load and the outdoor weather variables together 

with calendar variables.  
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4.3.1 ANN model 

The ANN is a self-adaptive machine learning method with few priori assumptions, which is also 

a universal functional approximator (G. Zhang et al., 1998). Compared to other computational 

techniques, the ANN shows superior performance due to its better capability of mapping the 

relationship between the inputs and output(s) without making complex mathematical 

formulations(L. V. Fausett, 1994). ANN model extracts the non-linear relationship among the 

model inputs by different network learning mechanisms using training data (M. Q. Raza & A. 

Khosravi, 2015). ANN modeling carries out the required output starting the input vectors without 

considering the assumption of any determinate relationship between the inputs and the output (A. 

N. Celik & T. Muneer, 2013). Hence, ANNs work as “black box” employing distinct features 

such as input, hidden and out layers of neurons, training functions for the learning process form 

a set of past data, transfer functions between layers that allow information flow (C. Renno et al., 

2016). There are different types of ANNs, among which the back-propagation (BP) neural 

network is the most popular one (M. Cilimkovic, 2015) and used in this study. BP neural network 

uses the gradient method to change the weight values and bias values quickly to reduce errors. 

The typical BP neural network contains three layers, the input layer, the hidden layer, and the 

output layer. This section describes the process to build the deterministic normal load forecasting 

model using the three-layer BP neural network. The BP neural network contains many learning 

algorithms, and it is difficult to select an optimal one for a certain problem. In this study, the 

Levenberg-Marquardt (LM) learning algorithm is selected due to its higher computational speed 
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in the convergence of the network training compared with other optimization algorithms. Like 

other optimization algorithms, it is difficult to distinguish whether the LM reaches the global 

minimum or not. The LM method is selected in this study due to facts that it offers a better 

learning process and is one of the most widely applied algorithms (M. Benedetti et al., 2016). In 

fact, if the test accuracy of the ANN model using LM is acceptable, the difference between the 

local minimum and global minimum would be minimal and can be ignored.   

The selected ANN structure and algorithm are used for the predictive ANN model to forecast the 

hourly deterministic normal load. This ANN structure contains three layers, the input layer, the 

hidden layer and the output layer. The detailed ANN model settings are described as follows. 

Input layer: In the ANN model, inputs are the outdoor dry-bulb temperature (Tt), relative 

humidity (RHt), and the calendar variables (i.e., hour of the day (Ht), day of the week (Dt), and 

month of the year (Mt)). In this study, only the on-peak time is considered. Therefore each 

calendar variable has certain ranges (Ht (9, 10, …, 20), Dt (1, 2, …, 6) and Mt (1, 2, …, 12)).  

Hidden layer: In the BP network, the number of hidden neurons determines how well a problem 

can be learned. The trial and error approach is usually used to obtain the right number of hidden 

neurons since there is no science to this issue. In general, the number of hidden neurons might 

be evaluated using the following empirical formula (S. A. Kalogirou, 2001): 

 𝑚 =  
1

2
(inputs + outputs) + √number of training patterns (4.10) 

Output layer: The output of the ANN model is the normal load (Lt) at the same time series as 
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set in the inputs. 

Learning algorithm: The Levenberg-Marquardt (LM) learning algorithm is chosen, which is 

known as trainlm in the MATLAB toolbox. 

Training and testing samples: The historical datasets of the input and output variables are used 

as the training and testing samples with 7/8 and 1/8 of the datasets, respectively. In the simulation 

tests of this study, the proposed ANN model is built in the MATLAB environment using the 

Neural Network Toolbox.  

When the ANN deterministic load forecasting model is available, the probabilistic normal load 

forecast is generated by importing the probabilistic forecast of the input variables into the model. 

As the outdoor dry-bulb temperature is one of the most dominant contributors to the variability 

and quantity of electricity consumption in commercial/ non-residential buildings among all the 

input variables and its probabilistic forecast is available from the weather forecast, the 

probabilistic forecast of the temperature is chosen to quantify the probability distribution of the 

normal load forecast in this study.  

4.3.2 Hourly probabilistic temperature forecast 

Currently, there is no available hourly probabilistic temperature forecast for application. In this 

study, it is generated based on the accessible daily probabilistic maximum/minimum temperature 

forecasts and the accessible hourly deterministic temperature forecast. The Hong Kong 

Observatory (HKO) provides the probabilistic forecasts of the daily minimum and maximum 
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temperatures in the web plot format respectively (as shown in Figure 4.2), which are digitized 

into time series data, in this study, using WebPlotDigitizer (A. Rohatgi). The probabilistic 

forecast of the daily minimum (or maximum) temperature with a particular value (i.e., Tmin=Ti) 

represents the probability (in percentage) of the daily minimum (or maximum) temperature to 

occur in the range of plus/minus one degree around that temperature value (i.e. [Ti-1, Ti+1]).  

 𝐹𝑇𝑚𝑖𝑛
(𝑇𝑖) = 𝑃(𝑇𝑚𝑖𝑛 ≤ 𝑇𝑖 + 1) − 𝑃(𝑇𝑚𝑖𝑛 ≤ 𝑇𝑖 − 1) (4.11) 

where, FTmin is the forecasted probability of the daily minimum temperature with a particular 

value from the HKO weather forecast. P is the probability of a variable. Tmin represents the 

probabilistic forecast of the daily minimum temperature, and Ti is a particular value of Tmin. 

Meanwhile, the probabilistic forecast of the daily maximum temperature from the HKO weather 

forecast is expressed in the same way as Eq. (4.2).  

 

Figure 4.2. An example (web image) of the probabilistic forecast of the daily minimum 

temperature - HKO weather forecast. 
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The aforementioned probabilistic forecast of the daily minimum temperature from the HKO 

weather forecast is different from the commonly used cumulative probability. Hence, the 

probabilistic forecast of the daily minimum temperature is firstly transferred into the cumulative 

distribution function (CDF) of the daily minimum temperature forecast with a one-degree 

temperature interval. Then both the 1-99% quantile CDFs of the daily probabilistic minimum 

temperature forecast, and the daily probabilistic maximum temperature forecast are generated 

using the linear interpolation among the previously transferred CDF (with one-degree 

temperature interval). Afterward, the hourly probabilistic temperature forecast at the n% quantile 

at the hour h (Th,n%) is generated using the linear interpolation on the basis of the estimated 1- 

99% quantile CDFs of the daily minimum and maximum temperature forecasts (Tmin,n% and 

Tmax,n%), the daily deterministic minimum and maximum temperature forecasts (Tmin and Tmax) 

and the hourly deterministic temperature forecast at the hour h (Th ).    

With the estimated hourly probabilistic temperature forecast among all the quantiles (i.e., n% ∈ 

(1%, …, 99%)) at the hour h, the hourly probabilistic normal load forecast is generated at each 

quantile accordingly. To be specific, for each predicted quantile Th,n% of the temperature, the 

ANN load forecasting model is performed by replacing the deterministic value Th with the 

estimated probabilistic value Th,n%, and a probabilistic normal load Lh,n% is obtained accordingly. 

Based on the Hong Kong weather forecast duration, the 9-day ahead probabilistic temperature 

forecasts can be estimated and then inputted into the ANN model for 9-day ahead probabilistic 

load forecasts. 
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4.4 Probabilistic peak abnormal differential load forecasting model 

The peak abnormal differential (PAD) load is insensitive to the outdoor weather conditions but 

partially related to the calendar information. In addition, the PAD load usually occurs with a 

small probability, which means that the historical data of the PAD load are quite limited. Hence, 

a few years’ data of the PAD load are required to model the relationship of the PAD load 

characteristics (occurrence and magnitude) with calendar information. In this section, the 

probability distribution of the PAD load occurrence is firstly modeled using statistical analysis. 

Secondly, the probability distribution of the PAD load magnitude is modeled using one of the 

four commonly-used probability density functions (PDF) as listed later in this section, which is 

selected based on their fitness. 

4.4.1 Probabilistic model of occurrence 

The PAD load occurrence is highly related to the hour of the day, and the month of the year. 

Hence, the probabilistic model of the PAD load occurrence is used to forecast the probability of 

the PAD load occurrence ( 𝑃𝑃𝐴𝐷,𝑝𝑟𝑒
𝑚,ℎ

 ) based on the empirical probability of the PAD load 

occurrence (𝑃𝑃𝐴𝐷
𝑚,ℎ

), as given by Eq. (4.3). Where, 𝑃𝑃𝐴𝐷,𝑝𝑟𝑒
𝑚,ℎ

 represents the predicted probability 

of the PAD load occurrence at a specific time in a period. 𝑃𝑃𝐴𝐷
𝑚,ℎ

  represents the empirical 

probability of the PAD load occurrence based on the historical data. The superscript m and h 

represent the month and the hour, respectively. In this study, the model covers the office hours 

(12 hours a day) of an entire year (i.e., M=12，H=12). 



59 

 

             𝑃𝑃𝐴𝐷,𝑝𝑟𝑒
𝑚,ℎ = 𝑃𝑃𝐴𝐷

𝑚,ℎ  (𝑚𝑜𝑛𝑡ℎ: 𝑚 = 1 … 𝑀, ℎ𝑜𝑢𝑟: ℎ = 1 … 𝐻) (4.12) 

This probabilistic model of occurrence is built based on the assumptions that the PAD load occurs 

with the same probability at certain office hour of all workdays in a month. Here, a “relative PAD 

load occurrence frequency” is defined as the percentage of PAD load occurrence times at certain 

office hour in workdays among the total times of PAD load occurrence in the period of training 

(or historical) data. A “monthly PAD load occurrence probability” is defined as the ratio of the 

total times of PAD load occurrence to the total number of office hours in a month. Therefore, the 

PAD load occurrence probability at a certain hour h in a month m is calculated by multiplying 

the relative PAD load occurrence frequency and the monthly PAD load occurrence probability. 

4.4.2 Probabilistic model of magnitude 

Table 4.2. Detailed descriptions of the four commonly-used probability distribution functions 

Function Formula Coefficient description 

Normal 

distribution 
𝑓(𝑥; 𝜇, 𝜎2) =

1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  
μ is the mean parameter, and σ is the 

standard deviation parameter. 

Gamma 

distribution 
𝑓(𝑥; 𝛼, 𝛽) =

𝑥𝛼−1𝑒
(−

𝑥
𝛽

)

𝛽𝛼𝛤(𝛼)
 

α is a shape parameter, β is an inverse 

scale parameter, and Γ(α) is a 

complete Gamma function. 

Weibull 

distribution 
𝑓(𝑥; 𝑘, 𝜆) =

𝑘

𝜆
(
𝑥

𝜆
)𝑘−1𝑒−(𝑥 𝜆⁄ )𝑘

 
λ is the scale parameter, and k is the 

shape parameter. 
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Lognormal 

distribution 
𝑓(𝑥; ∅, 𝛾) =

1

𝑥√2𝜋∅2
𝑒

−
(ln (𝑥)−𝛾)2

2∅2  

∅ is the mean parameter of ln(x), and 

𝛾 is the standard deviation parameter 

of ln(x). 

The probability distribution of the PAD load magnitude is firstly fitted using four commonly-

used PDFs: i.e., Normal distribution, Gamma distribution, Weibull distribution and Lognormal 

distribution (M. Evans et al., 2000). To be specific, the training data of the PAD load magnitude 

(x) are used to fit its probability distribution (f(x)) using the four PDFs. The PDF offering the 

best fitness is selected as the probability distribution forecast model of the PAD load magnitude. 

Detailed descriptions of the four PDFs are presented in Table 4.1. 

4.5. Model parameter identification  

The parameters of the deterministic ANN load forecasting model and the probabilistic PAD load 

magnitude model are identified based on the model identification approaches and the 

preprocessed training datasets. These model identification approaches are presented in this 

section, while the preprocessing of the raw training data is presented in the next section.  

When training the ANN model, the weights and biases of the network are tuned to optimize the 

network performance (i.e., minimize the mean square error between the network outputs and the 

target outputs) using the steepest descent training algorithm (D. E. Rumelhart et al., 1985) by 

adopting the Neural Network Toolbox in MATLAB. The mean square error mse is calculated by 

Eq. (4.4). Where, za is the actual target output vector. z is the network output vector. 
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 𝑚𝑠𝑒 =
1

𝑁
∑ (𝒛𝑖

𝑎 − 𝒛𝑖)
2𝑁

𝑖=1  (4.13) 

In the training (fitting) of the probabilistic PAD load magnitude model, the parameters defining 

each PDF of the PAD load magnitude are calculated using the maximum likelihood method as 

presented in Table 4.2. 

Table 4.3. Detailed descriptions of the maximum likelihood method for parameter 

identification of each probability distribution function 

Function Identified parameter  Description 

Normal 

distribution 

𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1   Normal distribution parameters are 

evaluated using the maximum 

likelihood method. 
𝜎2 =

1

𝑛
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1   

Gamma 

distribution 

𝐿𝐿 = ln ∏ {ℎ(𝑥𝑖; 𝛼, 𝛽)}
𝑛

𝑖−1
 

Gamma distribution parameters are 

evaluated using the maximum 

likelihood method which 

maximizes the logarithm of the 

likelihood function. 

