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Abstract

Optimal control is concerned with finding a control law that drives a controlled sys-

tem to a desired target in an optimal way, i.e., to minimize or maximize a predefined

performance index. For nonlinear systems, the optimal control of nonlinear systems re-

quires the solution of a partial differential equation, called the Hamilton-Jacobi-Bellman

equation, for which the analytical solution is difficult or even impossible to obtain. Con-

sequently, efforts are made on the near-optimal control, which aims at finding an ap-

proximate solution to the optimal control problem. When the system parameters are

unknown or the system dynamics is unknown, the near-optimal control problem be-

comes more difficult. In this thesis, we are concerned with the learning and intelligent

control of nonlinear systems using dynamic neural networks.

First, a unified online learning and near-optimal control framework is proposed for linear

and nonlinear systems with parameter uncertainty. It is also proved that the proposed

learning and near-optimal control law asymptotically converges to the optimal. The

efficacy of the proposed framework and the theoretical results are validated by an ap-

plication to underactuated surface vessels.

Second, a learning and near-optimal control law, which is inherently real-time, is de-

signed to tackle the contradictory between solution accuracy and solution speed for the

optimal control of a general class of nonlinear systems with fully unknown parameters.

The key technique in the proposed learning and near-optimal control is to design an

auxiliary system, which can be viewed as a dynamic neural network, with the aid of the

sliding mode control concept to learn the dynamics of the controlled nonlinear system.

Based on the sliding-mode auxiliary system and approximation of the performance in-

dex, the proposed control law guarantees asymptotic stability of the closed-system and

asymptotic optimality of the performance index with time.

Third, a novel model-free learning and near-optimal control method is proposed for

nonlinear systems via utilizing the Taylor expansion based problem relaxation, the uni-
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versal approximation property of sigmoid neural networks, and the concept of sliding-

mode control. By making approximation for the performance index, it is first relaxed

to a quadratic program, and then a linear algebraic equation with unknown terms. An

auxiliary system, which can be viewed as a dynamic neural network, is designed to re-

construct the input-to-output property of the control systems with unknown dynamics,

so as to tackle the difficulty caused by the unknown terms, i.e., to learn the unknown

dynamics.

Fourth, the learning and near-optimal distributed consensus of high-order nonlinear

multi-agent systems consisting of heterogeneous agents is investigated. The consen-

sus problem is formulated as a receding-horizon optimal control problem. For the sit-

uation with fully unknown system parameters, sliding-mode auxiliary systems, which

could be viewed as dynamic neural networks and are independent for different agents,

are built to reconstruct the input-output properties of agents. Based on the sliding-

mode auxiliary systems, an adaptive near-optimal protocol is finally presented to control

high-order nonlinear multi-agent systems with fully unknown parameters. Theoretical

analysis shows that the proposed protocols can simultaneously guarantee the asymp-

totic optimality of the performance index and the asymptotic consensus of multi-agent

systems.

Fifth, inspired by the success of the learning and near-optimal control method, we con-

sider a special physical system, i.e., redundant manipulators. Redundancy resolution

is of great importance in the control of manipulators. Among the existing results for

handling this issue, the quadratic program approaches, which are capable of optimiz-

ing performance indices subject to physical constraints, are widely used. However,

the existing quadratic program approaches require exactly knowing all the physical

parameters of manipulators, the condition of which may not hold in some practical ap-

plications. This fact motivates us to consider the application of learning and intelligent

control techniques for simultaneous parameter learning and control. We establish the

first adaptive dynamic neural network with online learning for the redundancy resolution
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of manipulators with unknown physical parameters so as to solve the intelligent control

problem, which tackles the dilemmas in existing methods.
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Chapter 1

Introduction

In this chapter, we briefly introduce the topics considered in this thesis. Then, we show

the contributions and organizations of the thesis.

1.1 Learning and near-optimal control

Optimal control is concerned with finding a control law that drives a controlled sys-

tem to a desired target in an optimal way, i.e., to minimize or maximize a predefined

performance index [1]. A control law is a function with respect to the state measure-

ments or output measurements of the control system, and defines the value of input

given to the control system. Optimal control has been applied to various systems,

such as power systems [2, 3], robot systems [4] and aerospace systems [5]. In classi-

cal optimal control, it is required to solve a partial differential equation called Hamilton

equation, of which the analytical solution is generally intractable to obtain for nonlinear

systems [1, 6–9]. For this reason, near-optimal control laws have been proposed by

finding approximate solutions to the corresponding Hamilton equations. For example,

in [7], a neural network Hamilton-Jacobi-Bellman approach was proposed and an off-

line near-optimal state feedback controller was designed for a fully known nonlinear
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Chapter 1. Introduction

system. In [10], an online approximate solution was developed, based on policy itera-

tion, for the infinite horizon optimal control of continuous-time nonlinear systems with

known dynamics.

In practical applications, there always exist modeling errors for the controlled systems

[11]. To cope with modeling errors, adaptive/intelligent control techniques were devel-

oped [11–13]. However, traditional adaptive control is generally far from optimal [22].

For this reason, considerable effort has been devoted to adaptive optimal control. One

of the widely used adaptive optimal control methods is approximate dynamic program-

ming. Approximate dynamic programming (ADP) is based on iterative reinforcement

learning and implemented on actor-critic structures, where two coupled learning net-

works, called critic and actor, are tuned online to approximate the optimal value function

and optimal control solution [22–29]. Modares et al. [22] presented an online policy iter-

ation algorithm for the adaptive optimal control of unknown constrained-input systems.

Liu et al. [24] extended the work in [22] and further proposed a policy iteration adaptive

dynamic programming algorithm for discrete-time nonlinear systems. By developing a

novel identifier-critic-based approximate dynamic programming algorithm with a dual

neural network approximation structure, Lv et al. [29] further proposed an online adap-

tive optimal control for continuous-time nonlinear systems with completely unknown

dynamics. As discussed above, adaptive optimal control methods based on approx-

imate dynamic programming require at least two learning networks, which make the

control structure of these methods complicated.

As a branch of optimal control, receding horizon optimal control requires minimizing

a continuous-time time-varying integral-type finite-horizon cost function, which is also

termed performance index, at each time instant [32]. Control laws of receding horizon

optimal control can be updated discretely in time yielding discrete-time receding hori-

zon control [33–35]. Results about adaptive discrete-time receding horizon control have

also been reported, e.g., [35, 36]. A major concern of discrete-time receding horizon

control is computational burden [35]. It is worth pointing out that Chen et al. [6] pre-

2



1.2. Consensus of multi-agent systems

sented an explicit control law for the continuous-time receding horizon optimal control of

nonlinear systems with known dynamics, which significantly reduces the computational

burden.

1.2 Consensus of multi-agent systems

In recent years, the consensus of multi-agent systems have been widely investigated

due to the widespread applications. The consensus of integrator multi-agent systems

was investigated in [146,153,165,172,173,178]. Some protocols for linear multi-agent

systems were reported in [143, 154, 155, 170, 176, 177]. The consensus of nonlinear

multi-agent systems is of greater significance since physical systems are more or less

nonlinear. The consensus of nonlinear multi-agent systems with identical agents was

investigated in [145, 169, 179, 180]. In terms of homogeneous nonlinear multi-agent

systems, only a few results have been reported [149, 181, 183]. The investigations on

the consensus of nonlinear multi-agent systems with unknown parameters are of great

interests [139–142,150,174,183]. For example, the adaptive consensus of high-order

nonlinear multi-agent systems was investigated in [141, 174]. Note that the design of

adaptive consensus to tackle unknown parameters is not trivial due to the distributed

nature of consensus, and it is not straightforward to extend existing adaptive control

methods, e.g., [166–168], for individual agents to the consensus of multi-agents. The

distributed optimal consensus problem is difficult to solve since the solution of a global

optimization problem generally requires centralized, i.e. global, information [171]. This

problem becomes more difficult when it comes to nonlinear multi-agent systems. In

[182], the optimal consensus of a nonlinear multi-agent system with respect to local

performance indices is investigated via game theory. In [151], a distributed consensus

protocol was proposed for a first-order nonlinear multi-agent system with uncertain

nonlinear dynamics.
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1.3 Dynamic neural networks

Dynamic neural networks are the continuous case of recurrent neural networks used

in image processing, natural language processing, etc, which at its origin aim at the

implementation by using analogue circuits for parallel computations. While the mathe-

matical description about the updating of states of recurrent neural networks in image

processing is given by a difference equation, for the case of dynamic neural networks,

it generally becomes a ordinary differential equation. The first dynamic neural network

could be the one proposed by Hopfield and Tank for solving the traveling-salesman

problem [156]. Since the pioneering work of Hopfield and Tank, many results have been

reported about dynamic neural networks for solving optimization problems [157, 158],

control problems [160–162], and other scientific computing problems [163,164]. Differ-

ent from the recurrent neural networks used in image processing or natural language

processing, dynamic neural networks generally has a high requirement on its real-time

processing ability, and is thus more suitable for the control of nonlinear systems in

practice.

1.4 Redundancy resolution of redundant manipulators

Manipulators are said to be redundant if they have more degrees of freedom (DOF)

than the required to achieve a given effector primary task [184]. Due to redundancy, for

a desired end-effector trajectory, there are many alternative configurations in the joint

angle space of redundant manipulators. The merit of redundancy lies in the feasibility

in achieving additional objectives, such as joint physical limit avoidance [185], obstacle

avoidance [186], and singularity avoidance [187]. As a result, redundant manipulators

have attracted considerable research interests.

In practical applications, a critical problem referred to as the redundancy resolution is

to find the joint trajectories of a redundant manipulator for a given task described in
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workspace subject to certain constraints [188]. To solve this problem, various methods

have been investigated based on the forward kinematics of a redundant manipulator.

Due to the nonlinearity and redundancy, it is difficult to directly solve this problem at

the angle level [189]. Pseudoinverse-type methods [190–193] were extensively studied

in the previous decades. These methods generally formulate the solution as the sum

of a minimum-norm particular solution and a homogeneous solution, requiring solving

the pseudoinverse of the Jacobian matrix associated with the forward kinematics of

a redundant manipulator. The limitations of pseudoinverse-type methods include the

difficulty to handle joint constraints [194] and the computational intensity in performing

pseudoinversion [195].

To overcome the drawbacks of pseudoinverse-type methods, quadratic program (QP)

based methods have been developed and widely investigated [194–200, 212, 213].

Owing to the parallel processing capability of recurrent neural networks, QP based

redundancy resolution methods often use such networks to achieve efficient computa-

tion. For example, in [198], velocity-level and acceleration-level redundancy resolution

schemes were unified as a QP subject to equality and inequality/bound constraints,

which is then solved via a primal-dual neural network. Hou et al. [199] proposed a

QP based method to address the coordination of two redundant manipulators and em-

ployed a dual neural network to solve the resultant QP. Chen et al. [200] proposed a

hybrid multi-objective scheme for redundant manipulators to simultaneously achieve

the end-effector primary task, joint-physical limits avoidance, obstacle avoidance, and

repetitive motion.

1.5 Contributions and organizations

The contributions of the thesis includes the following.

1) In Chapter 2, we proposed a state-feedback based unified online learning and
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near-optimal control framework for linear and nonlinear systems with parameter

uncertainty. Under this framework, auxiliary systems converging to the unknown

dynamics are constructed to approximate and compensate the parameter un-

certainty. With the aid of the auxiliary system, future outputs of the controlled

system are predicted recursively. It is also proved that the proposed learning and

near-optimal control law asymptotically converges to the optimal.

2) In Chapter 3, we proposed a output-feedback based learning and near-optimal

control law, to tackle the contradictory between solution accuracy and solution

speed for the near-optimal control of a general class of nonlinear systems with

fully unknown parameters. The key technique in the proposed learning and near-

optimal control is to design an auxiliary system with the aid of the sliding mode

control concept to reconstruct the dynamics of the controlled nonlinear system.

Based on the sliding-mode auxiliary system and approximation of the perfor-

mance index, the proposed control law guarantees asymptotic stability of the

closed-system and asymptotic optimality of the performance index with time.

3) In Chapter 4, the learning and near-optimal control method is further extended to

the case with fully unknown dynamics for a class of nonlinear systems.

4) In Chapter 5, the learning and near-optimal control method is further extended to

address the distributed consensus of high-order nonlinear multi-agent systems

consisting of heterogeneous agents. Theoretical analysis shows that the pro-

posed protocols can simultaneously guarantee the asymptotic optimality of the

performance index and the asymptotic consensus of multi-agent systems.

5) In Chapter 6, we further extend the learning and near-optimal control method

to address the redundancy resolution problem of redundant manipulators with

unknown physical parameters.

Conclusions and dissections on future works are provided in Chapter 7.
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Chapter 2

LNOC via state feedback with learning

of parameters

In this chapter, a unified online learning and near-optimal control framework is proposed

for linear and nonlinear systems with parameter uncertainty. 1 Under this framework,

auxiliary systems converging to the unknown dynamics are constructed to approximate

and compensate the parameter uncertainty. With the aid of the auxiliary system, fu-

ture outputs of the controlled system are predicted recursively. By utilizing a predictive

time-scale approximation technique, the nonlinear dynamic programming problem for

optimal control is significantly simplified and decoupled from the parameter learning dy-

namics: the finite-horizon integral type objective function is simplified into a quadratic

one relative to the control action and there is no need to solve time-consuming Hamil-

ton equations. Theoretical analysis shows that closed-loop systems are asymptotically

stable. It is also proved that the proposed learning and near-optimal control law asymp-

totically converges to the optimal. The efficacy of the proposed framework and the

theoretical results are validated by an application to underactuated surface vessels.

1The content in this chapter has already been published. Yinyan Zhang, Shuai Li, and Xiaoping Liu,

“Adaptive near-optimal control of uncertain systems with application to underactuated surface vessels,”

IEEE Trans. Control Syst. Technol., vol. 26, no. 4, pp. 1204–1218, 2018.
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2.1 Introduction

The tracking control of underactuated surface vehicles has attracted significant atten-

tion from both academia and industry [14–21]. For example, the global tracking control

of underactuated surface vehicles with fully known parameters was addressed in [14] by

Lyapunov’s direct method. Under perfect knowledge on the system dynamics, in [16],

a predictive tracking controller was developed based on recurrent neural networks for

underactuated surface vessels. To achieve the same purpose, sliding mode controllers

were developed in [17–19]. In addition, a neural network based backstepping approach

was proposed in [21] for the tracking control of underactuated surface vehicles with un-

known system parameters. However, to the best of the authors’ knowledge, there is no

existing result on the learning and near-optimal or optimal tracking control of underac-

tuated surface vessels with theoretically guaranteed stability and optimality.

This chapter aims at proposing a unified online learning and near-optimal control (LNOC)

framework for uncertain linear and nonlinear systems to solve the learning and near-

optimal or optimal tracking control of underactuated surface vessels via state feedback.

The parameters of the proposed LNOC laws are updated in a real-time manner and

there is no need to do off-line training for the parameters of the proposed LNOC laws.

The proposed framework deals with the online intelligent receding horizon optimal con-

trol and possesses a simpler structure compared with the existing adaptive optimal

control methods mentioned previously. Specifically, the framework proposed in this

chapter mainly consists of constructing auxiliary systems and making direct approxi-

mation of the given performance indices of the controlled systems with the aid of model

information obtained from the systems. In this chapter, for better readability, we first

present the results on the LNOC of linear systems. Then, we extend the results to non-

linear systems with fully unknown parameters. To reduce overshooting resulted from

system transition and the big estimation error in the initial stage of control, a saturation

function is introduced to guarantee control performance. The deliberate design of the
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auxiliary system allows the decoupling of the control part from the estimation part. It

further creates an opportunity for us to integrate optimal design into the intelligent con-

trol loop and grants great enhancements in performance optimality, and tolerance to

uncertainty. Theoretical analysis shows that closed-loop systems using the proposed

control laws are asymptotically stable. It is also proved that the proposed near-optimal

control laws asymptotically converge to the optimal. An application of the proposed

near-optimal control scheme to an underactuated surface vessel validates the efficacy

of the proposed framework and the theoretical results. Note that the differences be-

tween the proposed method and ADP [22–29] lie in the following points.

1) In ADP, the near-optimal control law is iteratively calculated, and neural networks

are used to approximate the solution to the Hamilton equation of the optimal

control problem. Different from ADP, in the proposed approach, the performance

index is relaxed to a quadratic performance index, by which an analytical near-

optimal control law is derived.

2) ADP generally needs actor and critic networks to guarantee near-optimality and

identifier networks to handle system uncertainty. In the proposed approach, neu-

ral networks are only used to handle the uncertainty of the controlled system.

3) ADP generally requires a stable initial policy to guarantee system stability [23],

which is not required in the method proposed in this chapter.

The rest of this chapter is organized as follows. In Section 2.2, some definitions, the-

oretical basis and assumptions are provided. In Section 2.3, we design and propose

online LNOC laws for general linear systems. In Section 2.4, we further design and

propose online LNOC laws for nonlinear systems. Theoretical results are presented

in Section 2.5. In Section 2.6, the proposed online LNOC is applied to an underac-

tuacted surface vessel with parameter uncertainty. Then, in Section 2.7, we conclude

this chapter with final remarks.
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2.2 Preliminary

In this section, some useful definitions and assumptions are presented.

Definition 1: The nonlinear system considered in this chapter is described as follows:















ẋ = f(x) + g(x)u(t),

y(t) = h(x),

(2.1)

where x(t) ∈ Rn, u(t) ∈ Rm (with n > m) and y(t) ∈ Rm respectively denote the

state vector, the control input vector and the output vector; functions f : Rn → Rn,

g : Rn → Rn×m and h : Rn → Rm are continuously differentiable.

Definition 2 [38]: With integer i ≥ 0, Lifh(x) denotes the ith Lie derivative of h(x) with

respect to f(x). Specifically, for i = 0, L0
fh(x) = h(x); for i = 1,

L1
fh(x) =

∂h(x)

∂x
f(x),

and, for i > 1, Lifh(x) is defined by

Lifh(x) =
∂Li−1

f h(x)

∂x
f(x).

Similarly, LgL
i
fh(x) is defined by

LgL
i
fh(x) =

∂Lifh(x)

∂x
g(x).

Definition 3 [38]: System (2.1) is said to have a relative degree of ρ in the region of

interest U if the following properties hold true:

• ∀x ∈ U, ∀j ∈ {1, 2, · · · , m}, LgL
i
fhj(x) = 0, for 0 ≤ i < ρ− 1,

• ∀x ∈ U, ∀j ∈ {1, 2, · · · , m}, LgL
ρ−1
f hj(x) 6= 0.

In this chapter, the following general assumptions are imposed on system (2.1).
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1) The zero dynamics of system (2.1) are stable [39].

2) All state variables of system (2.1) are available [40,41].

3) System (2.1) has a well-defined relative degree ρ [39].

4) The output y(t) of system (2.1) and the desired output yd(t) are ρ times continu-

ously differentiable with respect to time t [39].

2.3 General linear systems

In this section, we present the design procedure of control laws for general linear sys-

tems and this result will be generalized to nonlinear systems in the next section.

2.3.1 Problem formulation

Consider the following linear system:















ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

(2.2)

where x ∈ Rn, u ∈ Rm and y ∈ Rm denote the state vector, input vector and output

vector, respectively. A ∈ Rn×n, B ∈ Rn×m and C ∈ Rm×n are constant parameter

matrices, among which the matrix C is known while matrices A and B are unknown. In

addition, since the linear system can be viewed as a special case of nonlinear system

(2.1), one can calculate the relative degree ρ of the linear system by Definition 2 and

Definition 3. In this chapter, we consider the situation that linear system (2.2) is con-

trollable [42]. In addition, throughout this chapter, yd(t) is used to denote the desired

output.
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The finite-horizon optimal control problem about system (2.2) is formulated as

minimizeu(t) Jl(t)

subject to ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

(2.3)

where Jl(t) denotes the performance index. In this chapter, Jl(t) is given as

Jl(t) =
∫ T

0
(yd(t+ τ) − y(t+ τ))TQ(yd(t+ τ) − y(t+ τ))dτ +

∫ T

0
uT(t+ τ)Ru(t+ τ)dτ

(2.4)

where Q ∈ Rm×m and R ∈ Rm×m denote symmetric and positive-definite weight matri-

ces, and T > 0 ∈ R denotes the predictive period.

So far, we have formulated the problem as optimal control with an integral cost function

over a finite time slot and equation constraints formed by system dynamics. Note that

the cost function essentially is a functional with the solution u(t) as a function instead

of a variable. In this sense, this is a functional optimization problem, the solution of

which usually is equivalent to solving a Hamilton equation.

2.3.2 Nominal design

We first design a nominal near-optimal control law under the assumption that all param-

eters are known. Let w = [1, τ, · · · , τρ−1/(ρ−1)!, τρ/ρ!]T and Yd(t) = [yd(t), · · · ,y[ρ−1]
d ,y

[ρ]
d (t)].

According to Taylor expansion, given that τ > 0 is small, we have















yd(t+ τ) ≈ Yd(t)w(τ),

u(t+ τ) ≈ u(t).

(2.5)

Similarly, we have the following approximation of y(t+ τ):

y(t+ τ) ≈ y(t) + τ ẏ(t) + · · ·+ τρ
y[ρ](t)

ρ!
. (2.6)
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For linear system (2.2) of relative ρ, according to Definition 2 and Definition 3, we have

CB = 0, CAB = 0, · · · , CAρ−2B = 0, CAρ−1B 6= 0. It follows that



















































ẏ(t) = CAx(t),

...

y[ρ−1](t) = CAρ−1x(t),

y[ρ](t) = CAρx(t) + CAρ−1Bu(t),

Let Yl(t) = [y(t), CAx(t), · · · , CAρx(t)]. Equation (2.6) is then written as

y(t+ τ) ≈ Yl(t)w(τ) +
τρ

ρ!
CAρ−1Bu(t). (2.7)

Substituting equations (2.5) and (2.7) into equation (2.4) yields

Jl(t) ≈
∫ T

0
(El(t)w(τ) − τρ

ρ!
CAρ−1Bu(t))TQ(El(t)w(τ) − τρ

ρ!
CAρ−1Bu(t))

+
∫ T

0
uT(t)Ru(t)dτ

=
∫ T

0
wT(τ)ET

l (t)QE(t)w(τ)dτ − 2
∫ T

0

τρ

ρ!
wT(τ)dτET

l (t)CAρ−1Bu(t)

+
∫ T

0

τ 2ρ

(ρ!)2
dτuT(t)(CAρ−1B)TQCAρ−1Bu(t) + TuT(t)Ru(t),

=Ĵl(t),

where El(t) = Yd(t) − Yl(t), and Ĵ(t) denotes the approximation of J(t). Let

v =
∫ T

0

τρ

ρ!
wT(τ)dτ =

[

T ρ+1

(ρ+ 1)ρ!
,

T ρ+2

(ρ+ 2)ρ!1!
, · · · , T 2ρ+1

(2ρ+ 1)(ρ!)2

]

,

and

κ =
∫ T

0

τ 2ρ

(ρ!)2
dτ =

T 2ρ+1

(2ρ+ 1)(ρ!)2
.

Since the decision variable is u(t), minimizing Ĵ(t) is equivalent to minimizing

Je(t) = uT(t)Θu(t) + pT(t)u(t),

where Θ = TR+ κ(CAρ−1B)TQCAρ−1B and p = (−2vET
l QCA

ρ−1B)T. Given that Θ

is positive-definite, Je(t) is convex and u(t) is thus obtained by solving ∂Je(t)/∂u = 0,

13



Chapter 2. LNOC via state feedback with learning of parameters

which gives

u(t) = (TR+ κ(CAρ−1B)TQCAρ−1B)−1(QCAρ−1B)T(Yd(t) − Yl(t))v
T. (2.8)

This control law requires the full knowledge of the system parameters and is thus less

satisfactory in practical applications with uncertainties.

For comparison, a traditional solution for the finite-horizon optimal control problem

shown in (2.3) is presented as follows [43]:

u(t) = −R−1(t)BT(P (t)x(t) + s(t)), (2.9)

where matrix P is the solution of the following differential Riccati equation:

−Ṗ = P (t)A+ ATP (t) − P (t)BR−1BTP (t) +Q′,

with P (t + T ) = 0 and Q′ = CTQC. Besides, s(t) is determined by the following

differential equation [43]:

−ṡ = (A−BR−1BTP )Ts(t) +Q′CT(CCT)xd(t)

with Cxd(t) = yd(t) and s(t + T ) = 0. Evidently, compared with traditional solution

(2.9), near-optimal control law (2.8) does not need to solve any differential equation.

2.3.3 Intelligent design

In this subsection, we design an online LNOC law for handling the situation when pa-

rameter matrices A and B are unknown.

To tackle the uncertainty of parameter matrices A and B, a linear auxiliary system is

constructed as follows:

˙̂x(t) = Âx(t) + B̂u(t) −Kx(x̂(t) − x(t)), (2.10)

where Â ∈ Rn×n, B̂ ∈ Rn×m, x̂ ∈ Rn is an auxiliary state vector, the diagonal matrix

Kx = diag([kx1
, kx2

, · · · , kxn
]) ∈ Rn×n is a positive-definite gain matrix, and the others

14



2.3. General linear systems

are defined as the aforementioned. It is desired that linear auxiliary system (2.10)

possesses the same dynamic behavior as linear system (2.2). To achieve such an

objective, we define the following evolutions for matrices Â and B̂:















˙̂
A = −KA(x̂(t) − x(t))xT(t),

˙̂
B = −KB(x̂(t) − x(t))uT(t),

(2.11)

where KA = diag([kA1
, kA2

, · · · , kAn
]) ∈ Rn×n and KB = diag([kB1

, kB2
, · · · , kBn

]) ∈
R
n×n are positive-definite gain matrices. The whole linear auxiliary system is thus

formulated as


































˙̂x(t) = Âx(t) + B̂u(t) −Kx(x̂(t) − x(t)),

˙̂
A = −KA(x̂(t) − x(t))xT(t),

˙̂
B = −KB(x̂(t) − x(t))uT(t).

(2.12)

Gain matrices in linear auxiliary system (2.12) are chosen in the following manner. The

values of the diagonal elements in Kx are much smaller than those in KA and KB to

guarantee that Â and B̂ take a dominant role in learning the dynamics of the controlled

system. In practice, we suggest to take values of the diagonal elements in Kx at least

10 times smaller than those in KA and KB. Under this condition, with larger values of

the diagonal elements in the gain matrices, the convergence of x̂(t) to x(t) is faster.

Note that very large values in the gain matrices may lead to high overshooting. In this

sense, they cannot be too large.

When x̂(t) = x(t), which means that the linear auxiliary system reconstructs the states

and dynamics of the original linear system (2.2), linear auxiliary system (2.10) becomes

ẋ(t) = Âx(t) + B̂u(t).

Then, following similar steps in the previous subsection, the online LNOC law for linear

system (2.2) is thus obtained as follows:

ua(t) = (TR+ κ(CÂρ−1B̂)TQCÂρ−1B̂)−1(QCÂρ−1B̂)T(Yd(t) − Yl(t))v
T. (2.13)
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Yd(t)

TQ R ρ

Control Law (2.13)

ua(t) y(t)

x(t)

KA KB

Â

B̂

Kx

Linear System (2.2)

Auxiliary System (2.12)

Figure 2.1: Block diagram of linear system (2.2) with parameter uncertainty synthesized by

online LNOC law (2.13) and linear auxiliary system (2.12).

The block diagram of linear system (2.2) synthesized by online LNOC law (2.13) and

linear auxiliary system (2.12) is shown in Fig. 2.1. As seen from this figure, by utilizing

state information and input information of linear system (2.2), auxiliary system (2.12)

estimates the parameter matrices of linear system (2.2). The parameter matrices gen-

erated by auxiliary system (2.12) are passed to control law (2.13), which yields LNOC

action to linear system (2.2).

2.4 Extension to nonlinear systems

Based on the previous result on linear systems, in this section, we present the result

about online LNOC of nonlinear systems.
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2.4. Extension to nonlinear systems

2.4.1 Problem formulation

The finite-horizon optimal control problem about nonlinear system (2.1) is formulated

as

minimizeu(t) Jn(t)

subject to ẋ = f(x) + g(x)u(t),

y(t) = h(x),

(2.14)

where Jn(t) denotes the performance index and is given as

Jn(t) =
∫ T

0
(yd(t+ τ) − y(t+ τ))TQ(yd(t+ τ) − y(t+ τ))dτ

+
∫ T

0
uT(t+ τ)Ru(t+ τ)dτ.

(2.15)

Compared with linear system (2.2), the finite-horizon optimal control problem of non-

linear system (2.1) possesses the same performance index but different dynamic con-

straints. In the next subsection, the similarity between the two optimal control problems

is utilized to solve the finite-horizon optimal control problem of nonlinear system (2.1).

Remark 1: Directly solving finite-horizon optimal control problem (2.14) requires solving

a partial differential equation known as Hamilton equation, of which the analytical solu-

tion is generally difficult to obtain. Therefore, an approximation is made in the following

design process, which relaxes the optimal control problem at the cost of optimality, and

explicit online near-optimal control laws are obtained.

2.4.2 Nominal design

In this subsection, the design process of a near-optimal nominal control law for nonlin-

ear system (2.1) is presented under the assumption that all the parameters of nonlinear

system (2.1) are known.
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Chapter 2. LNOC via state feedback with learning of parameters

Similar to the case of linear system (2.2), one has



































yd(t+ τ) ≈ Yd(t)w(τ),

u(t+ τ) ≈ u(t),

y(t+ τ) ≈ y(t) + τ ẏ(t) + · · · + τρ
y[ρ](t)

ρ!
.

For nonlinear system (2.1) with relative degree ρ, based on Definition 2 and Definition

3, one has






































































ẏ(t) =
∂h

∂x
ẋ =

∂h

∂x
f(x) = Lfh(x),

...

y[ρ−1](t) = Lρ−1
f h(x),

y[ρ](t) = Lρfh(x) +
∂Lρ−1

f h(x)

∂x
g(x)u(t)

= Lρfh(x) + LgL
ρ−1
f h(x)u(t).

(2.16)

Let Yn(t) = [y(t), Lfh(x), · · · , Lρ−1
f h(x), · · · , Lρfh(x)]. Then, y(t + τ) of nonlinear

system (2.1) is approximated as

y(t+ τ) ≈ Yn(t)w(τ) +
τρ

ρ!
LgL

ρ−1
f h(x)u(t).

Performance index Jn(t) shown in equation (2.15) is thus approximated as

Jn(t) ≈ Ĵn(t)

=
∫ T

0

(

En(t)w(τ) − τρ

ρ!
LgL

ρ−1
f h(x)u(t)

)T
Q
(

En(t)w(τ) − τρ

ρ!
LgL

ρ−1
f h(x)u(t)

)

dτ

+ TuT(t)Ru(t)

=
∫ T

0
wT(τ)ET

n (t)QEn(t)w(τ)dτ − 2
∫ T

0

τρ

ρ!
wT(τ)dτET

n (t)QLgL
ρ−1
f h(x)u(t)

+
∫ T

0

τ 2ρ

(ρ!)2
dτuT(t)(LgL

ρ−1
f h(x))TQLgL

ρ−1
f h(x)u(t) + TuT(t)Ru(t),

(2.17)

where En = Yd(t) − Yn(t). Similar to the control law design for linear system (2.2),

since the decision variable is u(t), minimizing performance index Ĵn(t) is equivalent to
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2.4. Extension to nonlinear systems

minimizing the following quadratic performance index:

Ψn(t) = uT(t)Θnu(t) + pT
nu(t), (2.18)

where Θn = TR + κ(LgL
ρ−1
f h(x))TQLgL

ρ−1
f h(x) and pn = −2(LgL

ρ−1
f h(x))TQTEnv

T.

Given that Θn is positive-definite, performance index Ψn shown in (2.18) is convex and

the optimal solution is thus obtained by solving ∂Ψn(t)/∂u = 0, which gives the follow-

ing nominal near-optimal control law for nonlinear system (2.1):

u(t) = (TR+ κ(LgL
ρ−1
f h(x))TQLgL

ρ−1
f h(x))−1(QLgL

ρ−1
f h(x))T(Yd(t) − Yn(t))v

T,

(2.19)

which can only be used under the assumption that the dynamics of the controlled sys-

tems are fully known.

