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Abstract

Over the past ten years, due to three main advantages (e.g., the openness of source code, the

richness of hardware selection, and millions of applications (apps)), Android has become

the most popular mobile operating system. Meanwhile, it has also become the major

target of mobile malware. The rapid increase in the number of Android malware poses

great threats to the smartphone users, such as financial charge, information collection, and

remote control. Thus, the in-depth study of the security issues of mobile apps is of great

significance to the sound development of the smartphone ecosystem. However, existing

malware analysis approaches are facing three main challenges, including morphological

diversity of malicious code, lack of labeled dataset, and labor-intensive manual feature

engineering process. Therefore, it is important to propose effective and efficient malware

analysis approaches. To further study two sub problems in mobile security, i.e., malware

detection and familial identification, two kinds of behavior models and four different types

of features are proposed from the novel perspective of feature engineering. In this thesis,

malware detection aim to detect whether a given app is malicious or not and familial

identification aim to classify the malware samples to their corresponding families.

Firstly, to overcome the low accuracy and efficiency problems caused by the

morphological diversity of malicious code, the sensitive subgraph is first constructed as

our analysis model. It can not only depict the sensitive behavior but also can be resilient

to obfuscation techniques. Based on the sensitive subgraph, for malware detection, a
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structure-based feature called maximum sensitive subgraph is proposed to depict the most

sensitive behavior of a given app. Based on the proposed feature, this study designs and

implements DAPASA, a approach that detects Android piggybacked apps. DAPASA can

not only detect the piggybacked apps dependently but also has the ability to complement

permission- and API-based approaches from a new perspective of the invocation structure.

For familial identification, a new feature called frequent sensitive subgraphs (fregraphs) is

proposed to represent the common behaviors of malware samples that belong to the same

family. Then, this study designs and implements FalDroid, an approach that automatically

classifies Android malware into their corresponding families and selects representative

malware samples in each family accordance with fregraphs. In this way, FalDroid can

effectively reduce the analytical workload and accelerate malware analysis.

Then, to overcome the limitation of existing supervised learning approaches in handling

unlabeled dataset, the graph structure of sensitive subgraph is abstracted by leveraging

the graph embedding techniques and a new feature called SRA is proposed to depict the

similarity relationships of structural roles of sensitive API call nodes in a graph. The SRA

feature can not only retain the semantic information of the graph but also can transform the

high-cost graph matching into an easy-to-compute similarity calculation between vectors.

Then this study designs and implements GefDroid, an approach that constructs a malware

link network to depict the similarity relationships between all samples based on the SRA

feature. In this way, this study can handle the unlabeled samples with unsupervised

learning.

After that, to ease the labor-intensive manual feature engineering process, this study

proposes techniques that summarize the existing knowledge contained in magnanimity

information of natural language documents and generates a novel type of features

called sensitive behavior, which is represented as verb-objective phrases that are easy

to understand. This study designs and implements CTDroid, an automatic feature
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engineering system. By using CTDroid, a set of informative features is constructed from

technical blogs that can be utilized for Android malware analysis.

The four approaches are evaluated on the datasets that consist of real benign apps

and malware samples. The results of extensive experiments demonstrate that: DAPASA

achieves good performance on detecting piggybacked apps with a true positive rate of

95% and a false positive rate of 0.7%; FalDroid can correctly classify 94.2% of malware

samples into their families using approximately 4.6 seconds per app; GefDroid can achieve

high agreements (0.707-0.883 in term of NMI) between our clustering results and the

ground truth datasets; The features extracted by CTDroid perform well for malware

analysis and are more informative than those of state-of-the-art approaches.

Keywords: Android Application; Behavior Modeling; Malware Detection; Familial

Identification; Sensitive Subgraph
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Chapter 1

Introduction

Android is a Linux-based free and open source operating system, which is led and

developed by Google and the Open Handset Alliance in 2007. It is widely used in mobile

devices such as smartphones and tablets. The first Android smartphone was released in

October 2008, and Android gradually expanded to tablets and other areas such as TVs,

digital cameras, smart watches, game consoles, etc. Compared to traditional Symbian

operating system, Android has the following three advantages. 1) Open source: The open

source code, free development software, and communities have attracted more and more

developers. The huge competition makes Android more and more mature in an open

platform. 2) Rich hardware selection: In order to attract more users, many manufacturers

transform the Android system and produce various products with different features without

affecting data synchronization, software compatibility and other functions. 3) Millions of

applications (apps) to download: There are many Android app markets that can provide

users with a variety of rich app downloads, such as official Google Play [20], and third-

party market Anzhi [14]. These advantages make Android become the most popular

mobile operating system. According to data provided by research firm Gartner, in the

first quarter of 2018, Android has occupied 85.9% of the market share of mobile operating

system [55].
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Meanwhile, Android has become the major target of 97% of mobile malware [81]. A

recent security report shows that on average, 38,000 new mobile malware samples were

captured per day during the third quarter of 2016 [78]. The rapid growth of malware

has caused tremendous harm to mobile smartphone users, including financial charge,

information collection, and remote control. Thus, the in-depth study of the security issues

of mobile applications is of great significance to the sound development of the smart phone

ecosystem.

This thesis focuses on two sub-problems of malware detection and familial identification

in mobile application security issues. The malware detection problem is defined as follows.

Given a mobile app, how do we effectively detect it is malicious through program analysis,

which is a binary classification problem. The familial identification problem is defined as

follows. Given a malicious app, how do we effectively classify it into its corresponding

family. It is a a multi-classification problem. Here a malware family means a group of

malware samples that conduct similar malicious behaviors.

For these two major research problems, the existing malware analysis approaches are

facing the following three main challenges:

• Morphological diversity of malicious code: To bypass existing malware detection

approaches, malicious code creators create many different types of variants by

constantly modifying the malicious source code. In addition, the increasingly

sophisticated obfuscation technologies would change the structure of malicious

code, making the naive approaches such as signature-based approaches more and

more difficult to be detected.

• Lack of labeled dataset: Since the malware samples generally contain thousands

lines of code, it is time-consuming and labor-intensive to manually read the code

and label a large scale of malware samples with family names. Moreover, since
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classifiers are trained using known malware samples, they cannot correctly classify

new malware samples from unknown families. Note that retraining the classifier

model for every new sample may be impractical.

• Labor-intensive manual feature engineering process: The effectiveness of the

above approaches primarily depends on the manual feature engineering process,

which is time-consuming and labor-intensive based on human knowledge and

intuition. Specifically, to perform malware analysis with high performance, the

researchers need to manually inspect the malicious activities of malware samples

and summarize the hypotheses about common behaviors that malware share but

benign apps do not. Furthermore, the summarized hypotheses might vary from

different inspected malware samples, thus constructing different feature spaces for

different datasets.

The overview architecture of the thesis is illustrated in Fig. 1.1. To overcome the above

three challenges, two different types of software behavior model are proposed. They are

graph-based model and text-based model. Then, for the graph-based model, the thesis

proposes the maximum sensitive subgraph feature and the frequent sensitive subgraph

feature to solve the problems brought by the first challenge in malware detection and

familial identification. After that, to overcome the second challenge, the graph structure of

sensitive subgraph is abstracted by leveraging the graph embedding techniques, and a new

graph embedding feature called SRA is proposed to perform familial clustering. Finally,

to ease the labor-intensive manual feature engineering process, the thesis summarizes the

existing knowledge contained in magnanimity information of natural language documents

and generates a novel type of features called sensitive behavior to perform malware

analysis. The details of the four research contents are introduced below:

1) The construction of maximum sensitive subgraph feature and its application in
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Figure 1.1: Overview architecture of the thesis

piggybacked apps detection

According to the results provided by existing work, piggybacking is one of the most

common techniques utilized by malware authors to piggyback malicious payloads on

popular apps to produce malware. About 86% of malware samples were piggybacked

versions of legitimate apps with malicious payloads [155]. Piggybacked apps pose

significant security threats, and effective techniques to detect them are necessary.

Piggybacked apps are constantly modified which makes them difficult to detect. However,

based on an empirical analysis of piggybacked apps, we find that to perform its malicious

task, the injected malicious components invoke more sensitive API calls than the benign

app does. Moreover, in the injected malicious components, the cohesion of sensitive API

calls, which is measured by calling distances, is higher than that in the benign app.

Based on these two observations, we start with the construction of a static function-call

graph (FCG) of a given app. Then to differentiate the maliciousness of different sensitive

API calls, we calculate the sensitivity coefficients for each sensitive call API through a

term frequency-inverse document frequency (TF-IDF)-like measure. After that, we divide

the FCG into a set of subgraphs and selects the subgraph with the highest sensitivity

coefficient as the maximum sensitive subgraph to profile the most suspicious behavior of
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the given app. Finally, five features are constructed from the maximum sensitive subgraph

and fed into machine learning algorithms to detect whether the app is piggybacked or

benign.

Based on the maximum sensitive subgraph feature, we develop DAPASA, a novel

system for the detection of Android piggybacked apps. Extensive experimental results

demonstrate that DAPASA can achieve good performance with a true positive rate of 95%

and a false positive rate of 0.7%. In addition, DAPASA can complement the permission-

and API-based approaches from a new perspective of the invocation structure.

2) The construction of frequent sensitive subgraph feature and its application in

familial identification

The analysis of each malware sample requires ample time. Hence, the sheer number

of malware samples overwhelms malware analysis systems. The majority of new

malware samples are polymorphic variants of known malware. Thus, to accelerate

malware analysis, we can classify malware samples into various families and then select

representative samples from each family. However, polymorphic variants of Android

malware that belong to the same family perform the same malicious activities with

different implementations. To address this limitation, we first construct sensitive API call

related graph (SARG) through graph analysis techniques on FCG. Then, SARG is initially

divided into a set of subgraphs using community detection algorithms. With subgraph

matching and clustering techniques, the sensitive subgraphs used by most samples in one

family are defined as the frequent sensitive subgraphs (fregraphs). After that, each fregraph

is assigned with a weight score and a feature vector is constructed for each app. Finally,

known machine learning algorithms can be applied to perform the familial identification

task.

Based on the fregraph feature, we develop FalDroid, an automatic system for identifying
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Android malware and selecting representative samples of each family. Extensive

experimental results demonstrate that FalDroid achieves a 94.2% accuracy and only

requires approximately 4.6 sec to process an app.

3) The construction of graph embedding feature and its application in familial

clustering

The above two approaches focus on the classifying of unlabeled malware samples using

supervised learning methods. However, it is time-consuming and labor-intensive to label a

large scale of malware samples with family names. Moreover, since classifiers are trained

using known malware samples, they cannot correctly classify new malware samples from

unknown families. To solve the second challenge, we propose a novel feature called SRA

to depict the similarity relationships of structural roles of sensitive API call nodes in a

graph. The SRA feature can not only retain the semantic information of the graph but also

can transform the high-cost graph matching into an easy-to-compute similarity calculation

between vectors. In particular, we construct a malware link network (MLN) to represent

the similarity relationships among samples based on their similar SRAs. Finally, we apply

community detection algorithms to group the samples into a set of clusters.

Based on the SRA feature, we propose and develop GefDroid, a novel system

for familial analysis of Android malware by using unsupervised learning. Extensive

experimental results demonstrate that GefDroid can achieve high agreements (0.707-0.883

in term of NMI) between our clustering results and the ground truth datasets. Furthermore,

GefDroid requires only linear run-time overhead and takes around 8.6s to analyze a sample

on average, which is considerably faster than the prior arts.

4) The construction of sensitive behavior feature and its application in malware

analysis
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The effectiveness of the above approaches primarily depends on the manual feature

engineering process, which is time-consuming and labor-intensive based on human

knowledge and intuition. To solve the third challenge, we aim to automatically engineer

informative features from existing knowledge learned by experts and apply them on

malware analysis. Given that it is hard to automatically recognize the harmful activities in

the magnanimity information of thousands of technical blogs, we first leverage natural

language processing (NLP) techniques to parse the contents in blogs into a uniform

structure. Then, we propose a clustering-based approach to extract frequent behaviors that

have close relations with Android system and regard them as sensitive behaviors. However,

there also exists a semantic gap between the sensitive behaviors and the programming

language. Thus, we propose two semantic matching rules to bridge the gap between the

sensitive behavior and the programming language based on the analysis of descriptions of

Android concrete features, as well as the keywords in the app code.

Based on the sensitive behavior feature, we propose and develop CTDroid, an automatic

feature engineering system used for malware analysis. Experimental results show that

our proposed features can perform well for malware detection and familial identification.

Furthermore, these features are more informative than those of state-of-the-art approaches.

The rest of this thesis is organized as follows. Chapter 2 introduces the related work.

Chapter 3 proposes a feature called maximum sensitive subgraph feature, and implements

DAPASA, a novel approach for the detection of Android piggybacked apps. Chapter 4

proposes a feature called frequent sensitive subgraph feature, and implements FalDroid,

a novel approach for identifying Android malware and selecting representative samples

of each family. Chapter 5 proposes a feature called SRA, and implements GefDroid, a

novel approach for familial analysis of Android malware by using unsupervised learning.

Chapter 6 proposes a feature called sensitive behavior feature, and implements CTDroid,

an automatic feature engineering system used for malware analysis. Finally, Chapter 7
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concludes this thesis and discusses future work.
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Chapter 2

Literature Review

The rapid increase in the number of Android malware poses great threats to the

smartphone users, such as financial charge, information collection, and remote control.

The development of malware analysis technology has quickly become a hot topic in the

field of software security, and has achieved a lot of excellent research results. In this

chapter, we first introduce the widely-used datasets and then discuss three main types

of work that are related to this thesis, including malware analysis, graph embedding

techniques and NLP techniques for Android.

2.1 Malware Datasets

The malware analysis is inseparable from the support of effective datasets. There are

three widely-used datasets: Genome Project dataset [156], Drebin dataset [34] and the

DroidBench dataset [3].

The Genome Project dataset is constructed by Zhou and Jiang with a duration over

more than one year. The dataset contains 1,260 malware samples in 49 families. The team

spends a lot of manpower and resources to manually analyze the samples in the dataset.
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The results demonstrate that: 1) More than 86% malware samples are repackaged versions

of legitimate apps with malicious payloads, which suggests that policing repackaged apps

is necessary of the Android markets. 2) Around one third (36.7%) of the collected malware

samples leverage root-level exploits to fully compromise the Android security, posing the

highest level of threats to users’ security and privacy. 3) 93.0% malware samples turn the

infected phones into bots for remote control. Specifically, they use the HTTP-based web

traffic to receive bot commands from their C&C servers.

To foster research on Android malware and to enable a comparison of different detection

approaches, Drebin dataset extends the Genome project dataset and is built by by Arp et

al. The Drebin dataset contains 5,560 malware samples in 179 families. The samples are

collected in the period of August 2010 to October 2012.

The DroidBench dataset is constructed by Fritz et al. It is an open test suite for

evaluating the effectiveness of taint-analysis tools specifically for Android apps. The suite

can be used to assess both static and dynamic taint analyses, but in particular it contains test

cases for interesting static-analysis problems (object sensitivity, field sensitivity, tradeoffs

in access-path lengths etc.) as well as for Android-specific challenges like correctly

modeling an app’s lifecycle, adequately handling asynchronous callbacks and interacting

with the UI.

2.2 Malware Analysis

Existing malware analysis studies fall into two general categories: 1) signature-based

approaches and 2) machine learning-based approaches.
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2.2.1 Signature-based Approaches

Signature-based approaches look for specific patterns of malware behavior. The earliest

signature is the digital signature of each Android app. According to the Android system

requirements, each app must have a valid digital signature to be uploaded to the app

market. Each digital signature uniquely identifies the app, so the most primitive malware

detection approach is to check whether the digital signature of an app is in a database of

malicious signature. However, the app code can be modified and re-signed by repackaging,

and so this approach is very easy to bypass.

Enck et al. [56] proposed the Kirin security service for Android, which designs nine rule

templates to match the undesirable properties in security configuration bundled with apps.

For example, if one app requests the permissions SEND SMS and WRITE SMS, it will be

regarded as a malicious app. Grace et al. [70] proposed a proactive scheme to spot zero-

day Android malware, and developed a system called RiskRanker to analyze whether an

app exhibits malicious behavior. Zhou et al. [148] proposed a permission-based behavioral

footprinting scheme to detect new samples of known malware families and then applied

a heuristic-based filtering scheme to identify inherent behaviors of unknown malware

families.

Unlike signatures that have no program semantics, Feng et al. [61] proposed a semantic-

based malware detection approach named as Apposcopy. Apposcopy proposes a high-level

specification language for describing semantic characteristics of malware families and a

powerful static analysis for checking whether a given app matches the existing signatures.

For example, a signature flow(s, DeviceId, s, Intent) extracted from the golddream family

indicates that the samples in the family contain the data flow which collects the device

ID information and sends it to the network. However, Apposcopy relies on the security

experts to carefully analyze the samples in each family and summarizes the signatures
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of malicious behaviors, which requires a lot of manpower and resources. Moreover,

the family signatures constructed by this approach are only valid for known families

and cannot detect unknown family samples. Thus, Feng et. al [62] proposed Astroid,

which automatically generates the malware signature by analyzing a maximally suspicious

common subgraph that is shared between all known instances of a malware family. The

subgraph is used to depict the common malicious behavior of malware samples that belong

to the same family.

2.2.2 Machine Learning-based Approaches

Machine learning-based approaches extract different features from app code and apply

standard machine learning algorithms to perform a classification task. According to the

types of extracted features, these approaches can be categorized into four groups.

1) Permission, API, and Components

Existing works [137, 100, 37, 91, 85] analyze the AndroidManifest.xml file and extract

the requested permissions. Each permission is regarded as a feature. Au et al. [36]

proposed PScout, which statically analyzes the Android system source code, and extracts

the mapping relationship between API calls and their required permissions. The API call is

a more granular feature than permission. Aafer et al.[31] proposed DroidAPIMiner, which

extracts five different types of API calls as features, including app-specific resources API

calls, framework resources API calls, DVM related resources API calls, system resources

API calls, and utilities API calls. Unlike these static API features, other works [152, 79]

use the system call APIs that are executed by the dynamic execution program as features.

Except for the typical permission- and API-based features, several works [34, 141, 92,

121, 138, 129] find that the filter intents, strings, and Android components can also be
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used as effective features to distinguish the malware samples and benign apps. Arp et

al. [34] proposed Drebin, which uses the intents (e.g., BOOT COMPLETED that is used to

trigger malicious activity directly after rebooting the smartphone), hardware components

(e.g., GPS and network modules), Android components (e.g., activities, services, content

providers, broadcast receivers), and network address (e.g., hostnames and URLs), as

features. Based on the above extracted features, Garcia et al. [66] proposed RevealDroid,

which adds the occurred frequency of reflection methods and the system calls used

in native code as new features, thus improving the resilience ability to obfuscation

techniques.

2) Dalvik Code

The dalvik code obtained by decompiling the APK file is rich in semantics and

contains classes, methods, and instructions of the programs. Zhou et al. [155] proposed

DroidMOSS, which directly uses the opcodes and the operands as features. Canfora and

Hanna [44, 74] transformed the opcode feature by leveraging the k-gram techniques [133].

The sliding window with step k is used to divide the opcode sequence into features

consisting of k opcodes, thus improving the robustness of the feature. Suarez et al. [127]

proposed Dendroid, which uses the basic block of app code as features. The basic block

refers to the sequence of statements executed sequentially by the program. There is only

one entry and one exit. The entry is the first statement, and the exit is the last statement.

For basic blocks, execution only enters from its entry, exits from the exit, and does not

contain any jump statements.

3) Metedata

Metadata refers to additional descriptive information that is not related to the app’s

own code, such as the app’s downloads, functionality descriptions, category information,

and others. This kind of information can improve the existing features from another new
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perspective, thus improving the detection performance.

Teufl et al. [130] extracted multiple metadata of the app as features, including last

modification time, price, description, category, downloads, user ratings, package size,

number of screenshots, package name information, version number, developer ID, and

their contact details. Grampurohit et al. [71] and Wang et al. [136] combined the

category information with existing permission- and API-based features to improve the

detection performance. Unlike using the default category information, Gorla et al. [69]

proposed CHABADA, which divides the collected apps into 29 categories by clustering

their description information. They regarded that it is normal for a weather category app

to use the API call getLastKnownLocation() to get location information, while other apps

in this cluster calling this API may be treated as exceptions. This approach effectively

combines descriptive information with software behavior to mine anomalous apps in

various categories.

4) Graph Model

All of the above three types of features are represented in the form of strings that are

easily changed by existing obfuscation techniques to bypass malware detection. Therefore,

more and more research work attempts to improve the robustness of features while

retaining the program semantics. Various graph models are proposed for malware analysis.

According to the node properties, existing graph models can be categorized into function

call graph (FCG), control flow graph (CFG), data flow graph (DFG), and user interface

interaction graph (UIG). In addition, there are several customized graph models designed

for specific requirements.

Table 2.1 lists different graph models and related information, the last column indicates

the analysis grain, which is divided into three grades (i.e., coarse, medium, and fine)

according to the analysis object.
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The fine grain model is the graph model in which the analysis object is the program

statement. A typical work is the CFG constructed in Centroid [46], where each node

denotes the basic block and each edge denotes the jump relationship between the blocks.

However, DNADroid[51] focused on the analysis of DFG, where each node denotes

the statement that contains data information, and each edge denotes the dependency

relationship between statements.

The medium grain model is the graph model in which the analysis object is the

function. A typical work is the FCG constructed in Adagio [67], where each node

denotes a function and each edge denotes the call relationship between functions. Based

on FCG, DroidSIFT [149] focused on the analysis of API calls, thus it constructed the

API dependency graph, where each node denotes a API call and each edge denotes the

dependency relationship between API calls. Both of the above two models belong to the

isomorphic information network, meaning that the all the nodes have only one property.

HinDroid [76] focused on the relationships between apps and proposed a heterogeneous

information network , where each node denotes an API call or an app. The edge is

constructed according to four conditions: 1) an app uses a API call; 2) two API calls

belong to the same package; 3) two API calls belong to the same basic block; 4) two API

calls use the same invocation methods.

The coarse grain model is the graph model in which the analysis object is the package,

class or view. A typical work is the PDG constructed in PiggyApp [154], where each

node denotes a package, and each edge denotes one of four different types of dependency

relationships, including class inheritance, package homogeny, method calls, and member

field references. Similarly, DroidLegacy [54] constructed the CDG, where each node

denotes a class and each edge denotes the dependency relationships between classes.

In addition, by analyzing the user interface, MassVet [47] constructed the UIG, where

each node denotes the activity component and different types of dialogs, each edge denote
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different types of event messages, such as onClick(), onFocusChange(), and onTouch().

2.3 Graph Embedding Techniques

After extracting the graphs, we must encode them in vector spaces before we can apply

machine learning techniques. The embedding techniques based on representing graphs in

vector spaces, while preserving their properties, have become widely popular. There are

two types of representation learning.

The first is to encode nodes as low-dimensional vectors that summarize their structural

roles in graphs. Perozzi et al. [105] proposed DeepWalk which first uses the random walks

to generate node sequence as its context. Inspired by the skip-gram model [97], each

node is regarded as a word and its representation is learned with a neural network. Then

Grover and Leskovec [72] improved the DeepWalk model by proposing node2vec that uses

second-order random walks to generate the node sequence. However, these approaches

have a limitation, i.e., the structurally similar nodes will never share the same context if

their distance is larger than the skip-gram window. Ribeiro et al. [113] proposed struc2vec,

which uses a hierarchy to measure node similarity at different scales, and constructs a

multilayer graph to encode structural similarities and generate the structural context for

nodes. However, the above approaches cannot be directly applied to our work since their

embedding results of the same graph are not in a consensus due to the using of random

walks.

