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Abstract

This thesis studies the robustness of smart grids from a complex network perspective.

A power system can be modeled as a network consisting of nodes representing power

substations and links representing power transmission lines. To study the cascading

failure in power systems, we develop a network-based model combining a circuit-based

power flow model with a stochastic model. Considering the effect of cyber coupling, a

smart grid can be modeled as a cyber-coupled power system in which a power network

is connected to a cyber network. To produce the propagation profile of the cascading

failure caused by cyber attack, we further introduce a model by considering power

overloading, contagion, and interdependence between power and cyber networks. The

main objective of this thesis is to enhance the robustness of standalone power systems

and power systems that are coupled with cyber networks by taking network-based

approaches.

First, by examining the propagation profile of the failure cascade of power systems,

we define the onset time as the time after which the propagation rate of the cascading

failure increases rapidly. Based on the onset time and the scale of the failed grid in a

cascading failure event, each component in a power network can be categorized into

three types, corresponding to three levels of severity of the failed grid upon the initial

failure of that component. Moreover, we propose a decision-tree-based learning model

to enhance the robustness of power networks. The resulting decision tree identifies

three network features in a power network, including average shortest path length,

average clustering coefficient, and average effective resistance (distance) to the nearest
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generator, which are highly correlated with the network robustness and can effectively

contribute to robustness enhancement of the power network.

Then, we aim to find an effective interpretation of the interdependence between

power and cyber networks in studying the cascading failure in cyber-coupled power

systems. We consider the interaction between two processes, one aiming to attack and

the other aiming to defend the components in the power network. Through evaluating

the effectiveness of different attack and defense strategies by examining the actual

propagation process of cascading failure events, it has been found that the tit-for-tat

defense strategy, in which the defender adopts the same strategy as the attacker, is the

preferred defense strategy. Moreover, allocating defense strength in terms of capacity-

based distribution can most effectively suppress cascading failure.

Finally, we introduce a parameter, called relative coupling correlation coefficient,

to quantify the coupling pattern of a cyber-coupled power system. In modeling coupled

systems, coupling patterns, which are determined by some node criticality metrics,

can describe how power and cyber nodes are connected. Simulation results show that

a coupled system of lower relative coupling correlation coefficient has better robust-

ness. Moreover, when optimizing the coupling pattern for robustness improvement, the

adoption of node capability and node degree as node criticality metrics for power and

cyber networks, respectively, would result in a much more robust network compared

to the adoption of other node criticality metrics for robustness enhancement.
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Chapter 1

Introduction

1.1 Background

A complex system is a system consisting of a large number of interacting components.

Complex systems are around us and examples of complex systems include power grids,

communication systems, human brains and so on. The emergence of network science

leads to a network representation of a complex system. Basically, in a complex system,

components are modeled as nodes and the interactions among the elements are mod-

eled as links, and these edges and nodes form a network or graph [3]. Network-based

approaches provide powerful tools to study the structure and the dynamics of complex

networks which can be applied to the real-life complex systems.

Network science has been originated from a branch of mathematics called graph

theory. In 1736, network science was first applied to solve real-life problems, when

the Swiss mathematician Euler published a solution to the historically notable problem,

Seven Bridges of Königsberg, based on graph theory. Königsberg, a city in Prussia,

contains four lands (including two islands and two mainland portions) separated by

the river named Pregel while four lands are connected by seven bridges. A question is

raised whether there is a solution to arrange a walk through the city that would cross

each of the seven bridges once and only once. Euler proved that the problem cannot be

1



2 CHAPTER 1. INTRODUCTION

addressed by formulating the problem in an abstract mathematical term. In particular,

four landmasses were abstracted as four nodes and seven bridges were abstracted as

seven links. The resulting mathematical structure is characterized as a graph and it is

found that the problem can only be addressed if each node in the graph has an even

number of links.

Graph theory has been developed and then widely applied to studying real-life

systems since Euler’s analysis of the problem of Seven Bridges of Königsberg. Fur-

thermore, with the increasing scale of the graph, the study of complex network has

developed as a new direction of research interest.

In 1959, two Hungarian mathematicians Paul Erdös and Alfréd Rényi, first in-

troduced an algorithm of generating a random graph [4], which is recognized as a

milestone in the history of graph theory. The generation of an Erdös and Rényi (ER)

random graph is simple. A network is constructed by adding m links between pairs

of nodes randomly selected from n nodes. In ER random networks, a Possion node

degree distribution is observed. Because of the simplicity of the network generation

process, ER random networks have become major network models to be studied.

The ER random network model is not enough to comprehend and analyze real-

world systems, which are not fully randomly constructed. In the late 1990s, two main

significant network models were published, namely, small-world networks and scale-

free networks.

The small-world phenomenon was first discovered in the “six degrees of separa-

tion” experiment led by Stanley Milgram in 1967 [4]. The objective of this experiment

was to figure out the average shortest path length of the American social networks. In

the experiment, two persons randomly invited from Sharon and Boston were selected

as two target points and two groups of peoples from Kansas and Nebraska volunteered

as start points. Each of the volunteers from the start points was asked to send a letter

to his/her friend until the letter reaches one of the persons in two target points. The ex-

periment showed that the average path length was 5.2 hops, meaning the letter can be
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forwarded from one person to another person via 5.2 intermediate friends on average,

which is characterized as a small-world phenomenon in a social network.

In 1998, Watts and Strogatz identified the small-world network [1], by analogy

with the small-world phenomenon. In their study, a rewired procedure was developed

to rewire edges in a ring lattice (regular network) with n nodes and k links with a

probability p. It is found that for an intermediate value of p, the rewired graph is a

small-world network, which is highly clustered like a regular graph and has a small

shortest path length, similar to a random graph.

In 1999, Albert et al. [5] discovered a power-law degree distribution in the World

Wide Web, in which web resources are identified by Uniform Resource Locators

(URLs) and interconnected by hypertext links. By considering the URLs as nodes

and the hypertext links as links, the resulting network showed that the distribution of

the number of both incoming and outgoing hypertext links of URLs follow a power

law [6]. The network whose degree distribution follows a power-law is characterized

as a scale-free network, where a large majority of nodes have a low degree and only

a small number of nodes have a relatively high degree. Barabási and Albert intro-

duced a growth model to generate a scale-free network using a preferential attachment

mechanism [7].

Since then, the small-world and scale-free network models have inspired more and

more researchers to broaden the field of network science [8]. The structures and dy-

namics of various complex systems have been investigated from a network science

perspective [9] and a series of applications to real networks include the analysis of

metabolic and genetic regulatory networks [10], the study of infrastructure stability

and robustness [11], the performance of communication systems [12], the model of

epidemic spreading for the control of disease [13] and so on.

Power systems, being critical infrastructures in modern society, have been studied

using a complex network approach to assess and enhance their robustness. A highly

robust power system generally means it can survive without large-scale power outage
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after a cascading failure. To answer the question concerning which kind of topol-

ogy can achieve high robustness, the initial phase of modeling power systems using

network-based approaches mainly focuses on the analysis of some general topological

properties [14]. Then, the physical processes of cascading failure have been consid-

ered, which improve the effectiveness and practicality of the network-based approaches

used for revealing the robustness of power systems and also for identifying the critical

components [15].

Complex systems in the Industry 4.0 era are highly interactive and thus should be

modeled as interdependent networks or coupled networks. For instance, power sys-

tems nowadays are coupled with communication networks, and have evolved as smart

grids [16]. Because of the interactions in interdependent networks, the failure of a

component in one network can cause the failure of other components in other net-

works [17]. The proposed interdependent network model has attracted a great deal of

attention from researchers to explore the network property of interdependent systems.

Cyber-physical systems have emerged as essential networked systems that enable

the incorporation of computational and intelligent management capabilities provided

by sophisticated computer networks in critical applications for residential, commercial,

industrial and military uses [18]. A cyber-physical system is a physical system inte-

grated with cyber networks. The cyber part of the system provides intelligent and ef-

ficient monitoring, control, computing and communication functions [19]. Real-world

examples of cyber-physical systems are numerous, and the smart grid is one particu-

larly important example. A smart grid is an electric power distribution network sup-

ported by advanced cyber networks, and is a critical infrastructure delivering power to

a large population of users [20]. Cyber security has become a key challenge to power

delivery systems due to the involvement of cyber networks that makes smart grids vul-

nerable to attacks via cyber coupling [21]. For instance, in December 2015, the attack

of computer malware from cyber networks caused a severe outage of the Ukrainian

power grid, demonstrating that the cyber attack on power grids was no longer a fic-
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tional event. Modeling smart grids as interdependent networks, the robustness of smart

grids considering cyber attack can be assessed and further improved.

1.2 Motivation

Complex network theory provides effective bias for analyzing the robustness of power

grids. By abstracting power substations as nodes and transmission lines as links, a

bond is constructed between the structural vulnerability and the connectivity of power

grids. Moreover, to review a blackout event, cascading failure of power systems should

be studied, which corresponds to a sequence of tripping events of power components,

eventually resulting in a large-size power outage. Various models have been developed

to understand the cascading failure process for the purpose of enhancing the reliabil-

ity and performance of power systems. However, some difficult challenges are to be

addressed.

First, although the highly abstracted and generalized network-based model offers

a convenient framework permitting the use of statistical physics, it is inadequate to

implement these high-level models to real-world power systems without considering

the underlying physical processes. In the cascading failure process, one of the main

reasons of component failure is the power flow overloading. Therefore, Kirchhoff’s

laws and electrical properties of components are crucial in generating the necessary

power flow information in a power network.

Second, the coupling of cyber networks can increase the efficiency and intelligence

of smart grids while it may bring new challenges by making power systems more

vulnerable to attacks from cyber networks. A smart grid can be modeled by a cyber-

coupled power system consisting of a power grid and a coupling cyber network. Due

to the coupling between the cyber network and the power system, a cyber attack can be

launched by computer malware to power components while the malware can continue

to spread over the cyber network. Thus, the dynamic property of malware spreading
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should be considered in the propagation of cascading failure in the case of smart grids

by using an interdependent network model.

Third, the interpretation of the interdependence between cyber networks and power

networks plays an important role in the study of cascading failure in cyber-coupled

power systems. Attacker can access the power network and cause damage to power

components by infecting malware to cyber networks. At the same time, a defender can

protect the components from being tripped due to power flow overloading and cyber

attack. Therefore, the interaction between attack and defense is relevant to the study of

the cascading failure of cyber-coupled power systems. This offers a novel perspective

to interpreting the interdependence of power and cyber networks.

Fourth, coupling patterns, which reveal how a power node and a cyber node is

connected based on the node criticality metrics in coupled networks, have a consider-

able impact on the robustness of cyber-coupled power systems. The coupling pattern

is a critical topological property in the interdependent network model. By using the

network-based model with consideration of physical power flow processes and the cou-

pling pattern, we aim to investigate the effect of coupling patterns on the robustness

assessment and enhancement cyber-coupled power systems.

The main objective of this thesis is to develop a network-based model to study

cascading failure in cyber-coupled power systems, with emphasis on the robustness

assessment and enhancement of power systems.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 provides a literature review. A brief introduction of complex network

theory, robustness assessment of power systems, cascading failure models in power

systems and cascading failure in cyber-coupled power systems are reviewed.

Chapter 3 introduces a model that combines a circuit-based power flow model with
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a stochastic model to describe the uncertain failure time instants, aiming to generate a

complete dynamic profile of the cascading failure propagation beginning from a failure

of component and developing eventually to a large-scale blackout in power networks.

Then, considering the effect of power overloading, contagion, and interdependence

between power grids and cyber networks on failure propagations in the coupled system,

another model is proposed to investigate the cascading failures in a coupled system

(smart grid) consisting of a power grid and a coupling cyber network.

Chapter 4 offers an alternative approach to assess and enhance the robustness of

power grids. We identify the onset time, which is the time after which the propaga-

tion rate of a cascading failure increases rapidly. Based on the onset time and the

scale of the failed grid in a cascading failure event, we categorize each component in a

power network into three types, corresponding to three levels of severity of the failed

grid upon the initial failure of that component. Moreover, to investigate robustness

enhancement of power networks, we propose a decision-tree-based learning model to

extract significant network-based features. Notably, the characterization of the criti-

cality of power components is able to provide a novel perspective to further explore

robustness enhancement of cyber-coupled power systems.

Chapter 5 further discusses the robustness of cyber-coupled power systems em-

phasizing the interdependence between power and cyber networks. A network-based

model with consideration of the physical power flow process is developed to study the

cascading failure in cyber-coupled power systems. Interaction between two processes,

one aiming to attack (cause damage) and the other aiming to defend (protect) the com-

ponents in the power network, is considered in the model. The failure propagation

profile is investigated by detailed time series analysis of four critical time points, and

the effectiveness of different attack and defense strategies are analyzed and evaluated.

Chapter 6 studies the effect of coupling patterns on the robustness of cyber-coupled

power systems. A crucial parameter called relative coupling correlation coefficient is

introduced to quantify the coupling patterns of coupled systems. Different classes of
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coupling patterns with consideration of node criticality metrics in the cyber and power

networks are proposed to examine how they affect the robustness of coupled systems.

Chapter 7 concludes the thesis with a summary of the major findings of the project

and a presentation of some thoughts on future works.

The overall framework of this thesis is depicted in the schematic diagram shown in

Fig. 1.1

Figure 1.1: Illustration of the overall structure of this thesis.



Chapter 2

Literature Review

In this chapter, a brief introduction of complex networks, covering measures of net-

work topology, models of networked systems, and interdependent networks, is given.

Then, two main classes of approaches, namely, analysis of pure structural vulnera-

bilities with and without consideration of electrical properties, are discussed for the

purpose of assessing the robustness of power systems. To gain a comprehensive under-

standing of the vulnerability of power systems to cascading failure, the main research

directions aiming to develop models of cascading failure in power systems with and

without the coupling of cyber networks are reviewed.

2.1 A Brief Introduction to Complex Networks

Complex network theory has become one of the mainstream methodologies for mod-

eling real-world complex systems. The main contribution of applying complex net-

work theory is the provision of an effective analytical basis for studying how network

structure influences the functional behavior of network-based systems. This section

introduces some measures of network topology, models of networked systems, and

interdependent networks.

9
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2.1.1 Measures of Network Topology

To explore the topological properties of complex networks, some important measures

that are most widely used are reviewed, including node degree, degree distribution,

shortest path length, clustering coefficient and so on.

Node Degree

A network is constructed by a bunch of nodes which are connected by edges. The

degree, being a simple and basic metric, is used to measure the topological criticality

of a node in a network. In an undirected network where the edges have no direction,

the degree ki of node i refers to the number of edges incident with the node i. In a

directed network where the edges are unidirectional, the out-degree of a node refers to

the number of outgoing edges from this node, and the in-degree refers to the number

of incoming edges to this node.

Node degree takes a crucial role in analyzing the real-world network. The nodes

with higher degree can be characterized as hubs in a network which exhibit a greater

importance in the analysis of the network structural vulnerability. Degree-based attack

involving removal of a fraction of the nodes with higher degree has been identified

as an effective strategy to cause a severe destruction of the network connectivity [22].

In other words, removing nodes with higher degree fragments the network more effi-

ciently than removing the same number of nodes with lower degree.

Average Node Degree

To statistically overview the connection density of a network, the average node

degree ⟨k⟩, representing the mean value of the degrees of all the nodes of the network,

can be expressed as

⟨k⟩ =
1
N

N
∑

i=1
ki, (2.1)

where N is the total number of nodes in the network. A higher ⟨k⟩ implies that the

nodes in the network are more densely connected with each other.
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Figure 2.1: Node degree distributions: (a) Poisson distribution; (b) Power-law distri-
bution.

Node Degree Distribution

One more statistical metric describing the collective topological feature involving

node degree is called node degree distribution, which refers to the probability that a

node selected randomly has degree k. Node degree distribution, denoted by P(k), can

be written as

P(k) =
N(k)

N
(2.2)

where N(k) is the number of nodes having degree k.

Two popular node degree distributions, namely, the Poisson distribution and power-

law distribution, are demonstrated in Fig. 2.1(a) and Fig. 2.1(b), respectively. The

Poisson distribution can be expressed in the form of P(k) ∼ e−λλ−k/k!, where λ is the

average node degree of the network. According to Fig. 2.1(a), the peak of the curve is

normally found when k is around the average node degree. Also, the network exhibit-

ing a Poisson distribution of node degree is usually characterized as a homogeneous

network. But many empirical studies have shown that the degree distribution in most

large-scale real networks does not follow the Poission distribution. Most real networks

have the node degree distribution obeying the power-law distribution, denoted as the

form of P(k) ∼ k−γ, where γ is the degree exponent. As shown in Fig. 2.1(b), if a
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network has a power-law degree distribution, it can be described as a heterogeneous

network. Generally, for this kind of networks, most of the nodes have a few edges

while only a small fraction of nodes have very large degree.

Degree-Degree Correlation

Another topological property relevant to the node degree is degree-degree corre-

lation, which reveals the mixing way in which nodes with different degrees are con-

nected. A measurement is provided to quantify the degree-degree correlation called

assortativity coefficient, which is defined as

r =

m−1
∑

(i, j)∈M

kik j − [m−1
∑

(i, j)∈M

1
2

[ki + k j]]2

m−1
∑

(i, j)∈M

1
2

[k2
i + k2

j ] − [m−1
∑

(i, j)∈M

1
2

[ki + k j]]2
, (2.3)

where ki and k j are the degrees of nodes i and j, respectively, M is the set of edges in

the network, and m is the number of edges in M. Here, r > 0 means that high-degree

nodes are more likely to connect to high-degree nodes in the network exhibiting as-

sortativity. On the contrary, r < 0 implies that high-degree nodes tend to connect to

low-degree nodes in the network which is regarded as a disassortative network. It has

been found from empirical studies [23] that most social networks are assortative while

most technical networks, such as power grids and biological networks, are disassorta-

tive.

Shortest Path

The shortest path between nodes i and j in a network is the path with the fewest

number of edges between nodes i and j. The distance between nodes i and j, denoted

by di j, is defined as the number of edges contained in the shortest path connecting these

two nodes. There can be multiple shortest paths of the same distance between a pair of

nodes. Shortest path takes an essential role in characterizing the internal structure of a

network. There are many applications of the shortest path. For example, the shortest
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path can be used to optimize efficiency in the data transmission of a communication

network and delivery of payloads in a transportation network. An efficient algorithm

to find the shortest path has become a classical problem in computer science [24]. The

largest distance between any pair of nodes, which is the maximum distance among all

distances in a network, is termed diameter.

Average shortest path length is a typical metric used for measuring the separation

between two nodes in a network. Denoted by L, average shortest path length is defined

as the mean distance between all pairs of nodes in the network with N nodes, which is

given by

L =
1

N(N − 1)

∑

i! j

di j. (2.4)

It has been found that in a large-scale social network, the value of L is small, and

is equal to 4 and 3.5 based on the the study of the online social network Facebook in

the year 2012 [25] and the year 2016 [26], respectively. In other words, with the rapid

development of Internet, distance between people in this world becomes shorter and

shorter.

Betweenness Centrality

Betweenness centralities of a node and an edge in a network have been proposed to

account for the importance of the nodes and edges contained in the shortest path. The

betweenness of node i is the number of the shortest path passing through it, which is

expressed by

Bi =
∑

s!i!t

σst(i)
σst
, (2.5)

where σst is the number of all the shortest paths from node s to node t, and σst(i) is the

number of the shortest paths that pass through node i.

The similar concept of betweenness can be extended to an edge (i, j) connecting

nodes i and j. The edge betweenness denoted by Bi j, is the number of shortest paths
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between any pair of nodes that pass through edge (i, j), which can be expressed as

Bi j =
∑

(s,t)!(i, j)

σst(i j)
σst
, (2.6)

where σst(v) is the number of shortest paths pass through edge (i, j).

Both betweenness of nodes and edges serve to measure the frequency of the nodes

and edges contained in the shortest path between any pair of nodes in a network. The

node betweenness, regarded as a metric of node importance, takes an essential role in

communication networks because a node with larger betweenness usually implies that

it carries heavier traffic load when taking the shortest path routing strategy for perform-

ing data transmission. The edge betweenness can be used for identifying the commu-

nity structure, where the nodes are tightly connected with each other. The edge with

larger betweenness is usually considered to be the interconnection between two differ-

ent communities. An effective approach based on the removal of the large-betweenness

edges is proposed to effectively split the network into different communities [27].

Clustering Coefficient

The clustering coefficient is a measure of the extent to which the neighbors of a

given node connect to each other in a network. At most ki(ki − 2)/2 edges can be

connected among the neighbors of node i with degree ki. The clustering coefficient of

node i, denoted by Γi, is determined by the ratio of the number of existing edges Ei

connecting the neighbors of node i, i.e.,

Γi =
2Ei

ki(ki − 1)
. (2.7)

To capture the extent of clustering from a whole network’s perspective, average

clustering coefficient is found by averaging the Γi over all N nodes in the network, i.e.,

Γ =
1
N

N
∑

i=1
Γi. (2.8)
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The concept of the clustering coefficient comes from a question that how many of

your friends are also friends themselves, which indicates the extent of the existence of

clusters. Empirical studies have found that the clustering coefficients of real-world so-

cial networks are usually high because friends of an individual are more likely friends

of each other as well. For hierarchical networks, the clustering coefficient is relatively

low like the Internet and power grids [28].

2.1.2 Models of Network Topology

Also, three elegant network models, including the Erdös-Rényi (ER) random network

models, the Watts-Strogatz (WS) small-world network model, and the Barabási-Albert

(BA) scale-free network model, are developed to categorize networks with similar

topological properties. The network models provide a platform permitting the sta-

tistical analysis of the dynamics and the structures of networks.

ER Random Network

The ER random network model is applied to generate a random network, where

an edge is assigned to connect each node pair with a given probability. This model is

initially proposed by Erdös and Rényi in 1959 [4] to provide a mechanism to construct

a random network in two steps. The first step is to fix N isolated nodes and the second

step is to connect each pair of nodes by an edge with a given probability p. An ER

random network with a large N has totally pN(N − 1)/2 edges and its average node

degree is given by ⟨k⟩ = (N − 1)p ≈ N p.

The node degree distribution of an ER random network follows a Poission distri-

bution, which can be expressed as

P(k) = (⟨k⟩)k e−⟨k⟩

k!
. (2.9)

The ER network can be regarded as a homogeneous network and usually has rela-

tively small average path length denoted by Lrandom ∼ ln(N)/ln(⟨k⟩) and low clustering
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coefficient denoted by Γrandom ∼ ⟨k⟩/N. The ER network offers a baseline for com-

parison with other types of networks. However, the ER network can hardly describe a

real-world network due to the very different network characteristics.

WS Small-world Network Model

The WS small-world network model was proposed by Watts and Strogatz [1] in

1998, which is used to produce a network exhibiting the small-world effect. The net-

works generated by WS small-world network model have short average path length

and relatively high clustering coefficient, which mimic most of real-world networks

in empirical studies and demonstrate very different network properties from those of

random networks and regular networks.

The generation of a WS small-world network is based on a rewiring process which

rearranges the links in a regular network exhibiting a large average path length and high

clustering coefficient to a random network with a small average path length and a low

clustering coefficient. Starting with a regular network which has N nodes with the same

degree k, an edge in the network is rewired with a probability p by randomly selecting

another node to replace one of its terminal nodes. Fig. 2.2 depicts a random rewiring

procedure for interpolating between a regular ring lattice and a random network with

a given probability p. During the process of rewiring, both of the average path length

L(p) and the clustering coefficient Γ(p) are characterized as functions of probability p

which represent the likelihood of transition of the rewired network features, as shown

in Fig. 2.3. The initial regular network, when p = 0, is characterized as a highly

clustered network with a large average path length, where Γ(0) ≈ 3/4, L(0) ≈ N/2 ⟨k⟩.

Considering p = 1, the rewired network becomes a random network, where Γ(0) ≈

⟨k⟩ /N and L(0) ≈ ln(N)/ ln(⟨k⟩), showing a relatively small average path length and

low clustering coefficient compared with the original regular network. When p is tuned

from 0 to 1, one typical rewired network emerges which has the shortest path length

close to that of the random network and the clustering coefficient similar to that of the

regular network. The rewired network is called SW small-world network.
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(a) (b) (c)

Figure 2.2: Random rewiring procedure for interpolating between a regular ring lattice
and a random network with a given probability p: (a) p = 0, (b) p = 0.15, (c) p = 1.

