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Abstract

In recent several decades, tensors have more and more important applications in

both mathematical field and physical field. This thesis devotes to tensors and their

applications in several research areas. These applications include positive (semi)-

definiteness of structure tensors (hypermatrices), strong ellipticity condition for elas-

ticity tensors and tensor representation theory in physics. In details, these three

topics are:

1. finding a new class of positive (semi-)definiteness tensors and verifying their

properties;

2. constructing a kind of elasticity tensor with a special structure such that the

strong ellipticity condition can be verified more easily;

3. presenting an irreducible isotropic function basis of a third order three-dimensional

symmetric tensor and proposing a minimal isotropic integrity basis and an ir-

reducible isotropic function basis of a Hall tensor.

For the first topic, motivated by a kind of positive definite test matrix, the Moler

matrix, we introduce a new class of positive semi-definite tensor, the MO tensor,

which is a generalization of the Moler matrix. We pay our attention to two special

cases of the MO tensors: the essential MO tensor and the Sup-MO tensor. Both of

them are proved to be positive definite. Especially, the definition of the Sup-MO

tensor is based on the concepts of the MO value, the MO set and the Sup-MO value
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which are all defined in this work. Furthermore, an essential MO tensor is also a

completely positive tensor. Furthermore, the properties of the H-eigenvalues of the

Sup-MO tensor are presented. We show that the smallest H-eigenvalue of a Sup-MO

tensor is positive and approaches to zero as its dimension tends to infinity.

In the second topic, we focus on the verification for the strong ellipticity of a

fourth order elasticity tensor. The problem of verifying the strong ellipticity is con-

verted to an optimization problem of verifying the M-positive semi-definiteness of a

partially symmetric tensor. Hence, a kind of tensors which satisfy the strong elliptic-

ity condition is proposed. The elasticity M -tensor is constructed with respect to the

M-eigenvalues of elasticity tensors. After proposing a Perron-Frobenius-type theo-

rem for M-spectral radii of the nonnegative elasticity tensors, we are able to show

that any nonsingular elasticity M -tensor satisfies the strong ellipticity condition.

Furthermore, several equivalent definitions for nonsingular elasticity M -tensors are

established in this topic.

In the last topic, we turn our attention to tensor representation theory in the

physical field. An isotropic irreducible function basis with 11 invariants of a third

order three-dimensional symmetric tensor, which is a proper subset of the Olive-

Au↵ray minimal integrity basis of that tensor, are presented. This result is essential

to further investigation for the irreducible function basis of higher order tensors.

What is more, the representations of the Hall tensor are also investigated. The Hall

tensor, which comes from the Hall e↵ect, an important magnetic e↵ect observed in

electric conductors and semiconductors, is a third order three-dimensional tensor

whose first two indices are skew-symmetric. We build a connection between its

hemitropic and isotropic invariants and invariants of a second order three-dimensional

tensor via the third order permutation tensor, i.e., the Levi-Civita tensor. Then, a

minimal integrity basis with 10 isotropic invariants for the Hall tensor is proposed

and it is proved to be an irreducible function basis for that Hall tensor as well.
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Chapter 1

Introduction

1.1 Background

The concept of tensors originally came from the works on di↵erential geometry of

Carl Friedrich Gauss, Bernhard Riemann, Elwin Bruno Christo↵el and so on, in the

nineteenth century [60]. Around the early 20th century, Gregorio Ricci-Curbastro,

Tullio Levi-Civita, etc., further investigated and analyzed tensors [66]. Especially,

in 1916, the great scientist Albert Einstein, applied a mathematical discipline on

the tensor analysis in the study of general relativity. Until now, tensor analysis has

already played a significant role in theoretical physics [71], continuum mechanics [26],

fluid dynamics [84], and many other fields in science [1, 4, 48].

As geometric objects, tensors are able to describe linear or multi-linear relations

between geometric scalars, vectors, and other tensors. In physics, a tensor is a physi-

cal quantity whose physical property is independent from coordinate system changes.

When a coordinate basis is given, the representation of a tensor is an organized mul-

tidimensional array of numerical values. In this case, tensors can be regarded as

hypermatrices mathematically, which means that tensors can be treated as a higher

order generalization of a matrix in the mathematics field. Hence, the terminology of

“tensor” is applied both for tensors as physical quantities and multidimensional ar-

rays (hypermatrices). In this thesis, we treated tensors as hypermatrices in Chapter

1
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2, and as physical quantities in Chapters 3 and 4.

Recent decades, researchers in the field of both mathematics and physics pay

high attention to tensors. On one hand, from a mathematical point of view, tensors

have wide applications in automatic control [57], spectral hypergraph theory [11, 21,

59], higher order Markov chains [19, 45], polynomial optimization [64], multi-linear

systems [10], etc. In 2017, Qi and Luo published the book Tensor Analysis: Spectral

Theory and Special Tensors [62]. In the book, they mainly concerned about tensor

eigenvalues, the applications on hypergraph theory, di↵erent special kinds of tensors

which are positive (semi-)definite tensors, etc. On the other hand, in the physical

field, the applications of tensors include liquid crystal study [16], piezoelectric e↵ects

[32], solid mechanics [7] and so on. Qi, Chen and Chen also published a book Tensor

Eigenvalues and Their Applications in 2018 [60]. More applications in the field of

both hypermatrices and physics are discussed in this book.

1.2 Positive Semi-Definiteness of Tensors

As multi-dimensional array, an mth order n-dimensional tensor A is denoted as

Am,n “ pai1¨¨¨imq, ij P rns, j P rms,

where rns :“ t1, ¨ ¨ ¨ , nu, and rms :“ t1, ¨ ¨ ¨ ,mu. The set of all the real mth order

n-dimensional tensors is denoted as Tm,n. When all of its components ai1¨¨¨im ’s are

invariant under any permutation of its indices, it is called a symmetric tensor. The

set of all the real symmetric mth order n-dimensional tensors is denoted as Sm,n.

When m is even, an mth order n-dimensional symmetric tensor A defines an mth

degree homogeneous polynomial fpxq,x P Rn as follows,

fpxq ” A xm :“
nÿ

i1,¨¨¨ ,im“1

ai1¨¨¨imxi1 ¨ ¨ ¨ xim . (1.1)

— 2 —
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The positive definiteness of this homogeneous polynomial form Eq.(1.1) plays a piv-

otal role in the stochastic process, automatic control, magnetic resonance imaging,

and so on. We say that if fpxq is positive definite (positive semi-definite), then the

symmetric tensor A is positive definite (positive semi-definite)[58]. Hence, the prob-

lem of positive (semi-)definiteness of the homogeneous polynomial form Eq.(1.1) is

converted to the problem of positive (semi-)definiteness of the symmetric tensor A .

Definition 1.1. Let m be even and A P Sm,n. (1) The tensor A is called positive

semidefinite (PSD) if fpxq “ A xm
• 0, @x P Rn; (2) The tensor A is called positive

definite (PD) if fpxq “ A xm
° 0, @x P Rn,x ‰ 0.

However, it is NP-hard to identify that whether a given general even order sym-

metric tensor is positive semi-definite or not by Hillar and Lim[36]. On the other

hand, during the research of this topic, researchers have found many interesting re-

sults. For example, if an even order symmetric tensor has some special structures,

then it will be easily identified that whether it is positive semi-definite or not, or

there are some checkable conditions to prove such a tensor is a PSD or PD tensor.

Motivated by the study of positive definiteness of A , Qi introduced the concepts

of eigenvalues, H-eigenvalues, Z-eigenvalues, E-eigenvalues of an even order symmet-

ric tensor A in 2005 [58]. Now we recall the definitions of these definitions in [58].

Assume that x “ px1, x2, ¨ ¨ ¨ , xnq
J

P Rn, then xrms is a vector in Rn denoted as

xrms
“ pxm

1 , x
m
2 , ¨ ¨ ¨ , xm

n q
J.

Definition 1.2. [58] Let A P Tm,n,� P C. If � and a nonzero vector x P Cn are the

solutions of the following polynomial equation:

A xm´1
“ �xrm´1s, (1.2)

then we call � P C an eigenvalue of A and x an eigenvector of A associated with

the eigenvalue �. When an eigenvalue of A has a real eigenvector x, it is called an

— 3 —
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H-eigenvalue of A . A real eigenvector which is associated with an H-eigenvalue is

called an H-eigenvector.

Definition 1.3. [58] Let A P Sm,n and � P C. If there exists a complex vector x

such that
"

A xm´1
“ �x,

xJx “ 1,
(1.3)

then we call that � is an E-eigenvalue of A, and x is an E-eigenvector of the

tensor A associated with the E-eigenvalue �. When an E-eigenvalue has a real E-

eigenvector, it is called a Z-eigenvalue and call the real E-eigenvector is called a

Z-eigenvector.

Furthermore, the set of all the eigenvalues of tensor A is called the spectrum

of A , and the spectral radius of A is the largest modulus of the elements in the

spectrum of A which is denoted as ⇢pA q. The spectral theory of tensors are closely

related with the positive (semi-)definiteness of tensors.

It has been shown there that an even order symmetric tensor is positive (semi-

)definite if and only if all of its H-eigenvalues or Z-eigenvalues are positive (non-

negative) [58]. Various easily checkable positive (semi-)definite tensors with special

structures have been discovered consequently, e.g., SOS tensors, even order sym-

metric diagonally dominated tensors, even order symmetric B-tensors, even order

symmetric M-tensors and so on [14, 42, 58, 63, 91].

Especially, a kind of structured tensors is completely positive tensors. It has

strong connections with nonnegative tensor factorization which make it a useful tool

in polynomial optimization problems, data analysis and so on [25]. It was first

introduced in [65] in 2014. The definition is recalled as follows,

Definition 1.4. [65] Let A P Sm,n. If there exist an integer r and some upkq
P Rn

`, k P

— 4 —
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rrs such that

A “

rÿ

k“1

pupkq
q
m,

then A is called a completely positive tensor.

An even order completely positive tensor is a positive semi-definite tensor. All of

its H-eigenvalues and Z-eigenvalues are nonnegative. Furthermore, in [47], Luo and

Qi proved that Pascale tensors and Lehmer tensors are completely positive tensors.

Due to the significance of positive (semi-)definiteness and spectral theory of ten-

sors, a new kind of positive (semi-)definite tensors are investigated in Chapter 2 of

this thesis.

1.3 The Strong Ellipticity Condition of Elasticity
Tensors

In 1678, Hooke’s law was first published in the work [37] by Robert Hooke, a British

Physicist. It shows that the force needed to extend or compress a spring by some

distance has linear relations with that distance. In the modern elasticity theory,

Hooke’s law has been generalized. It states that the strain tensor S of an elastic

object or material whose components are sik is pressure-dependent with the stress

applied to it. Under a certain coordinate system ✏i b✏j b✏k, denote the stress tensor

as D whose components are djl. Due to the multiple independent components of

the strain tensor and stress tensor, the “proportional coe�cient” is a real tensor

instead of a real number. This tensor is called the elasticity tensor, a fourth order

three-dimensional tensor. Denoted the elasticity tensor as G whose components are

gijkl. In general, Hooke’s law can be presented as follows,

S “ GD,

— 5 —
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i.e.,

sik “

3ÿ

k,l“1

gijkldjl, i, j, k, l P t1, 2, 3u.

Because of the symmetric property of tensors S and D, the elasticity tensor G has

the following symmetric properties:

gijkl “ gkjil “ gilkj “ gjilk, i, j, k, l P t1, 2, 3u. (1.4)

Hence, there are 21 independent components in the elasticity tensor which are related

to elastic moduli.

One of the most important research topics is the strong ellipticity condition in the

elasticity theory. The strong ellipticity condition guarantees the existence of solutions

of basic boundary-value problems of elastostatics and thus ensures an elastic material

to satisfy some mechanical properties [60]. Therefore, identify whether the strong

ellipticity holds or not for a given material is an important problem in mechanics

[28]. The strong ellipticity condition (SE-condition)for an elasticity tensor can

be stated by

Gx2y2 :“
nÿ

i,j,k,l“1

gijklxixjykyl ° 0 (1.5)

for any nonzero vectors x,y P R3. In the 1970s, necessary and su�cient conditions

for strong ellipticity of the equations governing finite plane equilibrium deforma-

tions of a compressible hyperelastic solid were proposed by Knowles and Sternberg

[40, 41]. From [40] and [41], the “strong ellipticity condition” has been a common

term in mechanics. Then, Simpson and Spector extended their works to the special

case using the representation theorem for copositive matrices in [73]. In the 1990s,

some reformulations of the strong ellipticity condition were established by Rosakis

[70] and Wang and Aron [82] as well. Moreover, Walton and Wilber [80] provided

su�cient conditions for strong ellipticity of a general class of anisotropic hyperelastic

— 6 —
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materials. Those conditions require the first partial derivatives of the reduced-stored

energy function to satisfy several inequalities and the second partial derivatives to

satisfy a convexity condition. Recently, some su�cient and necessary conditions for

the strong ellipticity of certain classes of anisotropic linearly elastic materials were

given by Chiriţă, Danescu, and Ciarletta[20] and Zubov and Rudev [96]. Gourgiotis

and Bigoni [27] also investigated the strong ellipticity of materials under extreme

mechanical anisotropy.

Besides the aforementioned literature, there is another approach to deal with the

SE-condition. For a given fourth order n dimensional elasticity tensor G “ pgijklq,

there exists a one to one correspondence between it and a partially symmetric tensor

A which is symmetric with respect to the first two indices and the last two indices,

respectively.

aijkl “ ajikl “ aijlk “ aklij, i, j, k, l P rns. (1.6)

The correspondence can be shown as

Gx2y2
“ A x2y2, for any x,y P Rn. (1.7)

Denote the set of all fourth order n-dimensional tensors satisfying symmetric prop-

erty Eq.(1.6) as E4,n. According to Eq.(1.7), the problem of identifying SE-condition

is equivalent to identifying the positive global minimal value of the following opti-

mization problem:

min A x2y2,
s.t. xJx “ 1, yJy “ 1.

(1.8)

In 2009, Qi, Dai, and Han [61] proved a necessary and su�cient condition of the

SE-condition by introducing M-eigenvalues for tensors that belong to E4,n. Here,

“M” stands for “mechanics”. They showed that the SE-condition of an elasticity

tensor holds if and only if all the M-eigenvalues of its corresponding tensor that

belongs to E4,n are positive. For convenience, we say that the SE-condition of an

— 7 —
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elasticity tensor holds if and only if all the M-eigenvalues of the elasticity tensor

are positive. Furthermore, in [30], Han, Dai, and Qi linked the strong ellipticity

condition to the rank-one positive definiteness of three second order tensors, three

fourth order tensors, and a sixth order tensor. In [83], Wang, Qi, and Zhang proposed

a practical power method for computing the largest M-eigenvalue of any elasticity

tensor which can be applied to the verification of the strong ellipticity. Recently, the

M-eigenvalues of fourth order elasticity tensors and related algorithms are generalized

to higher order cases by Huang and Qi [39]. Chang, Qi, and Zhou [13] defined another

type of “eigenvalues” for elasticity tensors which are called the singular values that

can also be a necessary and su�cient condition for the strong ellipticity.

Therefore, it is meaningful to study the su�cient and necessary conditions for

the SE-condition of the elasticity tensor. In Chapter 3, we will give some conditions

for verifying the SE-condition of the elasticity tensors with special structures.

1.4 Tensor Representation Theory

Tensor representation theory plays a fundamental and important role in theoretical

and applied physics, especially in mechanics. This topic focuses on tensor functions

and tensor invariants which are extremely useful for constructing the constitutive

equations of physical relations. The complete and irreducible basis with isotropic in-

variants could predict the available nonlinear constitutive theories by the formulation

of energy term. Because irreducible representations for tensor-valued functions can

be immediately yielded from known irreducible representations for invariants [93],

the studies of isotropic function basis have most priority.

In physical field, a constitutive equation is used for showing the intrinsic rela-

tion between two physical quantities which is specific to a substance or material, and

approximates the response of that substance or material to external stimuli, usually

— 8 —
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as applied forces or fields. For example, Hooke’s law which we have mentioned in

Section 1.3 is a constitutive equation. The intrinsic properties of materials, e.g.,

symmetric property, are precisely expressed in the constitutive equations by the rep-

resentation of tensor functions. A tensor function is a function whose agencies are

tensors and whose values are scalars or tensors, and tensor polynomials are special

tensor functions whose components are polynomial functions of the components of

the tensor agencies. For mathematic convenience, researchers always assume that

the constitutive equations are all polynomial equations. According to the work of

Pipkin and Wineman [56] in 1963 and that of Wineman and Pipkin [86] in 1964,

we know that complete representations for tensor polynomials can be regarded as

complete representations for tensor functions.

It is well known that a constitutive law should have invariance since the physical

relations will not change when the coordinate system was changed. Therefore, it

requires that a constitutive equation should be constructed by invariants. Hence,

the complete and irreducible representation for invariant tensor functions is the key

to modeling nonlinear constitutive equations. We call a scalar-valued tensor function

as an isotropic invariant if it is invariant under any orthogonal transformations.

We call it as a hemitropic invariant if it is invariant only under rotations. In

general, we mainly consider two kinds of representation basis: the minimal integrity

basis and the irreducible function basis.

For example, denote T as a second order three-dimensional symmetric tensor,

trT , trT 2 and trT 3 are its three isotropic invariants. Furthermore, the set of these

three invariants is not only a minimal integrity basis but also an irreducible function

basis of the second order three-dimensional symmetric tensor T , which means that

the set of these three invariants is a complete and irreducible representation of T .

Hence, every isotropic invariants of T is expressible by a function of trT , trT 2 and

trT 3.

— 9 —
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Perhaps the modern development of tensor representation theory may be traced

back to the great mathematician Hermann Weyls book [85]. It was first published

in 1939. Then, from the works of Rivlin in 1948 [69, 68], the general methods for

nonlinear constitutive equations and applications of tensor representation theory in

continuum mechanics were beginning to be investigated. Since 1955, after the work

of Rivlin and Ericksen [67], there has been an extensive development on the theory

of tensor function representations. In the following decades, lots of researchers made

their e↵orts on this topic [51, 55, 74, 76, 77, 81, 86, 92, 93, 94, 95]. Especially, in

1994, Zheng gave a survey paper on this topic [93]. He summarized the literature of

tensor representation theory in details.

Most of the development of tensor representation theory after 1994 focused on

minimal integrity bases of isotropic invariants of third and fourth order three-dimensional

tensors [8, 53, 54, 75, 94, 95]. Boehler, Kirillov and Onat [8] studied the polynomial

basis of anisotropic invariants of the elasticity tensor in 1994. The tensor func-

tion representations involving tensors of orders higher than two were investigated by

Zheng and Betten [95] and Zheng [94] in 1995 and 1996, respectively. Furthermore,

Smith and Bao [75] presented the minimal integrity bases of isotropic invariants for

third and fourth order three-dimensional symmetric and traceless tensors in 1997.

Even though a minimal integrity basis for a fourth order three-dimensional symmet-

ric and traceless tensor has already been proposed by Boehler, Kirillov and Onat [8]

in 1994, the minimal integrity basis given by Smith and Bao [75] for the same tensor

is slightly di↵erent.