The second is to encode a graph as low-dimensional vectors instead of a node. Dai

et al. [53] proposed structure2vec, which is based on the idea of embedding latent

variable models into feature spaces and learning such feature spaces using discriminative

information. Narayanan et al. [101] proposed graph2vec, which is also based on the skip-
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gram model for learning embedding similar to node2vec. The difference is that it views

an entire graph as a document and the subgraphs around each node in the graph as words

that compose the document. Even though such approaches can learn representations for

graphs, they require a graph set as input and need model retraining to deal with the new

coming samples.

2.4 Natural Language Processing for Android

With the development of NLP techniques, there are some approaches that analyze the

Android-related contextual content to improve the analysis of relative tasks, such as

permission analysis, privacy analysis, and malware analysis.

For the permission analysis, Rahul et al. [104] proposed WHYPER, which first extracts

the requests for three permissions (i.e., READ CONTACTS, READ CALENDAR, and

RECORD AUDIO). Then, WHYPER leverages NLP and automates risk assessment

of mobile apps by revealing discrepancies between app descriptions and their actual

functionalities. The experiments on 581 samples demonstrate that WHYPER can achieve

a precision of 82.8% and a recall of 81.5%. However, it can not deal with permissions that

have no associated API calls, such as the permission RECEIVE BOOT COMPLETED.

To handle the limitations of WHYPER, Qu et al. [108] proposed AutoCog, which can

automatically assess description-to-permission fidelity of apps by extracting semantic

information from the descriptions. The evaluation on 1,785 apps shows that the precision

and recall of AutoCog are 92.6% and 92%, respectively.

As to the privacy policy analysis, Yu et al. [147] proposed PPChecker, which adopts

NLP and program analysis techniques to automatically identify three privacy problems,

the incomplete, incorrect, and inconsistent privacy policies. The experiment results on
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1,179 apps demonstrate that 282 (23.6%) apps have at least one privacy problem. Slavin

et. al [125] proposed a framework that detects the privacy violation based on a privacy-

policy-phrase ontology and a set of mapping from API calls to policy phrases. The case

studies on 501 top Android apps show 63 potential privacy policy violations.

For malware analysis, Gorla et al. [69] proposed CHABADA, which first groups the

Android apps into clusters according to their description topics and then identify outliers

in each cluster with respect to the API call usage. Zhu and Dumitras [157] proposed

FeatureSmith, which engineers features automatically by analyzing the content of papers

published in security conferences. Its detection accuracy is comparable to the performance

of malware detectors that relies on manually engineered features.
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Chapter 3

The Construction of Maximum Sensitive
Subgraph Feature and Its Application in
Piggybacked Apps Detection

3.1 Overview

Android smartphones have recently gained much popularity. Many Android app markets

such as Google Play[20] and Anzhi Market[14] have been set up, where users can

download various apps. The Android platform has become a major target of malware.

According to Zhou and Jiang[156], piggybacking is one of the most common techniques

utilized by malware authors to piggyback malicious payloads on popular apps to produce

malware. About 86% of their collected 1,260 samples were piggybacked versions of

legitimate apps with malicious payloads. The malware created through piggybacking is

called a piggybacked app. A piggybacked app has two main parts, namely, the original

benign code and the injected malicious payloads. Following the conventions described in

[154], we use the term carrier to refer to the former and the term rider to refer to the latter.

Developing new malware from scratch is labor intensive, but malware authors can

easily add a specific rider into various carriers through piggybacking techniques to quickly
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produce and distribute a large number of piggybacked apps. For example, members of the

notorious malware family geinimi usually repackage themselves into various legitimate

game apps, steal personal information and send it to a remote server. Typically, malware

authors download paid apps from the official market, disassemble them, add malicious

payloads, reassemble and submit the “new” apps to the official or alternative Android

markets for free. The new piggybacked apps would entice smartphone users to download

and install.

The rapid growth in the number of piggybacked apps poses great threats to smartphone

users. To bypass existing malware detection approaches, malware authors create many

different types of variants by constantly modifying the malicious source code. In addition,

the increasingly sophisticated obfuscation technologies would change the structure of

malicious code, making it more and more difficult to detect.

In this work, we detect Android piggybacked apps by utilizing the distinguishable

invocation patterns of sensitive API calls between the rider and carrier. Sensitive API

calls are the API calls that operate on sensitive data to perform malicious activities. It is

worth noting that sensitive API calls constitute only a small portion of the whole Android

API calls and they cannot be easily obfuscated by existing techniques whereas the names

of user-defined functions are usually obfuscated as a, b or c.

To further understand the distinguishable invocation patterns, we establish two

assumptions based on an empirical analysis of piggybacked apps.

Assumption 1: To perform its malicious task, the rider invokes more sensitive API calls

than the carrier does.

Assumption 2: Generally, in the rider, the cohesion of sensitive API calls, which is

measured by calling distances, is higher than that in the carrier.
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By exploiting the two assumptions, we develop DAPASA, an approach to detect

Android piggybacked apps through sensitive subgraph analysis. DAPASA consists of the

following four steps.

1) DAPASA starts with the construction of a static function-call graph of a given app. It

is a directed graph where nodes denote the functions invoked by the app and edges denote

the actual calls among these functions.

2) To differentiate the maliciousness of different sensitive API calls, DAPASA

calculates the sensitivity coefficients for each sensitive API through a term frequency-

inverse document frequency (TF-IDF)-like measure.

3) DAPASA divides the static function-call graph into a set of subgraphs heuristically

with sensitive API nodes and their nearby normal nodes. The subgraph with the highest

sensitivity coefficient is selected as the maximum sensitive subgraph (SSG) to profile the

most suspicious behavior of the given app.

4) Five features are constructed from the SSG. The feature sensitivity coefficient of the

SSG (scg) and the feature total sensitive distance of the SSG (tsd) are used to measure the

maliciousness and cohesion of sensitive API calls, respectively. In addition, three different

types of sensitive motifs are exploited to further depict in a fine-grained manner the local

invocation patterns of sensitive API calls. Finally, the five features are fed into machine

learning algorithms to detect whether the app is piggybacked or benign.

DAPASA is evaluated on a large real-world dataset consisting of 2,551 piggybacked

apps and 44,921 popular benign apps. The evaluation results show that DAPASA achieves

good performance with a true positive rate of 95% and a false positive rate of 0.7%.

In summary, we make the following contributions in DAPASA.
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(i) We propose two assumptions about the different invocation patterns of sensitive API

calls between the rider and carrier in Android piggybacked apps. By exploiting these

two assumptions, we construct a maximum sensitive subgraph to represent the entire

call graph and profile the most suspicious behavior of the given app.

(ii) We propose five numeric features from the generated maximum sensitive subgraph.

These features can not only be used for independent detection of piggybacked apps,

but also have the ability to complement permission- and API-based approaches in

the performance and explanation of the detection results.

(iii) We propose a TF-IDF-like measure to calculate the sensitivity coefficient of each

sensitive API call based on the idea of TF-IDF. It can reduce the interference factors

of the sensitive API calls that frequently occur in both benign and malicious apps.

The rest of this chapter is organized as follows. Section 3.2 introduces the construction

of function call graph. Section 3.3 details the construction of maximum sensitive subgraph

feature. Section 3.4 reports the evaluation results. Section 3.5 concludes this chapter.

3.2 Construction of Function Call Graph

Android apps are normally written in Java and compiled to dalvik code (DEX) stored in

a classes.dex file. The compiled code and the required resources are packaged into an

APK file. On the basis of existing disassemble tools (e.g., apktool [16]), we can obtain the

dalvik code from the APK.

Given that the dalvik code can be easily changed by typical code obfuscation techniques

(e.g., renaming of methods or classes), directly analyzing the dalvik code is not effective.

Furthermore, the malware samples within the same family only share similar malicious
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components that constitute only a small portion of the apps, it is also not efficient to mine

similar code snippets with information retrieval techniques.

To retain the program semantics and be resilient to typical code obfuscation techniques,

different kinds of effective graph models, including FCG [67], CFG [52, 51, 46], and user

interface graph (UIG) [47, 123], are proposed. In our approach, we use FCG rather than

CFG and UIG as our graph model to depict app behaviors because of two reasons. First,

UIG is not suitable for similarity detection between malware samples since they usually

have entirely different UIs. Second, although CFG is a fine-grained graph model that

contains detail information of the basic blocks in methods, the extraction and analysis

of CFGs is a time-consuming job that requires considerable computational resources. In

addition, the results of related approaches [67] have proved that FCG contains enough

semantic information to perform malware analysis.

To construct the FCG of a given app, we extract the callers and callees from the dalvik

code by identifying the invocation statements, such as “invoke-direct.” Then we add the

callers and callees as nodes in a graph and insert an edge between two nodes if a function

call relation exists between them. The FCG is represented as a directed, unweighted graph

G = (V,E).

• V = {vi|1 ≤ i ≤ n} denotes the set of functions invoked by an app, where each

vi ∈ V indicates a function name.

• E ⊆ V × V denotes the set of function calls, where edge (vi, vj) ∈ E indicates that

a function call exists from the caller function vi to the callee function vj .

Fig. 3.1 illustrates the FCG of an app called corner23. Thousands of nodes are usually

found in a constructed FCG. The analysis of entire FCGs are neither effective (i.e., the

malicious components constitute only a small portion) nor efficient (i.e., excessive number
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Figure 3.1: Function call graph of an app called corner23

of nodes and edges to analyze). Since Android malware usually invokes sensitive API calls

that operate on sensitive data to perform malicious activities, we identify the sensitive API

call nodes in FCGs. We employ the result reported by [111] to obtain a set of sensitive

API calls. Specifically, [111] proposed SuSi, which is a novel machine-learning-guided

approach, to identify Sources and Sinks directly from Android API calls. Sources are API

calls that return sensitive data (e.g., getDeviceId() to obtain the IMEI of a phone), and

Sinks are API calls that can use sensitive data as arguments (e.g., sendTextMessage() to

send short messages). A total of 9,730 sensitive API calls are available and we use SS to

denote the sensitive API call set.

It is worth noting that the widely-used third-party and advertisement libraries can

introduce noises when analyzing malicious activities. To solve this problem, two filtering

methods are applied. First, a list that contains widely-used library names provided by

existing approaches [88, 87] is constructed. Second, a list of class names collected from

5,000 benign apps is also constructed. The class names on the two lists are regarded as

noises and their corresponding subgraphs are removed from the subgraph set.

Although the two lists can work well for most apps, they are not sound for the class files
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whose names are obfuscated as a, b or c. To this end, we use the tool Deguard [41] to

reverse the obfuscated names of given apps. Then we are able to remove the obfuscated

class files if they are obtained in the above two lists.

3.3 Construction of Maximum Sensitive Subgraph Fea-
ture

After the construction of FCG, this section introduces the construction of maximum

sensitive subgraph feature, which includes three steps: measuring the sensitivity

coefficient of each sensitive API call, mining the maximum sensitive subgraph from the

FCG, and constructing a feature vector from the maximum sensitive subgraph for each

app.

3.3.1 Measurement of the Sensitivity Coefficient

The sensitivity coefficient is calculated to denote the maliciousness of a sensitive API

call in performing malicious behavior. Given that several sensitive API calls are used in

malware and benign apps, the measurement would be biased if only the coefficient of a

sensitive API call is calculated with its frequency of occurrence in a malicious dataset,

such as MIGDroid [77].

We propose a TF-IDF-like measure of the sensitivity coefficient of sensitive API calls

that exploits the idea of TF-IDF [142]. To achieve this, 6,154 malicious apps are

downloaded from VirusShare[28], and 44,921 benign apps in 26 categories, such as Game,

Personalization, and Weather, are collected from Google Play and Anzhi Market. The

benign apps have been uploaded to VirusTotal to ensure that they are benign according to

the detection results provided by more than 50 anti-virus engines [29]. We use six terms
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of sensitive API call s to understand its distribution in our malicious and benign datasets.

• mc(s): malicious count of s. It denotes the number of malware using s in the

malicious dataset.

• bc(s, c): benign count of s. It denotes the number of benign apps using s in category

c.

• mrt(s): ratio ofmc(s) to the total number of malware in the malicious dataset which

is represented as p. mrt(s) can be obtained with mrt(s) = mc(s)
p

, where p = 6, 154

in our work.

• brt(s, c): ratio of bc(s, c) to the total number of benign apps in category c which is

represented as q(c). brt(s, c) can be obtained with brt(s, c) = 1+bc(s,c)
q(c)

.

• mrk(s): rank number of mrt(s) among all the sensitive API calls.

• brk(s, c): rank number of brt(s, c) among all the sensitive API calls in category c.

Table 3.1 shows several sensitive API calls with high mrts and their corresponding brts

and brks in Game, Personalization, and Weather categories, respectively. We obtain three

observations from Table 3.1.

1) Several sensitive API calls are used frequently in the malicious and benign datasets.

For example, openConnection() and connect() are used to connect the Internet. Regardless

of the category, their brks are very small.

2) Several sensitive API calls are used more frequently in the malicious dataset than in

the benign dataset. An example is sendTextMessage(). Its mrk is 2, whereas its brks in all

the three categories exceed 50.
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Table 3.1: Several sensitive API calls’ mrts, mrks, and their corresponding brts, brks in
Game, Personalization and Weather categories.

Sensitive API Call
Malicious Dataset Game Personalization Weather
mrt mrk brt brk brt brk brt brk

notif() 0.746 1 0.201 23 0.212 4 0.465 14
sendTextMessage() 0.542 2 0.034 50 0.008 65 0.009 80
openConnection() 0.479 3 0.799 1 0.297 1 0.838 1

getDeviceId() 0.474 4 0.456 10 0.085 13 0.414 16
getLine1Number() 0.452 5 0.110 32 0.016 43 0.014 65

connect() 0.449 6 0.747 3 0.216 3 0.738 2
getInputStream() 0.344 9 0.263 18 0.051 23 0.516 11
getSubscriberId() 0.344 10 0.073 39 0.012 50 0.275 31

getConnectionInfo() 0.320 11 0.178 25 0.018 40 0.074 35
getSimSerialNumber() 0.285 14 0.050 44 0.010 58 0.014 64
getActiveNetworkInfo() 0.260 18 0.747 2 0.279 2 0.738 3
getLastKnownLocation() 0.217 21 0.418 13 0.079 14 0.595 8
requestLocationUpdates() 0.181 22 0.267 17 0.057 20 0.599 7

getCellLocation() 0.152 26 0.023 54 0.004 79 0.039 43

3) The brts and brks differ in the different categories. For example, in categories Game

and Weather, nearly all sensitive API calls have higher brts than those in the category

Personalization, which have lower than 0.3.

With these three observations, we consider the following questions to better understand

our measurement of the sensitivity coefficient.

Q 1 If the mrt of a sensitive API call is high, will its sensitivity coefficient also be high?

As illustrated in Table 3.1, the mrts of openConnection() and getSimSerialNumber()

(used to obtain the user’s SIM number) are 0.479 and 0.285, respectively. Does this mean

openConnection() has a higher sensitivity coefficient than getSimSerialNumber()?

The answer is no. As noted in the first two observations, openConnection() is widely

used in both malicious and benign apps because nowadays, most apps need to connect

to the Internet. Meanwhile, getSimSerialNumber() occurs much more frequently in
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malicious apps than in benign apps because benign apps rarely need to have the SIM

number. Intuitively, getSimSerialNumber() should have a higher sensitivity coefficient

than openConnection().

Q 2 Does an app that obtain location information by using getLastKnownLocation()

appear suspicious?

The answer is also no. As noted in the last observation, the brts in the three categories

are different. For apps in the Personalization category, the API call’s brt is only 0.079 and

would reveal the location information of users. In the Weather category, the API call’s brt

is 0.595, and the API call is generally used to obtain weather information in the location

of users. According to this discussion, the category information can be exploited in our

measurement of sensitivity coefficients. For the same sensitive API call, its sensitivity

coefficients in different categories would be different.

In text mining literature, TF-IDF is a numerical statistic intended to reflect how

discriminating a term is to a document in a corpus. By utilizing the idea of TF-IDF for

reference, we make the scs of a sensitive API call be in positive correlation with its mrt

and in negative correlation with its brt. For sensitive API call s of an app that belongs to

a specific category c, its sensitivity coefficient scs(s) is calculated with Eq. (3.1).

scs(s) = mrt(s)× log
1

brt(s, c)
. (3.1)

For example, the Game category has 3,505 apps, in which 2,801 apps use

openConnection() and 174 apps use getSimSerialNumber(). Their scss are 0.047

and 0.371, respectively. Apparently, getSimSerialNumber() is more sensitive than

openConnection().

Table 3.2 shows the scss and ranks of the sensitive APIs. sendTextMessage() has
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Table 3.2: Several sensitive API calls’ scss and their corresponding ranks in Game,
Personalization and Weather categories.

Sensitive API Call
Game Personalization Weather

scs rank scs rank scs rank

notif() 0.521 2 0.501 9 0.246 7
sendTextMessage() 0.792 1 1.130 1 1.102 1
openConnection() 0.047 46 0.252 21 0.037 43

getDeviceId() 0.161 20 0.508 8 0.181 12
getLine1Number() 0.432 3 0.807 2 0.839 2

connect() 0.057 43 0.299 16 0.059 35
getInputStream() 0.200 18 0.447 11 0.099 24
getSubscriberId() 0.391 4 0.657 3 0.192 11

getConnectionInfo() 0.240 9 0.561 5 0.362 4
getSimSerialNumber() 0.371 5 0.575 4 0.529 3
getActiveNetworkInfo() 0.033 51 0.144 32 0.034 44
getLastKnownLocation() 0.082 36 0.239 23 0.049 38
requestLocationUpdates() 0.203 17 0.232 24 0.063 32

getCellLocation() 0.249 8 0.364 12 0.214 8

the highest scs in all the three categories, given that it is frequently used by malicious

apps and rarely used by benign apps. This condition reflects the common attack of

stealthily sending SMS messages to premium numbers, thus allowing the owner of these

numbers to earn money from the victims. Combined with sending SMS messages,

the sensitive API calls utilized to obtain the user’s privacy information, such as phone

number (getLine1Number()) and SIM number (getSimSerialNumber()), would also have

high coefficients. Unlike the previous ones, sensitive API calls used frequently both in

malicious and benign apps, such as openConnection(), are assigned with low coefficients.

The results show that the sensitivity coefficients calculated by the TF-IDF-like measure

can reflect the maliciousness of sensitive APIs in different categories.

However, there are some apps that have no category information, especially the malware

samples downloaded from VirusShare. We calculate the sensitivity coefficients of sensitive
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API calls for such apps as:

scs(s) = mrt(s)× log
1

brt(s)
. (3.2)

brt(s) denotes the percent of apps in all benign apps using the sensitive API call s and

it is obtained with Eq. (3.3), in which C denotes the set of all the benign categories.

brt(s) =
1 +

∑
c∈C bc(s, c)∑
c∈C q(c)

(3.3)

3.3.2 Generation of SSG

Based on our proposed assumptions, FCG is divided into a set of subgraphs, and the

subgraph that has the highest sensitivity coefficient is selected as the maximum sensitive

subgraph (SSG), which can profile the suspicious behavior of the given app. SSG can be

generated through the following steps.

Algorithm 1 highlights the step of generating the subgraph set with the input of the FCG

of a given app and the sensitive API call set (SS). For each sensitive API node, a subgraph

is constructed with its neighbor nodes in the FCG. The function dis(vk, vi) returns the

shortest path length from node vk to node vi. When calculating the distance between two

nodes, the FCG is regarded as an undirected graph. The average shortest path length of

the FCGs is generally from 3 to 5. When constructing subgraphs, the distances of normal

nodes to the sensitive API node are less than or equal to 2.

Algorithm 2 highlights the step of selecting SSG from the SGS generated by algorithm

1. In SGS, two subgraphs that contain the same sensitive API nodes may exist. Algorithm

2 merges the subgraphs with the condition Vs(sgi) ∩ Vs(sgj) 6= ∅ to ensure that one

sensitive API node can only occur in one subgraph. Vs(sgi) denotes the set of sensitive
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Algorithm 1 Generation of Subgraph Set (SGS)

Require: FCG G = (V,E), SS
Ensure: SGS

1: SGS ← ∅
2: for each vi ∈ SS do
3: Vi ← ∅
4: for each vk ∈ V do
5: if dis(vk, vi) <= 2 then
6: Vi = Vi ∪ {vk}
7: end if
8: end for
9: Ei = Vi × Vi ∩ E

10: sgi ← (Vi, Ei)
11: SGS = SGS ∪ {sgi}
12: end for
13: return SGS

Algorithm 2 Generation of Maximum Sensitive Subgraph (SSG)
Require: SGS
Ensure: SSG

1: while ∃sgi, sgj ∈ SGS, i 6= jandVs(sgi) ∩ Vs(sgj) 6= ∅ do
2: Vj = Vi ∪ Vj, Ej = Ei ∪ Ej
3: SGS = SGS \ {sgi}
4: end while
5: scg(sgj) =

∑
si∈Vs(sgj) scs(si), 1 ≤ j ≤ m

6: SSG = argmaxsgj∈SGS (scg(sgj))
7: return SSG

API calls in subgraph sgi. Afterward, the sensitivity coefficient for each sgj ∈ SGS

is calculated by adding all the sensitivity coefficient of the sensitive API nodes in the

subgraph, and the subgraph with highest coefficient among all the subgraphs in SGS is

selected as the SSG. If no sensitive API call exists in a given app, then it does not have an

SSG.

Fig. 3.2 shows the extracted SSG of corner23. The SSG consists of 19 sensitive API

calls and nearby normal nodes. By manually analyzing the code, we find that the SSG

extracted from corner23 is located in the most notorious module of the geinimi family.

The module is used to collect users’ sensitive information every five minutes, such as the

device ID via getDeviceId() and the phone number via getLine1Number().
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getNetworkInfo()

getSimSerialNumber()

getDeviceId()

Figure 3.2: The generated SSG of app corner23

3.3.3 Construction of Features

By employing SSG, we construct a set of features from SSG based on our two proposed

assumptions. The features fall into three fields to distinguish piggybacked apps from

benign apps in different aspects. We randomly select 500 piggybacked apps and 500

benign apps, respectively, to determine if our features are able to distinguish them.

1) Sensitivity Coefficient of SSG (scg(SSG)): scg(SSG) is defined to denote the

maliciousness of SSG. As mentioned in assumption I, to perform its malicious task,

the rider would make many sensitive API calls; thus, the maliciousness of SSG of a

piggybacked app is higher than that of a benign app.

As illustrated in Fig. 3.3, the median of the coefficients of piggybacked apps is 1.341,

which is higher than that of benign apps (0.444) because they have fewer invocations

of sensitive API calls. This result proves that our assumption I is tenable. Obviously,

scg(SSG) can effectively distinguish piggybacked apps from benign ones.

