

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

NEW QUERY AND ANALYTICS OVER LARGE
SEQUENCE DATA

– A STUDY ON STREAKS AND STREAM

RAN BAI

PhD

The Hong Kong Polytechnic University

2019

The Hong Kong Polytechnic University

Department of Computing

New Query and Analytics over Large Sequence Data
– a Study on Streaks and Stream

Ran BAI

A thesis submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

April 2019

CERTIFICATE OF

ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

. .

Ran BAI

April 2019

i

Abstract

Sequence data consists of ordered items or elements. Query processing and ana-

lytics on large sequence data have many research challenges. This thesis studies

two important problems in this domain.

The first part of this thesis studies a new problem of finding “historic mo-

ments” from sequence data. Specifically, we introduce a new concept called “his-

toric moments”, which is motivated from real applications such as computational

journalism. We present algorithms to e�ciently compute historic moments from

sequence data. The algorithm is incremental and space-optimal, meaning that

when facing new data arrival, it is able to e�ciently refresh the results by keeping

minimal information. Case studies show that historic moments can significantly

improve the insights o↵ered by prominent streaks alone.

The second part of this thesis studies another new problem of answering

range-count query over data stream. Specifically, in applications such as net-

work monitoring, telecommunication analysis, and sensor measurements, mas-

sive amounts of data arrive as a high-rate stream and real-time analytic over

the stream data is required. Maintaining a succinct synopsis structure called

sketch over the data stream has been a dominant approach to support analysis

in those applications. Recent applications, however, demand more sophisticated

types of queries and range-count query is our focus in this thesis. Unfortunately,

state-of-the-art sketches perform poorly when facing range-counting as none of

them was designed to support range-count queries at the outset. In this thesis,

iii

iv

we aim to fill the gap and present LSH-Sketch, a sketch that supports range-

counting over rapid data stream. As a sketch that supports range-count queries,

LSH-Sketch can naturally support point-count queries as well. As its name sug-

gests, LSH-Sketch is based on the use of locality sensitive hashing. Like the

classic CM-Sketch, LSH-Sketch is also a core sketch that many sketch variants

and applications can be built on top. Empirical results show that LSH-Sketch’s

insertion throughput is as good as CM-Sketch and it outperforms CM-Sketch in

terms of accuracy and query throughput under all query ranges. LSH-Sketch thus

has the potential to replace CM-Sketch to serve as the core sketch in multiple

application domains.

v

Publications arising from the thesis

Ran Bai, Wing Kai Hon, Eric Lo, Zhian He, and Kenny Zhu. 2019. Historic

Moments Discovery in Sequence Data. ACM Trans. Database Syst. 44, 1,

Article 3 (January 2019), 33 pages. DOI: https://doi.org/10.1145/3276975

vi

Acknowledgements

I would first like to thank my supervisors Dr. Eric LO, Dr. Ken YIU for

providing much advice and help on my research in the past four years. I would

also like to thank Dr. Wing Kai HON for discussing and giving comments on

my thesis.

I would like to thank my workmates from DB group, Dr. Zhian HE, Dr. Yu

LI, Dr. Bo TANG, Dr. Petrie WONG, Dr. Qiang ZHANG, Dr. Wenjian XU,

Ziqiang FENG, Chris LIU, Pengfei ZHANG, Xuxuan ZHOU and Baotong LU.

I would also like to thank my mates in our o�ce, Dr. Feng TAN, Dr. Shuhang

GU, Dr. Yanxing HU, Dr. Shang GAO, Dr. Zhe PENG, Dr. Yi DOU.

I would also like to thank my friends for supporting me. I would like to thank

Qian WANG, Peiran YU, Xingyu JING, Jalynna Jiajing LIANG, Yu LIU, Dr.

Shuang DONG, Dr. Si CHEN, Yingqiao YANG and Supitcha Jutatungcharoen.

I would also like to thank my teacher Suki YIP.

Finally, I must express my profound gratitude to my parents for their love.

Table of contents

Declaration i

Abstract iii

Table of contents vii

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Historic Moments Discovery in Sequence Data 2

1.2 Range Counting Over Data Stream 5

2 Historic Moments Discovery in Sequence Data 9

2.1 Related Work . 9

2.2 Problem Definition . 13

vii

viii TABLE OF CONTENTS

2.3 Finding Historic Moments from a Data Sequence 18

2.3.1 Baseline Algorithm (BA) 19

2.3.2 Baseline Incremental Algorithm (BIA) 21

2.3.3 Space Optimal Incremental Algorithm (SOIA) 25

2.4 Case Study . 49

2.4.1 Microsoft’s stock price . 49

2.4.2 Beijing’s temperature . 50

2.4.3 Taiwan seismic datasets 51

2.5 Performance Study . 53

2.5.1 Overall Comparison . 54

2.5.2 Historic Moment Exploration with Data Update 56

2.5.3 Sensitivity Study . 59

2.6 Summary . 61

3 Range Counting over Data Stream 63

3.1 Preliminary and Background . 63

3.1.1 Problem Definition . 64

3.1.2 Sketch . 64

3.1.3 Locality Sensitive Hashing (LSH) 69

3.2 LSH-Sketch . 70

TABLE OF CONTENTS ix

3.2.1 Insertion . 73

3.2.2 Range-Counting: Algorithm AOC 73

3.2.3 Accuracy . 75

3.2.4 Implementation of (r1, r2, p1, p2)-sensitive family for

LSH-Sketch . 78

3.3 Experiment . 82

3.3.1 Accuracy . 84

3.3.2 Insertion Throughput . 88

3.3.3 Query Throughput . 92

3.3.4 Accuracy and Space Trade-o↵ 92

3.4 Related Work . 93

3.5 Summary . 98

4 Conclusion and Future Work 99

Appendices 103

A Appendix 103

A.0.1 BIA-MS . 105

A.0.2 SOIA-MS . 105

A.0.3 Performance Study . 107

x TABLE OF CONTENTS

Bibliography 113

List of Figures

1.1 Thesis Scope . 2

2.1 A data sequence (a value is represented by ⇥) 10

2.2 Data Sequence D19 . 14

2.3 After v20 is appended . 25

2.4 BIA vs. SOIA . 55

2.5 BIA vs. SOIA under data update (D1, D2, D3) 57

2.6 BIA vs. SOIA under data update (D4, D5) 58

2.7 Varying � . 59

2.8 Varying � When Updating . 60

2.9 Varying k . 60

3.1 CM-Sketch Structure . 66

3.2 Ability to adjust over-counting 71

xi

xii LIST OF FIGURES

3.3 LSH-Sketch using AOC to do range counting 74

3.4 Range Count Accuracy (log-log scale) on Kosorak and WebDocs

datasets . 85

3.5 Range Count Accuracy (log-log scale) on CAIDA and Zip-0 datasets 86

3.6 Range Count Accuracy (log-log scale) on Zip-1 and Zip-2 datasets 87

3.7 Insertion Throughput . 88

3.8 Query Throughput . 88

3.9 Vary the Width of LSH-Sketch (log-log scale) on Kosorak and

WebDocs Datasets . 89

3.10 Vary the Width of LSH-Sketch (log-log scale) on CAIDA and

Zip-0 Datasets . 90

3.11 Vary the Width of LSH-Sketch (log-log scale) on Zip-1 and Zip-2

Datasets . 91

3.12 Vary the Depth of LSH-Sketch (log-log scale) on Kosorak and

WebDocs Datasets . 94

3.13 Vary the Depth of LSH-Sketch (log-log scale) on CAIDA and

Zip-0 Datasets . 95

3.14 Vary the Depth of LSH-Sketch (log-log scale) on Zip-1 and Zip-2

Datasets . 96

A.1 SOIA-MS vs. BIA-MS . 110

A.2 SOIA-MS vs BIA-MS under data update (MS1 MS2 MS3) 111

LIST OF FIGURES xiii

A.3 SOIA-MS vs BIA-MS under data update (MS4 MS5) 112

List of Tables

1.1 Sketches for range-counting under the same space budget (bold

for this thesis’s result) . 6

2.1 Major Notations in Chapter 2 . 18

2.2 Summary of Datasets . 54

2.3 Number of Streaks Maintained by BIA and SOIA 56

xv

Chapter 1

Introduction

Sequence data consists of ordered items or elements. In our life, Sequences

are a kind of data of great importance because it occur frequently in many fields

such as finance, business, security and other applications, where the analysis of

the sequence data needs to be executed in an e�cient manner. Especially for

“large” sequence data: query processing and analytics on large sequence data

have many research challenges.

From two di↵erent aspects that cause “large” sequence data, this thesis

studies new query and analytics respectively. Figure 1.1 shows the scope of the

thesis.

For data sequence of large volume, this thesis studies how to find and dis-

cover interesting facts and streaks over them. We define a new concept called

“historic moments” for sequence data discovery, present relevant algorithms to

compute it e�ciently, and prove that the facts found are insightful.

1

1.1. HISTORIC MOMENTS DISCOVERY IN SEQUENCE DATA

Figure 1.1: Thesis Scope

For data sequence of large velocity, collecting its characteristics poses great

challenge, especially when the sequence is in the form of data stream and can be

examined by single-pass only. This thesis studies a new problem of answering

range-count query, i.e., a kind of statistics, over rapid data stream. We present

LSH-Sketch with both good accuracy and e�ciency.

1.1 Historic Moments Discovery in Sequence Data

Finding prominent streaks [33], a set of maximal contiguous subsequences

with values all above (or below) a certain threshold, from a sequence dataset, has

recently found applications in social network analysis, disease outbreak detection,

and computational journalism [15, 30]. Take computational journalism as an

example, the following news article in January 20111 contains a real example of

1
Excerpts from V. Wagner’s LiveFromBeijing blog:

http://www.livefrombeijing.com/2011/01/beijing-breaks-record-for-longest-streak-of
-consecutive-blue-sky-days-best-air-quality-in-years/

2

1.1. HISTORIC MOMENTS DISCOVERY IN SEQUENCE DATA

prominent streak:

“Today is Beijing’s 36th consecutive Blue Sky Day, a day whose

Air Pollution Index (API) is 100 or below, indicating “excellent” or

“good” air quality. As far as I can tell, this is the longest consecutive

streak of Blue Sky Days in Beijing for at least ten years.”

In the excerpt above, the prominent streak refers to a subsequence of 36 days

consecutive measures of air pollution index of 100 or below, and the authors in [33]

have developed an e�cient algorithm to discover streaks like this. Although

useful, a prominent streak only stands for a singular event in the dataset. In

fact, the news excerpt above is continued like this:

“ ... in Beijing for at least ten years. Previously, there were

only three streaks of 30 days or longer, one in 2006 and two

during 2008 Olympics. ”

The last sentence is crucial: it pinpoints the rarity of the 36-day Blue Sky

streak, otherwise readers who are unfamiliar with Beijing’s weather would proba-

bly find the news mundane. In contrast, when it is further explained that the last

time Beijing had 30 or more consecutive Blue Sky Days was nearly three years

ago, readers will then be impressed by how rare the current streak is, and may

be aroused to learn more about Beijing’s environment. In other words, the three

prominent streaks in 2006 and 2008 are similar “historic moments” happened

before, which highlights the rarity of 36-day streak happened in 2011.

In this thesis, we formally introduce the concept of historic moment of a

3

1.1. HISTORIC MOMENTS DISCOVERY IN SEQUENCE DATA

streak s, which is a set of prominent streaks that end before s and can be used

to highlight the interestingness of s. The term interestingness can take in many

forms, but mainly centered around whether a similar event happened before,

and if so, how long ago it was . The technical concern is how to e�ciently report

historic moments from a sequence dataset, with a consideration that the data

sequences are being appended regularly (e.g., hourly update of crude oil price2,

update the seismic magnitude per one-tenth second3). To this end, we present a

highly e�cient incremental algorithm that can enable interactive historic moment

analysis on a sequence dataset with continuous data update. The e�ciency of the

algorithm comes from maintaining an index in minimal space. Space-optimality

leads to disk I/O reduction per operation or even makes the index small enough

to be memory-resident. That property is crucial for online analysis and real-time

monitoring, especially when there are possibly many data sequences of interest

concurrently. Experiments on five real datasets show that our algorithm, namely

space optimal incremental algorithm (SOIA), outperforms the baseline algorithm

by 9⇥ to 184⇥ in terms of speed, using 98% to 99.5% less space (e.g., in our case

study, our algorithm maintained an index of only 2GB for a 350GB data sequence

whereas the baseline needed to maintain an index of size 500GB). Furthermore,

our case studies show that historic moments indeed can help journalists to find

full news stories, instead of half-baked ones found by prominent streaks, and help

seismologists to get a bigger picture when analyzing ground motion data.

2
http://www.pmbull.com/oil-price/

3
http://ds.iris.edu/ds/nodes/dmc/data/

4

1.2. RANGE COUNTING OVER DATA STREAM

1.2 Range Counting Over Data Stream

Numerous data-intensive applications require query processing over data

streams. Examples of such applications include network monitoring [65, 67],

sensor networks [56, 61], and high-frequency financial trading [1, 22], to name a

few. Recently, an emerging number of streaming applications [4,13,18,24,54,62]

are demanding richer forms of query types in addition to basic queries such as

point-count queries [47,53] and heavy-hitter queries [7,8]. For example, network

monitoring has been heavily relied on those two types of queries to monitor the

network tra�c. In there, a “flow” is a tuple that consists of the information about

the IP addresses, ports, and the communication protocol between a source and a

destination [40]. When monitoring the network, a point-count query specifies a

value of an attribute as the “flowkey” (e.g., the source IP address) and counts the

number of flows (tuples) that match that flowkey so far [7]. In their context, such

a point-count query is called “flow size estimation”. Lately, network monitoring

has been advanced from basic queries to more advanced queries like range-count

queries [31]. Instead of specifying a single value as the flowkey, a range of val-

ues (e.g., from 178.115.5.1 to 178.115.263.999) is specified instead and its

target is to get the aggregated number of flows (tuples) in that range. Range-

count queries enable more sophisticated kinds of analysis called “hyperflow size

estimation”, which in turn o↵ers better network management and security [19].

Wireless sensor network [35, 36, 43] is another application that demands range-

count queries. Like network devices, sensors also have very limited storage [28].

Range-count queries are prevalent there because there are queries that count the

number of sensors whose values are in a certain range.

5

1.2. RANGE COUNTING OVER DATA STREAM

Query processing over data streams is challenging because of the high in-

coming throughput of data (e.g., up to 100Gbps in network monitoring [17]),

which rules out the basic choice of storing all incoming data and leaves behind

the only option of having a “single-pass” over the data [3]. To support count

queries over rapid data streams, one promising direction is to maintain a synopsis

structure [16,23,51,52,66] over the incoming data stream and use that to answer

various queries. Synopsis structures typically trade the answer quality to meet

the requirements of (i) high incoming throughput, (ii) low query latency, and

(iii) limited working space. Example synopsis structures for queries over stream

include all kind of “sketches” (e.g., CM-Sketch [16], CU-Sketch [23], and CML-

Sketch [51]). Generally, sketches can return approximate answer with theoretical

guarantees.

For Range-Counting Insertion Latency Query Latency Absolute Error

Point-Count Sketches [16, 20,23,51] O(1) O(|Q|) "n|Q|
Multi-Level Sketches [16] O(logD) O(log |Q|) 2"n logD log |Q|

LSH-Sketch O(1) O(|Q|
p

w/D) (4"+ (
p
2"eD + e) |Q|

D)n

Table 1.1: Sketches for range-counting under the same space budget (bold for
this thesis’s result)

Although many sketches exist, to our best knowledge, none of them has ever

been designed for range-count queries in the first place. Given the increasing

importance of range-count queries in data stream applications, our work aims to

fill the gap. Currently, to answer range-count queries over data stream, we can

either (i) use point-count sketches such as CM-sketch [20] or (ii) their multi-level

extension [16]. Table 1.1 summarizes the state-of-the-art techniques that can

support approximate range-counting on data streams. Point-count sketches can

answer range-count queries in an awkward sense and the error is large: "n|Q|,

6

1.2. RANGE COUNTING OVER DATA STREAM

where n is the number of items appeared in the stream so far, |Q| is query range

size, and " is a parameter derived from the space budget. Multi-level extension

of point-count sketches can answer range-count queries with a smaller error:

2"n logD log |Q|, where D is size of domain of the attribute-of-interest. However,

its reduced error comes with a cost—its insertion latency degrades from O(1) to

O(logD), which is unacceptable in modern data stream applications when this

translates to insertion throughput.

In this thesis, we present LSH-sketch, a sketch designed for range-count

queries over rapid data stream. As a synopsis structure for approximate range-

count queries, LSH-sketch naturally can support point-count queries as well

(which is just a special case of a range of size 1). Furthermore, LSH-sketch

preserves the excellent O(1) insertion latency like point-count sketches and has

an error of (4" + (
p
2"eD + e) |Q|

D)n, which is generally better than the error

of point-count sketches. The name of LSH-sketch hints the technique behind

its excellence—the use of locality sensitive hashing (LSH). Specifically, when

it comes to range queries, it is known that histograms like V-optimal his-

togram [29, 32] provide very good error guarantees. However, histograms can

never gain a foothold in stream query processing because their theoretical guar-

antees require building the histogram by sorting or scanning the data multiple

times [12,32]. Interestingly, like all existing sketches, the use of locality sensitive

hashing (LSH) does not require sorting or multiple passes on the data, while at

the same time, it has the flavor of histograms that puts similar values to the

same bucket or adjacent buckets (e.g., values within a certain range are hashed

to the same bucket). Consequently, LSH-sketch gains the benefit of histograms

but without their limitations. Although the marriage of LSH and sketch-based

7

1.2. RANGE COUNTING OVER DATA STREAM

synopsis is exciting, we still need to tackle certain technicality. Specifically, LSH

was originally designed for dimension reduction. For streaming applications,

however, we might only need to maintain the sketch for a single attribute (e.g.,

source IP address) and the dimensionalities before and after hashing remain the

same. For cases like that, a direct adoption of existing LSH implementations into

the existing sketches might result in a loss of theoretical guarantees. To circum-

vent that, we have designed another implementation of an LSH family to regain

the theoretical guarantees. Furthermore, in order to fully leverage LSH-sketch,

we have also developed a corresponding range-count algorithm, namely, AOC, to

adjust any over-counting when answering range-count queries using LSH-Sketch.

In additional to the theoretical results about LSH-sketch and AOC, we have also

carried out extensive experiments on both real data and synthetic data. Empir-

ical results show that our method outperforms the baseline approaches in both

accuracy and insertion throughput, and has query throughput on a par with the

strongest baseline, under a variety of query ranges.

8

Chapter 2

Historic Moments Discovery in

Sequence Data

In this chapter, we formally introduce the concept of historic moment. Sec-

tion 2.1 reviews the related work. Section 2.2 gives the formal problem definition.

Section 2.3 presents our space-optimal incremental algorithm together with a few

baseline algorithms. Section 2.4 presents the case studies and Section 2.5 presents

the experimental study. Appendix A extends the problem and the algorithms

from a single data sequence to multiple data sequences.

2.1 Related Work

In this section we first review related works that focus on discovering inter-

esting knowledge from sequence datasets. The first work is [33], which studied the

finding of prominent streaks from a data sequence Dn = hv1, v2, . . . , vni with n

9

2.1. RELATED WORK

Figure 2.1: A data sequence (a value is represented by ⇥)

numeric values. A streak s = (i, j, v) is a contiguous subsequence inDn containing

numeric values hvi, vi+1, . . . , vji, with i  j, and v = min { vk | i  k  j } de-

notes the minimum1 value of the subsequence. We call v the value of s, |s| = j�i

the length2 of s, and [i, j] the interval of s.

Prominent streaks are in fact the 2-dimensional skyline points [2, 6, 9, 14,

41, 48, 58, 68] of all the streaks found in a sequence, based on the length and

the value dimensions. That is, a streak is a prominent streak if there is no

streak that has both larger length and value at the same time. The challenge

of computing prominent streaks is that, given a sequence of length n, there are

⇥(n2) streaks in total. So a brute-force method would require O(n4) comparisons

to locate the set of prominent streaks from ⇥(n2) candidates. In view of that,

the authors in [33] developed an O(n log n) time algorithm, LLPS, which first

computes a set of “local prominent streaks” (LPSn) from Dn and then locates

the set of prominent streaks from LPSn. The size of LPSn is at most n and it

1
Maximum value is an alternate but equivalent definition.

2
An alternate definition is |s| = j � i+ 1.

10

2.1. RELATED WORK

is guaranteed that the set of prominent streaks is a subset of LPSn. According

to [33], the definition of local prominent streak is:

Definition 1 (Local Prominent Streak (LPS) [33]). A streak s = (i, j, v)

is a local prominent streak if (a) vi�1 < v and (b) vj+1 < v. We use LPSn to

denote the set of local prominent streaks in the sequence dataset Dn. When i = 1,

we can ignore condition (a). Similarly when j = n, we can ignore condition (b).