 = ∑ ln{ℎ(𝑥𝑖; 𝛼, 𝛽)}𝑛
𝑖−1  

Weibull 

distribution 

𝑘 = [
∑ 𝑥𝑖

𝑘ln (𝑥𝑖)𝑛
𝑖=1

∑ 𝑥𝑖
𝑘𝑛

𝑖=1

−
∑ ln (𝑥𝑖)𝑛

𝑖=1

𝑛
]

−1

  Weibull shape and scale 

parameters are calculated using the 

maximum likelihood method (D. 

Kececioglu, 2002). 

𝜆 = [
1

𝑛
∑ 𝑥𝑖

𝑘𝑛
𝑖=1 ]

1/𝑘

    

Lognormal 

distribution 

𝛾 =
1

𝑁
∑ ln (𝑥𝑖)

𝑁
𝑖=1   

Lognormal parameters are 

estimated using the maximum 

likelihood method without an 

iterative procedure. 

∅2 =
1

𝑁
∑ [ln(𝑥𝑖) − 𝛾]2𝑁

𝑖=1   
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After the parameters of the four fitted PDFs are identified, the Kolmogorov-Smirnov (K-S) test 

is introduced as the error metric to evaluate the fitness of each PDF (A. Clauset et al., 2009). The 

K-S error is based on the largest vertical difference between the C(l) and O(l), as expressed by 

Eq. (4.5). 

 𝐾 − 𝑆 𝑒𝑟𝑟𝑜𝑟 = max|𝐶(𝑙) − 𝑂(𝑙)| (4.14) 

where, C is the calculated cumulative distribution function for the PAD load below a particular 

value, based on the fitted PDF. O is the cumulative distribution function for the PAD load below 

the same value, based on the observed PAD load data. l is the concerned value of the PAD load. 

The smaller the K-S error is, the better the fitness of the PDF is. 

4.6 Summary 

i. This chapter introduces the development of the probabilistic load forecasting model for 

individual buildings. The major contents presented in this chapter are as follows. The 

building data preprocessing is presented, including the description of the building and data 

acquisition, the decomposition of load dataset and the data normalization. In the 

decomposition of load dataset, two commonly-used methods (i.e., the LR and LOF methods) 

are introduced and the hybridization of these two methods is adopted to decompose the 

original load dataset in this study. 

ii. A probabilistic normal load forecasting model is proposed for forecasting the uncertain 

normal loads in a building or buildings with a billing account, mainly affected by the 
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uncertain outdoor temperature forecast. This model is built using the artificial neural 

network (ANN), which uses the probabilistic weather (i.e., temperature) forecast and the 

calendar information. The hourly probabilistic temperature forecast is estimated based on 

the weather forecasts from the observatory.  

iii. A probabilistic peak abnormal differential (PAD) load forecasting model is proposed for 

forecasting uncertain peak loads in a building, mainly caused by extreme events. Two 

probabilistic models for the occurrence and magnitude of the PAD load are built using 

statistical methods. Four commonly-used PDFs are used to fit/train the probabilistic PAD 

load magnitude model. 

iv. The parameters of the ANN load forecasting model and the PAD load magnitude model are 

identified based on the model identification approaches and the preprocessed training 

datasets. 
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CHAPTER 5 DEVELOPMENT OF OPTIMAL THRESHOLD 

RESETTING SCHEME  

This chapter presents the optimal threshold resetting scheme for monthly peak building demand 

limiting considering load uncertainty, which involves two major functions as follows. The 

uncertain economic benefits (i.e., gains and losses) of a demand limiting control are quantified 

on the basis of probabilistic load forecasts. The optimal monthly limiting threshold is identified 

using the expectation metric based on the quantified economic benefits. The scheme optimizes 

the monthly limiting threshold, which is updated according to the ever-changing weather forecast 

and actual peak power use.   

Section 5.1 introduces the needs and functions of the optimal monthly demand limiting threshold. 

Section 5.2 presents an outline of the optimal threshold resetting scheme. In section 5.3, a 

commonly-used expectation metric is used to identify the optimal monthly demand limiting 

threshold, among a set of potential thresholds with corresponding quantified economic benefit. 

In Section 5.4, the conditional probability theory is adopted to combine the probabilistic normal 

load forecast and the probabilistic peak abnormal differential load forecast. In Section 5.5, the 

quantification of economic benefit and the probability of success of implementing a demand 

limiting control in a month is introduced. Moreover, the probabilities of nonactivation and failure 

of a demand limiting control in a month are quantified as well.  
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5.1 Needs and functions of adaptive optimal monthly demand limiting 

threshold  

There have been many studies on the control strategies using the HVAC systems with/without 

thermal storages, and one of the important and challenging issues is the identification of the 

optimal or practically effective and doable demand limiting threshold considering various 

constraints and uncertainties in a particular period, e.g., a billing cycle. Additionally, as the major 

factors (e.g., weather forecasts affecting the optimal achievable threshold) change from time to 

time (e.g., each day), the optimal limiting threshold needs to be adaptive to achieve the near-

maximum (or maximum) monthly cost saving. Therefore, this chapter focuses on how to identify 

an optimal limiting threshold for individual buildings considering load uncertainty over a month 

using an adaptive mechanism. 

Why adaptive optimal limiting threshold is needed and the typical scenarios 

As we all know, an uncertain gambling outcome (i.e., win, loss or draw) has to be faced when 

making a gambling decision. Similarly, an uncertain cost saving of demand limiting has to be 

faced when selecting a threshold for the demand limiting control over a billing cycle, largely due 

to load uncertainties. Hence, it is necessary to obtain an optimal or practically effective and 

doable limiting threshold to achieve the maximum or near-maximum cost saving. Moreover, as 

the major factors (such as the latest weather forecasts and the actual peak power use up to the 

current moment), which affect the optimal achievable threshold, change from time to time, the 

optimal or proper limiting threshold needs to be reset to achieve maximum or near-maximum 
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monthly cost saving.   

 

Figure 5.1. Demand, remaining limiting capacity and accumulated limiting efforts of vs 

limiting threshold in three typical scenarios when implementing monthly demand limiting. 

In this study, three typical scenarios of a monthly demand limiting control using active storage 

facilities considering uncertainty in a month are categorized and considered, i.e., nonactivation, 

success or failure, which are similar and corresponding to draw, win or loss in gambling 

respectively, as shown in Figure 5.1. Detailed descriptions of these scenarios are given as follows. 

The “nonactivation scenario” represents the case when a relatively high threshold is used and 

the peak demand limiting control is not activated over the billing cycle. In this case, the monthly 

peak demand remains below the limiting threshold, as shown in Figure 5.1(A). It achieves no 

peak demand reduction and requires no demand limiting effort, which is comparable to the “draw 

scenario” in gambling.  
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The “success scenario” represents the case when a moderate threshold is used and the peak 

demand limiting control is activated and successful. In this case, the limiting capacity is sufficient 

for demand limiting control over the billing cycle. The monthly peak demand is higher than the 

limiting threshold and the corresponding accumulated limiting effort does not exceed the limiting 

capacity, as shown in Figure 5.1(B). It achieves peak demand reduction successfully as expected, 

which is comparable to the “win scenario” in gambling.  

The “failure scenario” represents that case when a relatively low threshold is used and the peak 

demand limiting control is activated but fails. In this case, the limiting capacity is not sufficient 

for the need of demand limiting control in some days over the billing cycle. In these days, the 

monthly peak demand is much higher than the limiting threshold and the corresponding 

accumulated demand limiting effort exceeds the limiting capacity, as shown in Figure 5.1(C). It 

wastes all or most of the previous demand limiting efforts, which is comparable to the “loss 

scenario” in gambling. Moreover, at the moment of failure, the original low threshold is not 

meaningful anymore and the minimum meaningful/doable threshold is forced to the actual peak 

power use up to this moment. 

5.2 Outline of optimal threshold resetting scheme 

In this study, an optimal threshold resetting scheme is developed to determine and continuously 

update the optimal limiting threshold under load uncertainty, as presented in the earlier 

framework and shown in Figure 3.1. The optimal threshold resetting scheme includes the 

quantification of economic benefit (cost saving) and the probability of success of a demand 
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limiting control, and the monthly demand limiting threshold optimization. The probabilistic 

economic benefits can be quantified based on the forecasted probabilistic demand profiles (in 

Chapter 4). Then the optimal monthly limiting threshold is identified based on the quantified 

probabilistic economic benefits of different thresholds. The optimal threshold resetting scheme 

works in an adaptive manner each day (e.g., before office hour, 9:00), according to the updating 

frequency of weather forecasts in Hong Kong, over the billing cycle of a month. This adaptive 

manner (with receding time window) will take increasing confidence of identifying optimal 

monthly limiting threshold, for that load prediction uncertainty for the remaining days of the 

month becomes smaller when the number of remaining days becomes fewer. The monthly 

demand limiting threshold optimization is introduced in Section 5.3. The detailed quantification 

methods of cost-benefit and the probability of success are presented in Section 5.4. As there are 

many studies and methods on the use of HVAC systems and/or thermal storages for reducing 

building peak demands, the system and actual control are not the focus of this study.     

In this thesis, the term ‘monthly limiting threshold’ represents the threshold determined for peak 

demand limiting control, which is updated from time to time. The term ‘demand limiting effort’ 

represents the cost paid to achieve a certain demand reduction, which might be the auxiliary 

energy (e.g., thermal storage) and weighted cost due to the sacrifice of service quality (e.g., 

thermal comfort). 

5.3 Monthly demand limiting threshold optimization 

Load uncertainty results in uncertain results of cost saving when conducting demand limiting 
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control using a particular threshold in a month. To quantify the uncertain monthly cost saving, 

the expectation metric is used, which is the most common criterion in the stochastic 

programming and a commonly-used criterion appealing to many decision-makers (G. 

Mavromatidis et al., 2018). With the expectation metric, the optimal monthly limiting threshold 

is identified, which has the maximum expected value of the monthly cost saving among all 

potential thresholds, as given by Eq. (5.1). In addition, the expected value of monthly cost saving 

of demand limiting control using a particular threshold is estimated on the basis of the expected 

gain and loss in the success and failure scenarios respectively, as given by Eq. (5.2). 

 𝑃𝐷𝑠𝑒𝑡,𝑜𝑝𝑡 = max−1

∀ 𝑗∈[1,J]
(𝔼[𝐶𝑆𝑗]) (5.1)  

𝔼[𝐶𝑆𝑗] = 𝔼[𝐺𝑗] × 𝑃𝑠𝑢𝑐(𝑃𝐷set,𝑗) − 𝔼[𝐿𝑗] × 𝑃𝑓𝑎𝑖𝑙(𝑃𝐷𝑠𝑒𝑡,𝑗), 𝑃𝐷𝑠𝑒𝑡,𝑙𝑜𝑤 ≦ 𝑃𝐷set,𝑗 ≦ 𝑃𝐷𝑠𝑒𝑡,𝑢𝑝 (5.2) 

where, PDset,opt represents the optimal monthly limiting threshold for demand limiting control in 

the remaining days of a month, which should be not less than the actual peak power use up to 

the moment of decision-making. max-1 is the inverse function for computing the maximum value 

among a set of data. 𝔼 is the expected value of a variable. PDset,j is a particular threshold among 

a set of potential thresholds. PDset,low and PDset,up are the lower and upper boundaries of the 

potential threshold respectively. In this study, these two boundaries are selected simply as the 

mean values of the forecasted probabilistic demand profiles at the 50% and 97.5% quantiles, 

respectively. CSj represents the cost saving of demand limiting using PDset,j in the remaining days 

of a month. Gj represents the gain of demand limiting using PDset,j in the success scenario in the 
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remaining days of a month. Lj represents the loss of demand limiting using PDset,j in the failure 

scenario in the remaining days of a month. Psuc is the probability of success of implementing 

demand limiting using a particular threshold in the remaining days of a month. Pfail is the 

probability of failure of implementing demand limiting using a particular threshold in the 

remaining days of a month. J is the total number of potential thresholds. The expected gain (𝔼[𝐺𝑗]) 

and loss (𝔼[𝐿𝑗]) can be obtained as the weighted averages of the gains and losses (weighted using 

their corresponding probabilities) of all possible monthly peak demands when a particular 

threshold is used. 

5.4 Probabilistic load forecasting 

To determine the optimal monthly limiting threshold, the probabilistic forecast of uncertain 

building load is essentially needed. The previously developed probabilistic building load 

forecasting model in Chapter 4 is adopted to forecast the probabilistic demand profiles.  