2) Total Sensitive Distance of SSG (tsd(SSG)): As mentioned in assumption II, the

cohesion of sensitive API calls in the rider is generally higher than that in the carrier. We

use tsd(SSG) to denote the cohesion of sensitive API nodes in SSG, which is measured

by the calling distances between sensitive API nodes.
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Figure 3.3: scg(SSG) for benign and piggybacked apps

tsd(SSG) can be obtained with Eqs. (3.4) and (3.5), in which sd(si) denotes the average

distance of sensitive API node si to the other sensitive API nodes in SSG.

tsd(SSG) =
∑

si∈Vs(SSG)

sd(si) (3.4)

sd(si) =
1

|Vs(SSG)| − 1
∗

∑
sj∈Vs(SSG),j 6=i

1

dis(si, sj)
(3.5)

As illustrated in Fig. 3.4, the median of tsd(SSG) of piggybacked apps is 1.875, which

is even higher than the upper quartile of benign apps. This result indicates that assumption

II is tenable. Thus, the feature tsd(SSG) is effective to distinguish piggybacked apps from

benign ones.

3) Total Number of Sensitive Motif Instances in SSG (tnsm(SSG)): We have

attempted to obtain a more detailed view of the invocation patterns between sensitive API

nodes and normal nodes. An invocation pattern reflects one malicious behavior of an app,

which can be depicted by a motif. Network motifs are defined in terms of connectivity-

patterns that appear much more often than expected from pure chance [98, 114, 139].

Specifically, they occur at a higher frequency than what is expected from an ensemble of

randomized graphs with an identical degree structure. Given that no mutual edges exist
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Figure 3.4: tsd(SSG) for benign and piggybacked apps

Table 3.3: Three node motifs and their corresponding sensitive motifs

Three-node Motifs Sensitive Motif
Index Pattern Z-score Index Pattern

motif-1 1.349 sensitive-motif-1

motif-2 1.356 sensitive-motif-2

motif-3 1.308 sensitive-motif-3

motif-4 -0.499

in SSG, four three-node motifs are present. The four three-node motifs and their average

Z-score values in our samples are shown in Table 3.3 with the help of gtrieScanner [21].

The higher the Z-score is, the more significant the three-node pattern is as a motif. The

Z-score of motif-4 is less than 0, which means that it rarely occurs in SSG. Thus, it is

ignored in our computation.

Sensitive motifs are defined in this work as significant motifs that contain at least one
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Figure 3.5: An instance of sensitive motif-2 in SSG
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Figure 3.6: tnsm(SSG) for benign and piggybacked apps

sensitive API node. They are shown in Table 3.3. For example, the instance of sensitive

motif-2 in Fig. 3.5 denotes the malicious behavior of obtaining the unique subscriber ID

number by using an object rally/e and invoking the getSubscriberId() API.

Under assumptions I and II, because of the larger number and higher cohesion of

sensitive API calls in the rider than in the carrier, more instances of sensitive motif-1 occur

in SSG. In addition, in the rider, the sensitive API calls are invoked by many user-defined

threatening functions, which cause many instances of sensitive motif-2 and sensitive motif-

3. We use tnsmk(SSG), k = 1, 2, 3, to denote the total number of sensitive motif-

k instances in SSG. Fig. 3.6 illustrates tnsmk(SSG) for our benign and piggybacked

apps, which demonstrates that for all the three types of sensitive motifs, the corresponding

tnsmk(SSG) for piggybacked apps are higher than those for benign apps.

The features constructed from the SSGs of piggybacked apps differ significantly from

those of benign apps. DAPASA embeds the above five features into a feature space

to automatically classify novel apps as piggybacked apps or not. The feature space is
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represented as follows: 
scg(SSG)
tsd(SSG)

tnsm1(SSG)
tnsm2(SSG)
tnsm3(SSG)

 . (3.6)

3.4 Evaluation of DAPASA

To evaluate the effectiveness of our approach, we first introduce the dataset and the metrics

(see Section 3.4.1 for details). We then evaluate the detection performance and the run-

time overhead of our approach based on the dataset and compare the result with that of

three baseline approaches (see Section 3.4.2 and Section 3.4.3 for details). Afterward,

we analyze the effectiveness of our features and how they complement the permission-

and API-based approaches (see Section 3.4.4 for details). Finally, we discuss the false

positives and the resilient of our approach to obfuscation techniques (see Section 3.4.5 for

details).

3.4.1 Study Setup

Our approach is evaluated on a large real-world dataset that consists of Android benign

apps and piggybacked apps. The set of piggybacked apps contains 2,551 apps in 15

families. All the apps are piggybacked apps according to [156]. A total of 1,062 of

the apps are downloaded from the Android Malware Genome Project, which is widely

used as a benchmark dataset for malware detection. We collect 1,489 more piggybacked

apps that belong to the piggybacked families [156] from VirusShare. An overview of the

piggybacked apps in our dataset is given in Table 3.4.

The set of benign apps consists of two parts; one is collected from Google Play and
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Table 3.4: Descriptions of the piggybacked apps

Family #apps Family #apps

adrd 55 fakeinstaller 769
anserverBot 187 geinimi 94
basebridge 122 gingermarster 350

beanbot 8 golddream 46
bgserv 9 hippoSMS 13

droiddream 49 jifake 41
droiddreamlight 46 pjapps 66

droidkungfu 696 Total 2,551

Table 3.5: Descriptions of the benign apps

Google Play Apps Anzhi Market Apps
ID Category #apps ID Category #apps

GA Business 491 AA Communication 1,122
GB Comics 497 AB Finance 2,177
GC Communication 622 AC Music& Audio 1,307
GD Education 577 AD News Reading 2,400
GE Entertainment 798 AE Office Work 4,970
GF Finance 492 AF Shopping 4,837
GG Game 3,505 AG Social 3,265
GH Lifestyle 789 AH System Tools 3,150
GI Medical 374 AI Themes Desktop 7,962
GJ Personalization 732 AJ Weather& Travel 1,730
GK Photography 491 Total 32,920
GL Productivity 569
GM Shopping 377
GN Social 630
GO Tools 625
GP Weather 432

Total 12,001
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Table 3.6: Descriptions of the used metrics

Term Abbr. Definition

True Positive TP #malicious apps classified as malicious apps
True Negative TN #benign apps classified as benign apps
False Negative FN #malicious apps classified as benign apps
False Positive FP #benign apps classified as malicious apps

True Positive Rate TPR TP/(TP+FN)
False Positive Rate FPR FP/(FP+TN)

Precision p TP/(TP+FP)
Recall r TP/(TP+FN)

F-measure F1 2rp/(r+p)
ROC Area AUC Area under ROC curve

contains 12,001 apps in 16 categories, and the other one is collected from Anzhi Market

and contains 32,920 apps in 10 categories. Table 3.5 shows the descriptions of apps from

Google Play and Anzhi Market. All the apps have been checked by VirusTotal [29] to

ensure that each of them is benign. Over 50 anti-virus softwares programs, such as ESET-

NOD32 [19] and McAfee [24], are available in VirusTotal; these software programs are

based on a signature database. They are useful for known malware but less effective for

unknown ones.

The metrics used to measure our detection results are shown in Table 3.6. The goal of

any malware detection research is to achieve a high value for TPR and a low value for

FPR.

3.4.2 Piggybacked App Detection

1) Detection Performances with Four Classifiers: Four different classifiers are employed

to evaluate our approach. These classifiers are Random Forest [43], Decision Tree (C4.5)

[120], k-NN(k=1) [32] and PART [64]. All the 49,921 benign apps and 2,551 piggybacked

apps are mixed together. After the extraction and analysis of the SSGs with our approach,
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Figure 3.7: Detection performance with four different classifiers

each app is first represented as a feature vector. Then the classification labels of the known

piggybacked apps in training dataset are attached with 1 while the labels of the known

benign apps are attached with -1 so that the classifiers can understand the discrepancy

between piggybacked apps and benign apps. Once the feature vectors with classification

labels for the training samples are generated, four classifiers can be trained with the four

machine learning algorithms. After that, the feature vector of a new sample without

classification label is fed into the classifiers to detect whether it is piggybacked or benign.

Our dataset is evaluated via tenfold cross validation.

The detection performance is shown in Fig. 3.7. The Receiver Operating Characteristic

(ROC) curves indicate that all four classifiers can achieve a high value for TPR and a low

value for FPR. In particular, Random Forest performs best among four classifiers. With

Random Forest, the detection performance yields a TPR of 0.950 at an FPR of 0.007, and

the AUC is 0.99.

Two main reasons explain the best performance of Random Forest in the current study’s

dataset. First, Random Forest is an ensemble classifier that uses out-of-bag errors as an
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estimate of the generalization error to improve its performance, whereas the other three

classifiers are base classifiers. Second, as introduced in the work of Breiman[43], Random

Forest does not result in overfitting as more trees are added but produces a limited value of

the generalization error. Therefore, in this work, Random Forest is selected as the classifier

in subsequent experiments.

2) Comparison with Three Baseline Approaches: In this section, DAPASA is

compared with three baseline approaches proposed by Wang et al. [137], Aafer et al.

[31], and Gascon et al. [67]. The descriptions of the three baseline approaches are shown

below.

• Wang et al.[137] proposed an approach for malware detection based on requested

permissions, which are security-aware features that restrict the access of apps to the

core facilities of devices.

• Aafer et al.[31] proposed an approach for malware detection based on APIs that

have more fine-grained features than permissions because each permission governs

several API calls. Furthermore, API level information conveys more substantial

semantics about the app than permissions [31].

• Gascon et al.[67] proposed an approach for malware detection based on embedded

call graphs, which model the structural composition of a code and reflect the logic

semantics of the app. The call graph is more robust against certain obfuscation

strategies than the requested permissions and API calls.

The detection performance of our approach and the three baseline approaches in our

dataset is illustrated in Fig. 3.8. The AUC values of our approach and API-based approach

[31] are both 0.99, which indicates that our approach has a similar detection performance

with API-based approach. Moreover, our approach outperforms the other two baseline
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Figure 3.8: Detection performance for DAPASA and three baseline approaches

approaches [137, 67], of which the AUC values are 0.983 and 0.986, respectively. In

particular, our approach contains only five numeric features; the three approaches use

88 permission-based features, 680 API-based features, and 32,768 graph-based features,

respectively.

3.4.3 Analysis of Run-time Overhead

Our approach consists of three main procedures when analyzing a new app.

(i) De-compilation. The app file is disassembled to generate the dalvik code, and FCG

is constructed.

(ii) Graph analysis. The FCG is divided into a set of subgraphs, and the SSG with the

highest sensitivity coefficient is selected.

(iii) Feature construction. Five numeric features are constructed from the generated

SSG.
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Figure 3.9: Run-time overhead of DAPASA

The run-time overheads of the three main procedures and their total run-time overhead are

illustrated in Fig. 3.9, in which the x-axis shows the sample size (number of nodes) per app

in our dataset and the y-axis shows the run-time overhead of the corresponding procedure.

Four observations are obtained from Fig. 3.9.

(1) The run-time overhead of de-compilation is not related to the sample size. This result

is consistent with the truth that the complexity of de-compilation has a positive correlation

with the logic of the source code for a given app rather than the sample size [80].
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(2) The run-time overhead of graph analysis roughly scales linearly with the sample

size. As introduced in algorithm 1, the time complexity is O(m × n), where m denotes

the number of invoked sensitive API nodes and n denotes the size of the call graph.

(3) The run-time overhead of feature construction is not related to the sample size. In

our approach, SSG is generated to represent the entire call graph. Therefore, the run-time

overhead of feature construction scales with the size of SSG rather than the size of the call

graph.

(4) The total run-time overhead of analyzing a given app has positive relation with

sample size. It is mainly affected by the procedure of de-compilation with a relatively

small sample size. With the increase in sample size, the total run-time overhead is mainly

affected by the graph analysis procedure. On the average, less than 16s is consumed to

complete the analysis for most apps in our dataset.

The comparison of the run-time overheads of our approach and the three baseline

approaches is illustrated in Fig. 3.10. DAPASA consumes 1.8s and 4.6s less time than

the approach of Gascon et al. [67] in graph analysis and feature construction, respectively.

The smaller run-time overhead is due to the following reasons.

First, for the graph analysis procedure, in the approach of Gascon et al. [67], a hash-

value is calculated for each node in the graph. Analyzing all the nodes consumes more time

than our approach does because our approach only focuses on the analysis of sensitive API

nodes.

Second, for the feature construction procedure, in the approach of Gascon et al. [67],

a feature map is inspired by graph kernels, which allows for embedding call graphs in a

vector space. However, our approach generates SSG to represent the entire call graph.

Hence, computational complexity is reduced effectively.
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Figure 3.10: Comparison results of run-time overhead

The approaches of Wang et al.[137] and Aafer et al.[31] do not have the graph analysis

procedure. Therefore, they are faster than DAPASA and the approach of Gascon et al.

[67], which are based on the analysis of the call graph. Permission- and API-based

approaches usually produce only a small run-time overhead, and they are efficient and

scalable. However, the features of permissions and API calls are coarse-grained. For

example, malicious apps may request the exact same permissions that are requested by

benign apps.

3.4.4 Analysis of Features

In this work, we propose three different types of features, namely, scg, tsd, and tnsm

(consisting of tnsm1, tnsm2 and tnsm3) to distinguish the SSGs existed in piggybacked

apps from those existed in benign apps. As mentioned before, each of them has a fairly

good ability to detect piggybacked apps in different aspects, such as maliciousness and

cohesion of sensitive APIs. In this section, different combinations of features are evaluated

in the same dataset to determine whether each feature is significant for the detection
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Figure 3.11: Detection performances with different feature combination

performance. Only scg is initially used as our feature. Afterward, the other two types

of features are added to our feature space successively.

As illustrated in Fig. 3.11, the ROC curves with different feature combinations show

that every additional feature effectively improves the detection performance. The TPR

reaches nearly 0.85 with an 0.01 FPR using only scg, and it is improved by 0.05 and 0.061

by adding tsd and tnsm. The improvements of TPRs demonstrate that each proposed

feature has significant contributions for piggybacked app detection.

Five features are constructed from a new perspective of the invocation structure. We

combine five features with the permission-based features proposed by Wang et al. [137]

and API-based features proposed by Asfer et al. [31], respectively. The detection

performances of the four different feature sets are illustrated in Fig. 3.12, in which P

denotes the 88 permissions, S denotes the 680 API calls, D+P denotes the combination of

our five features with permissions, and D+S denotes the combination of our five features

with API calls.

Moreover, the contribution degrees of our five features are evaluated with three different

types of metrics, namely, chi-square statistic [106], OneR classifier [75], and information

47



0 0.01 0.02 0.03 0.04 0.050.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

(a) Detection performances for feature sets P and D+P
FPR

TP
R

 

 

D+P
P

0 0.01 0.02 0.03 0.04 0.050.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

(b) Detection performances for feature sets S and D+S
FPR

TP
R

 

 

D+S
S

Figure 3.12: Detection performances for different feature sets

Table 3.7: Feature ranking of our features in the feature D+P and feature D+S

Feature
Chi-squared Statistic OneR Classifier Information Gain

D+P D+S D+P D+S D+P D+S

scg 1 1 1 1 1 1
tsd 3 3 3 3 4 3

tnsm1 2 2 2 2 2 2
tnsm2 9 8 13 15 8 9
tnsm3 8 6 4 5 7 7

gain [110], for the two combined feature sets (D+P and D+S) containing 93 and 685

features, respectively. The result in Table 3.7 shows that the five features have better

contributions to classify piggybacked apps than most permission-based and API-based

features especially scg and tnsm1.

3.4.5 Discussions

In this section, we first inspect the reasons of the generation of false positive instances.

Then the ability of DAPASA to fight against obfuscation attacks is discussed.

1) Discussions on TPR and FPR: The experiments show that our approach achieves
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good performance with a TPR of 95% and an FPR of 0.7%. Manual analysis of the

SSGs of our piggybacked apps shows that DAPASA achieves a 100% detection rate in

several families, such as geinimi. The invocation patterns of sensitive API calls in the

generated SSGs for all the geinimi samples are exactly the same as that of the example

introduced in Section 3.3.2. However, the TPRs are lower than 92% in several families,

such as droidkungfu, which is considered one of the most sophisticated Android malware.

droidkungfu is piggybacked and distributed in the forms of legitimate apps. Several

samples implement their malicious functionalities in native code (instead of the previously

davilk code based on Java). In this work, the native code is ignored, thus resulting in the

lower accuracy for such families.

Although the TPR is impressive, the FPR is 0.7% which means that more than 300

benign apps are incorrectly classified as piggybacked apps. Two main reasons explain the

incorrectly classified samples. First, with the help of LibD [88] we are able to remove

most nodes invoked by third-party libraries with a string matching algorithm. However,

covering all third-party libraries is still a challenge. Second, there are several extreme

cases which are repackaged with only one sensitive API (sendTextMessage). When these

extreme cases are placed in the training dataset, the benign apps using the same sensitive

API as the extreme cases do might be classified as piggybacked. For example, in the

Game category, sending a message to a premium number to raise money is a legitimate

payment method for unlocking game features, and the apps that use this method would be

incorrectly classified.

2) Resilience of Sensitive Subgraph: We evaluate the resilience of our constructed

sensitive subgraph to two main types of obfuscation techniques: a) typical obfuscation

techniques such as class renaming, inserting of useless instructions; b) advanced

obfuscation techniques such as reflection techniques, encryption packer and native code.
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• Renaming: We initially evaluate the resilience of sensitive subgraph to renaming

user-defined functions [132] by using Proguard [26] to obfuscate ten apps from

source codes. The results show that their similarities on graph matching are still

1. These typical obfuscation techniques do not affect the performance of DAPASA

because they do not change the FCG structure.

• Control flow obfuscation: We evaluate the resilience of sensitive subgraph to control

flow obfuscation techniques, which will change the FCG structure by inserting or

deleting some useless methods of a given app. For this purpose, we apply DAPASA

to ten apps obfuscated by the popular Android obfuscator, DashO [17], which can

adopt control flow obfuscation techniques. Results show that the SSGs induced

from FCGs will remain unchanged when the inserted or deleted method nodes have

no relation with the sensitive API call nodes. By contrast, the constructed feature

vectors will be slightly affected when the inserted or deleted method nodes have

invocation relations with the sensitive API call nodes.

• Reflection: Reflection techniques [112] can hide some edges in the call graph model

by invoking functions with their corresponding names as arguments. To be resilient

to reflection obfuscation techniques, we can use DroidRA [86], which is an open-

source tool, to perform reflection analysis on our dataset through three steps. First,

we conduct DroidRA on our dataset and obtain the analytical result. Second, we

analyze the output result of DroidRA for each app to identify methods that use

reflection techniques. Third, we add the missing edges into the corresponding FCG,

where caller nodes are methods that use reflection techniques and callee nodes are

reflected methods. On average, we add fifteen more edges into the FCG for each

app, and only two edges contain a sensitive API call node, which barely affects the

performance of our approach. Therefore, our approach can be resilient to reflection

obfuscation techniques with the aid of DroidRA.
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• Packer: Packers, such as APKProtect [15] and Bangcle [39], can protect apps by

using encryption techniques to hide the actual Dex code. To address the limitations

of packer usage, we use PackerGrind [144, 151], which is a novel adaptive unpacker

system, to recover the actual Dex files. Then, our approach can be applied to the

extracted Dex files.

• Native code: Malware can use native code to access sensitive API calls, and thus

the static analysis techniques for Dex/Java bytecode become unreliable. For the

analysis of native code, we will use Angr [124], which is an open-source binary

analysis framework, to construct the FCG of the native code. Then, we could apply

our feature extraction approach on the constructed FCG.

In summary, the proposed sensitive subgraph can be resilient to typical obfuscation

techniques, and can handle advanced obfuscation techniques by leveraging existing tools.

3.5 Brief Summary

In this chapter, we propose DAPASA that focuses on piggybacked app detection through

maximum sensitive subgraph analysis. First, two assumptions are proposed to better

profile the differences between the rider and carrier in piggybacked apps with respect to

the invocation patterns of sensitive API calls. Second, an SSG is generated for each app to

profile its most suspicious behavior. Third, five features are constructed from the SSG and

fed into machine learning approaches to detect piggybacked apps. Extensive evaluation

results demonstrate that our approach achieves an impressive detection performance with

only five numeric features which bring three advantages. First, our approach outperforms

the state-of-the-art approaches with less features. Second, our approach provides better

explanations of detection results than permission- and API-based approaches. Third, our
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approach even complements permission- and API-based approaches with the combination

of our features from a new perspective of the invocation structure.
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Chapter 4

The Construction of Frequent Sensitive
Subgraph Feature and Its Application in
Familial Identification

4.1 Overview

Chapter 3 proposes the maximum sensitive subgraph feature and applies it in piggybacked

apps detection. However, the analysis of each malware sample requires ample time [150].

Hence, the sheer number of malware samples overwhelms malware analysis systems. The

majority of new malware samples are polymorphic variants of known malware [156, 61].

Thus, to accelerate malware analysis, we can classify malware samples into various

families and then select representative samples from each family. However, the familial

classification of Android malware is challenging because of two reasons.

First, as introduced in Chapter 3, the accurate separation of malicious components and

the legitimate part from the majority of Android malware, which are repackaged popular

apps, is nontrivial [154, 54, 135]. The injected malicious components are hidden within

the functionalities of popular apps and usually constitute only a small portion of the

53



repackaged apps. Differentiating between the legitimate part and malicious components

of malware is difficult for existing features, such as system calls [90] and sensitive path

[146].

1 . c l a s s p u b l i c f i n a l Lcom/geinimi/c/f ;
2 . method p u b l i c c o n s t r u c t o r <i n i t> ( Lcom/geinimi/Adservice ; ) V
3 . . .
4 invoke−v i r t u a l {p0} ,Landroid/telephony/TelephonyManager;—>getDeviceId()Ljava/lang/String ;
5 invoke−v i r t u a l {p0} ,Landroid/telephony/TelephonyManager;—>getLine1Number()Ljava/lang/String ;
6 invoke−v i r t u a l {p0} ,Landroid/telephony/TelephonyManager;—>getVoiceMailNumber()Ljava/lang/String ;
7 move−r e s u l t−o b j e c t v0
8 spu t−o b j e c t v0 , Lcom / g e i n i m i / c / f;−> t : L j ava / l a n g / S t r i n g ;
9 new-instance v0,Landroid/os/Build ;

10 invoke-direct v0,Landroid/os/Build;—><init>()V
11
12 . c l a s s p u b l i c f i n a l Lcom/xlabtech/MonsterTruckRally/rally/e/k ;
13 . method p u b l i c c o n s t r u c t o r <i n i t> ( Lcom/xlabtech/MonsterTruckRally/rally/e ; ) V
14 . . .
15 invoke−v i r t u a l {p0} ,Landroid/telephony/TelephonyManager;—>getDeviceId()Ljava/lang/String ;
16 invoke−v i r t u a l {p0} ,Landroid/telephony/TelephonyManager;—>getLine1Number()Ljava/lang/String ;
17 invoke−v i r t u a l {p0} ,Landroid/telephony/TelephonyManager;—>getVoiceMailNumber()Ljava/lang/String ;
18 move−r e s u l t−o b j e c t v0
19 spu t−o b j e c t v0 , Lcom / x l a b t e c h / M o n s t e r T r u c k R a l l y / r a l l y / e / k;−>v : L java / l a n g / S t r i n g ;

Listing 4.1: Different implementations of the same functionality in two malware samples
within geinimi family

Second, polymorphic variants of Android malware that belong to the same family

perform the same malicious activities with different implementations. Therefore, such

malware can easily evade existing classification solutions [48, 65] that seek an exact match

of a given specification. For example, Listing 4.1 illustrates different implementations of

the same functionality (i.e., obtain device id, phone number, and voice mail number) in two

malware samples. The two malware samples belong to the same family, geinimi. These

bot-like malware samples steal personal information and send it to a remote server. Three

major differences (highlighted in red) are observed in the two implementations. First,

the structures of class names are different. Second, the arguments of the two functions are

different. One takes a service (Lcom/geinimi/Adservice), one of the four basic components

of Android apps, as an argument. By contrast, the other uses an object of the class rally/e

as an argument. Third, the former function contains two more statements (including one

invocation) than the latter.

