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Abstract

The thesis is concerned with two-stage stochastic variational inequality problems.

Then two topics are considered:

1. Quantitative analysis for a class of two-stage stochastic linear variational in-

equality problems.

2. Regularized two-stage stochastic variational inequality problems for Cournot-

Nash equilibrium under uncertainty.

For topic 1, we consider a class of two-stage stochastic linear variational inequality

problems whose first stage problems are stochastic linear box-constrained variational

inequality problems and second stage problems are stochastic linear complementary

problems owning a unique solution. We first give several conditions for the existence

of solutions to both the original problem and its perturbed problem. Next we de-

rive quantitative stability assertions of this two-stage stochastic problem under the

total variation metric via the corresponding residual function. After that, we study

its discrete approximation problem. The convergence and the exponential rate of

convergence of optimal solution sets are obtained under moderate assumptions re-

spectively. Finally, through solving a noncooperative two-stage stochastic game of

multi-player, we numerically illustrate the obtained theoretical results.

In view of the strong monotonicity of the second stage problem in topic 1, we

relax this requirement to the monotonicity situation in topic 2. Specifically, for

topic 2, we reformulate a convex two-stage non-cooperative multi-player game under
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uncertainty as a two-stage stochastic variational inequality problem where the second

stage problem is just a monotone stochastic linear complementarity problem. Under

standard assumptions, we provide sufficient conditions for the existence of solutions

of the two-stage stochastic variational inequality problem and propose a regularized

sample average approximation method for solving it. We prove the convergence of

the method as the regularization parameter tends to zero and the sample size tends to

infinity. Moreover, our approach is applied to a two-stage stochastic production and

supply planning problem with homogeneous commodity in an oligopolistic market.

Numerical results based on randomly generated data are presented to demonstrate

the effectiveness of our convergence results.
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Chapter 1

Introduction

1.1 Background

Complementarity problems (CPs) and variational inequality (VI) problems (collec-

tively known as equilibrium problems) construct an important branch in modern

optimization research field, which has a wide range of important applications in en-

gineering and economics, such as all kinds of economic/traffic equilibrium problems,

as well as is a highly valued theoretical research topic, especially in describing the

optimality conditions of optimization problems. Therefore, the systematic study for

equilibrium problems is crucial and necessary for both practical applications and

theoretical development in modern optimization. Although diverse examples of the

linear CP, abbreviated LCP, can be dated back to as far as 1940s, it is believed that

the systematic and concentrated study of the CP and VI started in the middle of

1960s [1, 2]. In a span of six decades, equilibrium problems are extensively inves-

tigated and tons of excellent papers, monographs are sprung out, see for example

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] to name a few.

The CP consists of finding a vector that satisfies a certain system of inequalities.

Let F : Rn → Rn. Then the CP is to find a vector x ∈ Rn such that

0 ≤ x⊥F (x) ≥ 0.
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Specifically, if F (x) = Mx+ q, where q ∈ Rn and M ∈ Rn×n, we obtain the simplest

class of CP, that is, the LCP, denoted by LCP(q,M). Obviously, the LCP(q,M)

can be equivalently expressed as the optimal solution set of the following quadratic

programming problem:

min
x

xT (Mx+ q)

s.t. x ≥ 0,Mx+ q ≥ 0.

On the other hand, a well known context for LCPs that it can be read as the first

order optimality conditions of quadratic programming problems.

Given a subset X of the Euclidean n-dimensional space Rn and a mapping F :

X → Rn, the VI problem, denoted VI(X,F ), is to find a vector x ∈ X such that

〈y − x, F (x)〉 ≥ 0, for all y ∈ X.

We straightforwardly know from the definition of CP and VI that 0 ≤ x⊥F (x) ≥ 0 is

equivalent to VI(Rn
+, F ). Thus, a CP can be viewed as a special case of VI problem

with X being Rn
+.

Generally, subset X is restricted to be closed and convex [1]. Especially, when X

is convex, we have the following definition of normal cone:

Definition 1.1. The normal cone to X at x, denoted by NX(x), is defined by

NX(x) = {x̄ ∈ X : 〈x̄, y − x〉 ≤ 0 for all y ∈ X}.

In this case, we can rewrite VI(X,F ) as

−F (x) ∈ NX(x) or 0 ∈ F (x) +NX(x).

Of course, by the discussion above, 0 ≤ x⊥F (x) ≥ 0 can be written as

0 ∈ F (x) +NRn+(x).

In recent decades, with more and more complex decision-making environment or

to describe possibly unknown parameters in CPs and VI problems, stochastic CPs
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and VI problems (abbreviated SCPs and SVI problems respectively) are proposed.

To present this, let ξ : Ω → Ξ ⊆ Rs denote a random vector with the probability

space being (Ω,F ,P) and support set being Ξ ⊆ Rs which is the smallest closed

subset such that P (Ξ) = 1 and P = P ◦ ξ−1. Redefine F and X being a response

of random vector ξ, i.e., F : X × Ξ → Rn and X : Ξ ⇒ Rn. Then, we obtain the

following SVI problem:

−F (x, ξ) ∈ NX(ξ)(x),

as well as SCP:

0 ≤ x⊥F (x, ξ) ≥ 0.

When it comes to the SVI or SCP, the concept of solutions is crucial. Generally,

there are two kinds of solutions: the here and now solution and the wait and see

solution. For SVI problem VI(X(ξ), F (x, ξ)), we obtain a solution x(ξ) when ξ ∈ Ξ

is fixed. That is, x is a response of the random vector ξ or x is a measurable

function of ξ. We call this kind of solution the wait and see solution. Intuitively,

this type of solution waits the realization of random vector ξ and then we can see

a solution. However, this kind of solution seems to be helpless or hardly used by

decision makers because they usually make a decision when the realization of ξ is

unknown. If a decision maker has a wait and see solution and he or she must make

a decision before a realization, the quite possible approach is that: he or she will

choose a decision x(ξ0) with realization ξ0 such that P (ξ0) reaches its maximum.

Obviously, this kind of decision is quite unstable and even meaningless when ξ has

some continuous distribution. Moreover, how to obtain a response x(·) in a general

setting is also an intractable problem. Comparatively, the here and now solution is

a solution made before the realization of ξ. Usually, it is assumed that we know the

distribution of ξ and we make a decision by using the comprehensive distribution

information. To clarify this as well as an example, we consider the expected value
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(EV) form of VI(X(ξ), F (x, ξ)). To this end, we let X(ξ) = X. Then, the EV form

can be formulated as VI(X,E[F (x, ξ)]), or

−E[F (x, ξ)] ∈ NX(x).

We can see from the EV form that x has nothing to do with the specific realization

of ξ, but the distribution information. This kind of solution employ a comprehensive

information of ξ. So it can be relatively stable. In recent years, more and more

scholars argue that the true distribution cannot be known, which leads to a very

hot topic: the distributionally robust optimization problem. This is out of the range

of this thesis. For more information, we refer to [11] for the distributionally robust

LCP.

The shortfalls of the EV form are obvious: Firstly, it loses too much information

of random vector ξ; Secondly, the here and now solution can hardly be a true solu-

tion for any realization of ξ; Thirdly, it fails to deal with the case when X(ξ) is a

random set-valued mapping. Considering these shortcomings, the expected residual

minimization (ERM) approach is put forward, see [8]. The main idea of ERM ap-

proach is to find a solution such that it can solve the SVI problem best according to

minimizing residual functions. First of all, we need to introduce residual functions

(see also merit functions, gap functions). θ : R → Rn is a residual function for

VI(X,F (x)), if θ(x) ≥ 0 for all x ∈ X and θ(x) = 0 if and only if x ∈ X and x solves

the original VI problem, see [9, Definition 1.1]. Thus, we can rewrite the original VI

problem as

min
x∈X

θ(x).

The residual function for VI problem is a powerful tool to transfer the VI problem to

a minimization problem. Then we can employ the existing results in minimization

problem to discuss the VI problem, especially for the numerical treatment aspect.
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The examples of commonly-used residual functions are as follows:

θ(x) := max
y
{〈F (x), x− y〉 : y ∈ X},

θ(x) := max
y
{〈F (x), x− y〉 − 1

2
〈y − x,G(y − x)〉 : y ∈ X},

where G is some positive definite matrix. Then by adopting the residual function,

we can obtain the ERM problem of VI(X,F (x, ξ)) as below:

min
x∈X

E[θ(x, ξ)].

Specially, residual functions of CPs are also known as nonlinear CP (abbreviated

NCP) functions. A function φ : R×R→ R+ is called the NCP function, if it satisfies

φ(a, b) = 0⇔ a ≥ 0, b ≥ 0, ab = 0.

Thus, 0 ≤ x⊥F (x) ≥ 0 is equivalent to the following optimization problem:

min
x
‖R(x, F (x))‖2 ,

where R : Rn × Rn → Rn with Ri(x, F (x)) := φ(xi, Fi(x)) for some NCP function

φ, and xi and Fi(x) are the ith component of x and F (x), respectively.

Two well-known NCP functions are the Fischer-Burmeister (FB) function and

natural NCP function denoted by φFB and φN respectively. Specifically, we have

φFB(a, b) = a+ b−
√
a2 + b2,

φN(a, b) = min{a, b}.

Moreover, the relationship between FB function and natural NCP function reads:

2

2 +
√

2
|φN(a, b)| ≤ |φFB(a, b)| ≤ (2 +

√
2) |φN(a, b)|

for all a, b ∈ R.
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There is rich literature on algorithms to solve equilibrium problems. Usually,

they employ the residual function to rewrite the VI problem or CP to a minimiza-

tion problem and then use existing algorithm to solve it, such as, trust region [12],

Douglas–Rachford splitting method [10], Newton method [7] and so on.

More recently, the concept of multistage SVI problems was proposed by Rockafel-

lar and Wet in [6] when the support set are discrete. Different from the single-stage

SVI problem, its solution is a sequence of vectors depending on the information

flow available at each stage. To solve the multistage SVI, the Progressive Hedg-

ing Method (PHM) was adopted in [13]. However, it is still worth considering the

two-stage case in the continuous distribution case. In view of this, Chen and her

cooperators has done many pioneering works on the two-stage SVI problem, see for

example [10, 11, 14].

In the following section, we will make a brief literature review on SVI problems.

1.2 Literature review

The deterministic variational inequality problem has been extensively investigated,

see monographs [1, 15, 16] and the references therein. Recently, to describe uncer-

tainty in the complex decision process or make a long-term decision, SVI problems

have been put forward and studied increasingly. There are usual two methods to deal

with the uncertainty: One is the EV form; the other one is the ERM form. For the

EV form, [3] considered a sample-path solution of the EV form SVI problem and the

convergence assertions were established. Much later, Xu discussed in [17] the sample

average approximation (SAA) approach for the SVI problem, and under certain con-

ditions, the convergence conclusion between the SAA problem and the original SVI

problem was derived. For the ERM form, Chen and Fukushima considered in [8] the

stochastic LCP by the ERM procedure. The quasi-Monte Carlo method was adopted
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to generate scenarios of observation and thus to obtain the discrete approximation

problem. Chen, Wets and Zhang [9] investigated SVI problems by the ERM proce-

dure, and the SAA method was employed to approximate the expected smoothing

residual function. Chen, Pong and Wets [10] first investigated the ERM process for

the two-stage SVI problem and solved it by Douglas-Rachford splitting method.

More recently, as an extension from single-stage case to multi-stage case, Rock-

afellar and Wets did a pioneering work in [18] for the multistage SVI problem when

the support set is discrete, which lays a theoretical foundation for numerical solution

by reformulating the multistage SVI problem in an extensive form. Closely following

this work, in [13], Rockafellar and Sun employed the well-known PHM to solve the

multistage SVI problem. It is worth pointing out that PHM was first introduced by

Rockafellar and Wets in [19] to solve multistage stochastic programs. Chen, Pong

and Wets [10] first introduced the two-stage SVI problem and an expected residual

minimization procedure for solving it. Chen, Sun and Xu [11] proposed a discretiza-

tion scheme for the two-stage stochastic linear complementarity problem (SLCP)

with continuous random variables. Moreover, they studied the distributionally ro-

bust counterpart of the two-stage SLCP when the ambiguity set is constructed with

the first order moment information. More recently, Chen, Shapiro and Sun [14] gen-

eralized the two-stage SVI problem to the two-stage stochastic generalized equation.

They studied the convergence of its SAA without the relatively complete recourse

assumption. As a special case, they also considered a mixed two-stage stochastic

nonlinear variational inequality problem and examined the uniqueness of its solution

and the exponential convergence of its discrete approximation. Considering the risk-

averse players, Pang, Sen and Shanbhag made a comprehensive discussion about the

two-stage non-cooperative multi-player game under uncertainty in [5].

From the perspective of the numerical calculation, the equilibrium problems are

usually rewritten as a minimization optimization problem, mostly nonsmooth and
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nonconvex. For this class of problems, the smoothing techniques (see [20]) usually are

employed so that differentiable methods, e.g., Newton’s method, become applicable

in solving the smoothing problem, see for instance [7, 21, 22, 23]. Another differ-

ent avenue is adopted by stochastic approximation (SA) schemes which were first

introduced by Robbins and Monro in [24]. There has been a surge of interest in the

solution of SVI problems via SA schemes. Amongst the earliest work was conducted

by Jiang and Xu [25], who considered the stochastic approach for SVI problems with

strongly monotone and Lipschitz continuous assumptions. They proved that the se-

quence of solution iterates converge to the unique solution in the sense of almost

sure. As an extension of this study, motivated by Tikhonov regularization scheme, a

regularized SA method was developed for solving SVI problems with a merely mono-

tone but Lipschitz continuous mapping in [26]. Further, in [4], the authors focused

on developing asymptotic statements for the SVI problem, where the map is not

necessarily Lipschitz continuous, through the SA method. For numerical implemen-

tation of the multistage SVI, Rockafellar and Sun extended the well-known PHM for

multistage stochastic programming problems to multistage SVI problems in [13]. As

for the monotone two-stage SVI or SLCP, PHM has been employed to give numerical

results, see [11, 14].

1.3 Summary of contributions of the thesis

The main contributions of this thesis are summarized as follows:

• Firstly, we investigate different sufficient conditions for the existence of solu-

tions to a class of two-stage SVI problem, and stability assertions between it

and its perturbed problems. Under the assumption that the solution to the

second stage problem is unique, we carry out quantitative stability analysis

of this class problems with respect to suitable probability metrics. Moreover,
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we further consider the discrete approximation scheme, and derive both the

convergence and exponential rate of convergence of the optimal solution set of

the discrete approximation problem to that of the original problem. Finally,

to confirm these theoretical results as well as their applications, we consider

a multi-player noncooperative two-stage stochastic game problem and present

numerical results by using PHM.

• Since the first work makes an assumption that the second stage problem has

a unique solution, we further weaken this assumption. To this end, a two-

stage stochastic Nash equilibrium problem is proposed to model the produc-

tion and supply competition of a homogenous product under uncertainty in

an oligopolistic market. The model is recast as two-stage SVI problems whose

solutions characterize a Nash-Cournot equilibrium. Considering the possible

multiple solutions of the second stage problem, which may be cost expensive

or time consuming by numerical results, a regularized sample average approx-

imation method is proposed to solve the two-stage SVI problem. The second

stage problem of the regularized problem and its SAA problem have the unique

solution. To approximate the original two-stage SVI problem, we establish con-

vergence properties under mild assumptions. Finally, we use some numerical

results to test its effectiveness.

1.4 Organization of the thesis

The thesis lays out as follows.

• Chapter 2 gives the models and prerequisite knowledge of this thesis. Specifi-

cally, two models are presented: One is a class of two-stage SVI problems; the

other one is a convex two-stage non-cooperative multi-player game problem

but we can reformulate it as a two-stage SVI problem.
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• Chapter 3 considers a class of two-stage stochastic linear variational inequal-

ity problems whose first stage problems are stochastic linear box-constrained

variational inequality problems and second stage problems are stochastic lin-

ear complementary problems having a unique solution. We first present the

existence of solutions and quantitative stability results. Next, we consider the

discrete approximation and conduct convergence analyses. In numerical part,

we study a multi-player noncooperative two-stage stochastic game problem and

its numerical tractability by PHM.

• Chapter 4 concentrates on a convex two-stage non-cooperative multi-player

game under uncertainty, which can be formulated as a two-stage SVI problem.

First of all, the two-stage stochastic Cournot-Nash equilibrium problem is de-

veloped and recast into a two-stage SVI problem. Then, a regularized method

is proposed and structural results of two-stage regularized SVI problem are

presented. The convergence assertions of our regularized SAA problem to the

original SVI problem are shown in the sequel. We finally conduct some numer-

ical results based on randomly generated data, which verify our convergence

analysis well.

• Chapter 5 concludes the whole thesis and gives some possible future work.
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Chapter 2

Models and preliminaries

In this chapter, we give models of this thesis and some preliminaries which are useful

in the further discussion.

2.1 A class of two-stage stochastic linear varia-

tional inequality problems

We consider a class of two-stage stochastic linear variational inequality problems in

the following form [11, 14, 27]:{
0 ∈ Ax+ EP [B(ξ)y(ξ)] + q1 +N[l,u](x),

0 ≤ y(ξ)⊥M(ξ)y(ξ) +N(ξ)x+ q2(ξ) ≥ 0, for P -a.e. ξ ∈ Ξ,
(2.1)

where l, u ∈ Rn and l < u in the sense of componentwise; ξ : Ω → Ξ ⊆ Rs with the

probability space being (Ω,F ,P), P ∈ P(Ξ) and P(Ξ) denotes the set of probability

distributions on the support set Ξ, A ∈ Rn×n, q1 ∈ Rn; B(·) : Rs → Rn×m, M(·) :

Rs → Rm×m, N(·) : Rs → Rm×n and q2(·) : Rs → Rm are all matrix-valued or vector-

valued mappings. The mathematical expectation EP is taken in componentwise with

respect to (w.r.t.) the corresponding probability distribution P := P ◦ ξ−1. Problem

(2.1) aims to find a pair (x, y(·)) ∈ [l, u]×Y satisfying (2.1), where Y is the collection

of measurable functions from Ξ to Rm such that the expectation in the first stage

problem of model (2.1) is well-defined. N[l,u](x) denotes the normal cone to the box

11



[l, u] at x. We say that problem (2.1) satisfies the relatively complete recourse if the

second stage problem of (2.1) has a solution y∗(x, ξ) for any x ∈ [l, u] and almost

every (a.e.) ξ ∈ Ξ.