Meanwhile, the tensor representation theory is closely related to the classical

invariant theory in algebraic geometry [2, 35, 53, 79]. One of the most well-known ap-

proaches for computing the complete invariant basis was first introduced by Hilbert[35].

In 2014, Olive and Au↵ray [53] proposed an integrity basis with thirteen isotropic

invariants of a (completely) symmetric third order three-dimensional tensor. Olive
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claimed that this integrity basis is a minimal integrity basis in [52][p. 1409]. More-

over, the minimal integrity basis with 297 invariants of the fourth order elasticity

tensors successfully obtained via the approaches from the algebraic geometry by

Olive, Kolev, and Au↵ray[54] in 2017.

Very recently, in 2018, Prof. Qi’s research group has made some new progress

on this topic. Two isotropic irreducible functional bases of a fourth order three-

dimensional symmetric and traceless tensor was presented by Chen, Chen, Qi and

Zou [17], the minimal integrity basis and irreducible function basis of a two-dimensional

Eshelby tensor were proposed by Ming, Zhang and Chen [49], and Chen, Hu, Qi and

Zou [15] showed that any minimal integrity basis of a third order three-dimensional

symmetric and traceless tensor is also an irreducible function basis of that tensor.

In Chapter 4, we first present an eleven invariant isotropic function basis of a

third order three-dimensional symmetric tensor and show that this function basis

is indeed an irreducible function basis of a third order three-dimensional symmetric

tensor. It is the first time to give an irreducible function basis of isotropic invariants

of a third order three-dimensional symmetric tensor. Then we propose a minimal

isotropic integrity basis with 10 invariants for the Hall tensor, a special kind of third

order three-dimensional tensors, and prove that this minimal integrity basis is also an

irreducible isotropic function basis of it. These results are significant to the further

research of irreducible function bases of higher order tensors.

1.5 Organization of the Thesis

In this section, we will give a brief introduce of the contributions in this thesis. The

results in this thesis are all based on the works of [18], [22], [46] and [88]. These

works were organized as follows,

1. In Chapter 2, motivated by the test matrices, Moler matrices, we define a new
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class of tensors, the MO tensors. As a natural generalization of Moler matrices,

their positive semi-definiteness are shown in this chapter. MO tensors, which

include Sup-MO tensors and essential MO tensors with the concept of MO

value, are well studied. Meanwhile, some related properties are proved in this

chapter.

2. In Chapter 3, we first briefly introduce the strong ellipticity condition and

its relationship with di↵erent types of positive definiteness of the elasticity

tensors. As preparation for defining the elasticity M -tensor, we study the

M-spectral radius of nonnegative elasticity tensors then. Inspired by the M -

tensors, we introduce a kind of elasticity tensors with special structure, the

elasticity M -tensors and the nonsingular elasticity M -tensors. In the next,

we prove that they are M-positive (semi-)definite tensors and present other

equivalent definitions for nonsingular elasticity M -tensors.

3. In Chapter 4, firstly, we introduce some basic concepts and definitions in the

tensor representation theory. Secondly, an isotropic function basis with eleven

invariants of a third order three-dimensional symmetric tensor is presented,

and we prove that it is an irreducible function basis of a third order three-

dimensional symmetric tensor. Thirdly, we investigate the minimal integrity

basis and irreducible function basis for the Hall tensor. We discover a con-

nection between the invariants of a Hall tensor and that of a second order

three-dimensional tensor, which is quite important for constructing the com-

plete and irreducible representations for the Hall tensor.

4. In the final chapter, we briefly summarize the conclusions and list some future

work.
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Chapter 2

A New Class of Positive
Semi-Definite Tensors:
MO-Tensors

In Section 1.2, we mentioned that the positive semi-definiteness of some tensors with

special structures is easy to be checked. Hence, in this chapter, we will introduce

a new class of positive semi-definite tensors which is a natural generalization of a

special kind of positive definite matrices, the Moler Matrices. Moler matrix is a kind

of test matrix and it is positive definite. In 2016, two kinds of positive semi-definite

test matrices, the Pascal matrices and the Lehmer matrices, have been extended to

tensors by Luo and Qi [47]. In [47], they extended the Pascal matrix to the Pascal

tensor and generalized Pascal tensor, and extended the Lehmer matrix to the Lehmer

tensor and generalized Lehmer tensor. They showed that these two special kinds of

tensors are easily checkable and proved that they are completely positive tensors.

Inspired by their work on generalizing test matrices to tensors, we pay our atten-

tion to another kind of test matrices, the Moler matrix which is a positive definite

symmetric matrix. Especially, one of its eigenvalues is quite small, and it is usually

used for testing eigenvalue computations. Furthermore, the smallest eigenvalue of

a Moler matrix approaches 0, when the dimension of the Moler matrix n Ñ `8.

Motivated by the good properties of Moler matrix, we define a new class of positive

13
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semi-definite tensors. Because there have been M-tensors already, we call this new

class of tensor MO tensor, which comes from the first two letters of Moler.

In this chapter, we will first give a review on some basic definitions, theorems,

and lemmas which are useful in the following contents in preliminaries. And we will

also give a proof for good properties of the Moler matrices. Then we will define MO

tensors, which include Sup-MO tensors and essential MO tensors with the concept

of MO value, and prove some related properties in the Section 2.2. Finally, we will

give some final remarks on future work.

2.1 Preliminaries

Since some properties of a matrix have connections with its dimension, we denote

Apnq as an n-dimensional matrix in this chapter. Furthermore, there will be some

conclusions of an mth order n-dimensional tensor that have relations with its order

and dimension, we denote A pm,nq as an mth order n-dimensional tensor in this

chapter as well. At first, we will recall the definition for the Moler matrices as

follows,

Definition 2.1 ([50]). Let Apnq P Rnˆn. Apnq is called the n-dimensional Moler

matrix if

Apnqi,j “

"
i, i “ j

minti, ju ´ 2, i ‰ j
.

In the following proposition, we prove that the Moler matrix is a positive definite

matrix, and its smallest eigenvalue approaches 0 in decreasing as its dimension tends

to infinity. The symbol “Œ” means “approach down to”.

Proposition 2.1. Let Apnq P Rnˆn be an n-dimensional Moler matrix. (1) Apnq

is positive definite; (2) Let �minpApnqq be the smallest eigenvalue of Apnq. Then
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�minpApnqq Œ 0.

Proof. (1) Note that Apnq “ LLJ, where

Li,j “

$
&

%

1, i “ j
´1, i ° j
0, i † j

.

Hence, Apnq is positive definite.

(2) It is obvious that 0 † �minpApn ` 1qq § �minpApnqq. Assume that x “

`
1, 12 ,

1
22 , ¨ ¨ ¨ , 1

2n´1

˘J
. We have LJx “

¨

˚̊
˚̋

1

2n´1

...
1

2n´1

˛

‹‹‹‚,

xJApnqx

xJx
“

3n

4n ´ 1
• �minpApnqq,

which means that �minpApnqq Œ 0, when n Ñ `8.

In Section 1.2, we have already briefly introduced the definitions of the PSD

tensors, H-eigenvalues and completely positive tensors in Definitions 1.1, 1.2 and

1.4. Before we extend the Moler matrices to tensors, we also need some properties

of H-eigenvalues for preparation.

Theorem 2.1. [58] Let A pm,nq P Sm,n, and m be even. Then A pm,nq is positive

definite (positive semi-definite) if and only if all of the H-eigenvalues of A pm,nq are

positive (non-negative). Furthermore, we have

1. �minpA pm,nqq “ min A pm,nqxm

}x}mm ,

2. �minpA pm,nqq “ mintA pm,nqxm : }x}m “ 1u,

where x P Rn, and }x}m “ p
∞n

i“1 |xi|
m

q
1
m .
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2.2 MO Tensors and Their Properties

At first in this section, we will introduce concepts of the MO value, the MO set

and the Sup-MO value. Then, we will present a new class of positive semi-definite

tensors.

Definition 2.2. Let m be an even number. (1) ↵pmq is called as the MO value, if

A pm,nq :“ M pm,nq ´ ↵pmqN pm,nq is positive semi-definite for any n, where

M pm,nqi1,i2,¨¨¨ ,im “

"
i1, i1 “ i2 “ ¨ ¨ ¨ “ im

minti1, i2, ¨ ¨ ¨ , imu, else
, (2.1)

N pm,nqi1,i2,¨¨¨ ,im “

"
0, i1 “ i2 “ ¨ ¨ ¨ “ im
1, else

. (2.2)

We call the set of all MO values as the MO set ⌦pmq; (2) We call ↵˚
pmq “

supt⌦pmqu as the Sup-MO value. We also define Sub-MO value ↵˚pmq of ⌦pmq

as ↵˚pmq “ inft⌦pmqu.

What is noteworthy is that ↵pmq is a parameter only related to m. Therefore,

when we consider exploring its properties, it is necessary to prove that these prop-

erties still hold when n Ñ 8. Here, we mainly focus on the properties of ↵˚
pmq.

Based on the aforementioned concepts, MO tensors and Sup-MO tensors are defined

as follows.

Definition 2.3. Let m be an even number. (1) A pm,nq P Sm,n is called an MO

tensor, if

A pm,nq “ M pm,nq ´ ↵pmqN pm,nq,

where M pm,nq and N pm,nq are defined in Eq.(2.1) and Eq.(2.2), respectively, and

↵pmq P ⌦pmq. (2) A pm,nq P Sm,n is called a Sup-MO tensor, if

A pm,nq “ M pm,nq ´ ↵˚
pmqN pm,nq.
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It is worth noting that the Definitions 2.2 and 2.3 rely on the definition of posi-

tive (semi-)definiteness of the tensor. Since there is no definition of positive (semi-

)definiteness of an odd order tensor, there are no definitions for the MO value, MO

set, Sup-MO value, MO tensor and Sup-MO tensor when the order m is odd.

The following theorem shows that the Sup-MO tensor A pn,mq can be reduced

to the Moler matrix Apnq when m “ 2.

Theorem 2.2. Let ⌦pmq be the MO set, A pm,nq P Sm,n be a Sup-MO tensor. When

m “ 2, we have ↵˚
p2q “ 2 “ maxt⌦p2qu.

Proof. According to the property of the Moler matrix, we get 2 P ⌦p2q. Next, we

need to prove that 2 is the Sup-MO value in this case. If ↵˚
p2q ° 2, then there exists

an ↵ P p2,↵˚
p2qq

ì
⌦p2q such that

M p2, nq ´ ↵N p2, nq “ M p2, nq ´ 2N p2, nq ´ p↵ ´ 2qN p2, nq,

where M pm,nq and N pm,nq are defined in Eq.(2.1) and Eq.(2.2), respectively.

Let x “

ˆ
1,

1

2
, ¨ ¨ ¨ ,

1

2n´1

˙J
P Rn,

xJ
pM p2, nq ´ ↵N p2, nqqx “ xJ

pM p2, nq ´ 2N p2, nqqx ´ p↵ ´ 2qxJN p2, nqx.

Due to

xJ
pM p2, nq ´ 2N p2, nqqx “

3n

4n ´ 1
, and xJN p2, nqx “

8

3
´

4

2n´1
`

4

3p4n´1q
,

when n Ñ `8, we have

xJ
pM p2, nq ´ ↵N p2, nqqx † 0,

which contradicts with ↵ P ⌦p2q. Hence ↵˚
p2q “ 2.
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In the following work, we discuss a special class of MO tensors, the essential

MO tensors. The following theorem presents the relationship between the essential

MO tensors and the completely positive tensors. Then we give some properties of

Sup-MO values in MO tensors.

Definition 2.4. Let A pm,nq P Sm,n. A pm,nq is called the mth order n-dimensional

essential MO tensor if

A pm,nqi1,¨¨¨ ,im “

"
i1, i1 “ i2 “ ¨ ¨ ¨ “ im

minti1, i2, ¨ ¨ ¨ , imu ´ 1, otherwise
.

Theorem 2.3. Let A pm,nq be an mth order n-dimensional essential MO tensor.

For all n and even m, it is positive definite. Moreover, it is a completely positive ten-

sor for all n and m, as A pm,nq “

n∞
i“1

emi `

n∞
i“2

rmi , where peiqj “

"
1, j “ i
0, otherwise

,

priqj “

"
1, j • i
0, otherwise

.

Proof. Let Bpm,nqi1,¨¨¨ ,im “

$
&

%

1, i1 “ i2 “ ¨ ¨ ¨ “ im “ 1
1, i1, i2, ¨ ¨ ¨ , im • 2
0, otherwise

.

Because Bpm,nq “ p1, 0, ¨ ¨ ¨ , 0q
m

`p0, 1, ¨ ¨ ¨ , 1q
m, Bpm,nq is a complete positive

tensor. Let C pm,nq “ A pm,nq ´ Bpm,nq. Then

C pm,nq “

$
&

%

i1 ´ 1, i1 “ i2 “ ¨ ¨ ¨ “ im • 2
0, minti1, i2, ¨ ¨ ¨ , imu “ 1

minti1, i2, ¨ ¨ ¨ , imu ´ 2, otherwise
.

Let A pm,n ´ 1qi1,i2,¨¨¨ ,im “ C pm,nqi1`1,i2`1,¨¨¨ ,im`1, ij P rn ´ 1s, j P rms. Then

A pm,n ´ 1q is an mth order pn ´ 1q-dimensional essential MO tensor. Further-

more, if A pm,n´ 1q is the completely positive tensor, then A pm,nq is a completely

positive tensor.
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By the same way, we could get A pm, iq, i P rns, are all essential MO tensors.

When n “ 1, A pm, 1q equals the positive number 1. By induction, we have that

A pm,nq is a completely positive tensor and also a positive definite tensor.

Theorem 2.3 also means that the MO set is a nonempty set for all n and even m.

Hence, following corollaries are given.

Corollary 2.1. (1) Let ⌦pmq be the MO set, and M pm,nq,N pm,nq be defined in

Eq.(2.1) and Eq.(2.2), respectively. For all n and even m, 1 is always an MO value,

i.e. 1 P ⌦pmq.

(2) For all n and even m, M pm,nq ´ ↵N pm,nq is always completely positive

while ↵ P r0, 1s.

Proof. (1) Since M pm,nq ´ N pm,nq is an essential MO tensor for all n and even

m, we know that 1 is an MO value.

(2) Since N pm,nq “ em ´

n∞
i“1

emi ,

M pm,nq “

nÿ

i“1

emi `

nÿ

i“2

rmi ` em ´

nÿ

i“1

emi “

nÿ

i“2

rmi ` em,

where e “ p1, 1, ¨ ¨ ¨ , 1q
J. Hence, if ↵ P r0, 1s,

M pm,nq ´ ↵N pm,nq “

nÿ

i“2

rmi ` p1 ´ ↵qem ` ↵
nÿ

i“1

emi

is completely positive.

According to the definition of Sub-MO value and Corollary 2.1, there is a small

result for the Sub-MO value ↵˚pmq.

Corollary 2.2. ↵˚pmq exists, and ´
1
2 § ↵˚pmq § 0.
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Proof. From Corollary 2.1(2), ↵˚pmq § 0. Let x “ p1,´1, 0, ¨ ¨ ¨ , 0q
J, when ↵ † ´

1
2 ,

pM pm,nq ´ ↵N pm,nqqxm
“ 1 ` 2↵ † 0,

therefore, ↵˚pmq “ inft⌦pmqu exists, and ↵˚pmq • ´
1
2 .

The following proposition is one of the most important contents in this chapter.

Some interesting properties of the Sup-MO values and Mo set are investigated here.

Proposition 2.2. Let ⌦pmq be the MO set, m be even and M pm,nq,N pm,nq be

defined in Eq.(2.1) and Eq.(2.2), respectively. Then,

(1) for any ↵1pmq,↵2pmq P ⌦pmq, r↵1pmq,↵2pmqs Ñ ⌦pmq.

(2) 1 † ↵˚
pmq § 2.

(3) ↵˚
pmq “ maxt⌦pmqu.

(4) ↵˚
pmq Œ 1, when m Ñ `8.

Proof. (1) It is obvious.

(2) Since 1 P ⌦pmq for all even m, ⌦pmq ‰ H. Considering the tensor M pm,nq ´

2N pm,nq and x “

ˆ
1,

1

2
, ¨ ¨ ¨ ,

1

2n´1

˙J
P Rn. Then

pM pm,nq ´ 2N pm,nqqxm
“ 2

nÿ

i“1

peJ
i xq

m
`

nÿ

i“2

prJ
i xq

m
´ peJxq

m,

where e “ p1, ¨ ¨ ¨ , 1q
J. When m • 4 and n • 2, we have

nÿ

i“2

prJ
i xq

m
§

n´1ÿ

i“1

1

p2mqi
§

2m

2m ´ 1
§

16

15
,

nÿ

i“1

peJ
i xq

m
“

nÿ

i“1

1

p2mqi´1
§

2m

2m ´ 1
§

16

15
,
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and

peJxq
m

“ p

nÿ

i“1

1

2i´1
q
m

“

¨

˚̋1 ´
1

2n

1 ´
1

2

˛

‹‚

m

•

ˆ
3

2

˙m

.

Then

pM pm,nq ´ 2N pm,nqqxm
§

48

15
´

ˆ
3

2

˙m

† 0.

Therefore, for all even m, 2 is an upper bound of ⌦pmq. Therefore, ↵˚
pmq exists and

↵˚
pmq § 2.

Next, we prove ↵˚
pmq ° 1. Let

U pm,nq “ M pm,nq ´ N pm,nq,

V pm,n; �q “ U pm,nq ´ �N pm,nq,

and � “ ↵ ´ 1. The first thing is to prove that there exists � P p0, 1q such that

V pm,n; �qxm
“ p1 ` �q

nÿ

i“1

peJ
i xq

m
`

nÿ

i“2

prJ
i xq

m
´ �peJxq

m
• 0,

for all n P R and x P Rn satisfying ||x||m “ 1.

If eJx “ 0, then V pm,n; �qxm
• 0 for all � P r0, 1s. If eJx ‰ 0, then there exist

y “ py1, y2, ¨ ¨ ¨ , ynq P Rn and z “ pz1, z2, ¨ ¨ ¨ , znq P Rn such that

y1 “ eJx, yi “ rJ
i x, i “ 2, ¨ ¨ ¨ , n,

and

zi “
yi
y1
, i “ 1, ¨ ¨ ¨ , n.

Then z1 “ 1 and

V pm,n; �qxm
“ ym1

«
p1 ` �q

˜
n´1ÿ

i“1

pzi ´ zi`1q
m

` zmn

¸
`

nÿ

i“2

zmi ´ �

�
.
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Let

gm,npz, �q “ p1 ` �q

˜
n´1ÿ

i“1

pzi ´ zi`1q
m

` zmn

¸
`

nÿ

i“2

zmi , (2.3)

and

fm,np�q “ min
zPRn,z1“1

gm,npz, �q. (2.4)

We have

0 § fm,n`1p�q § fm,np�q, for all � P r0, 1s.

Hence,

fmp�q “ lim
nÑ`8

fm,np�q (2.5)

exists for all � P r0, 1s.

However, if there exists � P r0, 1s such that fmp�q “ 0, then by the definition of

fm,np�q, there exists z˚
P Rn with z˚

1 “ 1 such that p1 ´ z˚
2 q

m
† " and z˚

2 † ", for

any " ° 0, which is impossible. Hence, fmp�q ° 0. Furthermore, fmp0q ° 0.