2.4.3 Intelligent design

In this subsection, we design online LNOC laws for nonlinear system (2.1) under the

condition of parameter uncertainty.

Since f(x) and g(x) are smooth, the following parameterized network is adopted to

reconstruct them:














f(x) = Wfφf(x),

g(x) = Wgφg(x),

where Wf ∈ Rn×Nf and Wg ∈ Rn×Ng denote the unknown constant weight matrices;

φf(·) : R
n → R

Nf and φg(·) : R
n → R

Ng×m denote suitable basis functions; Nf and Ng

denote the numbers of neurons. Therefore, nonlinear system (2.1) can be rewritten as

the following parameterized system:















ẋ(t) = Wfφf(x) +Wgφg(x)u(t),

y(t) = h(x).

(2.20)
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Yd(t)

TQ R ρ

Control Law (2.26)

ua(t) y(t)

x(t)

Kf Kg

Ŵg

Ŵf

Kx

Nonlinear System (2.1)

Auxiliary System (2.23)

Figure 2.2: Block diagram of nonlinear system (2.1) with parameter uncertainty synthesized by

online LNOC law (2.26) and auxiliary system (2.23).

In this sense, the parameter uncertainty of nonlinear system (2.1) corresponds to the

uncertainty of weight matrices Wf and Wg. Based on parameterized system (2.20), we

design an LNOC law for nonlinear system (2.1) under parameter uncertainty.

Similar to the linear system case, we design the following nonlinear auxiliary system to

reconstruct the states and dynamics of nonlinear system (2.20):

˙̂x(t) = Ŵfφf(x) + Ŵgφg(x)u(t) −Kx(x̂(t) − x(t)), (2.21)

where parameter matrices Ŵf and Ŵg need to be obtained with Kx defined as the

aforementioned. To drive x̂ − x to zero, the following evolutions for matrices Ŵf and

Ŵg are defined:















˙̂
Wf = −Kf (x̂(t) − x(t))φT

f(x),

˙̂
Wg = −Kg(x̂(t) − x(t))uT(t)φT

g(x),

(2.22)

where Kf = diag([kf1, kf2, · · · , kfn
]) ∈ Rn×n and Kg = diag([kg1, kg2, · · · , kgn

]) ∈
Rn×n are positive-definite gain matrices to scale the convergence. Therefore, the whole
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2.4. Extension to nonlinear systems

nonlinear auxiliary system is



































˙̂x(t) = Ŵfφf(x) + Ŵgφg(x)u(t) −Kx(x̂(t) − x(t)),

˙̂
Wf = −Kf (x̂(t) − x(t))φT

f(x),

˙̂
Wg = −Kg(x̂(t) − x(t))uT(t)φT

g(x).

(2.23)

Note that the values of gain matrices Kx, Kf , and Kg in nonlinear auxiliary system

(2.23) are similarly chosen as those in linear auxiliary system (2.12).

For special case when x̂(t) = x(t): When nonlinear auxiliary system (2.21) has

reconstructed the states of nonlinear system (2.20), i.e., x̂(t) = x(t), nonlinear system

(2.1) with parameter uncertainty becomes















ẋ(t) = Ŵfφf(x) + Ŵgφg(x)u(t),

y(t) = h(x).

(2.24)

We perform the controller design based on (2.24). Let f̂(x) = Ŵfφf(x) and ĝ(x) =

Ŵgφg(x). Given that the relative degree ρ of nonlinear system (2.1) with parameter

uncertainty is a prior knowledge, we thus have







































































ẏ(t) =
∂h

∂x
f̂(x) = Lf̂h(x),

...

y[ρ−1](t) = Lρ−1

f̂
h(x),

y[ρ](t) = Lρ
f̂
h(x) +

∂Lρ−1

f̂
h(x)

∂x
ĝ(x)u(t)

= Lρ
f̂
h(x) + LĝL

ρ−1

f̂
h(x)u(t).

(2.25)

Let Ŷn(t) = [y(t), Lf̂h(x), · · · , Lρ
f̂
h(x)]. Then, following similar steps in Section 2.4.2,

based on system (2.24), an online LNOC law is obtained as follows for nonlinear system

(2.1) with parameter uncertainty:

ua(t) = (TR+ κ(LĝL
ρ−1

f̂
h(x))TQLĝL

ρ−1

f̂
h(x))−1(QLĝL

ρ−1

f̂
h(x))T(Yd(t) − Ŷn(t))v

T.

(2.26)
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Chapter 2. LNOC via state feedback with learning of parameters

The block diagram of nonlinear system (2.1) with parameter uncertainty synthesized by

LNOC law (2.26) and nonlinear auxiliary system (2.23) is shown in Fig. 2.2.

For general situation without x̂(t) = x(t): For the general situation, nonlinear system

(2.1) with parameter uncertainty is represented as



































ẋ(t) = Ŵfφf(x) + Ŵgφg(x)u(t) − (W̃fφf(x)

+ W̃gφg(x)u(t)),

y(t) = h(x),

(2.27)

where W̃f = Ŵf−Wf and W̃g = Ŵg−Wg. Given that the relative degree ρ of nonlinear

system (2.1) with parameter uncertainty is a prior knowledge, we thus have



































































ẏ(t) = Lf̂h(x) − Lf̃h(x),

...

y[ρ−1](t) = Lρ−1

f̂
h(x) − Lρ−1

f̃
h(x),

y[ρ](t) = Lρ
f̂
h(x) + LĝL

ρ−1

f̂
h(x)u(t) − (Lρ

f̃
h(x)

+ Lg̃L
ρ−1

f̃
h(x)u(t)),

(2.28)

where Li
f̃
h(x) = Li

f̂
h(x) − Lifh(x). Since Wg and Wf are unknown, control design

cannot be done based on (2.28).

Remark 2: In practical applications, if a good prior knowledge about the values of

all the elements of parameter matrices Wf and Wg of a controlled nonlinear system is

available, which means that all the initial values of the elements of Ŵf and Ŵg are set to

be in a small neighborhood of the corresponding values of the elements of Wf andWg,

then controller (2.26) is a good choice since the difference between controller (2.26)

and nominal controller (2.19) is small. Without a good prior knowledge, the difference

may be extremely large before auxiliary system (2.23) fully reconstructs the states and

dynamics of nonlinear system (2.1), which may lead to extremely large magnitude of

adaptive control input ua(t). It is worth pointing out that the magnitude of the control
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2.4. Extension to nonlinear systems

input that a practical system can bear is limited. To avoid too large magnitude of control

input ua(t) generated by LNOC law (2.26), the following modified online LNOC law can

be adopted:

us(t) = satβ(ua(t)), (2.29)

where β = [β1, β2, · · · , βm]T ∈ Rm is the bound of saturation with βj > 0 for all j =

1, 2, · · · , m. The jth element of satβ(ua(t)) is defined as follows:

satβj
(uaj(t)) =



































βj, if uaj(t) > βj ,

uaj(t), if − βj ≤ uaj(t) ≤ βj ,

−βj , if uaj(t) < −βj .

This approach can also be adopted to deal with the LNOC of linear system (2.2) to

avoid very large magnitude of control inputs.

Remark 3: In terms of control structure complexity and computational burden, the pro-

posed LNOC is compared with ADP [22–29] as follows.

1) For the LNOC, ADP generally needs actor and critic networks to guarantee near-

optimality and identifier networks to handle system uncertainty. In the proposed

approach, there is only one network associated with the auxiliary system to han-

dle system uncertainty. In this sense, compared with ADP, the proposed LNOC

has a simpler structure.

2) Corresponding to the control structure, ADP needs time to train the weights of

actor, critic, and identifier networks. The values of the so-called value function

and the control law are iteratively calculated based on the weights of the net-

works. Different from ADP, the proposed LNOC does not need the training of the

weights of the networks. Besides, the proposed control law is presented in an

analytical form, of which the parameters are directly obtained from the auxiliary

system.
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Chapter 2. LNOC via state feedback with learning of parameters

2.4.4 Computational complexity analysis

Since nonlinear systems are more complicated than linear systems, in this subsection,

we analyze the computational complexity of the proposed LNOC method when it is

applied to nonlinear systems. In terms of the linear system case, the analysis on the

computational complexity can be conducted in a similar manner, and is thus omitted.

Before analyzing the computational complexity, we define a floating-point operation as

one addition, subtraction, multiplication, or division of two floating-point numbers and

recall the following facts [45].

1) The multiplication of a scalar and a vector of size s1 requires s1 floating-point

operations.

2) The multiplication of a matrix and a vector, one of size s1 × s2 and the other of

size s2, requires s1(2s2 − 1) floating-point operations.

3) The multiplication of two matrices, one of size s1×s2 and the other of size s2×s3,

requires 2s1s2s3 − s1s3 floating-point operations.

4) The addition or subtraction of two vectors of size s1 requires s1 floating-point

operations.

5) The inversion of a square matrix of size s1 × s1 requires s3
1 floating-point opera-

tions.

The analysis on the computational complexity of the nonlinear auxiliary system (2.23)

is conducted by firstly discretizing it. By using the Euler difference formula [46], the
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2.4. Extension to nonlinear systems

discrete-time nonlinear auxiliary system can be obtained as follows:



















































x̂k+1 = x̂k + τ(Ŵ k
f φf (x

k) + Ŵ k
g φg(x

k)uk

−Kx(x̂
k − xk)),

Ŵ k+1
f = Ŵ k

f − τ(Kk
f (x̂

k − xk)φT
f(x

k)),

Ŵ k+1
g = Ŵ k

g − τ(Kk
g (x̂

k − xk)uk
T
φT
g(x

k)),

where τ > 0 ∈ R is the sampling period and k = 1, 2, · · · is the updating index.

To utilize the proposed LNOC method, at the kth sampling time instant the values of

x̂k+1, Ŵ k+1
f , and Ŵ k+1

g need to be calculated. Let cmax denotes the maximal number

of floating-point operations needed for calculating the value of an element in vector

φf(x
k) ∈ R

Nf or matrix φg(x
k) ∈ R

Ng×m. Based on the above facts and definitions,

at the kth sampling time instant, computing x̂k+1 requires less than mn(1 + 2Ng) +

2n(Nf + n) + cmax(n +mNg) floating-point operations; computing Ŵ k+1
f requires less

than mn + 2n2 + Nf(2n + cmax) floating-point operations; computing Ŵ k+1
g requires

less than mn(1 + 2Ng) + 2n2 + nNg +mNgcmax floating-point operations. In total, the

nonlinear auxiliary system requires less than mn(3 + 4Ng) + 4nNf + 6n2 + cmax(n +

2mNg +Nf ) + nNg floating-point operations at each sampling time instant.

Consider the proposed LNOC law (2.26), for which TR ∈ Rm×m, vT ∈ Rρ+1, Q ∈
Rm×m, κ ∈ R are constant and do not need to be calculated at each sampling time

instant; Yd(t) ∈ Rm×(ρ+1) is calculated beforehand; LĝL
ρ−1

f̂
h(x) ∈ Rm×m and Ŷn(t) ∈

Rm×(ρ+1) need to be updated at each sampling time instant. Let c′max denotes the

maximal number of floating-point operations needed for calculating the value of an

element in matrices LĝL
ρ−1

f̂
h(x) or Ŷn(t). Therefore, based on (2.26), computing ua(t)

for one time requires less than 9m3 + (1 + 2ρ)m2 + 2mρ + m + c′max(m
2 + mρ + m)

floating-point operations.

The computational complexity of the proposed LNOC method consist of two parts: up-

dating the auxiliary system and computing the LNOC law based on the parameter ma-

trices generated by the auxiliary system. Therefore, the total computational complexity
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of the proposed LNOC method for nonlinear system (2.1) is the sum of the two parts.

It follows that the proposed LNOC method for nonlinear system (2.1) totally requires

less than mn(3 + 4Ng) + 4nNf + 6n2 + cmax(n + 2mNg + Nf ) + nNg + 9m3 + (1 +

2ρ)m2+2mρ+m+c′max(m
2+mρ+m) floating-point operations per updating. It is worth

pointing out that the number of the required floating-point operations can be reduced

by improving the implementation of the proposed control method. For example, we can

introduce a variable to store the value of x̂k − xk so as to avoid repeatedly computing

x̂k − xk when computing Ŵ k+1
f or Ŵ k+1

g at the same time instant for updating.

2.5 Theoretical results

In this section, considering that linear system (2.2) can be viewed as a special case of

nonlinear system (2.1), we mainly present theoretical results about the performance of

auxiliary system (2.23) and nonlinear system (2.1) with parameter uncertainty synthe-

sized by online LNOC law (2.26).

2.5.1 Convergence of auxiliary systems

In this subsection, we present theoretical results about the convergence of auxiliary

systems (2.23) and (2.12).

Theorem 1: The states and dynamics of nonlinear auxiliary system (2.23) converge to

those of nonlinear system (2.1) with time.

Proof: Recall that nonlinear system (2.1) can be described by parameterized system

(2.20):














ẋ(t) = Wfφf(x) +Wgφg(x)u(t),

y(t) = h(x),
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and nonlinear auxiliary system (2.23):



































˙̂x(t) = Ŵfφf(x) + Ŵgφg(x)u(t) −Kx(x̂(t) − x(t)),

˙̂
Wf = −Kf (x̂(t) − x(t))φT

f(x),

˙̂
Wg = −Kg(x̂(t) − x(t))uT(t)φT

g(x).

Let x̃(t) = x̂(t) − x(t), W̃f = Ŵf −Wf and W̃g = Ŵg −Wg. Then, one has



































˙̃x(t) = W̃fφf(x) + W̃gφg(x)u(t) −Kxx̃(t),

˙̃Wf = −Kf x̃(t)φT
f(x),

˙̃Wg = −Kgx̃(t)uT(t)φT
g(x).

(2.30)

Define the following candidate Lyapunov function:

V1(t) =
1

2
x̃T(t)x̃(t) +

1

2
tr(W̃ T

fK
−1
f W̃f ) +

1

2
tr(W̃ T

gK
−1
g W̃g),

where tr(·) denotes the trace of a matrix. Since Kf and Kg are positive-definite and

diagonal, K−1
f and K−1

g are also positive-definite and diagonal. It is thus evident that

V1(t) ≥ 0. Calculating the time derivative of V1(t) along the system dynamics yields

V̇1(t) = x̃T(t) ˙̃x(t) + tr(W̃ T
fK

−1
f

˙̃Wf) + tr(W̃ T
gK

−1
g

˙̃Wg).
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Substituting equation (2.30) into V̇1(t), one further obtains

V̇1(t) = x̃T(t)(W̃fφf(x) + W̃gφg(x)u(t) −Kxx̃(t)) + tr(W̃ T
fK

−1
f (−Kf x̃(t)φT

f(x)))

+ tr(W̃ T
gK

−1
g (−Kgx̃(t)uT(t)φT

g(x)))

= x̃T(t)W̃fφf(x) + x̃T(t)W̃gφg(x)u(t) − x̃T(t)Kxx̃(t) − tr(W̃ T
f x̃(t)φT

f (x))

− tr(W̃ T
g x̃(t)uT(t)φT

g(x))

= tr(x̃T(t)W̃fφf (x)) + tr(x̃T(t)W̃gφg(x)u(t)) − x̃T(t)Kxx̃(t) − tr(W̃ T
f x̃(t)φT

f(x))

− tr(W̃ T
g x̃(t)uT(t)φT

g(x))

= tr(φf(x)x̃T(t)W̃f ) + tr(φg(x)u(t)x̃T(t)W̃g) − x̃T(t)Kxx̃(t) − tr(W̃ T
f x̃(t)φT

f(x))

− tr(W̃ T
g x̃(t)uT(t)φT

g(x))

= tr(W̃ T
f x̃(t)φT

f (x)) + tr(W̃ T
g x̃(t)uT(t)φT

g(x)) − x̃T(t)Kxx̃(t) − tr(W̃ T
f x̃(t)φT

f(x))

− tr(W̃ T
g x̃(t)uT(t)φT

g(x))

= −x̃T(t)Kxx̃(t).

Evidently, V̇1(t) < 0 if x̃(t) 6= 0 and V̇1(t) = 0 if and only if x̃(t) = 0. By Lyapunov

theory [44], x̃(t) = 0 is asymptotically stable. Therefore, when t → ∞, one has x̂ = x

and auxiliary system (2.23) becomes ẋ(t) = Ŵfφf(x) + Ŵgφg(x)u(t), which means

that given the same input u(t), the state response of auxiliary system (2.23) is the

same as nonlinear system (2.1). It follows that limt→+∞(W̃fφf (x)+ W̃gφg(x)u) = 0. In

other words, the states and dynamics of nonlinear auxiliary system (2.23) converge to

those of nonlinear system (2.1) with time. The proof is complete. �

In Theorem 1, it is proved that a special case is achieved in an asymptotic manner, i.e.,

limt→+∞ x̂(t) = x(t). The underlying intuition is that, under the conditions specified in

Theorem 1, the special case always holds in an asymptotic manner. In other words,

even the special case does not hold at the beginning, it will be asymptotically achieved,

making the proposed control law valid for general cases. Based on Theorem 1, we offer

the following corollary about auxiliary system (2.12).

Corollary 1: The states and dynamics of linear auxiliary system (2.12) converge to
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those of linear system (2.2) with time.

Proof: It can be generalized from Theorem 1 and is thus omitted. �

2.5.2 Stability of closed-loop systems

In terms of the stability of the closed-loop systems consisting of the controlled systems

and the proposed online LNOC laws, we offer the following theoretical results.

Lemma 1: Invertible matrices M and N with the same dimension satisfy N(MN)−1 =

M−1.

Proof: Since invertible matrices M and N are of the same dimension, MN is also

invertible, i.e., MN(MN)−1 = I . It follows that N(MN)−1 = M−1. The proof is

complete. �

Theorem 2: Given that weight matrix R = 0, relative degree ρ ∈ {1, 2, 3, 4} and matrix

LĝL
ρ−1

f̂
h(x) is invertible, the closed-loop system consisting of nonlinear system (2.1)

with parameter uncertainty and online LNOC law (2.26) is asymptotically stable in the

sense of attraction and Lyapunov stability.

Proof: Substituting u(t) = ua(t) into the last equation of (2.16) with ua(t) defined in

equation (2.26) yields

y[ρ](t) = Lρfh(x) + LgL
ρ−1
f h(x)ua(t). (2.31)

Let


































Lρ
f̃
h(x) = Lρ

f̂
h(x) − Lρfh(x),

Lg̃L
ρ−1

f̃
h(x) = LĝL

ρ−1

f̂
h(x) − LgL

ρ−1
f h(x),

η(t) = Lρ
f̃
h(x) + Lg̃L

ρ−1

f̃
h(x)ua(t).

(2.32)

Equation (2.31) is thus written as

y[ρ](t) = Lρ
f̂
h(x) + LĝL

ρ−1

f̂
h(x)ua(t) − η(t). (2.33)
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Given that R = 0, LNOC law (2.26) becomes

u(t) = (κ(LĝL
ρ−1

f̂
h(x))TQLĝL

ρ−1

f̂
h(x))−1(QLĝL

ρ−1

f̂
h(x))T(Yd(t) − Ŷn(t))v

T. (2.34)

Substituting equation (2.34) into equation (2.33) yields

y[ρ](t) = Lρ
f̂
h(x) + LĝL

ρ−1

f̂
h(x)(κ(LĝL

ρ−1

f̂
h(x))TQLĝL

ρ−1

f̂
h(x))−1(QLĝL

ρ−1

f̂
h(x))T(Yd(t)

− Ŷn(t))v
T − η(t).

Given that LĝL
ρ−1

f̂
h(x) is invertible and based on Lemma 1, one further has

y[ρ](t) = Lρ
f̂
h(x) +

1

κ
((LĝL

ρ−1

f̂
h(x))TQ)−1(LĝL

ρ−1

f̂
h(x))TQT(Yd(t) − Ŷn(t))v

T − η(t).

Recall that Q is symmetric, i.e., Q = QT, and positive-definite. One further obtain

y[ρ](t) = Lρ
f̂
h(x) +

1

κ
(Yd(t) − Ŷn(t))v

T − η(t). (2.35)

Let Ỹn(t) = Ŷn(t) − Yn(t). Equation (2.35) is then rewritten as

y[ρ](t) = Lρfh(x) +
1

κ
(Yd(t) − Yn(t))v

T + Lρ
f̃
h(x) − 1

κ
Ỹn(t)v

T − η(t). (2.36)

Let δ(t) = −Lρ
f̃
h(x) + Ỹn(t)v

T/κ + η(t). Recalling the definition of η(t) in (2.32), we

further have δ(t) = Lg̃L
ρ−1

f̃
h(x)ua(t)+ Ỹn(t)v

T/κ. Then, equation (2.36) can be written

as

y[ρ](t) = Lρfh(x) +
1

κ
(Yd(t) − Yn(t))v

T − δ(t). (2.37)

Recall that Ŷn(t) = [y(t), Lf̂h(x), · · · , Lρ
f̂
h(x)], Yd(t) = [yd(t), · · · ,y[ρ−1]

d ,y
[ρ]
d (t)],

κ =
∫ T

0

τ 2ρ

(ρ!)2
dτ =

T 2ρ+1

(2ρ+ 1)(ρ!)2
,

and

v =

[

T ρ+1

(ρ+ 1)ρ!
,

T ρ+2

(ρ+ 2)ρ!1!
, · · · , T 2ρ+1

(2ρ+ 1)(ρ!)2

]

.

As a result, from equation (2.37), one has

y[ρ](t) = Lρfh(x) +
1

κ

ρ−1
∑

j=0

T ρ+1+j

(ρ+ 1 + j)ρ!j!
(y

[j]
d (t) − y[j](t)) + y

[ρ]
d − Lρfh(x) − δ(t).
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Let e(t) = yd(t) − y(t). It follows that the closed-loop system consisting of nonlinear

system (2.1) and LNOC law (2.26) is

e[ρ](t) = −1

κ

ρ−1
∑

j=0

T ρ+1+j

(ρ+ 1 + j)ρ!j!
e[j](t) + δ(t). (2.38)

Note that δ(t) can be viewed as a perturbation or an input. When δ(t) = 0, from

equation (2.38), the unforced system is

1

κ

ρ
∑

i=0

T ρ+1+i

(ρ+ 1 + i)ρ!i!
e[i](t) = 0. (2.39)

When ρ ∈ {1, 2, 3, 4}, according to the Routh-Hurwitz criterion [42], it can be read-

ily proved that system (2.39) is exponentially asymptotically stable. Therefore, linear

system (2.38) satisfies the bounded-input bounded-output property [42].

From the proof of Theorem 1, with u(t) = ua(t), limt→+∞(W̃fφf(x)+W̃gφg(x)ua(t)) =

0. Given that φf(x) and φg(x)ua(t) satisfy the persistent excitation condition [29–31],

one further has limt→+∞ W̃f (t) = 0 and limt→+∞ W̃g(t) = 0. In light of the definitions

of Li
f̂
h(x) and LĝL

ρ−1

f̂
h(x) in equation (2.25), one further has limt→+∞ Li

f̃
h(x) = 0,

limt→+∞ Ỹn(t) limt→+∞ Lg̃L
ρ−1

f̃
h(x)ua(t) = 0. Therefore,

lim
t→+∞

δ(t) = lim
t→+∞

(Lρ
f̃
h(x) + Lg̃L

ρ−1

f̃
h(x)ua(t) + Lρ

f̃
h(x) − Ỹn(t)v

T/κ) = 0.

According to the bounded-input bounded-output property [42], it is further concluded

that limt→+∞ ‖e(t)‖2 = limt→+∞ ‖δ(t)‖2 = 0, i.e., the equilibrium e(t) = 0 is asymp-

totically stable. In other words, closed-looped system (2.38) consisting of nonlinear

system (2.1) and online LNOC law (2.26) is asymptotically stable. The proof is thus

complete. �

Now we have the following remarks about the online LNOC of nonlinear system (2.1)

with parameter uncertainty.

Remark 4: Intuitively, the philosophy of the proposed online intelligent control scheme

for nonlinear system (2.1) with parameter uncertainty lies in the exact estimation of
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Wfφf (x) and Wgφg(x)u(t). The exact estimation of Wfφf(x) and Wgφg(x)u(t) is ob-

tained from nonlinear auxiliary system (2.23), of which the input-to-state and input-to-

output properties converge to the same as nonlinear system (2.1) with time. Note that

the persistent excitation condition is generally needed to guarantee the convergence of

parameters in adaptive control or parameter estimation methods [11,30,31].

Remark 5: Based on Theorem 1 and Theorem 2, it can be proved that the closed-

looped system consisting of nonlinear system (2.1) and saturated online LNOC law

(2.29) is also asymptotically stable. Based on Theorem 1, Ŵf and Ŵg are always

bounded. Together with equation (2.26) and Theorem 2, ua(t) is bounded and contin-

uous at each time instant t, when weight matrix R = 0, relative degree ρ ∈ {1, 2, 3, 4},

and matrix LĝL
ρ−1

f̂
h(x) is invertible. Since ua(t) is bounded and continuous at each

time instant t, there always exist a time instant tt and a constant saturation vector β such

that, for any t > tt, −βj ≤ uaj(t) ≤ βj with j = 1, 2, · · · , m. It follows that satβ(ua(t)) =

ua(t) for all t > tt. Let ue(t) = satβ(ua(t))−ua(t) and η1(t) = η(t)+LgL
ρ−1
f h(x)ue(t).

Evidently, limt→+∞ η1(t) = limt→+∞ η(t), since ue(t) = 0 for t > tt. Following the

steps in the proof of Theorem 2, one can thus readily proved that the closed-looped

system consisting of nonlinear system (2.1) and saturated online LNOC law (2.29) is

asymptotically stable.

Remark 6: Theorem 2 is derived under the condition thatR = 0. In view of performance

index (2.15), matrices Q and R are used to scale the trade-off between tracking accu-

racy described by yd(t)−y(t) and energy consumption described by the magnitude of

control effort u(t). Practically, R = 0 means that only tracking accuracy is considered.

When R 6= 0, it means that energy consumption is also taken into account. In this sit-

uation, by the bounded-input bounded-output property [42], via the proposed method,

the tracking error yd(t) − y(t) can be guaranteed to be bounded.

In light of the fact that the online LNOC of linear system (2.2) is a special case of that

of nonlinear system (2.1), we have the following corollary.

32



2.5. Theoretical results

Corollary 2: Given that weight matrix R = 0, relative degree ρ ∈ {1, 2, 3, 4}, and matrix

CÂρ−1B̂ is invertible, The closed-loop system consisting of linear system (2.2) with

parameter uncertainty and online LNOC law (2.13) is asymptotically stable.

Proof: It can be generalized from the proof of Theorem 2 and is thus omitted. �

2.5.3 Asymptotic optimality

In this chapter, a unified approximation of the performance indices is utilized for the

optimal control of both linear system (2.2) and nonlinear system (2.1) to avoid solving

Hamilton equations and to obtain analytical control laws. In this subsection, theoretical

results about the optimality of the proposed control laws are presented.

Theorem 3: If matrix Q is symmetric and positive definite, matrix R = 0, matrix

LĝL
ρ−1

f̂
h(x) is invertible, and relative degree ρ ∈ {1, 2, 3, 4}, then performance index

Jn(t) of nonlinear system (2.1) with parameter uncertainty is bounded and asymptoti-

cally converges to the optimal, i.e., online LNOC law (2.26) asymptotically converges

to the optimal.

Proof: Based on Taylor expansion and in view of equations (2.15) and (2.17) about

Jn(t) and Ĵn(t), with R = 0, one has

Jn(t) =
∫ T

0
(En(t)w(τ) − τρ

ρ!
LgL

ρ−1
f h(x) +

τρ

ρ!
∆(t))TQ(En(t)w(τ) − τρ

ρ!
LgL

ρ−1
f h(x)

+
τρ

ρ!
∆(t))dτ,

where ∆(t) = (y
[ρ]
d (t+ ψτ) − y[ρ](t + ψτ) − (y

[ρ]
d (t) − y[ρ](t))) with ψ ∈ (0, 1). Based

on triangle inequality, we further have

Jn(t) ≤2Ĵn(t) + 2
∫ T

0

τ 2ρ

(ρ!)2
∆T(t)Q∆(t)dτ

≤2Ĵn(t) + 2
T 2ρ+1

(2ρ+ 1)(ρ!)2
sup

0<ψ<1
‖∆(t)‖2

2‖Q‖2,

where ‖·‖2 defines the two-norm of a vector or a matrix. According to Theorem 2, given

that matrix Q is symmetric and positive definite, matrix R = 0, and matrix LĝL
ρ−1

f̂
h(x)
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is invertible, the closed-loop system consisting of nonlinear system (2.1) and LNOC law

(2.26) is equivalent to the following linear system:

e[ρ](t) = −1

κ

ρ−1
∑

j=0

T ρ+1+j

(ρ+ 1 + j)ρ!j!
e[j](t) + δ(t),

each subsystem of which is

ṡi(t) = W si(t) + νi(t),

where si(t) = [ei(t), ėi(t), · · · , e[ρ−1]
i (t)]T ∈ Rρ with i = 1, 2, · · · , m, νi(t) = [0, · · · , 0, δi(t)]T ∈

R
ρ, and W ∈ R

ρ×ρ is defined as follows:

W =





















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

−κ T ρ+1

(ρ+1)ρ!
−κ T ρ+2

(ρ+2)ρ!
−κ T ρ+3

(ρ+3)ρ!2!
· · · −1





















.

It is readily checked that all the eigenvalues of W are located on the left half-plane

when ρ ∈ {1, 2, 3, 4}. It follows that linear system ṡi(t) = W si(t) is exponentially

stable and limt→+∞ si(t) = 0 for all i = 1, 2, · · · , m. From Theorem 2, limt→+∞ δ(t) =

0, i.e., limt→+∞ νi(t) = 0 for all i = 1, 2, · · · , m. By the bounded-input bounded-

output property of linear systems [42], the equilibrium si(t) = 0 of linear system ṡi(t) =

W si(t) + νi is thus asymptotically stable, i.e., limt→+∞ si(t) = 0. Together with ṡi(t) =

W si(t) + νi(t), it follows that

lim
t→+∞

ṡi(t) = 0.

Recalling that si(t) = [ei(t), ėi(t), · · · , e[ρ−1]
i (t)]T, one further has limt→+∞ e

[ρ]
i (t) = 0 for

all i = 1, 2, · · · , m. It follows that limt→+∞ e[ρ](t) = 0, i.e., (y[ρ](t) − y
[ρ]
d (t)) = 0. It fol-

lows that limt→+∞ sup0<ψ<1 ‖∆(t)‖2
2‖Q‖2 = 0. It is also obtained in the proof of Theo-

rem 2 that limt→+∞ W̃f (t) = 0 and limt→+∞ W̃g(t) = 0, given that φf(x) and φg(x)ua(t)

satisfy the persistent excitation condition [29–31]. It follows that limt→+∞(u(t)−ua(t)) =

0, where u(t) is defined in equation (2.19) and minimizes the convex quadratic perfor-

mance index Ĵn(t) shown in equation (2.17), for which, in the adaptive case, u(t) is re-

placed by ua(t). It follows that limt→+∞ Ĵn(t) = 0 when LNOC law (2.26) is employed.
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Note that Jn(t) ≥ 0. Then, according to the pinching theorem [47], limt→∞ Jn(t) = 0.

The proof is complete. �

Similarly, we have the following corollary about the online LNOC of linear system (2.2).

Corollary 3: If matrixQ is symmetric and positive definite, matrix R = 0, relative degree

ρ ∈ {1, 2, 3, 4}, and matrix CÂρ−1B̂ is invertible, then performance index Jl(t) of linear

system (2.1) with parameter uncertainty is bounded and asymptotically converges to

the optimal, i.e., online LNOC law (2.13) asymptotically converges to the optimal.