When it comes to variational inequality problems, nonlinear complementarity

functions or residual functions have been widely employed. There is rich literature

about this issue, see for example [8, 9, 27] and the references therein. Of particular

interest in this thesis, we consider the residual function of the box-constrained vari-

ational inequality problem. Usually, for the box-constrained variational inequality

problem VI([l, u], g), where l, u ∈ Rn with l < u and g : Rn → Rn, the commonly

used residual function for VI([l, u], g) is the so-called “mid” function. It is easy to

verify that the first stage problem of (2.1) can be equivalently rewritten as

x−mid{l, u, x− Ax− EP [B(ξ)y(ξ)]− q1} = 0,

where the “mid” function is defined componentwise as follows:

mid{li, ui, zi} =


li, zi < li,
zi, li ≤ zi ≤ ui,
ui, zi > ui,

for i = 1, . . . , n.

Assume that for any pair (x, ξ) ∈ X × Ξ, the second stage SLCP of problem (2.1)

has a unique solution y∗(x, ξ). Then submitting it into the first stage problem, we

obtain

0 ∈ Ax+ EP [B(ξ)y∗(x, ξ)] + q1 +N[l,u](x),

where the right-hand side only depends on x. This inspires us to consider a residual

function fP : Rn → R+ as follows:

fP (x) : = ‖x−mid{l, u, x− Ax− EP [B(ξ)y∗(x, ξ)]− q1}‖2. (2.2)

If there is x ∈ Rn such that fP (x) = 0, then x must be a solution to problem (2.1).

For the convenience of further discussion in the sequel, we equivalently consider the

12



following box-constrained minimization problem

min
x∈[l,u]

fP (x). (2.3)

In Chapter 3, we analyze the quantitative stability of problem (2.1) by employing

the minimization problem (2.3). It is noteworthy that recasting the stochastic vari-

ational inequality problem (2.1) as a stochastic (nonconvex) optimization problem,

such as (2.3), provides a vehicle for conducting the analysis. It is not a necessary

avenue to compute an approximation solution, see for example [5, 11, 18, 28].

Probability metrics are distance functions on the space of probability measures or

probability distributions. In this thesis, we need the so-called pseudo metric between

two probability measures/distributions. We call them pseudo metrics because they

usually do not satisfy the axioms of distance. In pseudo metrics, there is a large class

of probability metrics called ζ-structure metrics.

Definition 2.1 (probability metric with ζ-structure, see [29]). Let G be a collection

of real-valued measurable functions on support set Ξ. Then, for any two probability

measures P,Q ∈ P(Ξ), we call

DG(P,Q) = sup
g∈G
|EP [g(ξ)]− EQ[g(ξ)]|

the ζ-structure probability metric between P and Q induced by G.

DG(P,Q) is a pseudo metric because DG(P,Q) = 0 does not imply P = Q unless G

is rich enough. Obviously, we have the symmetry and triangle inequality for DG. It is

known from Definition 2.1 that different ζ-structure metrics can be derived through

choosing different Gs. For example, if we take

GTV := {g : Ξ→ R : g is measurable and sup
ξ∈Ξ
|g(ξ)| ≤ 1},
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the resulting ζ-structure metric

DTV (P,Q) := sup
g∈GTV

|EP [g(ξ)]− EQ[g(ξ)]|

is called the total variation metric. If

GFMp :=
{
g : Ξ→ R : |g(ξ1)− g(ξ2)| ≤ max

{
1, ‖ξ1‖ , ‖ξ2‖

}p−1 ‖ξ1 − ξ2‖
}
,

the corresponding ζ-structure metric

ζp(P,Q) := sup
g∈GFMp

|EP [g(ξ)]− EQ[g(ξ)]|

is called the pth order Fortet-Mourier metric, which is often used in the stability

analysis of stochastic programs. Usually, which probability metric to select depends

on the properties of the stochastic optimization problem. For example, to employ

the total variation metric, some boundedness properties of the objective function are

needed. This can be easily observed from its definition. The Fortet-Mourier metric

requires some locally Lipschitz continuity conditions for the objective function, which

is widely used in the quantitative stability analysis of two-stage stochastic linear

programming problems. One can refer to [30] and [31] and references therein for

more details. Here we employ these two ζ-structure metrics due to the boundedness

and locally Lipschitz continuity of the corresponding objective functions. As for their

equivalence, weak convergence and discrete approximations of above pseudo metrics,

the reader is referred to [30].

In what follows, we give some useful properties about the solution to the second

stage SLCP problem. Recall that: A matrix M ∈ Rm×m is a P-matrix if all principal

minors of M are positive.

Proposition 2.1 ([23]). Let M(ξ) be a P-matrix for every ξ ∈ Ξ. The following

assertions hold for problem (2.1).
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(i) For any given x ∈ [l, u] and ξ ∈ Ξ, the second stage problem of (2.1) has a

unique solution y∗(x, ξ), which can be implicitly written as

y∗(x, ξ) = −W (x, ξ)(N(ξ)x+ q2(ξ)),

where W (x, ξ) := [I − D(x, ξ)(I − M(ξ))]−1D(x, ξ) and D(x, ξ) is the m-

dimensional diagonal matrix defined by

Djj(x, ξ) =

{
1, if (M(ξ)y∗(x, ξ) +N(ξ)x+ q2(ξ))j ≤ y∗j (x, ξ),

0, otherwise

for j = 1, · · · ,m;

(ii) y∗(·, ξ) is Lipschitz continuous, i.e.,

‖y∗(x1, ξ)− y∗(x2, ξ)‖ ≤ max
J∈J

∥∥M−1
J×J(ξ)

∥∥ ‖N(ξ)‖ ‖x1 − x2‖ ,

where MJ×J(ξ) is the sub-matrix of M(ξ), whose entries are indexed by J × J ,

and J denotes the power set of {1, 2, · · · ,m}.

For further discussion, we need the following assumption (see, for example, [14,

11]).

Assumption 2.1. Let M(ξ) be a P-matrix for every ξ ∈ Ξ. Moreover, there exists

a continuous function κM : Ξ→ R++, such that

max
J∈J

∥∥M−1
J×J(ξ)

∥∥ ≤ 1

κM(ξ)

for any ξ ∈ Ξ.

A sufficient condition for Assumption 2.1 is yTM(ξ)y ≥ κM(ξ) ‖y‖2 for any y ∈

Rm and ξ ∈ Ξ, from which we can deduce from [11, Lemma 2.1] that M(ξ) is a

P-matrix and in addition
∥∥M−1

J×J(ξ)
∥∥ ≤ 1

κM (ξ)
for any J ∈ J . A stronger assumption

is adopted in [11, Assumption 2.1] (see Assumption 3.1 below).
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2.2 Two-stage stochastic Cournot-Nash game

In this section, we consider a two-stage stochastic Cournot-Nash (CN) J-agent(or

player) game problem, which extends the classical deterministic CN equilibrium prob-

lem in [32]. All stochastic models involve inherently “ordered” components over

decision horizons based on the available information at corresponding stage. In par-

ticular, the decisions in a strategy may respond to the information that is available

only at the present stage. Here, we consider a two-stage case. A strategy pair of

agent j ∈ J := {1, ..., J} is denoted as

(xj ∈ R, yj : Ξ→ R), (2.4)

where xj is a first stage decision vector and yj ∈ Y represents a second stage response

function with Y being the space of measurable functions defined on Ξ. Let Ln be the

Lebesgue space of Rn-valued functions with L∞n denoteing the class of measurable

essentially bounded functions. Following a similar treatment as that in [10], we

further require the second stage response function of random variable to be essentially

bounded, i.e., yj ∈ L∞1 . Collectively, the vector of strategy pairs of all agents can be

written as

(x ∈ RJ , y : Ξ→ RJ). (2.5)

A strategy pair
(
x∗j , y

∗
j

)
∈ R × L∞1 is said to be an equilibrium of our stochastic

model if it solves the following problem for all agents j ∈ J .

max
(xj ,yj(·))

W 1
j (xj, x

∗
−j) + E

[
W 2
j

(
ξ, yj(ξ), y

∗
−j(ξ)

)]
, (objective function)

s.t. xj ∈ Xj, (first stage constraints)

yj(ξ) ∈a.s. Yj, gj
(
ξ, xj, yj(ξ)

)
≤a.s. 0 (second stage constraints)

(2.6)
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where

x∗−j = (x∗1, . . . , x
∗
j−1, x

∗
j+1, . . . , x

∗
J),

y∗−j(ξ) = (y∗1(ξ), . . . , y∗j−1(ξ), y∗j+1(ξ), . . . , y∗J(ξ)),

and yj(ξ) denotes the value of response yj(·) to realization ξ1, with

• W 1
j : R × RJ−1 → R being a first stage wealth function of agent j, which is

concave and continuously differentiable w.r.t. xj;

• W 2
j : Ξ×R×RJ−1 → R being a second stage wealth function of agent j, which

is concave, well-defined and finite;

• Xj, Yj being nonempty, closed and convex subsets of R and the second stage

constraints holding almost surely (a.s.);

• gj : Ξ×R×R→ R being a continuously differentiable function w.r.t.
(
xj, yj(ξ)

)
for almost every (a.e.) ξ ∈ Ξ.

In this subsection, the model (2.6) is formulated under the assumption that the un-

certainty can be described by a random variable ξ with known distribution. From

the perspective of the entire system, the market “chooses” x ∈ RJ before a real-

ization ξ ∈ Ξ is revealed and later “selects” y(ξ) ∈ RJ with known realization. Or

equivalently, x is a here and now solution and y is a wait and see solution.

The application of commodity production and supply in an oligopolistic market

serves as a motivation as well as the practical application problem of interest. Pre-

sented as a stochastic game, the strategy of each agent in supply-side of the market

can be described as the solution of a stochastic optimization problem (2.6). The

decision process follows that agent j ∈ J decides an optimal production quantity xj

of the commodity at the production stage. At the second stage, each agent decides a

1 For ease the exposition, the same notation ξ is used for both a random variable and its realization
in Rs without causing confusion on the context.
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supply quantity yj(ξ) after ξ is observed, and a total quantity T (y(ξ)) :=
∑J

j=1 yj(ξ)

is supplied to the market. Our focus on oligopolistic markets requires that the price

is dominantly affected by the total supplied quantity in the market T (y(ξ)). There-

fore, all the trading occurs at the price p : Ξ× R→ R+, determined by a stochastic

inverse demand curve p(ξ, T (y(ξ)). In practice, production and supply quantities

are subject to physical restrictions, for example, capability of production plant, lo-

gistic restriction, etc., i.e., xj ∈ Xj and yj(ξ) ∈a.s. Yj. More specifically, we have

non-negative requirements for both production and supply, Xj = R+ and Yj = R+.

The relations between stage-wise decision variables xj and yj(ξ) are captured by con-

straints gj
(
ξ, xj, yj(ξ)

)
≤a.s. 0 in (2.6). Essentially, every agent needs to formulate

and solve a two-stage stochastic programming problem with recourse in the sense of

achieving equilibria of a J-agents non-cooperative game of the market. We further

require that agent j’s supply to the market cannot exceed his/her production quan-

tity, i.e., yj(ξ)− xj ≤a.s. 0. This can be interpreted as the fact that agents may have

no stock to start with, or they need to preserve certain reserved quantities prior to

each decision process.

The problem can then be viewed from a slight different perspective than that of

problem (2.6). As seen from the first stage, agent j ∈ J wants to find a production

quantity xj ≥ 0 to

max
xj≥0

W 1
j (xj, x

∗
−j) + E

[
Φj(xj, x

∗
−j, ξ)

]
, (2.7)

where,

Φj(xj, x
∗
−j, ξ) = sup

yj(ξ)≥0

{W 2
j (ξ, yj(ξ), y

∗
−j(ξ)) | xj ≥ yj(ξ), for a.e. ξ ∈ Ξ}. (2.8)

Objective function in (2.7) is regarded as the expected profit of agent j, and prob-

lems (2.7)-(2.8) are termed intrinsic first stage problem following that of a related

treatment in [33]. In particular, the analysis of intrinsic first stage problem and the
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stochastic programming problem with recourse in convex case were carried out in a

series of studies by Rockafellar and Wets [34, 33, 35, 36] and more recently in [6].

The key feature of intrinsic first stage problem as well as formulation (2.6) is the

requirement on precise orders of decision execution, commonly known as the con-

straints of nonanticipativity. In problems (2.7) and (2.8), the second stage decisions

are explicitly determined after the first stage decision, provided for each xj the sec-

ond stage problem is well-defined [37]. However, the study of optimality condition of

(2.7)-(2.8), in the case of a general probability space (Ξ,F , P )2, is very complicated

since one needs to characterize the order of the decision process explicitly. For ease

of analysis, we assume that there exists a multiplier λj ∈ L1
1 corresponds to second

stage constraint and study the saddle-point condition of the Lagrangian formulation

of problem (2.6). It is worth mentioning that the Karush-Kuhn-Tucker (KKT) con-

dition of problem (2.6) (see [34]) introduces a second stage multiplier λ̃j ∈ (L∞1 )∗

for every j ∈ J which incorporates the two-stage decision making process. This can

be seen from the fact that any element of the dual space (L∞1 )∗ can be decomposed

into a component of L1
1 and a “singular” component, corresponding to the multiplier

of nonanticipativity. The saddle-point condition is shown to be sufficient and “al-

most” necessary for optimality of problem (2.6), and we refer the interested readers

to [6, 33, 34, 35, 36] for more details.

The Lagrangian formulation of problem (2.6) associated with agent j is of the

following form:

Lj(xj, x
∗
−j, yj, y

∗
−j, λj) = L1

j(xj, x
∗
−j) + E

[
L2
j

(
ξ, xj, yj(ξ), y

∗
−j(ξ), λj(ξ)

)]
,

2 In cases of finitely supported distribution, the equivalence between intrinsic first stage problem
and the original recourse problem can be established, and the optimality condition of the recourse
problem can be applied, see for example [6].

19



where

L1
j(xj, x

∗
−j) = W 1

j (xj, x
∗
−j),

L2
j

(
ξ, xj, yj(ξ), y

∗
−j(ξ), λj(ξ)

)
= W 2

j (ξ, yj(ξ), y
∗
−j(ξ)) + λj(ξ)(xj − yj(ξ)).

The constraints yj(ξ) ≤a.s. xj can be interpreted as the situation under which the

profit maximizing supply y∗j (ξ) of agent j is not necessarily equal to the total pro-

duction quantity xj. This feature of our model differs from conventional requirement

on production-clearing condition, i.e., all the produced goods are expected to supply

to the market.

In order to make further progress in characterizing the CN equilibrium, we need

to specify the structures of our wealth functions, W 1
j and W 2

j , suitable for our appli-

cation. We assume that the production cost for jth agent is quadratic, i.e., for each

j ∈ J the cost of producing xj amount of production is

1

2
cjx

2
j + ajxj,

for some cj > 0, aj > 0. In the second stage, the cost function of the supply or second

stage is assumed to be linear and of stochastic nature, i.e., for each j ∈ J the cost

of supplying yj(ξ) amount of commodity is hj(ξ)yj(ξ) for a.e. ξ ∈ Ξ. Concretely,

hj(ξ) can be regarded as the unit transport cost for agent j. We adopt a classic

stochastic inverse demand curve, see for example [38], that takes the expression

p
(
ξ, T (y(ξ))

)
= p0(ξ) − γ(ξ)T (y(ξ)) for the spot price. In practice, the stochastic

benchmark price excluding the effect of supply to the market p0 : Ξ 7→ R+ can

be estimated via statistical approaches based on real data. The supply discount

γ : Ξ→ R+ acts as a market mechanism to adjust and reflect uncertainty in quantity

in the market. In order to respect the market mechanism of supply-demand relation,

we make the following assumption throughout our study.

Assumption 2.2. There exists a γ0 > 0 such that γ(ξ) ≥ γ0 for a.e. ξ ∈ Ξ.
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Thus, agent j’s stage-wise wealth functions are,

W 1
j (xj, x

∗
−j) = −1

2
cjx

2
j − ajxj,

and

W 2
j (ξ, yj(ξ), y−j(ξ)) =

(
pj(ξ)− γ(ξ)T (y(ξ))

)
yj(ξ),

where the short-handed notation of the risk-adjusted spot price of agent j’s is denoted

by pj(ξ) := p0(ξ)− hj(ξ).

We are now ready to consider the specific stochastic programming problem for

every agent j ∈ J :

max
xj

E[Φj(ξ, x)]− 1

2
cjx

2
j − ajxj

s.t. 0 ≤ xj,

(2.9)

where

Φj(ξ, x) = max
yj(ξ)

(
pj(ξ)− γ(ξ)

( J∑
i 6=j

y∗i (ξ) + yj(ξ)
))
yj(ξ)

s.t. 0 ≤ yj(ξ) ≤ xj, for a.e. ξ ∈ Ξ.

(2.10)

Note that the requirements in problem (2.10) hold almost surely in accordance with

the a.s. constraints of the second stage in problem (2.6). However, (2.9)-(2.10) is not

easy to solve, especially in a stochastic Nash equilibrium problem with J ≥ 2, see

[14]. The complication arises since the jth agent’s problem contains that of the other

agents’ strategy, not yet known at the decision horizon. A commonly used method

is to recast problem (2.9)-(2.10) of each agent as a stochastic equilibrium problem.

Then, obtaining an equilibrium of the convex J-player game (2.9)-(2.10) is equivalent

to finding its solution for all agents. Stochastic equilibrium has been shown to be

an effective method to study and to solve two-stage multi-player stochastic game

problems, see for instance [11, 5, 39, 6, 13]. We study the saddle-point condition of the
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problem (2.9)-(2.10), rewritten in the form of problem (2.6). More specifically, for all

j ∈ J , there exists λ̄j(ξ) ∈ L1
1 with λ̄(ξ) ≥a.s. 0 so that a strategy

(
x̄j, ȳj

)
∈ R+×L∞+

solves the following system.