What is more, when m • 4, assume that z˚
“

ˆ
1,

1

2
, 0, ¨ ¨ ¨ , 0

˙J
, we get

gm,npz˚, 1q “
5

2m
.

Thus fmp1q § fm,np1q §
5

2m
† 1.

Additionally, since m is even,

gm,npz, �1q § gm,npz, �2q, for all z P Rn, 0 § �1 § �2.

Then fm,np�1q § fm,np�2q and fmp�1q § fmp�2q, which means that fmp�q is a non-

decreasing function of � on r0, 1s.

Denote fmp�`
q and fmp�´

q as the right-hand and left-hand limit on � P p0, 1q,

fmp0`
q, and fmp1´

q as the right-hand limit on 0 and left-hand limit on 1 of the
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function fmp�q, respectively. Now we will prove that fmp�q is a continuous function

of � on p0, 1q.

Since fmp�q is a nondecreasing function, for any � P p0, 1q, fmp�`
q, fmp�´

q,

fmp0`
q, fmp1´

q exist and fmp�`
q • fmp�´

q. Assuming that fmp�`
q ° fmp�´

q, and

� “
fmp�`q´fmp�´q

2 ° 0, for 0 † �1 † � † �2, there exists N˚, when n ° N˚, we have

fm,np�1q § fmp�1q `
fmp�`

q ´ fmp�´
q

2

§ fmp�´
q `

fmp�`
q ´ fmp�´

q

2

“
fmp�`

q ` fmp�´
q

2
,

and

fm,np�2q • fmp�2q • fmp�`
q.

Therefore, when n ° N˚,

fm,np�2q ´ fm,np�1q •
fmp�`

q ´ fmp�´
q

2
“ � ° 0.

Because gm,npz, �q is continuous in �, and the level set of gm,npz, �q is bounded,

according to Proposition 4.4 in [9], fm,np�q is continuous in �. When �1 Ñ �, �2 Ñ �,

we have that

fm,np�`
q ´ fm,np�´

q •
fmp�`

q ´ fmp�´
q

2
“ � ° 0,

which is a contradiction. Hence, fmp�q is continuous in � on p0, 1q.

Finally,

Bpfm,np�qq� “

#
n´1ÿ

i“1

pz˚
i ´ z˚

i`1q
m

` pz˚
nq

m

+
,
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where z˚
P arg min

zPRn,z1“1
gm,npz, �q. Noting that fm,np�q † 1, for any � P r0, 1s, there

exists N ° 0 such that ||⌘m,n|| † 1, for all ⌘m,n P Bpfm,np�qq� and ||⌘m|| † 1, for all

⌘m P Bpfmp�qq�, when n ° N .

Hence, for all z P Rn with z1 “ 1, there is only one �˚
pmq P p0, 1q satisfying

fmp�˚
pmqq “ �˚

pmq. Besides that, when 0 † � § �˚
pmq, we have

gm,npz, �q • fm,np�q • fmp�q • �.

When �˚
pmq § � † 1, we have fmp�q § �. This means that there exists 1 ° � ° 0

satisfying

V pm,n; �qxm
• 0,

and there exists ↵ “ 1 ` � ° 1, satisfying

M pm,nq ´ ↵N pm,nq © 0.

Thus ↵˚
pmq ° 1.

Additionally, we prove that �˚
pmq “ ↵˚

pmq ´ 1. Obviously, ↵˚
pmq ´ 1 • �˚

pmq.

If ↵˚
pmq ´ 1 ° �˚

pmq, then there exists �1 such that �˚
pmq † �1 † ↵˚

pmq ´ 1.

Since fmp�1q † �1, according to the definition of fmp�q, there exists N ° 0 such

that fm,np�1q ´ �1 † 0, when n ° N. Hence, U pm,nq ´ �1N pm,nq ´ 0, which is a

contradiction. Thus �˚
pmq “ ↵˚

pmq ´ 1.

(3) From Theorem 2.2, when m “ 2, ↵˚
p2q “ maxt⌦p2qu. According to (2), when

m • 4, M pm,nq ´ ↵˚
pmqN pm,nq © 0. It means that ↵˚

pmq P ⌦pmq. Therefore,

↵˚
pmq “ maxt⌦pmqu, for all even m.

(4) Since 0 † fm,np�q † 1, � P r0, 1s, when m is even and m • 4, there exists a

z˚
P arg min

zPRn,z1“1
gm,npz, �q satisfying

pz˚
i ´ z˚

i`1q
m

§ 1, i “ 1, ¨ ¨ ¨ , n ´ 1, pz˚
i q

m
§ 1, i “ 2, ¨ ¨ ¨ , n.
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Thus

pz˚
i ´ z˚

i`1q
m`2

§ pz˚
i ´ z˚

i`1q
m, i “ 1, ¨ ¨ ¨ , n ´ 1;

pz˚
i q

m`2
§ pz˚

i q
m, i “ 2, ¨ ¨ ¨ , n.

Hence, fm,n`2p�q § fm,np�q, and there exists N ° 0 such that fm`2p�q § fmp�q, ,

when n ° N. By the aforementioned definition of �˚
pmq, without losing generality,

assuming that 0 § � § �˚
pmq, we obtain

fm´2p�q • fmp�q • �.

Therefore, �˚
pm ´ 2q • �˚

pmq, which means ↵˚
pm ´ 2q • ↵˚

pmq.

Since �˚
pmq • 0 and �˚

pmq is nonincreasing, �˚
“ lim

mÑ`8
�˚

pmq exists. If �˚
‰ 0,

then there exists an N ° 0, when n ° N and m ° N, we have

fm,np�˚
pmqq • fmp�˚

pmqq “ �˚
pmq • �˚

° 0.

However, when n ° N and m ° N, fm,np�˚
pmqq Ñ 0, which is a contradiction.

Hence, �˚
“ 0 and lim

mÑ`8
↵˚

pmq “ 1.

For computing the Sup-MO value ↵˚
pmq, we can achieve the goal by using a

simple algorithm as follows,

Algorithm 2.1 (Computing ↵˚
pmq).

S1: Let �0
“ 1, �1

“ �1
0 “ 1, n “ 1, k “ 0, " ° 0, m be an even number .

S2: Solve the Problem (2.4) for getting fm,np�n
k q.

S3: If fm,np�n
k q ´ �n

k † ´", then �n
k`1 “

�n
k
2 ;

If fm,np�n
k q ´ �n

k ° ", �k`1 “
�n
k `1

2 , k “ k ` 1, go to S2;

Else denote �n
“ �n

k .
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S4: If |�n
´ �n´1

| † ", stop and output �n
` 1;

else n “ n ` 1, k “ 0, go to S2.

It is not di�cult to compute fm,np�q since (2.4) is a convex problem. According

to Algorithm 2.1, the numerical solutions for some ↵˚
pmq’s are:

↵˚
p4q “ 1.1429, ↵˚

p6q “ 1.0323, ↵˚
p8q “ 1.0079.

In the final work of this chapter, a property of the minimal eigenvalue of the

Sup-MO tensor is proposed. Hence, the positive definiteness of Sup-MO tensors is

proved.

Theorem 2.4. Let ⌦pmq be an MO set. For all evenm • 4 and ↵˚
pmq “ maxt⌦pmqu,

A pm,n;↵˚
pmqq is a Sup-MO tensor, i.e.,

Ai1,¨¨¨ ,impm,n;↵˚
pmqq “ M pm,nq ´ ↵˚

pmqN pm,nq

“

"
i1, i1 “ i2 “ ¨ ¨ ¨ “ im,

minti1, i2, ¨ ¨ ¨ , imu ´ ↵˚
pmq, otherwise.

Denote �minpA pm,n;↵˚
pmqqq as the smallest eigenvalue of A pm,n;↵˚

pmqq, we have

�minpA pm,n;↵˚
pmqqq strictly decreases to 0, when n Ñ 8. Therefore, we know that

A pm,n;↵˚
pmqq is positive definite.

Proof. According to Theorem 2.1, we can see that �minpA pm,n;↵˚
pmqqq decreases

in n, for all even m. In the following, we show that it is strictly decreasing to 0.

gm,npz, �q, fm,np�q and fmp�q are defined as Eqs. (2.3), (2.4) and (2.5), respectively.

Since 1 ° fmp�˚
pmqq “ �˚

pmq ° 0, fm,np�˚
pmqq Ñ �˚

pmq. Assume that z˚
P

arg min
zPRn,z1“1

gm,npz, �˚
pmqq. Because z˚

1 “ 1, ||z˚
||m • 1. Let w˚

i “ z˚
i ´ z˚

i`1, i “

1, ¨ ¨ ¨ , n ´ 1, w˚
n “ z˚

n. Thus, when m • 4,

�˚
pmq § gm,npz˚, �˚

pmqq “ fm,np�˚
q § fm,np1q †

5

2m
† 1.
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By the definition of gm,npz˚, �˚
pmqq,

nÿ

i“2

pz˚
i q

m
§

5

2m
† 1, which means that

|z˚
2 | §

5
1
m

2
† 1. Thus w˚

1 “ 1´ z˚
2 • 1´

5
1
m

2
. Hence, when m • 4, ||w˚

||m • 1´
5

1
m

2
.

According to Theorem 2.1,

0 § �minpA pm,n;↵˚
pmqqq §

A pm,n;↵˚
pmqqpw˚

q
m

||w˚||mm

.

By the definition of w˚, A pm,n;↵˚
pmqqpw˚

q
m

Ñ 0, when n Ñ `8. Due to

||w˚
||m • 1 ´

5
1
m

2
, we get that �minpA pm,n;↵˚

pmqqq Ñ 0, when n Ñ 8.

Next, we prove that the decreasing of �minpA pm,n;↵˚
pmqqq is strict. Consider

the following program:

min A pm,n;↵˚
pmqqxm

s.t. ||x||m “ 1.

Then its KKT conditions are

#
A pm,n;↵˚

pmqqxm´1
“ �xrm´1s

||x||m “ 1.
(2.6)

The smallest solution �m,n and the corresponding vector x P Rn of above program

are the smallest H-eigenvalue and H-eigenvector of A pm,n;↵˚
pmqq. If �m,n “ �m,n`1

for some n, then there exist x P Rn and x̄ P Rn`1 with x̄ “ pxJ, 0q
J satisfying

A pm,n;↵˚
pmqqxm´1

“ �m,nx
rm´1s,

A pm,n ` 1;↵˚
pmqqx̄m´1

“ �m,n`1x̄
rm´1s.

Hence,

n`1ÿ

i2,¨¨¨ ,im“1

A pm,n ` 1;↵˚
pmqqn`1,i2,¨¨¨ ,im x̄i2 ¨ ¨ ¨ x̄im “ �m,n`1x̄

m´1
n`1 .
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Because x̄ “ pxJ, 0q
J, the above equation is

nÿ

i2,¨¨¨ ,im“1

A pm,n ` 1;↵˚
pmqqn`1,i2,¨¨¨ ,imxi2 ¨ ¨ ¨ xim “ 0.

Since
nÿ

i2,¨¨¨ ,im“1

A pm,n;↵˚
pmqqn,i2,¨¨¨ ,imxi2 ¨ ¨ ¨ xim “ �m,nx

m´1
n ,

we have
nÿ

i2,¨¨¨ ,im“1

A pm,n;↵˚
pmqqn,i2,¨¨¨ ,imxi2 ¨ ¨ ¨ xim

´

nÿ

i2,¨¨¨ ,im“1

A pm,n ` 1;↵˚
pmqqn`1,i2,¨¨¨ ,imxi2 ¨ ¨ ¨ xim

“↵˚
pmqxm´1

n “ �m,nx
m´1
n .

According to the above proof, ↵˚
pmq ° 1 ° �m,n. Therefore, xn “ 0. By the

same discussion, we get x “ 0, which contradicts with ||x||m “ 1.

Thus, �minpA pm,n;↵˚
pmqqq strictly decreases. Finally, together with Corollary

2.1, we have A pm,n;↵˚
pmqq is positive definite.

2.3 Final Remarks

In this chapter, we generalize the Moler matrix to the MO tensor by introducing the

concepts of the MO values and the MO set. Then we mainly investigate two special

cases of the MO tensor which are the Sup-MO tensor and the essential MO tensor.

We show that an even order essential MO tensor is a completely positive tensor and

positive definite. Then, some related properties of the Sup-MO value of an even

order Sup-MO tensor are proposed. Moreover, the positive definiteness of an even

order Sup-MO tensor is proved, because the minimal H-eigenvalue of the Sup-MO
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tensor strictly decreases to 0, when n Ñ 8. However, there are still some further

questions remain for the MO tensor, the Sup-MO tensor and the Sub-MO tensor:

1. Are the Sup-MO tensors SOS (sum-of-squares) tensors? An SOS tensor has

good structure for verifying the positive definiteness. From the definition of SOS

tensors [14], an SOS tensor is a PSD tensor, but not vice versa. This theory can be

traced back to David Hilbert [34]. We have tested some Sup-MO tensors randomly,

and found that they were SOS tensors. It is an interesting question for future study.

2. We have not verified whether ↵˚pmq can be reached or not. That is why we

do not know whether ⌦pmq is compact or not. If the ⌦pmq is compact, how to get

the length of the MO set ⌦pmq is also a challenging work. It is necessary to explore

the continuous properties of ↵˚pmq and ⌦pmq.

3. Since the good properties of the Moler matrices make them good test matri-

ces for the eigensystems and linear equations, we are not sure that if the Sup-MO

tensor can also be a good candidate for testing in some tensor computation software

packages or not.
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Chapter 3

Strong Ellipticity Condition for
the Elasticity Tensors

In Section 1.3, we have briefly introduced the strong ellipticity condition of an elas-

ticity tensor. We have converted the problem of verifying the SE-condition to iden-

tifying the minimal value of an optimization problem, the Problem (1.8) in Section

1.3. Due to the complexity of calculating the minimal value of Problem (1.8), we

try to construct some su�cient and necessary condition for solving this problem by

introducing some special structures for the tensors belongs to E4,n.

It is worth noting that the symmetric M -matrices, which is also called the Stielt-

jes matrices, are an essential kind of the positive semi-definite matrices used in many

disciplines in engineering and science, such as numerical solutions of partial di↵eren-

tial equations, the Markov chains, linear systems of equations, the graph theory, the

queueing theory and so on [6]. In 2014, the higher order M -tensors are introduced

by Zhang, Qi, and Zhou [91]. They also showed the positive semi-definiteness of an

even order symmetric M -tensor. Ding, Qi, and Wei [23] established several equiva-

lent definitions of nonsingular M -tensors. It should be noted that, in some literature,

the nonsingular M -tensor is called the strong M -tensor as well. In 2016, Ding and

Wei [24] presented that, for any polynomial system of equations, if the right-hand

side is a positive vector and its coe�cient tensor is a nonsingular M -tensor, then
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there exists a unique positive solution. They also presented an iterative algorithm

to solve such systems. Moreover, other numerical methods have been proposed by

Han [31], Xie, Jin, and Wei [87] and Li, Xie, and Xu [44]. Recently, in 2018, for

the M-tensor equations, Bai, He, Ling, and Zhou [3] and Li, Guan, and Wang [43]

considered their nonnegative solutions. In fact, the above M -structure is defined in

relation to the tensor eigenvalues introduced by Qi [58]. Considering [62, Chapter 2],

a tensor is said to be M-positive (semi-)definite if its M-eigenvalues are all positive

(or nonnegative). Hence, motivated by the above M -structure, we will define the

elasticity M -tensors with respect to the M-eigenvalues, which will be proved to be

M-positive semi-definite. Subsequently, we are able to find a large kind of tensors

which satisfy the strong ellipticity condition.

In this chapter, we will first introduce the basic knowledge of several types of

positive (semi-)definiteness of the elasticity tensors which are related to the SE-

condition. Second, before defining the elasticity M -tensors in the following, we

will study the M-spectral radius of nonnegative elasticity tensors for preparation.

Third, the nonsingular elasticity M -tensors and the elasticity M -tensors will be

introduced, their M-positive (semi-)definiteness will be proved and we will propose

some equivalent definitions for elasticity M -tensors. Finally, we will also give the

conclusion remarks.

3.1 SE-Condition and Positive Semi-Definiteness

Denote E4,n as the set of all fourth order n-dimensional tensors who satisfy (1.6) as

follows,

aijkl “ ajikl “ aijlk “ aklij, i, j, k, l P rns.
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At first, we recall the equivalent optimization problem (1.8) in Section 1.3:

min A x2y2,
s.t. xJx “ 1, yJy “ 1.

The KKT condition [5] of the minimization problem (1.8) is written as

$
&

%

A xy2
“ �x,

A x2y “ �y,
xJx “ 1, yJy “ 1,

(3.1)

where pA xy2
qi :“

∞n
j,k,l“1 aijklxjykyl and pA x2yql :“

∞n
i,j,k“1 aijklxixjyk.

In this formulation, two vectors x,y P Rn and � P R are defined as an M-

eigenvalue and a pair of corresponding M-eigenvectors of A , respectively, by

Qi, Dai, and Han in [61]. Therefore, a tensor satisfying the SE-condition is also

called an M-positive definite (M-PD) tensor [62]. Similarly with Definition 1.1,

the positive definiteness for an even order symmetric tensor, we say that a tensor

A P E4,n is M-positive semi-definite (M-PSD) if A x2y2
• 0 for any vectors

x,y P Rn [62]. The following theorem shows that the M-positive definiteness is

treated equivalently to the positivity of a tensor’s M-eigenvalues.

Theorem 3.1. [61] A tensor in E4,n is M-positive definite if and only if all of its

M-eigenvalues are positive; A tensor in E4,n is M-positive semi-definite if and only

if all of its M-eigenvalues are nonnegative.

Here, it is necessary to define a special tensor E P E4,n by

eijkl “

"
1, if i “ j and k “ l,
0, otherwise,

which serves as an identity element in E4,n. We call it the identity tensor in this

work. When n “ 3, the components of the identity tensor E are

e1111 “ e1122 “ e1133 “ e2211 “ e2222 “ e2233 “ e3311 “ e3322 “ e3333 “ 1,
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and others are 0. We can verify that

E xy2
“ xpyJyq, E x2y “ pxJxqy,

and

E x2y2
“ pxJxqpyJyq.

Hence, we have the following homogeneous definition for M-eigenvalues:

"
A xy2

“ �E xy2,
A x2y “ �E x2y.

(3.2)

By comparing (3.1) and (3.2), we can see that if the triplet p�,x,yq satisfies (3.1)

then p�,↵x, �yq satisfies (3.2) for any nonzero real scalar ↵, �. Noted that (3.2) is

exactly the KKT condition of the following minimization problem:

min A x2y2,
s.t. pxJxqpyJyq “ 1,

(3.3)

whose global optimal value being positive is able to guarantee the SE-condition. The

following proposition is an observation from the definition of the identity tensor.

Proposition 3.1. Let A P E4,n. Assume that B “ ↵pA ` �E q, where ↵, � are

two real scalars. Then µ is an M-eigenvalue of B if and only if µ “ ↵p� ` �q,

where � is an M-eigenvalue of A . Furthermore, � and µ correspond to the same

M-eigenvectors.