Proof: It can be generalized from the proof of Theorem 3 and is thus omitted. �

We offer the following remark about the situation that LĝL
ρ−1

f̂
h(x) or CÂρ−1B̂ is singu-

lar, which is of great practical significance.

Remark 7: In control law (2.26), when the term κ(LĝL
ρ−1

f̂
h(x))TQLĝL

ρ−1

f̂
h(x) is sin-

gular and R = 0, a regulation term can be used. Specifically, one may use νIl +

κ(LĝL
ρ−1

f̂
h(x))TQLĝL

ρ−1

f̂
h(x) to replace κ(LĝL

ρ−1

f̂
h(x))TQLĝL

ρ−1

f̂
h(x), where ν > 0 ∈

R is a small positive parameter, e.g., 10−6, with Il being an identity matrix of suitable

dimension. Given that ν is small enough, the control performance is still satisfactory

due to the bounded-input bounded-output property [42]. This approach also works for

online LNOC law (2.13).

For the choice of the time horizon T , we have the following remark.

Remark 8: The time horizon can be chosen according to the dynamic property of the

control system. When the dynamics of the system is fast, meaning that the state vari-

ables changes fast, the time horizon should be set to a small positive value, while for

slow systems it can be set to a large positive value.
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Figure 2.3: Time history of the values of non-null elements of Ŵg generated by auxiliary system

(2.23) synthesized by saturated online LNOC law (2.29) in comparison with the corresponding

elements of Wg of surface vessel system (2.40).

2.6 Application to uncertain underactuated surface ves-

sel

The control of surface vessels has long been regarded a challenging problem due

to the inherent underactuation of the system. To test the efficacy and generality of

the proposed control scheme, in this section, the proposed online LNOC is applied

to an underactuated surface vessel with large parameter uncertainty. We successively

consider the case without measurement noise, and the case with measurement noises.

Then, we analyze the real-time control capability of the proposed control scheme for

the underactuated surface vessel.

2.6.1 Without measurement noises

We first consider the situation that there is no measurement noise. Consider a surface

vessel operated under a failure mode, of which only two propellers work, i.e., the force

in surge and the control torque in yaw. Under this realistic assumption, the kinematics

and dynamics of the surface vessel are governed by the following ordinary differential
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Figure 2.4: Time history of values of the non-null elements of Ŵf generated by auxiliary system

(2.23) synthesized by saturated online LNOC law (2.29) in comparison with the corresponding

elements of Wf of surface vessel system (2.40).

equations [14]:


























































































ẋ1 = x4 cosx3 − x5 sin x3,

ẋ2 = x4 sin x3 + x5 cosx3,

ẋ3 = x6,

ẋ4 =
m22

m11
x5x6 −

d11

m11
x4 +

1

m11
u1,

ẋ5 = −m11

m22

x4x6 −
d22

m22

x5,

ẋ6 =
m11 −m22

m33

x4x5 −
d33

m33

x6 +
1

m33

u2,

(2.40)

where (x1,x2) denotes the coordinate of the surface vessel in the earth-fixed frame;

x3 denotes its heading angle; x4, x5 and x6 denote the velocity in surge, sway and

yaw, respectively; u1 and u2 denote the surge force and yaw torque, respectively. In

addition, parameters m11, m22, m33, d11, d22 and d33 are positive constants and are

given by the inertia and damping matrices of the surface vessel [14]. Evidently, the

state vector is x = [x1, x2, x3, x4, x5, x6]
T; the input vector is u = [u1, u2]

T. In this

application, the actual inertia and damping parameters of surface vessel system (2.40)
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Figure 2.5: Circular path tracking performance of surface vessel system (2.40) synthesized by

saturated online LNOC law (2.29). (a) Time history of state variables. (b) Vessel path plotted

by (y1, y2) data and reference path plotted by (yd1, yd2) data. (c) Time history of position errors

defined as ey1 = yd1 − y1 and ey2 = yd2 − y2.

is m11 = m22 = m33 = 0.1, d11 = d33 = 0 and d22 = 0.2 [14].

Surface vessel system (2.40) can be rewritten in the form of parameterized system

(2.20), where φf(x) ∈ R8 with φf 1(x) = x4 cosx3, φf 2(x) = x5 sin x3, φf 3(x) =

x4 sin x3, φf 4(x) = x5 cosx3, φf 5(x) = x6, φf 6(x) = x5x6, φf 7(x) = x4x6, and

φf 8(x) = x5; the non-null elements of matrix Wf ∈ R6×8 are wf 11 = 1, wf 12 = −1,

wf 23 = 1, wf 24 = 1, wf 35 = 1, wf 46 = m22/m11 = 1, wf 57 = −m11/m22 = −1,

wf 58 = −d22/m22 = −2; φg(x) = [1, 0; 0, 1]; and the non-null elements of matrix

Wg ∈ R6×2 are wg41 = 1/m11 = 10 and wg62 = 1/m33 = 10. It is worth pointing out

that the exact values of parameter matrices Wf and Wg of the surface vessel system

are only presented for the purpose of comparison, which are not used in the control of

the surface vessel system. In other words, the proposed control scheme does not need

any prior knowledge on the values of these system parameters.

If the considered output is chosen as y = [x1, x2]
T, then one readily has LgLfh(x) =

[cos(x3)/m11, 0; sin(x3)/m11, 0]. Evidently, in this case, LgLfh(x) is not invertible, i.e.,

LgLfh(x) is singular, which makes the proposed control unfeasible. To avoid the sin-

gularity problem, the considered output of the surface vessel is defined as follows:

y =







y1

y2





 =







x1 + l cosx3

x2 + l sin x3





 , (2.41)
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Figure 2.6: Time history of input us(t) generated by saturated LNOC law (2.29). (a) Time

history of us1
(t). (b) Time history of us2

(t).

where l > 0 ∈ R denotes the distance between the considered position (x1+l cosx3,x2+

l sin x3) and position (x1,x2) of the mass center of the surface vessel. According to Def-

inition 2 and Definition 3, the relative degree ρ of the surface vessel system is 2. Be-

sides, one readily has LfLh(x) = [cos x3/m11,−l sin x3/m33; sin x3/m11, l cosx3/m33].

Since l = 0.1 > 0 and m11 = m33 = 0.1 > 0, the determinant of LfLh(x) for the

surface vessel system is |LfLh(x)| = l/(m11m33) = 10 > 0. It follows that LfLh(x) is

invertible.

Under the condition that Wf and Wg are uncertain, surface vessel system (2.40) is

expected to track a desired circular path defined by yd = [10 cos(0.1t), 10 sin(0.1t)+1]T

with R = 0 and Q = [1, 0; 0, 1] and l = 0.1. We choose R = 0 for two reasons: 1)

to validate the theoretical results; 2) to achieve high accuracy. In the application, the

predictive period of saturated online LNOC law (2.29) is set to T = 0.2 s and each

element of β is set to 5. To avoid singularity, the regulation term as shown in Remark 7

is added with ν = 10−6. The parameters of the corresponding auxiliary system (2.23)

are set to Kx = 20 × diag([1, 1, 1, 1, 1, 1]), Kf = 5000 × diag([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),

and Kg = 5000×diag([1, 1]). Initial state x̂(0) of auxiliary system (2.23) is set to be the

same as initial state x(0) of surface vessel system (2.40) with x(0) = [7, 0, 0, 0, 0, 0]T.

The initial values of the non-null elements in Ŵf and Ŵg are randomly set, each of

which belongs to interval (0, 10). It is worth pointing out that the adaptive control in
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Figure 2.7: Circular path tracking performance of surface vessel system (2.40) synthesized by

saturated online LNOC law (2.29) with independent zero-mean Gaussian measurement noises

with the standard deviation being 0.01. (a) Time history of state variables. (b) Vessel path

plotted by (y1, y2) data and reference path plotted by (yd1, yd2) data. (c) Time history of position

errors defined as ey1 = yd1 − y1 and ey2 = yd2 − y2.

this situation is very difficult due to the lack of a good prior knowledge of the system

parameters.

With the above setups, Fig. 2.3 and Fig. 2.4 show the time history of values of the

non-null elements of Ŵg and Ŵf generated by nonlinear auxiliary system (2.23) in

comparison with the corresponding elements of Wg and Wf of the controlled surface

vessel system. As seen from these figures, all the values of the non-null elements of Ŵf

and Ŵg converge to those of the corresponding elements of Wf and Wg of the surface

vessel system. The tracking performance of surface vessel system (2.40) synthesized

by saturated online LNOC law (2.29) is shown in Fig. 2.5. As seen from Fig. 2.5(a),

after short time, heading angle x3 of the surface vessel keeps increasing and the yaw

speed x6 becomes constant, which means that the surface vessel keeps turning left at

a fixed speed. Fig. 2.5(b) and Fig. 2.5(c) show that the surface vessel successfully

tracks the reference path and position errors ey1 = yd1−y1 and ey2 = yd2−y2 converge

to zero with time. Fig. 2.6 shows the time history of control input us(t) generated by

saturated LNOC law (2.29). The above results substantiate the efficacy of the proposed

LNOC method under no measurement noises and verify the theoretical results.
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Figure 2.8: Time history of input us(t) generated by saturated LNOC law (2.29) with indepen-

dent zero-mean Gaussian measurement noises with the standard deviation being 0.01. (a)

Time history of us1
(t). (b) Time history of us2

(t).

2.6.2 With measurement noises

In this subsection, simulation results are presented to show the efficacy of the proposed

LNOC method under measurement noises.

Consider underactuated surface vessel (2.40) again but with measurement noises

taken into account, i.e., in LNOC law (2.29), the state values and output values of un-

deractuated surface vessel (2.40) are polluted by measurement noises. Let ζs(t) ∈ R6

and ζo(t) ∈ R2 denote state and output measurement noises, respectively. We con-

sider independent zero-mean Gaussian noises for each measurement with the stan-

dard deviation being 0.01. The relationship between the measured values and the

actual values are xm(t) = x(t)+ζs(t) and ym(t) = y(t)+ζo(t), where y(t) is defined in

(2.41). The parameters of the corresponding auxiliary system (2.23) are set as Kx =

5×diag([1, 1, 1, 1, 1, 1]),Kf = 50×diag([1, 1, 1, 1, 1, 1, 1, 1]), andKg = 50×diag([1, 1])

to avoid potential high overshooting of the elements of Ŵf and Ŵg caused by the mea-

surement noises. The results are shown in Fig. 2.7 and Fig. 2.8. As seen from Fig. 2.7,

under the measurement noises, the tracking performance of the surface vessel system

synthesized by LNOC law (2.29) is still satisfactory with the maximal steady-state error

being less than 0.001. Besides, the time history of the system inputs generated by
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Chapter 2. LNOC via state feedback with learning of parameters

the control law are shown in Fig. 2.8. These results substantiate the efficacy of the

proposed LNOC method under measurement noises.

2.6.3 Capability for real-time control

In this subsection, we further analyze the real-time control capability of the proposed

adaptive control method for surface vessels.

The results shown in Section 2.4.4 are employed to calculate the number of floating-

point operations per sampling time instant for the proposed method. In this application,

we have m = 2, n = 6, Nf = 8, and Ng = 2. In practical applications, the value of

sin(x) can be calculated by sin(x) ≈ x − x3/6 + x5/120 − x7/5040 + x9/362880 −
x11/39916800, which requires 40 floating-point operations. Similarly, cos(x) can be cal-

culated by cos(x) ≈ 1 − x2/2 + x4/24 − x6/720 + x8/40320 − x10/3628800, which

requires 34 floating-point operations. It follows that the maximal number of floating-

point operations needed for calculating the value of an element in vector φf(x
k) or

matrix φg(x
k) stated in Section VI-A is 41, i.e., cmax = 41. Therefore, in this applica-

tion, at each sampling time instant, the nonlinear auxiliary system requires less than

mn(3 + 4Ng) + 4nNf + 6n2 + cmax(n + 2mNg + Nf) + nNg = 1454 floating-point

operations. Besides, the maximal number of floating-point operations needed for com-

puting the value of an element in matrices LĝL
ρ−1

f̂
h(x) or Ŷn(t) is 64. Therefore, in

this application, at each sampling time instant t, computing ua(t) requires less than

9m3 + (1 + 2ρ)m2 + 2mρ + m + c′max(m
2 + mρ + m) = 742 floating-point operations.

Therefore, practically, in the application to the underactuated surface vessel, the pro-

posed LNOC method totally costs less than 1452+742 = 2194 floating-point operations

per sampling time instant. If the sample rate is selected as 100 Hz, i.e., the sampling

period is selected as 0.01 s, then the computational burden of the proposed LNOC

method for the underactuated surface vessel is less than 2.194 × 105 floating-point op-

erations per second. It is worth pointing out that even a Pentium III 750 microprocessor
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(which is very old-fashioned) has a computational capability of 3.75× 108 floating-point

operations per second [48]. Therefore, the proposed LNOC method is feasible for the

real-time control of underactuated surface vessels.

2.7 Chapter summary

In this chapter, a unified online LNOC framework has been proposed for linear and

nonlinear systems with parameter uncertainty. Based on this framework, online LNOC

with a simple structure and no requirement for knowing system parameter values have

been designed and proposed. Theoretical analysis has shown that closed-loop sys-

tems based on the proposed control are asymptotically stable. It has also been proved

that the proposed LNOC laws asymptotically converge to the optimal. The application

of the proposed near-optimal control scheme to an underactuated surface vessel sys-

tem with parameter uncertainty has validated the efficacy of the framework and the

theoretical results. Before ending this chapter, it is worth pointing out that the proposed

framework can deal with nonlinear systems with large parameter uncertainty and en-

joys model simplicity, online computation, adaptivity and near-optimality.
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Chapter 3

LNOC via output feedback with

learning of system parameters

In this chapter, a learning and near-optimal control law, which is inherently real-time, is

designed to tackle the contradictory between solution accuracy and solution speed for

the optimal control of a general class of nonlinear systems with fully unknown parame-

ters.1 The key technique in the proposed learning and near-optimal control is to design

an auxiliary system with the aid of the sliding mode control concept to reconstruct the

dynamics of the controlled nonlinear system. Based on the sliding-mode auxiliary sys-

tem and approximation of the performance index, the proposed control law guarantees

asymptotic stability of the closed-system and asymptotic optimality of the performance

index with time. Two illustrative examples and an application of the proposed method

to a van der Pol oscillator are presented to validate the efficacy of the proposed learn-

ing and near-optimal control. In addition, physical experiment results based on a DC

motor are also presented to show the realizability, performance, and superiority of the

proposed method.

1The content in this chapter has already been published. Yinyan Zhang, Shuai Li, and Xiangyuan

Jiang, “Near-optimal control without solving HJB equations and its applications,” IEEE Trans. Ind. Elec-

tron., vol. 65, no. 9, pp. 7173–7184, 2018.
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3.1 Introduction

In this chapter, an LNOC law is designed and proposed for a class of continuous-

time nonlinear systems of fully-unknown parameters to simultaneously guarantee the

asymptotic stability of the closed-loop system and optimality of the performance in-

dex via output feedback. The proposed LNOC is also inspired by the concept of slid-

ing mode control [65, 66]. Sliding mode control is widely used to design controllers

for systems with matched disturbances and have been widely investigated in different

problems such as the satellite attitude tracking control problem [67] and the formation

control problem [68]. Instead of directly using sliding mode control concept to design

control laws, in this chapter, we use it to build an auxiliary system to reconstruct the

dynamics of the controlled nonlinear system. This design allows partial decoupling of

the control loop from the parameter learning loop and creates an opportunity to fertilize

the control part with optimal design.

3.2 Problem formulation

Consider the following nonlinear system:















ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t)),

(3.1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the output vector, and u(t) ∈ Rm is

the input vector; f(·) : R
n → R

n, g(·) : R
n → R

n×m, and h(·) : R
n → R

m are smooth

functions. We consider the case that the system satisfies the following conditions:

1) The zero dynamics of system (3.1) are stable [39,58]; 2) system (3.1) has a known

relative degree ρ and LgL
ρ−1
f h(x) is invertible [39,58]; 3) State variables and the output

of system (3.1) as well as its output derivatives up to ρ − 1 order are measurable or

observable [58,69,70].
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Chapter 3. LNOC via output feedback with learning of system parameters

The receding-horizon optimal control problem about system (3.1) is formulated as

minimizeu(t) J(t)

subject to ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t)),

(3.2)

where performance index J(t) is defined as

J(t) =
∫ T

0
(yd(t+ τ) − y(t+ τ))TQ(yd(t+ τ) − y(t+ τ))dτ, (3.3)

where constant T > 0 ∈ R denotes the optimization period for each time instant t, Q is

a symmetric positive-definite weight matrix, and yd(t) denoting the desired output is a

continuously differentiable function.

3.3 Control design

For nonlinear system (3.1) with relative degree ρ, one has

y[ρ](t) = Lρfh(x(t)) + LgL
ρ−1
f h(x(t))u(t). (3.4)

It is assumed that (3.4) can be parameterized as follows:

y[ρ](t) = W1φ1(x(t)) +W2φ2(x(t))u(t) (3.5)

where W1 ∈ Rm×N1 and W2 ∈ Rm×N2 are unknown parameter matrices; φ1(·) : Rn →
RN1 and φ2(·) : Rn → RN2×m are known basis functions.

The following auxiliary system is designed to reconstruct the the dynamics of system

(3.1):



































ŷ[ρ](t) = Ŵ1(t)φ1(x(t)) + Ŵ2(t)φ2(x(t))u(t) − ṡ(t) − λs(t) + ỹ[ρ](t),

˙̂
W1(t) = −K1s(t)φ

T
1(x(t)),

˙̂
W2(t) = −K2s(t)u

T(t)φT
2(x(t)),

(3.6)
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where s(t) is defined as

s(t) =
ρ−1
∑

j=0

αjỹ
[j](t). (3.7)

Besides, ỹ(t) = ŷ(t)−y(t) with ŷ(t) ∈ Rm denoting the auxiliary output vector; Ŵ1(t) ∈
Rm×N1 and Ŵ2(t) ∈ Rm×N2 are auxiliary parameter matrices; K1 ∈ Rm×m and K2 ∈
Rm×m are diagonal positive-definite gain matrices. The auxiliary system is aided by

the concept of sliding mode control with the sliding surface being s(t) = 0, and is thus

called sliding-mode auxiliary system. Note that, different from the traditional sliding

mode control, in the proposed method, we only need to guarantee that limt→∞ s(t) = 0

instead of reaching it in finite time (please refer to the proof of Theorem 1 regarding

limt→∞ s(t) = 0), which is enough for establishing the stability results concluded in this

chapter. Let αρ−1 = 1. Then auxiliary system (3.6) becomes


































ŷ[ρ](t) = Ŵ1(t)φ1(x(t)) + Ŵ2(t)φ2(x(t))u(t) −∑ρ−2
j=0 αjỹ

[j+1](t) − λs(t),

˙̂
W1(t) = −K1s(t)φ

T
1(x(t)),

˙̂
W2(t) = −K2s(t)u

T(t)φT
2(x(t)).

(3.8)

Via properly choosing parameters αj for j = 0, 1, 2, · · · , ρ − 2, it can be guaranteed

that, on the sliding surface s(t) = 0, ỹ(t) = 0 is exponentially stable [42].

Theorem 1: The dynamics of sliding-mode auxiliary system (3.8) asymptotically con-

verges to that of nonlinear system (3.1) of fully-unknown parameters and satisfies

y[ρ](t) = ŷ[ρ](t) = Ŵ1(t)φ1(x(t)) + Ŵ2(t)φ2(x(t))u(t), (3.9)

when t→ +∞.

Proof: Let W̃1(t) = Ŵ1(t) − W1 and W̃2(t) = Ŵ2(t) − W2. Consider the following

candidate Lyapunov function:

V1(t) =
1

2
sT(t)s(t) +

1

2
tr(W̃ T

1 (t)K−1
1 W̃1(t)) +

1

2
tr(W̃ T

2 (t)K−1
2 W̃2(t)).

Subtracting equation (3.5) from the first equation of (3.8) yields

ṡ(t) = −λs(t) + W̃1(t)φ1(x(t)) + W̃2(t)φ2(x(t))u(t). (3.10)
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Chapter 3. LNOC via output feedback with learning of system parameters

Let αρ−1 = 1 for s(t) defined in (3.7). Based on equations (3.10) and (3.8), the following

result is obtained:

V̇1(t) = sT(t)ṡ(t) + tr(W̃ T
1 (t)K−1

1
˙̃W1(t)) + tr(W̃ T

2 (t)K−1
2

˙̃W2(t))

= −λsT(t)s(t) + sT(t)W̃1(t)φ1(x(t)) + sT(t)W̃2(t)φ2(x(t))u(t)

− tr(W̃ T
1 (t)s(t)φT

1(x(t))) − tr(W̃ T
2 (t)s(t)uT(t)φT

2(x(t)))

= −λ‖s(t)‖2
2 + tr(sT(t)W̃1(t)φ1(x(t))) + tr(sT(t)W̃2(t)φ2(x(t))u(t))

− tr(W̃ T
1 (t)s(t)φT

1(x(t))) − tr(W̃ T
2 (t)s(t)uT(t)φT

2(x(t))).

By the property of trace, we have tr(sT(t)W̃1(t)φ1(x(t))) = tr(φ1(x(t))sT(t)W̃1(t)) =

tr(W̃ T
1 (t)s(t)φT

1(x(t))) and tr(sT(t)W̃2(t)φ2(x(t))u(t)) = tr(W̃ T
2 (t)s(t)uT(t)φT

2(x(t))). So,

V̇1(t) = −λ‖s(t)‖2
2. Evidently, V̇1(t) ≤ 0. Let set S = {ỹ(t) ∈ Rm|V̇1(t) = 0}. From

V̇1(t) = 0, one has S = {ỹ(t) ∈ Rm|s(t) = 0}. Recall s(t) =
∑ρ−1
j=0 αjỹ

[j](t). Given that

the coefficients αj for j = 0, 1, 2, · · · , ρ− 1 with αρ−1 = 1 satisfy the Routh stability cri-

terion [42], one has limt→+∞ ỹ(t) = 0. In other words, no solution can stay identically in

set S, other than the trivial solution ỹ(t) = 0. By LaSalle’s invariable set principle [44],

equilibrium point ỹ(t) = 0 is asymptotic stable. It follows that, when t→ +∞,

y[ρ](t) = ŷ[ρ](t) = Ŵ1(t)φ1(x(t)) + Ŵ2(t)φ2(x(t))u(t).

In other words, the dynamics of sliding-mode auxiliary system (3.8) asymptotically con-

verges to that of nonlinear system (3.1) of fully-unknown parameters. �

Based on Theorem 1, an LNOC law for system (3.1) can be designed based on system

(3.9). Given that the outputs of system (3.1) and their time derivatives up to order ρ− 1

are measurable. Let Ê(t) = Yd(t) − Ŷ (t) with Ŷ (t) = [y(t), ẏ(t), · · · , Ŵ1(t)φ1(x(t))].

Similar to the design procedure in the nominal case, a near-optimal control law for

system (3.9) can be design by minimizing the following performance index:

J̄(t) =
∫ T

0

(

Ê(t)w(τ) − τρ

ρ!
Ŵ2(t)φ2(x(t))u(t)

)T
Q
(

Ê(t)w(τ) − τρ

ρ!
Ŵ2(t)φ2(x(t))u(t)

)

dτ.

(3.11)
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3.3. Control design

Evidently,

J̄(t) =
∫ T

0
wT(τ)ÊT(t)QÊ(t)w(τ)dτ − 2

∫ T

0

τρ

ρ!
wT(τ)dτÊT(t)QŴ2(t)φ2(x(t))u(t)

+
∫ T

0

τ 2ρ

(ρ!)2
dτuT(t)(Ŵ2(t)φ2(x(t)))TQŴ2(t)φ2(x(t))u(t),

where E = Yd(t) − Y (t). Recall that

v =
∫ T

0

τρ

ρ!
wT(τ)dτ =

[

T ρ+1

(ρ+ 1)ρ!
,

T ρ+2

(ρ+ 2)ρ!1!
, · · · , T 2ρ+1

(2ρ+ 1)(ρ!)2

]

,

and

κ =
∫ T

0

τ 2ρ

(ρ!)2
dτ =

T 2ρ+1

(2ρ+ 1)(ρ!)2
.

Since the decision variable is u(t), minimizing performance index J̄(t) is equivalent to

minimizing the following quadratic performance index:

Ψ(t) = uT(t)Θu(t) + pTu(t), (3.12)

where Θ = κ(Ŵ2(t)φ2(x(t)))TQŴ2(t)φ2(x(t)) and p = −2(Ŵ2(t)φ2(x(t)))TQTEvT.

Given that Θ is positive-definite, performance index Ψ shown in (3.12) is convex and

the optimal solution can thus be obtained by solving for u(t) from ∂Ψ(t)/∂u = 0. Then,

given that Ŵ2(t)φ2(x(t)) is invertible, the following control law is proposed:

u(t) =
1

κ
(Ŵ2(t)φ2(x(t)))−1(Yd(t) − Ŷ (t))vT, (3.13)

which is an LNOC law for system (3.1) with fully-unknown parameters. The block di-

agram of nonlinear system (3.1) with fully-unknown parameters synthesized by LNOC

law (3.13) and sliding-mode auxiliary system (3.8) is shown in Fig. 3.1.

Remark 1: For LNOC law (3.13), when Ŵ2(t)φ2(x(t)) is singular, a regulation term can

be used. Specifically, one may use νIl +Ŵ2(t)φ2(x(t)) to replace Ŵ2(t)φ2(x(t)), where

ν > 0 ∈ R is a small parameter, e.g., 10−6, with Il being an identity matrix of suitable

dimension. Given that ν is small enough, the control performance is still satisfactory

due to the bounded-input bounded-output property [42].
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u(t)Yd(t)

Ŵ1(t)

Ŵ2(t)

x(t)

Ym(t)

Control Law (3.13) Nonlinear System (3.1)

Auxiliary System (3.8)

Figure 3.1: Block diagram of nonlinear system (3.1) of fully-unknown parameters synthe-

sized by LNOC law (3.13) and sliding-mode auxiliary system (3.8) with the desired out-

put matrix being Yd(t) = [yd(t), ẏd(t), · · · ,y
[ρ]
d (t)] and the measured output matrix being

Ym(t) = [y(t), ẏ(t), · · · ,y[ρ−1](t)].

Figure 3.2: Architecture of the sub neural network associated with W1 with li denoting the ith

element of L
ρ
fh(x).
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3.3. Control design

About the design methodology, we have the following remark from the perspective of

neural networks.

Remark 2: System (3.5) can be viewed as a neural network, for which φ1(x(t)) and

φ2(x(t)) are basis functions of two sub neural networks, for which the weight matrices

W1 and W2 are unknown. For example, the architecture of the sub neural network

associated with W1 can be depicted as Fig. 3.2. The auxiliary system (3.8) provides

an online training mechanism for the weight matrix Ŵ1(t) and Ŵ2(t) so as to make

the auxiliary system dynamics converge to that of system (3.5). Then, the intelligent

controller is designed based on Ŵ1(t) and Ŵ2(t), which is expected to drive the the

system to the desired state.

Theorem 2: Given that relative degree ρ ∈ {1, 2, 3, 4} and Ŵ2(t)φ2(x(t)) is invertible

at each time instant t, the closed-loop system consisting of nonlinear system (3.1) of

fully-unknown parameters and LNOC law (3.13) is asymptotically stable.

Proof: Substituting LNOC law (3.13) into equation (3.5) yields y[ρ](t) = W1φ1(x(t)) +

W2φ2(x(t))(Ŵ2(t)φ2(x(t)))−1(Yd(t)−Ŷ (t))vT/κ. Let W̃1(t) = Ŵ1(t)−W1 and W̃2(t) =

Ŵ2(t) −W2. Then, one has

y[ρ](t) = Ŵ1(t)φ1(x(t)) +
1

κ
(Yd(t) − Ŷ (t))vT − δ(t)

= W1φ1(x(t)) + W̃1(t)φ1(x(t)) +
1

κ
(Yd(t) − Y (t))vT − W̃1(t)φ1(x(t)) − δ(t)

= W1φ1(x(t)) +
1

κ
(Yd(t) − Y (t))vT − δ(t)

= y[ρ](t) + κ
ρ
∑

j=0

T ρ+1+j

(ρ+ 1 + j)ρ!j!
e[j](t) − δ(t),

where δ(t) = W̃1(t)φ1(x(t)) + W̃2(t)φ2(x(t))u(t) and e[j] = y
[j]
d (t) − y[j](t). It fol-

lows that the closed-loop system consisting of nonlinear system (3.1) of fully-unknown

parameters and LNOC law (3.13) is

κ
ρ
∑

j=0

T ρ+1+j

(ρ+ 1 + j)ρ!j!
e[j](t) = δ(t). (3.14)

By Routh stability criterion [42], it can be readily proved that when δ(t) = 0 and ρ ∈
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Chapter 3. LNOC via output feedback with learning of system parameters

{1, 2, 3, 4}, system (3.14) is exponentially stable. Besides, according to Theorem 1,

one has limt→+∞ δ(t) = limt→+∞(W̃1(t)φ1(x(t)) + W̃2(t)φ2(x(t))u(t)) = 0. According

to bounded-input bounded-output stability theory [42], equilibrium point e(t) = 0 of

closed-loop system (3.14) is asymptotically stable. �

Theorem 3: Given that relative degree ρ ∈ {1, 2, 3, 4} and Ŵ2(t)φ2(x(t)) is invertible at

each time instant t, performance index J(t) of nonlinear system (3.1) with fully unknown

parameters synthesized by LNOC law (3.13) is bounded and asymptotically converges

to be optimal.

Proof: With equation (3.5) taken into account, based on Taylor expansion, one has

J(t) =
∫ T

0

(

E(t)w(τ) − τρ

ρ!
W2φ2(x(t))u(t) + ∆1(t)

)T

Q

(

E(t)w(τ) − τρ

ρ!
W2φ2(x(t))u(t)

+ ∆1(t)

)

dτ

=
∫ T

0

(

Ê(t)w(τ) − τρ

ρ!
Ŵ2(t)φ2(x(t))u(t) + ∆1(t) + ∆2(t)

)T

Q

(

Ê(t)w(τ)

− τρ

ρ!
Ŵ2(t)φ2(x(t))u(t) + ∆1(t) + ∆2(t)

)

dτ,

where

∆1(t) =
τρ

ρ!
(y

[ρ]
d (t+ κτ) − y[ρ](t+ κτ) − (y

[ρ]
d (t) − y[ρ](t)))

with κ ∈ (0, 1) and

∆2(t) = τρ(W̃1(t)φ1(x(t)) + W̃2(t)φ2(x(t))u(t))/ρ!.

Recall the definition of performance index J̄(t) in (3.11). Based on triangle inequality,

one further has

J(t) ≤ 2J̄(t) + 2
∫ T

0

τ 2ρ

(ρ!)2
∆T

1(t)Q∆1(t)dτ + 2
∫ T

0

τ 2ρ

(ρ!)2
∆T

2(t)Q∆2(t)dτ

≤ 2J̄(t) + 2
T 2ρ+1

(2ρ+ 1)(ρ!)2
sup

0<κ<1
‖∆1(t)‖2

2‖Q‖2 + 2
T 2ρ+1

(2ρ+ 1)(ρ!)2
‖∆2(t)‖2

2‖Q‖2.

According to Theorem 1,

lim
t→+∞

(W̃1(t)φ1(x(t)) + W̃2(t)φ2(x(t))u(t)) = 0.

52



3.3. Control design

It follows that limt→+∞ ‖∆2(t)‖2
2‖Q‖2 = 0. Besides, according to Theorem 2, when

ρ ∈ {1, 2, 3, 4} and Ŵ2(t)φ2(x(t)) is invertible, nonlinear system (3.1) of fully-unknown

parameters synthesized by LNOC law (3.13) satisfies limt→+∞(y[ρ](t) − y
[ρ]
d (t)) = 0.