Figure 2.3: Average path length and clustering coefficient of the randomly rewired
networks between a regular ring lattice and a random network with a given probability
p. C(p)/C(0) and L(p)/L(0) decrease at different rates as p increases. The interim
networks exhibit small-world properties. This figure is extracted from Nature [1].

The characteristics of an SW small-world network reassemble many large-scale

social networks. Many clusters are usually formed in social networks indicating that

the friends of one individual are usually also friends of others. Moreover, the average

shortest path length of a social network is small because most people know each other

through a few common friends of them.

BA scale-free Network Model

A large number of networks in reality display a power-law degree distribution while
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networks with a Poission degree distribution is hard to found. Such class of networks

are defined as scale-free networks where a few nodes with a high degree serve as a hub

and most of the nodes have low degree.

Barabási and Albert [7] introduced a network generation model to reproduce scale-

free networks based on two main ingredients, one being the growth and the other being

preferential attachment. The algorithm of creating a BA scale-free network consists of

two rules:

(1) One new node at each time step will be added to the network with the connec-

tion of the existing nodes in the network.

(2) The probability Πi that a new edge between the newly added node and the

existing node i will be connected is given by Πi = ki/
∑

j k j, where ki is the degree of

node i.

Based on the two rules, the degree distribution follows a power law with the growth

of the network. The power law, i.e., P(k) ∼ k−3, implies that the probability that a node

with degree k is found is proportional to k−3, regardless of the network scale.

The BA scale-free network captures the topological characteristics of many real-

world networks such as the online social network Wikipedia [29] and the Protein-

protein interaction network [30]. The scheme of preferential attachment mimics the

evolution of many real-world networks. In all these networks, new nodes are more

likely to link with the nodes having more connections. For example, in a citation

network, if one paper has more citations, it is more likely to be read and then cited

again. Such a highly cited paper is exactly represented by a node with higher degree

in the citation network.

2.1.3 Interdependent Networks

A single and isolated network can not adequately describe many real-world complex

systems which interact with and rely on other systems. For example, a power grid



2.1. A BRIEF INTRODUCTION TO COMPLEX NETWORKS 19

nowadays is connected with a cyber network in order to make the power grid more

efficient and intelligent by inserting advanced sensing and control functions.

The emergence of the study of interdependent networks (coupled networks) has

provided a convenient framework to assess the robustness of interdependent networks.

In particular, the robustness assessment of interdependent networks focuses on the

influence of interdependency among the comprised networks.

Buldyrev et al. [17] developed a mathematical framework to study cascading fail-

ure in interdependent networks aiming to assess their vulnerabilities to attacks. The

model consists of two networks A and B. Either network A or B has the same number

of nodes N. The connection style between nodes of network A and network B is one-

to-one, meaning that there only exists one edge connecting node Ai in network A and

node Bi in network B. For the interdependency between the coupled nodes Ai and Bi,

a simple assumption is made that the normal operation of node Ai relies on the support

of node Bi and vice versa. In other words, the failure of node Bi leads to the failure of

node Ai, and the malfunction of node Ai may cause the malfunction of Bi as well.

The cascading failure of such interdependent networks is modeled by an iterative

process, as illustrated in the Fig. 2.4. Starting with removing one node a5 from network

A, the interdependent network is fragmented. In the first stage, the node connected to

the removed node is also taken away from network B. Also, network A is split into

three isolated clusters due to the removal of the links connecting the initially removed

node a1 to other nodes in network A. In the second stage, the links within network

B of that connect nodes having connections with cluster AC1 are eliminated, and thus

network B decomposes into four clusters. In the final stage, similarly, the links within

network A that connect nodes having connections with cluster BC1 are eliminated, and

thus network A decomposes into four clusters. Eventually, there is no more decompo-

sition in both networks A and B. Here, both clusters AC1 and BC1 are regarded as giant

mutually connected clusters which function normally and their sizes are used to eval-

uate the extent of survival of the interdependent networks after the iterative process of
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cascading failure. In this work, an analytical solution based on the percolation theory

is presented to point out that a broader degree distribution makes interdependent net-

works more vulnerable to random attack. This remarkable conclusion offers a crucial

insight of how to design more robust interdependent networks.

Figure 2.4: Modeling an iterative process of cascading failure of interdependent net-
works.

An increasing number of studies following this initial work [17] have been pub-

lished, which have improved our understanding of the robustness of interdependent

networks. As the initial failure can be chosen randomly or might be targeted by select-

ing among a set critical nodes such as nodes with high degree, Huang et al. [31] devel-
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oped a mathematical framework to examine the robustness of interdependent networks

under an initial targeted attack. Using a general technique which maps the targeted-

attack problem in interdependent networks to the random-attack problem, it is found

that strategies dedicated to defend an interdependent network such as protecting the

high degree nodes can not improve the robustness of an interdependent network.

Different from the interdependent networks studied in [17], where all the nodes in

networks A and B are coupled, Parshani et al. [32] developed a model to study the

iterative cascade of failures in interdependent networks where a fraction of nodes in

network A and network B are interconnected. The analytical and numerical results

show that reducing the coupling strength between the networks, i.e., the fraction of the

interdependent nodes, leads to a change from a first order percolation phase transition

to a second order percolation transition at a critical point.

The observation of many interdependent systems has pointed out that the depen-

dent pairs of nodes in both networks might not be chosen randomly. Instead, it has

been found that a high-degree node in one network is more likely to connect a high-

degree node in the other network. To quantify the coupling pattern, which is the way

in which node pairs are coupled between the two networks, two metrics are proposed

in Parshnani et al.’s work [33] and both of them serve to measure the level of inter-

similarity between the networks. The first metric is called inter degree-degree cor-

relation (IDDC) and a high value of this metric indicates that the nodes with similar

numbers of edge connections in both networks tend to be interdependent. The second

metric is inter-clustering coefficient (ICC), a value of which indicates that the neigh-

bors of interdependent nodes in the two networks are more likely to be coupled. The

results based on both a simulation model and the analysis of real port-airport system

suggest that the interdependent networks are more robust if they have a higher inter-

similarity level. Consistent findings are witnessed in the study of cooperation between

layered networks [34]. A special case [35] where all coupled pairs of nodes are of

the same degree was studied by formulating and solving an analytical problem and the
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findings of this study are consistent with the aforementioned work [34].

Figure 2.5: Coupling styles of interdependent networks: (a) one-to-one correspon-
dence, (b) one-to-multiple correspondence and (c) multiple-to-multiple correspon-
dence.

Considering an interdependent network consisting two networks A and B, Shao

et al. [36] pointed out another restriction that a node in network A might not depend

on only one node in network B, and vice versa. Two more models of interdepen-

dent networks are thus introduced, namely, the multiple-to-multiple correspondence

and one-to-multiple correspondence, as shown in Fig. 2.5. For a multiple-to-multiple

correspondence, it is assumed that one node in network A can provide support to mul-

tiple nodes in network B, while one node in network B can provide support to multiple

nodes in network A. Based on this coupling style, failure of one node in network A

may not lead to failure of its coupled node in network B and vice versa. In Huang

et al.’s study [37], the robustness of a real-world interdependent system, namely, a

modern smart grid consisting of a communication network and a power network, was

studied by considering the interdependency between a communication network and a

power network as a one-to-multiple correspondence. For each communication station,

only one inter link is connected from the power grid because the communication nodes

receive power from one specific power station. Each power station has multiple depen-

dent communication nodes since normally it provides power to many communication



2.2. NETWORK ROBUSTNESS OF POWER SYSTEMS 23

devices.

Improving network robustness is an essential topic not only for single networks

but also for interdependent networks. Brummitta at al. [38] applied the BakTang-

Wiesenfeld sandpile model to study the effect of interdependence on the cascading be-

havior of interdependent networks. The main finding of this work is that adding some

connectivity between two networks is beneficial for suppressing the largest cascades

while too much interconnectivity intensifies the cascades of failure. Methods for re-

covering an interdependent network before it totally collapses have been studied [39].

Specially, for a given initial failure of a fraction of nodes, a critical probability of recov-

ery exists. Below this criticality probability of recovery, the cascade can be suppressed

and the system can be restored back to its initial state.

2.2 Network Robustness of Power Systems

Power systems are complex systems serving as key components in vital infrastructures

of today’s society. One of the main concerns in the study of power systems is the

assessment of their robustness, which is an essential indicator of how much damage

would result from an unexpected event. Complex network theory provides an accessi-

ble tool to reveal the relationship between the robustness and the topological charac-

teristics of power systems [14, 40]. To abstract a power grid as a network, generators,

loads and substations are represented as nodes and these nodes are interconnected by

edges used for representing transmission lines.

A first glance of power grids from a network topological viewpoint considers the

basic information of power network, including the size of the network (i.e. the number

of nodes and the number of links), the average node degree, the clustering coefficient

and the average shorter path length. Table 2.1 summarizes the basic topological prop-

erties of different power networks from different regions [8]. In terms of the number

of nodes and links, the scale of power network is relatively small compared with some
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other kinds of large-scale networks like Internet [8]. The fourth column shows the

average node degrees of six power networks being in the range from two to three,

indicating that the stations in power networks are not connected very densely.

Table 2.1: Basic topological properties of different power networks including the num-
ber of nodes, the number of links, average node degree (⟨k⟩), clustering coefficient (Γ)
and average shortest path length (L) of different power networks.

Region
Number

of nodes

Number

of links
⟨k⟩ Γ Γ/Γrandom L L/Lrandom

West America [41] 4941 6594 2.67 0.080 148.045 18.7 2.159

North China [42] 8092 9018 2.23 0.002 6.169 32 2.852

Center China [42] 2379 2739 2.32 0.004 4.512 21.08 2.282

Italy [43] 127 171 2.69 0.156 7.365 8.47 1.730

France [43] 146 223 3.05 0.279 13.355 6.61 1.479

Spain [43] 98 175 3.57 0.316 8.675 4.92 1.366

The clustering coefficient and average shortest path length given in Table 2.1 are

used to characterize the small-world property of power networks. A small-world net-

work has its average path length similar to that of a random network of the same scale,

and its clustering coefficient much larger than that of a random network [1]. It has been

found that the size for a power grid might be optimized to reach an appropriate balance

between vulnerability and efficiency [44]. For each power network given in Table 2.1,

the clustering coefficient Γ and the average shortest path length L are compared with

those of an ER random network of having the same number of nodes as the power

network, denoted by Γ/Γrandom and L/Lrandom. The power grid is regarded as a typical

small-world network exhibiting the small-world network property if both conditions

are met, i.e., Γ/Γrandom ≫ 1 and L/Lrandom ≈ 1. From Table 2.1, it is found that Western

American and French power grids can be characterized as small-world networks and

the other four power grids do not exhibit the small-world property.

One main aim in the study of robustness assessment of power grids from a complex
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network’s perspective is the discovery of network structures of power grids exhibit-

ing high robustness. Previous work [41, 45] has indicated that the Western American

power grids exhibits the small-world property. In Holmgren’s work [45], it has been

found that the analyzed electric power grids are more sensitive to attacks than the ran-

dom graph. Focusing on the European power grids, it has been found [46] that the

appearance of motif, characterized as some local patterns in the network such as stars

and triangles, increases the vulnerability of power grids.

However, it is difficult to identify a predominant network topology which can ab-

stract the structure of real-world power grids. In Albert et al.’s work [47], the expo-

nential cumulative degree function was found in the North American power grid while

Chassin et al.’s work [48] demonstrated the node degree distribution of North Amer-

ican power grid followed a power-law distribution. The small-world property can be

identified in the Shanghai power grid [49] and some European power grids includ-

ing [43, 45], Italian, French, Spanish and Nordic power grids. But in Rosas-Casals et

al.’s work [50], power grids from a dataset containing 33 European power grids show

an exponential degree distribution and most of them have insignificant small-world

property. No consistent result has been obtained to suggest that the real-world power

grid can be generalized as a small-world network or scale-free network. Analyzing the

network robustness from real-world power grids instead of synthesized networks with

general network topology offers more practical and meaningful results.

Another main goal of using network-based approaches to assess the robustness of

power networks is the identification of the critical elements of power networks. The

critical power elements are regarded as the nodes or links in a power network which,

being removed, will lead to an unacceptable damage to the power network. Removal

strategies are applied to evaluate the importance of the power elements in vulnerability

analysis of power networks. Through sequentially or concurrently removing nodes or

links in power networks [51, 52], the vulnerabilities of power networks are assessed

according to the comparison of indicators such as the relative size of the largest con-
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nected components [53] and the efficiency [54] recorded before and after a process of

cascading failure.

Motter et al. [55] were among the earliest researchers who studied the cascading

failure in the Westen American power grid. The results shown in this work indicated

that more severe cascading failure in power grids could be triggered by the load-based

intentional attacks than the random and degree-based removal of nodes. Albert et

al. [47] examined the structural vulnerability of power grids by introducing another

metric, i.e., the connectivity loss, which is used to measure the degradation of the ca-

pability of distribution nodes to take power from the generator. The main finding here

is that for a given power network, intentionally attacking nodes with higher degree or

higher load leads to a higher connectivity loss. Both of these studies offer an evidence

that nodes or links with higher topological centrality like degree of nodes and links

might not be sufficient to reflect their higher criticality in power networks.

Different from the pure topological metrics, the so-called electrical metrics are pro-

posed as promising measures for identifying critical components in power grids. Such

measures consider the inherent power flow parameters combined with the network-

based approaches [40]. Thus, electric metrics offer effective information to examine

the vulnerabilities of power grids.

Arianos et al. [56] developed a complex network approach to estimate the vulnera-

bility of power networks. The newly proposed net-ability which considers the electrical

properties, is capable of locating the most critical links in a power network. Similarly,

an extended betweenness has been introduced [56] and it exhibits its superior perfor-

mance of identifying critical lines in power grids. Although the electric metrics have

extended the topological metrics and achieved a better performance for the detection

of the criticality of power components, the correlation is still not high between these

electric metrics and real malfunction data obtained from an engineering setting [41].
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2.3 Cascading Failure in Power Systems

Cascading failure, usually leading to large-scale power outage, is defined as a sequence

of dependent events in which initial failure of one or a set of components in a power

system triggers the sequent failure of other dependent components [57]. The initial

failure of power components might be caused by varied reasons such as human errors

and natural disasters [58]. The subsequent failure of power components can be trig-

gered by the previous failure via different mechanisms. Overloading of power com-

ponents is considered as one of the dominant triggering dynamics in the process of

cascading failure. In this process, power components will be tripped by protection

schemes when their loads exceed their capacities by a certain extent.

To model the cascading failure propagation in power systems, a step by step process

has been proposed by Motter and Lai [55], which takes the overloading mechanism into

consideration. For a power network, it has been assumed that the energy flow passes

along the shortest path between each pair of nodes. The load at node i, denoted by Li,

is calculated by counting the number of shortest paths passing through the node i. The

capacity of each node is defined as the maximum load that can be carried by the node.

The capacity Ci of node i is assumed to be proportional to its initial load Li(0), which

is given by

Ci = (1 + α)Li(0), j = 1, 2, ...N, (2.10)

where α ≥ 0 represents the tolerance parameter. Once the load of a node exceeds its ca-

pacity at time t, i.e., Li(t) > Ci(t), the node is regarded as being out of function and will

then be removed from the network. The process of cascading failure starts by remov-

ing a single node in a network. The removal leads to a change of the network topology

and a redistribution of loads along the renewal shortest paths. The redistribution may

lead to more failure of nodes whose loads exceed the capacities. The cascading failure

is complete when there is no more overloaded node in the network. The relative size
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of the largest connected components serves as a metric to evaluate the extent of the

cascading failure. By simulating the Western American power grid, the results show

that attacking the node with the largest load initially can lead to a larger scale of failure

compared to attacking the node with the largest degree or a random node.

In Wang and Rong’s model [59], the initial load of a node is formulated by a func-

tion of the product of the node degree and the summation of the degrees of the node’s

neighboring nodes instead of node degree or node betweenness. When a node is re-

moved from the power network, its load will be redistributed to its neighboring nodes

proportionally according to the initial load of the neighboring nodes. This study offered

an intuitive understanding of how power flow is redistributed in the power network af-

ter the network topology is changed due to the removal of nodes. This work thus differs

from the flow redistribution based on the shortest path [55].

However, the dynamics of flow redistribution based only on the topological char-

acteristics cannot adequately model cascading failure in power networks because they

omit the actual power flow mechanism. Specifically, power flow is governed by elec-

trical principles like Kirchhoff’s law rather than along shortest path length in a power

network. The omission of physical laws in the power flow model might lead to re-

sults which are of less significance and even inconsistent with practical power systems.

Hines et al. [60] pointed out the fact that the failure of a new power component at the

next time step can be very far away from the current failure in a power network, which

draws an inconsistent conclusion with that of the Wang and Rong’s study [59]. Thus,

power flow calculation should be taken into consideration in studying the cascading

failure in power networks in order to have an accurate and practical understanding of

the robustness of power systems.

The objective of using an AC or DC power flow model is to calculate the steady-

state solutions of power systems including the voltage at each bus and the current

through each transmission line. The determination of power flow using these electrical

engineering approaches offers a meaningful and reliable solution to the modeling flow
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distribution in power networks and thus leads to a realistic study of cascading failure

in power systems.

AC Power Flow Model

The AC power flow model [61] is used to calculate the voltage and current for a

power network at steady-state conditions. Given a power network having N nodes,

the voltage at node i is given by Vi = |Vi| ∠θi, where |Vi| is the voltage amplitude and

θi is the phase angle at node i. Likewise, for another node k, the voltage is denoted

by Vk = |Vk| ∠θk. The current passing through the transmission line (i, k) between

nodes i and k is calculated based on Ohm’s Law, i.e., Iik = (Vi − Vk)(Gik + jBik),

where Bik and Gik are the susceptance and the conductance of line (i, k), respectively.

Then, considering the power flow passing through transmission line (i, k), the power

S ik injected to node i is given by

S ik = VkIik = Pik + jQik, (2.11)

where Pik and Qik are the active and reactive power respectively. Here, Pik and Qik can

be further derived in the form of:

Pik = |Vi|
2 Gik − |Vi| |Vk| (Gik cos θik + Bik sin θik). (2.12)

Qik = |Vi|
2 Bik + |Vi| |Vk| (Gik sin θik − Bik cos θik). (2.13)

The power externally injected at node i is expressed by S i = Pi − jQi, where Pi is

the active power and Qi is the reactive power. Since the sum of the power externally

injected to node i and the power injected to node i through the transmission line is zero,

the active and reactive power can be given as
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Pi = −

N
∑

k=1
Pik =

N
∑

i=1
|Vi| |Vk| (Gik cos θik + Bik sin θik), (2.14)

Qi =

N
∑

k=1
Qik =

N
∑

k=1
|Vi| |Vk| (Gik sin θik − Bik cos θik), (2.15)

where Gii = −
∑

k!i Gik and Bii = −
∑

k!i Bik. Here, Gik and Bik are both zero if there is

no transmission line between nodes i and k. Also, the phase difference between nodes

i and k is denoted as θik = θi − θk. These two equations contain four variables: Pi, Qi,

θi and Vi. Thus, there are 2N equations and 4N variables for a power network with

N nodes. To solve these 2N equations, at least 2N variables need to be specified. In

the AC power flow analysis, the nodes (buses) in a power network are classified into

three types, i.e slack node, load node and generator node. For each type of nodes,

some variables are known, and the unknown variables are to be found by solving the

equations.

These 2N equations are non-linear, with no closed form solution. Thus, the solu-

tion must resort to suitable numerical iterative techniques including the Gauss-Seidel

method, Newton-Raphson method, Fast-decoupled-load-flow method, and so on [61].

Dey et al. [62] studied the effect of the network topology on the propagation of

cascading failure in power systems. The average rate of propagation of failure events,

calculated as a branching process parameter, is studied by evaluating cascade phenom-

ena under varying topological conditions. In this study, the AC load flow analysis is

performed for modeling cascading failure in different test power grids. The cascading

failure is modeled as a sequential tripping of transmission lines in a power network.

During the process of cascading failure, the power flow is redistributed after any line

is removed from the power network. By using the AC power flow model, the power

flow passing through each line is calculated and if it is over its capacity, the line will be

tripped. The line tripping time is determined by the extent of overloading. In particular,

greater overload leads to a faster line tripping. Based on the simulation results, it has
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been found that the variations in topological parameters have qualitative correlation

with the failure propagation rate in the cascading failure analysis.

Liu et al. [63] applied a network approach incorporating an AC power flow model

to analyze the vulnerability of the power network and to identify key nodes in power

grids. The node electrical centrality, defined by considering network topological char-

acteristics and electrical properties, is used to identify the key nodes in power systems.

This study also introduced a vulnerability index based on the concept of net-ability to

evaluate the degradation of the transferability and comparative performance of power

systems under normal and cascading failure conditions. It has been verified from the

simulation results that the key nodes exhibit high electrical centrality and their removal

can effectively lead to a severe damage to power systems.

The effectiveness of incorporating the AC power flow model has been well rec-

ognized. In addition, other models built for studying the cascading failure in power

systems which adopt the AC power flow model includes the Manchester model [64]

which is based on load shedding, AC OPA model [65] and so on.

DC Power Flow Model

Due to the high complexity of the AC power flow model, a large quantity of com-

putation resources are required to obtain the numerical solution. For a large power

network, the time taken for solving these nonlinear equations is unacceptably long.

Thus, DC power flow model is proposed as an alternative method to calculate the

power flow in power networks. To derive the DC power flow equations, the following

three assumptions are made:

(1) The voltage magnitude at each bus is assigned to be 1 p.u.;

(2) The resistance is much smaller than the reactance of each transmission line, and

hence it can be neglected;

(3) The phase difference θik between node i and node k of a transmission line (i, k)

is very small. Thus, sin θik ≈ θik and cos θik ≈ 0.

Then, equation (2.12) can be rewritten as
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Pik ≈ −Bik sin(θi − θk) ≈ −Bik(θi − θk). (2.16)

The active power for each node is given by

Pi = −
∑

Pik =

N
∑

k=1
Bik(θi − θk). (2.17)

For node i, equation (2.17) is regarded as a nodal equation. The nodal equations of

all nodes in a power network can be expressed in matrix form, i.e.,

P = Bθ, (2.18)

where P =
[

P1 P2 · · · PN

]T
, θ =

[

θ1 θ2 · · · θN

]T
and B is a N × N matrix

where each element represents the admittance of each transmission line of the power

network.

The DC power flow model has been adopted in an increasing number of studies

aiming to simulate cascading failure in power grids. Wang et al. [66] developed a

stochastic Markov model to capture the behavior of failure propagation in power sys-

tems within a continuous time span. This model not only considers the uncertainties

in both generation and load setting in power systems, but also incorporates the line

flow distribution based on the network equations and the DC power flow equations.

The simulation results demonstrate the ability of this model for the identification and

prediction of the critical paths of the possible cascading failure.

Rahnamay-Naeini et al. [67] proposed a scalable and analytically tractable proba-

bilistic model for the purpose of describing the dynamics of cascading failure events.

In the model, the state transition is used to describe the events occurring in power grids,

like lines being tripped, for which the rate is found from the DC power flow model.

This model provides an alternative way to predict the evolution of the blackout prob-

ability and achieves the analytical characterization of the probability function of the
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blackout size.

To study the robustness of power systems from a network perspective, Zhang and

Tse [68] developed a deterministic model by incorporating Kirchhoff’s laws, the prop-

erties of network elements and a complex network structure. By utilizing this model,

two critical metrics, namely, the percentage of unserved nodes (PUN) caused by a

failed component and the percentage of noncritical links (PNL) that will not cause se-

vere damage, are introduced to quantitatively assess the robustness of power systems.

It has been found that two factors are strongly correlated with the power systems’ ro-

bustness: one being the average shortest path length, and the other one being the con-

sumers’ accessibility to generators. Combined with a stochastic model to describe the

uncertain failure time instants, an extended model [69] was developed to describe the

propagation of cascading failure in power systems. Based on this model, the simulated

dynamic profiles of cascading failures contain all salient features that are consistent

with those found in historical blackout data.