To address the above challenges, we first distill program semantics into FCG

representation. Then, we propose two key techniques to solve the challenges as follows:
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1) We propose a clustering-based approach to extract common malicious behavior in each

family and to address the inaccurate separation of malicious components and the legitimate

part of repackaged apps. Thus, we can reduce the side-effects of the legitimate part in

the malware. 2) For the different implementations of the same functionality, we propose

a weighted-sensitive-API-call-based graph matching approach to calculate the similarity

between graphs generated by community detection algorithms.

To represent common malicious behaviors shared by malware samples within the same

family, we construct frequent sensitive subgraphs (fregraphs), which are novel graph-

based features extracted from generated FCGs, on the basis of two key techniques.

Moreover, we propose and develop FalDroid, an automatic system for classifying Android

malware and selecting representative samples of each family in accordance with fregraphs.

FalDroid consists of the following three steps.

1) Preprocessing: Based on the FCG model, FalDroid constructs a sensitive API related

graph (SARG) for each app, and assigns different weights to each sensitive API call to

denote its corresponding importance to each malware family.

2) Fregraph Generation: To easily locate the common functionalities of different

malware samples and reduce the complexity of graph similarity calculation, the SARG

is initially divided into a set of subgraphs using community detection algorithms. Using

subgraph matching and clustering techniques, the sensitive subgraphs used by most

samples in one family are defined as the fregraphs of a specific family.

3) Feature Construction: A feature vector is constructed for each app. On this basis,

known machine learning algorithms can be applied to perform the familial classification

task. To this end, the fregraphs of all known families are embedded in a feature space, and

each fregraph is assigned with a weighted score to indicate its significance for malware

familial analysis.
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In summary, our major contributions include:

(i) We propose fregraph, a novel graph-based feature, to represent the common

behavior of malware within the same family. We then employ fregraph to conduct

malware familial classification and representative malware selection.

(ii) We propose a novel weighted-sensitive-API-call-based graph matching approach

that can detect the homogeneous malicious behavior of malware within the same

family while tolerating minor differences in implementation.

(iii) We design and implement FalDroid, a novel system that can handle the familial

classification of large-scale Android malware with high accuracy and effectively

decrease the number of malware to be analyzed.

(iv) We conduct extensive experiments to evaluate FalDroid. Our results show that

FalDroid can achieve 94.2% accuracy and only requires approximately 4.6 sec to

process an app. Moreover, it can also dramatically decrease the cost of malware

investigation by selecting only 8.5% to 22% of representative samples that present

the most malicious behavior among all samples.

The rest of this chapter is organized as follows. Section 4.2 introduces the construction

of frequent sensitive subgraph feature. Section 4.3 describes the usages of fregraphs.

Section 4.4 details the experimental results of FalDroid and Section 4.5 summaries this

chapter.
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4.2 Construction of Frequent Sensitive Subgraph Feature

4.2.1 Preprocessing

The Preprocessing stage constructs the basic behavior model for each app, and it contains

two processes. First, different weights are assigned to each sensitive API call by using

a TF-IDF-like approach to differentiate their corresponding importance given that the

importance of the sensitive API calls differs across different families. Second, given that

the direct analysis of the FCG is time consuming because it usually contains thousands of

nodes, the FCG is simplified into a sensitive API call related graph (SARG) by retaining

only sensitive API call nodes and their parent nodes. Therefore, the malicious behaviors

of the apps are maintained, whereas the complexity of the graph models are reduced.

1) Weight Assignment of Sensitive API Calls: To differentiate the importance of

sensitive API calls, we assign different weights to each sensitive API call in different

families. In particular, we define three metrics for each sensitive API call s in family f to

characterize its usages in different families.

• num(s, f): number of samples that invoke the sensitive API call s in family f .

• per(s, f): percentage of samples that invoke the sensitive API call s in family f ,

per(s, f) = num(s,f)
falNum(f)

, where falNum(f) denotes the number of samples in f .

• w(s, f): weight of sensitive API call s in family f .

In addition, we use allNum to denote the number of all collected samples

and totalNum(s) to denote the number of samples that invoke s in all families;

totalNum(s) =
∑

fj∈F num(s, fj), where F = {fj|1 ≤ j ≤ m} denotes the set of

all families, and m denotes the number of families.

57



Table 4.1: Six sensitive API calls’ totalNum and their corresponding num, per and w in
three families (allNum = 8, 407)

Sensitive API totalNum
geinimi

(falNum=105)
plankton

(falNum=896)
droidkungfu

(falNum=736)
num per w num per w num per w

getDevice
SoftwareVersion()

183 105 1.000 1.662 0 0.000 0.000 0 0.000 0.000

getDeviceId() 6,950 105 1.000 0.083 896 1.000 0.083 736 1.000 0.083
getLine1Number() 4,827 105 1.000 0.241 471 0.526 0.127 677 0.920 0.222
getConnectionInfo()4,055 0 0.000 0.000 896 1.000 0.317 359 0.488 0.155
sendTextMessage() 2,277 105 1.000 0.567 37 0.041 0.023 25 0.034 0.193
divideMessage() 330 6 0.057 0.080 2 0.002 0.003 7 0.009 0.013

We collect 8,407 malware samples in 36 families from Virusshare[28] for evaluation.

Table 4.1 lists the totalNum of six sensitive API calls and their num, per and w in three

different families. We observe that the usages of different sensitive API calls in the same

family are different. For example, sendTextMessage() is used by all 105 samples in the

geinimi family, whereas divideMessage() is used by only six samples. Moreover, some

sensitive API calls are used by most malware samples. For example, getDeviceId() is used

by all samples in the three families.

The two observations indicate that the weight of a sensitive API call in one family should

be positively related with its per and should be negatively related with its totalNum. By

borrowing the idea of TF-IDF [142], we propose a TF-IDF-like approach, which allows

the TF to measure the frequency of sensitive API call s that appears in family f , and IDF

to measure the inverse frequency of s that appears across all malware samples. Then, the

weight of sensitive API call s in family f is defined as follows:

w(s, f) = per(s, f) ∗ log allNum

totalNum(s)
. (4.1)
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Table 4.1 shows that the weight of sendTextMessage() is 0.567 in the geinimi family,

whereas that of divideMessage() is only 0.080 because the per of sendTextMessage() is

considerably higher than that of divideMessage(). Moreover, getDeviceId() is used by

all samples in the three families. Thus, it is less important than the others for malware

classification, and its weight is only 0.083, which is considerably less than the weights of

the other sensitive API calls. Intuitively, the results show that the weight assignment of

our approach can effectively measure the importance of a sensitive API call to one family.

2) Construction of SARG: Thousands of nodes are usually found in the graph of an

app. Analyzing the entire graph is neither effective (e.g., the malicious part is hidden in the

legitimate part) nor efficient (e.g., excessive number of nodes and edges to analyze). Thus,

we exclude nodes with no paths to sensitive API call nodes to reduce the complexity of

graph analysis, and FCG G is then simplified into the SARG G′. We designate the nodes

that represent sensitive API calls as sensitive API call nodes.

Definition 1 SARG: It is an induced subgraph of FCG and is maximal with respect to

the number of nodes, where each node has at least one directed path to sensitive API call

nodes, or the node itself is a sensitive API call node.

SARG G′ = (V ′, E ′) can be obtained using Eqs. (4.2) and (4.3), where Vs ⊆ V is the

set of sensitive API calls invoked by the app, and the function dis(vj, vi) returns the length

of the shortest path length from node vj to node vi.

Vg = {vj|∃vi ∈ Vs, 0 < dis(vj, vi) < n, vj ∈ V } (4.2)

V ′ = Vs ∪ Vg, E ′ = (V ′ × V ′) ∩ E (4.3)

In general, the size of SARG is reduced by approximately 72% compared with that of

the original FCG. Fig. 4.1 presents the original FCG (2,000 nodes) of a malware in the

geinimi family and its SARG (450 nodes), where red nodes denote sensitive API call nodes

59



Figure 4.1: The original FCG (left) of a geinimi sample and its generated SARG (right)

and blue nodes denote general nodes. The red edges indicate that their callee functions are

sensitive API call nodes.

4.2.2 Generation of Fregraph

This section describes the two key techniques presented in this work, namely, a clustering-

based approach to extract the common malicious behaviors of each family and a weighted-

sensitive-API-call-based graph matching approach to calculate the similarity between

subgraphs generated with community detection algorithms.

1) Community Detection: After the Preprocessing stage, we obtain the following

observations from the generated SARGs of the same family. Apps in the same family

have similar subgraphs, which constitute only a small portion of SARGs even if a large

portion of their SARGs is different. The small portion of the generated SARG represents

the common malicious functionalities of malware samples within the same family, whereas

the other large portion of SARGs represents different legitimate functionalities.

Fig. 4.2 presents the SARGs of two different samples in the geinimi family. The two

SARGs contain 267 and 715 nodes. The subgraphs marked with red circles are nearly

identical, indicating similar behaviors, whereas the other parts are entirely different. The
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Figure 4.2: SARGs of two malware samples in the geinimi family. Three similar subgraphs
marked with red circles indicate the similar behaviors.

direct identification of similar subgraphs from SARGs is inefficient because the graph

isomorphism problem is NP complete [134]. Hence, we divide the SARGs into a set

of smaller subgraphs to easily locate the common functionalities of different malware

samples and reduce the complexity of graph similarity calculation.

As introduced in [102, 49], a major network feature is the community structure,

which refers to the gathering of vertices into groups such that a higher density of edges

exists within groups than between groups. Previous studies [50, 107] have demonstrated

that FCG is a typical network with community structures. Software functions in one

community structure have strong connections and are frequently located in the same class

or package to realize collective software functionalities.

To determine whether or not our generated SARGs are networks with community

structures, we adopt four widely used community detection algorithms, including infomap

[118], fast greedy [49], fast partitioning [109], and multilevel [42], to divide SARGs into

a set of subgraphs. We implement the algorithms using Networkx [22], which is a package

for computation of complex networks. We select infomap [118] as the main community

detection algorithm in the experiments given that it generates more subgraphs with fewer

nodes than the other three algorithms, thereby effectively reducing the complexity of graph
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Figure 4.3: CDF of modularity Q with infomap algorithm

matching.

Newman and Girvan [102] proposed the concept of modularity Q to quantify the quality

of a detected community structure. No community structure is found when the value of Q

approaches 0. On the contrary, an ideal community structure is obtained when Q is close

to 1. We evaluate the generated SARGs in our dataset using the infomap algorithm. Fig.

4.3 shows the cumulative distribution function (CDF) of modularity Q. More than 90% of

Q values range from 0.6 to 0.8. The range demonstrates that the generated SARGs have

significant community structures.

Moreover, given that most subgraphs divided by community detection algorithms have

no relation with sensitive data, they might provide little help for malware classification.

Therefore, we define the sensitive subgraph. It is a subgraph obtained from SARG using

the community detection algorithm which contains at least one sensitive API call node.

No common node exists in any two sensitive subgraphs from the same SARG. Sensitive

subgraph sg in family f has a weighted value w(sg, f), as defined in Eq. (4.4), to denote

its importance to f . Vs(sg) is the set of sensitive API call nodes in sg.

w(sg, f) =
∑

vi∈Vs(sg)

w(vi, f) (4.4)
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Figure 4.4: Two subgraph examples sg1 and sg2 in family f

2) Subgraph Matching: To quantify the similarity of two sensitive subgraphs,

we propose a novel weighted-sensitive-API-call-based approach that can detect the

homogeneous app behavior of malware within the same family and can tolerate minor

differences in implementation.

Fig. 4.4 presents two subgraph examples sg1 and sg2 in family f . Both subgraphs

contain three sensitive API call nodes, v1, v2 and v3. We assume that the three nodes are

assigned with weights 0.2, 0.5, and 0.8 on the basis of our TF-IDF-like approach. To

calculate the similarity of sg1 and sg2 in family f , we focus on the similarities between

their sensitive API call nodes because such nodes cannot be easily changed by typical

obfuscation techniques. The similarity between the same sensitive API call nodes in

two subgraphs is calculated on the basis of their structural equivalence. The structural

equivalence hypothesis states that nodes with similar structural roles in subgraphs should

be collectively and closely embedded in the same feature space. Specifically, the similarity

simf (sg1, sg2) is calculated in three steps.

Step 1: Construct distance matrices for two subgraphs.

We initially construct a distance matrix for each subgraph, which is used to measure the

relations among different sensitive API call nodes in the specific subgraph. The matrix of

sgk (k = 1, 2) is obtained through Eq. (4.5), and its size is t× t, t = |Vs(sg1) ∪ Vs(sg2)|.

In Eq. (4.5), the graph is regarded as an undirected graph when calculating the shortest

path length dis′(vi, vj) between two nodes vi and vj .
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Matrixk[i, j] =

{
dis′(vi, vj) vi, vj ∈ Vs(sgk)
∞ otherwise

(4.5)

For the two subgraphs presented in Fig. 4.4, the sizes of the two constructed distance

matrices are 3× 3 as calculated in step 1. Matrix1[1, 3] = 2 whereas Matrix2[1, 3] = 3

given that an additional normal node exists in the path between v1 and v3 in sg2 compared

with that in sg1.

Step 2: Calculate the similarity of sensitive nodes.

To formalize the structural role of a sensitive API call node in a subgraph, we embed

it into a vector with t dimensions through Eq. (4.6). The value for each dimension is

calculated on the basis of the shortest path distance between the current sensitive API call

node and other sensitive API call nodes. Then, the similarity of the same sensitive API

node in sg1 and sg2 is denoted as ns(vi) and is measured through a standard cosine metric

in Eq. (4.7).

−−−−−−−→
vec(vi, sgk) = 〈

1

Matrixk(i, 1)
, . . . ,

1

Matrixk(i, t)
〉 (4.6)

ns(vi) = cos(
−−−−−−−→
vec(vi, sg1),

−−−−−−−→
vec(vi, sg2)) (4.7)

The vectors of v1 in the two subgraphs presented in Fig. 4.4 are
−−−−−−−→
vec(v1, sg1) = 〈0, 12 ,

1
2
〉

and
−−−−−−−→
vec(v1, sg2) = 〈0, 1

2
, 1
3
〉 with step 2. Therefore, ns(v1) = 0.98 on the basis of the

standard cosine metric. Similarly, ns(v2) = 0.98 and ns(v3) = 1.0.

Step 3: Calculate the similarity of subgraphs.

We calculate simf (sg1, sg2) with a normalized weighted sum of the cosine distances
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Algorithm 3 Clustering of Sensitive Subgraphs
Require: SGf // SGf denotes the set of sensitive subgraphs in family f .

ε = 0.8 // ε denotes the similarity threshold value.
Ensure: C // C denotes the set of output clusters and each cluster contains a set of

similar sensitive subgraphs.
1: p = 1, c1 = {sg1}, C = {c1}
2: for each sgi,i 6=1 in SGf do
3: c′ = argmaxcj∈C simf (sgi, cj)

4: if simf (sgi, c
′) ≥ ε then

5: c′ = c′ ∪ {sgi}
6: else
7: p = p+ 1, cp = {sgi}, C = C ∪ {cp}
8: end if
9: end for

10: return C

among nodes in the intersection of two subgraphs given that each sensitive API call node

is assigned with a weight to indicate its importance to a specific family f . The computation

is as follows:

simf (sg1, sg2) =

∑
vi∈Vs(sg1)∩Vs(sg2) (w(vi, f) ∗ ns(vi))∑

vi∈Vs(sg1)∪Vs(sg2)w(vi, f)
. (4.8)

Therefore, the similarity of the two subgraphs presented in Fig. 4.4 is simf (sg1, sg2) =

0.98∗0.2+0.98∗0.5+1.0∗0.8
0.2+0.5+0.8

= 0.99. The examples also demonstrate that our subgraph similarity

calculation approach can well tolerate minor differences of implementation.

The similarity ranges from 0 to 1. The maximum value 1 indicates that the two

subgraphs exhibit the exact same behavior, whereas the minimum value 0 indicates that the

two subgraphs exhibit entirely different behaviors. The similarity between sg1 and sg2 is

not higher than min(w(sg1,f),w(sg2,f))
max(w(sg1,f),w(sg2,f))

, which can be used to reduce the number of pair-wise

graph matching in subgraph clustering.

3) Subgraph Clustering: With the effective and efficient graph matching approach,

we generate fregraphs on the basis of subgraph clustering without prior knowledge.
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Algorithm 3 lists the steps of sensitive subgraphs clustering with the input of a set of

sensitive subgraphs in family f and similarity threshold ε. The output of the algorithm is

C, which denotes a set of output clusters. Each cluster contains a set of similar sensitive

subgraphs. In the algorithm, sgi denotes the ith subgraph element in SGf , and cj denotes

the jth cluster element in C. At first, C is initialized with only one cluster c1 = {sg1}.

Then, all the other subgraphs in SGf are successively calculated to check whether a cluster

exists in C, which the current subgraph can be added in. To this end, we first calculate the

similarities of the current subgraph sgi with each cluster in C. The similarity of subgraph

sgi with cluster cj is denoted as simf (sgi, cj), which is obtained on the basis of the average

similarity of sgi with all the subgraphs in cj . Then, we select the cluster c′ that contains the

highest similarity with sgi. If the similarity is not less than ε, sgi is added in c′, otherwise

a new cluster that contains only sgi is created and added in C.

ε is an important parameter in Algorithm 3. To appropriately set the parameter ε, we

first manually construct the ground truth called similar set, which consists of 50 similar

subgraphs. Then, we calculate the similarity of any two subgraphs. To ensure that all

subgraphs in our ground truth can be placed into the same cluster, we select ε = 0.8 as the

similarity threshold for clustering subgraphs.

Definition 2 Fregraph: Given cluster cj ∈ C in family f and minimum support threshold

θ, a sensitive subgraph sg = argmaxsgi∈cj w(sgi, f) is regarded as a fregraph when its

support supf (sg) =
|cj |

falNum(f)
is not less than θ.

4.2.3 Construction of Features

To enable malware familial analysis, all fregraphs in the known families are embedded

into a feature space, and each fregraph fg is assigned with a weighted score fs to denote

its significance to malware familial analysis.

66



geinimi droid
kungfu pankton

0.8 1.0 0.9 0.75 1.0

Figure 4.5: A mapping between four fregraphs and three malware families

Mapping exists between fregraphs and families given that some fregraphs belong to

more than one family. Fig. 4.5 shows an example of such mapping between four fregraphs

and three malware families. The number between a fregraph and a family is defined as

the support of the fregraph to its corresponding family. The fregraphs that belong to

several families (e.g., fg2) should have lower significance to malware familial analysis

than fregraphs that belong to only one family (e.g., fg3) because the latter provide more

useful information than the former.

We define the weighted score of fregraph fg as follows:

fs(fg) = cb′(fg) ∗
∑
fj∈F

w(fg, fj) ∗ p(fj|fg), (4.9)

where p(fj|fg) denotes the probability that the app belongs to family fj when it contains

fregraph fg. It is calculated using Eq. (4.10) as follows:

p(fj|fg) =
supfj(fg)∑
fi∈F supfi(fg)

. (4.10)

cb′(fg) indicates the normalized entropy value of fg. cb′(fg) is obtained through Eqs.

(4.11)-(4.12), where cbmax and cbmin denote the corresponding maximum and minimum
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values, respectively. Specifically, cb′(fg) ranges from 0 to 1. A high cb′(fg) indicates that

fg belongs to few families. If cb′(fg) = 1, then the fregraph belongs to only one family

(e.g., fg1, fg3 and fg4 in Fig. 4.5).

cb(fg) =
∑
fj∈F

p(fj|fg) ∗ log p(fj|fg) (4.11)

cb′(fg) =
cb(fg)− cbmin
cbmax − cbmin

(4.12)

4.3 Usages of Fregraphs

To accelerate malware analysis, we leverage FalDroid to classify a new malware sample

into its family and identify representative malware samples from one family, thereby

reducing the analytical workload.

4.3.1 Familial Identification of Android Malware

FalDroid initially constructs a fregraph-based feature vector to represent each malware

sample. Within the vector, the default value of each fregraph-based feature is 0, and

it will be set to the weighted score when a malware sample contains this feature. For

known malware samples in the training dataset, their family labels are attached to the

feature vector. Then, a classifier is trained using diverse machine learning algorithms.

Subsequently, the feature vector of a new malware sample without family label will be

placed into the classifier to obtain a family label.
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Figure 4.6: An example of MSG

4.3.2 Selection of Representative Malware Samples

The in-depth inspection of each sample in several families, such as the fakeinst family, that

contains excessive samples (1,504 samples in our dataset) is inefficient. We prioritize the

inspection of representative malware samples from each family to reduce the analytical

workload and accelerate malware analysis. Therefore, we initially construct a malware

similarity graph (MSG) to characterize the relationships among malware samples within

the same family.

Definition 3 MSG: It is an undirected graph MSGf = {MV,ME} for one malware

family f .

• MV = {αi|1 ≤ i ≤ falNum(f)} denotes the set of malware samples in the family

f , where each node αi ∈MV indicates a malware sample.

• ME denotes the set of edges, where an edge (αi, αj) indicates that the similarity

between samples αi and αj is higher than the threshold η.

One MSG contains several groups, where each group denotes a connected subgraph in

MSG. Notably, each node in MSG only belongs to one group.
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Fig. 4.6 shows an example of MSG with three groups (i.e., groups A, B, and C)

given that η = 0.8. The number next to an edge denotes the similarity between the two

corresponding nodes. Each malware sample is represented as a fregraph-based feature

vector. The similarity of two malware samples α1 and α2 is calculated on the basis of the

cosine value of their vectors −→u and −→w ; |−→u | = |−→w | = l.

sim(α1, α2) =
−→u · −→w
‖−→u ‖‖−→w ‖

=

∑l
i=1
−→ui−→wi√∑l

i=1
−→ui2
√∑l

i=1
−→wi2

(4.13)

For each group in a family, the node with the largest sum of similarities with connected

neighbor nodes is selected as the representative node, which is formally defined as:

α′ = argmax
α∈GV (group)

∑
β∈SN(α)

sim(α, β), (4.14)

where GV (group) denotes the set of nodes in the group, and SN(α) denotes the set of

the neighbor nodes of α. In Fig. 4.6, the representative malware samples include A3, B1,

and C1, which are marked with blue circles. There may be groups which contain only one

sample, such as group C. The sample C1 is not similar to the other samples given that

all the similarities of C1 with the other nodes are lower than η. However, the inspection

of sample C1 could be more interesting. With our approach, C1 is also regarded as one

representative sample in the family, such as A3 and B1.

Security analysts should focus on the representative malware samples selected from

each family instead of all malware samples. Therefore, FalDroid can reduce the analytical

workload and accelerate malware analysis.

70



Table 4.2: Descriptions of four different datasets

Dataset #Samples #Families Average
Size (MB)

Time

Genome Project
dataset [156]

1,247 33 1.3 2011∼2012

Drebin dataset [34] 5,513 132 1.3 2011∼2014
FalDroid-I dataset 8,407 36 1.9 2013∼2014
FalDroid-II dataset 643 43 2.0 2015∼2016

4.4 Evaluation of FalDroid

We initially introduce the construction of our datasets, use metrics to evaluate FalDroid,

and then address the following research questions:

RQ 1 Can FalDroid classify the new malware sample into its family with high accuracy?