It follows that limt→+∞ sup0<κ<1 ‖∆1(t)‖2
2‖Q‖2 = 0. Note that J(t) ≥ 0. In addi-

tion, from the design procedure of near-optimal control law (3.13), it is known that

control law (3.13) is optimal in terms of convex quadratic performance index J̄(t) de-

fined in equation (3.11), which guarantees J̄(t) = 0. Then, by the pinching theorem,

limt→∞ J(t) = 0. �

Remark 3: The performances of the proposed LNOC law (3.13) is theoretically guar-

anteed for nonlinear system (3.1) of fully-unknown parameters when relative degree

ρ ∈ {1, 2, 3, 4}. It is worth pointing out that relative degree ρ of many mechanical

systems is lower than 4 [39].

We also have the following remark about the comparison of the proposed method with

other existing methods.

Remark 4: As indicated in the Introduction section, traditional optimal control ap-

proaches require solving HJB equations, which cannot be solved in a real-time manner.

Through a proper approximation, the proposed one does not need to solve it. Com-

pared with the back-stepping methods, e.g., [51], the proposed method does not re-

quire tedious choices of virtual control laws. Compared with the adaptive sliding mode

control method [77], the proposed method inherently does not introduce the chattering

phenomenon. Compared with the fuzzy neural network based approach [78], the com-

putational burden of the proposed method is even more simpler owing to the lack of

many Gaussian functions to be calculated.
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Figure 3.3: Control performance of uncertain nonlinear system (3.15) synthesized by LNOC law

(3.13) and sliding-mode auxiliary system (3.8) with yd(t) = 0.5 cos(0.5t) + 3.5, T = 0.6, and

Q = 2. (a) Time history of performance index Jn(t) defined in equation (3.3). (b) Time histories

of output y(t) and desired output yd(t). (c) Time history of tracking error e(t) = yd(t) − y(t).

3.4 Illustrative examples

In this section, two illustrative examples are presented to show the efficacy and superi-

ority of the proposed method and verify the theoretical results.

3.4.1 Example 1

Consider the following nonlinear system:



































ẋ1(t) = p1x2(t),

ẋ2(t) = p2x1(t)x2(t) + p3(sin(x2(t)) + 1.1)u(t),

y(t) = x1(t),

(3.15)

The system parameters are p1 = 2, p2 = 4 and p3 = 7. Relative degree ρ of system

(3.15) is 2. Note that our method does not need any prior knowledge on parameter

values of the system, and the actual parameter values are only presented for readers’

possible interest in validating our method. In this example, the parameters of perfor-

mance index (3.3) are set as T = 0.6 and Q = 2. The desired output is given as

yd(t) = 0.5 cos(0.5t) + 3.5. With φ1(x) = x1x2, φ2(x) = sin(x2) + 1.1, λ = 3, α0 = 2,
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Figure 3.4: Time histories of state variables x1(t) and x2(t), control input u(t), ˙̂y(t) of sliding-

mode auxiliary system (3.8), and ẏ(t) of nonlinear system (3.15) during the control process. (a)

Time histories of state variables x1(t) and x2(t). (b) Time history of control input u(t). (c) Time

histories of ˙̂y(t) of sliding-mode auxiliary system (3.8) and ẏ(t) of nonlinear system (3.15).
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Figure 3.5: Time histories of parameters Ŵ1(t) and Ŵ2(t) of sliding-mode auxiliary system (3.8)

during the control process of nonlinear system (3.15) by LNOC law (3.13). (a) Time history of

Ŵ1(t). (b) Time history of Ŵ2(t).

α1 = 1, K1 = 4, K2 = 9, x1(0) = x2(0) = ŷ(0) = ˙̂y(0) = 0, and Ŵ1(0) and Ŵ2(0)

randomly generated at interval (0, 10), the simulation results of nonlinear system (3.15)

synthesized by LNOC law (3.13) are shown in Fig. 3.3 through Fig. 3.5. From Fig. 3.3,

it is observed that performance index Jn(t) rapidly converges to near zero (i.e., opti-

mal), and the output y(t) of nonlinear system (3.15) quickly tracks the desired output

yd(t) with tracking error e(t) = yd(t)−y(t) converging to zero. This validates Theorem 2

and Theorem 3. Besides, a comparison between the time histories of ẏ(t) of nonlinear

system (3.15) and ˙̂y(t) of sliding-mode auxiliary system (3.8) during the control process

is shown in Fig. 3.4(c), which validates Theorem 1. The evolutions of Ŵ1(t) and Ŵ2(t)

are shown in Fig. 3.5. The above results validate the efficacy of the proposed LNOC
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[58] with W1 = W2 = 21

[58] with W1 = 8, W2 = 14

[58] with W1 = 6, W2 = 6

(a)

0 10 20 30 40
0

20

40

60

 

 

t

T = 2

T = 1.5

T = 1

T = 0.5

J

(b)

Figure 3.6: Time histories of performance index Jn. (a) Time histories of performance index

Jn (3.3) of nonlinear system (3.15) synthesized by the proposed LNOC law (3.13) and by the

existing nominal near-optimal control law (18) in [58], where the actual system parameter values

are W1 = 8 and W2 = 14. (b) Time histories of Jn(t) of system (3.15) synthesized by LNOC

law (3.13) under different values of T .
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Figure 3.7: Time history of z3(t) − ẏ where z3(t) is the output of tracking differentiator (3.16)

and ẏ is the output derivative of system (3.15) during the control process.

and the theoretical results.

The performance of LNOC law (3.13) for nonlinear system (3.15) under parameter

uncertainty is compared with that of nominal near-optimal control law (18) in [58]. The

values of Ŵ1(0) and Ŵ2(0) for auxiliary system (3.8) are set as Ŵ1(0) = Ŵ2(0) = 21.

The values of W1 and W2 in nominal near-optimal control law (18) in [58] are set as

different values for comparison. The initial states of nonlinear system (3.15) are set

as x1(0) = 3, x2(0) = 5. Meanwhile, we set ŷ(0) = 3 and ˙̂y(0) = 10 for auxiliary

system (3.8). Other parameter values are set the same as the previous ones. Under

these setups, time histories of performance index Jn (3.3) of nonlinear system (3.15)

synthesized by the two control laws respectively are shown in Fig. 3.6(a). From this
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Figure 3.8: Time histories of variables during the control process of system (3.15) via LNOC

law (3.13) aided with auxiliary system (3.8) and tracking differentiator (3.16). (a) Time histories

of state variables x1(t) and x2(t). (b) Time histories of system output y(t) and desired output

yd(t). (c) Time history of tracking error e(t) = yd(t)−y(t). (d) Time history of parameter Ŵ1(t).

(e) Time history of parameter Ŵ2(t). (e) Time history of input u(t).

figure, it can be observed that LNOC law (3.13) is superior to the nominal near-optimal

control law under parameter uncertainty of the controlled system.

In addition, with Ŵ1(0) = Ŵ2(0) = 20, and the other parameters being the same as

those of the above simulation, time histories of Jn(t) (3.3) of system (3.15) synthesized

by LNOC law (3.13) under different values of T are shown in Fig. 3.6(b). This figure

shows that under different values of T , performance index Jn(t) of system (3.15) is

optimized by the proposed LNOC law (3.13). Besides, the convergence speed of the

performance index is related to the value of T > 0. Specifically, when T is smaller, the

convergence is faster.
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Figure 3.9: Time histories of variables during the control process of van der Pol oscillator (3.17)

via LNOC law (3.13) aided with auxiliary system (3.8) and tracking differentiator (3.16). (a) Time

histories of performance index J(t). (b) Time histories of state variables x1(t) and x2(t). (c)

Time histories of system output y(t) and desired output yd(t). (d) Time history of tracking error

e(t) = yd(t) − y(t). (e) Time history of parameter ǫ̂. (f) Time history of input u(t).

3.4.2 Example 2

A major difference of the proposed method compared with most existing controllers is

on the time derivatives of system outputs. When there are not available sensors to

measure output derivatives of a system, tracking differentiators as in [71–73] can be

used to construct the required derivatives for the output measurement. For example,

to obtained the first-order derivative of a measurable function w(t) ∈ R, the following

first-order robust exact tracking differentiator [72] can be used:


































ż1(t) = z2(t) −
√
C|z1(t) − w(t)|1/2sign(z1(t) − w(t)),

ż2(t) = −1.1Csign(z1(t) − w(t)),

z3(t) = z2(t) −
√
C|z1(t) − w(t)|1/2sign(z1(t) − w(t)),

(3.16)
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3.5. Application to van der Pol oscillator

where z3(t) is the output of the tracking differentiator, which converges to ẇ(t) in finite

time; C > 0 ∈ R is the design parameters and should be large enough. Note that high-

order tracking differentiators for tracking high-order derivatives can be found in [73].

To see the performance of the proposed LNOC law under the situation that the time

derivatives are not directly available, simulations are also conducted based on Example

1. Specifically, the output of system (3.15) is used as the input of tracking differentiator

(3.16), i.e., we let w(t) = y(t). Besides, the output of tracking differentiator (3.16), i.e.,

z3 is used in intelligent control law (3.13) to replace ẏ(t). Without loss of generality, the

initial values of the state variables of the tracking differentiator are set to zero in the

simulation. Besides, according to [73], the value of parameter C is set to 200. With the

other setups being the same as those in Example 1, simulation results are shown in

Fig. 3.7 and Fig. 3.8. These results substantiate the efficacy of the proposed intelligent

control law in the case that output derivatives are not directly available.

3.5 Application to van der Pol oscillator

In this section, we further present the application of the proposed control method to a

van der Pol oscillator [75], which is important in electronic circuits to generate respec-

tive electronic signals, such as the sine wave. The model of the van der Pol oscillator

is given as follows:


































ẋ1 = x2,

ẋ2 = −ǫ(x2
1 − 1)x2 − x1 + u,

y = x1,

(3.17)

where ǫ > 0 is a constant parameter of the system which depends on the corresponding

circuit. In this application, only y is directly measurable, ǫ = 0.3, and the desired

signal yd(t) = sin(0.5t) + 0.2. The parameters of performance index (3.3) are set as

T = 0.3 and Q = 2. The proposed method is used to address the problem without
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Chapter 3. LNOC via output feedback with learning of system parameters

(a) (b)

Figure 3.10: Experimental platform for the DC motor control system. (a) A picture of the DC

motor control system. (b) The overall system diagram in terms of signal transmissions.

using the exact value of ǫ. As in Example 2, we use tracking differentiator (3.16) to

obtain the derivative of y. The results are shown in Fig. 3.9 for the setup that φ1(x) =

[−(x2
1 − 1)x2,−x1]

T, φ2 = 1, W1 = [ǫ̂, 1]T, W2 = 1, λ = 3, α0 = 2, α1 = 1, K1 = 7,

x1(0) = x2(0) = ŷ(0) = ˙̂y(0) = 0, and ǫ̂ is randomly generated at interval (0, 1). These

results further verify the efficacy and practical significance of the proposed method.

3.6 Experimental validation

In this section, experimental results and comparisons are provided to show the efficacy

and superiority of the proposed method.

The prototype of a motor control system shown in Fig. 3.10 is used in the experiment.

The system power is provided by a 9-V 1-A AC/DC adaptor. The proposed control

method is implemented in the Arduino UNO board, and the control input computed by

the proposed method is converted into PWM signal which is fed into the 12-V motor

drive by using a Arduino command analogwrite(pin,value). The microcontroller of the

Arduino UNO board used in the experiments is ATmega328P [82], which is a low-power

CMOS 8-bit microcontroller and the clock speed is 16 MHz. In Arduino UNO, the value

can be 0 to 255, which corresponds to 0 to 100% PWM. The conversion rule is thus as
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Figure 3.11: Data profiles during the experiment of the tracking control of the DC motor by the

proposed LNOC method with saturation (3.19) based on the model (3.18). (a) Time history

of motor angle θ(t) and desired angle θd(t). (b) Time histories of input u generated by the

proposed controller (3.13) with saturation specified in (3.19). (c) Time histories of parameters

estimated by the auxiliary system. (d) Time history of ω estimated via the tracking differentiator

(3.16) with the input being the joint angles measured by the encoder, which is denoted by ωe.

follows:

value =
255u

12
,

where u denotes the input generated by the proposed controller. The motor angle

position is measured by an encoder, which generates 1040 pulses when the motor

rotates for a circle. Note that, in the system configuration, the computer is only used

to store the data sent by the Arduino UNO. In the experiments, all the computations

are conducted by the Arduino UNO. The codes are written and complied via the open-
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Figure 3.12: Data profiles during the experiment of the tracking control of the DC motor by

the PID controller and its performance comparison with the proposed adaptive near-optimal

controller (ANOC) with saturation (3.19). (a) Time history of motor angle θ(t) and desired

angle θd(t). (b) Time histories of input u generated by the PID controller with saturation. (c)

Comparison of performance index J defined in (3.3) when different controllers are used. (d)

Comparison of tracking error |θ(t) − θd(t)|.

source Arduino software Arduino IDE. A block schematic diagram is shown Fig. 3.10

to better illustrate the proposed motor control system.

The DC motor system is essentially a nonlinear system owing to the existence of dead-

zone and friction, both of which are nonlinear terms. As it is difficult to model dead-

zone and friction effect accurately, we use a term c3 in (3.18) to represent the sum

of the nonlinear terms about the dead-zone and friction effects [83], including other

unmodelled disturbances. In the experiment, the motor system dynamics is modelled

as follows:














θ̇ = ω,

ω̇ = −c1ω + c2u+ c3,

(3.18)

where θ and ω denotes the motor angle and angle velocity respectively; c1 > 0 and
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c2 > 0 are system parameters, and c3 denotes the sum of disturbances and unmodelled

terms, such as frictions; u denotes the input voltage of the motor. The system model is

based based on the Newton’s law. Multiplying both sides of the second sub-equation of

(3.18) with the mass yields the result obtained via the Newton’s law. Note that, for the

proposed method, the focus is not on identifying the parameter values of the system,

but on realizing the LNOC. Evidently, the system has a well-defined relative degree

ρ = 2. The model can be viewed as an extended version of the one in [76] by adding a

disturbance term c3. In the experiment, the term ω, i.e., θ̇, is obtained via the tracking

differentiator (3.16) in the manuscript with θ being the input. The obtained value of ω

is denoted as ωe. In the experiment, the motor angle θ is expected to track a desired

trajectory θd = 2 sin(4πt) + 1 rad, the parameters of the performance index is set to

T = 0.001 s andQ = 1000, the parameter of the tracking differentiator is set toC = 100,

the parameters of the auxiliary system (3.6) is set to λ = 0.1, K1 = diag([0.2, 0.4]T),

and K2 = 0.1. As the auxiliary system is directly constructed based on ωe in the

experiment, αi = 0. As the control method is implemented on the Arduino UNO, the

auxiliary system and the tracking differentiator is discretized by using the Euler formula

with the step-size being the sampling gap of the control system, which is set to 1 ms.

For the sake of safety, the input is given as us = sat(u) where u is calculated by

equation (15) in the manuscript and the saturation function sat(·) is defined as follows:

sat(u) =



































7, if u > 7;

u, if − 7 < u < 7;

−7, if u < −7.

(3.19)

The saturation function guarantees that the maximal magnitude of the input voltage

to the DC motor is 7 V. During the experiment, all the necessary data are sent to a

computer every 10 ms by the serial communication port of the Arduino UNO board

with the baud rate being 115200. The experimental results are shown in Fig. 3.11.

The maximum tracking error is maxt∈[0,8](|θ(t) − θd(t)|) = 1.57 rad, which is the initial

tracking error. The minimum tracking error is mint∈[0,8](|θ(t) − θd(t)|) ≈ 0 rad. The
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Chapter 3. LNOC via output feedback with learning of system parameters

Table 3.1: Performance Measures for the Motor Control Experiment Without Artificially Added

Load Disturbance
Performance measure Value (rad)

Maximum tracking error 1.57*

Minimum tracking error 0

Average tracking error 0.0108

Standard deviation of tracking error 0.1963

Note*: The maximum tracking error is the initial error.

Figure 3.13: The experiment setup regarding the generation of load disturbance.

average tracking error is 0.0108 rad. The standard deviation of the tracking error is

0.1963 rad. The measures are listed in Table 3.1. The results verify the efficacy of the

proposed method

Note that, in the experiments, we do not have any prior knowledge about the values of

the parameters of the DC motor system, i.e., the parameters are uncertain. The pro-

posed method does not need any prior knowledge about the values of the parameters

of the control system.

For comparison, experiments are also conducted by using the following proportional-

integral-derivative (PID) controller:

us(t) = sat(Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kdė(t)),
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Figure 3.14: Data profiles during the experiment of the tracking control of the DC motor by the

proposed LNOC method with saturation (3.19) based on the model (3.18) with artificially added

load disturbance as shown in Fig. 3.13. (a) Time history of motor angle θ(t) and desired angle

θd(t). (b) Time histories of input u generated by the proposed controller (3.13) with saturation

specified in (3.19). (c) Time histories of parameters estimated by the auxiliary system. (d) Time

history of ω estimated via the the tracking differentiator. (e) Time history of performance index

J(t). (f) Time history of tracking error |θ(t) − θd(t)|.

where e(t) = θd(t)−θ(t). Under the same settings, with Kp = 45, Ki = 0.01, andKd =

7, which are tuned via the trial-and-error method [79–81], the experimental results are

shown in Fig. 3.12. As seen from this figure, when the PID controller is used, the

tracking performance becomes worse. Our reasons for the worse performance are as

follows. 1) the reference signal used in the experiment is a fast time-varying signal,

compared with the general regulation tasks; 2) the used DC motor has a dead-zone.

As seen from the figure, the tracking performance of the PID controller becomes worse

when the motor needs to change the rotation direction. Particularly, from Fig. 3.12(c),

it is observed that the performance index is much better when the proposed LNOC law

is used compared with the case with the PID controller.
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Table 3.2: Performance Measures for the Motor Control Experiment With Artificially Added Load

Disturbance
Performance measure Value (rad)

Maximum tracking error 1.57*

Minimum tracking error 0

Average tracking error 0.0135

Standard deviation of tracking error 0.1812

Note*: The maximum tracking error is the initial error.

We also conduct experiments based on the motor system for the case with load dis-

turbance. The load disturbance is generated via using a pen to introduce more fric-

tions to the motor shaft (as shown in Fig. 3.13). With the same parameter set-

tings stated above, the experimental results when the proposed control method is

used are shown in Fig. 3.14. As seen from the figure, the tracking performance

is still satisfactory. The experimental data show that the maximum tracking error is

maxt∈[0,8](|θ(t) − θd(t)|) = 1.57 rad, which is the initial tracking error. The minimum

tracking error is mint∈[0,8](|θ(t) − θd(t)|) ≈ 0 rad. The average tracking error is 0.0135

rad. The standard deviation of the tracking error is 0.1812 rad. The measures are also

listed in Table 3.2. The values of the measures are similar to the case without artificially

added load disturbance.

These experimental results validate the efficacy, superiority, realizability, and online

control capability of the proposed method.

Before ending this section, we offer the following remark about the performance verifi-

cation of the proposed method.

Remark 5: Firstly, the performance of the proposed approach is theoretically guaran-

teed. Secondly, we use vast simulation and experimental results to verify the theoretical

results and the performance of the proposed method. Meanwhile, PID control is widely

used in DC motor control. The comparison with the PID controller shows the superiority
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of the proposed method. As indicated in the experiment, our method does not require

other physical measurement compared with the PID control. Meanwhile, our method

bears online control capability as PID, which is implemented via a low-cost Arduino

UNO control board.

We also have the following remark about the potential of the proposed method in in-

dustrial applications.

Remark 6: In terms of the DC motor control, our method can be directly applied with the

same setting shown in our experiments. It can be expected that with better encoders

and microcontrollers, better control performance can be achieved. The comparison

of the proposed scheme with commercial DC motor controller products can be further

explored.

Regarding the extension of the proposed method to discrete time, we have the following

remark.

Remark 7: An intuitive method is to perform the Euler difference rule for the system

dynamics and so for the auxiliary systems. If we would like to directly formulate the

problem in the discrete-time space, meaning that both the performance index and sys-

tem dynamics are in discrete time. The ideas in the proposed method could be used,

i.e., using some expansion approach for the system output to have the control input

term, and approximating the performance index via the expansion. This could be fur-

ther investigated.

3.7 Chapter summary

In this chapter, an LNOC law based on a sliding-mode auxiliary system has been de-

signed and proposed for nonlinear systems of fully-unknown parameters. Theoretical

analysis has shown that the sliding-mode auxiliary system asymptotically reconstructs

the dynamics of the controlled nonlinear system. Rigorous analysis has also shown
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Chapter 3. LNOC via output feedback with learning of system parameters

that the proposed intelligent near-optimal control law simultaneously guarantees the

asymptotic stability of the closed-system and the asymptotic optimality of the perfor-

mance index. Furthermore, two illustrative examples and an application to a van de

Pol oscillator have validated the efficacy of the proposed LNOC law. The realizability,

performance, and superiority of the proposed method has also been validated through

physical experiments based on a DC motor.
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Chapter 4

LNOC for a class of nonlinear systems

with learning of system dynamics

In this chapter, a novel model-free learning and near-optimal control method is pro-

posed for nonlinear systems via utilizing the Taylor expansion based problem relax-

ation, the universal approximation property of sigmoid neural networks, and the con-

cept of sliding-mode control.1 By making approximation for the performance index, it is

first relaxed to a quadratic program, and then a linear algebraic equation with unknown

terms. An auxiliary system is designed to reconstruct the input-to-output property of

the control systems with unknown dynamics, so as to tackle the difficulty caused by

the unknown terms. Then, by considering the property of the sliding-mode surface,

an explicit LNOC law is derived from the linear algebraic equation. Theoretical analy-

sis shows that the auxiliary system is convergent, the resultant closed-loop system is

asymptotically stable, and the performance index asymptomatically converges to opti-

mal. An illustrative example and experimental results are presented, which substantiate

the efficacy of the proposed method and verify the theoretical results.

1The content in this chapter has already been published. Yinyan Zhang, Shuai Li, and Xiaoping

Liu, “Neural network-based model-free adaptive near-optimal tracking control for a class of nonlinear

systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 12, pp. 6227–6241, 2018.
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4.1 Introduction

Owing to the universal approximation capability, neural network based adaptive con-

trol methods have received more and more research interests in recent decades. For

example, based on the backstepping technique, Wang et al. [86] proposed a neural net-

work adaptive tracking control algorithm for uncertain nonlinear systems with unmod-

eled dynamics in the nonlower triangular form, which guarantees semi-global bound-

edness of all signals of the resultant closed-loop system. By combining backstepping

and dynamic surface control techniques as well as the universal approximation ca-

pability of neural networks, Zhou et al. [87] proposed a novel approximation-based

adaptive tracking control method for strict-feedback nonlinear systems with input satu-

ration. The method proposed in [87] was later extended to a class of nonstrict-feedback

systems [88]. Considering that backstepping based adaptive control methods may en-

counter the explosion of complexity and circular issues, Na et al. [89] proposed an

adaptive control method for nonlinear pure-feedback systems without using the back-

stepping technique. The result in [89] indicates that, by utilizing coordinate state trans-

formation, the state feedback control of pure-feedback systems can be transformed

into the output-feedback control of canonical systems. Neural networks have also been

applied to the control of robotic manipulators at the kinematics level or the dynam-

ics level [95–97]. In [98], the adaptive neural control for the attitude and position of

a flapping wing micro aerial vehicle was reported, where a disturbance observer is

also adopted. In [99], a neural network based control method was proposed for a

piezoelectric-actuated stick-lip device. It is observed that most of the existing adaptive

control methods do not consider optimality.

In this chapter, we consider the receding-horizon optimal tracking control problem of a

class of continuous-time nonlinear systems with fully unknown dynamics, which include

the strict feedback nonlinear systems as considered in [105] for instance as special

cases. The problem is relaxed to a quadratic program via output prediction with the
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aid of Taylor expansion and the universal approximation capability of sigmoid neural

networks and a linear algebraic equation with unknown terms is thus derived. Based

on the sliding-mode control concept [89–91], an auxiliary system is designed to recon-

struct the input-to-output property of the systems. By considering the property of the

sliding-mode surface, an LNOC law is derived from the linear algebraic equation.

The rest of this chapter is organized in the following manner. In Section 4.2, the in-

vestigated problem is presented and some preliminaries are provided. In Section 4.3,

the design process of the proposed model-free LNOC law is illustrated. In Section 4.4,

theoretical results are provided to guarantee the performance of the proposed method.

In Section 4.5, an illustrative examples is shown and discussed to substantiate the

efficacy of the proposed method and to verify the theoretical results. In Section 4.6,

the experimental validation for the performance of the proposed method is shown. In

Section 4.7, conclusions for this chapter are provided.

4.2 Problem description and preliminary

In this section, the problem investigated in this chapter is presented. Besides, some

helpful preliminaries are provided.

4.2.1 Problem description

In this chapter, the following class of nonlinear systems is considered:















ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t)),

(4.1)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn denotes the state vector, y(t) ∈ R denotes

the system output, and u(t) ∈ R denotes the system input; f(·) : Rn → Rn, g(·) :

Rn → Rn, and h(·) : Rn → R denote unknown smooth functions. Note that g(x(t)) is
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Chapter 4. LNOC for a class of nonlinear systems with learning of system dynamics

referred to as the input gain. Without loss of generality, we assume that g(x(t)) 6= 0

for any time instant t and that the system output y(t) has a well-defined relative degree

ρ [6, 39, 86, 109]. Note that examples of this class of systems with known relative

degrees independent from unknown functions include many mechanical systems [90]

and strict-feedback nonlinear systems [92]. Throughout this chapter, the standard Lie

derivative notation and the definition of relative degree are utilized [39]. By the definition

of relative degree,LgL
ρ−1
f h(x(t)) 6= 0 for all x. Without loss of generality, in this chapter,

we assumed that LgL
ρ−1
f h(x(t)) ≥ d0 > 0, where d0 is a known small positive number.

In this chapter, the objective is to design a control law for system (4.1) such that the

tracking error defined by e(t) = yr(t) − y(t) between system output y(t) and the ref-

erence output yr(t) asymptotically converges to zero under the assumption that the

kth-order time derivatives y
[k]
r (t), with k = 0, 1, · · · , ρ, and y

[0]
r (t) = yr(t) are continu-

ous and bounded. Considering that the integral action is capable of enhancing system

tracking performance at the steady state as well as robustness against uncertainties

and noise [100], the control objective is formulated as the following receding-horizon

optimal tracking control problem [6,100–103]:

minimizeu(t) J(t)

subject to ẋ(t) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t)),

(4.2)

where performance index J(t) is defined as

J(t) =
∫ T

0
(yr(t+ τ) − y(t+ τ))2dτ, (4.3)

where constant T > 0 ∈ R denotes the predictive period for each time instant t.

Remark 1: The main challenges for the problem considered in this chapter lie in two

aspects.

1) Receding-horizon optimal tracking control problem (4.7) is a nonlinear optimiza-

tion problem with an integration-type performance index, an ordinary differential
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equation constraint, and an algebraic equation constraint. In this optimization

problem, the decision variable is input u(t), which is not explicitly included in the

performance index. This problem is difficult to solve analytically, which requires

the solution of nonlinear Hamilton-Jacobi-Bellman equations [6]. Up to today,

there are no systematic approaches in existing literature to solve it accurately.

Besides, numerically solving this complex optimization problem at each time in-

stant is computationally intensive [6,101].

2) Different from the cases considered in [6, 100–103], in this chapter, the system

dynamics are fully unknown, i.e., f(x(t)), g(x(t)), and h(x(t)) are fully unknown.

Regarding the performance index adopted in this chapter, we have the following re-

mark.

Remark 2: A performance index with the control input taken into account was provided

in [113], i.e., J(t) = ν(yr(t+ τ)− y(t+ τ))+ a
∫ T
0 (yr(t+ τ)− y(t+ τ))2dτ + b

∫ T
0 (ur(t+

τ)− u(t+ τ))2dτ, where a > 0 ∈ R, b > 0 ∈ R, and ν(·) needs to be a continuous and

differentiable function with ν(0) = 0 and ν(x) > 0, ∀x 6= 0; ur(t) is the input function

with which the output of the system ẋ = f(x) + g(x)ur(t), y(t) = h(x(t)) satisfies

y(t) = yr(t). Evidently, the physical meaning of such a performance index is not clear

and it requires the knowledge of ur(t). Actually, under system uncertainty, it is more

difficult to obtain ur(t). In practice, using the performance index (4.3) means that the

control accuracy is far more important than the energy consumption.

4.2.2 Sigmoid neural network

Neural networks are well known for their function approximation capability. In this chap-

ter, we use single-hidden-layer sigmoid neural networks to approximate any unknown

function Fu(z) : Rn → R to facilitate the model-free LNOC of system (4.1). The consid-
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Figure 4.1: Block diagram of single-hidden-layer sigmoid neural network (4) with l neurons in

the hidden layer.

ered sigmoid neural network takes the following form:

Fnn(z) =
l
∑

j=1

wojσj(w
T
ijz), (4.4)

where z = [z1, z2, · · · , zn]T ∈ Rn denotes the input vector of the sigmoid neural

network; wo = [wo1, wo2, · · · , won]
T ∈ Rn is the weight vector of the output-layer;

wij = [wij1, wij2, · · · , wijn]
T ∈ Rl is the input-layer weight vector with respect to the

jth input neuron with j = 1, 2, · · · , n; σj(·) is the sigmoid activation function of the jth

hidden neuron, which is defined as

σj(x) =
1

1 + exp(−cj(x− bj))
, (4.5)

where parameter cj > 0 ∈ R characterizes the sharpness of the jth sigmoid function

and bj ∈ R is a bias term determining the center of the jth sigmoid function. A block

diagram of the sigmoid neural network is shown in Fig. 4.1.

Lemma 1 (Universal Approximation [94, 114, 115]): Consider sigmoid neural network

(4.4) with sufficient number of neurons. If parameters cj and bj of sigmoid activation

function (4.5), and wij are randomly chosen, then for any continuous function F : Rn →
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R, for any ε0 > 0, there exist an positive integer l and an optimal weight vector w∗
o such

that

sup
z∈Rn

|F (z) −
l
∑

j=1

w∗
ojσj(w

T
ijz)| ≤ ε0.

Remark 3: Lemma 1 is also referred to as the universal approximation property. It in-

dicates that, if the number of neurons is sufficiently large, sigmoid neural network (4.4)

can approximate any continuous function with any degree of accuracy. It follows that

the difficulty caused by unknown dynamics arising in the control design for nonlinear

systems can be addressed by utilizing sigmoid neural networks. In addition, Lemma 1

also indicates that when utilizing sigmoid neural networks to approximate continuous

functions, constant weight vectors wij , and constant parameters cj and bj of sigmoid

activation function (4.5) can be randomly chosen.

4.2.3 Problem reformulation

For system (4.1) with relative degree ρ, based on the definitions of relative degree and

Lie derivatives [39], one readily has

y[ρ](t) = Lρfh(x(t)) + LgL
ρ−1
f h(x(t))u(t).

By the universal approximation property (see Lemma 1) of sigmoid neural networks,

ignoring the approximation error ε0 [110], if the number of neurons is sufficiently large,

then there exist ideal unknown weight vectors w∗
o and w′∗

o such that Lρfh(x(t)) and

LgL
ρ−1
f h(x(t)) can be represented asLρfh(x(t)) =

∑l
j=1w

∗
ojσj(w

T
ijx(t)) andLgL

ρ−1
f h(x(t)) =

∑l
j=1w

′∗
ojσj(w

T
ijx(t)), respectively. It follows that the input-to-output relationship of non-

linear system (4.1) can be reformulated as follows:

y[ρ](t) =
l
∑

j=1

w∗
ojσj(w

T
ijx(t)) +

l
∑

j=1

w′∗
ojσj(w

T
ijx(t))u(t). (4.6)
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Then, problem (4.2) is reformulated as

minimizeu(t) J(t)

subject to y[ρ](t) =
l
∑

j=1

w∗
ojσj(w

T
ijx(t)) +

l
∑

j=1

w′∗
ojσj(w

T
ijx(t))u(t),

(4.7)

where w∗
o and w′∗

o are unknown.