Figure 2.1 shows some streaks of a sequence dataset. Streak s1(299, 303, 9)

and s2(306, 309, 8) are local prominent streaks whereas the streak s3(310, 311, 4)

is not. The LLPS algorithm has two phases: (1) first spend O(n) time to obtain

the linear size LPSn, (2) then invoke an O(|LPSn| log |LPSn|) skyline algorithm

to compute the set of prominent streaks from LPSn, resulting in an overall time

complexity of O(n+|LPSn| log |LPSn|), which is at most O(n log n).3 Prominent

streaks alone could only tell the continuity of a singular event. Historic moments

can tell the other side of the story about how interesting that singular event

is. We later show that historic moments and prominent streaks are related but

computing historic moments is a challenging problem in its own right.

In [64], the authors advocated that rare events are more informative and

comparisons among objects can make a story more complete. As such, given

a set A of concerned attributes on a relational dataset, the authors developed

the concept of top-⌧ -skyband as “one-of-the-few” objects. Intuitively, the top-⌧

skyband consists of (at most) ⌧ objects that are dominated by the fewest number

of other objects. Each of these objects is one of the few most prominent objects

in the dataset when attributes in A are concerned. [64] proposed an e�cient

3
[33] also included another algorithm, NLPS, which generates O(n

2
) local prominent streaks

in the first phase. It is obvious that LLPS is more e�cient than NLPS.

11

2.1. RELATED WORK

algorithm that finds top-⌧ skyband in O(2d(⌧ |n| + n log n)) time, where d is

the number of attributes and n is the number of objects. Our work shares the

same vision with [64] in terms of quantifying the interestingness of a piece of

information through its rarity. However, we focus on sequence data whereas [64]

focused on relational data.

In [57], a “fact” is defined as a contextual skyline object that stands out

against other objects in a context with regard to a set of measures. Given a

relational table with a set M of measure attributes and a set A of dimension

attributes, for a constraint c defined on A ✓ A (known as a context) and a

measure subspace M ✓M, a tuple t is a contextual skyline object if t satisfies

c and no other tuple t0 satisfying c dominates t. The authors in [57] focused on

identifying these “facts” timely. So, when a new tuple t is added to a table, the

target is to find which combinations of constraint c and measure subspace M

makes t a contextual skyline object. All those eligible hc,Mi pairs are treated

as situational facts and the prominence of a situational fact is defined based on

the size of the skyline under c and M . Upon the arrival of a new tuple t,

a baseline method can compute the topmost prominent situational facts using

O(2|M|+|A|) skyline queries. In case the context is fixed, the number of skyline

queries becomes O(2|M|). In this work, we aim to discover certain knowledge

in a timely fashion as in [57]. However, other than that, our work is orthogonal

with [57] because that work focused on relational data while ours focuses on

sequence data.

All of the related work above rely on skyline computation, whose discussion

began with [9], in which an O(n2) block nested loop (BNL) skyline algorithm

was introduced. Then the sort-filter-skyline (SFS) algorithm was introduced

12

2.2. PROBLEM DEFINITION

[14], whose best case time complexity is O(dn+ n log n), where d is the number

of dimensions. Index-based skyline algorithms were introduced in [37, 48, 58],

in which the Branch & Bound (BBS) skyline algorithm in [49] gives the I/O

optimal solution because for each query it visits relevant nodes of R-tree only

once, with time complexity O(n log n). Recently, [2] presented a parallel skyline

algorithm. A survey of skyline computation and the variants of skyline could be

found in [34].

2.2 Problem Definition

In this thesis, we propose the notion of historic moment. Our goal is to

identify historic moment in a timely fashion. So, we mainly focus on streaks

that just happened, and we name those as situational streaks. Furthermore,

inspired by our motivating example, whether a situational streak is informative

or not is relative to how long ago a similar event (streak) happened before.

For some applications (e.g., computation journalism), a situational streak might

lead to a news story because a similar streak happened long ago. But there are

also applications (e.g,. seismology) where a situational streak becomes important

because a similar streak just happened. We now formally define historic moments

and its related terms based on the intuition above.

Definition 2. Situational Streak (SS). In a data sequence Dn with n nu-

meric values hv1, v2, . . . , vni, a streak (i, j, v) 2 LPSn is a situational streak if

j = n, i.e., the most recent local prominent streak. We use SSn to denote the

set of situational streaks in Dn.

13

2.2. PROBLEM DEFINITION

Figure 2.2: Data Sequence D19

Figure 2.2 shows a data sequence D19 with n = 19 numeric values. D19 has

four situational streaks:

s1(15, 19, 7), s2(14, 19, 6), s3(8, 19, 4), s4(1, 19, 1)

Obviously not all situational streaks are interesting and basically we are

interested in those with highest or lowest values (e.g., high seismic magnitude,

low Air Pollution Index). Without loss of generality, we focus on those with

highest values in the discussion. Also, for ease of discussion, we assume that all

values are positive. So, we define:

Definition 3. Top-k Situational Streak. The top-k situational streaks are

the k streaks in SSn with the highest values.

In Figure 2.2, among the four situational streaks, s1 and s2 are the top-2

situational streaks.

14

2.2. PROBLEM DEFINITION

The following news4 is a real example of reporting not only the top but the

top-2 situational streaks:

“ ... the highest temperatures are above 32 Celsius for five days and

30 Celsius for six days ...”

Next, given any situational streak z, we are interested in a subset of local

prominent streaks that are “similar” to z. So, we define:

Definition 4. Analogous Streaks (AS). A local prominent streak s in a

data sequence Dn is an analogous streak of a situational streak z when:

1. s.j < z.i (i.e., s ends before z starts),

2. |s| � |z| · � (i.e., the length of s is at least � times that of z, where � � 0

is a similarity threshold), and

3. s.v � z.v · � (i.e., the value of s is at least � times that of z).

In Figure 2.2, s11, with length 4 and value 8, is the only analogous streak of

the top-1 situational streak s1 (length 4; value 7) when the similarity threshold

� is 1. When we relax � to be 0.75, both s7 and s11 are analogous streaks of s1.

In this thesis, we use the same similarity threshold � for both length and

value. An alternate definition is to impose di↵erent similarity thresholds on

length and value, which could be easily supported by straightforward adaption

of our techniques.

Definition 5. Historic Moments (HM). Let AS(z) be the set of analo-

gous streaks of a situational streak z. Assume that each streak s in AS(z)

4
http://www.chinanews.com/sh/2015/05-21/7291066.shtml

15

2.2. PROBLEM DEFINITION

is represented by a 3D point (|s|, s.j, s.v). The historic moments of z, de-

noted by HM(z), is the 3D skyline of AS(z), and we write that as HM(z) =

skyline(AS(z)).

Problem Definition: Given a data sequence Dn with n numeric values, a

similarity threshold �, a positive integer k, compute the historic moments for

each of the top-k situational streaks.

In Figure 2.2, for the top-1 situational streak s1, if � = 0.5, we have

HM(s1) = {s7, s8, s11}. Streak s9 is not a historic moment of s1 because s8

dominates5 s9, denote as s8 � s9, despite AS(s1) = {s7, s8, s9, s11}. Note that

s7 is the historic moment of s1 with the largest j (i.e., most recent), s8 is the

historic moment of s1 with the highest value, and s11 is the historic moment of

s1 with the longest interval. In the following, we use computational journalism

as an example and present some real news stories that justify the use of skyline

of analogous streaks to formulate historic moments.

Story 1. [Most recent historic moment] The Beijing Blue Sky Days news

in the introduction is a real example that illustrates that the most recent historic

moment is newsworthy. In that story, the “36 days of Blue Sky” is a situational

streak z with length 36 and value 100. The “30 days of Blue Sky that happened

in 2008” is then the historic moment of z that occurs most recently.

Story 2. [Highest value historic moment] In April 2014, UK had the

5
Following the literature, an object x is said to be dominated by another object y, denoted

as y � x, with respect to a set A of concerned attributes, if y.Ai � x.Ai for all Ai 2 A, and

there exists at least one attribute Aj 2 A such that y.Aj > x.Aj . Here we discuss upon streak

s, and the concerned attributes set A refers to {|s|, s.j, s.v} of s.

16

2.2. PROBLEM DEFINITION

following news about smog:

“air pollution levels with more than eight lasts two days”,

which is essentially a situational streak z of length 2 with value 8. When reporting

the news, the journalist quoted the “Great Smog” incident, which happened in

1952:

“...(The 1952 Smog) led to the creation of the Clean Air Act 1956,

which introduced a number of measures to reduce air pollution ... Un-

fortunately in the modern day, despite the visibility and intensity of

smog being much reduced, up to 29,000 people in the UK still die

per year because of air pollution, according to the European Commis-

sion.”6

The “Great Smog” incident is in fact the historic moment of z with the

highest value.

Story 3. [Longest interval historic moment] In January 2014, US had the

following news about drought in California:

“’Meanwhile, today’s scant rainfall was enough for Sacramento to

finally end the longest running rainless rainy season streak in its

recorded history. The city now has a new all-time record of 52 con-

secutive days without measurable rainy season rainfall,”

6
UK smog: You thought this was bad? Take a look at the Great Smog of 1952:

http://www.independent.co.uk/news/uk/home-news/uk-smog-you-thought-this

-was-bad-take-a-look-at-the-great-smog-of-1952-9238550.html

17

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

which is essentially a situational streak of length 52 with value close to 0. When

reporting the news, the journalist continued with comparisons with a historic

moment that had the longest interval :

“... dating back to Dec. 7, 2013. The previous longest streak was

Nov. 1 to Dec. 16, 1884.” 7

Table 2.1: Major Notations in Chapter 2

Notation Meaning

Dn Data Sequence with n values

� Similarity threshold

k Top-k parameter

s(i, j, v) Streak s with interval [i, j] and value v

LPSn Local prominent streaks of Dn

SSn Situational streaks of Dn

AS(z) Analogous streaks of a situational streak z

HM(z) Historic moments of a situational streak z

Pn Perplexing streaks of Dn

Nn Non-perplexing streaks of Dn

Un Minimal subset of LPSn obtained by SOIA

2.3 Finding Historic Moments from a Data Sequence

In this section, we present algorithms to obtain historic moments from a

data sequence. Specifically, section 2.3.1 first presents a baseline algorithm that

computes historic moments from a data sequence Dn o✏ine, given a similarity

7
California’s Devastating Drought Isn’t Going to Get Better Any Time Soon

http://www.slate.com/blogs/future tense/2014/01/30/california s exceptional drought won t get

better any time soon.html

18

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

threshold � and a parameter k. In practice, there could be data update or a user

may want to look for historic moments with di↵erent � and k values when op-

erating under an interactive (online) mode [30]. In these cases, re-executing the

baseline algorithm for any update of �, k, or data would be ine�cient. Therefore,

in section 2.3.2, we first present how to refactor the baseline algorithm to be in-

cremental. The baseline incremental algorithm is still ine�cient because it needs

to keep and maintain a lot of intermediate results. Therefore, in section 2.3.3,

we present SOIA, an e�cient incremental algorithm that returns historic mo-

ments by maintaining and accessing minimal information. Appendix A extends

the problem and the algorithms for finding historic moments from a single data

sequence to multiple data sequences. Table 2.1 lists the major notations used in

this chapter.

2.3.1 Baseline Algorithm (BA)

Given a data sequence Dn, a similarity threshold �, and a parameter k, the

problem of finding historic moments for each of the top-k situational streaks can

be solved naively as follows:

• Step 1. Use the first phase of LLPS in [33] to compute the set of all local

prominent streaks LPSn from Dn, and then select the top-k situational

streaks from there. This step, according to [33], takes O(n) time and the

LPSn takes O(n) space.

• Step 2. For each top-k situational streak z, scan through LPSn to identify

its analogous streaks AS(z).

19

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

• Step 3. Finally, for each z, compute the skyline from AS(z) as the resulting

HM(z).

The naive method above is ine�cient in terms of full scanning the large

LPSn k times in Step 2. Therefore, one simple improvement is build an index

for LPSn after Step 1. Specifically, one can regard each streak s in LPSn as

a 3D point (|s|, s.j, s.v), and insert them into an R-tree. Then, the analogous

streaks of a situational streak z can be regarded as a 3D-range query Q:

[|z| · �,+1) ⇥ [0, z.i) ⇥ [z.v · �,+1)

By building an R-tree, the above query can locate the analogous streaks of

a situational streak z without scanning all the streaks in LPSn. Furthermore,

Steps 2 and 3 can be combined as a constrained skyline query on the R-tree that

returns the skyline within Q. This combined step can be implemented using the

BBS skyline algorithm in [49]. Algorithm 1 summarizes the above index based

baseline algorithm, namely, algorithm BA.

Algorithm 1 Baseline Algorithm (BA)

1: procedure BA(Dn,�, k)
2: Use the first phase of LLPS in [33] to compute LPSn;
3: Rtree = Build-R-Tree(LPSn);
4: SSn = Get-SS(LPSn);
5: Z = Get-Top-SS(SSn, k);
6: for each streak z in Z do
7: Q = [|z| · �,+1) ⇥ [0, z.i) ⇥ [z.v · �,+1); // define the analogous

region
8: HM(z) = BBS(Rtree, Q); // compute constrained skyline

20

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

2.3.2 Baseline Incremental Algorithm (BIA)

The baseline algorithm (BA) is not incremental. Therefore, we refactor it to

become incremental so that it can return results e�ciently even when the data

sequence Dn is appended with new values resulting in Dm, where m > n, or when

the parameters are updated as �0 or k0. The incremental method is composed of

two phases where there are (i) a maintenance procedure to compute LPSm

online when data is appended, and (ii) a lookup procedure to answer the

historic moment queries. Similar to BA, we use an R-tree to store the local

prominent streaks.

2.3.2.1 BIA Maintenance

When the data sequence Dn is appended with new values

hvn+1, vn+2, · · · , vmi resulting in Dm, where m > n, this procedure aims

to obtain (i) the updated set of situational streaks SSm and (ii) possibly some

new local prominent streaks. The maintenance procedure is similar to the

one in [33]. Specifically, for each value vn+k 2 {vn+1, vn+2, · · · , vm}, where

1  k  m� n, it may:

1. make some streaks in SSn+k�1 to stop being situational streaks and turn to

being local prominent streaks that ends at n+ k � 1. Those streaks would

then get inserted into the R-tree;

2. extend some streaks in SSn+k�1 to become longer streaks in SSn+k that

end at n+ k.

3. form a new local prominent streak, whose value is vn+k and ends at n+ k;

21

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

this happens when none of the streak in SSn+k�1 has value vn+k. Note

that this is a situational streak for Dn+k, so it is in SSn+k.

Algorithm 2 BIA Maintenance Procedure

1: procedure Maintenance(hvn+1, vn+2 · · · vmi)
2: for k = 1 to m� n do
3: if n == 0 and k == 1 then
4: SS1 = {(1, 1, v1)};
5: continue;

6: SSn+k = ?;
7: for each streak (i, n+ k � 1, v) in SSn+k�1 do
8: if vn+k � v then
9: Insert (i, n+ k, v) to SSn+k; //case (2)

10: else
11: Insert (i, n+ k � 1, v) to Bu↵er B; // case (1)

12: if no streak in SSn+k�1 has value vn+k then // case (3)
13: if all streaks in SSn+k�1 have value < vn+k then
14: Insert (n+ k, n+ k, vn+k) to SSn+k;
15: else
16: Select the streak (i, n+ k � 1, v) in SSn whose value v > vn+k

and is the smallest;
17: Extend it to be (i, n+ k, vn+k)
18: Insert it into SSn+k;

19: Insert the streaks in B into Rtree;

For maintenance reason that becomes clear momentarily, we separate SSn

with the rest of streaks in LPSn. Specifically, we insert streaks from LPSn�SSn

as 3D points into an R-tree. Streaks from SSn ✓ LPSn are stored separately.

Algorithm 2 summarizes the above discussion, and we have:

• The Maintenance procedure takes SSn and the appending values

hvn+1, vn+2, · · · , vmi as the input. The outputs of it are SSm and the

updated R-tree by inserting new local prominent streaks.

• For each value vn+k 2 {vn+1, vn+2, · · · , vm}, Lines 2–18 computes its SSn+k

22

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

and the new local prominent streaks based on SSn+k�1 iteratively. Lines

3–5 are to initialize SS1.

• For each value vn+k 2 {vn+1, vn+2, · · · , vm}, we collect the new local promi-

nent streaks in a Bu↵er B (Line 11) and then insert them into the R-tree in

a batch (Line 19) to reduce the I/O overhead by avoiding frequent access

to the R-tree.

2.3.2.2 BIA Lookup

Given the R-tree of historic moments candidates created by the mainte-

nance step, the historic moments for each of the top-k situational streaks, un-

der any similarity parameters �0 and k0 value, can be obtained by calling the

Lookup procedure as presented in Algorithm 3.

Algorithm 3 BIA Lookup Procedure

1: procedure Lookup(�0, k0)
2: Z = Get-Top-SS(SSn, k0);
3: for each streak z in Z do
4: Q = [|z| · �0,+1] ⇥ [0, z.i) ⇥ [z.v · �0,+1];
5: HM(z) = BBS(Rtree, Q); // compute constrained skyline

2.3.2.3 Space requirement of BIA

Why is it necessary for BIA to keep all streaks in LPSn? Specifically, from

what we have defined, the historic moments are the skyline of analogous streaks,

which are in turn a subset of LPSn. Therefore, one might question whether BIA

can keep only the skyline of LPSn, instead of the full LPSn. Unfortunately,

optimizing BIA like that is incorrect. That is because a streak currently not in

23

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

the skyline(LPSn) could become a historic moment after a new value vn+1 is

appended, or when facing di↵erent values of � and k. The followings are two

examples.

Example 1. Consider again the data sequence in Figure 2.2, we have:

• n = 19;

• LPS19 = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11};

• SS19 ⇢ LPS19 = {s1, s2, s3, s4};

Consider the skyline of LPS19, which is:

• skyline(LPS19) = {s1, s2, s3, s4, s5, s6, s11}

Now consider the lookup of historic moment of Top-1 situational streak in

that dataset D19 with �0 = 0.75. The top-1 situational streak in that dataset

D19 is s1 whereas the analogous streaks of s1 are AS(s1) = {s7, s11}. The his-

toric moments of s1 are HM(s1) = {s7, s11}, since s7 and s11 cannot domi-

nate each other. At this point, we see that s7 is a historic moment of s1 but

s7 /2 skyline(LPS19).

Example 2. Still consider the data sequence in Figure 2.2, but with a new value

v20 = 5 appended, resulting in D20 of Figure 2.3. We see that, with v20 appended,

it has

1. made streaks s1 and s2 in SS19 to stop being situational streaks and turn

to being local prominent streaks that ends at n = 19.

24

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

Figure 2.3: After v20 is appended

2. extended streaks s3 and s4 in SS19 to become longer streaks s03 and s04 in

SS20 that ends at n = 20.

3. formed a new local prominent streak, snew, whose value is 5 and ends at

n = 20.

Now consider the lookup of historic moment of Top-1 situational streak in

that updated dataset D20 with �0 = 0.5. The top-1 situational streak in that

dataset D20 is snew whereas the analogous streaks of snew are AS(snew) =

{s7, s11}. The historic moments of snew are HM(snew) = {s7, s11}. Once again,

we see that s7 is a historic moment of snew but s7 /2 skyline(LPS19).

2.3.3 Space Optimal Incremental Algorithm (SOIA)

BIA needs to keep and maintain LPSn, which is space ine�cient, especially

when multiple sequences are of interest (e.g., multiple stocks, multiple seismic

monitoring sensors), or when the sequences are very long (e.g., high-frequency

trading with stock tick every millisecond). As showed in the previous sections,

25

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

straightforward optimizations like keeping skyline(LPSn), instead of LPSn, is

unfortunately incorrect. When not space e�cient, BIA would not be time e�-

cient either because of the redundancies in the index would jeopardize both the

lookup and maintenance time. In this section, we present a space optimal incre-

mental algorithm (SOIA) that keeps only a minimal subset Un of LPSn that is

su�cient to return historic moments online. Formally,

Definition 6. Given a data sequence Dn, the minimal subset Un of LPSn

refers to a subset of LPSn that guarantees

1. for any streak s in {LPSn � Un}, it must not be a historic moment of any

situational streak y in Dm, where m � n.

2. there does NOT exist a proper subset X of Un that satisfies condition (1).