(Section 4.4.2)

RQ 2 Can FalDroid effectively decrease the number of malware samples to be analyzed?

(Section 4.4.3)

RQ 3 Can FalDroid work efficiently and be scalable for a large number of apps? (Section

4.4.4)

RQ 4 Is FalDroid resilient to polymorphic variants and code obfuscation techniques?

(Section 4.4.5)

4.4.1 Study Setup

We evaluate FalDroid using four datasets, including two datasets that are constructed by

ourselves (FalDroid-I and FalDroid-II datasets) and two widely used benchmark datasets

that are provided from Drebin [34] and Android Malware Genome Project [156]. Table 4.2
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Table 4.3: Part of the family label dictionary

Family Other Labels

basebridge bridge
droiddreamlight ddlight/lightdd/drdlightd/

droidkungfu kungf/gongf/droidkungf/droidkungfu2
fakeinst fakeinstall/fakeins
plankton planktonc/plangton
geinimi geinim/geinimia/geinimix

lists the descriptions of the four datasets. Among the samples in the four datasets, more

than 90% of malware samples are smaller than 5 MB, and approximately 3% of malware

samples are larger than 10 MB. The largest sample size is 64 MB, and the smallest sample

size is only 5 KB.

After removing the families that contain only one sample, the dataset from Drebin [34]

contains 5,513 samples in 132 malware families, and the dataset provided from Android

Malware Genome Project [156] contains 1,247 samples in 36 families.

To construct the FalDroid-I dataset, approximately 15,000 malware samples are first

downloaded from VirusShare [28] and uploaded to VirusTotal [29], which is a system

with 53 anti-virus scanners (e.g., AVL, McAfee, and ESET-NOD32). The following two

issues are found from the anti-virus scanners: 1) the family labels given by different anti-

virus scanners are not always the same (e.g., Plankton/Plangton/planktonc); and 2) the

results of the anti-virus scanners rarely reach a consensus. To address these issues, we

initially construct a family label dictionary based on string-edit distance [116]. Part of the

dictionary is listed in TABLE 4.3. Then, we label the malware with the family name that

is agreed by more than half of the anti-virus scanners. Finally, 8,407 malware samples

in 36 families are labeled, and their information is listed in Table 4.4, where Num is the

number of malware samples in each family. The samples in the FalDroid-II dataset are

provided by contagion [25] and MassVet [47] and labeled in the same manner as those in
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Table 4.4: Descriptions of malware families

ID Malware
Family

Num ID Malware
Family

Num

1 adwo 338 19 hongtoutou 46
2 airpush 76 20 iconosys 153
3 anserver 53 21 imlog 41
4 basebridge 303 22 jsmshider 22
5 boqx 49 23 kmin 248
6 boxer 95 24 kuguo 358
7 clicker 37 25 lovetrap 19
8 dowgin 851 26 mobiletx 81
9 droiddreamlight 101 27 pjapps 82

10 droidkungfu 736 28 plankton 896
11 droidsheep 14 29 smskey 111
12 fakeangry 16 30 smsreg 149
13 fakedoc 147 31 steek 20
14 fakeinst 1,504 32 utchi 285
15 fakeplay 43 33 waps 771
16 geinimi 105 34 youmi 113
17 gingermaster 385 35 yzhc 49
18 golddream 80 36 zitmo 30

the FalDroid-I dataset. Finally, 643 malware samples in 43 families are labeled. Table 4.5

lists the metrics used to evaluate FalDroid.

4.4.2 Accuracy of Familial Identification

1) Performance with Four Different Classifiers: We use FalDroid-I dataset to evaluate

the familial classification performance of FalDroid equipped with four different classifiers,

namely, support vector machine (SVM; linear kernel) [45], Decision Tree (C4.5) [120],

k-nearest neighbor (k-NN; k=1) [32] and Random Forest (tree num=100) [43]. The

experiment is conducted using 10-fold cross-validation.

Fig. 4.7 shows the classification accuracies of the four classifiers with different support
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Table 4.5: Descriptions of the used metrics

Term Abbr Definition

True Positive TP #malware in family f are correctly classified into
family f .

True Negative TN #malware not in family f are correctly not classified
into family f .

False Negative FN #malware in family f are incorrectly not classified
into family f .

False Positive FP #malware not in family f are incorrectly classified
into family f .

True Positive Rate TPR TP/(TP+FN)
False Positive Rate FPR FP/(FP+TN)

Precision p TP/(TP+FP)
Recall r TP/(TP+FN)

F-measure F1 2rp/(r+p)
ROC Area AUC Area under ROC curve

Classification
Accuracy

percentage of malware which are correctly classified
into their corresponding families.
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Figure 4.7: Classification performance of FalDroid for four different classifiers under
different support thresholds θ

threshold θ ranging from 0.1 to 0.9. We can draw the following three conclusions from

Fig. 4.7:
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Figure 4.8: Number of fregraph-based features and corresponding run-time overhead of
feature construction under different support thresholds θ
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Figure 4.9: Number of fregraph-based features by adding families when θ = 0.5

(i) All classifiers obtain an acceptable result (i.e., higher than 86%).

(ii) SVM outperforms other classifiers. Its accuracy is 0.953 when θ = 0.1.

(iii) The performance of SVM decreases as θ increases, particularly when θ exceeds 0.5.

As shown in Fig. 4.8, the number of fregraph-based features decreases with the
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increase in θ. Specifically, no fregraphs are found for some families (e.g., airpush

and boqx) when θ > 0.5, thereby resulting in low accuracy.

Moreover, Fig. 4.8 presents that the small number of fregraph-based features results

in the small run-time overhead of feature construction for a new sample. The accuracy

of SVM decreases by 1.1% when θ = 0.5, whereas the number of features decreases by

82% and the run-time overhead of feature construction decreases by 82% when θ = 0.1.

Thus, we select SVM as our classifier and set θ = 0.5 in latter experiments. Fig. 4.9

illustrates the increase in the number of fregraph-based features when each malware family

is included. On average, 21 new fregraph-based features are added per family.

Table 4.6 shows the classification results when θ = 0.5. Most families have TPR

higher than 0.9. Specifically, 12 families achieve TPR equal to 1 with FPR equal to 0,

indicating that all of their samples are accurately classified and no other malware samples

are inaccurately classified into such families. However, FalDroid obtains poor results for

some families, such as boqx and anserver. The boqx family contains only two unique

fregraph-based features. All the samples in the anserver family are classified into the

basebridge family because their samples evolved from samples in the basebridge family

[156]. In summary, FalDroid performs effectively for most families.

2) Classification Performance on Different Datasets: We also evaluate FalDroid using

four different datasets. Table 4.7 shows the classification performance of FalDroid for the

four datasets when θ = 0.5.

FalDroid can successfully classify 95.3% of the samples in the Drebin dataset [34] into

their families. Its classification accuracy is 0.972 for the Genome Project dataset [156].

Misclassifications are attributed to two main reasons: First, few fregraphs are generated

for some families, such as boxer in [34], thus causing performance to deteriorate. Second,

some families, such as DroidKungFu2 and DroidKungFu3 in [156], exhibit similar
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Table 4.7: Classification performance on four datasets

Dataset Classification Accuracy

Genome Project dataset [156] 0.972
Drebin dataset[34] 0.953
FalDroid-I dataset 0.942
FalDroid-II dataset 0.919

malicious behavior. Therefore, malware samples in these families have similar fregraph-

based feature vectors. The classification accuracies of FalDroid for our constructed

databases are 0.942 and 0.919. In summary, FalDroid can achieve acceptable classification

performance for all four datasets.

3) Comparison with State-of-the-art Approaches: We compare FalDroid with seven

state-of-the-art approaches, including, Dendroid [127], Apposcopy [61], DroidSIFT [149],

MudFlow [38], TriFlow [99], DroidLegacy [54], and Astroid [62]. These approaches are

briefly described below:

• Dendroid automatically classifies malware and analyzes families on the basis of

code structures [127].

• Apposcopy extracts the data-flow and control-flow properties of an app to identify

its family [61].

• DroidSIFT is a semantic-based approach that classifies malware via API dependency

graphs [149].

• MudFlow [38] and TriFlow [99] analyze malware samples on the basis of the source-

and-sink method pairs extracted by FlowDroid [35].

• DroidLegacy partitions the app code into loosely coupled modules and identifies the

malicious module of each piggybacked malware family [54].
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Table 4.8: Classification accuracies of FalDroid and seven state-of-the-art approaches on
Genome Project dataset [156].

Baseline Approach Classification Accuracy

Dendroid [127] 0.942
Apposcopy [61] 0.900
DroidSIFT [149] 0.930

MudFlow [38], TriFlow [99] 0.881
DroidLegacy [54] 0.929

Astroid [62] 0.938
FalDroid 0.972

• Astroid automatically synthesizes a maximally suspicious common subgraph of

each malware family as a signature to perform familial classification [62].

Given that most of these systems are not publicly available and re-implementing the

same systems with identical parameters is difficult, we apply FalDroid to the same Genome

Project dataset [156], which has been used to evaluate these systems in their works.

TABLE 4.8 lists the results of comparison. FalDroid outperforms other seven approaches

on the same dataset for malware familial classification.

Among these approaches, DroidSIFT is the most related to FalDroid. Two major

differences are found between these two approaches. First, DroidSIFT requires a set of

graphs extracted from benign apps to remove the common graphs extracted from malware,

whereas FalDroid uses a clustering-based approach to mine fregraphs only from malware

to identify their commonalities. Ensuring the completeness of the benign graph set is

difficult for DroidSIFT. Moreover, DroidSIFT calculates similarities among graphs using

an improved graph-edit distance (GED), whereas FalDroid employs a novel weighted-

sensitive-API-call-based approach, which is more robust and effective than GED in

detecting homogeneous app behaviors and tolerating minor differences in implementation.
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Figure 4.10: MSGs of zitmo with η = 0.7 and η = 0.8

4.4.3 Effectiveness of Representative Malware Sample Selection

To evaluate the capability of FalDroid in selecting representative malware samples, we

first analyze the MSGs of the zitmo family as an example. We then apply our approach to

the 36 malware families in our FalDroid-I dataset.

Fig. 4.10 illustrates the MSGs of zitmo with different similarity thresholds η = 0.7 and

η = 0.8. In this figure, each node denotes a malware sample, and purple nodes denote

selected representative samples. TABLE 4.9 lists the differences in representative samples

after manual analysis. Moreover, these malware samples are in the same family, and their

receivers and malicious behaviors exhibit minor differences. For example, samples in

GA contain three receivers, whereas samples in GB and GC contain only one receiver,

thereby resulting in three groups when η = 0.7. Moreover, Group GA is divided into three

subgroups, namely, GA1, GA2, and GA3, when η = 0.8. The malicious behaviors of the

samples in the three subgroups also exhibit minor differences. For example, samples in

GA1 can read the phone state compared with the samples in GA2 and GA3. Therefore,

our approach provides an optional app similarity threshold for analysts when selecting the

representative malware samples in each family. A high η indicates that high numbers of

representative samples are selected for analysis.

Table 4.10 shows the number of groups generated in all the 36 families with different

similarity threshold η. The group number for each family increases or remains unchanged
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when η increases because it is more difficult for two nodes in MSG to have one edge. We

draw the following three conclusions from TABLE 4.10.

(i) Group number is not related with family size. For example, utchi (285 samples) has

only one group, whereas boqx (49 samples) has 41 groups when η = 0.8.

(ii) The group numbers of several malware families remain unchanged with the increase

in η (e.g., the group numbers of geinimi and utchi are always one). In other words,

the generated fregraph-based features indicate that malware samples in such families

are highly similar.

(iii) The malware families with relatively small change in the group number exhibit

better classification performance than families with a considerable increase in group

numbers. For example, the TPR of geinimi, utchi, and imlog can achieve 1, whereas

that of airpush and boqx is lower than 0.75. This phenomenon can be attributed

to the relatively small change in group number, which indicates that samples in

families, such as geinimi, exhibit higher similarities than those in airpush.

One representative malware sample is selected for each generated group. We use

reduced percentage to denote the percentage of malware samples in which its inspection

can be deferred because of the representative malware sample selected by FalDroid.

reduced percentage = 1 − groupNum(f)
falNum(f)

, where groupNum(f) denotes the number

of generated groups in family f . For example, analysts should only inspect the most

representative sample in this group rather than all 105 samples because only one group

is found in the geinimi family. Consequently, we can effectively decrease 104 malware

samples to be analyzed. Hence, the reduced percentage of geinimi is 1− 1
105

= 0.99.

Fig. 4.11 presents the reduced percentages of all the 36 families with different η values.

It shows that the reduced percentage decreases with the increase in η. FalDroid can
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effectively decrease the number of malware samples to be analyzed by approximately

78% when η = 0.8 and by approximately 91.5% when η = 0.5 on average.

4.4.4 Analysis of Run-time Overhead

1) Statistics of Generated Graphs: We use r to denote the size ratio of SARG with its

corresponding FCG given that FalDroid initially generates SARG from FCG to exclude

nodes without paths to sensitive nodes. Fig. 4.12 presents the CDF of r for all the samples

in our datasets. More than 98% of r exists in the range from 0.2 to 0.4, and the average

value is 0.28. Thus, the size of SARG is reduced by approximately 72% compared with

that of the original FCG.

Then, we divide the SARG into a set of sensitive subgraphs using community detection

algorithms. Fig. 4.13 summarizes the statistics of the sensitive subgraphs generated from

FCG and SARG. The left figure illustrates the CDFs of the number of sensitive subgraphs.

The CDF of the generated sensitive subgraphs of SARG is close to that of FCG because the

construction of SARG retains all sensitive nodes. On average, 90 sensitive subgraphs are

generated for each malware, and more than 90% samples contain less than 200 sensitive

subgraphs. The right figure in Fig. 4.13 shows the CDFs for the number of nodes in

each sensitive subgraph. The sensitive subgraphs generated from SARG contain fewer

nodes than those generated from FCG. On average, 10 nodes are found in the sensitive

subgraph generated from SARG. Furthermore, approximately 750,000 sensitive subgraphs

are found, and only 0.8% of these subgraphs have more than 50 nodes. However, 16 nodes

are found in each sensitive subgraph directly generated from FCG. In addition, more than

4% subgraphs contain more than 50 nodes.

The results demonstrate that the construction of SARG can effectively reduce the

complexity of graph analysis. This observation is important to the scalability of FalDroid
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Figure 4.12: CDF of the ratio of size of SARG to its FCG
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Figure 4.13: CDFs of the number of sensitive subgraphs and the number of nodes in
sensitive subgraphs

because the run-time performance of graph matching depends on the number of sensitive

subgraphs and their nodes.

2) Run-time Overhead: FalDroid comprises the following main steps to analyze a new

malware sample.

• Graph Construction: The APK file is disassembled and a SARG is constructed.

• Community Detection: The SARG is divided into a set of subgraphs using
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Figure 4.14: CDFs of run-time overhead for graph construction and community detection

community detection algorithms.

• Feature Construction: The subgraphs of the new malware sample are matched with

fregraph-based features to generate a feature vector.

The run-time overheads of graph construction and community detection are shown in

Fig. 4.14. An average of 2.4 sec is required to construct the graph model for a given

APK file. SARG construction requires considerably less time than APK disassembly.

In community detection, 1.5 sec is required to divide the graph into a set of subgraphs,

whereas 16 sec is required when FCG is not simplified as an SARG. On average, 0.7 sec

is required for the feature construction set to generate the feature vector of a new malware

sample when θ = 0.5.

The average run-time overhead of FalDroid is 4.6 sec, and 95% of the samples are

processed within 10 sec. FalDroid requires considerably less time than DroidSIFT [149]

and Apposcopy [61], which consume 175.8 and 275 sec, respectively, to analyze an app

due to their heavyweight static code analysis.

FalDroid consumes less time than DroidSIFT and Apposcopy because of the following

two reasons. First, SARG is induced from the complex FCG by removing nodes without
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close relationships with sensitive API call nodes. Thus, graph size is reduced by 72%.

The decrease in graph size effectively shortens graph analysis. Second, we use a

weighted-sensitive-API-call-based graph matching approach, in which we focus on the

local structure of the sensitive API call nodes rather than all the nodes in the subgraphs.

Thus, our approach requires less time to complete one pair-wise graph matching compared

with GED used in DroidSIFT.

In addition, our SVM classifier requires less than 30 sec to completely process the

training and testing datasets.

4.4.5 Analysis of Resilience

FalDroid performs graph matching with the proposed weighted-sensitive-API-call-based

approach to compete against polymorphic variants. In this process, we evaluate the

effectiveness of our graph matching approach and compare it with GED, which was

widely used by existing studies [149, 82]. The GED metric depends on the selection

of edit operations and the cost involved per operation (e.g., node insertion/deletion, edge

insertion/deletion and node relabeling). Specifically, we ignore relabeling cost because the

node label can be easily changed by obfuscation techniques. We manually construct two

subgraph sets.

• The similar set, which consists of 50 sensitive subgraphs generated from 50 different

malware in the geinimi family. These 50 sensitive subgraphs exhibit similar

malicious behaviors with minor differences.

• The dissimilar set, which consists of 50 sensitive subgraphs generated from one

malware sample. Any two subgraphs do not contain the same sensitive nodes,

indicating that they exhibit entirely different behaviors.
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Figure 4.15: Comparison between our weighted-sensitive-API-call-based graph matching
approach with GED on the similar set and the dissimilar set.

For the two subgraph sets, each subgraph is matched with other subgraphs. Therefore,

49*49 pair-wise graph matching similarities are found. We compare the performance of

our approach with that of GED for the similar set (illustrated in the lefthand side of Fig.

4.15) and the dissimilar set (illustrated in the right-hand side of Fig. 4.15). For the similar

set, all similarities computed by our approach are higher than 0.8, which is selected as the

similarity threshold for clustering subgraphs. However, approximately 10% of similarities

from GED are lower than 0.8. For the dissimilar set, all similarities computed by our

approach are 0. GED similarities range from 0.1 to 1, and approximately 3% of similarities

are higher than 0.8.

Our approach requires less than 1 ms to complete one pair-wise graph matching,

whereas GED requires approximately 7 ms. The low run-time overhead enables our

approach to be scalable for clustering thousands of subgraphs. In summary, FalDroid

can better reveal homogeneous behaviors and tolerate minor differences than GED.

Since FalDroid is also based on the sensitive subgraph analysis, which is similar to the

proposed DAPASA in Chapter 3, the resilience of FalDroid to other obfuscation techniques

(i.e., renaming, reflection, control flow obfuscation) is similar as DAPASA.
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4.5 Brief Summary

We propose the use of fregraphs to depict the common features shared by malware

samples within the same family. Moreover, we design FalDroid, a novel system that

can automatically classify Android malware samples with high accuracy and effectively

accelerate malware analysis by recommending representative malware samples for

scrutiny. FalDroid is more effective and efficient than state-of-the-art approaches. It

provides considerable information for identifying and inspecting malware and raises the

level for malware to evade analysis.
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Chapter 5

The Construction of Graph Embedding
Feature and Its Application in Familial
Clustering

5.1 Overview

Although Chapter 4 proposes an effective familial identification approach, it still suffers

from two main limitations: 1) Low efficiency, even graph-based features such as fregraph

could profile the behaviors of malware samples, the similarity calculation of the fregraphs

is bounded by the efficiency of existing graph matching approaches [115]. For the

proposed weighted-sensitive-API-call-based graph matching approach, it still requires

a lot time while handling millions of graphs. 2) Lack of labeled dataset, it is time-

consuming and labor-intensive to label a large scale of malware samples with family

names. Moreover, since classifiers are trained using known malware samples, they cannot

correctly classify new malware samples from unknown families. Note that retraining the

classifier model for every new sample may be impractical [143].

To tackle these challenges, we propose GefDroid, a novel Graph embedding based

91



familial analysis approach of AnDroid malware with the following salient features:

High efficiency: To reduce the high complexity of directly using graph matching,

inspired by the graph embedding techniques that can transform the high-dimensional

graph structure data into low-dimensional space, we propose a novel feature called SRA

to depict the similarity relationships of Structural Roles of sensitive API call nodes

in a graph. The structural roles refer to the graph position and the structure of local

graph neighborhood. Specifically, we employ graph embedding techniques to learn low-

dimensional vector representations for nodes of a given graph, and then calculate the SRA

based on the vector representations of sensitive API call nodes. Finally, the similarity

computation of two graphs is simplified to the similarity comparison between two vectors

based on the generated SRAs instead of the high-cost graph matching.

No need of labeled dataset: Instead of training a classifier, we leverage unsupervised

learning to cluster unlabeled samples according to their similarity. In particular, we

construct a malware link network (MLN) to represent the similarity relationships among

samples based on their similar SRAs. Then, we apply community detection algorithms to

group the samples into a set of clusters.

In summary, our major contributions include:

(i) We propose SRA, a novel feature to represent the similarity between the structural

roles of sensitive API call nodes in a graph. Based on SRAs, we transform the

high-cost graph matching into an easy-to-compute similarity calculation between

vectors.

(ii) We propose and develop GefDroid, a novel system for familial analysis of Android

malware by using unsupervised learning and constructing malware link network

(MLN) based on SRAs.
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(iii) We conduct extensive experiments to evaluate GefDroid. The results show that

GefDroid can achieve high agreements (0.707-0.883 in term of NMI) between our

clustering results and the ground truth datasets. Furthermore, GefDroid requires

only linear run-time overhead and takes around 8.6s to analyze a sample on average,

which is considerably faster than the prior arts.

The rest of this chapter is organized as follows. Section 5.2 introduces the problem.

Section 5.3 details the construction of graph embedding feature and Section 5.4 introduces

the application of the graph embedding feature in familial analysis. Section 5.5 reports the

experimental results. Section 5.6 concludes the chapter.

5.2 Motivation and Problem Definition

5.2.1 Motivating Scenario

Let us consider a security analyst who faces thousands of unlabeled malware samples

captured every day as illustrated in Fig. 5.1. These malware samples are generally

produced by injecting different kinds of malicious components into popular apps. The

analyst aims to find and analyze the new injected malicious components. However, it

is time-consuming and labor-intensive to conduct an in-depth analysis on each sample.

Therefore, the analyst tries to group these malware samples into a set of clusters, where the

samples belonging to the same cluster share similar malicious components. By inspecting

the similar malicious components in each cluster, the analytical workload of the analyst

can be effectively reduced. However, the analyst faces two challenges: First, how to

effectively identify the malicious components that usually constitute only a small portion

of the samples and may not be implemented in the same way? Second, how to efficiently

accomplish the clustering of thousands of malware samples with low overhead? Note that
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Figure 5.1: Motivation scenario of GefDroid

directly applying pair-wise exact matching is neither effective nor efficient.

To tackle the challenges in the above scenario, we first propose a fine-grained feature

called SRA that can not only retain the properties of malicious components but also can

be resilient to their polymorphic variants. Furthermore, SRA is represented as vectors in a

low-dimensional space so that a great deal of malware samples can be handled efficiently.

We further develop a new system named GefDroid for automating the analysis process.