Figure 5.2 shows how to combine these two load forecasts into the hourly load forecast. It can 

be seen that, at each hour, the normal load occurs with a particular magnitude, while the PAD 

load might occur with a particular magnitude or not occur. Based on the conditional probability 

theory, the probability of the hourly load with a particular value (Di(t)) is obtained, as given by 

Eq. (5.3). The probability of the normal load with a particular value (Dnorm,i(t)) is defined as the 

cumulative probability of that load (Dnorm,i(t)) to occur within a range of 1.0 kVA (i.e., ±0.5 kVA), 

as given by Eq. (5.4). Similarly, the probability of the PAD load with a particular value (DPAD,j(t)) 

is defined as the cumulative probability of that load (DPAD,j(t)) to occur within a range of 1.0 kVA 
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(i.e., ±0.5 kVA), as given by Eq. (5.5). 

𝑃(𝐷𝑖(𝑡)) = {
𝑃(𝐷𝑛𝑜𝑟𝑚,𝑖(𝑡)) × 𝑃(𝐷𝑃𝐴𝐷,𝑗(𝑡)) × 𝑃𝑃𝐴𝐷,𝑜𝑐(𝑡), 𝐷𝑖(𝑡) = 𝐷𝑛𝑜𝑟𝑚,𝑖(𝑡) + 𝐷𝑃𝐴𝐷,𝑗(𝑡)

𝑃(𝐷𝑛𝑜𝑟𝑚,𝑖(𝑡)) × (1 − 𝑃𝑃𝐴𝐷,𝑜𝑐(𝑡)),               𝐷𝑖(𝑡) = 𝐷𝑛𝑜𝑟𝑚,𝑖(𝑡)                       
 (5.3) 

      𝑃(𝐷𝑛𝑜𝑟𝑚,𝑖(𝑡)) = 𝑃(𝐷𝑛𝑜𝑟𝑚,𝑖(𝑡) − 0.5 ≤ 𝐷𝑛𝑜𝑟𝑚(𝑡) ≤ 𝐷𝑛𝑜𝑟𝑚,𝑖(𝑡) + 0.5)         (5.4)

      𝑃(𝐷𝑃𝐴𝐷,𝑗(𝑡)) = 𝑃(𝐷𝑃𝐴𝐷,𝑗(𝑡) − 0.5 ≤ 𝐷𝑃𝐴𝐷(𝑡) ≤ 𝐷𝑃𝐴𝐷,𝑗(𝑡) + 0.5)      (5.5) 

where, Di(t) is a particular value of the hourly probabilistic load forecast for time (hour) t. Dnorm,i(t) 

is a particular value of the hourly probabilistic normal load forecast for time t. DPAD,j(t) is a 

particular value of the hourly peak abnormal differential load forecast for time t. PPAD,oc(t) is the 

occurrence probability of the hourly PAD load for time t. Dnorm(t) is the hourly probabilistic 

normal load forecast for time t. DPAD(t) is the hourly peak abnormal differential load forecast for 

time t. 

 

Figure 5.2. Load combination schematic for the hourly probabilistic load forecast. 
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5.5 Quantification of economic benefit and probability of success of a demand 

limiting control   

Based on the forecasted probabilistic demand profiles, the economic benefit and the probability 

of success of implementing a demand limiting control using a particular threshold in a month 

can be quantified. Moreover, the probabilities of nonactivation and failure of implementing a 

demand limiting control should also be quantified. This is because these two possible scenarios 

affect the expected monthly cost saving together with the success scenario. Specifically, the 

expected cost benefit and the probability of each scenario are quantified.   

5.5.1 Nonactivation scenario  

Monthly nonactivation probability 

In the nonactivation scenario, all daily peak demands remain below the limiting threshold in the 

remaining days of a month. Therefore, the monthly nonactivation probability is regarded as the 

product of the daily nonactivation probability of all the remaining days, as given by Eq. (5.6). 

Here, the daily nonactivation probability represents the probability that the daily peak demand 

remains below the limiting threshold, as shown in Figure 5.3 and given by Eq. (5.7). Figure 5.3(A) 

illustrates the forecasted daily probabilistic demand profiles at different quantiles. Figure 5.3(B) 

illustrates the probability density of the daily peak demand and the daily nonactivation 

probability.  



73 

 

 

Figure 5.3. The mechanism for determining the daily nonactivation probability: (A) Forecasted 

probabilistic daily building demand profiles; (B) Probability density of the daily peak demand 

and daily nonactivation probability. 

 𝑃𝑛𝑜𝑛(𝑃𝐷𝑠𝑒𝑡,𝑗) = ∏ 𝑃𝑛𝑜𝑛
𝑑 (𝑃𝐷𝑠𝑒𝑡,𝑗)𝑁

𝑑=1  (5.6) 

 𝑃𝑛𝑜𝑛
𝑑 (𝑃𝐷𝑠𝑒𝑡,𝑗) = 𝑃(𝑃𝐷𝑑 ≤ 𝑃𝐷𝑠𝑒𝑡,𝑗), 1 ≦ 𝑑 ≦ 𝑁  (5.7) 

where, Pnon is the monthly nonactivation probability of implementing demand limiting using 

PDset,j in the remaining days of a month. N is the number of the remaining days of a month, 

including the current day. P is the probability of an event. 𝑃𝑛𝑜𝑛
𝑑   is the daily nonactivation 

probability of implementing demand limiting using PDset,j on the dth day. PDd is the daily 

probabilistic peak demand forecast on the dth day, which is regarded as the probabilistic 

demand/load forecast at the peak hour on the dth day. Here, the peak hour is simply taken as the 

hour that has the maximum expected value of the hourly probabilistic demand forecasts on one 

day. This simplification is mainly due to the fact that the monthly peak demand (at the 30-min 

time interval) is one of all the daily peak demands, which occur in a particular hour each day. 
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The superscript d represents a future day of a month. d=1 represents the current day. d=N 

represents the last future day of the month. 

As the probabilistic demand profiles account for K days ahead due to the limitation of the K-day 

weather forecast duration, the identified optimal limiting threshold based on the probabilistic 

demand profiles is effective in the future K days (K=9 in this study for current applications in 

Hong Kong). Actually, the number of remaining days (N) might be larger than the number of 

days for the weather forecast, K. In this case, the nonactivation probability in the remaining N 

days is assumed to equal that in the future K days. The identified optimal limiting threshold based 

on K-day ahead load forecast is preferable for monthly peak demand limiting, compared to the 

traditional threshold based on 1-day ahead load forecast. Because this traditional threshold is 

identified without considering the offset between overall limiting efforts and the peak demand 

reduction in K days and might result in significant ineffective limiting efforts.  

5.5.2 Success scenario  

Monthly success probability 

In the success scenario, all daily demand limiting efforts needed are not over the limiting capacity. 

The daily limiting effort using active thermal storages is assumed proportional to building 

electrical energy reduction during demand limiting, which can then be quantified based on the 

forecasted demand profile. Here, a critical quantile of daily demand profile is defined as the 

specific quantile, at which the daily demand limiting effort needed is equal to the limiting 
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capacity for demand limiting control using a particular limiting threshold, PDset,j. The peak 

demand of this critical quantile of daily demand profile is then the upper limit of the limiting 

threshold for success scenario. The corresponding value of this critical quantile is therefore 

chosen as the daily probability of both success and nonactivation scenarios (𝑃𝑠𝑢𝑐+𝑛𝑜𝑛
𝑑 (PDset,j)) 

under a limiting threshold PDset,j. The monthly success probability can be therefore calculated 

on the basis of this combined probability and the daily nonactivation probability, as given by Eq. 

(5.8). Where, Psuc is the monthly success probability of implementing demand limiting using 

PDset,j in the remaining days of a month. 

 𝑃𝑠𝑢𝑐(𝑃𝐷𝑠𝑒𝑡,𝑗) =  ∏ 𝑃𝑠𝑢𝑐+𝑛𝑜𝑛
𝑑 (𝑃𝐷𝑠𝑒𝑡,𝑗)𝑁

𝑑=1 − ∏ 𝑃𝑛𝑜𝑛
𝑑 (𝑃𝐷𝑠𝑒𝑡,𝑗)𝑁

𝑑=1  (5.8) 

Quantification of monthly gain 

In a particular success case, the monthly gain of a limiting control is determined by the difference 

between the reduction of peak demand cost and the extra total cost of accumulated limiting 

efforts in a month, as given by Eq. (5.9). The reduced electrical energy consumption during the 

demand limiting period is assumed as 0, for that there is an offset between the reduced energy 

consumption and the rebound effect after the demand limiting period. A peak demand (xi) is 

regarded as the demand of the same quantile at the peak hour in the remaining days. The 

corresponding accumulated limiting efforts are regarded as the sum of all the possible maximum 

daily limiting efforts needed. The probability of this particular monthly gain (Gj(xi)) is considered 

having the same probability of xi in the success scenario at that peak hour. 
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 𝐺𝑗(𝑥𝑖) = 𝑎 × (𝑥𝑖 − 𝑃𝐷𝑠𝑒𝑡,𝑗) − 𝑏 × ∑ ∆𝐸𝑑(𝑥𝑖, 𝑃𝐷𝑠𝑒𝑡,𝑗)𝑁
𝑑=1  (5.9) 

where, a is the unit price of the electricity demand. b is the unit price of the demand limiting 

effort using the active thermal storage. xi is a particular value of the monthly peak demand in the 

success scenario. △Ed is the possible maximum daily demand limiting effort under xi and PDset,j 

in the success scenario, which is assumed proportional (with the coefficient λ) to the 

corresponding daily electrical energy consumption reduction during the demand limiting period. 

In this study, the loss of storage is ignored, and then λ is assumed as 2.5 since the overall COP 

of the air-conditioning system assumed to be 2.5 (C. Yan et al., 2017). The daily electrical energy 

consumption can be calculated on the basis of the demand profile at a particular quantile. 

When the number (N) of remaining days is larger than the number of days for the weather forecast, 

K, the peak demand reduction in the remaining N days is assumed to equal that in the future K 

days. Moreover, the accumulated limiting efforts needed in the remaining N days are assumed to 

equal N/K times of those in the future K days.  

5.5.3 Failure scenario 

Monthly failure probability 

In the failure scenario, the monthly failure probability is complementary to the sum of the 

monthly nonactivation and success probabilities, as given by Eq. (5.10). Where Pfail is the 

monthly failure probability of implementing demand limiting using Pset,j in the remaining days 

of a month.  
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     𝑃𝑓𝑎𝑖𝑙(𝑃𝐷𝑠𝑒𝑡,𝑗) = 1 − 𝑃𝑠𝑢𝑐(𝑃𝐷𝑠𝑒𝑡,𝑗) − 𝑃𝑛𝑜𝑛(𝑃𝐷𝑠𝑒𝑡,𝑗)       (5.10) 

Quantification of monthly loss 

In a failure case, proactive control may simply force the limiting threshold to the minimum 

meaningful threshold after the limiting capacity runs out, as shown in Figure 5.4(A). However, 

such proactive adjustment of the limiting threshold might not be the choice for the most effective 

limiting control and result in less reduction of monthly peak demand when the possible maximum 

daily limiting effort in the remaining days is not considered. Therefore, a perfect adjustment of 

the limiting threshold is assumed and adopted to guarantee the future possible maximum daily 

limiting effort equal to the limiting capacity, as shown in Figure 5.4(B).   

 

Figure 5.4. Demand, remaining limiting capacity and accumulated limiting effort vs. limiting 

threshold in a failure case: (A) An imperfect proactive adjustment of limiting threshold; (B) A 

perfect proactive adjustment of limiting threshold. 
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The monthly loss is equivalent to the total cost of the accumulated previous limiting efforts below 

the new adjusted threshold, i.e., the ineffective energy reduction multiplied by the factor λ, as 

shown in Figure 5.4. A building model (S. Wang & X. Xu, 2006) is used to estimate the original 

hourly power use without implementing demand limiting control, based on the actual hourly 

power use in the condition with the implementation of the demand limiting control.  

5.6 Summary 

This chapter presents an adaptive optimal threshold resetting scheme for peak demand limiting 

under load uncertainty over the billing cycle of a month. As the load uncertainty is inevitable, 

the monthly peak demand limiting control using a deterministic limiting threshold has a high risk 

of nonactivation or even failure, which would result in no net cost saving or even negative one. 

In this situation, the developed scheme is very useful and can identify the optimal monthly 

limiting threshold in an adaptive manner. The major contents presented in this chapter are as 

follows. 

i. An expectation metric in the stochastic programming is used to identify the optimal limiting 

threshold among a set of potential thresholds based on the quantified probabilistic economic 

benefits of implementing demand limiting control using these thresholds. 

ii. The hourly probabilistic load forecast is obtained by combining the probabilistic normal load 

forecast and the probabilistic PAD load forecast according to the conditional probability 

theory.  

iii. The probabilities of the three typical scenarios (i.e., nonactivation, success and failure) of 
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demand limiting and the corresponding probabilistic gains and losses are quantified when a 

particular limiting threshold is used. Then, the effective decision for selecting a proper 

demand limiting threshold can be made on the basis of the operator’s preference on risks 

(i.e., the quantified probabilities). 
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CHAPTER 6 DEVELOPMENT OF PROACTIVE-ADAPTIVE 

DEMAND LIMITING CONTROL SCHEME  

This chapter presents the development of proactive-adaptive demand limiting control scheme for 

the real-time implementation of demand limiting under load uncertainty, which is based on the 

aforementioned optimal threshold resetting scheme. This scheme is capable of proactively 

resetting the limiting threshold online before using up the storage capacity when only small-scale 

storages are available. Section 6.1 presents the needs of proactive-adaptive demand limiting 

control scheme. Section 6.2 presents the proactive-adaptive demand control scheme, which 

includes three major functions. Section 6.3 presents the online update of daily demand profile 

prediction based on a moving average prediction error. Section 6.4 presents the online demand 

limiting threshold reset based on the updated remaining storage capacity and daily demand 

profile prediction. Section 6.5 presents the online demand limiting control using a small-scale 

active thermal storage. 