The models adopting DC power flow model in the aforementioned studies fall short

of taking into consideration of the effect of transient stability analysis on cascading

failure in power systems. Yan et al.’s work [70] offers a reference by comparing the

models based on DC power flow-based analysis and transient stability analysis, for

the purpose of identifying a more appropriate model for the analysis of power grid

cascading failures under different scenarios.

Recently, Cetinay et al. [71] compared the AC power flow model with the DC

power flow model when they are adopted to model the cascading failure in power sys-

tems. It has been found that the results are consistent using either AC or DC power flow

model for operations with no cascading failure or just a single line failure. However,

modeling cascading failure using the DC power flow model fails to achieve approx-

imative results as given by AC power flow model. Thus, trade-off of using the DC

power flow model exists between its simplification and poor precision in describing

cascading failure. More models adopting either AC or DC power flow model can be
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found in a recent review paper [72].

2.4 Cascading Failure in Cyber-CoupledPower Systems

The modern power grids have been evolving into smart grids with the integration of

advanced monitoring, control, and communication technologies. A smart grid, char-

acterized as a cyber-coupled power system, is a typical cyber physical system where a

power system is coupled with one or multiple cyber systems. On the one hand, the cou-

pling of cyber systems makes power systems more intelligent and efficient for power

generation and delivery. One the other hand, the cyber security issues are raised due to

the threat of cyber attack targeting smart grids. Different from the traditional physical

attack on power systems, cyber attack can be launched distantly as long as attackers

can access the power systems through their coupled cyber systems. Such attack may

lead to a more severe power outage.

The interdependent network model provides an appropriate framework to examine

the cascading failure in cyber-coupled power systems, especially in respect of how

failure in one network affects failure in other mutual networks. Although an increasing

number of studies offer a network topological perspective to assessing vulnerabilities

of cyber-coupled power systems, the network approaches used to model cascading

failure often omits the underlying physical process such as the power flow distribution

in power systems. Moreover, the interdependency between cyber systems and power

systems is oversimplified, resulting in partial or inconsistent interpretations.

Cai et al. [73] developed a model to describe the dependencies between power

systems and dispatching data networks, aiming to examine the intricate impacts on

cascading failure. Regarding the influence of power networks on dispatching data

networks, the tripped lines cause the malfunction of the power nodes and thus may

lead to the failure of communication nodes. Different tripping rates of communication

nodes have been considered in terms of the failure of different types of power nodes.
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In terms of the influence of dispatching data networks on power networks, the failure

of the communication nodes changes the topology of dispatching data networks, and

thus the data transmission is affected. If the abnormal data is received by the control

center with time delay and the protection action is taken late, the overloaded will be

tripped. It has been found from this study that for the topology of the coupled data

dispatching network, the double star structure is better than the mesh, which makes the

power network more robust against cascading failure.

In Wang et al.’s work [74], it has been assumed that every node in the communica-

tion network is connected to a corresponding physical node in a transmission grid by

bidirectional links that represents data uploading channels and command downloading

channels. For a power network coupled with a communication network, bidirectional

interdependencies between these two networks can be modeled from two aspects: 1)

the failure of power nodes makes communication nodes lose information and thus the

communication nodes are considered to be useless; 2) losing information in commu-

nication networks leads to an abnormal control to the power network making the line

tripping is hard to avoid. Moreover, this study has also introduced different classes

of information channels that characterize the interdependency of interconnected net-

works.

The modeling of the interdependencies between power networks and the coupled

cyber networks plays an essential role in the analysis of cascading failure in the cyber-

coupled power systems. A comprehensive review paper [75] offers an overview of

various interdependencies between power systems and information technology sys-

tems. Another problem in the study of the cascading failure in cyber-coupled power

systems is related to coupling pattern of power and cyber systems, particularly in terms

of the structural connectivity [75].

In Parandehgheibi et al.’s model [76], the robustness of interdependent networks

is studied under the assumption that every router in the cyber network is powered by

at least on a power substation, and every substation sends and receives information
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via multiple coupling links with the cyber network. Moreover, the direction of the

coupling links is defined by classifying the interdependencies between power networks

and communication networks into unidirectional and bidirectional ones.

Huang et al. [77] introduced a practical interdependent network model aiming to

offer a method of characterization of the cascading failure in a cyber physical sys-

tem. In the model, different from a one-to-one connection style in [17] and multiple-

to-multiple connection fashion in [76, 36], each node in the computational-resource

network is assumed to obtain support from only one node in the physical-resource net-

work, while each node in the physical-resource network is assumed to have multiple

interconnections with the computational nodes. This connection style is termed “one-

to-multiple” correspondence. Although this connection style has its practical meaning

in modeling cyber-coupled power systems, the study [77] has adopted the percolation

theory instead of the underlining physical process to simulate cascading failure events.

Thus, the results from this study require further verification.

Retaining the one-to-one connection style between a power network and its cou-

pled cyber network, Kang et al. [78] divided the coupling links between cyber nodes

and power nodes into two categories, i.e., the top-down coupling links representing

the impact of cyber networks on power networks and the bottom-up coupling links

abstracting the influence of power networks on cyber networks. It has been found that

to enhance the robustness of cyber-coupled power systems, Assortative Coupling, i.e.,

nodes with similar degrees in both interconnected networks are coupled, is suitable

for implementation of the bottom-up coupling links. For the implementation of the

top-down coupling links, Disassortative Coupling is adopted, which connects the high

degree nodes in one network with the low degree nodes in the other network.

To summarize, three main challenges in studying cascading failure in cyber-coupled

power systems can be identified: 1) the necessary incorporation of physical processes;

2) the effective interpretations of interdependencies; 3) the underlying effect of cou-

pling patterns.



Chapter 3

Modeling the Dynamic Propagation of

Cascading Failure

In the previous chapter, we have reviewed the complex network theory and its ap-

plication to power systems and cyber-coupled power systems, with emphasis on the

robustness of these systems. In this chapter, we introduce two models. The first model

is for simulation of the cascading failure propagation in power systems. With the con-

sideration of the power network being coupled with a cyber network, the second model

is used to generate the dynamic profile of cascading failure events caused by the attack

of cyber malware.

3.1 Model of Cascading Failure in Power Systems

Our model has two key features. First, we apply circuit-based power flow equations

to determine the sequence of failure events in accordance to the extent of overloading

of individual components. In order to describe the complete dynamic profile, we need

to determine the time durations between failures in the propagation sequence. Due to

the complexities and uncertainties of the involving physical failure mechanisms of the

components (e.g., manufacturing quality, environmental factors, etc.), stochastic pro-

37
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cesses are used to model the dynamic changes. Then, to study the collective behavior

of the entire system in terms of failure propagation in the whole network, an extended

chemical master equation (CME) model is used. Based on the CME model, we show

that the failure propagation rate of the network is dependent on the sum of individual

extents of overloading of all elements in the network.

3.1.1 Failure Mechanisms of Components

A power system is composed of various electrical stations connected by transmission

lines, and each station or transmission line is protected by protective equipment. Here,

we model electrical stations as nodes and transmission lines as links, with nodes being

connected by links forming a power network. Deterministic power flow equations are

used to generate the sequence of failures and their locations. A node or link is a basic

element of a power network. We refer to an element’s tripping event as an element

state transition (EST). The cascading failure propagation in a power network can be

viewed as a sequence of ESTs in the network. In this section, we investigate the state

transition behavior of a basic element, and in the next section, we apply probabilistic

theory to study the collective transition behavior of the network.

3.1.1.1 Time to Failure of a Basic Element

Let si(t) be the state of element i of a given network, and si(t) ∈ {0, 1}, with si(t) = 0

corresponding to a connected element i at time t, and si(t) = 1 corresponding to a

removed (tripped or open-circuited) element i at time t, as shown in Fig. 3.1.

Here, λi(t) is the rate of transition of node i going from state “0” to “1”, and µi(t)

is the transition rate from “1” to “0”. Then, the future state of an element is solely

determined by its present state and the transition rule. Suppose the present time is

t, and dt is an infinitesimal time interval. As si(t) ∈ {0, 1}, P[si(t + dt) = 1] and
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"0" connected "1" removed
(normal) (tripped)

λi(t)

µi(t)

Figure 3.1: Dynamic description of failure in terms of state transitions. State “0” is
the normal connected state; state “1” is the removed or tripped state. Arrows repre-
sent transitions between different states while self-loop arrows are not displayed in the
figure.

P[si(t + dt) = 0] can be written as

P[si(t + dt) = 1] = P[si(t + dt) = 1 |si(t) = 0]P[si(t) = 0]

+ P[si(t + dt) = 1 |si(t) = 1]P[si(t) = 1]

P[si(t + dt) = 0] = P[si(t + dt) = 0 |si(t1) = 0]P[si(t) = 0]

+ P[si(t + dt) = 0 |si(t) = 1]P[si(t) = 1]

(3.1)

where P[si(t) = 1] and P[si(t) = 0] denote the probability that node i is in state “1”

and “0” at time t, respectively; P[si(t+dt) = 1 |si(t) = 0)] is the conditional probability

that given si(t) = 0 element i transits to state “1” in the time interval (t, t + dt); and

P[si(t + dt) = 0 |si(t) = 1)] is defined in a likewise manner. Using the state transition

rates shown in Fig. 3.1, P[si(t + dt) = 1 |si(t) = 0)] can be written as

P[si(t + dt) = 1 |si(t) = 0] = λi(t)dt. (3.2)

Also, P[si(t + dt) = 0 |si(t) = 0)] is the probability that given si(t) = 0, element i

remains in state “0” in time interval (t, t + dt) (i.e., no state transition occurs). Thus,
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we have

P[si(t + dt) = 0 |si(t) = 0] = 1 − λi(t)dt. (3.3)

Likewise, we have

P[si(t + dt) = 0 |si(t) = 1] = µi(t)dt, (3.4)

P[si(t + dt) = 1 |si(t) = 1] = 1 − µi(t)dt. (3.5)

3.1.1.2 State Transition Rates of Basic Elements

In this section, we discuss the physical meanings of element state transition rates λi(t)

and µi(t) in a fast cascading failure process. In statistical terms, an event rate refers to

the number of events per unit time. Specifically, λi(t) is the rate of element i becoming

disconnected in the network which is caused by either a natural equipment malfunction

or tripping by its protective equipment, i.e.,

λi(t) = λ0
i (t) + λ1

i (i) (3.6)

where λ0
i (t) is the equipment malfunctioning rate in the absence of loading stress and

its value is constant and derivable from past statistics [79]; and λ1
i (t) is the removal

or tripping rate by protective relays and is determined by the (over)-loading condition

and the capacity of element i.

Among the many tripping mechanisms of relays [80, 81], power overloading is a

dominant one. Here, we focus on switching actions caused by overloading. When the

load of element i is within its capacity, it is assumed to work in the normal condition

and will not be removed or tripped by the protective relay, namely λ1
i (t) = 0. However,

when the element exceeds its capacity, there will be a short delay before it is finally

removed. The tripping rate is relevant to the extent of overloading. In other words, if

there is a large overloading of element i, it will be tripped more rapidly compared to
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the case of a light overloading [82]. Based on this assumption, we can write λ1
i (t) as

λ1
i (t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ai

(

Li(t) −Ci

Ci

)

, if Li(t) > Ci

0, if Li(t) ≤ Ci

(3.7)

where Li(t) is the power loading of element i that can be found from the power flow

calculation, Ci is the capacity of that element, and ai is the basic unit rate (trippings

per second). For normal operating condition, λ1
i = 0. In a cascading failure process,

λ1
i ≫ λ0

i [83]. Without loss of generality, we assume that λi(t) ≈ λ1
i (t) in our analysis

of cascading failures in power systems.

For the sake of completeness, we also allow a tripped or removed element to be

repaired, and hence be restored to its normal connected state. Thus, we define µi(t) as

the transition rate of element i going from state “1” to “0” as a result of repair actions

or self-healing ability of the power system. In practice, an element’s state cannot be

switched arbitrarily. Also, the time delay for recovering a tripped element should be

considered and can be included in the actual representation of µ(t). This recovery

process can be used to study the power restoration process after the power blackout.

Here, we focus on analyzing the cascading failure process. Thus, considering that not

all elements could be repaired in a short time and an element cannot keep changing its

status frequently, we take µi(t) as 0 for a fast cascading process.

3.1.1.3 Power Flow Calculation

Our model for the power system is based on the admittance model proposed by Grainger

and Stevenson [61]. For a power system with n buses, the admittance model is written

as
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, (3.8)

which is composed of Kirchhoff’s law equations for all nodes. Here, Vn and In are

the voltage and externally injected current at node n, respectively, Yi j is the admittance

of the transmission line connecting nodes i and j, and Yii = −
∑

j!i Yi j. If there is no

transmission line between nodes i and j, Yi j = 0. The values of Vn and In are in time

domain and can change with time, satisfying the constraints described by Equation 3.8

at any point of time. A time series of values of Vn and In describe dynamic behaviors

of a power system. Equation 3.8 can be used to analyze the operations of a power

system both in AC and DC. If the power system operates in AC and contains nonlinear

components, harmonics will be included in Equation 3.8.

In addition to equation (3.7), power flow calculation is still needed for the analysis

of cascading failures. Several algorithms and tools are available for computing power

flows [84, 85]. The actual power system is a high-order complex nonlinear network,

and any abrupt change of network structure can change the power flow distribution,

and at the same time cause large transients, oscillations, and bifurcations [86]. Using

our definition of state transition of elements, the tripping probability of each element

is an integration of the tripping rate (extent of overloading) with time. Here, we as-

sume that the system can always reach a steady state when tripping occurs and that

the transient before the system reaches the next steady state is sufficiently short, mak-

ing accumulative effects negligible. As far as the propagation of cascading failures is

concerned, it suffices to consider blackouts caused by overloading, ignoring the non-

linear characteristics of the circuit elements and possible oscillatory behavior. Here,

we introduce a comprehensive model for the calculating of power flow. Four kinds of

nodes are considered in our model, namely, the generation node, the consumer node,
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the distribution node and the transformer node.

(i) Consumer Nodes (Loads)

A consumer node i dissipates power, and at the circuit level, it sinks current Ii. The

current value is negative as the node consumes power, i.e.,

[

−Yi1 · · · Yii · · · −Yin

]

∗ V = Ii (3.9)

where V =
[

· · · vi v j vk vh · · ·

]T
.

(ii) Distribution Nodes

A distribution node j is a connecting node that nether produces nor consumes

power. Thus, we set I j = 0, i.e.,

[

−Yi1 · · · Yii · · · −Yin

]

∗ V = 0 (3.10)

(iii) Generation Nodes

A generation node k is a fixed voltage source. The current emerging from this node

depends on its own voltage, the power consumption of other nodes and the network

topology. The nodal equation is

[

0 · · · yk · · · 0
]

∗ V = vk (3.11)

where yk = 1, and vk is the voltage of node k.

(iv) Transformer Nodes

Transformer nodes connect the high-voltage grids with mid-voltage or low-voltage

grids, as shown in Fig. 3.2. Here, a is the winding turns ratio; vhL and vhR are the

voltages at node h’s input side and output side. Here, we perform our analysis in per

unit (p.u.), and the base values at the two sides of h are set according to V2base = Vbase/a

and I2base = aIbase. Thus, the p.u. voltage values of node h can be represented as
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1baseV
2baseV1baseI

2baseI

transformer node h
winding turns ratio: a

hLV hRVHigh Voltage Grid Medium and Low 
Voltage Grid

Figure 3.2: Transformer h connecting grids of varying voltages.

vhL = vhR = vh.

The nodal equation of node h is

[

Yh1 · · · Yhh · · · Yhn

]

∗ V = 0 (3.12)

Combining equations (3.9)–(3.12), we get the following power system equation:

A ∗ V = B (3.13)

where
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,

B =
[

· · · Ii 0 vk 0 · · ·

]T
,

and subscript i denotes a consumer node (load); j denotes a distribution node; k denotes

a generation node; h denotes a transformer node. Given the power consumption, the

generation information and the topology, the voltage of each node can be found using
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(3.13). Then, the currents flowing in the transmission lines can be calculated as

Ii j = (vi − v j) ∗ Yi j (3.14)

3.1.2 Failure Propagation in the Network

A power network is represented as an undirected graph G consisting of m elements.

The state of G is defined as S = {s1, s2, ..., sm}, which is a vector containing the states

of all m elements. Network G can have 2m possible network states, and any state

transition of an element will lead to a network state transition of G.

The dynamic propagation of cascading failures in G is equivalent to the dynamic

evolution of S (t). Given the current state of the network, the network state transition

can be described by (i) the time of the next state transition; and (ii) identification of the

next element that will transit (be tripped).

3.1.2.1 Basics

First, we consider the network state transitions in an infinitesimal time interval dt. Sup-

pose S (t) = NS , which is a specific network state among the 2m possible states. Thus,

S (t + dt) is the network state after a duration of dt. Only those elements in state “0”

may transit, leading to a network state transition. Let Ω0 be the set of elements in state

“0”, and Ω1 be the set of removed (tripped) elements. From elementary probability

theory, we have the following basic results:

1) o(dt) is the sum of the second and higher order terms of dt. Omitting o(dt), the
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probability that no element undergoes a state transition after dt can be written as

P[S (t + dt) = NS |S (t) = NS ] =
∏

i∈Ω0

[1 − λi(t)dt)]

= 1 −
∑

i∈Ω0

λi(t)dt +
∑

x1 ,x2∈Ω0

λx1(t)λx2 (t)(dt)2

−
∑

x1 ,x2,x3∈Ω0

λx1(t)λx2 (t)λx3 (t)(dt)3 + · · ·

= 1 −
∑

i∈Ω0

λi(t)dt + o(dt) ≈ 1 −
∑

i∈Ω0

λi(t)dt

(3.15)

where x1, x2, · · · are the elements in Ω0.

2) The probability that only one element state transition (say element k) occurs

after dt, i.e., only element k transits, can be written as

P[S (t + dt) = MS |S (t) = NS ] = λk(t)dt
∏

i∈Ω0\{k}

[1 − λi(t)dt]

= λk(t)dt −
∑

x1∈Ω0\{k}

λk(t)λx1 (t)(dt)2

+
∑

x1 ,x2∈Ω0\{k}

λk(t)λx1 (t)λx2 (t)(dt)3 + · · ·

= λk(t)dt + o(dt) ≈ λk(t)dt

(3.16)

where x1, x2, · · · are the elements inΩ0 \{k} and MS denotes the network state that only

one of the “0”-state elements in NS becomes “1”.

3) The probability that two or more element state transitions occur after dt is given

by

P[S (t + dt) = RS |S (t) = NS ] = 0 (3.17)

where RS denotes the network state that two or more of the “0”-state elements in NS

become “1”. From equation (3.17), there is at most one element state transition at a

time.



3.1. MODEL OF CASCADING FAILURE IN POWER SYSTEMS 47

( )Q τ

1t 1t + τ

1( ) NSS t =
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Figure 3.3: Time line of network state transitions.

3.1.2.2 Extended Gillespie Method

In this section, we derive S (t) using an extended Gillespie method [87], which was

used for analyzing coupled chemical reactions [88, 89].

As shown in Fig. 3.3, the state of the power system at t1 is NS , i.e., S (t1) = NS . Let

Q(τ) denote the probability that given S (t1) = NS , no transition occurs in (t1, t1 + τ),

i.e.,

Q(τ) = P[S (t1 + τ) = NS |S (t1) = NS ]. (3.18)

Similarly, Q(τ + dt) can be written as

Q(τ + dt) = P[S (t1 + τ + dt) = NS |S (t1) = NS ]

= P[S (t1 + τ + dt) = NS |S (t1 + τ) = NS ]Q(τ).
(3.19)

Given S (t1) = NS , power flow calculation can be performed, as described in Section

3.1.1.3, and λi(t1) can be derived based on the settings in Section 3.1.1.2. If no state

transition occurs during time interval (t1, t1+τ), we have S (t) = S (t1) and λi(t) = λi(t1)

for t ∈ (t1, t1 + τ). From (3.15), we get

P[S (t1 + τ + dt) = NS |S (t1 + τ) = NS ] = 1 −
∑

i∈Ω0

λi(t1)dt. (3.20)

Thus, by putting (3.20) in (3.19), we get

Q(τ + dt) = Q(τ)(1 − λ∗(t1)dt), (3.21)

where λ∗(t1) =
∑

i∈Ω0 λi(t1). Furthermore, re-arranging (3.21) and taking the limit dt →
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0, we get

dQ(τ)
dτ

= lim
dt→0

Q(τ + dt) − Q(τ)
dt

= −λ∗(t1)Q(τ),

⇒ Q′(τ) = −λ∗(t1)Q(τ).
(3.22)

The probability that nothing happens in zero time is one, i.e., Q(0) = P{S (t1) =

NS |S (t1) = NS } = 1. Then, the analytical solution of (3.22) is

Q(τ) = e−λ∗(t1)τ. (3.23)

Let hi(τ, dt) denote the probability of the event that given S (t1) = NS , the next transition

occurs in the interval (t1 + τ, t1 + τ + dt) in element i. There are two conditions for this

event to occur. The first condition is that there is no state transition during (t1, t1 + τ).

The second condition is that a state transition occurs in element i during (t1+ τ, t1+ τ+

dt). Thus, hi(τ, dt) can be written as

hi(τ, dt) = P[S (t1 + τ + dt) = MS |S (t1 + τ) = NS ]Q(τ). (3.24)

Putting (3.16) and (3.23) in (3.24), we get

hi(τ, dt) = e−λ∗(t1)τλi(t1)dt. (3.25)

Let H(τ, dt) denote the probability that the next transition occurs in the time interval

(t1 + τ, t1 + τ + dt), given S (t1) = NS . It is readily shown that

H(τ, dt) =
∑

i∈Ω0

hi(τ, dt) = λ∗(t1)e−λ∗(t1)τdt. (3.26)

Further, let τ denote the time interval between two adjacent network state transitions,
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and f (τ) denote the state transition probability density function (PDF):

f (τ) = lim
dt→0

H(τ, dt) − H(τ, 0)
dt

= λ∗(t1)e−λ∗(t1)τ (3.27)

i.e.,

f (τ) = λ∗(t1)e−λ∗(t1)τ. (3.28)

The accumulative probability density function that the next transition occurs before

time t1 + τ, given S (t1) = NS , can be written as

F(τ) = λ∗(t1)
∫ τ

0
e−λ∗(t1)tdt = 1 − e−λ∗(t1)τ. (3.29)

Note that one can also get F(τ) from F(τ) = 1 − Q(τ).

Equations (3.28) and (3.29) show that τ follows an exponential distribution and

that the network transition rate is λ∗(t1). Here, λ∗(t1) is the sum of the element state

transition rates of all the working elements in the network, and is determined by the

sum of the extents of overloading of all the overloaded elements. The time interval τ

is expected to be short when λ∗(t1) is large, i.e., the network state transition (cascading

process) occurs very rapidly. Thus, the physical meaning of λ∗(t1) can be interpreted

as the overloading stress of the entire power system.

In order to include this characteristic in our model, we take the following steps to

determine the time of the next network state transition, given S (t1) = NS :

1. A random number z1 is generated uniformly in (0,1).

2. Let F(τ) = z1, and τ is derived as

τ =
ln(1 − z1)
−λ∗(t1)

. (3.30)
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Figure 3.4: Relative probability for elements inΩ0 to be first tripped given S (t1) = NS .

3.1.2.3 Order of State Transition

A number of working elements (elements in Ω0) can possibly undergo state transition.

In our analysis presented in Section 3.1.2.1, we allow only one element to be removed

(tripped) at a time. Pfitzner et al. [90] pointed out that the order in which overloaded

lines are tripped influences the cascade propagation significantly. In this section, we

study the order in which element state transitions take place.

In our stochastic model, any overloaded element inΩ0 may be tripped first. From a

probabilistic viewpoint, the element with a higher hi(τ, dt) will more likely be tripped

first. Thus, we define the relative probability for element i (i ∈ Ω0) to be tripped first

as:

r fi =
hi(τ, dt)
H(τ, dt)

=
λi(t1)
λ∗(t1)

. (3.31)

where λ∗(t1) =
∑

i∈Ω0 λi(t1). Our model can incorporate this tripping order using the

following steps:

1. A random number z2 is generated uniformly in (0,1).

2. Suppose there are l overloaded elements inΩ0. With no loss of generality and for

ease of referral, let these overloaded elements be elements L1, L2, . . . , L j, . . . , Ll.