5.2.2 Problem Definition

Let M = {m1,m2, . . . ,mK} be a set of given Android malware samples without family

labels, where K is the number of samples. The main task of our work is to construct

an MLN that depicts the similarity relationships among different malware samples. Let

MLN = {M,L}, where L ⊆ M × M denotes the edge set. Each (mi,mj, wij) ∈ L

denotes that there exists an edge with weightwij betweenmi andmj and they share similar

malicious components. The key challenge for this task is how to determine the edges

between malware samples. Thus, in our approach, we aim to propose an effective and

efficient feature fea, based on which we can quickly determine the similarities between

thousands of malware samples with high accuracy as:

Mfea ×Mfea ⇒ L (5.1)

Then, the constructed MLN is similar to a social network, where each malware sample
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is regarded as an entity and each edge is regarded as the relationship that connects entities.

Moreover, the malware families that we aim to find are regarded as the communities

existed in the network. In general, community detection algorithms are widely used

to detect community structures in social networks, thus they can be applied on our

constructed MLN in a similar way. Formally, after constructing the MLN, we aim to

find the families as:

C(MLN)⇒ Y = {y1, y2, . . . , yR} (5.2)

where Y denotes the set of clusters generated by community detection algorithm C; R

denotes the number of generated clusters. Note that, each sample in M belongs to only

one cluster in Y , thus
∑R

r=1 |yr| = K.

5.3 Construction of Graph Embedding Feature

5.3.1 Graph Embedding

After the construction of sensitive subgraphs, it is straightforward to apply graph matching

algorithms (e.g., bipartite graph matching [115]) to perform app similarity detection like

FalDroid does. However, the graph matching algorithms are slow since they require

super-linear time running in the graph size. Furthermore, similarity among hundreds of

thousands of graphs must be calculated. Thus, the approaches [149, 51, 52] based on graph

matching algorithms are inevitably inefficient.

In recent years, deep learning [84] has been applied to many application domains,

including graph embedding [103, 105, 72, 113, 53], which aims at learning low-

dimensional vector representations for nodes of a given graph. Graph embedding has

been proven to be useful in many tasks of graph analysis, including link prediction [89],

node classification [40], and visualization [93]. The learned low-dimensional vector

95



representations for nodes can effectively transform the high-cost graph matching to an

easy-to-compute distance calculation between vectors.

In our approach, the applied graph embedding technique should satisfy two

requirements. First, given that new malware samples are constantly being discovered, the

graph embedding algorithm should work with the input of only one graph per time rather

than a graph set. In this way, the trained model does not need retraining process for the

new coming samples. Second, the latent representation of nodes should not depend on the

node or edge attribute, especially the node labels (i.e., method names) that can be easily

changed by obfuscation techniques. Consider integrating the performance and scalability,

we use struc2vec [113] as our default graph embedding technique.

Given a subgraph sgt = {Vt, Et}, after the applying of struc2vec, we use Usgt ∈ R|Vt|×d

to denote the embedding result. Note that sgt is regarded as an undirected graph here. For

each node v in Vt, it will learn a d dimensional feature vector uv. The learned feature

vectors enable the nodes with similar structural roles to be embedded in the near points in

Euclidean space.

Fig. 5.2 presents an example of an undirected graph that contains 11 nodes and 11

edges. The embedding results of the example graph are illustrated in Fig. 5.3, where

the dimension argument is set as 2 for visualization here. As can be seen from the two

figures, the learned feature vectors of the same nodes are quite different due to the random

walk strategy used in struc2vec. Thus, it is not effective to directly apply the embedding

technique in our work.

However, we observe that although the vectors of the same nodes are different, the

distance are maintained. For example, the node 4 and node 8 are structurally similar and

the distances between them in the two figures are nearly the same while their locations are

different.
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Figure 5.2: An example of an undirected graph that contains 11 nodes and 11 edges, where
node 4 and node 8 are structurally similar since both of their degrees are 4.

Figure 5.3: Visualization of the embedding results of the same graph after twice applying
of struc2vec with the same arguments.

5.3.2 SRA Generation

Inspired by the above observation found from the embedding result, we leverage the

similarity relationships between the structural roles of identified node pairs (e.g., node

4 and node 8) to represent the structural feature of a subgraph. However, it is impossible

to map the user-defined method nodes between two subgraphs since their names can be

changed by the obfuscation techniques. Thus, we focus on the sensitive API call nodes that

cannot be easily changed. Furthermore, the sensitive API calls are generally invoked by

malware samples to perform malicious activities, which could provide useful information

for the malware similarity detection.
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According to the constructed SS, we generate the SRA, representing the similarity

relationships between the structural roles of sensitive API call nodes for each given

subgraph. In detail, SRAt of subgraph sgt is calculated with two steps.

First, a subgraph sgt contains a set of sensitive API call nodes, which is denoted as

SSt ⊆ SS. Thus, a set of sensitive API node pairs {(v, u)|v, u ∈ SSt} is obtained if the

subgraph sgt contains at least two sensitive API call nodes.

Second, on the basis of the learned low-dimensional vector representations of sensitive

API call nodes using struc2vec, let ht(v, u) be the similarity relationship between the

structural roles of node v and node u, and it is calculated with the standard cosine similarity

metric as:

ht(v, u) = cos(uv,uu) =
uv · uu
‖uv‖‖uu‖

(5.3)

where uv and uu denote the vector representations of node v and node u, respectively.

Furthermore, ht(v, u) = ht(u, v). In our work, we rank the sensitive API calls in a

dictionary ordered method. Thus, for two sensitive API call nodes v and u, ht(v, u) is

stored only if the dictionary order index of v is less than that of u, or ht(u, v) is stored.

Finally, SRAt is obtained as:

SRAt = {ht(v, u)|v, u ∈ SSt and v 6= u}. (5.4)

Thus, |SRAt| = |SSt|·(|SSt|−1)
2

, where |SSt| is considerably less than the subgraph’s

node number.

5.3.3 SRA Similarity Calculation

After generating SRA for each subgraph, we are able to transform the high-cost graph

matching between subgraphs into the similarity calculation between SRAs. There are two
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intuitions for the similarity calculation between SRAs and they are listed as below:

• If two SRAs share less common sensitive API call nodes, the functionalities of their

corresponding classes would be less similar.

• If the common sensitive API call nodes of two SRAs present less similar structural

roles between each other, their invocation patterns as well as the functionalities of

their corresponding classes would be less similar.

On the basis of the above two intuitions, the similarity of two given SRAs generated

from sg1 and sg2, denoted as sim(SRA1, SRA2), is obtained with Eq. (5.5).

sim(SRA1, SRA2) =

∑
vi∈SS1∩SS2

sim(sr1(vi), sr2(vi))

|SS1 ∪ SS2|
(5.5)

where sr1(vi) and sr2(vi) are represented as two vectors and they denote the similarity

relationships between node vi with other sensitive API call nodes in subgraphs sg1 and

sg2, respectively. To obtain sr1(vi) and sr2(vi), for convenience, we first construct two

distance matrices Dt(t = 1, 2) for two subgraphs as Eq. (5.6). Then srt(vi) is the ith row

vector of the constructed matrices as Eq. (5.7).

Dt[i, j] =

{
ht(vi, vj) vi, vj ∈ SS1 ∩ SS2, i 6= j
0 i = j

(5.6)

srt(vi) = Dt[i, :] (5.7)

sim(sr1(vi), sr2(vi))) =
1

1 + ‖sr1(vi)− sr2(vi)‖2
(5.8)

Fig. 5.4 presents an example of the similarity calculation of two SRAs generated

from sg1 and sg2. Note that only parts of the subgraphs are shown, the other parts

located in rectangles are quite different. The two subgraphs have three common sensitive

API call nodes (i.e., red nodes v1, v2, and v3). For subgraph sg1, h1(v1, v2) = 0.4
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Figure 5.4: An example of the similarity calculation of two SRAs generated from sg1 and
sg2.

and h1(v1, v3) = 0.45. For subgraph sg2, h2(v1, v2) = h2(v1, v3) = 0.8. Therefore,

sim(sr1(v1), sr2(v1))) = sim(< 0.4, 0.45 >,< 0.8, 0.8 >). Note that the cosine metric

result of the two vectors is 0.998. However, the high similarity calculated with cosine

metric cannot depict the different sensitive API invocation patterns here. Thus, we apply

the Euclidean metric with Eq. (5.8) rather than the cosine metric. The Euclidean metric

result is 0.653, considerably less than the result of cosine metric.

5.4 Familial Clustering

5.4.1 MLN Construction

After the feature extraction stage, given two malware samples, we are able to capture

their similarity relationship based on their similar SRAs. To perform familial analysis

using unsupervised learning, we aim to construct an MLN, where each node denotes

a malware sample, and each edge between two samples denotes that there exist similar

SRAs between them. Therefore, the MLN can depict the similarity relationships among

all the malware samples to be analyzed.

Algorithm 4 lists the steps of constructing the MLN with the input of malware set M

and two threshold values, θ and ε. θ denotes the similarity threshold value between SRAs.
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In other words, if the similarity of two SRAs calculated with Eqs. (5.5-5.8) is no less than

θ, they are regarded as the same, indicating that their corresponding classes share similar

functionalities. ε denotes the threshold value of adding edges between sample nodes. If

the number of same SRAs shared by two samples is no less than ε, then an edge is added

between the two samples.

In Algorithm 4, after the preprocessing of each sample in M (lines 2), a set of SRAs,

denoted as SRASet, is constructed (lines 3-6). Then each sample is added in the MLN as

a node (line 7). After that, for each sample-pair in M , the number of same SRAs between

them is calculated and represented as k (lines 10-17). An edge with weight k is added for

the sample-pair if there exist no less than ε same SRAs between them (lines 18-20).

Algorithm 4 Construction of MLN
Require: M // M denotes the set of malware samples to be analyzed.

θ // θ denotes the similarity threshold value between SRAs.
ε // ε denotes the threshold value of adding edges between nodes.

Ensure: MLN = {M,L}
1: for each malware sample mi in M do
2: SGSmi

= Fdiv(SARGmi
)

3: for each sgt in SGSmi
do

4: SRAt = GenerateSRA(sgt)
5: end for
6: SRASetmi

= {SRAt|1 ≤ t ≤ T}
7: MLN.addNode(mi)
8: end for
9: for each sample-pair (mi,mj) in M do

10: k = 0
11: for each SRAt in SRASetmi

do
12: for each SRAt′ in SRASetmj

do
13: if sim(SRAt, SRAt′) ≥ θ then
14: k = k + 1
15: end if
16: end for
17: end for
18: if k ≥ ε then
19: MLN.addEdge(mi,mj, k) // k denotes the edge weight.
20: end if
21: end for
22: return MLN
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geinimi droidkungfu adrd

Figure 5.5: An example of community detection result of MLN for fifteen malware
samples in three families.

5.4.2 Community Detection on MLN

To group the malware samples into clusters on the basis of the constructed MLN,

community detection algorithms are effective to determine whether the MLN has

community structures if the nodes can be easily grouped into sets of nodes, such that each

set of nodes is internally densely connected. As a result, the malware samples grouped in

the same cluster could be regarded as belonging to the same malware family. For the new

samples that are constantly being discovered, they are placed into the clusters that have

connections with them by calculating the similarity relationships with existing samples.

Fig. 5.5 presents an example of community detection result of MLN for fifteen malware

samples in three families, i.e., geinimi, droidkungfu, and adrd. It is obvious that the

constructed MLN can be divided into three clusters. In each cluster, the samples are

connected with each other, indicating that the samples within the same cluster share similar

malicious components. On the basis of the clustering results, our approach can effectively

help security analysts focus on the commonalities among malware samples within the

same cluster, and potentially isolate the malicious behaviors of malware samples from

different clusters.
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5.5 Evaluation of GefDroid

We use three datasets with real malware samples and six metrics to carefully evaluate

GefDroid and answer four research questions:

RQ 1 Which community detection algorithm is appropriate for GefDroid? (Section 5.5.2)

RQ 2 Does GefDroid outperform the baseline approaches in term of accuracy?

(Section 5.5.3)

RQ 3 Can GefDroid process a great deal of samples with low run-time overhead?

(Section 5.5.4)

RQ 4 How do the two parameters influence the performance of GefDroid? (Section 5.5.5)

5.5.1 Study Setup

We evaluate GefDroid on three ground truth datasets provided by Genome project [156],

Drebin [34], and Fan et al. [59]. For convenience, they are named as dataset-I, dataset-

II, and dataset-III. We use Q and K to denote the number of families and the number

of malware samples, respectively. Thus, Q1 = 49, K1 = 1, 260, Q2 = 179, K2 =

5, 560, Q3 = 36, K3 = 8, 407.

Six metrics are used to measure the clustering performance. They are normalized

mutual information (NMI) [57], adjusted rand index (ARI) [126], Fowlkes-Mallows index

(FMI) [63], Homogeneity [117], Completeness [117], and V-measure [117]. NMI, ARI,

and FMI are three widely-used metrics that measure the agreement between the clustering

result and the ground truth dataset. Homogeneity measures the extent of how each

generated cluster contains only samples of a single family. Completeness measures the
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extent of how all samples of each family are assigned to the same cluster. V-measure is

the harmonic mean of homogeneity and completeness.

Except for the ARI, the values of the other five metrics range from 0 to 1, where a

higher value indicates a better agreement between the predicted clusterings and the true

clusterings. The value of ARI ranges from -1 to 1, where random labelings have an ARI

value close to 0.0. For all the six metrics, 1.0 stands for a perfect match with the ground

truth dataset. Recall the example of community detection result illustrated in Fig. 5.5, all

the six metrics are 1.0.

We use Y = {y1, y2, . . . , yR} and C = {c1, c2, . . . , cQ} to denote the predicted set

of clusters and the true set of families, respectively. R denotes the number of clusters

generated with the community detection algorithm; Q denotes the number of malware

families. Before calculating the six metrics, we introduce the true positive (TP), true

negative (TN), false positive (FP), and false negative (FN) used in familial clustering.

• TP: the number of pairs of samples in the same families in Y and in the same clusters

in C.

• TN: the number of pairs of samples not in the same families in Y and not in the

same clusters in C.

• FP: the number of pairs of samples not in the same families in Y but in the same

clusters in C.

• FN: the number of pairs of samples in the same families in Y but not in the same

clusters in C.

Then the calculation of the six metrics are listed as follows.

NMI: NMI is the normalized mutual information that measures the agreement between
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two partitions in clustering analysis, the given Y and C. It is calculated with Eq. (5.9).

NMI(Y,C) =
MI(Y ;C)√
H(Y )H(C)

(5.9)

MI(Y ;C) denotes the mutual information between Y and C. It is calculated with Eq.

(5.10):

MI(Y ;C) =
R∑
r=1

Q∑
q=1

P (yr ∩ cq) log
P (yr ∩ cq)
P (yr)P (cq)

, (5.10)

where P (yr), P (cq), and P (yr ∩ cq) are the probabilities of a malware sample being in

cluster yr, cq, and the intersection of yr and cq, respectively. H(Y ) and H(C) are the

entropies calculated with Eq. (5.11) and Eq. (5.12).

H(Y ) = −
R∑
r=1

P (yr) logP (yr) (5.11)

H(C) = −
Q∑
q=1

P (cq) logP (cq) (5.12)

ARI: ARI is also a metric that measures the similarity of two two partitions in clustering

analysis. It is calculated on the basis of rand index (RI).

RI =
TP + TN

TP + TN + FP + FN
(5.13)

However the RI score does not guarantee that random label assignments will get a value

close to zero. To counter this effect, ARI is calculated as:

ARI =
RI − E[RI]

max(RI)− E[RI]
, (5.14)

where max(RI) and E[RI] denote the maximum RI score and the expected RI score,

respectively.
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FMI: It is another metric to measure the accuracy of clustering result. It is calculated as:

FMI =
TP√

(TP + FP )(TP + FN)
. (5.15)

Homogeneity: Homogeneity is used to measure the extent of how each generated cluster

contains only malware samples of a single family. It is calculated as:

homogeneity = 1− H(C|Y )

H(C)
, (5.16)

where H(C|Y ) is the conditional entropy of the classes given the clustering result and is

given by Eq. (5.17). H(C) is calculated with Eq. (5.12).

H(C|Y ) = −
Q∑
q=1

R∑
r=1

P (yr ∩ cq) log(
P (yr ∩ cq)
P (yr)

) (5.17)

Completeness: Completeness is used to measure the extent of how all malware samples

of a given family are assigned to the same cluster. It is calculated as:

completeness = 1− H(Y |C)
H(Y )

. (5.18)

H(Y |C) and H(Y ) are calculated in a symmetric manner as H(C|Y ) and H(C),

respectively.

V-measure: V-measure is the harmonic mean of homogeneity and completeness and it is

calculated as:

V −measure = 2 ∗ homogeneity ∗ completeness
homogeneity + completeness

. (5.19)
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5.5.2 Selection of Community Detection Algorithm

We apply four widely-used community detection algorithms to the MLNs constructed on

the three datasets. These algorithms include:

• Infomap, which detects community structures of a network using the approach

proposed by Rosvall et al. [118].

• Fast greedy, which is based on the greedy optimization of modularity [49], which is

a metric to measure the quality or significance of a community structure.

• Label propagation, which is a fast partitioning algorithm proposed by Raghavan et

al. [109].

• Multilevel, which is a layered and bottom-up community detection algorithm

proposed by Blondel et al. [42].

In our experiment, the default values of the two arguments, θ and ε, are set as 0.75

and 1, respectively. The sensitivity of the arguments to the clustering performance will be

discussed in Section 5.5.5.

Table 5.1 lists the clustering performance with four different community detection

algorithms on three datasets. The term #clusters denotes the number of generated clusters.

The values marked in bold denote the best performance in terms of the six metrics among

the four algorithms. According to the results listed in Table 5.1, the infomap algorithm

achieves the best clustering performance among these four algorithms. The NMI values

of infomap on the three datasets are higher than 0.7, indicating that there exists high

agreements between the clustering results and the ground truth datasets. Thus, infomap is

selected as our default community detection algorithm in the latter experiments.
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5.5.3 Accuracy of Malware Familial Clustering

We compare the accuracy of GefDroid with four baseline approaches that are briefly

introduced as below:

• Wang et al. proposed an approach for malware detection based on the requested

permissions, which are security-aware features that restrict the access of apps to the

core facilities of devices [137].

• Aafer et al. proposed an approach for malware detection based on API calls, which

are more fine-grained features than permissions since each permission governs

several API calls [31].

• We proposed FalDroid in Chapter 4, which performs familial classification based

on the generated fregraphs that denote the common behaviors of malware samples

within the same families [58].

• Marastoni et al. proposed GroupDroid, which uses 3D-CFG centroids [46]

as features to measure the similarities between malware samples and perform

grouping [94].

Among these approaches, GroupDroid [94] performs a clustering task like GefDroid

does, while the other three approaches [137, 31, 58] perform a classification task and

they suffer from two main limitations. First, they require a training dataset with family

labels assigned by experts, which is not easy to obtain. Second, they can only identify

the families that are only provided in the training dataset. Thus, for Android familial

analysis, it is more practical to perform a clustering task as we do rather than performing

a classification task.
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To have a fair comparison of clustering performance with the approaches that perform

a classification task [58, 137, 31], we construct different MLNs for such approaches based

on their proposed features, e.g., fregraphs, permissions, and API calls. Then the infomap

algorithm is applied on their MLNs to perform a clustering task. For GroupDroid [94], we

re-implement it and perform a clustering task based on the extracted 3D-CFG centroids.

In addition, we use GefDroid (w/o NR) to denote our approach without the preprocessing

of noise removal, in order to evaluate whether the third-party or advertisement libraries

affect the clustering performance.

The comparison results are listed in Table 5.2, where the term #Cluster denotes the

number of generated clusters. We can draw the following four conclusions from the

results:

(i) Except for the completeness metric, GefDroid performs best among these

approaches in terms of the other five metrics.

(ii) GefDroid generates the most clusters. The highest homogeneity values and the most

clusters indicate that GefDroid can well isolate the malicious behaviors of malware

samples from different families.

(iii) In general, the string-based features (i.e., permissions and API calls) perform worse

than the graph-based features. The main reason is that they cannot well depict

the program semantic meanings, thus insufficient to mine the common malicious

components of malware samples within the same families.

(iv) The preprocessing of noise removal significantly improves the clustering

performance, indicating that the widely used third-party or advertisement libraries

would introduce noise edges into the MLNs.
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Table 5.3: Performance of detecting new coming malware samples.

Dataset True-Link Rate False-Link Rate No-Link Rate

dataset-I 94.91% 1.89% 3.20%
dataset-II 94.51% 1.21% 4.28%
dataset-III 92.80% 1.09% 6.11%

We also evaluate the ability of GefDroid in handling new malware samples. We

randomly select 100 samples from each dataset and regard them as new samples. Then,

we calculate their similarity relationships with existing samples in the MLN, and use three

terms to evalaute the performance.

• True-Link Rate: the percent of new samples that have links with the samples that

belong to the same families.

• False-Link Rate: the percent of new samples that have and only have links with the

samples that belong to different families.

• No-Link Rate: the percent of new samples that have no links with existing samples.

We repeat this experiment 100 times on the three datasets. The average results listed in

Table 5.3 indicate that GefDroid can effectively link the new coming samples with their

variants in the MLN. Moreover, we find that 0.52% of new samples actually belong to

the families that contain only one sample in the datasets, and thus they have no links with

other samples.

5.5.4 Analysis of Run-time Overhead

We evaluate the run-time overhead of GefDroid for its three main stages that are listed as

below:
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Figure 5.6: CDFs for the run-time overhead of the feature extraction stage on dataset-III.

• Preprocessing: All the given samples are disassembled and a set of subgraphs for

each sample are constructed as FalDroid does.

• Feature Extraction: For each subgraph of a sample, its nodes are encoded into low-

dimensional vectors with struc2vec. Then, an SRA is generated to represent the

structural feature of the subgraph.

• Familial Clustering: An MLN is constructed based on the similarity calculation of

SRAs. Then, the infomap algorithm is applied on the MLN for malware clustering.

GefDroid-Runtime-Embedding

For the preprocessing stage, 3.9s is needed as introduced in Chapter 4. As illustrated

in Fig. 5.6, for the feature extraction stage, 6.5s is needed on average. Furthermore,

only about 6.1% of samples require more than 30s. The cost of feature extraction mainly

depends on the size of the subgraphs that are embedded. The used embedding algorithm

struc2vec [113] scales super-linearly but closer to linear. Specifically, the complexity

of graph embedding step is O(n1.5), where n denotes the number of nodes in a given

subgraph. It is worth noting that the preprocessing and the feature extraction stages could

113



Table 5.4: Run-time overheads of MLN construction and community detection on three
datasets.

Dataset T #SRA pairs MLN
Construction

Community
Detection

dataset-I 3.1 7.46 ∗ 106 20s 2s
dataset-II 3.2 1.58 ∗ 108 131s 11s
dataset-III 5.1 9.09 ∗ 108 750s 45s

be conducted on several PCs in parallel, thus further reducing the total overhead.

For the stage of familial clustering, an MLN is first constructed by calculating the

similarities between SRAs. Thus, the calculation complexity of the SRA pairs is about

O(K∗(K−1)
2

∗ T ∗ T ), where K and T denote the total number of samples and the average

number of SRAs per sample has, respectively. Table 5.4 lists the run-time overheads

of MLN construction and community detection on three datasets. Even for the biggest

dataset-III, the similarity calculation of 9.09 ∗ 108 pair of SRAs is accomplished in only

750s. The cost for the community detection is considerably less than that of the MLN

construction. Furthermore, for a new coming sample, it only needs 0.2s to calculate the

similarities with existing samples.