6.1 Needs of proactive-adaptive demand limiting control 

In the building demand limiting, small-scale storages are usually preferred, as a cost-effective 

option, due to the low initial investment cost and space cost. However, in practical real-time 

demand limiting control applications, small-scale storages could lead to the shortage of backup 

energy supply for peak demand limiting when the actual peak demands are much larger than the 

predicted peak demands. In the situation of limited storage capacity, proactive-adaptive control 
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is needed for peak demand limiting before using up the storage capacity, which can proactively 

reset the limiting threshold online based on the remaining storage capacity.  

6.2 Proactive-adaptive demand limiting control scheme 

 

Figure 6.1. Flowchart of the proactive-adaptive demand limiting control scheme.  

The proactive-adaptive demand limiting control scheme includes three major functions: the 

update of demand profile prediction, the online demand limiting threshold resetting and the 

online demand limiting control, as shown in Figure 6.1. The online update of demand profile 

prediction updates the daily demand profile prediction at the 1-hour interval, based on the 

moving average prediction error (ε). The online demand limiting threshold resetting updates the 

limiting threshold at the 1-minute interval, based on the remaining storage capacity (𝐸𝑇𝑆
𝑚𝑐) and 
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the updated daily demand profile prediction. The online demand limiting control is activated to 

discharge the active thermal storage (with the rate (𝑄𝑑𝑖𝑠
𝑚𝑐)) when the online measured demand 

(𝐷𝑎𝑐𝑡
𝑚𝑐 ) is over the current limiting threshold (𝑃𝐷𝑠𝑒𝑡

𝑚𝑐). This proactive-adaptive scheme works each 

day (e.g., during office hours, 9:00 - 21:00) based on the daily-updated optimal monthly limiting 

threshold from the developed optimal threshold resetting scheme in Chapter 5. 

6.3 Online update of daily demand profile prediction 

The probabilistic load forecasts can be obtained using the previous developed building load 

forecasting model. In this study, the expected hourly load/demand forecasts in an entire day are 

regarded to constitute the predicted deterministic daily demand profile. This is mainly because 

the expectation metric is a risk-neutral criterion for decision-making and is commonly-used in 

the decision-making area (G. Mavromatidis et al., 2018). The expected hourly load forecasts in 

the remaining hours of the day are updated on the basis of the moving average prediction error, 

as given by Eq. (6.1). The moving average prediction error is calculated at each hour of the day 

as the average difference between the actual power uses and the expected hourly demand 

forecasts in the previous three hours, as given by Eq. (6.2). The accuracy of the demand profile 

prediction for the remaining hours of one day significantly affects the estimated limiting effort 

needed for the day. This moving average difference method will help update the demand profile 

prediction each hour according to the real-time forecasting performance.  
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 𝐷𝐸𝑋𝑃(𝑡) = ∑ 𝐷𝑖(𝑡) ∗ 𝑃(𝐷𝑖(𝑡)) + 𝜀, (𝑡 = ℎ𝑐 , … , H) (6.1) 

 ε = (∑ 𝐷𝑎𝑐𝑡(𝑡)
ℎ𝑐−1
𝑡=ℎ𝑐−3 − ∑ 𝐷𝐸𝑋𝑃(𝑡)

ℎ𝑐−1
𝑡=ℎ𝑐−3 )/3  (6.2) 

where, DEXP(t) represents the expected hourly load forecast for time (hour) t. Di(t) represents a 

particular value of the hourly probabilistic load forecast for time t. P is the probability of an event. 

ε represents the moving average prediction error for updating the daily demand profile. hc 

represents the current hour. H represents the last hour of the demand limiting period. Dact(t) is 

the actual power use for time t.  

6.4 Online demand limiting threshold reset 

Based on the updated daily demand profile prediction, the demand limiting threshold is updated 

(or reset) online on the basis of the possible daily peak demand reduction, as given by Eq. (6.3). 

The possible daily peak demand reduction for the remaining time of a day can be estimated 

according to the updated daily demand profile prediction and the remaining storage capacity at 

the current step (i.e., minute), as given by Eq. (6.4). The remaining storage capacity at the current 

step can be obtained based on the recordings of the discharged thermal storage. 

 𝑃𝐷𝑠𝑒𝑡
𝑚𝑐 = max

𝑡∈[ℎ𝑐,H]
(𝐷𝐸𝑋𝑃(𝑡)) − 𝑃𝐷𝑅𝑒𝑑 (6.3) 

 𝑃𝐷𝑅𝑒𝑑 = 𝑓(𝐷𝐸𝑋𝑃(𝑡), 𝐸𝑇𝑆
𝑚𝑐), 𝑡 = ℎ𝑐, … , H  (6.4) 

where, 𝑃𝐷𝑠𝑒𝑡
𝑚𝑐  is the online limiting threshold at the current step, mc, which should be no less 

than the peak power use up to the current step. The superscript mc represents the current step. 
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PDRed is the estimated peak demand reduction when the remaining storage capacity equals the 

daily limiting effort for the remaining time of a day. 𝐸𝑇𝑆
𝑚𝑐 is the remaining storage capacity at 

the current step, mc

6.5 Online demand limiting control 

Based on the current threshold updated at the 1-min interval, the online demand limiting action 

is activated when the online measured demand (𝐷𝑎𝑐𝑡
𝑚𝑐 ) is over the online threshold (𝑃𝐷𝑠𝑒𝑡

𝑚𝑐). In 

such a case, a certain amount of the thermal energy is discharged in the rate of 𝑄𝑑𝑖𝑠
𝑚𝑐 to reduce 

the cooling load of the air-conditioning system (e.g., the chiller plant and the primary air unit). 

This discharged thermal energy is assumed proportional (assuming a constant overall COP of the 

air-conditioning system, λ) to the corresponding power use reduction of the air-conditioning 

system during the demand limiting period. Therefore, the actual building power use reduction 

(∆𝑃𝑜𝑤𝑎𝑐𝑡
𝑚𝑐) is estimated, as given by Eq (6.5). 

 ∆𝐷𝑎𝑐𝑡
𝑚𝑐 = ∆𝑃𝑜𝑤𝑎𝑐𝑡

𝑚𝑐 = {

𝑄𝑑𝑖𝑠
𝑚𝑐

𝜆
,  𝐷𝑎𝑐𝑡

𝑚𝑐 >  𝑃𝐷𝑠𝑒𝑡
𝑚𝑐  

0,      𝐷𝑎𝑐𝑡
𝑚𝑐 ≤  𝑃𝐷𝑠𝑒𝑡

𝑚𝑐  
  (6.5) 

where, 𝐷𝑎𝑐𝑡
𝑚𝑐  is the actual building power use at the current step, mc. ∆𝐷𝑎𝑐𝑡

𝑚𝑐  is the actual building 

power use reduction at the current step, mc. 𝑄𝑑𝑖𝑠
𝑚𝑐  represents the discharge rate of the active 

thermal storage at the current step, mc. ∆𝑃𝑜𝑤𝑎𝑐𝑡
𝑚𝑐  is the actual power use reduction of the air-

conditioning system at the current step, mc, which is regarded to equal the actual building power 

use reduction during the demand limiting period. λ is the coefficient between the used active 

thermal energy and the corresponding electrical energy consumption reduction from air-
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conditioning systems during the demand limiting period. In this study, the loss of storage is 

ignored, and λ is assumed as 2.5 since the overall COP of the air-conditioning system is assumed 

to be 2.5 (C. Yan et al., 2017).    

6.6 Summary 

This chapter presents a proactive-adaptive demand limiting control scheme for monthly peak 

demand limiting under load uncertainty. The major contents presented in this chapter are as 

follows. 

i. A proactive-adaptive demand limiting control scheme is proposed to update the limiting 

threshold online and conduct online demand limiting control. This scheme consists of three 

major components: the online update of daily demand profile prediction, the online demand 

limiting threshold reset and the online demand limiting control. 

ii. The predicted daily demand profile is updated online on the basis of the moving average 

prediction error, which can reduce the short-term fluctuation response of the prediction 

errors.  

iii. The demand limiting threshold is reset online on the basis of the possible daily peak demand 

reduction, which can be estimated according to the predicted daily demand profile and 

remaining storage capacity. When the storage is not sufficient for demand limiting in the 

remaining hours of a day, the threshold is proactively reset.  
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CHAPTER 7 VALIDATION OF PROBABILISTIC LOAD 

FORECASTING MODEL, OPTIMAL THRESHOLD 

RESETTING SCHEME AND PROACTIVE-ADAPTIVE 

DEMAND LIMITING CONTROL SCHEME 

This chapter presents the validation tests and test results for the developed adaptive optimal 

monthly peak building demand limiting strategy concerning three aspects: the developed 

probabilistic load forecasting model, the optimal threshold resetting scheme and the proactive-

adaptive demand limiting control scheme. All these three validation tests are conducted on the 

Matlab platform. Section 7.1 presents the training and validation of the probabilistic load 

forecasting model. Section 7.2 presents the validation of the optimal threshold resetting scheme 

for monthly peak demand limiting in different seasons. Section 7.3 presents the validation of the 

proactive-adaptive demand limiting control scheme for monthly peak demand limiting in 

different seasons. 

7.1 Training and validation of probabilistic load forecasting model  

In the training and validation of the probabilistic load forecasting model, the historical electrical 

load data of the Phase 7 building and historical weather data from the HKO from Jan/2009 to 

Dec/2016 are collected and used. Moreover, in the real-time test of the probabilistic normal load 

forecasting model, the 9-day interval weather forecasts reported daily by the HKO are recorded 

daily in both Oct and Dec/2017. And the measured load data in these two months are also used 
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to benchmark the real-time forecasting accuracy. 

7.1.1 Model training and results 

7.1.1.1 Decomposition of load dataset 

In the decomposition of load dataset using the LR method, the historical data of load and enthalpy 

from Jan/2009 to Dec/2016 were classified into 12 clusters (based on office hour of working 

days) and then the coefficients of the LR model in each cluster were identified, as listed in Table 

7.1.  

Table 7.1. Identified coefficients of the linear regression model in each cluster 

Coefficient Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10 Cl11 Cl12 

a0 874 842 868 846 846 850 804 803 821 828 798 778 

a1 0.12 0.09 0.09 0.09 0.09 0.08 0.07 0.07 0.09 0.12 0.12 0.11 

a2 1.91 5.33 5.14 5.21 4.90 6.00 8.08 7.89 5.96 3.14 2.89 2.93 

Note: Cl1 represents the cluster of datasets at 9:00 and Cl12 represents the cluster at 20:00. 

The residuals between the actual loads and the estimated loads in each cluster were analyzed 

using the Kernel density estimation function. The optimized bandwidth of the KDE function in 

each cluster was set as 25 according to the optimization formula. All the actual loads with their 

corresponding residuals out of the 95% confidence interval of the KDE function were selected 

as the abnormal loads (Set A). Figure 7.1 shows the histograms and KDE functions of residuals 
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between the actual loads and the estimated loads at selected hours (i.e., 9:00 and 14:00). It can 

be seen that the estimated KDE functions well matched the histograms of the load residuals in 

both of the two clusters.  

 

Figure 7.1. Histograms and Kernel density estimation functions of load residuals at 9:00 and 

14:00.  

The historical load data from Jan/2009 to Dec/2016 were also used in the decomposition of load 

dataset using the LOF method. The LOF value of each hourly load was calculated with the 

parameter k (set as the recommended value 10). Then all LOF values were analyzed with the 

empirical cumulative distribution function, and the actual loads with their LOF value’s empirical 

cumulative probability over 95% were regarded as the abnormal loads (Set B). Figure 7.2 shows 

the histograms and empirical cumulative distribution functions of the LOF values of all loads in 

selected years (i.e., 2009 and 2013). It can be seen that most of the LOF values of loads were 

close to 1. 
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Figure 7.2. Histograms and empirical cumulative distribution functions of the LOF values of 

the loads in 2009 and 2013. 

After load dataset decomposition using each of the LR, LOF and hybrid methods, the ratios of 

the number of the decomposed abnormal loads to the number of all the loads using these methods 

are listed in Table 7.2. It can be seen that the ratio from using the hybrid method integrating LR 

and LOF was 0.068, much larger than that from using either method, which indicates the hybrid 

method is more sensitive and robust. 