SOIA strikes to maintain Un under continuous data updates. Space-

optimality of SOIA significantly reduces the size of the index, thereby reducing

the I/O per operation or making the index memory-resident. That property is

crucial for online analysis and real-time monitoring, especially when there are

possibly many data sequences of interest, which demands one index per data

sequence.

So the grand challenge of SOIA is how to confine Un, where trivially confining

Un to be the skyline of LPSn is definitely insu�cient, whereas confining Un to

be LPSn is definitely not space optimal. Now we first discuss how to obtain Un

properly given the data sequence Dn, and section 2.3.3.1 studies how to maintain

its minimality when the data sequence is appended.

26

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

In SOIA, we treat �, as a parameter that controls the tradeo↵ between space

and time, in addition to its original role as being the similarity threshold. More

specifically, when deciding which streaks in LPSn shall be kept (i.e., belong to

Un) and which shall be discarded, a small � value makes local prominent streaks

easier to be an analogous streak of a situational streak z. So, it is natural that

the size of Un increases when � is getting smaller. In contrast, a large � value

makes local prominent streaks harder to be an analogous streak of a situational

streak z. So, it is intuitive that the size of Un decreases when � is getting larger.

With � as a parameter between space and time, the goal of SOIA is to maintain

Un as long as a user queries for historic moments with any similarity value �0

larger than or equal to �.

We now confine what Un should be, given �. We start by showing a simple

lemma (Lemma 1). Then, we look at the easiest case, with � = 1. We can

interpret this case as either having the most stringent space requirement, or as

the users being uninterested in analogous streaks that are shorter, or smaller in

value, than the situational streak of interest. Finally, we work on the general

case.

Lemma 1. The intervals of two local prominent streaks are either disjoint, or

one containing the other.

Proof. Assume to the contrary that there exist two local prominent streaks

(i, j, v) and (i0, j0, v0) whose intervals are not disjoint, nor one containing the

other. Without loss of generality, assume that i < i0. Then, we have i < i0 

j < j0. That is, i0 � 1 is within the range of [i, j] and j + 1 is within the range

of [i0, j0]. Now, there are two cases:

27

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

1. If v � v0, then (i0, j0, v0) is not an local prominent streak because vi0�1 �

v � v0.

2. Otherwise, we have v0 > v. Then (i, j, v) is not an local prominent streak

because vj+1 � v0 > v.

So, both cases lead to contradiction. The lemma follows.

The Specific Case: What streaks in LPSn should be in Un when � = 1

?

Let HM(SSn) denote the set that contains the historic moments of all

streaks in SSn and when � = 1 we have the following proposition:

Proposition 1. When � = 1, skyline(LPSn)[HM(SSn) is the minimal subset

Un of LPSn that contains historic moments of situational streak for dataset Dn

or future dataset Dm, where m > n.

Proof. We prove by showing that a streak s is in skyline(LPSn) or HM(SSn)

if and only if s can serve as a historic moment of some streaks in SSn or SSm.

This is done by proving Lemma 2 (the if case) and Lemma 3 (the only if case)

below.

Lemma 2. If a streak s in LPSn can serve as a historic moment of

a streak in SSn or SSm, then s is in skyline(LPSn) [HM(SSn).

. It is equivalent to showing that for any streak s, if s 62

28

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

skyline(LPSn) and s 62 HM(SSn), then s will not be a historic

moment of any streak in SSn or SSm.

Since s is not in the skyline of LPSn, there must exist some streak

y 2 LPSn in the skyline with y � s. Now, for any streak z⇤ =

(i⇤, j⇤, v⇤) in SSn or SSm,

1. If z⇤ 2 SSn, s cannot be a historic moment of z⇤ since s 62

HM(SSn).

2. Else if y does not overlap with z⇤, y will be an analogous streak

of z⇤ whenever s is, so that s cannot be in the skyline of AS(z⇤),

and thus not a historic moment of z⇤.

3. Else, y overlaps with z⇤ and z⇤ 62 SSn. Then, we must have

some z = (i, j, v) in SSn with the same starting position as z⇤,

i.e., i = i⇤, and also y must overlap with z. Also, |z| < |z⇤| since

z⇤ 62 SSn while both streaks z and z⇤ have the same starting

position. Now, recall that from Lemma 1, the intervals of two

local prominent streaks are either disjoint, or one containing the

other. Thus, we further have |s|  |y| (since y � s) and |y|  |z|

(since y overlaps with z and z 2 SSn). The above inequalities

imply that |s| < |z⇤|, so that s is not an analogous streak, and

thus not a historic moment of z⇤ when � = 1.

So in all cases, s is not a historic moment of z⇤. This completes the

proof of the lemma.

⌅

29

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

Lemma 3. If a streak s is in skyline(LPSn) [HM(SSn), then s

can serve as a historic moment of SSn or SSm.

. Since any streak inHM(SSn) is already a historic moment of a cur-

rent situational streak, it remains to show that any streak s = (i, j, v)

in skyline(LPSn) can be a historic moment of some streak in SSn

or SSm. To see this, imagine that the data sequence Dn is appended

with the following values for its next |s|+2 days: ✏, v, v, . . . , v, where

✏ is a positive value less than v. That essentially will create a situa-

tional streak z⇤ = (i⇤, j⇤, v⇤), with i⇤ = n+2, j⇤ = n+ |s|+2, length

|z⇤| = j⇤ � i⇤ = |s| and value v⇤ = v.

Note that s is an analogous streak of z⇤. Furthermore, s is in the

skyline of AS(z⇤) because (i) every streak in AS(z⇤) must end before

n + 1, but (ii) every streak that ends exactly at n + 1 will have

minimum value ✏, which cannot be an analogous streak of z⇤. This

implies that AS(z⇤) ✓ LPSn. So, no streak in AS(z⇤) dominates s

as s 2 skyline(LPSn). Thus, s is in the skyline of AS(z⇤), and is

therefore a historic moment of z⇤. This completes the proof of the

lemma. ⌅

By combining Lemmas 2 and 3, Proposition 1 follows.

For Figure 2.2 as in Example 1, we have

• SS19 = {s1, s2, s3, s4}

• skyline(LPS19) = {s1, s2, s3, s4, s5, s6, s11}.

30

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

When we set � = 1 and k = 4, the historic moments of SS19, denoted as

HM(SS19), is {s11}, since s11 is a historic moment (and the only one) of s1,

while there are no historic moments for s2, s3, or s4. So, Proposition 1 states

that we only need to keep {s1, s2, s3, s4, s5, s6, s11}. Although currently s5 or s6

are not historic moments of any situational streak (since they overlap with all

streaks in SS19), each of them may be a historic moment of some situational

streaks in the future. For example, consider two new values v20 = v21 = 9 are

added to the example data sequence in Figure 2.2. Then, (20, 21, 9) becomes a

situational streak of the data sequence D21, with both s5 and s6 being its historic

moments.

Example 3. Consider v2 and v6 equal to 7 instead of 8 in Figure 2.2. In this

case, streak s11 = (2, 6, 7) is no longer in skyline(LPS19), since it is dominated

by s1. Yet, s11 is a historic moment of s1, and s11 2 HM(SS19).

The example above illustrates why Proposition 1 has to keep HM(SSn) as

well. In that example, s11 2 HM(SS19). This also justified our aforementioned

argument of why modifying BIA to keep only the skyline of LPSn is insu�cient.

The General Case: What streaks in LPSn should be in Un when � > 0

?

Unfortunately, Proposition 1 is still insu�cient, specifically when there are

queries with �0 < 1. As we discussed in Example 1, in Figure 2.2, when querying

with �0 = 0.75, s7 is the historic moment of s1, but s7 /2 skyline(LPS19) [

HM(SS19) according to Proposition 1.

31

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

So, to support a general �, in addition to skyline(LPSn)[HM(SSn), what

else shall we include while maintaining minimality?

We answer the question by continuing Example 1. Specifically, when � =

0.75, s7 shall be included but unfortunately it is pruned by s5 because s5 � s7.

However, while s7 is pruned by s5, the latter is not serving as an analogous streak

of s1 instead. Why s5 cannot serve as s1’s analogous streak? That is because s5

overlaps with s1, which violates the definition of analogous streak (Definition 4

condition 1, i.e., s5 has to end before s1 starts). In other words, when s5 cannot

serve as an analogous streak of s1, it shall not be used to prune any analogous

streak for s1.

So, we classify the streaks in LPSn into two subsets: (i) Perplexing Streaks

Pn, and (ii) Non-perplexing Streaks Nn:

Definition 7. Perplexing Streaks Pn. A streak p 2 LPSn is a perplexing

streak when there exists a situational streak z 2 SSn such that:

1. p overlaps with z,

2. |p| � |z| · � and

3. p.v � z.v · �.

Note that p can overlap with multiple situational streaks. We use Pn to denote

the set of all perplexing streaks in data sequence Dn.

By definition, SSn ✓ Pn.

Definition 8. Non-perplexing Streaks Nn. Streaks in LPSn that are not

in Pn are non-perplexing streaks, denoted as Nn. That is, Nn = LPSn � Pn.

32

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

So, a streak s 2 LPSn is a non-perplexing streak if, for every situational streak

z 2 SSn that s overlaps with, either |s| < |z| · � or s.v < z.v · �.

Example 4. In Figure 2.2, when � = 0.75, streaks in LPS19 = {s1, s2, s3, s4,

s5, s6, s7, s8, s9, s10, s11} are classified into

• P19 = {s1, s2, s3, s4, s5}

• N19 = {s6, s7, s8, s9, s10, s11}.

s5 is in P19 because (a) s5 overlaps with s1, (b) |s5| � |s1| · 0.75, and (c) s5.v �

s1.v · 0.75. In contrast, s6 /2 P19 because |s6| ⇤ |si| · 0.75 for any si 2 SS19.

In the following, we state some important lemmas.

Lemma 4. A streak that is dominated by skyline(Nn) would not be a historic

moment of any streak in either SSn for dataset Dn, or SSm for future dataset

Dm, where m > n.

Proof. Suppose that streak s is dominated by a streak y 2 skyline(Nn). Then,

for any streak z⇤ in SSn or SSm, two cases can happen: (i) y does not overlap

with z⇤, or (ii) y overlaps with z⇤.

In Case (i), if s is an analogous streak of z⇤, so is y, as y � s, so that s is

not in the skyline of AS(z⇤), and thus not a historic moment of z⇤.

In Case (ii), let z⇤ = (i⇤, j⇤, v⇤). Since y overlaps with z⇤, we must have some

z = (i, j, v) in SSn with the same starting position as z⇤, i.e., i = i⇤, and also y

overlaps with z. (Note that z = z⇤ if z⇤ 2 SSn.) As y 2 N , |y| < |z|�  |z⇤|�

holds. As y � s, this further implies |s|  |y| < |z⇤|�. Thus, s is not an

33

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

analogous streak of z⇤. Consequently, z cannot be a historic moment of z⇤. This

completes the proof.

Lemma 4 directly leads to the following corollary.

Corollary 1. Given a streak s 2 Nn, if s 2 HM(z), where z 2 SSn [SSm,

then s 2 skyline(Nn).

Definition 9. Smallest-Value Extension.

Let z = (i, j, v) be a situational streak. Suppose that the sequence is appended

with a new value v0 < v. If the streak z0 = (i, j + 1, v0) remains as a streak

in LPSn+1 (i.e., vi�1 < v0), then z0 is called the v0 extension of z. If vsmall

is the smallest value v0 such that the v0 extension of z exists, then the streak

z+ = (i, j + 1, vsmall) is called the smallest-value extension of z.

So for Figure 2.2, the corresponding smallest-value extensions of the situa-

tional streaks are:

s+1 = (15, 20, 6 + ✏) s+2 = (14, 20, 4 + ✏)

s+3 = (8, 20, 1 + ✏) s+4 = (1, 20, 0 + ✏)

where ✏ is an arbitrarily small positive value. Note that streak (15, 20, 7) is not s+1

because 7 is not the smallest possible value to extend s1 = (15, 19, 7). Appending

the data sequence with vsmall = 6 will result in a situational streak (14, 20, 6).

But that does not qualify as s+1 because the starting position of s+1 should be

the same as the starting position of s1.

Definition 10. Universal Domination. Let SS
(p)
n be the set of situational

34

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

streaks that overlap with a perplexing streak p. A streak s is universally domi-

nated by a perplexing streak p when

1. p � s, and

2. s is not an analogous streak of all z 2 SS
(p)
n , and

3. s is not an analogous streak of z+, for all z 2 SS
(p)
n .

Conceptually, universal domination is harder to achieve than the ordinary

domination, since p universally dominates s implies p dominates s.

Lemma 5. A streak s 2 skyline(Nn)[Pn that is either (i) universally dominated

by some streak in Pn or (ii) its length is less than �, then s would not be a

historic moment of any streak in SSn for dataset Dn or SSm for future dataset

Dm, where m > n.

Proof. 1. Suppose that a streak s is universally dominated by a perplexing

streak p = (i0, j0, v0) 2 Pn. Then, there are the following cases when

considering a current/future situational streak z⇤ = (i⇤, j⇤, v⇤):

(a) z⇤ does not overlap with p. Then, if s is analogous streak of z, so is p.

In this case, s is not in the skyline of AS(z⇤), and thus not a historic

moment of z⇤.

(b) z⇤ overlaps with p.

i. z⇤ 2 SSn: then z⇤ 2 SS
(p)
n , so that by definition s cannot be an

analogous streak of z⇤.

ii. z⇤ /2 SSn (it happens when z⇤ 2 SSm and z⇤ /2 SSn): then there

exists some current situational streak z = (i, j, v) with the same

35

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

starting position as z⇤, and z 2 SS
(p)
n . Furthermore, |z⇤| � |z+|

and z⇤.v � z+.v hold, where z+ is the smallest-value extension

of z. As s is not an analogous streak of z+, s cannot be an

analogous streak of z⇤. In other words, s cannot be a historic

moment of z⇤.

2. Any streak in SSn or SSm has length at least 1. So for streaks in

skyline(Nn) [Pn with length less than � cannot be the historic moment,

as its length is not qualified.

This completes the proof.

Lemma 5 leads to the following corollary.

Corollary 2. Given a streak s 2 skyline(Nn) [Pn, if s 2 HM(z), where

z 2 SSn[SSm, then 8p 2 Pn such that s is not universally dominated by p, and

s has length no less than �.

Example 5. Consider Figure 2.2 again, recall that when � = 0.75, P19 =

{s1, s2, s3, s4, s5}, N19 = {s6, s7, s8, s9, s10, s11}. Also, skyline(N19) =

{s6, s7, s8, s11}. Then, s5 is a perplexing streak. Note that s8 2 skyline(N19)

and s8 is universally dominated by s5 since:

1. s5 � s8,

2. s8 is not an analogous streak of any streak in SS
(s5)
19 = {s1, s2, s3, s4} and

3. s8 is not an analogous streak of s+1 , s
+
2 , s

+
3 , s

+
4 .

Therefore, by Lemma 5, s8 would not be a historic moment in any case and it

is not necessary to keep it. In contrast, s7 2 skyline(N19) and s5 � s7 as well.

36

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

However, since s7 is an analogous streak of s1, s7 is not universally dominated

by s5 and it cannot be pruned using Lemma 5.

Theorem 1. The minimal subset Un of LPSn is the set of streaks in

skyline(Nn) [Pn that (i) are not universally dominated by any streak in Pn

and (ii) have length at least �.

Proof. We prove the theorem by showing that a streak s is in Un if and only if

s can serve as a historic moment of some streak in SSn or SSm, where m > n.

This is done by proving Lemma 6 (the if case) and Lemma 7 (the only if case)

below.

Lemma 6. If a streak s can serve as a historic moment of some

streak in SSn or SSm, then s is in Un.

Proof. Firstly, LPSn = Nn[Pn contains all local prominent streaks,

and thus all historic moments. Then, by Corollary 1, we see that

skyline(Nn) [Pn contains all historic moments. Consequently, by

Corollary 2, we see that Un contains all historic moments. The lemma

follows.

Lemma 7. If a streak s is in Un, then s can serve as a historic

moment of some streak in SSn or SSm.

Proof. A streak s in Un is either (i) not dominated by any other

streak in LPSn, or (ii) dominated only by some streak p 2 Pn but

not universally dominated by p.

37

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

For Case (i), if we append the data sequence Dn first with an arbi-

trarily small positive value ✏, followed by b|s|/�c+1 values of (s.v)/�,

then, after b|s|/�c + 2 new data values arrived, there will be a situ-

ational streak z⇤ with length |z⇤| = b|s|/�c and value z.v = (s.v)/�.

That streak z⇤ will regard s as its historic moment.8

For Case (ii), let z be the longest situational streak in SSn such that

s is an analogous streak of z⇤, where z⇤ = z or z+. Note that such

a z must exist since s is not universally dominated by some p 2 Pn

(Recall Definition 10 for the property of universal domination). Also,

z⇤ 2 SSn [SSm .

Then, for any streak p 2 Pn with p � s, p must overlap with z⇤.9 So,

all streaks in Pn that dominate s cannot be an analogous streak of

z⇤. Moreover, no streak in Nn dominates s, as s is dominated only by

streaks in Pn. The above statements imply that s is not dominated

by any analogous streak of z⇤, so that it is in the skyline of AS(z⇤),

and thus a historic moment of z⇤. In summary, each streak in Un is a

historic moment of some streak in SSn or SSm, and therefore needs

to be kept.

Combining the above lemmas, Theorem 1 follows.

8
The reason is as follows. Clearly, s is an analogous streak of z

⇤
. Next, if to the contrary

that s is not in the skyline of AS(z⇤), then there is some streak y 2 AS(z⇤) that dominates s.

Such a y must not overlap with z
⇤
(since it is an analogous streak of z

⇤
), and must not include

the value ✏ that is newly appended to D (since the value of y is at least s.v for y � s). In other

words, y must be a streak in LPSn. A contradiction occurs, for no streak in LPSn should

dominate s.

9
Else, SS(p)

n does not contain any situational streak of which s is an analogous streak, so

that s is universally dominated by p, and therefore s 62 Un. A contradiction occurs.

38

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

Example 6. Consider Figure 2.2 when � = 0.75, as in Example 5, we have

• P19 = {s1, s2, s3, s4, s5},

• skyline(N19) = {s6, s7, s8, s11},

• In skyline(N19) [P19, s8 is universally dominated by s5, and

• each streak in skyline(N19) [P19 has length at least �.

According to Theorem 1, minimal subset U19 of LPS19 is the set of streaks in

skyline(N19) [P19 that (i) are not universally dominated by any streak in P19,

which gives s8 /2 U19; (ii) have length at least �. So we have

• U19 = {s1, s2, s3, s4, s5, s6, s7, s11}, and

• SS19 = {s1, s2, s3, s4}

2.3.3.1 SOIA Maintenance

Theorem 1 gives how to obtain Un of data sequence Dn. Based on that, now

we discuss how to obtain Um accordingly when new values hvn+1, vn+2, . . . , vmi

are appended to the data sequence Dn. Without loss of generality, we first focus

on when there is single data value vn+1 is appended, and then generalize the

procedure when values hvn+1, vn+2, . . . , vmi are appended in a batch.

When appending value vn+1 to Dn, it works like BIA (section 2.3.2.1) to

get SSn+1 and local prominent streaks ended at n based on three di↵erent cases.

Specifically, our maintenance algorithm aims to:

39

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

M1. identify streaks in case (1). Those streaks will not be in SSn+1 and they

require no more isolation. So, we insert them into the R-tree;

M2. compute the updated set of situational streaks SSn+1 from case (2) and

case (3). The streaks in SSn+1 will be stored explicitly, sorted by their

values.

M3. resume minimality, as minimality may be violated at this point.

The reasons causing the minimality violation include:

(a) A perplexing streak s 2 Pn may become a non-perplexing streak since

Dn+1. For Dn, s can only prune streaks that it universally dominates

through Lemma 5. But suppose that s further becomes a non-perplexing

streak for Dn+1. Then, s is in Nn+1 and can prune any streak that it

dominates through Lemma 4. Recall that universally domination is harder

to achieve than ordinary domination. When s goes from Pn to Nn+1, it

means now its ‘pruning power’ has increased. So now more streaks could be

pruned by s and they should be removed accordingly in order to maintain

minimality.

(b) A streak s, which is not universally dominated by any perplexing streak in

Pn, may now be universally dominated by a perplexing streak in Pn+1, so

that s should be removed. This happen when s was an analogous streak

of some streak z in SSn but z is no longer in SSn+1 due to case (1), or s

is no longer the analogous streak of the extended z0 in SSn+1 because of

case (2) (i.e., |z0| becomes longer and |s| � |z0| · � does not hold anymore).