− cjx̄j − aj + E
[
λ̄j(ξ)

]
∈ N[0,∞)(x̄j),

pj(ξ)− γ(ξ)
J∑
i 6=j

ȳi(ξ)− 2γ(ξ)ȳj(ξ)− λ̄j(ξ) ∈a.s. N[0,∞)(ȳj(ξ)), (stationality)

x̄j ≥ 0, ȳj(ξ) ≥a.s. 0, x̄j − ȳj(ξ) ≥a.s. 0, (feasibility)

λ̄j(ξ) ≥a.s. 0, (dual feasibilty)

λ̄j(ξ)⊥a.s.(x̄j − ȳj(ξ)). (complementarity)

In particular, stationarity comes from the first order necessary optimality condition

under the assertion ∂E
[
Φj(ξ, x)

]
⊆ E

[
∂xΦ(ξ, x)

]
. The assertion is discussed in [40],

and the above system can be viewed as a weaker condition for optimality.

Rewritten in a compact form as SVI, the optimal strategy-multiplier pair (xj, yj, λj) ∈

R+ × L∞+ × L1
+ must satisfy,

0 ≤ xj ⊥ cjxj + aj − E
[
λj(ξ)

]
≥ 0,

0 ≤a.s. yj(ξ) ⊥a.s. − pj(ξ) + γ(ξ)
J∑
i 6=j

yi(ξ) + 2γ(ξ)yj(ξ) + λj(ξ) ≥a.s. 0,

0 ≤a.s. λj(ξ) ⊥a.s. xj − yj(ξ) ≥a.s. 0.

(2.11)

It follows that since all agents in oligopolistic market act non-cooperatively, we

write down the equilibrium interpreted as that of the whole system. More specif-

ically, let x = (x1, . . . , xJ)T be the first stage decision vectors of the system, and

for almost every ξ ∈ Ξ, second stage decision vector y(ξ) =
(
y1(ξ), . . . , yJ(ξ)

)T
and

the corresponding multiplier vector λ(ξ) =
(
λ1(ξ), . . . , λJ(ξ)

)T
are denoted respec-

tively. Similarly, parameter vectors can be written collectively as a = (a1, . . . , aJ)T ,
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p(ξ) = (p1(ξ), . . . , pJ(ξ))T . Then, we can treat the SVI for all agents as a two-stage

stochastic complementarity problem:

0 ≤ x ⊥ Cx− E[λ(ξ)] + a ≥ 0,

0 ≤
(
y(ξ)
λ(ξ)

)
⊥
(

Π(ξ) I
−I 0

)(
y(ξ)
λ(ξ)

)
+

(
−p(ξ)
x

)
≥ 0, for a.e. ξ ∈ Ξ,

(2.12)

where

C = diag(c1, c2, ..., cJ), Π(ξ) = γ(ξ)(eeT + I).

It follows that for the whole system, a J-tuple of strategies

(
x∗, y∗, λ∗

)
=
(
(x∗1, y

∗
1, λ

∗
1), . . . , (x∗J , y

∗
J , λ

∗
J)
)
∈ RJ × L∞J × L1

J

is called a solution of the two-stage stochastic complementarity problem (2.12).
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Chapter 3

Quantitative analysis for problem

(2.1)

3.1 Quantitative stability

Stability analysis of stochastic optimization problems is important for not only the-

oretical study but also numerical approximation. When we handle a stochastic op-

timization problem numerically, usually the first step is the discrete or empirical

approximation to the included high dimensional integrals. Then some critical ques-

tions arise: what is the quantitative relationship between the original continuous

problem and its discrete approximation? Do the optimal value and/or optimal so-

lution set of the approximation problem converge to those of the original problem?

All these questions can be answered through stability analysis. In view of this, we

carry out the quantitative stability analysis of problem (2.1) in this section.

3.1.1 Existence of solutions

The existence statement for stochastic variational inequality problems is a relatively

sparse subarea. There are some results, see for example [41, 42, 43, 44, 45]. Specially,

Ravat and Shanbhag considered in [42] the stochastic Nash game where the expecta-

tion of each player’s cost function is minimized. Conditions to admit an equilibrium

for both smooth and nonsmooth (but continuous) objective functions were investi-
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gated. More recently, the same authors discussed in [43] some verifiable sufficiency

conditions for the existence of solutions to stochastic (quasi-)variational inequality

problems which extended the results in [42] from single-valued stochastic variational

inequality problems to multi-valued stochastic quasi-variational inequality problems.

The existing works mainly concentrate on the deterministic case or the single

stage case. Here, we adopt these pioneering works or concepts to give some assertions

about the existence of solutions to the two-stage stochastic ones. In the two-stage

case, Chen, Sun and Xu employed the strong monotonicity in terms of a redefined

inner product on the product space of the first stage and second stage variables in

[11], under which the existence and uniqueness assertion of solutions to the two-stage

stochastic linear complementarity problem were derived. Under Assumption 2.1, we

know that there always exists a unique solution y∗(x, ξ) to the second stage SLCP

problem for any given pair (x, ξ) ∈ [l, u] × Ξ. Namely, problem (2.1) satisfies the

relatively complete recourse condition. However, this does not necessarily ensure the

existence of a solution to problem (2.1). Therefore, in the sequel, we will introduce

several conditions such that problem (2.1) has at least one solution under probability

distribution P , and so does its perturbed problem under Q, i.e.,

{
0 ∈ Ax+ EQ[B(ξ)y(ξ)] + q1 +N[l,u](x),

0 ≤ y(ξ)⊥M(ξ)y(ξ) +N(ξ)x+ q2(ξ) ≥ 0, for Q−a.e. ξ ∈ Ξ.
(3.1)

To introduce the first sufficient condition, we make the following assumption

which was first used in [11] to study the two-stage SLCP.

Assumption 3.1. There exists a continuous function κ(·) : Ξ→ R++, such that

(xT , yT )

(
A B(ξ)

N(ξ) M(ξ)

)(
x
y

)
≥ κ(ξ)(‖x‖2 + ‖y‖2) (3.2)

P -a.e. ξ ∈ Ξ, for any x ∈ Rn and y ∈ Rm, where EP [κ(ξ)] < +∞.
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It is easy to see that Assumption 3.1 implies Assumption 2.1 by letting x = 0.

Then, under Assumption 3.1, Chen, Sun and Xu [11] gave the following conclusion.

Proposition 3.1. Suppose that Assumption 3.1 holds. Then problem (2.1) has a

unique solution.

Assumption 3.1 is sufficient for problem (2.1) to have a unique solution. In this

thesis, we give a weaker condition for the existence of solutions to problem (2.1)

without uniqueness. For this purpose, we introduce the following notations and the

concept of pseudomonotonicity.

Define the mapping ΦP : Rn → Rn as

ΦP (x) = Ax+ EP [B(ξ)y∗(x, ξ)] + q1.

Recall that ΦP is pseudomonotone [1, Definition 2.3.1] if

〈x1 − x2,ΦP (x2)〉 ≥ 0⇒ 〈x1 − x2,ΦP (x1)〉 ≥ 0.

Immediately, based on [1], we have the following proposition.

Proposition 3.2. Suppose that Assumption 2.1 holds and the following integral∫
Ξ

‖B(ξ)‖max
J∈J

∥∥M−1
J×J(ξ)

∥∥ ‖N(ξ)‖P (dξ)

is finite. Then the optimal solution set of problem (2.1) is nonempty and its projection

on the first stage variable is compact. If, in addition, ΦP is pseudomonotone on [l, u],

this projection is convex too.

Proof. We first verify that ΦP (x) is continuous w.r.t. x. Note that

‖ΦP (x1)− ΦP (x2)‖ ≤ ‖A‖ ‖x2 − x1‖+ ‖EP [B(ξ)(y∗(x2, ξ)− y∗(x1, ξ))]‖ . (3.3)

For the second term of the right-hand side of (3.3), we have estimation

‖EP [B(ξ)(y∗(x2, ξ)− y∗(x1, ξ))]‖

≤ EP [‖B(ξ)(y∗(x2, ξ)− y∗(x1, ξ))‖]

≤ EP [‖B(ξ)‖max
J∈J

∥∥M−1
J×J(ξ)

∥∥ ‖N(ξ)‖] ‖x1 − x2‖ .
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Due to the finiteness of EP [‖B(ξ)‖maxJ∈J
∥∥M−1

J×J(ξ)
∥∥ ‖N(ξ)‖], we know that ΦP

is Lipschitz continuous, which is obviously continuous. Then, we derive from [1,

Proposition 2.2.3] that

− ΦP (x) ∈ N[l,u](x) (3.4)

has a solution. Since Assumption 2.1 hold, there always exists a solution for the

second stage problem for any x ∈ [l, u]. To summarize, problem (2.1) has a solution.

Corollary 2.2.5 in [1] tells us that: if X ⊆ Rn is compact and convex, and

F : X → Rn is continuous, the solution set of −F (x) ∈ NX(x) is nonempty and

compact. If, in addition, F is pseudomonotone, it is known from [1, Theorem 2.3.5]

that the solution set is convex.

Due to the boundedness and convexity of interval [l, u], we know from [1, Corollary

2.2.5] that the solution set of (3.4) is nonempty and compact. Moreover, if ΦP is

pseudomonotone, based on [1, Theorem 2.3.5], the solution set of (3.4) is convex.

Remark 3.1. We have the following observations about the assumptions in Propo-

sition 3.2.

(i) In Proposition 3.2, Assumption 2.1 is easy to check by examining M(ξ). The

integrability requirement of ‖B(ξ)‖maxJ∈J
∥∥M−1

J×J(ξ)
∥∥ ‖N(ξ)‖ seems to be im-

plicit. Usually, the restrictive integrability conditions on B(ξ),M(ξ), N(ξ) are

imposed for easier verifiability, see [42]. For example, if Assumptions 2.1 and

3.2 (in the following) hold, and κM(ξ) ≥ κ for some positive constant κ, we

have estimation

‖B(ξ)‖max
J∈J

∥∥M−1
J×J(ξ)

∥∥ ‖N(ξ)‖ ≤ C2 max{1, ‖ξ‖}2α

κ
.

Then a sufficient condition for the integrability of the left-hand side is simply

P ∈ P2α(Ξ), which can be verified easily.
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(ii) As for the pseudomonotonicity of ΦP over [l, u], we can verify the mono-

tonicity of ΦP instead of the pseudomonotonicity if possible. This might be

easier to implement, which is only necessary to examine the monotonicity of

Ax + B(ξ)y∗(x, ξ) + q1 for almost everywhere ξ ∈ Ξ. It is known from Propo-

sition 2.1 that, for any x1, x2 ∈ [l, u], we have

〈x1 − x2, Ax1 +B(ξ)y∗(x1, ξ) + q1 − (Ax2 +B(ξ)y∗(x2, ξ) + q1)〉

≥ 〈x1 − x2, A(x1 − x2)〉 −max
J∈J

∥∥M−1
J×J(ξ)

∥∥ ‖B(ξ)‖ ‖N(ξ)‖ ‖x1 − x2‖2

≥
(
λmin(A)−max

J∈J

∥∥M−1
J×J(ξ)

∥∥ ‖B(ξ)‖ ‖N(ξ)‖
)
‖x1 − x2‖2 ,

where λmin(A) is the minimal eigenvalue of A. Then a sufficient condition for

the monotonicity is that

λmin(A)−max
J∈J

∥∥M−1
J×J(ξ)

∥∥ ‖B(ξ)‖ ‖N(ξ)‖ ≥ 0

holds for a.e. ξ ∈ Ξ. This can be further simplified under some specific settings.

For example, if we have y∗(x, ξ) = −M(ξ)−1(N(ξ)x + q2(ξ)) ≥ 0 for almost

everywhere ξ ∈ Ξ and each x ∈ [l, u], that is, A − B(ξ)W (x, ξ)N(ξ) = A −

B(ξ)M(ξ)−1N(ξ), the monotonicity condition holds when A−B(ξ)M(ξ)−1N(ξ)

is positive semidefinite for a.e. ξ ∈ Ξ, which can be easily verified.

In what follows, we consider the existence of solutions to the perturbed problem

(3.1) under certain conditions. To ease the statement, we define the multifunction

ΘP : [l, u]⇒ Rn as

ΘP (x) = Ax+ EP [B(ξ)y∗(x, ξ)] + q1 +N[l,u](x)

and its inverse is

Θ−1
P (y) := {x ∈ [l, u] : y ∈ ΘP (x)}.
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Proposition 3.3. Under the same assumption of Proposition 3.2, z ∈ ΘP (x) is

solvable for any z ∈ Rn.

Proof. Note that, for any x ∈ Rn, z ∈ ΘP (x) is equivalent to −ΦP (x) + z ∈ N[l,u](x).

We know from the proof of Proposition 3.2 that −ΦP (x) is continuous w.r.t x, so is

−ΦP (x) + z. Then, by the same argument as that in Proposition 3.2, we know that

z ∈ ΘP (x) is solvable for any x ∈ Rn, which completes the proof.

Before establishing the existence of solutions to the perturbed problem, we need

the following boundedness assumption.

Assumption 3.2. There exist constants α ≥ 0 and C > 0, such that the random

parameters included in problem (2.1) can be bounded above as

‖Λ(ξ)‖ ≤ C max{1, ‖ξ‖}α, for a.e. ξ ∈ Ξ,

where Λ(ξ) = B(ξ),M(ξ), N(ξ) or q2(ξ).

This kind of assumption is commonly adopted in the quantitative analysis of

stochastic programming problems. Actually, it is usually assumed that these para-

metric mappings are affine w.r.t. ξ. This would imply not only that Assumption 3.2

holds with α = 1, but also that these mappings are Lipschitz continuous w.r.t. ξ.

With Assumption 3.2, we have the following lemma.

Lemma 3.1. Suppose that Assumptions 2.1 and 3.2 hold, κM(ξ) ≥ κ > 0 and

P,Q ∈ P2α+1(Ξ). Then there exists a positive number L such that

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ ≤ LDTV (P,Q)
1

2α+1 , (3.5)

when DTV (P,Q) + ζ2α+1(P,Q) ≤ 1.

Proof. It is known from [23, Theorem 2.1] and Assumption 2.1 that ‖W (x, ξ)‖ ≤

maxJ∈I
∥∥M−1

J×J(ξ)
∥∥ ≤ 1

κM (ξ)
. Under Assumptions 2.1 and 3.2, we have from (i) of
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Proposition 2.1 that

‖y∗(x, ξ)‖ ≤ 1

κM(ξ)
‖N(ξ)x+ q2(ξ)‖ ≤ (R + 1)C

κ
max{1, ‖ξ‖}α, (3.6)

where R := maxx∈[l,u] ‖x‖. Thus,

‖B(ξ)y∗(x, ξ)‖ ≤ (R + 1)C2

κ
max{1, ‖ξ‖}2α. (3.7)

Meanwhile, we have

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ ≤
∫
{ξ∈Ξ:‖ξ‖>Γ}

‖B(ξ)y∗(x, ξ)‖ (P +Q)(dξ)

+

∥∥∥∥∫
{ξ∈Ξ:‖ξ‖≤Γ}

B(ξ)y∗(x, ξ)(P −Q)(dξ)

∥∥∥∥.
Here, we select Γ ≥ 1. For the second term at the right-hand side, we have∥∥∥∥∫

{ξ∈Ξ:‖ξ‖≤Γ}
B(ξ)y∗(x, ξ)(P −Q)(dξ)

∥∥∥∥
=

(R + 1)C2Γ2α

κ

∥∥∥∥∫
{ξ∈Ξ:‖ξ‖≤Γ}

B(ξ)y∗(x, ξ)

(R + 1)C2Γ2α/κ
(P −Q)(dξ)

∥∥∥∥ .
It is known from (3.7) that

‖B(ξ)y∗(x, ξ)‖ ≤ (R + 1)C2Γ2α

κ

for any ξ with ‖ξ‖ ≤ Γ. This implies

(B(ξ)y∗(x, ξ))i
(R + 1)C2Γ2α/κ

≤ 1

because |(B(ξ)y∗(x, ξ))i| ≤ ‖B(ξ)y∗(x, ξ)‖, for i = 1, 2, · · · , n. Define gi(x, ξ) by

gi(x, ξ) =

{
(B(ξ)y∗(x,ξ))i
(R+1)C2Γ2α/κ

, ‖ξ‖ ≤ Γ;

0, otherwise.
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Obviously, we have gi(x, ξ) ∈ GTV which indicates that∣∣∣∣∫
Ξ

gi(x, ξ)(P −Q)(dξ)

∣∣∣∣ ≤ DTV (P,Q)

for i = 1, 2, · · · , n. Denote by g = (g1, · · · , gn)T . Then, by the definition of total

variation metric, we have∥∥∥∥∫
{ξ∈Ξ:‖ξ‖≤Γ}

B(ξ)y∗(x, ξ)

(R + 1)C2Γ2α/κ
(P −Q)(dξ)

∥∥∥∥ =

∥∥∥∥∫
Ξ

g(x, ξ)(P −Q)(dξ)

∥∥∥∥
=

(
n∑
i=1

∣∣∣∣∫
Ξ

gi(x, ξ)(P −Q)(dξ)

∣∣∣∣2
) 1

2

≤
√
nDTV (P,Q).

Finally, we obtain∥∥∥∥∫
{ξ∈Ξ:‖ξ‖≤Γ}

B(ξ)y∗(x, ξ)(P −Q)(dξ)

∥∥∥∥ ≤ √n(R + 1)C2

κ
Γ2αDTV (P,Q).

Note that ‖ξ‖p /p ∈ GFMp for any p ≥ 1, which means∫
Ξ

‖ξ‖pQ(dξ)−
∫

Ξ

‖ξ‖p P (dξ) ≤ pζp(P,Q).

