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Abstract

Dataflow computing is a computational paradigm that uses the flow of data streams to

accelerate the computation of tasks. Thus, it is also known as stream computing. It is

essential in multiple domains, such as image processing and digital signal processing,

where data processing throughput is critical. Modern heterogeneous System on Chips

(SoCs) exploit this computational paradigm to accelerate the computation of specific

computationally intensive functions mapped as hardware accelerators on the SoC.

Moreover, designing these accelerators in low-level hardware description languages

is tedious, error-prone and takes a relatively long time. Thus, companies have started

using High Level Synthesis (HLS).

This thesis investigates the use of HLS to design and optimize dataflow hardware

systems and uses Field Programmable Gate Arrays (FPGAs) as a test bed to demon-

strate the usability of the developed methods.

In particular, this thesis first investigates the effects of pin multiplexing on individual

hardware accelerators given as untimed behavioral descriptions that we call Behavioral

IPs (BIPs), written in C or SystemC and addresses the issues of port assignments and

mappings. Next, it explores the design space of dataflow systems considering the

inter-module connections to identify a set of Pareto optimal configurations as multiple

conflicting objectives need to be optimized such as area and latency.

Design teams now typically also prototype and emulate Application Specific Inte-

grated Circuit (ASIC) designs on FPGAs. Thus, we study how to automatically convert

optimized dataflows for an ASIC technology to FPGAs based on machine learning

techniques. The proposed method can avoid having to fully re-explore the design when
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an FPGA is targeted and achieves a speedup from hours to seconds while preserving

the accuracy. This technique is extended to map complete dataflow systems from ASIC

to FPGA platforms given full consideration of the design space of individual modules

and the inter-module connections.

Finally, the thesis describes a strategy to map dataflows onto runtime reconfigurable

FPGAs given specific area and performance constraints.
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Chapter 1

Introduction

Moore’s law [75], which is the observation that the number of transistors in an Inte-

grated Circuit (IC) doubles every 18 to 24 months, continues to drive the IC market

growth. These ICs, also known as Very Large Scale Integration (VLSI), are reaching

a number of billions of transistors per chip. Complete systems, also called System on

Chips (SoCs) have become common. These SoCs include Central Processing Units

(CPUs), memories, peripherals and application-specific accelerators. These acceler-

ators exploit the inherent parallelism of main applications to run faster and consume

less power. Some examples include Digital Signal Processor (DSP), image processing,

and encryption algorithms.

To further optimize these accelerators, they can be arranged as dataflow or stream

computing circuits. This arrangement allows fully pipelining the data across different

accelerators’ modules and hence, further speeding up the computation. Besides, due

to the need to reduce the Turn Around Time (TAT) of ICs, companies have started

to rely on High Level Synthesis (HLS) in particular to design the dedicated hardware

accelerators, which are often firstly designed using a software language like C, C++

or MATLAB. It thus makes sense to exploit HLS to have a direct path between these

untimed behavioral descriptions and the hardware implementations.

Fig. 1.1 shows an overview of the thesis, using a heterogeneous SoC as an example

platform. The slaves (hardware accelerators) in this example represent the hardware

accelerators designed to offload computationally intensive tasks from the masters
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(micro-processor and memory).

The common thread among the different contributions is the optimization of hard-

ware accelerators organized as data flows and in particular when these are specified

as untimed behavioral descriptions for HLS.

Module
1

Module
2

Module
3

Number of ports (inputs + outputs)

A
re

a
(L

U
Ts

)

Inputs change
Outputs change

Chapter 3
Pin multiplexing

Throughput

A
re

a

Chapter 4
Interconnect-aware dataflow

Hardware
accelerator Module

Hardware accelerator

Chapter 7
Runtime reconfigurable dataflow

Hardware
accelerator

Latency [clock cycles]

A
re
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Design space
Pareto front

Chapter 5
Individual module conversion

Chapter 6
Entire dataflow conversion

DSE

Automatic conversion from ASIC to
FPGA for prototyping, emulation, and
fast simulation

Bus

Micro-processor Memory

Figure 1.1: An overview of the thesis

To further increase the design productivity, raising the level of design abstraction

is a feasible option. This fact has been proved when the design level was raised from

technology-specific level such as Complementary Metal Oxide Semiconductor (CMOS)

to a generic design practice that is Hardware Description Language (HDL) [19]. In rais-

ing the HDL-based design methodology, the community starts to embrace behavioral

synthesis, which is also known as HLS. Using HLS allows designing hardware in the

higher level language like C or C++ and also allows the hardware and software engi-

neers speak the same language. Besides, designing in higher level means that the HLS

tools will care about the error-prone details of Register Transfer Level (RTL) designs
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and help the design team to meet the time-to-market requirement.

One of the most important features of using HLS over HDL is Design Space Ex-

ploration (DSE). DSE aims to explore the design alternatives before implementation

so as to focus on the desired design points based on parameters of interest [54]. This

exploration aims to help the designers to make decisions on implementing the micro-

architectures of an individual function block considering different metrics such as power,

performance, and cost. In HLS, it is possible to create different micro-architectures of

the same functionality without changing the source code. While in HDL, this process

has to involve the error-prone manual modifications of the source code.

1.1 Contributions

The thesis makes in particular five contributions in the aforementioned fields. These

contributions corresponds to Chapters 3 – 7 as annotated in Fig. 1.1.

1.1.1 Investigating the effect of Pin Multiplexing in High-Level Synthesis

Pin 1 multiplexing is the task of sharing physical I/O ports among logic input and output

signals of a circuit. Sharing pins is very important intra-chip, to reduce the interconnect

congestion and inter-chip to reduce the number of IC pins needed, which impact the

packaging costs and Printed Circuit Board (PCB) design costs. Moreover, in the Field

Programmable Gate Array (FPGA) case, these have a very limited number of I/O ports,

which force multi-FPGA designs to pin multiplexing their connections.

Pin multiplexing is an error-prone and time-consuming task in RTL as this has to

be done manually. In HLS nevertheless, it is possible to control the number of I/O

ports without modifying the behavioral source code. This is achieved by setting port

constraints that specify the limit of available physical I/O ports and determining which

logical ports to be mapped onto the same physical port. Note that the micro-architecture

(datapath and Finite State Machine (FSM)) may also change when using different port

constraint files because the HLS tool will try to optimize the circuit according to the

input/output patterns. While in RTL, the micro-architecture does not change as the pin
1Pin and port are exchangeable in this thesis. Usually, the pin has only one bit, and port can yield

multiple bits.
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multiplexing is typically done as a wrapper around the RTL description. However, the

assignment and mapping between original logic I/O signals and physical I/O ports is

a Nondeterministic Polynomial Time (NP) problem. This thesis investigates the effect

of pin multiplexing on the resultant circuit in HLS and presents a heuristic method to

assign logic signals to physical ports efficiently.

1.1.2 Interconnection-Aware Optimization of Dataflows

The I/O ports are the interface between circuits. In a dataflow system composed of

multiple modules connected in a chain, it is possible to tune the number of inter-module

connections by changing simultaneously the output ports of the module ahead and in-

put ports of the following module. We observe that adjusting the number of connections

can improve the critical path delay and the routing congestion on FPGAs. Therefore,

this second contribution presents a method to generate Pareto optimal data flow con-

figurations of dataflow systems by adjusting the number of interconnects when area

and throughput are considered as metrics. This problem is a multi-objective problem.

Thus, the result is a trade-off curve of design Pareto-optimal configurations and not a

single optimal solution. The proposed method adjusts the inter-module connections

using a learning-based iterative approach, which can accurately predict the desired

trade-off curve by synthesizing only a small portion of the entire design space.

1.1.3 Predictive Conversion of DSE from ASIC to FPGA

C-based VLSI design enables automatic design space exploration. This is typically

done by setting different synthesis options in the form of pragmas (synthesis directives)

or functional unit constraints. Setting these options does not necessarily require the

modification of the source code, which means the same source code is reused in DSE.

Some of the synthesis options are the number of utilized functional units and synthesis

options to synthesize arrays, loops, and functions. The combination of these options

increases exponentially which makes it impossible to explore the entire design space.

Thus, heuristic methods have been proposed in the past. However, these methods

still have to explore a portion of the whole design space, which might take hours

or days for large designs. In this project, we consider the case that an Application
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Specific Integrated Circuit (ASIC) design that has been explored previously needs to

be emulated on an FPGA. Traditionally a full HLS DSE would be required as we show

in this work that the synthesis options that lead to Pareto-optimal designs in the ASIC

case do not lead to Pareto-optimal designs for the FPGA case. To address this, we

present a predictive model which takes as input the DSE data for ASIC and outputs

the DSE results for FPGA. The model completely avoids the time-consuming FPGA

synthesis processes.

1.1.4 Complete Dataflow Systems Optimization on FPGAs

The previous contributions mainly focus either on individual modules or on the intercon-

nections. However, a comprehensive optimization of dataflow systems should consider

two aspects simultaneously: 1) the interconnections and 2) the synthesis options of all

the modules. Thus, we also consider the interaction of these two elements to optimize

complete dataflow systems. We introduce a compositional approach which combines

with previous researches of pin multiplexing and DSE conversion. The method utilizes

the existing ASIC DSE data to predict the performance of dataflow systems when

mapped onto FPGAs without any synthesis.

1.1.5 Runtime Reconfigurable Optimization of Behavioral Dataflows

The last contribution presents a framework to map complete behavioral dataflows on

FPGAs. The main drawback of stream computing is that it consumes a large number of

hardware resources. Thus, we propose to make use of partial reconfiguration available

in modern FPGAs to reduce the overall hardware resources. One of the modules of a

dataflow will be mapped onto a reconfigurable block of the FPGA. After the execution,

the data is stored in the FPGA internal Block Random Access Memory (BRAM), and

the next module is mapped onto the same block for the subsequent computation. This

implementation methodology is also called time-multiplexed FPGAs. The method ex-

plores the micro-architectures of individual modules and intelligently select the optimal

design configurations to meet the area and latency constraints.
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1.2 Thesis Organization

Chapter 2 introduces the background knowledge of the thesis. The discussion mainly

consists of three parts: 1) dataflow computing systems which are widely used as

hardware accelerators, 2) a brief introduction of FPGA including the architecture and

other embedded dedicated hardware, 3) an introduction of HLS.

Chapter 3 investigates and optimize pin multiplexing in behavioral level. This chap-

ter describes the heuristic method and compares the proposed approach to other

methods such as simulated annealing.

Chapter 4 focuses on optimizing the inter-module connections of dataflow systems

on FPGAs. The predictive iterative approach is discussed, and other state-of-the-art

methods are presented as a comparison.

Chapter 5 aims at the DSE of individual modules on FPGAs. By utilizing existing

DSE data for ASICs, a predictive model can estimate DSE results on FPGA platforms.

The model has two levels and will be described in detail.

Chapter 6 introduces a compositional approach to optimize complete dataflow

systems on FPGAs. The approach borrows the idea in chapter 5 which is further

combined with a heuristic.

Chapter 7 discusses the reconfigurable scheme and the approach to optimizing the

mapping of dataflow applications.

Chapter 8 summarizes the work discussed in the thesis and provides the potential

directions to extend these works.
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Chapter 2

Background

This chapter covers the necessary background information in order to understand the

contributions of this thesis fully. It first discusses the architecture of dataflow computing

systems. Then it gives a brief introduction of FPGAs including the architecture of

FPGAs. Finally, this chapter discusses HLS including the primary steps involved in

HLS and summarizes the advantages of HLS as well as state-of-the-art tools.

2.1 Dataflow

Dataflow is a term that is widely used in both hardware and software domains. In a

nutshell, dataflow exploits the concurrency in computational tasks to execute these

more efficiently. In the case of hardware, it refers to a type of hardware architecture

which is different from the classic von Neumann architecture [80]. This chapter only

focuses on dedicated dataflows in the hardware domain, and FPGAs will be used

to prototype these dataflows. The dataflow concept was first introduced in [58]. This

work referred to it as a systolic architecture for the reason that it works much like the

blood circulating from and to the heart. One other comparison is with the assembly

line of vehicles. For instance, the people at one stage repeat the same task at a

specific frequency, where they receive the products from the previous step and pass

the processed product to the next step. In the VLSI case, each station is represented

by a module that does a specialized computation and then passes it to the next module

in the dataflow.
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Control Unit

ALU

CPU

Memory

(a) von Neumann architecture

PE PE · · · PE PE

Dataflow

Memory

(b) Dataflow architecture

Figure 2.1: Comparison between von Neumann and dataflow architecture

Dataflow architecture is an alternative to the classic von Neumann architecture.

Fig. 2.1 shows an overview of the two architectures. Assuming the data is stored in

Memory, in case of von Neumann architecture, the data is passed to a CPU which

repeats the fetch, decode, execute cycles continuously for each instruction. After the

computation, the processed data is sent back to the memory, and the next cycle is

repeated.

However, in case of dataflow case, this consists of multiple interconnected process-

ing units Process Elements (PEs). The first PE reads the data from Memory, then the

processed data is passed to the second PE while at the same time the new set of

data will be read by the first PE. The same mechanism applies to the rest PEs. For

example, the second PE passes the processed data to the third one, meanwhile, read

the new data from the first PE. This makes the computation more efficient as fewer

memory accesses are required. Moreover, the PEs are dedicated functions that can

more efficiently compute a specific task compared to the general purpose CPU.

Dataflows are mostly implemented as special-purpose hardware which is com-

monly applied to the situation where repetitive processes are executed on a large set

of data. Some examples include the fields of image processing, digital signal process-

ing, and network routing, etc. For example, [58] introduced several types of dataflow

architecture to implement convolutional computation. In this example, the PEs have

the same functionalities. In other situations, like JPEG encoder, the PEs have different
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functionalities. This thesis mainly focuses on the latter case, although the techniques

developed can also be applied to the first type of dataflows.

Module 1 Module 2 Module 3Inputs Outputs

Global signals

/
Shared

/
Shared

Special signals

Figure 2.2: A typical architecture of dataflow

Typically, there are two ways to build a faster computing system: 1) increasing

the clock frequency and 2) exploiting concurrency. Dataflows exploit both by deeply

pipelining the processing units to increase the clock frequency and by maximizing the

concurrency of the application.

Moreover, the modularity of dataflow systems enables the ease of design, and its

maintenance, and the adaptability of various constraints. Fig. 2.2 shows a typical block

diagram of a dataflow. There are three modules (PEs), that share the same global

signals such as clock and reset. The first module accepts the inputs and communi-

cates with the second module through the Shared interconnect. The second module

processes the data passed by the previous module and passes it to the third module

which then generates the outputs of the circuit. There might also be some Special

signals which are specific to different modules.

Fig. 2.3 shows an example of utilizing dataflow for a JPEG encoder. Without any

dataflow structure, we can design the entire encoder as a single module. In this case,

the circuit will have a certain latency, which implies that an 8× 8-pixel block is passed

to the encoder and new output is generated after N clock cycles, where N is the latency

of the encoder in terms of clock cycles. Here, we assume the latency is 20 clock cycles.

To increase the throughput, the encoder can be designed as a dataflow as shown in the

same figure. This dataflow includes three modules: DCT, RLE, and Huffman encoding,

where the latencies for each module are 10 (DCT), 5 (RLE), and 5 (Huffman). The

module with the largest latency is the bottleneck of the entire circuit (the DCT in this

case). This implies that the encoder can process a pixel block every ten clock cycles.
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DCT Quant
Huffman
encoding

JPEG encoder

JPEG
encoder

w1 w2 w3
y3 y2 y1

x3 x2 x1

w
yin

xin

yout yout ← yin + w · xin

Figure 2.3: JPEG encoder using dataflow paradigm

Once the dataflow is in a steady state (filled with data), the encoder can produce the

processed pixel block every ten clock cycles, as opposed to the 20 clock cycles of

the initial implementation. Also, further optimization can be applied to DCT since it

primarily performs matrix multiplication. The block at the bottom shows the structure

of the PEs, each of which performs the same operation – multiplication and addition.

In this way, the dataflow paradigm can be applied to the module itself, further reducing

the latency to 5 clock cycles. This, in turn, means that the latency of the encoder is also

reduced to 5 clock cycles, thus improving the performance of the entire design. Note

that matrix multiplication is essential in many applications like Convolutional neural

network (CNN).

Because of the potential to increase performance, dataflows have been used in

many applications mainly prototyped on FPGAs, like CNN implementation on FPGAs

using dataflow structure [65, 111, 114]. In addition to CNN, MaxCompiler [106] im-

proves the execution speed of computation intensive tasks, that are described in MaxJ,

by exploring the parallelism sub-tasks that are assigned to PEs.

The main drawback of dataflows is that they need to be designed and optimized

manually, which is a tedious and error-prone process. For example, the synchronization

between the different modules is critical to achieving good performance. Thus, the

designers have to ensure that the latencies/Data initiation Interval of the elements are
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matched so that the previous stage can pass the complete, correct data to the next

step. Otherwise, First In First Out (FIFO)s are needed and faster modules will have to

wait for the slower modules, which in turn limit the maximum speedup. Moreover, the

larger amount of interconnects between modules might lead to congestion problems

in the interconnect, which in turn leads to longer delays. Since dataflows are often

implemented on FPGAs as either final products or as test beds for ASIC designs. We

describe what FPGAs are in detail in the next section.

2.2 Field Programmable Gate Array (FPGA)

FPGAs are pre-fabricated silicon devices which can be electrically programmed in the

field to become almost any kind of digital circuit or system. FPGAs were first introduced

by Xilinx in 1985. They provide fast and efficient solutions from low-end to the high-end

market, FPGAs also allow cheaper and faster time-to-market solutions compared to

ASIC especially for small to medium productions.

The architecture of an FPGA is critical to its performance. A Configurable Logic

Block (CLB) is the fundamental element of an FPGA. Thus, the implementation of a

CLB is important. A fine-grained (e.g., transistor based) structure would lead to high

routing complexity, while a coarse-grained (e.g., processor-based) architecture would

lead to a low utilization ratio. To this end, Lookup Table (LUT) based CLBs provide a

good trade-off. In practice, a CLB contains multiple LUTs, and the implementation is

vendor dependent.

A LUT acts as the truth table having k input signals and outputs the logic results of

the inputs. Fig. 2.4 shows an example of a three-input LUT implemented as a set of

muxes. It performs the logic given in the truth table by setting different mux values. For

instance, if B = 1, A = 0, and S = 1, the output Z is 1. Thus, a k-input LUT can perform

any 2k logic functions. Moreover, LUTs with more inputs can be built using LUTs with

fewer inputs [51].

Fig. 2.5 shows an overview of an FPGA architecture which contains a 2-d array

of CLBs. This is typically called a mesh-based structure or island-style structure. The

I/O signals are placed around the CLBs to minimize the communication overhead with
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Figure 2.4: The architecture of a 3-input LUT

external circuits. Note that the I/O ports are configurable, which means they can act

as input, output, or inout, and the specifications can also be tuned. In-between the

CLBs, there are switch boxes Switch Box (SB) and Connection Box (CB), which can

be reprogrammed to control the interconnect between CLBs.

Due to the nature of pre-fabrication and high configurability, FPGA designs lower the

Non Recurring Engineering (NRE) costs and accelerate the time-to-market compared

to ASICs. However, ASICs are still one to two orders of magnitude more efficient.

Implementing the same design on an ASIC leads to smaller, faster, and more power

efficient designs, which could amortize the high NRE costs among mass productions.

Nevertheless, FPGAs and ASICs are closely related in modern hardware designs.

For example, FPGA are typically used in ASIC prototyping, emulation or hardware

accelerated verification. One main problem is that ASIC designs need to be converted

to FPGA designs, often manually. Thus, part of this thesis deals with the automatic

conversion of optimized designs for ASICs to FPGAs.

To minimize the performance gap between FPGA and ASIC, multiple dedicated

components are embedded on FPGAs. These components are ASIC-like hardware
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Figure 2.6: The FPGA structure with integrated dedicated hardware
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resources including memories, DSPs, PLLs, and high-speed interfaces as shown in

Fig. 2.6. In particular:

2.2.1 BRAM

FPGAs include a large amount of on-chip memories. BRAMs are Static Random Ac-

cess Memory (SRAM) based dual-port Random Access Memory (RAM)s which can be

configured to implement single-port memory, dual-port memory, and FIFOs. Also, they

can be cascaded to create even larger memories. BRAMs are normally distributed in

a compact columnar fashion to achieve maximum performance.

2.2.2 DSP Macros

DSP macros support full-precision multiplication for operators with various bit width. A

DSP macro mainly consists of a pre-adder, a multiplier, and an add/subtract/logic unit.

These units have high configurability thus can work at different modes.

In general, multiplication consumes 20× LUTs than addition, and is not area effi-

cient for many multi-media applications. Also, the wire delay, when mapped onto the

reconfigurable fabric, would make multipliers very slow. To improve the performance,

DSP macros can be manually instantiated or inferred by the synthesis tools. These

DSPs, which are fabricated to operate at high speed and consume low power, are

distributed in columns on the FPGA fabric to allow compact designs.

2.2.3 Embedded Processors

To further empower FPGAs, some FPGA families now include microprocessors em-

bedded in them to execute fewer computation intensive tasks. The microprocessors

can be integrated as a soft IP or a hard IP. For example, Intel’s Nios processor [52]

and Xilinx’s MicroBlaze [117] are soft processors designed to allow custom hardware

instructions. In terms of hard processors, Intel Cyclone V SoC [50] and Xilinx Zynq

SoC [118] FPGAs integrate ARM-based processors.
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2.2.4 Other Dedicated Hardware

The Phase Locked Loops (PLLs) are dynamically configurable phase-locked loops to

generate the clock signals spreading the entire FPGA. The high-speed interfaces in-

cluding Peripheral Component Interconnect Express (PCIe) channels and transceivers.

With the integrated hardware, designers can offload the hardware-preferred tasks, thus

improving the performance of FPGAs.

2.3 High-Level Synthesis (HLS)

HLS is a VLSI design methodology which takes as input a high-level language like C or

C+ and generates efficient synthesizable Verilog or VHDL. It was first introduced in the

1980s and did not gain much attention until the early 2000s when the new generation of

HLS tools was introduced that generated RTL code comparable to hand-coded code.

For ASIC design, SystemC has become the dominant input language. SystemC

was standardized by the IEEE in the 1466 LRM and has a synthesizable subset for

HLS. It is a class library of C++, and it allows the simulation of concurrent executions of

hardware designs. Therefore, SystemC is widely used in Electronic System Level (ESL)

modeling. In the meantime, a particular subset of SystemC syntax is synthesizable,

which means that the HLS tools can transfer these codes into RTL and further pass it

to the physical design.

HLS is currently widely adopted in both industry and academia. The use of HLS

has proved to enable the reduction of the design time, which in turn allows companies

to meet time-to-market windows [72, 73]. There is a wide range of commercial HLS

tools: Vivado HLx [119], CyberWorkBench [78], Catapult HLS [71], Stratus HLS [9] and

also some mature open source academic tools such as LegUp [20], and Bambu [108].