Note that when s is not an analogous streak of any streak in SSn+1 and is

40

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

dominated by some streak in Pn+1, s could be and should be removed in

order to maintain minimality.

Algorithm 4 SOIA Maintenance Procedure (Only For Appending A Single
Value)

1: procedure Maintenance(vn+1)
2: if n == 0 then
3: P1 = {(1, 1, v1)};
4: return;

5: SSn+1 = ?;
6: for each streak (i, n, v) in SSn do
7: if vn+1 � v then
8: Insert (i, n+ 1, v) to SSn+1;
9: else if |n� i| � � then

10: Insert (i, n, v) to Rtree;

11: if no streak in SSn has value vn+1 then
12: if all streaks in SSn have value < vn+1 then
13: Insert (n+ 1, n+ 1, vn+1) to SSn+1;
14: else
15: Select the streak (i, n, v) in SSn whose value v > vn+1 and is the

smallest;
16: Extend it to be (i, n+ 1, vn+1)
17: Insert it into SSn+1;

18: T = streaks in Rtree;
19: Set PT

n = T \ Pn;
20: Find �N and Pn+1 from P

T
n and SSn+1;

21: for each streak y in �N do
22: Remove streak s from Rtree if y � s;

23: for each streak p in Pn+1 do
24: Remove streak s from Rtree if s is universally dominated by p;

Algorithm 4 shows how the maintenance procedure works in the case of

appending a single value.

Lines 2–4 are to initialize P1. Lines 6–17 work like BIA’s maintenance,

except that it needs to check the length of streak when inserting to the R-tree

41

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

(Line 9). Lines 18–24 are for resuming the minimality, corresponding to M3(a)

and M3(b) discussed above. Specifically, we are meant to do two kinds of pruning:

• Pruning (i) Remove the streaks that are dominated by any streak in

skyline(Nn+1) (c.f. Lemma 4).

• Pruning (ii) Remove the streaks that are universally dominated by any

streak in Pn+1 (c.f. Lemma 5).

Let T be the streaks in the updated R-tree after executing Lines 2-14 of

the maintenance procedure. So to carry out Pruning (i) and (ii) above, a basic

method is to identify Nn+1 by comparing each streak in T with the streaks in

SSn+1 , according to Definition 8. Once Nn+1 is obtained, Pruning (i) above

can be done. Next, identify streaks in {T �Nn+1} [SSn+1 as Pn+1, and use it

to complete Pruning (ii).

For e�ciency, we now show that Pruning (i) can be done by a much smaller

subset �N ✓ Nn+1 instead, where �N = Nn+1 � Nn. Especially, �N can be

obtained from P
T
n , where P

T
n denotes Pn \ T . Also, Pn+1 can be identified in a

more e�cient way accordingly.

Lemma 8. If a streak in T is dominated by any streak in skyline(Nn+1), then

such a streak is dominated by some streak in �N .

Proof. We prove the lemma with the help of the following two lemmas,

Lemma 9. For a streak s 2 T , if s /2 P
T
n , then s /2 Pn+1.

42

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

. Let s be a streak in the T but not in Pn, i.e., s /2 P
T
n . Now,

suppose to the contrary: s 2 Pn+1. This implies that there exists

streak z0 = (i0, j0, v0) 2 SSn+1, i.e., j0 = n + 1, such that s overlaps

with z0, and |s| � |z0| · �. However, for z0 2 SSn+1, there must be a

situational streak z = (i, j, v) 2 SSn with the same starting position

as z0, i.e., i = i0 and j = n. It follows that s also overlaps with z, and

|s| � |z| · �. Thus, s 2 P
T
n , a contradiction. ⌅

Lemma 10.

skyline(Nn+1) = skyline(skyline(Nn) [�N).

. By Lemma 9, for any streak s 2 Nn, which means s /2 P
T
n , so

that s /2 Pn+1. Thus, by definition, such a streak s must be in

Nn+1. This implies Nn ✓ Nn+1. So, we have Nn+1 = Nn [�N .

Further, if a streak s is in Nn but not in skyline(Nn), it is neither

in skyline(Nn+1), since the streak that dominates s is still in Nn+1.

That completes the proof since removing a non-skyline streak from a

set would not a↵ect the result of a skyline operation. ⌅

Lemma 10 implies that if a streak in T is dominated by skyline(Nn+1), then

it is dominated by skyline(Nn) [�N . Furthermore, if a streak is dominated

by skyline(Nn), it does not exist in T because: (1) T includes the streaks in

Un � SSn, and the newly streaks ended at n by Line 8 of Algorithm 4. None of

these newly added streaks are dominated by skyline(Nn); and (2) all streaks in

T that are dominated by skyline(Nn) are pruned during any previous execution

of the maintenance procedure. Thus, any streak in T that is dominated by

43

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

skyline(Nn+1) must be dominated by some streak in �N .

We proceed to discuss how to obtain �N and Pn+1. First, we state that

�N can be obtained from P
T
n .

Lemma 11. �N ✓ P
T
n .

Proof. Any streak s 2 T that s in �N ✓ Nn+1 cannot be in Pn+1, so that

its ending position is at most n. This implies s 2 Nn [P
T
n . By definition,

�N = Nn+1 � Nn. So, s cannot be in Nn but can only be in P
T
n , which gives

�N ✓ P
T
n .

Lemma 12. �N = Nn+1 \ P
T
n

Proof. Following Lemma 11, we have �N ✓ P
T
n and then

• Nn \ P
T
n = Nn \ (Pn \ T) = (Nn \ Pn) \ T = ?

• Nn+1\P
T
n = (Nn[�N)\PT

n = (Nn\P
T
n)[(�N \P

T
n) = ?[�N = �N

The lemma follows.

Next, we state that Pn+1 can be obtained from P
T
n , �N , and the updated

SSn+1:

Lemma 13. Pn+1 = (PT
n ��N) [SSn+1

Proof. We discuss Pn+1 as two parts below,

(i) Pn+1 includes SSn+1 by definition.

44

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

(ii) For streaks in Pn+1�SSn+1, they are in Nn[P
T
n . By Lemma 9, they must

be in P
T
n ; moreover, they cannot belong to Nn+1. That is, they should be

in P
T
n � P

T
n \Nn+1, where P

T
n \Nn+1 = �N by Lemma 12.

(i) gives SSn+1 and (ii) gives PT
n ��N . The lemma thus follows.

With Lemmas 11, 12 and 13, we shall obtain �N and Pn+1 as follows:

1. For each streak p in P
T
n , compare p with all streaks in SSn+1.

If there does not exist any streak z in SSn+1 such that p overlaps with z

and |p| � |z| ·�, then p belongs to Nn+1. For e�ciency sake, we insert p to

�N (c.f. Lemma 8). Else, p belongs to Pn+1 and we insert it into Pn+1.

2. Expand Pn+1 by including all streaks in SSn+1.

The above gives the details of Line 20 in Algorithm 4. The remaining Lines

21–24 carry out the pruning based on the discussed lemmas so far.

Example 7. Let us revisit the example of appending v20 = 5 as in Figure 2.3,

with � = 0.75. Recall that before the value is appended as in Figure 2.2, we have:

• SS19 = {s1, s2, s3, s4}

• P19 = {s1, s2, s3, s4, s5}

• N19 = {s6, s7, s8, s9, s10, s11}

• Rtree = {s5, s6, s7, s11} because s9 and s10 are not in skyline(N19) and s8

is universally dominated by s5.

45

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

Appending v20 requires us to compute the new SS20 and local prominent streaks

ended at 19. Running Lines 6–18 will result in:

• SS20 = {s03(8, 20, 4), s
0
4(1, 20, 1), snew(14, 20, 5)}, as explained in Exam-

ple 2.

• T = {s1, s2, s5, s6, s7, s11}, as s1 and s2 get inserted into the R-tree accord-

ing to case M1 (Line 10 in Algorithm 4).

Lines 19–20 then identify the following:

• P
T
19 = T \ P19 = {s1, s2, s5}.

• �N = {s5} because in P
T
19, only s5 has length less than |z| · �, where z

denotes any streak in SS20.

• P20 = (PT
19 ��N) [SS20 = {s1, s2, snew, s03, s

0
4}.

Lines 21–22 remove s7 from the R-tree because s5 2 �N and s5 � s7. Next,

Lines 23–24 check if any streak in the R-tree is universally dominated by streaks

in P20 and prune them accordingly. In the example, no such streaks are found,

and the minimality of the streaks stored in R-tree is maintained.

Now we generalize the discussions above to handle the case that a batch of

data values hvn+1, vn+2, . . . , vmi is appended to Dn that results in Dm. Algo-

rithm 5 shows the pseudocode of this maintenance procedure, and we have:

• Upon each value vn+k 2 {vn+1, vn+2, · · · , vm}, Lines 3–23 work similar to

Lines 2–20 in Algorithm 4 that it computes corresponding Pn+k and �N

46

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

respectively. N is used to collect the streaks in �N generated in Line 22

for each value vn+k, so that in the end we have N = Nm �Nn.

• Similar to Algorithm 2, we store the new local prominent streaks in a Bu↵er

B (Line 12) and then insert them into the R-tree in a batch (Line 24) to

improve the I/O e�ciency.

• Lines 25–28 are to prune the R-tree to guarantee its space optimal properly,

according to Lemma 8 and Lemma 5.

2.3.3.2 SOIA Lookup

The Lookup procedure of SOIA is the same as BIA’s Lookup procedure.

Algorithm 6 shows the pseudo-code when dealing with a new parameter �0 (with

�0
� �) and a new parameter k0 from a user. It first obtains the top-k0 situational

streaks by a linear scan of SSn, since streaks in SSn are sorted by values. Then,

for each such situational streak z, it constructs a query using the following region:

Q = [|z| · �0,+1] ⇥ [0, z.i) ⇥ [z.v · �0,+1]

That region contains exactly the set AS(z) of analogous streaks of z. We can

thus apply the BBS skyline algorithm in [49] to computeHM(z) (the constrained

skyline) from the R-tree.

Example 8. Following Example 7, given � = 0.6 and k = 2, now we have

• Rtree = {s1, s2, s5, s6, s11}

47

2.3. FINDING HISTORIC MOMENTS FROM A DATA SEQUENCE

Algorithm 5 SOIA Maintenance Procedure

1: procedure Maintenance(hvn+1, vn+2, . . . , vmi)
2: N = ?;
3: for k = 1 to m� n do
4: if n == 0 and k == 1 then
5: P1 = {(1, 1, v1)};
6: continue;

7: SSn+k = ?;
8: for each streak (i, n+ k � 1, v) in SSn+k�1 do
9: if vn+k � v then

10: Insert (i, n+ k, v) to SSn+k;
11: else if |n+ k � 1� i| � � then
12: Insert (i, n+ k � 1, v) to Bu↵er B;

13: if no streak in SSn+k�1 has value vn+k then
14: if all streaks in SSn+k�1 have value < vn+k then
15: Insert (n+ k, n+ k, vn+k) to SSn+k;
16: else
17: Select the streak (i, n+ k � 1, v) in SSn+k�1 whose value v >

vn+k and is the smallest;
18: Extend it to be (i, n+ k, vn+k)
19: Insert it into SSn+k;

20: T = streaks in Rtree [B;
21: Set PT

n+k�1 = T \ Pn+k�1;

22: Find �N and Pn+k from P
T
n+k�1 and SSn+k;

23: N = N [�N ;

24: Insert streaks in B into Rtree;
25: for each streak y in N do
26: Remove streak s from Rtree if y � s;

27: for each streak p in Pm do
28: Remove streak s from Rtree if s is universally dominated by p;

48

2.4. CASE STUDY

Algorithm 6 SOIA Lookup Procedure

1: procedure Lookup(�0, k0)
2: Z = Get-Top-SS(SSn, k0);
3: for each streak z in Z do
4: Q = [|z| · �0,+1] ⇥ [0, z.i) ⇥ [z.v · �0,+1];
5: HM(z) = BBS(Rtree, Q); // compute constrained skyline

• SS19 = {s03, s
0
4, snew}.

When querying with parameter �0 = 0.6 and k0 = 2: for snew, find out its

analogous streaks in Rtree that AS(snew) = {s11}, and its historic moment is

skyline(AS(snew)) = {s11}; for s03, there is no analogous streak for it. So now

the historic moment is {s11}.

2.4 Case Study

2.4.1 Microsoft’s stock price

The first sequence dataset is Microsoft (NASDAQ:MSFT) daily stock

price10 from year 1986 to year 2014. We set the similarity threshold � as 1

and monitor the historic moments of the top-1 situational streak. On 11 June

2014 we got the following top-1 situational streak:

(2014–6–05, 2014–6–11, 40.35)

and its corresponding historic moments are:

(1999–12–16, 2000–1–05, 40.36)

10
http://finance.yahoo.com/q/hp?s=MSFT

49

2.4. CASE STUDY

(1999–12–21, 2000–1–03, 41.52)

(1999–12–22, 2000–1–03, 41.77)

(1999–12–22,1999–12–31, 41.83)

(1999–12–22,1999–12–30, 42.08)

(1999–12–16, 2000–1–03, 40.40)

It turns out that all those historic moments happened around the end of

1999, meaning that Microsoft had not had such a long streak of high stock prices

for almost 14 years. Indeed, a real news11 was reported on 11 June 2014 based

on the above:

Microsoft stock inching closer to all-time high. Don’t look now, but

Microsoft (NASDAQ:MSFT) stock is at a 14-year high and is ap-

proaching its all-time high reached just before the dot-com crash.

2.4.2 Beijing’s temperature

The second sequence dataset is the average daily temperature of Beijing12

from year 1995 to year 2014. We set the similarity threshold � as 1 and monitor

the historic moments of the top-1 situational streak. On 29 July 2010 we got the

following top-1 situational streak:

(2010–7–27, 2010–7–29, 85.5)

and its corresponding historic moments are:

11
http://www.scalper1.com/microsoft-stock-inching-closer-to-all-time-high.html

12
http://academic.udayton.edu/kissock/http/Weather/gsod95-current/CIBIEJNG.txt

50

2.4. CASE STUDY

(2000–7–03, 2010–7–06, 86.8)

(2000–7–11, 2000–7–14, 87.6)

(2000–7–22, 2000–7–26, 85.6)

(1999–7–23, 1999–7–29, 87.4)

These historic moments imply that the last time that Beijing had such a

long streak of high temperature was almost 10 years ago, and this observation

was reported in the news on 29 July 2010:13

High temperature days in Beijing July last longest in the past ten

years. [...]

2.4.3 Taiwan seismic datasets

The third dataset is the ground motion sensor stream of Taiwan14. Ground

motion is the movement of the earth’s surface. Seismologists can utilize ground

motion data to study and even predict some geological activities such as earth-

quake [5]. The datasets are streams of sample counts15 for every 50ms, since

year 1998, with one data sequence per monitoring station. Each data sequence is

about 350GB in size and BIA required to build an index of size 500GB, exceeding

the disk size of our experimental platform (detailed configuration in section 2.5).

In contrast, SOIA only required 2GB to house the index, making this case study

feasible.

13
http://news.163.com/10/0729/08/6COD18AV000146BC.html

14
http://ds.iris.edu/ds/nodes/dmc/data/

15Count is a scale unit of ground motion. A “count” value of 3.27508e9 indicates ground

motion of 1 meter/second.

51

2.4. CASE STUDY

We set the similarity threshold � as 0.9 and monitor the historic moments of

the top-10 situational streaks. We got a number of interesting findings there when

we study the sequence data from one such station, namely station “KMNB”.

Specifically, it illustrates that while historic moments that happened long ago are

useful, those happened very recently are also helpful to highlight the importance

of a prominent streak in certain domains.

For example, we got a situational streak sa on 3 Feb 2016. That was a

streak of length of 202 units (i.e., 10.1s) with 40334 counts. Let’s look at its

corresponding historic moments:

(2016-01-30-03:43, length=184, count=40391)

(2016-01-30-03:43, length=185, count=40188)

(2016-01-30-03:42, length=189, count=39161)

We can see that its historic moments just happened four days before 3 Feb

2016. That implied it was not a singular prominent event and worth paying

attention. In fact, based on our record [63], an earthquake happened 2 days

later, on 5 Feb 2016. As another example, we got another situational streak sb

on 27 Feb 2010 of length 238 units (i.e., 11.9s) with 42492 counts. Its historic

moments are:

(2010-02-26-01:49, length=219, count=40949)

(2010-02-26-01:48, length=223, count=40232)

(2010-02-26-01:48, length=230, count=40119)

It is vigilant that its historic moments just happened one day before. Actu-

52

2.5. PERFORMANCE STUDY

ally, an earthquake happened 5 days later, on 4 March 2010, according to [63].

How can one tell the above historic moments are fair indicator of earthquake

but not normal energy release? In order to answer that question, we ran SOIA

on the dataset and obtain the following statistics:

Among all (situational) streaks of length > 200 and value > 40000

(e.g., sa and sb above), their corresponding historic moments hap-

pened 23 days ago, on average.

One plausible message of the above is that — historic moments that are

more recent to the situational streaks (and farther away than the mean, 23

days), the more significant they are as an earthquake indicator. To cross check

that claim, we found that for all situational streaks of length > 200 and value >

40000 in the dataset, whenever their corresponding historic moments happened

before 23+ days, no earthquake was reported within weeks after those situational

streaks happened.

2.5 Performance Study

In this section, we evaluate the performance of SOIA using five real sequence

datasets and compare with BIA. The experimental platform has a 2.8 GHz Intel

i5 CPU, 8GB RAM and 256GB hard disk. The program is implemented in C

on MacOS. Table 2.2 lists the information about the datasets, which are ordered

based on their data sizes. Datasets D5 was too large that BIA would require

index space larger than our disk, therefore, we only used a fraction of D5 in

53

2.5. PERFORMANCE STUDY

order to make BIA runnable in this section.

2.5.1 Overall Comparison

We first look at the overall performance of BIA and SOIA when the full

dataset is available. We evaluate the performance of BIA and SOIA in terms of

their (a) index building time (maintenance time), (b) query time (look up time),

and (c) index space.

We use � = 0.5 in building the index structure (Maintenance procedure).

We create five user lookup workloads: W1, W2, W3, W4, W5, where a workloadWi

mimics a user exploring the dataset by trying out 10 · i di↵erent k and �0 historic

moments look up. Therefore, W1 consists of 10 lookups (e.g., a casual user) and

W5 consists of 50 lookups (e.g., a serious journalist). When reporting the look up

time, we report the average running time of W1 to W5. That represents the total

wait time for a user in one interactive session. In the experiment, each lookup

16
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption

17
http://alumni.cs.ucr.edu/~mueen/OnlineMotif/index.html

18
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

19
http://ds.iris.edu/ds/nodes/dmc/forms/breqfast-request/

Table 2.2: Summary of Datasets

Dataset Size(MB) Length Description

D1 14.1 1074637 household global minute-averaged

current intensity from Dec 2006 to Dec 200816

D2 21.3 1600237 household global minute-averaged active

power from Dec 2006 to Dec 2009

D3 27.5 1802000 EEG time series datasets 17

D4 32.5 2764800 number of requests to World Cup 98 website

per second from April to May 199818

D5 52.4 3456000 Taiwan KMNB station ground motion

from 1 Jan 2017 to 2 Jan 2017 19

54

2.5. PERFORMANCE STUDY

query randomly choses a value between 1 and 10 for k and randomly chose a

value between � and 1 as �0.

Figure 2.4 shows the results. Since SOIA has to invest some time to identify

and prune redundant streaks in order to maintain a minimal space index for latter

use, its one-o↵ maintenance time is higher than BIA (Figure 2.4a). Nevertheless,

we see that such investment is worthwhile because the lookup time of SOIA is

9.58⇥ (D1) to 184.14⇥ (D4) better than BIA (Figure 2.4b), which gives users

much shorter waiting time during the exploration. Figure 2.4c shows the space

 0

 2

 4

 6

 8

 10

D1 D2 D3 D4 D5

M
ai

n
te

n
an

ce
 T

im
e

(s
)

(a)

BIA
SOIA

 0

 20

 40

 60

D1 D2 D3 D4 D5

L
o

o
k

 U
p

 T
im

e
(s

)

(b)

BIA
SOIA

0.1

1

200

D1 D2 D3 D4 D5

In
d

ex
 S

p
ac

e
(M

B
)

 i
n

 L
o

g
 S

c
a
le

(c)

BIA
SOIA

Figure 2.4: BIA vs. SOIA

requirement of SOIA is much smaller than that of BIA. On D5 (a largely trimmed

version of Taiwan’s ground motion data), monitoring historic moments for just

one station already requires BIA to build an index bigger than 200MB.