Thus, ∫
{ξ∈Ξ:‖ξ‖>Γ}

‖B(ξ)y∗(x, ξ)‖ (P +Q)(dξ)

≤ (R + 1)C2

κΓ

∫
{ξ∈Ξ:‖ξ‖>Γ}

‖ξ‖2α+1 (P +Q)(dξ)

≤ (R + 1)C2

κΓ

(
2EP [‖ξ‖2α+1] + (2α + 1)ζ2α+1(P,Q)

)
.

To summarize the above estimation, we obtain that

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ ≤

√
n

(R + 1)C2

κ
Γ2αDTV (P,Q) +

(R + 1)C2

κΓ
(2EP [‖ξ‖2α+1] + 2α + 1),
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which comes from the assumption that DTV (P,Q) + ζ2α+1(P,Q) ≤ 1. Specially, we

define

Γ = DTV (P,Q)−1/(2α+1) ≥ 1.

Finally, we derive that

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ ≤ LDTV (P,Q)
1

2α+1 ,

where L =
(
(R + 1)C2(

√
n+ 2EP [‖ξ‖2α+1] + 2α + 1)

)
/κ.

Proposition 3.4. Suppose that Assumptions 2.1 and 3.2 hold, κM(ξ) ≥ κ > 0 and

P,Q ∈ P2α(Ξ). Then the perturbed problem (3.1) is solvable.

Proof. We have from Assumptions 2.1 and 3.2, and κM(ξ) ≥ κ > 0 that

‖B(ξ)‖max
J∈J

∥∥M−1
J×J(ξ)

∥∥ ‖N(ξ)‖ ≤ C2 max{1, ‖ξ‖2α}
κM(ξ)

≤ C2 max{1, ‖ξ‖2α}
κ

.

This and P ∈ P2α(Ξ) imply that Proposition 3.3 holds.

Moreover, it is known from (3.7) that

‖B(ξ)y∗(x, ξ)‖ ≤ (R + 1)C2

κ
max{1, ‖ξ‖}2α.

Since P,Q ∈ P2α(Ξ), we obtain that both EP [B(ξ)y∗(x, ξ)] and EQ[B(ξ)y∗(x, ξ)] are

well-defined and have finite value. Let

z = EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)] ∈ Rn.

According to Proposition 3.3,

EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)] ∈ ΘP (x)

is solvable, that is,

0 ∈ Ax+ EQ[B(ξ)y∗(x, ξ)] + q1 +N[l,u](x)

or the perturbed problem (3.1) is solvable.
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King and Rockafellar in [41] put forward the concept of subinvertibility to inves-

tigate the existence of the solution to perturbed generalized equations, which can be

applied to the situation without the differentiability assumption. In the following,

we employ the concept of subinvertibility to establish the existence assertion. The

subinvertibility of a multifunction is defined on its graph. For more details about the

graph of a multifunction, one can refer to [46]. Specifically, we have the following

definition of subinvertibility.

Definition 3.1 (subinvertibility, [41]). ΘP (x) is said to be subinvertible at (x∗, 0),

if 0 ∈ ΘP (x∗) and there exist a compact neighborhood U of x∗, a positive scalar ε

and a nonempty convex-valued multifunction G : εB → U , such that the graph of

G, denoted by gphG, is closed, x∗ ∈ G(0) and G(y) is contained in Θ−1
P (y) for each

y ∈ εB.

As for more discussion of subinvertibility, one can refer to [41] for details. Then,

based on the concept of subinvertibility and [41, Proposition 3.1], we have the fol-

lowing proposition.

Proposition 3.5. Suppose that all assumptions in Lemma 3.1 hold and ΘP (x) is

subinvertible at (x∗, 0). Then there exist a compact and convex neighborhood U of x∗

and a positive scalar ε, such that

0 ∈ Ax+ EQ[B(ξ)y∗(x, ξ)] + q1 +N[l,u](x)

has at least one solution in U when DTV (P,Q) + ζ2α+1(P,Q) ≤ ε.

Proof. According to Lemma 3.1, we have that

‖EQ[B(ξ)y∗(x, ξ)]− EP [B(ξ)y∗(x, ξ)‖ ≤ LDTV (P,Q)
1

2α+1 .

From [41, Proposition 3.1], we know that there exists an ε0 > 0 satisfying

LDTV (P,Q)
1

2α+1 ≤ ε0,
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such that the perturbed problem

0 ∈Ax+ EP [B(ξ)y∗(x, ξ)] + q1 +N[l,u](x)

+ Ax+ EQ[B(ξ)y∗(x, ξ)] + q1 − (Ax+ EP [B(ξ)y∗(x, ξ)] + q1)

=Ax+ EQ[B(ξ)y∗(x, ξ)] + q1 +N[l,u](x)

has at least one solution in a compact and convex neighborhood U of x∗. Then,

letting ε :=
(
ε0
L

)2α+1
completes the proof.

The subinvertibility of ΘP (x) can be verified under some typical cases, see [41].

The following remark tells us that our conditions are not limiting compared with

those in [11, 13].

Remark 3.2. As we mentioned before, in [11], the authors required Assumption 3.1,

which is stronger than Assumption 2.1. On the other hand, in [13], the authors

directly assumed that problem (2.1) is solvable, and the coefficient matrix(
A B(ξ)

N(ξ) M(ξ)

)
is positive semidefinite for any ξ ∈ Ξ, where their support set Ξ is assumed to be finite.

In this case, the positive semidefinite assumption is equivalent to monotonicity. Our

conditions are weaker than those in [13]. To clarify this, we consider the following

coefficient matrix: (
A 0

N · ξ M · ξ2

)
,

where ξ ∈ Ξ := [1
2
, 1], A ∈ Rn×n is negative definite, N ∈ Rm×n and M ∈ Rm×m

is positive definite. Obviously, due to the negative definiteness of A, this kind of

coefficient matrix is not positive semidefinite. When the coefficient matrix takes

the above form, the first stage problem is always solvable if x = −A−1q1 ∈ [l, u].

Moreover, the positive semidefiniteness of M(ξ) ensures that the second stage problem

is always solvable. However, this situation still fails to satisfy the requirement in [13].
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3.1.2 Quantitative stability

In this subsection, we consider the quantitative stability analysis of problem (2.1).

Denote by S(P ) and υ(P ) the optimal solution set and optimal value of problem

(2.3). Note the fact that∣∣‖a‖2 − ‖b‖2
∣∣ =

∣∣(a− b)T (a+ b)
∣∣ ≤ ‖a− b‖ (‖a‖+ ‖b‖)

for any a, b ∈ Rn. By this fact and (2.2), we have the following estimation:

|fP (x)− fQ(x)|

≤ ‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖

·
(
2 ‖x‖+ ‖mid{l, u, x− (Ax+ EP [B(ξ)y∗(x, ξ)] + q1)}‖

+ ‖mid{l, u, x− (Ax+ EQ[B(ξ)y∗(x, ξ)] + q1)}‖
)
. (3.8)

Firstly, we assume that the support set Ξ is a compact subset in Rs. Then we

have

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ =

∥∥∥∥∫
Ξ

B(ξ)y∗(x, ξ)(P −Q)(dξ)

∥∥∥∥ .
It is known from (3.7) that

|Bi(ξ)y
∗(x, ξ)| ≤ ‖B(ξ)y∗(x, ξ)‖ ≤ (R + 1)C2

κM(ξ)
max{1, ‖ξ‖}2α, i = 1, 2, · · · , n,

where R = maxx∈[l,u]{1, ‖x‖}. Moreover, we have

0 < max
ξ∈Ξ

{
(R + 1)C2

κM(ξ)
max{1, ‖ξ‖}2α

}
< +∞

because of the compactness of Ξ and the positivity and continuity of κM(ξ). Then,

we continue∣∣∣∣∫
Ξ

Bi(ξ)y
∗(x, ξ)(P −Q)(dξ)

∣∣∣∣ ≤ max
ξ∈Ξ

{
(R + 1)C2

κM(ξ)
max{1, ‖ξ‖}2α

}
DTV (P,Q),
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for i = 1, 2, · · · , n. Thus we obtain∥∥∥∥∫
Ξ

B(ξ)y∗(x, ξ)(P −Q)(dξ)

∥∥∥∥ ≤ √n(R + 1)C2 max
ξ∈Ξ

{
max{1, ‖ξ‖}2α

κM(ξ)

}
DTV (P,Q).

For the second term of the right-hand side of (3.8), we can bound it by

2

(
4R + ‖A‖R + (R + 1)C2 max

ξ∈Ξ

(
max{1, ‖ξ‖}2α

κM(ξ)

)
+ ‖q1‖

)
:= η.

To sum up, we have the following quantitative estimation.

Lemma 3.2. Let Assumptions 2.1 and 3.2 hold and Ξ be a compact set. Then there

exists a positive constant L1, such that

sup
x∈[l,u]

|fP (x)− fQ(x)| ≤ L1DTV (P,Q),

where L1 := η
√
n(R + 1)C2 maxξ∈Ξ

(
{1,‖ξ‖}2α
κM (ξ)

)
.

Before establishing the relationship between S(Q) and S(P ), we introduce the

growth function and its inverse. We call ψP : R+ → R the growth function of problem

(2.3) if

ψP (τ) := min{fP (x) : d(x, S(P )) ≥ τ, x ∈ [l, u]}.

It is not difficult to verify from its definition that ψP (·) is nondecreasing and lower

semicontinuous. Its inverse function is defined by

ψ−1
P (t) = sup{τ ∈ R+ : ψP (τ) ≤ t}, (3.9)

which, of course, is nondecreasing too. For more information, we refer to [46, Exam-

ple 7.63] and [30].

As a sequence of Lemma 3.2, we immediately obtain the following quantitative

description of optimal solution sets.
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Theorem 3.1. Let Assumptions 2.1 and 3.2 hold and the support set Ξ be compact.

Then

S(Q) ⊆ S(P ) + ψ−1
P (L1DTV (P,Q))B,

where L1 is defined in Lemma 3.2 and B is the closed unit ball centered at 0.

Proof. A similar proof can be found in [30, Theorem 9]. To keep the thesis self-

contained, we provide a brief proof. If S(Q) = ∅, the assertion obviously holds. In

the following, we assume S(Q) 6= ∅. For any x̃ ∈ S(Q), we have υ(Q) = fQ(x̃) = 0

and υ(P ) = 0. Then we have

L1DTV (P,Q) = L1DTV (P,Q) + fQ(x̃)− υ(P )

≥ fP (x̃)− fQ(x̃) + fQ(x̃)− υ(P )

= fP (x̃)− υ(P )

≥ ψP (d(x̃, S(P ))).

Thus, we have

d(x̃, S(P )) ≤ ψ−1
P (L1DTV (P,Q)).

Since x̃ ∈ S(Q) is selected arbitrarily, we have actually shown that

S(Q) ⊆ S(P ) + ψ−1
P (L1DTV (P,Q))B.

In what follows, we derive the corresponding conclusions without compactness of

the support set Ξ by utilizing the conclusion in Lemma 3.1.

Theorem 3.2. Suppose that Assumptions 2.1 and 3.2 hold, P,Q ∈ P2α+1(Ξ) and

κM(ξ) ≥ κ > 0. Then there exists a positive constant L2, such that

sup
x∈[l,u]

|fP (x)− fQ(x)| ≤ L2DTV (P,Q)
1

2α+1 , (3.10)

S(Q) ⊆ S(P )) + ψ−1
P (L2DTV (P,Q)

1
2α+1 )B, (3.11)
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when DTV (P,Q) + ζ2α+1(P,Q) ≤ 1.

Proof. We know from Lemma 3.1 that there exists a positive constant L > 0, such

that

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ ≤ LDTV (P,Q)
1

2α+1 , (3.12)

when DTV (P,Q) + ζ2α+1(P,Q) ≤ 1.

For the second term in the right-hand side of (3.8), we can bound it above by

8R + 2 ‖A‖R + 2 ‖q1‖+
(R + 1)C2

(
EP [‖ξ‖2α] + EQ[‖ξ‖2α] + 2

)
κ

≤ 8R + 2 ‖A‖R + 2 ‖q1‖+
2(R + 1)C2

κ
(EP [‖ξ‖2α] + αζ2α(P,Q) + 1)

≤ 8R + 2 ‖A‖R + 2 ‖q1‖+
2(R + 1)C2

κ
(EP [‖ξ‖2α] + α + 1) := C1, (3.13)

where R is defined as that in Lemma 3.1 and the second inequality comes from (see

[30]) ∣∣EQ[‖ξ‖2α]− EP [‖ξ‖2α]
∣∣ ≤ 2αζ2α(P,Q).

Combining (3.12) and (3.13), and letting L2 = LC1, we obtain (3.10). We can

derive (3.11) by using a similar proof as that of Theorem 3.1, and thus omit the

proof.

Theorems 3.1 and 3.2 assert that the solution set of the perturbed problem can

be somehow bounded by that of the original problem under specific conditions. In

order to quantify it, we adopt a general growth function, instead of imposing a

specific growth condition, on the objective function of the original problem. Since

the general growth function will vanish at 0, see [30] for details, a sufficiently small

perturbation will not change the solution set too much. This stability property is

important for both theoretical research and practical calculation. Recall that we say

the general growth function ψP has the kth order growth for some scalar k ≥ 1 if
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ψP (τ) ≥ Cτ k for small τ ∈ R+ and positive constant C. If ψP has kth order growth,

Theorems 3.1 and 3.2 would establish the Hölder continuity of S(·) at P with rate

1/k.

3.2 Exponential rate of convergence

In this section, we consider the discrete approximation to problem (2.1). Assume

that, according to the probability distribution P , we have independent and identically

distributed samples ξ1, ξ2, · · · , ξK . Then, for each fixed positive integer K, we have

the following discrete approximation to problem (2.1) with the sample size K, i.e.,

{
0 ∈ Ax+ 1

K

∑K
i=1(B(ξi)y(ξi)) + q1 +N[l,u](x),

0 ≤ y(ξi)⊥M(ξi)y(ξi) +N(ξi)x+ q2(ξi) ≥ 0, for i = 1, 2, · · · , K.
(3.14)

In the sequel, we investigate the approximation properties between problems (2.1)

and (3.14) as K tends to infinity. To this end, we define the discrete approximation

distribution PK with the sample size K by

PK(ξ) =
1

K

K∑
i=1

δξi(ξ), for ξ ∈ Ξ,

where δξi(·) are indicator functions, that is, δξi(ξ) = 1 if ξ = ξi; otherwise δξi(ξ) = 0

for i = 1, 2, · · · , K. Under Assumption 3.1, we can equivalently rewrite (3.14) as a

minimization problem as follows:

min
x∈[l,u]

fPK (x), (3.15)

where fPK is defined in (2.2) by substituting P with PK .

Different from the usual convergence analysis about stochastic variational in-

equality problems (see for instance [14, 11, 47]) which does not adopt the residual
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function, we consider the convergence and exponential rate of convergence between

problems (2.3) and (3.15).

To investigate the convergence of the optimal solution set of problem (3.15) to

that of problem (2.3), we need to consider the convergence between fPK (x) and fP (x).

For this purpose, we first derive the uniform convergence of term ‖EP [B(ξ)y∗(x, ξ)]−

EPK [B(ξ)y∗(x, ξ)]‖ on [l, u]. Thus, we have the following proposition.

Proposition 3.6. Suppose that Assumptions 2.1 and 3.2 hold, and P ∈ P(Ξ) satis-

fies

EP

[
‖ξ‖2α

κM(ξ)

]
< +∞. (3.16)

Then

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK [B(ξ)y∗(x, ξ)]‖ → 0

as K →∞, with probability one.

Proof. It is easy to see from Proposition 2.1 that B(ξ)y∗(·, ξ) is continuous in [l, u].

Moreover, we know from (3.6) and Assumption 3.2 that

‖B(ξ)y∗(x, ξ)‖ ≤ 1

κM(ξ)
‖N(ξ)x+ q2(ξ)‖ ‖B(ξ)‖

≤ (R + 1)C2

κM(ξ)
max{1, ‖ξ‖}2α

≤ (R + 1)C2

κM(ξ)

(
1 + ‖ξ‖2α) . (3.17)

By (3.16), we have that the right-hand side of (3.17) is integrable under probability

distribution P . All these arguments ensure the uniform convergence by [37, Theorem

7.53].

Based on Proposition 3.6, we immediately obtain the following corollary.
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Corollary 3.1. Under the same assumptions as Proposition 3.6, we have that

lim
K→∞

sup
x∈[l,u]

‖EPK [B(ξ)y∗(x, ξ)]‖ ≤ sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]‖+ 1

with probability one.

Lemma 3.3. Let ψ−1
P be defined in (3.9). Then for any ε > 0, there exists a suffi-

ciently small scalar δ > 0 such that ψ−1
P (δ) ≤ ε, namely, ψ−1

P (δ)→ 0 as δ → 0.

Proof. Recall that

ψ−1
P (t) = sup{τ ∈ R+ : ψP (τ) ≤ t}.

For any ε > 0, there exists a sufficiently small δ > 0 with δ ≤ ψP (ε), which implies

ε ≥ ψ−1
P (δ).

Corollary 3.2. Let Assumption 2.1 hold. Then S(PK) 6= ∅.

Proof. Since PK is the empirical distribution with finite support set {ξ1, · · · , ξK},

we have that ∫
Ξ

‖B(ξ)‖max
J∈J

∥∥M−1
J×J(ξ)

∥∥ ‖N(ξ)‖PK(dξ)

=
1

K

K∑
i=1

∥∥B(ξi)
∥∥max
J∈J

∥∥M−1
J×J(ξi)

∥∥∥∥N(ξi)
∥∥

≤ 1

K

K∑
i=1

‖B(ξi)‖ ‖N(ξi)‖
κM(ξi)

< +∞

for any positive integer K, where the last inequality comes from Assumption 2.1.

Then according to Proposition 3.2 with Q = PK , S(PK) is nonempty.