Figure 3.4 shows the relative probability of an overloaded element in Ω0 to be

first tripped, given that S (t1) = NS .

3. The jth element in Ω0 is selected to be tripped according to

j−1
∑

k=0

λLk

λ∗
" z2 <

j
∑

k=0

λLk

λ∗
, (3.32)
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Figure 3.5: Flow chart for simulating the dynamic propagations of cascading failure.

where λL0 = 0.

3.1.2.4 Simulation Algorithm

Figure 3.5 shows the flow chart for simulating the cascading failure process which can

be summarized as follows:

1. Initial Settings: At the start of the simulation, all voltages at the power gen-

eration stations, currents flowing into the consumer nodes, admittances of the

transmission lines, and capacities of elements are set.
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2. Initial Failure: An initial failure is planted by removing one element from the

network, which triggers the cascading failure process.

3. Iterative Process: Based on S (t), we remove the tripped elements from the net-

work, and keep all elements whose states is “0”. The remaining network may

be disconnected, forming so-called islands, due to the removal of the tripped el-

ements. For a disconnected sub-network (island) containing no generator node,

all elements within it would have no access to power and all power flows become

zero. All nodes in this sub-network are unpowered. Note that these elements are

not tripped, and their states are still “0”. Moreover, for a sub-network containing

at least one generator node, equation (3.13) can be used to compute the power

flow distribution in this sub-network. Power flows of all the “0”-state elements

in G can be computed, and the tripping rate of each element λi can be obtained

using (3.7). If all tripping rates are positive, we determine the next network state.

Specifically, we first determine the time of the next network state transition using

(3.30), and determine the element in Ω0 that will be tripped next. The network

state transition is determined using (3.32). Then, we update S (t) = S (t + τ), and

iterate the process until all the transition rates are found to be zero (i.e., no over-

loaded elements). With no more overloaded elements in the network, no state

transition will occur and S (t) is a stable state. We can then end the simulation

and get the final network.

3.2 Model of Cascading Failure in Cyber-coupled Power

Systems

In this model, we take into consideration the effects of power overloading, contagion,

and interdependence between power grids and cyber networks on failure propagations

in the coupled system, and then use a stochastic method to generate the time intervals
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between failures, thus producing the dynamic profile of the cascading failures caused

by the attack of cyber malwares.

3.2.1 Model Description

We consider a smart grid composed of a set of power apparatus and its controlling net-

work. The controlling network refers to the specific computer network for controlling

power systems, which is normally isolated from the wide area network we use in other

applications. In practice, firewalls and other security measures should be designed and

applied in these important networks. For simplicity, we consider a coupled system

A–B which is composed of two interdependent networks A and B, as shown in Fig.

3.6. Network A is the power grid, where solid rectangular nodes in Fig. 3.6 repre-

sent electrical buses in A and solid arcs represent transmission lines. Network B is the

cyber network, where white circular nodes represent computers in the cyber network

and dashed joining arcs represent the connections among the cyber nodes. Clearly,

nodes in A and nodes in B are interdependent. Precisely, the cyber nodes control the

operation of power nodes, while the power nodes provide power to the cyber nodes.

The interdependent relationships are depicted by the horizontal lines in Fig. 3.6. Here,

we consider one-to-one coupling relation between the nodes in A and the nodes in B,

i.e., Ai ↔ Bi. Each pair of coupled nodes (Ai and Bi) are called a node pair in the

coupled system A–B. For the sake of maintaining generality, we also consider nodes

without corresponding coupling nodes in the other network. For these nodes, there are

no coupling effects. In Fig. 3.6, there are p power nodes, q cyber nodes and m node

pairs, where p ≥ m and q ≥ m. Usually the number of nodes in the cyber network is

far bigger than that of the power network, i.e., q ≫ p.

We study the cascading failures in the coupled system A–B, which is initiated by at-

tacks of computer malwares. The cascading failure propagation in A–B can be viewed

as a sequence of state transitions of the nodes in the coupled system. In the following
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Figure 3.6: Coupled network consisting of a power network A and a cyber network B.
Solid rectangles represent electrical buses and solid arcs represent transmission lines
in A. White circles represent computers in the cyber network and dashed arcs represent
connections among the cyber nodes in B. Horizontal lines represent interdependence
between nodes in A and nodes in B.

subsections, we will define the states of nodes and describe their corresponding state

transitions.

3.2.1.1 Failure Mechanism of Power Elements

In this section, we introduce the mechanism of the electrical elements’ failures. Pre-

vious works have analyzed cascading failures in individual power systems. Data fit-

ting methods have been applied to study the failure propagation profiles in power sys-

tems in refs. [91, 92], regardless of the physical failure cascade mechanism in the

network. Considering the effects of power flow distribution in the failure propagation,

several models have been proposed to simulate the cascading failure propagations in

power systems, which can be classified under two categories: deterministic models

and stochastic models. In deterministic models [68, 93], in each round of the cascading

failure process, the power flow distribution in the network is computed, and overloaded

electrical elements are removed at the same time. To show the dynamic profile, Epp-

stein et al. [94] made the simple deterministic assumption that the duration for an over-
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Figure 3.7: State transition diagram of a node in power network A. Transitions between
state 0 and 2 are deterministic transitions, and those between 0 and 1 are stochastic
transitions.

loaded element to be tripped is equal to ∆t which is given by
∫ t+∆t

t ( f j(τ)− f̄ j)dτ = ∆oj,

where f j is the power flow of overloaded element j, f̄ j is the flow limit and ∆oj is a

specific threshold of that element. Considering the high uncertainties and complexi-

ties in power systems, stochastic models are used to investigate cascading failures in

power systems [58, 66, 67], but a mathematical formula that can describe the collective

behavior of the power network has not been derived.

In modeling the failure cascading in a power grid, we first apply deterministic

power flow analysis to derive the power flow information and the overloading condi-

tions of the electrical elements. Then, we adopt a stochastic method to obtain the time

durations between failures to simulate the failure propagations in the network.

Let sAi denote the state of a power node Ai. In our model, we consider three possible

states for a power node, i.e., sAi ∈ {0, 1, 2}. Specifically, sAi = 0 is the normal state,

which corresponds to node Ai being connected and operating normally in the power

network; sAi = 1 is the removed state, which corresponds to Ai being tripped by a

circuit breaker and removed from the power network; and sAi = 2 is the unpowered or

“islanded” state, which corresponds to Ai being inaccessible to power sources due to

the removals of other failed elements in A. When Ai is in state 1 or 2, it is deprived of

power. Possible state transitions of Ai are shown in Fig. 3.7.
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Depending on the nature of the transitions, they are either deterministic transitions

or stochastic transitions, as shown in Fig. 3.7. The tripping (removal) of some ele-

ments in A can fragment the power network into several disconnected sub-networks.

When a sub-network containing no power source is created, a condition “con” is

said to be reached for all nodes in the sub-network. Under this condition, nodes

in the sub-network change their states from 0 to 2. This state transition, namely

sAi = 0 con
−−→ sAi = 2, is deterministic. Moreover, this state transition is caused by

and always accompanying the state transition (0 → 1) of another element in A, and

thus the transition time for this type of state transitions is not considered.

On the other hand, the time at which a stochastic state transition takes place is an

important consideration that would affect the dynamic profile of the cascading failure

propagation. Node Ai (in state 0) is tripped by its protective equipment with a certain

probability value when Ai is overloaded or when its coupled node Bi is infected by a

computer malware that can attack the power network by switching off circuit breakers

of Ai. The stochastic state transition of node Ai from state 0 to state 1 is represented by

a state transition channel T1, and is represented as:

T1 : sAi = 0→ sAi = 1. (3.33)

When node Ai has a coupled node Bi which works normally or does not have a

coupled node in network B, the state transition sAi = 0 → sAi = 1 is only caused

by overloading. In much of the prior work on modeling the switching actions of the

relays using Markov models [66] [67], transitions are determined by power loading

conditions and elements’ capacities. In real-time operation, as pointed out by Sun et

al. [82], an electrical component’s failure rate is not constant but varies with loading

conditions, and that a component will experience more failures under heavy loading

conditions. In order to incorporate these characteristics in our model, we describe the

state transition sAi = 0
λi(t)
−−−→ sAi = 1 as a stochastic process and define the tripping rate
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λi as
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)

, if Li(t) > Ci

0, if Li(t) ≤ Ci

(3.34)

where Li(t) is the power loading of component i , Ci is the capacity of that component,

and ai is the basic unit rate (trippings per second). Using (3.34), the power flow anal-

ysis can be applied to derive λi(t). Here, we adopt the method introduced in Section

3.1.1.3 to compute the power flows in the power system, assuming that the power sys-

tem will reach a new steady state after an element fails. Moreover, we do not consider

stability issues that have been studied in refs. [95, 96]. Thus, when Ai is in state 0, and

on the condition that its coupling node Bi is working normally or it has no coupling

nodes in network B, the probability that Ai transits from state 0 to 1 in an infinitesimal

time interval dt can be written as

T1 : P[sAi(t + dt) = 1 | sAi(t) = 0] = λi(t)dt. (3.35)

When Ai has a coupling node Bi in network B and Bi is infected by a computer

malware, Ai (in state 0) will have an extra chance to be removed from system due to

the action of malware. Thus, we assume that the malware will add an additional rate

ci(t) to the state transition rate λi. Thus, the probability that Ai transits from state 0 to

1 in an infinitesimal time interval dt when Bi is infected by computer malware can be

written as

T1 : P[sAi(t + dt) = 1 | sAi(t) = 0] = (λi(t) + ci(t))dt, (3.36)

where ci(t) represents the dependency of power node Ai on cyber node Bi.

State 1 and state 2 are fundamentally different states even though both correspond

to an unserved node. For state 1, the power node is removed due to it being tripped by

the protective relay upon power overloading. We use a stochastic method to describe

this process. However, for state 2, the power node has no access (finds no path) to
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power sources due to the tripping of other elements in the network. Though unserved,

it is not tripped and is still well connected. We use a deterministic method to describe

this process, and it depends on the tripping of other elements in the network. From the

network’s point of view, an element in state 1 is an open-circuit, changing the topology

of the network, whereas an element in state 2 has no impact on the network topology.

In a fast cascading failure process, we do not consider repair and anti-malware

actions. Thus, the corresponding transition rates are set as 0, i.e., dashed arrows in Fig.

3.7 are neglected.

3.2.1.2 Failure Mechanism of Cyber Nodes

Let sBi denote the state of node Bi. We consider three different states for a cyber node

Bi, namely states 0, 1 and 2. Specifically, sBi = 0 is the normal state, in which Bi

is working normally in the cyber network; sBi = 1 is the state of being infected by a

computer malware; and sBi = 2 is the shutdown state corresponding to node Bi being

shut down due to power outage. The difference between state 1 and state 2 is that when

a computer is infected (in state 1), it is able to infect its neighboring nodes, whereas

a shutdown computer (in state 2) is completely removed from the cyber network and

does not infect others. Figure 3.8 shows the state transition diagram of cyber node Bi.

All state transitions of Bi are stochastic transitions. Details of the transition process are

as follows.

When node Bi is in state 0, it can be infected by a computer malware through

connection with an infected neighbor. The malware diffusion can be modeled by a

stochastic process [97]. Here, we use describe Bi’s state transition as sBi = 0
µi
−→ sBi =

1, and refer to it as state transition channel T2:

T2 : sBi = 0
µi
−→ sBi = 1. (3.37)
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Figure 3.8: State transition diagram of a node in cyber network B.

where µi is the rate of infection of node Bi and is defined as

µi(t) =
∑

j∈ΩBi

βi j, (3.38)

where ΩBi is the set of all infected neighbors of node Bi and βi j is the rate at which in-

fected node Bj (sB j = 1) infects its neighbor Bi which is in state 0. For an infinitesimal

time interval dt, the probability that a state transition occurs through T2 can be written

as

T2 : P[sBi(t + dt) = 1 | sBi(t) = 0] = µi(t)dt. (3.39)

When node Bi has a corresponding coupled power node Ai and sAi ∈ {1, 2}, it can no

longer provide power to its cyber node Bi, causing Bi to transit to state 2 (shutdown)

due to power outage. In practice, usually there exists backup power for computers

that perform crucial functions in controlling the power grid. Considering the limited

supporting time of the backup power units, in our model, we use stochastic transitions

to describe the state transitions for node Ai when sAi ∈ {1, 2}. Specific details are as

follows.

When sBi = 0 and sAi ∈ {1, 2}, apart from state transition channel T2, another state
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transition channel T3 exists:

T3 : sBi = 0
di
−→ sBi = 2, (3.40)

where di(t) is the state transition rate which is determined by the dependence of node

Bi on its coupled power node Ai. In an infinitesimal time interval dt, the probability

that a state transition occurs through T3 can be written as

T3 : P[sBi(t + dt) = 2 | sBi(t) = 0] = di(t)dt, (3.41)

When sBi = 1 and sAi ∈ {1, 2}, there is another state transition channel T4:

T4 : sBi = 1
di
−→ sBi = 2. (3.42)

In time interval dt, the probability that a state transition occurs through T4 can be

written as

T4 : P[sBi(t + dt) = 2 | sBi(t) = 1] = di(t)dt. (3.43)

When sAi = 0, di(t) is 0.

Finally, as repair or anti-malware actions are not considered in a fast cascading

failure process, the corresponding transition rates can be set to 0, i.e., dashed arrows in

Fig. 3.8 are neglected. For clarity of the figures, self-loop arrows are not displayed in

Figs. 3.7 and 3.8.

3.2.2 Cascading Failure in Coupled Systems

The coupled system A–B contains p power nodes, q cyber nodes, and m node pairs in

total. Let S (t) denote the state of A–B, and S (t) = [sA1, sA2, · · · , sAp, sB1, sB2, · · · , sBq].

Suppose that there are mS (mS ≤ 3p+q) possible states for A–B. The cascading failure

process is the dynamic propagation profile of S (t) as the system state transits in time
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Table 3.1: State transition channel list of the coupled system at time t given that S (t) =
NS . All the l nodes which may transit and their corresponding transition rates are listed.

Possible transition channel T (1) T (2) T (3) ... T (n)

Transition rate r1 r2 r3 ... rn

among those mS different states.

3.2.2.1 State Transition of the Coupled Network

Suppose, at time t, the coupled network is in state S (t) = NS (NS is one specific system

state of the 3p+q possible states), and there are u nodes that may undergo a state transi-

tion. Each node of these u nodes can undergo a deterministic or stochastic transition,

depending on the current node state and the transition rule. For a deterministic transi-

tion, the transition rule is triggered when condition “con” is met, while for a stochastic

transition, the transition rule is described by a transition rate, as shown in Figs. 3.7

and 3.8. At time t, there are l (l ≤ u) nodes that will undergo a stochastic transition,

and each one will transit through a transition channel selected from T1, T2, T3, T4. For

instance, if cyber node Bi is in state 0 (i.e., sBi = 0) at time t and is connected to an

infected neighbor, and at the same time its coupled power node is removed or unpow-

ered, then node Bi will have two state transition channels, namely, T2 and T3. Thus,

the total number of transition channels (say n) can be larger than l. In our algorithm,

we first identify condition “con”, and transit all power nodes meeting “con” to state

2 instantly. Then, all possible stochastic state transition channels of the coupled sys-

tem is listed in a state transition channel list, as shown in Table 3.1, where channel

T (i) ∈ {T1, T2, T3, T4}. Any node’s state transition through any one of the n transition

channels will lead to a state transition of the coupled network, i.e., change in S (t).

The cascading failure process can be viewed as a sequence of state transitions. We

only allow one element state transition at a time. That is, at most one state transition

channel is chosen at a time. See Section 3.1.2.1 for a rigorous argument. In order to
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simulate the dynamic propagation of S (t), we need to

1. find the time at which a state transition occurs; and

2. identify the corresponding transition channel through which the transition oc-

curs.

The following subsection explains the detailed process of finding transition time and

identifying the transition channel.

3.2.2.2 Stochastic Transition Processes

Let Q(τ) denote the probability that no state transition occurs in time interval (t, t + τ),

i.e., Q(τ) = P[S (t + τ) = NS |S (t) = NS ]. Then, Q(τ + dt) can be written as

Q(τ + dt) = P[S (t + τ + dt) = NS |S (t + τ) = NS ]Q(τ). (3.44)

Thus, we have

P[S (t + τ + dt) = NS |S (t + τ) = NS ] = (1 − r∗dt), (3.45)

where r∗ =
∑n

i=1 ri. Note that equation (3.45) is only valid when dt is infinitesimally

small (see Section 3.1.2.1). Substituting (3.45) into (3.44), we get

Q(τ + dt) = Q(τ)(1 − r∗dt). (3.46)

Re-arranging (3.46), as dt → 0 (i.e. dt is infinitesimal), we get

lim
dt→0

Q(τ + dt) − Q(τ)
dt

= Q′(τ) = −r∗Q(τ). (3.47)
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Thus, we can express Q(τ) as

Q′(τ) = −r∗Q(τ).

Note that in equations (3.45) through (3.47), the above differential equation is derived

by taking the limit dt → 0 and is valid for any τ. Solving the above differential

equation, we get

Q(τ) = Q(0)e−r∗τ. (3.48)

Since Q(0) = P[S (t) = NS |S (t) = NS ] = 1, we can derive the expression of Q(τ) as

Q(τ) = Q(0)e−r∗τ = e−r∗τ, (3.49)

which is the general solution for Q(τ) and remains valid for all τ. Let F(τ) denote the

probability that the next state transition occurs before time t + τ. Then, we get

F(τ) = 1 − Q(τ) = 1 − e−r∗τ. (3.50)

The probability density of τ can be found using equation (3.50) as

f (τ) = r∗e−r∗τ. (3.51)

From (3.50) and (3.51), we see that τ follows an exponential distribution. The

state transition rate r∗ of coupled system A–B is the sum of the transition rates of

all the transition channels. As discussed in Section 3.2.1, r∗ includes the effects of

overloading in the power network, malware spreading in the cyber network, and the

interdependence between of two networks.

Suppose the next state transition occurs at time τ through transition channel Tk. To

include the property of exponential distribution of τ and the characteristic that the tran-
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sition channel with a higher rate will be more likely chosen, the following procedure

is used to determine the next state transition.

Two random numbers z1 and z2 are uniformly and independently generated in (0, 1).

Then, τ is generated from the following equation :

τ = F−1(z1) = 1
r∗

ln( 1
1 − z1

). (3.52)

And k is selected based on the following equation:

k−1
∑

j=0

r j

r∗
" z2 "

k
∑

j=0

r j

r∗
. (3.53)

The dynamics of S (t) is a series of the state transitions introduced above begin-

ning with an initial failure (malware injection) until all state transition channels are

exhausted. Figure 3.9 shows the flow chart used in simulating the cascading failures in

the coupled system.

3.2.2.3 Simulation Flow Chart

• Initialization: The information of the coupled system A–B is set, including the

network structure of A and B, and the coupling between the nodes in A and

the nodes in B. In simulating the power failure propagation, the power flow

calculation is necessary. Thus, for the power network, the admittance of the

transmission lines, voltages of the generates, load demands of the consumers

and winding ratios of transformers should be given.

• Malware injection: Here, we assume the cascading failures are caused by cyber

malware attacks. Thus, the initial trigger is the injection of a malware in the

cyber network. The time of malware injection is set as 0.

• Malware diffusion: In the case of cyber attacks, the malware can be designed to
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Figure 3.9: Simulation flow chart for cascading failures in the coupled system.

spread silently and harmlessly in the cyber network for a period of time in order

to get enough nodes infected. Here, we set td as the time period for the malware

diffusion before attack is launched to the power network, and in this time period,

only transition channels applied to the cyber network are relevant.

• Attack execution: After td, the malware will launch attack to the power system.

All possible transition channels may be selected. Iteration then proceeds as fol-

lows.

(a) The condition “con” will be checked against S (t), and the power nodes

meeting “con” are marked as state 2, i.e., the deterministic state transition

occurs. This kind of state transitions occurs instantly.

(b) Based on S (t) and equations (3.35)-(3.43), we update the list of possible
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state transition channels. The list contains the rates contributed by all the

failure spreading mechanisms in the coupled system, including power ele-

ments’ failure due to power overloading based on equation (3.34) where the

deterministic power flow analysis introduced in Section 3.1.1.3 should be

applied, cyber nodes’ infection due to contagion based on equation (3.38),

and the interdependencies between the two different networks.

(c) If there is a state transition channel in the list, we use equations (3.52) and

(3.53) to select the next state of S (t) and return to step (a). If there is no

more transition channel in the list, cascading failure ceases to propagate

and the system is said to enter an absorbing state. We end the iteration and

record the time as tfinal.



Chapter 4

Robustness Assessment and

Enhancement of Power Grids From a

Complex Network’s Perspective

In the previous chapter, two models have been introduced to model the cascading fail-

ure in power systems and cyber-coupled power systems respectively. In this chapter,

we develop a system-level method to assess the robustness of power grids. By focus-

ing on the dynamics of failure cascade, we identify a critical observable parameter,

namely onset time, which is the time after which the propagation rate of a cascading

failure increases rapidly. Based on the onset time and the scale of the failed grid in a

cascading failure event, we categorize each component in a power network into three

types, corresponding to three levels of severity of the failed grid upon the initial fail-

ure of that component. In particular, the most concerned category of components is

the one that makes the power network more vulnerable to failure because their initial

failure would result in a dramatically fast and large-scale cascading failure. Through

extensive simulations, we analyze the robustness of five selected power networks by

assessing the proportion of the three types of components. Moreover, to investigate ro-

bustness enhancement of power networks, we propose a decision-tree-based learning

67



68 CHAPTER 4. ROBUSTNESS ASSESSMENT AND ENHANCEMENT

model to extract significant network-based features. By utilizing a number of power

networks generated by means of edge re-arrangement targeting topology improvement

of the original power system, a decision tree is generated. This tree identifies three

features for all nodes, including average shortest path length, average clustering coeffi-

cient and average effective resistance (distance) to the nearest generator, which exhibit

strong correlation with the robustness of the power network. Experiments show that

coordinating multiple network-based features leads to an effective enhancement of the

robustness of power networks.

4.1 Introduction

Power systems, regarded as vital infrastructures in modern society, provide energy

for all sectors of society, industry and government, e.g., data centers, city lighting,

transportation, and public services. Therefore, power systems of high vulnerability

and a relatively high likelihood of outage over a large area would not only affect our

daily life, but also incur large economic loss upon failure. For instance, the power

outage in Northeastern United States and Canada in 2003 was widely known as a

serious event depriving 50 million people from power supply for up to four days [98].

The Indian blackout in 2012 and Taiwan blackout in 2017 also raised concerns about

the robustness of power systems.

Numerous studies have been devoted to modeling the dynamics of cascading fail-

ure in power systems, aiming to assess power outage risks [58]. On the one hand,

research based on the data fitting methods utilizes historical data to statistically an-

alyze the propagation of cascading failures in power systems [92, 91]. On the other

hand, according to the overloading effect involved in real networks [99], the propaga-

tion process is treated as a sequential tripping of electrical elements including stations

or transmission lines. Basically, through power flow calculation, either adopting a DC

model or AC model, one may determine whether the load carried in a power element
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(e.g., power flowing through a transmission line) is over its maximum capacity, in-

creasing the likelihood of failure of that element [66, 67, 100, 101]. Notably, Zhang

et al. [101] proposed an effective model from a complex network perspective incor-

porating physical power flow equations. In particular, the simulation results showed

a universal growing pattern which was found consistent with historical data of power

outage.

An increasing number of studies have assessed the robustness of power systems

considering cascading failure. Different from the traditional dynamical stability analy-

sis of power systems [102, 103, 104], recent studies have investigated the robustness of

power systems from a complex network perspective [14, 40]. In such studies, a power

transmission network is abstracted as a network consisting of “nodes” representing

power substations and “links” representing transmission lines. By adopting network-

based approaches, researchers have attached a great deal of importance to identifying

the kind of topology that optimizes the robustness of power networks.