Proof. On the one hand, according to the definition of M-eigenvalue, if µ is an M-

eigenvalue of B, then Bxy2
“ µx and Bxy2

“ Bx2y “ µy, where x,y P Rn are

the corresponding M-eigenvectors. When ↵ “ 0, the result is obvious. When ↵ ‰ 0,

↵A x2y ` ↵�y “ ↵A x2y ` ↵�E x2y “ ↵pA ` �E qx2y “ µy

implies that

A x2y “ p↵´1µ ´ �qy.
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Similarly, we have

A xy2
“ p↵´1µ ´ �qx.

Thus � “ ↵´1µ ´ � is the M-eigenvalue for A corresponding to x and y.

On the other hand, when µ “ ↵p� ` �q and � is an M-eigenvalue of A corre-

sponding to the M-eigenvectors x and y, it can get

µy “ ↵p� ` �qy “ ↵�y ` ↵�y “ ↵A x2y ` ↵�E x2y “ ↵pA ` �E qx2y “ Bx2y,

µx “ ↵p� ` �qx “ ↵�x ` ↵�x “ ↵A xy2
` ↵�E xy2

“ ↵pA ` �E qxy2
“ Bxy2.

Hence, µ is an M-eigenvalue of B corresponding to the same M-eigenvectors x and

y.

There is another kind of the positive semi-definiteness of the tensors in E4,n.

Usually, there are two ways to unfold a tensor in E4,n into n2-by-n2 matrices:

(i) Ax “

»

———–

Ap1,1q
x Ap1,2q

x ¨ ¨ ¨ Ap1,nq
x

Ap2,1q
x Ap2,2q

x ¨ ¨ ¨ Ap2,nq
x

...
...

. . .
...

Apn,1q
x Apn,2q

x ¨ ¨ ¨ Apn,nq
x

fi

���fl P Rn2ˆn2
,

(ii) Ay “

»

———–

Ap1,1q
y Ap1,2q

y ¨ ¨ ¨ Ap1,nq
y

Ap2,1q
y Ap2,2q

y ¨ ¨ ¨ Ap2,nq
y

...
...

. . .
...

Apn,1q
y Apn,2q

y ¨ ¨ ¨ Apn,nq
y

fi

���fl P Rn2ˆn2
,

where Apk,lq
x :“ A p:, :, k, lq(k, l “ 1, ¨ ¨ ¨ , n) and Api,jq

y :“ A pi, j, :, :q(i, j “ 1, ¨ ¨ ¨ , n).

Note that Ax and Ay are permutation similar to each other, i.e., there exists a

permutation matrix P such that Ax “ PJAyP. Then A is M-PD or M-PSD if its

corresponding matrix Ax (or equivalently Ay) is PD or PSD, respectively. This can

be proved by noticing that

A x2y2
“ py b xq

JAxpy b xq “ px b yq
JAypx b yq,
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where b denotes the Kronecker product [38]. Thus we call A S-positive (semi)definite

if Ax or Ay is positive (semi-)definite, and call the eigenvalues of Ax or Ay the S-

eigenvalues of A . In fact, the S-positive definiteness is a su�cient condition for the

M-positive definiteness, but the converse is not true. A counterexample is shown as

follows.

Example 3.1. Consider the case n “ 3. Let A P E4,3 be defined by

a1111 “ a2222 “ a3333 “ 2, a1221 “ a2121 “ a2112 “ a1212 “ 1,

and all other entries equal to zero. Then we have

A x2y2
“ 2px1y1 ` x2y2q

2
` 2x2

3y
2
3,

thus A is M-PSD apparently, while the unfolding matrix

Ax “ Ay “

»

————————————–

2 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2

fi

������������fl

is not positive semi-definite.

Next, several more notations will be introduced for convenience. Let A P E4,n

and x,y P Rn. Two n-by-n matrices A x2
P Rnˆn and A y2

P Rnˆn are defined by

pA x2
qkl :“

nÿ

i,j“1

aijklxixj, k, l “ 1, 2, . . . , n,

pA y2
qij :“

nÿ

k,l“1

aijklykyl, i, j “ 1, 2, . . . , n.
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We note that

A x2
“

»

———–

xJAp1,1q
x x xJAp1,2q

x x ¨ ¨ ¨ xJAp1,nq
x x

xJAp2,1q
x x xJAp2,2q

x x ¨ ¨ ¨ xJAp2,nq
x x

...
...

. . .
...

xJApn,1q
x x xJApn,2q

x x ¨ ¨ ¨ xJApn,nq
x x

fi

���fl ,

and

A y2
“

»

———–

yJAp1,1q
y y yJAp1,2q

y y ¨ ¨ ¨ yJAp1,nq
y y

yJAp2,1q
y y yJAp2,2q

y y ¨ ¨ ¨ yJAp2,nq
y y

...
...

. . .
...

yJApn,1q
y y yJApn,2q

y y ¨ ¨ ¨ yJApn,nq
y y

fi

���fl .

Furthermore, it is straightforward to verify that

A x2y2
“ yJ

pA x2
qy “ xJ

pA y2
qx,

A x2y “ pA x2
qy, A xy2

“ pA y2
qx.

(3.4)

The symmetries in A imply that both A x2 and A y2 are symmetric matrix. Ac-

cording to Eq.(3.4), we can prove the following necessary and su�cient condition for

the M-positive (semi-)definiteness.

Proposition 3.2. Let A P E4,n. Then A is M-positive definite or M-positive semi-

definite if and only if the matrix A x2 (or A y2) is positive definite or positive semi-

definite for each nonzero x P Rn (or y P Rn), respectively.

Proof. On one side, if A is M-PD, then for any x,y P Rn
zt0u, A x2y2

° 0. It means

that yJ
pA x2

qy ° 0, for any nonzero y P Rn. Hence, the matrix A x2 is positive

definite for each nonzero x P Rn. Similarity, A y2 is positive definite for each nonzero

y P Rn. On the other side, when A x2 (or A y2) is positive definite for each nonzero

x P Rn (or y P Rn), it has yJ
pA x2

qy ° 0 (or xJ
pA y2

qx ° 0 ) for any nonzero

y P Rn (or x P Rn), which means that A is M-positive definite.

Similarity, A is M-positive semi-definite if and only if the matrix A x2 (or A y2) is

positive semi-definite for each x P Rn (or y P Rn), respectively.
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Generally speaking, the above necessary and su�cient condition is still as hard

as the SE-condition to check. However, it motivates some checkable su�cient con-

ditions. Therefore, we will introduce some su�cient conditions to verify the SE-

condition.

3.2 Nonnegative Elasticity Tensors

There is a well-known result about nonnegative matrices called the Perron-Frobenius

theorem [6], which states that the spectral radius of any nonnegative matrix is an

eigenvalue with a nonnegative eigenvector and the eigenvector is positive and unique

if the matrix is irreducible. In the past decades, the Perron-Frobenius theorem

has been extended to higher order tensors by Chang, Pearson, and Zhang [12] and

Yang and Yang [89, 90]. One may refer to [62, Chapter 3] for a whole picture of

the nonnegative tensor theory. We will also obtain similar results for nonnegative

elasticity tensors in this section.

From the discussions in Section 3.1, we have variational forms of the extremal

M-eigenvalues. Let B P E4,n. Denote �maxpBq and �minpBq as the maximal and the

minimal M-eigenvalues of B, respectively. Then

�maxpBq “ max
 
Bx2y2 : x,y P Rn, xJx “ yJy “ 1

(
,

�minpBq “ min
 
Bx2y2 : x,y P Rn, xJx “ yJy “ 1

(
.

(3.5)

The maximal absolute value of all the M-eigenvalues is called theM-spectral radius

of a tensor in E4,n, denoted by ⇢Mp¨q. Apparently, the M-spectral radius is equal to

the greater one of the absolute values of the maximal and the minimal M-eigenvalues.

The following theorem reveals that ⇢MpBq “ �maxpBq when B P E4,n is nonnegative.

Theorem 3.2. The M-spectral radius of any nonnegative tensor in E4,n is exactly its

greatest M-eigenvalue. Furthermore, there is a pair of nonnegative M-eigenvectors

corresponding to the M-spectral radius.
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Proof. It is enough to show that �maxpBq •

ˇ̌
�minpBq

ˇ̌
for proving the first statement.

For convenience, denote �1 and �2 as the maximal and the minimal M-eigenvalues

of B respectively, and px1,y1q and px2,y2q are the corresponding M-eigenvectors.

According to Eq. (3.5), we know that �1 “ Bx2
1y

2
1 and �2 “ Bx2

2y
2
2. Then employing

the nonnegativity of the entries of B, we have

|�2| “

ˇ̌
Bx2

2y
2
2

ˇ̌
§ B|x2|

2
|y2|

2
§ �1.

Next, we consider the eigenvectors of the M-spectral radius. Assume that x1 or

y1 is not a nonnegative vector. Then we also have

�1 “ Bx2
1y

2
1 § B|x1|

2
|y1|

2
§ �1,

thus B|x1|
2
|y1|

2
“ �1. Therefore,

`
|x1|, |y1|

˘
is also a pair of M-eigenvectors corre-

sponding to �1, which is nonnegative.

Theorem 3.2 can be regarded as the weak Perron-Frobenius theorem for the ten-

sors in E4,n. Combining Theorem 3.2 and Eq. (3.5), we have the following corollary,

which shrinks the feasible domain in Eq. (3.5).

Corollary 3.1. Let B P E4,n. If B is nonnegative, then

⇢pBq “ max
 
Bx2y2 : x,y P Rn

`, x
Jx “ yJy “ 1

(
.

Corollary 3.2. Let B P E4,n be nonnegative. Then we have ⇢pBq “ 0 if and only if

B “ O, where O is a zero tensor.

Proof. On the one hand, if B is a zero tensor, then ⇢pBq “ 0.

On the other hand, if ⇢pBq “ 0, then we have Bx2y2
“ 0, for any x,y P Rn.

This means that, for any y P Rn, we can get yJ
pBx2

qy “ 0. Hence, for any x P Rn

and fixed k, l P t1, 2, ¨ ¨ ¨ , nu,

Bx2
“

nÿ

i,j“1

bijklxixj “ O,
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where O is a zero matrix.

Assume that x “ ei (i “ 1, ¨ ¨ ¨ , n), where ei is the unit vectors whose i-th

component is 1 and others are zero, we have biikl “ 0 for all fixed k, l P t1, 2, ¨ ¨ ¨ , nu.

Furthermore, when x “ ei ` ej (i ‰ j, and i, j “ 1, ¨ ¨ ¨ , n), we have

biikl ` 2bijkl ` bjjkl “ 0

for all fixed k, l P t1, 2, ¨ ¨ ¨ , nu. Thus we have bijkl “ 0 for all fixed k, l P t1, 2, ¨ ¨ ¨ , nu.

This means that B “ O when ⇢pBq “ 0.

Chang, Qi, and Zhou [13] also studied the strong ellipticity for nonnegative elas-

ticity tensors. They introduced the singular values of a tensor B P E4,n as

"
Bxy2

“ �xr3s,
Bx2y “ �yr3s,

and they also investigated the Perron-Frobenius theorem for the singular values.

Nevertheless, it is hard to find an identity tensor similar to the tensor E in our

case, thus we may not be able to define a kind of M -tensors with respect to their

singular values. However, they introduced the definition for irreducibility of the

elasticity tensors in [13]. Recall the notations of Apk,lq
x (k, l “ 1, ¨ ¨ ¨ , n) and Api,jq

y

(i, j “ 1, ¨ ¨ ¨ , n) in Section 3.1. Let B P E4,n be nonnegative. If all the n ˆ n

matrices Bpk,kq
x (k “ 1, ¨ ¨ ¨ , n) and Bpi,iq

y (i “ 1, ¨ ¨ ¨ , n) are irreducible matrices, then

the nonnegative elasticity tensor B is called irreducible[13]. With the irreducibility

of an nonnegative elasticity tensor, a useful lemma can be proved.

Lemma 3.1. Let B P E4,n. If B is nonnegative and irreducible, then there is a pair

of positive M-eigenvectors corresponding to its M-spectral radius, i.e.,

⇢pBq “ max
 
Bx2y2 : x,y P Rn

``, x
Jx “ yJy “ 1

(
,

where Rn
`` is positive real vector field with dimension n.
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Proof. Since B is nonnegative, from Theorem 3.2, there exists a pair of nonnegative

M-eigenvectors x,y P Rn
` corresponding to its M-spectral radius ⇢pBq. Moreover,

we have

Bx2
“

nÿ

i,j“1

Bpi,jq
y xixj •

nÿ

i“1

Bpi,iq
y xixi.

Due to the nonnegativity of x, there exists an i0 P t1, ¨ ¨ ¨ , nu such that xi0 ° 0.

Hence,

Bx2
•

nÿ

i“1

Bpi,iq
y xixi • Bpi0,i0q

y xi0xi0 .

Since B is irreducible, Bpi,iq
y (i P t1, ¨ ¨ ¨ , nu) are irreducible matrices. Thus, Bx2 is

also irreducible. Hence, the corresponding M-eigenvector y is positive such that

Bx2y “ ⇢pBqy.

Similarity, By2 is irreducible, and the corresponding M-eigenvector x is positive such

that Bxy2
“ ⇢pBqx. In the summery, we have

⇢pBq “ max
 
Bx2y2 : x,y P Rn

``, x
Jx “ yJy “ 1

(
.

However, when B is nonnegative and irreducible, not all positive M-eigenvectors

are corresponding to its M-spectral radius, such as following example:

Example 3.2. Let B P E4,2 be defined by

b1111 “ 4, b1122 “ b2211 “ 10, b2222 “ 2,

b1112 “ b1121 “ b1211 “ b2111 “ 1,

b1212 “ b1221 “ b2112 “ b2121 “ 1,
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and

b1222 “ b2122 “ b2212 “ b2221 “ 2.

It is a nonnegative irreducible elasticity tensor. By computing its M-eigenvalues and

corresponding M-eigenvectors, we have �max “ 10.9075, and the M-eigenvectors are

x1 “ p0.2936, 0.9560q
J,y1 “ p0.9442, 0.3294q

J,

and

x2 “ p0.9442, 0.3294q
J,y2 “ p0.2936, 0.9560q

J.

Furthermore, the second max M-eigenvalue is �2nd´max “ 10.5. The corresponding

M-eigenvectors are x “ p0.7071, 0.7071q
J, y “ p0.7071, 0.7071q

J. Hence, not all the

positive M-eigenvectors are corresponding to its M-spectral radius.

3.3 Elasticity M -Tensors

Recall that the identity tensor E is defined by eiikk “ 1 and other entries being zero.

Let A P E4,n. Accordingly, we call the entries aiikk (i, k “ 1, 2, . . . , n) diagonal, and

other entries are called o↵-diagonal. Obviously, the diagonal entries of an M-positive

definite tensor must be positive, and the ones of an M-positive semi-definite tensor

must be non-negative. It is worth noting that the diagonal entries of A also lie on

the diagonal of its unfolding matrix.

A tensor in E4,n is called an elasticity Z -tensor if all its o↵-diagonal entries are

non-positive. If A P E4,n is an elasticity Z -tensor, then we can always write it as

A “ sE ´B, where B is a nonnegative tensor in E4,n. Such partition of an elasticity

E -tensor is not unique. If a tensor A P E4,n can be written as A “ sE ´B satisfying

that B P E4,n is nonnegative and s • ⇢MpBq, then we call A an elasticity M -

tensor. Furthermore, if s ° ⇢MpBq, then we call A a nonsingular elasticity

M -tensor.
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Theorem 3.3. Let A P E4,n be an elasticity Z -tensor. Then A is a nonsingular

elasticity M -tensor if and only if ↵ ° ⇢Mp↵E ´ A q, where ↵ “ max
 
aiikk : i, k “

1, 2, . . . , n
(
.

Proof. The “if” part is obvious by the partition A “ ↵E ´ p↵E ´ A q. Thus we

focus on the “only if” part. If A is a nonsingular elasticity M -tensor, then it can

be written as A “ sE ´ B satisfying that B P E4,n is nonnegative and s ° ⇢MpBq.

Denote � “ min
 
biikk : i, k “ 1, 2, . . . , n

(
, then ↵ “ s ´ �. Moreover, we can also

write ↵E ´ A “ B ´ �E , thus ⇢Mp↵E ´ A q “ ⇢MpBq ´ �. Therefore, s ° ⇢MpBq

implies that ↵ ° ⇢Mp↵E ´ A q.

The above theorem is a simple but useful observation. We can utilize this theorem

to prove the following proposition, which reveals that any elasticity M -tensor is the

limit of a series of nonsingular elasticity M -tensors. Hence, we may omit the proofs

of following results for general elasticity M -tensors, since it can be verified by taking

limits of the results for nonsingular elasticity M -tensors.

Proposition 3.3. A P E4,n is an elasticity M -tensor if and only if A ` tE is a

nonsingular elasticity M -tensor for any t ° 0.

Proof. Since A is an elasticity M -tensor, there exists a nonnegative elasticity tensor

B with s • ⇢MpBq such that A “ sE ´ B. Then for any t ° 0, we have A ` tE “

ps ` tqE ´ B. Clearly, s ` t ° ⇢pBq, which implies that A ` tE is a nonsingular

elasticity M -tensor.

Conversely, if A ` tE is a nonsingular elasticity M -tensor for any t ° 0, then by

the previous theorem we have ↵t ° ⇢M
`
↵tE ´ pA ` tE q

˘
, where ↵t is the greatest

diagonal entry of A ` tE . Denote ↵ as the largest diagonal entry of A . Then

↵t “ ↵ ` t, thus ↵ ` t ° ⇢Mp↵E ´ A q for any t ° 0. When t approaches 0, it

can be concluded that ↵ • ⇢Mp↵E ´ A q, which implies that A is an elasticity

M -tensor.
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It is well-known that a symmetric nonsingular M-matrix is positive definite [6].

The same statement was also proved for symmetric nonsingular M -tensors in [91].

Moreover, we shall show that a nonsingular elasticity M -tensor is M-positive defi-

nite thus satisfies the strong ellipticity condition. In this spirit, we find a class of

structured tensors that satisfies the strong ellipticity condition.

Theorem 3.4. Let A P E4,n be an elasticity Z -tensor. Then A is a nonsingular

elasticity M -tensor if and only if A is M-positive definite; and A is an elasticity

M -tensor if and only if A is M-positive semidefinite.

Proof. Denote A “ sE ´ B, where B is nonnegative.

If A is a nonsingular elasticity M -tensor, then s ° ⇢MpBq. By Eq. (3.5),

we have s ° Bx2y2 for all xJx “ yJy “ 1. Recall that E x2y2
“ pxJxqpyJyq.

Then sE x2y2
° Bx2y2, which is equivalent to A x2y2

° 0 for all xJx “ yJy “ 1.

Therefore A is M-positive definite.

On the other hand, suppose that A is M-positive definite, i.e., A x2y2
° 0

for all xJx “ yJy “ 1. Then similarly we have s “ sE x2y2
° Bx2y2 for all

xJx “ yJy “ 1. We know from Eq. (3.5) that s ° ⇢MpBq, i.e, A is a nonsingular

elasticity M -tensor.

The result for general elasticity M -tensors can be proved similarly.