Theorem 3.3. Under the same assumptions as Proposition 3.6, we have

d(S(PK), S(P ))→ 0

as K →∞, with probability one.
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Proof. We know that

d(S(PK), S(P )) ≤ ψ−1
P

(
sup
x∈[l,u]

|fP (x)− fPK (x)|

)
. (3.18)

Therefore, to establish the assertion, we only need to prove

sup
x∈[l,u]

|fP (x)− fPK (x)| → 0

with probability one as K →∞. We have from (3.8) that

sup
x∈[l,u]

|fP (x)− fPK (x)| ≤

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK [B(ξ)y∗(x, ξ)]‖ · θ(PK , P ),

where

θ(PK , P ) =8R + 2R ‖A‖+ 2 ‖q1‖

+ sup
x∈[l,u]

‖EPK [B(ξ)y∗(x, ξ)]‖+ sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]‖ .
(3.19)

Then, we obtain

lim
K→∞

sup
x∈[l,u]

|fP (x)− fPK (x)| ≤

lim
K→∞

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK [B(ξ)y∗(x, ξ)]‖ · lim
K→∞

θ(PK , P ).

It can be deduced from Proposition 3.6 and Corollary 3.1 that

lim
K→∞

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK [B(ξ)y∗(x, ξ)]‖ = 0

and

lim
K→∞

sup
x∈[l,u]

‖EPK [B(ξ)y∗(x, ξ)]‖ ≤ sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]‖+ 1

with probability one, respectively. The second assertion above indicates that

lim
K→∞

θ(PK , P ) ≤ λ(P )
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with probability one, where

λ(P ) = 8R + 2R ‖A‖+ 2 ‖q1‖+ 2 sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]‖+ 1. (3.20)

All these imply that

lim
K→∞

sup
x∈[l,u]

|fP (x)− fPK (x)| = 0

with probability one. Due to Lemma 3.3, we obtain

lim
K→∞

ψ−1
P

(
sup
x∈[l,u]

|fP (x)− fPK (x)|

)
= 0

with probability one, which completes the proof.

Furthermore, under ordinary conditions, the exponential rate of convergence can

be derived. It is noteworthy that an earlier paper about the exponential rate of

convergence is [48]. The authors studied the uniformly exponential convergence of

the SAA for stochastic mathematical programs with variational constraints through

the Cramér’s Large Deviation Theorem.

We can derive from the above discussion that [B(ξ)y∗(x, ξ)]i is Lipschitz contin-

uous w.r.t. x for i = 1, 2, · · · , n under Assumption 2.1. Concretely,

|[B(ξ)y∗(x1, ξ)]i − [B(ξ)y∗(x2, ξ)]i| = ‖B(ξ)y∗(x1, ξ)−B(ξ)y∗(x2, ξ)‖

≤ ‖B(ξ)‖ ‖N(ξ)‖ ‖x1 − x2‖ /κM(ξ)

= C(ξ) ‖x1 − x2‖

for i = 1, 2, · · · , n, where C(ξ) = ‖B(ξ)‖ ‖N(ξ)‖ /κM(ξ).

To establish the exponential rate of convergence, similar to that in [48], we need

the following assumptions.

Assumption 3.3. Let the following assertions hold:
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(i) For each x ∈ [l, u], the moment generating functions of random variables

[B(ξ)y∗(x, ξ)]i − (EP [B(ξ)y∗(x, ξ)])i, i.e.,

EP [exp(t([B(ξ)y∗(x, ξ)]i − (EP [B(ξ)y∗(x, ξ)])i))]

for i = 1, 2, · · · , n, are finite valued for each t in a neighborhood of zero.

(ii) The moment generating function of C(ξ), i.e.,

EP [exp(tC(ξ))]

is finite valued for each t in a neighborhood of zero.

Proposition 3.7. Let Assumptions 2.1 and 3.3 hold. Then for any ε > 0, there

exist two positive scalars L(ε) and β(ε) which depend only on ε, such that

P

{
sup
x∈[l,u]

‖EPK [B(ξ)y∗(x, ξ)]− EP [B(ξ)y∗(x, ξ)]‖ ≥ ε

}
≤ L(ε) exp(−Kβ(ε)).

This proposition can be directly obtained from [48, Theorem 5.1]. We thus omit

the proof here.

From Proposition 3.7, we can immediately obtain the following exponential rate

of convergence about the optimal solution set.

Theorem 3.4. Let Assumptions 2.1 and 3.3 hold. Then, for any ε > 0, there exist

two positive scalars L̄(ε) and β̄(ε), such that

P {d(S(PK), S(P )) ≥ ε} ≤ L̄(ε) exp(−Kβ̄(ε)).

Proof. We have from (3.18) the following estimation:

P{d(S(PK), S(P )) ≥ ε} ≤ P

{
ψ−1
P

(
sup
x∈[l,u]

|fP (x)− fPK (x)|

)
≥ ε

}

≤ P

{
sup
x∈[l,u]

|fP (x)− fPK (x)| ≥ ψP (ε)

}
.
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The second inequality follows from the nondecreasing property of ψP .

We know from Proposition 3.7 that

P

{
sup
x∈[l,u]

‖EPK [B(ξ)y∗(x, ξ)]− EP [B(ξ)y∗(x, ξ)]‖ < 1

}
≥ 1− L(1) exp(−Kβ(1)),

which implies

P

{
sup
x∈[l,u]

‖EPK [B(ξ)y∗(x, ξ)]‖ < sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]‖+ 1

}

≥ 1− L(1) exp(−Kβ(1)).

In addition, we have that

sup
x∈[l,u]

|fP (x)− fPK (x)| ≤

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK [B(ξ)y∗(x, ξ)]‖ · θ(PK , P ),

where θ(PK , P ) is defined in (3.19). Therefore, we obtain

P {θ(PK , P ) < λ(P )} ≥ 1− L(1) exp(−Kβ(1)),

where λ(P ) is defined in (3.20). Thus, we continue

P

{
sup
x∈[l,u]

|fP (x)− fPK (x)| ≥ ψP (ε)

}

≤ P

{
sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK [B(ξ)y∗(x, ξ)]‖ · θ(PK , P ) ≥ ψP (ε)

}

≤ L(1) exp(−Kβ(1))+

P

{
sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK [B(ξ)y∗(x, ξ)]‖ · λ(P ) ≥ ψP (ε)

}

≤ L(1) exp(−Kβ(1)) + L

(
ψP (ε)

λ(P )

)
exp

(
−Kβ

(
ψP (ε)

λ(P )

))
,
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where the third inequality comes from Proposition 3.7.

Letting

L̄(ε) := L(1) + L

(
ψP (ε)

λ(P )

)
and

β̄(ε) := min

{
β(1), β

(
ψP (ε)

λ(P )

)}
,

we completes the proof.

In this section, we study the discrete approximation properties of problem (2.1)

under mild conditions. The convergence of the SAA is derived in Theorem 3.3.

However, this result did not address an important issue which is interesting from

both the theoretical and computational points of view. That is, what is the rate of

convergence or how large should the sample size be to achieve a desired accuracy

of SAA estimators? We supplement it in Theorem 3.4 under ordinary assumptions.

These estimates provide an important insight into the theoretical complexity and

practical application of the considered problem (2.1).

3.3 Numerical results

To illustrate the application of the two-stage stochastic linear variational inequality

problem (2.1) and to verify the obtained convergence results, we consider in this

section a multi-player noncooperative two-stage game problem (see also [14, 11] for

the two-players case) and its numerical solution. There is a significant amount of

recent research on this topic. For example, [5] investigated the two-stage game

wherein each player is risk-averse and solved a rival-parameterized stochastic program

with quadratic recourse. The convergence results for different versions of the best-

response schemes are discussed. [28] considered a stochastic Nash game where each

player minimizes a parameterized expectation-valued convex objective function by
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proposing three inexact proximal best-response schemes. Different from those in

[28, 5] where the Nash equilibrium point is determined by (inexact) best-response

schemes, we employ the PHM to solve the discrete two-stage stochastic variational

inequality problem (3.14).

3.3.1 A multi-player noncooperative two-stage game

Two-stage stochastic variational inequality problems have many practical applica-

tions (see [10]). Here we consider the multi-player (say I players) noncooperative

two-stage game. It can be described in the form of the two-stage stochastic varia-

tional inequality problem (2.1). Let (x1, y1(·)), (x2, y2(·)), · · · , (xI , yI(·)) ∈ Rn × Y

denote the decisions of player 1 to player I in the two-stage stochastic game, re-

spectively. We use x−i to denote all xjs for j 6= i and so does y−i. θi : RnI → R

is the cost function of player i in the first stage and φi : RnI × YI × Ξ → R is the

cost function of player i in the second stage. Then, to minimize his total cost, the

player i (i = 1, 2, · · · , I) will make a decision through solving the following two-stage

stochastic optimization problem:

min
xi∈[li,ui]

θi(xi, x−i) + EP [ϕi(xi, x−i, y−i(ξ), ξ)], (3.21)

for li < ui and li, ui ∈ Rn, i = 1, 2, · · · , I, where ϕi(xi, x−i, y−i(ξ), ξ) is defined by

ϕi(xi, x−i, y−i(ξ), ξ) = min
yi≥0

φi(xi, x−i, yi, y−i(ξ), ξ). (3.22)

We know that a two-stage stochastic programming problem can be equivalently

reformulated as a two-stage variational inequality problem from the first order opti-

mality necessary conditions. Therefore, we consider the optimality condition of the

two-stage stochastic program (3.21)-(3.22). To simplify the formulation, we assume

that θi(·, x−i) is differentiable w.r.t. xi and φi(xi, x−i, ·, y−i, ξ) is differentiable w.r.t.

yi. In addition, ϕi(·, x−i, y−i(ξ), ξ) is differentiable and Lipschitz continuous with
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some integrable Lipschitz constant w.r.t. xi. Then, we know from [37, Theorem

7.49] that

∇xiEP [ϕi(xi, x−i, y−i(ξ), ξ)] = EP [∇xiϕi(xi, x−i, y−i(ξ), ξ)].

Finally, we obtain the equivalent form of problem (3.21)-(3.22) as

{
0 ∈ ∇xiθi(xi, x−i) + EP [∇xiϕi(xi, x−i, y−i(ξ), ξ)] +N[li,ui](xi)

0 ≤ yi⊥∇yiφi(xi, x−i, yi, y−i, ξ) ≥ 0, for a.e. ξ ∈ Ξ,
(3.23)

for i = 1, 2, · · · , I.

To satisfy the above conditions and to obtain concrete numerical results, we

consider a two-stage stochastic quadratic programming problem. Specifically, we

define

θi(xi, x−i) =
1

2
xTi Hixi + bTi xi +

∑
j 6=i

xTi Pjxj

and

φi(xi, x−i, yi, y−i, ξ) =
1

2
yTi Qi(ξ)yi + ci(ξ)

Tyi +
I∑
j=1

yTi Sij(ξ)xj +
∑
j 6=i

yTi Oj(ξ)yj(ξ),

where Hi, Pi ∈ Rn×n, Sij : Ξ → Rm×n, Oi : Ξ → Rm×m, Qi : Ξ → Rm×m, bi ∈ Rn,

ci : Ξ→ Rm for i, j = 1, 2, · · · , I.

With the above notation, we can rewrite problem (3.23) as the following large-

scale two-stage stochastic linear variational inequality problem (see [14]):

{
0 ∈ Ax+ EP [B(ξ)y(ξ)] + q1 +N[l,u](x),

0 ≤ y(ξ)⊥M(ξ)y(ξ) +N(ξ)x+ q2(ξ) ≥ 0, for a.e. ξ ∈ Ξ,
(3.24)
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where

x =

x1
...
xI

 , y(ξ) =

y1(ξ)
...

yI(ξ)

 , q1 =

b1
...
bI

 ,

q2(ξ) =

c1(ξ)
...

cI(ξ)

 , l =

l1...
lI

 , u =

u1
...
uI

 ,

A =


H1 P2 · · · PI
P1 H2 · · · PI
...

...
. . .

...
P1 P2 · · · HI

 , B(ξ) =


ST11(ξ) 0 · · · 0

0 ST22(ξ) · · · 0
...

...
. . .

...
0 0 · · · STII(ξ)

 ,

M(ξ) =


Q1(ξ) O2(ξ) · · · OI(ξ)
O1(ξ) Q2(ξ) · · · OI(ξ)

...
...

. . .
...

O1(ξ) O2(ξ) · · · QI(ξ)

 , N(ξ) =


S11(ξ) S12(ξ) · · · S1I(ξ)
S21(ξ) S22(ξ) · · · S2I(ξ)

...
...

. . .
...

SI1(ξ) SI2(ξ) · · · SII(ξ)

 .

A well-known algorithm for solving two-stage stochastic variational inequality

problems is PHM, see [13, 19, 18]. The main idea of this algorithm is to construct a

nonanticipative first stage solution through solving several discrete problems corre-

sponding to individual scenarios. Let ξ1, ξ2, · · · , ξK be K samples or scenarios, and

PHM can be stated as follows.

Algorithm: PHM to solve (3.24)
Step 0: Choose initial points: x̄0 and for k = 1, 2, · · · , K, xk0 = x̄0, yk0 , wk0 with∑K

k=1 w
k
0 = 0, r > 0 and set i = 0;

Step 1: If the termination criterion is satisfied, STOP. Otherwise, go to Step 2;
Step 2: For k = 1, 2, · · · , K, solve the following deterministic two-stage mixed
problem w.r.t. (xk, yk):{

0 ∈ Axk +B(ξk)yk + q1 + wki + r(xk − xki ) +N[l,u](x
k),

0 ≤ yk⊥M(ξk)yk +N(ξk)xk + q2(ξk) + r(yk − yki ) ≥ 0.
(3.25)

The obtained solution is denoted by (x̂ki , ŷ
k
i );

Step 3: Let x̄i+1 = 1
K

∑K
k=1 x̂

k
i . Then, for k = 1, 2, · · · , K, set xki+1 = x̄i+1, yki+1 = ŷki

and wki+1 = wki + r(x̂ki − x̄i+1). Let i = i+ 1 and go back to Step 1.

Very often, the termination criterion can be chosen as: The residual becomes
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sufficiently small, i.e.,

1

K

K∑
k=1

∥∥∥∥∥xki −mid

{
l, u, xki −

(
Axki +

1

K

K∑
k=1

B(ξk)yki + q1

)}∥∥∥∥∥
2

(3.26)

is sufficiently small.

To obtain concrete numerical results and ensure the convergence of the above

PHM, we consider the following specific setting.

3.3.2 Parameter settings and numerical results

We consider a 3-player two-stage noncooperative game with n = 4, m = 4. We

adopt the following stopping criterion for PHM: Either the residual in (3.26) is less

than or equal to 10−5 or the iteration number i attains 6000. Arbitrarily generate

Ĥi ∈ Rn×n, Q̂i ∈ Rm×m, P̂i ∈ Rn×n, Ŝij ∈ Rm×n, Ôi ∈ Rm×m with entries choosing

from [−1, 1] and bi ∈ Rn, ci ∈ Rm, for i, j = 1, 2, 3. Let ξ = (ξ1, ξ2, · · · , ξ18) be the

random vector which follows a uniform distribution on the support set [0, 1]18. Then

we set Ŝ11(ξ) = ξ1Ŝ11, Ŝ12(ξ) = ξ2Ŝ12, Ŝ13(ξ) = ξ3Ŝ13, Ŝ21(ξ) = ξ4Ŝ21, Ŝ22(ξ) = ξ5Ŝ22,

Ŝ23(ξ) = ξ6Ŝ23, Ŝ31(ξ) = ξ7Ŝ31, Ŝ32(ξ) = ξ8Ŝ32, Ŝ33(ξ) = ξ9Ŝ33, Ô1(ξ) = ξ10Ô1,

Ô2(ξ) = ξ11Ô2, Ô3(ξ) = ξ12Ô3, Q̂1(ξ) = ξ13Q̂1, Q̂2(ξ) = ξ14Q̂2, Q̂3(ξ) = ξ15Q̂3,

c1(ξ) = ξ16c1, c2(ξ) = ξ17c2 and c3(ξ) = ξ18c3. The main reason to choose the above

random parameters is to satisfy Assumption 3.2, which is needed in Theorems 3.1

and 3.3. Meanwhile, there are plenty of existing works and applications where the

parameters are assumed to be affinely linear w.r.t. ξ, see for example [30].

To ensure the positive definiteness of coefficient matrices in problem (3.24), we
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construct those matrices as follows:

A =

Ĥ1 P̂2 P̂3

P̂1 Ĥ2 P̂3

P̂1 P̂2 Ĥ3

+ γI, B(ξ) =

ŜT11(ξ) 0 0

0 ŜT22(ξ) 0

0 0 ŜT33(ξ)

 ,

M(ξ) =

Q̂1(ξ) Ô2(ξ) Ô3(ξ)

Ô1(ξ) Q̂2(ξ) Ô3(ξ)

Ô1(ξ) Ô2(ξ) Q̂3(ξ)

+ γI, N(ξ) =

Ŝ11(ξ) Ŝ12(ξ) Ŝ13(ξ)

Ŝ21(ξ) Ŝ22(ξ) Ŝ23(ξ)

Ŝ31(ξ) Ŝ32(ξ) Ŝ33(ξ)

 ,

q1 =

b1

b2

b3

 , q2(ξ) =

c1(ξ)
c2(ξ)
c3(ξ)

 ,

where γ = 3(m+n), I3n and I3m stand for the identity matrices in R3n×3n and R3m×3m,

respectively. Obviously, the above setting guarantees that Assumption 3.1 holds for

any ξ ∈ [0, 1]18, which is sufficient for the convergence of the PHM. Due to the affine

linearity of all the above coefficients, Assumption 3.2 holds with α = 1. Moreover,

we adopt the uniform distribution here that must satisfy (3.16) in Proposition 3.6.

Therefore, Theorems 3.1 and 3.3 hold in our specific settings.

From (i) of Proposition 2.1, the solution of the second stage satisfies

‖y∗(x, ξ)‖ ≤ ‖W (x, ξ)‖ (‖N(ξ)‖ ‖x‖+ ‖q2(ξ)‖) ≤ Γ

uniformly for any ξ ∈ [0, 1]18 and some positive number Γ. This implies that we can

employ the homotopy-smoothing method for box-constrained variational inequalities

(see [27]) to solve the two-stage mixed problem (3.25) in Step 2.