The minimal index size of SOIA is also the key factor that leads to its

excellent historic moment lookup performance (other factors include the size

and the value of the streak, etc; see Algorithm 6). Compared with SOIA, BIA

takes 656⇥ (D1) to 2898⇥ (D3) more index space. Table 2.3 lists the index space

as well as the number of streaks stored using BIA and SOIA respectively. For

SOIA, the number of streaks in Skyline(Nn) and Pn are also reported. In fact,

55

2.5. PERFORMANCE STUDY

the sizes of the index structures are proportional to the numbers of streaks in

LPSn. In the following sections, we only include the index size in our discussions.

Table 2.3: Number of Streaks Maintained by BIA and SOIA

Method BIA SOIA

Index Space Number of Index Space Number of Number of Number of

Dataset (MB) Streaks Stored (MB) Streaks Stored Streaks in Streaks in

Skyline(Nn) Pn

D1 17.06 299868 0.026 434 433 8

D2 66.91 1175934 0.061 1012 987 31

D3 127.55 2241976 0.044 676 662 14

D4 101.87 1790601 0.080 1362 1337 25

D5 226.75 3985692 0.199 3291 3289 20

2.5.2 Historic Moment Exploration with Data Update

Next, we look at the performance of SOIA and BIA for maintaining the

index structure online. That is, whenever a value arrives, BIA inserts new local

prominent streaks into the R-tree immediately, and SOIA maintains its space

optimal property by inserting and pruning the R-tree immediately.

In this experiment, we regard the first 98% of a dataset as the initial dataset

and its index structure has been built by Maintenance procedure already.

Then, we examine the performance of SOIA and BIA regarding a data append

of the last x% of the dataset, where x = 0.1, 0.5, 1, and 2.

Figures 2.5 and 2.6 show the experiment results. In the figures, we report:

(a) the time of the Maintenance procedure in order to handle data append-

ing.

56

2.5. PERFORMANCE STUDY

 0

 2

 4

0.1 0.5 1 2

M
a

in
te

n
a

n
ce

 T
im

e
 (

s)

Data Update Portion (%)

(a)

BIA SOIA

 0

 2

 4

 6

0.1 0.5 1 2

L
o

o
k

U
p

 T
im

e
 (

s)

Data Update Portion (%)

(b)

BIA SOIA

 0

 5

 10

B S
0.1

B S
0.5

B S
1

B S
2

T
o

ta
l T

im
e

 (
s)

Data Update Portion (%)

(c)

Look Up
Maintenance

 0.04

 0.2

 1

 5

0.1 0.5 1 2

In
d

e
x

S
p

a
ce

 (
M

B
)

 in
 L

o
g

 S
c
a
le

Data Update Portion (%)

(d)

BIA SOIA

D1

 0

 4

 8

0.1 0.5 1 2

M
a

in
te

n
a

n
ce

 T
im

e
 (

s)

Data Update Portion (%)

(a)

BIA SOIA

 0

 10

 20

 30

0.1 0.5 1 2

L
o

o
k

U
p

 T
im

e
 (

s)

Data Update Portion (%)

(b)

BIA SOIA

 0

 10

 20

 30

 40

B S
0.1

B S
0.5

B S
1

B S
2

T
o

ta
l T

im
e

 (
s)

Data Update Portion (%)

(c)

Look Up
Maintenance

 0.01

 0.1

 1

 10

0.1 0.5 1 2
In

d
e

x
S

p
a

ce
 (

M
B

)
 in

 L
o

g
 S

c
a
le

Data Update Portion (%)

(d)

BIA SOIA

D2

 0

 5

 10

 15

0.1 0.5 1 2

M
a

in
te

n
a

n
ce

 T
im

e
 (

s)

Data Update Portion (%)

(a)

BIA SOIA

 0

 20

 40

0.1 0.5 1 2

L
o

o
k

U
p

 T
im

e
 (

s)

Data Update Portion (%)

(b)

BIA SOIA

 0

 20

 40

 60

B S
0.1

B S
0.5

B S
1

B S
2

T
o

ta
l T

im
e

 (
s)

Data Update Portion (%)

(c)

Look Up
Maintenance

 0.05

 1

 20

0.1 0.5 1 2

In
d

e
x

S
p

a
ce

 (
M

B
)

 in
 L

o
g

 S
c
a
le

Data Update Portion (%)

(d)

BIA SOIA

D3

Figure 2.5: BIA vs. SOIA under data update (D1, D2, D3)

57

2.5. PERFORMANCE STUDY

 0

 5

 10

 15

 20

0.1 0.5 1 2

M
a

in
te

n
a

n
ce

 T
im

e
 (

s)

Data Update Portion (%)

(a)

BIA SOIA

 0

 10

 20

 30

0.1 0.5 1 2

L
o

o
k

U
p

 T
im

e
 (

s)

Data Update Portion (%)

(b)

BIA SOIA

 0

 10

 20

 30

 40

 50

B S
0.1

B S
0.5

B S
1

B S
2

T
o

ta
l T

im
e

 (
s)

Data Update Portion (%)

(c)

Look Up
Maintenance

 0.01

 0.1

 1

 10

 100

0.1 0.5 1 2

In
d

e
x

S
p

a
ce

 (
M

B
)

 in
 L

o
g

 S
c
a
le

Data Update Portion (%)

(d)

BIA SOIA

D4

 0

 20

 40

 60

0.1 0.5 1 2

M
a

in
te

n
a

n
ce

 T
im

e
 (

s)

Data Update Portion (%)

(a)

BIA SOIA

 0

 20

 40

 60

 80

0.1 0.5 1 2

L
o

o
k

U
p

 T
im

e
 (

s)

Data Update Portion (%)

(b)

BIA SOIA

 0

 30

 60

 90

 120

B S
0.1

B S
0.5

B S
1

B S
2

T
o

ta
l T

im
e

 (
s)

Data Update Portion (%)

(c)

Look Up
Maintenance

0.1

1

200

0.1 0.5 1 2

In
d

e
x

S
p

a
ce

 (
M

B
)

 in
 L

o
g

 S
c
a
le

Data Update Portion (%)

(d)

BIA SOIA

D5

Figure 2.6: BIA vs. SOIA under data update (D4, D5)

58

2.5. PERFORMANCE STUDY

 0

 4

 8

 0.1 0.3 0.5 0.7 0.9

M
ai

n
te

n
an

ce
 T

im
e

(s
)

σ

(a)

 0

 2

 4

 6

 0.1 0.3 0.5 0.7 0.9
L

o
o

k
 U

p
 T

im
e

(s
)

σ

(b)

 0

 40

 80

 120

 160

 0.1 0.3 0.5 0.7 0.9

In
d

ex
 S

p
ac

e
(K

B
)

σ

(c)

D1
D2
D3
D4
D5

Figure 2.7: Varying �

(b) the average time of running time of W1 to W5.

(c) the total of (a) and (b).

(d) the size of the index after a data update.

The maintenance times of SOIA and BIA are similar (see sub-figures (a))

because the advantage of having a smaller index in SOIA is o↵set by the extra

e↵ort spent on maintaining minimality. Nevertheless, SOIA is superior in terms

of lookup performance (see sub-figures (b)). So, consider the time from getting

the new data to the time that a user finishes a particular session of historic

moment exploratory (see sub-figures (c)), SOIA is much better than BIA. With

no surprise, SOIA maintains a smaller index size all the way (see sub-figures (d)).

2.5.3 Sensitivity Study

Here, we look at the impact of parameters � and k on the performance of

SOIA.

We first look at the influence of �. In this experiment, given the full dataset

is available, we try di↵erent values for �: 0.1, 0.3. 0.5. 0.7, 0.9. Figure 2.7a

59

2.5. PERFORMANCE STUDY

 0

 1

 2

 0.1 0.3 0.5 0.7 0.9

M
ai

n
te

n
an

ce
 T

im
e

(m
s)

σ

(a) 0.1%

 0

 10

 20

 30

 40

 0.1 0.3 0.5 0.7 0.9

M
ai

n
te

n
an

ce
 T

im
e

(s
)

σ

(b) 1%

 0

 40

 80

 0.1 0.3 0.5 0.7 0.9

M
ai

n
te

n
an

ce
 T

im
e

(s
)

σ

(c) 2%

D1
D2
D3
D4
D5

Figure 2.8: Varying � When Updating

10

10
2

10
3

 1 2 3 4 5 6 7 8 9 10

L
o

o
k

 U
p

 T
im

e
(m

s)
 i

n
 L

o
g

 S
ca

le

D1
D2
D3
D4
D5

Figure 2.9: Varying k

shows that di↵erent � values do not influence the maintenance time of SOIA

much. That is because the maintenance of SOIA is dominated by the time of

scanning all LPSn to get Pn, which is independent of � there. Figure 2.7b

shows that a higher � value during maintenance would make historic moment

lookup more e�cient because that would result in a smaller index as shown in

Figure 2.7c.

Figure 2.8 shows the time for maintaining space optimal online when data

updates. In that experiment, we report the results the maintenance time when

the remaining 0.1%, 1% and 2% of data are inserted, in case that the index has

60

2.6. SUMMARY

been built for 98% of the original data already. When � increases, the mainte-

nance procedure takes less time. That is because a higher � value would reduce

the number of perplexing streaks, and for each perplexing streak p, the mainte-

nance algorithm is required to remove streaks that are universally dominated by

p from the R-tree (Algorithm 4 Lines 23–24). As a result, the maintenance time

decreases when � increases.

Lastly, we look at the impact of k on the performance of SOIA. Note that

k has no impact on maintenance phase of SOIA, so we only report the average

execution time of the lookup phase based on the five workloads, with � = 0.5.

Figure 2.9 shows that the lookup time generally increases with the value

k. That is because the lookup procedure looks for the historic moment for each

top-k situational streak. Increasing k would then increase the number of skyline

computational calls to the index.

2.6 Summary

In this chapter, we present SOIA, an e�cient algorithm to find out “historic

moments” over large data sequence. The algorithm is both space-optimal and

incremental, which can be applied in online applications such as data monitoring.

Also, we show that, compared with singular “prominent streaks”, our “historic

moments” can give more insightful stories over the data.

For future works, we may study how to design the algorithm when defin-

ing “historic moments” to be more general, e.g., similarity threshold � is given

di↵erently on streak value and length. We may also study, apart from R-tree, a

61

2.6. SUMMARY

kind of index structure to accelerate the computing more e�ciently.

62

Chapter 3

Range Counting over Data

Stream

Previous chapter studies finding interesting facts over data sequence of large

volume. In this chapter, we study the the problem incurred by data sequence of

large velocity. We present LSH-sketch, a sketch designed for range-count queries

over rapid data stream. The remainder of this chapter is organized as follows:

Section 3.1 gives the preliminary and background. Section 3.2 presents LSH-

Sketch in detail. Section 3.3 presents the empirical results. Section 3.4 discusses

the related work.

3.1 Preliminary and Background

In this section, we first put down the problem definition (section 3.1.1).

Next, we give some background on sketches (section 3.1.2). Finally, we out-

63

3.1. PRELIMINARY AND BACKGROUND

line the concept of locality sensitive hashing (LSH) for understanding this work

(section 3.1.3).

3.1.1 Problem Definition

Given a data stream S = (v1, v2, v3, · · · , vn) that has n values so far, each

value vi in S is from the domain [0, D), we aim to build a range-count sketch

by reading each value v 2 S only once. For each value insertion, we expect

O(1) time complexity. For a range-count query Q[vL, vR] that is posed over S,

the approximate query answer, f̂ of Q, has a probability of at least 1 � � to be

bounded by:

f  f̂  f +�

where � is a parameter derived from the space budget, f is the exact query

answer, � is the expected (one-sided) error.1 Concerning the streaming model,

both cash register and strict turnstile models [26] are supported.

3.1.2 Sketch

There are sketches to support point-count queries [16] and heavy-hitter

queries [7]. Heavy-hitter queries aim to provide more accurate count estimates

for values with top k highest counts, while there is no accuracy bound for those

remaining values [45]. Therefore, in the context of range-counting with proba-

bilistic guarantee, point-count sketches are the baselines.

1
Usually � = O(n) [17].

64

3.1. PRELIMINARY AND BACKGROUND

There are two approaches to use point-count sketches to answer range-count

queries. The first approach is to degenerate a range-count query Q[vL, vR] into

(vR� vL +1) point-count queries and aggregate their approximated counts from

a point-count sketch (section 3.1.2.1). The second approach is to degenerate the

domain into regular intervals and treat each interval as a point and insert them

into a point-count sketch (section 3.1.2.2). The first approach has large error.

The second approach needs to maintain multiple sketches, each for di↵erent

interval size, which violates the O(1) insertion latency requirement and makes

the insertion throughput unacceptable.

3.1.2.1 Range-Counting using Point-Count Sketch

They are many point-count sketches in the literature [23, 51, 52, 66], but

most of them are optimizations or variants of Count-Min Sketch [16] (CM-Sketch

for short). All these sketches share the same theoretical error bound but with

di↵erent empirical performance. Our LSH-Sketch can play the same role as CM-

Sketch, where various optimizations developed on top of CM-Sketch technically

can be applied to LSH-Sketch as well. Therefore, in this work, we put our focus

on CM-Sketch and leave the study of its other optimizations as our future work.

A CM-sketch is composed of a table of cells of depth d and width w. Each

cell has a counter. The counters are maintained through d pairwise independent

hash functions. For example, each function Ui is chosen from a universal hashing

family that maps a value v to a value in {1, . . . , w}. Figure 3.1 shows an example

of a CM-Sketch with d = 4 rows and w = 7 columns. Let CM [x, y] be the cell

counter under row x and column y. When inserting an element v into the sketch,

65

3.1. PRELIMINARY AND BACKGROUND

d = 4 counters CM [i, Ui(v)] (i =1 to 4) would get incremented by 1. When

answering a query qv about the count of value v from the sketch, the value

mini{CM [i, Ui(v)]} is returned.

Figure 3.1: CM-Sketch Structure

By fixing two parameters � and ", and defining depth d = dln(1�)e and width

w = d e"e according to the parameters (where e is the base of natural logarithm),

it has been shown in [16] that for CM-Sketch, the returned answer f̂v of a point-

count query qv has a probability at least 1� � to be bounded by:

fv  f̂v  fv + "n

where fv is the exact query answer. Inserting an item into CM-Sketch requires

updating d counters, so its insertion latency is O(1) because d is a user-given

constant.

There has been no formal discussion of using a point-count sketch like CM-

Sketch to serve as a baseline for answering range-count queries. Nonetheless,

it is straightforward that we can degenerate a range-count query Q[vL, vR] into

(vR � vL + 1) point-count queries qvL , . . . , qvR and sum up their approximate

counts f̂vL + . . .+ f̂vR obtained from a CM-sketch as an approximate answer f̂Q.

66

3.1. PRELIMINARY AND BACKGROUND

However, such a f̂Q will have a poor error bound. Specifically, let f̂Q =
P

f̂vi

where vi 2 [vL . . . vR], |Q| = (vR�vL+1), and fQ is the exact answer to Q; then

Corollary 3. Using CM-Sketch, there is a probability of at least 1 � � that the

result f̂Q of a range-count query Q is bounded by:

fQ  f̂Q  fQ + |Q|"n. (3.1)

Proof. Let X denote the error f̂Q � fQ. We first consider the case when d = 1.

It is known that for CM-Sketch [16], the expected error E(X) for a point-query

is at most n
w . As w = d e"e and there are |Q| points in the range-count query Q,

by linearity of expectation, we have

E(X) 
|Q|"n

e
.

As X is a nonnegative random variable, we can apply Markov’s inequality

and get

Pr(X > |Q|"n) 
E(X)

|Q|"n


1

e
.

As by definition f̂Q = fQ +X, we have

Pr(f̂Q > fQ + |Q|"n)  e�1

when d = 1 for CM-sketch.

67

3.1. PRELIMINARY AND BACKGROUND

When d > 1, the probability that the minimum among all d estimates has er-

ror exceeding |Q|"n is equal to the probability that every row has error exceeding

|Q|"n. As the d hash functions are pairwise independent, we have

Pr(f̂Q > fQ + |Q|"n)  e�d.

Since e�d
 �, we have

Pr(f̂Q  fQ + |Q|"n) � 1� �.

For a range query of size |Q|, using the above baseline approach requires |Q|

bucket accesses per row. Therefore, the query latency is d|Q|, which is O(|Q|) as

d is a constant.

3.1.2.2 Range Counting using Multi-Level Sketch

To support range-count query more e�ciently, there is an extension in

[16] that partitions the domain [0, D) under di↵erent granularities and main-

tains a CM-Sketch for each granularity. For example, we can maintain an-

other CM-Sketch whose “points” are essentially representing intervals of size 2:

[0, 2), [2, 4), . . . , [D�2, D). It was suggested to maintain logD levels (of di↵erent

interval sizes) of CM-Sketches [16] since the query range would not always align

with the partition boundaries. Therefore, the insertion of each item requires

d logD cell accesses, which yields a poor insertion latency: O(logD). For a

68

3.1. PRELIMINARY AND BACKGROUND

range count query Q, this approach partitions Q into 2 log |Q| intervals at most,

and each interval accesses the corresponding sketch for its counts. Therefore,

this approach accesses 2 log |Q| sketches, where each requires d bucket accesses,

resulting in a query latency of O(log |Q|).

Corollary 4 ([16]). Using Multi-Level Sketch, there is a probability of at least

1� � that the result f̂Q of a range-count query Q is bounded by:

fQ  f̂Q  fQ + 2"nlogDlog |Q|. (3.2)

3.1.3 Locality Sensitive Hashing (LSH)

Locality sensitive hashing (LSH) has been an important (approximation)

technique for a variety of problems including nearest-neighbour (NN) search and

clustering [21,27,59]. The principle behind LSH is that it hashes input items so

that similar items map to the same buckets with high probability.

An LSH family F is a set of functions h : M! S that each maps elements

from a metric space M to a bucket s 2 S. For any two points x, y 2 M, let

dist(x, y) be the distance between them. For a function h chosen uniformly at

random from F , there exist r1 and r2 with r1 < r2 such that h satisfies the

following conditions:

• if dist(x, y)  r1, then h(x) = h(y) with probability at least p1;

• if dist(x, y) � r2, then h(x) = h(y) with probability at most p2;

• p1 > p2.

69

3.2. LSH-SKETCH

Families that satisfy the above are called (r1, r2, p1, p2)-sensitive. When

supporting (approximate) nearest neighbour search in a high-dimensional space,

the following implementation of (r1, r2, p1, p2)-sensitive hash family is commonly

adopted [21,27,50,59]:

h(~x) =

�
~a · ~x+ b

r

⌫
(3.3)

where

1. ~a is a random vector with each ai ⇠ N(0, 1);

2. b is random variable sampled from uniform distribution: b ⇠ U(0, r), and

is an o↵set;

3. r is the quantization step chosen according to the data [50], and it is man-

ually set, e.g., r = 32.

~a is drawn from a normal distribution because normal distribution is a p-

stable distribution, which is necessary to preserve the locality when reducing the

dimensions from a higher dimensional space.

3.2 LSH-Sketch

Conventional sketches deliberately use hash functions that minimize colli-

sions. Consider CM-sketch with d = 1 and w = 7 in Figure 3.2(a). Assume

its random hash function is h and h(55) = 4, h(56) = 6, and h(57) = 0. As

collisions could happen, it is possible that the count in a cell is contributed by

70

3.2. LSH-SKETCH

multiple values. Since the exact number of values that hash into the same cell is

unknown, there is no way to adjust any over-counting. That problem a↵ects the

accuracy of range-counting. For example, if a query range is 55 to 57, CM-sketch

returns an approximate count of 654 + 345 + 468.

LSH-sketch in contrast can tell certain information to adjust over-counting.

Specifically, consider the same sketch structure as in Figure 3.2(a) but using LSH

as the hash function. Since the values 55, 56, 57 are close to each other in the

domain, they could be hashed to the same cell, e.g., h(55) = h(56) = h(57) = 1.

Although the exact number of values that hash into the same cell is still unknown,

we at least know that we shall not sum the count from that cell three times.

Specifically, if the query range is 55 to 57, we know that we should not return

606 + 606 + 606, which over-counts the same cell thrice. Instead, we know the

estimated count of that query is at most 606.