Table 7.2. The ratios of the number of decomposed abnormal loads to the number of all the 

loads using the three methods 

 LR LOF Hybrid 

Ratio 0.036 0.035 0.068 

The results of the load datasets decomposition during the office hour in 2013 are shown in Figure 

7.3 for illustration. It can be seen that most extremely large and small loads were decomposed as 



90 

 

abnormal loads by both the LR and the LOF methods. 

 

Figure 7.3. Load dataset decomposition results during office hours in 2013.  

7.1.1.2 Training of ANN model 

To train the ANN model, the historical datasets of the normal load, weather variables, and 

calendar variables from Jan/2009 to Dec/2015 were used. The number of hidden neurons in the 

hidden layer was set as 12 according to Eq. (4.1) and the trial and error. Besides, the mean square 

error was set as 0.001, the learning rate was set as 0.5, and the iteration times were set as 1000. 

7.1.1.3 Training of probabilistic magnitude model 

In the training of the probabilistic model of the peak abnormal differential (PAD) load magnitude, 

the PAD load data from Jan/2009 to Dec/2015 were used to train/fit the probability distribution 

of the magnitude using the four alternative PDFs. The identified parameter values of the fitted 
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PDFs of the PAD load magnitude are listed in Table 7.3.  

Table 7.3. Parameter values for the fitted probability density functions of the peak abnormal 

differential load magnitude 

 Normal Gamma Weibull Lognormal 

Parameter μ σ α β λ k φ 𝛾 

Value 109.8 75.5 2.3 47.7 122.9 1.6 4.5 0.7 

Table 7.4 shows the statistical errors of the trained PDFs of the PAD load magnitude data. The 

Lognormal distribution fit the observed data best among the four PDFs, with the smallest K-S 

error of 0.0398. Therefore, the Lognormal distribution (φ=4.5, 𝛾 =0.7) was selected for the 

forecasted probability distribution of the magnitude in the later years. 

Table 7.4. Statistical errors for the proposed probability density functions 

 Normal Gamma Weibull Lognormal 

K-S error 0.1379 0.0573 0.0680 0.0398 

7.1.2 Model validation and results 

7.1.2.1 Performance evaluation criteria 

To evaluate the deterministic normal load forecasting model, the commonly-used mean absolute 

percentage error (MAPE) indicator, mean absolute error (MAE) indicator and root mean squared 
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error (RMSE) are adopted, as given by equations (7.1-7.3). Where, Li is the measured load (kVA). 

�̂�𝑖 is the forecasted load (kVA). i is a certain number. n is the length of the test time series. 

 MAPE =  
1

𝑛
∑ |

𝐿𝑖−�̂�𝑖

𝐿𝑖
|𝑛

𝑖=1  (7.1)  

 MAE =  
1

𝑛
∑ |𝐿𝑖 − �̂�𝑖|𝑛

𝑖=1  (7.2) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐿𝑖 − �̂�𝑖)

2𝑛
𝑖=1  (7.3) 

To evaluate the PAD load magnitude model, the deviations between the observed data and their 

forecasts are assessed using the K-S error as shown earlier in Eq. (4.5). 

7.1.2.2 Validation of ANN deterministic load forecasting model 

In the validation test of the ANN deterministic load forecasting model, the historical datasets of 

the normal load, weather variables, and calendar variables in 2016 were used. The calculated 

monthly MAPEs, MAEs and RMSEs of the test results are listed in Table 7.5. The average MAPE 

was 5.0%, the average MAE was 77.8 kVA, and the average RMSE was 108 kVA in the year. 

The minimum MAPE was 2.9%, which occurred in July, the minimum MAE was 46 kVA, which 

occurred in January, and the minimum RMSE was 54 kVA, which occurred in January. This 

shows the forecast accuracy of the deterministic load forecasting model is satisfactory. 
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Table 7.5. MAPEs, MAEs and RMSEs of test results of the ANN model in 2016 

 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

MAPE (%) 4.0 4.8 5.4 5.8 6.2 7.0 2.9 3.1 5.0 3.9 6.5 7.0 

MAE (kVA) 46 55 70 94 114 142 55 58 80 61 77 82 

RMSE (kVA) 54  90  98  144  148  171  79  87  116  101  109  106  

 

Figure 7.4. Load forecast using the deterministic load forecasting model compared with actual 

measurements during office hours (Jul and Dec/2016). 

The detailed load forecast in Jul and Dec/2016 and the comparison with actual measurements 

are shown in Figure 7.4, which are the best and the worst results, respectively. It can be seen that 

load forecasts in both months matched the actual loads with the satisfactory agreement, while 

the agreement in July was better than that in December. It is because that in Hong Kong 
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December is in the transition season and the weather condition fluctuates significantly. 

7.1.2.3 Validation of probabilistic models of occurrence and magnitude 

To validate the probabilistic model of the peak abnormal differential (PAD) load occurrence, the 

PAD load data in 2016 were used. The forecasts of the relative PAD load frequencies (i.e., 

percentages) at different office hours of work days in 2016 are shown and compared with the 

actual data in Figure 7.5. It can be seen that the forecasts of the relative frequencies matched the 

actual data very well during most hours while the forecasts at 9:00, 19:00 and 20:00 have 

relatively larger deviations. With more PAD load data, the forecast accuracy of the relative 

frequency can be improved.  

 

Figure 7.5. Forecasted and actual relative frequencies of the peak abnormal differential load at 

different office hours (2016). 

To validate the probabilistic model of the PAD load magnitude, the PAD load data in 2016 were 

also used. The K-S error between the forecasted distribution and the observed distribution of the 
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PAD load in 2016 was 0.09, showing a very satisfactory accuracy. The forecasted and observed 

probability densities of the PAD load magnitude are shown in Figure 7.6. It can be seen that most 

of the forecasted probability densities of the PAD load magnitude matched well the observed 

ones.   

 

Figure 7.6. Comparison between forecasted and observed probability densities of the peak 

abnormal differential load magnitude (2016). 

7.1.2.4 Real-time application case studies 

In the real-time application case studies, the 9-day interval probabilistic normal load forecasts 

were generated using 9-day interval weather forecast, which is provided and updated daily by 

the Hong Kong Observatory (HKO).  

To evaluate the probabilistic forecast models, the sharpness, resolution and reliability of forecasts 

are usually considered (T. Hong & S. Fan, 2016), which are also considered in this study to 
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evaluate the probabilistic forecast model of the normal load. The pinball loss function (T. Hong 

et al., 2016) is used to calculate the quantile scores of the probabilistic load forecast results. The 

pinball loss for the load at each quantile and each hour is calculated using Eq. (7.4). 

 𝑃𝑖𝑛𝑏𝑎𝑙𝑙(𝐿𝑡,𝑞%, 𝐿𝑡, 𝑞%) = {
𝑞%(𝐿𝑡 − 𝐿𝑡,𝑞%)                   𝐿𝑡 ≥ 𝐿𝑡,𝑞%

(1 − 𝑞%)(𝐿𝑡,𝑞% − 𝐿𝑡)       𝐿𝑡 < 𝐿𝑡,𝑞% 
 (7.4) 

where, q% is the target quantile of the quantile load forecast. The mean of the pinball losses 

across all the quantiles and all the forecasted hours in a month is regarded as the pinball score 

for the probabilistic load forecast. A lower pinball score indicates a better probabilistic forecast. 

Case 1 - October (using weather forecasts on four days)  

The 9-day weather forecast data in Oct/2017 reported by the HKO in four days (i.e., 30/Sept, 

9/Oct, 18/Oct and 27/Oct) were used to compose the probabilistic weather forecasts of all days 

in the month. The weather forecast reported by the HKO includes the probabilistic forecasts of 

the daily maximum/minimum temperatures and the deterministic forecasts of the hourly 

temperature and relative humidity. The hourly probabilistic temperature forecasts, as shown in 

Figure 7.7, were obtained by processing these available temperature forecast data using the 

proposed method in Section 4.2.2. Figure 7.7 shows the 90% prediction interval of the hourly 

probabilistic temperature forecasts and the actual reported temperatures in Oct/2017. The 

boundaries of the 90% prediction interval are the 5% quantile and 95% quantile, respectively. 



97 

 

 

Figure 7.7. Generated hourly probabilistic temperature forecasts of Oct/2017. The shading 

represents the boundaries of the 90% prediction interval. 

These hourly probabilistic temperature forecasts and the hourly deterministic relative humidity 

forecasts during office hours in October were used by the ANN model as the inputs to generate 

the probabilistic normal load forecasts and the results are shown in Figure 7.8. It shows the actual 

loads, the mean probabilistic normal load forecasts and the 90% prediction intervals in October 

and the probability density of normal load at an hour. It can be seen that most of the actual loads 

fell in the 90% prediction intervals. The small figure in the right illustrates the probability 

distribution of the forecasted normal load at 14:00 on 16/Oct. The MAPE, MAE and RMSE 

between the mean probabilistic normal load forecasts and the actual loads in Oct/2017 were 

0.084, 147 kVA and 170 kVA respectively (listed in Table 7.6), showing an acceptable forecast 

accuracy. 



98 

 

 

Figure 7.8. Probabilistic normal load forecasts of Oct/2017 and the probability density of 

normal load at one hour. The shading represents the boundaries of the 90% prediction interval. 

Case 2 - December (using one-day-ahead weather forecasts) 

The 9-day weather forecast data reported by the HKO in Dec/2017 were recorded daily and used 

to compose the probabilistic weather forecasts of all days in the month. Different from Case 1, 

the one-day-ahead weather forecasts updated daily were used for load forecasts of every day in 

the month. It means that the normal load forecasts of a day are obtained using the weather 

forecasts of that day reported in the previous day. The hourly probabilistic temperature forecasts 

using the one-day-ahead weather forecasts in December were generated in the same way as that 

in Case 1, as shown in Figure 7.9. It shows the 90% prediction interval of the hourly probabilistic 

temperature forecasts using one-day-ahead weather forecasts and the actual reported 

temperatures in December. It can be seen that most of the actual temperatures were in the middle 

of the prediction interval. 
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Figure 7.9. Generated hourly probabilistic temperature forecasts of Dec/2017 using one-day-

ahead weather forecasts. The shading represents the boundaries of the 90% prediction interval. 

These hourly probabilistic temperature forecasts and the hourly deterministic relative humidity 

forecasts during office hours in Dec/2017 were used by the ANN model to generate the 

probabilistic normal load forecasts, and the results are shown in Figure 7.10. It shows the actual 

loads, the mean probabilistic normal load forecasts and the 90% prediction intervals using one-

day-ahead weather forecasts in Dec and the probability density of normal load at an hour. It can 

be seen that most of the mean probabilistic normal load forecasts were close to the actual loads, 

which was better than the forecast results in Case 1. The small figure in the right illustrates the 

probability distribution of the forecasted normal load at 14:00 on 15/Dec. In this case, the MAPE, 

MAE and RMSE between the mean probabilistic normal load forecasts and the actual loads in 

December were 0.047, 64 kVA and 80 kVA respectively (listed in Table 7.6), showing a 

satisfactory forecast accuracy. 
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Figure 7.10. Probabilistic normal load forecasts of Dec/2017 using one-day-ahead weather 

forecasts and the probability density of normal load at one hour. The shading represents the 

boundaries of the 90% prediction interval. 

Case 3 - December (using nine-day-ahead weather forecasts) 

Different from Case 2, the nine-day-ahead weather forecasts updated daily were used for normal 

load forecasts of each day in the month. It means that the normal load forecasts of each day are 

obtained using the weather forecasts of that day made nine days ago. The hourly probabilistic 

temperature forecasts using the nine-day-ahead weather forecasts in Dec/2017 were generated in 

the same way as that in Case 1, as shown in Figure 7.11. It shows the 90% prediction interval of 

the hourly probabilistic temperature forecasts using nine-day-ahead weather forecasts and the 

actual reported temperatures in Dec. It can be seen that most of the actual temperatures were also 

in the middle of the prediction interval, but the average bandwidth of the prediction interval was 

larger than that in Figure 7.9. 
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Figure 7.11. Generated hourly probabilistic temperature forecasts of Dec/2017 using nine-day-

ahead weather forecasts. The shading represents the boundaries of the 90% prediction interval. 

These hourly probabilistic temperature forecasts and the hourly deterministic relative humidity 

forecasts during office hours in December were used by the ANN model to generate the 

probabilistic normal load forecasts, and the results are shown in Figure 7.12. It shows the actual 

loads, the mean probabilistic normal load forecasts and the 90% prediction intervals using nine-

day-ahead weather forecasts in December and the probability density of normal load at an hour. 

It can be seen that most of the mean probabilistic normal load forecasts were close to the actual 

loads, which was better than the forecast results in Case 1 but not as good as those in Case 2. 

The small figure in the right illustrates the probability distribution of the forecasted normal load 

at 14:00 on 15/Dec. In this case, the MAPE, MAE and RMSE between the mean probabilistic 

normal load forecasts and the actual loads in December were 0.067, 65 kVA and 82 kVA 

respectively (listed in Table 7.6), showing an acceptable forecast accuracy.  
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Figure 7.12. Probabilistic normal load forecasts of December using nine-day-ahead weather 

forecasts and the probability density of normal load at one hour. The shading represents the 

boundaries of the 90% prediction interval. 