HLS is the transformation from behavioral to structure [10], such as from high-

level languages (C, C++) to RTL. The high-level specifications are first converted to

intermediate representations like control and data flow diagram (CDFG [1]), DeJong’s

hybrid flow graph [53], SSIM flow graph, and Finite state machine with data [24]. CDFG

is one of the mostly used diagrams. Then the transformation goes through three main

steps: scheduling, allocation, and binding. The three steps generate the hardware
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structure given the technology libraries and time/resource constraints. Finally, the RTL

code is generated using HDL like VHDL and Verilog.

2.3.1 Mechanism

To create hardware circuits, HLS takes as inputs 1) the design described in C/SystemC,

2) the target clock frequency and 3) the technology libraries. The resultant RTL code

consists of two parts: controller and datapath as shown in Fig. 2.7. A controller is often

implemented as a FSM, and it controls the state transition to ensure the correctness

of the circuit. The datapath is also known as the micro-architecture. It is a collection

of functional units that are organized and connected properly. A typical view of the

datapath is shown in Fig. 2.8. It shows (a) the elements which compose the datapath

and (b) the particular organization of these elements.

FSM

Datapath

Circuit

Clock Reset Inputs

Outputs

State signals

...

Condition

· · ·

Figure 2.7: The diagram of a synthesized circuit

An example is shown in Fig. 2.9, which computes the moving average of eight

numbers. There is a buffer of size eight, which holds the seven latest values (lines

1 - 3) and the new input data (line 4), and lines 6 - 9 compute the average of the

eight numbers by adding up all the numbers and dividing by 8 (partial bit extraction

is only needed for this). Finally, the program writes the average value to the output.
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(a) Datapath elements (b) Datapath structure

Figure 2.8: A view of datapath using CyberWorkBench [78] (a commercial HLS tool)

In the code, we set the bit-width of buffer to 8, and the input data is unsigned. As a

result, the datapath has seven adders and eight registers. Fig. 2.8(a) also presents

the specifications of the adders. For instance, add8u@1 is an adder which has two 8-bit

inputs and one 9-bit output denoted as (8, 8) 9. The top three adders have larger

bit-width because they are computing the intermedium values. The registers whose

name start with RG are the implementation of buffer, and the odata_r is the register

holding the output value.

1 for (i = 7; i > 0; i --) {

2 buffer[i] = buffer[i - 1];

3 }

4 buffer[0] = idata;

5 sum = 0;

6 for (i = 0; i < 8; i++) {

7 sum += buffer[i];

8 }

9 odata = sum / 8;

Figure 2.9: Code snippet of average-8

The next subsections describe the main steps behind HLS, particularly, compilation

and a three-step transformation which includes scheduling, allocation, and binding.
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Compilation

The initial step of HLS is to convert the behavioral description to an intermediate

representation like Control Data Flow Graph (CDFG). A CDFG is a directed graph. The

nodes indicate the operation on the data, and the edges control the flow of the data.

The nodes in a CDFG can be classified into the following types:

• Operational nodes: They perform arithmetic, logical, or relational operations, such

as addition, equality checking.

• Control nodes: They control the operations like conditions and loop constructs,

such as case statements, for loop.

• Storage nodes: They represent the read and write operations, such as registers.

The edges transfer the data processed by the nodes, such as read the values

from the predecessor nodes and output the values to the successors.

For example, given the source code shown in Fig. 2.10, the compiler may generate

two graphs: A control flow graph and data flow graph. Data flow CDFG represents the

parallel evaluation for all branches of a control node. This is in a real sense closer to

hardware realization of the circuit. Optimizations and other steps of HLS can, in turn,

be performed on the CDFG. The control flow graph CDFG is an almost one-to-one

mapping between the nodes of CDFG and the code.

Before generating the hardware structure, some optimization techniques are per-

formed. There are three main optimization categories:

1. Compiler based optimizations [77]

2. Flow-graph based optimizations [84]

3. Hardware library-based optimizations

Scheduling

Scheduling determines the sequence, in which the operations are executed, to produce

a control step schedule. A control step includes a set of operations in parallel. The

operations can be categorized into different types, and each operator in the library can

execute (a) certain type(s). The scheduling sequence cannot violate data dependency.

There are four situations while performing scheduling:
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1 int example(int B, int C,

2 int D, int cond) {

3 int A = 0;

4 switch (cond) {

5 case 0b00:

6 A = B + C + D;

7 break;

8 case 0b01:

9 A = B - C + D;

10 break;

11 default:

12 A = B + C - D;

13 }

14 return A;

15 }

(a) Example code

read B read C read D

+

+

-

- -

00 01 defaultcond

(b) Data flow graph

00 01 default

read B read C

-

read D

+

write A

read B read C

+

read D

+

write A

read B read C

+

read D

-

write A

cond

(c) Control flow graph

Figure 2.10: An example of CDFG

1. Unconstrained Scheduling (UCS)

2. Time Constrained Scheduling (TCS)

3. Resource Constrained Scheduling (RCS)

4. Time-Resource Constrained Scheduling (TRCS)

Fig. 2.11 explains the different cases by using the following example code snippet:

f=(a+b+c+d)*e. Each operator has a unique ID (oi ) and belongs to a specific type (ti ).

For example, o1, o2, and o3 are operators of type t1 since they compute the addition,

and o4 is an operator of type t2 which performs multiplication.

Un-constrained Scheduling (UCS) This is the easiest type of scheduling. It takes

the nodes in a CDFG and assigns them to the control steps in sequence. Fig. 2.11(a)
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(c) RCS

Figure 2.11: The scheduling results given different constraints

shows a possible scheduling result using UCS. The operators are distributed among

three control steps. The first control step consists of two operators (o1 and o2) which

are of type t1 (addition). They take the inputs a, b, c, and d, then produces the outputs

temp1 and temp2. The second control step contains one operator o3 of type t1. It

takes as inputs the data from step 1 and produces the processed data temp3. The last

control step has the operator o4 of type t2 (multiplication), which takes as input temp3

and e, then produces f as the output. Note that the operators in different control steps

may often be shared. Therefore, scheduling determines that the circuit consumes two

operators of type t1 and one operator of type t2.

Time Constrained Scheduling (TCS) TCS considers time constraints such as the

maximum number of control steps. For example, if the maximum number of control

steps is three, the scheduling result might be the same as that shown in the above

figure. However, if the maximum number is one, the operations should be completed in

a single control step as shown in Fig. 2.11(b). Therefore, this scheduling leads to the

maximum number of hardware resources: three adders and one multiplier.

Resource Constrained Scheduling (RCS) Resource constraints may also apply to

scheduling. For example, if only one adder and one multiplier are allowed for the circuit,

the scheduling will generate the structure as shown in Fig. 2.11(c). In the case of RCS,

allocation might be performed before scheduling.
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Time-resource Constrained Scheduling (TRCS) Both resource constraint and

time constraint can be applied during scheduling. Note that if one of them is over-

constrained, the scheduling may fail. In this example, if the resource constraint is one

adder and one multiplier, the smallest latency is 4. However, if the time constraint is

smaller than 4, the scheduling may not succeed.

Scheduling Algorithms Scheduling is a complex task; thus many algorithms have

been studied trying to solve this problem [112]. These algorithms can be summarized

into the following categories:

• Heuristics

– As soon as possible (ASAP) [112]

– As late as possible (ALAP) [112]

– List scheduling (LS) [89, 46]

– Forced directed scheduling (FDS) [91]

• Exact

– 0-1 integer linear programming (ILP) [38, 79, 16, 49, 35]

Allocation

Scheduling determines the types of operators and their quantity. Allocation determines

the exact operator modules which are available in the library. Therefore, the area, power,

and speed are also determined after allocation.

The operations could be addition (+), comparison (>, <) and shifting (<<, >>), which

are pre-defined in the technology libraries. Meanwhile, the bit-width of the operations

will be analyzed to optimize resource utilization and speed of the resultant architecture.

In this example, assume the bit width of the inputs is 8. Then the bit width of operator

o1 should be two 8-bit inputs and one 9-bit output, denoted as (8, 8)9. Therefore, o2 is

(9, 9)10, o3 is (10, 10)11, and o4 is (11, 11)22.

In a typical design library, a type of operator may consist of multiple choices with

different metrics. For example, a multiplier is much slower than an adder. Once the

multiplier is selected, we can choose a slow adder to save area and power.
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Binding

Operators are shared among operations. Sharing also introduce other elements, e.g.,

registers and muxes. Binding [90] assigns operations to operators and variables to

registers.

1. Storage binding: assign inputs, outputs, and temporary variables to registers. Two

variables that are not alive simultaneously can share the same register.

2. Functional-unit binding: assign operations to functional units. Two operations

having the same type do not appear in the same control step can share the same

operator.

3. Interconnection binding: assign interconnection units such as muxes or buses to

a data transfer.

MUX MUX c MUX

Register 1 Register 2 Register 3 Register 4

Adder 1 Adder 2

Multiplier

a b d e

temp 1
temp 3 temp 2

temp 3 e

control 1 control 2

f

Figure 2.12: The CDFG after binding

Fig. 2.12 shows the binding results under a time constraint. It contains three control

steps.

Step 1

• control 1 = 0: bind a to Register 1, b to Register 2

• control 2 = 0: bind d to Register 3
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• Bind c to Register 3

• Bind a + b to adder1, bind c + d to adder 2

After this step, adder1 generates temp 1, adder2 generates temp 2.

Step 2

• control 1 = 1: bind temp 1 to Register 1, bind temp 2 to Register 2

• control 2 = X: do not use Register 4

• Do not use Register 3

• Bind temp 1 + temp 2 to adder1

After this step, adder1 generates temp 3.

Step 3

• control 1 = 1: bind temp 3 to Register 1, do not use Register 2

• control 2 = 1: bind e to Register 4

• Do not use Register 3

• Bind temp 3 * e to Multiplier

After this step, Multiplier generates the output.

Binding also generates three control signals which can be used to built the controller

(FSM):

• Step 1: 00

• Step 2: 1X

• Step 3: 11

2.3.2 Advantages of HLS Over RTL

Raising the abstraction level brings many benefits. One unique advantage of HLS over

traditional RTL VLSI design is that different micro-architectures can be easily gener-

ated without having to re-write the input behavioral description. This can be achieved

by inserting pragmas, which are usual comments in C/C++ but preceding with special

terms that are recognized by the HLS tool. The pragmas are directives that tell the tool
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how to synthesize a certain part of the circuit. For instance, a typical option to synthe-

size a loop is unroll as shown in Fig 2.13. The two loops are identical, each code has a

// pragma unroll_times = 0

for (i = 0; i < 4; ++i) {

B[i] = A[i] + 1;

}

// pragma unroll_times = all

for (i = 0; i < 4; ++i) {

B[i] = A[i] + 1;

}

Figure 2.13: An example of loop unrolling

normal C-style comment above the loop. Note the keyword pragma indicates that this

line of comment is a special directive. The following unroll_times = 0 tells the tool

not to unroll the loop, which produces the structure shown in Fig. 2.14 (left). It takes

four clock cycles to complete the loop, and in each clock cycle, it performs an addition.

Meanwhile, the adder can be shared among different clock cycles; thus this structure

trades speed for area. For the second case that uses unroll_times=all, the resultant

structure is shown in Fig. 2.14 (right). It only takes one clock cycle to complete the

loop. However, it has to use four adders since the four additions are performed simul-

taneously. Therefore, this structure is fast but requires more logic resources. Besides

// Clock 1

B[0] = A[0] + 1;

// Clock 2

B[1] = A[1] + 1;

// Clock 3

B[2] = A[2] + 1;

// Clock 4

B[3] = A[3] + 1;

// Clock 1

B[0] = A[0] + 1;

B[1] = A[1] + 1;

B[2] = A[2] + 1;

B[3] = A[3] + 1;

Figure 2.14: The results of loop unrolling using two different pragmas

loops, HLS is also able to perform various synthesis strategies on other elements such

as functions and arrays, which produce a large amount of pragma combinations, thus

generating different structures. This is typically called design space exploration.

DSE is the task of finding the design points which the designers are interested in.

The design points are the distinct micro-architectures which have the same function-

ality, and the points may have different attributes, which is also known as objectives,

like area, speed, and power. Multiple objectives indicate that the solution is a trade-off



25

curve that consists of Pareto optimal designs rather than a single global optimal design.

For example, in Fig. 2.15, the design space contains all the points which have the same

functionality but different micro-architectures, thus have different metrics. However, de-

signers are only interested in the points on the trade-off curve. These points are called

Pareto-optimal points, and the curve is known as Pareto front. The Pareto-optimal

points are equally important. For instance, assume Objective 1 is latency (clock cycles)

and Objective 2 is area. So design point A is larger than design point B. However, it is

highly likely that design A is also faster than design B. In this case, the choice of the

design points depends on the underline application, e.g., either for high performance or

for compact area. DSE is important because it helps the designers to learn the upper

and lower bound of the designs and guides the designers on how to build different

micro-architectures to balance different objectives.

Objective 1

O
bj

ec
tiv

e
2

Design space
Pareto front

Figure 2.15: An example of DSE results

Due to the increasing complexity of modern SoCs, the design space is growing

exponentially. To solve this multi-objective problem, heuristic algorithms are widely

adopted, and the genetic algorithm is proved to be one of the most efficient algo-

rithms [102, 43, 55]. This type of algorithms mimics the evolution of living species that

the positive factors leading to desired results will be preserved and be propagated

to the next iterations. Note that the algorithms are designed to optimize (minimize or

maximize) a single value. Thus it is required to transfer the multiple objectives to a

single value. This transition is known as cost function (2.1), where the summation of
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the coefficients (θi ) is 1.

cost = θ1 · (Objective1) + θ2 · (Objective2) + · · · (2.1)

So in Fig. 2.15, if the goal is to minimize the cost function, in case of design A, θ1 =

1, θ2 = 0; and for design B, θ1 = 0, θ2 = 1.

To further improve the heuristic methods, machine learning techniques appears to

be a promising solution [88, 13]. Traditional heuristic algorithms utilize the predictive

nature of machine learning algorithms to skip the actual synthesis of trivial design

points and meanwhile focus on the potential important points. In this way, only a small

portion of the design points is sufficient to estimate the performance of the entire design

space.

2.3.3 Commercial and Academic HLS Tools

CyberWorkBench

CWB [78] is an Integrated Development Environment (IDE) which allows the All-in-C

design and verification of SoCs. It was developed at NEC’s R&D laboratories. The All-

in-C concept is enabled by the preferred input language called Behavioral Description

Language (BDL) which is an extended version of ANSI-C. The concept contains two

principal ideas:

• all-modules-in-C: It allows all modules including control intensive and compu-

tation intensive applications described in behavioral C language. Meanwhile, it

accepts the legacy RTL code as black boxes, thus saving the effort of converting

those RTL codes back to C sources.

• all-processes-on-C: The processes include synthesis, verification, and debugging.

The behavioral C descriptions are converted automatically to RTL code under

the design constraints. For verification, the cycle accurate simulation model is

generated to observe the accuracy and performance of the converted RTL code.

CWB also allows writing properties or assertions in the C descriptions to check

the bugs. To prove the equivalence between the C description and RTL code, the
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C-RTL equivalence prover checks functionality matching using the information

of the conversion, which ensures that the optimizations should not change the

functionality accidentally.

Catapult

Catapult [71] was developed by Mentor. It is an interactive C synthesis tool, and it takes

as inputs the pure ANSI C++. Catapult also allows the verification in C environment.

This is enabled by wrapping the generated RTL code in the SystemC foreign module;

thus the C code for functionality testing can be reused to check the correctness of the

outputs of the RTL code.

Catapult has achieved successful experience in the industry for ASIC designs while

showing the advantages of HLS over traditional RTL design, including the accelerated

time-to-market and the optimizations which are non-trivial to obtained in RTL.

Vivado HLS

Vivado HLS [119] is based on the commercial platform-based ESL synthesis system

called AutoPilot which is an extension of xPilot originally developed at UCLA. AutoPilot

was designed by AutoESL Design Technologies Inc. which was acquired by Xilinx in

2011.

One of the key features of Vivado HLS is platform modeling, which means that

it takes full advantage of the characteristics of the target platform so that maximum

optimizations can be conducted. When targeting FPGAs, the hardware resources,

such as arithmetic units, control units, interfaces, and memories, are pre-characterized

regarding the delay, area, and power.

Vivado HLS is one of the most popular commercial HLS tools for FPGAs, and it is

widely adopted in academia.

LegUp

LegUp [20] is an HLS compiler mainly for FPGA platforms developed at the University

of Toronto. LegUp has two unique features which make it distinct from other HLS

tools. The first feature is that LegUp supports hardware synthesis of Pthreads and
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OpenMP. This enables the easy adoption of parallelism on FPGAs. The second feature

is the universal support of FPGAs from major vendors which are Intel, Xilinx, Lattice,

Microsemi, and Achronix. This allows little to zero modifications of the source code

when implementing across vendor-specific FPGAs.

Bambu

Finally, there are also a variety of academic HLS tools that have shown to produce

good quality results. For example, Bambu [108] which is developed by the Politecnico

de Torino in Italy.
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Chapter 3

Pin Multiplexing of Behavioral Modules

This chapter investigates the effect of pin multiplexing on the resultant micro-architecture

of behavioral descriptions after HLS. A method is presented to find the most efficient

pin assignments and pin mappings for Behavioral IPs (BIPs) to minimize the perfor-

mance degradation introduced by having to multiplex the IOs and minimize the area

increase due to the multiplexer logic. The proposed method is a fast heuristic based

on the scheduling results of High-Level Synthesis seen as a black box and hence is

flexible enough to work with any HLS tool. This method is also extended to deal with

multiple BIPs directly connected to determine the optimal number of pins, and thus

wires, between the two components to reduce the critical path delay introduced due to

the interconnect. Experimental results show that our proposed method is very effective

compared to an exhaustive search and a simulated annealing method at a fraction of

the time, and much better than randomly selecting the pins to be multiplexed.

3.1 Introduction

The design complexity of ICs continues to increase, mainly because the number of

transistors is still doubling every 18 to 24 months following Moore’s law [75]. Current

ICs are mainly heterogeneous Multi-Processor System-on-Chip (MPSoC) which con-

tains multiple processor cores, memories, interfaces, and hardware accelerators. This

increase in complexity has led to the adoption of new design methodologies. One

paradigm shift which is slowly taking place is the use of higher levels of abstractions to
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increase the design productivity. This increase in the level of abstraction is based on

the use of HLS. HLS takes as the input a behavioral description and generates a RTL

description which can be efficiently executed. HLS has the additional benefit that the

RTL code generated by HLS can automatically include test circuitry, low power control

circuitry (e.g., clock gating) and also automatically multiplex the input and output pins.

Pin multiplexing is extremely useful. At the chip level, it reduces the number of

the chip’s pins as the packaging cost can be as high as the die cost [5]. It is well

known that the number of Input/Output (IO) pins is not growing fast enough compared

to the increase in logic resources. Thus, one solution that has been adopted is time-

division multiplexing of the IO pins to overcome this issue [56]. This is especially true

in FPGAs, which are often used for emulation or prototyping. In general, every pin in

a complex system is shared by an average of 30 IO signals [8]. Logic emulation and

prototyping enable the functional verification of complex ICs before chip fabrication.

However, traditional FPGA-based verification platforms have poor inter-chip communi-

cation bandwidth, limiting the gate utilization to less than 20% [3] in the past.

At the component level, pin multiplexing reduces the number of internal intercon-

nects. This reduces the congestion of complex ICs and facilitates the routability while

reducing the wire delay by reducing the fanout. Congestion can be formally defined

as the ratio of routing demand to the available routing resources in each region of a

design. Timing closure is still one of the most critical issues in state-of-the-art VLSI

designs and is getting even harder at sub-micron technologies due to the importance

of wire delays [4].

Raising the level of abstraction using HLS has one fundamental advantage over

traditional RTL VLSI design. Different micro-architectures can be generated from an

initial behavioral description. Each micro-architecture has the unique area vs. perfor-

mance property, thus designs with different trade-offs can be automatically generated.

This is impractical at the RT-level as it would imply having to manually re-write the RTL

code to describe each of these micro-architectures. Pin-multiplexing affects how HLS

synthesizes the micro-architecture as it requires internal logic resources to multiplex

the pins. At the same time, the latency of the circuit increases with pin-multiplexing

as data is read slower into it. Thus, it is essential to understand how pin multiplexing
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affects the synthesized design at the behavioral level and find efficient methods to map

logic IO signals to physical ports. In particular, the main contributions of this work can

be summarized as follows:

• Investigate the effect of pin multiplexing on area and latency overhead of a BIP.

• Propose a method to efficiently multiplex BIPs’ pins using the scheduling result

of HLS as its main port mapping criteria.

• Expand the method to deal with the delay optimization of multiple BIPs directly

connected by determining the optimal number of pins/interconnects required.

• Perform comprehensive simulations to compare the quality of the proposed

method against those of an exhaustive search method, a random assignment

method, and a simulated annealer based method.

3.2 Motivational Example

In traditional VLSI design, during partitioning, the number of logic signals is often

greater than that of physical ports; hence these have to be multiplexed. At the RT-level,

this typically involves having to re-write the circuit description to accommodate this pin

multiplexing. One of the advantages of C-based VLSI design based on HLS is that

pin multiplexing can be automated. This is typically done by specifying as inputs to

the HLS process a Port Constraint (PCNT) file and a Port Relation (PREL) file. The

PCNT file contains the number of ports (the number of physical input and output ports)

and the type (in, out, or inout) as well as the bit width of each port, and the PREL file

specifies which logic signals should be mapped to the same physical port.

Fig. 3.1 shows a motivational example for this work for a simple design which

computes the average of 8 numbers. Fig. 3.1(a) shows how the area in terms of LUTs

of a BIP changes when its input or output signals are multiplexed. Originally the BIP is

synthesized without any port constraint file (PCNT nor PREL), and allocates as many

physical ports as logic signals. In this case, there are m + n (m = 8, n = 8 in this

example) physical ports. This configuration leads to the fastest performance (lowest

latency) as shown in Fig. 3.1(b). When the number of physical ports decreases, the

latency of the design increases as data requires longer to be read into and written
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Figure 3.1: The impact of pin multiplexing on area and latency

out of the circuit. Fig. 3.1(b) shows how the latency increases when the physical input

ports are decreased from m to a single one, while keeping the number of physical

output ports constant to n, and it also shows the change when the physical output

ports decrease from n to 1, while keeping the physical input ports constant to m. At the

same time Fig. 3.1(a) shows how the same changes of physical port affect the area.