We compare the overhead of GefDroid and that of the baseline approaches. For

the permissions- and API-calls-based approaches, their clustering performance is

considerably worse than GefDroid. Moreover, compared with the graph-based features,

the permissions- and API-calls-based features cannot provide enough explanations to

the relationships between malware samples within the same clusters. Hence, we

mainly focus on the efficiency comparison between GefDroid and the two graph-based

approaches, i.e., FalDroid and GroupDroid. More precisely, we first randomly select

1,000 malware samples. Then, a set of subgraphs are generated for each sample in the

three approaches. After that, FalDroid adopts a weighted-sensitive-API-calls-based graph
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Figure 5.7: Comparison result of the run-time overheads.

matching approach to calculate the graph similarities, which has been proved to be faster

than the graph edit distance algorithm. For GroupDroid, a 3D-CFG centroid represented

as a four-dimensional vector is calculated for each subgraph. In GefDroid, each subgraph

is first embedded into a low-dimensional feature space. Then an SRA is generated for

each subgraph. In summary, the similarity detection between samples of FalDroid is

based on the graph matching algorithm while GroupDroid and GefDroid rely on similarity

calculation between vectors.

Fig. 5.7 use the blue line, black line, and red line denote the increase of total run-time

overhead of FalDroid, GroupDroid, and GefDroid, respectively. We can see that the blue

line grows exponentially while the black line and the red line show linear growths. About

19s is required for GroupDroid to construct the 3D-CFGs and calculate the centroid, which

is twice as the time GefDroid needs. For FalDroid, when the number of samples is lower

than 400, it shows higher efficiency than GefDroid by directly applying the graph matching

approach. However, with the increase in the number of samples, the cost of FalDroid is

considerably higher than GefDroid. For example, when there are 1,000 samples, FalDroid

requires around 8.4h to accomplish the similarity calculation of subgraphs, while our
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approach requires 2.3h to generate the SRAs and accomplishes the similarity calculation

between the SRAs under 30s. In reality, there would be much more than 1,000 malware

samples to process.

5.5.5 Selection of Arguments

There are two parameters that play importance roles in our approach, i.e., θ controls the

similarity threshold value between SRAs; ε controls the threshold value of adding edges

between sample nodes. To answer RQ 4, we vary the values of θ as {0.6, 0.65, 0.7,

0.75, 0.8, 0.85, 0.9, 0.95} and vary the values of ε as {1,2,3,4,5} when conducting the

experiments on dataset-III. The results are shown in Fig. 5.8. From the six sub figures, we

have the following observations:

(i) As the increase of ε, except the homogeneity value, the values of the other five

metrics decrease.

(ii) As the increase of θ, except the homogeneity value, the values of the other five

metrics first increase and then decrease when θ is higher than 0.75.

(iii) For the homogeneity value, it increases with the increase of both θ and ε, which

makes it harder to connect edges in MLN. However, the homogeneity value can

achieve an acceptable 0.832 when θ = 0.75 and ε = 1.

We can also draw the similar conclusions from evaluation results on dataset-I and

dataset-II. On the basis of the above three conclusions, in our approach, we select the

default values of θ and ε as 0.75 and 1, respectively.
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Figure 5.8: Parameter sensitivity of GefDroid for malware familial analysis on dataset-III.

5.6 Brief Summary

We propose SRA, a novel feature to represent the similarity relationships between the

structural roles of sensitive API call nodes in a graph. By doing so, we transform

the high-cost graph matching into an easy-to-compute similarity calculation between

vectors. Moreover, we design and develop GefDroid, a new system for familial analysis

of Android malware by using unsupervised learning and constructing MLN based on
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SRAs. Our extensive evaluation results show that GefDroid outperforms the state-of-the-

art approaches in terms of accuracy and efficiency.
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Chapter 6

The Construction of Sensitive Behavior
Feature and Its Application in Malware
Analysis

6.1 Overview

The effectiveness of the above approaches primarily depends on the manual feature

engineering process, which is time-consuming and labor-intensive based on human

knowledge and intuition. Specifically, to perform malware analysis with high

performance, the researchers need to manually inspect the malicious activities of malware

samples and summarize the hypotheses about common behaviors that malware share but

benign apps do not. Furthermore, the summarized hypotheses might vary from different

inspected malware samples, thus constructing different feature spaces for different

datasets.

Therefore, in this work, we aim to automatically engineer informative features from

existing knowledge learned by experts. Specifically, we mine sensitive behaviors features,

behaviors that might do harmful activities to users potentially, from a corpus of Android

malware related technical blogs. We choose the technical blogs as our knowledge source
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because they are written in a way that mirrors the human feature engineering process and

they are usually public online in time. Then we use the extracted sensitive behaviors to

guide the automatic informative feature engineering processing. However, there are two

main challenges in our work.

First, it is a key challenge to automatically recognize the harmful activities and mine

sensitive behaviors in the magnanimity information of thousands of technical blogs.

For example, for the sentence: “These instructions can be used to open a web page,

call a phone number, or send an SMS text message to a premium number.[1]”, it is easy

for the researchers to obtain the knowledge that there are three sensitive behaviors that are

marked with an underline for the instructions. However, this conclusion is based on the

prior knowledge of research in the world, since the sentence does not provide sufficient

linguistic clues that such three behaviors might do harmful activities. Therefore, there is a

semantic gap between the natural language in technical blogs and sensitive behaviors.

Second, there also exists a semantic gap between the sensitive behaviors and the

programming language. Therefore, it is hard to directly utilize the sensitive behaviors for

malware analysis with machine learning algorithms. For example, even though we know

that send an SMS text message is a sensitive behavior, we still unable to directly identify

how does a given app perform such sensitive behavior in their thousands of lines of code.

To overcome the first challenge, we leverage natural language processing (NLP)

techniques to parse the contents in blogs into a uniform structure, verb-object phrase (e.g.,

“send—>text message”). Then we propose a clustering-based approach to extract frequent

behaviors that have close relations with Android system and regard them as sensitive

behaviors. For the second challenge, we propose two semantic matching rules to bridge the

gap between the sensitive behavior and the programming language based on the analysis

of descriptions of Android concrete features (i.e., permissions, API calls and intents), as
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well as the keywords in the app code.

(i) We propose techniques that summarize the existing knowledge contained in

magnanimity information of natural language documents and generate a novel type

of features presented as verb-objective phrases that are easy to understand.

(ii) We propose two semantic matching rules that bridge the gap between the phrase-

based features and programming language.

(iii) We design and implement CTDroid, an automatic feature engineering system. By

using CTDroid, we construct a set of informative features that can be utilized for

Android malware detection and familial classification.

(iv) We conduct extensive experiments to evaluate CTDroid on a large scale of real

malware and benign apps. the experimental results show that CTDroid can achieve

a 95.8% true positive rate with only 1% false positive rate for malware detection and

a 97.9% accuracy for familial classification. Furthermore, our proposed features are

more informative than those of state-of-the-art approaches.

The rest of this chapter is organized as follows. Section 6.2 details the construction of

sensitive behavior. Section 6.3 reports the experimental results. Section 6.4 concludes the

chapter.

6.2 Construction of Sensitive Behavior

6.2.1 Text Preprocessing

There are thousands of technical blogs on the web. It is neither effective (need an expert

understanding of Android system) nor efficient (too much knowledge to learn) to carefully
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read each blog. To better automatically obtain significant knowledge from the blogs,

we first transform the semantic meanings of blog contents into a set of behaviors. A

behavior is represented as a tuple that consists of a verb and an object, and both of them

are indispensable. The steps of extracting behaviors from blogs with NLP techniques are

listed as below.

1) Sentence Extraction: Given a technical blog crawled from the website with HTML

format, we initially use jsoup [23], a Java HTML parser, to extract the contents from the

HTML file, and remove all non-ASCII symbols. Then we split the extracted content into

a set of sentences with sentence segmentation.

2) Part-of-speech (POS) Tagging: For each extracted sentence, its typed dependency

representations of the plain text in the form of rule(gov, dep) are extracted by using

Stanford typed dependency parser [122, 27], a program that works out the grammatical

structure of sentences. The gov and dep denote the governor word and the dependent

word, respectively. The rule denotes the relation between the gov and dep. There are

many different kinds of rules defined in the parser, such as conj, det, dobj, and nsubjpass.

By carefully reading ten technical blogs, we find that most of the extracted subjects are

the malware samples. Therefore, we do not consider the rules of which the dep is the

subject. Moreover, given that we aim to extract the information that depicts the malicious

activities conducted by malware, the rules such as det and conj that depict the definition

and conjunction relationships cannot be used to find the malicious activities. Thus, we

only focus on two main types of rules: dobj and nsubjpass. The dobj denotes that the dep

is the (accusative) object of the gov. The nsubjpass denotes that the dep is the syntactic

subject of the gov in a passive clause.

As listed in Table 6.1, after the decomposition of the plain text, we can get the

corresponding typed dependency representations with the gov (i.e., “open”, “call” and
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Table 6.1: An example of behavior extraction

plain text
“These instructions can be used to open a web page,
call a phone number, or send an SMS text
message to a premium number.”[1]

typed dependency
representations

dobj(open, page)
dobj(call, number)
dobj(send, message)

behaviors
open—> web page
call—> phone number
send—> sms text message

“send”) and the dep (i.e., “page”, “number” and “message”). We construct one behavior

for each generated typed dependency representation, where the gov is used as the verb

and the dep is used as the object. Furthermore, we extend the verb and the object to their

corresponding noun phrases by adding the adjective modifiers and identifying muti-word

expressions. For example, the object “message” is extended to its noun phrase, i.e., “sms

text message”.

3) Word Stemming: The noun phrases with similar semantic meaning would appear

in different variants, such as “a phone number” and “phone numbers”. To address this

problem, we first remove the stop words, the common words that would appear to be of

little value for NLP analysis. The stop words used in our work is provided by [18], such

as “a”, “an”, and “the”. Then we apply WordNet [30] to reduce the words based on their

POS tag to their root forms. For example, the object “numbers” in its plural form would

be reduced to “number”.

Then, given that different verbs would contain the similar meanings such as “get” and

“return”, we regard these verbs as the same one. To this end, we manually construct

14 semantic groups based on a set of commonly used verbs provided by Anton et. al

[33]. Then we add their similar verbs returned by WordNet. As listed in Table 6.2, each

semantic group consists of a set of similar verbs and one representative verb. If the verb
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Table 6.2: 14 semantic groups and their representative verbs.

Representative Verb Similar Verbs
send push, upload
get return, obtain, collect, gather, gain, access
check verify, confirm
connect direct, redirect, open, call, contact
use invoke, perform, run, execute, activate, conduct
cipher encrypt, encode
decipher decrypt, decode
delete remove, wipe
prevent abort, restrict, cease, disrupt, intercept
change replace, modify, alter
set reset
generate create, build, make
store write, remember, impress
download load, install, deploy

of a behavior belongs to one of the semantic group, then it will be replaced with the

corresponding representative verb. For example, the behavior “return—> phone number”

will be changed to “get—> phone number”.

6.2.2 Extraction of Sensitive Behavior

After the text preprocessing of the collected blogs, 208K behaviors are extracted.

However, we observe that most of the extracted behaviors present little significance

for malware analysis. For example, the behavior “advise—> user” occurs when the

researchers give some advice to the users about how to protect their smartphones.

However, this behavior has little value for malware analysis. Thus, we propose a

clustering-based approach to filter out the useless behaviors and mine the frequent

behaviors that have close relations with Android system. These behaviors are regarded

as the sensitive behaviors. To this end, we need to first propose an effective and efficient

behavior similarity calculation method since there are too many extracted behaviors.
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1) Behavior Similarity Calculation: For convenience, we use BH to denote the set of

extracted behaviors. BH = {bhi = (verbi, objecti)|1 ≤ i ≤ K}, where K is the total

number of behaviors. Each behavior bhi contains a verbi and an objecti. The similarity

between two behaviors bhi and bhj depend on the similarities between their corresponding

verbs and objects, which are represented as sim(verbi, verbj) and sim(objecti, objectj),

respectively. The similarity between bhi and bhj is obtained as Eq. 6.1.

sim(bhi, bhj) = α ∗ sim(verbi, verbj) + (1− α) ∗ sim(objecti, objectj) (6.1)

The parameter α is used to control the weights of the similarity of verbs and objects;

0 ≤ α ≤ 1. The reason of introducing α is that if the behaviors whose verbs are

general words such as “use”, “get” and “return”, their similarities would mainly rely on

the sim(objecti, objectj) rather than sim(verbi, verbj). To this end, we assign different

weights to the verbs to denote their importance in the similarity calculation. Specifically,

if a verb is generally used in our extracted behaviors, then its weight should be low. Thus,

we use the inverse document frequency (IDF) to measure the inverse frequency of verb

that appears across all the behaviors. Therefore, the weight of verbi is calculated as:

w(verbi) = log2
K

Num(bhverbi)
, (6.2)

where Num(bhverbi) denotes the number of behaviors that contain verbi. Then, all the

w(verb)s are normalized between 0 and 1. Finally, for the sim(bhi, bhj), its α is obtained

as:

α =
w(verbi) + w(verbj)

2
(6.3)

Next, to calculate the similarity between verbs or objects which are actually phrases

(phs), we first transform them into a calculable form. Here we rely on the tool called

Word2Vec [97]. Word2vec takes a large corpus of text as its input and produces a vector
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space, with each unique word in the corpus being assigned a corresponding vector in the

space. In our work, we collect a 12.2G corpus from Wikipedia [12] and put them into

Word2vec with the skip-gram model [73]. Each word wd in the corpus is represented as a

vector with l dimensions as Eq. (6.4); l = 100 in our work.

−−−−−→
vec(wd) = 〈v1, v2, . . . , vl〉 (6.4)

As introduced in [97], semantic relations among words can be captured via simple

vector operation. For example,
−−−−−−−−−→
vec(“better”) −

−−−−−−−−→
vec(“good”) ≈

−−−−−−−−−→
vec(“faster”) −

−−−−−−−−→
vec(“fast”), in which the minus sign denotes vector substraction operation. Leveraging

the characteristic of vector operation in Word2Vec, we obtain the the vector of a phrase ph

by the vector adding operation on all the words in ph as Eq. (6.5). The cosine similarity is

widely used to find the similarity between two given vectors. Thus the similarity between

two phrases can be calculated with cosine similarity based on Eq. (6.6), in which ||−→vec|| is

the Euclidean norm of the vector −→vec.

−−−−→
vec(ph) =

∑
wd∈ph

−−−−−→
vec(wd) (6.5)

cosine(
−−−−−→
vec(ph1),

−−−−−→
vec(ph2)) =

−−−−−−→
(vec(ph1)×

−−−−−→
vec(ph2))

||
−−−−−→
vec(ph1)|| · ||

−−−−−→
vec(ph2)||

(6.6)

3) Behavior Clustering: Based on the similarity calculation of behaviors, we mine the

frequent behaviors via the clustering of behaviors. Algorithm 5 lists the step of behavior

clustering with the input of all generated behaviors BH = {bh} and two threshold values,

θ and ε. θ denotes the similarity threshold between a behavior and a cluster. In other

words, if the average similarity between a behavior bhi with all the behaviors in cluster

cj , represented as sim(bhi, cj), is higher than θ, then the behavior bhi is added into the

cluster, indicating that the behavior bhi has very close semantic meanings with those in
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Algorithm 5 Clustering of behaviors
Require:

BH = {bh} // BH denotes the set of extracted behaviors in blogs.
θ // θ denotes the similarity threshold value of adding behaviors into clusters.
ε // ε denotes the support threshold value of filtering out clusters.

Ensure:
C // C denotes the set of output clusters and each cluster contains a set of similar
behaviors.

1: p = 1, c1 = {bh1}, C = {c1}
2: for each bhi,i 6=1 in BH do
3: c′ = argmaxcj∈C sim(bhi, cj)

4: if sim(behavi, c
′) ≥ θ then

5: c′ = c′ ∪ {behavi}
6: else
7: p = p+ 1, cp = {behavi}, C = C ∪ {cp}
8: end if
9: end for

10: for each cj in C do
11: if sup(cj) < ε then
12: C.remove(cj)
13: end if
14: end for
15: return C

cluster cj . ε denotes the support threshold value of grouped clusters. If the support value

of cluster cj , represented as sup(cj) is less than ε, we filter out this cluster.

In Algorithm 5, C is initialized with only one cluster c1 = {bh1} (line 1). Then all the

other behaviors in BH are successively calculated to check whether there exists a cluster

in C that the current behavior can be added in (lines 2-9). After that, we filter out the

clusters whose support values are less than ε (line 10-14).

After the clustering of behaviors, we can obtain a set of clusters C and each cluster

c ∈ C contains a set of similar behaviors. In each cluster, the behavior with the highest

frequency number is selected as the representative behavior repBh. The frequency

number of a behavior denotes the times of the behavior occurs in BH . Table 6.3 lists

an example of the generated cluster, in which all behaviors contain the similar semantic

meanings of sending text messages. The number attached to the behavior denotes its

corresponding frequency number.
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Table 6.3: An example of behavior cluster.

Representative
behavior send—> text message

Behaviors

send—> text message (236)
send—> premium text message (3)
send—> multiple text message (2)
send—> sms text message (2)
send—> one text message (2)
......

Table 6.4: Android system related concepts [60].

phone number photo imei password camera
phone call time contact radio email
device id keylock pin bookmark calendar
serial number network account file package
subscriber id location browser shortcut screenshot
text message battery alarm wallpaper bluetooth
microphone command permission activity wifi

To identify the sensitive behaviors, we filter out the behaviors with little significance for

malware analysis within two steps.

• First, we remain the behaviors whose verbs belong to our constructed 14 semantic

groups, since most other verbs are too general to identify their concrete actions in

app code such as “protect”, “alert”, and “infect”.

• Second, we remain the behaviors that have close relations with Android system. To

this end, we obtain a set of Android system sensitive concepts based on the work

of Felt et. al [60], in which they conduct a research for the user concerns about 99

smartphone risks. As a result, there are 35 sensitive concepts listed in TABLE 6.4.
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6.2.3 Feature Construction

After the generation of sensitive behaviors, it is non-trivial to directly utilize the sensitive

behaviors for malware analysis with machine learning algorithms due to the semantic

gap between the sensitive behaviors and the programming language. To address this

challenge, we propose two semantic matching rules by leveraging the descriptions of

Android concrete features (i.e., permissions, API calls and intents), as well as the keywords

in the app code.

APK Disassembling: Introduced as before, with existing mature disassembling tools

such as apktool [16], we are able to obtain the AndroidManifest.xml file and the

dalvik code files. The AndroidManifest.xml file contains essential information

about an app to the Android system, including the requested permissions and intents. It

is worth noting that the widely used third-party and advertisement libraries might affect

the performance of malware analysis. We filter out these libraries from the dalvik code by

using the list provided by [88, 87].

Feature Vector Construction: Basically, the dalvik code is the main part of an app that

we need to match with our sensitive behaviors. Furthermore, existing approaches [137, 61,

157] reveal that permissions and intents are significant for malware analysis. Thus, we also

match such concrete features (i.e., permissions and intents) with our sensitive behaviors.

Our two matching rules are introduced as below.

Rule I: Matching with permissions and intents.

In our work, 140 permissions and 261 intents are collected from the Android

document [13]. However, it is not effective to directly match the permissions and intents

with the sensitive behaviors because of the insufficient literal meanings. Therefore, the

corresponding descriptions of the permissions and intents are also collected to provide
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Table 6.5: An example of permission matching

Sensitive behavior send—>text message
Permission SEND SMS
Description It allows an application to send SMS messages.
Extracted behavior send—>sms message (sim: 0.98)

Table 6.6: An example of intent matching

Sensitive behavior check—>package
Intent PACKAGE VERIFIED
Description Send to the system package verifier when a package is

verified.
Extracted behavior verify—>package (sim: 1.0)

useful information. To match the concrete permissions and intents with given sensitive

behavior, the collected descriptions are parsed into behaviors. In addition, if the name of a

permission or an intent consists of a verb and an object, one more behavior is constructed.

Then the extracted behaviors are matched with the given sensitive behavior by using our

similarity calculation method. If there exists a similarity that is higher than the preset θ,

then we define that the app contains the current sensitive behavior feature.

TABLE 6.5 and TABLE 6.6 list examples of permission matching and intent matching,

respectively. The number behinds the extracted behavior denotes its similarity with the

sensitive behavior. It is worth noting that in TABLE 6.6, since the verb “verify” and the

verb “check” belong to the same semantic group listed in TABLE 6.2, “verify” is replaced

with “check” and the similarity between the two behaviors is 1.0.

Rule II: Matching with dalvik code.

Dalvik code is a human readable representation of the binary bytecode. From the

generated dalvik code files we initially extract the method bodies by recognizing the

identifies .method and .end method. In each method body, API calls are invoked to perform
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Table 6.7: An example of API call matching.

Sensitive behavior get—>phone number
API getLine1Number()
Description It returns the phone number for line 1, for example, the

MSISDN for a GSM phone.
Extracted behavior return—>phone number (sim: 1.0)

specific behaviors. For example, the API call getLine1Number() is used to return the

phone number of the device, which can be matched with the “get—> phone number”

behavior. However, expert knowledge is needed to link the meanings of line1 number with

the phone number. Similar to permissions and intents, we also leverage the descriptions

of API calls to help us match them with given sensitive behaviors. TABLE 6.7 lists an

example of API call matching.

Unfortunately, not all the identified sensitive behaviors have corresponding successfully

matched API calls. For example, Fig. 6.1 presents the snippets of deleting a text message,

which is implemented by using the ContentResolver:delete() function with the argument of

parsed string content://sms/conversations/. Directly matching the given sensitive behavior

with the invoked API call in the method body is not sound for such cases.

To address this problem, the method body is initially tokenized into a bag of words. For

example, ContentResolver:delete() is tokenized as {“content”, “resolver”, “delete”}. Then

we check whether each word in the sensitive behavior is contained in the word bag. In this

way, the snippets in Fig. 6.1 are matched with “delete—> text message” sensitive behavior

based on the matched words “delete” and “sms” (similar meaning as “text message”) that

are marked in red.

Next, to perform malware analysis with machine learning algorithms, each app should

be represented as a feature vector. Specifically, for a set of n given apps X =

{x1, x2, . . . , xn} and a set of k identified sensitive behavior feature F = {f1, f2, . . . , fk},

131



const-string v3, "content://sms/conversations/"

……
invoke-static {v2}, Landroid/net/Uri;->parse(Ljava/lang/String;)Landroid/net/Uri;

move-result-object v2

const/4 v3, 0x0

const/4 v4, 0x0

invoke-virtual {v0, v2, v3, v4}, Landroid/content/ContentResolver;-

>delete(Landroid/net/Uri;Ljava/lang/String;[Ljava/lang/String;)I

……

Figure 6.1: Snippets of deleting a text message.

each app xi is represented as a feature vector xi = 〈xi1, xi2, . . . , xik〉, where xij denotes the

value of the jth feature for the ith app. xij is calculated based on the above two matching

rules in algorithm 6.

In algorithm 6, xij is initially set as 0 (line 1). Then we extract a required permission set

Perxi and an intent set Intxi from the AndroidManifest.xml file of app xi. After that, we

match each permission and intent in the two sets with the given sensitive behavior fj with

matching rule I, and increase the feature value with 1 if there exists a successful matching

(lines 2-9). Next, we construct a method set Methodxi by extracting the methods from the

dalvik code, and match each method with fj with matching rule II (lines 10-21). Note that

our features are different from the binary features (e.g., permissions and API calls) that are

set as 1 or 0, we not only consider the occurrence of corresponding sensitive behavior but

also calculate its frequency of occurrence. By doing so, the feature vector constructed for

each app contains more information than those constructed based on binary features.