Comparison of forecast accuracies in three cases 

To evaluate the probabilistic normal load forecasts in the above three cases, the mean 

probabilistic normal load forecasts are compared with the actual loads using the MAE, MAPE 

and RMSE. Besides, the pinball scores of the three cases are calculated and compared. Table 7.6 

presents the detailed performance evaluation metrics for the probabilistic normal load forecasts 

of the three cases. The smaller the performance evaluation metric is, the more accurate the 

probabilistic normal load forecasts are. The probabilistic load forecasts in Case 2 shows the best 

performance with the smallest value in each individual performance evaluation metric. 
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Table 7.6. Performance evaluation metrics for the probabilistic normal load forecasts in the 

three cases 

 Case 1 Case 2 Case 3 

MAEprob (kVA) 143 64 65 

MAPEprob (%) 8.4 4.7 6.7 

RMSEprob (kVA) 170 80 82 

Pinball score 58.9 27.6 27.8 

Remark: MAEprob is the mean absolute error between the mean probabilistic normal load 

forecasts and the actual loads, MAPEprob is the mean absolute percentage error between the 

mean probabilistic normal load forecasts and the actual loads, and RMSEprob is the root 

mean square error between the mean probabilistic normal load forecasts and the actual 

loads. 

Figure 7.13 shows the percentage of the actual loads falling within the predicted quantile of the 

probabilistic normal load forecasts in a month period in three cases. It can be seen that the overall 

predicted quantile bandwidth (1%-99%) in Case 2 was the smallest, which indicates the 

performance of the probabilistic normal load forecasts in Case 2 was the most accurate. 
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Figure 7.13. Comparison of the percentages of observed actual load values falling in the 

predicted quantile of the probabilistic normal load forecasts in three cases. 

Comparing Case 1 with Case 2, the five probabilistic normal load forecasting accuracy indicators 

(i.e., MAEprob, MAPEprob, RMSEprob, the pinball score and the overall predicted quantile 

bandwidth (1%-99%)) of Case 2 were smaller than that of Case 1. It indicates that the 

probabilistic load forecasts of Case 2 were superior to that of Case 1, and the probabilistic load 

model can offer better forecasts using the most updated (i.e., one-day-ahead) weather forecasts 

compared with the case using the nine-day weather forecasts without daily updating. 

Comparing Case 2 with Case 3, the five probabilistic normal load forecasting accuracy indicators 

of Case 2 were smaller than that of Case 3. It indicates that the probabilistic load forecasts of 

Case 2 were superior to that of Case 3. It means that the shorter the period of the weather forecast 

is the better accuracy the probabilistic normal load forecasts can achieve.   
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Comparing Case 1 with Case 3, the first three probabilistic normal load forecasting accuracy 

indicators (i.e., MAEprob, MAPEprob and RMSEprob) of Case 1 were larger than that of Case 3, 

due to the fact that the (deterministic) weather forecasts in December were more accurate than 

that in October. But the last indicator (i.e., the overall predicted quantile bandwidth (1%-99%)) 

of Case 1 was smaller than that of Case 3, indicating that bandwidth of load forecasts was smaller 

in Case 1. 

In general, the probabilistic normal load forecasting accuracy is affected by the probabilistic 

weather forecasting accuracy from the HKO. Comparison studies for the proposed probabilistic 

load forecasting approach are expectable and could be conducted in the near future when studies 

using standard datasets of compatible format (i.e., the probabilistic weather forecast is included) 

are available. 

7.2 Validation of optimal threshold resetting scheme 

In the validation of the optimal threshold resetting scheme for adaptive monthly peak demand 

limiting, active thermal storages with ideal control are adopted. The historical electrical load data 

of the Phase 7 building in winter and summer (i.e., Dec/2017 and June/2018) are collected and 

used at the 1-hour time interval. And in each month, the 9-day weather forecast data reported 

daily by the Hong Kong Observatory (HKO) are recorded daily. Moreover, sensitivity analysis 

of the cost benefits of the developed scheme using different means of demand limiting and 

different electricity demand tariffs is conducted. 
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7.2.1 Identification of parameters in quantification formulae 

To quantify the optimal threshold resetting scheme, some parameters in quantification formulae 

are identified. The unit price of the electricity demand (i.e., a in Eq. (5.9)) is set as 120 HKD/kVA 

and the unit price of the electricity consumption is 0.6 HKD/kWh, according to a real tariff (Large 

Power Tariff) from the Hong Kong CLP power company. The unit price of the demand limiting 

effort using the ideal thermal storage (i.e., b in Eq. (5.9)) is calculated as 0.24 HKD/kWh, when 

assuming that the overall COP of the air-conditioning system is 2.5 earlier (C. Yan et al., 2017). 

A simplified cold active storage model (B. Cui et al., 2014) is used to quantify the demand 

limiting capacity for the Phase 7 building and an active storage with the limiting capacity (Cap) 

of 4763 kWh is adopted.  

7.2.2 Winter case study and test results 

In the winter case study, the datasets during the office hours in Dec/2017 were used for the 

validation test. The 9-day weather forecast data reported/updated daily by the HKO in December 

are recorded each day. They are used to forecast/update the 9-day probabilistic demand profiles 

each day, which are then used to identify/update the optimal monthly limiting threshold. In the 

following subsections, the first workday in December is selected to illustrate the identification 

procedure of the optimal monthly limiting threshold. Afterward, the procedure is conducted 

repeatedly to obtain/update the monthly limiting threshold in an adaptive manner for demand 

limiting control in the following days of the month. 
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7.2.2.1 Optimal monthly limiting threshold identification on the first workday of December 

On the first workday of December (before office hour, e.g., 9:00 AM), the probabilistic demand 

profiles during office hours in the following 9 days were forecasted in advance, as shown in 

Figure 7.14. Different confidence intervals of the probabilistic demand profiles are shown in the 

figure, such as 20%, 40%, 60% and 99%. In addition, the range of the tested thresholds was 

identified as [1149 kVA, 1287 kVA]. 

 

Figure 7.14. Probabilistic demand profiles during office hours between 01/Dec and 

09/Dec/2017 forecasted in the early morning of 01/Dec. 

Based on the forecasted probabilistic demand profiles, the probability density distributions (PDF) 

of the daily peak demand in workdays between 01/Dec and 09/Dec were obtained, as shown in 

Figure 7.15. 
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Figure 7.15. Probability density of the daily peak demand in workdays between 01/Dec and 

09/Dec/2017 forecasted in the early morning of 01/Dec. 

With these PDFs of the daily peak demand, the probability of each scenario (nonactivation, 

success and failure) was quantified when a particular threshold was used on one day. Based on 

these quantified daily probabilities, the monthly probability of each scenario using that threshold 

was estimated, as shown in Figure 7.16. It can be seen that all the monthly success probabilities 

accounted for over 85%, all the monthly failure probabilities were less than 16%, and all the 

monthly nonactivation probabilities were 0%.     
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Figure 7.16. Quantified monthly probabilities of three scenarios when implementing demand 

limiting using different thresholds on the first workday of Dec/2017. 

Based on the quantified monthly probabilities at different thresholds, the expected monthly cost 

savings and the expected monthly gains were quantified, as shown in Figure 7.17. It can be seen 

that they changed in the same trend along with the increase of the limiting threshold. After the 

quantification of the expected monthly cost savings among different thresholds, the optimal 

monthly limiting threshold was identified of 1287 kVA, and the corresponding cost saving was 

14,592 HKD.  
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Figure 7.17. Expected monthly cost savings and expected monthly gains when implementing 

demand limiting using different thresholds on the first workday of Dec/2017. 

7.2.2.2 Validation of the developed scheme for monthly peak demand limiting in December 

Similarly, on each of the following workdays, the identification procedure using the optimal 

threshold resetting scheme is conducted repeatedly to obtain and update the optimal limiting 

threshold. In addition, the ideal demand limiting control is conducted on the basis of the 

identified adaptive optimal limiting threshold. The difference lies in that the actual peak power 

use was considered in updating the optimal limiting threshold. Figure 7.18 shows the validation 

results of demand limiting using the adaptive optimal threshold resetting scheme in Dec/2017. 
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Figure 7.18. Building demand profiles in Dec/2017 under different situations: (A) no demand 

limiting; (B) demand limiting using the developed scheme. (C) Actual demand reduction using 

the developed scheme. 

Figure 7.18(A) shows the power demand profile of the Phase 7 building, without implementing 

demand limiting, measured in Dec/2017. It can be seen that the monthly peak demand occurred 

on the first workday. The actual demand in the second half of the month was smaller. Two 

adaptive thresholds are also included. One is the adaptive optimal monthly limiting threshold, 

and the other is the adaptive monthly limiting threshold without considering the actual peak of 
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previous power use. The second threshold fluctuated due to the changes of the updated load 

forecast and could be even lower than the actual peak of previous power use. In contrast, the 

adaptive optimal monthly limiting threshold remained stable for the whole month. This is 

because the peak power use occurred on the first workday and the adaptive optimal limiting 

threshold was not allowed to be less than the actual peak power use. 

Figure 7.18(B) shows the power demand profile when implementing demand limiting using the 

developed adaptive optimal threshold resetting scheme. Figure 7.18(C) shows the demand 

reduction when implementing the developed scheme for monthly peak demand limiting. During 

the demand limiting periods, the active thermal storage was discharged to restrict peak demands 

over the adaptive optimal monthly limiting threshold. After implementing demand limiting using 

the developed scheme in Dec/2017, the achieved monthly peak demand reduction was 132 kVA, 

9.3% of the actual monthly peak demand (1419 kVA). That contributed to the actual monthly net 

cost saving of 14,769 HKD (3.07% of the actual electricity charge of that month).  

7.2.3 Summer case study and test results  

In the summer case study, the datasets during the office hours in Jun/2018 are used for the 

validation test. Similar to the winter case, the 9-day weather forecast data reported/updated daily 

by the HKO in June are recorded each day. They are used to forecast/update probabilistic demand 

profiles to further identify/update the optimal monthly limiting threshold. In the following 

subsections, the first workday in June is selected to illustrate the identification procedure of the 

optimal monthly limiting threshold. This procedure is conducted repeatedly to obtain/update the 
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monthly limiting threshold in an adaptive manner for demand limiting control in the following 

days of the month. 

7.2.3.1 Optimal monthly limiting threshold identification on the first workday of June 

On the first workday of June (before office hour, e.g., 9:00 AM), the probabilistic demand 

profiles during office hours in the following 9 days were forecasted in advance, as shown in 

Figure 7.19. Different confidence intervals of the probabilistic demand profiles are shown in the 

figure, such as 20%, 40%, 60% and 99%. In addition, the range of the tested thresholds was 

identified as [1822 kVA, 1973 kVA].  

 

Figure 7.19. Probabilistic demand profiles during office hours between 01/Jun and 09/Jun/2018 

forecasted in the early morning of 01/Jun.  

Based on the forecasted probabilistic demand profiles, the monthly probabilities of each scenario 

using particular thresholds were estimated in the same way as that in the winter case, as shown 

in Figure 7.20. It can be seen that all the monthly success probabilities accounted for over 80%, 
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the monthly failure probabilities varied between 7% and 19%, and the monthly nonactivation 

probabilities varied between 0% and 12%.     

 

Figure 7.20. Quantified probabilities of three scenarios when implementing demand limiting 

using different thresholds on the first workday of Jun/2018. 

 

Figure 7.21. Expected monthly cost savings and expected monthly gains when implementing 

demand limiting using different thresholds on the first workday of Jun/2018. 
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Based on the quantified monthly probabilities at different thresholds, the expected monthly cost 

savings and the expected monthly gains were quantified, as shown in Figure 7.21. It can be seen 

that the optimal monthly limiting threshold was identified of 1877 kVA, and the corresponding 

cost saving was 3673 HKD.  

7.2.3.2 Validation of the developed scheme for monthly peak demand limiting in June 

Similarly, on each of the following workdays, the identification procedure using the optimal 

threshold resetting scheme is conducted repeatedly to obtain/update the optimal limiting 

threshold. In addition, the ideal demand limiting control is conducted on the basis of the 

identified adaptive optimal limiting threshold. Figure 7.22 shows the validation test results of 

demand limiting using the adaptive optimal threshold resetting scheme in Jun/2018.  

Figure 7.22(A) shows the power demand profile of the Phase 7 building, without implementing 

demand limiting, measured in Jun/2018. It can be seen the monthly peak demand occurred on 

the sixteenth workday. Two adaptive thresholds are also included. One is the adaptive optimal 

monthly limiting threshold, and the other is the adaptive monthly limiting threshold without 

considering the actual peak of previous power use. On the first three workdays, both thresholds 

were updated in the same trend since they were determined on the predicted power demand 

profile only as the actual peak of previous power use was below the thresholds.     