Synthesized Circuit

in0 in1 in2 in3

(a) Without pin multiplexing

MUX MUX

REG REG

Synthesized Circuit

in0 & in1 in2 & in3

in0 in1 in2 in3

(b) With pin multiplexing

Figure 3.2: The impact of pin multiplexing on the micro-architecture

The main reason that the micro-architecture changes when the ports are multi-

plexed can be seen in Fig. 3.2. Without multiplexing, the circuit reads the four input

signals in parallel and does not require any extra logic as shown in Fig. 3.2(a). However,

Fig. 3.2(b) illustrates the extra logic inserted due to pin multiplexing. The synthesizer

inserts MUX and inserts REG to hold values of the input or output signal that have
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been read or written first. Moreover, because the latency of the synthesized circuit

now changes, the HLS process can take advantage of these and create a different

micro-architecture which uses fewer resources.

From these results, we can make two important observations:

Observation 1: Reducing the number of ports increases the latency of a design, hence

degrades its performance. The amount of degradation nevertheless differs when re-

ducing either the input ports or the output ports, and it is not monotonically increasing.

Observation 2: Reducing the input and output ports count impacts the area of a

BIP differently. In this example, when the number of input ports is reduced, the area

increases; while the area decreases when the number of output ports decreases. In

both cases, this effect is also not monotonic. As for the behavior of other designs,

sometimes, the area in both cases increases, but at different rates.

Based on these observations, the problem addressed in this work can be formulated

as following:

Problem Formulation: Given a BIP in synthesizable C or C++ with m logic input

signals (LSin) and n logic output signals (LSout ), and a maximum number of physical

ports (Pmax ), allocate the optimal number of physical ports for the inputs (Pin) and

outputs (Pout ), such that Pmax=Pin + Pout and find the optimal mapping for each logic

signal

{LSin1, LSin2, ... , LSinm} → Pin and {LSout1, LSout2, ... , LSoutn} → Pout

in order to minimize the area increase as well as the performance penalty (latency

increase) of the BIP.

3.3 Pin Multiplexing in HLS

In this thesis, another widely used feature powered by HLS is pin multiplexing. It is a

technique for mitigating the constraint of pin limitations on FPGAs. A pin is a physical

I/O on an FPGA to communicate with the external environment. FPGAs are widely

used for verification purpose of complex SoC designs, such as prototyping or logic

emulation. An FPGA is usually not big enough to hold the entire SoC. Therefore, engi-
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neers will partition the SoC onto multiple inter-connected FPGAs. However, the number

of interconnections of two adjacent FPGAs may exceed the number of I/O pins, which

means the original logic signals will be multiplexed onto the physical pins. In RTL, pin

multiplexing indicates the manual modification of the source code, which may intro-

duce extra effort and errors. In HLS, pin multiplexing can be performed automatically

by specifying two pin constraint files: pin count constraint and pin relation constraint

files. The HLS tool takes as input the two files and regenerates the micro-architecture

without changing the source code. For example, Fig. 3.3 shows the two constraint files.

There are eight input logic signals (idataa00, · · · , idataa07) and one output logic signal

(a) pin count constraint

(b) pin relation constraint

Figure 3.3: The two pin constraint files

(odata). Fig. 3.3(a) specifies two input physical ports (in1 and in2), each of which has

8 bits; it also specifies an output physical port (out1) with 8-bit. Fig. 3.3(b) describes

the relation between logic signals and physical ports. In this case, the first four signals

share in1 and the other four share in2. There is only one output logic signal, so there

is no need to share. Fig. 3.4 presents the datapath before and after applying pin multi-

plexing. Here the two circuits perform the functionality of average8, the only difference

is the number of input signals has been changed to two (right) instead of eight (left).

It is observed that the architecture without pin multiplexing is simple. However, after
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(a) Datapath without pin multiplexing (b) Datapath with pin multiplexing

Figure 3.4: The change of datapath after pin multiplexing for the average8 benchmark

applying pin constraints, only two values can be read at each clock cycle, so extra logic

elements like multiplexers and registers are required to maintain the correct function-

ality. Meanwhile, since the circuit cannot read the inputs as fast as before, there is no

need to consume the same amount of functional units. Thus the number of adders is

reduced to five.

Pin multiplexing is an important technique in FPGA-based verification. The effect

of applying it varies for different designs. The following chapters will demonstrate the

utilization of pin multiplexing.

3.4 Related Work

Pin multiplexing methodologies have been widely studied in multi-FPGA systems,

mainly due to their limited number of pins. In [3] the authors studied the dependency

of input and output signals in a single FPGA at the RT-level to share a physical wire

among several logic signals. The proposed methodology was applied to logic emulation

in [109] and [25], where the authors proved that the FPGA utilization improved due to

pin multiplexing.
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Hauck et al. [40] proposed a pin assignment method for multi-FPGA systems based

on a force-directed pin assignment solution and compared it with a random assignment,

showing that it can lead to better results. The use of Input and Output Serialization and

Deserialization (ISERDES/OSERDES) with Low Voltage Differential Signaling (LVDS)

has shown to increase the inter-FPGA communication data rate by 10× [107]. How-

ever, the complexity of this method is high, and it is only usable on boards which support

high-speed serial connections.

Other automatic pin assignment methods at the floor planning level were presented

in [93, 92]. In this work, the authors proposed a cost function of delay constraint to

determine the shape and placement of each cell. In [69], the authors studied pin as-

signments at the PCB level to reduce total wire length.

In all previous work, the designs’ architectures did not change as the pin multiplex-

ing is done as a wrapper around the original RTL code.

This work is different from previous works as it addresses the issue of pin assign-

ment at the behavioral level. In particular, it studies the effect of pin multiplexing on the

resultant micro-architecture and proposes a fast method to bind logic ports to the same

physical pins reducing the area and latency degradation due to these. One additional

advantage of the proposed method is that it relies on a pre-characterization stage and

also on the results of the HLS scheduling process, considering the HLS process as a

black box. Hence, it is independent of the HLS tool used.

3.5 Proposed Method

This section describes in detail the proposed pin multiplexing method. It is based on

two phases. The first phase, called port allocation, assigns physical ports to the inputs

(Pin) and outputs (Pout ), based on the maximum number of available ports(Pmax ). The

second phase, called port binding, binds individual input logic signals (SLin) and output

logic signals (LSout ) to individual physical ports, minimizing the effect of area increase

and performance degradation (latency increase).

Fig. 3.5 shows an overview of the complete flow, divided into the two aforemen-

tioned phases. The inputs to the proposed method are:



37

Step 1 Inputs characterization

Step 2 Outputs characterization
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Figure 3.5: Overview of the proposed method

1. BIP: the behavioral description of the circuit in C/SystemC.

2. Techlib, ftarget : the technology library and target frequency for HLS.

3. Pmax : the number of total physical ports allowed, which has to be smaller than

the sum of logic input and output signals, Pmax < LSin + LSout .

4. Cost function: Cost function weights to determine if the area or latency degrada-

tion or any combination of both should be minimized.

The port allocation phase (phase 1) of the method is based on three steps as

shown in Fig. 3.5. Step 1 and 2 pre-characterize the area and latency degradation

of the inputs and outputs separately for a different number of input and output ports.

Based on these results, step 3 allocates the available ports into inputs and outputs,

thus Pmax = Pin + Pout . Phase 2, in turn, is based on two steps. The first step forces the

HLS tool to reveal the order in which each input and output is read/written by setting

separately the number of input ports Pin=1 and then the output ports Pout = 1. Based

on the scheduling result, step 2 assigns each logic signal to each physical port. As

mentioned before, one of the advantages of this method is that it uses the HLS process
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as a black box. Thus it has the flexibility to be used with any HLS tool.

FSM

Datapath

Port A

Port B

Port C

Port D

Port E

Port F

Input1

Input8

Output1

Output8

High-Level Synthesis ftarget
techlib

BIP (C/SystemC)

PCNT

PREL

QoR (Area, Latency)

Figure 3.6: An example of port allocation and port binding

Fig. 3.6 shows a graphical example of how the two phases work. Given a maxi-

mum of 6 physical ports Pmax = Port{A, B, C, D, E , F}, and given a BIP to be synthe-

sized in HLS with LSin = m input signals (Input{1,2,... ,8}) and LSout = n output signals

(Output{1,2,... ,8}), with m and n being both 8, the first phase determines the number of

physical ports assigned as input and output. In the example in Fig. 3.6, three physical

ports, Port A, Port B, and Port C, are assigned as inputs, and the other three physical

ports are assigned as outputs. Thus fulfilling the condition that Pmax = Pin + Pout . The

second phase, then determines which of the logic signals should be assigned to the

same physical port. In this example, Port A is shared by Input1 and Input2, Port B is

shared by Input3, Input4 and Input5, Port C is shared by the rest logic signals. Similarly,

the assignment of the output is performed.

3.5.1 Phase 1: Port Allocation

The observations made in section 3.2, especially the second one, is used in this first

allocation phase. As shown in the motivational example, assigning more ports to either

inputs or outputs affects the area of the synthesized micro-architecture differently. Be-

cause this work relies on the synthesis result of an HLS tool seen as a black box, we
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cannot determine a priori the synthesis optimization done by this tool in either case.

Hence a pre-characterization stage is performed to determine the impact of reducing

the input and output physical ports on the area and latency of the resultant micro-

architecture. The outcome of this stage allocates the maximum number of ports (Pmax )

to inputs and outputs ports (Pin and Pout ). This phase consists of three main steps,

which can be summarized as follows:

Step 1: Inputs’ Characterization. In order to understand how the port reduction af-

fects the area and latency of the resultant micro-architecture, this first step keeps the

number of physical output ports the same as the logic output signals (Pout = LSout )

and reduces sequentially the number of physical input ports (Pin), from their maximum

number Pin = LSin, leading to configurations with (m, n), (m − 1, n), (m − 2, n), ... , (1, n)

ports until a single physical input port is allowed, Pin = 1.

For each unique configuration, the HLS tool takes as additional inputs the port

constraints, and the area (A) and latency (L) are extracted from the synthesis report.

The result of this first step is similar to the example shown in Fig. 3.1 in section 3.2,

fully characterizing the impact of time-multiplexing the logic input signals on the area

and latency of the synthesized design. The outcome of this step leads to a design list

DLinputs = {(m, n, Am_n, Lm_n), ... , (1, n, A1_n, L1_n)}, where Am_n and Lm_n are the area

and latency of the synthesized design with m physical input ports and n physical output

ports.

Step 2: Outputs’ Characterization. The same pre-characterization performed in

step 1 is repeated in this step for the outputs. This step leads to another design list

DLoutputs = {(m, n, Am_n, Lm_n), ... , (m, 1, Am_1, Lm_1)}. Hence after executing step 1 and

step 2, the effect of time-multiplexing the input and output ports on the area and latency

degradation is fully made visible.

Step 3: Port Count Assignment. Based on the results of steps 1 & 2, the effect

on the area and latency of any port combination can be determined by combining

the results of both steps. Here, we mainly investigate the relative performance of a

design of a particular configuration. For example, in order to compare A2_6 and A3_5

without running HLS of these configurations, A2_6 is represented by A2_n and Am_6;

similarly, A3_5 is represented by A3_n and Am_5. If A2_n + Am_6 > A3_n + Am_5, then
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A2_6 is greater than A3_5, otherwise, A2_6 ≤ A3_5. This relation is consistently observed

among multiple behavioral designs, the reason under the hood could be that the HLS

tool handles the pin multiplexing of inputs and outputs separately, so that utilizing the

above inequalities is able to reflect the difference of the configurations.

As mentioned in the motivational example, a different number of input and output

ports affect either the area or latency degradation differently. Thus, one other input

required by our method is a cost function with the optimization goal needed – either

area, latency or a trade-off between area and latency degradation. For this purpose

a cost function as follows is used: C = αA + βL, where A is the area, L is the latency,

α and β are the weights to determine if the assignment should minimize the total

area or latency. Different weights would lead to different assignments. One option

would be to execute the entire assignment process twice: once setting α=1, β=0 and

once setting α=0, β=1. This would lead to the best area reduction and best latency

reduction assignments, which should be very useful to designers as indicators of upper

boundaries.

The result of this assignment is Pmax = Pin + Pout , where Pin are the physical

ports assigned to the inputs and Pout the physical ports assigned to the outputs. One

advantage of using this pre-characterization-based method is that the complexity of

synthesis iterations is linear O(m + n) with the number of logic input and output signals.

3.5.2 Phase 2: Port Binding

Once the maximum numbers of ports (Pmax ) have been allocated to inputs (Pin) and

outputs (Pout ) ports, the next step binds each logic signal (LS) to a specific physical

port.

The number of possible bindings follows the Stirling numbers of the second kind [37].

The Stirling numbers of the second kind S(l , k) counts the ways to divide a set of l

objects into k nonempty subsets. In our case l is LSin or LSout , and k = [1, Pin/Pout ].

When the design only has one input or output port (k = 1), only one mapping exists,

which also leads to the slowest of all system configurations because all the logic

signals have to be connected to that port. This case corresponds to S(l , 1) = 1. By

increasing the number of physical ports, more binding combinations exist until LSin/2
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or LSout/2, which has the largest number of binding combinations (S(LSin, LSin/2) or

S(LSout , LSout/2)). Finally increasing the number of physical ports until Pin = LSin

or Pout = LSout leads again to a single binding as each logic signal is mapped to

its own port, and this can be expressed as S(LSin, LSin) = 1 or S(LSout , LSout ) = 1.

This configuration also leads to the fastest design as no multiplexing is required. The

numbers of mappings in each case can be calculated as [37]:

S(l , k ) =
1
k !

k∑
i=0

(−1)k−i

 k

i

 i l

The number of possible combinations is a function of Pin
LSin or Pout

LSout , which makes

an exhaustive search not practical. It is because each time a new combination is

generated, it has to be synthesized in order to obtain the area and latency of that

particular assignment. Thus, faster heuristics are required.

The proposed IO to pin assignment method is based on forcing the HLS process

to determine the priority of reading and writing data to the IO ports when only having

a single physical port. Thus, we call this method Priority IO Scheduling (PIOS). Intu-

itively, if a signal with lower priority is read first, the area and latency of the circuit will

increase as this signal needs to be stored and cannot be used until the rest of the data

is available. Moreover, the complexity of FSM will increase, further increasing the area

and delay of the resultant circuit.
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Figure 3.7: IO scheduling serialization overview

Fig. 3.7 shows an overview of the method and the algorithm is described in detail

in Algorithm 1. The method can be decomposed into two main steps as follows.

Step 1: IO Serialization. The first step consists of assigning a single physical port to
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Algorithm 1: Priority Input Output Scheduling Based Method (PIOS)
Input :BIP, Pin, Pout

I = {LSin1, ... , LSinm}, O = {LSout1, ... , LSoutn}
// BIP : Behavioral IP in ANSI-C or SystemC

// Pin: Ports allocated as input

// Pout: Ports allocated as output

// I: Total logic inputs ∈ BIP

// O: Total logic outputs ∈ BIP

Output :Pin(i) = {LSinx , ... , LSinz}
Pout (j) = {LSoutx , ... , LSoutz}

// Pin(i): Physical in port i with inputs' assignment

// Pout (j): Physical out port j with outputs' assignment

1 Pout ← assign_max_ports(n);
2 Pin ← assign_single_port(1);
// repeat for inputs and outputs separately

3 for I and O do
// Step 1: IO port serialization

4 QOR(A, L, IO_schedule) = hls(Pin, Pout );
// Step 2: Sequential Port Mapping

5 foreach Pin do
6 for (PLi = IO_schedule; i < m; i + +) do
7 Pin(i%Pin)← PLi ;
8 end
9 end

// Update ports and re-do for outputs

10 Pout ← assign_single_port(1);
11 Pin ← assign_max_ports(m);
12 end
13 return Pin(i) = {LSinx , ... , LSinz}, Pout (j) = {LSoutx , ... , LSoutz}

the inputs, hence Pin=1 and as many physical output ports as logic signals (line 1-2),

thus Pout = LSout and synthesizing (HLS) this configuration (line 4). The HLS tool is

therefore forced to schedule the inputs sequentially, serializing how data is being read

into the design as there is only a single input port (only one signal can be read in a

clock cycle). The key to this method is to rely on the HLS tool to schedule reading the

inputs based on their usage priority. As mentioned before this has the additional benefit

of making our proposed method HLS tool agnostic. The same operation is repeated

for the outputs setting with Pout=1 and Pin = LSin (line 10-11). Thus, the result of this

step is two sequences of IO accesses (IO_schedule), one for the inputs and one for

the outputs. Fig. 3.7 shows an exemplary access sequence of output signals, where

each output is being accessed in a different state (clock cycle).
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Step 2: Port Mapping. Based on the results obtained in step 1, the method continues

by directly assigning the logic signals sequentially as shown in Fig. 3.7. In this case,

8 logic output signals are assigned to 3 physical ports. Because the results of step

1 reported the output scheduling order as Output{1,2,3,4,5,6,7,8}, this also indicates

the priority in which the outputs have to be written out and hence triplets are formed

greedily (lines 6-8). In this case {(1,4,7),(2,5,8),(3,6)}, meaning that Output{1,4,7} are

mapped onto the same physical port, Output{2,5,8} to another and Output{3,6} to the

last one. This ensures that logic signals 1, 2 and 3 are written out first as these have

also been scheduled first in the priority scheduling list from step 1.

The advantage of this method is that it is extremely fast as it only requires the

generation of two configurations independently of the number of signals or ports. Hence

the order of complexity in terms of synthesis iterations is O(1).

3.6 Experiments

This section performs multiple experiments using the proposed method to study its

robustness compared to other methods. The experimental setup will be described first,

continued by the presentation of the experimental results. These results are split into

two parts. The first analyzes the effectiveness of our method for individual, isolated BIP,

while the second presents a case study when two BIPs are connected directly together.

This case study highlights the impact of pin multiplexing on the wire delay and extends

the proposed method to take into consideration the wire delay minimization.

3.6.1 Experiment Setup

Five benchmarks taken from the open source Synthesizable SystemC Benchmark

Suite (S2CBench) [101] were used to measure the effectiveness of our proposed

method. For example, as shown in Table 3.1, idct has 22 input pins and 15 output pins.

To study the scalability of our method, two larger complex benchmarks were created

by grouping together several of these benchmarks as shown in Table 3.1, e.g., S1 is

composed of idct, kasumi, snow3G, and sobel, and each of them is instantiated as a

function of a top module. Hence, all of the benchmarks were synthesized and optimized
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together.

Table 3.1: IO information

#in #out #total S1 S2

idct 22 15 37 1

interpolation 25 17 42 1

kasumi 64 64 128 1

snow3G 128 128 256 1 1

sobel 24 8 32 1 1

S1 238 215 453

S2 177 153 330

The size of these complex benchmarks is larger than the sum of the individual

benchmarks as often these complex benchmarks are composed of multiple concurrent

processes. In the single benchmark case, only the largest process is used, while for

the complex benchmarks all processes are considered.

The experiments were run on an Intel Pentium 4 running at a 3.20GHz machine

with 8 GBytes of RAM running Linux SUSE version 3.0.13-0.27. The HLS tool used in

this work is CyberWorkBench (CWB) v5.5 from NEC [78] and the target HLS frequency

set to 100MHz. The target FPGA is a Xilinx XC5VLX330 Virtex 5 FPGA.

To measure the qualitative and quantitative effectiveness of our proposed method,

it is compared against an Exhaustive Search (ES) method, a random method (RAND)

and a Simulated Annealing (SA) method. ES can guarantee the optimal global result

as it explores the entire searching space. RAND performs random selections of both

port allocation and port binding. This is the fastest method as it does not require

the computation of the assignment effect on the resultant design. Thus, it could be

considered the naïve default method. SA based methods have shown to lead to good

results in multi-objective optimization problems like this one and hence should lead to

a baseline method with good trade-offs between running time and quality of results.

Due to the probabilistic nature of the RAND and SA methods, these are executed five

times with different seeds, and the best results are reported.

Because of the conflicting minimizing objectives of reducing area, while also mini-

mizing the latency penalty, the experiments were executed twice. Once with the target
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cost function weights were set to α=1.0 and β=0 to find the very smallest configuration

(optimized for area) and once setting α=0 and β=1.0, optimizing for latency. 3 different

Pmax values were used to test our methods. Pmax=25%, 50% and 75% of the total

number of logic signals (LSin + LSout ).

3.6.2 Experimental Results

Individual BIP

Fig. 3.8 shows the normalized results of the four methods for the cases which target

the optimization of area (α=1.0, β=0) and latency (α=0, β=1.0). In both cases, 25%,

50% and 75% of the original number of ports are used. The vertical axis indicates the

normalized area or latency, hence the smaller, the better. Since SA is set as a reference,

its value is “1” in the figures, and thus only ES, RAND and PIOS are presented. Besides,

some of the results of ES (e.g., S1 in Fig. 3.8(a)) are not presented since their running

time exceeds seven days. Therefore, the average values of ES are not shown either.

For the area driven optimization (Fig. 3.8(a), 3.8(b), 3.8(c)), our proposed method

(PIOS) performs very close to ES except for the snow3G case shown in Fig. 3.8(b)

and 3.8(c). In both cases, the results of PIOS are about 1% bigger than those of ES.

When comparing against SA, our method is up to 2.3% better and on average 0.5%

better for the five basic benchmarks, but much better for the larger cases due to the

increase of the searching space. For these two complex benchmarks, our method is

up to 7.1% better and on average 4.3% better.

Due to the simplistic nature of the RAND method, the results as expected are the

worst of all the methods. In this respect, our method is up to 15.3% better and on

average 6.3% better.

When optimizing for latency (Fig. 3.8(d), 3.8(e) and 3.8(f)), the cost function is set

to α=0, β=1.0, and our method also shows good results. The latency improvements

introduced by PIOS are up to 45.5% and 71.5%, and on average 22.1% and 41.8%

compared with SA and RAND, respectively. Moreover, our method shows the same

behavior as the optimal solution (ES) because PIOS leverages the scheduling data

from the HLS tool to minimize the latency penalty.
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Figure 3.8: The results of area and latency in different cases

In terms of running time, Table 3.2 shows the comparison of the four methods for the

three cases as mentioned earlier. The time measurement unit is second. The running

time of ES for benchmarks S1 and S2 took more than seven days, and thus those

results are not presented. Comparing PIOS vs both SA and ES shows that our method

is much faster. To account for the size differences between different benchmarks, the

geometric mean is given as an average indicator; however, the geometric means of

ES are not calculated to maintain the equity as the two sets of longest running time

are not included. An average speedup of 20, 13 and 15 is achieved by our method

compared with SA for the 25%, 50%, and 75% cases, respectively. Obviously, RAND

is the fastest among the four methods since only two synthesis iterations are needed,

one for I/O data collection and one for the random assignment.