The development of assessing the robustness of power grids from the network sci-

ence’s point of view can be divided into three main phases. In the initial phase, re-

searchers focused on examining the effect of network topology on the robustness of

power systems [59, 105, 106]. In the second phase, the focus was shifted to studying

extended network properties that directly contribute to enhancing robustness of power

systems [107, 108, 109] after realizing that pure topological analysis has limited capa-

bility in capturing the essential characteristics of power grids [110]. Basically, a power

network was represented by a weighted and directed network [107]. The distance in

a power network was associated with the impedance and the direction of power flow

passing from generators to loads was considered. This type of networks was much dif-

ferent from other categories of networks like social networks conventionally modeled

by an influence graph [60]. However, such network-based models have ignored the

physical power flow distribution in power networks, thus generating results that might

not be consistent with realistic scenarios of cascading failure in power grids. We have
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now entered the third phase of study, with emphasis on incorporating the physical pro-

cesses and component characteristics in network-based models. In Zhang and Tse’s

work [68], the DC power flow model was used to address the power flow re-balancing

process in the propagation of cascading failure and point out the importance of con-

sidering the global mechanism. This has changed the path of study significantly from

previous works that assumed the failure propagation being driven by a local mecha-

nism similar to classical spreading or diffusion. Consistently, Hines et al. [60] also

pointed out that two consecutively failed power elements might be located very far

from each other due to the global power re-distribution effect.

The use of complex network concepts has offered new insights in robustness as-

sessment of power grids. Inspired by the concept of betweenness from network sci-

ence, Bompard et al. [111] introduced an extended betweenness parameter which is

superior to topological betweenness for identification of critical components in power

grids. Dwivedi et al. [112] developed an approach using maximum-flow-based com-

plex networks to identify vulnerable lines through evaluating the capacity in power sys-

tems. Moreover, by using a realistic large-scale modeling and analysis method, Yang

et al. [113] found that small vulnerable sets in power systems dominate the cascad-

ing failure process. It is now generally agreed [114] that the vulnerability assessments

become more reliable if the electrical characteristics of power grids can be captured,

although the complexity of the network-based analysis would be increased. Moreover,

network topology is still central to robustness assessment as it determines power flow

distribution in the system, although the physical power flow process involving elec-

trical properties of all components remains indispensable. Thus, from the foregoing

review, a system-level analysis involving network structure and physical properties of

components is necessary for realistic robustness assessment [115, 116, 117].

The main objective of this chapter is to offer a system-level method to assess the ro-

bustness of power systems using a network-based model. Most robustness assessment

strategies studied so far have emphasized on the final status when cascading failure
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propagation is completed. For instance, the number of failed elements or eventual

power loss are used as the key metrics for evaluating vulnerability of power systems.

Our previous model [101], however, captures an abrupt increase in the number of failed

links in a power system during the failure propagation process, which is fully consis-

tent with real historical data. We define a time point called onset time as the time after

which the propagation rate increases rapidly. It is found that the onset time plays an

essential role in the analysis of cascading failure. Before this onset time, the cascading

failure occurs very slowly and protective action may be taken in time to reduce the risk

of a fast and large-scale power blackout. A recent study [118] also suggested that op-

erators can manage a contingency plan before the failures increase rapidly if they have

sufficient time to react to the cascading failure. However, a short onset time would

make protective actions very challenging. Therefore, in this chapter, based on the on-

set time and blackout scale (final number of failed components in a power network)

captured from each simulated scenario of cascading failure, we classify the links in a

power network into three types, denoted as Type I, Type II and Type III power lines.

A Type I power line is a power line which, upon failure, does not lead to cascading

failure of the system. A Type II or III power line, however, upon failure, will lead to

cascading failure of the system. Moreover, the cascading failure caused by failure of a

Type II line has a relatively long onset time. Thus, the most concerned ones are Type

III power lines which make the system more vulnerable to failure because their initial

failure would result in a dramatically fast and large-scale cascading failure. Through

implementing the proposed method which requires extensive simulations, we have a

qualitative view of the vulnerability of a few selected power systems of different scales.

Moreover, we introduce a decision tree-based learning procedure to extract signifi-

cant network-based features relevant to the robustness of power networks. In this chap-

ter, we consider one particular solution to reducing the vulnerability of power networks

to cascading failure. This procedure involves minor rearrangements of the topology of

the grid. Specifically, a rewiring scheme is implemented by reconnecting a small quan-
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tity of edges in the power network while the network size and degree distribution are

unchanged. As demonstrated in a previous study [119], small changes in the network

structure may effectively improve the robustness of power grids. In this chapter, a

number of rewired power networks originated from the UIUC-150 bus power system

are collected as the input of the learning algorithm and then a decision tree is gener-

ated. It is demonstrated that the tree involves three significant network-based features,

including average shortest path length, average clustering coefficient and average ef-

fective resistance (distance) to nearest generator of all consumer nodes, which define

the tree forming rules. The rules are applied to generate a power network of lower

vulnerability. Experiments show that a power network has higher robustness against

cascading failure if its topology exhibits fewer random network properties, namely,

longer average shortest path length and more decentralized generator distribution.

4.2 Model of Cascading Failure Propagation in Power

Systems

In this chapter, we adopt the model introduced in Section 3.1, which aims to simulate

propagation process of cascading failure in power systems. The model combines a

circuit-based power flow model and a stochastic model. In particular, the objective of

the former model is to determine the failure sequence according to the extent of over-

loadings of individual power elements while the later model is to describe the dynamic

changes in power systems such as the uncertain time instants of failure. To generate

a dynamic propagation profile of cascading failure initializing from a dysfunctioned

power element and developing eventually to a large-scale power outage, the simula-

tion is run by following the steps given in the flow chart in Fig. 3.5. The key steps

include the DC power flow calculation, the overloading effect of power elements and

the stochastic process of failure.
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4.3 Methodology of Vulnerability Assessment Based on

Cascading Failure in Power Systems

In a prior work [68], two robustness parameters, namely, percentage of unserved nodes

(PUN) and percentage of noncritical links (PNL), were proposed to assess the robust-

ness of power system. In this chapter, witnessing the existence of a critical parameter

called onset time in the profile of failure propagation, both from simulations [101] and

historical data, we extend the methodology to quantitatively assess the vulnerability

which takes robustness from a reciprocal perspective. In other words, a highly vulner-

able power system is not robust.

The extended method consists of three main steps: 1) detecting onset time in the

failure propagation process, 2) mapping onset time to a vulnerability index, and 3)

assessing the systematic vulnerability of a power grid. Vulnerabilities of five selected

power systems will be presented and analyzed.

4.3.1 Detection of Onset Time

The onset time is defined as the time when the number of failed nodes in a power grid

begins to increase sharply during the propagation process. To identify the onset time,

we apply the method developed by Goswami et al. [2], aiming to detect the abrupt

transition in time series.

An illustration of the detection of the onset time is shown in Fig. 4.1. Fig. 4.1(a)

plots the number of power elements (here, transmission lines are considered) being

removed as time elapses. Here, the number of removed power links is denoted as

NFL(t). Also, we characterize one complete propagation process of cascading failure

as a cascading failure scenario, which is like an analog blackout event as shown in

Fig. 4.1(a). From Fig. 4.1(a), we see that tonset ≈ 2044 min. In other words, in this

cascading failure scenario, a fast cascading failure occurs after t = 2044 min,
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Figure 4.1: Detection of onset time using Goswami et al.’s method [2]. (a) Propagation
profile of cascading failure; (b) recurrence matrix as heat map; (c) differential value
indicating locations of large increments.

The occurrence of a dramatic increase in the number of failed power components is

a typical kind of abrupt transmission in time series. Using Goswami et al.’s method [2],

the first step to detect abrupt transmission is to transform the time series data NFL(t)

into a recurrence matrix [120], which effectively quantifies the temporal evolution of

the observable. The recurrence matrixR is a symmetric matrix consisting of recurrence

probabilities [120]. Basically, each element R(i, j) represents the difference between

time series data NFL(ti) and NFL(t j). Based on the recurrence matrix presented as a

heat map as shown in Fig. 4.1(b), we derive a statistical value called differential value,

denoted as dvalue. By using a sliding window from t1 to t2, dvalue is used to evaluate how

similar the recurrence probabilities are within a sliding window. In particular, dvalue is

given by
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dvalue =

∑tm
i, j=t1 Rij +

∑t2
i, j=tm Rij

∑t2
i, j=t1 Rij

(4.1)

where tm is the mid-point between t1 and t2 of the current sliding window, i.e., tm = (t1+

t2)/2. Specifically, the numerator includes two sums of the elements in two recurrence

matrices, namely, one is within the time duration [t1, tm] and the other one is within the

time duration [tm, t2]. In the denominator, the summation includes all elements in the

recurrence matrix within [t1, t2]. One extreme case is that if elements in R within the

sliding time window are all the same, then dvalue is equal to 0.5.

If there are different densities of colors displayed in the heat map within a time

window as shown in Fig. 4.1(b), the value of dvalue is smaller than 0.5. For instance,

from Fig. 4.1(b), when tm is around 2000 min, the densities of colors show that both

recurrence matrices corresponding to two time slots [t1, tm] and [tm, t2] are having

smaller recurrence probabilities compared with the other recurrence probabilities out-

side the two recurrence matrices in the time window [t1, t2]. Thus, by plotting dvalue

versus time tm, and as the sliding window moves along the diagonal of the entire R as

shown in Fig. 4.1(b), we identify the smallest value of dvalue, which corresponds to an

abrupt transition. In this example, tm ≈ 2050 min. In summary, tm is identified as the

indicative time where dvalue is smallest, and hence provides a reference for finding the

onset time in a cascading failure scenario.

4.3.2 Mapping Onset Time to Vulnerability

In this section, we introduce an empirical vulnerability index based on the onset time

observed in a cascading failure scenario. Here, we also define rescue time, denoted

as Trescue, which is the minimum acceptable duration taken by the system to recover

the power system from serious cascading failure. Thus, when there are sufficient re-

sources such as monitoring and restoration systems that can be utilized to protect the

power grid [121], Trescue should be small. Typically, a smaller Trescue indicates a faster
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response for protection, hence greater tolerance to cascading failure. Thus, Trescue can

be regarded as the critical value of tonset, distinguishing safe and vulnerable scenar-

ios. When tonset ≥ Trescue, the power system is considered safe. Moreover, when

tonset < Trescue, the power system will exhibit an inevitable cascading failure, which

corresponds to a vulnerable scenario.

To assess the vulnerability of the power system, we simulate a large number of

cascading failure scenarios for each power component chosen as an initial failed com-

ponent and removed from the power network. Then, the vulnerability of power com-

ponent i is evaluated based on the relative frequencies of safe and vulnerable scenarios

resulted from initial failure of this component, i.e.,

Vi =
Nsim |tonset<Trescue

Nsim
(4.2)

where component i is initially tripped in one cascading failure scenario and a total of

Nsim simulations are run. Basically, the vulnerability index Vi of component i is the

percentage of cascading failure scenarios with tonset < Trescue. Furthermore, a threshold

denoted as Vcritical can be set to find out whether the selected component would likely

result in a vulnerable scenario when it is initially tripped. In particular, if Vi ≥ Vcritical ,

a vulnerable scenario is expected when component i fails.

The final size of the blackout marked by the number of the failed links NFL(tfinal)

at the end of one cascading failure scenario is another key parameter reflecting the

severity of a power outage. Thus, setting a threshold called NFLcritical, we expect a

large-scale power outage if NFL(tfinal) ≥ NFLcritical . Specifically, a fast and large-scale

cascading failure scenario can be identified by checking, respectively, tonset ≥ Trescue

and NFL(tfinal) ≥ NFL(tcritical).
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Figure 4.2: Three types of power lines observed in failure propagation in power net-
works. (a) Type I: no significant number of failed links; (b) Type II: significant number
of failed links but relatively long onset time; (c) Type III: significant number of failed
links and relatively short onset time.

4.3.3 Systematic Vulnerability Assessment

In order to gain a practical understanding of how vulnerable a power network is, we

classify the power components in the power network into three types.

1. Type I components: A Type I power component is a power component which,

upon failure, does not lead to cascading failure of a significant scale. Here,

failure of power components leading to NFL(tfinal) < NFLcritical is regarded as

insignificant, as shown in Fig. 4.2(a).

2. Type II components: A Type II power component, upon failure, will lead to cas-

cading failure of the system, meeting the criteria NFL(tfinal) ≥ NFLcritical . More-

over, the onset time is longer than Trescue, thus allowing recovery in time. An
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example is shown in Fig. 4.2(b).

3. Type III components: A Type III power component, upon failure, will lead to

cascading failure of the system with a significant number of subsequent failed

components, i.e., NFL(tfinal) ≥ NFLcritical . Moreover, the onset time is shorter

than Trescue, making recovery difficult, as shown in Fig. 4.2(c).

4.3.4 Assessment Results

We run simulations according to the aforementioned method to assess the vulnerability

of five selected power systems, including UIUC 150-Bus power system (UIUC150),

South Carolina 500-Bus power system (SC500), SouthChina 612-Bus power system

(GD612), European 1354-Bus power system (EURO1354) and Texas 2000-Bus power

system (TEXAS2000). We launch a possible cascading failure scenario by setting

an initial fault in a power line. For each initial line failure, we perform 1000 simu-

lations, i.e., Nsim = 1000. Furthermore, Vcritical and NFLcritical are set to 0.75 and 10,

respectively, to provide a specific condition for the vulnerability assessment of the five

selected power networks based on the three categories of power lines. In other words, a

power line is classified as Type III when 75% or more of vulnerable scenarios are gen-

erated from the 1000 simulations. Moreover, a cascading failure is significant when

ten or more power lines fail eventually.

Table 4.1: Assessment results of selected power systems.

UIUC150 SC500 GD612 EURO1354 TEXAS2000
Nnode 150 500 612 1354 2000
Nlink 203 584 852 1710 2667
NT1/PT1 90 / 44% 269 / 46% 344 / 40% 1123 / 66% 827 / 31%
NT2/PT2 50 / 25% 170 / 29% 112 / 13% 192 / 11% 327 / 12%
NT3/PT3 63 / 31% 145 / 25% 396 / 47% 395 / 23% 1513 / 57%

Table 4.1 shows the assessment results for the five selected power networks. The



4.4. NETWORK-BASED FEATURE EXTRACTION 79

first two rows give topological information of the power networks including the num-

ber of nodes Nnode and the number of links Nlink . We intentionally select five power

systems with different scales. In rows 3, 4 and 5, the quantities and percentages of three

different types of links are presented, as denoted to NT1/PT1, NT2/PT2 and NT3/PT3.

Specifically, the percentages of Type III power lines shown in the 5th row are the in-

dicative values for vulnerability since failure of Type III power lines induces fast and

large-scale cascading failure [58].

In GD612 and TEXAS2000, around 50% of the power lines are Type III, and in

other three power networks, less than a third are Type III. In other words, GD612 and

TEXAS2000 are more prone to a fast and large-scale cascading failure. The above

simulation-based assessment of robustness of a power network clearly points to the

importance of reducing the number of Type III power lines for improvement of ro-

bustness. In the following we will investigate how fewer Type III power lines can be

achieved through altering topology and other properties.

4.4 Network-Based Feature Extraction

Network topology plays an important role in determining the vulnerability of power

grids to cascading failure. In most of the previous work surveyed in [14, 40], a network

approach utilizing a single network feature, such as degree distribution or small-world

property, has been considered for robustness enhancement. To further forecast the

robustness of power grids from a complex network’s perspective, we present here a

decision tree-based learning model to generate rules in terms of a set of network-based

features. Specifically, three network-based features are considered, namely, average

shortest path length, average clustering coefficient and average effective resistance

(distance) to a nearest generator of all consumer nodes.
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4.4.1 Decision Tree Learning Model

Decision tree-based learning models are widely used in the field of machine learning,

especially for data regression and classification [122]. In particular, a decision tree

exhibits the capability of predicting the relationship between a criterion variable and

one or more independent variables. It can also perform classification on a set of ob-

servations. In addition, the results obtained from decision trees are easy to understand

and interpret because of their visual representations.

The main objective of adopting a decision tree-based learning model is to extract

relevant network-based features that enhance robustness of power networks by chang-

ing the network topologies. In other words, via the decision tree, we learn how a power

grid can be made less vulnerable through adjusting the network-based features. Basi-

cally, we formulate the networks’ robustness enhancement as a classification problem.

The given power network is being “updated” by changing its topology. The updated

power networks denoted as Gud are classified into either “safe” or “fragile” power

networks, which serve as two assessors. When the value of PIII representing the per-

centage of Type III power lines in the updated power network is smaller than that of the

original power network, we assign a “1” to the assessor of this updated power network,

indicating a “safe” power network. Otherwise, a “0” is assigned to the assessor. The

predictors in this decision tree model are the network-based features.

A typical decision tree consists of a number of decision nodes, one being a root

node and others being leaf nodes. The production of a decision tree starts from the

root node and finishes when no more decision node can be split into leaf nodes. At

each decision node, one of the predictors is selected [123]. The split criterion used

here is the node error, which is defined as the fraction of misclassified networks at a

node. According to the split criterion, in a leaf node labeled as a set of “safe” power

networks, there are actually 10% “fragile” power networks, which are viewed as the

misclassified networks, and the node error is 0.1. For example, in the root node, if a
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Figure 4.3: Flow chart for generating an appropriate decision tree.

smaller node error can be achieved by choosing Predictor A (a network feature) to split

the data, Predictor A is the appropriate attribute for the root node.

A decision tree can be generated from the dataset including predictors and asses-

sors. However, relevant features may not be readily extracted unless the predictors

chosen are positively or negatively correlated with the assessors, thus clearly indicat-

ing how network features should be modified to achieve more robust power networks.

Thus, in order to get more practical predictors, we design the following algorithm to

generate a sound decision tree.

The algorithm presented by the flow chat shown in Fig. 4.3 takes the following

steps,

• Step 1: The minimum number of branches in a leaf node, which represents the

minimum number of power networks being observed in a leaf node, is set. A

larger minimum number of leaf nodes gives a simpler decision tree.
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• Step 2: Feeding the input dataset (predictors and assessors) into the learning

model, a decision tree is initially generated. Then, by reducing the minimum

number of branches in a leaf node, the decision tree is formed by iteration until

a standard tree consisting of at least one decision node and two leaf nodes is

generated.

• Step 3: For a generated standard tree, the node error e in classifying power net-

works as “safe” power networks is found for all the leaf nodes. For instance, for

a leaf node of power networks classified as “safe”, if 25% are actually “fragile”,

then e is equal to 0.25. Furthermore, if the minimum value of e (denoted as

emin) among all the leaf nodes is less than a given threshold eth, the split criterion

in terms of increasing or decreasing the values of predictors will achieve more

robust power networks is determined. Otherwise, the iteration resumes at Step

2.

4.4.2 Network-Based Features

Significant network-based features of a power grid are used in this chapter for enhanc-

ing the robustness of power grids. We have tested the significance of more than 10

network-based features and eventually selected the following three.

1. Average Shortest Path Length (L): the mean value of the shortest paths between

each pair of nodes in the network [124], i.e.,

L =
1

N(N − 1)

∑

i! j

di j. (4.3)

where N is the total number of nodes and di j is the shortest path between nodes

i and j.

2. Average Clustering Coefficient (Γ): a local metric to measure the density of tri-

angles in a network. A triangle is formed if two nodes that are connected to a
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third node are also connected to each other. Thus, for each node i in a network,

there is one corresponding clustering coefficient Γi [124]. For the entire network,

the average clustering coefficient is

Γ =
1
N

∑

i

Γi. (4.4)

3. Average Effective Resistance (Distance) to a Nearest Generator of All Consumer

Nodes (D): a measure of the accessibility to generators of all power consuming

loads in a power network, i.e.,

D =
1

(N − g)

∑

i∈N\G

d(i) (4.5)

where N \ G is the set of nodes excluding the generator nodes, N is the total

number of nodes, and g is the number of generators, d(i) represents resistance

distance of node i to its nearest generator introduced in the previous study [68].

Both Average Shortest Path Length and Average Clustering Coefficient reveal the

major characteristic of the network structure of a power grid. A network exhibiting a

short L and a large Γ is classified as a small-world network from the network science’s

viewpoint [1]. Recent studies have found that power grids displaying the small-world

property have higher robustness [40]. Moreover, Average Effective Resistance (dis-

tance) to a Nearest Generator of All Consumer Nodes reveals the location information

of generators in a power network. A smaller D implies that generator distribution is

more decentralized in a power network. It has been found [68] that decentralized power

source nodes exhibiting a smaller D reduces the vulnerability of the power network to

cascading failure.
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4.5 Results and Discussion

Experiments have been conducted to demonstrate the effectiveness of the decision

tree learning method for improving power grid’s robustness against cascading fail-

ure. Based on the UIUC 150-bus power system, a number of updated power net-

works (modified topologies) are acquired by edge modification. By implementing the

learning model, we derive a set of rules using three network-based features to predict

whether the updated power network is more robust, and then compare with the ratio of

Type III power lines in a power network found from simulations.

4.5.1 Enhancing Robustness via Topology Modification

The goal of improving the robustness of a power network is to reduce the number of

Type III power components. In this chapter, we consider lowering the vulnerability

of power networks by changing the topology. Once a large power network is estab-

lished (evolved over time), redesigning a new power network seems rather difficult.

Thus, the initial planning (design) of a power grid has traditionally incorporated ro-

bustness consideration [125, 126]. However, allowing transmission switching [127]

in existing grids is a feasible means of improving robustness via topology modifica-

tion, as demonstrated by Beygelzimer et al. [128]. Here, to modify the structure of an

available power network, we propose a rewiring scheme, based on the work of Wang

et al. [129], with several practical constraints imposed. Basically, a fraction p of the

edges in the power network are rewired while keeping the total number of edges for

maintaining consistency of the network size [44]. Moreover, we impose two practical

constraints. First, after rewiring an edge, we preserve the admittance of the power line.

Second, since excessive modification of the grid’s topology is economically infeasible,

we perform less than 10% edge rewiring, i.e., p < 0.1. By using the rewiring scheme,

we generate updated power grids or candidate networks which might be more robust

compared with the original one. After rewiring, the numbers of nodes and edges keep
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Figure 4.4: UIUC 150-bus power system before edge modification. Numbers of Types
I, II and III (thickest edges) power lines are 90, 63, and 50. Edge modification involves
removing edges (19, 23), (21, 29) and (39, 140).

Figure 4.5: UIUC 150-bus power system after edge modification. Numbers of Types I,
II and III power lines (thickest edges) are 107, 51, and 45. Edge modification involves
adding edges (19, 90), (21, 33) and (106, 140).

unchanged.

An example of enhancing the robustness of UIUC 150-bus power system is illus-

trated in Figs. 4.4 and 4.5. Three edges are removed, as shown in Fig. 4.4, and then

three new edges are added, as shown in Fig. 4.5. It is found that after edge modifi-
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Figure 4.6: Rules derived by comparing the original and updated networks. Updated
network is generated by decision tree with eth = 0.25. Split condition at decision node
uses either network-based feature L, Γ or D.

cation, the number of Type III power lines are reduced in the updated power network

indicating am improved robustness of the updated power network. In particular, most

of the Type III power lines near the three removed edges have become either Type I or

Type II lines while very few new Type III lines are created by adding the new edges.

In the following subsection, we demonstrate how the robustness of a power grid can

be enhanced by rewiring edges in a power network according to some network-based

features.

4.5.2 Rules Construction

A decision tree is generated by implementing the algorithm given in Section 4.4.1.

Referring to the example shown in Fig. 4.6, the tree contains three decision nodes and

four leaf nodes. Both decision nodes and leaf nodes display the percentages of “safe”

power networks Psafe and “fragile” power networks Pfrag. Furthermore, the split condi-

tion based on a network-based feature is given in each decision node. For example, in

the root node (the top decision node), the split condition is D ≤ 0.81, satisfing which

will give more “safe” power networks. Otherwise, D > 0.81 results in more “fragile”

power networks among the updated power networks.

Suppose Lu, Γu and Du denote the Average Shortest Path Length, Average Clus-

tering Coefficient and Average Effective Resistance (distance) to a Nearest Generator

of All Consumer Nodes of the updated network, respectively. Also, Lbase, Γbase and
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Dbase denote the corresponding attributes of the original network. A set of six rules is

proposed for enhancing the robustness of the network against cascading failure. These

rules are:

Rule I: Lu > Lbase

Rule II: Γu > Γbase

Rule III: Du < Dbase

Rule IV: Lu > Lbase and Du < Dbase

Rule V: Lu < Lbase and Γu > Γbase

Rule VI: Lu < Lbase and Γu < Γbase and Du < Dbase

The aim is to generate networks via iterative topology updates involving rewiring of

links that complies with these rules.