(a) Universal hashing cannot adjust over-counting

(b) Locality Sensitive Hashing can adjust over-counting

Figure 3.2: Ability to adjust over-counting

Our LSH-sketch exactly follows this intuition. LSH-sketch is structural-wise

71

3.2. LSH-SKETCH

the same as CM-Sketch, which is also a table of d ⇥ w counters, where we set

d = dln(1�)e and w = d e"e as well. The only di↵erence is that CM-Sketch uses

d (pairwise independent) random hash functions but LSH-Sketch uses d LSH

functions. That explains why any optimization that can apply to CM-Sketch

(e.g,. CU-Sketch [23] and CML-Sketch [51]) can also apply to LSH-Sketch. The

key question then boils down to what LSH implementation we shall use. For

reasons that we explain in section 3.2.4, we cannot use the classic implementation

of (r1, r2, p1, p2)-sensitive family that we put forward in section 3.1.3. Instead, we

adopt our own realization of (r1, r2, p1, p2)-sensitive family and the hash function

h(x) is:

h(x) =

�
a · x+ b

r

⌫
(3.4)

where

1. a is a scalar from a ⇠ U(1,
p
2"D/e);

2. b is a scalar from b ⇠ U(0, r), and

3. r = D
w .

Note that there are several di↵erences with the classic implementation.

First, the hash function now deals with scalar but not vector because data stream

applications mainly focus on analyzing a single attribute at a time. Second, a is

drawn from a uniform distribution instead of a normal distribution. Third, the

quantization step r is related to the domain size D. We explain all these choices

in detail after we discuss the error bound of LSH-Sketch in section 3.2.3.

72

3.2. LSH-SKETCH

3.2.1 Insertion

Inserting an item v from stream S into LHS-Sketch is the same as inserting

an item into CM-Sketch. Algorithm 7 shows the pseudocode, where we use d

preselected functions L1, L2, . . . , Ld that each, respectively, hashes a value to one

of the w cells in the corresponding row. Each Li function is defined on a function

hi randomly chosen from our (r1, r2, p1, p2)-sensitive family (Equation 3.4):

Li(x) = hi(x) mod w. (3.5)

The d⇥w counters of LSH-sketch, LSH[i][j], are all initialized with 0. For

each item v, d counters (one for each row) get incremented by one (lines 2–4).

Algorithm 7 Insert-into-LSH-Sketch (v)

1: . Each Li is a preselected hash function that maps an item v to a cell in
the ith row

2: for i = 1 to d do
3: LSH[i][Li(v)]++;

The insertion complexity is the same as that of CM-Sketch, which is O(1)

because d and w are user-given space budget parameters.

3.2.2 Range-Counting: Algorithm AOC

Following the intuition we put forward in the beginning of this section,

we have developed a range-counting algorithm, namely, Adjust Over-Counting

(AOC), to support range-counting using LSH-Sketch.

Algorithm 8 shows the pseudocode of AOC. AOC carries out range-counting

73

3.2. LSH-SKETCH

row-by-row (lines 1–8). The crux of AOC is to ensure the counter of each cell is

only considered once and we do so by adding a “touch-set” when processing each

row (line 2). If there are multiple query values hashed into the same cell of the

same row, the counter of that cell is only counted once towards the row counter

(lines 4–8). The minimum of all d row counters is returned as the estimated

count of the range query.

Algorithm 8 Adjust Over-Counting(Q[vL, vR])

1: for i = 1 to d do
2: Touch-Set TS = ?;
3: row-count[i]=0;
4: for each v in [vL, vR] do
5: if Li(v) not in TS then
6: row-count[i]+= LSH[i][Li(v)];
7: Insert Li(v) into TS;

8: Return f̂Q mini{row-count[i]};

Figure 3.3: LSH-Sketch using AOC to do range counting

Figure 3.3 shows an example of processing a range-count query from values

v1 to v4. For the first row, v1, v2, and v3 all share the same bucket, and thus the

row counter is 71 + 28 = 99. The same is applied to each row, and finally the

minimum among all d = 4 row counters, i.e., 60, is returned.

74

3.2. LSH-SKETCH

Lemma 14. Given a range-count query Q[vL, vR] whose range size is |Q| =

vR � vL + 1, AOC returns answer with O(|Q|

p
w/D) latency.

Proof. Based on (Equation 3.4), every r
a consecutive values fall into the same

hash bucket. So, for a range-count query Q, AOC needs to visit d |Q|
r/ae + 1 cells

at most in each row. As we set r = D
w and a ⇠ U(1,

p
2"D/e), so the number of

cells AOC needs to visit in each row is at most

⇠
|Q|

r/a

⇡
+ 1 

&p
2D/w

D/w
|Q|

'
+ 1.

As the number of rows, d, is a user-given space budget parameter, so d is a

constant, and the query latency is O(|Q|

p
w/D).

3.2.3 Accuracy

We aim to show that, using LSH-Sketch, there is a probability of at least

1� � that the result f̂Q of a range-count query is bounded by:

fQ  f̂Q  fQ + (4"+ (
p

2"eD + e)
|Q|

D
)n.

We first study the error when there is only one row in LSH-Sketch (i.e.,

d = 1) and when the query is a point-count query (i.e., |Q| = 1) (Lemma 15).

Then, we study the error when there is only one row in LSH-Sketch (i.e., d = 1)

and when the query is a range-count query whose range has size |Q| � 1 (Lemma

16). Finally, we study the error when there are d rows in LSH-Sketch and when

the query is a range-count query whose range has size |Q| � 1 (Theorem 2).

75

3.2. LSH-SKETCH

Lemma 15. For LSH-Sketch with depth d = 1 and width w, a range-count query

of size 1 (i.e., a point query on value v) using AOC has an approximate result

f̂v, which is bounded by:

fv  f̂v  fv +
dae

a
·
n

w
.

Proof. First, according to Equation 3.4, every r/a values are hashed to the same

bucket. Given a domain D, there are then D
r/a buckets. In LSH-sketch, there are

only w cells (when d = 1), So, all those buckets are further hashed into w cells

and thus each cell represents d D
wr/ae buckets. As each bucket has r/a values at

most, each cell represents d D
wr/ae

r
a = dae ra values at most. Given there are D

values in the domain and r = D/w, the probability of collision is dae ra/D = dae
aw .

There are n values in the data stream, by linearity of expectation, the expected

number of collisions is dae
aw n. As every collision on the same cell increments the

counter by 1, the expected error E(X) is thus also at most dae
aw n.

Lemma 16. For LSH-Sketch with d = 1 and width w, a range-count query of

size |Q| using AOC has an approximate result f̂v, which is bounded by:

fv  f̂v  fv + (a+ 1)(
2

aw
+

|Q|

D
)n.

Proof. Now we consider the error X on query Q when d = 1 for LSH-Sketch.

Following Lemma 15, we know that, for each cell, the expected error is dae
a

n
w ,

which is at most (1+ 1
a)

n
w . In Lemma 14, we showed that the query visits d |Q|

r/ae+1

76

3.2. LSH-SKETCH

cells at most. So, we have

E(X) 

✓⇠
|Q|

r/a

⇡
+ 1

◆✓
1 +

1

a

◆
n

w

=

 &
|Q|

D
aw

'
+ 1

!✓
1 +

1

a

◆
n

w



|Q|

D
aw

+ 2

!✓
1 +

1

a

◆
n

w

=

✓
aw|Q|

D
+ 2

◆✓
a+ 1

a

◆
n

w

= (a+ 1)

✓
2

aw
+

|Q|

D

◆
n. (3.6)

Theorem 2. For LSH-Sketch with d = dln(1/�)e and w = de/"e, a range-count

query of size |Q| using AOC has a probability of at least 1�� that the approximate

result f̂Q is bounded by:

fQ  f̂Q  fQ + (4"+ (
p

2"eD + e)
|Q|

D
)n.

Proof. When w = de/"e, from Equation 3.6 we have

E(X)  (a+ 1)(
2"

ea
+

|Q|

D
)n.

By Markov’s Inequality and X = f̂Q � fQ � 0, we have

Pr

✓
X > (a+ 1)(

2"

a
+ e

|Q|

D
)n

◆


1

e
.

77

3.2. LSH-SKETCH

In other words, using each row i of LSH-Sketch to estimate the answer of Q, we

have:

Pr

✓
f̂Q > fQ + (a+ 1)(

2"

a
+ e

|Q|

D
)n

◆


1

e
.

As d locality sensitive hash functions are chosen independently for each row,

then we have

Pr

✓
f̂Q � fQ + (a+ 1)(

2"

a
+ e

|Q|

D
)n

◆


1

ed
.

Since e�d
 �, we have

Pr

✓
f̂Q  fQ + (a+ 1)(

2"

a
+ e

|Q|

D
)n

◆
� 1� �. (3.7)

As a is a scalar from a ⇠ U(1,
p
2"D/e), when a = 1, the error is (4" +

2e |Q|
D)n. When a =

p
2"D/e, the error is ((1 + 1p

2"D/e
)" + (

p
2"eD + e) |Q|

D)n.

Taking the worst case, the error is thus (4"+ (
p
2"eD + e) |Q|

D)n at most.

3.2.4 Implementation of (r1, r2, p1, p2)-sensitive family for LSH-

Sketch

Now we discuss the design choice of our implementation of (r1, r2, p1, p2)-

sensitive family. First, following Equation 3.7, we estimate the expected error

E(X) by2

E(X) ⇡ (a+ 1)

✓
2"

a
+ e

|Q|

D

◆
n. (3.8)

Now consider di↵erent range size |Q|:

2
Following equation 3.6, we can also get the lower bound that E(X) � (a + 1)(

1
aw +

|Q|
D),

which is close to the upper bound in Equation 3.7. So here we use the result of Equation 3.7

to estimate it.

78

3.2. LSH-SKETCH

Pitfall 1: When |Q|⌧ D, |Q|
D ⇡ 0, then we have

E(X) ⇡ (a+ 1)(
2"n

a
).

So, when a! 0, E(X)!1.

Pitfall 2: When |Q| ⇡ D, |Q|
D ⇡ 1, then we have

E(X) ⇡ (a+ 1)

✓
2"

a
+ e

◆
n.

Thus, either a!1 or a! 0 will lead to E(X)!1.

The two pitfalls above explain why we cannot adopt the original implemen-

tation of (r1, r2, p1, p2)-sensitive family that sets a ⇠ N(0, 1) because that gives

the possibilities of a! 0 or a!1. Notice that the use of normal distribution is

necessary when LSH is used in dimension reduction because normal distribu-

tion is a p-stable distribution that can preserve the locality after projecting onto

the lower dimensional space [21]. In our streaming applications, the requirement

of drawing from a p-stable distribution, however, is unnecessary because stream

data is just 1-dimensional and any linear operation on them can preserve the

locality. In other words, we can also pick non p-stable distributions including the

uniform distribution.

Now let us rearrange Equation 3.8 in order to make informed decision for

the range of a from uniform distribution:

E(X) ⇡ 2"n+ 2"n/a+ (a+ 1)e|Q|n/D.

79

3.2. LSH-SKETCH

The first term in the above sum is a constant with respect to a. The second

term increases when a decreases. The third term increases when a increases.

Therefore, to minimize E(X), we shall balance the e↵ect of the second and the

third terms, i.e.,

2"/a = (a+ 1)e|Q|/D,

If a � 1, then we know a2 < a(a+ 1), so we can have

2"D = a(a+ 1)e|Q|

a(a+ 1) = 2"D/(e|Q|)

a2  2"D/(e|Q|)

|Q| is workload dependent. If the workload characteristic is unknown, we

consider the worst case where |Q| = 1. So, we have an upper bound of a as

a 
p
2"D/e.

From Pitfall 1 and Pitfall 2, a could be anything but 0 or1. So, overall

we set a ⇠ U(1,
p
2"D/e).

Next we show that the family of hash functions used in our own LSH im-

plementation (Equation 3.4) is (r1, r2, p1, p2)-sensitive. Especially,

Theorem 3. The family of functions h, in the form of h(x) = bax+b
r c, with

a ⇠ U(1,
p
2"D/e), b ⇠ U(0, r), and r = D/w is (

p
2r
4 , 0.8r, 0.5, 0.2)-sensitive.

80

3.2. LSH-SKETCH

Proof. First, for two random variables x, y drawn from the 1D domain, let

dist(x, y) denote the distance between them, we have:

Pr(bxc = byc) =

8
>><

>>:

1� dist(x, y) if 0  dist(x, y) < 1

0 if dist(x, y) � 1

(3.9)

Next, for two values v1, v2, we have

dist(
av1 + b

r
,
av2 + b

r
) =

a

r
dist(v1, v2).

So, we have the collision probability of our LSH implementation as:

Pr(h(v1) = h(v2)) = Pr(b
av1 + b

r
c = b

av2 + b

r
c)

=

8
>><

>>:

1� a
rdist(v1, v2) if 0  a

rdist(v1, v2) < 1

0 if a
rdist(v1, v2) � 1

We consider two cases:

• When dist(v1, v2) 
p
2r
4 , we have

Pr(h(v1) = h(v2)) � 1�
a

r
dist(v1, v2)

� 1�
a

r

p
2r

4

As a ⇠ U(1,
p
2"D/e), we have

a 
p
2"D/e ⇡

p
2D/w =

p

2r. (3.10)

81

3.3. EXPERIMENT

So we have

Pr(h(v1) = h(v2)) � 1�

p
2r

r

p
2r

4

� 1� 0.5 = 0.5.

• When dist(v1, v2) � 0.8r, we have

Pr(h(v1) = h(v2))  max{1�
a

r
dist(v1, v2), 0}

 max{1�
a

r
0.8r, 0}.

As a ⇠ U(1,
p
2"D/e), we have a � 1, then

Pr(h(v1) = h(v2))  max{1�
1

r
0.8r, 0}

 max{1� 0.8, 0} = 0.2.

3.3 Experiment

We evaluate the use of AOC over LSH-Sketch to answer range-count queries

and compare it against the two baseline approaches we put forward in section

3.1.2. Specifically, we used CM-Sketch to carry out range-counting (section

3.1.2.1) and we also built multi-level of CM-Sketches (section 3.1.2.2). We evalu-

ate the accuracy (section 3.2.3), insertion throughput (section 3.2.1), and query

throughput (section 3.2.2) of three approaches over three real data sets and three

82

3.3. EXPERIMENT

synthetic data sets under di↵erent data skewness.

• Kosarak Click Stream — Anonymized click-stream from Hungarian on-

line news portal3. This data set has been used in [10, 44, 52] and contains

8M records and the domain size D = 41270.

• WebDocs — Transactional data set from the web collection3. It has been

used in [10] and contains 15M records and the domain size D = 580947.

• CAIDA Trace 2018 — Anonymized passive tra�c traces4. It has been

used in [31] and contains 30M flow records and the domain size D = 1013.

• Zip-0, Zip-1, Zip-2 — Synthetic data sets with stream size 32M and

the domain size D = 8M under three di↵erent skew factors 0 (uniform), 1

(mid-skew), 2 (high-skew). The stream size and domain size settings were

used in [52] as well.

The experiment platform is a 3.2 GHz Intel i5 CPU with 8GB RAM. All the

methods are implemented in C++ and compiled with -O3 optimization. Fol-

lowing [66], we set the default space budget as 1MB. The default value for d

is 4, yielding a 98% probability guarantee on the error bound [11]. Under the

same space budget and the same value of d, the value of w is set accordingly.

Each experiment is repeated 100 times and we report the averages. For ease

of discussion, we label using AOC over LSH-Sketch simply as LSH-Sketch, the

approach of range-counting over CM-Sketch (section 3.1.2.1) as CM-Sketch, and

3
http://fimi.ua.ac.be/data/

4
http://www.caida.org/data/overview

83

3.3. EXPERIMENT

the approach of range-counting over multi-level of CM-Sketches (section 3.1.2.2)

as CMS-ML.

3.3.1 Accuracy

In this experiment, we evaluate the accuracy of all methods under di↵erent

query range sizes. We generate queries of range from D (the whole domain),

D/2, D/4, . . ., 2, 1 (point-count query). We report both absolute error and

relative error of the query results.

Figure 3.4 to 3.6a show the absolute errors of all methods on all data

sets (in log-log scale). Empirically, the absolute errors of CM-Sketch and CMS-

ML increase when the query range size increases, which are consistent with our

theoretical results listed in Table 1.1. The empirical errors of LSH-Sketch are

better than the theoretical errors. Specifically, the absolute errors of LSH-Sketch

do not grow with the query range size on all real data sets. When |Q| = D, it

is essentially asking the total number of values that have been inserted into the

sketch so far. As algorithm AOC counts each cell only once, AOC could return

the exact answer in this case and has 0 error. When |Q| = 1, i.e., point-count

query, LSH-Sketch also outperforms CM-Sketch (and CMS-ML) on all data sets

except Kosorak Click Stream where CM-Sketch is marginally better than LSH-

Sketch in that data set.

For range counting, the relative error of a query is even more important

because the count of a range query naturally increases with the query range size.

Figure 3.4b, Figure 3.5b and Figure 3.6b thus show the relative errors of all

methods on all data sets (in log-log scale). Empirically, we see that LSH-Sketch

84

3.3. EXPERIMENT

0

10
1

10
3

10
5

10
7

10
9

1 D/2
12

D/2
8

D/2
4 41270

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

CM-Sketch
CMS-ML
LSH-Sketch

0
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2

1 D/2
12

D/2
8

D/2
4 41270

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

CM-Sketch
CMS-ML
LSH-Sketch

Kosorak Click Stream

0

10
2

10
4

10
6

10
8

10
10

1 D/2
14

D/2
5 580947

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

CM-Sketch
CMS-ML
LSH-Sketch

0

10
-5

10
-3

10
-1

10
1

10
3

1 D/2
14

D/2
5 580947

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

CM-Sketch
CMS-ML
LSH-Sketch

WebDocs

Figure 3.4: Range Count Accuracy (log-log scale) on Kosorak and WebDocs
datasets

generally outperforms CM-Sketch and CMS-ML in terms of relative errors on

all data sets and all query ranges. Furthermore, although the theoretical error

bound of CMS-ML is better than CM-Sketch, we observe that empirically CMS-

ML is not always better than CM-Sketch on range-counting.

85

3.3. EXPERIMENT

0

10
2

10
4

10
6

10
8

1 D/2
28

D/2
13

10
13

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

CM-Sketch
CMS-ML
LSH-Sketch

0

10
-5

10
-3

10
-1

10
1

10
3

1 D/2
28

D/2
13

10
13

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

CM-Sketch
CMS-ML
LSH-Sketch

CAIDA Trace

0

10
1

10
3

10
5

10
7

10
9

1 D/2
16

D/2
7 8000000

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

CM-Sketch
CMS-ML
LSH-Sketch

0
10

-2
10

-1
10

0
10

1
10

2
10

3

1 D/2
16

D/2
7 8000000

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

CM-Sketch
CMS-ML
LSH-Sketch

Zip-0

Figure 3.5: Range Count Accuracy (log-log scale) on CAIDA and Zip-0 datasets

86

3.3. EXPERIMENT

0

10
1

10
3

10
5

10
7

10
9

1 D/2
16

D/2
7 8000000

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

CM-Sketch
CMS-ML
LSH-Sketch

0
10

-2
10

-1
10

0
10

1
10

2
10

3

1 D/2
16

D/2
7 8000000

R
el

at
iv

e
E

rr
o

r
Query Range Size

(b)

CM-Sketch
CMS-ML
LSH-Sketch

Zip-1

0
10

-410
-210
010
210
410
610
810

10

1 D/2
16

D/2
7 8000000

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

CM-Sketch
CMS-ML
LSH-Sketch

0

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

1 D/2
16

D/2
7 8000000

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

CM-Sketch
CMS-ML
LSH-Sketch

Zip-2

Figure 3.6: Range Count Accuracy (log-log scale) on Zip-1 and Zip-2 datasets

87

3.3. EXPERIMENT

 0

 1000

 2000

 3000

 4000

 5000

 6000

Kosorak WebDocs CAIDA Zipf-0 Zipf-1 Zipf-2

N
u

m
b

er
 o

f
V

al
u

es
 I

n
se

rt
ed

 p

e
r

m
il
li
s
e
c
o

n
d

CM-Sketch
CMS-ML
LSH-Sketch

Figure 3.7: Insertion Throughput

 0

 100

 200

 300

 400

 500

Kosorak WebDocs CAIDA Zipf-0 Zipf-1 Zipf-2

N
u

m
b

er
 o

f
Q

u
er

ie
s

A
n

sw
er

ed

 p
e
r

m
il
li
s
e
c
o

n
d

CM-Sketch
CMS-ML
LSH-Sketch

Figure 3.8: Query Throughput

3.3.2 Insertion Throughput

In this experiment, we evaluate the insertion throughput of all methods on

all data sets. Following [66], we report the insertion throughput as the number

of values could be inserted per millisecond.