It should be noted that the proposed method is based on a pre-characterization

stage. This stage only needs to be executed once to characterize each BIP fully, and
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Table 3.2: Running time [s]

ES RAND SA PIOS

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

idct 134 276 159 16 15 15 114 191 145 82 148 110

interpolation 163 230 181 7 7 7 201 231 184 24 45 32

kasumi 163076 196458 103855 20 20 20 939 1200 1030 46 96 71

snow3G 120384 182519 166831 6 6 6 1071 1136 950 23 47 29

sobel 111 218 132 5 5 5 185 197 156 16 19 19

S1 58 57 57 81615 76114 77846 1101 1814 1214

S2 18 18 18 28976 27363 24888 224 362 250

Geomean 13 9 13 1391 1581 1343 70 121 88

thus our proposed method can be much more effective when re-using the BIP in future

projects. Table 3.3 shows the running time of our proposed method excluding the pre-

characterization phase. Compared to the results in Table 3.2 in terms of Geomean, our

proposed method is at least 10× faster, which means that our two-phase approach is

very efficient in such practical situations.

Table 3.3: Running time without pre-characterization [s]

25% 50% 75%

idct 8 7 7

interpolation 2 2 2

kasumi 9 9 9

snow3G 2 2 2

sobel 3 3 3

S1 52 50 50

S2 16 32 17

Geomean 6.9 7.4 6.7

Based on the experimental results obtained it is safe to conclude that our method

works well, and it is a good compromise between quality of results and running time.

Case Study: Multiple BIPs

To further demonstrate the effectiveness of our proposed method, a case study when

two BIPs are connected is presented. The main purpose of pin multiplexing, in this

case, is to reduce the congestion and wire delay, while again minimizing the area and/or
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latency degradation. In particular, the system of this case study is composed of a sobel

filter which performs an edge-detection algorithm on an image, directly connected to

a 128-bit AES encryption block for secure transmission as shown in Fig 3.9. The total

input signal bit width of AES is 128, which means that there are 128 wires connecting

sobel and AES for data communication. These larger number of connections can lead

to congestion and especially wire delay problems. Thus, our proposed method was

applied to this case study.

Raw image Sobel filter AES Resultant image

Figure 3.9: A system for case study

The main problem, not treated by our proposed method in cases like this, is to de-

termine the total number of physical interconnections allowed, where interconnections

are the same as pins in this case. Once this is determined, our method can be applied

by fixing the number of inputs and outputs of one component. This fixes the ports of

the other one automatically, as these are directly connected. In this case, the number

of ports assigned as outputs to the sobel component has to be equal to the number of

input ports of the AES component, Pout (sobel) = Pin(AES).
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Figure 3.10: Critical path delay vs multiplexing ratio of the case study

To solve this problem, we perform some preliminary experiments on the effect of

different level of pin multiplexing on the total circuit delay. Fig. 3.10 shows the results
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obtained. It can be observed that the initial delay is largely due to the wire delays.

The delay then falls until a global minimum value and then grows again when the

multiplexing ratio falls (more pins are multiplexed, as the multiplexing ratio is defined

as used pins over the total number of ports). This can be explained as initially, the

wire delay dominates the total delay. Then, once the pins started to be multiplexed,

the wire delay becomes smaller until the delay of the muxes, which are required to

multiplex the pins, starts to outweigh the delay savings of the wire. Thus, there is a pin

multiplexing factor which leads to the smallest overall delay. To find this multiplexing

ratio, a binary search method is introduced. Algorithm 2 summarizes it. It is based on

a well-known binary search. Because the wire delay needs to be extracted, the search

has to perform a full place and route (P&R) on the entire system, which can be costly

in terms of running time. On the other hand, the advantage of this method is that it is

extremely fast, with an order to the complexity of O(log(n)), where n is the number of

possible pin multiplexing ratios.

Algorithm 2: Binary search to find optimal number of pins for directly con-
nected components

Input :S, TechLib ,ftarget
// S: Source code of System in synthesizable C

// TechLib: Source code ANN training in SystemC

// ftarget: Target HLS frequency

Output :Pin multiplex ratio
// Pins : Total number of pins/wires which lead to smallest system

delay

1 while (dly_new < dly_prev ) do
2 rtl_new = HLS(C, Techlib, ftarget );
3 dly_new = LS_PAR(rtl_new);
4 if (dly_new < dly_prev) then
5 incr_mux_ratio();
6 end
7 else
8 decr_mux_ratio();
9 end

10 end
11 return optimal_mux_ratio

The results of applying the search on this case study are shown in Table 3.4. The

complexity of the routing was reduced when comparing the reported average fanout
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from an average of 5.02 to 4.85 ( 3.4%). Additionally, the two largest critical-path (CP)

delays of each case associated with the detailed logic and route delay were compared.

An improvement of 9% could be observed.

Table 3.4: Results of case study

Slices Average fanout CP delay [ns] Logic [ns] Route [ns]

Before 1139 5.02
16.178 1.511 14.667

16.175 1.511 14.664

After 1057 4.93
13.439 1.354 12.085

13.431 1.357 12.074

These results further demonstrate that our proposed method is extremely efficient

not only when considering single isolated BIP, but multiple BIPs connected, taken into

account not only the area and latency changes when multiplexing pins but also the

interconnect delay.

3.7 Summary

In this work, we have studied the effect of pin multiplexing on single component’s micro-

architectures in HLS and presented a method to optimize the port allocation and port

binding problems. It has been observed that the area and latency of the synthesized

circuit change when assigning a different number of physical ports to the inputs or

outputs. The proposed method is based on two main phases. The first one performs

a pre-characterization stage which assigns the optimal number of physical ports to

input and output ports. The second one determines which physical port is shared by

certain logic signals. The proposed optimization method makes use of the scheduling

results of the HLS process by serializing the IO timing and extracting the order in

which the IOs are accessed. The proposed method has shown to produce outstanding

results compared with an exhaustive search method, a simulated annealing method

and a naïve random selection approach. Finally, the effect of pin multiplexing on delay

and congestion of a system composed of multiple components connected directly was

studied, and a search method to determine the optimal number of pins allowed was
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introduced.
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Chapter 4

Interconnect-aware Dataflow Implementation on FPGAs

The interconnect is the bottleneck of FPGAs. It has significant effects on the area, delay,

and power consumption. Meanwhile, the synthesis may fail due to routing congestion,

which is caused by excessive inter- or intra-connections on the limited hardware re-

sources. Therefore it is essential to investigate design strategies that facilitate the

routability of FPGAs. This chapter considers this case, especially in the context of

complex dataflow systems mapped onto an FPGA.

One important feature of dataflow systems is the inter-module connections that

may affect the area and performance as shown in the previous chapter. This chapter

aims to optimize these interconnections regarding the conflicting objectives of area,

latency, and delay. The results are thus, a set of optimal configurations that can be

plotted as a trade-off curve.

The pin multiplexing technique described in the previous chapter will be used to gen-

erate these optimal configurations. To accelerate the optimization, this work also uses

machine learning to skip the unnecessary synthesis processes. Experimental results

show that the proposed method is efficient and accurate compared to an exhaustive

search and the other state-of-the-art approaches.

4.1 Introduction

FPGAs continue to benefit from Moore’s law by increasing their logic densities to a

point where complete systems can now be integrated into a single device with minimal
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off-chip resources. They also benefit from the breakdown of Dennard’s scaling, as com-

putationally intensive applications with inherent parallelism now have to be offloaded

to dedicated hardware modules to accelerate their computation, while reducing the

dynamic power by reducing the overall operating frequency. Moreover, they continue to

benefit from their flexibility to be reconfigured in the field. Nevertheless, this flexibility

also carries a heavy penalty regarding area overhead and performance degradation

due to the flexible interconnect. The interconnect is also currently the culprit for most

of the dynamic power consumption.
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Figure 4.1: JPEG encoder block diagram

With the increase as mentioned above in logic density, a single FPGA can now

hold complete systems. A typical system is shown in Fig. 4.1, which shows the block

diagram of a JPEG encoder. These systems typically connect multiple components

directly to take benefits of the underlying parallelism of these blocks and thus further

speed up the computation, instead of traditional shared bus systems found in SoCs

(at least for the accelerated hardware part of the system). This type of configuration is

also referred to as data-flow computation or stream computing.

FPGA vendors have also embraced HLS as a methodology to program their FPGAs

as this enables engineers with limited hardware development skills to be able to pro-

gram FPGAs. Thus, HLS seems a natural design methodology. HLS takes as input a

behavioral description written in C/SystemC/OpenCL and generates efficient RTL code

which can execute it. HLS is also a single process design method, where each block in

the system is synthesized, and thus, optimized separately. As shown in Fig. 4.1, each
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individual block has to be synthesized separately with its own set of synthesis options

({opt1, opt2, ... , opt5}). This style leads to inevitable global inefficiencies. In contrast,

one significant advantage of HLS is that state-of-the-art HLS tools allow to automati-

cally pin-multiplex their ports. Typically, this involves specifying a Pin Count Constraint

(PCC) that defines the maximum number of input and output pins allowed. The HLS

tool then automatically assigns the logic IO ports to specific pins by time-multiplexing

these. An additional advantage is that the synthesis process will, in turn, optimize the

internal micro-architecture based on these constraints. For instance, a loop is fully

unrolled if each IO port is assigned to its pin, but only partially unrolled if logic ports

have to share physical pins, as it now takes multiple clock cycles to read the inputs and

write the outputs. The first case will lead to a fast micro-architecture which requires

more resources as the loop is fully unrolled, while the second micro-architecture will

be smaller, using fewer resources but also slower. Other pin configurations lead to

intermediate results. Thus micro-architectures with different area vs. performance can

be obtained automatically. When combined with all the various components forming

a data-flow system, this leads to configurations with various area vs. performance

trade-offs, which this work aims at exploring.

In summary, the challenges that this work addresses and its main contributions are:

• Study the impact of pin-multiplexing on the area and throughput of FPGA de-

signs composed of multiple components directly connected, also called data-flow

computation or stream computing.

• Introduces a learning-based method to explore the search space, taking the

overall interconnect overhead into consideration, by modifying the pin multiplexing

ratios between the different components, given only the behavioral descriptions

for each component in the system.

• Proposes a method to reduce the number of samples required to create the

machine learning method called Adaptive Samples Selection Filter (ASSF ).
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4.2 Motivation

The following motivational example illustrates the challenges that this work addresses.

In this case, a two-component system directly connected through 128 wires is pre-

sented (16 ports of 8 bits). In particular, a stream cipher (snow3G) connected to a

post-processing cipher used in mobile communication systems (kasumi) is shown in

Fig. 4.2(a). The following metrics are defined first:

Multiplexing Ratio (MuxR): Number of physical pins (Pin) available compared to the

total number of logical ports (Ports). A larger MuxR implies more Pins and thus, more

interconnect wires, with MuxR ∈ (0, 1]

Critical Path (CP): Longest combinational logic delay, which determines the maximum

operating frequency (fmax = 1/CP) of the circuit.

Latency (L): Number of clock cycles required by a circuit to read input and generate

the corresponding output.

Throughput (T ): Performance metric used in this work, T = fmax/L (in case of multiple

latencies the largest is used to measure the overall system’s throughput)

Figs. 4.2(b), 4.2(c), 4.2(d) shows how the critical path (CP), Area (A) and latency

(L) behave as a function of the multiplexing ratio (MuxR), where the MuxR is modified

during HLS by setting different Pin Count Constraints (PCC). The results shown are for

all cases after place and route (P&R) and hence, take into consideration the intercon-

nect delay and area. The following observations can be made based on these results,

which we have also observed for other systems:

Observation 1: From Fig. 4.2(b) it can be observed that in general critical path delay

decreases with the multiplexing ratio (although not monotone). This is mainly because

as the interconnects (wires) between components get reduced, the interconnect delay

also gets smaller. At the same time, multiplexers are needed to multiplex the physical

pins, which in turn contribute to the increase in delay. This explains the non-monotone

behavior.

Observation 2: Fig. 4.2(c) shows that the area gets smaller when the multiplexing

ratio decreases. This phenomenon is mainly due to the HLS processes, which create

a micro-architecture that is adapted to the physical pins available. The fewer pins, the
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Figure 4.2: Motivational example: KASUMI-SNOW3G, and the changes of delay, area,
and latency when tuning the interconnections

slower the circuit becomes (larger latency) as shown in Fig. 4.2(d) and hence fewer

hardware resources (e.g., less functional units are required).

Finally, Fig 4.2(e) shows the resultant trade-off curve that is obtained by modifying

the number of physical pins between the two components leading to unique area vs.

throughput configurations. The configurations with a larger number of pins typically

lead to a higher area, but also higher throughputs, while reducing the number of pins,

reduces the throughput as now data takes longer to be processed, but also lowers

the system’s area. According to the above observations, the problem that this paper
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addresses can be formulated as:

Problem Formulation

Given a system consisting of multiple blocks1 (b), System = {b1, b2, ... , bn}, with each

bi specified in synthesizable C/SystemC (Code), thus, bi → Codei , and with these

blocks directly connected, find the optimal multiplexing ratios (MuxR) between every

two adjacent blocks (bi and bi+1), which lead to the best area (A) vs. throughput (T )

trade-off. Because the problem to be solved is a multi-objective optimization problem,

and as shown in Fig 4.2(e), there is no unique optimal solution, but a set of opti-

mal solutions called Pareto-optimal configurations (PO). Thus, the result of this work

is a set of optimal configurations leading to a trade-off curve PO = {P1(MuxR1) =

(A1, T1), P2(MuxR2) = (A2, T2), ... , Pi (MuxRi ) = (Ai , Ti ), ... }, with Pi being a single

Pareto-optimal configuration.

4.3 Related Work

Most previous work related to interconnect-aware synthesis mainly focuses on improv-

ing the performance/reduce the delay or reduce the power consumption by proposing

different optimizations directly at the physical level, where the interconnect is fully visi-

ble (design has been fully P&R). For instance in [103], the authors proposed a routing

architecture by mixing buffers and pass transistors, and claimed that the routing delay

can be on average reduced by 50%. Besides, in [61], the authors reduce the critical

path delay by 12.3% when taking the interconnect delay effects and cell congestion

into account between mapping and placement stages.

Closer to this work is previous work in the area of physical-aware behavioral synthe-

sis. The primary purpose so far has been to achieve timing closure. Recently the au-

thors in [125] presented an iterative physical-aware HLS flow. This work back-annotates

the delays after P&R into the HLS process to improve the quality of the synthesis. Initial

efforts to integrate physical information to the behavioral synthesis process were made

in [120], where the authors modeled the physical information through analytical models

to speed the process up, which leads to inaccuracies. Physical-aware HLS process
1This work makes indistinguishable use of the terms block, component or process to refer to a single

component in the dataflow hardware accelerator.
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was also presented in [21], where placement-driven scheduling and binding algorithms

were presented for multi-cycle communication architectures. This work nevertheless

focuses on communication optimization. Other work uses the placement of block-level

macros to guide the scheduling and binding refinement [98]. The main problem with

this approach is that it allows optimizations neither within macros nor across. More-

over, it does not provide detailed routing information. In the ASIC domain, the tight

integration between behavioral synthesis and physical design has been more widely

studied. Several ASIC HLS flows have integrated floorplanning to estimate wire delays

to improve scheduling and binding operations [95, 123] iteratively and more recently

in [64], including variation-aware synthesis. The main problem with all these previous

works is that, as mentioned before, HLS is a single process synthesis method. Thus all

previous works ignore global intra-process optimizations, and in particular, the effect

of the interconnect across modules. This work is therefore very different from these

previous works and is completely orthogonal to it. To the best of our knowledge, it is the

first work that aims at studying the effect of pin-multiplexing on the area and throughput

of data-flow hardware systems mapped onto FPGAs.

4.4 Methodology

The proposed method is composed of two main phases. The first phase is a pre-

characterization phase that fully characterizes the area, latency, and delay of each

component in the system. An initial predictive model to estimate the total area and

throughput of the complete system is created based on these preliminary results. Thus,

the results of this first phase are two predictive models (one for the area and one for the

throughput) which are not very accurate as they do not consider the interconnect delay

between the components. The second phase then generates a set of complete system

configurations to fine-tune the predictive models generated in the previous phase.

This phase iterates through the model generation by intelligently adding samples that

improve the quality of the predictive model. We call this method Adaptive Samples

Selection Filter (ASSF ). The model refinement loop exits when the method does not

identify any new sample that could potentially lead to any new PO configuration. Details



60

are shown below.

b1 b2 b3|
W1

|
W2

Figure 4.3: A circuit consists of three blocks

4.4.1 Phase 1: Pre-characterization

This first phase fully characterizes the effect of pin multiplexing on each component and

creates an initial predictive model to estimate the area and throughput of the complete

system. This phase can be further subdivided into two steps:

Step 1–Individual Component Characterization: This first step characterizes the

area and throughput of individual components/blocks in the system, where each com-

ponent can be defined as a process in the system, which is synthesized (HLS) sepa-

rately with its own set of constraints. A block, with m input and n output ports, leads

to the pin configuration of (m, n) without multiplexing. Thus, different configurations

are created by either reducing the number of input or output pins sequentially, creating

C(m, n) configurations, which implies that |C(m, n)| = m + n − 1 configurations are

required to characterize this component, as follows:

C(m, n) = {(m, n), (m − 1, n), ... , (1, n),

(m, n − 1), (m, n − 2), ... , (m, 1)} (4.1)

Therefore, for the circuit (shown in Fig. 4.3) which consists of three components

(b1, b2, b3), the pre-characterization for b2 requires the following full synthesis and

P&R:

b2(C(w1, w2)) = {

b2(w1, w2), b2(w1 − 1, w2), ... , b2(1, w2),

b2(w1, w2 − 1), b2(w1, w2 − 2), ... , b2(w1, 1)} (4.2)

In the b2(w1, w2), w1 is the maximum number of input pins and w2 is the maximum
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number of output pins of block b2 required to map each logic IO port to its own IO

pin. For the primary input and output components (i.e., b1 and b3), only the different

configurations for the output ports and input pins, respectively, need to be generated

to characterize them fully.

Thus, the running time required to characterize a system of 3 components is given

by:

Costpre = tb1 ∗ w1 + tb2 ∗ (w1 + w2 − 1) + tb3 ∗ (w2) (4.3)

where tbi (i ∈ {1, 2, 3}) is the synthesis time of {b1, b2, b3}, with synthesis time implying

HLS+Logic Synthesis+P&R, in order to get accurate results. Thus, tbi = tbi ,HLS + tbi ,LS +

tbi ,P&R.

Although the number of configurations might seem large, the running time for each

component pre-characterization is relatively short, compared to having to fully P&R the

full system, which for each new configuration requires tc . Thus, the running time of an

exhaustive search method for the complete system is given by the following equation:

CostES = tc ∗ w1 ∗ w2 (4.4)

with tc >> tbi (synthesis of complete system vs. synthesis of a single component).

Once each component is synthesized, the area, delay, and latency are extracted and

annotated. The method then continues by creating an initial predictive model of the

total area and throughput of the complete system in the next step of this first phase. It

should be noted that in case that the latencies of the different component pairs do not

match, the data is synchronized through a simple handshake protocol. No hand-shake

is needed if the latencies match.

Step 2–Predictive Model Generation: With the information obtained from the previ-

ous step, the proposed method creates two initial predictive models. One to estimate

the area and the other for the throughput of the entire system. As the aim of this work is

to create unique configurations with different area vs. throughput characteristics, hence

both metrics need to be predicted.

To create the predictive model, the proposed method arranges the synthesis results

obtained during the pre-characterization phase in a matrix as shown in Fig. 4.4. In this
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input matrix X , each row is the results of an individual configuration, also called sample

(si , i ∈ {1, 2, ... , m}), where each column represents a predictor, pj (j ∈ {1, 2, ... , n}. For

instance, for area prediction, p1 would be the area of module 1 with a certain number

of inputs and a maximum number of outputs. While p2 would be the area of moudle 1

with a maximum number of inputs and a certain number of outputs. The vector y are

values that need to be predicted, and in this work are area (A) and throughput (T ) of

the complete dataflow. Thus, two matrices are generated for each of the values to be

predicted. The objective of this step is to create a predictive model h by training X so

that h(X ) is as close as possible to y .

f1 f2 · · · fn ⇐ predictors y

s1 x1,1 x1,2 · · · x1,n y1

s2 x2,1 x2,2 · · · x2,n y2

...
...

...
. . .

... ⇒
...

sm xm,1 xm,2 · · · xm,n h(X) ym

⇑ ⇑ ⇑

samples X values to be predicted

Figure 4.4: Sample data organization overview

Two predictive models are used in this work: a simple multivariable linear regression

model and a more complex random forest model. In the experimental result section, the

accuracy vs. running time of these two models is presented. To create these models a

Python-based open source machine learning package is used (scikit [94]). The method

then continues with the model refinement phase to take into consideration the effect of

the overall interconnect.

4.4.2 Phase 2: Model Refinement and Dominating Configurations Search

This second phase consists of two additional steps. The first step characterizes a set

of important samples that are known a priori to be important for the model refinement.

The second step then continuously adds new samples to the model generator and

re-calibrates the model taking into account the topology of the complete system after

P&R. Because the P&R of the complete system can take a long time to finish, the goal
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at this stage is to reduce the number of samples required to calibrate the predictive

models. Fig. 4.5 shows the flow chart of the two steps. In particular:

Step 1
Generate

initial samples

Train model

Step 2
Compute new

Pareto-front with
training model

Add new samples
that from new

predicted Pareto-
front and do P&R

New samples
in predicted
Pareto-front?

Return
Pareto-front

Yes

No

Figure 4.5: Adaptive Samples Selection Filter (ASSF) overview

Step 1–Generate Initial Samples: Important samples that are known to help to refine

the predictive model are first automatically generated by default in this first initialization

step. Intuitively, the sample with the maximum number of interconnects yields the high-

est throughput, but also the largest area; while the sample with the least amount of inter-

connects yields the lowest throughput, but also the smallest area. Each sample is fully

P&R, and the area and throughput are annotated and added to the pre-characterization

results obtained in the previous phase.

Step 2–Iterative Model Refinement: In this step, the proposed method continues by

adding individual samples to the model refinement process, re-calibrating the model to

consider the effect of the overall interconnect.

Most previous works on predictive models create the model and then compute the

error of the model by measuring the difference between the predicted values and the

actual values. A standard way of doing is using a 10-fold stratified cross-validation

method (data evaluated until this point are divided randomly into ten parts, where each
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part is held out in turn, and the learning scheme is trained on the remaining nine-

tenths [116]). The model is considered stable when the error is smaller than a given

threshold value.

In this work, we introduce a unique approach. Often, the error based model creation

does not converge or takes an extremely long time to reach the specified minimum

error. Also, it is often non-trivial to set the error threshold value. Thus, often heuristics

lead to better results and are faster. Therefore, this work proposes a different approach.