Figure 7.22(B) shows the power demand profile when implementing demand limiting using the 

developed adaptive optimal threshold resetting scheme. Figure 7.22(C) shows the demand 
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reduction when implementing the developed scheme for monthly peak demand limiting. During 

the demand limiting periods, the active thermal storage was discharged to restrict peak demands 

over the adaptive optimal monthly limiting threshold. After implementing demand limiting using 

the developed scheme in Jun/2018, the achieved monthly peak demand reduction was 278 kVA, 

13.0% of the actual monthly peak demand (2135 kVA). That contributed to the actual monthly 

net cost saving of 20,686 HKD (1.99% of the actual electricity charge of that month).  

 

Figure 7.22. Building demand profiles in Jun/2018 under different situations: (A) no demand 

limiting; (B) demand limiting using the developed scheme. (C) Actual demand reduction using 

the developed scheme. 
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7.2.4 Results of sensitivity analysis  

To further study the performance of demand limiting using the developed scheme, sensitivity 

analysis is conducted on the effects of means of demand limiting and electricity charge tariff on 

the monthly economic benefit. The means of demand limiting could be any of the existing 

building storage systems, e.g., phase change material, ice storage, etc. Their demand limiting 

capacity and the unit price of limiting effort are abstracted to quantify the economic benefit of 

demand limiting. As for the electricity charge tariff, there are different options in different regions 

and countries. In this section, the summer month (i.e., Jun/2018) is chosen to conduct sensitivity 

analysis and the parameters used in validation case studies are used as the baseline case. Tables 

(7.7-7.9) show the results of sensitivity analysis using the three parameters on the cost-benefit 

metrics of demand limiting (i.e., monthly cost saving, monthly accumulated limiting effort, peak 

demand reduction and percentage of peak demand reduction). 

Table 7.7 shows how the unit price of limiting effort affects the cost-benefit metrics of demand 

limiting when the developed scheme is used. It can be seen that both the monthly cost saving and 

the monthly accumulated limiting effort decrease with the increase of the unit price of limiting 

effort. In addition, the less the unit price of limiting effort is, the more the monthly peak demand 

reduction will be.  
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Table 7.7. Effects of the unit price of limiting effort on the cost-benefit metrics of demand 

limiting using the developed scheme 

Unit price of 

limiting effort 

(HKD/kWh) 

Monthly cost 

saving (HKD) 

Monthly accumulated 

limiting effort (kWh) 

Peak 

reduction 

(kVA) 

Percentage of  

peak reduction  

0.24 (baseline) 20,686  45,107  278  13.0% 

0.32 18,894  43,830  274  12.8% 

0.4 14,718  39,149  253  11.9% 

0.48 12,929  36,351  253  11.9% 

0.56 11,750  25,396  216  10.1% 

0.64 11,274  20,669  204  9.6% 

Table 7.8 shows how the unit price of electricity demand affects the cost-benefit metrics of 

demand limiting when the developed scheme is used. It can be seen that the monthly cost saving 

decreases with the decrease of the unit price of electricity demand. In addition, the less the unit 

price of electricity demand is, the less the monthly accumulated limiting effort and the monthly 

peak demand reduction and will be.  

 



119 

 

Table 7.8. Effects of the unit price of electricity demand on the cost-benefit metrics of demand 

limiting using the developed scheme 

Unit price of 

electricity demand 

(HKD/kVA) 

Monthly cost 

saving (HKD) 

Monthly accumulated 

limiting effort (kWh) 

Peak 

reduction 

(kVA) 

Percentage of  

peak reduction 

120 (baseline) 20,686  45,107  278  13.0% 

110 17,909  45,107  278  13.0% 

100 15,203  41,322  268  12.5% 

90 12,574  40,089  264  12.4% 

80 9,814  37,278  253  11.9% 

70 7,541  36,355  253  11.9% 

Table 7.9 shows how the limiting capacity affects the cost-benefit metrics of demand limiting 

when the developed scheme is used. It can be seen that the monthly cost saving decreases with 

the decrease of the unit price of electricity demand in most cases. In addition, the less the limiting 

capacity was, the less the monthly accumulated limiting effort and the monthly peak demand 

reduction and would be. When a storage of very small limiting capacity is used for demand 

limiting, the limiting capacity could run out, and the limiting threshold might be forced to the 

actual peak power use. In this situation, little monthly cost saving and peak demand reduction 
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could be achieved, as the last case shown in Table 7.9 (the marked italic row).  

Table 7.9. Effects of the limiting capacity on the cost-benefit metrics of demand limiting using 

the developed scheme 

Limiting 

capacity (kWh) 

Monthly cost 

saving (HKD) 

Monthly accumulated 

limiting effort (kWh) 

Peak reduction 

(kVA) 

Percentage of  

peak reduction 

4,763 (baseline) 20,686  45,107  278  13.0% 

4,250  17,113  32,308  218  10.2% 

3,750  13,079  15,860  146  6.8% 

3,250  13,404  14,698  146  6.8% 

2,750  11,237  10,437  118  5.5% 

2,250  6,243  6,845  68  3.2% 

7.3 Validation of proactive-adaptive demand limiting control scheme 

In the validation of the proactive-adaptive demand limiting control scheme for monthly peak 

demand limiting, a small-scale active thermal storage with ideal control is adopted. The historical 

electrical load data of the Phase 7 building in winter and summer (i.e., Dec/2017 and June/2018) 

are collected and used at the 1-minute interval. And in each month, the 9-day weather forecast 

data reported daily by the Hong Kong Observatory (HKO) are recorded daily. 
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7.3.1 Identification of parameters of optimal threshold resetting scheme for proactive-

adaptive demand limiting control 

Based on the sensitivity analysis of the main parameters in the optimal threshold resetting scheme 

(i.e., a, b, Cap), a particular set of these three parameters are selected for testing the proactive-

adaptive demand limiting control scheme, i.e., a=70 HKD/kVA, b=0.32 HKD/kWh, Cap=2250 

kWh. This selection attempts to explore online optimal limiting threshold resetting when only an 

active storage of relatively small capacity is available, which has a high risk of failure in peak 

demand limiting.   

7.3.2 Winter case study and test results 

In the winter case study, the datasets during the office hours in Dec/2017 were used for the 

validation test. The 9-day weather forecast data reported/updated daily by the HKO in December 

were recorded each day. They were used to forecast/update the 9-day probabilistic demand 

profiles each day, which were then used to identify/update the optimal monthly limiting threshold. 

In the real-time demand limiting control, the developed proactive-adaptive monthly peak demand 

limiting strategy (i.e., the adaptive optimal monthly peak demand limiting strategy with both the 

optimal threshold resetting scheme and proactive-adaptive demand limiting control) is validated 

and compared with the baseline demand limiting strategy (i.e., the adaptive optimal monthly 

peak demand limiting strategy only with the optimal threshold resetting scheme but no proactive-

adaptive demand limiting control).  
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7.3.2.1 Validation of the developed strategy for online demand limiting in winter 

Validation tests of demand limiting using both the baseline demand limiting strategy and the 

developed online monthly peak demand limiting strategy were conducted, as shown in Figure 

7.23. Figure 7.23(A) shows the real-time demand profile of the building, without implementing 

demand limiting, measured in Dec/2017. It can be seen that the effective monthly peak billing 

demand (i.e., maximum 30-min average demand) occurred as 1419 kVA on the 1st workday, and 

some real-time higher strikes of very short time occurred on the 3rd and 9th workdays. Note, in 

Hong Kong, the peak demand charge is based on the maximum 30-min average demand (kVA) 

over a month.  

Figure 7.23(B) shows the power demand profile when implementing demand limiting using the 

baseline demand limiting strategy. During the demand limiting periods, the active thermal 

storage was discharged to restrict peak demands over the adaptive optimal monthly limiting 

threshold. It can be seen that the adaptive monthly threshold was updated twice at the end of the 

2nd and 11th workdays. As the storage capacity is sufficient for demand limiting control in the 

winter month, no failure of demand limiting occurred.  

Figure 7.23(C) shows the power demand profile when implementing demand limiting using the 

developed proactive-adaptive monthly peak demand limiting strategy. It can be seen that the 

adaptive monthly threshold appeared the same as that in Figure 7.23(B). This is because the 

storage capacity is sufficient for demand limiting control and the online threshold reset action is 

not activated in the whole month.  
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Figure 7.23. Real-time building demand profiles in Dec/2017 under different situations: (A) no 

demand limiting; (B) demand limiting using the baseline demand limiting strategy; (C) demand 

limiting using the developed strategy. 

7.3.2.2 Comparison between cost-benefit metrics of the two demand limiting strategies in 

winter 

After implementing demand limiting using the above two strategies in Dec/2017, some cost-

benefit metrics of the monthly peak demand limiting are listed in Table 7.10. It can be seen that 

demand limiting using both strategies can achieve the same considerable monthly peak demand 

reduction. The achieved monthly peak reduction was 103 kVA, 7.3% of the actual monthly peak 

demand (1419 kVA). That contributes to the monthly net cost saving of 6203 HKD. 
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Table 7.10. Cost-benefit metrics of demand limiting using different strategies in Dec/2017 

Demand limiting strategy 

Peak 

demand 

(kVA) 

Peak  

reduction 

(kVA) 

Peak 

saving 

percentage 

Accumulated 

thermal energy 

use (kWh) 

Total cost 

saving 

(HKD) 

No demand limiting 1419 0 0 0 0 

Baseline strategy 1316 103 7.3% 3147 6203 

Developed strategy 1316 103 7.3% 3147 6203 

7.3.3 Summer case study and test results 

In the summer case study, the datasets during the office hours in Jun/2018 were used for the 

validation test. The 9-day weather forecast data reported/updated daily by the HKO in June were 

recorded each day. They were used to forecast/update the 9-day probabilistic demand profiles 

each day, which were then used to identify/update the optimal monthly limiting threshold. In the 

real-time demand limiting control, the developed proactive-adaptive monthly peak demand 

limiting strategy is validated and compared with the baseline demand limiting strategy as well. 

In addition, one specific workday is selected to illustrate how the proactive-adaptive demand 

limiting control scheme works before using up the storage capacity. 

7.3.3.1 Validation of the developed strategy for online demand limiting in summer 

Validation tests of demand limiting using both the baseline demand limiting strategy and the 
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developed online monthly peak demand limiting strategy were conducted, as shown in Figure 

7.24. Figure 7.24(A) shows the real-time demand profile of the building, without implementing 

demand limiting, measured in Jun/2018. It can be seen that the effective monthly peak billing 

demand occurred as 2135 kVA on the 16th workday, and some real-time higher strikes of very 

short time occurred on the 10th, 13th and 16th workdays.  

Figure 7.24(B) shows the power demand profile when implementing demand limiting using the 

baseline demand limiting strategy. On the first three workdays, the adaptive monthly threshold 

using the baseline demand limiting strategy was updated and determined according to the 

predicted power demand profile only, as the peak of previous power use was below the thresholds. 

From the 4th to 8th workday, the threshold was updated not only according to the updated power 

demand profile but also no less than the actual peak of previous power uses. On the 9th workday, 

the threshold rose suddenly and straightly at about 17:00 PM due to running out of the limiting 

capacity. After the 9th workday, the threshold remained flat due to the sufficient storage capacity 

for demand limiting control under the new limiting threshold. 

Figure 7.24(C) shows the power demand profile when implementing demand limiting using the 

developed proactive-adaptive monthly peak demand limiting strategy. It can be seen that the 

adaptive monthly threshold before the 9th workday appeared the same as that in Figure 7.24(B). 

On the 9th workday, the threshold rose gradually and slightly before using up the limiting 

capacity. After the 9th workday, the threshold remained flat due to the sufficient storage capacity 

for demand limiting control. 
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Figure 7.24. Real-time building demand profiles in Jun/2018 under different situations: (A) no 

demand limiting; (B) demand limiting using the baseline demand limiting strategy; (C) demand 

limiting using the developed strategy. 

7.3.3.2 Comparison between cost-benefit metrics of the two demand limiting strategies in 

summer 

After implementing the above two demand limiting strategies in Jun/2018, some cost-benefit 

metrics of the monthly peak demand limiting are listed in Table 7.11. It can be seen that demand 

limiting using both strategies can achieve considerable monthly peak reductions. In the 

validation test using the baseline demand limiting strategy, the monthly peak reduction achieved 
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was 146 kVA (6.8%). Moreover, considering the offset of the overall limiting effort cost using 

the thermal storage, the monthly net cost saving achieved was 4550 HKD. In the validation test 

using the developed strategy, the monthly peak reduction achieved was 184 kVA (8.6%). 

Similarly, when the offset of the overall limiting effort cost using the thermal storage is 

considered, the monthly net cost saving achieved was 7236 HKD. Comparing these two 

strategies, it can be seen that the proposed strategy achieved better performance, with 26% more 

peak demand reduction than that from the baseline demand limiting strategy. 