The following equivalent definitions for elasticity M -tensors is straightforward

corollary of Proposition 3.1, Lemma 3.1 and Theorem 3.4.

Corollary 3.3. Let A P E4,n be an elasticity Z -tensor.

1. A is an (nonsingular) elasticity M -tensor if and only if

min
 
A x2y2 : x,y P Rn

`, x
Jx “ yJy “ 1

(
• 0p° 0q.
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2. Further assume that A is irreducible. A is an (nonsingular) elasticity M -

tensor if and only if

min
 
A x2y2 : x,y P Rn

``, x
Jx “ yJy “ 1

(
• 0p° 0q.

Recall that the S-eigenvalues of a tensor in E4,n are defined by the eigenvalues

of its unfolding matrices Ax and Ay. Of course, we can also define M -tensors

with respect to S-eigenvalues, which coincide with those tensors A whose unfolding

matrices Ax and Ay are M-matrices. In this case, A is also M-positive semidefinite

since Ax and Ay are positive semidefinite matrices. However, the converse may still

not hold, when A is an elasticity M -tensor, as shown by the following example.

Example 3.3. Consider the case n “ 2. Let A P E4,2 be defined by

a1111 “ 13, a1122 “ 2, a2211 “ 2,
a2222 “ 12, a1112 “ ´2, a1211 “ ´2,
a1212 “ ´4, a1222 “ ´1, a2212 “ ´1.

By our calculations with Mathematica, A has six M-eigenvalues:

13.4163, 12.1118, 11.2036, 6.1778, 0.2442, and 0.1964.

The minimal M-eigenvalue of A is 0.1964, which is positive. Thus A is a nonsin-

gular elasticity M -tensor by Theorem 3.4. Nonetheless, the unfolding matrices of A

are

Ax “ Ay “

»

——–

13 ´2 ´2 ´4
´2 2 ´4 ´1
´2 ´4 2 ´1
´4 ´1 ´1 12

fi

��fl ,

with four eigenvalues: ´2.8331, 6.0000, 9.2221, and 16.6110. There is a negative

eigenvalue, which implies that Ax and Ay are not positive semidefinite and thus not

M-matrices.
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We now provide some equivalent definitions of nonsingular elasticity M -tensors,

which serve as verification conditions. Recall the definitions of the two n-by-n matri-

ces A x2 and A y2 in Section 3.1. The next theorem shows that these two matrices

admit the same structures with the original elasticity tensor.

Theorem 3.5. Let A P E4,n be an elasticity Z -tensor. Then A is a nonsingular

elasticity M -tensor if and only if A x2 is a nonsingular M-matrix for each x • 0;

A is an elasticity M -tensor if and only if A x2 is an M-matrix for each x • 0.

Proof. Suppose that A is a nonsingular elasticity M -tensor. Then we know by Eq.

(3.4) that A x2 is positive definite for each x P Rn since A is M-positive definite.

Another simple observation is that A x2 is a Z-matrix for each x • 0 when A is an

elasticity Z -tensor. Thus A x2 is a positive definite Z-matrix for each x • 0. From

the equivalent definitions of nonsingular M-matrices [6], it can be concluded that

A x2 is a nonsingular M-matrix for each x • 0.

Conversely, if A x2 is a nonsingular M-matrix for each x • 0, then A x2 is always

positive definite. That is, A x2y2
“ yJA x2y ° 0 for each x • 0 and y P Rn. Write

A “ sE ´B, where B is nonnegative. Then s ° Bx2y2 for each x,y • 0 satisfying

xJx “ yJy “ 1. Hence, Corollary 3.1 tells that s ° ⇢MpBq, i.e., A is a nonsingular

elasticity M -tensor.

Similarly, we have a parallel result for A y2.

Theorem 3.6. Let A P E4,n be an elasticity Z -tensor. Then A is a nonsingular

elasticity M -tensor if and only if A y2 is a nonsingular M-matrix for each y • 0;

A is an elasticity M -tensor if and only if A y2 is an M-matrix for each y • 0.

There is a well-known equivalent definition for nonsingular M-matrices called

semi-positivity. That is, a Z-matrix A is a nonsingular M-matrix if and only if

there exits a positive (or equivalently nonnegative) vector x such that Ax is also a

— 46 —



PhD Thesis CHAPTER 3. STRONG ELLIPTICITY CONDITION

positive vector. Ding, Qi, and Wei [23] proved that this also holds for nonsingular M -

tensors. The semi-positivity is essential to verify whether a tensor is a nonsingular

M -tensor and is also important for solving the polynomial systems of equations

with M -tensors [24]. Combining the semi-positivity of nonsingular M-matrices and

Theorems 3.5 and 3.6, we have the following equivalent conditions for nonsingular

elasticity M -tensors immediately.

Theorem 3.7. Let A P E4,n be an elasticity Z -tensor. The following conditions

are equivalent:

1. A is a nonsingular elasticity M -tensor.

2. For each x • 0 and x ‰ 0, there exists y ° 0 such that A x2y ° 0.

3. For each x • 0 and x ‰ 0, there exists y • 0 such that A x2y ° 0.

4. For each y • 0 and y ‰ 0, there exists x ° 0 such that A xy2
° 0.

5. For each y • 0 and y ‰ 0, there exists x • 0 such that A xy2
° 0.

A matrix A P Rnˆn is called strictly diagonally dominant if

|aii| °

ÿ

j‰i

|aij|, i “ 1, 2, . . . , n.

Condition (2) in Theorem 3.7 states that for each nonnegative vector x, there exists

a positive vector y such that A x2y “ A x2y ° 0. Denote a diagonal matrix D with

dii “ yi for i “ 1, 2, . . . , n and rA :“ pA x2
qD. When A be an elasticity Z -tensor,

the matrix rA is also a Z-matrix. Thus we have

|raii| ´

ÿ

j‰i

|raij| “ raii `

ÿ

j‰i

raij “ pA x2yqi ° 0, i “ 1, 2, . . . , n,

which implies that rA is strictly diagonally dominant. Applying the above discussion,

we can prove the following corollary of Theorem 3.7.
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Corollary 3.4. Let A P E4,n be an elasticity Z -tensor. The following conditions

are equivalent:

1. A is a nonsingular elasticity M -tensor.

2. For each x • 0 and x ‰ 0, there exists a positive diagonal matrix D such that

DpA x2
qD is strictly diagonally dominant.

3. For each y • 0 and y ‰ 0, there exists a positive diagonal matrix D such that

DpA y2
qD is strictly diagonally dominant.

3.4 Final Remarks

In this chapter, we have established several su�cient and necessary conditions for

the strong ellipticity (M-positive definiteness) of general elasticity tensors. At first,

we briefly introduced two types of positive semi-definiteness which have connections

with the strong ellipticity condition for the elasticity tensors. We mainly discuss the

M-positive semi-definiteness in Section 3.1.

Next, we consider the properties for nonnegative elasticity tensors. A Perron-

Frobenius type theorem for M-spectral radii of a nonnegative elasticity tensor has

been proposed in Section 3.2. Then we investigate a class of tensors satisfying the

SE-condition, the elasticity M -tensor. Combining Theorems 3.3 – 3.7 and Corollarys

3.3, 3.4, we summarize the equivalent definitions for nonsingular elasticity M -tensors

given in this work. Let A P E4,n be an elasticity Z -tensor. The following conditions

are equivalent:

1. A is a nonsingular elasticity M -tensor.

2. A is M-positive definite, i.e., A x2y2
° 0 for all nonzero x,y P Rn.

3. min
 
A x2y2 : x,y P Rn

`, x
Jx “ yJy “ 1

(
° 0.
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4. All the M-eigenvalues of A are positive.

5. ↵ ° ⇢Mp↵E ´ A q, where ↵ “ max
 
aiikk : i, k “ 1, 2, . . . , n

(
.

6. For each x • 0 and x ‰ 0, A x2 is a nonsingular M-matrix.

7. For each x • 0 and x ‰ 0, there exists y ° 0 such that A x2y ° 0.

8. For each x • 0 and x ‰ 0, there exists y • 0 such that A x2y ° 0.

9. For each x • 0 and x ‰ 0, there exists a positive diagonal matrix D such that

DpA x2
qD is strictly diagonally dominant.

10. For each y • 0 and y ‰ 0, A y2 is a nonsingular M-matrix.

11. For each y • 0 and y ‰ 0, there exists x ° 0 such that A xy2
° 0.

12. For each y • 0 and y ‰ 0, there exists x • 0 such that A xy2
° 0.

13. For each y • 0 and y ‰ 0, there exists a positive diagonal matrix D such that

DpA y2
qD is strictly diagonally dominant.

However, there are still some open questions. One of the most important ques-

tions is that could we design some algorithms for the nonnegative elasticity tensors

or elasticity M -tensors such that all the M-eigenvalues are able to be calculated ef-

fectively? Hence, we can verify the SE-condition for the elasticity tensors with those

special structures easily.
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Chapter 4

Tensor Invariants

It is well-known that tensor is one of the fundamental tools in the physical area. In

Section 1.4, we have briefly introduced the importance of the tensor representation

theory which is a topic that focuses on the tensor invariants. Hence, in this chapter,

our main goal is to investigate the representations for two kinds of special tensors

in physics: the third order three-dimensional symmetric tensors and the third order

three-dimensional Hall tensors.

For convenience, in this chapter, the summation convention, the Einstein nota-

tion, is used. If an index repeated twice in a single term and is not otherwise defined,

then it means that this term is summed up with respect to this index from 1 to 3.

For instance, denote G as any second order tensor with components gij, after an

orthogonal transformation under an orthogonal tensor Q, we have

xQyG “ QGQJ,

and its components are

pQGQJ
qrs “

3ÿ

i,j“1

qriqsjgij :“ qriqsjgij.

In this chapter, we will first give some basic concepts in the tensor representation

theory, such as the isotropic invariant, the hemitropic invariant, the integrity basis,
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the function basis and so on. Then, we will give an irreducible function basis for the

third order three-dimensional symmetric tensors in the next section. Furthermore,

we study another kind of important third order three-dimensional tensors in physics,

the Hall tensor. We build a connection between a Hall tensor and a second order

three-dimensional tensor which leads us to find a minimal integrity basis and an

irreducible function basis for that Hall tensor.

4.1 Basic Concepts in Tensor Representation The-
ory

Assume that A is an mth order tensor represented by ai1i2¨¨¨im under a certain or-

thonormal coordinate ✏i b ✏j b ✏k. We call a scalar-valued tensor function fpA q an

isotropic invariant of A if it is invariant under any orthogonal transformations,

including reflections and rotations, i.e.,

fpxQyA q “ fpA q,

or equivalently expressed by

fpqi1j1qi2j2 . . . qimjmaj1j2...jmq “ fpai1i2...imq,

where Q is a second order n-dimensional orthogonal tensor (QJQ “ QQJ
“ I) with

components qij. If fpA q is only invariant under rotations, i.e., fpxQyA q “ fpA q for

any orthogonal tensor Q with detQ “ 1, then it is called a hemitropic invariant

of tensor A [93]. Furthermore, if fpA q is a polynomial, then it is called a polyno-

mial invariant of A . In Section 1.4, we have mentioned that tensor functions and

constitutive laws can all be assumed as polynomials. Hence, in this work, invariants

always stand for polynomial invariants unless specific remarks are made there.

For any second order tensor, since it keeps unaltered under the central inversion

´I, the isotropic invariants and the hemitropic invariants are equivalent [93]. Nev-
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ertheless, any isotropic polynomial invariant of a third order tensor has to be the

summation of several even order degree polynomials.

Now we briefly review the definitions and properties of (minimal) integrity bases

and (irreducible) function bases of a tensor.

Definition 4.1. [93] Let  “ t 1, 2, . . . , ru be a set of isotropic (or hemitropic,

respectively) invariants of a tensor A .

1.  is said to be polynomial irreducible if none of  1, 2, . . . , r can be ex-

pressed by a polynomial of the remainders.

2.  is called an isotropic (or hemitropic, respectively) integrity basis if any

isotropic (or hemitropic, respectively) invariant of A is expressible by a poly-

nomial of  1, 2, . . . , r.

3.  is called an isotropic (or hemitropic, respectively) minimal integrity basis

if it is polynomial irreducible and an isotropic (or hemitropic, respectively)

integrity basis.

Definition 4.2. [93] Let  “ t 1, 2, . . . , ru be a set of isotropic (or hemitropic,

respectively) invariants of a tensor A .

1. An invariant in  is said to be functionally irreducible if it cannot be ex-

pressed by a single-valued function of the remainders,  is said to be function-

ally irreducible if all of  1, 2, . . . , r are functionally irreducible.

2.  is called an isotropic (or hemitropic, respectively) function basis if any

isotropic (or hemitropic, respectively) invariant of A is expressible by a func-

tion of  1, 2, . . . , r.

3.  is called an isotropic (or hemitropic, respectively) irreducible function
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basis if it is functionally irreducible and is an isotropic (or hemitropic, respec-

tively) function basis.

According to Definitions 4.1 and 4.2, it is straightforward to demonstrate that an

isotropic (or hemitropic, respectively) integrity basis is an isotropic (or hemitropic,

respectively) function basis, but the converse is not true in general. Hence, the

number of invariants in an isotropic (or hemitropic, respectively) irreducible function

basis is less than or equivalent with the number of invariants in an isotropic (or

hemitropic, respectively) minimal integrity basis. For example, in next section, we

will prove the number of the irreducible function basis of a third order symmetric

traceless tensor is 11 which is less than 13 which is the number of invariants in its

minimal integrity basis [18].

Particularly, Olive, Kolev and Au↵ry have proved that the number of invariants

of each degree in an isotropic (or hemitropic, respectively) minimal integrity basis is

always fixed [54]. Nevertheless, it is still unclear whether the number of invariants

of an irreducible function basis is fixed.

Unfortunately, the number of invariants in a minimal integrity basis of a tensor

sometimes can be quite big. For instance, the number of minimal integrity basis for

an elasticity tensor is 297 [54]. From an experimental point of view, it is impossible

to detect all the values of the invariants in such a big minimal integrity basis of a

tensor. However, as we mentioned before, a minimal integrity basis for a tensor is also

a function basis, the number of invariants in an irreducible function basis consisting

of polynomial invariants is less than or equal to that of a minimal integrity basis.

Hence, it is meaningful to study the irreducible function basis of a tensor. This

also motivates us to study the irreducible function basis for the third order three-

dimensional symmetric tensor and the Hall tensor in the following sections.
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4.2 Irreducible Function Basis for a Third Order
Three-Dimensional Symmetric Tensor

4.2.1 Previous work

In this subsection, we will recall some previous work for some types of the third

order three-dimensional tensors in the representation theory. These works include

Smith and Bao’s minimal integrity basis result for a third order three-dimensional

symmetric and traceless tensor [75] , the consequent result of Chen, Hu, Qi and Zou

[15] which has confirmed that Smith and Bao’s minimal integrity basis is also an

irreducible function basis, and the minimal integrity basis result for a third order

three-dimensional symmetric tensor of Olive and Au↵ray [53].

In 1997, Smith and Bao [75] presented a minimal integrity basis of an irreducible

third order three-dimensional tensor. An irreducible tensor in the physical field

means that this tensor is not only symmetric but also traceless. Denote G as any third

order tensor. It is said to be traceless if the traces of all slices of its representations

are 0. In [16], they proved that the traceless property of tensors is preserved under

orthogonal transformations. The following theorem is from the work of Smith and

Bao [75] and shows the details of the minimal integrity basis.

Theorem 4.1. [75] Let D be an irreducible (i.e., symmetric and traceless) third

order three-dimensional tensor. Denote vp :“ dijkdij`dk`p, and

I2 :“ dijkdijk, I4 :“ dijkdij`dpqkdpq`,
I6 :“ vivi, I10 :“ dijkvivjvk.

(4.1)

Then the set of all the invariants in (4.1), i.e., ⇥irr :“ tI2, I4, I6, I10u, is a minimal

integrity basis of D .

We can see that this minimal integrity basis contains an invariant with degree 2

(I2), an invariant with degree 4 (I4), an invariant with degree 6 (I6) and an invariant
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with degree 10 (I10), which are all even degree polynomials of the components of D .

Very recently, Chen, Hu, Qi and Zou [15] proved the following theorem to show the

irreducible function basis of D .

Theorem 4.2. [15] Under the notation of Theorem 4.1, the Smith-Bao minimal

integrity basis ⇥irr “ tI2, I4, I6, I10u is also an irreducible function basis of D .

According to [94], a third order three-dimensional symmetric tensor A can be

decomposed into a vector u and a third order three-dimensional symmetric and

traceless tensor D , with

ui “ ai``

and

dijk “ aijk ´
1

5
puk�ij ` uj�ik ` ui�jkq ,

where �pq “ 1 if p “ q and �pq “ 0 if p ‰ q.

Then, in 2014, Olive and Au↵ray [53] presented an integrity basis for a third

order three-dimensional symmetric tensor in the following theorem.

Theorem 4.3. [53] Let A be a third order three-dimensional symmetric tensor with

the above decomposition. The following thirteen invariants

I2 :“ dijkdijk, J2 :“ uiui,

I4 :“ dijkdij`dpqkdpq`, J4 :“ dijkukdij`u`,

K4 :“ dijkdij`dk`pup, L4 :“ dijkukujui,

I6 :“ vivi, J6 :“ dijkdij`ukd`pqupuq,

K6 :“ vkwk, L6 :“ dijkdij`ukv`,

M6 :“ dijkdpqkuiujupuq, I8 :“ dijkdij`ukdpq`dpqrvr,

I10 :“ dijkvivjvk,

(4.2)

where vp :“ dijkdij`dk`p and wk :“ dijkuiuj, form an integrity basis

⇥p1q
sym :“ tI2, J2, I4, J4, K4, L4, I6, J6, K6, L6,M6, I8, I10u

of A .
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In the integrity basis ⇥p1q
sym of A , there are two invariants with degree 2, four

invariants with degree 4, five invariants with degree 6, one invariant with degree 8

and one invariant with degree 10. Because an integrity basis is always a function

basis, we are able to start from the Olive-Au↵ray integrity basis to find an irreducible

function basis of A .

4.2.2 An eleven invariant function basis

Denote

⇥p2q
sym “ tI2, J2, I4, J4, K4, L4, I6, J6, L6,M6, I10u,

where I2, J2, I4, J4, K4, L4, I6, J6, L6,M6, I10 are defined in Eq. (4.2). Now we will

show that ⇥p2q
sym is a function basis of the third order three-dimensional symmetric

tensor A in this subsection. Note that the set ⇥p2q
sym is obtained by dropping K6 and

I8 from the Olive-Au↵ray integrity basis ⇥p1q
sym in Theorem 4.3. Hence, we need to

show that K6 and I8 can be represented by a single-valued function of those remained

invariants. But first, we prove the following proposition.

Proposition 4.1. In the Olive-Au↵ray integrity basis, we have

2I2J2 ´ 3J4 • 0,

where equality holds if and only if either D “ O or u “ 0.

Proof. According to the definition in Theorem 4.3, if either D “ O or u “ 0, we

have I2J2 “ 0 and J4 “ 0. Hence 2I2J2 ´ 3J4 “ 0 in this case.