As mentioned before, the goal in this step is to refine the predictive model, while

requiring the smallest number of samples as these have to be fully P&R, which for

large systems can be extremely time-consuming. Thus, we develop a method called

Adaptive Samples Selection Filter (ASSF ).

Fig. 4.6 shows an example of how ASSF works. The x-axis and y-axis represent

normalized throughput and area, respectively. Based on the current fully P&R circuits,

an initial Pareto-front is obtained, as shown in Fig. 4.6(a). Each point represent a

sample (Si ) with a unique pin multiplexing ratio MuxRi between all the components,

which results in a given area and throughput

Si (MuxRi ) = {Ai , Ti}.

The predictive model is then used to find new configurations that lead to potential

new Pareto-optimal designs. Fig. 4.6(b) highlights these in squares. These are only

predicted optimal configurations. Thus, these configurations are added as new samples

to the model’s training set and are fully synthesized and P&R. The learning model is

in turn re-calibrated based on the results. The process is repeated, by evaluating new

potential dominating designs based on the continuously refined model, adding new

candidates to the samples to be synthesized to continue with the model refinement.

This step continues until no further optimal configurations are found and returns

the final trade-off curve with optimal pin multiplexing configurations for each block pair
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Figure 4.6: Adaptive samples selection filter (ASSF) example

composing the system, i.e.,

PO = {P1(MuxR1) = (A1, T1),

P2(MuxR2) = (A2, T2), ...

Pi (MuxRi ) = (Ai , Ti ), ... }.

4.5 Experimental Results

This section first describes the experimental settings. It then continues presenting

the results of the proposed method as well as comparing it with other methods, and

discussing these results.

4.5.1 Experiment Settings

To fully characterize the proposed method, instead of using a single data-flow engine

as a case study, which would not allow drawing any major conclusions, a multitude of

synthetic systems of different sizes and interconnect complexities are created. These

designs were taken from the open source S2Cbench benchmark suite [101]. Table 4.1

highlights the details of the different designs created, their number of inputs and outputs

and their bit widths. Table 4.2 shows the various synthetic systems generated ranging

from 2 block systems to 3 and 4 blocks directly connected. To further study the stability

of the proposed method, different constraints of maximum fanout in the P&R process
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are used in each complex benchmark, as this constraint can severely impact the overall

delay. Thus, in total 21 different system configurations are created. For example, AES-

KASUMI-10 is a circuit consisting of the AES and KASUMI benchmarks, and the max

fanout constraint is set to 10. The numbering in Table 4.2 indicates the order in which

the different components are connected and the last row shows the total number of

components in the given benchmark.

Table 4.1: Single Benchmarks Details

#Inputs I-bit #Outpus O-bit

AES 33 8 16 8

ADPCM 16 8 4 8

KASUMI 16 8 16 8

SNOW3G 16 8 16 8

Table 4.2: Complex benchmarks formation

Benchmark S1 S2 S3 S4 S5 S6 S7

AES 1 1 1 1

ADPCM 1 3 4

KASUMI 2 2 1 2 2 2 2

SNOW3G 2 1 3 3

Designs 2 2 2 2 3 3 4

To measure the quality of the proposed method, and considering that the result

is a trade-off curve of dominating solutions, this work follows the suggestions of [99]

and uses the Average Distance from Reference Set (ADRS) as the quality measure.

ADRS measures the distances between the actual Pareto-optimal front obtained by the

exhaustive search method, which guarantees that the exact optimal solutions are found

(PFa), and the front obtained by our method (PFm). ADRS is calculated as follows

ADRS(PFa, PFm) =
1
|PFa|

∑
pa∈PFa

( min
pp∈PFm

{dist(pa, pm)}) (4.5)
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where dist(pa, pm) is the distance of each solution between the two fronts.

The value of ADRS is inversely proportional to the degree of similarity between the

two Pareto sets. A high ADRS value indicates that a significant part of the reference

Pareto-front is missing in the approximate Pareto set.

The running time of the different methods is used to measure the effectiveness of

the proposed method quantitatively.

The experiments were run on an Intel Pentium 4 running at the 3.20GHz machine

with 8 GBytes of RAM running Linux SUSE version 3.0.13-0.27. The HLS tool used in

this work is CyberWorkBench v5.5 from NEC [78] and the target HLS frequency set to

100MHz. The target FPGA is a Xilinx XC5VLX330 Virtex 5 FPGA, and the design tool

is ISE v14.3.

To measure the qualitative and quantitative effects of the proposed method, ASSF

is compared against a state-of-the-art method called clustering similarity measurement

method (CSM) [113] and an ES, which guarantees to find the optimal solution, albeit

taking extremely long running times. As mentioned in the previous section, two predic-

tive models are used in our method: linear regression (ASSF-LR) and random forest

(ASSF-RF). Results of both methods are presented.

4.5.2 Results

The experimental results are shown in Table 4.3, where the results of the exhaustive

search are used as the reference. The first two columns indicate the benchmark name

and their maximum fanout constraints. The next three columns present the ADRS

result (qualitative result), and the last four the running time of each method (quantitative

results). The results are split into three parts: 2-block systems, 3-block, and 4-block

systems for easier interpretation of the results.

ADRS

As shown in the table, our proposed method leads to outstanding results, with aver-

age ADRS of 7.4% and 5.8%, 9.0%, and 8.8%, and 13.8% and 6.3% for the linear

regression model and the random forest model for the 2-block, 3-block, and 4-block

systems, respectively. The random forest leads to better results because it is a much
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Table 4.3: Experimental Results (ADRS and Runtime)

Benchmark Fanout
ADRS Running time [s]

ASSF-LR ASSF-RF CSM ASSF-LR ASSF-RF CSM ES

AES-KASUMI
10 0.0 0.0 5.2 16246 19080 16246 22672

100 0.0 0.0 0.0 10407 11724 19626 21072

1000 13.0 8.0 13.0 17088 18399 22332 20976

KASUMI-ADPCM
10 1.6 2.7 1.6 11677 11677 13774 11184

100 3.3 0.0 10.8 8622 12450 9260 10208

1000 5.0 2.2 5.0 8761 11866 13108 9936

KASUMI-SNOW3G
10 10.6 4.7 10.7 8088 9336 9648 4992

100 9.8 6.4 32.2 9688 11692 14364 10688

1000 19.9 19.9 19.9 9702 9029 13067 10768

SNOW3G-KASUMI
10 6.0 6.0 6.0 16880 14370 19390 20080

100 0.0 0.0 0.0 11425 14872 16021 18384

1000 19.1 19.1 19.1 12576 14880 16032 18432

2-Block average Avg 7.4 5.8 10.3

Geomean 11,763 13,281 15,239 14,949

AES-KASUMI-ADPCM
10 9.4 6.4 9.6 43920 62290 53105 470272

100 8.3 8.8 6.0 25888 53888 104638 448000

1000 5.6 5.7 69.4 42958 51988 124228 462336

AES-KASUMI-SNOW3G
10 3.6 2.8 5.1 41380 47122 72004 489984

100 15.7 16.6 25.7 33904 41160 91952 464384

1000 11.3 12.5 17.0 53802 66444 117012 462336

3-Block average Avg 9.0 8.8 22.1

Geomean 40,309 53,815 93,823 466,219

AES-KASUMI-SNOW3G-ADPCM
10 26.2 10.4 15.5 84308 120440 199363 NA

100 8.9 3.2 30.9 75024 125040 212536 NA

1000 6.4 5.3 36.2 77558 134235 173014 NA

4-Block average Avg 13.8 6.3 27.5

Geomean 78,963 126,571 194,971 NA

Total Average 8.7 6.7 16.1

Total Geomean 21,378 25,260 35,771 61,489

more complex model. Regardless, a simple multi-predictor linear regression model

also leads to good results, and as shown in the runtime comparison it is faster than

the random forest. In comparison with the CSM method, our proposed method is for

2-block systems 28% and 44% better, for the three-block systems on average 59% and

69% better, and finally for the four block system 50% and 77% for the linear regression

and random forest models, respectively.

Running Time

To measure the effectiveness of the proposed method, we measure the running time

required to find the trade-off curve. For 2-block circuits, ASSF-LR is on average 35.6%
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and 15.9% faster than CSM and ASSF-RF.

Compared with ES, ASSF-LR and ASSF-RF are 35.2% and 16.6% faster. Although

not much faster than the ES, it can be observed that the improvement in runtime is more

significant for 3-block than 2-block benchmarks, which indicates that our method has a

high initial overhead due to the pre-characterization process of individual components,

but scales well. On average, ASSF-LR is 157.7% and 47.8% faster than CSM and

ASSF-RF. The ES could not find a solution within five days for the 4-component system.

To compute the geometric mean, and compare all the methods fairly, a five-day runtime

is given for the ES in those cases that it could not finish within the maximum time frame

allowed (5 days). This further highlights the complexity of the problem to be solved.
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Figure 4.7: Comparison of the three methods

Finally, Fig. 4.7 gives a quick overview of the ADRS and runtime of the proposed

method compared to the CSM method on a single graph, where only the averages are

shown. This graph indicates that our method is superior to the CSM method in both

dimensions, while a clear runtime vs. quality of results can be observed between the

linear regression and the random forest predictive method versions.

4.6 Summary

FPGAs play a major role in the semiconductor world, especially due to their reconfig-

urability. However, this flexibility comes at a cost: in particular, larger area, higher power
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consumption, and longer critical path delay compared to dedicated solutions. This work

addresses this last issue, but considering the impact of the interconnect on the area

and throughput of complex systems, composed of multiple directly connected parts.

These system configurations, also called data-flow engines or stream computing are

extremely popular in FPGA design. This work has proposed a learning-based method

to find the Pareto-optimal system configurations with unique area and throughput by

controlling the pin multiplexing ratio between the different components of a data-flow

engine. Experimental results show that the method is fast and accurate compared to

other reference methods.



71

Chapter 5

Design Space Exploration Prediction from ASIC to FPGA

FPGA and ASIC are the two major design platforms of modern VLSI systems. FPGAs

are favored when flexibility and quick time-to-market are the two dominant concerns.

ASICs are preferred for mass production, or when the goals are low unit cost, low

power consumption, and fast speed. In practice, however, designs are often converted

from one platform to another. In terms of the conversion from FPGA to ASIC, a typical

situation would be that a functional block initially targeting FPGAs may be later con-

verted to ASICs for mass production. In terms of ASIC to FPGA conversion, there are

two common cases. The first case is FPGA-based verification in ASIC design flows

such as prototyping and emulation. The second case is the migration of ASIC designs

onto FPGA platforms. This chapter discusses the conversion from ASIC to FPGA. In

particular, it analyzes the issues of the conversion and introduces an efficient predictive

approach to facilitate the conversion.

5.1 Introduction

The move to heterogeneous computing systems based around complex hardware ac-

celerators, combined with shorter and shorter required TAT has led many VLSI design

companies to embrace HLS finally. Raising the level of abstraction from the RT-level to

the behavioral level has multiple advantages. One of the most important ones is the

ability to quickly re-target a circuit from one technology to another. This could be from

one ASIC technology node to another ASIC technology, from one FPGA to another
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FPGA with the same or different underlying structure (e.g. LUT size and number, and

types of hard macros) or from ASIC to FPGA [110, 97, 100]. This work mainly deals

with this latter one.

Note that the RTL codes designed for FPGA and ASIC platforms are usually dif-

ferent, since designers have to explicitly instantiate the existing IPs which are built for

different platforms, and the design team also has to manually change the coding style

to meet the design constraints such as timing constraint on different platforms. This

situation can be simplified in HLS. The source code is written in a higher language

like C or C++, thus without any platform-dependent information. The HLS tools take

as inputs the source code, the targeting clock frequency, and the platform-specific li-

braries, then transfer them to the RTL code that is specific to the targeting platform.

The most important advantage of this transition is that it requires no manual modifica-

tion of the source code. Thus it is fast and less error-prone. Another important feature

of designing in higher language is that the synthesis process can be re-tuned for the

target technology by inserting a set of different synthesis directives in the form of prag-

mas. These pragmas typically allow to control how to synthesize arrays (i.e. registers

or RAM), loops (i.e. unroll all, partially unroll or pipeline) and functions (i.e. inline or

not) and thus, based on the target technology, can re-optimize the micro-architecture

quickly, without the need to modify (re-write) the behavioral description.

This work makes use of this capability to quickly, without the need of any synthesis,

find the Pareto-optimal designs for a behavioral description when an FPGA is targeted,

given the previous results of an ASIC HLS design space exploration. In summary, the

main contributions of this work are:

• Investigate if the synthesis directives that lead to Pareto-optimal designs when an

ASIC is targeted also lead to Pareto-optimal designs when an FPGA is targeted.

• Introduce a predictive model-based approach to quickly, without the need for re-

exploration, find the Pareto-optimal designs for an FPGA, given the exploration

results for an ASIC.

• Present extensive experimental results that prove the effectiveness of our pro-

posed method.
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5.2 Motivational Example

This section presents a motivational example for this work and answers the first ques-

tion of the contribution list. Fig. 5.1(a) shows the HLS DSE result of a five-stage decima-

tion filter when an ASIC is targeted, generated using a multi-objective genetic algorithm

(MO-GA), which has shown to work very well for these types of multi-objective opti-

mization problems [31]. To search the design space, synthesis directives in the form of

pragmas are used to generate micro-architectures with different area vs. performance

trade-offs. Fig. 5.1(a) shows all the micro-architectures explored and highlights the

most important ones, the Pareto-optimal designs that form the dominating trade-off

curve. Out of all the generated designs, these are the most important ones.
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Figure 5.1: Design space exploration result of a five stage decimation filter, (a) DSE
results for ASIC, (b) DSE result for FPGA highlighting Pareto-optimal designs obtained
from FPGA synthesis and trade-off curve when Pareto-optimal designs from ASIC
explorations are used.

Intuitively, one would think that when re-synthesizing (HLS) the same combination

of synthesis directives that lead to the Pareto-optimal designs in the ASIC case, this

would also lead to the Pareto-optimal designs when an FPGA is targeted. Fig. 5.1(b)

shows that this is not the case. This figure shows that only one combination leads to

a Pareto-optimal design in the ASIC and FPGA case. For the rest of the cases, other

sets of synthesis options lead to better results. This observation has been consistently
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seen across all of the behavioral benchmarks, from different domains (e.g. DSP and

encryption), used in this work.

This observation is important because modern FPGAs embrace cutting-edge tech-

nology nodes like 16nm from Xilinx [34] and 10nm from Intel [81], and they are also

big enough to hold complex systems on a single FPGA. According to [6] posted on

Synopsys website in 2015, a LUT of Xilinx FPGAs equals the size of six 2-input NAND

gates. So an UtraScale FPGA which contains 4400K logic cells is equivalent to 26.4

million gates. Besides, this type of FPGA often has built-in processors and memo-

ries, where a complete SoC can be fit and shipped to customers. Given this situation,

some companies will prefer FPGAs to achieve fast implementation and to meet the

time-to-market requirement, especially when they possess behavioral IPs which initially

targeting ASICs.

Another situation is that currently most complex ASIC designs are prototyped or

emulated on FPGAs. Fig. 5.2 shows an overview of a typical SoC flow and highlights

how the use of emulation and prototyping significantly reduces the TAT as the embed-

ded software can now be thoroughly tested before the actual SoC has been taped

out. Logic simulation is too slow to allow for HW/SW co-simulation as logic simula-

tors achieve simulation speeds in the order of kHz, while FPGA prototypes have been

shown to work in the order of lower MHz ranges [28]. In the emulation and prototyp-

ing case, it is therefore important to re-tune the FPGA to enable and accelerate the

verification process. So far this has been addressed by completely re-exploring the

behavioral descriptions for the target emulation/prototype FPGA to obtain optimized

designs for the FPGA, which for complex designs can easily take multiple days.

Based on the above situations, we can define the goal of this work as:

Problem Definition: Given a behavioral description (D) and its exploration results

targeting an ASIC, DA = {DA
1 , DA

2 , ... , DA
n }, which include the Pareto-optimal designs

DA
opt = {DA

1,opt , DA
2,opt , ... , DA

m,opt},

where DA
opt ⊂ DA and with each design (DA

i ) generated from a unique set of synthesis

directives that we call attributes, DA
i = {attr1, attr2, ... , attrp}, generate a predictive
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(a) ASIC design flow without FPGA-based verification

(b) ASIC design flow with FPGA-based verification

Figure 5.2: Complete SoC development flow overview (a) without FPGA (b) with FPGA
emulation/prototyping.

model (PM) that takes as input the results from the ASIC HLS DSE (DA) and quickly,

without the need to perform a HLS DSE targeting a FPGA, returns the Pareto optimal

trade-off curve for a FPGA (DF
opt ), where DF

opt = PM(DA).

5.3 Related Work

Predictive model based DSE has been widely studied in two related domains, namely

processors design and HLS, mainly because they share some common features. (i)

The search space is huge (number of parameters to be explored). (ii) Each parameter or

combination of parameters affect the results differently. (iii) There are several conflicting

objectives that have to be balanced.

In the domain of processors design, Dubach [30] proposed an architecture-centric

approach for DSE. The method uses a pre-trained (off-line) model to predict the per-

formance of the rest unseen benchmarks. The model is a linear combination of five

program-specific predictors which are trained using an Artificial Neural Network. In [60],

the authors, leveraged the technique of transfer knowledge to predict the optimal config-

urations of the unseen benchmarks with a minimal number of simulations. The authors
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train the prediction model using AdaBoost. Ozisikyilmaz [88] was able to accurately

predict the performance of programs with a large number of design configurations us-

ing machine learning. They randomly sampled 2% to 10% configurations which are

used to train three predict models: 1) linear regression, 2) neural network simple, 3)

neural network complex.

In the domain of HLS, Chen et al. [17] introduced a ranking-based explorer called

ArchRanker. It learns and predicts the rankings of the configurations instead of esti-

mating the exact performance. Meng et al. [70] proposed a machine-learning-based

method for DSE by eliminating non-Pareto configurations rather than searching the

Pareto optimal. The idea is to estimate the risk of losing important points. In [62], the

authors leveraged transductive experimental design to sample the search space and

based on this used random-forest to find the Pareto-optimal designs. However, the

limitations are 1) the design space is restricted to 242 knob settings and 2) only one

benchmark is presented for method evaluation. Zhao et al. [124] introduced COMBA,

a model-based framework to analyze the effects of pragmas on the generated archi-

tectures without actual high level synthesis using Vivado, thus exploring the design

space with on average 100× speed-up compared with traditional approaches. Another

important application of machine learning in HLS is to improve the Quality of Results

(QoR) as the modern HLS tools are less capable of producing an accurate estimation

of hardware resource utilization when targeting FPGAs. Several authors [29, 127, 26]

proposed learning-based methods which take as input the pre-generated results after

implementing on FPGAs, to make predictions of unseen design configurations using

the inaccurate HLS reports, and to help calibrating the expected results. In particular,

[29] utilized an adaptive windowing method to classify which designs need to be synthe-

sized to find the true Pareto-optimal designs, [127] proposed Lin-Analyzer to analyze

the performance of loop intensive applications, and [26] proposed an approach to study

the relative importance among features and applications of different domains so as to

guide the estimator to generate accurate QoR estimations.

The main problem with these methods is that they all require sampling the search

space, which can involve considerable time. Our proposed method is universal and

does not require the re-training of the model. It only requires a re-balancing of model
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weights for each new design, which is extremely fast and does not require any re-

synthesis at all.

5.4 Rapid ASIC HLS DSE To FPGA DSE Translation Method

The initial goal of this work was to find a single universal predictive model that could be

used to estimate the logic resources count (e.g. slices, ALMs, ALUTs) for an unseen

benchmark using the result of the ASIC HLS DSE. Unfortunately, this was not possible,

mainly due to the hard-macros of the FPGAs, which introduce high non-linearity to the

predictive models, thus, leading to sub-optimal results (see experimental results section

for details). A different approach was therefore investigated, based on characterizing a

training set composed of a variety of designs from multiple domains (DT1, DT2, ..., DTn)

and adjusting the predictive model for every new design (Dnew ) to be converted. This

gives our proposed method the flexibility to adjust the predictive model for every new

design, while at the same time does not require any time-consuming training process,

which would involve having to re-synthesize some designs. We call our proposed

method ASIC to FPGA (A2F).

The complete predictive model based translation framework consists of four main

steps, shown in Fig. 5.3. Step 1 performs design points sampling on several behavioral

descriptions targeting both ASIC and FPGA technologies. These behavioral descrip-

tions are considered as the training set from which the predictive models will be derived.

A detailed description of how this exactly works is given in the next subsections. Al-

though this training step takes a long time, it only needs to be executed once for the

target technologies to generate the predictive models. Step 2 continues by generating

predictive models for the ASIC area (AASIC) and the FPGA area (AFPGA) using the train-

ing data generated in step 1. Step 3 continues by using the data generated during a

HLS DSE and the results from step 2, and by generating a predictive model for the area

(AASIC) of a new design targeting an ASIC technology (Dnew ). This is accomplished by

building a weighted-regression model, which leads to a set of weights for each regres-

sion term indicating the importance that each training benchmark has on AASIC of Dnew .

Step 4 finally estimates AFPGA in Slices of Dnew by leveraging the models generated in
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step 2 for AFPGA and the weights in Step 3. Also, the proposed translation framework

also reports the number of DSP macros and Block-RAM used. The next subsections

describe these four steps in detail.
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Figure 5.3: Complete FPGA slices predictive model generation flow.

Step 1: HLS Design Space Exploration (DSE)

This first step samples the entire search space for all the different design technologies

(DT1, DT2), i.e., ASIC and different FPGAs for a set of training benchmarks. This sam-

pling step enables the generation of the predictive model in the latter steps and only

requires to be executed once. One of the main problems in this step is the exponen-

tially growing number of design configurations with each explorable operation (mainly

loops, arrays and functions). To make things worse, each new configuration needs to
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be synthesized (HLS) to retrieve the effect of the synthesis attributes on the area and

performance. This implies that a scalable sample mechanism is needed.

One simple method would be to randomly generate configurations that cover a

given percentage of the entire search space. Although simple, this method might ig-

nore some important combinations that often lead to Pareto-optimal designs. Some

examples include loop unrolling factors that have matching register bank read/write

ports, or matching Data Initiation Intervals (DIIs) with RAM ports. Other more complex

approaches involve the use of Transduction Experimental Designs (TED) that aim at

generating hard to predict settings [122]. The salient idea in TED is to select config-

urations that contribute the most to predictions on unlabeled test data that are given

beforehand.

TED nevertheless also suffers from scalability issues. To address this, the authors

in [62] proposed a randomized TED method, where in each sampling iteration they draw

a random subset sample size, then add previously selected samples and continue

following the same criterion as in the sequential TED algorithm to choose the best

residuals combinations. Thus, in this work, we make use of this approach but enhance

it by judiciously creating the initial seed configurations to combinations that have shown

to lead to good results, but that are difficult to obtain randomly. These configurations

include register and RAM port matching with DII and loop unrolling factors, fully unrolled

loops combinations, loops with same unrolling factors and DIIs to enable loop fusions,

etc... Thus, these configurations are set as initial sampling configurations from which

to the complete search space is sampled.