With the above detailed parameter selection and the solution method in Step

2, we can then solve the concrete 3-player two-stage non-cooperative game problem.

We show in Figures 3.1-3.2 the box plot for each component of the first stage deci-

sion variable x w.r.t. the number of samples. Since our parameter setting satisfies

Assumption 3.1, there exists a unique solution for both the original problem and its

SAA problem (see [11]). As we discussed before, Theorem 3.3 holds in our setting.

For each sample size K = 10, 50, 200, 500, 1000, 2000, 4000, we solve 100 randomly
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generated problems and draw the empirical distribution of the solutions in Figures

3.1-3.2. The 12 plots in Figures 3.1-3.2 show the convergence of the SAA problem

(3.14) by adopting the hybrid algorithm combining PHM [19] and the homotopy-

smoothing method [27] as the sample size goes to infinity. Actually, we know from

Theorem 3.3 and the uniqueness of solution that the SAA solutions will converge to

the true solution with probability one.

Now we numerically verify the quantitative stability results in section 3.1 to this

example. For this purpose, we assume that the original probability distribution P is

the uniform distribution on interval [0, 1]18. The perturbed distribution Qν (ν ∈ N) is

the uniform distribution with the support set being
[
0, ν

ν+1

]18
, that is, the probability

for taking values in [0, 1]18\
[
0, ν

ν+1

]18
is zero. Then, we have

DTV (P,Qν) = sup
h∈GTV

{∫
[0, ν

ν+1 ]
18
h(ξ)

((
ν + 1

ν

)18

− 1

)
dξ −

∫
[0,1]18\[0, ν

ν+1 ]
18
h(ξ)dξ

}

= 2

[
1−

(
ν

ν + 1

)18
]
. (3.27)

Here the optimal element in GTV is

h(ξ) =

{
1, ξ ∈

[
0, ν

ν+1

]18
;

−1, ξ ∈ [0, 1]18\
[
0, ν

ν+1

]18
.

Therefore, DTV (P,Qν) → 0 as ν → +∞. In what follows, we fix the number of

scenarios at K = 5000 and use the sample approximation problem to approximate

the original problem. Let ν = 1, 2, 3, 4, 5, 6, 7, we use PHM to solve the original

problem under P and the corresponding problem under perturbed distribution Qν ,

respectively. Since Assumption 3.1 holds, there always exist a unique solution for

the original problem under P , as well as the problem under the perturbation Qν .

We calculate the distance between the unique solution x∗ under probability distri-

bution P and the unique solution x∗ν under probability distribution Qν . It is known
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from Theorem 3.1 that

‖x∗ − x∗ν‖ ≤ ψ−1
P (L1DTV (P,Qν)) (3.28)

for some positive constant L1. Note that ψ−1
P is lower semicontinuous and nonde-

creasing, and vanishes at 0. Specially, under our specific setting, we know from

ψP (τ) = min{fP (x) = fP (x)− fP (x∗) : d(x, x∗) ≥ τ, x ∈ [l, u]},

where fP (x∗) = 0, and the continuity of fP (x) w.r.t. x that ψP is continuous at 0.

Moreover, ψP (τ) > 0 for any τ > 0 due to the uniqueness of solutions. Its inverse

function is defined by (3.9), that is,

ψ−1
P (t) = sup{τ ∈ R+ : ψP (τ) ≤ t}

is continuous at t = 0, see Lemma 3.3.

Based on the above discussion, we have from (3.28) that ‖x∗ − x∗ν‖ should con-

verge to 0 as ν → ∞. Table 3.1 shows this kind of convergence. We can see from

Table 3.1 that the distance between x∗ and x∗ν monotonically decreases with the in-

crease of ν. These results perfectly illustrate and support the quantitative analysis

results in section 3.1.

Table 3.1: The distance between the pairing solutions under P and Qν

ν 1 2 3 4 5 6 7

‖x∗ − x∗ν‖ 1.33e-2 1.00e-2 0.77e-2 0.64e-2 0.54e-2 0.49e-2 0.41e-2
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Figure 3.1: The box plots for x1 to x6 with different sample size
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Figure 3.2: The box plots for x7 to x12 with different sample size
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Chapter 4

Regularization and convergence of

(2.12)

Since the discussion in Chapter 3 is based on the assumption that the second stage

problem has a unique solution, we weaken this assumption in this chapter. More

specifically, we consider a two-stage stochastic Cournot-Nash game problem (2.12)

where the second stage problem is monotone. The monotonicity of the second stage

problem cannot ensure the uniqueness of solution. Thus, we propose a regularized

SAA method to handle it. Corresponding convergence analysis is studied.

4.1 Structure of the regularized two-stage SLCP

In this section, we focus on characterizing solutions of two-stage stochastic linear

complementarity problem (2.12). From the derivation of first-order necessary opti-

mality conditions of problem (2.9)-(2.10) and the monotonicity of problem (2.12),

we have the following results on existence of solutions.

Proposition 4.1 (Theorem 2, [49]). For any fixed pair (x, ξ) ∈ RJ
+ × Ξ, the second

stage problem (2.10) has a unique solution.

Thus, for the two-stage stochastic linear complementarity problem (2.12), the

following proposition holds.
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Proposition 4.2. The two-stage stochastic linear complementarity problem (2.12)

has relatively complete recourse, i.e., for any x ∈ RJ
+ and a.e. ξ ∈ Ξ the second stage

problem of (2.12) is solvable.

Proof. The coefficient matrix of the second stage part of (2.12)

M(ξ) =

(
Π(ξ) I
−I 0

)
is positive semidefinite for a.e. ξ ∈ Ξ.

For any given x ∈ RJ
+, it follows that there always exists a pair

(
ŷ(ξ), λ̂(ξ)

)
∈

RJ × RJ , such that

(
ŷ(ξ)

λ̂(ξ)

)
≥ 0,

(
Π(ξ) I
−I 0

)(
ŷ(ξ)

λ̂(x)

)
+

(
−p(ξ)
x

)
≥ 0, for a.e. ξ ∈ Ξ.

In detail, we consider a special choice ŷ(ξ) = 0 and λ̂(ξ) = max{0, p(ξ)}, where the

max function is taken componentwise. Thus, the corresponding quadratic program-

ming problem of the linear complementarity problem is feasible. It follows from [15,

Lemma 3.1.1, Theorem 3.1.2] that there must exist at least a solution which solves

the second stage problem for any given pair (x, ξ).

Although the second stage problem (2.10) has a unique equilibrium for any given

(x, ξ) (see Proposition 4.1), the system (2.12) may admit multiple solutions. To see

this, we give an illustrative example.

Example 4.1. Consider a duopoly game, with given x = (x1, x2)T ≥ 0, and −p(ξ) ≥a.s.

0. Then, the corresponding second stage part of complementarity system (2.12) reads

0 ≤


y1(ξ)
y2(ξ)
λ1(ξ)
λ2(ξ)

⊥


2γ(ξ) γ(ξ) 1 0
γ(ξ) 2γ(ξ) 0 1
−1 0 0 0
0 −1 0 0



y1(ξ)
y2(ξ)
λ1(ξ)
λ2(ξ)

+


−p1(ξ)
−p2(ξ)
x1

x2

 ≥ 0, for a.e. ξ ∈ Ξ.

(4.1)
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Then, the solution set of (4.1) is of the following form{
(0, 0, λ̃1(ξ), λ̃2(ξ)) : λ̃1(ξ) =

{
0, x1 > 0

λ1(ξ), x1 = 0
,

λ̃2(ξ) =

{
0, x2 > 0

λ2(ξ), x2 = 0
, for a.e. ξ ∈ Ξ

}
,

where λ1(ξ) ≥a.e. 0, λ2(ξ) ≥a.e. 0.

In Example 4.1, the “equilibrium price” λ may admit multiple values when there

exist some zero-valued components of x.

Technically, the multiple solutions of the second stage problem will cause trouble

when we handle the two-stage stochastic complementarity system (2.12), both in

computation and analysis [37]. The assumption ensuring the uniqueness of second

stage solution is usually made, see for instance [14, 11]. Moreover, interpreted as

“equilibrium price” associated with agents’ production clearing, different values of λ

would have ambiguous economical interpretations. Motivated by these, we propose a

regularized method to seek for one particular choice of “equilibrium price”. Similar

approach can be found in for example [50].

For any ε > 0, let

M ε(ξ) =

(
Π(ξ) I
−I εI

)
and q(x, ξ) =

(
−p(ξ)
x

)
and thus, we can write the regularized second stage SCP as

0 ≤
(
y(ξ)
λ(ξ)

)
⊥M ε(ξ)

(
y(ξ)
λ(ξ)

)
+ q(x, ξ) ≥ 0, for a.e. ξ ∈ Ξ. (4.2)

Then, we have the regularized SCP of (2.12) as follows:

0 ≤ x ⊥ Cx− E[λ(ξ)] + a ≥ 0,

0 ≤
(
y(ξ)
λ(ξ)

)
⊥
(

Π(ξ) I
−I εI

)(
y(ξ)
λ(ξ)

)
+ q(x, ξ) ≥ 0, for a.e. ξ ∈ Ξ.

(4.3)
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For a given pair (x, ξ) ∈ RJ
+×Ξ, the second stage problem of (2.12) and the regular-

ized second stage problem (4.2) are denoted by LCP(q(x, ξ),M(ξ)) and LCP(q(x, ξ),M ε(ξ))

respectively. Their solution functions are chosen from the respective solution sets

and expressed by z(q(x, ξ)) and zε(q(x, ξ)). In the sequel, we omit the ξ and x with-

out causing confusion, i.e., LCP(q,M) := LCP(q(x, ξ),M(ξ)) and LCP(q,M ε) :=

LCP(q(x, ξ),M ε(ξ)).

For clearer demonstration, recall our illustrative Example 4.1, and consider its

regularization approach. Thus, the second stage of the regularized problem takes the

following form

0 ≤


y1(ξ)
y2(ξ)
λ1(ξ)
λ2(ξ)

⊥


2γ(ξ) γ(ξ) 1 0
γ(ξ) 2γ(ξ) 0 1
−1 0 ε 0
0 −1 0 ε



y1(ξ)
y2(ξ)
λ1(ξ)
λ2(ξ)

+


−p1(ξ)
−p2(ξ)
x1

x2

 ≥ 0, for a.e. ξ ∈ Ξ.

(4.4)

Under the same condition as in Example 4.1, we can obtain the unique solution of

(4.4), which ỹ1, ỹ2, λ̃1, λ̃2 equal to 0 for a.e. ξ ∈ Ξ. Due to the positive definiteness

of C, it follows that we obtain the unique solution of the first stage problem is x1 =

0, x2 = 0. Then, we have obtained one particular solution of the original problem,

the trivial solution in this example. The key feature of our regularized method is that

it promises the existence and uniqueness of solution due to the strongly monotone

of regularized two-stage problem.

In the remaining of this section, we concern ourselves with the solution zε of

LCP(q,M ε) and explore the structure of the second stage solution.

Proposition 4.3. For any fixed ε > 0, the regularized problem (4.3) has a unique

solution (xε, yε, λε) ∈ RJ × Y × Y.

Proof. The result can be obtained via a similar procedure as in [11, Proposition 2.1

(i)] and we only need to show that the condition in [11, Assumption 1] holds. Recall
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that Assumption 2.2 holds, then for a.e. ξ ∈ Ξ

 x
u(ξ)
v(ξ)

T C 0 −I
0 Π(ξ) I
I −I εI

 x
u(ξ)
v(ξ)

 ≥ τ(‖x‖2 + ‖u(ξ)‖2 + ‖v(ξ)‖2),

where τ = 2 min{c̄, γ0(J + 1), ε} with c̄ denoting the minimum diagonal element of

C.

Theorem 4.1. For any fixed ε > 0, x ≥ 0 and a.e. ξ ∈ Ξ, the jth component of

the solution of problem (4.2)
(
(yε)j, (λ

ε)j
)

is either (0, 0), or one of the following two

forms:

−
(
γ(ξ)T ε − pj(ξ)

γ(ξ)
, 0

)
,

−
(
ε(γ(ξ)T ε − pj(ξ))− xj

εγ(ξ) + 1
,

γ(ξ)(T ε + xj)− pj(ξ)
εγ(ξ) + 1

) (4.5)

for j ∈ J , where

T ε :=
J∑
i=1

(yε)i =
γ(ξ)

∑
i∈I3 xi + εγ(ξ)

∑
i∈I2∪I3 pi(ξ) +

∑
i∈I2 pi(ξ)(

εγ(ξ)(|I2|+ |I3|+ 1) + |I2|+ 1
)
γ(ξ)

(4.6)

with

I2 = {j ∈ J : γ(ξ)T ε + (λε)j − pj(ξ) < 0, (yε)j − xj ≤ 0} ,

I3 = {j ∈ J : γ(ξ)T ε + (λε)j − pj(ξ) < 0, (yε)j − xj > 0} ,

where |I2| and |I3| denote the cardinality of I2 and I3 respectively.

Proof. By direct computation, we have that(
M ε(ξ)

(
yε

λε

)
+ q(x, ξ)

)
j

=

{
γ(ξ)(yε)j + γ(ξ)T ε + (λε)j − pj(ξ), j = 1, . . . , J ;

xj−J − (yε)j−J + ε(λε)j−J , j = J + 1, . . . , 2J.
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Then, we can rewrite problem (4.2) as below:{
0 ≤ (yε)j⊥γ(ξ)(yε)j + γ(ξ)T ε + (λε)j − pj(ξ) ≥ 0,

0 ≤ (λε)j⊥xj − (yε)j + ε(λε)j ≥ 0,
(4.7)

for j ∈ J . From the first complementarity condition in (4.7), we have (yε)j as follows:

(yε)j =

−
γ(ξ)T ε + (λε)j − pj(ξ)

γ(ξ)
, γ(ξ)T ε + (λε)j − pj(ξ) < 0;

0, γ(ξ)T ε + (λε)j − pj(ξ) ≥ 0
(4.8)

for j ∈ J . Similarly, we can derive that

(λε)j =


(yε)j − xj

ε
, (yε)j − xj > 0;

0, (yε)j − xj ≤ 0
(4.9)

for j ∈ J . Note that (yε)j = 0 implies (yε)j = 0 ≤ xj, and we have (λε)j = 0. Then,

based on (4.9), we have for all three cases:


(yε)j = 0, (λε)j = 0 for j ∈ I1;

(yε)j = −γ(ξ)T ε + (λε)j − pj(ξ)
γ(ξ)

, (λε)j = 0 for j ∈ I2;

(yε)j = −γ(ξ)T ε + (λε)j − pj(ξ)
γ(ξ)

, (λε)j =
(yε)j − xj

ε
for j ∈ I3,

where

I1 := {j ∈ J : γ(ξ)T ε + (λε)j − pj(ξ) ≥ 0, (yε)j − xj ≤ 0} ,

I2 := {j ∈ J : γ(ξ)T ε + (λε)j − pj(ξ) < 0, (yε)j − xj ≤ 0} ,

I3 := {j ∈ J : γ(ξ)T ε + (λε)j − pj(ξ) < 0, (yε)j − xj > 0} .

It follows that,

((yε)j, (λ
ε)j) =


(0, 0), j ∈ I1;(
−γ(ξ)T ε − pj(ξ)

γ(ξ)
, 0

)
, j ∈ I2;(

−εγ(ξ)T ε − xj − εpj(ξ)
εγ(ξ) + 1

,−γ(ξ)(T ε + xj)− pj(ξ)
εγ(ξ) + 1

)
, j ∈ I3,
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which verifies (4.5). For the remaining of the proof, let j ∈ I2, we have

−γ(ξ)(yε)j = γ(ξ)T ε − pj(ξ)

and thus

−γ(ξ)
∑
i∈I2

(yε)i = |I2|γ(ξ)T ε −
∑
i∈I2

pi(ξ). (4.10)

Analogously, we can derive from

(yε)j = −γ(ξ)T ε + (λε)j − pj(ξ)
γ(ξ)

and (λε)j =
(yε)j − xj

ε
for j ∈ I3

that

−γ(ξ)
∑
i∈I3

(yε)i = |I3|γ(ξ)T ε +
1

ε

∑
i∈I3

(yε)i −
1

ε

∑
i∈I3

xi −
∑
i∈I3

pi(ξ). (4.11)

Combining (4.10) and (4.11), we obtain

−γ(ξ)T ε = (|I2|+ |I3|)γ(ξ)T ε +
1

ε

∑
i∈I3

(yε)i −
1

ε

∑
i∈I3

xi −
∑

i∈I2∪I3

pi(ξ).

Therefore, we have

1

ε

∑
i∈I3

(yε)i = −(|I2|+ |I3|+ 1)γ(ξ)T ε +
1

ε

∑
i∈I3

xi +
∑

i∈I2∪I3

pi(ξ). (4.12)

Substituting (4.12) into (4.11), we have

|I3| γ(ξ)T ε =−
(
γ(ξ) +

1

ε

)∑
i∈I3

(yε)i +
1

ε

∑
i∈I3

xi +
∑
i∈I3

pi(ξ)

=− (εγ(ξ) + 1)

(
−(|I2|+ |I3|+ 1)γ(ξ)T ε +

1

ε

∑
i∈I3

xi +
∑

i∈I2∪I3

p(ξ)i

)

+
1

ε

∑
i∈I3

xi +
∑
i∈I3

pi(ξ)

= (εγ(ξ) + 1) (|I2|+ |I3|+ 1)γ(ξ)T ε − γ(ξ)
∑
i∈I3

xi − εγ(ξ)
∑

i∈I2∪I3

pi(ξ)−
∑
i∈I2

pi(ξ).
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Then, we get

(εγ(ξ)(|I2|+ |I3|+ 1) + |I2|+ 1) γ(ξ)T ε =γ(ξ)
∑
i∈I3

xi + εγ(ξ)
∑

i∈I2∪I3

pi(ξ) +
∑
i∈I2

pi(ξ),

that is,

T ε =
γ(ξ)

∑
i∈I3 xi + εγ(ξ)

∑
i∈I2∪I3 pi(ξ) +

∑
i∈I2 pi(ξ)

(εγ(ξ)(|I2|+ |I3|+ 1) + |I2|+ 1) γ(ξ)
.