Then, consider the optimization problem

mint2I2J2 ´ 3J4 : dijkdijk “ 1, uiui “ 1.u,

where the variables are the seven independent components of D and the three com-

ponents of u. Utilizing GloptiPoly 3 [33] and SeDuMi [78], we compute the minimum
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value of this optimization problem is 0.2, where the minimizer is

d111 “ 0.2829, d112 “ d113 “ 0, d122 “ ´0.2828,
d123 “ ´0.2450, d222 “ 0, d223 “ ´0.2828,
u1 “ ´0.4471, u2 “ ´0.7746, u3 “ ´0.4474.

Therefore, the minimum value is positive. This implies that if 2I2J2 ´ 3J4 “ 0 then

either D “ O or u “ 0.

Before we prove the following theorem, we need to mention a phenomenon in the

representation theory. Sometimes, there exists some function relations among the

elements of an integrity basis or a function basis. These relations are called syzygies.

If we could find any single-valued function for an invariant in a function basis of a

tensor from these syzygies, then we can make sure that the invariant does not belong

to the irreducible function basis of the tensor. Then we could prove the following

theorem.

Theorem 4.4. The eleven invariant set

⇥p2q
sym “ tI2, J2, I4, J4, K4, L4, I6, J6, L6,M6, I10u

is a function basis of the third order three-dimensional symmetric tensor A .

Proof. Consider all possible tenth degree powers and products of these thirteen in-

variants I2, J2, I4, J4, K4, L4, I6, J6, K6, L6,M6, I8, I10 in the Olive-Au↵ray minimal in-

tegrity basis ⇥p1q
sym of A . We find linear relations among these tenth degree powers

and products. Thus, we have two syzygy relations among these thirteen invariants

as follows.

6J2I8 “ ´I22J2K4 ´ I32L4 ` 3I2I4L4 ´ 3I2J4K4 ` 4J2I4K4

` 2I22J6 ` 3I2J2L6 ´ 3L4I6 ´ 6I4J6 ` 3J4L6 ` 6K4K6,
(4.3)
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and

2I2J2K6 ` I22J2J4 ´ I2J
2
4 ` 2I2K4L4 ` 3J2K

2
4 ´ 2J2I4J4

` J2
2 I6 ´ 2I22M6 ´ 12K4J6 ` 6L4L6 ` 6I4M6 ´ 3J4K6 “ 0.

i.e.,

p2I2J2 ´ 3J4qK6 “ ´I22J2J4 ` I2J
2
4 ´ 2I2K4L4 ´ 3J2K

2
4 ` 2J2I4J4

´ J2
2 I6 ` 2I22M6 ` 12K4J6 ´ 6L4L6 ´ 6I4M6.

(4.4)

We begin with using the syzygy relation (4.3). If u “ 0, then J2 “ uiui “ 0, and

the right-hand side of (4.3) equals zero. In this case, we have

I8 “ dijkdij`ukdpq`dpqrvr “ 0,

where vp :“ dijkdij`dk`p. If u ‰ 0, then J2 “ uiui ‰ 0. By the syzygy relation (4.3),

we have

I8 “ ´
1

6
I22K4 `

2

3
I4K4 `

1

2
I2L6 `

1

6J2
p´I32L4 ` 3I2I4L4

´ 3I2J4K4 ` 2I22J6 ´ 3L4I6 ´ 6I4J6 ` 3J4L6 ` 6K4K6q.

Then I8 is a single-valued function of I2, J2, I4, J4, K4, L4, I6, J6, K6, L6,M6 and I10.

We now use the syzygy relation (4.4). If 2I2J2 ´ 3J4 “ 0, by Proposition 4.1,

either D “ O or u “ 0. It implies that K6 “ 0. Note in this case, the right-hand

side of (4.4) is also equal to zero. If 2I2J2 ´ 3J4 ‰ 0, we have

K6 “
1

2I2J2 ´ 3J4
p´I22J2J4 ` I2J

2
4 ´ 2I2K4L4 ´ 3J2K

2
4

` 2J2I4J4 ´ J2
2 I6 ` 2I22M6 ` 12K4J6 ´ 6L4L6 ´ 6I4M6q.

This shows that K6 is a function of I2, J2, I4, J4, K4, L4, I6, J6, L6,M6 and I10.

Hence, ⇥p2q
sym “ tI2, J2, I4, J4, K4, L4, I6, J6, L6,M6, I10u is a function basis of the

third order three-dimensional symmetric tensor A .
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4.2.3 An irreducible function basis for a third order three-
dimensional symmetric tensor

In order to show that ⇥p2q
sym “ tI2, J2, I4, J4, K4, L4, I6, J6, L6,M6, I10u is an irreducible

function basis of the third order three-dimensional symmetric tensor A , we should

prove that each of these eleven invariants is not a function of the other ten invariants.

For proving that each of K4, L4, J6 and L6 is not a function of the ten other

invariants in this function basis, we need the following proposition.

Proposition 4.2. We have the following four conclusions.

(a) If there is a third order three-dimensional tensor A such that K4 “ L4 “

J6 “ 0 but L6 ‰ 0, then L6 is not a function of I2, J2, I4, J4, K4, L4, I6, J6,M6 and

I10.

(b) If there is a third order three-dimensional tensor A such that K4 “ L4 “

L6 “ 0 but J6 ‰ 0, then J6 is not a function of I2, J2, I4, J4, K4, L4, I6, L6,M6 and

I10.

(c) If there is a third order three-dimensional tensor A such that K4 “ J6 “

L6 “ 0 but L4 ‰ 0, then L4 is not a function of I2, J2, I4, J4, K4, I6, J6, L6,M6 and

I10.

(d) If there is a third order three-dimensional tensor A such that L4 “ J6 “ L6 “

0 but K4 ‰ 0, then K4 is not a function of I2, J2, I4, J4, L4, I6, J6, L6,M6 and I10.

Proof. There is an observation from the definition of invariants I2, J2, I4, J4, K4, L4,

I6, J6, L6,M6 and I10. We find that, in the invariants K4, L4, J6 and L6, the degrees

of components from u are odd and the degrees of components from D are even.

Meanwhile, in the invariants I2, J2, I4, J4, I6,M6 and I10, the degrees of components

both from u and from D are even. Hence, when we keep D unchanged but change

u to ´u, invariants I2, J2, I4, J4, I6,M6 and I10 will be unchanged, while K4, L4, J6

and L6 change their signs.
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For conclusion (a), if there is a third order three-dimensional tensor A such that

K4 “ L4 “ J6 “ 0 but L6 ‰ 0, we may keep D unchanged but change u to ´u,

then I2, J2, I4, J4, I6,M6 and I10 are unchanged, K4, L4 and J6 are still zeros, but L6

changes its sign and value as it is not zero. It implies that L6 is not a function of

I2, J2, I4, J4, K4, L4, I6, J6,M6 and I10. The other three conclusions (b), (c) and (d)

can be proved similarly.

Now we can present the most important theorem of this section.

Theorem 4.5. For any given third order three-dimensional symmetric tensor A , the

eleven invariant set ⇥p2q
sym “ tI2, J2, I4, J4, K4, L4, I6, J6, L6,M6, I10u is an irreducible

function basis of A .

Proof. By Theorem 4.4, ⇥p2q
sym is a function basis of A . Now we need to show that

each of these eleven invariants is not a function of the ten other invariants. We will

divide the proof into three parts.

Part (i). In this part, we present that each of I2, I4, I6, I10 and J2 is not a function

of the other ten invariants. The first four invariants belong to the irreducible function

basis ⇥irr of the symmetric and traceless tensor D . The fifth invariant J2 forms an

irreducible function basis of the vector u. Applying this property, it is a direct

observation that each of them is not a function of the other ten invariants easily.

By Theorem 4.2, ⇥irr “ tI2, I4, I6, I10u is an irreducible function basis of D .

This implies that each of these four invariants is not a function of the other three

invariants. Hence, each of these four invariants is not a function of the ten other

invariants of ⇥p2q
sym.

Assume that D “ O, and u ‰ u1 such that uiui ‰ u1
iu

1
i. Then J2 takes

two di↵erent values but the other ten invariants I2, I4, J4, K4, L4, I6, J6, L6,M6 and

I10 are all zero. It shows that J2 is not a function of the ten other invariants

I2, I4, J4, K4, L4, I6, J6, L6,M6 and I10.
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Part (ii). In this part, we present that each of K4, L4, J6 and L6 is not a function

of the ten other invariants. We use Proposition 4.2 to attain this result.

First, we show that L6 is not a function of the other ten invariants. Denote

a111, a112, a113, a122, a123, a133, a222, a223, a233 and a333 as the representatives of the com-

ponents of A . If the values of these ten components are fixed, then the other com-

ponents of A are also fixed by symmetry. Let

a111 “
3

5
, a122 “

6

5
, a133 “ ´

4

5
, a223 “

1

2
, a333 “ ´

1

2
,

and

a112 “ a113 “ a123 “ a222 “ a233 “ 0.

Then we have

K4 “ L4 “ J6 “ 0 and L6 “ ´2,

to make sure that we can use Proposition 4.2 (a). The values of the other invariants

are: I2 “ 7, J2 “ 1, I4 “
37
2 , J4 “ 2, I6 “ 4, M6 “ 0, I10 “ 4. According to

Proposition 4.2 (a), L6 is not a function of I2, J2, I4, J4, K4, L4, I6, J6,M6 and I10.

Then we show that J6 is not a function of the other ten invariants. Let

a111 “
1

6

c
1

2
p149 ´

?

313q ´
18p´215 ` 7

?

313q

5
a
8053043 ´ 308071

?

313
,

a112 “
121p2963 ´ 103

?

313q

10p´215 ` 7
?

313q

d
298 ´ 2

?

313

648164815 ´ 26977811
?

313
,

a113 “
3966519 ´ 219867

?

313

5
a
648164815 ´ 26977811

?

313p´215 ` 7
?

313q

,

a122 “ ´
6p´215 ` 7

?

313q

5
a
8053043 ´ 308071

?

313
, a123 “ 1,

a133 “ ´
1

6

c
1

2
p149 ´

?

313q ´
6p´215 ` 7

?

313q

5
a
8053043 ´ 308071

?

313
,
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a222 “
363p2963 ´ 103

?

313q

10p´215 ` 7
?

313q

d
298 ´ 2

?

313

648164815 ´ 26977811
?

313
,

a223 “ 1 `
3966519 ´ 219867

?

313

5
a
648164815 ´ 26977811

?

313p´215 ` 7
?

313q

,

a233 “
121p2963 ´ 103

?

313q

10p´215 ` 7
?

313q

d
298 ´ 2

?

313

648164815 ´ 26977811
?

313
,

a333 “ ´1 `
3p3966519 ´ 219867

?

313q

5
a
648164815 ´ 26977811

?

313p´215 ` 7
?

313q

.

These values imply K4 “ L4 “ L6 “ 0 and J6 ‰ 0. Except that a123 “ 1, the

approximate digit values of the other independent components are as follows:

a111 “ 1.554, a112 “ ´0.1877, a113 “ ´0.01287,

a122 “ 0.06780, a133 “ ´1.283, a222 “ ´0.5631,

a223 “ 0.9871, a233 “ ´0.1877, a333 “ ´1.039.

Then we have

K4 “ L4 “ L6 “ 0 and J6 “ 0.5112,

satisfying the condition of Proposition 4.2 (b). The values of the other invariants are

I2 “ 17.29, J2 “ 1, I4 “ 132.6, J4 “ 2.547, I6 “ 83.81,M6 “ 0.1687 and I10 “ ´831.

According to Proposition 4.2 (b), J6 is not a function of I2, J2, I4, J4, K4, L4, I6, L6,M6

and I10.

Then we show that L4 is not a function of the other ten invariants. With the

same method, we can find a symmetric third order three-dimensional tensor A such

that K4 “ J6 “ L6 “ 0 and L4 ‰ 0. In details, except that a123 “ 1, the approximate

digit values of the other independent components are as follows:

a111 “ 1.0358, a112 “ 0.06373, a113 “ ´0.06357,

a122 “ 1.8269, a133 “ ´1.9697, a222 “ 0.1912,

a223 “ 0.9364, a233 “ 0.06373, a333 “ ´1.1907.
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Then we have K4 “ J6 “ L6 “ 0 and L4 “ ´0.3843, satisfying the condition of

Proposition 4.2 (c). We also have I2 “ 32.2465, J2 “ 1, I4 “ 394.69, J4 “ 9.1213,

I6 “ 509.67, M6 “ 3.2506 and I10 “ 17825.1. By Proposition 4.2 (c), L4 is not a

function of I2, J2, I4, J4, K4, I6, J6, L6,M6 and I10.

We further show that K4 is not a function of the other ten invariants. Let

a111 “
3

5
?
2
, a112 “

?
3

10 , a113 “
1
10 ,

a122 “
4

?
2

15 ´
1?
3
, a123 “

1
3 `

1?
6
, a133 “ ´

?
2

15 `
1?
3
,

a222 “
3

?
3

10 , a223 “ ´
9
10 , a233 “

?
3

10 ,

a333 “
13
10 .

Then we get L4 “ J6 “ L6 “ 0 and K4 “
8
9 , satisfying the condition of Proposition

4.2 (d). We also have

I2 “ 8, J2 “
3
2 , I4 “

88
3 , J4 “

8
3 ,

I6 “
64
9 , M6 “

11
9 , I10 “

11776
729 .

According to Proposition 4.2 (d),K4 is not a function of I2, J2, I4, J4, L4, I6, J6, L6,M6

and I10.

Part (iii). Since we cannot use Proposition 4.2 to show that each of M6 and J4

is not a function of the ten other invariants. We will use another tactics in this part.

We try to find a tensor A there such that K4 “ L4 “ J6 “ L6 “ 0 to reduce the

influence of these four invariants. Then we change some components of A such that

K4, L4, J6 and L6 remain at zero, the value of M6 or J4 is changed and the values

of the remaining other six invariants are unchanged.

We first show that M6 is not a function of the ten other invariants. Denote

u1 “ 5a, u2 “ 5b, u3 “ 5c, d123 “ d and the other six independent components of D

be zeros. Assume that a “ b “ 0 and c “ d “ 1. Then

I2 “ 6, J2 “ 25, I4 “ 12, J4 “ 50, K4 “ L4 “ I6 “ J6 “ L6 “ I10 “ 0 and M6 “ 0.
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Assume that a “ b “

?
2
2 , c “ 0 and d “ 1. We still have

I2 “ 6, J2 “ 25, I4 “ 12, J4 “ 50, K4 “ L4 “ I6 “ J6 “ L6 “ I10 “ 0,

but M6 “ 625. Hence, M6 is not a function of I2, J2, I4, J4, K4, L4, I6, J6, L6 and I10.

Finally, we prove that J4 is not a function of the ten other invariants. Let

a111 “
3
5 cos ✓, a112 “

1
5 sin ✓, a113 “ 0,

a122 “
1
5 cos ✓, a123 “ 1, a133 “

1
5 cos ✓,

a222 “
3
5 sin ✓, a223 “ 1, a233 “

1
5 sin ✓

a333 “ ´1.

Then we have K4 “ L4 “ J6 “ L6 “ 0. We also have I2 “ 10, J2 “ 1, I4 “ 44, I6 “

16, I10 “ ´64, and

J4p✓q “ 2 ` 4 cos ✓ sin ✓ ` 2 sin2 ✓,

M6p✓q “ sin2 ✓p2 cos ✓ ` sin2 ✓q.

Clearly, J4p
3
4⇡q “ 1, M6p

3
4⇡q “

1
4 , M6p0q “ 0 and M6p

⇡
4 q “

9
4 . Since M6p✓q is

continuous in the interval r0, ⇡4 s, there exists ✓0 P p0, ⇡4 q such thatM6p✓0q “ M6p
3
4⇡q “

1
4 . On the other hand, we have

J 1
4p✓q “ 4 cosp2✓q ` 2 sinp2✓q • 0, @✓ P

”
0,
⇡

4

ı
.

It follows that J4p✓0q • J4p0q “ 2 ° J4p
3
4⇡q “ 1. Thus, J4 is not a function of I2, J2,

I4, K4, L4, I6, J6, L6, M6 and I10.

Combining the results of all these three parts, each of these eleven invariants

is not a function of the ten other invariants. Therefore, this eleven invariant set

⇥p2q
sym “ tI2, J2, I4, J4, K4, L4, I6, J6, L6,M6, I10u is indeed an irreducible function basis

of A .

The strategy of Part (i) and the first part of Part (iii) of this proof to show that

each of I2, J2, I4, I6, M6, I10 is not a function of the other ten invariants may follow
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the idea of [55]. For self-su�ciency and completeness of this thesis, we give this part

of the proof directly.

4.3 Representations for the Hall Tensor

Except for the third order three-dimensional symmetric tensors in physics, there are

some other special third order three-dimensional tensors, such as the piezoelectric

tensors, Hall tensors, and so on. It is worth noting that the Hall tensor, which comes

from the Hall e↵ect, plays an important role in physics. Since there is no work about

the integrity basis and function basis of the Hall tensor, we will work on this problem

for the Hall tensor in this section.

It is well-known that the Hall e↵ect is an essential magnetic e↵ect observed in

electric semiconductors and conductors [32]. This e↵ect was named after Edwin

Hall who discovered it in 1879 [29]. When an electric current density J is flowing

through a plate and the plate is simultaneously immersed in a magnetic field F with

a component transverse to the current, the electric field strength E is proportional

to current density and magnetic field strength

Ei “ hijkJjFk,

where the third order tensor H with components hijk is called the Hall tensor

[32]. Since the Onsager relation for transport processes with time reversal is valid,

we know that the components of the Hall tensor under any orthonormal basis satisfy

hijk “ ´hjik for all i, j, k “ 1, 2, 3. The Hall tensor is quite significant for describing

the electromagnetic induction. Hence, it is vital to investigate the minimal integrity

basis and irreducible function basis for the Hall tensor. Meanwhile, in physics, there

are other tensors which are third order three-dimensional tensors whose first two

indices are antisymmetric. For example, the tensors in the Faraday e↵ect [32].

In this section, we are devoted to the invariants of the Hall tensors. We will build
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a connection between the invariants of a Hall tensor and that of a second order tensor,

which is useful for the subsequent contents. Moreover, a minimal isotropic integrity

basis with 10 isotropic invariants of the Hall tensor will be proposed. Then, we will

prove that the minimal integrity basis with 10 invariants of the Hall tensor is also

its irreducible function basis. Di↵erent from Section 4.2, definitions for hemitropic

and isotropic invariants which are mentioned at the beginning of this chapter play

an important role in this part.

4.3.1 Connection between the Hall tensor and the second
order three-dimensional tensor

Denote H as a Hall tensor represented by hijk under an orthogonal basis ✏i b ✏j b

✏k. Define a second order tensor A accordingly, with components aij under this

orthogonal basis, by the tensor product operation

A :“ 1
2"H ,

or equivalently

paijq✏i b ✏j “ p
1
2"klihkljq✏i b ✏j,

where " is the third order Levi-Civita tensor. The third order three-dimensional Levi-

Civita tensor is also called the permutation tensor. Its components are presented

as

"ijk “

$
&

%

1, if pi, j, kq is an even permutation of p1, 2, 3q

´1, if pi, j, kq is an even permutation of p1, 2, 3q

0, otherwise
,

i.e., "123 “ "231 “ "312 “ 1, "321 “ "213 “ "132 “ ´1 and others are 0.