4.3 Control design

In this section, the control design process is illustrated. Since the parameters of sys-

tem (4.6) are unknown, we first design an auxiliary system with the aid of sliding-mode

control to reconstruct the input-to-output property of the system. Then, based on the

property of the sliding-mode surface, a near-optimal control law is designed and pro-

posed. For the convenience of illustration and readability, the corresponding theoreti-

cally analysis is presented in the next section.

4.3.1 Problem relaxation

In this subsection, the receding-horizon optimal tracking control problem (4.7) is suc-

cessively relaxed to an unconstrained quadratic program and a linear algebraic equa-

tion with unknown terms.

By Taylor expansion, the system output at time instant t + τ can be predicted via the

one at time instant t, i.e.,

y(t+ τ) ≈ y(t) + τ ẏ(t) +
τ 2

2!
y[2](t) + · · ·+ τρ

ρ!
y[ρ](t), (4.8)

where y[i](t) denotes the i-th order time derivative of y(t) with i = 0, 1, 2, · · · , ρ and

y[0](t) = y(t). Substituting equation (4.6) into equation (4.8) yields

y(t+ τ) ≈ ̺T(τ)Υ(t) +
τρ

ρ!

l
∑

j=1

w′∗
ojσj(w

T
ijx(t))u(t), (4.9)
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where

Υ(t) = [y(t), ẏ(t), · · · , y[ρ−1],
l
∑

j=1

w∗
ojσj(w

T
ijx(t))]T

and

̺(τ) = [1, τ, τ 2/2, · · · , τρ/ρ!]T.

Similarly, the reference output at time instant t+ τ can be predicted as follows:

yr(t+ τ) ≈ ̺T(τ)Υr(t), (4.10)

where Υr(t) = [yr(t), ẏr(t), · · · , y[ρ]
r (t)]T.

Let Υ̌(t) = Υr(t)−Υ(t). Based on equations (4.9) and (4.10), performance index (4.3)

is relaxed in the following manner:

J(t) ≈ Ĵ(t)

=
1

2

∫ T

0
(̺T(τ)Υ̌(t) − τρ

ρ!

l
∑

j=1

w′∗
ojσj(w

T
ijx(t))u(t))2dτ

=
1

2

∫ T

0

(

(̺T(τ)Υ̌(t))2 − 2τρ

ρ!
̺T(τ)Υ̌(t)

l
∑

j=1

w′∗
ojσj(w

T
ijx(t))u(t)

+
τ 2ρ

(ρ!)2
(
l
∑

j=1

w′∗
ojσj(w

T
ijx(t)))2u2(t)

)

dτ

=
1

2

∫ T

0
(̺T(τ)Υ̌(t))2dτ − ̺intΥ̌(t)

l
∑

j=1

w′∗
ojσj(w

T
ijx(t))u(t) +

T 2ρ+1

2(2ρ+ 1)(ρ!)2
(
l
∑

j=1

w′∗
oj

· σj(wT
ijx(t)))2u2(t),

where constant vector ̺int is calculated by

̺int =
∫ T

0
τρ̺T(τ)/ρ!dτ =

[

T ρ+1

(ρ+ 1)ρ!
,

T ρ+2

(ρ+ 2)ρ!1!
, · · · , T 2ρ+1

(2ρ+ 1)(ρ!)2

]

. (4.11)

Evidently, Ĵ(t) is a quadratic performance index with system input u(t) being the deci-

sion variable. In other words, the complicated nonlinear optimization problem (4.7) is

relaxed to the following unconstrained quadratic program:

min
u(t)

1

2
p(t)u2(t) − q(t)u(t) + c(t),
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where

p(t) =
T 2ρ+1(

∑l
j=1w

′∗
ojσj(w

T
ijx(t)))2

(2ρ+ 1)(ρ!)2
,

q(t) = ̺intΥ̌(t)
l
∑

j=1

w′∗
ojσj(w

T
ijx(t)),

and

c(t) =
1

2

∫ T

0
(̺T(τ)Υ̌(t))2dτ.

Note that c(t) can be removed from the unconstrained quadratic program since u(t) is

not explicitly included in the expression of c(t), which does not affect the solution to the

program [116]. Since p(t) ≥ 0, the quadratic program is convex. Then, the optimal

input can be obtained via solving ∂Ĵ(t)/∂u = 0, i.e.,

−̺intΥ̌(t) +
T 2ρ+1∑l

j=1w
′∗
ojσj(w

T
ijx(t))u(t)

(2ρ+ 1)(ρ!)2
= 0,

from which the following equation is derived:

−
ρ−1
∑

i=0

T i

(ρ+ 1 + i)i!
(y[i]

r (t) − y[i](t)) − T ρ

(2ρ+ 1)ρ!
y[ρ]

r (t)

+
T ρ

(2ρ+ 1)ρ!
(
l
∑

j=1

w∗
ojσj(w

T
ijx(t)) +

l
∑

j=1

w′∗
ojσj(w

T
ijx(t))u(t)) = 0. (4.12)

By the above steps, receding-horizon optimal tracking control problem (4.7) for non-

linear system (4.6) is relaxed to an algebraic equation with unknown terms w∗
o and

w′∗
o .

Remark 4: The linear algebraic equation is a result of approximating performance index

(4.3) with all the constraints in the receding-horizon optimal tracking control problem

considered. Specifically, during the problem relaxation process, the algebraic equa-

tion constraint and the ordinary differential equation constraint are incorporated when

approximating the system output at future time instant t+ τ .
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4.3.2 Reconstruction of input-to-output dynamics

Form the previous subsection, the solution to equation (4.12) depends on the fully

unknown terms w∗
o and w′∗

o , which are closely related to the input-to-output property

of nonlinear system (4.6). In this subsection, an auxiliary system is designed and

proposed to reconstruct the input-to-output dynamics of system (4.6), which makes

solving equation (4.12) feasible.

Evidently, the problem becomes finding a group of woj(t) and w′
oj(t) to satisfy the

following condition:

lim
t→+∞

((
l
∑

j=1

woj(t)σj(w
T
ijx(t)) +

l
∑

j=1

w′
oj(t)σj(w

T
ijx(t))u(t)) − (

l
∑

j=1

w∗
ojσj(w

T
ijx(t))

+
l
∑

j=1

w′∗
ojσj(w

T
ijx(t))u(t))) = 0.

To this end, we design the following auxiliary system:


















































ŷ[ρ](t) =
∑l
j=1woj(t)σj(w

T
ijx(t)) +

∑l
j=1w

′
oj(t)σj(w

T
ij · x(t))u(t) −∑ρ−2

j=0 αj ỹ
[j+1](t)

− λφ(s(t)),

ẇoj(t) = −γs(t)σj(wT
ijx(t)), j = 1, 2, · · · , l,

ẇ′
oj(t) = −γs(t)σj(wT

ijx(t))u(t) − pj(t), j = 1, 2, · · · , l,
(4.13)

where s(t) =
∑ρ−1
j=0 αj ỹ

[j](t) with ỹ(t) = ŷ(t) − y(t), αρ−1 = 1, and αj > 0 for j =

0, 1, · · · , ρ − 2; φ(·) : R → R is a monotonically increasing odd activation function;

λ > 0 ∈ R is a parameter used to scale the output response to its displacement

compared with the output of system (4.6); γ > 0 ∈ R is a parameter used to scale

the parameter response to the output difference between auxiliary system (4.13) and

system (4.6). In addition, pj(t) is the jth element of p(w′
o(t)) and

p(w′
o(t)) =



















w′
o(t), if w′

o(t) ∈ Ω,

‖γs(t)σvec(t)u(t)‖2

(

(w′
o(t))

Tσvec(t)

‖σvec(t)‖2
− d0

‖σvec(t)‖2

)

σvec(t)

‖σvec(t)‖2
, if w′

o(t) /∈ Ω,

(4.14)
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Figure 4.2: Block diagram for the implementation of the proposed LNOC for nonlinear system

(4.1) with fully unknown dynamics.

where we have set Ω = {w′
o ∈ Rl|∑l

j=1w
′
oj(t)σj(w

T
ijx(t)) ≥ d0}, vector σvec(t) =

[σ1(w
T
i1x(t)), σ2(w

T
i2x(t)), · · · , σl(wT

ilx(t))]T, and ‖ · ‖2 denotes the 2-norm of a vector.

By the definition of the sigmoid function shown in equation (4.5), each element of σvec(t)

is strictly bigger than zero for any time instant t. It follows that ‖σvec(t)‖2 > 0 for any t,

i.e., p(w′
o(t)) is well-defined.

We offer the following remark concerning the underlying intuitions in the design of aux-

iliary system (4.13).

Remark 5: The design of auxiliary system (4.13) is inspired by the progresses of sliding-

mode control [89–91, 117] and dynamical neural networks [118, 119]. In auxiliary sys-

tem (4.13), the sliding-mode surface is defined by s(t) = 0. The parameter evolution

rules in (4.13) are designed for the consideration to guarantee that s(t) asymptotically

converges to zero, which is theoretically analyzed latter on. On the sliding-mode sur-

face, by properly choosing parameters αj for j = 0, 1, · · · , ρ − 1, such that all the

roots of characteristic equation
∑ρ−1
j=0 αjν

j are located on the left half-plane, ỹ(t) = 0 is

asymptotically stable [120]. It is worth pointing out that unlike [89–91,117], the sliding-

mode concept is utilized in this chapter to facilitate the dynamics reconstruction so as

to solve the aforementioned linear algebraic equation with unknown terms, instead of
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designing sliding-mode controllers or state observers. Considering that nonlinear acti-

vation functions are widely used in dynamical neural networks (e.g., [119]), which are

viewed as a powerful tool to enhance convergence of dynamical systems, nonlinear

activation function φ(·) is incorporated in the proposed auxiliary system. In addition,

the motivation to introduce the bias term pj(t) is to guarantee that, during the evolution

of the parameter adaptation,
∑l
j=1w

′
oj(t)σj(w

T
ijx(t)) ≥ d0, so as to avoid the so-called

control singularity problem [107]. The detailed proof is latter provided in Theorem 1.

The following remark is about the selection of parameters and the activation function in

the auxiliary system.

Remark 6: As seen from auxiliary system (4.13), together with the selection of constant

parameters of sigmoid functions (which is discussed in Remark 1) and αj as discussed

in Remark 5, there are some other constant parameters to be selected, i.e., λ and

γ. Since λ and γ can be viewed as gain parameters, which have similar effects on

the response of the system output or parameter adaptation as that of the proportional

parameter in the traditional proportional control on system responses [121]. As a result,

a larger value of λ and γ would lead to faster convergence, but may also lead to larger

overshooting. In this sense, they should not be too large. Besides, since the main role

of the auxiliary system is to capture the input-to-output dynamics of system (4.6) via the

evolution of parameterswoj(t) andw′
oj(t) (with j = 1, 2, · · · , l), the value of γ should not

be smaller than that of λ. In terms of monotonically increasing odd activation function

φ(·), there are many alternatives, some of which can be seen from [119,122,123].

4.3.3 Control law

In this subsection, based on auxiliary system (4.13) and algebraic equation (4.12), an

LNOC law is derived.

From auxiliary system (4.13), on the sliding-mode surface defined by s(t) = 0, it can
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be derived that

l
∑

j=1

woj(t)σj(w
T
ijx(t)) +

l
∑

j=1

w′
oj(t)σj(w

T
ijx(t))u(t) =

l
∑

j=1

w∗
ojσj(w

T
ijx(t))

+
l
∑

j=1

w′∗
ojσj(w

T
ijx(t))u(t)),

which is latter theoretically guaranteed by Theorem 2 shown in Section 4.4. Together

with equation (4.12), one further has

−
ρ−1
∑

i=0

T i

(ρ+ 1 + i)i!
(y[i]

r (t) − y[i](t)) − T ρ

(2ρ+ 1)ρ!
y[ρ]

r (t)

+
T ρ

(2ρ+ 1)ρ!

(

l
∑

j=1

woj(t)σj(w
T
ijx(t)) +

l
∑

j=1

w′
oj(t)σj(w

T
ijx(t))u(t)

)

= 0. (4.15)

Note that wo(t) and w′
o(t) are generated by the designed auxiliary system and they are

thus totally known. Then, by solving equation (4.15), given that
∑l
j=1w

′
oj(t)σj(w

T
ijx(t)) 6=

0, an LNOC law is obtained as follows:

u(t) =
−1

∑l
j=1w

′
oj(t)σj(w

T
ijx(t))

(
ρ−1
∑

i=0

T i(2ρ+ 1)ρ!

(ρ+ 1 + i)i!T ρ
(y[i]

r (t) − y[i](t)) − y[ρ]
r (t)

−
l
∑

j=1

woj(t)σj(w
T
ijx(t))),

which can be rewritten in a more concise form:

u(t) =
−1

F ′
nn(x(t))

(
ρ−1
∑

i=0

T i(2ρ+ 1)ρ!

(ρ+ 1 + i)i!T ρ
(y[i]

r (t) − y[i](t)) − y[ρ]
r (t) − Fnn(x(t))),

with














F ′
nn(x(t)) =

∑l
j=1w

′
oj(t)σj(w

T
ijx(t)),

Fnn(x(t)) =
∑l
j=1woj(t)σj(w

T
ijx(t)).

(4.16)

Since the basis functions and input-layer weight vectors are the same for Fnn(x(t)) and

F ′
nn(x(t)), they are combined into a sigmoid neural network with two outputs. Evidently,

the benefit of utilizing the same basis functions lies in the reduction of neurons, which

makes the structure of the sigmoid neural network simpler.

Remark 7: A block diagram about the implementation of the proposed LNOC method is

shown in Fig. 4.2. As seen from this figure, the proposed LNOC method for nonlinear
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system (4.1) with fully unknown dynamics consist of three parts, i.e., LNOC law (4.16),

auxiliary system (4.13), and sigmoid neural network (4.16). Based on the output and

state information of system (4.1) as well as system input u(t), auxiliary system (4.13)

adaptively generates better values of output-layer weight vectors wo(t) and w′
o(t) for

sigmoid neural network (4.16). As a result, the sigmoid neural network generates better

values of Fnn(x(t)) and F ′
nn(x(t)). Based on outputs Fnn(x(t)) and F ′

nn(x(t)) of sigmoid

neural network (4.16) and the output information Φ(t) of system (4.1), the LNOC law

generates the input u(t) to force output y(t) of system (4.1) to track the desired output

yr(t) while minimizing the performance index (4.3). By this type of feedback and infor-

mation interaction, the proposed LNOC method is thus intuitively valid for system (4.1)

with fully unknown dynamics.

Remark 8: The proposed LNOC method is a state feedback and output feedback

based method. Note that most of the existing adaptive or optimal control methods are

state feedback or output feedback based methods, such as the backstepping method

[86, 92, 104]. In our method, together with the system states and the output, the out-

put derivatives y[i] with i = 1, 2, · · · , ρ − 1 need to be known. For practical systems,

output derivatives may be measured by sensors [108]. Another alternative is track-

ing differentiators [111, 124, 125], by which the derivatives of y(t) of any order can

be obtained via the measurement of y(t). Some existing tracking differentiators are

illustrated in [111, 124, 125], some of which are finite-time convergent. The satisfac-

tory performance of tracking differentiators has been substantiated by practical appli-

cations [112,126].

Remark 9: The strict-feedback nonlinear system considered in [105] is a special case of

the system considered in this chapter. In other words, compared with the backstepping

approach, the proposed method allows a more general system form. Besides, the

control gain is assumed to be a known constant in [105], which is considered to be a

unknown function of the state variables in this chapter. Note that a wrong estimation

of the control gain would severely degrade the control performance. For example, the
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estimation of the control gain cannot be zero, which leads to a so-called singularity

problem making the control input to be infinite. In this chapter, a projection operator is

used for the estimation of the control gain so as to avoid the problem.

Remark 10: In practice, the input of a control system may be constrained and there

are some existing results addressing the input saturation problem. Foe example, the

vibration control of flexible marine riser systems with input saturation was investigated

in [127]. The fuzzy tracking control problem for a class of nonlinear systems with input

saturation was investigated in [128]. The attitude control of rigid spacecraft with ac-

tuator saturation was investigated in [129]. Suppose that the constraint of the control

input is described by u− ≤ u(t) ≤ u+ with u− and u+ denoting the lower bound and

upper bound of the input, respectively. Let ua(t) denotes the actual input given to the

controlled system. Then, by setting

ua(t) =



































u+, if u(t) > u+

u(t), if u− ≤ u(t) ≤ u+,

u−, if u(t) < u−,

with u(t) being the input calculated based on the proposed control law, the input con-

straint is always not violated.

Regarding the relative degree of system (4.1) with unknown dynamics, we have the

following remark.

Remark 11: In practice, we generally have a prior knowledge about the relative de-

gree of a single-input single-output system. For example, a DC motor system has a

relative degree of 2, which is indicated by Newton’s law. For the case that such a

prior knowledge is not available, we may use the controller by a trial-and-error method.

Specifically, we may firstly test the performance by assuming that the relative degree

is 2. If the performance is bad, we may try again by assuming that the relative degree

is 3. We only need to conduct such a repetition until the performance is good. If the

performance is still poor when the estimated relative degree is larger than 4, then we
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may conclude that the proposed method cannot work for the system.

4.4 Theoretical analysis

In this section, theoretical results are provided to guarantee the performance of the

proposed LNOC method, including the convergence of the proposed auxiliary system,

the stability of the resultant closed-loop system, and the optimality of the performance

index.

4.4.1 Confirmation of no singularity problems

As stated in Remark 5, a bias term pj(t) is incorporated into the design of auxiliary

system (4.13) so as to avoid the singularity problem (i.e.,
∑l
j=1w

′
oj(t)σj(w

T
ijx(t)) = 0)

that could degrade the performance of LNOC law (4.16). In this subsection, we provide

a theoretical result to prove that the proposed method is singularity-free.

Theorem 1: If
∑l
j=1w

′
oj(0)σj(w

T
ijx(0)) ≥ d0 > 0, then, for any time instant t ≥ 0, w′

o(t)

of auxiliary system (4.13) satisfies w′
o(t) ∈ Ω with Ω = {w′

o ∈ Rl|∑l
j=1w

′
oj(t)σj(w

T
ijx(t))

≥ d0}.

Proof: Define the following projection function:

PΩ(w′
o(t)) =



















w′
o(t), if w′

o(t) ∈ Ω,

w′
o(t) −

(w′
o(t))

Tσvec(t) − d0

σT
vec(t)σvec(t)

σvec(t), if w′
o(t) /∈ Ω,

where we have set

Ω = {w′
o ∈ R

l|
l
∑

j=1

w′
oj(t)σj(w

T
ijx(t)) ≥ d0}

and vector

σvec(t) = [σ1(w
T
i1x(t)), σ2(w

T
i2x(t)), · · · , σl(wT

ilx(t))]T.
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Consider the following Lyapunov function candidate:

V1(t) = ‖w′
o(t) − PΩ(w′

o(t))‖2
2/2.

Calculating the derivative of V1(t) yields

V̇1(t) = (w′
o(t) − PΩ(w′

o(t)))
Tẇ′

o(t).

By auxiliary system (4.13),

ẇ′
o(t) = −γs(t)σvec(t)u(t) −

‖γs(t)σvec(t)u(t)‖2

‖w′
o(t) − PΩ(w′

o(t))‖2

(w′
o(t) − PΩ(w′

o(t))).

It follows that

V̇1(t) = −(w′
o(t) − PΩ(w′

o(t)))
Tγs(t)σvec(t)u(t) − ‖γs(t)σvec(t)u(t)‖2‖w′

o(t)

− PΩ(w′
o(t))‖2

≤ ‖γs(t)σvec(t)u(t)‖2‖w′
o(t) − PΩ(w′

o(t))‖2 − ‖γs(t)σvec(t)u(t)‖2‖w′
o(t)

− PΩ(w′
o(t))‖2

= 0.

Note that, from V̇1(t) = 0, one has w′
o(t) = PΩ(w′

o(t)), i.e., w′
o(t) ∈ Ω, which is

also the largest invariant set. Then, by LaSalle’s invariance principle [44], if we have

∑l
j=1w

′
oj(0)σj(w

T
ijx(0)) ≥ d0, i.e., w′

o(0) ∈ Ω, then, for any time instant t ≥ 0, w′
o(t) of

auxiliary system (4.13) satisfies w′
o(t) ∈ Ω. The proof is complete. �

Remark 12: According to Theorem 1, if w′
o(0) is properly set such that the inequality

∑l
j=1w

′
oj(0)σj(w

T
ijx(0)) ≥ d0 > 0 is satisfied, then

∑l
j=1w

′
oj(t)σj(w

T
ijx(t)) ≥ d0 > 0 for

any t ≥ 0. It follows that there is no control singularity in LNOC law (4.16).
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Corollary 1: If
∑l
j=1w

′
oj(0)σj(w

T
ijx(0)) ≥ d0, then auxiliary system (4.13) is equivalent

to



















































ŷ[ρ](t) =
∑l
j=1woj(t)σj(w

T
ijx(t)) +

∑l
j=1w

′
oj(t)σj(w

T
ijx(t))u(t) −∑ρ−2

j=0 αj ỹ
[j+1](t)

− λφ(s(t)),

ẇoj(t) = −γs(t)σj(wT
ijx(t)), j = 1, 2, · · · , l,

ẇ′
oj(t) = −γs(t)σj(wT

ijx(t))u(t), j = 1, 2, · · · , l.
(4.17)

Proof: From Theorem 1, if
∑l
j=1w

′
oj(0)σj(w

T
ijx(0)) ≥ d0 > 0, then for any time instant

t ≥ 0, w′
o(t) of auxiliary system (4.13) satisfies w′

o(t) ∈ Ω. It follows that p(w′
o(t)) de-

fined in equation (4.14) satisfies p(w′
o(t)) = 0, ∀t ≥ 0, i.e., pj(t) ≡ 0, ∀j = 1, 2, · · · , l.

Therefore, auxiliary system (4.13) is equivalent to (4.17). The proof is complete. �

4.4.2 Convergence of the auxiliary system

One of the main components of the proposed method is auxiliary system (4.13), which

is used to reconstruct the input-to-output property of system (4.6). The following theo-

rem guarantees the convergence of the auxiliary system.

Theorem 2 (Asymptotical Convergence of the Auxiliary System): If

l
∑

j=1

w′
oj(0)σj(w

T
ijx(0)) ≥ d0 > 0

and all the roots of characteristic equation
∑ρ−1
j=0 αjν

j = 0 are located on the left

half-plane, then the input-to-output property of auxiliary system (4.13) asymptotically

converges to that of nonlinear system (4.6) with limt→+∞(
∑l
j=1 w̃oj(t)σj(w

T
ijx(t)) +

∑l
j=1 w̃

′
oj(t)σj(w

T
ijx(t))u(t)) = 0, where w̃o(t) = wo(t) −w∗

o and w̃′
o(t) = w′

o(t) −w′∗
o .
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Chapter 4. LNOC for a class of nonlinear systems with learning of system dynamics

Proof: Let w̃o(t) = wo(t) − w∗
o and w̃′

o(t) = w′
o(t) − w′∗

o . Subtracting equation (4.6)

from the first equation of auxiliary system (4.13) yields

ỹ[ρ](t) =
l
∑

j=1

w̃oj(t)σj(w
T
ijx(t)) +

l
∑

j=1

w̃′
oj(t)σj(w

T
ijx(t))u(t) −

ρ−2
∑

j=0

αj ỹ
[j+1](t) − λφ(s(t)),

from which one has

ṡ(t) =
l
∑

j=1

w̃oj(t)σj(w
T
ijx(t)) +

l
∑

j=1

w̃′
oj(t)σj(w

T
ijx(t))u(t) − λφ(s(t)), (4.18)

where s(t) =
∑ρ−1
j=0 αj ỹ

[j](t) with ỹ(t) = ŷ(t) − y(t), αρ−1 = 1, and αj > 0 for j =

0, 1, · · · , ρ− 2.

Consider the following Lyapunov function candidate:

V (t) =
1

2γ
w̃T

o(t)w̃o(t) +
1

2γ
w̃′T

o (t)w̃′
o(t) +

1

2
s2(t). (4.19)

Calculating the derivative of V (t) yields

V̇ (t) =
1

γ
w̃T

o(t) ˙̃wo(t) +
1

γ
w̃′T

o (t) ˙̃w′
o(t) + s(t)ṡ(t).

From Corollary 1, if
∑l
j=1w

′
oj(0)σj(w

T
ijx(0)) ≥ d0, then auxiliary system (4.13) is equiv-

alent to (4.17). Together with equation (4.18), one further has

V̇ (t) = −s(t)
l
∑

j=1

w̃oj(t)σj(w
T
ijx(t)) − s(t)

l
∑

j=1

w̃′
oj(t)σj(w

′T
ijx(t)) + s(t)

(

l
∑

j=1

w̃oj(t)

× σj(w
T
ijx(t)) +

l
∑

j=1

w̃′
oj(t)σj(w

T
ijx(t))u(t) − λφ(s(t))

)

= −λs(t)φ(s(t)).

Since φ(·) is a monotonically increasing odd function, one has

φ(s(t))



































> 0 if s(t) > 0,

= 0 if s(t) = 0,

< 0 if s(t) < 0.

Together with λ > 0, it follows that V̇ (t) ≤ 0, and V̇ (t) = 0 if and only if s(t) = 0.
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Consider the largest invariant set S = {s(t)|V̇ (t) = 0} = {s(t)|s(t) = 0}. In the in-

variant set, by the definition of s(t), one has
∑ρ−1
j=0 αj ỹ

[j](t) = 0, from which one has

ỹ(t) =
∑ρ−1
j=0 Cjbj(t), where Cj are constants depending on αj with j = 0, 1, · · · , ρ− 1

and initial values y[j](0) with j = 0, 1, · · · , ρ−1; bj(t) belong to fundamental solution set

{b1(t), b2(t), · · · , bρ−1(t)} ⊂ {exp(r1t), t exp(r1t), · · · , td1−1 exp(r1t), exp(r2t), t exp(r2t),

· · · , td2−1 exp(r2t), · · · }, where ri is a root repeated di times (di ≤ ρ−1) in the following

characteristic equation [138]:
ρ−1
∑

j=0

αjν
j = 0. (4.20)

By properly choosing the value of αj with j = 0, 1, · · · , ρ − 1 such that all the roots

of (4.20) are located in the left half-plane, one readily has limt→ b
[j]
i (t) = 0, ∀i ∈

{0, 1, · · · }, ∀j ∈ {0, 1, · · · }. It follows that, on the invariant set, limt→+∞ ỹ[j](t) = 0,

∀j ∈ {0, 1, · · · }.

Based on the above results, by LaSalle’s invariance principle [44], limt→+∞ ỹ[j](t) = 0,

∀j ∈ {0, 1, · · · }. Then, it follows from equation (4.18) that

lim
t→+∞

(
l
∑

j=1

w̃oj(t)σj(w
T
ijx(t)) +

l
∑

j=1

w̃′
oj(t)σj(w

T
ijx(t))u(t)) = 0.

This completes the proof. �

Based on theorem 2 and the persistent excitation (PE) condition [130], we also have the

following corollary about the convergence of neural network parameters. Note that the

PE condition is generally required for adaptive control methods to achieve parameter

convergence [93,130,131].

Corollary 2: Given that both vector [σ1(w
T
i1x(t)), σ2(w

T
i2x(t)), · · · , σl(wT

ilx(t))]T and vec-

tor [σ1(w
T
i1x(t))u(t), σ2(w

T
i2x(t))u(t), · · · , σl(wT

ilx(t))u(t)]T satisfy the PE condition, aux-

iliary system (4.13) satisfies limt→+∞ wo(t) = w∗
o and limt→+∞ w′

o(t) = w′∗
o .

Proof: The proof can be generalized from [130] based on Theorem 2 and is thus omit-

ted. �

Note that the theorems in this chapter do not rely on Corollary 2, and thus the PE con-
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dition. This, as we consider, is also one of the differences of the proposed approach

compared with some existing neural network based adaptive control methods. In gen-

eral, it is difficult to verify the PE condition online. To some extent, the PE condition

requires a signal to be sufficiently rich [132]. In practice, the PE condition could be

guaranteed when using a sufficiently rich reference trajectory for the control system.

4.4.3 Stability of the closed-loop system

In this subsection, a theorem is provided to guarantee the stability of the closed-loop

system consisting of nonlinear system (4.6) and auxiliary system (4.13).

Theorem 3 (Asymptotical Stability of the Control System): If
∑l
j=1w

′
oj(0)σj(w

T
ijx(0)) ≥

d0 > 0, all the roots of characteristic equation
∑ρ−1
j=0 αjν

j = 0 are located on the left

half-plane, and relative degree ρ ∈ {1, 2, 3, 4}, then the closed-loop system consisting

of nonlinear system (4.6) and LNOC law (4.16) is asymptotically stable.

Proof: First, system (4.6) is rewritten as

y[ρ](t) =
l
∑

j=1

woj(t)σj(w
T
ijx(t)) +

l
∑

j=1

w′
oj(t)σj(w

T
ijx(t))u(t) + η(t), (4.21)

where η(t) is defined as follows:

η(t) = −(
l
∑

j=1

w̃ojσj(w
T
ijx(t)) +

l
∑

j=1

w̃′
ojσj(w

T
ijx(t))u(t))

with w̃o(t) = wo(t) − w∗
o and w̃′

o(t) = w′
o(t) − w′∗

o . Recall LNOC law (4.16):

u(t) =
−1

∑l
j=1w

′
oj(t)σj(w

T
ijx(t))

(
ρ−1
∑

i=0

T i(2ρ+ 1)ρ!

(ρ+ 1 + i)i!T ρ
(y[i]

r (t) − y[i](t)) − y[ρ]
r (t)

−
l
∑

j=1

woj(t)σj(w
T
ijx(t))).

Substituting the expression of u(t) into (4.21) yields

y[ρ](t) =
ρ−1
∑

i=0

T i(2ρ+ 1)ρ!(y
[i]
r (t) − y[i](t))

(ρ+ 1 + i)i!T ρ
− y[ρ]

r (t) + η(t). (4.22)
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Let e(t) = yr(t) − y(t). Then, from equation (4.22),

ρ
∑

i=0

T i(2ρ+ 1)ρ!

(ρ+ 1 + i)i!T ρ
e
[i]
i (t) = η(t),

i.e., the closed-loop system consisting of nonlinear system (4.6) and LNOC law (4.16)

can be described as follows:

ρ
∑

i=0

T i

(ρ+ 1 + i)i!
e
[i]
i (t) = η(t), (4.23)

which can be viewed as a linear system with the input being η(t). Consider the corre-

sponding autonomous system:

ρ
∑

i=0

T i

(ρ+ 1 + i)i!
e
[i]
i (t) = 0.

By the Routh-Hurwitz criterion [39], it is readily checked that the all the roots of the

corresponding characteristic equation
∑ρ
i=0 T

iν/((ρ + 1 + i)i!) = 0 are located in

the left-half plane and thus equilibrium e(t) = 0 is exponentially stable, given that

ρ ∈ {1, 2, 3, 4}. Besides, from Theorem 2, if all the roots of characteristic equation

∑ρ−1
j=0 αjν

j = 0 are located on the left half-plane, then limt→+∞(
∑l
j=1 w̃oj(t)σj(w

T
ijx(t))+

∑l
j=1 w̃

′
oj(t)σj(w

T
ijx(t))u(t)) = 0, i.e., limt→+∞ η(t) = 0. Then, it follows by the bound-

input bounded-output property [39] of linear systems that equilibrium e(t) = 0 of closed-

loop system (4.23) is asymptotically stable. The proof is complete. �

Remark 13: As seen from Theorem 3, there are several conditions needed to guarantee

the asymptotic stability of the closed-loop system. The condition that

l
∑

j=1

w′
oj(0)σj(w

T
ijx(0)) ≥ d0 > 0

is very weak, which can be readily satisfied by choosing values of w′
oj(0). The condition

on the roots of characteristic equation
∑ρ−1
j=0 αjν

j = 0 is also very weak. Specifically,

one can predefine desired roots ri with i = 1, 2, · · · , ρ − 1. By letting
∑ρ−1
j=0 αjν

j =
∏ρ−1
j=1(ν

j − rj), one can readily find the corresponding αj. For example, if ρ = 2 and

the desired root is −5. Then, from α0 + α1ν = (ν − (−5)), one has α0 + α1ν = ν + 5.
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It follows that one can simply choose α0 = 5 and α1 = 1. In terms of the condition on

the relative degree of the controlled systems, it should be noted that many mechanical

systems have a relative degree less than 4 [107,133,134].