This sampling is performed on all of the training benchmarks for the target ASIC

and FPGA technologies under consideration. Because the training benchmarks are

independent of one another, this step can be fully parallelized, by running each training

design on separate machines/threats.

One significant difference between the ASIC and the FPGA exploration is the target

HLS frequency. If kept identical, the HLS process might lead to very different micro-

architectures for the ASIC and FPGA technologies when the same set of pragmas

are specified. This is mainly because the delays in the FPGA are larger than that at

the ASIC so that less logic can be scheduled in each HLS control step. Thus a micro-
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architecture with different latency and resources will be generated. This mismatch

of the delays leads to high non-linearities that are virtually impossible to predict and

therefore, based on initial investigations, prevents to create accurate predictive models.

To address this, and to eliminate the delay effect in the HLS process, the target HLS

frequency for the FPGA exploration (fFPGA) has to be adjusted, such that the resultant

circuit has the same latency (in clock cycles) as that of ASIC. For this, a binary search

is performed each time a new chromosome (list of attributes) is generated. Once the

latencies match, our method compares the number of functional units (FUs) in both

versions (ASIC and FPGA). Having the same latency and FUs ensures that the only

differences between the FPGA and ASIC micro-architectures are due to the synthesis

directives and not the HLS target frequency. One additional benefit of this is that we

do not need to predict the latency of the FPGA circuit as it will always match the ASIC

latency (in clock cycles). Although time-consuming, this exploration only requires being

executed once. It should be noted that much previous work has been done in the area of

HLS DSE [62, 14, 124] and that this work does not try to improve on the previous work.

Hence it is out of scope to prove the optimality of the results by comparing our proposed

method with the previous work. In this work, we only require these exploration results

to train our model and hence, could use any of the previously referenced methods for

this purpose.

It should be noted that this work assumes that the ASIC HLS tool is also used for

FPGA HLS. All of the commercial ASIC HLS tools support FPGAs [9, 71, 78] and hence,

this does not pose any restrictions to our approach. One alternative solution would be

to use the ASIC HLS tool for the SoC design and an FPGA HLS tool provided by the

FPGA vendors to prototype the design on the FPGA. Although our proposed method

would also work in this case, this training phase would require using both tools. One

serious drawback with this approach is that HLS tool vendors, especially ASIC HLS

tools, make extensive use of tool dependent hardware extensions, including their own

data types. These constructs are vendor specific and would imply that the behavioral

description would need to be re-written and re-verified for the FPGA HLS tool. Moreover,

only Xilinx has a stable commercial HLS tool [119]. Intel has recently introduced a new

HLS tool [42], but so far the tool does not seem to be competitive enough in terms
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of quality of results. Thus, Intel FPGAs could not be targeted. Finally, HLS tools take

different input languages, e.g. Intel’s HLS tool does not support SystemC, which is

popular in ASIC designs. Based on this, it is more practical for the ASIC designers

to use the same HLS tool, which outputs RTL code which in turn is synthesized and

placed and routed by the FPGA vendors’ tools.
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Figure 5.4: Quality of prediction model (ADRS and Dominance) vs. number of training
designs (DT ) used.

One obvious question is to decide on the number of training benchmarks to be char-

acterized to build a stable model. For this, we iterated through the complete flow (steps

1 to 4) to predict the quality of the ASIC to FPGA area conversion framework by com-

paring the quality of the trade-off curves using a different number of benchmarks. The

quality of the exploration result was measured using the ADRS, which is a widely used

metric to compare multi-objective optimization problems like this one. ADRS indicates

the average distance between the reference Pareto-front and the approximate Pareto-

set i.e., tells how close a Pareto front is to the reference front, where the reference

front is obtained from the actual HLS DSE for the targeted FPGA (FPGA synthesis is

performed). In particular, given a reference Pareto-front Γ and an approximate Pareto

set Ω, ADRS is computed as shown in (5.1),

ADRS(Γ,Ω) =
1
|Γ|

∑
γ∈Γ

min
ω∈Ω

f (γ,ω) (5.1)
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where f computes the Euclidean distance between γ and ω. Another measuring metric

is Dominance, which indicates the ratio of the number of correctly predicted Pareto

optimal designs to the total number of the exact Pareto set.

From Fig. 5.4 it can be observed that after 11 test cases used to create the predic-

tive model, the ADRS and dominance do not improve anymore. These results were

consistently observed across multiple designs. Thus, it was decided to use 11 bench-

marks from different domains, from the freely available SystemC S2CBench bench-

marks suite [101] as training data for our proposed framework.

Step 2: ASIC and FPGA Predictive Model Generation

This second step takes as input the HLS DSE results obtained in step 1 and creates

predictive models (PM) for the ASIC area and the FPGA area for each of the training

designs used. For example, assumed there are three training benchmarks (DT1, DT2,

DT3) and a new unseen design (Dnew ) for which we want to estimate the logic resources

count (slices, ALM or LABs depending on the target FPGA). The data representing the

ASIC HLS DSE result for DT1 is denoted as DT A
1 and DT F

1 for the FPGA DSE. Based

on this notation, Table 5.1 shows the results after step 1. The goal is to estimate DF
new

(FPGA logic resources) as accurate as possible. For this purpose, a predictive model

PM for AASIC for every training benchmark is first built. Taking DT1 as an example, the

training process takes as input DT A
1 , and create the model PMA

1 as shown in (5.2).

Training(DT A
1 )⇒ PMA

1 (5.2)

The generated predictive models (for ASIC area and FPGA area) are both based on

linear regression. For any predictive model, the selection of the predictors is significant

to the training process. In this work, the HLS tool reports the area for the different family

of components for each design, e.g., the area of multiplexers, decoders and functional

units. The predictors with the highest impact on the model accuracy are finally used,

which are reported by the predictive model generator [94]. Thus, PMA
1 and PMF

1 are

two predictive model generated using DT A
1 , and DT F

1 (HLS DSE results targeting ASIC

and FPGA). The corresponding models for DT2 and DT3 are obtained by performing

the above operations for the other two test cases. Therefore, the outputs of this step
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are: PMA
i and PMF

i , where i ∈ {1, 2, 3}.

Table 5.1: Example with three training designs of ASIC and FPGA model generation.

Benchmark DT1 DT2 DT3 Dnew

ASIC DT A
1 DT A

2 DT A
3 DA

new

FPGA DT F
1 DT F

2 DT F
3

Step 3: Training Set Weight Estimation

Step 3 takes as input the HLS DSE for a new design (Dnew ) targeting only an ASIC and

for which we want to obtain the FPGA Pareto-optimal designs. It also takes as input

the predictive model for the ASIC area obtained in step 2. The output of this step is

a new linear regression predictive model for the ASIC area of the new design, such

that the regression coefficients of this new model indicate the weight that each training

design has on the current design. We call the new model Weighted-Regression, which

is denoted as WR. In the case of the 3 test designs introduced previously, this leads to

the model shown in (5.3), where PMA
1 (DA

new ) is the predictions using PMA
1 as the model

and DA
new as the input data.

WR(PMA
1 (DA

new ), PMA
2 (DA

new ), PMA
3 (DA

new ))⇒ DA
new (5.3)

The coefficients of WR indicate the weight that each training design has on the new

design. It was observed that the higher the similarity between the designs is, the larger

the coefficient is, e.g. if both designs make heavy use of hard-macros.

Step 4: FPGA Area Prediction

This last step estimates the Slices count of Dnew , for which only the ASIC HLS DSE

results are available, by using the FPGA predictive models (PMF
i ) from step 2 and the

weighting regression model WR created in step 3. This operation is shown in (5.4),

where DF
new is the predicted values of the FPGA DSE results for the new design.

DF
new = WR(PMF

1 (DA
new ), PMF

2 (DA
new ), PMF

3 (DA
new )) (5.4)
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Using this predictive model, our proposed framework evaluates the effect of the

different synthesis attributes on the FPGA area given in logic resources, which could

be slices, ALM or LABs, depending on the logic source used when the predictive model

is created and as mentioned before retrieves the latency (L) (in clock cycles) directly

from the ASIC synthesis results. Thus, the Pareto-optimal configurations with unique

Logic resources vs. Latency are quickly obtained. This work can make use of previous

work, fully orthogonal to this one, to estimate the delay, based on the results obtained,

and hence, the maximum frequency [26]. This would allow our method to plot logic

resources vs. throughput (T ), where throughput is given as T = fmax/L.

5.5 Experimental Results

To prove the effectiveness of the proposed framework, seven benchmarks from the

open source Synthesizable SystemC benchmark suite S2CBench v.2.2 [101] are taken.

The training set benchmarks are also taken from this benchmark suite but are different.

The HLS tool used is CyberWorkBench from NEC [78]. The target ASIC technology

is Nangate 45nm, and the target FPGAs are Xilinx Virtex 5 and 7. Two Virtex FPGA

families with different underlying architectures are targeted to study the robustness

of our proposed method. The Virtex 5 family is based on a 6-input/1-output or dual

5-input/2-output configurations, while the Virtex 7 family is based on 6-input LUTs.

Scikit [94] is used to create predictive models.

We could not find any published method(s) to compare our approach against.

Hence, to measure the quality of the results, two other methods were implemented.

The first is called Direct Method from ASIC (DM), which basically considers the Pareto-

optimal designs obtained from the ASIC HLS DSE and directly assumes that these

configurations are also the Pareto-optimal designs for the FPGA. The second method

(LR), is based on creating a single, static fixed linear regression model to estimate the

logic resources of the FPGA based on the training benchmarks.

To improve the accuracy, the area of the multipliers are directly set to zero, as

they will be mapped to DSP macro. The area of the adders in LUT is set to # adders

× bit-width, as each full adder typically occupies one LUT. Finally, we also execute
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a full FPGA HLS DSE for the target benchmarks (Synth) to get accurate results for

verification.

Fig. 5.5 shows graphically the trade-off curves obtained for each of the four methods.

It can be seen that our proposed method leads to better results when compared to

the other two methods. Table 5.2 and 5.3 report these differences quantitatively using

ADRS and Pareto dominance for the two FPGA families (Virtex 5 and Virtex 7) as

described in the previous section.
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Figure 5.5: The trade-off curves of the methods for seven benchmarks when Virtex 5
and Virtex 7 FPGAs are targeted

These two quality indexes are used to better understand the quality of the proposed
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method. A high ADRS value implies that the method is missing completely a portion of

the reference curve, while a low Pareto dominance indicates that the designs found by

the method do not lay on the actual Pareto-optimal trade-off curve.

From Table 5.2 and 5.3 it can be observed that our proposed method outperforms

the other two methods in both quality metrics. Note that, in the two tables, the values

for qsort in the last column are INF, because the dominance obtained by LR is 0

for both Virtex 5 and 7 cases. In terms of ADRS, our proposed method (Proposed)

is on average 90.65% and 96.08% smaller than DM and LR and regarding Pareto

dominance, on average 107.89% and 145.76% larger for the Virtex 5 case. For the

Virtex 7 case, the results are consistent. Our proposed method produces on average

97.65% and 98.26% smaller ADRS and on average 163.67% and 165.84% larger

Pareto dominance. For some benchmarks, the improvement is 100% which means the

proposed method can find the exact entire set of Pareto optimal designs.

Table 5.2: Comparison of Methods using ADRS and Dominance for Virtex 5

Values Improvement

ADRS [%] Dominance ∆ ADRS [%] ∆ Dominance [%]

Proposed DM LR Proposed DM LR
Proposed

vs DM
Proposed

vs LR
Proposed

vs DM
Proposed

vs LR

aes_cipher 0.29 9.74 9.93 0.89 0.44 0.33 97.02 97.08 102.27 169.70
average 0.00 13.21 2.34 1.00 0.33 0.67 100.00 100.00 203.03 49.25
decimation 0.02 10.40 5.06 0.92 0.31 0.38 99.81 99.60 196.77 142.11
fir 0.00 24.23 31.87 1.00 0.50 0.25 100.00 100.00 100.00 300.00
kasumi 4.88 8.71 85.89 0.69 0.31 0.23 43.97 94.32 122.58 200.00
qsort 0.03 2.97 16.23 0.80 0.40 0.00 98.99 99.82 100.00 INF
snow3g 2.87 17.23 55.07 0.50 0.50 0.50 83.34 94.79 0.00 0.00

Avg 1.16 12.36 29.48 0.83 0.40 0.34 90.65 96.08 107.89 145.76

Table 5.3: Comparison of Methods using ADRS and Dominance for Virtex 7

Values Improvement

ADRS [%] Dominance ∆ ADRS [%] ∆ Dominance [%]

Proposed DM LR Proposed DM LR
Proposed

vs DM
Proposed

vs LR
Proposed

vs DM
Proposed

vs LR

aes_cipher 0.01 13.99 2.61 0.89 0.22 0.44 99.93 99.62 304.55 102.27
average 0.00 30.10 9.93 1.00 0.33 0.67 100.00 100.00 203.03 49.25
decimation 0.00 13.57 6.04 1.00 0.21 0.36 100.00 100.00 376.19 177.78
fir 0.00 41.94 50.60 1.00 0.50 0.25 100.00 100.00 100.00 300.00
kasumi 3.03 8.37 39.27 0.57 0.36 0.21 63.80 92.28 58.33 171.43
qsort 0.00 5.54 13.88 1.00 0.33 0.00 100.00 100.00 203.03 INF
snow3g 0.00 16.10 52.40 1.00 0.50 0.50 100.00 100.00 100.00 100.00

Avg 0.43 18.52 24.96 0.92 0.35 0.35 97.65 98.26 163.67 165.84

These results indicate that the proposed method works well and that it leads to
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better results than the other two predictive methods. The additional advantage of our

proposed method is that it does not require any new training phase for each new design

to be converted, and thus, is very fast. The model generation phase takes less than

1 second, while the actual re-exploration of the design, takes on average less than 1-

minute making use of the new predictive method. In contrast, the average running time

of the GA-based HLS DSE, having to fully re-synthesize each new design configuration

targeting the desired FPGA is 7.7 hours. This exploration running time is a function of

the complexity of the benchmark, e.g. the longest HLS DSE took 12 hours.

In summary, we can conclude that our proposed method is effective in automatically

converting HLS DSE results obtained for ASICs to FPGA.

5.6 Conclusion

In this work, we have introduced a fast predictive model-based method to quickly

convert the HLS design space exploration results obtained for an ASIC to those of

an FPGA, and thus, to find the synthesis directives in the FPGA case that lead to

the Pareto-optimal designs. We have also shown that the synthesis directives that

lead to Pareto-optimal micro-architectures when an ASIC is targeted do not lead to

Pareto-optimal designs for the FPGA case. This implies that a completely new design

space exploration is needed. Thus, a method to quickly find the Pareto-optimal designs

for FPGAs is important to facilitate and accelerate the prototyping and emulation of

ASICs.
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Chapter 6

Re-optimize Complex Dataflow from ASIC to FPGA

This chapter introduces an automatic stream computing re-optimization flow from

ASICs to FPGAs. Complex VLSI designs need to be prototyped and/or emulated on

FPGAs. Also chances are that designs initially targeting ASIC might port to FPGA plat-

forms. These situations involve the conversion from ASIC to FPGA. The main problem

that we address in this work is that architecture configurations targeting ASICs are

often, as we will show in this work, highly un-optimal when mapped onto an FPGA.

Thus, this work proposed a method to first generate a variety of dataflow configurations

(a set of synthesis directives) targeting an ASIC given multiple behavioral descriptions

for HLS and then based on a compositional predictive model automatically re-optimize

the data flow when mapped onto an FPGA. Meanwhile, the predictive model utilizes

the conversion approach discussed in chapter 5. Experimental results show that our

proposed method works well.

6.1 Introduction

Complex SoCs include multiple embedded processors, memories, interfaces and nu-

merous dedicated hardware accelerators, all interconnected through a shared bus, bus

hierarchy or Network on Chip (NoC). These heterogeneous SoCs are required to be

taped out at increasingly shorter time frames. These shorter TAT combined with the

increased complexity of these SoCs have forced VLSI design companies to prototype

and/or emulate these systems before the SoC is taped out. This helps reducing de-
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sign faults avoiding costly and time-consuming re-spins, and also allows to engage the

embedded software development team early on, before the silicon is ready.

The increasing speed and capacity makes the modern FPGAs not only as a good

platform for verification, but also as competitive final products. Nurvitadhi [86, 85] at

Intel implemented neural networks on FPGA, CPU, GPU, and ASIC, and compared

their performances. FPGA outperforms both CPU and GPU, but it is not as efficient as

ASIC. However, FPGA is a decent alternative if NRE cost could not be amortized by

the mass production. In this case, the designs initially targeting ASICs would be ported

to FPGAs.

Both prototyping/emulation and platform porting involve the conversion from ASIC

to FPGA. In the verification case, designers intend to verify the functionality imple-

mented in the same micro-architecture on ASIC and FPGA. This involves the manual

modification of the RTL code since ASIC and FPGA differ from the basic elements

and the IP libraries. In high-level synthesis (HLS), the designs are described using

high-level languages like C/C++, thus no platform-dependent information is included.

After HLS, latency (clock cycles) is one of the metrics that could prove the equiva-

lence between ASIC and FPGA. Because when allocation (functional units type and

count decision) and scheduling (functional units placement) are consistent, the result-

ing micro-architecture (the main datapath) would not change, thus the latency would

be maintained. In the case of platform porting as products, the goal is to implement the

same functionality on FPGAs while meeting the constraints such as area, latency, and

power. Initially, a design space exploration targeting ASIC is performed to figure out

the interesting design points. However, the optimal design points on ASIC would not

directly leading to the ones on FPGA, which will be discussed in the motivation section.

Therefore, a DSE targeting FPGA is required to figure out the new interesting design

points.

One of the differentiation factors between different SoC vendors are the dedicated

hardware accelerators. These dedicated hardware accelerators execute a fixed func-

tion one to two orders of magnitude faster than general purpose solutions, while being

also much more energy efficient [18]. One example includes Apple’s A11 Application

processor, which includes a dedicated image processing unit and the neural network
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accelerator (Neural Engine). To benefit from hardware acceleration, these functions

need two main attributes: First, they should have large amounts of parallelism. Second,

it should be processed using short word-length arithmetic. Some applications include

neural networks, DSP applications, and multi-media application [67]. Very often, these

applications are configured following the stream-computing paradigm, also called data-

flow computing, where each module is connected to the next one and data is pipelined

through all the modules in the data-flow. This leads to additional speed-ups as pipelin-

ing is a well known parallelization technique while reducing costly external memory

accesses [41].

In order to further reduce the TAT, VLSI design companies have started raising the

level of VLSI design abstraction by using HLS. Raising the level of abstraction from RT-

level to the behavioral level has multiple advantages. One of the most important ones

is the ability to quickly re-target a circuit from one technology to another, such as from

ASIC to FPGA. One of the main enablers for this is that the synthesis process can be

re-tuned for the target technology by inserting a set of different synthesis directives in

the form of pragmas. These pragmas typically allow to control how to synthesize arrays

(i.e. registers or RAM), loops (i.e. unroll all, partially unroll or pipeline) and functions

(i.e. inline or not) and thus, based on the target technology, can re-optimize the micro-

architecture quickly, without the need to modify (re-write) the behavioral description.

This work makes use of this capability to quickly, without the need of any synthesis,

find the Pareto-optimal dataflow configurations with unique area vs. performance trade-

offs when an FPGA is targeted, given the previous result of a dataflow optimized for

ASIC. In summary, the main contributions of this work are:

• Propose a method to optimize data flow hardware accelerators specified as N

behavioral descriptions.

• Introduce a method to re-optimize a data flow optimized for ASICs to FPGAs.

• Present extensive experimental results to validate the proposed method.
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6.2 Motivational Example

This section presents an example to illustrate the importance of our contributions in this

work. To re-target the design from ASIC to FPGA for emulation, the most straightfor-

ward approach is to perform a multi-objective heuristic method (e.g., genetic algorithm)

on the entire data-flow system targeting FPGA platforms. Performing the heuristic ap-

proach gives a set of Pareto optimal configurations regarding the design objectives

such as Area and Latency. However, two major issues make the approach impractical:

1. HLS is a single-process synthesis method, which means it cannot accept multiple

modules and transform them into a connected top module.

2. Even by connecting multiple modules manually, the running time of logic synthe-

sis and Place & Route is large as the data-flow system grows. Meanwhile, the

design space grows exponentially while increasing the number of modules.

Therefore, alternative methods are necessary.

There are three methods, and their work flows are differed by using three types of

lines. Referring to Fig. 6.2, every block is identified by the number at the top left corner.

The first method is represented by the dotted line, it is similar to the above approach,

except that it performs the heuristic on individual modules and utilizes a compositional

approach to obtain the final Pareto optimal configurations. This workaround avoid the

need of synthesizing multi-process modules and shrink the exploration space as well.

This is the baseline in this work. The second method is indicated by the dashed line,

it assumes that the Pareto optimal designs on ASIC will lead to the Pareto optimal

designs on FPGA. Fig 6.1 shows that the assumption is not true. Only a small portion

or none of configurations lead to Pareto optimal on both ASIC and FPGA platforms. For

the rest of the cases, other configurations lead to better results which are missed by

the method. This observation has appeared consistently across all benchmarks used

in this work.

It is important to minimize the mismatches since current complex ASIC designs are

prototyped or emulated on FPGA for verification. For prototyping, the engineers are

trying to keep the micro-architecture identical on both platforms, because they have
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Figure 6.1: Motivation: the mismatch of the naive method

to guarantee that the designs they are verifying will be the same as those that will be

taped out. However, for the case of emulation or hardware-assisted simulation, the goal

is to accelerate the emulation process as much as possible. Therefore, it is possible to

adjust the circuit mapped on FPGA to find the most optimal micro-architecture to further

accelerate the verification process. In this case, the main problem would be having to

completely re-explore the behavioral descriptions for the target FPGA, which happens

in the situation of platform porting as well, and this process, for complex designs, can

easily take multiple days. To deal with this issue, we define the objective of this work

as the following.

Problem Definition: Given a dataflow system consist of n behavioral descriptions (D =

{D1, D2, ... , Dn}) and their exploration results targeting an ASIC, DA = {DA
1 , DA

2 , ... , DA
n },

generate a predictive model (PM) and a compositional method (Compo) to obtain,

without the need to perform any FPGA synthesis, the Pareto optimal trade-off curve for

the dataflow system (DF
opt ), where DF

opt = Compo(PM(DA)).

6.3 Previous Work

Data-flow (streaming) computing has been extensively studied for its importance in

multiple application domains such as images and videos processing, and signal pro-

cessing. This technology utilizes the parallelism of underlying platforms (CPUs, GPUs,
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and FPGAs) to improve the performance of streaming applications. Normally, three

objectives are widely investigated: area, latency/throughput, and power.