Conversely, the Hall tensor can also be expressed with this second order tensor

by

H :“ "A,
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or equivalently

phijkq✏i b ✏j b ✏k “ p"ijlalkq✏i b ✏j b ✏k.

Due to the anti-symmetric property of the first two indices of the components in

a Hall tensor, we know that there are nine independent components in a Hall tensor

H . Without loss of generality, denote the nine independent components of the Hall

tensor H as:

h121, h122, h123, h131, h132, h133, h231, h232 and h233.

Thus, under a right-handed certain coordinate, the representation of the associated

second order tensor can be mathematically written into a matrix form:
¨

˝
h231 h232 h233

´h131 ´h132 ´h133

h121 h122 h123

˛

‚P R3ˆ3.

Hence, we are able to prove the following theorem which reveals the connection

between the invariants of the Hall tensor and the ones of its associated second order

tensor.

Theorem 4.6. Assume that H is a Hall tensor with components hijk. ApH q is

used for denoting the associated second order tensor of H .

1. Any isotropic invariant of H is an isotropic invariant of ApH q;

2. Any isotropic invariant of ApH q with even degree is an isotropic invariant

of H , and any isotropic invariant of ApH q with odd degree is a hemitropic

invariant of H .

Proof. (1) An isotropic invariant fpH q of the Hall tensor H is also a polynomial

function of its associated second order tensor ApH q, denoted by gpAq :“ fp"Aq.
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Thus, we need to prove that gpAq is an isotropic invariant of ApH q. Denote Q as

any orthogonal tensor. By the definition of isotropic invariants, we have

fpxQyH q “ fpH q “ fp"Aq “ gpAq.

Utilizing the equality xQy" “ pdetQq", then

fpxQyH q “ fpxQyp"Aqq “ fpxQy"xQyAq

“ fppdetQq"xQyAq “ gppdetQqxQyAq.
(4.5)

Since an isotropic invariant of a third order tensor must be an even function, we have

gppdetQqxQyAq “ gpxQyAq.

Hence, gpxQyAq “ gpAq, i.e., gpAq is an isotropic invariant of A.

(2) Denote gpAq as an invariant of ApH q. It is also a polynomial of the Hall

tensor H which can be denoted by fpH q :“ gp
1
2"H q. For any orthogonal tensor

Q, since gpAq is an invariant, we get

gpxQyAq “ gpAq “ gp"H q “ fpH q.

Recall that xQy" “ pdetQq". Then

gpxQyAq “ gpxQyp"H qq “ gpxQy"xQyH q

“ gppdetQq"xQyH “ fppdetQqxQyH q.
(4.6)

Hence, on one hand, when gpAq is an invariant of even degree, we have fpxQyH q “

fpH q for any orthogonal tensor Q. That is, fpH q is an isotropic invariant of the

Hall tensor H . On the other hand, when gpAq is an invariant of odd degree, only

for orthogonal tensor Q satisfying detQ “ 1, it holds that fpxQyH q “ fpH q,

which means that fpH q is a hemitropic invariant of the Hall tensor H . The proof

is completed.
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4.3.2 The minimal integrity basis of the Hall tensor

According to Theorem 4.6, we are able to construct an integrity basis for the Hall

tensor from the integrity basis of its associated second order tensor. For the associ-

ated second order tensor ApH q, we can split it into ApH q “ T ` W , where T is

a symmetric tensor with components tij “
1
2paij ` ajiq and W is a skew-symmetric

tensor with components wij “
1
2paij ´ ajiq. It is well-known that following 7 invari-

ants trT , trT 2, trT 3, trW 2, trTW 2, trT 2W 2 and tr T 2W 2TW form a minimal

integrity basis of ApH q and also an irreducible function basis as well. Then we

denote the invariants of ApH q as follows:

I1 :“ trT , I2 :“ trT 2, J2 :“ trW 2, I3 :“ trT 3,
J3 :“ trTW 2, I4 :“ trT 2W 2, I6 :“ trT 2W 2TW .

(4.7)

These invariants contain one invariant with degree 1, two invariants with degree 2,

two invariants with degree 3, one invariant with degree 4 and one invariant with

degree 6. The following theorem presents a method to obtain a minimal integrity

basis of H from this particular minimal integrity basis of ApH q.

Theorem 4.7. Let H be a Hall tensor with components hijk, and ApH q be its

associated second order tensor with components aij. Denote K2 :“ I21 , J4 :“ I1I3,

K4 :“ I1J3, J6 :“ I23 , K6 :“ J2
3 and L6 :“ I3J3. Then the invariant set

⇥hall :“ tI2, J2, K2, I4, J4, K4, I6, J6, K6, L6u (4.8)

is a minimal integrity basis of H . Here, tI1, I2, J2, I3, J3, I4, I6u are defined in Eq.

(4.7).

Proof. According to Theorem 4.6, any isotropic invariant of H is also an invariant

of ApH q, which means that any isotropic invariant of H can be expressed by a

polynomial denoted as ppI1, I2, J2, I3, J3, I4, I6q. Furthermore, any isotropic invariant

of an even order tensor consists of several even degree monomials. Each even degree
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monomial containing I1, I3, J3 should be a polynomial of I21 , I1I3, I1J3, I
2
3 , I3J3 and

J2
3 . Hence, the isotropic invariant ppI1, I2, J2, I3, J3, I4, I6q can also be written into a

polynomial of the invariants in ⇥hall. That is, Eq. (4.8) is an integrity basis of H .

Next, we need to verify the polynomial irreducibility of this integrity basis. There

is a natural observation that these isotropic invariants are homogenous polynomials

of the 9 independent components in the Hall tensor H . A similar method as the

approach proposed by Chen et al.[15] is employed in this part. The process can be

divided into three parts:

(I) There are exactly three isotropic invariants with degree 2, i.e., I2, J2, K2, in this

integrity basis. Take I2 for example. If it is not polynomial irreducible with

the other 9 invariants in this basis, then there exists a linear combination of

the other two degree-2 invariants J2, K2. Therefore, if I2, J2, K2 are polynomial

irreducible, then the unique triple of pc1, c2, c3q such that

c1I2 ` c2J2 ` c3K2 “ 0 (4.9)

is c1 “ c2 “ c3 “ 0. In fact, as we mentioned before, Eq. (4.9) is a polynomial

of the 9 independent components in the Hall tensor. Without loss of generality,

denote a point y “ ph121, h122, h123, h131, h132, h133, h231, h232, h233q P R9, where

R9 is the real number field with dimension 9, then we can say that Eq. (4.9)

is a polynomial of y. Note that Eq. (4.9) holds for an arbitrary Hall tensor.

Now, when we generate n points y1, ¨ ¨ ¨ ,yn P R9, c1, c2, c3 must be the solution

to the linear system of equations
¨

˚̊
˚̋

I2py1q J2py1q K2py1q

I2py2q J2py2q K2py2q

...
...

...
I2pynq J2pynq K2pynq

˛

‹‹‹‚

¨

˝
c1
c2
c3

˛

‚“

¨

˚̊
˚̋

0
0
...
0

˛

‹‹‹‚. (4.10)

The coe�cient matrix of System (4.10) is denoted by M2, and denote rpM2q

as the rank of the coe�cient matrix M2. Then rpM2q reveals the number of
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polynomial irreducible invariants in these three isotropic invariants. Take n “ 3

and

• y1 “ p´2, 3, 5, 0,´5,´4,´5, 2,´2q,

• y2 “ p´3, 0, 1, 1, 2,´4, 3, 0, 3q,

• y3 “ p´2, 0,´1, 2, 1,´3, 5, 2, 3q.

By numerical calculations, we can determine that rpM2q “ 3. Hence, the only

solution for System (4.10) is c1 “ c2 “ c3 “ 0, which implies that these three

invariants with degree 2 are polynomial irreducible.

(II) For the invariants with degree 4, consider the following linear equation

c1pI2q
2

` c2pJ2q
2

` c3pK2q
2

` c4I2J2 ` c5I2K2 ` c6J2K2

` c7I4 ` c8J4 ` c9K4 “ 0,
(4.11)

where c1, ¨ ¨ ¨ , c9 are scalars. If there exists a unique pc1, c2, . . . , c9q “ p0, 0, . . . , 0q

such that (4.11) holds for any Hall tensor, then all the three degree-4 invariants

I4, J4, K4 are polynomial irreducible. We also generate n points y1, ¨ ¨ ¨ ,yn P R9

and consider the following linear system:
¨

˚̊
˚̋

I22 py1q ¨ ¨ ¨ I4py1q J4py1q K4py1q

I22 py2q ¨ ¨ ¨ I4py2q J4py2q K4py2q

...
...

...
...

...
I22 pynq ¨ ¨ ¨ I4pynq J4pynq K4pynq

˛

‹‹‹‚

¨

˚̊
˚̋

c1
c2
...
c9

˛

‹‹‹‚“

¨

˚̊
˚̋

0
0
...
0

˛

‹‹‹‚. (4.12)

The coe�cient matrix of System (4.12) is denoted by M4. Take n “ 9 and

• y1 “ p4, 1,´3, 1,´4,´2,´1, 0,´5q,

• y2 “ p1, 5, 4, 0,´1,´5,´3, 5,´2q,

• y3 “ p´4, 4,´4, 1,´5,´2, 2, 3, 4q,

• y4 “ p´4,´5, 5, 5,´2, 3, 5,´1, 2q,
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• y5 “ p0, 4, 3, 3, 1,´2, 3, 5,´4q,

• y6 “ p5,´3, 3, 3,´4,´2, 3, 5,´5q,

• y7 “ p´3,´2, 2, 4,´4, 1, 4, 2, 0q,

• y8 “ p´5,´3, 4,´1, 1,´2,´2,´3, 0q,

• y9 “ p0,´2,´2, 1, 5, 3, 4, 0, 0q.

We can verify that the rank of M4 is rpM4q “ 9, which implies that these three

degree-4 invariants cannot be polynomial represented by other invariants with

degree-4 and degree-2.

(III) Similarly, in the case of degree 6, the verification linear equation is

c1pI2q
3

` c2pJ2q
3

` ¨ ¨ ¨ ` c19K2K4 ` c20I6 ` ¨ ¨ ¨ ` c23L6 “ 0. (4.13)

Hence, we generate n points y1, ¨ ¨ ¨ ,yn P R9. Consider a linear system similar

to system (4.12). Its coe�cient matrix can be denoted as M6, and its rank is

denoted by rpM6q. Take n “ 23 and

• y1 “ p3,´5, 1, 4, 2, 3, 3, 1,´3q,

• y2 “ p´5,´1, 2,´5,´2, 3, 3, 4,´1q,

• y3 “ p´4, 2, 1,´3,´2,´2, 1, 4,´1q,

• y4 “ p´2, 0, 3, 2,´2,´2,´5, 5, 2q,

• y5 “ p´2,´5,´5,´4, 3,´5,´3, 2,´3q,

• y6 “ p5,´4, 1, 3,´4, 1,´1, 4, 0q,

• y7 “ p´3, 3, 5,´3,´3, 1, 2,´2,´3q,

• y8 “ p2, 2,´5, 4, 4,´1,´5, 4,´5q,

• y9 “ p´2,´1, 2, 3,´2,´1,´2,´2, 5q,
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• y10 “ p´4,´3,´4,´2,´5,´5, 5,´2,´3q,

• y11 “ p3, 2,´2,´5, 5,´3, 0,´2,´5q,

• y12 “ p4,´4,´1, 4,´4, 0, 1, 3,´1q,

• y13 “ p3, 0,´5, 0, 2,´5,´5, 4, 1q,

• y14 “ p´4, 5,´5, 2,´1,´4,´5,´2,´5q,

• y15 “ p2,´5,´5, 5, 0, 2, 2, 3, 4q,

• y16 “ p1, 4, 4,´1,´5,´3, 4,´5, 1q,

• y17 “ p´2, 5,´5, 1,´2, 1, 0,´5, 4q,

• y18 “ p0,´4,´5, 0,´5,´2,´2,´2, 2q,

• y19 “ p1, 2, 1,´1, 3,´4,´5, 4, 5q,

• y20 “ p3,´3, 1,´3,´5, 3, 5, 1, 1q,

• y21 “ p0,´1, 3, 0,´3, 5, 3, 0, 3q,

• y22 “ p1,´5,´4,´1, 0,´1,´5,´5, 2q,

• y23 “ p´4,´2, 3, 4, 5,´3, 4, 3, 3q.

Then rpM6q “ 23, which implies that these four invariants with degree 6 are

polynomial irreducible in the integrity basis. Noted that in all parts of this

procedure, the points y are not unique and fixed.

Therefore, we have presented that ⇥hall in (4.8) is a minimal integrity basis of H .

In the above discussion, we fix the inducing initial, i.e., a particular minimal

integrity basis of the second order tensor. However, the minimal integrity basis is

not unique in general. We can also construct another minimal integrity basis for

a Hall tensor from another minimal integrity basis of the associated second order

tensor, denoted by

tĨ1, Ĩ2, J̃2, Ĩ3, J̃3, Ĩ4, Ĩ6u.
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Construct another integrity basis ⇥̃hall :“ tĨ2, J̃2, K̃2, Ĩ4, J̃4, K̃4, Ĩ6, J̃6, K̃6, L̃6u of the

Hall tensor in the same way, where

K̃2 :“ Ĩ21 , J̃4 :“ Ĩ1Ĩ3, K̃4 :“ Ĩ1J̃3, J̃6 :“ Ĩ23 , K̃6 :“ J̃2
3 and L̃6 :“ Ĩ3J̃3.

Because the integrity basis has already got the same number of invariants as the

minimal integrity basis (4.8), it must also be a minimal integrity basis. Therefore,

we have the following corollary.

Corollary 4.1. Denote H as a Hall tensor with components hijk, and ApH q as

its associated second order tensor with components aij. Let tĨ1, Ĩ2, J̃2, Ĩ3, J̃3, Ĩ4, Ĩ6u

be any minimal integrity basis of the second order tensor ApH q. Denote

⇥̃hall :“ tĨ2, J̃2, K̃2, Ĩ4, J̃4, K̃4, Ĩ6, J̃6, K̃6, L̃6u

with K̃2 :“ Ĩ21 , J̃4 :“ Ĩ1Ĩ3, K̃4 :“ Ĩ1J̃3, J̃6 :“ Ĩ23 , K̃6 :“ J̃2
3 and L̃6 :“ Ĩ3J̃3. Then

⇥̃hall is a minimal integrity basis of the Hall tensor H .

4.3.3 Irreducible function basis for the Hall tensor

In this subsection, we shall prove that the minimal integrity basis given in Subsection

4.3.2 is also an irreducible function basis of the Hall tensor K. According to the

approach proposed by Pennisi and Trovato[55] in 1987, to present a given function

basis of a tensor is functionally irreducible, for each invariant in this basis, we should

find two di↵erent sets of independent variables in the tensor, denoted by V and V
1
,

such that this invariant takes di↵erent values in V and V
1
while all the remainders

are the same in V and V
1
. The following theorem is proved in this spirit.

Theorem 4.8. The set ⇥hall “ tI2, J2, K2, I4, J4, K4, I6, J6, K6, L6u is an irreducible

function basis of the Hall tensor, where I2, J2, K2, I4, J4, K4, I6, J6, K6 and L6 are

defined in Theorem 4.7 and Eq. (4.7).
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Proof. According to the Definitions 4.1 and 4.2, we know that an integrity basis of

a tensor is a function basis of the tensor. Since we have proved in Subsection 4.3.2

that these ten invariants form a minimal integrity basis of the Hall tensor, this basis

is also a function basis.

Denote

V “ th121, h122, h123, h131, h132, h133, h231, h232, h233u

and

V
1

“ th
1
121, h

1
122, h

1
123, h

1
131, h

1
132, h

1
133, h

1
231, h

1
232, h

1
233u

as two di↵erent sets of independent variables of the Hall tensor H . Then we will

find ten pairs of tV, V
1
u to prove that all the ten isotropic invariants in ⇥hall is

functionally irreducible.

1. For I2 in V , let h121 “ h122 “ h123 “ h132 “ h133 “ h231 “ h233 “ 0, h131 “ ´1

and h232 “ 1.

Then in V
1
, let h

1
121 “ h

1
122 “ h

1
123 “ h

1
132 “ h

1
133 “ h

1
231 “ h

1
233 “ 0, h

1
131 “ ´2

and h
1
232 “ 2.

We have that I2 “ 2 and I
1
2 “ 8, while other invariants: tJ2, K2, I4, J4, K4, I6, J6,

K6, L6u, and tJ
1
2, K

1
2, I

1
4, J

1
4, K

1
4, I

1
6, J

1
6, K

1
6, L

1
6u are all equal to 0. It means that

I2 is functionally irreducible in the function basis ⇥hall.

2. For J2, in V , let h121 “ h122 “ h123 “ h132 “ h133 “ h231 “ h233 “ 0, h131 “ 1

and h232 “ 1. Meanwhile in V
1
, let all the variables be 0.

We have that J2 “ 2 and J
1
2 “ 0, while other invariants: tI2, K2, I4, J4, K4, I6, J6,

K6, L6u, and tI
1
2, K

1
2, I

1
4, J

1
4, K

1
4, I

1
6, J

1
6, K

1
6, L

1
6u all equals 0. This means that J2

is functionally irreducible in the function basis ⇥hall.

3. For K2, in V , let h121 “ h122 “ h131 “ h133 “ h232 “ h233 “ 0, h123 “

´

b
2` 3?4

2 , h132 “ 0 and h231 “

b
2` 3?4

2 .
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In V
1
, let h

1
121 “ h

1
122 “ h

1
131 “ h

1
133 “ h

1
232 “ h

1
233 “ 0, h

1
123 “ 1, h

1
132 “

3
?

2 and

h
1
231 “ 1.

We have K2 “ 0. It is not equal to K
1
2 “ p2 ´

3
?

2q
2, while other invariants:

I2 “ I
1
2 “ 2 `

3
?

4 and J2 “ J
1
2 “ I4 “ I

1
4 “ J4 “ J

1
4 “ K4 “ K

1
4 “ I6 “

I
1
6 “ J6 “ J

1
6 “ K6 “ K

1
6 “ L6 “ L

1
6 “ 0. This means that K2 is functionally

irreducible.

4. For I4, in V , let h121 “ ´2, h122 “ 0, h123 “ 1, h131 “ 1, h132 “ 1, h133 “ 0,

h231 “ 0, h232 “ 1 and h233 “ 2.

In V
1
, let h

1
121 “ ´

?

3, h
1
122 “ ´

?

2, h
1
123 “ 1, h

1
131 “ 0, h

1
132 “ 1, h

1
133 “ ´

?

2,

h
1
231 “ 0, h

1
232 “ 0 and h

1
233 “

?

3.

We have I4 “ 5. It is not equal to I
1
4 “ 7, while I2 “ I

1
2 “ 2, J2 “ J

1
2 “ 10,

K6 “ K
1
6 “ 9 and others are all equal to 0. This means that I4 is functionally

irreducible.

5. For J4, assume that s “ 4 `

?

14, and t “ 4 ´

?

14.