Finally, we conduct two malware analysis tasks, malware detection and familial

classification. Note that the labels attached to the feature vectors for the two tasks are

different. For the task of malware detection, there are two types of labels, malicious and

benign, which are denoted as 1 and 0 respectively. In other words, if a given app xi is a

malicious one, then its corresponding label yi is set as 1, or the label is set as 0 if the app is

benign. However, for the task of malware classification, the label yi belongs to one of the
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Algorithm 6 Calculation of feature value
Require:

xi, fj // xi denotes the ith app and fj denotes the jth sensitive behavior feature.
Ensure:

xij // xij denotes the output feature value.
1: xij = 0
2: Perxi = {per} // Perxi denotes the required permission set of xi.
3: if ∃per ∈ Perxi and MatchingRule− I(per, fj) then
4: xij ++
5: end if
6: Intxi = {int} // Intxi denotes the used intent set of xi.
7: if ∃int ∈ Intxi and MatchingRule− I(int, fj) then
8: xij ++
9: end if

10: Methodxi = {md} // Methodxi denotes the method set of xi.
11: for each md in Methodxi do
12: APImd = {api} // APImd denotes the API call set of md.
13: if ∃api ∈ APImd and MatchingRule− II(api, fj) then
14: xij ++
15: else
16: WdBagmd = {wd} // WdBagmd denotes the word bag of md.
17: if MatchingRule− II(WdBagmd, fj) then
18: xij ++
19: end if
20: end if
21: end for
22: return xij

malware family names, such as geinimi or droidkungfu. Therefore, for each task a dataset

is initially constructed and represented asD = {(x1, y1), (x2, y2), . . . , (xn, yn)}. Then, the

dataset is split into a training dataset and a testing dataset. By applying known machine

learning algorithms on the training dataset, different classifiers are generated. After that,

each sample xi in the testing dataset will be fed into the classifier and a label y′i will be

returned. If y′i is equal to yi, then the sample is correctly classified with the generated

classifier, or it is wrong.

6.3 Evaluation of CTDroid

To evaluate CTDroid, we first introduce the study setup of our experiments, and then

address the following five research questions.
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RQ 1 Which classifier and parameters (i.e., θ and ε) are appropriate for CTDroid?

(Section 6.3.2)

RQ 2 Can CTDroid detect Android malware with high true positive rate and low false

positive rate? (Section 6.3.3)

RQ 3 Can CTDroid classify Android malware into their correct families with high

accuracy? (Section 6.3.4)

RQ 4 Can CTDroid handle a large scale of apps with high efficiency? (Section 6.3.5)

RQ 5 To what extent is CTDroid resistant to code obfuscation techniques? (Section 6.3.6)

6.3.1 Study Setup

CTDroid analyzes two main types of datasets: 1) Technical blogs, which contain the

natural language contents about Android malware. 2) Android malware and benign apps,

which are used to evaluate the performance of CTDroid for malware detection and familial

identification.

Technical Blogs: In general, the technical blogs are written by researchers with

specialized knowledge. Therefore, we utilize the contents in the technical blogs to mine

sensitive behaviors that might do harmful activities to users potentially. The corpus

of technical blogs is crawled from ten websites, including nine security companies

websites [6, 9, 10, 11, 24, 7, 5, 8, 4] and the well known personal website of Jiang [2], from

2010 to 2017. Given that we focus on Android malware analysis, we use the keywords

such as “Android”, “malware”, and “malicious” to filter out the irrelevant blogs. We pick

these ten security websites because of their expert analysis on Android malware and we

believe in their analysis result described in the crawled technical blogs. In summary, we

134



Table 6.8: Descriptions of collected technical blogs.

Web-site # Blogs Web-site # Blogs

Fortinet [6] 103 Lookout [7] 145
Secure List [9] 179 Cheetah Mobile [5] 50

Security
Intelligence [10]

142 Palo Alto [8] 39

Trend Micro [11] 220 Check Point [4] 155
McAfee [24] 324 Jiang [2] 28
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Figure 6.2: Time distribution of collected technical blogs.

collect 1,385 Android malware related technical blogs that are listed in TABLE 6.8. The

time distribution of the collected blogs is illustrated in Fig. 6.2.

Android Malware and Benign Apps: To evaluate the performance of CTDroid for

malware detection and familial identification, we apply it on four malware datasets,

including three widely-used datasets provided by Gnome project [156], Drebin [34],

and FalDroid, and a new dataset constructed by ourselves by collecting recent malware

samples from Palo Atlo [8]. Specifically, for malware detection, we collect an equal

number of most popular (10,000+ downloads) benign apps from Google Play [20] in the

same period and add them to the four provided malware datasets. Each benign app has
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Table 6.9: Descriptions of three datasets used for malware detection (MD).

Dataset #Malware #Benign Apps

MD-I 1,260 1,260
MD-II 5,560 5,560
MD-III 8,407 8,407
MD-IV 1,015 1,015

Table 6.10: Descriptions of three datasets used for familial identification (FI).

Dataset #Malware #Families

FI-I 1,247 33
FI-II 5,513 132
FI-III 8,407 36
FI-IV 1,015 69

been uploaded to the VirusTotal to make sure that no virus engine reports it as malicious.

Therefore, four datasets that contain both malware and benign apps are constructed for

malware detection (MD). For convenience, the four datasets are named as MD-I, MD-

II, MD-III, and MD-IV, and their descriptions are listed in TABLE 6.9. For familial

identification (FI), given that we need to split each dataset into a training set and a testing

set, we remove the malware families that contain only one sample. For convenience, the

four datasets used for familial identification are named as FI-I, FI-II, FI-III, and FI-IV, and

their descriptions are listed in TABLE 6.10.

Metrics: For malware detection, TPR is used to denote the percentage of malware that

are correctly predicted as malware, and FPR is used to denote the percentage of benign

apps that are incorrectly predicted as malware. The goal of any malware detection research

is to achieve a high value for TPR and a low value for FPR. For familial identification, the

term classification accuracy is used to denote the percentage of malware that are correctly

classified into their corresponding families.
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Baseline Approaches:We compare the performance of CTDroid in malware detection

and familial identification with three baseline approaches, i.e., FeatureSmith [157],

FalDroid, and MaMaDroid [95]. The descriptions of the three baseline approaches are

listed as below:

• Zhu and Dumitras proposed FeatureSmith [157], which first identifies 173

concrete features, including permissions, API calls, and intents, which occur

in scientific papers. Then they extract the identified features from the

AndroidManifest.xml file and dalvik code for malware detection.

• We proposed FalDroid [59] in Chapter 4, which first constructs fregraphs from

the malware samples within the same family to denote their common malicious

behaviors. Then they regard each fregraph as a feature and construct a feature space

for malware analysis.

• Mariconti et al. proposed MaMaDroid [95], which first builds a behavioral model in

the forms of a Markov chain from the sequence of extracted API calls performed by

apps. Then it extracts features from the Markov chain to perform malware analysis.

6.3.2 Selection of Classifier and Arguments

To choose the appropriate classifier for CTDroid, five different machine learning

algorithms, including decision tree [120], k-nearest neighbours (k-NN) [32], logistic [83],

multi-layer perceptron (MLP) [119] and random forest [43], are applied in our approach.

Specifically, we construct five corresponding classifiers based on these algorithms and

apply them for malware detection on the MD-III dataset. Note that here we initially set

our two important parameters, i.e., θ and ε, as 0.9 and 3, respectively.

Fig. 6.3 illustrates the malware detection performance of CTDroid on MD-III dataset
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Figure 6.3: Detection performance of CTDroid on the MD-III dataset with five different
classifiers.

with five different classifiers. The result shows that random forest outperforms the other

four classifiers. When FPR is 0.01, the TPR of random forest can achieve 0.947, much

higher than those of the other classifiers. Therefore, due to the superior performance of

random forest among the five classifiers, random forest is selected as our default classifier

in later experiments.

Next, we investigate the influence of θ and ε to our performance. θ controls the similarity

calculation between extracted behaviors; ε controls the threshold value of filtering out

useless clusters. To set an appropriate θ, we manually construct a set of behaviors with

similar meanings and then calculate their similarities between any two behaviors. We find

that all the calculated similarities are higher than 0.9. Thus, θ is set as 0.9 in our work. ε

is a parameter to balance the size of feature space and detection performance. The higher

of ε, the fewer sensitive behavior features will be, but we might miss some significant

features if ε is too high. However, if the ε is too low, we might introduce some useless

features. To select an appropriate ε, we vary the values of ε as {1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 15, 20, 30, 40, 50, 100}. The TPR values (FPR=0.01) of CTDroid and numbers of
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Figure 6.4: TPR values (FPR=0.01) of CTDroid on the MD-III dataset and numbers of
generated sensitive behavior features with different ε.

generated sensitive behavior features with different ε are illustrated in Fig. 6.4. We find

that with the increase of ε, the number of features decreases. Moreover, the TPR value

starts to decrease when ε is higher than 3. Therefore, to achieve high performance, ε is set

as 3.

6.3.3 Accuracy of Malware Detection

To answer RQ 2, we evaluate the malware detection performance of CTDroid on four

datasets and compare it with three baseline approaches, i.e., FeatureSmith [157], FalDroid,

and MaMaDroid [95]. Specifically, for each dataset, we train four random forest classifiers

but four different feature sets. In our work, when ε = 3, 145 features are extracted

from collected blogs. For FeatureSmith, 173 features are identified from scientific papers.

However, for FalDroid, its feature space is constructed from the training dataset, thus the

feature number of FalDroid varies from different datasets. For MaMaDroid, 121 features

are extracted.

Fig. 6.5 presents the malware detection performance of CTDroid and three baseline
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Figure 6.5: Malware detection performance of CTDroid and three baseline approaches
with all features on four malware detection datasets.

approaches with their all features using receiver operating characteristic (ROC) plots. The

plots illustrate the relationship between the TPRs and the FPRs of the four classifiers.

Note that the term #fea in Fig. 6.5 denotes the number of extracted features. The results

demonstrate that CTDroid gets an almost equally performance with FeatureSmith and

FalDroid, and performs better than MaMaDroid on the four datasets. For example, on

the MD-I dataset, when the FPR is 0.01, all of CTDroid, FeatureSmith, and FalDroid have

a TPR around 0.958, while the TPR of MaMaDroid is only 0.869.

Even CTDroid gets a fairly good performance for malware detection when FPR is 0.01,

it still incorrectly classifies about 13 benign apps as malware on the MD-I dataset. The

main reason to explain the incorrectly classified samples is that some words contain multi-

meanings, thus affecting the performance of semantic matching approach. For example, if
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Figure 6.6: Malware detection performance of CTDroid and three baseline approaches
with top-10 features ranked by information gain on four malware detection datasets.

a method body contains the string value “Please contact me”, CTDroid would extract the

wrong sensitive concept “contact” and incorrectly identify the related features from the

method.

Recall that our proposed features not only consider the occurrence of corresponding

sensitive behavior, but also calculate its frequency of occurrence, thus our features

would contain more information than the binary features generated by FeatureSmith

and FalDroid. To evaluate the effectiveness with few features, we compare the

detection performance of CTDroid and baseline approaches with top-m features ranked

by information gain [110].

Fig. 6.6 presents the detection performance of the four approaches with top-10 (m =
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Figure 6.7: Cumulative information gain of features ranked by information gain on four
malware detection datasets.

10) features ranked by information gain. The results on all the four datasets demonstrate

that with only 10 features CTDroid outperforms the baseline approaches due to the more

informative features. For example, on the MD-II dataset, when the FPR is 0.01, CTDroid

gets a TPR of 0.9, while the TPRs of FeatureSmith, FalDroid and MaMadroid are 0.503,

0.340 and 0.710, respectively.

To further investigate the information gain of different features, we vary the values

of m from 1 to 50 and calculate the cumulative information gain of the top-m ranked

features. As illustrated in Fig. 6.7, on all the four datasets, the cumulative information

gains of CTDroid are higher than those of baseline approaches. When m is set as 10, the
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Table 6.11: Classification performance of CTDroid and three baseline approaches on four
different datasets.

Dataset Approach #Fea Accuracy #Fea Accuracy

FeatureSmith 173 0.940 10 0.868
FI-I FalDroid 2,229 0.972 10 0.740

MaMaDroid 121 0.860 10 0.859
CTDroid 145 0.979 10 0.935

FeatureSmith 173 0.950 10 0.674
FI-II FalDroid 3,343 0.953 10 0.623

MaMaDroid 121 0.878 10 0.874
CTDroid 145 0.961 10 0.911

FeatureSmith 173 0.918 10 0.662
FI-III FalDroid 743 0.942 10 0.592

MaMaDroid 121 0.849 10 0.838
CTDroid 145 0.922 10 0.859

FeatureSmith 173 0.883 10 0.606
FI-IV FalDroid 2,768 0.876 10 0.581

MaMaDroid 121 0.839 10 0.833
CTDroid 145 0.890 10 0.848

cumulative information gain of CTDroid is 1.243 on the MD-II dataset, more than those of

FeatureSmith, FalDroid, MaMaDroid, i.e., 1.130, 0.978, 1.144. Moreover, we find that the

cumulative information gain of MaMaDroid hardly changes when m is higher than about

15, indicating that most of the features extracted by MaMaDroid have little significance

for malware analysis.

6.3.4 Accuracy of Familial Identification

To evaluate the familial identification performance of CTDroid, we apply it on the four

datasets, i.e., FI-I, FI-II, FI-III, and FI-IV. Furthermore, we compare CTDroid with the

three baseline approaches. The results are listed in Table 6.11, where the values marked in

bold denote the highest classification accuracy for each dataset.

In Table 6.11, columns 3-4 list the classification performance of the three approaches
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Figure 6.8: Cumulative information gain of features ranked by information gain on four
familial identification datasets.

with their all features. With all the 145 sensitive behavior features, CTDroid performs best

on FI-I dataset, FI-II dataset, and FI-IV dataset. However, on FI-III dataset, the accuracy

of CTDroid is about 0.02 less than that of FalDroid. Columns 5-6 list the classification

performance of the three approaches with top-10 features ranked by information gain.

With only 10 features, CTDroid outperforms the baseline approaches. For example, on

FI-III dataset, CTDroid can get an accuracy of 0.859, much higher than those of baseline

approaches.

We further calculate the cumulative information gain of the three approaches when m

varies from 1 to 50. As illustrated in Fig. 6.8, the results suggest that the cumulative

information gains of CTDroid on all the four datasets are much higher than those of
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baseline approaches, indicating that our proposed features are more informative compared

with those of baseline approaches.

6.3.5 Analysis of Run-time Overhead

To answer RQ 4, we investigate the run-time overhead of CTDroid. In this work,

text preprocessing for blogs and feature vector construction for apps are the two main

procedures that require more computation resource than the other two procedures. The

cost of text preprocessing and feature construction depends on the number of collected

blogs and the number of apps, respectively.

The CDF of run-time overhead for the two procedures are illustrated in Fig. 6.9. The

left figure presents that 91.3% blogs require less than 60s to extract the behaviors from

their content by using Stanford Parser. In total, 11h is required to implement the text

preprocessing for all the 1,385 collected blogs. The right figure presents that 0.5s is needed

on average to construct a feature vector for each given app after the disassembling. The

cost of disassembling of apks is the same as the other approaches since it is the necessary

step to statically analyze apps for all the three approaches. It is worth noting that the

text preprocessing and the feature vector construction procedures could be conducted on

several PCs in parallel, thus further reducing the total run-time overhead.

For the sensitive behavior generation procedure, with a set of about 208K extracted

behaviors as input, 10min is needed for the clustering of behaviors and outputting the

set of sensitive behaviors. Finally, the construction of random forest classifier used for

malware analysis requires less than 1min.

We also investigate the efficiencies of the three baseline approaches. For FeatureSmith,

its run-time overhead is similar to ours, since both of the two approaches process feature
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Figure 6.9: CDFs of the run-time overhead for text preprocessing and feature vector
construction.

engineering from contents written in natural language. However, FalDroid relies on

graph analysis that requires about one week to construct the fregraph-based feature space.

Furthermore, more than 2s is needed to generate the feature vector for a given app after

the disassembling. For MaMaDroid, about two days are needed to construct all the call

graphs and extract feature vectors for all the apps.

6.3.6 Analysis of Resilience

To evaluate the resilience of CTDroid to code obfuscation techniques, we only consider the

techniques that try to increase the values of sensitive behavior features, since the technique

of deleting code that reduces the feature values might affect the functionalities of original

apps. For example, the code obfuscation techniques can add the value of feature “send—

>text message” from 0 to 1, but hard to reduce it from 1 to 0 without affecting the app’s

functionality of sending messages.

Specifically, the inserting of useless instructions might increase the feature values. For

example, if the attacker inserts a string “We will send a text message” into a method,

our approach will incorrectly match the “send—>text message” feature. This technique

might misguide CTDroid to classify a benign app as malicious, but can hardly misguide
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Figure 6.10: FNRs of CTDroid for the obfuscation of increasing feature values by 1.

a malware into benign. To evaluate the resilience of CTDroid to such technique, we first

randomly select 100 malware from the MD-I dataset as testing set. Then we increase the

values of t randomly selected features with 1. After that, we fed these obfuscated feature

vectors into constructed classifier to detect whether their corresponding output labels are

still 1, indicating that the obfuscation techniques do not affect the detection result. We

vary the t from 1 to 145 and repeat this experiment 100 times. The results are shown in

Fig. 6.10, where the false negative rate (FNR) denotes the percent of malware samples

that are incorrectly classified as benign after the changing of feature vectors. We observe

that when t is less than 20, nearly no malware is incorrectly classified. The highest FNR is

0.63%, indicating that on average less than 1 malware sample in the testing set is affected

by the obfuscation techniques.

Moreover, we also vary the increased feature values as {1,2,3,4,5}. Note that here we fix

the number of t as 20. Table 6.12 lists the average FNRs with different increased feature

values from 1 to 5. The results demonstrate that with the increase of feature values, the

FNR increases. The main reason is that if the feature value changes a lot, the corresponding

sample will be regarded as an abnormal one, thus causing the increase of FNR. To limit the

affect caused by inserting useless instructions, it is a promising way to combine dynamic
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Table 6.12: FNRs of CTDroid for the obfuscation of increasing feature values from 1 to 5.

Increased Feature Value FNR

1 0.12%
2 0.28%
3 0.35%
4 0.38%
5 0.6%

analysis techniques with our approach to filter out the code that would never be executed.

6.4 Brief Summary

In this chapter, we propose a novel system, CTDroid, to automatically construct

informative sensitive behavior features for malware analysis by analyzing a corpus of

Android malware related technical blogs. To evaluate the effectiveness of constructed

features, we evaluate CTDroid for two tasks, i.e., malware detection and familial

identficaition. Our extensive evaluation results show that CTDroid can achieve high

accuracy and efficiency. Furthermore, our features present more information than those

of binary features proposed by the state-of-the-art approaches.
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Chapter 7

Conclusion

7.1 Conclusion

Android has become the most popular mobile OS. However, it has also become the major

target of Android malware. The rapid increase in the number of Android malware poses

great threats to the smart phone users, such as financial charge, information collection,

and remote control. Thus, the in-depth study of the security issues of mobile applications

is of great significance to the sound development of the smart phone ecosystem. To

further study two sub problems in mobile security, i.e., malware detection and familial

identification, two kinds of behavior models and four different types of features are

proposed from the novel perspective of feature engineering.

First, to overcome the low accuracy and efficiency problems caused by the

morphological diversity of malicious code, the sensitive subgraph is first constructed

as our analysis model. Based on the sensitive subgraph, for malware detection, a

structure-based feature called maximum sensitive subgraph is proposed to depict the most

sensitive behavior of a given app. Based on the proposed feature, this thesis designs and

implements DAPASA, an approach that detects Android piggybacked apps. DAPASA can
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not only detect the piggybacked apps dependently but also has the ability to complement

permission- and API-based approaches from a new perspective of the invocation structure.

Second, for family identification, a new feature called fregraphs is proposed to represent

the common behaviors of malware samples that belong to the same family. Then, this

thesis designs and implements FalDroid, an approach that automatically classifies Android

malware into their corresponding families and selects representative malware samples in

each family accordance with fregraphs. In this way, FalDroid can effectively reduce the

analytical workload and accelerate malware analysis.

Third, to overcome the limitation of existing supervised learning approaches in handling

unlabeled dataset, the graph structure of sensitive subgraph is abstracted by leveraging

the graph embedding techniques and a new feature called SRA is proposed to depict the

similarity relationships of structural roles of sensitive API call nodes in a graph. Then

this thesis designs and implements GefDroid, an approach that constructs a malware link

network to depict the similarity relationships between all samples based on the SRA

feature. In this way, this study can handle the unlabeled samples with unsupervised

learning.

Finally, to ease the labor-intensive manual feature engineering process, this study

proposes techniques that summarize the existing knowledge contained in magnanimity

information of natural language documents and generates a novel type of features called

sensitive behavior. This thesis designs and implements CTDroid, an automatic feature

engineering system. By using CTDroid, a set of informative features is constructed from

technical blogs that can be utilized for Android malware analysis.
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7.2 Future Work

As we have done four major works related to malware detection and familial identification

in this thesis, future work also lies in the following directions.

1) Native Code: In this thesis, we limit our analysis to the FCG model constructed based

on the dalvik code. We do not analyze native code. Thus, our approach would miss the

malicious behaviors implemented in native code. However, there are many binary analysis

frameworks, such as Angr [124], that can help us address this limitation by constructing

the FCG of the native code. Then, we could apply our approach to conducting similarity

detection of such FCGs. We will explore this approach in future work.

2) Multi-label Malware: GefDroid can well handle the samples in our used datasets

from which each sample belongs to exactly one malware family. However, it might

fail when dealing with the multi-label malware samples that contain code from multiple

malware families. The multi-label malware samples belong to the overlapping region in

the constructed MLN, which might be handled by the overlapping community detection

algorithms. We leave the detection of multi-label samples as our future work.

3) Third-party Libraries: To remove the third-party and advisement libraries, we

extend the widely-used library list by adding the class names of 5,000 benign apps. Even

the list works well on our datasets, it is unclear how does the list performs when applying

our approaches on other datasets. In future work, we plan to construct more big datasets

that contain recent malware samples and evaluate the performance of our approaches on

them.

4) Sensitive API Calls: Our detection of sensitive API calls relies on the set provided

by SuSi[111], which now, four years later, might be incomplete or outdated. Missing
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or incorrect sensitive API calls contained in SS would make our approaches miss or

misidentify the common malicious behaviors between malware samples within the same

families. Furthermore, since the sensitive API calls are extracted statically in our

approaches, the ones that are never executed by the malware samples would introduce

noises when detecting the similarities between samples. In future work, combining the

dynamic analysis [145] with the static analysis is a promising way to reduce the side-

effects caused by the dead code that will never be executed.

5) Matching of Abstract Behaviors: For CTDroid, in addition to the specific sensitive

behaviors generated by using 14 semantic groups and a set of Android system related

concepts, there are some abstract behaviors that we fail to accurately match them with

the dalvik code. For example, we cannot detect whether a given app contains the abstract

behavior “launchł¿root exploits”, since the presence of root exploits in malware relies on

expected runtime environment (e.g., specific vulnerable device driver or preconditions)

[68]. In future work, we plan to transform the abstract behaviors into a list of specific

behaviors and then design more specific features to address the limitation of matching

abstract behaviors.
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