Figure 3.7 shows the empirical results. Consistent with the theoretical re-

sults listed in Table 1.1, CM-Sketch and LSH-Sketch have much better inser-

tion throughput than CMS-ML because they do not need to maintain multiple

88

3.3. EXPERIMENT

0

10
5

10
6

10
7

1 D/2
12

D/2
8

D/2
4 41270

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25w
0.5w
w

2w
4w

0
10

-2
10

-1
10

0
10

1
10

2
10

3

1 D/2
12

D/2
8

D/2
4 41270

R
el

at
iv

e
E

rr
o

r
Query Range Size

(b)

0.25w
0.5w
w

2w
4w

Kosorak Click Stream

0

10
4

10
5

10
6

10
7

1 D/2
14

D/2
5 580947

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25w
0.5w
w

2w
4w

0
10

-3

10
-1

10
1

10
3

1 D/2
14

D/2
5 580947

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

0.25w
0.5w
w

2w
4w

WebDocs

Figure 3.9: Vary the Width of LSH-Sketch (log-log scale) on Kosorak and Web-
Docs Datasets

89

3.3. EXPERIMENT

0
10

3
10

4
10

5
10

6

1 D/2
28

D/2
13

10
13

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25w
0.5w
w

2w
4w

0
10

-4

10
-2

10
0

10
2

1 D/2
28

D/2
13

10
13

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

0.25w
0.5w
w

2w
4w

CAIDA Trace

0

10
3

10
5

10
7

10
9

1 D/2
16

D/2
7 8000000

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25w
0.5w
w

2w
4w

0
10

-1
10

0
10

1
10

2
10

3

1 D/2
16

D/2
7 8000000

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

0.25w
0.5w
w

2w
4w

Zip-0

Figure 3.10: Vary the Width of LSH-Sketch (log-log scale) on CAIDA and Zip-0
Datasets

90

3.3. EXPERIMENT

0
10

2

10
4

10
6

10
8

1 D/2
16

D/2
7 8000000

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25w
0.5w
w

2w
4w

0
10

-1
10

0
10

1
10

2
10

3

1 D/2
16

D/2
7 8000000

R
el

at
iv

e
E

rr
o

r
Query Range Size

(b)

0.25w
0.5w
w

2w
4w

Zip-1

0

10
2

10
4

10
6

10
8

1 D/2
16

D/2
7 8000000

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25w
0.5w
w

2w
4w

0

10
-2

10
0

10
2

1 D/2
16

D/2
7 8000000

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

0.25w
0.5w
w

2w
4w

Zip-2

Figure 3.11: Vary the Width of LSH-Sketch (log-log scale) on Zip-1 and Zip-2
Datasets

91

3.3. EXPERIMENT

sketches. Empirically, both the insertion throughput of CM-Sketch and LSH-

Sketch are about 4.9⇥ to 8.2⇥ of CMS-ML. Since both CM-Sketch and LSH-

Sketch have O(1) insertion latency, their empirical insertion throughputs are

also similar.

3.3.3 Query Throughput

In this experiment, we evaluate the query throughput of all methods on all

data sets. We generated a workload of queries in random range size and then

used the same workload on all three methods and reported how many queries

each method can answer per millisecond.

Figure 3.8 shows the empirical results. Consistent with the theoretical re-

sults listed in Table 1.1, CMS-ML and LSH-Sketch have much better query

throughput than CM-Sketch because CM-Sketch query latency is O(|Q|) whereas

CMS-ML and LSH-Sketch are O(log |Q|) and O(|Q|

p
w/D), respectively. Em-

pirically, both the query throughput of CMS-ML and LSH-Sketch are about 2.4⇥

to 3.5⇥ of CM-Sketch. CMS-ML has slightly better query throughput than LSH-

Sketch except on Zip-0 and Zip-1 data sets. Nonetheless, CMS-ML indeed has

unacceptable insertion throughput and much poorer accuracy than LSH-Sketch.

3.3.4 Accuracy and Space Trade-o↵

Finally, we carried out two more experiments to study the query accuracy

and space trade-o↵ of LSH-Sketch. Specifically, we varied the space budget by

changing the values of sketch width w and sketch depth d separately.

92

3.4. RELATED WORK

Figure 3.9 to Figure 3.11 show the query accuracy when we vary the sketch

width from 0.25w to 4w. In this experiment, the sketch depth d remains as

the default value 4. So when we increase the width to 4w, the space budget is

increased 4⇥. Similarly, when we decrease the width to 0.25w, the space budget

is decreased to 1
4 of the default space budget. From the result, we observe an

improvement on the accuracy (error) when more space is given and the opposite

happens when less space is given, which is usual and under our expectation. This

result is also generalizable to all query ranges.

Figure 3.12 to Figure 3.14 show the query accuracy when we vary the sketch

depth from 0.25d to 4d where d = 4. In this experiment, the sketch width w

remains the same and set as the value when assuming d = 4. So, when we

increase the depth to 4d, the space budget is increased 4⇥. Similarly, when we

decrease the depth to 0.25d (i.e. d = 1), the space budget is decreased to 1
4 of

the default space budget. From the result, we observe an insignificant di↵erence

on the errors among di↵erent d values. That is because when d = 1, we have

already obtained a probability of 0.63 that the error bound holds. Empirical

results show that it might be good enough already when comparing with d = 16

(i.e., 4d), whose probability is 0.998 that the error bound holds.

3.4 Related Work

Sketches have been increasingly used in many applications to provide statis-

tics under provable resource-accuracy trade-o↵. Recent studies [24,25,39,40,62,

71] show that sketches need to support queries beyond simple point-count and

heavy-hitters [42] and range-count query is one of them [31].

93

3.4. RELATED WORK

0

10
5

10
6

10
7

1 D/2
12

D/2
8

D/2
4 41270

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25d
0.5d
d

2d
4d

0
10

-2
10

-1
10

0
10

1
10

2
10

3

1 D/2
12

D/2
8

D/2
4 41270

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

0.25d
0.5d
d

2d
4d

Kosorak Click Stream

0

10
4

10
5

10
6

10
7

1 D/2
14

D/2
5 580947

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25d
0.5d
d

2d
4d

0
10

-3

10
-1

10
1

10
3

1 D/2
14

D/2
5 580947

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

0.25d
0.5d
d

2d
4d

WebDocs

Figure 3.12: Vary the Depth of LSH-Sketch (log-log scale) on Kosorak and Web-
Docs Datasets

94

3.4. RELATED WORK

0
10

3
10

4
10

5
10

6

1 D/2
28

D/2
13

10
13

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25d
0.5d
d

2d
4d

0
10

-4

10
-2

10
0

10
2

1 D/2
28

D/2
13

10
13

R
el

at
iv

e
E

rr
o

r
Query Range Size

(b)

0.25d
0.5d
d

2d
4d

CAIDA Trace

0

10
3

10
5

10
7

10
9

1 D/2
16

D/2
7 8000000

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25d
0.5d
d

2d
4d

0
10

-1
10

0
10

1
10

2
10

3

1 D/2
16

D/2
7 8000000

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

0.25d
0.5d
d

2d
4d

Zip-0

Figure 3.13: Vary the Depth of LSH-Sketch (log-log scale) on CAIDA and Zip-0
Datasets

95

3.4. RELATED WORK

0
10

2

10
4

10
6

10
8

1 D/2
16

D/2
7 8000000

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25d
0.5d
d

2d
4d

0
10

-1
10

0
10

1
10

2
10

3

1 D/2
16

D/2
7 8000000

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

0.25d
0.5d
d

2d
4d

Zip-1

0

10
2

10
4

10
6

10
8

1 D/2
16

D/2
7 8000000

A
b

so
lu

te
 E

rr
o

r

Query Range Size

(a)

0.25d
0.5d
d

2d
4d

0
10

-2
10

0
10

2

1 D/2
16

D/2
7 8000000

R
el

at
iv

e
E

rr
o

r

Query Range Size

(b)

0.25d
0.5d
d

2d
4d

Zip-2

Figure 3.14: Vary the Depth of LSH-Sketch (log-log scale) on Zip-1 and Zip-2
Datasets

96

3.4. RELATED WORK

Many sketches today are specifically designed for point-count queries and

they are based on or inspired by CM-Sketch [52, 65, 66]. For example, CU-

Sketch [23] and CML-Sketch [51] aim to improve the accuracy by updating only

the row with minimum count (instead of all d rows) and updating only some rows

with certain probabilities, respectively. To overcome the error induced by skewed

data, Pyramid Sketch [66] allocates more space for counters of hot items and less

space for counters of cold items. Augmented Sketch [52] mitigates error from

data skewness by pre-filtering the heavy hitters into a list and inserting the rest

into a CM-Sketch. In terms of implementation, Augmented Sketch is optimized

for modern CPU architectures (e.g., use of SIMD instructions) so that it has good

query and insertion throughput. Elastic Sketch [65] further proposes techniques

to compress CM-Sketch so that the sketches can still be transferred between the

data plane and control plane when the network bandwidth is largely reduced due

to congestion or attack. Since LSH-Sketch shares the same structure with CM-

Sketch, all the accuracy and performance optimization techniques above should

be applicable to LSH-Sketch and we regard those as our important future work.

There are sketches specifically designed for heavy-hitter queries (e.g., space

saving [46], USS [60]). Since they o↵er no error bound for values other than

the heavy-hitters, they are not suitable for range-count queries. Building multi-

level of sketches for range-count was first discussed in the original CM-Sketch

paper [16]. A recent work that requires range-counting has adopted that multi-

level sketches approach [31]. Their focus is on how to achieve better accuracy

by automatically tuning the sizes of di↵erent levels (via the sketch width w and

sketch depth d) under the same space budget. LSH-Sketch can directly solve

their range-counting problem as our empirical results show that LSH-Sketch is

97

3.5. SUMMARY

way better than the multi-level approach in terms of accuracy and insertion

throughput.

Concerning range-counting, histograms like V-Optimal [29,32] and DigitHist

[55] can provide good accuracy but they require multiple passes on the data

in order to gain error bound [12]. SuRF [70] can support approximate range-

counting but it was designed for static data and insertions require a full rebuild

of the whole data structure, which is not suitable for data stream.

3.5 Summary

In this chapter, we study range-counting problem over large sequence data of

large velocity, i.e., rapid data stream. A new sketch based on Locality Sensitive

Hashing, LSH-Sketch, is proposed and we show that it has good accuracy and

throughput, from the perspective of both theorems and empirical evaluations.

Our LSH-Sketch serves as a core and there are various optimisations on

it can be done in the future work. For example, we may study whether the

advanced techniques based on CM-Sketch, e.g., Pyramid Sketch framework [66],

can be applied to our LSH-Sketch directly. If not, investigate the bottleneck and

work on how other kinds of optimisation methods can be built on.

98

Chapter 4

Conclusion and Future Work

In this thesis, for large sequence data of huge volume, we introduce the

notion of historic moment, which complements existing work [33, 69] and pro-

vides holistic insights from sequence data. The computational issue of historic

moment focuses on the incremental and interactive aspects, in which new data

are expected to arrive regularly and users are supposed to discover new his-

toric moments right away, by feeding in di↵erent input parameters. To this end,

we present SOIA, a highly-e�cient incremental algorithm using minimal space.

Space-optimality is important for online analysis and real-time monitoring sys-

tems because that significantly reduces the index size, thereby reducing the I/O

per operation or making the index memory-resident even when there are many

data sequences. Case studies show that historic moments are helpful in com-

putational journalism as well as in seismology. Experimental studies show that

SOIA is both space and time e�cient and outperforms the baseline on real data.

In future work, we are going to study the multi-dimension case of historic mo-

99

ments, which is a more general concept compared with this thesis. More kinds

of definitions on historic moments, e.g., define it according to “similarity” only,

are to study and to evaluate whether they could give more insightful stories.

For range-count queries posed on rapid data stream, we present LSH-Sketch.

LSH-Sketch is more general than point-count sketches because it supports both

range-counting and point-counting. LSH-Sketch outperforms CM-Sketch in

terms of accuracy and query throughput both theoretically and empirically. LSH-

Sketch’s insertion throughput is on a par with CM-Sketch. As CM-Sketch is the

core of many sketch variants and applications on top, LSH-Sketch has the poten-

tial to replace CM-Sketch in multiple domains [7,19,23,26,38,51–53,65,66]. We

plan to explore all those as our future work, from both theoretical and empirical

evaluations.

100

Appendices

101

Appendix A

Appendix

The main discussion focuses on finding historic moments in one data se-

quence. In this appendix, we also extend our problem and the algorithms to

multiple data sequences (Note that in [69], the authors also study how to find

prominent streaks in multiple data sequences). We first give a motivating exam-

ple from a piece of sports news in April 20141:

“He (Kevin Durant) put up 25 points in his 40th consecutive game,

which is the longest streak since Michael Jordan scored 25 in 40 con-

secutive games in the 1986-87 season. Wilt Chamberlain, who scored

25 or more in 80 consecutive games in 1960-61, holds the all time

record in that category. ”

In this piece of news, for what streak Kevin Durant has achieved, the re-

porter reports historic moments from Michael Jordan and Wilt Chamberlain,

1
http://ftw.usatoday.com/2014/04/kevin-durant-michael-jordan-record-thunder

103

which are two other data sequences.

Definition 11. Top-k Situational Streak in Multiple Sequences. Given

multiple sequences Dn = {D1
n, · · · , D

w
n } that contain w data sequences and each

has n values, let SSD1
n

n , · · · ,SSDw
n

n be the set of situational streaks for each data

sequence respectively. Let SSn = SS
D1

n
n [· · · [SS

Dw
n

n be all situational streaks in

Dn. The top-k situational streaks in Dn are the k streaks in SSn with the highest

values.

Definition 12. Analogous Streak in Multiple Sequences. Given multi-

ple sequences Dn = {D1
n, · · · , D

w
n }, let LPS

D1
n

n , · · · ,LPS
Dw

n
n be the local promi-

nent streaks for each sequence respectively. Let LPSn = LPS
D1

n
n [· · · [LPS

Dw
n

n

be all local prominent streaks set in Dn. A local prominent streak s 2 LPSn is an

analogous streak of a situational streak z 2 SSn when:

1. s.j < z.i (i.e., s ends before z starts),

2. |s| � |z| · � (i.e., the length of s is at least � times that of z, where � � 0

is a similarity threshold), and

3. s.v � z.v · � (i.e., the value of s is at least � times that of z).

Definition 13. Historic Moments in Multiple Sequences. Given multi-

ple sequences Dn = {D1
n, · · · , D

w
n }, a similarity threshold � and a positive integer

k. For each of situational streak z in top-k SSn, let AS(z) be the set of analogous

streaks in multi-sequence Dn for z. Assume that each streak s in AS(z) is repre-

sented by a 4D point (|s|, s.j, s.v, x), where x indicates which data sequence Dx

that s comes from. The historic moments with respect to z, denoted by HM(z),

is the skyline of AS(z) with respect to the first three dimensions, i.e., |s|, s.j,

and s.v of streak s.

104

In the sports news above, each data sequence in Dn represents the points

that the player gets. On 5 April 2014, the streak with value 25 and length 40

from Kevin Durant is the top-1 situational streak. Its historic moments include

the streak with value 25 and length 40 from Michael Jordan in 1986, as well as

the streak with value 25 and length 80 from Wilt Chamberlain in 1960.

BIA and SOIA can be adapted to deal with this multi-sequence situation in a

straightforward manner. We name them as BIA-MS and SOIA-MS, respectively.

A.0.1 BIA-MS

BIA-MS is largely similar to BIA that LPSn�SSn are inserted into the same

R-tree, each SS
Di

n
n is stored separately, and we have:

1. Maintenance. Each sequence of new values hvD
i

n+1, v
Di

n+2 · · · v
Di

m i for Di

calls the the maintenance procedure of BIA, i.e., Algorithm 2, once.

2. Look up. Same as the look up procedure of BIA, i.e., Algorithm 3.

A.0.2 SOIA-MS

SOIA-MS is largely similar to SOIA. SOIA-MS is also space-optimal. as it

keeps minimal subset Un of LPSn. It mainly generalizes the notion of perplexing

streaks and non-perplexing streaks for multiple sequences:

Definition 14. Perplexing Streak. A streak p 2 LPSn is a perplexing streak

when there exists a situational streak z 2 SSn such that :

1. p overlaps with z,

105

2. |p| � |z| · �, and

3. p.v � z.v · �.

We use Pn to denote the set of all perplexing streaks in Dn.

Definition 15. Non-perplexing Streak. Streaks in LPSn that are not in Pn

are non-perplexing streaks, denoted as Nn. That is, Nn = LPSn � Pn. A streak

s 2 LPSn is a non-perplexing streak if, for every situational streak z 2 SSn that

s overlaps with, either |s| < |z| · �, or s.v < z.v · �

Theorem 4. The minimal subset Un of LPSn is the set of streaks in

skyline(Nn) [Pn that (i) are not universally dominated by any streak in Pn

and (ii) have length at least �.

Proof. We prove the theorem by adapting the corresponding proof in Theorem 1.

This is done by proving Lemma 17 (the if case) and Lemma 18 (the only if case)

below.

Lemma 17. If a streak s can serve as a historic moment of some

streak in SSn or SSm, then s is in Un.

. Firstly, LPSn = Nn [Pn contains all local prominent streaks, and

thus all historic moments for Dn. Then, by adapting Lemma 4, we

see that given a streak is dominated by skyline(Nn), then it would

not be a historic moment for either SSn or SSm. So skyline(Nn)[Pn

contains all historic moments. Consequently, by adapting Corollary 2,

106

we see that if a streak is universally dominated by some streak in Pn,

it cannot be the historic moment for SSn or SSm. So Un contains all

historic moments. The lemma follows. ⌅

Lemma 18. If a streak s is in Un, then s can serve as a historic

moment of some streak in SSn or SSm.

. Same as the proof of Lemma 7, with adapting Dn, SSn, LPSn, Pn

and AS to Di
n, SSn, LPSn, Pn and AS respectively.

⌅

Combining the above lemmas, Theorem 4 follows.

Algorithms 9 and 10 present the maintenance and look up procedures of

SOIA-MS respectively. They are indeed straightforward adaption of SOIA with

minimal changes like computing LPS
Di

n
n for every data sequence Di

n and using

the multiple sequence version of the definitions instead (e.g., using Pn instead of

Pn).

A.0.3 Performance Study

We compare the performance of BIA-MS and SOIA-MS, using multiple real

data sequences. The experimental platform and workload settings are the same

as in section 2.5. Among the five real datasets, only D5, the ground motion data

sequence from seismic station, has multiple sequences (from multiple stations).

So, we construct five real multi-sequence datasets as follows:

107

Algorithm 9 SOIA-MS Maintenance

1: procedure Maintenance({hvD
1

n+1, v
D1

n+2 · · · v
D1

m i, · · · , hv
Dw

n+1, v
Dw

n+2 · · · v
Dw

m i})
2: N = ?;
3: for k = 1 to m� n do
4: if n == 0 and k == 1 then
5: P1 = {(1, 1, vD

1

1), (1, 1, vD
2

1) · · · (1, 1, vD
w

1)};
6: continue;

7: SSn+k = ?;
8: for each new value vD

j

n+k do

9: for each streak (i, n+ k � 1, v) in SS
Dj

n+k�1

n+k�1 do

10: if vD
j

n+k � v then

11: Insert (i, n+ k, v) to SS
Dj

n+k

n+k ;
12: else if |n+ k � 1� i| � � then
13: Insert (i, n + k � 1, v) to Bu↵er B, along with its data se-

quence information;

14: if no streak in SS
Dj

n+k�1

n+k�1 has value vD
j

n+k then

15: if all streaks in SS
Dj

n+k�1

n+k�1 have value < vD
i

n+k then

16: Insert (n+ k, n+ k, vD
j

n+k) to SS
Dj

n+k

n+k ;
17: else

18: Select the streak (i, n+k�1, v) in SS
Dj

n+k�1

n+k�1 with v > vD
j

n+k
and is the smallest;

19: Extend it to be (i, n+ k, vD
j

n+k);

20: Insert it into SS
Dj

n+k

n+k ;

21: SSn+k = SS
D1

n+k

n+k [· · · [SS
Dw

n+k

n+k
22: T= streaks in Rtree [B;
23: Set PT

n+k�1 = T \ Pn+k�1;

24: Find �N and Pn+k from P
T

n+k�1 and SSn+k;
25: N = N [�N;

26: Insert streaks in B into Rtree;
27: for each streak y in N do
28: Remove streak s from Rtree if y � s;

29: for each streak p in Pm do
30: Remove streak s from Rtree if s is universally dominated by p;

108

Algorithm 10 SOIA-MS Lookup

1: procedure Lookup(�0, k0)
2: Z = Get-Top-SS(SSn, k0);
3: for each streak z in Z do
4: Q = [|z| · �0,+1] ⇥ [0, z.i) ⇥ [z.v · �0,+1];
5: HM(z) = BBS(Rtree, Q), and relevant data sequence information;

1. MS1: KMNB, YHNB

2. MS2: KMNB, YHNB, YULB, TWGB

3. MS3: KMNB, YHNB, YULB, TWGB, TPUB, SSLB

4. MS4: KMNB, YHNB, YULB, TWGB, TPUB, SSLB, NACB, YOJ

5. MS5: KMNB, YHNB, YULB, TWGB, TPUB, SSLB, NACB, YOJ, HK,

HK0

where each code (e.g., KMNB) above denotes one station name.