For CPUs, [57] speeds up the stream programs by maximizing the pipeline stages

on multi-core platforms. [104] reduces the overall energy consumption of streaming

applications on the multicore (StrongARM processor) systems using both off-line and

on-line Dynamic Voltage and Frequency Scaling (DVFS). [36] introduces a stream

compiler to exploit the parallelism in the level of task, data, and pipeline on multicore

platforms, so as to accelerate the stream programs. On GPU-based platforms, by

leveraging the large array of parallel processing units, [48, 47] proposes a framework

for mapping stream programs onto multi-GPU platforms under shared memory con-

straints, so that the speedup is maximized. [83] presents the heuristic partitioning and

ILP mapping algorithms to optimize the performance of streaming applications in the

systems of up to 4 GPUs. For stream programs mapped on FPGAs, [22] utilizes DSE

as actor selection combined with actor replication to meet the throughput requirement

while trying to minimize the area. [23] proposes an approach to further balance the

occupied hardware resources and throughput of streaming applications when mapped

onto an FPGA. This approach is able to figure out the profiles of actor implementation

& replication, buffer size for communications, and pipeline scheduling. [39] proposes a

stream folding algorithm which first replicates filters and then reduce the unnecessary

replicas in order to optimize the throughput under the constraints of area and latency.

[44] introduces the Optimus compiler which maps the streaming applications on FP-

GAs in an efficient way. [45] optimizes the energy of stream computing on FPGAs

using power gating given that the stream program executes in a repetitive way. [115]

implements the streaming applications on CPU-FPGA heterogeneous systems and

improves the throughput by balancing the workload on CPUs and FPGAs so that the

efficiency on each platform is maximized.

These works mainly focus on stream programs given in synchronous data flow

graph (SDFG) [59], and the strategies can be grouped into three categories: 1) work-

load balance/actor selection, 2) communication overhead minimization (latency match-

ing), and 3) pipeline stages maximization.

Other researches have been focused on the cross-platform performance predic-
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tion. O’Neal [87] proposes HALWPE to predict the performance, using cycle accurate

simulation, of future devices, particularly the GPUs from one generation to the next gen-

eration. Zheng [126] introduces LACross which predicts the performance and power

on ARM-based platforms given the existing performance data on Intel and AMD based

platforms. A part of this work shares the idea that the model learns the relation between

different platforms but using different strategy.

In this work, the data-flow applications are given as multiple modules (actors) con-

nected sequentially, and each module has been explored in terms of the design space

for ASICs. We propose a method to 1) predict the DSE results on FPGAs using ma-

chine learning techniques, which is equal to actor selection, 2) fine-tune the inter-

module connections to minimize and match the communication latencies, and 3) fix

the clock frequency of the modules and ensure the data-flow computing executes in a

repetitive way so that the pipeline stages are maximized.

6.4 Proposed ASIC to FPGA Optimization Flow

Fig. 6.2 shows an overview of the complete flow which is composed of 3 main phases.

Note that the other two comparative approaches are also presented in this figure,

because the three methods share some common steps. The input to our flow is a list

of n synthesizable (HLS) behavioral descriptions C = {C1, C2, ... , Cn} and the outputs

are two trade-off curves of Pareto-optimal dataflow configurations – one targeting the

ASIC technology where the SoC will be taped out and another targeting the FPGA

where the dataflow will be emulated or prototyped. The first phase pre-characterizes

each behavioral description (Ci ) performing a HLS Design Space Exploration (DSE)

on it. This leads to a set of unique micro-architectures for each description with unique

area (A) vs. latency (L) trade-offs, thus, Ci = {D1(A, L), D2(A, L), ... , Dpi (A, L)}, where

pi is the number of Pareto optimal designs of Ci .

The proposed flow is represented by the solid arrows, and the method includes

seven steps (1, 2, 3, 5, 8, 11, 7, 10). The next subsections describe the four phases in

detail.



96

Phase 1

Phase 2

Phase 3

3

11

Latency [clk cycles]

S
lic

es
/A

re
a

[µ
m

2 ]

M2

Design space
Pareto frontier

Latency [clk cycles]

S
lic

es
/A

re
a

[µ
m

2 ]

M1

Design space
Pareto frontier

· · ·
Latency [clk cycles]

S
lic

es
/A

re
a

[µ
m

2 ]

Mn

Design space
Pareto frontier

Individual pre-
characterization

DSE target-
ing ASIC

2

M1, M2, · · · , Mn

1

Latency [clk cycles]

S
lic

es
/A

re
a

[µ
m

2 ]

Mn

Design space
Pareto frontier

· · ·
Latency [clk cycles]

S
lic

es
/A

re
a

[µ
m

2 ]

M2

Design space
Pareto frontier

Latency [clk cycles]

S
lic

es
/A

re
a

[µ
m

2 ]

M1

Design space
Pareto frontier

Predictive
ASIC to FPGA

translation

5

Weights generation
and FPGA area pre-
diction for modules

8

Individual DSE
targeting FPGA

4

Compositional
method to

generate Pareto-
optimal data-
flow systems

7

Latency [clk cycles]

S
lic

es
/A

re
a

[µ
m

2 ]

Data-flow FPGA
ASIC

Prediction
FPGA

10

Latency [clk cycles]

S
lic

es
/A

re
a

[µ
m

2 ]

Data-flow ASIC
Design space
Pareto frontier

6

Pareto frontier
synthesis

targeting FPGA

9

Figure 6.2: Complete dataflow system generation method overview.

6.4.1 Phase 1: Individual Micro-architectural Design Space Exploration

(Steps 1, 2, 3)

This first phase pre-characterizes each behavioral description composing the dataflow

individual by creating a set of Pareto-optimal micro-architectures. HLS is a single

process synthesis method and hence can only synthesize each description separately

generating a hardware module for that description, which in turn is stitched to the next

module either directly or through standard interfaces, e.g. AHB, AXI buses or FIFOs

for which commercial HLS tool vendors provide synthesizable APIs.

A brief description is given of the exploration method based on a genetic algorithm

meta-heuristic as this is not part of the main contribution of this work. Much work in the

area of single process micro-architecture DSE has been done and it is out of scope

of this work to proof the optimality of the results [62, 66, 121]. In this work we make

use of a genetic algorithm search that has shown to produce very good results in a

reasonable time, as the extremely large search space makes exhaustive searches
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unfeasible [33].

Each explorable operation, EOP, is represented as a gene to which a synthesis

directive is assigned, and the list of all genes builds a chromosome CM. Therefore

a gene, EOP is equivalent to a CM . In this work EOP = {arrays, loops, func, pins},

where arrays = {register , expand , logic, RAM, ROM}, loops = {no, partial , all , folding}

and func = {goto, inline}. Pins represent the number of pins assigned to either inputs

or outputs and have to be time-multiplexed, pins = {input , output}.

The first step of the genetic algorithm is the random generation of an initial popula-

tion of M chromosomes. Then, each member of the population is paired with another

randomly selected member. The crossover operator selects a cut-point at random and

combines the left half of one parent with the right half of the other to produce an off-

spring. The crossover operator is performed based on the crossover rate rc specified

by the user. The offsprings are then mutated. This implies randomly selecting one

gene within the offspring’s chromosome and changing it to another random value. Only

a certain percentage of the offsprings produced are mutated. The probability is also

determined by the mutation rate passed by the user as an exploration parameter, rm.

In this work rc and rm are set to 0.8 and 0.1 respectively.

At this point, the mutated offspring is synthesized calling the HLS tool and the

area, and latency of the synthesized design back-annotated, leading to a new design

Dnew = {Anew , Lnew}. The newly generated offspring will replace one of the parents

if one of the following conditions is met: (i) The offspring improves one or more of

the best-so-far values. The parent to be replaced is randomly chosen. Moreover, if

an identical copy of the offspring already exists within the population, the offspring is

discarded. (ii) One of the parents is dominated by the offspring (i.e., is inferior to the

offspring across all of the objectives, in this case, area or latency).

6.4.2 Phase 2: Predictive ASIC to FPGA Micro-architectural Exploration

Translation (Steps 5, 8, 11)

This translation is based on the previously method proposed in [63]. This phase is done

offline and only needs to be done once independently of the dataflow being optimized.

The details have been discussed in Section 5.4, and Fig. 6.3 shows an overview of the
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approach which contains three steps.

Step 1 samples the search space of several behavioral descriptions used as train-

ing set targeting both ASIC and FPGA technologies by generating different HLS con-

figuration settings (synthesis directives in the form of pragmas) and synthesizing each

new configuration. These behavioral descriptions are considered as the training set

from which the predictive models will be derived. A detailed description of how this

exactly works is given in the next subsections. Although this training step takes a long

time, it only needs to be executed once for every target technology. Step 2 continues

by generating predictive models for the ASIC area (AASIC) and the FPGA area (AFPGA)

using the training data generated in step 1. Step 3 continues by using the data gen-

erated during step1 and the results from step 2, and by generating a predictive model

for the area (AASIC) of a new design targeting an ASIC technology (Dnew ). This is ac-

complished by building a weighted-regression model, which leads to a set of weights

for each regression term indicating the importance that each training benchmark has

on AASIC of Dnew .

Step 1: Sampling
of search space

Step 2: ASIC and
FPGA predictive
model generation

Step 3: Weights genera-
tion for new benchmark

DSE results for
ASIC of the tar-
get benchmark

Figure 6.3: Predictive translation from ASIC to FPGA overview.

6.4.3 Phase 3: Compositional Method for Optimal ASIC Dataflows (Steps:

7, 10)

This last phase makes use of the results of phase 1 and phase 2 to find optimal

configuration of the complete dataflow when targeting an FPGA mainly for emulation or

prototyping given the optimal results obtained for an ASIC, which are obtained in phase
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1. The proposed method is based on a compositional method to quickly converge to the

optimal Pareto-front using FPGA area (in term of slice count) and dataflow performance

and is itself composed of two main steps. Step 1 sorts all the Pareto-optimal micro-

architectures based on their latency. Step 2 iteratively builds dataflows by selecting

the most optimal micro-architecture for each module based on the number of limited

pins for each module for the FPGA based on three facts: 1) the overall latency of

the dataflow system is decided by the module which has the largest latency, 2) the

total area of the dataflow system equals the summation of the area of all individual

modules, 3) the I/O ports count of two adjacent modules must be the same. Algorithm 3

summarizes the compositional approach.

Algorithm 3: Compositional method algorithm
Input : D = {D1, D2, ... , Dn}

Dio = {Dio
1 , Dio

2 , ... , Dio
n }

// Di: Pareto front of module i
// Din

i : Pareto front of module i given a certain number of inputs

// Dout
i : Pareto front of module i given a certain number of outputs

Output :C = {C1, C2, ...}
// Ci: Configurations leading to one Pareto optimal dataflow

1 /* Step 1: Sorting micro-architecture by Latency */
SortedLatencyList ⇐ Sort(D1(L) ∪ D2(L) ∪ ... Dn(L));

2 /* Step 2: Building Dataflows */ for d ∈ SortedLatencyList do
3 Add d to Ci ;
4 I = d(in), O = d(out), L = d(latency );
5 Find that d is from module m;
6 for mb ∈ modules before m do
7 l = max({l |l ∈ Dout=I

mb
, l ≤ L};

8 Find db corresponding to l and add db to Ci ;
9 I ⇐ db(in);

10 end
11 for ma ∈ modules after m do
12 l = max({l |l ∈ Din=O

ma , l ≤ L};
13 Find da corresponding to l and add da to Ci ;
14 O ⇐ da(out);
15 end
16 Add Ci to C;
17 end

The inputs to this phase are the results for each module in the dataflow when the

FPGA is targeted and which are obtained in step 2 of phase 2 (DF ). Each design

DF
i {area, latency , in, out} is fully characterized by its area, its latency in clock cycles
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and the numbers of inputs and outputs. The result of this phase is a trade-off curve

composed of Pareto-optimal dataflow configurations. Each configuration composed of

different mixes of micro-architectures for each module in the dataflow.

Step 1: Sorting Micro-architectures based on Latency: The main intuition be-

hind this step is that the dataflows throughput is limited by the module with the longest

latency. As mentioned previously, we only consider dataflows which directly connect

the different modules. Hence, our method has to ensure that the latencies, which act

as data ignition intervals (DIIs) between the modules, match. In this particular case,

and considering that we also multiplex the pins, a given design Di = {A, L, IN, OUT}

will also have a specific number of IO pins. This reduces the search space as this

module can only be connected with a previous module that has the same number of

input pins Di (IN) = Dprevi (OUT ) and to another module with the same number of output

pints Di (Out) = Dnexti (IN). The output of this phase is SortedLatencyList = {d1, d2, ...}.

Step 2: Building Dataflows: This second step takes iteratively the design with the

smallest latency from the sorted list generated in step 1 (SortedLatencyList) and finds

the smallest micro-architectures of the neighboring modules in the dataflow with latency

equal or smaller than that micro-architecture in the sorted list. Smaller latencies are

allowed as it is easy to add delays at the outputs in the form of buffers. As mentioned

previously the micro-architectures’ candidates are limited by the interconnect between

each module pair in the dataflow. Thus, only those micro-architectures with the same

number of pins are considered. For each new configuration, the total area is computed

by adding up the area of all the micro-architectures in the dataflow and the latency by

adding these up.

This step is repeated until all the micro-architectures from the sorted latency list

are considered. The results is a list of predicted Pareto-optimal dataflow configurations

C for an FPGA, where each design is characterized by a unique set of pragmas and

number of IOs, which in turn lead to a specific area and latency.



101

6.5 The Comparative Methods

This section discusses the two comparative methods which are also presented in

Fig. 6.2.

6.5.1 Baseline Method

This method (1 - 4 - 7 - 10) performs full DSE targeting FPGAs for every module

and sends the trade-off curves to the compositional method. Therefore, it is the most

accurate but takes the longest running time in this work. This will be the reference

method in this paper, and it is denoted as Base.

6.5.2 Direct Mapping

This method (1 - 2 - 3 - 7 - 6 - 9 - 10) uses the existing DSE results for ASIC platforms

and feeds them to the compositional method to obtain the trade-off curve for the data-

flow system targeting an ASIC. Next, it extracts the configurations of the designs on

the trade-off curve and re-synthesize them targeting FPGA platforms. This method is

based on the assumption that the Pareto optimal designs for an AISC would also yield

the trade-off curve on FPGAs, which is not true and is the problem we are trying to

solve. We denote this method as DM. Note that DM is faster but will be less accurate

than Base. As shown in Fig. 6.2, DM also shares most of the blocks with the proposed

method except blocks 5 and 8. The two blocks perform the prediction of individual

modules. Therefore, given a pre-trained model, the running times of blocks 5 and 8 are

trivial compared to the running time of block 2. Thus the proposed method would run

as fast as DM.

6.6 Experimental Results

To prove the accuracy and efficiency of the proposed method, this section firstly de-

scribes the experimental environment used in this work. Then it presents the extensive

experiment results produced by the three methods.
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Table 6.1: Modules of Data Flow Applications

S1 S2 S3 S4 S5 S6 S7 S8 S9

average 1 1 1 2 4 1 1
adpcm_encoder 2 2 2 1 1 1 2 3
decimation 3 2 5 5
fir 1 3 3 5 3 4
interpolation 2 4 4 3 4 6
sobel 3 2 2

6.6.1 Experimental Setup

To prove the effectiveness of the proposed framework, six benchmarks from the open

source Synthesizable SystemC benchmark suite S2CBench v.2.2 [101] are taken.

Combining some of them produces nine data-flow applications as shown in Table 6.1.

For example, S3 has three modules, average is the first module which is connected

to adpcm_encoder, and fir is the last module. The HLS tool used is CyberWorkBench

from NEC [78], the target ASIC technology is Nangate 45nm, and the target FPGAs

are Xilinx Virtex 7.

6.6.2 Results

The quality of the exploration result is measured using the ADRS, which is a widely used

metric to compare multi-objective optimization problems like this one. ADRS indicates

the average distance between the reference Pareto-front and the approximate Pareto-

set i.e., tells how close a Pareto front is to the reference front, where the reference

front is obtained from the actual HLS DSE for the targeted FPGA (FPGA synthesis is

performed). In particular, given a reference Pareto-front Γ and an approximate Pareto

set Ω, ADRS is computed as shown in (6.1) (also defined in (5.1)).

ADRS(Γ,Ω) =
1
|Γ|

∑
γ∈Γ

min
ω∈Ω

f (γ,ω) (6.1)

Another measuring metric is Dominance, which indicates the ratio of the number of

correctly predicted Pareto optimal designs to the total number of the exact Pareto set.

Fig. 6.4 presents the Pareto optimal trade-off curves found by the three methods
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Figure 6.4: The trade-off curves of different methods for the nine dataflow systems

for different data-flow systems. For example, regarding S8, the black dots (FPGA)

represent the accurate Pareto optimal designs that S8 could produce in this work, so

this set is the reference set. The red curve (Prediction) indicates the Pareto optimal

designs found by the proposed method, and the more overlapping with the black curve

(FPGA), the better the red curve (Prediction) is. Similarly, the blue curve (ASIC) is the

result produced by Direct Mapping, which is able to find some exact Pareto optimal

designs but performs not as well as the proposed method.

Table 6.2 shows the comparison of the three methods in detail. The baseline

method produces the exact Pareto optimal designs, thus it yields 0% ADRS and

100% dominance, and its results will not be shown. It can be observed that the pro-

posed method outperforms the naïve method in both quality metrics. On average, the
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proposed method improves ADRS by 92.51%, and the dominance is increased by

1674.17%.

Table 6.2: Methods Measurement [%]

ADRS Dominance

ASIC Proposed ASIC Proposed

S1 7.84 2.49 0.00 30.77
S2 14.57 1.98 0.00 25.00
S3 23.36 2.17 0.00 44.44
S4 19.08 2.44 0.00 38.46
S5 185.22 4.39 0.00 66.66
S6 14.55 4.10 6.25 50.00
S7 22.51 0.86 18.18 81.81
S8 20.30 4.41 0.00 14.29
S9 39.57 3.20 0.00 81.25

Ave 38.56 2.89 2.71 48.08

These results indicate that the proposed method works well and that it leads to

better results than the other method. The additional advantage of our proposed method

is that it does not require any new training phase for each new design to be converted,

and thus, is very fast (as shown in Table 6.3). The model generation phase takes

less than 1 second, while the actual re-exploration of the design takes on average

less than 1-minute making use of the new predictive method. In contrast, the average

running time of the GA-based HLS DSE, having to fully re-synthesize each new design

configuration targeting the desired FPGA, is 26.5 hours. This exploration running time

is obviously a function of the complexity of the benchmark, e.g. the longest dataflow

exploration took 84.1 hours for S9.

6.6.3 Case Study: JPEG Encoder

In this case study, the proposed method is also applied on JPEG encoder, which is a

well-known streaming application in image processing. Fig. 6.5 presents the Pareto-

optimal trade-off curves obtained by the three methods. We can see that the proposed

method is able to find the trade-off curve which is very close to the exact one. As

a result, the metric values of ADRS and dominance are 1.16% and 57.14% for the

proposed method, while they are 62.93% and 14.28% for the direct mapping method.
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Table 6.3: Running Time Comparison

DM [in seconds] Proposed [in seconds] Base [in hours]

S1 <1 18.8 3.0
S2 <1 19.4 4.1
S3 <1 19.2 4.4
S4 <1 25.8 56.6
S5 <1 29.8 81.6
S6 <1 14.3 60.4
S7 <1 18.8 83.0
S8 <1 38.3 60.7
S9 <1 38.6 84.1

Geomean <1 23.5 26.5
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Figure 6.5: JPEG encoder case study

6.7 Summary and Conclusion

In this work he have proposed a method based on compositional predictive models

to quickly and effectively map complex data flows optimized for ASICs to FPGAs of

different underlying structure. This enables the faster verification of complex SoCs

that make heavy use of hardware accelerators often organized in data flow structure.

Experimental results have shown that our proposed method is very effective vs. having

to fully re-explore the extremely large search space to find Pareto optimal data flow

configurations at a fraction of the total running time.
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Chapter 7

Time-multiplexed Reconfigurable Dataflow

As we have shown throughout this thesis, any computationally intensive applications

are implemented on hardware following the stream computing, also called dataflow

computing, paradigm. This entails that data is streamed through different components

of a given application in wide deep pipelines to maximize throughput. One of the main

drawbacks of this computing paradigm is that it consumes a large number of hardware

resources. Thus, in this chapter, we propose an exploit the capabilities of state of

the art FPGAs to perform partial runtime reconfigurable. Meanwhile, we propose a

hardware overlay onto which to map any computationally intensive application given as

a behavioral description for HLS composed of multiple stages. These designs would

typically fit the stream computing paradigm. This overlay uses the internal’s FPGA

BlockRAM to store the intermediate results of each stage to speed up the computation

and time-multiplexes the different stages by reconfiguring the computational part.

This work also includes a design methodology to optimize the implementation of

each stage to balance the dataflow architecture as well as generating systems with

unique area vs. performance trade-offs. The proposed architecture and methodology

has been prototyped on a Xilinx Zedboard mounting a Zynq FPGA, and a case study

of a JPEG encoder is presented highlighting the benefits of it. The overlay will be made

public and open source after the publication of this work.
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7.1 Introduction

FPGAs have regained much attention recently, mainly because they are starting to be

extensively deployed in data centers operated by traditionally software companies [27,

76]. The main idea is to offload portions of applications, with a high amount of paral-

lelism, from the CPU onto the FPGA. This increases the overall performance, while

significantly reducing the power consumption. The acquisition of Altera by Intel is also

mainly motivated by this, and Intel has recently announced that it is targeting the pro-

duction of around 30% of the servers with FPGAs in data centers by 2020 [7]. At the

same time, FPGAs are being used for High Performance Computing (HPC) to acceler-

ate numerically intensive applications. Several startups have also appeared in this field,

e.g. Falcon Computing [32] and Maxelar Technologies [68]. Both of these companies

have in common the use of high-level languages as inputs to facilitate the use of their

FPGA-based HPC systems. Concurrently, FPGA vendors are attempting to raise the

level of abstraction to allow software programmers with limited hardware knowledge to

program these devices, mainly using HLS. Hardware skills are still very much needed

to program these devices and hardware skills are rare. The US Bureau of labor statistic

reported in 2017 that the ratio of hardware engineers to software engineers had almost

doubled since 2010 [2].

Most of the applications to be accelerated are mapped as stream computing, also

called dataflow computing, architectures onto the FPGA, where data is streamed onto

the FPGA and passed from one module to another through wide deep pipelines, re-

ducing the need to access external memory [41]. Some applications that benefit from

dataflow computing can be found at [67] and they include Monte Carlo simulations, ma-

trix multiplications, and blockchain miners. This computing paradigm leads to extremely

high throughput at the cost of large area usage. This implies that because companies

try to maximize profits, they mostly use the smallest (cheapest) FPGA device that fits

their design. Future updates (in the field) might not fit that device.