4.4.4 Asymptotic optimality of the performance index

As shown in the previous section, the motivation of the proposed LNOC method is to

achieve optimal tracking via minimizing the integral performance index (4.3) for non-

linear systems with fully unknown dynamics. Due to the problem relaxation, the pro-

posed LNOC law cannot be optimal all the time, which is also the reason why it is call

a near-optimal one. Fortunately, theoretical analysis shows that the proposed one is

asymptotically optimal.

Theorem 4 (Asymptotical Optimality of the Performance Index): If

l
∑

j=1

w′
oj(0)σj(w

T
ijx(0)) ≥ d0 > 0,

given all the roots of characteristic equation
∑ρ−1
j=0 αjν

j = 0 located on the left half-plane

and relative degree ρ ∈ {1, 2, 3, 4}, then, synthesized by LNOC law (4.16), performance

index (4.3) associated with nonlinear system (4.6) asymptotically converges to optimal.

In other words, control law (4.16) is asymptotically optimal.

Proof: By Taylor expansion, performance index (4.3) is rewritten as

J(t) =
1

2

∫ T

0
(̺T(τ)Υ̌(t) − τρ

ρ!
LgL

ρ−1
f h(x(t))u(t) +

τρ

ρ!
∆(t))2dτ, (4.24)

where ∆(t) = (y
[ρ]
d (t + κτ) − y[ρ](t + κτ) − (y

[ρ]
d (t) − y[ρ](t))) and 0 < κ < 1. By

equation (4.6), the performance index defined in equation (4.25) is rewritten as follows:

J(t) =
1

2

∫ T

0
(
ρ−1
∑

i=0

τ i

i!
(y[i]

r (t) − y[i](t)) +
τρ

ρ!
yρr (t) −

τρ

ρ!

l
∑

j=1

woj(t)σj(w
T
ijx(t))

− τρ

ρ!

l
∑

j=1

w′
oj(t)σj(w

T
ijx(t))u(t) +

τρ

ρ!
∆(t) − τρ

ρ!
η(t))2dτ,

(4.25)
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where η(t) is defined as

η(t) = −(
l
∑

j=1

w̃ojσj(w
T
ijx(t)) +

l
∑

j=1

w̃′
ojσj(w

T
ijx(t))u(t)).

By the triangle inequality [138], from (4.25), one has

J(t) ≤ J̄(t) +
∫ T

0

τ 2ρ

(ρ!)2
∆2(t)dτ +

∫ T

0

τ 2ρ

(ρ!)2
η2(t)dτ,

where

J̄(t) =
∫ T

0
(
ρ−1
∑

i=0

τ i

i!
(y[i]

r (t) − y[i](t)) +
τρ

ρ!
yρr (t) −

τρ

ρ!

l
∑

j=1

woj(t)σj(w
T
ijx(t)) − τρ

ρ!

l
∑

j=1

w′
oj(t)

· σj(wT
ijx(t))u(t))2dτ

=
∫ T

0
(̺T(τ)Γ(t))2dτ − 2̺intΓ(t)

l
∑

j=1

woj(t)σj(w
T
ijx(t))u(t)

+
T 2ρ+1

(2ρ+ 1)(ρ!)2
(
l
∑

j=1

woj(t)σj(w
T
ijx(t)))2u2(t) ≥ 0

is a convex quadratic performance index with respect to u(t); Γ(t) is defined as

Γ(t) = [yr(t)−y(t), ẏr(t)− ẏ(t), · · · , y[ρ−1]
r (t)−y[ρ−1](t), y[ρ]

r (t)−
l
∑

j=1

woj(t)σj(w
T
ijx(t))]T;

̺(τ) is defined as

̺(τ) = [1, τ, τ 2/2, · · · , τρ/ρ!]T.

In addition, ̺int is defined in equation (4.11). Evidently, the sufficient condition for u(t)

to be the minimizer of J̄(t) is ∂J̄(t)/∂u = 0, i.e.,

̺intΓ(t)σj(w
T
ijx(t)) + T 2ρ+1(σj(w

T
ijx(t)))2u(t)/((2ρ+ 1)(ρ!)2) = 0,

which yields

−
ρ−1
∑

i=0

T i

(ρ+ 1 + i)i!
(y[i]

r (t) − y[i](t)) − T ρ

(2ρ+ 1)ρ!
y[ρ]

r (t)

+
T ρ

(2ρ+ 1)ρ!
(
l
∑

j=1

woj(t)σj(w
T
ijx(t)) +

l
∑

j=1

w′
oj(t)σj(w

T
ijx(t))u(t)) = 0. (4.26)
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Evidently, LNOC law (4.16) is the solution of equation (4.26), i.e., control law (4.16)

satisfies ∂J̄(t)/∂u = 0. It follows that J̄(t) = 0 when control law (4.16) is adopted.

Then, one has

J(t) ≤
∫ T

0

τ 2ρ

(ρ!)2
∆2(t)dτ +

∫ T

0

τ 2ρ

(ρ!)2
η2(t)dτ

≤ T 2ρ+1

(ρ!)2(2ρ+ 1)

(

sup
0<κ<1,0≤τ≤T

∆2(t) + η2(t)

)

.

From Theorem 2, if
∑l
j=1w

′
oj(0)σj(w

T
ijx(0)) ≥ d0 > 0 and all the roots of characteristic

equation
∑ρ−1
j=0 αjν

j = 0 are located on the left half-plane, then limt→+∞ η(t) = 0.

Together with the conditions in Theorem 2, with ρ ∈ {1, 2, 3, 4}, from Theorem 3,

limt→+∞(yr(t) − y(t)) = 0. By the solution property of linear ordinary differential equa-

tions (see the proof of Theorem 2) and the extension of Barbalat’s lemma [106], one

further has limt→+∞(y
[ρ]
r (t) − y[ρ](t)) = 0. It follows that limt→+∞ ∆(t) = 0. Note that

J(t) ≥ 0. Then, by the pinching theorem [138], limt→+∞ J(t) = 0, i.e., performance

index (4.3) asymptotically converges to optimal. In other words, control law (4.16) is

asymptotically optimal. This completes the proof. �

Intuitively, this work avoids the direct solution of the difficult optimal control problem via

Taylor expansion. The uncertainty of the controlled system is addressed via construct-

ing an auxiliary system whose input-output dynamics is asymptotically equivalent to

that of the controlled system described by neural networks. As indicated in the theoret-

ical analysis, by the proposed approach, the closed-loop system essentially asymptoti-

cally converges to the desired one which guarantees the optimality of the performance

index and the stability of the closed-loop system.

4.5 Illustrative example

In this section, an illustrative example is presented to show the efficacy of the proposed

method, and verify the theoretical results.
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Consider the following nonlinear system:



















































ẋ1(t) = 2x2(t) + x1(t),

ẋ2(t) = 4x3
1(t)x2(t) + cos(x2(t)) + sin(x1(t))x

2
2(t)

+ 7(sin(x2(t)) + 1.1)u(t),

y(t) = x1(t),

(4.27)

which has a relative degree of 2, i.e., ρ = 2 ∈ {1, 2, 3, 4}. The relative degree of the

system satisfies the requirement stated on Theorem 3 and Theorem 4. To implement

the proposed LNOC method, one only needs to know the relative degree and the state

and output information of the system as well as d0. In this example, the reference

output is yd(t) = 0.5 cos(0.6t) + 0.1. In addition, d0 is set to d0 = 10−4. It is worth

pointing out that other smooth reference outputs can be viewed as the sum of several

sinusoidal signals. Therefore, the chosen output is general.

We first present simulation results under the following setups. The predictive period is

set to T = 0.3 s. The parameters of auxiliary system (4.13) are set to λ = 2, γ = 5,

α1 = 1, and α0 = 2. Evidently, under this setup, the root of characteristic equation

α1ν + α0 = 0 is ν = −2, which satisfies the requirement stated in Theorem 2. Without

loss of generality, the monotonically increasing odd activation function φ(·) is chosen

as φ(z) = (1− exp(−3z))/(1+ exp(−3z)), i.e., the so-called bipolar sigmoid activation

function in [119]. In terms of the setup of sigmoid neural network (4.16), cj is set to cj =

0.0001 for any j = 1, 2, · · · , l; each element of wij and bj are randomly set, and l = 256,

i.e., the hidden-layer of the sigmoid neural network consists of 256 neurons. The initial

state x(0) = [x1(0), x2(0)]T of system (4.27) and x̂(0) = [x̂1(0), x̂2(0)]T of auxiliary

system (4.13), without loss of generality, are set as x(0) = x̂(0) = [0, 0]T. In addition,

each element of initial output-layer weight vectors wo(0) and w′
o(0) of sigmoid neural

network (4.16) is randomly set at interval (0, 1). It is checked that w′
o(0) satisfies the

condition stated in Theorem 1. Fig. 4.3(a) shows the convergence of the input-to-output

property of auxiliary system (4.13) to that of nonlinear system (4.27), which verifies
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Theorem 2 and also substantiates the efficacy of the proposed sigmoid neural network

based auxiliary system for dynamics reconstruction of unknown nonlinear systems.

As seen from Fig. 4.3(b) and Fig. 4.3(c), output y(t) of system (4.27) successfully

tracks reference output yr(t) with output error e(t) = y(t) − yr(t) and its derivatives

converging to zero, which verifies Theorem 3. As seen from Fig. 4.3(d), performance

index J(t) asymptotically converges to zero, which verifies Theorem 4. In addition,

Fig. 4.3(e) and Fig. 4.3(f) show that the time profiles of both state variables xi(t) (with

i = 1, 2) and input u(t) are bounded and smooth. In addition, the time profiles of the

parameters of sigmoid neural network (4.16) during the control process are shown in

Fig. 4.4. As seen from the figures, each parameter is bounded and the magnitude of

each parameter does not vary much. Under the above setup, but with different values

of predictive period T , the time profiles of performance index J(t) and input u(t) are

shown in Fig. 4.5. As seen from Fig. 4.5(a), with a smaller value of T , the performance

index converges to zero faster. In addition, from Fig. 4.5(b), it is observed that the time

profiles of input u(t) are smooth under different values of T . These results substantiate

the efficacy of the proposed LNOC method for nonlinear systems with fully unknown

dynamics and verify the theoretical results.

4.6 Experimental validation

The performance of the proposed method is also tested via a low-cost DC motor sys-

tem. DC motor systems are second-order and the output motor angle θ has a relative

degree of 2 with respect to the input voltage V . The power for the whole system is

provided by a 9-V 1-A AC/DC adaptor through the system power port. As the Arduino

UNO board has limited storage, the data during the experiment are sent to a personal

computer through the system communication port. In the experiment, the motor angle

θ is directly measured by the encoder. The angle velocity is obtained via the following
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tracking differentiator [124]:



































q̇1(t) = q2(t) −
√
C|q1(t) − θ(t)|1/2sign(q1(t) − θ(t)),

q̇2(t) = −1.1Csign(q1(t) − θ(t)),

q3(t) = q2(t) −
√
C|q1(t) − θ(t)|1/2sign(q1(t) − θ(t)),

where q3(t) is the output of the tracking differentiator (i.e., the estimation of the angle

velocity of the DC motor), which is theoretically guaranteed to converge to θ̇(t) in finite

time given that design parameter C > 0 ∈ R is set to be large enough. The proposed

method is implemented in the Arduino UNO board, where the calculated control input

is converted into PWM signal, which is fed into the motor drive. For the sake of safety,

the actual input for the DC motor control system is set as follows:

V (t) =



































u+, if u(t) > u+

u(t), if u− ≤ u(t) ≤ u+,

u−, if u(t) < u−,

where u(t) is the input calculated by the proposed controller (4.16) with u+ = 7 and

u− = −7, i.e., the amplitude of the input voltage is limited to be not larger than 7 V. In

the experiment, T is set to 0.001 s. The parameters of the auxiliary system is set to

γ = 3, λ = 3, α0 = 2, and α1 = 1. The parameters of the sigmoid basis functions are

set the same as those in the simulative example except that, owing to the computational

capability of the Arduino UNO board, we only use ten neurons in the hidden layer, i.e.,

l = 10, and bi is set to −5 + i which leads to a regular placing of the centers in the

region [-4,5]. The parameter of the tracking differentiator is set to C = 100. The desired

output is set to θr = 4 sin(πt/5) + 0.2 rad. The other settings are the same as those in

the simulative example. As seen from Fig. 4.6, by the proposed method, the output of

the DC motor successfully tracks the desired output, and the value of the performance

index is less than 5 × 10−6 at the steady state. The experimental data shows that the

average tracking error is 1.7110×10−4 rad. In addition, the input given to the DC motor
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does not exceed the limit. The results further verify the efficiency and realizability of

the proposed method.

4.7 Chapter summary

In this chapter, a novel model-free LNOC method has been proposed for a class of

continuous-time nonlinear systems with fully unknown system dynamics. The proposed

method can guarantee asymptotic stability of the resultant closed-loop system and the

asymptotic optimality of the performance index. An illustrative example and experi-

mental results have substantiated the efficacy of the proposed method and verified the

theoretical results. It is worth pointing out that this chapter provides novel results about

combining sliding-mode control concept and the universal approximation capability of

sigmoid neural networks to tackle the difficulty in designing optimal control laws for

nonlinear systems with fully unknown dynamics.
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Figure 4.3: Convergence of the input-to-output property of auxiliary system (4.13) to that of

nonlinear system (4.27) and performance of nonlinear system (4.27) in tracking time-varying

reference output yr(t) under the control of LNOC law (4.16). (a) Time profiles of ỹ(t), ˙̃y(t),

and ¨̃y(t) with ỹ(t) = ŷ(t) − y(t). (b) Time profiles of system output y(t) and reference output

yr(t). (c) Time profiles of tracking errors in different levels, i.e., e(t), ė(t), and ë(t) with e(t) =

y(t)− yr(t). (d) Time profile of performance index J(t) associated with nonlinear system (4.27)

with T = 0.3 s. (e) Time profiles of state variables x1(t) and x2(t) of system (4.27). (f) Time

profile of control input u(t).
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Figure 4.4: Time profiles of neural network parameters during the control process of nonlinear

system (4.27) via LNOC law (4.16). (a) Time profiles of woj(t) with j = 1, 2, · · · , l. (b) Time

profiles of w′
oj(t) with j = 1, 2, · · · , l.
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Figure 4.5: Performance comparison of LNOC law (4.16) for the tracking control of nonlinear

system (4.27) under different values of T in performance index J(t) defined in equation (4.3).

(a) Time profiles of performance index J(t). (b) Time profiles of input u(t) generated by the

control law.
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Figure 4.6: Data profiles for the motor control experiment by using the proposed control method.

(a) Time profiles of system output θ(t) and reference output θr(t). (b) Time profile of perfor-

mance index J(t). (c) Time profile of input voltage V (t).
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Chapter 5

LNOC for consensus of nonlinear

heterogeneous multi-agent systems

with learning of parameters

In this chapter, the learning and near-optimal distributed consensus of high-order non-

linear multi-agent systems consisting of heterogeneous agents is investigated.1 The

consensus problem is formulated as a receding-horizon optimal control problem. Under

the condition that the dynamics of all agents are fully known, a nominal near-optimal

protocol is designed and proposed via making approximation of the performance in-

dex. For the situation with fully unknown system parameters, sliding-mode auxiliary

systems, which are independent for different agents, are built to reconstruct the input-

output properties of agents. Based on the sliding-mode auxiliary systems, an adaptive

near-optimal protocol is finally presented to control high-order nonlinear multi-agent

systems with fully unknown parameters. Theoretical analysis shows that the proposed

protocols can simultaneously guarantee the asymptotic optimality of the performance

1The content in this chapter has already been published. Yinyan Zhang and Shuai Li, “Adaptive near-

optimal consensus of high-order nonlinear multi-agent systems with heterogeneity,” Automatica, vol. 85,

pp. 426–432, 2017.
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index and the asymptotic consensus of multi-agent systems. An illustrative exam-

ple about a third-order nonlinear multi-agent system consisting of 10 heterogeneous

agents with fully unknown parameters further substantiates the efficacy and superiority

of the proposed adaptive near-optimal consensus approach.

5.1 Problem formulation

Consider a multi-agent system consisting of n nonlinear heterogeneous agents of order

σ, of which the communication topology is described by an undirected connected graph

with the Laplacian matrix denoted by L. The dynamics of the ith (i = 1, 2, · · · , n) agent

is described as

ẋ
(0)
i = x

(1)
i ,

...

ẋ
(σ−2)
i = x

(σ−1)
i ,

ẋ
(σ−1)
i = fi(xi) + gi(xi)ui,

where x
(j)
i ∈ R with j = 1, 2, · · · , σ denotes the jth time derivative of x

(0)
i = xi;

xi = [xi, x
(1)
i , · · · , x(σ−1)

i ]T ∈ Rσ and ui ∈ R denote the state vector and input of

the ith agent, respectively; fi(·) : Rσ → R and gi(·) : Rσ → R are continuously

differentiable functions which may be different for each agent with gi(xi) > 0 for all

i = 1, 2, · · · , n. Let xM = [x1, x2, · · · , xn]T, fM(xM) = [f1(x1), f2(x2), · · · , fn(xn)]T,

u = [u1, u2, · · · , un]T and gM(xM) = diag([g1(x1), g2(x2), · · · , gn(xn)]T). The multi-

agent system is thus formulated as follows:














ẋ
(k)
M = x

(k+1)
M , i = 0, 1, · · · , σ − 2,

ẋ
(σ−1)
M = fM(xM) + gM(xM)u.

(5.1)

To achieve the consensus of multi-agent system (5.1), we propose the following perfor-

mance index:

J(t) =
∫ T

0
xT

M(t+ τ)L0xM(t+ τ)dτ +
∫ T

0
ẋT

M(t+ τ)QẋM(t+ τ)dτ, (5.2)
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with learning of parameters

where T > 0 ∈ R denotes the predictive period; L0 ∈ Rn×n is a matrix to be deter-

mined, which satisfies two properties: 1) L0 is symmetric; 2) only one of its eigenvalues

is 0 with the corresponding eigenvector being 1 = [1, 1, · · · , 1]T ∈ Rn and the other

eigenvalues are strictly bigger than 0. Besides, Q = ζI with ζ > 0 ∈ R and I being a

n× n identity matrix.

Remark 1: The two integral terms of J(t) corresponds to the relative potential energy

and the kinetic energy of the whole multi-agent system, respectively. When perfor-

mance index J(t) achieves its minimum, i.e., J(t) = 0, the relative potential energy and

the kinetic energy become zero. It follows that all the agents of the multiagent system

achieve static consensus. The results presented in this chapter can also be extended

to velocity consensus, acceleration consensus, etc, by modifying the two integral terms

of J(t).

5.2 Nominal near-optimal design

In this section, we consider the situation where multi-agent system (5.1) is consisting

of agents of fully known dynamics. Let

XM = [xM,x
(1)
M , · · · ,x(σ−1)

M , fM(xM)].

Then, xM(t + τ) of multi-agent system (5.1) is approximated via time-scale Taylor ex-

pansion as

xM(t+ τ) ≈ XM(t)w1(τ) + τσgM(xM(t))u(t)/σ!,

where

w1(τ) = [1, τ, · · · , τσ−1/(σ − 1)!, τσ/σ!]T.

Similarly,

ẋM(t+ τ) ≈ XM(t)w2(τ) + τσ−1gM(xM(t))u(t)/(σ − 1)!,
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where

w2(τ) = [0, 1, τ, · · · , τσ−1/(σ − 1)!]T.

In addition,

u(t+ τ) ≈ u(t).

Then, J(t) in (5.2) is approximated as

J(t) ≈ Ĵ(t)

=
∫ T

0
(XM(t)w1(τ) +

τσ

σ!
gM(xM(t))u(t))TL0(XM(t)w1(τ) +

τσ

σ!
gM(xM(t))u(t))dτ

+
∫ T

0
(XM(t)w2(τ) +

τσ−1

(σ − 1)!
gM(xM(t))u(t))T

×Q(XM(t)w2(τ) +
τσ−1

(σ − 1)!
gM(xM(t))u(t))dτ.

(5.3)

Let

v1 =
∫ T

0
τσw1(τ)/σ!dτ,

v2 =
∫ T

0
τσ−1w2(τ)/(σ − 1)!dτ,

κ1 =
∫ T

0
τ 2σ/(σ!)2dτ = T 2σ+1/((2σ + 1)(σ!)2),

and

κ2 =
∫ T

0
τ 2σ−2/((σ − 1)!)2dτ = T 2σ−1/((2σ − 1)((σ − 1)!)2).

Then, from (5.3),

Ĵ(t) =
∫ T

0
wT

1(τ)X
T
M(t)L0 ×XM(t)w1(τ) + wT

2(τ)X
T
M(t)QXM(t)w2(τ)dτ

+ 2vT
1X

T
M(t)L0gM(xM(t))u(t) + κ1u

T(t)gT
M(xM(t))L0gM(xM(t))u(t)

+ 2vT
2X

T
M(t)QgM(xM(t))u(t) + κ2u

T(t) × gT
M(xM(t))QgM(xM(t))u(t).

In light of the fact that the decision variable is input u(t), minimizing Ĵ(t) is then equiv-

alent to minimizing

Ĵe(t) = 2vT
1X

T
M(t)L0gM(xM(t))u(t) + κ1u

T(t)gT
M(xM(t))L0gM(xM(t))u(t)

+ 2vT
2X

T
M(t)QgM(xM(t))u(t) + κ2u

T(t)gT
M(xM(t))QgM(xM(t))u(t).
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Note that κ1 > 0, κ2 > 0, Q is a positive-definite diagonal matrix, L0 is a positive semi-

definite symmetric matrix and gM(xM(t)) is a diagonal matrix of positive elements. It

follows that κ1g
T
M(xM(t))L0gM(xM(t)) + κ2g

T
M(xM(t))QgM(xM(t)) is positive-definite, i.e.,

Ĵe(t) is a convex quadratic performance index. Then, a near-optimal protocol can be

obtained by solving ∂Ĵe(t)/∂u = 0, i.e.,

2gM(xM(t))L0XM(t)v1 + 2κ1gM(xM(t))L0gM(xM(t))u(t) + 2gM(xM(t))QXM(t)v2

+ 2κ2gM(xM(t))QgM(xM(t))u(t) = 0.

It follows that

L0XM(t)v1 + κ1L0gM(xM(t))u(t) +QXM(t)v2 + κ2QgM(xM(t))u(t) = 0.

Substituting the expressions of v1 and v2 into the above equation yields

Qκ4

σ−1
∑

j=1

T j−σ(2σ − 1)(σ − 1)!

(σ + j − 1)(j − 1)!
x

(j)
M + (L0κ3 +Qκ4)(fM(xM) + gM(xM(t))u(t))

=
σ−1
∑

j=0

−T j+2L0x
(j)
M

(σ + j + 1)σj!
,

(5.4)

where κ3 = κ1(σ − 1)!/T σ−1 = T σ+2/(2σ + 1)/σ/σ! and κ4 = κ2(σ − 1)!/T σ−1 =

T σ/(2σ − 1)/(σ − 1)!. Let (L0κ3 +Qκ4)
−1L0 = L. Define αj and βj as follows:

αj =
T j+2

(σ + j + 1)σj!
− T j+2(2σ − 1)

σ2(2σ + 1)(σ + j − 1)(j − 1)!
,

βj =
T j−σ(2σ − 1)(σ − 1)!

(σ + j − 1)(j − 1)!
.

Then, by solving equation (5.4), a nominal near-optimal protocol is obtained as follows:

u(t) = g−1
M (xM(t))(−T

2LxM(t)

σ(σ + 1)
− L

σ−1
∑

j=1

αjx
(j)
M (t) − fM(xM(t)) −

σ−1
∑

j=1

βjx
(j)
M (t)). (5.5)

From (5.5), for the ith agent, the control law is

ui(t) = g−1
i (xi(t))(−T 2

∑

k∈N(i)

(xi(t) − xk(t))/(σ(σ + 1)) −
σ−1
∑

j=1

∑

k∈N(i)

αj(x
(j)
i (t) − x

(j)
k (t))

− fi(xi(t)) −
σ−1
∑

j=1

βjx
(j)
i (t)),
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where N(i) denotes the set of neighbors of agent i in the undirected connected graph

characterized by Laplacian matrix L.

Remark 2: From (L0κ3 + Qκ4)
−1L0 = L and Q = ζI , one has L0(I − Lκ3) = κ4ζL.

By the spectral theorem [147], Laplacian matrix L is orthogonally decomposed as

L = λ1a1a
T
1 + λ2a2a

T
2 + · · · + λnana

T
n,

with λ1 = 0 < λ2 ≤ · · · ≤ λn being its eigenvalues and ai being the corresponding

eigenvectors after normalization with a1 = 1/
√
n. Similarly, identity matrix I can be

decomposed with the same set of orthogonal eigenvectors as

I = a1a
T
1 + a2a

T
2 + · · ·+ ana

T
n.

Noting λ1 = 0, it follows that

I − κ3L = a1a
T
1 + (1 − κ3λ2)a2a

T
2 + · · · + (1 − κ3λn)ana

T
n.

Note that κ3 = T σ+2/((2σ + 1)σσ!). If none of the eigenvalues of I − κ3L is 0, i.e.,

T 6= ((2σ + 1)σσ!)/(λi))
1/(σ+2), for all i = 2, 3, · · · , n, then I − κ3L is invertible. In

addition, by the property of spectral decomposition [147],

(I − κ3L)−1 = a1a
T
1 + a2a

T
2/(1 − κ3λ2) + · · · + ana

T
n/(1 − κ3λn).

Noting that aT
i ai = 1 for all i and aT

i aj = 0 for i 6= j due to the spectral decomposition

property [147], one has

L(I − κ3L)−1 = λ1a1a
T
1 + λ2a2a

T
2/(1 − κ3λ2) + · · ·+ λnana

T
n/(1 − κ3λn).

Thus,

L0 = ζκ4L(I−κ3L)−1 = ζκ4λ1a1a
T
1+ζκ4λ2a2a

T
2/(1 − κ3λ2)+· · ·+ana

T
nζκ4λn/(1 − κ3λn).

Evidently, L0 is symmetric since aia
T
i is symmetric for all i = 1, 2, · · · , n. Thus, L0

satisfies property 1). Given that 1 − κ3λi > 0, for all i = 2, · · · , n, i.e., 1 − κ3λn > 0,
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which is equivalent to 0 < T < ((2σ + 1)σσ!/λn)
1/(σ+2)

, the least eigenvalue of L0

is ζκ4λ1 = ζκ4 × 0 = 0, and the other eigenvalues are strictly bigger than 0. From

the decomposition expression of L0, 1 is thus an eigenvector of L0 corresponding to

eigenvalue 0. Therefore, if 0 < T < ((2σ + 1)σσ!/λn)
1/(σ+2)

, then L0 = ζκ4L(I −
κ3L)−1 satisfies property 1) and property 2). This guarantees the existence of L0.

Theorem 1: If all the roots of the equation sσ+
∑σ−1
j=1 (χiαj+βj)s

j+T 2χi/(σ(σ+1)) = 0

are located at the left half-plane for all i = 1, 2, · · · , n, where χ1 = nε with ε > 0 ∈ R

and χk = λk for k = 2, 3, · · · , n with λk being the positive eigenvalues of L, then

nonlinear multi-agent system (5.1) synthesized by nominal near-optimal protocol (5.5)

exponentially converges to consensus.

Proof: Substituting nominal near-optimal protocol (5.5) into the last equation of (5.1)

yields

x
(σ)
M (t) = −T 2LxM(t)/(σ(σ + 1)) −

σ−1
∑

j=1

(Lαj + βjI)x
(j)
M (t).

Let e(t) = LxM(t). Thus,

e(σ)(t) = −T 2Le(t)/(σ(σ + 1)) −
σ−1
∑

j=1

(αjLe(j)(t) + βje
(j)(t)).

For Laplacian matrix L, one has L = LT and L1 = 0 [147]. Thus, 1TL = 0 and

ε11Te(t) = 0 for any ε > 0. Then, Le(t) = (L+ ε11T)e(t). Let A = L+ ε11T. Then,

e(σ)(t) = − T 2Ae(t)

σ(σ + 1)
−

σ−1
∑

j=1

(Aαj + βjI)e
(j)(t). (5.6)

Since L is symmetric, by the spectral theorem [147], L can be decomposed as

L = λ1a1a
T
1 + λ2a2a

T
2 + · · · + λnana

T
n,

where λi and ai denote the ith eigenvalue and the ith eigenvector after the normal-

ization process, respectively, and i = 1, 2, · · · , n. Note that the least eigenvalue of a

Laplacian matrix is 0, which corresponds to eigenvector 1, and the second least eigen-

value is greater than 0 [147]. Let λ1 = 0. Then, λi > 0 for i ≥ 2 and a1 = 1/
√
n.
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Similarly, matrix A can be decomposed as

A = (λ1 + nε)11T/n+ λ2a2a
T
2 + · · · , λnanaT

n,

which indicates that the eigenvalues of A are λ1 + nε = nε, λ2, · · · , λn, all of which

are positive. Therefore, A is a positive-definite symmetric matrix. By eigenvalue

decomposition, there exist orthogonal matrix P ∈ Rn×n and diagonal matrix Λ =

diag([χ1, χ2, · · · , χn]T) = diag([nε, λ2, · · · , λn]T) such that A = PΛP T. Let y(t) =

P Te(t). From equation (5.6),

y(σ)(t) = −T 2Λy(t)/(σ(σ + 1)) −
σ−1
∑

j=1

(Λαj + βjI)y
(j)(t),

of which the ith subsystem is

y
(σ)
i (t) = −T 2χiyi(t)/(σ(σ + 1)) −

σ−1
∑

j=1

(χiαj + βj)y
(j)
i (t)

with the characteristic equation being

sσ +
σ−1
∑

j=1

(χiαj + βj)s
j +

T 2

σ(σ + 1)
χi = 0. (5.7)

By linear system theory [44], given that all the roots of (5.7) are located at the left

half-plane for all i = 1, 2, · · · , n, all the subsystems are exponentially stable. Then,

y(t) exponentially converges to zero. Recall that P is an orthogonal matrix and y(t) =

P Te(t). It follows that e(t) exponentially converges to zero. �

Theorem 2: Nominal near-optimal protocol (5.5) for nonlinear multi-agent system (5.1)

with fully known dynamics converges to optimal with time, if all the roots of equations

sσ +
∑σ−1
j=1 (χiαj + βj)s

j + T 2χi/σ(σ + 1) = 0 and sσ−1 +
∑σ−1
j=1 βjs

j−1 = 0 are located

at the left half-plane for all i = 1, 2, · · · , n, where χ1 = nε with ε > 0 ∈ R, and χk = λk

for k = 2, 3, · · · , n with λk being the positive eigenvalues of L.

Proof: According to Taylor expansion, J(t) in equation (5.2) is rewritten as J(t) =
∫ T
0 (XM(t)w1(τ)+τ

σgM(xM(t))u(t)/σ!+Θ1(t))
TL0(XM(t)w1(τ)+τ

σgM(xM(t))u(t)/σ!+

Θ1(t))dτ +
∫ T
0 (XM(t)w2(τ) + τσ−1gM(xM(t))u(t)/(σ − 1)! + Θ2(t))

TQ(XM(t)w2(τ) +
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τσ−1gM(xM(t))u(t)/(σ − 1)! + Θ2(t))dτ, where Θ1(t) = τσ(x
(σ)
M (t + κτ) − x

(σ)
M (t))/σ!

and Θ2(t) = τσ−1(x
(σ)
M (t+ κτ) − x

(σ)
M (t))/(σ − 1)! with κ ∈ (0, 1). Recall Ĵ(t) in (5.3).