This completes the proof.

Note that the above theorem gives the forms of the unique solution of the second

stage regularized problem (4.2). However, it cannot be used to assist numerical

calculation since the partition of the index set is not known in advance. Nevertheless,

it is suffice for our purposes of deriving additional properties of the solutions. Due to

the positive definiteness of M ε and special structure of problem (4.2), we first obtain

the following Lipschitz continuous property, following [23, Corollary 2.1].

Lemma 4.1. There exists L(ξ) > 0 such that for any fixed ε ∈ (0, 1], we have

‖zε(q(x1, ξ))− zε(q(x2, ξ))‖ ≤ L(ξ)‖x1 − x2‖, for x1, x2 ∈ RJ
+ and ξ ∈ Ξ.

Lemma 4.2. For any fixed ε > 0 and (x, ξ) ∈ RJ
+ × Ξ, T ε has the following upper

bound:

T ε ≤ ‖x‖1 +

(
ε+

1

γ(ξ)

)
‖p(ξ)‖1 .

Proof. We have the following derivation from (4.6) that

T ε =
γ(ξ)

∑
i∈I3 xi + εγ(ξ)

∑
i∈I2∪I3 pi(ξ) +

∑
i∈I2 pi(ξ)

(εγ(ξ)(|I2|+ |I3|+ 1) + |I2|+ 1) γ(ξ)

≤γ(ξ)
∑J

i=1 xi + (εγ(ξ) + 1)
∑J

i=1 |pi(ξ)|
(εγ(ξ)(|I2|+ |I3|+ 1) + |I2|+ 1) γ(ξ)

≤γ(ξ)
∑J

i=1 xi + (εγ(ξ) + 1)
∑J

i=1 |pi(ξ)|
γ(ξ)

= ‖x‖1 +

(
ε+

1

γ(ξ)

)
‖p1(ξ)‖1 .
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We end this section by establishing the convergence result of the second stage

LCP(q,M ε) solutions as ε ↓ 0 for any given pair (x, ξ) ∈ RJ × Ξ.

Proposition 4.4. For any fixed ε > 0 and (x, ξ) ∈ RJ
+×Ξ, let zε(ξ) = (yε(ξ), λε(ξ))

denote the unique solution of the regularized problem LCP(q,M ε). Then

lim
ε↓0
‖zε(ξ)− z̄(ξ)‖ = 0,

where z̄(ξ) = (ȳ(ξ), λ̄(ξ)) denotes the unique least `2-norm solution of the LCP(q,M).

Moreover, the jth component of the least `2-norm solution of problem (2.12) has one

of the following three forms:{
(0, 0),

(
−γ(ξ)T̄ − pj(ξ)

γ(ξ)
, 0

)
,
(
xj,−γ(ξ)(T̄ + xj) + pj(ξ)

)}
(4.13)

for j ∈ J , where

T̄ := lim
ε↓0

T ε =
J∑
i=1

ȳi.

Furthermore, for a.e. ξ ∈ Ξ there exists κ̄(ξ) > 0, such that

‖λε(ξ)− λ̄(ξ)‖ ≤ κ̄(ξ)ε. (4.14)

Proof. Let ẑ = (ŷ, λ̂) be any solution of LCP(q,M) and we have the derivation:

0 ≥ (zε − ẑ)T (M εzε + q − (Mẑ + q))

= (zε − ẑ)T (M εzε −Mẑ)

= (zε − ẑ)TM(zε − ẑ) + (zε − ẑ)T
(

0
ελε

)

≥ (zε − ẑ)T
(

0
ελε

)
= ε(λε − λ̂)Tλε,
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where the second inequality follows from the positive semidefiniteness of M . Then,

we have

‖λε‖2 ≤ λ̂Tλε ≤ ‖λ̂‖‖λε‖,

which implies the boundedness of λε,

‖λε‖ ≤ ‖λ̂‖. (4.15)

It follows from (4.15) that any accumulation point of {λε} as ε ↓ 0 is the least `2-

norm solution. Since M is positive semidefinite, we know from [15, Theorem 5.6.2]

that there is a unique least `2-norm solution. On the other hand, we know from

Proposition 4.1, for any fixed (x, ξ), ŷ is unique. Therefore, the limit of zε exists as

ε ↓ 0 and converges to the least `2-norm solution of LCP(q,M).

Due to the existence of limit for zε as ε ↓ 0, (4.13) can be derived directly from

(4.5). In what follows, we focus on deriving the expression (4.14). To this end, for

each j ∈ J , three cases are discussed:

γ(ξ)T ε + (λε)j − pj(ξ) ≥ 0, (yε)j − xj ≤ 0, (4.16)

γ(ξ)T ε + (λε)j − pj(ξ) < 0, (yε)j − xj ≤ 0, (4.17)

γ(ξ)T ε + (λε)i − pj(ξ) < 0, (yε)j − xj > 0. (4.18)

Case 1: If there exists a sequence {εk}∞k=1 converging to 0 such that (4.16) holds,

we have

lim
k→∞

(
(yεk)j, (λ

εk)j
)

= (0, 0).

Thus,
∣∣(λεk)j − λ̄j∣∣ = 0.

Case 2: If there exists a sequence {εk}∞k=1 converging to 0 such that (4.17) holds,
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we have an estimation

lim
k→∞

(
(yεk)j, (λ

εk)j
)

= lim
k→∞

(
−γ(ξ)T εk − pj(ξ)

γ(ξ)
, 0

)

=

(
−γ(ξ) limk→∞ T

εk − pj(ξ)
γ(ξ)

, 0

)

=

(
−γ(ξ)T̄ − pj(ξ)

γ(ξ)
, 0

)
.

Thus,
∣∣(λεk)j − λ̄j∣∣ = 0.

Case 3: If there exists a sequence {εk}∞k=1 converging to 0 such that (4.18) holds,

we have

lim
k→∞

(
(yεk)j, (λ

εk)j
)

= lim
k→∞

(
−εkγ(ξ)T εk − xj − εkpj(ξ)

εkγ(ξ) + 1
,−γ(ξ)(T εk + xj)− pj(ξ)

εkγ(ξ) + 1

)
=
(
xj,−γ(ξ)(T̄ + xj) + pj(ξ)

)
.

Thus, we have∣∣(λεk)j − λ̄j∣∣
=
∣∣(λεk)j + γ(ξ)(T̄ + xj)− pj(ξ)

∣∣
=

∣∣∣∣−γ(ξ)(T εk + xj)− pj(ξ)
εkγ(ξ) + 1

+ γ(ξ)(T̄ + xj)− pj(ξ)
∣∣∣∣

=

∣∣−γ(ξ)(T εk + xj) + pj(ξ) + γ(ξ)(T̄ + xj)− pj(ξ) + εkγ(ξ)(γ(ξ)(T̄ + xj)− pj(ξ))
∣∣

εkγ(ξ) + 1

≤
γ(ξ)

∣∣T εk − T̄ ∣∣+
∣∣γ(ξ)(γ(ξ)(T̄ + xj)− pj(ξ))

∣∣ εk
εkγ(ξ) + 1

.

Collectively, we know from Case 1, Case 2 and Case 3 that

(yεk)j − ȳj = 0, (4.19)

(yεk)j − ȳj = −(T εk − T̄ ), (4.20)

(yεk)j − ȳj =
−γ(ξ)T εk + pj(ξ)− γ(ξ)xj

εkγ(ξ) + 1
· εk. (4.21)
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Furthermore, we have that T εk − T̄ ≥ 0 always holds. For the purpose of arriving at

a contradiction, we assume T εk − T̄ < 0. Then (4.20) implies that

(yεk)j − ȳj > 0.

Moreover, (4.19) and (4.21) induce

(yεk)j − ȳj = 0,

(yεk)j − ȳj ≥ xj − ȳj ≥ 0,

respectively. Clearly, we have T εk − T̄ ≥ 0, which contradicts our assumption. In

addition, we have

T εk − T̄ ≤ −γ(ξ)T εk + ‖p(ξ)‖1 + γ(ξ) ‖x‖1

εkγ(ξ) + 1
· εk ≤ (‖p(ξ)‖1 + γ(ξ) ‖x‖1) εk.

Then, it follows that∣∣(λεk)j − λ̄j∣∣
≤
γ(ξ)

∣∣T εk − T̄ ∣∣+
∣∣γ(ξ)(γ(ξ)(T̄ + xj)− pj(ξ))

∣∣ εk
εkγ(ξ) + 1

≤
γ(ξ) (‖p(ξ)‖1 + γ(ξ) ‖x‖1) +

∣∣γ(ξ)(γ(ξ)(T̄ + xj)− pj(ξ))
∣∣

εkγ(ξ) + 1
· εk

≤
(
γ(ξ) (‖p(ξ)‖1 + γ(ξ) ‖x‖1) + γ(ξ)2

(
‖x‖1 +

‖p(ξ)‖1

γ(ξ)
+ ‖x‖1

)
+ γ(ξ) ‖p(ξ)‖1

)
εk

≤ 3
(
γ(ξ)2 ‖x‖1 + γ(ξ) ‖p(ξ)‖1

)
εk,

where the third inequality follows Lemma 4.2 and the continuity of T ε that

T̄ ≤ ‖x‖1 +
‖p(ξ)‖1

γ(ξ)
.

To summarize, for each j ∈ J , we always have

∣∣(λε)j − λ̄j∣∣ ≤ 3
(
γ(ξ)2 ‖x‖1 + γ(ξ) ‖p(ξ)‖1

)
ε.
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Then, according to the definition of `2-norm, for any given x ∈ RJ
+ one can compute

κ̄(ξ) := 3
√
J
(
γ(ξ)2 ‖x‖1 + γ(ξ) ‖p(ξ)‖1

)
.

4.2 Convergence analysis

In this section, we first prove the convergence of the unique solution of the regularized

problem (4.3) to the solution set of the original problem as the regularized parameter

ε decreases to zero. Next, we will study the SAA to solve the regularized problem, see

[50]. Combined with our regularization approaches, we demonstrate the convergence

property of the solution of our regularized SAA model as the number of samples goes

to infinity. More specifically, the convergence analysis in this section is divided into

two parts: the convergence analysis of the regularized problem as the regularized

parameter ε tends to zero, and the analysis of regularized SAA. We finally build up

the convergence relationship between the regularized SAA approach and the original

problem.

4.2.1 Convergence of the regularized model

In this subsection, we only need to consider the convergence properties of the first

stage decision vector, i.e., xε ∈ RJ
+ that solves problem (4.3), when the regularized

parameter ε tends to zero. The convergence property of the solution (xε, yε, λε) then

follows by combining the result of section 3. From Proposition 4.3, we know that for

fixed ε > 0 problem (4.3) admits a unique first stage solution xε. In the following,

we concern about the sequence of accumulation points of {xε} as ε ↓ 0.

For the existence of accumulation points, we have the following result.

Proposition 4.5. Suppose there exists p0 > 0 such that for all j ∈ J , pj(ξ) ≤a.s. p0.

Then, with ε ↓ 0, {xε} is bounded.
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Proof. From the condition on pj(ξ), there must exist a sufficiently large α > 0 such

that for any j ∈ J

γ0α− pj(ξ) > 0, for a.e. ξ ∈ Ξ.

Then we have

−γ(ξ)(T ε + α)− pj(ξ)
εγ(ξ) + 1

< 0, for a.e. ξ ∈ Ξ.

Assume that {xε} is unbounded for the purpose of arriving at a contradiction. Then,

it follows that there exist some indices j ∈ J , such that (xε)j ≥ α. Then we consider

the jth component of the first stage complementarity relation,

0 ≤ (xε)j⊥cj(xε)j − E
[(
λε(ξ)

)
j

]
+ aj ≥ 0,

which can be expressed, from (4.5), as

0 ≤ (xε)j⊥cj(xε)j + aj ≥ 0.

However, this complementarity relation cannot be obtained because (xε)j > 0 and

cj(x
ε)j + aj > 0. This completes our proof.

Note that the conditions pj(ξ) ≤a.s. p0 can be easily satisfied in many practical

applications. For example, with given data sets of p(ξ) we can always find an upper

bound p0 := maxj{pj(ξ)}.

Lemma 4.3. Suppose there exists a constant p0 > 0 such that for all j ∈ J ,

pj(ξ) ≤a.s. p0. Then, there exists a subsequence {εk}∞k=1 with εk ↓ 0 as k → ∞,

such that xεk → x̂ as k →∞ for some x̂, and

lim
k→∞

E[λk(ξ)] = E[λ̄(ξ)],

where xεk and λk(ξ) is part of the unique solution of problem (4.3) for x = xεk and

ξ ∈ Ξ, and λ̄(ξ) is part of the least norm solution of the second stage problem (4.2)

for x = x̂ and ξ ∈ Ξ.
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Proof. From the results of Proposition 4.5, there must exist an accumulation point

of {xε} as ε ↓ 0, denoted by x̂. Take a subsequence {εk}∞k=1 with εk ↓ 0 as k → ∞,

such that xεk → x̂ as k → ∞. Denote by λ̄k(ξ) the least norm solution of problem

(2.12) for x = xεk and ξ ∈ Ξ. We derive from Proposition 4.5 and (4.14) that∥∥E[λk(ξ)]− E[λ̄(ξ)]
∥∥

≤
∥∥E[λk(ξ)]− E[λ̄k(ξ)]

∥∥+
∥∥E[λ̄k(ξ)]− E[λ̄(ξ)]

∥∥
≤ E[κ̄(ξ)]εk +

∥∥E[λ̄k(ξ)]− E[λ̄(ξ)]
∥∥ .

Since Lemma 4.1 and (4.14), then for a.e. ξ ∈ Ξ

∥∥λ̄k(ξ)− λ̄(ξ)
∥∥→ 0 as k →∞.

Furthermore, we derive that the estimation∥∥λ̄k(ξ)− λ̄(ξ)
∥∥ ≤ ∥∥λ̄k(ξ)∥∥+

∥∥λ̄(ξ)
∥∥

≤ 4
√
J
(
γ(ξ) ‖w‖1 + ‖p(ξ)‖1

)
, for a.e. ξ ∈ Ξ,

where the last term comes from Lemma 4.1 with some vector w with {xεk}∞k=1, x̂ ⊆

[0, w]. It follows from the Lebesgue Dominated Convergence Theorem, we have∥∥E[λ̄k(ξ)]− E[λ̄(ξ)]
∥∥→ 0 as k →∞.

Then we complete all the proof.

Theorem 4.2. Any accumulation point of {xε, yε, λε} as ε ↓ 0 is a solution of problem

(2.12).

Proof. We only need to verify that for any εk ↓ 0, the accumulation point x̂ of

subsequence {xεk} is a first stage solution of (2.12). Since xεk is the first stage

solution of problem (4.3) for any εk > 0, we have with xk = xεk

0 ≤ xk⊥Cxk − E[λk(ξ)] + a ≥ 0,
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which, by using the ‘min’ NCP function (see, for example, [15]), can be rewritten as

min{xk, Cxk − E[λk(ξ)] + a} = 0.

By Lemma 4.3, we have

0 = lim
k→∞

min{xk, Cxk − E
[
λk(ξ)

]
+ a} = min{x̂, Cx̂− E[λ̄(ξ)] + a}

as k →∞. Thus we obtain that

min{x̂, Cx̂− E[λ̄(ξ)] + a} = 0.

The statement then follows from Proposition 4.4.

4.2.2 Convergence of the regularized SAA model

In this subsection, we study the SAA scheme for solving the regularized problem (4.3)

and focus on the convergence of the regularized SAA approach. More specifically, we

focus on the SAA convergence analysis and the solution of the first stage problem.

It is noteworthy that Chen, Sun and Xu considered a discrete approximation scheme

in [11], which also leads to an approximation of the response variable in the second

stage problem.

Let ξ1, ξ2, . . . , ξν denote ν independent identically distributed (i.i.d.) samples.

Then, with slight abuse of notation, we can obtain the following formulation of

problem (4.3) with SAA:

0 ≤ x⊥Cx− 1

ν

ν∑
`=1

λ(ξ`) + a ≥ 0,

0 ≤
(
y(ξ`)
λ(ξ`)

)
⊥
(

Π(ξ`) I
−I εI

)(
y(ξ`)
λ(ξ`)

)
+

(
−p(ξ`)
x

)
≥ 0, ` = 1, . . . , ν.

(4.22)
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Or, we can write the problem collectively for all ν samples

0 ≤


x
v1
...
vν

⊥


C 1
ν
B . . . 1

ν
B

−BT Dε
1

...
. . .

−BT Dε
ν




x
v1
...
vν

+


a
q1
...
qν

 ≥ 0, (4.23)

where C ∈ RJ×J , B =
(

0 −I
)
∈ RJ×2J , and for ` = 1, . . . , ν, Dε

` =

(
Π(ξ`) I
−I εI

)
∈

R2J×2J , v` = (y(ξ`), λ(ξ`))
T , q` = (−p(ξ`), 0)T . Thus, (4.23) is treated as a large-scale

deterministic linear complementarity problem:

0 ≤ z⊥Hεz + q̄ ≥ 0, (4.24)

where z = (x, v1, ..., vν)
T , q̄ = (a, q1, · · · , qν)T , and Hε denotes the coefficient matrix

in (4.23).

We have the following assertion of existence and uniqueness of problem (4.22) by

[15, Theorem 3.1.6].

Proposition 4.6. For any fixed ε > 0 and positive integer ν, there exists a unique

solution of problem (4.22).

Recall the result of Lemma 4.1 and the following proposition can be shown in a

similar way as in [50, Proposition 3.7].

Proposition 4.7. Let (yε(ξ), λε(ξ)) be the unique solution of the regularized second

stage problem (4.3) for any (x, ξ) ∈ RJ
+ × Ξ. Then,

1

ν

ν∑
`=1

λε(ξ`)→ E[λε(ξ)]

with probability (w.p.) 1 as ν →∞ uniformly on B(x, δ) ∩ RJ
+ for any δ > 0,

Let xεν denote the first J-components of the unique solution of problem (4.22),

and we have the following assertion.
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Lemma 4.4. Suppose there exists p0 > 0 such that for all j ∈ J , pj(ξ) ≤a.s. p0.