One additional problem is that the dataflow architectures have typically to be opti-

mized manually. If the DII of the pipelines match, then each module can be connected

directly together, and if not, FIFOs are typically used between the modules. This work
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tries to address this by proposing a partial runtime reconfigurable overlay, specifically

designed for dataflow applications that time-multiplex the execution of each of the mod-

ules, thus, reducing the total area required, and making use of the FPGA’s internal

BlockRAM to store the partial results of each stage. We also present a methodol-

ogy to optimize the micro-architecture of each dataflow stage by generating the best

micro-architectures for each dataflow stage that balance the area vs. performance. In

summary, the main contributions of this work are:

• Propose a static overlay architecture onto which to map behavioral dataflow

applications efficiently using BlockRAM to store intermediate stage results.

• Introduce a methodology to find the best mixes of micro-architectures for each

module in the dataflow to generate systems with different area vs. performance

trade-offs.

• Present extensive experimental results, prototype the proposed overlay architec-

ture onto a Xilinx Zynq FPGA and compare it against a static implementation and

another overlay-based implementation.

7.2 Motivational Example

Fig. 7.1, shows a motivational example for this work. It shows the four main steps

in the JPEG encoding process (DCT, quantization, RLE and Huffman encoding) laid

out spatially as a dataflow, where each step is described as a behavioral description

given in e.g. C or C++. Because of this, and considering that HLS is a single process

synthesis method, each description is synthesized and optimized individually leading

to a unique micro-architecture. In this case, the input is an image to be encoded, and

the output is the compressed image. As shown in the figure, the data is streamed from

one stage to another.

Also, shown in Fig. 7.1, it can be observed that HLS allows the generation of a vari-

ety of micro-architectures with unique area vs. performance and/or power overheads.

This is done by specifying different synthesis options, typically in the form of synthesis

directives (pragmas) that control how to synthesize arrays (e.g. as registers or RAM),

loops (unroll, not-unroll, partially unroll or pipeline) and functions (inline or not). Out of
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all the micro-architectures, the most important ones are the Pareto-optimal ones that

form the area vs. latency trade-off curve in Fig. 7.1.

Also, when mapping this application on a runtime reconfigurable FPGA which time-

multiplexes each stage, the area of the final circuit is determined by the largest micro-

architecture of four stages.
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Figure 7.1: JPEG encoder steps laid out spatially as dataflow and individual description
of optimization using HLS.

Based on this, the objectives of this work are two-fold: First, we create a runtime

reconfigurable hardware overlay that facilitates the execution of dataflow applications,

like the JPEG encoder, to reduce the area utilization, while minimizing the performance

degradation due to the reconfiguration. Secondly, we develop a methodology to find

the best mix of micro-architectures that leads to Pareto-optimal overall system configu-

rations with unique area vs. performance trade-offs.

7.3 Related Work

FPGA overlays have been proposed in the past, mainly to hide the intricacies of the

FPGA, while allowing to benefit from the massive amount of parallelism that can be

leveraged when mapping applications on them. In [12] the authors present a Virtual

Dynamically Reconfigurable (VDR) overlay that consists of an array of functional units

interconnected by programmable switches and present a Just-in-time (JIT) compilation

flow to map applications onto this overlay. A soft process overlay tightly coupled with

hardware accelerators is presented in [82]. In [11], the authors introduce an overlay for
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data flow graphs (DFGs) mapping these onto a mesh of functional units.

Closer to our work, the authors in [15] make use of partial reconfiguration to map

dataflow applications onto an FPGA. The authors also present a flow to partition

applications and map them onto the FPGA. In their work, no fix overlay is used.

It should be noted that our work assumes that the application to be mapped onto

the FPGA has already been partitioned into individual modules and that each module

is complex enough that it requires being synthesized (HLS) individually. Much work

has been done in the past in the area of automatic partitioning of applications to be

mapped onto FPGAs [96, 105, 74].

Our proposed work is different from previous work in multiple dimensions. First,

our work is based on an overlay onto which to map any stream computing applica-

tion specified as a set of behavioral descriptions (one description for each module).

Secondly, the overlay is optimized to avoid external memory accesses by using the

FPGA’s BlockRAM to store the intermediate results. Finally, we propose a methodology

to refine the system by generating a variety of different micro-architectures for each

module in the dataflow. This method, combines with an analytical performance and

area model, allows performing a complete design space exploration of the application

mapped onto the overlay.

7.4 Proposed Partial Runtime Reconfigurable

Overlay

Fig. 7.2 shows the block diagram of the proposed overlay architecture and the JPEG

encoder used as a case study. The overlay has been implemented on a Programmable

SoC FPGA (Xilinx Zynq) which contains a dual-core ARM Cortex-A9 processor and re-

configurable fabric onto which the overlay is mapped. In the case of the JPEG encoder,

this application can be divided into four distinct PEs, with PE1=DCT, PE2=Quantization,

PE3=Run-Length Encoding (RLE), and PE4=Huffman encoding. The PEs are time-

multiplexed on the dynamic region of the overlay. In particular, the overlay consists of

four main parts:

1. The dynamic place and route region (P-Block ), onto which the dataflow applica-
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tion is mapped.

2. The BlockRAM (BRAM) memory which stores the input data as well as the inter-

mediate results generated at each dataflow execution stage.

3. The BRAM controller which controls if the ARM processor or the application

accesses the BRAM and is responsible for writing and reading data into the

BRAM.

4. The processor configuration access port (PCAP) and configuration memory,

which stores all the partial bitstreams of the dataflow application and necessary

logic to reconfigure the P-Block

The sequence of operations follows three main steps.

Step 1: Load configuration bits onto FPGA: The ARM processor loads the bit-

streams for each partition (.bin files) from the SD card to the DDR memory of the

FPGA board and from there through the PCAP interface to the reconfigurable fabric.

Step 2: Initial configuration and data loading: The ARM processor configures the

P-Block with the very first stage of the application and transfers the input data from

main memory (DDR) to the internal BRAM to be processed. In the case of the JPEG

encoder, the input data is the image to be encoded. It should be noted that due to the

BRAM size limitation, the image might have to be partitioned into blocks of data that

fit the BRAM, which is, in turn, a function of the FPGA selected. In the experimental

results section, we present extensive results of how the partition of the data impacts

the throughput.

Step 3: Execution of application: Once the data is loaded onto the BRAM, the ARM

processor, which acts as a controller, sets the start signal to start the computation and

the BRAM controller starts loading the data from the BRAM to the processing units.

Initially, the P-Block is configured with the functionality of PE1, which in the JPEG case

is the DCT. The results generated by the DCT are stored as they are generated into

the BRAM. This step continues until all of the input data is processed and the outputs

generated. A finish signal is sent to the processor once the DCT stage finishes, which

in turn reconfigures the P-Block with the next stage in the dataflow, in this case, PE2,

which performs the quantization of the results generated by the DCT stage.
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Figure 7.2: Overlay architecture and JPEG partition mapped onto it.

This process continues by reconfiguring the P-Block with PE3 (RLE) and finally

PE4 (Huffman encoding), after which the processor reads the data stored in the BRAM

as the final result. In the case that the BRAM is not large enough, this process has to
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be repeated multiple times. This impacts the running time and hence the throughput,

but at the same time allows to control the latency, where the latency can be defined

as the time it takes to generate new output. By splitting the application into smaller

pieces, the total running time will increase, but the latency decreases. Fig. 7.3 shows

some experimental results when the input image is partitioned into 2, 4, 8, 16, and

32 blocks, highlighted in the number of samples graph, where each sample is an 8×8

block. Thus, a large number of samples implies more data being processed in each

iteration. This impacts the total number of reconfigurations required to encode the

full image as shown in a number of reconfiguration graph from 8 to 16, 32, 64, 128

and 256 respectively. Fig. 7.3 also shows how this affects the total running time. The

more reconfigurations, the longer the running time, which doubles with the number of

reconfigurations.
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Figure 7.3: Impact on runtime on samples size (partitions from image) and number of
reconfigurations.

A simple predictive model can be created based on these results to predict the

area (Atotal ) and the execution time (Trun) of any dataflow computation mapped onto

the overlay. In particular:

Atotal = Astatic + Adynamic{max(PE1, ... , PEi )} (7.1)
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where, Astatic is the static portion of the overlay, and Adyanmic is the part mapped on

the reconfigurable module, which is determined by the largest module mapped on it.

Moreover,

Trun = Tapplication + Toverhead + Treconf × Nreconf (7.2)

where Tapplication is the time it takes to run the application when the dataflow is laid

out spatially. Note that the two predictive equations would also apply to other dataflow

applications, because the reconfigurable implementation steps apply to other applica-

tions, which leading to similar approaches of area and running time measurements. In

the case of JPEG encoding for the 512×512 image, Tapplication=2.99s. Toverhead is the

time it takes to load all the partial reconfigurable bit files (.bin files) from the SD card to

the FPGA and can be ignored for applications that execute repeatedly. For the JPEG

encoder case we measure Toverhead=1.68s. Finally Treconf and Nreconf are, respectively,

the time it takes to reconfigure the P-Block and the number of required reconfigurations,

which in this case is measured to Treconf =0.20s and as shown in Fig. 7.3 with Nreconf

depending on the input data partition.

One observation that can be quickly made is that the total running time depends

on the time it takes to reconfigure the P-Block, which is, in turn, a function of the size

of the P-Block. The larger it is, the longer it takes to reconfigure. Thus, it is imperative

to reduce the P-Block size to the smallest possible size, which in turns depends on the

largest module in the dataflow.

7.5 Dataflow Design Space Exploration

As shown in Fig. 7.1, one of the advantages of using behavioral descriptions to create

dataflow applications is that a large number of unique micro-architectures for each

stage in the dataflow can be automatically generated. This, in turn, implies that by mix-

ing different micro-architectures, complete dataflow systems with unique characteristics

can be created.

Based on this, this work proposed a method to find a set of Pareto-optimal dataflow

configurations given a behavioral description for each of the dataflow stages. This flow

is based on two stages. The first performs a detailed HLS design space exploration
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for each individual stage in the dataflow, while the second makes use of compositional

design techniques based on the predictive models of the total area and runtime intro-

duced in the previous section (equations (7.1) and (7.2)) to find a trade-off curve of

dataflow configurations with unique area vs. performance characteristics. In particular:

Step 1: Single Module HLS DSE: HLS is a single process synthesis method, thus,

every module that composes the dataflow needs to be explored separately. Much work

in the past has focused fast heuristics on performing HLS DSE. They can be coarsely

classified into synthesis-based methods [121] and predictive-based methods [62]. The

synthesis-based methods generate new configurations based on the available explo-

ration knobs, typically synthesis directives in the form of pragmas, and synthesize each

new configuration from which they extract the different design metrics. Based on the

results, some of the exploration knobs are adjusted and the process repeated until

a given exit condition is reached. In the second case, predictive-based methods, this

same process is repeated for a specific training set, after which a predictive model is

created. These methods, then continue with the exploration using the predictive model

to quantify the impact of new exploration knob settings, and thus, avoiding having to

synthesized each new configuration.

Because of the simplicity, and considering that the micro-architectural explorer is

not part of the main contribution of this work, we adopt a synthesis-based exploration

method based on a genetic algorithm, which has shown to lead to outstanding results

in these types of multi-objective optimization problems [31].

In summary, each explorable operation (loop, arrays, and functions considered in

this work) is represented as a gene to which a synthesis attribute (pragma) is assigned.

The list of all genes builds a chromosome Cr . The genetic algorithm first step is the

random generation of an initial population of N chromosomes. Then, each member of

the population is paired with another randomly selected member from the population

and produces an offspring using the crossover operator. The crossover operator selects

a cut-point at random and combines the left half of one parent with the right half of

the other. The crossover operates only a certain percentage of the time, according to

the specified crossover rate rc specified beforehand by the user. The offspring is then
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mutated, which involves randomly selecting one gene within the offspring chromosome

and changing it to another random value. Only a certain percentage of the offsprings

produced are mutated based on the mutation rate, rm. In this work rc and rm are set to

0.8 and 0.1 respectively.

At this point, the mutated offspring is synthesized calling the HLS tool and the area

and latency of the synthesized design back-annotated, hence leading to a new design.

The newly generated offspring will replace one of the parents if one of the several

conditions is met: (i) one of the parents is dominated by the offspring (i.e., is inferior to

the offspring across all of the objectives); (ii) the offspring improves on one or more of

the best-so-far values (the parent to be replaced is randomly chosen). The algorithm

will continue until N child designs do not improve any of the parents.

As indicated, much work has been done in this area in the past, and it is out of

scope to e.g. prove the optimality of the solution. In this work, the main objective of the

explorer is to find a trade-off curve of dominating designs as a proof of concept for the

proposed hardware overlay.

Step 2: System-Level DSE: This second step takes as inputs the exploration results

obtained from step 1 for each of the modules composing the dataflow. In the case of the

JPEG encoder, this would be four trade-off curves (DCT, Quantz, RLE, and Huffman).

It then continues by applying a compositional design technique based on an incre-

mental greedy algorithm to find the overall system-level trade-off curve. Algorithm 4

summarizes this step.

The proposed method starts by sorting the designs/micro-architectures in each

trade-off curve based on the area (line 1). It then goes through the list of designs;

chooses the smallest micro-architecture between all the trade-offs and adds this design

to a new dataflow configuration, DFi (line 2-4). The search then continues by finding the

micro-architecture with the smallest area difference compared to DFi for all the other

PEs (lines 6 to 8). Because the area of this initial micro-architecture is the smallest,

the new ones should inevitably have a larger area. Once a micro-architecture for each

PE stage has been found, our method continues by using the predictive models for

area and execution time described in equations (7.1) and (7.2) to evaluate the effect
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Algorithm 4: Proposed compositional design technique based on incremental
greedy algorithm.

Input :DList = {PE1 = {D1(A, L), ... , Dx}, ... , PEn}
// DList: Designs list for different processing element (PEs)

// PEn: Different processing elements in dataflow

// Dx: Optimal design for PE

// A: Design area; L: Latency;

Output :DFListopt = {DF1(As, Trun), ... , DFX}
// DFListopt: Pareto-optimal system-level dataflow list

// As: System area; Trun: execution time;

1 sort_by_area(DList);
2 while (DList) do
3 DPEi = extract_min_area_design(DList);
4 DFi = add_to_DF (DPEi );

// choose the next smallest design for other modules

5 foreach PEj ∈ DList , PEj ! = PEi do
6 DPEj = extract_∆A_smallest(DPEi (A));
7 DFi = add_to_DF (DPEj );
8 end
9 DFi [As] = estimate_area(DFi );

10 DFi [Trun] = estimate_time(DFi );
11 DFList = add_to_DFList(DFi [As, Trun]);
12 end
13 DFListopt = remove_non_optimal_DFs(DFList);
14 return DFListopt

of this micro-architecture mix on the complete system (lines 9-10). This new dataflow

configuration (DFi ) is then added to the dataflow configuration list (DFList) generated

so far (DFList) (line 11) and the search continues by extracting the next smallest

design from all the trade-off curves. This process continues until a configuration with

the largest but fastest micro-architectures of each PE is generated.

The last step analyzes all the results obtained and deletes all non-Pareto-optimal

configuration and returns only the dataflow configurations that are optimal, DFListopt

(line 13-14).

7.6 Experimental Results - JPEG encoder Case Study

The analysis of the proposed overlay and dataflow design space exploration method-

ology is presented using the JPEG encoder discussed in the previous section as a

case study. The design has been taken from the open source Synthesizable Sys-
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Figure 7.4: Additional two implementations with which we compare our proposed over-
lay shown in Fig. 7.2.(a) Static implementation of JPEG encoder following a traditional
dataflow (b) Runtime reconfigurable alternative storing intermediate results onto the
DDR

temC benchmark suite S2CBench v.2.2 [101], which is given as four separate modules

(sc_modules). The HLS tool used is CyberWorkBench from NEC [78] and the FPGA a

Xilinx Zynq 7000 SoC FPGA mounted on a Digilent Zedboard board. The experiments

are conducted on an Intel i7-6700 3.50GHZ CPU and 16 GB memory, running CentOS

7.

Two reference implementations have been additionally created to fully character-

ize our proposed method. Fig.7.4 shows their block diagrams. Fig.7.4(a), shows the

first reference implementation, which follows a traditional dataflow computation model

where the JPEG encoder is fully laid out spatially on the reconfigurable fabric. We

call this, spatial implementation. Fig.7.4(b) shows the second reference design, which

we call PRDDR. It is based on the same runtime reconfigurable overlay but uses the

external DDR memory to store the intermediate results of each dataflow stage. Thus,

no BlockRAM is used in this case. The first reference implementation should intuitively

lead to a large area overhead while having the highest throughput, whereas the second

reference design (PRDDR) should lead to the slowest but the smallest configuration.

Fig. 7.5 shows the design space exploration results of each of the four JPEG stages,

while Fig. 7.6 shows the result of the system-level exploration results. This last figure

also compares the quality of the proposed iterative greedy method with a brute force

approach, which guarantees to find the optimal solution. From the figure, it can be

observed that the proposed method can find most of the optimal system configurations
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while being 328× faster than the brute force method(1 second vs. 328 seconds). Note

that Fig. 7.6 shows running time in seconds which involves the latencies as shown in

Fig. 7.5.
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Figure 7.6: JPEG encoder system-level DSE result for proposed overlay

Table 7.1 shows the utilization report of the three implementations, where in this

case the micro-architectures of largest area/smallest latencies for each JPEG stage

are used. It can be observed that the results match the intuition. The spatial imple-

mentation uses 28.19% of the FPGA’s LUTs, while the two implementations, based
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on the proposed overlay, require only 20.32% and 23.25% for the PDDR and PBRAM

respectively, which represents 27.9% and 17.52% area reduction. Although significant,

it is far from the theoretically expected area reduction of 3/4 that we would expect by

time-multiplexing the four modules. The main reasons for this are that as shown in

(7.1), the total area is bounded by the largest module in the dataflow; also, we have to

account for the fixed area overhead of circuitry that enables the runtime reconfiguration.

This overhead is nevertheless constant and becomes, therefore, more or less important

depending on the size of the application mapped to the overlay.

Table 7.1: Utilization report of 2 reference JPEG implementation (Spatial and PRDDR)
and proposed Overlay (PRBRAM )

Resource Spatial Implementation PRDDR Implementation PRBRAM Implementation

Type Available Astatic Utilization [%] Astatic Adynamic Utilization [%] Astatic Adynamic Utilization [%]

LUT 53200 14997 28.19 4119 6692 20.32 5681 6692 23.25
Flip-Flops 106400 24759 23.27 6018 9432 14.52 12967 9432 21.05

BRAM Tiles 140 2 1.43 - 3 2.14 128 3 93.57

Finally, Table 7.2 compares the three implementations based on execution time to

encode different images. For the two runtime reconfigurable implementations based

on the proposed overlay (PRDDR and PRBRAM ), different blocks sizes (input image

partitioning), which lead to a different number of reconfigurations are also investigated.

The geomean value shows the average runtime values (geomean takes into account

the benchmark size difference). Two main observations can be made from the results.

The first is that the spatial implementation is the fastest. Compared to PRDDR, on

average, by 2, 2.5 and 3× and compare to PRBRAM by 1.6, 1.77 and 2.55× for the

three different block sizes (4, 8 and 16) respectively. When comparing the two runtime

reconfigurable implementations, as expected the version that uses the BRAM to store

the results of the intermediate stages is on average 30% faster.

Table 7.2: Execution time [s] of 3 JPEG implementations

Spatial PRDDR PRBRAM

Nreconfig 0 4 8 16 4 8 16

lena 1.82 3.75 4.40 5.68 2.30 3.08 4.62
pepper 1.84 3.86 4.71 5.71 2.38 3.28 4.73
goldhill 1.90 3.95 4.84 6.18 2.61 3.51 4.91

Geomean 1.85 3.85 4.65 5.85 2.98 3.29 4.75
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Based on these results we can conclude that the introduced overlay proposes an

interesting trade-off between area savings and performance degradation. It should be

noted that the larger the dataflow is, the smaller the area overhead due to the fixed

logic framework becomes and thus, larger area savings are expected.

7.7 Conclusion

In this work we have introduced an overlay for a configurable SoC FPGA that is op-

timized for behavioral dataflow applications. The overlay makes use of the FPGA’s

internal BlockRAM to store the intermediate results of every stage. We have shown,

using a JPEG encoder as a case study, that the proposed overlay works well. The over-

lay has been fully characterized against a static dataflow implementation of the JPEG

encoder as well as a simplified overlay version that stores the intermediate results on

external memory. We have also introduced a design space exploration flow that finds

Pareto-optimal configurations of the application mapped onto the proposed overlay by

making use of one of the main advantages of C-based VLSI design over traditional

RTL-based: the ability to generate a variety of different micro-architectures from a sin-

gle behavioral description. Results show that our optimization method works well and

that we can generate a variate of different systems with unique area vs. performance

trade-offs.
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Chapter 8

Conclusions and Suggestions for Future Research

8.1 Conclusion

This thesis discusses challenges in the design and optimizations of dataflow systems

and in particular when these are specified at the behavioral level. HLS is a proven

technology that raises the level of VLSI design abstraction and increases design pro-

ductivity. The main focus of this work is to leverage the advantages of HLS to optimize

the dataflows as mentioned earlier. We first investigate how pin multiplexing affects

the micro-architecture of a behavioral description for HLS and propose an optimization

method to map logic ports together. This method is in turn used to build complete

dataflow systems to reduce the congestion and interconnect delay in FPGAs. We

also propose a method to automatically convert optimized designs for ASICs to FPGA

designs. Finally, a full ASIC to FPGA dataflow optimization is proposed.

8.2 Future Work

High-level synthesis is developing rapidly. Given the promising future of HLS, more

and more hardware IPs will be described in the behavioral level, especially in C or

C++. At the same time, machine learning can be used to complement existing hard-

ware design methodologies to provide quick estimates of the resultant designs without

having to execute time-consuming steps. The design methodologies in this thesis take

advantages of the two facts and focus on a particular part of a SoC, which is dataflow
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hardware accelerators. However, the concepts presented in the projects are generic,

which means they apply to other design situations without or with little adjustment. For

example, the conversion from ASIC to FPGA could also be applied to other cases: the

prediction a) from older-generation ASIC to newer one (e.g., from 45nm to 32nm), b)

from older FPGA to newer one (e.g., from Virtex-5 to Virtex-7).

The hardware accelerators are only a small portion of a complex SoC. The ultimate

goal would be to allow the quick optimization of complete SoCs fully described at the

behavioral level. This should include communications on the bus between masters and

slaves (dataflow accelerators).
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