In V , let h121 “ h122 “ h131 “ h133 “ h232 “ h233 “ 0, h123 “ 1, h132 “ 1 and

h231 “
3?2t
2 ` 3

a
s
4 .

In V
1
, let h

1
121 “ h

1
122 “ h

1
131 “ h

1
133 “ h

1
232 “ h

1
233 “ h

1
231 “ 0, and

h
1
123 “ 2 ´

3
?

2t

2
´

3
?

2s

2
´

6
?

2

2

b
2 3

?

4 ` 8 3
?

t `
3

?

2t2 ` 8 3
?
s `

3
?

2s2,

h
1
132 “ ´1 `

3
?

2t

4
`

3
?

2s

4
´

6
?

2

4

b
2 3

?

4 ` 8 3
?

t `
3

?

2t2 ` 8 3
?
s `

3
?

2s2.

We have

J4 “ ´J
1
4 “

3

8

´
´4 `

3
?

2t `
3

?

2s
¯ ´

3
?

2t `
3

?

2s
¯
.
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Meanwhile,

I2 “ I
1
2 “ 2 `

p
3?2t` 3?2sq

2

4 ,

K2 “ K
1
2 “

1
4

`
´4 `

3
?

2t `
3
?

2s
˘2

,

J6 “ J
1
6 “

9
16

`
3
?

2t `
3

?

2s
˘2

,

and others are all equal to 0. This reveals that J4 is functionally irreducible.

6. For K4, in V , let

h121 “ ´
1
2

b
´12`6 3?9

16´3 3?3´3 3?9
, h122 “

1
2 , h123 “ ´1,

h131 “ 0, h132 “ ´
3?9
2 , h133 “

1
2 ,

h231 “ ´
1
2 , h232 “ 0, h233 “

1
2

b
´12`6 3?9

16´3 3?3´3 3?9
.

In V
1
, let

h
1
121 “ 0, h

1
122 “ ´

6?3
2

b
9`5 3?3´6 3?9
16´3 3?3´3 3?9

,

h
1
123 “ 1, h

1
131 “ ´

1
2

b
22´12 3?3´2 3?9
16´3 3?3´3 3?9

,

h
1
132 “

3?9
2 , h

1
133 “ ´

6?3
2

b
9`5 3?3´6 3?9
16´3 3?3´3 3?9

,

h
1
231 “

1
2 , h

1
232 “ ´

1
2

b
22´12 3?3´2 3?9
16´3 3?3´3 3?9

,

h
1
233 “ 0.

We have

K4 “ ´K
1
4 “

6 ` 21 3
?

3 ´ 17 3
?

9

´256 ` 48 3
?

3 ` 48 3
?

9
.

Meanwhile,

I2 “ I
1
2 “

5`3 3?3
4 ,

J2 “ J
1
2 “

4´3 3?3`3 3?9
´32`6 3?3`6 3?9

,

K2 “ K
1
2 “

p´3` 3?9q2
4 ,

I4 “ I
1
4 “

´23`36 3?3`9 3?9
´256`48 3?3`48 3?9

,

K6 “ K
1
6 “

´47`78 3?3´31 3?9
64p´16`3 3?3`3 3?9q2 ,

and others are all equal to 0. This shows that K4 is functionally irreducible.

— 78 —



PhD Thesis CHAPTER 4. TENSOR INVARIANTS

7. For I6, in V , let h121 “ ´1, h122 “ ´1, h123 “ 1, h131 “ 1, h132 “ 1, h133 “ ´1,

h231 “ 0, h232 “ 1 and h233 “ 1.

In V
1
, let h

1
121 “ ´1, h

1
122 “ ´1, h

1
123 “ 1, h

1
131 “ ´1, h

1
132 “ 1, h

1
133 “ ´1,

h
1
231 “ 0, h

1
232 “ ´1 and h

1
233 “ 1.

We have

I6 “ ´I
1
6 “ 2.

At the same time, I2 “ I
1
2 “ 2, J2 “ J

1
2 “ 6, I4 “ I

1
4 “ 4, and others are all

equal to 0. This shows that I6 is functionally irreducible.

8. For J6, in V , let h121 “ h122 “ h131 “ h133 “ h232 “ h233 “ 0, h123 “

´

?

3 3
?

2, h132 “ 0 and h231 “

?

3 3
?

2.

In V
1
, let h

1
121 “ h

1
122 “ h

1
131 “ h

1
133 “ h

1
232 “ h

1
233 “ 0, h

1
123 “

3
?

2, h
1
132 “ 2 3

?

2

and h
1
231 “

3
?

2. We have

J6 “ 0 ‰ J
1
6 “ 144.

At the same time, I2 “ I
1
2 “ 6 3

?

4, and others are all equal to 0. This reveals

that J6 is functionally irreducible.

9. For K6, in V , let h121 “
1
2 , h122 “ 1, h123 “ 0, h131 “

3
2 , h132 “ 0, h133 “ 1,

h231 “ 0, h232 “
3
2 and h233 “

1
2 .

In V
1
, let h

1
121 “ ´

1
2 , h

1
122 “

1
2 , h

1
123 “ 0, h

1
131 “

?

3, h
1
132 “ 0, h

1
133 “

1
2 ,

h
1
231 “ 0, h

1
232 “

?

3 and h
1
233 “ ´

1
2 .

We have

K6 “
9

4
‰ K

1
6 “

3

4
.

At the same time, I2 “ I
1
2 “

1
2 , J2 “ J

1
2 “ ´

13
2 , I4 “ I

1
4 “ ´

13
16 and others are

all equal to 0. This reveals that K6 is functionally irreducible.
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10. For L6, in V , let h121 “ ´1, h122 “
1
2 , h123 “ ´1, h131 “ 0, h132 “ 2, h133 “

1
2 ,

h231 “ 3, h232 “ 0 and h233 “ 1.

In V
1
, let h

1
121 “ 0, h

1
122 “ ´

1
2

b
5
2 , h

1
123 “ 1, h

1
131 “ ´

1
2

b
5
2 , h

1
132 “ ´2,

h
1
133 “ ´

1
2

b
5
2 , h

1
231 “ ´3, h

1
232 “ ´

1
2

b
5
2 and h

1
233 “ 0.

We have

L6 “ ´L
1
6 “ ´

45

2
.

At the same time, I2 “ I
1
2 “ 14, J2 “ J

1
2 “ ´

5
2 , I4 “ I

1
4 “ ´

45
4 , J6 “ J

1
6 “

324, K6 “ K
1
6 “

25
16 and others equal 0. This reveals that L6 is functionally

irreducible.

Hence, this minimal integrity basis ⇥hall “ tI2, J2, K2, I4, J4, K4, I6, J6, K6, L6u is

also an irreducible function basis of the Hall tensor H .

In the above proof, the counter examples V and V
1
in the cases (1), (2), (4) and

(7) are based on related sets in Pennisi and Trovato[55], while the examples V and

V
1
in the case (5) are discussed with Dr. Yannan Chen.

4.4 Final Remarks

4.4.1 Significance of Section 4.2

The result in Section 4.2 is significant for the future investigation of irreducible

function bases of higher order tensors. On one hand, it is the first result on irreducible

function bases of a third order three-dimensional symmetric tensor. On the other

hand, we need to consider that there are still at least three syzygy relations among

these eleven invariants in ⇥p2q
sym, see Eq.(4.14-4.16) in the following. This reveals that

an irreducible function basis which is constructed by polynomial invariants may not

be algebraically minimal which means that the basis consists of polynomial invariants
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and there is no algebraic relations in these invariants [72]. This point is observed

since there are still some syzygy relations among these eleven invariants.

Consider all possible sixteenth degree powers or products that can be constructed

from the eleven invariants in ⇥p2q
sym: I2, J2, I4, J4, K4, L4, I6, J6, L6,M6 and I10. Find

linear relations among these sixteenth-degree powers or products. Then we find the

following three syzygy relations among these eleven invariants as follows.

4

9
I32J

3
2K4 `

2

9
I42J

2
2L4 `

4

3
I32J2J4L4 ´

8

9
I2J

3
2 I4K4 ´

4

9
I22J

2
2 I4L4 ´

4

3
I22J

2
2J4K4

´2I22J
2
4L4 ` 2I22K4L

2
4 ` 2J2

2K
3
4 ` 4I2J2J

2
4K4 ` 5I2J2K

2
4L4 ´ 4I2J2I4J4L4

´
4

3
I32J

2
2J6 `

2

3
J3
2K4I6 `

1

3
I2J

2
2L4I6 `

8

3
I2J

2
2 I4J6 `

4

3
I22J2J4J6 ´ 2I32L4M6

`J2J4L4I6 ´ 16I2K4L4J6 ´ 14J2K
2
4J6 ` 6I2L

2
4L6 ` 4J2K4L4L6 ` 6I2I4L4M6

´2I2J4K4M6 ` 4J2I4K4M6 ` 4I22J6M6 ´ 2J2
2 I6J6 ´ 4I2J2L6M6 ´ 12I4J6M6

`6J4L6M6 ` 24K4J
2
6 ´ 12L4J6L6 ´ 4J3

4K4 ` 4I4J
2
4L4 ´ J4K

2
4L4 “ 0,

(4.14)

2I32J
3
2J4 ´ 4I2J

3
2 I4J4 ´ 6J3

2J4I6 ´ 9I22J
2
2J

2
4 ` 18J2

2 I4J
2
4 ` 9J4

4 ` 36I2J2J
2
6 ´ 54J4J

2
6

´48I2J
2
2K4J6 ` 144J2J4K4J6 ` 12I2J

3
2K

2
4 ´ 36J2

2J4K
2
4 ´ 24I22J2L4J6 ` 36I2J4L4J6

`12I22J
2
2K4L4 ´ 18I2J2J4K4L4 ´ 18J2

4K4L4 ` 6I32J2L
2
4 ´ 6I2J2I4L

2
4 ´ 9I22J4L

2
4

`9I4J4L
2
4 ´ 36J2J4L4L6 ´ 6I32J

2
2M6 ` 12I2J

2
2 I4M6 ` 9J2

2 I6M6 ` 36I22J2J4M6

´72J2I4J4M6 ´ 18I2J
2
4M6 ´ 108K4J6M6 ` 27J2K

2
4M6 ` 18I2K4L4M6 ` 54L4L6M6

´18I22M
2
6 ` 54I4M

2
6 “ 0

(4.15)
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and
1

18
I52J

3
2 ´

2

9
I32J

3
2 I4 `

2

9
I2J

3
2 I

2
4 `

1

12
I22J

3
2 I6 ´

1

6
J3
2 I4I6 ´

1

6
I42J

2
2J4 `

1

3
I22J

2
2 I4J4

`
1

2
I2J

2
2J4I6 `

1

2
I32J2J

2
4 ´ I2J2I4J

2
4 ´

3

4
J2J

2
4 I6 ´

1

2
I22J

3
4 ` I4J

3
4 ´ I22J2K4J6

`2J2I4K4J6 `
1

4
I22J

2
2K

2
4 ´

1

2
J2
2 I4K

2
4 `

3

2
I2J2J4K

2
4 ´

9

4
J2
4K

2
4 `

1

2
I32J2K4L4

´I2J2I4K4L4 ´
1

2
I22J4K4L4 ` I4J4K4L4 ` 2I2J2J6L6 ´ 3J4J6L6 ´ 2I2J

2
2K4L6

`3J2J4K4L6 ´
1

2
I22J2L4L6 ´ J2I4L4L6 `

3

2
I2J4L4L6 ´

1

6
I42J2M6 `

5

6
I22J2I4M6

´J2I
2
4M6 ´ I2J2I6M6 `

3

2
J4I6M6 “ 0.

(4.16)

Since these three syzygy relations cannot reveal any single-valued function rela-

tion of any of these eleven invariants, with respect to other ten invariants, none of

the invariants in ⇥p2q
sym can be dropped from these three syzygies.

The second point is meaningful to the further research for irreducible function

bases of higher order tensors. It is also verified by the study for the irreducible

function basis of a fourth order three-dimensional symmetric and traceless tensor.

There are still five syzygy relations among the nine invariants in the Smith-Bao

minimal integrity basis of a fourth order three-dimensional symmetric and traceless

tensor[15, 72]. What is worse, these five syzygy relations are not so well-structured

like Eq. (4.3) and (4.4), but even more complicated than Eq. (4.14)-(4.16). Never-

theless, the Smith-Bao minimal integrity basis has been proved to be an irreducible

function basis of the fourth order three-dimensional symmetric and traceless tensor

in [17] by Chen, Chen, Qi and Zou very recently. Moreover, any minimal integrity

basis of a third order three-dimensional symmetric and traceless tensor is indeed an

irreducible function basis of that tensor, which was proved in [15]. Hence, it reveals

that a minimal integrity basis can still have possibility to be an irreducible function
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basis even with several syzygy relations.

In Subsection 4.2.3, we show that the eleven invariant function basis is indeed

an irreducible function basis, by presenting that each of these eleven invariants is

not a function of other ten invariants based on the method proposed by Pennisi and

Trovato [55]. In fact, we divide the proof into three parts. In Part (I), we prove that

each of the five invariants I2, I4, I6, I10 and J2, which form the irreducible function

bases of the composition tensors D and u, respectively, is not a function of the ten

other invariants. In Part (II), we utilize Proposition 4.2 to show that neither of

K4, L4, L4 and J6 is a function of the ten other invariants. In Part (III), we use

another strategy to prove that each of the remaining two invariants M6 and J4 is not

a function of the ten other invariants. Such tactics may be also instructive for the

further investigate of irreducible function bases of higher order tensors.

4.4.2 Conclusions for Section 4.3

In Section 4.3, we mainly investigate isotropic invariants of the Hall tensor. For this

purpose, we build a connection between the invariants of the Hall tensor H and the

ones of its associated second order tensor ApH q. ApH q can be decomposed into

a second order symmetric tensor T and a second order skew-symmetric tensor W .

We know that tI1 :“ trT , I2 :“ trT 2, J2 :“ trW 2, I3 :“ trT 3, J3 :“ trTW 2, I4 :“

trT 2W 2, I6 :“ trT 2W 2TW u is the minimal integrity basis of ApKq as in the pre-

vious work. It is also an irreducible function basis of ApKq. We reveal the following

statements in this section:

1. ⇥hall “ tI21 , I2, J2, I4, I1I3, I1J3, I6, I
2
3 , J

2
3 , I3J3u is an isotropic minimal integrity

basis of the Hall tensor H .

2. ⇥hall “ tI21 , I2, J2, I4, I1I3, I1J3, I6, I
2
3 , J

2
3 , I3J3u is also an isotropic irreducible

function basis of the Hall tensor H as well.
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Not only for this particular selection, we can also begin with any minimal integrity

basis of the second order tensor and use the same method to construct an isotropic

invariant basis for the Hall tensor. We also prove in this work that such basis of the

Hall tensor is a minimal integrity basis. A further question is whether there exists

an irreducible function basis consisting of less than ten polynomial invariants.
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Chapter 5

Conclusions and Further Research

Our purpose of this thesis is to investigate the tensor applications in di↵erent research

areas. As a hypermatrix in mathematics, the positive definiteness of structured

tensors has a strong connection with the positive definiteness of a homogeneous

polynomial form Eq.(1.1). Hence, we introduce a new class of positive semi-definite

tensors, the MO tensors, according to the special structure of the Moler matrix. As a

physical quantity, the elasticity tensor plays an important role in mechanics. Since it

is di�cult to verify the strong ellipticity condition for an elasticity tensor, we establish

the elasticity M -tensor and nonsingular elasticity M -tensor whose SE-condition are

easy to be verified. For studying the further application in physics, we are attracted

by the tensor representation theory. In this field, the representations for the third

order three-dimensional symmetric tensor and the Hall tensor are investigated. To

be specific, we have the following conclusions of this thesis:

1. In Chapter 2, we introduce concepts of the MO value, the MO set and the MO

tensor for extending the Moler matrices to tensors. We mainly focus on the

Sup-MO tensor and the essential MO tensor which are proved to have good

properties. The Sup-MO tensors are proved to be positive definite tensors and

the essential MO tensors are proved to be completely positive tensors. It is

worthy to note that the smallest H-eigenvalue of the Sup-MO tensor is strictly
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decreasing to 0 when its dimension n tends to infinity. This property is quite

similar to that of the Moler matrix in Proposition 2.1. This implies that the

Sup-MO tensors may be a good candidate for test tensors just as the role of

the Moler matrices.

2. In Chapter 3, we first introduce two kinds of positive semi-definiteness: M-

positive semi-definiteness and S-positive semi-definiteness, which all have con-

nections with the strong ellipticity condition for the elasticity tensors. Then, a

Perron-Frobenius type theorem for the nonnegative elasticity tensors is given

for preparation. The uppermost contribution in this chapter is that we estab-

lish the elasticity M -tensor and the nonsingular elasticity M -tensor satisfying

the SE-condition. These are inspired by the structures of the M-tensors and

nonsingular M-tensors. Similar to the nonsingular M-tensors, we are able to

construct several equivalent definitions for the nonsingular elasticity M -tensor

as well. These equivalent definitions give us more choices to verify a nonsingular

elasticity M -tensor that satisfies the SE-condition.

3. In Chapter 4, we first propose an irreducible isotropic function basis with 11

invariants for a third order three-dimensional symmetric tensor, which is also

the first result of irreducible function bases for the third order three-dimensional

symmetric tensor. Since there are at least 3 syzygy relations among those 11

invariants, see Eq. (4.14)-(4.16), it also reveals that there may still exist some

algebraic relations among the invariants in an irreducible function basis of a

tensor. Then we propose a minimal isotropic integrity basis with 10 isotropic

invariants for the third order three-dimensional Hall tensor with the help of the

minimal integrity basis of a second order three-dimensional tensor. What is

more, we show that this minimal integrity basis is also an irreducible function

basis of the Hall tensor.
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However, there are still some further questions on these topics. Here, we list some

questions that may be interesting in the future.

1. In Chapter 2, we also mentioned a concept called the Sub-MO value ↵˚pmq.

Whether the Sub-MO value can be reached or not, is still a question for future

study. It decides that the MO set is compact or not. Furthermore, if the MO

set is compact, could we get the length of the MO set?

2. We also have no idea about whether the Sup-MO tensors are SOS tensors or

not. And how to utilize the Sup-MO tensors as a testing role in some tensor

computation software packages is also an interesting problem.

3. Even though we have several equivalent definitions for the nonsingular elasticity

M -tensor, we will try to design some algorithms based on these equivalent

conditions for verifying the SE-condition more quickly in the future.

4. In Chapter 4, we have proposed the two irreducible function bases for two kinds

of third order three-dimensional tensors, respectively. However, our method

comes from the work of Pennisi and Trovato in 1987 [55]. This method is

only e↵ective for the tensors with very few independent components. When

the number of independent components in a tensor increase, we are not able

to verify the irreducible function basis for the tensor by this method. When

the number of independent components in a tensor increases, the number of

invariants in a representation of the tensor will increase rapidly. For example,

for a third order three-dimensional piezoelectric tensors with 18 independent

components, its minimal isotropic integrity basis contains around 30000 in-

variants, it is impossible to find counterexamples to show every invariant is

functionally irreducible. Hence, how to construct an irreducible function basis

for large quantities of invariants is still a meaningful topic in future work.
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