Then, with ε ↓ 0, {xεν} is bounded.

We omit the proof since it can be shown analogously as in Proposition 4.5.

Theorem 4.3. Suppose there exists p0 > 0 such that for all j ∈ J , pj(ξ) ≤a.s. p0.

Then, for any fixed ε > 0, xεν → xε w.p. 1 as ν →∞.

Proof. From Propositions 4.3, Proposition 4.6, and Lemma 4.4, for any fixed ε > 0,

both the regularized problem (4.3) and its SAA-regularized problem (4.22) have

solutions and contained in some compact subset in RJ
+. We know from Proposition

4.7 that

1

ν

ν∑
`=1

λε(ξ`)→ E[λε(ξ)]

as ν →∞, uniformly with respect to x on any compact set. Then, we have xεν → xε

w.p. 1 as ν →∞ by [47, Proposition 19].

Combining Theorem 4.2 with Theorem 4.3, we have the following convergence

result.

Theorem 4.4. Suppose there exists p0 > 0 such that for all j ∈ J , pj(ξ) ≤a.s. p0.

Then,

lim sup
ε↓0

lim
ν→∞

xεν ⊆ S∗

w.p. 1, where S∗ denotes the optimal solution set of the first stage problem of (2.12).

Proof. Let {εk}∞k=1 be a sequence with εk ↓ 0 as k → ∞. Then, let xk = xεk denote

the first stage of the solutions of (4.3) with ε = εk. Suppose xk → x̂ as k →∞, i.e.,

x̂ is the accumulation point. From Theorem 4.3,

lim
ν→∞

xkν = xk,
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for any fixed εk, w.p.1. Thus it follows that

lim
k→∞

(
lim
ν→∞

xkν

)
= lim

k→∞
xk = x̂, w.p.1.

Recall Theorem 4.2, we have x̂ ∈ S∗, and by the definition of outer limit,

lim sup
ε↓0

lim
ν→∞

xεν ⊆ S∗ w.p.1.

Then we complete the proof.

4.3 Numerical tests

In this section, we first give some details about the algorithm. After that, we carry

out numerical experiments using randomly generated data to illustrate the effective-

ness of our model and its solution approach. All the tests run in MATLAB 2016b

on a personal computer with 32GB RAM and 8-core processor (3.6× 8GHz).

4.3.1 Progressive hedging method and smoothing Newton
sub-algorithm

Recall that the model we interests is the form of a scenario-based linear complemen-

tarity problem (4.22) or its equivalent expression (4.23) with sufficiently small ε. The

solution process adapts the well-known PHM. PHM was first proposed by Rockafel-

lar and Wets [19] for solving multistage stochastic programming. Recently, it was

extended to solving the multistage SVI in [13]. The PHM is globally convergent and

the convergence rate is linear for SAA problem (4.23), see [13] for details.
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Algorithm: PHM for (4.23)
Step 0. Given an initial point x0 ∈ RJ , let x0

i = x0 ∈ RJ , v0
i ∈ R2J and w0

i ∈ RJ ,
for i = 1, . . . , ν, such that 1

ν
Σν
i=1w

0
i = 0. Set the initial point z0

ν = (x0, v0
1, . . . , v

0
ν)
T .

Choose a step size r > 0. Set k = 0.
Step 1. If the point zkν satisfies the condition

‖min(zkν ,Mνz
k
ν + qν)‖ ≤ 10−6,

output the solution zkν and terminate the algorithm; otherwise, go to Step 2.
Step 2. For i = 1, . . . , ν, find (x̂ki , v̂

k
i ) that solves linear complementarity problems

0 ≤ xi⊥Cxi +Bvi + a+ wki + r(xi − xki ) ≥ 0,
0 ≤ vi⊥−BTxi +Dε(ξi)vi + q2i(ξi) + r(vi − vki ) ≥ 0.

(4.25)

Then let x̄k+1 = 1
ν

∑ν
i=1 x̂

k
i , and for i = 1, . . . , ν, update

xk+1
i = x̄k+1, vk+1

i = v̂ki , w
k+1
i = wki + r(x̂ki − xk+1

i ),

to get point zk+1
ν = (x̄k+1, vk+1

1 , . . . , vk+1
ν )T .

Step 3. Set k := k + 1; go back to Step 1.

The subproblem (4.25) is a deterministic linear complementarity problem. It is

well-defined, since for all i = 1, . . . , ν, matrices

(
C + rI B
−BT Dε(ξi) + rI

)
∈ R3J×3J

are positive definite for any ε > 0. Thus, it has a unique solution.

Notice that the main computation cost of the PHM is in the Step 2. To improve

the efficiency of the PHM, we use the warm-start technique suggested in [13] to choose

an initial point for the PHM subproblem (4.25). More specifically, the solution zkν of

the subproblem (4.25) at the kth iteration is used as a starting point for the (k+1)th

iteration.

We then focus on solving subproblem (4.25) of PHM. Denote the subproblem

(4.25) by

0 ≤ zi⊥M ε
i zi + qi ≥ 0, (4.26)

where zi =

(
xi
vi

)
,M ε

i =

(
C + rI B
−BT Dε(ξi) + rI

)
, qi =

(
a+ wki − rxki
q2i(ξi)− rvki

)
, i =
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1, 2, . . . , ν. In order to take advantage of the spare structure of the subproblem (4.26),

we apply the smoothing Newton method proposed by Chen and Ye [7] to solve

the PHM subproblem (4.26). In what follows, we give a brief introduction to the

smoothing Newton method.

It is well-known that solving (4.26) is equivalent to solving the nonsmooth equa-

tion

F (zi) = min(zi,M
ε
i zi + qi) = 0. (4.27)

The main idea of the smoothing Newton method is to use a smooth approximation

function to approximate the nonsmooth function F and then solve the corresponding

linear system. We use the smooth Gariel-Moré approximation function f : R3J ×

R++ → R3J to approximate the nonsmooth function F . The jth component of f is

defined as

fj(zi, δ) = (zi)j −
∫ ∞
−∞

max
(
0, (zi −M ε

i zi − qi)j − δs
)
ρ(s)ds, j = 1, . . . , 3J,

where ρ(s) is a density function satisfying
∫∞
−∞ ρ(s)ds = 1, δ > 0 is a smoothing

parameter. It is not difficult to see that Fj(zi) = limδ→0 fj(zi, δ), j = 1, 2, . . . , 3J .

f(zi, δ) is continuously differentiable with respect to zi for any δ > 0. For any

(zi, δ) ∈ R3J × R++, the Jacobian of the smoothing function f(zi, δ) is

∇zif(zi, δ) = I − D̄(zi)(I −M ε
i ),

where D̄(zi) is a diagonal matrix with diagonal elements

D̄jj(zi) =

∫ (zi−Mε
i zi−qi)j/δ

−∞
ρ(s)ds, j = 1, . . . , 3J. (4.28)

One key criterion in determining the performance of the smoothing method is the

choice of density function ρ(s), as have been explored in [7], and we use

ρ(s) =
2

(s2 + 4)
3
2
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for our problem based on preliminary numerical tests. Then, the jth component of

the smooth approximation function f reads

fj(zi, δ) = (zi)j−
1

2

(√
(M ε

i zi + qi − zi)2
j + 4δ2 + (zi −M ε

i zi − qi)j
)
, j = 1, . . . , 3J,

where the corresponding jth diagonal element of the Jacobian D̄(zi) is

D̄jj =
1

2

 (zi −M ε
i zi − qi)j√

(zi −M ε
i zi − qi)2

j + 4δ2
+ 1

 , j = 1, . . . , 3J.

Then, the smoothing Newton method for solving subproblem (4.27) requires to solve

a linear equation to determine dk at each iteration, namely

∇zif(zki , δk)d
k + F (zki ) = 0, (4.29)

where δk decreases to 0 according to the criterion in [7]. To guarantee the well-

defineness of the (4.29), we make use of the following result.

Theorem 4.5 ([51]). For any diagonal matrix D̃ = diag(D̃jj) ∈ RJ×J with 0 ≤

D̃jj ≤ 1, j = 1, 2, . . . , J , the matrix I − D̃(I − A) is nonsingular if and only if A is

a P-matrix.

It is known that for any i = 1, . . . , ν, M ε
i is positive definite and hence a P-

matrix. Moreover, combining the fact that
∫∞
−∞ ρ(s)ds = 1 and (4.28), then the

D̄(zi) is a diagonal matrix with its element on the interval [0, 1] for any (zi, δ) ∈

R3J × R++. Therefore, using Theorem 4.5, the Jacobian ∇zif(zi, δ) is nonsingular

for any (zi, δ) ∈ R3J ×R++. Thus, the linear equation (4.29) is well-defined.

Denoting the matrix D̄(zi) = diag(D̄1(zi), D̄2(zi), D̄3(zi)), the Jacobian∇zif(zi, δ)
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at the point zi is of the following structure

∇zif(zi, δ) (4.30)

= (I − D̄(zi)) + D̄(zi)M
ε
i )

,

 Λ1(zi) 0 −D̄1(zi)
0 u1(zi)e

T + Λ2(zi) D̄2(zi)
D̄3(zi) −D̄3(zi) Λ3(zi)

 , (4.31)

where Λ1(zi) = D̄1(zi)(C+(r−1)I)+I, Λ2(zi) = (γ(ξ)+(r−1))D̄2(zi)+I, Λ3(zi) =

(ε+(r−1))D̄3(zi)+I are all diagonal matrices, and u1(zi) = γ(ξ)D̄2(zi)e. We can take

advantage of the sparse structure of (4.31) in its inverse computation. Specifically,

∇zif(zi, δ) consists of only diagonal sub-matrix and the matrix u1(zi)e
T + Λ2(zi),

where the later is a sum of a diagonal sub-matrix and a rank-one matrix.

Noticing from (4.31), the linear equation (4.29) is of the following form

 Λ1 0 Λ2

0 u1u
T
2 + Λ3 Λ4

Λ5 Λ6 Λ7

 s1

s2

s3

 =

 b1

b2

b3

 , (4.32)

where Λi ∈ RJ , i = 1, 2, . . . , 7 are diagonal matrices with Λ1 and Λ3 being non-

singular, si ∈ RJ , bi ∈ RJ , i = 1, 2, 3, u1, u2 ∈ RJ . For ease of notation, we use

Λ̂ = diag(1/Λ11, . . . , 1/ΛJJ) to represent the inverse of any invertible diagonal ma-

trix Λ = diag(Λ11, . . . ,ΛJJ). Given the sparse structure of the coefficient matrix, we

can solve the (4.32) efficiently. More exactly, by the first two equations of the (4.32),

we can get

s1 = Λ̂1(b1 − Λ2s3), (4.33)

s2 = (u1u
T
2 + Λ3)−1(b2 − Λ4s3). (4.34)

Directly substituting the (4.33) and (4.34) into the third equation of (4.32), we have

(Λ7 − Λ5Λ̂1Λ2 − Λ6(u1u
T
2 + Λ3)−1Λ4)s3 = b3 + const, (4.35)
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where const = −(Λ5Λ̂1b1 + Λ6(u1u
T
2 + Λ3)−1b2). For computing the inverse matrix

of (u1u
T
2 + Λ3), the Sherman-Morrison formula is useful. We have by the Sherman-

Morrison formula

(u1u
T
2 + Λ3)−1 = Λ̂3 −

Λ̂3u1u
T
2 Λ̂3

1 + uT2 Λ̂3u1

. (4.36)

Substituting the (4.36) into (4.35), we get

(Λ0 + αũ1ũ
T
2 )s3 = b3 + const,

where α = 1/(1 + uT2 Λ̂3u1),Λ0 = Λ7−Λ5Λ̂1Λ2−Λ6Λ̂3Λ4, ũ1 = Λ6Λ̂3u1, ũ2 = Λ4Λ̂3u2.

Then, if Λ0 is nonsingular, using the Sherman-Morrison formula again, we can im-

mediately get the solution of s3

s3 =

(
Λ̂0 −

αΛ̂0ũ1ũ
T
2 Λ̂0

1 + αũT2 Λ̂0ũ1

)
(b3 + const). (4.37)

Then, substituting the s3 into the (4.33) and (4.34), we get the solution of s1 and

s2, respectively.

From (4.37), one can know that the computation cost of s3 is trivial, since we

only need to compute inverse of several diagonal matrix, namely, Λ0,Λ1, and Λ3.

Once s3 is obtained, the calculation of s1 and s2 just needs to perform matrix-vector

production. Therefore, the linear equation (4.32) can be solved efficiently.

4.3.2 Randomly generated problems

For the first part of numerical test, we randomly generated the problem of the form

(4.23). More specifically, we generate a set of i.i.d. samples {ξ`}ν`=1 from a uniformly

distribution over the interval [0, 1]. For ` = 1, . . . , ν, set

p(ξ`) = ((ξ`)1, (ξ`)2, . . . , (ξ`)J)T , Π(ξ`) = γ(ξ`)(ee
T + I) , (ξ`)1(eeT + I).
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Diagonal matrix C ∈ RJ×J and a ∈ RJ are generated with its elements uniformly

distributed over the interval [1, 2]. All the numerical results are based on the average

of 10 independent runs.

To show the feasibility of the solution of the regularized problem compared to

that of the original problem, we compute the following residual value

Res = ‖min(z,Hz + q̄)‖,

where H denotes the coefficient matrix (4.23) with ε = 0.

Table 4.1: Numerical results for different ε and sample size ν, J = 10 with individual
sample

ν J(1 + 2ν) Iter CPU time/s Res Iter CPU time/s Res
ε = 10−3 ε = 10−6

10 210 146.30 0.26 4.42e-01 176.20 0.32 3.88e-04
50 1010 194.70 1.81 9.35e-01 197.40 1.83 9.32e-04
500 10010 208.70 26.72 3.00e+00 212.20 27.21 2.99e-03
2000 40010 222.60 154.97 5.93e+00 220.50 153.54 6.00e-03
5000 100010 224.70 623.53 9.49e+00 226.40 627.53 9.48e-03

ε = 10−9 ε = 10−12

10 210 152.70 0.27 1.08e-06 169.40 0.30 9.49e-07
50 1010 197.20 1.83 1.41e-06 194.40 1.80 9.75e-07
500 10010 212.70 27.21 3.21e-06 209.70 26.85 9.59e-07
2000 40010 220.30 153.34 6.16e-06 220.70 153.73 9.51e-07
5000 100010 226.70 628.89 9.60e-06 226.20 627.58 9.60e-07

Selected numerical results for J = 10 were listed in the Table 4.3.2. The aver-

age number of iterations, the average cpu time, and the average value of Res were

recorded in this table. For the same value of ε, the number of iterations increases

slightly when the sample size ν increases. In cases where the sample size ν is kept

constant and the values of regularization parameter ε are chosen from ε = 10−3 to

ε = 10−12, the iteration numbers are barely influenced as well as the cpu time. Fur-

thermore, we observe the convergence of our regularization approach with decreasing

values of ε, as have been proved in previous sections. Also notice that, the value of

Res decreases when the ε diminishes from 10−3 to 10−12. Numerically, it shows that

the solution of the regularized problem is also that of the original problem when

ε = 10−12.
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Figure 4.1: Numerical comparisons among different ε, J = 100.

Figure 4.1 illustrates the performance of the PHM measured by the number of

iterations and cpu time for 10 players. It is also worth mentioning that although one

might expect the problem to be more difficult to solve for a small ε, the numerical

performance in our experiments remain roughly unaffected with decreasing values of

ε. This is a good news from the viewpoint of approximation which requires a very

small ε.

Figure 4.2 demonstrates the convergence property of the first stage solution x

when the sample size gets large for the case J = 10. The convergence trend can be

seen component-wisely as the solution x converges when the sample size ν gets large.
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Figure 4.2: Convergence property of x with increasing ν, J = 10.
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Chapter 5

Conclusions and future work

In this chapter, we conclude the contents of this thesis, and point out some possible

work which we can do in the future.

5.1 Conclusions

The focus of the thesis has been placed on the two-stage SVI problem, applications

and algorithms. Specifically, two research problems have been investigated in detail.

1. We study a class of two-stage stochastic linear variational inequality problems

through the residual minimization problem (2.3). The quantitative stability

and convergence analysis are conducted with respect to problem (2.3). Specifi-

cally, we first provide sufficient conditions for the existence of solutions of both

the original problem and the perturbed problems. Next we conduct the quanti-

tative stability analysis under the total variation metric, and further investigate

the convergence of discrete approximations of the two-stage linear stochastic

variational inequality problem. Finally, by a 3-player two-stage noncoopera-

tive game problem, we numerically illustrate our convergence conclusion and

quantitative stability results.

2. A two-stage stochastic variational inequality is formulated as to describe the
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equilibrium of a convex two-stage non-cooperative multi-agent game under

uncertainty. Sufficient conditions for the existence of solutions of the varia-

tional inequality is provided under conventional assumptions. The numerical

implementation is constructed by proposing a regularized sample average ap-

proximation and the solution concepts are given. Furthermore, we prove the

convergence of the method as the regularization parameter tends to zero and

the sample size tends to infinity. Numerical results are presented based on

randomly generated data, which verify the effectiveness of our two-stage SVI

approach.

5.2 Future work

Related topics for the future research work are listed below.

1. In our work, we assume that the distribution of the random vector is known.

However, it is quite possible that we do not know the exact information of

probability distribution. But we can construct a set of probability distributions

that contains the true one, which leads to the so-called distributionally robust

SVI problem. The numerical treatability of the distributionally robust SVI

problem or the convergence between its data-driven approximated problem

and the original distributionally robust SVI problem are interesting work to

continue.

2. There are still few works on the quantitative stability analysis for multistage

stochastic linear/nonlinear variational inequality problems. Moreover, although

the PHM is designed to solve the multistage SVI problems, there exist few nu-

merical results for the multistage case. The existing works mostly focus on

the two-stage case. Therefore, these two topics would be promising in the

continuing research.
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