4.5.3 Effectiveness Verification of Enhancement Rules

To verify the effective of the aforedescribed enhancement rules, we compare the rule

compliant and non-compliant networks using the test algorithm summarized in the

following three steps and illustrated by the flow chart shown in the Fig. 4.7.

• Step 1: An updated power network is generated by implementing the rewiring

scheme mentioned in Section 4.5.1.

• Step 2: The network-based features of the updated power network are checked

for compliance with a chosen rule. For example, if Rule I is chosen, then the

Average Shortest Path Length of the updated power network is compared with

the original network’s. On compliance, go to Step 3. Otherwise, return to Step

1.

• Step 3: The vulnerability of the updated power network is assessed by calcu-

lating the percentage of each type of power lines. The iteration ends until a

minimum number of “safe” power networks Nth are obtained.
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Figure 4.7: Flowchart for verifying the effectiveness of the rules for enhancement of
robustness of the rewired power grid.

To evaluate the effectiveness of each rule used for enhancing the robustness of

an updated power network, we find the number of successful generations of “safe”

power networks denoted as Nsafe and the total number of power networks simulated

for assessment of the robustness of power systems, which is given by Nast. Basically,

since at least Nth “safe” power networks are required, a smaller Nast reveals a higher

effectiveness of the corresponding rule, which gives more updated power networks

exhibiting lower vulnerability to cascading failure.

The values of Nast, Nsafe and Nfrag (the number of “fragile” power networks assessed

by simulation) are shown in Fig. 4.8. Rule VI makes the largest contribution to filtering

more “safe” power networks in terms of the ratio Nsafe/Nast. Although Rule I and Rule

II based on one single feasible remove at least 50% of “fragile” power networks, the

better performance of Rule VI demonstrates the combined use of L and D in reducing

Type III power lines. In particular, updating the network topology of the original power

network by increasing L and reducing D results in updated power networks having

enhanced robustness. This finding shows the superiority of the decision tree-based
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Figure 4.8: Effectiveness of rules on robustness enhancement of power networks

learning model in providing an understanding of the use of multiple network-based

features in enhancing robustness of power networks.

The results also have two remarkable implications about the effect of network

topologies on the robustness of power grids. First, increasing L of a power network,

which implies weakening the small-world property, can improve robustness against

cascading failure [40]. Second, reducing D, which means more decentralized power

source distribution, can lower the vulnerability of a power network to cascading failure,

which is consistent with the early study [68].

4.6 Summary

Enhancing the robustness of power systems plays an essential role in maintaining re-

liable electricity supply that is needed for almost all residential, industrial, business

and governmental activities. In particular, the risk of a fast and large-scale blackout

should be kept to minimum. In this chapter, we develop a system-level method to

assess the vulnerability of power systems. Specifically, the vulnerability is evaluated

through examining a parameter called onset time that can be detected in a failure cas-

cade profile, which reveals the rapidity of cascading failure. Moreover, we propose a

decision tree-based learning model to extract significant network-based features which

can become effective indicators for enhancing the robustness of power networks. One
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way to reduce the vulnerability of a power network to fast and large-scale cascading

failure is to perform minor rewiring of edges. Numerous rewired power networks are

collected as the input for the learning model. A decision tree that uses some significant

network-based features, together with a set of rules, provides an effective procedure for

reducing network vulnerability. Experimental results reveal that a power network has

higher robustness against cascading failure if its topology exhibits less random features

and more decentralized generator distribution. It is expected that future study employ-

ing the decision tree-based learning model will discover more crucial network-based

attributes that guarantee reduced vulnerability of power systems.



Chapter 5

Cascading Failure of Cyber-Coupled

Power Systems Considering

Interaction Between Attack and

Defense

In the previous chapter, we have proposed a system-level method to assess the vulner-

ability of power systems from a complex network’s perspective using decision trees.

In this chapter, we develop a network-based model with consideration of the physical

power flow process to study the cascading failure in cyber-coupled power systems. We

take the coupling between power and cyber networks as being resulted from the inter-

dependence of power nodes and cyber nodes. Interaction between two processes, one

aiming to attack (cause damage) and the other aiming to defend (protect) the compo-

nents in the power network, is considered in the model. This interaction offers a novel

perspective to interpreting the interdependence of power and cyber networks. To study

how an attacker or defender deploys resources to attack or protect a power component,

four strategies in distributing the attack and defense strengths are considered, namely,

even distribution, degree-based distribution, capacity-based distribution, and random

91
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distribution. To probe into the actual propagation process of a blackout, we define four

critical time points, namely, start time, attack time, isolation time and end time, and

use these time points to analyze and evaluate the effectiveness of different attack and

defense strategies. The tit-for-tat defense strategy, in which defender adopts the same

strategy as the attacker, is found to be the preferred defense strategy under most condi-

tions. Moreover, allocating defense strength in terms of capacity-based distribution can

most effectively suppress cascading failure. This finding was not obtainable without

due consideration of the physical power flow process in network-based models.

5.1 Introduction

Cyber-physical systems have emerged as essential networked systems that enable the

incorporation of computational and intelligent management capabilities provided by

sophisticated computer networks in critical applications for residential, commercial,

industrial and military uses [18]. A cyber-physical system is a physical system in-

tegrated with cyber networks. The cyber part of the system provides intelligent and

efficient monitoring, control, computing and communication functions [19]. Real-

world examples of cyber-physical systems are numerous, and the smart grid is one

particularly important example. A smart grid is an electric power distribution network

supported by advanced cyber networks, which is a critical infrastructure delivering

power to a large population of users [20]. Cyber security has become a key challenge

to power delivery systems due to the involvement of cyber networks that makes smart

grids vulnerable to attacks via cyber coupling [21]. For instance, in December 2015,

the attack of computer malware from cyber networks severely caused the outage of

the Ukrainian power grid, demonstrating that the cyber attack on power grids was no

longer a fictional event.

The modeling of cascading failure has taken either a network science’s or an elec-

trical engineering perspective, and the aim is to investigate the vulnerability of power
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systems and reduce the likelihood of occurrence of power outage. By applying the

methodology of complex networks, which is effective for analyzing large-scale and

real-world networks [8, 130, 12], cascading failure in a power network can be exam-

ined in terms of a series of nodes’ or links’ failure, where nodes represent power sub-

stations and links are the transmission lines. On the other hand, researchers in the area

of power systems pay more attention to the stability of power grids such as the problem

of voltage collapse [103]. Moreover, recently, combined models have been considered,

incorporating the actual operational processes into the network-based models [114].

As modern smart grids become increasingly reliance on cyber assets such as smart

power meters, intelligent sensors and controllers, cyber attacks have become real threats

to power grids. Moreover, SCADA (Supervisory Control and Data Acquisition) sys-

tems that facilitate maintenance of smart grids are themselves vulnerable to cyber at-

tacks. In particular, an attacker may try to gain access to SCADA systems and per-

form malicious actions on power systems [131], for instance, by causing de-synchroni-

zation [132] or erroneous state estimation [133].

Network-based studies have recently been shifted to cascading failure in interde-

pendent networks. Here, interdependent networks, or coupled networks, refer to one or

more networks coupled together. Buldyrev et al. [17] initially studied cascading failure

in interdependent networks for the purpose of assessing their vulnerabilities to attacks.

In their work, an interdependent (coupled) network consists of a communication net-

work and a power grid with the description of an iterative process of cascading failure.

Although the highly abstracted and generalized network-based model offers a conve-

nient framework permitting the use of statistical physics, it is challenging to implement

these high-level models to real-world cyber-physical systems. The main reason is the

omission of the underlying physical processes in these high-level network-based mod-

els. For instance, Kirchhoff’s laws and electrical properties of components are crucial

in generating the necessary power flow distribution in a power network, and the pro-

tocols for traffic control play a crucial role in data transmissions in communication
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networks. Ignoring these physical processes and properties often lead to unrealistic

models and sometimes inconsistent results. Thus, this is one of the main concerns to

be addressed here in this chapter. Accordingly, by incorporating physical processes in

modeling cyber-coupled power systems, consistent results and useful insights can be

obtained in relation to the practical operation and performance of the coupled system.

Through using a network-based model, node electrical centrality can be effectively

identified by adopting an AC power flow model [63], and the robustness of interdepen-

dent power grids and communication networks can be effectively assessed by using a

DC power flow model [134].

One central challenge in modeling cyber-coupled power systems is the interpre-

tation of the interdependence between cyber networks and power networks. The in-

terdependence can be modeled by adopting percolation theory in the aforementioned

pure network-based models, which is, however, not readily applicable to practical sys-

tems. Thus, the modeling of interdependence in coupled networks, being another main

concern, has been widely carried out with realistic engineering considerations. For

instance, Cai et al. [73] developed an interactive model to analyze cascading failure

in interdependent systems by considering the interdependence between power systems

and the dispatching data networks. In Cai et al.’s model, the tripped power compo-

nents in power grids may cause abnormal function of data centers in cyber networks,

while failure of any component in cyber networks may cause overloading of some

power lines. To understand the various forms of practical interdependence between

power systems and cyber networks, Wang et al. [74] investigated the effect of multiple

cyber attacks including denial-of-service (DoS) attacks, replay attacks, and false data

injection attacks on cascading failure in electrical cyber-physical systems. Despite

the increased complexity of the problem when technical details are included in the

network-based model, identification of the parameters affecting networks’ robustness

is still of highest practical significance.

In the previous studies of cascading failure in cyber-coupled power systems, mal-
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ware propagation is assumed to be completed at the time of attack and the attacker

has full knowledge of the power grid. However, in reality, cyber attack can also be

launched under incomplete information of power grids [135]. Also, the effect of con-

tinuous spreading of the malware on the cyber network has not been considered while

power grids are being attacked. Thus, another main concern is the lack of proper

models for investigating the cascading failure in a power grid coupled with the cy-

ber network while the malware spreading is still proceeding on the cyber network.

The model introducted in Section 3.2 was developed to study the effect of cyber cou-

pling on cascading failure, and significant difference has been found in the cascading

failure in cyber-coupled power systems compared to the propagation process of mal-

ware spreading on the cyber network and cascading failure in the uncoupled power

system. This model provides an engineering perspective to assessing the vulnerabil-

ity of cyber-coupled power systems, which can be viewed as a practical extension of

the network-based model proposed earlier [17]. However, up to now, the essential in-

teraction between attack and defense strategies has still been omitted in the study of

cyber-coupled power networks. Ma et al. [136] developed a Markov security game

model to offer an insight into how the attacker and defender decide to deploy finite re-

sources to attack and defend the power components during the processes of sequential

and intentional attack [51, 112].

In this study, we aim to develop one network-based model to comprehensively

address the above-mentioned three concerns, namely, the incorporation of the power

flow model, the interdependence between attack and defense, and the effect of malware

spreading while cascading failure proceeds over the power network. Moreover, we ex-

amine four types of attack and defense strategies targeting power components, and

study their interactions. The attacker aims to cause dysfunction of critical components

in order to intensify the severity of power outage, while the defender attempts to pro-

tect the components of high vulnerability to reduce the risk of cascading failure. The

attack and defense resources are allocated according to four strategic distributions: 1)
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Even Distribution, 2) Degree-based Distribution, 3) Capacity-based Distribution, and

4) Random Distribution. The main contributions are summarized as follows:

1. With the incorporation of the physical process for modeling the cascading fail-

ure in power systems, our study offers consistent and practical insights into the

choice of defense strategies that can reduce the severity of cascading failure un-

der various circumstances of attack strategies and resource availabilities.

2. We consider the interdependence between the power network and the cyber net-

work in terms of interactions between attack and defense. From a complex net-

work’s perspective, we provide an analytical basis for studying the essential in-

teraction between the two processes, one aiming to attack and the other aiming

to defend the components in the power network.

3. By probing into the propagation profiles of malware spreading and failure prop-

agation in the coupled power system, our study provides a complete mural de-

scribing the various combinations of attack and defense strategies under various

coupling conditions, and how they affect the severity of cascading failure.

5.2 Model

In this section, we describe the model used in studying cascading failure in cyber-

coupled power systems introduced in Section 3.2. Moreover, in this chapter, we com-

plete the model by incorporating the process of malware attacks from the cyber net-

work. The model is implemented to simulate the propagation patterns of cascading

failure under various combinations of attack and defense strategies.

5.2.1 Cyber-Coupled Power Systems

We consider a cyber-coupled power system consisting of a power grid and a cyber net-

work. The mechanism of cascading failure in this coupled system is governed by two
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Figure 5.1: Coupled network consisting of a cyber network and a power network, with
state transitions showing infection of a cyber node, overload tripping of a power node
and attack to a power node from a cyber node.

main processes. First, the power flow distribution of the power grid is determined by

the network connectivity (topology) and the physical laws that govern the voltage and

current distribution in the network. Second, combined with a stochastic process that

describes the necessary state transitions in the coupled network, the process is com-

pleted to include the effect of cyber coupling on the failure propagation in the network.

In Fig. 5.1, the coupled system is abstracted as a coupled network which consists of

a power network A with NA nodes (shown in the bottom layer) and a cyber network

B with NB nodes (shown in the top layer). The cyber network provides sensing and

control functions, while the power network powers the cyber network. Thus, there ex-

ists an interdependency between these two networks, as denoted by the vertical dashed

connections between nodes in networks A and B.

To practically describe the interconnection between networks A and B, we adopt

the definition of coupling strength [32]. Basically, since not all the nodes in the power

network need to be connected to the cyber network and vice versa, we assume that a

fraction qA of the nodes in network A are affected by the nodes in network B and a

fraction qB of the nodes in network B are affected by the nodes in network A. Here, we

consider one-to-one connection style so that the number of connections NA−B is equal

to qANA = qBNB, with the model extendable to investigate other kinds of connection
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styles.

5.2.2 Dynamics of Cascading Failure

We assume that a cyber node is able to take malicious actions on its coupled power

node when it is infected by a malware. This corresponds to an interdiction attack

pointed out in a recent review work [137]. Thus, in Fig. 5.1, a normal cyber node,

represented by a white circle, can become infected and be represented by a solid black

circle. Following the malware contagion mechanism [97], the infection rate on the

cyber network is given by

µi(t) =
∑

j∈Ω

βi j, (5.1)

where Ω is the set of all infected neighbors of cyber node i and βi j is the rate at which

infected cyber node j infects its neighbor node i. Note that a recovery process may

exist in a real cyber node, which may contribute to suppressing the cascading failure

in cyber-coupled power system. Here, for scenarios of fast cascading failure, we may

take the recovery rate γi(t) as zero. For an infinitesimal time interval dt, the probability

that a state transition occurs under the condition that a cyber node transits from normal

state (represented by 0) to failure state (represented by 1) can be written as

T1 : P[sBi(t + dt) = 1 | sBi(t) = 0] = µi(t)dt. (5.2)

In a power system, a power node, represented by a square in Fig. 5.1, fails to serve

its function either when it is tripped due to power overloading or when it is unserved

because of losing access to any power generator. It is noted that the failure under

the second condition occurs instantly. On the other hand, we represent the tripping

process as a state transition based a stochastic model shown in Fig. 5.1, where a white

square becomes a black solid square. For practical purposes, it suffices to take power

overloading as the dominant tripping mechanism on a power node, which is explained
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in detail in Section 3.1.1.2. When the load of element i is within its capacity, it is

assumed to work in the normal condition and will not be removed or tripped by the

protective relay, namely λi(t) = 0. Instead, when the element exceeds its capacity,

there will be a short delay before it is finally removed. The tripping rate is related

to the extent of overloading. Specifically, if element i is heavily overloaded, it will

be tripped more rapidly compared to the case of slight overloading. Based on this

assumption, the tripping rate in the process, λi, is given by

λi(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ai

(

Li(t) − Ci

Ci

)

, if Li(t) > Ci

0, if Li(t) ≤ Ci

(5.3)

where Li(t) is the power loading of component i, Ci is the capacity of that component,

and ai is the basic tripping rate. In this chapter, the method used for determining

the power loading in the power system is based on a deterministic DC-based flow

model introduced in Section 3.1.1.3. We assume that cascading failure occurs very

fast so that any restoration action is still not taken. Correspondingly, the restoration

rate κ is zero in this model. Thus, when a power node is in normal state, and on the

condition that its coupling cyber node is working normally or it has no coupling nodes,

the probability that a power node transits from normal state (represented by 0) to failure

state (represented by 1) in an infinitesimal time interval dt can be written as

T2 : P[sAi(t + dt) = 1 | sAi(t) = 0] = λi(t)dt. (5.4)

From Fig. 5.1, the vertical dash line connecting a cyber node and a power node

represents the interdependence between the two systems. In particular, we assume that

the cyber component in the cyber network has control over its coupled power compo-

nent (or substation), while the power node supplies power to the cyber network. Thus,

based on the existing coupling structure, when a power node has a coupled cyber node
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which is infected by a computer malware, the power node (in normal state) will be

more prone to failure due to the malicious action of the malware. Thus, we may for-

mulate that the malware infection will increase the state transition rate λi mentioned in

equation (5.3) by an additional term ci(t). The probability that a power node transits

from normal state (represented by 0) to failure state (represented by 1) in an infinites-

imal time interval dt when Bi is infected by computer malware can thus be written

as

T3 : P[sAi(t + dt) = 1 | sAi(t) = 0] = (λi(t) + ci(t))dt, (5.5)

where ci(t) represents the dependence of a cyber node on a power node. Furthermore,

assuming that all cyber components are adequately powered by backup power supply

during cascading failure, the coupling strength of power network to cyber network, de-

noted by di(t), is zero. Thus, cascading failure induced by the coupling between cyber

and power networks is unidirectional in the current study. In other words, the failure of

cyber nodes might cause the failure of power nodes while the failure of power nodes

does not affect cyber nodes. Also, instead of drilling into stability or synchroniza-

tion [138] in communication networks from a control viewpoint, our study assumes

that the controllers in cyber networks are accessed by the attacker once infected by a

malware.

5.3 Attack and Defense Strategies

We consider the interaction between attack and defense to probe further into the way

in which the cyber network interferes the power network. In particular, based on a one-

to-one coupling style, if the power node is coupled with a cyber node, we consider the

power node as a cyber-coupled power node A′i ∈ A′, where A′ is the full set of power

nodes coupled with cyber nodes. Each A′i is influenced by its coupled cyber node in

two distinct ways. The first one is the attack on the power nodes launched by malware
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on the cyber nodes, and the second one is due to the defense action taken through

intelligent control implemented in the cyber nodes. Thus, equation (5.5) becomes

T ′3 : P[sAi(t + dt) = 1 | sAi(t) = 0] = min{(λi(t) + ci(t))dt, 0}, (5.6)

where min{(λi(t) + ci(t))dt, 0} indicates that the probability should be a non-negative

value even when |ci(t)| > |λi(t)|. By considering the interaction between attack and

defense in state transition T ′3, ci(t) is given as

ci(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

χi(t) − ψi(t), if Ai ∈ A′

0, if Ai " A′
(5.7)

where χi(t) and ψi(t) represent the attack rate and the defense rate, respectively, with

the same unit of λ. To determine these two rates, in this study, we propose four types

of attack and defense strategies, as described in the next two subsections.

5.3.1 Attack Strategies

From a attacker’s point of view, when a power node Ai is coupled with a cyber node Bi

which is infected by the malware, the power node Vi is said to be a vulnerable power

node, where V represents the entire set of vulnerable power nodes which is a subset

of the entire power network. In other words, only when a power node Ai becomes a

vulnerable power node, the attack rate χi(t) becomes valid.

Two factors determine the value of χi(t). The first one is the average strength,

denoted by X, which represents the resource available for launching attack on a power

component. In this chapter, X is assumed constant. It is noted that here NA = NV .

The second factor is the attack allocation strategy on V , which may take the following

options:

1. Strategy I – Even distribution S A1: In this case, the attack strength is distributed
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evenly to all Vi evenly. Thus, the attack rate of Ai is given by

χi(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

X, if Ai ∈ V

0, if Ai " V
(5.8)

2. Strategy II – Degree-based distribution S A2: The degree kAi of each power node

is taken as a measure of its criticality. In particular, the attack rate is allocated

according to the node degree, i.e.,

χi(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪
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kAi X
1

NA

∑

Ai

kAi

, if Ai ∈ V

0, if Ai " V

(5.9)

3. Strategy III – Capacity-based distribution S A3: The capacity CAi of each power

node is taken as a measure of its criticality. Here, capacity CAi is actually Ci

given in (3) for the particular node Ai, where Ci = (1 + α) × Ii(normal), and

Ii(normal) is the total current flowing out of a power node under normal load

demand condition. Thus, the attack rate is set according to CAi for Ai, i.e.,

χi(t) =

⎧

⎪

⎪
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⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪
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CAi X
1

NA

∑

Ai

CAi

, if Ai ∈ V

0, if Ai " V

(5.10)

4. Strategy IV – Random distribution S A4: For comparison’s sake, a random allo-

cation strategy is considered. For each vulnerable power node Vi, the attack rate

is randomly assigned. It is noted that
∑

i
χi(t) = NV X.

5.3.2 Defense Strategies

In a likewise fashion, we introduce four allocation schemes for the defense rate ψi(t).

However, unlike the attack rate which is only relevant to vulnerable power nodes vn,
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the defense rate exists on each power node whenever the power node is coupled with

a cyber node. It is noted that here NA = NA′ . Specifically, the value of ψi(t) is assigned

according to the following strategies:

1. Strategy I – Even distribution S D1: In this case, the defense strength is evenly

distributed to each A′i . Thus, the defense rate of Ai is given by

ψi(t) =

⎧

⎪

⎪
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⎪

⎨

⎪

⎪
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⎩

Ψ, if Ai ∈ A′

0, if Ai " A′
(5.11)

2. Strategy II – Degree-based distribution S D2: The degree kAi of each cyber-

coupled power node is taken as a measure of its criticality. Thus, the defense

rate of Ai is designed according to

ψi(t) =

⎧

⎪

⎪
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⎪

⎪
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⎨

⎪
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kAiΨ
1

NA

∑

Ai

kAi

, if Ai ∈ A′

0, if Ai " A′
(5.12)

3. Strategy III – Capacity-based distribution S D3: The capacity CAi of each cyber-

coupled power node is taken as a measure of its criticality, similar to the attack

cases. Thus, the value of ψi(t) is assigned according to CAi , i.e.,

ψi(t) =

⎧

⎪
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⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪
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CAiΨ
1

NA

∑

Ai

CAi

, if Ai ∈ A′

0, if Ai " A′
(5.13)

4. Strategy IV – Random distribution S D4: For comparison’s sake, a random alloca-

tion scheme is also considered. For each cyber-coupled power node A′i , the value

of the defense rate ψi(t) is randomly assigned. It is noted that
∑

i
ψi(t) = NA′iΨ.
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5.4 Analysis of Failure Propagation

5.4.1 Indicative Time Points

In this subsection, we introduce four critical time points to permit detailed time series

analysis. The aim of the time series analysis is to investigate the effect of the launch

time determined by the attacker on the severity of the cascading failure in coupled

systems. The Ukrainian blackout report has highlighted two important points [139,

140]. First, the attacker started shutting down the power grid by action of a malware

which has intruded and diffused over then cyber network for a certain period of time.

Second, the operator of the power system switched from automatic mode to manual

mode of the control operation. This operation was executed to stop the spreading of

failure in the power network caused by cyber coupling. In other words, the switching to

the manual control isolates the infected cyber network from the power system. When

the cyber network carrying malware is disconnected, the power network cannot be

controlled by the attacker. Correspondingly, we define four critical time points to

construct a failure propagation profile.

1. Intrusion time (tinit) is the time when the malware begins to infect the cyber

network.

2. Attack launch time or launch time (tatt) is the time when the attacker launches

the attack. Before t = tatt, the malware can diffuse to more cyber nodes and the

attacker may obtain more information to effectively impair the power grid. It

is noted that tatt ≥ tint and tatt will serve as a variable for examining cascading

failure in coupled systems.