A.0.3.1 Overall Comparison

We first look at the overall performance of SOIA-MS and BIA-MS when the

full datasets are available. We evaluate them in terms of their (a) index building

time (maintenance time), (b) query time (look up time), and (c) index space.

A.0.3.2 Historic Moment Exploration with Data Update

We evaluate the performance of SOIA-MS and BIA-MS for maintaining the

index structure online. In this experiment, we regard the first 98% of a dataset

109

 0

 40

 80

 120

 160

MS1 MS2 MS3 MS4 MS5

M
ai

n
te

n
an

ce
 T

im
e

(s
)

(a)

BIA-MS
SOIA-MS

10

100

4000

MS1 MS2 MS3 MS4 MS5

L
o
o
k
 U

p
 T

im
e

(s
)

 in
 L

o
g

 S
c
a
le

(b)

1

100

1000

MS1 MS2 MS3 MS4 MS5

In
d
ex

 S
p
ac

e
(M

B
)

 in
 L

o
g

 S
c
a
le

(c)

Figure A.1: SOIA-MS vs. BIA-MS

as the initial dataset, i.e., each data sequence in the dataset has 98% as initial,

and the index structure of it has been built by maintenance procedure already.

Next, we examine the performance of SOIA-MS and BIA-MS regarding a

data append of the last x% of each data sequence in the dataset, where x = 0.1,

0.5, 1, and 2. Figures A.2 and A.3 shows the experiment results. While SOIA-MS

spends more e↵orts in maintaining minimality, SOIA-MS is much more e�cienct

when looking up the historic moments, as SOIA-MS always maintains a much

smaller index size.

The basic principle of SOIA-MS is similar to SOIA, and the impact of pa-

rameters � and k for SOIA-MS is also similar to SOIA. So here we don’t repeat

the experiments of parameter sensitivity.

110

 0

 50

 100

 150

0.1 0.5 1 2

M
a

in
te

n
a

n
ce

 T
im

e
 (

s)

Data Update Portion (%)

(a)

BIA-MS SOIA-MS

 0

 200

 400

0.1 0.5 1 2

L
o

o
k

U
p

 T
im

e
 (

s)

Data Update Portion (%)

(b)

BIA-MS SOIA-MS

 0

 200

 400

 600

 800

B S
0.1

B S
0.5

B S
1

B S
2

T
o

ta
l T

im
e

 (
s)

Data Update Portion (%)

(c)

Look Up
Maintenance

1

100

0.1 0.5 1 2

In
d

e
x

S
p

a
ce

 (
M

B
)

 in
 L

o
g

 S
c
a
le

Data Update Portion (%)

(d)

BIA-MS SOIA-MS

MS1

 0

 50

 100

0.1 0.5 1 2

M
a

in
te

n
a

n
ce

 T
im

e
 (

s)

Data Update Portion (%)

(a)

BIA-MS SOIA-MS

 0

 200

 400

 600

 800

0.1 0.5 1 2

L
o

o
k

U
p

 T
im

e
 (

s)

Data Update Portion (%)

(b)

BIA-MS SOIA-MS

 0

 200

 400

 600

 800

 1000

B S
0.1

B S
0.5

B S
1

B S
2

T
o

ta
l T

im
e

 (
s)

Data Update Portion (%)

(c)

Look Up
Maintenance

1

100

0.1 0.5 1 2
In

d
e

x
S

p
a

ce
 (

M
B

)
 in

 L
o

g
 S

c
a
le

Data Update Portion (%)

(d)

BIA-MS SOIA-MS

MS2

 0

 50

 100

 150

0.1 0.5 1 2

M
a

in
te

n
a

n
ce

 T
im

e
 (

s)

Data Update Portion (%)

(a)

BIA-MS SOIA-MS

 0

 200

 400

 600

0.1 0.5 1 2

L
o

o
k

U
p

 T
im

e
 (

s)

Data Update Portion (%)

(b)

BIA-MS SOIA-MS

 0

 200

 400

 600

 800

B S
0.1

B S
0.5

B S
1

B S
2

T
o

ta
l T

im
e

 (
s)

Data Update Portion (%)

(c)

Look Up
Maintenance

1

100

1000

0.1 0.5 1 2

In
d

e
x

S
p

a
ce

 (
M

B
)

 in
 L

o
g

 S
c
a
le

Data Update Portion (%)

(d)

BIA-MS SOIA-MS

MS3

Figure A.2: SOIA-MS vs BIA-MS under data update (MS1 MS2 MS3)

111

 0

 50

 100

 150

 200

 250

0.1 0.5 1 2

M
a

in
te

n
a

n
ce

 T
im

e
 (

s)

Data Update Portion (%)

(a)

BIA-MS SOIA-MS

 0

 1000

 2000

 3000

0.1 0.5 1 2

L
o

o
k

U
p

 T
im

e
 (

s)

Data Update Portion (%)

(b)

BIA-MS SOIA-MS

 0

 1000

 2000

 3000

B S
0.1

B S
0.5

B S
1

B S
2

T
o

ta
l T

im
e

 (
s)

Data Update Portion (%)

(c)

Look Up
Maintenance

1

100

1000

0.1 0.5 1 2

In
d

e
x

S
p

a
ce

 (
M

B
)

 in
 L

o
g

 S
c
a
le

Data Update Portion (%)

(d)

BIA-MS SOIA-MS

MS4

 0

 100

 200

 300

0.1 0.5 1 2

M
a

in
te

n
a

n
ce

 T
im

e
 (

s)

Data Update Portion (%)

(a)

BIA-MS SOIA-MS

 0

 1000

 2000

 3000

 4000

0.1 0.5 1 2

L
o

o
k

U
p

 T
im

e
 (

s)

Data Update Portion (%)

(b)

BIA-MS SOIA-MS

 0

 1000

 2000

 3000

 4000

B S
0.1

B S
0.5

B S
1

B S
2

T
o

ta
l T

im
e

 (
s)

Data Update Portion (%)

(c)

Look Up
Maintenance

1

100

1000

0.1 0.5 1 2

In
d

e
x

S
p

a
ce

 (
M

B
)

 in
 L

o
g

 S
c
a
le

Data Update Portion (%)

(d)

BIA-MS SOIA-MS

MS5

Figure A.3: SOIA-MS vs BIA-MS under data update (MS4 MS5)

112

Bibliography

[1] Daniel Abadi, Donald Carney, Ugur Cetintemel, Mitch Cherniack, Christian

Convey, C Erwin, Eduardo Galvez, M Hatoun, Anurag Maskey, Alex Rasin,

et al. Aurora: a data stream management system. In SIGMOD Conference,

page 666. Citeseer, 2003.

[2] Foto N Afrati, Paraschos Koutris, Dan Suciu, and Je↵rey D Ullman. Parallel

skyline queries. Theory of Computing Systems, 57(4):1008–1037, 2015.

[3] Charu C Aggarwal and S Yu Philip. A survey of synopsis construction in

data streams. In Data Streams, pages 169–207. Springer, 2007.

[4] Charu C Aggarwal and Philip S Yu. On classification of high-cardinality

data streams. In Proceedings of the 2010 SIAM International Conference

on Data Mining, pages 802–813. SIAM, 2010.

[5] Gail M Atkinson and David M Boore. Earthquake ground-motion prediction

equations for eastern north america. Bulletin of the Seismological Society of

America, 96(6):2181–2205, 2006.

113

BIBLIOGRAPHY

[6] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. E�cient distributed

skylining for web information systems. In International Conference on Ex-

tending Database Technology, pages 256–273. Springer, 2004.

[7] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hit-

ters in streams and sliding windows. In IEEE INFOCOM 2016-The 35th An-

nual IEEE International Conference on Computer Communications, pages

1–9. IEEE, 2016.

[8] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J Strauss. Space-

optimal heavy hitters with strong error bounds. ACM Transactions on

Database Systems (TODS), 35(4):26, 2010.

[9] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. The skyline

operator. In Data Engineering, 2001. Proceedings. 17th International Con-

ference on, pages 421–430. IEEE, 2001.

[10] Eugenio Cesario, Antonio Grillo, Carlo Mastroianni, and Domenico Talia. A

sketch-based architecture for mining frequent items and itemsets from dis-

tributed data streams. In Proceedings of the 2011 11th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing, pages 245–253.

IEEE Computer Society, 2011.

[11] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent

items in data streams. Automata, languages and programming, pages 784–

784, 2002.

114

BIBLIOGRAPHY

[12] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Random sam-

pling for histogram construction: How much is enough? In ACM SIGMOD

Record, volume 27, pages 436–447. ACM, 1998.

[13] Aiyou Chen, Yu Jin, Jin Cao, and Li Erran Li. Tracking long duration flows

in network tra�c. In INFOCOM, 2010 Proceedings IEEE, pages 1–5. IEEE,

2010.

[14] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline

with presorting: Theory and optimizations. In Intelligent Information Pro-

cessing and Web Mining, pages 595–604. Springer, 2005.

[15] Sarah Cohen, James T. Hamilton, and Fred Turner. Computational jour-

nalism. Communications of the ACM, 2011.

[16] Graham Cormode. Count-min sketch. In Encyclopedia of Database Systems,

pages 511–516. Springer, 2009.

[17] Graham Cormode. Sketch techniques for approximate query processing.

Foundations and Trends in Databases. NOW publishers, 2011.

[18] Graham Cormode, Theodore Johnson, Flip Korn, Shan Muthukrishnan,

Oliver Spatscheck, and Divesh Srivastava. Holistic udafs at streaming

speeds. In Proceedings of the 2004 ACM SIGMOD international confer-

ence on Management of data, pages 35–46. ACM, 2004.

[19] Graham Cormode, Flip Korn, S Muthukrishnan, and Divesh Srivastava.

Finding hierarchical heavy hitters in data streams. In Proceedings of the

29th international conference on Very large data bases-Volume 29, pages

464–475. VLDB Endowment, 2003.

115

BIBLIOGRAPHY

[20] Graham Cormode and Shan Muthukrishnan. An improved data stream

summary: the count-min sketch and its applications. Journal of Algorithms,

55(1):58–75, 2005.

[21] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni.

Locality-sensitive hashing scheme based on p-stable distributions. In Pro-

ceedings of the twentieth annual symposium on Computational geometry,

pages 253–262. ACM, 2004.

[22] Tiziano De Matteis and Gabriele Mencagli. Keep calm and react with fore-

sight: Strategies for low-latency and energy-e�cient elastic data stream

processing. In ACM SIGPLAN Notices, volume 51, page 13. ACM, 2016.

[23] Cristian Estan and George Varghese. New directions in tra�c measurement

and accounting, volume 32. ACM, 2002.

[24] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hy-

perloglog: the analysis of a near-optimal cardinality estimation algorithm.

In Discrete Mathematics and Theoretical Computer Science, pages 137–156.

Discrete Mathematics and Theoretical Computer Science, 2007.

[25] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for

data base applications. Journal of computer and system sciences, 31(2):182–

209, 1985.

[26] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin Strauss.

Surfing wavelets on streams: One-pass summaries for approximate aggregate

queries. In Vldb, volume 1, pages 79–88, 2001.

116

BIBLIOGRAPHY

[27] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in

high dimensions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[28] Ramesh Govindan, Joseph Hellerstein, Wei Hong, Samuel Madden, Michael

Franklin, and Scott Shenker. The sensor network as a database. Technical

report, Citeseer, 2002.

[29] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Data-streams and his-

tograms. In Proceedings of the thirty-third annual ACM symposium on The-

ory of computing, pages 471–475. ACM, 2001.

[30] Naeemul Hassan, Afroza Sultana, You Wu, Gensheng Zhang, Chengkai Li,

Jun Yang, and Cong Yu. Data in, fact out: Automated monitoring of facts

by factwatcher. In Proceedings of the 40th International Conference on Very

Large Data Bases. VLDB Endowment, 2014.

[31] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketchlearn: relieving user

burdens in approximate measurement with automated statistical inference.

In Proceedings of the 2018 Conference of the ACM Special Interest Group

on Data Communication, pages 576–590. ACM, 2018.

[32] Hosagrahar Visvesvaraya Jagadish, Nick Koudas, S Muthukrishnan,

Viswanath Poosala, Kenneth C Sevcik, and Torsten Suel. Optimal his-

tograms with quality guarantees. In VLDB, volume 98, pages 24–27, 1998.

[33] Xiao Jiang, Chengkai Li, Ping Luo, Min Wang, and Yong Yu. Prominent

streak discovery in sequence data. In Proceedings of the 17th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages

1280–1288. ACM, 2011.

117

BIBLIOGRAPHY

[34] Christos Kalyvas and Theodoros Tzouramanis. A survey of skyline query

processing. arXiv preprint arXiv:1704.01788, 2017.

[35] George Kollios, John W Byers, Je↵rey Considine, Marios Hadjieleftheriou,

and Feifei Li. Robust aggregation in sensor networks. IEEE Data Eng. Bull.,

28(1):26–32, 2005.

[36] George Kollios, John W Byers, Je↵rey Considine, Marios Hadjieleftheriou,

and Feifei Li. Robust aggregation in sensor networks. IEEE Data Eng. Bull.,

28(1):26–32, 2005.

[37] Donald Kossmann, Frank Ramsak, and Ste↵en Rost. Shooting stars in the

sky: An online algorithm for skyline queries. In Proceedings of the 28th

international conference on Very Large Data Bases, pages 275–286. VLDB

Endowment, 2002.

[38] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen.

Sketch-based change detection: methods, evaluation, and applications. In

Proceedings of the 3rd ACM SIGCOMM conference on Internet measure-

ment, pages 234–247. ACM, 2003.

[39] Abhishek Kumar, Minho Sung, Jun Jim Xu, and Jia Wang. Data streaming

algorithms for e�cient and accurate estimation of flow size distribution.

In ACM SIGMETRICS Performance Evaluation Review, volume 32, pages

177–188. ACM, 2004.

[40] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. Data

streaming algorithms for estimating entropy of network tra�c. In ACM

118

BIBLIOGRAPHY

SIGMETRICS Performance Evaluation Review, volume 34, pages 145–156.

ACM, 2006.

[41] Ming-Yen Lin, Chao-Wen Yang, and Sue-Chen Hsueh. E�cient computation

of group skyline queries on mapreduce. GSTF Journal on Computing (JoC),

5(1), 2016.

[42] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and

Vladimir Braverman. One sketch to rule them all: Rethinking network flow

monitoring with univmon. In Proceedings of the 2016 ACM SIGCOMM

Conference, pages 101–114. ACM, 2016.

[43] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong.

Tinydb: an acquisitional query processing system for sensor networks. ACM

Transactions on database systems (TODS), 30(1):122–173, 2005.

[44] Nishad Manerikar and Themis Palpanas. Frequent items in streaming data:

An experimental evaluation of the state-of-the-art. Data & Knowledge En-

gineering, 68(4):415–430, 2009.

[45] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts

over data streams. In VLDB’02: Proceedings of the 28th International Con-

ference on Very Large Databases, pages 346–357. Elsevier, 2002.

[46] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. E�cient com-

putation of frequent and top-k elements in data streams. In International

Conference on Database Theory, pages 398–412. Springer, 2005.

[47] Ahmad Mustafa, Ahsanul Haque, Latifur Khan, Michael Baron, and Bha-

vani Thuraisingham. Evolving stream classification using change detection.

119

BIBLIOGRAPHY

In 2014 International Conference on Collaborative Computing: Network-

ing, Applications and Worksharing (CollaborateCom), pages 154–162. IEEE,

2014.

[48] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal

and progressive algorithm for skyline queries. In Proceedings of the 2003

ACM SIGMOD International Conference on Management of Data, pages

467–478. ACM, 2003.

[49] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progressive

skyline computation in database systems. ACM Transactions on Database

Systems, 2005.

[50] Löıc Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing:

A comparison of hash function types and querying mechanisms. Pattern

Recognition Letters, 31(11):1348–1358, 2010.

[51] Guillaume Pitel and Geo↵roy Fouquier. Count-min-log sketch: Ap-

proximately counting with approximate counters. arXiv preprint

arXiv:1502.04885, 2015.

[52] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster

and more accurate stream processing. In Proceedings of the 2016 Interna-

tional Conference on Management of Data, pages 1449–1463. ACM, 2016.

[53] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Re-

versible sketches for e�cient and accurate change detection over network

data streams. In Proceedings of the 4th ACM SIGCOMM conference on

Internet measurement, pages 207–212. ACM, 2004.

120

BIBLIOGRAPHY

[54] Vyas Sekar, Nick G Du�eld, Oliver Spatscheck, Jacobus E van der Merwe,

and Hui Zhang. Lads: Large-scale automated ddos detection system. In

USENIX Annual Technical Conference, General Track, pages 171–184, 2006.

[55] Michael Shekelyan, Anton Dignös, and Johann Gamper. Digithist: a

histogram-based data summary with tight error bounds. Proceedings of

the VLDB Endowment, 10(11):1514–1525, 2017.

[56] David C Steere, Antonio Baptista, Dylan McNamee, Calton Pu, and

Jonathan Walpole. Research challenges in environmental observation and

forecasting systems. In Proceedings of the 6th annual international confer-

ence on Mobile computing and networking, pages 292–299. ACM, 2000.

[57] Afroza Sultana, Naeemul Hassan, Chengkai Li, Jun Yang, and Cong Yu.

Incremental discovery of prominent situational facts. In Proceedings of the

IEEE 30th International Conference on Data Engineering. IEEE, 2014.

[58] Kian-Lee Tan, Pin-Kwang Eng, Beng Chin Ooi, et al. E�cient progressive

skyline computation. In VLDB, volume 1, pages 301–310, 2001.

[59] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and e�ciency in

high dimensional nearest neighbor search. In Proceedings of the 2009 ACM

SIGMOD International Conference on Management of data, pages 563–576.

ACM, 2009.

[60] Daniel Ting. Data sketches for disaggregated subset sum and frequent item

estimation. In Proceedings of the 2018 International Conference on Man-

agement of Data, pages 1129–1140. ACM, 2018.

121

BIBLIOGRAPHY

[61] Chuyuan Wei and Yongzhen Li. Design of energy consumption monitoring

and energy-saving management system of intelligent building based on the

internet of things. In Electronics, Communications and Control (ICECC),

2011 International Conference on, pages 3650–3652. IEEE, 2011.

[62] Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. A

linear-time probabilistic counting algorithm for database applications. ACM

Transactions on Database Systems (TODS), 15(2):208–229, 1990.

[63] Wikipedia. 2016 taiwan earthquake — wikipedia, the free encyclopedia,

2017. [Online; accessed 27-February-2017].

[64] You Wu, Pankaj K Agarwal, Chengkai Li, Jun Yang, and Cong Yu. On one

of the few objects. In Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1487–1495.

ACM, 2012.

[65] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,

Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and

fast network-wide measurements. In Proceedings of the 2018 Conference of

the ACM Special Interest Group on Data Communication, pages 561–575.

ACM, 2018.

[66] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. Pyra-

mid sketch: a sketch framework for frequency estimation of data streams.

Proceedings of the VLDB Endowment, 10(11):1442–1453, 2017.

[67] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined tra�c measure-

ment with opensketch. In NSDI, volume 13, pages 29–42, 2013.

122

BIBLIOGRAPHY

[68] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Je↵rey Xu Yu, and Qing

Zhang. E�cient computation of the skyline cube. In Proceedings of the 31st

International Conference on Very Large Data Bases. VLDB Endowment,

2005.

[69] Gensheng Zhang, Xiao Jiang, Ping Luo, Min Wang, and Chengkai Li. Dis-

covering general prominent streaks in sequence data. ACM Transactions on

Knowledge Discovery from Data, 8(2):9:1–9:37, June 2014.

[70] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael

Kaminsky, Kimberly Keeton, and Andrew Pavlo. Surf: Practical range

query filtering with fast succinct tries. In Proceedings of the 2018 Interna-

tional Conference on Management of Data, pages 323–336. ACM, 2018.

[71] Haiquan Chuck Zhao, Ashwin Lall, Mitsunori Ogihara, Oliver Spatscheck,

Jia Wang, and Jun Xu. A data streaming algorithm for estimating en-

tropies of od flows. In Proceedings of the 7th ACM SIGCOMM conference

on Internet measurement, pages 279–290. ACM, 2007.

123