Table 7.11. Cost-benefit metrics of demand limiting using different strategies in Jun/2018 

Demand limiting strategy 

Peak 

demand 

(kVA) 

Peak  

reduction 

(kVA) 

Peak 

saving 

percentage 

Accumulated 

thermal energy 

use (kWh) 

Total cost 

saving 

(HKD) 

No demand limiting 2135 0 0 0 0 

Baseline strategy 1989 146 6.8% 11235 4550 

Developed strategy 1951 184 8.6% 17719 7236 

7.3.3.3 Validation of the developed strategy for online demand limiting on a summer workday 

11/Jun/2018 (i.e., the 9th workday in June) is selected to illustrate the mechanism of the 

developed proactive-adaptive demand limiting control scheme before using up the limiting 

capacity. On the 9th workday of June (before office hour, e.g., 9:00 AM), the probabilistic 

demand profiles during office hours in the following 9 days were forecasted in advance, as shown 

in Figure 7.25. Different confidence intervals of the forecasted probabilistic demand profiles are 
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shown in the figure, such as 20%, 40%, 60% and 99%. 

 

Figure 7.25. Probabilistic demand profiles during office hours between 11/June and 

19/Jun/2018 forecasted in the early morning of 11/June. 

Based on the forecasted demand profiles and the actual peak power use, the optimal limiting 

threshold was updated on the 9th workday. Then specific validation tests of demand limiting 

using both the developed strategy and the baseline demand limiting strategy were conducted 

based on this threshold, as shown in Figure 7.26.  

Figure 7.26(A) shows the real-time demand profile of the building, without implementing 

demand limiting, measured on 11/June. It can be seen that peak demands occurred in the periods 

of 11:00-12:00 AM and 15:00-16:00 PM on this day. 

Figure 7.26(B) shows the power demand profile when implementing demand limiting using the 

baseline demand limiting strategy. It can be seen that most of the peak demands from 9:10 AM 

to 17:00 PM were limited by discharging the active thermal storage when actual demands 

exceeded the adaptive monthly threshold. However, the storage capacity ran out at 17:00 PM and 
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the threshold was immediately forced to the actual peak power use at this moment.  

Figure 7.26(C) shows the power demand profile when implementing demand limiting using the 

developed proactive-adaptive monthly peak demand limiting strategy. It can be seen that, before 

16:00 PM, demand limiting control was conducted in the same way as that using the baseline 

demand limiting strategy. After 16:00 PM, the limiting threshold was gradually and slightly 

updated before using up the storage capacity at 18:00 PM.   

After demand limiting using the baseline demand limiting strategy on 11/Jun, the daily peak 

reduction achieved was 86 kVA (4.1% of the daily peak demand). In contrast, after demand 

limiting using the developed strategy on 11/Jun, the daily peak reduction achieved was 124 kVA 

(6.0% of the daily peak demand). In terms of the daily accumulated limiting effort for demand 

limiting on this day, the entire storage capacity (i.e., 2250 kWh) was used in both strategies. It 

can be seen that the developed strategy is capable of achieving more peak demand reduction than 

the baseline demand limiting strategy in the cases when the storage capacity is insufficient. 
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Figure 7.26. Real-time building demand profiles on 11/June under different situations: (A) no 

demand limiting; (B) demand limiting using the baseline demand limiting strategy; (C) demand 

limiting using the developed strategy. 

7.4 Summary 

This chapter presents the validation of the probabilistic load forecasting model, the optimal 

threshold resetting scheme and the proactive-adaptive demand limiting control scheme. The 

major conclusive remarks of the tests are as follows. 
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i. The ANN model for deterministic normal load forecasting was capable of obtaining results 

with satisfactory accuracy with the average MAPE of 5.0%, the average MAE of 77.8 kVA 

and the average RMSE of 108 kVA.  

ii. The probabilistic occurrence model of the peak abnormal differential (PAD) load shows a 

good performance in forecasting the relative PAD load occurrence frequency. Moreover, the 

probabilistic magnitude model of the PAD load was fitted on the basis of four commonly-

used probability density distributions, among which the Lognormal distribution shows the 

best fitness of the observed PAD load data. The probabilistic model of the magnitude well 

forecasted the magnitudes with the Kolmogorov-Smirnov error of 0.09.  

iii. All the three real-time cases achieve acceptable accuracy, and the probabilistic normal load 

forecasts based on the most updated (i.e., one-day-ahead) weather forecasts were the most 

accurate and certain (minimum bandwidth). 

iv. In a typical winter month, monthly demand limiting control using the developed optimal 

threshold resetting scheme achieved a considerable peak demand reduction under load 

uncertainty, i.e., 9.3% of the actual monthly peak demand (1419 kVA). That contributed to 

the monthly net cost saving of 14,769 HKD, 3.07% of the actual electricity charge of that 

month.  

v. In a typical summer month, monthly demand limiting control using the developed optimal 

threshold resetting scheme also achieved a considerable peak demand reduction under load 
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uncertainty, i.e., 13.0% of the actual monthly peak demand (2135 kVA). That contributed to 

the monthly net cost saving of 20,686 HKD, 1.99% of the actual electricity charge of that 

month. 

vi. Results of the sensitivity analysis show that the monthly cost saving decreases with the 

increase of the unit price of limiting effort or the decrease of the unit price of electricity 

demand. With the decrease of limiting capacity, the monthly cost saving decreased in most 

cases. It is worthwhile to identify the optimal (i.e., cost-effective) storage capacity of a 

building based on the actual load characteristics and the potential cost benefits.  

vii. In a typical winter month, monthly demand limiting with the developed proactive-adaptive 

control scheme achieved a significant peak demand reduction under load uncertainty when 

only a small-scale storage is available, i.e., 7.3% of the actual monthly peak demand (1419 

kVA).  

viii. In a typical summer month, monthly demand limiting with the developed proactive-adaptive 

control scheme also achieved a significant peak demand reduction under load uncertainty 

when only a small-scale storage is available, i.e., 8.6% of the actual monthly peak demand 

(2135 kVA). It showed better performance (i.e., 26% more peak demand reduction) 

compared to demand limiting without the proactive-adaptive control scheme. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

This PhD study develops an adaptive optimal monthly peak demand limiting strategy to reduce 

building peak demands over a month (or a billing cycle) considering load uncertainties, which 

includes the following three major components. The building load model forecasts the 

probabilistic loads of buildings, which considers weather forecasting uncertainty and uncertain 

peak loads. The optimal threshold resetting scheme identifies an adaptive optimal monthly 

limiting threshold and quantifies the uncertain economic benefits and the probability of success 

of implementing a demand limiting control. The proactive-adaptive demand limiting control 

scheme conducts online demand limiting control proactively before using up the storage capacity 

when small-scale thermal storages are available. An educational building in Hong Kong is 

selected for case studies to validate the developed adaptive optimal monthly peak demand 

limiting strategy. 

In this chapter, the main contributions of this thesis are summarized in Section 8.1. Section 8.2 

presents the conclusions based on the validation tests. Recommendations for future work are also 

presented in Section 8.3. 

8.1 Summary of main contributions 

The present study aims at developing an adaptive optimal monthly peak building demand 

limiting strategy considering load uncertainty. Currently, there are very few studies on peak 

building demand limiting over a billing cycle (typically a month), and even fewer when 
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considering load uncertainties. Main contributions in this study are summarized as follows: 

i. A probabilistic load forecasting model is developed for real-time electric load forecasting of 

individual buildings considering the real-time weather forecasting uncertainty and uncertain 

peak load, which is vital for adaptive online decision-making and is essential for the robust 

control of building energy systems.  

ii. Statistic models for probabilistic abnormal peak load forecasting (i.e., the occurrence and 

magnitude models of the abnormal peak load) are developed to forecast the uncertain peak 

load, which are applicable for predicting the abnormal peak loads with significant 

fluctuations. Furthermore, a hybrid method, integrating the linear regression method and the 

local outlier factor method, is developed to decompose the load measurement dataset, which 

shows better decomposition results than using either of them.  

iii. A novel optimal threshold resetting scheme is developed for monthly peak demand limiting 

considering load uncertainty. This scheme is developed to identify and update the optimal 

demand limiting threshold under load uncertainty in short/medium period, i.e., one day to a 

month, which can be used for conducting adaptive peak demand limiting over a billing cycle.  

iv. Uncertain economic benefits and the probability of success of implementing a demand 

limiting control are quantified over the billing cycle of a month. This uncertainty 

quantification is meaningful and very helpful for decision-makers to conduct peak demand 

limiting control, particularly during a median period (i.e., a week to a month) according to 
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their risk attitude.  

v. A new proactive-adaptive demand limiting control scheme is developed for monthly peak 

demand limiting considering load uncertainty. This scheme is capable of online updating the 

limiting threshold proactively before using up the storage capacity when only small-scale 

storages are available. 

8.2 Conclusions 

The probabilistic load forecasting model 

The developed probabilistic load forecasting model can successfully forecast the hourly 

probabilistic load, including the probabilistic normal load and the probabilistic occurrence and 

magnitude of the abnormal peak load, with satisfactory accuracy.  

Validation results show that the ANN model for deterministic normal load forecasting was 

capable of obtaining results with satisfactory accuracy with the average MAPE of 5.0%, the 

average MAE of 77.8 kVA and the average RMSE of 108 kVA. Besides, the probabilistic 

occurrence model of PAD load shows a good performance in forecasting the relative PAD load 

occurrence frequency. The probabilistic magnitude model of the PAD load was fit on the basis 

of four commonly-used probability density distributions. Among them, the Lognormal 

distribution showed the best fitness of the observed PAD load data. The probabilistic model of 

the magnitude well forecasted the magnitudes with the Kolmogorov-Smirnov error of 0.09.  



136 

 

The optimal threshold resetting scheme 

The developed optimal threshold resetting scheme is capable of identifying the optimal monthly 

limiting threshold in an adaptive manner. The probabilistic economic benefits and the 

probabilities of nonactivation/success/failure of a demand limiting control over the billing cycle 

are quantified. This scheme for monthly peak demand limiting can successfully reduce the 

monthly peak demand and achieve a considerable monthly net cost saving under load uncertainty. 

Validation results show that the developed scheme for monthly peak demand limiting can achieve 

a considerable peak demand reduction under load uncertainty in different seasons. In a winter 

month, monthly demand limiting with the developed scheme achieved a 9.3% reduction of the 

actual monthly peak demand (1419 kVA). That contributed to the monthly net cost saving of 

14,769 HKD, 3.07% of the actual electricity charge of that month. In a summer month, monthly 

demand limiting with the developed scheme achieved 13.0% of the actual monthly peak demand 

(2135 kVA). That contributed to the monthly net cost saving of 20,686 HKD, 1.99% of the actual 

electricity charge of that month.  

The proactive-adaptive demand limiting control scheme 

The developed proactive-adaptive demand limiting control scheme can successfully reduce the 

monthly peak demand and achieve a considerable monthly net cost saving under load uncertainty. 

The developed scheme is capable of proactively resetting the online limiting threshold in advance 

of using up the storage capacity, even when only a small active thermal storage is available.  
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Validation results show that the monthly demand limiting with proactive-adaptive control 

scheme can achieve a significant peak demand reduction under load uncertainty in different 

seasons. In a winter month, monthly demand limiting with the proactive-adaptive control scheme 

achieves 7.3% of the actual monthly peak demand (1419 kVA). In a summer month, monthly 

demand limiting with the proactive-adaptive control scheme achieves 8.6% of the actual monthly 

peak demand (2135 kVA). It shows better performance (i.e., 26% more peak demand reduction) 

compared to monthly demand limiting without the proactive-adaptive control scheme. 

8.3 Recommendations for future work 

Major efforts of this PhD study have been made on the development of probabilistic load 

forecasting model for buildings and adaptive monthly peak building demand limiting strategy. It 

would be very desirable and valuable to make further efforts on the following aspects. 

i. The probabilistic normal load forecasting accuracy is affected by the probabilistic weather 

forecasting accuracy from the HKO. Comparison studies for the proposed probabilistic load 

forecasting approach are expectable and could be conducted in the near future when studies 

using standard datasets of compatible format (i.e., the probabilistic weather forecast is 

included) are available.  

ii. The developed probabilistic load forecasting model is capable of quantifying the probability 

of building electric load larger than a certain value at a certain hour, or even on one day or 

one week. Besides the application of peak demand limiting under load uncertainty, there two 
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potential issues to be addressed. The first one is for the day-ahead forecasting of electricity 

price for the smart gird. The peak load forecast is essential for determining the day-ahead 

dynamic pricing or critical peak pricing because the peak load is a major concern of a power 

grid. The second one is for the optimal operation of renewable energy resources. The 

proposed probabilistic forecasting method can contribute to the optimization of the decisions 

in the operation of renewable resources under load uncertainties (e.g., the charge or 

discharge control of electric vehicles). 

iii. In this study, only the commonly-used expectation metric is used in the optimal threshold 

resetting scheme considering uncertainty. Different decision-making criteria can be further 

explored for the adaptive monthly peak demand limiting control under load uncertainty 

according to the decision-makers’ risk attitude.  

iv. This study is validated using real site measurements. In-situ tests can be further conducted 

by applying the adaptive optimal monthly peak demand limiting strategy with active thermal 

storages into practical BMS systems.   
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