3. Isolation time (tiso) is the time when the cyber network is isolated from the power

system, making the power grid unaffected by the malware. Thus, ci(t) in equa-

tion (5.6) is equal to zero after t = tiso. The value of tiso is determined after
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confirming that the failure is caused by cyber attacks. There are a number of

approaches in the detection of cyber attacks [141, 142]. Here, we implement

one feasible solution, and specifically, we assume that the cyber security scheme

starts to determine whether an attack has been originated from the cyber network

when the first failure of a power network occurs at t = tfail(m) where m indicates

the number of failed power nodes. Here, according to SCADA-specific intrusion

detection applied in power grids [143], if more cyber nodes are infected when the

detection is initialized, the probability that the data containing abnormal activity

can be captured is higher. Thus, it is appropriate to assume that the detection

time is inversely proportional to the number of infected nodes in the cyber net-

work at the time when an action of detection is taken. Here, the tiso is given in

the basic form of

tiso =
TISO

PICN
(5.14)

where TISO is a constant determined by the amount of resource available to the

defender for detecting the intrusion and PICN is the percentage of the infected

cyber nodes at the time when the first power node fails.

4. End time (tend) is the time at which the cascading failure ends. In practice the

power system has its own protection scheme to stop cascading failure within a

period of time. Moreover, if there is no protection scheme terminating a cas-

cading failure, then the propagation failure should end at tend, which is the time

when there is no more power overloading either in nodes or links.

5.4.2 Study of Cascading Failure in Coupled Systems

Simulations of failure propagation in a coupled system can be performed according

to flow chart as shown in Fig. 5.2, which comprises three main processes, namely,

malware spreading on the cyber network, cascading failure in the cyber-coupled power
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Figure 5.2: Flow chart of simulation of failure propagation in a coupled system.

system, and cascading failure in the uncoupled power grid (after isolation is effected).

As a preliminary study, in this subsection, we specifically examine the effect of

launch time on the possible scenarios of cascading failure in the coupled system. We

consider the coupled system comprising the UIUC-150 Bus power system [144] and a

cyber system realized by a Gnutella peer-to-peer network containing 6301 nodes and

20777 edges [145]. We randomly select qANA, where qA = 1 power nodes to connect

with the same number of cyber nodes in one-to-one connection style. In particular,

we consider the entire power network being fully coupled with the cyber network.

Furthermore, in the simulations, we set the current limits as Ci = (1 + α) × Ii(normal),

where Ii(normal) is the total current flowing out of a power node under the normal load

demand condition. In particular, the tolerance index α is set as 0.2, which implies that

the capacity of each power node is 1.2 times larger than its load.

To launch the simulation study, the default parameter settings are set as follows:
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1. The failure rate in power system ai is 0.21 min−1 and the infection rate βi j is

one-tenth of ai.

2. The attack and defense strengths are assumed to be the same, with the assump-

tion that the attacker and defender have the same amount of resources to attack

and defense one power node. Thus, the ratio between two strengths is one, i.e.,

X/Ψ = 1.

3. According to prior reports on malware analysis [146, 147], if a cyber network

is fully infected within several tens of minutes, the malware can be detected

and then the potential cascading failure originated from cyber attacks can be

confirmed. Here, TISO is set as 10 min.

We observe three distinct phases in a full propagation process of cascading failure

in the coupled system. Fig. 5.3 shows three propagation scenarios of the growth in

the number of failure nodes in both power grids and cyber networks. In these three

propagation scenarios, we plot the percentage of failed nodes in the cyber network and

the power network against time. Note that the first malware injection starts at t = 0,

i.e., tinit = 0. The three phases are described as follows,

1. Phase I (tinit ≤ t < tatt): In this phase, the malware is being spread in the cyber

network and continues to obtain information of the power grid. At the same time

the attacker gains access to more control assets. The growing dash line shown in

Fig. 5.3(c) before t < 100 min shows the steadily rising percentage of infected

cyber nodes. Note that there is no Phase I in Fig. 5.3(a) because tatt = 0.

2. Phase II (tatt ≤ t < tiso): In this phase, the attacker begins to launch the attack on

the power system through the invading malware. On the one hand, the malware

continues to infect more cyber nodes. On the other hand, cascading failure of the

cyber-coupled power system starts, and power nodes fail due to both cyber attack

and power overloading. Thus, the solid curve shown in Fig. 5.3(b) between t =
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Figure 5.3: Failure propagation in coupled systems under the condition of random
coupling with (a) tatt = 0; (b) tatt = 50 min; (c) tatt = 100 min.

50 and 80 min displays the rapid growth of failed power nodes. Moreover, a

“staircase-like” pattern is apparent in this phase which can be interpreted as a

combined feature of the typical step propagation profile triggered repeatedly by

cyber attacks due to the network coupling. Moreover, the malware can only

attack the power network in this phase. Thus, this phase can be regarded as

active attack phase.

3. Phase III (tiso ≤ t ≤ tend): In this phase, since the cyber network is disconnected

from the cyber network, cascading failure is caused only by overloading, cor-

responding to transition T1. In particular, as shown in Figs. 5.3(b) and 5.3(c),

the percentage of failed power nodes still increases, consistent with the previous

study [101]. When no more overloading occurs in the power network, cascading
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failure ends at tend.

There are two key observations when different values of tatt are assigned. First, a

larger tatt results in a shorter active attack phase. Second, significant destruction would

be observed in the power system when a sufficiently large number of cyber nodes are

infected by malware. Therefore, we observe over 50% of the power nodes have failed

in the case where 10% of cyber nodes are infected at t = tatt (Fig. 5.3(c)), whereas the

power outage in other cases are far less significant when cyber infection is relatively

smaller at t = tatt (Figs. 5.3(a) and 5.3(b)).

By considering four proposed critical time points, the analysis of the failure prop-

agation broadens the understanding of the cascading failure in cyber-coupled power

systems in two respects: 1) the determination of the launch time has significant im-

pact on the extent and rapidity of the cascading failure in coupled systems; and 2) the

detailed failure propagation process induced by different failure mechanisms includ-

ing cyber attacks and overload-triggered trippings show distinct failure propagation

profiles. Note that these findings offer a complete picture of the cascading failure in

cyber-coupled power systems. Moreover, compared with the work omitting the effect

of the malware spreading process [73], our model here provides a practically consistent

approach to assessing the robustness of cyber-coupled power systems.

In the next section, extensive simulations will be performed to probe into a few

important observations related to cascading failure in coupled systems under different

scenarios of attack-defense interaction.

5.5 Results

In this section, using the aforedescribed model, a large number of numerical experi-

ments are carried out to capture full propagation profiles of cascading failure in the

cyber-coupled power system. The main objective is to gain a comprehensive under-
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standing of how different combinations of attack and defense strategies affect cascad-

ing failure of coupled systems. To fairly assess the extent and severity of cascading

failure in the coupled system under cyber attack, we introduce a metric called Average

Failure Rate (AFR), which is defined as

AFR(tmin, tmax) = NFPN(tmax) − NFPN(tmin)
tmax − tmin

(5.15)

where NFPN(tmax) and NFPN(tmin) are the numbers of failed power nodes at the start

time tmin and the stop time tmax, respectively. Our purpose is to reveal the propagation

process of cascading failure. Clearly, the value of AFR depends on the choice of tmin,

assuming tmax is always the final time. If tmin is chosen as 0, the computed AFR is

the average failure rate over the entire period beginning from the time of launching

the cyber malware. Moreover, if tmin is taken as tatt (i.e., the time when cyber attack

is launched on the power network), the computed AFR is actually the average failure

rate of the power network itself. Therefore, AFR(0, tmax) < AFR(tatt, tmax), and the

appropriate use of AFR will provide useful information on the rapidity and severity of

the cascading failure for the specific application in question.

It should be noted that AFR(tmin, tmax) does not capture the transient of cascading

failure in different phases. In fact, the main focus here is the full process of the cas-

cading failure. Therefore, for a complete event of cascading failure, the start time of

time window is set as tmin = 0 and the stop time is the time when the cascading failure

ends, namely, tmax = tend, which varies among simulation runs. Note that in the sequel,

the values of both AFR(0, tend) and AFR(tatt, tend) are the average values of AFR(0, tend)

and AFR(tatt, tend) over all simulation runs.

5.5.1 Attack and Defense Interactions

When the attacker and the defender adopt different strategies, the cascading failure

propagation can be quite different. To understand the influence of the attacker-defender
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interaction, we organize a set of games in which the attacker and the defender take dif-

ferent attack and defense strategies. The full set of games contains 24 = 16 single

games. Specifically, in each single game, one scenario of the battle between the de-

fender and attacker corresponds to one specific pair of defense and attack strategies.

In addition, the attacker launches the attack from the cyber network to the power net-

work at varying tatt (with tatt being sampled from 0 to 2000 min). For each sampled

tatt, the cascading failure of the coupled system is simulated, and then the values of

AFR(0, tend) and AFR(tatt, tend) are calculated.

Each of Figs. 5.4 and 5.5 presents 16 interaction game scenarios. Figs. 5.4(a) and

5.4(e) show, respectively, AFR(0, tend) and AFR(tatt, tend) for 4 game scenarios corre-

sponding to Attack Strategy I versus the 4 different defense strategies. Likewise, other

figures show either AFR(0, tend) or AFR(tatt, tend) for 4 game scenarios corresponding

a given attack strategy versus the 4 different defense strategies. Two findings can be

concluded from Fig. 5.4:

• There is an optimal selection of tatt that gives the most effective attack on the

power network. Thus, it is not true that a larger tatt would favor the attacker and

make the cascading failure more severe, despite more information of the power

network can be obtained with a larger tatt. The reason for this is that the duration

of the active attack phase (defined in Section 5.4.2) will be limited if the attack is

launched too late, thus allowing the action of isolating the power network from

the cyber network be taken to save the power network. In this respect, our model

is in full agreement with the events occurred in the Ukrainian power outage.

• From each set of game scenarios, when the attacker adopts one strategy (except

random strategy), the best defense strategy is always the same corresponding

strategy, in terms of the metric AFR. For instance, from Fig. 5.4(a), when At-

tack Strategy I is adopted, the most effective defense strategy is Defense Strat-

egy I. This scenario of having the defender implement the same strategy as the



112 CHAPTER 5. CASCADING FAILURE OF CYBER-COUPLED

0 500 1000 1500 2000
Attack Time t att (min)

0

0.2

0.4

0.6

0.8

1
 S A1 vs  S D1
 S A1 vs  S D2
 S A1 vs  S D3
 S A1 vs  S D4

(a)

0 500 1000 1500 2000
Attack Time t att (min)

0

0.2

0.4

0.6

0.8

1
 S A2 vs  S D1
 S A2 vs  S D2
 S A2 vs  S D3
 S A2 vs  S D4

(b)

0 500 1000 1500 2000
Attack Time t att (min)

0

0.2

0.4

0.6

0.8

1
 S A3 vs  S D1
 S A3 vs  S D2
 S A3 vs  S D3
 S A3 vs  S D4

(c)

0 500 1000 1500 2000
Attack Time t att (min)

0

0.2

0.4

0.6

0.8

1
 S A4 vs  S D1
 S A4 vs  S D2
 S A4 vs  S D3
 S A4 vs  S D4

(d)

0 500 1000 1500 2000
Attack Time t att (min)

0

2

4

6

8

10

12

14
 S A1 vs  S D1
 S A1 vs  S D2
 S A1 vs  S D3
 S A1 vs  S D4

(e)

0 500 1000 1500 2000
Attack Time t att (min)

0

2

4

6

8

10

12

14
 S A2 vs  S D1
 S A2 vs  S D2
 S A2 vs  S D3
 S A2 vs  S D4

(f)

0 500 1000 1500 2000
Attack Time t att (min)

0

2

4

6

8

10

12

14
 S A3 vs  S D1
 S A3 vs  S D2
 S A3 vs  S D3
 S A3 vs  S D4

(g)

0 500 1000 1500 2000
Attack Time t att (min)

0

2

4

6

8

10

12

14
 S A4 vs  S D1
 S A4 vs  S D2
 S A4 vs  S D3
 S A4 vs  S D4

(h)

Figure 5.4: Comparison of attack-defense interaction for two Average Failure Rates,
i.e., AFR(0, tend) and AFR(tatt, tend). (a) & (e) Attack strategy I versus defense strategy
I, II, III or IV, (b) & (f) attack strategy II versus defense strategy I, II, III or IV, (c) &
(g) attack strategy III versus defense strategy I, II, III or IV, (d) & (h) attack strategy
IV versus defense strategy I, II, III or IV. All graphs plot the mean value of AFR over
500 simulation runs.
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Figure 5.5: Comparison of attack-defense interaction for two Average Failure Rates,
i.e., AFR(0, tend) and AFR(tatt, tend). (a) & (e) Attack strategy I, II III or IV versus
defense strategy I, (b) & (f) attack strategy I, II III or IV versus defense strategy II, (c)
& (g) attack strategy I, II, III or IV versus defense strategy III, (d) & (h) attack strategy
I, II, III or IV versus defense strategy IV. All graphs plot the mean value of AFR over
500 simulation runs.
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attacker is a typical example of “tit-for-tat”, which is found to be the most ef-

fective defense strategy, as witnessed in Figs. 5.4(a), 5.4(b), 5.4(c), 5.4(e), 5.4(f)

and 5.4(h). However, when a random attack strategy is adopted, as shown in

Figs. 5.4(d) and 5.4(h), the tit-for-tat strategy does not show any obvious advan-

tage because a random distribution of defense strength on the power network

is surely not the same as another random distribution of attack strength on the

power network.

Fig. 5.5 shows another set of 16 interaction game scenarios with defender strategy

being the preset condition. Specifically, each figure corresponds to one of the four dif-

ferent attack strategies versus one given defense strategy. Here, the tit-for-tat strategy

does not result in the most effective attack, while Attack Strategy III appears to be

universally effective.

From the results presented in Figs. 5.4 and 5.5, we see that although AFR(0, tend)

and AFR(tatt, tend) are not identical, they consistently display similar characteristics and

give the same qualitative conclusion regarding the attack-defense interactions.

5.5.2 Preferred Strategies

To quantitatively evaluate the effectiveness of different attack and defense strategies,

we attempt to find the preferred strategy in each set of game scenarios. In particu-

lar, the preferred defense strategy refers to the one that gives the smallest value of

AFR(0, tend), whereas the preferred attack strategy is the one that causes the most se-

vere power outage corresponding to the largest value of AFR(0, tend). In addition, we

perform a large number of simulations for each scenario and examine the distribution

of AFR(0, tend).

Figs. 5.6(a) and 5.6(b) show the distributions of the preferred strategies from at-

tacker’s and defender’s perspective, respectively. In this chapter, we rank the pref-

erence under varying tatt. For instance, for all simulations corresponding to one at-
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Figure 5.6: Distribution of (a) preferred defense strategies from defender’s perspective
showing the “tit-for-tat” strategy being a preferred defense strategy; (b) preferred at-
tack strategies from attacker’s perspective showing different interactions of strategies.

tack strategy, we count the number of each defense strategy that gives the smallest

AFR(0, tend) for the same tatt (being a preferred strategy). The distribution can thus

be plotted. The tallest bar in each game shown in Fig. 5.6 means that the particular

strategy has the highest probability of being the preferred strategy. It is noted that the

sampled attack time tatt is given in the range from 0 to 2000 min. For a larger attack

time, the difference of the effectiveness of varied attack and defense strategies become

less significant.
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In Fig. 5.6(a), for each attack strategy adopted, almost all preferred defense strate-

gies follow the tit-for-tat rule. Thus, from the defender’s viewpoint, the preferred strat-

egy is to apply the same strategy as the attacker. However, from the attacker’s point

of view, the distributions shown in Fig. 5.6(b) suggest that regardless of the defense

strategy used, Attack Strategy III is preferred. Although it has been found that Attack

Strategy IV is preferred in some cases, it is impractical for attackers to implement a

random allocation scheme.

Our findings initially highlight the superiority of defending the cyber-coupled power

nodes with large capacity (load) to enhance the robustness of the cyber-coupled power

system. In other words, preventing the power nodes with large capacity from being

tripped can effectively alleviate overloading stress induced by power flow redistri-

bution during the cascading failure propagation. Furthermore, these findings are not

obtainable without due consideration of the physical power flow process in network-

based models.

It should now be apparent that the incorporation of the physical power flow pro-

cess in the model is vital to the study of cascading failure in power systems. The above

finding of Attack Strategy III being the preferred attack strategy reflects the impor-

tance of taking power capacity into consideration. Thus, network-based models which

only consider topology and assume an unrealistic power flow process will not give

practically relevant findings. This is precisely the key merit of our present study.

5.5.3 Effects of Coupling Patterns

The way in which the power and cyber networks are coupled plays an important role in

determining the relative merits of different attack and defense strategies in suppressing

or aggravating cascading failure. In this study, we build coupled networks with var-

ious coupling patterns. In particular, we focus on the following 6 common coupling

patterns: Assortative Coupling (ACP), Dissortative (DCP), High Cyber Node Degree
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Coupling (HDCP), Low Cyber Node Degree Coupling (LDCP), Assortative Capac-

ity Coupling (ACCP) and Dissortative Capacity Coupling (DCCP). Moreover, we also

take 10 Random Coupling Patterns (RCP) for comparison purposes.

In constructing the coupled networks, we first sort the nodes in the cyber net-

work according to the node degree, and sort the power nodes according to degree or

power capacity, as appropriate. For ACP, DCP, ACCP and DCCP, we select NA cyber

nodes from the entire cyber network, which have a scale-free degree distribution, i.e.,

very few high-degree cyber nodes and more low-degree cyber nodes. For HDCP (and

LDCP), we select NA cyber nodes with high (and low) degree to connect to the power

network. Moreover, we sort the power nodes with the capacity of the nodes when im-

plementing ACCP and DCCP. For RCP, cyber nodes are randomly connected to the

power nodes. Also, one-to-one coupling is adopted.

Figs. 5.7(a) and 5.7(b) show the distributions of preferred strategies from defender’s

and attacker’s perspective, respectively, for the 6 coupling patterns. For the 10 Ran-

dom Coupling Patterns, the distributions of preferred strategies from defender’s and

attacker’s perspective are shown in Figs. 5.7(c) and 5.7(d). For each coupled network,

we count the number of times each of four strategies is ranked as the most preferred

strategy in a set of games. We are particularly interested in the effectiveness of the

defense strategies in resisting varied attack strategies under various coupling methods.

It has been found that from the defender’s viewpoint, Defense Strategy III is the

most preferred defense strategy among all strategies under study and for all 16 coupled

networks. Moreover, from the attacker’s viewpoint, Attack Strategy III takes a superior

position in the coupling cases of DCP, DCCP, LDCP and all studied RCPs, and is still a

preferred strategy to cause fast and large-scale cascading failure for the coupling cases

of ACP, ACCP and HDCP, irrespective of the defense strategy used by the defender.

For RCP, cyber nodes are randomly connected to the power nodes by random in a

one-to-one fashion.

Again, our model, having taken into consideration of the physical power flow pro-
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Figure 5.7: Distribution of (a) preferred strategies from defender’s perspective; and (b)
preferred strategies from attacker’s perspective, for various coupling patterns. ACP:
assortative coupling, DCP: dissortative coupling, HDCP: high cyber node degree cou-
pling, LDCP: low cyber node degree coupling, ACCP: assortative capacity coupling,
DCCP: dissortative capacity couplingm, RCP: random coupling pattern.
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cess, is able to assess the capacity-based attack strategy, as explained earlier. More-

over, our experiments with different coupled systems constructed by considering var-

ious coupling patterns provide more empirical evidences of the superior performance

of Attack or Defense Strategy III either from the attacker or defender’s perspective.

5.5.4 Effects of Propagation Rate Disparity in Cyber and Power

Networks

From the foregoing results, we see that there exists an optimal tatt that results in the

most severe outage, as shown in Figs. 5.4 and 5.5. Obviously, this choice of tatt is

affected by the rate at which malware spreads on the cyber network relative to the rate

of failure propagation on the power network.

In the cyber-coupled power system, two distinct propagation mechanisms, namely,

one for malware spreading and one for failure propagation on the power network, can

be identified. These spreading and propagation rates are used to calculate the prob-

abilities for the specific stochastic state transitions. Specifically, the infection rate of

cyber node i from infected node j is βi j, and the tripping rate of power node i is ai.

To investigate the effects contributed by these two rates on the cascading failure in

a cyber-coupled power system, we use the cyber-physical propagation ratio (CPPR),

which is defined, for homogeneous networks, as

CPPR =
βglobal

aglobal
(5.16)

where βglobal is the value of βi j of all cyber nodes, and aglobal is equal to ai of all power

nodes, assuming homogeneity of the power network. Varying the value of CPPR re-

sults in different profiles of cascading failure propagation in the coupled power system.

Also, the type of cyber attack and the spreading rate of cyber malware affect the depen-

dence of cascading failure profile on cyber coupling. Fig. 5.8 offers a broad view of the



5.5. RESULTS 121

100 102 104 106

Attack Time  tatt (min)

10-6

10-4

10-2

100

102 CPPR = 1.87e-03
CPPR = 5.34e-03
CPPR = 1.52e-02

CPPR = 4.33e-02
CPPR = 1.23e-01
CPPR = 1.00

(a)

100 102 104 106

Attack Time  tatt (min)

10-6

10-4

10-2

100

102 CPPR = 1.87e-03
CPPR = 5.34e-03
CPPR = 1.52e-02

CPPR = 4.33e-02
CPPR = 1.23e-01
CPPR = 1.00

(b)

Figure 5.8: Effect of cyber-physical propagation ratio (CPPR) on the dependence of
average failure rate (AFR) upon attack time tatt when (a) Attack Strategy III and De-
fense Strategy III are adopted; and (b) Attack Strategy IV and Defense Strategy IV are
adopted. All graphs plot the mean value of AFR over 500 simulation runs.
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trend of AFR(0, tend) as tatt varies, for two sets of attack and defense strategies. It is ob-

served that the value of AFR(0, tend) rises gradually as tatt increases, and after reaching

a peak value, falls rapidly with increasing tatt. Moreover, the peak value of AFR(0, tend)

indicates the most severe cascading failure, which corresponds to the optimal tatt men-

tioned earlier. It is also found that a higher CPPR gives a smaller optimal tatt, i.e., an

earlier attack time will give rise to more severe cascading failure for a higher CPPR.

In particular, a higher CPPR implies that malware spreads faster in cyber networks so

that attackers can obtain more effective network information within a shorter period of

time. Thus, the attack time becomes shorter under the condition of a higher CPPR.

5.5.5 Effects of Relative Strengths of Attack and Defense

Results in the foregoing sections are obtained under the assumption that the magnitudes

of attack and defense strength, X and Ψ, are identical. In order to study the effects

of varied strengths of attack and defense, we introduce a parameter attack-to-defense

strength ratio (ADR), which is given by

ADR =
Ψ

X
(5.17)

Fig. 5.9 presents the distributions of preferred strategies from defender’s perspec-

tive for the 6 dedicated coupling patterns and 3 random coupling patterns described

earlier, with ADR varied from 0.25 to 4. It is found that as ADR increases, the most

preferred defense strategy has shifted from Strategy III to Strategy I. In particular,

when the defense resource is limited, adopting Defense Strategy III (i.e., distributing

the defense strengths according to the capacity of power nodes) achieves the greatest

protection of the coupled system from cascading failure, irrespective of the attacker

strategy or coupling pattern. However, when the defense resource is abundant for se-

curing the the entire power grid, adopting Defense Strategy I (i.e., evenly distributing

the defense strengths over the power network) can effectively resist attacks. This is
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Figure 5.9: Distributions of preferred defense strategies for different coupling patterns.
(a) ACP, (b) DCP, (c) ACCP, (d) DCCP, (e) HDCP, (e) LDCP, (f) RCP1, (g) RCP2 and
(h) RCP3, with attack-to-defense strength ratio (ADR) varied from 0.25 to 4.
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because when defense resource is abundant, consideration of prioritization of power

components to be protected becomes unnecessary or non-critical. In this chapter we

emphasize the incorporation of an appropriate modeling of the coupling process that is

essential to capturing the interdependence of the physical and cyber networks.