By triangle inequality [148], one further has

J(t) ≤ 2Ĵ(t) + 2
∫ T

0
ΘT

1(t)L0Θ1(t)dτ + 2
∫ T

0
ΘT

2(t)QΘ2(t)dτ

= 2Ĵ(t) + 2TΘT
1(t)L0Θ1(t) + 2TΘT

2(t)QΘ2(t).

Since nominal near-optimal protocol (5.5) minimizes convex function Ĵ(t), one has

Ĵ(t) = 0 when nominal near-optimal protocol (5.5) is adopted. It follows that

J(t) ≤ 2TΘT
1(t)L0Θ1(t) + 2TΘT

2(t)QΘ2(t).

Substituting (5.5) into the last equation of (5.1) yields

x
(σ)
M (t) +

σ−1
∑

j=1

βjx
(j)
M (t) = δ(t),

where δ(t) = −T 2LxM(t)/(σ(σ + 1)) − L
∑σ−1
j=1 αjx

(j)
M (t). Let zM(t) = ẋM(t). Then,

z
(σ−1)
M (t) +

∑σ−1
j=1 βjz

(j−1)
M (t) = δ(t). When δ(t) = 0, one has

z
(σ−1)
M (t) +

σ−1
∑

j=1

βjz
(j−1)
M (t) = 0, (5.8)

of which each subsystem has the same characteristic equation sσ−1+
∑σ−1
j=1 βjs

j−1 = 0.

By linear system theory [44], if all the roots of the characteristic equation are located

at the half-plane, then system (5.8) is exponentially stable. From Theorem 1, if all

the roots of the equation sσ +
∑σ−1
j=1 (χiαj + βj)s

j + T 2χi/(σ(σ + 1)) = 0 are lo-

cated at the half-plane for all i = 1, 2, · · · , n, then limt→+∞ LxM(t) = 0 yielding

limt→+∞ δ(t) = 0. By bounded-input bounded-output stability of linear systems [44],

system x
(σ)
M (t) +

∑σ−1
j=1 βjx

(j)
M (t) = δ(t) is asymptotically stable with zM(t) = ẋM(t) con-

verging to zero. It follows that limt→+∞ x
(σ)
M (t) = 0 and limt→+∞ x

(σ)
M (t + κτ) = 0,

yielding limt→+∞ Θ1(t) = 0 and limt→+∞ Θ2(t) = 0. Then, limt→+∞ 2TΘT
1(t)L0Θ1(t) +

2TΘT
2(t)QΘ2(t) = 0. Note that J(t) ≥ 0. Recall that J(t) ≤ 2TΘT

1(t)L0Θ1(t) +

2TΘT
2(t)QΘ2(t). According to the pinching theorem [175], limt→+∞ J(t) = 0. �
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5.3 Adaptive near-optimal design

In this section, we further consider the situation where the parameters of multi-agent

system (5.1) are unknown, i.e., the parameters in fi(xi) and gi(xi) are unknown.

Specifically, the ith agent of multi-agent system (5.1) is reformulated as

ẋ
(0)
i = x

(1)
i ,

· · ·

ẋ
(σ−2)
i = x

(σ−1)
i ,

ẋ
(σ−1)
i = ω

T
i φi(xi) + bT

iϕi(xi)ui,

where ωi and bi are unknown constant parameter vectors; φ(xi) and ϕ(xi) are known

basis function vectors. Then, multi-agent system (5.1) is reformulated as















ẋ
(k)
M = x

(k+1)
M , k = 0, 1, · · · , σ − 2,

ẋ
(σ−1)
M = Wφ(xM) +Bϕ(xM)u,

(5.9)

with

W = [ωT
1, 0, · · · , 0; 0,ωT

2, · · · , 0; · · · ; 0, 0, · · · ,ωT
n]

and

B = [bT
1, 0, · · · , 0; 0,bT

2, · · · , 0; · · · ; 0, 0, · · · ,bT
n]

being parameter matrices. In addition, φ(xM) = [φT
1(x1), φ

T
2(x2), · · · , φT

n(xn)]
T and

ϕ(xM) = [ϕ1(x1), 0, · · · , 0; 0, ϕ2(x2), · · · , 0; · · · ; 0, 0, · · · , ϕn(xn)] are basis function

matrices. To handle the parameter uncertainty, we design the following auxiliary system

to reconstruct the input-output property of system (5.1):


































x̂
(σ)
M (t) = Ŵ (t)φ(xM(t)) + B̂(t)ϕ(xM(t))u(t) −∑σ−2

c=0 νcx̃
(c+1)
M (t) − γs(t),

˙̂
W (t) = −K1s(t)φ

T(xM(t)),

˙̂
B(t) = −K2s(t)u

T(t)ϕT(xM(t)),

(5.10)

where s(t) =
∑σ−1
c=0 νcx̃

(c)
M (t) with νσ−1 = 1; x̃M(t) = x̂M(t) − xM(t) with x̂M(t) being the

auxiliary state vector; Ŵ (t) and B̂(t) are auxiliary parameter matrices; K1 ∈ Rn×n and
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K2 ∈ Rn×n are diagonal positive-definite gain matrices; γ > 0 ∈ R is a parameter used

to scale the state feedback. The auxiliary system is aided by the concept of sliding

mode control [144, 152] with the sliding surface being s(t) = 0, and is thus called

sliding-mode auxiliary system.

Remark 3: From (5.10), for the ith agent, the corresponding auxiliary system is



































x̂
(σ)
i (t) = ω̂

T
i (t)φi(xi(t)) + b̂T

iϕi(xi(t))ui(t) −
∑σ−2
c=0 νcx̃

(c+1)
i (t) − γsi(t),

˙̂
ω

T
i (t) = −k1iisi(t)φ

T
i (xi(t)),

˙̂
bT
i (t) = −k2iisi(t)ui(t)ϕ

T
i (xi(t)),

(5.11)

where k1ii and k2ii denote the ith diagonal elements of matrices K1 and K2 respec-

tively. Evidently, the auxiliary system of each agent is independent from other agents.

Theorem 3: The input-output property of sliding-mode auxiliary system (5.10) asymp-

totically converges to that of multi-agent system (5.1) with fully unknown parameters.

Proof: Let W̃ (t) = Ŵ (t) −W and B̃(t) = B̂(t) − B. Consider candidate Lyapunov

function

V1(t) = sT(t)s(t)/2 + tr(W̃ T(t)K−1
1 W̃ (t))/2 + tr(B̃T(t)K−1

2 B̃(t))/2.

The first equation of (5.10) is written as

x̂
(σ)
M (t) = Ŵ (t)φ(xM(t)) + B̂(t)ϕ(xM(t))u(t) − ṡ(t) − γs(t) + x̃

(σ)
M (t).

Subtracting equation (5.9) from the above equation yields

ṡ(t) = −γs(t) + W̃ (t)φ(xM(t)) + B̃(t)ϕ(xM(t))u(t).

Then,

V̇1(t) = −γ‖s(t)‖2
2 ≤ 0.

Define set

S = {x̃M(t) ∈ R
n|V̇1(t) = 0}.
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From V̇1(t) = 0, one readily has

S = {x̃M(t) ∈ R
n|s(t) = 0}.

Recall

s(t) =
σ−1
∑

c=0

νcx̃
(c)
M (t).

Given that the coefficients νc for c = 0, 1, 2, · · · , σ − 1 with νσ−1 = 1 satisfy the Routh-

Hurwitz stability criterion [44], limt→+∞ x̃M(t) = 0. In other words, no solution can stay

identically in set S, other than the trivial solution x̃M(t) = 0. By LaSalle’s invariable

set principle [44], equilibrium point x̃M(t) = 0 is asymptotic stable. It follows that,

limt→+∞ x
(ρ)
M (t) = x̂

(ρ)
M (t) = Ŵ (t)φ(xM(t)) + B̂(t)ϕ(xM(t))u(t). �

Since parameter matrices Ŵ (t) and B̂(t) are generated by sliding-mode auxiliary sys-

tem (5.10), they are totally known. Therefore, Ĵ(t) in (5.3) is further approximated as

follows:

Ĵ(t) ≈ J̄(t)

=
∫ T

0
(X̂M(t)w1(τ) +

τσ

σ!
B̂(t)ϕ(xM(t))u(t))TL0(X̂M(t)w1(τ) +

τσ

σ!
B̂(t)

× ϕ(xM(t))u(t))dτ +
∫ T

0
(X̂M(t)w2(τ) +

τσ−1

(σ − 1)!
B̂(t)ϕ(xM(t))

× u(t))TQ(X̂M(t)w2(τ) +
τσ−1

(σ − 1)!
B̂(t)ϕ(xM(t))u(t))dτ,

(5.12)

where X̂M(t) = [xM(t), · · · ,x(σ−1)
M (t), Ŵ (t)φ(xM(t))]. Following similar steps in Section

5.2, a protocol minimizing performance index J̄(t) is obtained as follows:

u(t) = (B̂(t)ϕ(xM(t)))−1(L(−
σ−1
∑

j=0

T j+2x
(j)
M (t)

(σ + j + 1)σj!
+

σ−1
∑

j=1

T j+2(2σ − 1)x
(j)
M (t)

σ2(2σ + 1)(σ + j − 1)(j − 1)!
)

− Ŵ (t)φ(xM(t)) −
σ−1
∑

j=1

T j−σ(2σ − 1)(σ − 1)!

(σ + j − 1)(j − 1)!
x

(j)
M (t)).

(5.13)

Since B̂(t)ϕ(xM(t)) = diag([b̂T
1ϕ1(x1(t)), b̂

T
2ϕ2(x2(t)), · · · , b̂T

nϕn(xn(t))]
T) is a diago-

nal matrix, it is evident that (B̂(t)ϕ(xM(t)))−1 is also a diagonal matrix. In addition,

Ŵ (t)φ(xM(t)) = [ω̂T
1(t)φ1(x1(t)), ω̂

T
2(t)φ2(x2(t)),
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Agent i

Auxiliary System (5.11)

Protocol (5.13)

ω̂
T
i (t) b̂T

i (t)

xi(t)

ui(t)
Xπ(t)

Figure 5.1: Block diagram about the ith agent of multi-agent system (5.1) synthesized by adap-

tive near-optimal protocol (5.13) and auxiliary system (5.11), where Xπ(t) = {xj(t)|j ∈ N(i)}
denotes the state set of neighbors of the ith agent.

· · · , ω̂T
n(t)φn(xn(t))]

T. Then, from (5.13), the control law for the ith agent is

ui(t) = (b̂T
iϕi(xi(t)))

−1((−
σ−1
∑

j=0

∑

k∈N(i)

T j+2

(σ + j + 1)σj!
(x

(j)
i (t) − x

(j)
k (t))

+
σ−1
∑

j=1

∑

k∈N(i)

T j+2(2σ − 1)

σ2(2σ + 1)

(x
(j)
i (t) − x

(j)
k (t))

(σ + j − 1)(j − 1)!
− ω̂

T
i (t)φi(xi(t))

−
σ−1
∑

j=1

T j−σ(2σ − 1)(σ − 1)!

(σ + j − 1)(j − 1)!
x

(j)
i (t)).

Thus, adaptive near-optimal protocol (5.13) is a distributed protocol, which is also ex-

plained by the block diagram shown in Fig. 5.1.

Theorem 4: If all the roots of equation (5.7) are located at the left half-plane for all

i = 1, 2, · · · , n, then, synthesized by adaptive near-optimal protocol (5.13) and sliding-

mode auxiliary system (5.10), nonlinear multi-agent system (5.1) with fully unknown

parameters exponentially converges to consensus.

Proof: Nonlinear multi-agent system (5.1) can be reformulated as

x
(σ)
M (t) = Wφ(xM) +Bϕ(xM)u(t).

Let W̃ (t) = Ŵ (t) −W and B̃(t) = B̂(t) − B. Then,

x
(σ)
M = Ŵ (t)φ(xM) + B̂(t)ϕ(xM)u(t) + η(t),
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where

η(t) = −(W̃ (t)φ(xM) + B̃(t)ϕ(xM)u(t)).

Then, by following similar steps in the proof of Theorem 1, the closed-loop system

consisting of protocol (5.13) and multi-agent system (5.1) with unknown parameters is

derived as

e(σ)(t) =
−T 2Ae(t)

σ(σ + 1)
−

σ−1
∑

j=1

(Aαj + βj)e
(j)(t) + η(t), (5.14)

where

e(t) = LxM(t).

When η(t) = 0, closed-loop system (5.14) becomes

e(σ)(t) = −T 2Ae(t)/(σ(σ + 1)) −
σ−1
∑

j=1

(Aαj + βj)e
(j)(t),

which is exponentially stable, if all the roots of equation (5.7) are located at the left

half-plane for all i = 1, 2, · · · , n, according to the proof of Theorem 1. According to

Theorem 2,

lim
t→+∞

(W̃ (t)φ(xM(t)) + B̃(t)ϕ(xM(t))u(t)) = 0.

It follows that limt→+∞ η(t) = 0. By bounded-input bounded-output stability of linear

systems [44], closed-loop system (5.14) is thus exponentially stable with e(t) exponen-

tially converging to zero. �

Theorem 5: Adaptive near-optimal protocol (5.13) for nonlinear multi-agent system

(5.1) with fully unknown parameters asymptotically converges to optimal, if all the roots

of equations (5.7) and sσ−1 +
∑σ−1
j=1 βjs

j−1 = 0 are located at the left half-plane.

Proof: Recall equation (5.9). By Taylor expansion, performance index J(t) in (5.2) is
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rewritten as

J(t) =
∫ T

0
(X̂M(t)w1(τ) + τσB̂(t)ϕ(xM(t))u(t)/σ! + Θ1(t) + Θ3(t))

TL0(X̂M(t)w1(τ)

+ τσB̂(t)ϕ(xM(t))u(t)/σ! + Θ1(t) + Θ3(t))dτ +
∫ T

0
(X̂M(t)w2(τ) + τσ−1B̂(t)

× ϕ(xM(t))u(t)/(σ − 1)! + Θ2(t) + Θ4(t))
TQ(XM(t)w2(τ) + τσ−1B̂(t)

× ϕ(xM(t))u(t)/(σ − 1)! + Θ2(t) + Θ4(t))dτ,

where

Θ1(t) = τσ(x
(σ)
M (t+ κτ) − x

(σ)
M (t))/σ!,

Θ2(t) = τσ−1(x
(σ)
M (t+ κτ) − x

(σ)
M (t))/(σ − 1)!,

Θ3(t) = −τσ(W̃ (t)φ(xM(t)) + B̃(t)ϕ(xM(t))u(t))/σ!,

Θ4(t) = −τσ−1(W̃ (t)φ(xM(t)) + B̃(t)ϕ(xM(t))u(t))/(σ − 1)!.

Recall performance index J̄(t) in (5.12). By triangle inequality [148],

J(t) ≤ 2J̄(t) + 2TΘT
1(t)L0Θ1(t) + 2TΘT

3(t)L0Θ3(t) + 2ΘT
3(t)QΘ3(t) + 2TΘT

4(t)QΘ4(t).

Based on Theorem 3, one further has limt→+∞(W̃ (t)φ(xM(t))+B̃(t)ϕ(xM(t))u(t)) = 0,

yielding limt→+∞ Θ3(t) = 0 and limt→+∞ Θ4(t) = 0. Then, following similar steps in the

proof of Theorem 2, based on Theorem 4, it can be readily proved that limt→+∞ J(t) =

0. �
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10

1

2

3

4

5

6

7

8

9

Figure 5.2: Communication topology of multi-agent system (5.15) consisting of 10 heteroge-

neous agents, where the ith node corresponds to the ith agent with i = 1, 2, · · · , 10.

5.4 Illustrative example

Consider a nonlinear multi-agent system consisting of 10 agents with the communica-

tion graph given in Fig. 5.2 and the following heterogeneous dynamics:

x
(3)
1 = 3x1 sin(x1) + 8ẍ1 + 10u1,

x
(3)
2 = 8 cos(ẋ2)x2 − 3ẍ2 + 12u2,

x
(3)
3 = 2x3ẍ3 − 2ẋ3 + 4 sin(ẍ3) + 7u3,

x
(3)
4 = 2 sin(x4) + 9u4,

x
(3)
5 = −3ẍ5 sin(ẋ5) + 4x5 + 5u5,

x
(3)
6 = 6ẋ2

6 − 2x6 + 14u6,

x
(3)
7 = 2 cos(x7) − 3ẋ7 + 9u7,

x
(3)
8 = 9 sin(x8) + 18u8,

x
(3)
9 = 7 sin(ẋ9) + 4x9ẋ9 + 15u9,

x
(3)
10 = 2x10ẋ10 + 6u10.

(5.15)

The parameters of auxiliary system (5.10) are set to γ = 6, K1 = K2 = 8I with I being

the 10 × 10 identity matrix, ν0 = 6, ν1 = 5, and ν2 = 1. In the performance index J(t),

Q is set to Q = I . The initial value of each element of auxiliary parameter vector ω̂i(t)

and b̂i(t) with i = 1, 2, · · · , n is randomly generated at interval (0, 5). For comparison,

the adaptive protocol (4) in [174] is also simulated, of which the parameters defined

in [174] are set to γ2 = 11, γ3 = 12 and γ4 = 0.1, Γi = Ki = 1, ci0 = −0.46γ3xi(0)/γ4
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Figure 5.3: Profiles of agent states xi and inputs ui of multi-agent system (5.15) with unknown

parameters. (a) Profiles of xi when adaptive near-optimal protocol (5.13) is used. (b) Profiles

of ui when (5.13) is used. (c) Profiles of xi when protocol (4) in [174] is used. (d) Profiles of ui

when protocol (4) in [174] is used.

according to the chapter. The simulation results are shown in Fig. 5.3 and 5.4. As seen

from Fig. 5.3, while both protocols drive the agent states to reach agreement on the

same value, when the proposed protocol (5.13) is used, the magnitudes of inputs are

much smaller at the first few seconds. Moreover, as seen from Fig. 5.4, the values of

performance index J(t) are much smaller when (5.13) is used, showing the optimality

of the performance index. These substantiate the superiority of the proposed adaptive

near-optimal consensus approach.
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Figure 5.4: Profiles of performance index J(t) defined in (5.2) with respect to different values

of T , where the blue lines correspond to the cases when protocol (4) in [174] is used and the

red ones corresponds to the cases when adaptive near-optimal protocol (5.13) in this chapter

is used.

5.5 Chapter summary

In this chapter, the learning and near-optimal distributed consensus of high-order non-

linear heterogeneous multi-agent systems has been investigated. Under the condition

that the system dynamics of all the agents are fully known, a nominal near-optimal pro-

tocol has been firstly designed and proposed. Then, based on sliding-mode auxiliary

systems, an adaptive near-optimal protocol has been proposed for high-order non-

linear multi-agent systems with fully-unknown parameters. Theoretical analysis has

shown that the proposed protocols can simultaneously guarantee the asymptotic opti-

mality of the performance index with multi-agent systems exponentially converging to

consensus. An illustrative example has substantiated the efficacy and superiority of the

proposed adaptive near-optimal distributed consensus approach.
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Chapter 6

LNOC for intelligent redundancy

resolution with learning of parameters

In this chapter, inspired by the success of the LNOC method, we consider a special

physical system, i.e., redundant manipulators.1 Redundancy resolution is of great

importance in the control of manipulators. Among the existing results for handling

this issue, the quadratic program approaches, which are capable of optimizing perfor-

mance indices subject to physical constraints, are widely used. However, the existing

quadratic program approaches require exactly knowing all the physical parameters of

manipulators, the condition of which may not hold in some practical applications. This

fact motivates us to consider the application of learning and control techniques for si-

multaneous parameter learning and control. However, the inherent nonlinearity and

non-smoothness of the neural model prohibits direct applications of learning and con-

trol to this model and there has been no existing result on LNOC of robotic arms using

projection neural network (PNN) approaches with parameter convergence. Different

from conventional treatments in joint angle space, we investigate the problem from the

1The content in this chapter has already been published. Yinyan Zhang, Siyuan Chen, Shuai Li, and

Zhijun Zhang, “Adaptive Projection Neural Network for Kinematic Control of Redundant Manipulators

With Unknown Physical Parameters,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 4909–4920, 2018.
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joint speed space and decouple the nonlinear part of the Jacobian matrix from the

structural parameters that need to be learnt. Based on the new representation, we

establish the first adaptive PNN with online learning for the redundancy resolution of

manipulators with unknown physical parameters, which tackles the dilemmas in existing

methods. The proposed method is capable of simultaneously optimizing performance

indices subject to physical constraints and handling parameter uncertainty. Theoretical

results are presented to guarantee the performance of the proposed neural network.

Besides, simulations based on a PUMA 560 manipulator with unknown physical pa-

rameters together with the comparison with an existing PNN substantiate the efficacy

and superiority of the proposed neural network, and verify the theoretical results. The

performance is also validated on a physical manipulator.

6.1 Introduction

While extensive progress (e.g., [201–203] and the references therein) has been made

to address the kinematic uncertainty of non-redundant manipulators, the control of re-

dundant manipulators with unknown kinematics has rarely been considered. It is gen-

erally assumed that the kinematics and the associated Jacobian matrix are accurately

known in both pseudoinverse-type methods and QP based methods [188–200]. In the

presence of uncertainty, these methods may result in errors or even unstable responses

in the motion of end effectors. In [204], Cheah et. al. adopted a unified framework to

address the kinematic uncertainty of both redundant and non-redundant manipulators,

by which the end effectors can complete primary tasks in a satisfactory manner. How-

ever, Cheah et. al.’s work did not consider secondary tasks, which is far from the

motivation to introduce redundancy into manipulators. Besides, due to the complexity

of inverse kinematics of redundant manipulators [205], which is a one-to-many rela-

tionship [206], it is difficult to directly handle kinematic uncertainty via utilizing existing

results in adaptive control, e.g., [207–210].
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Motivated by the above observations, in this chapter, we propose an adaptive method

to solve the redundancy resolution problem in the presence of kinematic uncertainty.

The problem is formulated as a QP subject to equality and bounded constraints. Dif-

ferent from the existing results [188–200], in this chapter, some parameters associated

with the Jacobian matrix are assumed to be unknown, i.e., the Jacobian matrix is uncer-

tain. The proposed method is capable of simultaneously identifying the Jacobian matrix

and handling both parameter uncertainty and physical constraints, while solving the re-

dundancy resolution problem. Note that, although there are versatile methodologies

available in the literature for achieving either parameter identification or redundancy

resolution, to the best of our knowledge, there is no existing methods for online simul-

taneous parameter learning and redundancy resolution, except our work presented in

this chapter. In addition, the proposed method does not require to perform pseudoin-

version.

6.2 Preliminary and problem formulation

In this section, the forward kinematics of redundant manipulators is presented. Besides,

the problem considered in this chapter is formulated as a QP with an uncertain Jacobian

matrix.

6.2.1 Forward kinematics

The forward kinematics of redundant manipulators is the theoretical basis for redun-

dancy resolution. Consider an n-DOF redundant manipulator with its end-effector work-

ing on anm-dimensional Cartesian space. By the definition of redundancy, n > m. The

forward kinematics of the manipulator is analytically described as the following nonlin-

ear function:

r(t) = f(θ(t)), (6.1)
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where r(t) = [r1(t), r2(t), · · · , rm]T ∈ Rm and θ(t) = [θ1(t), θ2(t), · · · , θn(t)]T ∈ Rn

denote the Cartesian coordinate of the end-effector on the workspace and the joint

angle vector on the joint space, respectively, at time instant t; subscript T denotes the

transpose of a vector or a matrix; nonlinear function f(·) : Rn → Rm is determined by

the mechanical and geometrical properties of a redundant manipulator. In manipulator

modeling, f(·) is often derived via the Denavit-Hartenberg (D-H) convention [214].

Property 1: The Jacobian matrix J(θ(t)) = ∂f(θ(t))/∂θ(t) ∈ Rm×n of the forward

kinematics of a redundant manipulator satisfies the following equation:

J(θ(t)) = Wφ(θ(t)), (6.2)

where φ(θ(t)) ∈ Rk×n is referred to as the kinematic regressor matrix and W ∈ Rm×k

is a constant parameter matrix. Besides, each non-null element of W is either a link

length or a joint offset of the manipulator.

By calculating time derivatives on both side of (6.1), one has ṙ(t) = J(θ(t))θ̇(t). Then,

together with (6.2), the forward kinematics of a redundant manipulator at the velocity

level is derived as follows:

ṙ(t) = Wφ(θ(t))θ̇(t). (6.3)

Note that, for a redundant manipulator with known twist angles, the analytical expres-

sion of φ(·) can be readily calculated via the D-H convention [214].

In this chapter, we consider the situation that W is unknown, which leads to the un-

certainty of the Jacobian matrix. The uncertainty makes the redundancy resolution

problem considered in this chapter more difficult than those in [188–200].

6.2.2 QP-type problem formulation

QP is the widely adopted redundancy resolution problem formulation since it can deal

with various constraints in a unified framework. Let u = θ̇(t). At the velocity level, the
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general redundancy resolution problem with both equality and bounded constraints is

formulated as follows:

min
u(t)

1

2
uT(t)Au(t) + bTu(t), (6.4a)

s.t. J(θ(t))u(t) = ṙd(t) + ζ(rd(t) − f(θ(t))), (6.4b)

J(θ(t)) = Wφ(θ(t)), (6.4c)

u(t) ∈ Ω, (6.4d)

where positive definite diagonal matrix A ∈ Rn×n and vector b ∈ Rn are coefficients of

the performance index; J(θ(t)) is the Jacobian matrix; rd(t) ∈ Rm denotes a smooth

desired path of the end-effector; ζ > 0 ∈ R is an adjustable parameter; η− ∈ Rn and

η+ ∈ Rn are the lower bound and upper bound of the allowed velocities in the joint

space of the manipulator; Ω = {u ∈ R
n|η− ≤ u ≤ η+} is a convex set.

About the performance index shown in (6.4a), we offer the following remark.

Remark 1: The performance index shown in (6.4a) includes some widely investigated

ones as special cases. For example, the velocity-norm performance index ‖θ̇(t)‖2
2/2

(with ‖ · ‖2 denoting the 2-norm) adopted in [184,186,198,211,213] corresponds to the

case that A is an n × n identity matrix and b = 0. The repetitive-motion performance

index ‖θ̇(t)+γ(θ(t)−θ(0))‖2
2/2 in [188,197,200] aiming at handling the joint-angle drift

phenomenon corresponds to the case thatA is an n×n identity matrix and b = γ(θ(t)−
θ(0), where γ ∈ R is a constant parameter. By referring to [188, 197, 200], the only

requirement on constant parameter γ is that γ > 0. Note that, since the redundancy

resolution problem is resolved at the velocity level, i.e., the decision variable is θ̇, the

term γ2(θ(t) − θ(0))T(θ(t) − θ(0))/2 is directly removed from the performance index,

which does not affect the optimality of the solution [188, 197, 200]. When A equals to

the inertial matrix of the manipulator and b = 0, performance index (6.4a) serves as

the kinematic-energy performance index investigated in [198].

About the derivation of the equality constraint shown in (6.4b), we offer the following

remark.
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6.2. Preliminary and problem formulation

Remark 2: In the angle level, the equality constraint is

f(θ(t)) = rd(t), (6.5)

when the end-effector is expected to track a smooth desired path defined by rd(t).

There are two approaches in the existing literature to deriving the relationship between

the desired path rd(t) and the joint angle vector θ(t) at the velocity level. The first one

directly computes time derivatives on both sides of (6.5), which yields [184]

ṙd(t) = J(θ(t))θ̇(t). (6.6)

Velocity-level redundancy resolution methods based on (6.6) generally require that the

initial Cartesian coordinate of the end-effector is the same as the desired one to guar-

antee asymptotic convergence of end-effector error e(t) = r(t) − rd(t) to zero and is

thus less favorable [215]. The other approach removes this requirement by utilizing

the formula β̇(t) = −ζβ(t) with ζ > 0 ∈ R being a parameter to scale the conver-

gence rate, which guarantees that β(t) asymptotically converges to zero [185]. Let

β(t) = rd(t) − f(θ(t)). Then, by using the formula, the equality constraint (6.4b) is

derived.

About the set constraint shown in (6.4d), we offer the following remark.

Remark 3: The joint angle limit can be converted into the joint velocity limit. Suppose

that the physical joint angle limit is θ− ≤ θ ≤ θ+, where θ− and θ+ denote the physical

lower bound and upper bound of the joint angle of the manipulator, respectively. Sup-

pose that the physical joint velocity limit is θ̇− ≤ θ̇ ≤ θ̇+, where θ̇− and θ̇+ denote the

physical lower bound and upper bound of the joint angle of the manipulator, respec-

tively. Then, according to [198], the joint angle limit can be incorporated into the set

constraint by setting η− = max{θ̇min,−k(θ − θmin)} and η+ = min{θ̇max,−k(θ − θmax)}
with k > 0 ∈ R being a design parameter to scale the strength of negative feedback to

comply with the joint angle limit.
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6.3 Nominal design

For better readability and to lay a basis for latter discussion, in this section, we present

the existing nominal design process for solving problem (6.4) under an ideal condi-

tion, i.e., W is known (or J(θ) is known). Under this condition, some special cases of

the redundancy resolution problem have been extensively investigated in the existing

literature (e.g., [188–198]) with the aid of the Karush-Kuhn-Tucker condition [226].

The nominal design process can be divided into three steps. First, a Lagrange function

is defined: L(θ, λ) = uTAu/2+bTu+λT(ṙd−Wφ(θ)u+ζ(rd−f(θ))) where λ ∈ Rm is

called the Lagrange multiplier. Second, the Karush-Kuhn-Tucker condition [226] about

the optimal solution of problem (6.4) is written as follows:

u = PΩ

(

u− ∂L

∂u

)

,

Wφ(θ)u = ṙd + ζ(rd − f(θ)),

(6.7)

where PΩ(·) is a projection function defined as PΩ(u) = arg miny∈Ω‖u − y‖2. Note

that ∂L/∂θ = Au + b − φT(θ)W Tλ. Then, a projection neural network (PNN) can be

designed as follows to solve (6.4) [227]:

εu̇ = − u + PΩ

(

u− ∂L

∂u

)

= − u + PΩ(u − (Au + b− φT(θ)W Tλ)),

ελ̇ = ṙd −Wφ(θ)u + ζ(rd − r),

(6.8)

where ε > 0 ∈ R is a positive constant design parameter to scale the convergence rate

of the PNN. It has been rigorously proved in [227] that the state trajectory of the PNN

is exponentially convergent to the optimal solution of (6.4).

About extending PNN (6.8) to solve the problem considered in this chapter, we offer the

following remark.

Remark 4: The design of PNN (6.8) is based on the ideal condition that the Jacobian

matrix J(θ) = Wφ(θ) is known. Extending PNN (6.8) to solve problem (6.4) under
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the situation that W is unknown is not straightforward, especially when real-time re-

dundancy resolution is required. The difficulty also lies in the corresponding theoretical

analysis. Generally, projection neural networks become projected gradient descent in

discrete time space. The conversion can be achieved by performing the Euler differ-

ence rule for the derivative term. In our work, we consider the case that some pa-

rameters are unknown, for which conventional projection neural networks or projected

gradient descent cannot address.

6.4 Novel adaptive design

In this section, an adaptive PNN is developed to solve the redundancy resolution prob-

lem shown in (6.4) with parameter uncertainty.

6.4.1 Adaptive projection neural network

Define Ŵ ∈ Rm×k. It is expected that Ŵφ(θ) − J(θ) converges to zero. The proposed

adaptive PNN for solving redundancy resolution problem (6.4) with unknown constant

matrix W is described as follows:

ε ˙̌u = −ǔ + PΩ(ǔ − (Aǔ + b− φT(θ)Ŵ Tλ)), (6.9a)

ελ̇ = ṙd − Ŵφ(θ)ǔ + ζ(rd − r), (6.9b)

˙̂
W = −ν(Ŵφ(θ)u− ṙ)uTφT(θ), (6.9c)

u = ǔ + ρ, (6.9d)

where ǔ ∈ Rn, Ŵ ∈ Rm×k, and λ ∈ Rm are state variables of the network; parameter

ν > 0 ∈ R is used to scale the strength of parameter-error feedback; ρ ∈ Rn is

bounded independent and identically distributed (i.i.d.) random noise of zero mean

and σ deviation, where ‖ρ‖2 ≤ ρ0 with ρ0 > 0 ∈ R denoting the bound.
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As seen from (6.9), to address the uncertainty of constant matrix W , an evolution rule

(6.9c) is designed. From (6.3), ṙ = Wφ(θ)θ̇ = Wφ(θ)u. It follows that (6.9c) can be

rewritten as
˙̂
W = − ν(Ŵφ(θ)u −Wφ(θ)u)uTφT(θ)

= − ν(Ŵ −W )φ(θ)uuTφT(θ).
(6.10)

Evidently, by this rule, the change in the state value of Ŵ results from the term Ŵφ(θ)−
Wφ(θ) = Ŵφ(θ) − J(θ), i.e., the difference between the estimated value and the

true value. When Ŵφ(θ) converges to Wφ(θ), i.e., Ŵφ(θ) − J(θ) = 0, it is evident

that
˙̂
W = 0, which means that the dynamical system described by (6.10), i.e., (6.9c),

achieves its equilibrium. Besides, in the proposed PNN, the output u is the sum of the

state vector ǔ and additive random noise ρ. The reason why noise is introduced into

the output of the proposed PNN is to excite the dynamic properties of manipulators.

About how to obtain the values of r and ṙ in practice, we offer the following remark.

Remark 5: The uncertainty in the parameters makes it difficult to acquire the values of r

(i.e., end-effector position) and ṙ (i.e., end-effector velocity) via using the forward kine-

matics of the manipulator. On the other hand, it is worth pointing out that there are high-

accuracy motion capture system available for the measurement of end-effector position

r. For example, the Optitrack motion capture system, which consistently produces a

positional error less than 3 × 10−4 m [216], is becoming more and more popular in the

robotics and control community as a reliable tool for position measurement [217–219].

The OptiTrack have been widely used in robotics [220–222]. In the problem consid-

ered in this chapter, the output is the position (and, consequently, the speed) of the

end-effector of the manipulator. The parameter identification of a dynamical system

intrinsically requires knowing the input and output data of the system. Thus, the re-

quirement on knowing the end-effector position is natural. Note that, when conducting

parameter identification for manipulators, at least, the end-effector position difference

data and input difference data are required [223]. In terms of the end-effector veloc-

ity ṙ, it can be obtained from the position measurement via using tracking differentia-
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Figure 6.1: The block diagram about the implementation of the proposed adaptive projection

neural network (APNN) described in (6.9) for real-time redundancy resolution of manipulators

with an uncertain constant matrix W in kinematics.

tors [224, 225]. Since the end-effector acceleration is always bounded, according to

Theorem 1 in [225], we can readily configure a real-time first-order tracking differen-

tiator whose output converges to the time-derivative of r, i.e., ṙ, in finite time. In other

words, mathematically, we have y(t) = ṙ(t), ∀t > te, where y(t) is the output of the

tracking differentiator and te > 0 is a constant.

In terms of the implementation of the proposed adaptive PNN, we offer the following

remark.

Remark 6: Fig. 6.1 shows a block diagram about the implementation of the proposed

adaptive PNN in the real-time redundancy resolution of manipulators. As seen from

this block diagram, the joint angle and end-effector information (i.e., θ, r and ṙ) of

the redundant manipulator is used as a feedback to the adaptive PNN. Based on the

feedback information, the desired path described by rd and ṙd, and artificially added

additive noise ρ, the network state variables and output are adaptively updated, among

which u is used to control the redundant manipulator.

Regarding the significance and motivation of the proposed method, we provide the

following remark.
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Remark 7: Although there are well established methods for off-line calibration of kine-

matic parameters of manipulators, there are some cases that require online simultane-

ous identification and control. In fact, the D-H parameters of a manipulator are affected

by the length of the tool it uses. For example, consider the D-H parameters of the

PUMA 560 manipulator, which are shown in Table 6.1 of the chapter. When the ma-

nipulator is holding a welding rod in a cooperative welding task, the end-effector of

the manipulator is the tip of the rod. The length of the rod keeps decreasing during

the welding process, which results in the decrease of d6. However, during the weld-

ing process, it is unfavorable to conduct off-line calibration of the kinematic parameters

once d6 changes. Otherwise, a simple welding process will cost much time due to the

time-consuming off-line calibration. In addition, as pointed out by Dixon et al., when a

robot picks up tools of uncertain lengths, the overall kinematics becomes uncertain and

changes according to different tasks [236–238]. Thus, for the case that a manipulator

needs to sequentially conduct different tasks by using different tools, it is still unfavor-

able to conduct off-line calibration. To sum up, our method serves as an alternative for

the case that the kinematic parameters may change during the task execution process.

6.4.2 Theoretical analysis

In this subsection, theoretical results about the proposed adaptive PNN are presented.

Theorem 1: The state variable Ŵ of the adaptive projection neural network (6.9) sat-

isfies Ŵφ(θ) = J(θ) when t → +∞ and the state variable u of (6.9) converges to the

optimal solution to the resolution problem shown in (6.4) with an error bounded by ρ0.

Proof: Let W̃ (t) = Ŵ (t) − W . Consider the following function: V1 = 1
2
‖W̃‖2

F =

1
2
trace(W̃ TW̃ ), where ‖ · ‖F and trace(·) denote the Frobenius norm and the trace of a

matrix, respectively. Evidently, V1 ≥ 0. In light of (6.2) and (6.9), calculating the time
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derivative of V1 gives

V̇1 = trace(W̃ T ˙̃W ) = −νtrace(W̃ T(Ŵφ(θ)u− ṙ)uTφT(θ))

= −νtrace(W̃ T(Ŵφ(θ)u−Wφ(θ)u)uTφT(θ)) = −νtrace(W̃ TW̃φ(θ)uuTφT(θ)).

(6.11)

Note that trace(XY ) = trac(XTY T) with X and Y being two compatible matrices [228].

Let X = W̃ T and Y = W̃φ(θ)uuTφT(θ). Then, it follows from (6.11) and (6.9) that

V̇1 = −νtrace(W̃φ(θ)uuTφT(θ)W̃ T) = −νtrace((W̃φ(θ)u)(W̃φ(θ)u)T)

= −ν‖W̃φ(θ)u‖2
F = −ν‖W̃φ(θ)(ǔ + ρ)‖2

F

≤ 0.

Then, together with (6.11) and (6.9), the LaSalle’s invariance principle [229] is em-

ployed, which gives

trace(W̃ TW̃φ(θ)(ǔ + ρ)(ǔ + ρ)TφT(θ)) = 0, (6.12)

when t→ +∞. Calculating expected values on both sides of (6.12) yields

E(trace(W̃ TW̃φ(θ)(ǔ + ρ)(ǔ + ρ)TφT(θ))) = 0, (6.13)
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when t → +∞. Recalling that ρ is i.i.d. zero-mean random noise of deviation σ, one

has

E(trace(W̃ TW̃φ(θ)(ǔ + ρ)(ǔ + ρ)TφT(θ)))

= E(trace(W̃ TW̃φ(θ)ǔǔTφT(θ))) + E(trace(W̃ TW̃φ(θ)ǔρTφT(θ)))

+ E(trace(W̃ TW̃φ(θ)ρǔTφT(θ))) + E(trace(W̃ TW̃φ(θ)ρρTφT(θ)))

= E(trace(W̃φ(θ)ǔǔTφT(θ)W̃ T)) + E(trace(W̃φ(θ)ρǔTφT(θ)W̃ T))

+ E(trace(φT(θ)W̃ TW̃φ(θ)ǔρT)) + E(trace(φTW̃ TW̃φ(θ)ρρT))

= E(trace(W̃φ(θ)ǔǔTφT(θ)W̃ T)) + E(trace(φT(θ)W̃ TW̃φ(θ)ǔρT))

+ E(trace(φT(θ)W̃ TW̃φ(θ)ǔρT)) + E(trace(φTW̃ TW̃φ(θ)ρρT))

= trace(E(W̃φ(θ)ǔǔTφT(θ)W̃ T)) + trace(E(φT(θ)W̃ TW̃φ(θ)ǔ)ET(ρ))

+ trace(E(φT(θ)W̃ TW̃φ(θ)ǔ)ET(ρ)) + trace(E(φTW̃ TW̃φ(θ))E(ρρT))

= trace(E(W̃φ(θ)ǔǔTφT(θ)W̃ T)) + σ2trace(E(φT(θ)W̃ TW̃φ(θ)))

= E(‖W̃φ(θ)ǔ‖2
F) + σ2E(‖W̃φ(θ)‖2

F),

which indicates that E(‖W̃φ(θ)ǔ‖2
F) + ρ2E(‖W̃φ(θ)‖2

F) = 0 when t → +∞ with (6.10)

taken into account. Since E(‖W̃φ(θ)ǔ‖2
F) ≥ 0 and E(‖W̃φ(θ)‖2

F) ≥ 0, it is further

concluded that E(‖W̃φ(θ)‖2
F) = 0 when t → +∞. It follows that W̃φ(θ) = 0, i.e.,

Ŵφ(θ) = J(θ), when t → +∞. In other words, the dynamics of the adaptive PNN

described in (6.9) asymptotically converges to a invariant set, in which Ŵφ(θ) = J(θ).

According to LaSalle’s invariance principle [229], the following analysis is conducted

on the invariant set. Specifically, in the invariant set, based on (6.9), the dynamics of λ

and ǔ becomes

ε ˙̌u = − ǔ + PΩ(ǔ− (Aǔ + b− JT(θ)λ)),

ελ̇ =ṙd − J(θ)ǔ + ζ(rd − r),

which is further rewritten as

εz = −z + PΩ̄(z − F (z)) (6.14)
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with z = [ǔT, λT]T, Ω̄ = {(ǔ, λ)|ǔ ∈ Ω, λ ∈ Rm} and

F (z) =







Aǔ + b − JT(θ)λ

−ṙd + J(θ)ǔ − ζ(rd − r)






.

Consider a Lyapunov candidate function V2 = (z − PΩ̄(z))T(z − PΩ̄(z))/2 ≥ 0. Cal-

culating its time derivative along the dynamics (6.14) gives V̇2 = (z − PΩ̄(z))ż =

−(z − PΩ̄(z))(z − PΩ̄(z))/ε ≤ 0, where the equality holds only when z ∈ Ω̄. There-

fore, by the Lyapunov theory [229], z − PΩ̄ asymptotically converges to zero, i.e., z

asymptotically converges to be within set Ω̄.

From the analytical expression of F (z),

∇F =
∂F (z)

∂z
=







A −JT(θ)

J(θ) 0






.

Then,

∇F + ∇TF =







2A 0

0 0





 ,

which is positive semi-definite, sinceA is a positive definite diagonal matrix. In addition,

by the mean-value theorem, ∀z1 and z2, one has F (z1) − F (y2) = ∇F (z3)(z1 − z2),

where z3 = κz1 + (1− κ)z2 and 0 ≤ κ ≤ 1. It follows that (z1 − z2)
T(F (z1)− F (z2)) =

(z1 − z2)
T∇F (z3)(z1 − z2) ≥ 0, indicating that F (·) is monotone. Based on Theorem

1 in [230], it is further concluded that dynamical system (6.14) is stable in the sense

of Lyapunov and z globally converges to z∗ = [ǔ∗T, λ∗T]T, which satisfies the following

inequality:

(z − z∗)TF (z∗) ≥ 0, ∀z ∈ Ω̄.

In other words, ∀ǔ ∈ Ω and λ ∈ Rm, the following inequality holds:

(ǔ− ǔ∗)T(Aǔ∗ + b− JT(θ)λ∗) + (λ− λ∗)T(−ṙd + J(θ)ǔ∗ − ζ(rd − r)) = 0.

It follows that one can always find a value of λ such that (λ − λ∗)T(−ṙd + J(θ)ǔ∗ −
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ζ(rd − r)) tends to infinity when −ṙd + J(θ)ǔ∗ − ζ(rd − r) 6= 0. As a result,















−ṙd + J(θ)ǔ∗ − ζ(rd − r) = 0,

(ǔ− ǔ∗)T(Aǔ∗ + b− JT(θ)λ∗) ≥ 0, ∀ǔ ∈ Ω.

(6.15)

Evidently, (6.15) satisfies the solution of the saddle point problem described as follows:

min
ǔ∈Ω

max
λ

L(ǔ ∈ Ω, λ) =ǔTAǔ/2 + bTǔ + λT(ṙd −Wφ(θ)ǔ + ζ(rd − f(θ))),

of which the solution is identical to the following constrained optimization problem:

min
ǔ(t)

1

2
ǔT(t)Aǔ(t) + bTǔ(t),

s.t. J(θ(t))ǔ(t) = ṙd(t) + ζ(rd(t) − f(θ(t))),

ǔ(t) ∈ Ω.

Thus, ǔ∗ is the optimal solution of (6.16). Since the actual output of the adaptive PNN

(6.9) is u = ǔ + ρ with ‖ρ‖2 ≤ ρ0, it follows that u converges to the optimal solution

with an error ρ bounded by ρ0. The proof is complete. �

Theorem 1 shows the identification capability of the proposed adaptive PNN and the

convergence of the adaptive PNN to the optimal solution to the redundancy resolution

problem shown in (6.4) with an unknown constant matrix W .

Remark 8: From the proof of Theorem 1, it can be observed that the noise plays a

key role to show the convergence. It is well understood in the field of control that the

persistent excitation (PE) condition [231] is generally required to guarantee parameter

convergence. To some extent, the PE condition requires a signal to be sufficiently

rich [232]. To rigorously verify whether a reference trajectory satisfies the PE condition,

one can refer to its definition [233, 234]. However, the PE condition is difficult to be

checked online [235]. Besides, although the PE condition may be guaranteed via using

a sufficiently rich reference trajectory, in applications, the desired reference trajectory

may not satisfy the PE condition. For example, in a regulation task, where the end-

effector of a manipulator is required to be regulated to a static position, the PE condition
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6.4. Novel adaptive design

Figure 6.2: The schematic of the physical structure of the PUMA 560 manipulator.

Table 6.1: D-H Parameters of the PUMA 560 Manipulator

Joint ai (m) αi (rad) di (m)

1 0 π/2 d1

2 a2 0 0

3 a3 −π/2 d3

4 0 π/2 0

5 0 −π/2 0

6 0 0 d6

is not satisfied. In this chapter, we deliberately introduce a noise, which guarantees

the convergence of the parameters and the resultant method does not require online

checking of the PE condition. From the proof of Theorem 1, the convergence analysis is

not based on the PE condition. In terms of parameter convergence, it can be observed

from (6.8) that ν is a gain parameter to adjust the convergence of Ŵ . By using a larger

value of ν, the parameter convergence can be faster.
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ǔ1
ǔ2
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Figure 6.3: Simulation results about the minimum-velocity-norm redundancy resolution of the

PUMA 560 manipulator with unknown parameters a2, a3, d3, and d6 via the proposed adaptive

PNN (6.9). (a) Joint-angle profiles. (b) Motion trajectory of the manipulator, where the red line

denotes the trajectory of the end-effector and the blue lines denote the configurations of the

links during the process. (c) Position-error profiles. (d) Velocity-error profiles. (e) ǔ profiles. (f)

λ profiles. (g) Ŵ profiles. (h) Estimation profiles. Note that each non-zero element of Ŵ is

identical to one of the four elements (i.e., d̂6, d̂3, â2 and â3), according to the Appendix.

6.5 Simulative verifications and comparisons

In this section, simulation results are presented and compared to verify the theoretical

results, and substantiate the efficacy and superiority of the proposed adaptive PNN.

6.5.1 PUMA 560 description

In the simulations, a PUMA 560 manipulator, which is a 6-joint 6-DOF spatial manip-

ulator, is used. Note that, when only the position of the end effector is considered for

a given task, the PUMA 560 manipulator is redundant, according to the definition of

redundancy. The schematic of the physical structure of the PUMA 560 manipulator is

shown in Fig. 6.2. The D-H parameters of the PUMA 560 manipulator is shown in
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Table 6.1. In the simulations, we assumed that the values of physical parameters d1,

d3, d6, a3 and aa are unknown. The exact values of them are a2 = 0.4318, a3 = 0.438,

d1 = 0.67, d3 = 0.1505, and d6 = 0.2. The analytical expression of the forward kine-

matics and Jacobian matrix of the PUMA 560 manipulator is presented in the Appendix

of this chapter. As seen from the Appendix, W is only related to physical parameters

d3, d6, a2 and a3.

Remark 9: In practice, for each physical parameter of a manipulator, we have two val-

ues, i.e., the true value and the nominal value. The nominal value is the one given when

designing a manipulator, which often has a error with respect to the true value. After we

buy a manipulator, we generally only know the nominal values which are provided by

the factory that produces it. As a result, we often use nominal values to conduct con-

troller design or kinematics analysis. In this chapter, Ŵ (0) corresponds to the nominal

values. Thus, we set W = Ŵ (0) for the nominal PNN to facilitate comparison. Simi-

larly, in practice, when using the proposed adaptive PNN, as the nominal value is an

estimation of the true value, we can use it to reduce the initial parameter error so as to

enhance the performance of the proposed adaptive PNN. Note that in the simulations

shown in this chapter, we also present the case with large parameter errors to show

the efficacy of the proposed adaptive PNN.

6.5.2 Minimum-velocity-norm redundancy resolution

In this subsection, we present the simulation results when the proposed adaptive PNN

(6.9) is employed to the minimum-velocity-norm redundancy resolution of the PUMA

560 manipulator. The performance is then compared with that of the existing PNN

(6.8).

The minimum-velocity-norm redundancy resolution problem corresponds to the case

that, in (6.4a), A is an 3 × 3 identity matrix and b = 0. The parameter in (6.4) is set

to ζ = 0.1. Besides, the joint velocity bounds are η+ = [1, 1, 1, 1, 1, 1]T rad/s and η− =
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Figure 6.4: Simulation results on profiles of state variables of the nominal PNN (6.8) during the

process of minimum-velocity-norm redundancy resolution of the PUMA 560 manipulator with

unknown parameters a2, a3, d3, and d6. (a) u profiles. (b) λ profiles.

[−1,−1,−1,−1,−1,−1]T rad/s. In the simulations, the end effector of the manipulator

is expected to track the path described as follows:

rd(t) =















cos((πt)/5)/5 + 7/20

−(
√

3 sin((πt)/5))/10

sin((πt)/5)/10 + 13/10















, (6.17)

which is cyclic with the period being 10 s.

In the simulation, the parameters of the adaptive PNN (6.9) are set as ε = 0.0001

and ν = 10000. The deviation of noise ρ is set as σ = 0.001. As seen from the

Appendix, W is determined by the values of d3, d6, a2 and a3. Correspondingly, in state

variable Ŵ of the neural network, they are denoted by d̂3, d̂6, â2, and â3. Besides,

in the initial state, Ŵ (0) is set by letting d̂3(0) = d̂6(0) = â2(0) = â1(0) = 0.1 m;

θ(0) = [3.1649, 1.9548, 0.4584, 4.9330, 0.9870, 2.6527]T rad; each element of θ̇(0) and

λ(0) is randomly generated at interval (0, 1). The smooth joint-angle profiles and end-

effector profiles are presented in Fig. 6.3(a) and Fig. 6.3(b), respectively. Besides, as

seen from Fig. 6.3(c) and Fig. 6.3(d), the end-effector of the PUMA 560 manipulator

successfully tracks the desired path defined in (6.17) with the position errors being less

than 3 × 10−3 m (i.e., 3 mm) and the velocity errors being less than 2 × 10−4 m/s (i.e.,

0.4 mm/s). As seen from Fig. 6.3(e), the profiles of û are smooth and remain in the
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Figure 6.5: Comparison of performances during the process of minimum-velocity-norm redun-

dancy resolution of the PUMA 560 manipulator with unknown parameters a2, a3, d3, and d6

via the proposed adaptive projection neural network (APNN) (6.9) and the nominal projection

neural network (NPNN) (6.8). (a) Control actions. (b) Position errors. (c) Profiles of position

error norm when APNN (6.9) is adopted. (d) Profiles of position error norm when NPNN (6.8)

is adopted.

bounds η+ and η−. Fig. 6.3(f) shows the smooth evolution of the Lagrange multiplier λ.

Bedsides, as seen from Fig. 6.3(g), the parameters d̂3, d̂6, â2 and â3 are convergent,

which quickly converge to the exact physical parameter values d3, d6, a2 and a3 of the

PUMA560 manipulator, respectively. This is also verified by Fig. 6.3(h), from which it

is observed that ‖Ŵφ(θ) − J(θ)‖2
2 quickly converges to zero, substantiating Theorem

1. The quick convergence is due to the parameter setting. In the simulation, we set

ν = 10000, which leads to a relative high gain for the feedback of
˙̂
W . It is worth

pointing out that, to show the merit of parameter convergence, when t = 5 s during the
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Figure 6.6: Simulation results about the minimum-velocity-norm redundancy resolution of the

PUMA 560 manipulator with unknown parameters a2, a3, d3, and d6 via the proposed adaptive

PNN (6.9) for the case that d6 suddenly changes from 0.2 m to 0.3 m. (a) Position error profiles.

(b) Parameter profiles. (c) Jacobian matrix error profiles. (d) Velocity norm profiles. (e) Joint

velocity profiles. (f) Joint angle profiles.

140



6.5. Simulative verifications and comparisons

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5
x 10

−3

 

 

eX

eY

eZ

t (s)

m

(a)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

 

 

0 0.05
0

0.2

0.4

 

 

d̂6

d̂3

â2
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Figure 6.7: Simulation results about the minimum-velocity-norm redundancy resolution of the

PUMA 560 manipulator with unknown parameters a2, a3, d3, and d6 via the proposed adaptive

PNN (6.9) for the case that d6 keeps on decreasing with d6(t) = 0.2 − 0.0075t m. (a) Position

error profiles. (b) Parameter profiles. (c) Jacobian matrix error profiles. (d) Velocity norm

profiles. (e) Joint velocity profiles. (f) Joint angle profiles.
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Figure 6.8: Comparison of position errors during the process of repetitive-motion redundancy

resolution of the PUMA 560 manipulator with unknown parameters a2, a3, d3, and d6. (a) Via

adaptive projection neural network (6.9). (b) Via nominal projection neural network (6.8) with

W = Ŵ (0).

resolution process, the parameter learning is artificially stopped, i.e., Ẇ is set to 0 when

t ≥ 5 s. These results substantiate the efficacy of the proposed adaptive PNN in the

minimum-velocity-norm redundancy resolution of manipulators with unknown physical

parameters and also verify the theoretical results.

For comparison, the nominal PNN (6.8) is also employed to the minimum-velocity-

norm redundancy resolution of the PUMA 560 manipulator. For fair comparison, all

the shared parameters are set to the same, and the parameter matrix W in (6.8), which

is static, is set to the same value of Ŵ (0) in the adaptive PNN. The state variables of

the nominal PNN (6.8) are shown in Fig. 6.4. As seen from Fig. 6.4(a), the magnitude

of each element of u generated by the nominal PNN (6.8) is larger than that in Fig.

6.3(e). In addition, Fig. 6.4(b) shows a divergence of λ. Moreover, the comparison of

control actions and position errors of the manipulator when the two projection neural

networks are separately adopted is shown in Fig. 6.5, which shows that better per-

formances (i.e., significantly reduced control actions and position errors) are achieved

when the adaptive PNN is used compared with the nominal one. We also conduct sim-

ulations with different levels of initial parameter errors. The level of parameter error is

142



6.5. Simulative verifications and comparisons

Table 6.2: Joint Displacements ∆θi = |θi(20)− θi(0)| (rad) of the PUMA560 Manipulator When

the End-Effector Finishes the 20-Second Tracking Task of the Cyclic Path Defined in (6.17) Via

Different Projection Neural Networks (PNNs).

Joint displacement Adaptive PNN (6.9) Nominal PNN (6.8)

∆θ1 1.5704 × 10−3 9.1862

∆θ2 5.1877 × 10−4 1.8226

∆θ3 2.1331 × 10−4 5.3637 × 10−1

∆θ4 1.4095 × 10−2 3.9954

∆θ5 8.1973 × 10−4 8.98897 × 10−1

∆θ6 7.5146 × 10−6 0

denoted by ϕ, which is calculated by

ϕ =
nominal parameter value − true parameter value

true parameter value
.

In the simulations, the values of elements in Ŵ (0) corresponds to the nominal values.

Under the same setup, but with different different levels of initial parameter errors, sim-

ulations are conducted, for which the error norms are shown in Fig. 6.5(c) and Fig.

6.5(d). As seen from the two subfigures, with the increase of parameter error, the po-

sition error norm increases dramatically when the existing PNN is used. For example,

when ϕ = 10%, the maximal position error norm is about 3 cm. However, regardless of

the parameter errors, the position error norm is always smaller than 4 × 10−3 m when

the proposed adaptive PNN is adopted. These results substantiate the superiority of

the proposed adaptive PNN over the existing one.

To further show the efficacy of the proposed adaptive projection neural network (6.9),

we have conducted simulations based on the PUMA560 manipulator used in this chap-

ter for the two cases mentioned in Remark 7. We first consider the case that d6 sud-

denly changes. Note that, in practice, it may take several seconds to replace the tool of

a manipulator with another one. We use this extreme case merely to test the efficacy
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(a)

(b)

Figure 6.9: The experiment platform, which includes a personal computer and a Kinova JACO2

manipulator holding a pen and the snapshots during the experiment process. (a) Experiment

platform. (b) Snapshots.

of the proposed method. In the simulation, it is assumed that d6 = 0.2 when t < 10

and d6 = 0.3 when t ≥ 10. The other settings are the same as those above except

that ζ = 8. The simulation results are shown in Fig. 6.6. Under the same parameter

settings, the simulation results for the welding scenario where d6 keeps on decreasing

is shown in Fig. 6.7, for which we assume that d6(t) = 0.2 − 0.0075t m. As seen from

Fig. 6.6 and Fig. 6.7, under both cases, the proposed method can effectively handle

the parameter uncertainty and guarantees the convergence of end-effector errors to a

small neighbor of zero.

6.5.3 Repetitive-motion redundancy resolution

In this subsection, we further show the efficacy and superiority of the proposed adaptive

PNN in repetitive-motion redundancy resolution. We consider the repetitive-motion
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Figure 6.10: Data profiles during the experiment process. (a) Position error profiles. (b) Pa-

rameter profiles. (c) Jacobian matrix error profiles. (d) Velocity norm profiles. (e) Joint velocity

profiles. (f) Joint angle profiles.

redundancy resolution of the UMA560 manipulator, which corresponds to the case that

A is an 6 × 6 identity matrix and b = γ(θ(t) − θ(0) in the problem formulation (6.4).

In the simulations, γ is set to 0.1. The results are also compared with the nominal

PNN (6.8). Besides, the other setups for both neural networks are the same as those

illustrated in the previous simulations. As seen from Fig. 6.8, the tracking accuracy

of proposed adaptive PNN is much better than the nominal one. The comparison of

the joint displacements defined as ∆θi = |θi(20) − θi(0)| between the two simulations

are shown in Table 6.2. As seen from this Table, the joint displacements are less than

0.02 rad when the adaptive PNN is used, which is much smaller than the maximal joint

displacement (i.e., 9.1862) when when the nominal one is used. The above results

further substantiate the efficacy and superiority of the proposed adaptive PNN (6.9) in

repetitive-motion redundancy resolution of manipulators with unknown parameters.

145



Chapter 6. LNOC for intelligent redundancy resolution with learning of parameters

Table 6.3: D-H Parameters of the Kinova JACO2 Manipulator

Joint ai (m) αi (rad) di (m)

1 0 π/2 d1

2 a2 π 0

3 0 π/2 d3

4 0 π/3 d4

5 0 π/3 d5

6 0 π d6
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Figure 6.11: End-effector velocity error profiles during the experiment process.

6.6 Experimental verification

To further show the efficacy of the proposed adaptive PNN, experiments based on a

Kinova JACO2 manipulator have been conducted for the minimum-velocity-norm redun-

dancy resolution aided by the proposed adaptive projection neural network (6.9).

The experiment platform is shown in Fig. 6.9. The D-H parameters of the manipulator

is shown in Table. 6.3 with a2 = 0.41, d1 = 0.2755, d3 = −0.0098, d4 = −0.2501,

d5 = −0.0856, and d6 = −0.1578. In the experiment, the parameters of the adaptive

PNN (9) are set as ε = 0.0001 and ν = 4. The standard deviation of zero-mean noise

ρ is set to 0.001. By D-H convention [214], the analytical expression of W for the Ki-

nova JACO2 manipulator can be readily derived and W does not relate to d1. As we
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do not have motion capture devices, such as the OptiTrack, in the experiment, rd(t)

and ṙd(t) are calculated via the forward kinematics derived via the D-H convention by

using the exact D-H parameter values. In the experiment, the manipulator is expected

to draw a circle with the diameter being 0.2 m. Besides, the joint velocity bounds are

η+ = [1, 1, 1, 1, 1, 1]T rad/s and η− = [−1,−1,−1,−1,−1,−1]T rad/s. Some snapshots

during the experiment process are show in Fig. 6.9(b), from which we can observe

that the task is successfully completed. The related profiles are shown in Fig. 6.10. As

seen from Fig. 6.10(a), the end-effector errors are less than 1 mm. From Fig. 6.10(b), it

can be observed that the parameters are convergent, which, together with Fig. 6.10(c),

shows the convergence of parameter values to the corresponding exact values. The

profiles of ‖u‖2
2 and u are shown in Fig. 6.10(d) and Fig. 6.10(e), respectively. Evi-

dently, the joint angle velocity does not exceed the given bounds. In addition, the joint

angle profiles are shown in Fig. 6.10(f), and the end-effector velocity error profiles are

shown in Fig. 6.11. The experimental results further show the validity and efficacy of

the proposed adaptive PNN in the redundancy resolution of the Kinova JACO2 physical

manipulator.

6.7 Chapter summary

In this chapter, an adaptive PNN has been proposed for the redundancy resolution of

manipulators with unknown physical parameters. Theoretical results have been pre-

sented to guarantee the performance of the proposed adaptive PNN. Besides, simu-

lations results for two representative cases (i.e., minimum-velocity-norm redundancy

resolution and repetitive-motion redundancy resolution) based on a PUMA 560 manip-

ulator, together with the comparison with the existing nominal PNN, have substantiated

the efficacy and superiority of the proposed PNN and verified the theoretical results.

Future work of this chapter would be extending the results to acceleration-level redun-

dancy resolution.
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Chapter 7

Conclusions and future works

In this thesis, we have proposed, analyzed, and validated a learning and near-optimal

control (LNOC) method for affine nonlinear systems. Three variants of the LNOC

method have been discussed for different scenarios. The method has then been ex-

tended to address the consensus of nonlinear multi-agent systems with heterogene-

ity and the redundancy resolution of redundant manipulators with unknown physical

parameters. The proposed scheme applies to both underactuated and overactuated

control systems

The future works along the research direction, include but are not limited to the follow-

ing.

• The LNOC of nonlinear systems with state observers or measurement noises

considered can be investigated. For example, robust control methodologies might

be incorporated into the control design so as to enhance the efficacy of the pro-

posed control laws.

• In practice, the performance of the proposed LNOC method may be improved via

using the predictive smooth variable structure filters [84,85], which can be further

investigated.
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• In practice, disturbances are unavoidable. The enhancement of the proposed

method by incorporating the disturbance observer technique [135–137] is worth

investigation.

• Although the dynamics of many physical systems is in the affine form, there are

some nonaffine physical systems. Thus, the extension of the LNOC method to

nonaffine systems is worth investigation.
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