5.6 Summary

Modern smart grids are critical infrastructure requiring high level of security to prevent

attacks and failures that would cause severe power blackout. It is thus important that

models for studying failure of power networks provide realistic description of the es-

sential processes that govern the propagation of failure events on the power grid. The

key features of the developed network-based method include: (i) the incorporation

of the physical power flow process in studying cascading failure in power grids, (ii)

the interpretation of the interdependence between attack and defense of power com-

ponents in a cyber-coupled power network, and (iii) the effect of malware spreading

in the cyber network on the extent of cascading failure in power grids. Moreover, in

our study, an attacker and defender perspective has been taken to examine the cyber-

coupled power network under different coupling patterns. Besides, key relevant param-

eters must be appropriately defined and their effects on the cascading failure profiles

be revealed. Our study has pinpointed the preferred defense strategies for protecting

a cyber-coupled power network, and highlighted the factors affecting the propagation

profiles of cascading failure of power networks. Much enhanced understanding of

the key parameters and their roles in controlling failure propagation have been gained

in this study through the attack-defense interaction viewpoint and the incorporation

of essential physical processes in the model for analysis and possible prediction. It

is expected that future study along this direction will result in comprehensive under-

standing of cascading failure in large-scale cyber-coupled physical systems, and hence

offer effective protection strategies to minimize the severity of failure propagation in
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vital cyber-coupled infrastructures.
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Chapter 6

Effects of Coupling Patterns on

Robustnesss of Cyber-Coupled Power

Systems

In the previous chapter, to study the cascading failure in cyber-coupled power systems,

we have developed a network-based model incorporating the physical power flow pro-

cess and the interaction between attack and defense on the components in the power

network is considered. In this chapter, we introduce a parameter, called relative cou-

pling correlation coefficient, to quantify the coupling pattern of a cyber-coupled power

system. We model the coupled system as a coupled network consisting of a power

network and a cyber network. Coupling patterns, which are determined by some node

criticality metrics, reveal how power nodes and cyber nodes are connected. To under-

stand the effect of coupling patterns on the robustness of coupled systems, we classify

coupling patterns according to two node criticality metrics of the cyber network, i.e.,

node degree and node betweenness, and two node criticality metrics of the power net-

work, i.e., node degree and node capability. Simulation results show that a coupled

system of lower relative coupling correlation coefficient has better robustness. More-

over, when optimizing the coupling pattern for robustness improvement, the adoption

129
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of node capability and node degree as node criticality metrics for power and cyber

networks, respectively, would result in a much more robust network compared to the

adoption of other node criticality metrics. The finding offers a practical comprehen-

sion of the effect of coupling patterns on robustness of cyber-coupled power systems

with the adoption of network approaches incorporated with the physical power flow

process.

6.1 Introduction

Cyber Physical Systems (CPS), comprising intelligent cyber facilities and functional

physical systems, have emerged as a crucial and challenging research theme requiring

cross-disciplinary efforts. The integration of smart devices like sensors and intelli-

gent computational algorithms supports traditional physical systems with significant

upgrade of adaptability, autonomy and efficiency [148]. Smart Grids, which are spe-

cific implementations of CPS, consist of power apparatus such as generators, trans-

formers and transmission lines, connected with cyber parts like phasor measurement

units (PMU), wide area measurement systems and advanced metering infrastructures

(AMI) [21]. The use of cyber system facilities offers efficient monitoring and control

of power systems, but at the same time arouses security concerns.

Cyber security is of growing concern as smart grids are rapidly developing. The

coupling with a cyber system creates loopholes that permit access by attackers who

aim to disrupt the power system [20]. In the Ukrainian Blackout event that occurred

in December 2015 [139], a computer malware (called BlackEnergy) had penetrated

to the computer networks that were connected to the power grid. Through infecting

more computers and gaining unauthorized access, the hackers launched their attack by

disconnecting circuit breakers in the power substations, resulting in an eight-hour long

power outage.

The robustness of power systems coupled with cyber systems has been extensively
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studied. Using a complex network approach, a cyber-coupled power system [149] is

composed of a cyber network and a power network. The former consists of intercon-

nected cyber nodes, and the latter contains power substations connected by transmis-

sion lines. Buldyrev et al. [17] initially modeled cascading failure in a power network

coupled with an Internet network from the perspective of interdependent networks.

Since then, there have been an increasing number of studies devoted to examining the

effect of various topological and coupling characteristics on the robustness of interde-

pendent networks [150], including the inter-edge effects [36], the inter-similarity fea-

tures [33], optimization of interconnectivity [38] and effects of coupling strengths [32].

It should be noted that much of the prior work adopted percolation theory to model

failure spreading in interdependent networks, which omits the underlying physical pro-

cesses. Without considering physical processes, the conclusions drawn from these

studies may not provide practically relevant suggestions to enhance the robustness of

a cyber-coupled power system. To overcome the limitation of the network-based mod-

els developed by network scientists, numerous studies were devoted to assessing the

robustness of cyber-coupled power systems by taking into consideration the physical

processes of power systems. Cai et al. [73] developed a model to analyze the fail-

ure propagation in a power system connected with a dispatching data network. By

considering the interdependence between two interacting networks, the power system

has been shown to become more vulnerable when coupled with a double-star network.

Moreover, it has been shown [151] that cyber coupling has significantly effects on the

cascading failure of cyber-coupled power systems and demonstrated that cyber cou-

pling could intensify both the extent and rapidity of power outages.

The main advantage of applying a complex network approach to accessing the ro-

bustness of cyber-coupled power systems is the convenient extraction of network-based

features that affect robustness. Inter-similarity is one of the key areas investigated in

Parshani et al.’s work [32]. Through evaluating two measures, namely, inter degree-

degree correlation (IDDC) and inter-clustering coefficient (ICC), it can be concluded
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that more inter-similar networks would significantly lower the vulnerability of sys-

tems to random failure. Moreover, Tan et al. [152] proposed three kinds of coupling

methodologies based on the heterogeneity of load in the two individual networks in-

cluding assortative coupling, dissortative coupling and random coupling. It has been

pointed out that the assortative coupling can make interconnected networks, such as in-

terconnected communication networks, more robust to traffic congestion. Specifically,

assortative coupling corresponds to the coupling pattern realized by two steps. Step 1

sorts nodes in the two interconnected networks in descending order of load, and step

2 connects the nodes of the two networks following the sorted order. In other words,

the assortative coupling exhibits the highest level of inter-similarity measured using

Parshani et al.’s method [32].

Previous studies have shown that coupling patterns play a crucial role in determin-

ing the robustness of coupled systems. The coupling pattern defines the way a node or

link pair is connected between two individual networks based on the sorting of node

or link metrics. However, few studies have focused on the systematic exploration of

coupling patterns for lowering the vulnerability of coupled systems. It is known that

various kinds of coupling patterns can be realized by adopting different network-based

metrics as the node or link criticality measurement in the individual networks. For

instance, Parshani et al.’s work chose node degree as the node criticality metric and

introduced an inter degree-degree correlation (IDDC) for evaluating the robustness of

the port-airport coupled system [32]. In a power network, it has also been found that

power capacity can be used to measure the criticality of a power component [153].

In this chapter, we introduce a relative coupling correlation coefficient ρ to quan-

tify coupling patterns and to investigate the effect of parameter ρ on the robustness

of coupled systems. In particular, we propose four classes of coupling patterns with

the consideration of two cyber node criticality metrics, i.e., node degree and node be-

tweenness, and two power node criticality metrics, i.e., node degree, and node capacity.

The cascading failure in a cyber-coupled power system can be simulated by taking a
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Figure 6.1: A coupled network consisting of a cyber network and a power network,
with state transitions showing infection of a cyber node, malfunction (overload trip-
ping) of a power node and attack to a power node from a cyber node.

network approach with combination of the physical process, The simulation results

show that a high coefficient ρ always indicates a higher vulnerability of the coupled

system. Moreover, the vulnerability of the coupled system can be lowered by adopting

node capability and node degree as the node criticality metrics for power and cyber

networks, respectively, rather than considering other node criticality metrics. In par-

ticular, such reduction of vulnerability is more significant when the relative coupling

correlation coefficient ρ is relatively small.

6.2 Modeling Cascading Failure in Cyber-coupled Power

Systems

A cyber-coupled power system consists of a power network and a cyber network, as

shown in Fig. 6.1. The power network, denoted as network A and shown as the bottom

layer in Fig. 6.1, comprises a set of nodes (white squares) representing power sub-

stantiations and a set of links (solid lines) representing power transmission lines. A

cyber network, denoted as network B in the upper layer, is composed of nodes (white

circles) representing the cyber components, and links (dot-dash lines) representing the

connections among cyber components. Moreover, the nodes in the power network and

cyber network are also connected and their connection are shown by the vertical dash

lines. In practice, a cyber node can assess and control a power node when they are
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connected. In this chapter, the one-to-one connection style between power and cyber

nodes is considered and each pair of coupled nodes are a “node pair” in the coupled

network. Also, the scale of the cyber network is much larger than that of the power

network, namely, the number of nodes in the cyber network is much larger than that in

the power network. Thus, some nodes in the cyber network are selected to construct

node pairs in the coupled network.

In this chapter, we take the cascading failure in the coupled system as a sequence of

state transitions of node pairs. In particular, the cascading failure of the coupled system

is initialized by a malware attack from the cyber network to the power network. Three

kinds of state transition are depicted in Fig. 6.1, including the malfunction of a power

component, the infection process of cyber malware and the effect of cyber attack on a

power node.

Two main reasons for a power component to fail are considered in this model. First,

a power component fails when it is in a subnetwork where there is no power generator.

Second, a power component is prone to failure when it carries load that exceeds its

capacity, and the probability of failure is given in the following state transition T1:

T1 : P[sAi(t + dt) = 1 | sAi(t) = 0] = λi(t)dt (6.1)

where λi(t) is the tripping rate which is given by λi(t) = ai(Li(t)/C(i)−1) if the loading

Li(t) is larger than the capacity Ci(t) in the power component i, and is 0 otherwise.

Moreover, the loading Li(t) is obtained from the DC power flow calculation model

given in Section 3.1.1.3.

The malware diffusion in the cyber network is modeled by a stochastic process. In

particular, a cyber node may be infected when its neighbor is infected, as described by

state transition T2:

T2 : P[sBi(t + dt) = 1 | sBi(t) = 0] = µi(t)dt. (6.2)
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Figure 6.2: Flow chart of simulation of failure propagation in the coupled system.

where µi(t) is the infection rate on the cyber network which is given by µi(t) =
∑

j∈ΩBi βi j.

Specifically, ΩBi is the set of all infected neighbors of cyber node i and βi j is the rate at

which the infected cyber node j infects its neighbor node i.

For the failure of a power node due to cyber attack, we augment the above failure

probability by adding a fixed term. Specifically, when a power node is attacked by cy-

ber malware, the probability of the power node being removed from the power network

increases by a value ci(t) which corresponds to the attack strength. Moreover, if the

effect of defense (protection) is considered, the probability of removing a power node

due to its failure is reduced by a value di(t). Thus, the state transition T3 for failure due

to cyber attack is given by

T3 : P[sAi(t + dt) = 1 | sAi(t) = 0] = (λi(t) + ci(t) − di(t))dt. (6.3)

In this study, both ci(t) and di(t) are constants and we assume that the attack strength

is larger than the defense strength, i.e., ci(t) > di(t).

The cascading failure in a coupled system is simulated according to the flow chart

shown in Fig. 6.2. After the initialization step, the process begins from a malware
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injection, which then spreads in the cyber network. In this stage, only state transition

T2 is executed. Once a cyber attack is launched, one of the three state transitions

T1, T2 or T3 is selected to be executed through determining (1) the instant when the

next state transition occurs; and (2) the particular state transition to be executed in the

current iteration. These two decisions are made by the stochastic method developed

in a previous study [151]. It is noted that after each iteration, the states of all nodes

will be updated, and the iteration continues until there is no further state transition.

Moreover, if all the power elements have failed, the program stops.

6.3 Relative Coupling Correlation Coefficient

A problem with assessing the robustness of coupled networks is associated with the

determination of the coupling pattern. In particular, it has been found that higher inter-

similarity increases the robustness of the coupled network. One of the inter-similarity

metrics is the inter degree-degree correlation [33], which is a form of associative mix-

ing coefficient, can be written as

r =
M−1∑

i jiki − [M−1∑
i

1
2( ji + ki)]2

M−1∑
i

1
2 ( j2

i + k2
i ) − [M−1∑

i
1
2( ji + ki)]2

(6.4)

where ji and ki are the degrees of the nodes in two individual networks at the end of

the ith interdependent link, with i = 1, 2, ...,M. Moreover, if networks A and B have

the same degree distribution, r is in the range from –1 to 1. Also, the largest value

of r corresponds to an associative coupling pattern, i.e., the highest-degree node in

A is connected to the the highest-degree node in B, the second highest-degree node

in A is connected to the second highest-degree node in B, and so on. On the other

hand, the smallest value of r corresponds to a disassortative coupling pattern, i.e., the

highest-degree node in A is connected to the the lowest-degree node in B, the second

highest-degree node in A is connected to the second lowest-degree node in B, and so
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forth.

In a cyber-coupled power system, apart from using node degrees, we consider a

few other network-based metrics for describing node criticality. These metrics in-

clude the node betweenness in the cyber network, the node betweenness in the power

network, and the node capacities in the power network. Here, we characterize the cou-

pling pattern by extending the inter degree-degree correlation coefficient to an inter

criticality-criticality correlation coefficient. This new metric, called relative coupling

correlation coefficient, is defined as

ρ =
M−1∑

m I′AmI′Bm − [M−1∑
m

1
2 (I′Am + I′Bm)]2

M−1∑
m

1
2(I′2Am + I′2Bm) − [M−1∑

m
1
2(I′Am + I′Bm)]2

(6.5)

where I′Am and I′Bm are the normalized node criticality metrics of two nodes in the

two interconnected networks, respectively, when they are connected by edge m. As

aforedescribed, the existence of interconnected edge m connecting cyber and power

nodes implies that the cyber node can take a malicious action against the power node.

Specifically, the normalized node criticality metrics for network A is

I′A =
IA −min(IA)

max(IA) −min(IA)
(6.6)

where IA is a node criticality metric in the power network, which can be either node de-

gree or node capability. Likewise, the normalized node criticality metrics for network

B is

I′B =
IB −min(IB)

max(IB) −min(IB)
(6.7)

where IB is a node criticality metric in the cyber network which can be either node

degree or node betweenness.

Several classes of coupling patterns corresponding to different combinations of

node criticality metrics in power and cyber networks can be considered. In particular,

we consider four classes, i.e., degree-to-degree (d2d), degree-to-betweenness (d2b),
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capacity-to-degree (c2d) and capacity-to-betweenness (c2b).

6.4 Results and Discussions

In this section, we first construct a few cyber-coupled power systems using various

implementations of coupling patterns. Then, two major sets of results are shown to

highlight the effects of changing the relative coupling correlation coefficient ρ on the

robustness by considering four different classes of coupling patterns.

6.4.1 Realization of Cyber-coupled Power Systems

We consider a cyber system realized by a Gnutella peer-to-peer network [145] con-

taining 6301 nodes. This network is coupled with the UIUC-150 power system [144],

forming a cyber-coupled system. The power and cyber nodes are connected in a one-

to-one fashion. Thus, the initial step is to select 150 cyber nodes for connection to the

150 power nodes. In particular, the cyber nodes are selected according to the distri-

bution of a chosen normalized node criticality metric. For example, if we choose the

degree-to-degree coupling pattern, the aim is to identify the cyber nodes which have a

similar degree distribution to that of the power nodes. In other words, a higher similar-

ity of two chosen normalized node criticality metrics can offer a broader range of the

coefficient ρ.

Fig. 6.3(a) and Fig. 6.3(d) show the distributions of two normalized node criti-

cality metrics, namely, node degree and node capacity, respectively, in the UIUC150

power network. Then, the cyber nodes having similar distribution of a normalized

node criticality metric are extracted, as shown in Fig. 6.3(b), Fig. 6.3(c), Fig. 6.3(e)

and Fig. 6.3(f), under four different combinations of classes of coupling patterns. For

instance, when considering the degree-to-degree coupling pattern, the distribution of

the normalized node degree of the extracted cyber nodes depicted in Fig. 6.3(b) shows
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(a)

(b) (c)

(d)
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Figure 6.3: Distributions of two normalized criticality metrics. (a) Node degree; (d)
node capacity for the UIUC150 power system. Distributions of normalized criticality
metrics of the extracted cyber nodes when realizing the coupling patterns including (b)
degree-to-degree (d2d), (c) degree-to-betweenness (d2b), (e) capacity-to-degree (c2d)
and (f) capacity-to-betweenness (c2b).
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a high similarity with the distribution of the normalized node degree of the power node

depicted in Fig. 6.3(a). By coupling the power nodes with the extracted cyber nodes

based on different combinations of node criticality metrics, the ranges of the values of

coefficient ρ are given in Table 6.1. In the following experiments, the coefficient ρ for

different classes of coupling patterns are considered, corresponding to various coupling

patterns between the cyber and power networks. In particular, a larger maximum value

of ρ gives a coupled network having highly similar distributions of the node criticality

metric of the power network and the cyber network.

Table 6.1: The range of the values of the relative coupling correlation coefficient
ρ for different classes of coupling patterns (d2d: degree-to-degree, d2b: degree-to-
betweenness, c2d: capacity-to-degree and c2b: capacity-to-betweenness).

ρd2d ρd2b ρc2d ρc2b

Minimum Value -0.60 -0.60 -0.40 -0.40
Maximum Value 0.80 0.80 0.80 0.80

The cascading failure of a power network is triggered by two types of events. First,

an infected cyber node can trip a power node that is coupled with it. Second, the failure

of a power node may induce overloading on other nodes in the power network, causing

subsequent cascading failure events. To evaluate the extent and rapidity of a cascading

failure in a cyber-coupled power system, we measure the percentage of failed power

nodes in the power network, denoted by pFPN, when a certain percentage of cyber

nodes are infected and become failed nodes, which is denoted by pFCN. In particular,

under the same value of pFCN, a larger pFPN implies that more power nodes fail in the

cascading failure process. In particular, for two given coupled systems having the same

number of infected cyber nodes (the same value of pFCN), the system which exhibits

a larger value of pFPN is less robust. In the following experiments, in order to assess

the vulnerability of coupled systems, the value of pFPN is plotted for different sampled

values of pFCN ranging from zero to one.
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6.4.2 Effects of the Relative Coupling Correlation Coefficients

To examine the effect of varying the relative coupling correlation coefficient on the

robustness of cyber-coupled power systems, an experiment is designed as follows:

1. Network Preparation: A number of coupled systems are implemented, each

by coupling a cyber network and a power network using the aforementioned

four classes of coupling patterns. For the implementation of each class of cou-

pling patterns, coupled systems with varied values of relative coupling correla-

tion coefficients are realized by reconnecting the interconnection links between

the cyber-power node pairs. Note that a number of coupled systems might be

obtained which have approximately the same relative coupling correlation coef-

ficient.

2. Result Assessment: For each coupled system, simulation is performed using

the cascading failure propagation model and the results including the numbers

of failed power nodes and cyber nodes in the propagation process of cascading

failure are obtained for the robustness assessment of the coupled system.

Fig. 6.4 shows the vulnerability assessment of cyber-coupled systems for different

values of relative coupling correlation coefficient, corresponding to four classes of

coupling patterns. In each figure, pFCN versus pFPN is plotted for the coupled system

for different values of relative coupling correlation coefficient.

From the four plots shown in Fig. 6.4, it can be found that with the increasing

number of infected cyber nodes, more power nodes fail. Also, from Fig. 6.4, a larger

ρ might increase the vulnerability of the coupled system, that is, a larger ρ leads to a

faster cascading failure propagation. In particular, for a given coupled system, a larger

ρ indicates that the nodes with higher criticality in the power network tend to couple

with the nodes with higher criticality in the cyber network, which can be described as a

high-to-high coupling pattern. Specifically, regardless of the class of coupling patterns,
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Figure 6.4: The vulnerability assessment of cyber-coupled coupled systems at varying
relative coupling correlation coefficients for four classes of coupling patterns based
on different combinations of node criticality metrics in power and cyber networks,
namely, (a) degree-to-degree (d2d), (b) degree-to-betweenness (d2b), (c) capacity-to-
degree (c2d) and (d) degree-to-betweenness (d2b).
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when ρ reaches the highest value, i.e., ρ = 0.8, the cyber-coupled power system fails

at the highest rate. Moreover, the cascading failure in the coupled systems proceeds

slowly when the value of ρ is low.

The increased vulnerability brought from the increasing relative coupling correla-

tion coefficient can be readily identified for the capacity-to-degree coupling patterns

shown in Fig. 6.4(c). Specifically, when the value of ρc2d increases from -0.40 to 0.80,

it is witnessed that at a certain value of pFCN, a larger value of ρc2d leads to a higher

value of pFPN. This implies that for the same number of infected cyber nodes, the cou-

pled system becomes more vulnerable to cyber attack when the high-capacity power

nodes tend to connect to the high-degree power nodes and the low-capacity power

nodes tend to connect to the low degree-cyber nodes.

The major reason why a large value of ρ corresponding to a high-to-high coupling

pattern gives a cyber-coupled power system of poor robustness is twofold. First, cou-

pling power nodes of higher node criticality with cyber nodes of higher node criticality

makes the power network more prone to cyber attack. Second, the failure of more

power nodes of high node criticality leads to a faster and more severe cascading failure

in the power system.

6.4.3 Effects of Choice of Criticality in Coupling Patterns

Different classes of coupling patterns are built based on different combinations of node

criticality metrics in power and cyber networks. In particular, if the node degree is

taken as the node criticality metric for both power and cyber nodes, the interconnec-

tions between power and cyber networks are constructed in terms of the similarity

between the degrees of both power and cyber nodes. In particular, the similarity level

is quantified by the proposed relative coupling correlation coefficient ρ. This section

aims to examine how different classes of coupling patterns affect the robustness of

cyber-coupled power systems.
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Fig. 6.5(a) shows the relationship between pFCN and pFPN for four different classes

of coupling patterns under the condition that ρ = −0.4. Likewise, Fig. 6.5(b), Fig. 6.5(c)

and Fig. 6.5(d) are also plotted with a fixed value of ρ, namely, ρ = 0, ρ = 0.4

and ρ = 0.8, respectively. It has been found that when the relative coupling corre-

lation coefficient stays at a relatively low value, e.g. ρ = −0.4, ρ = 0, adopting the

capacity-to-degree coupling patterns can achieve an enhancement of the robustness of

coupled systems where the cascading failure propagation proceeds more slowly com-

pared with those systems implemented by adopting other classes of coupling patterns.

The capacity-to-degree coupling pattern corresponds to the node capacity being cho-

sen as node criticality metric in the power network and node degree being chosen as

node criticality metric in the cyber network. But when the relative coupling correlation

coefficient is relatively high, the achievement for enhancing the robustness of coupled

systems based on the preference of capacity-to-degree coupling patterns is of weak

significance.

Here, it should be noted from our point of view that node capacity and node de-

gree have significant impact on evaluating the criticality of nodes in power and cyber

networks, respectively. Thus, for a given coupled system, if power nodes of high node

degree are coupled with cyber nodes of low node degree, cascading failure can be sup-

pressed in two ways. First, the power nodes with large capacity can be protected from

being tripped by cyber attack because they are connected to the cyber nodes with low

degree. Basically, the cyber nodes with low degree are less likely to be infected. Then,

the effective defense of large capacity power nodes can bring about small extent of

cascading failure in the power system.

In summary, the results offer a broad understanding of the effect of coupling pat-

terns, quantified by a parameter called relative coupling correlation coefficient ρ, on

the robustness of cyber-coupled power systems. On the one hand, the coupled system

having a larger value of coefficient ρ is more vulnerable to cascading failure. This

finding is consistent with the suggestion given a previous study [154], but other re-
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Figure 6.5: The vulnerability assessment of cyber-coupled systems where different
classes of coupling patterns are implemented under four certain cases when four rela-
tive coupling correlation coefficients are given: (a) ρ = −0.40; (b) ρ = 0; (c) ρ = 0.40
and (d) ρ = 0.80.
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search work [32, 152] has drawn the opposite conclusion that the higher inter-similarity

(equivalent to a higher coefficient ρ) can enhance the robustness of coupled networks.

On the other hand, to realize various coupling patterns for cyber-coupled power sys-

tems, in this chapter, the initial step is to select the node criticality metrics for both

power and cyber networks for accessing the choice of node criticality of power and

cyber nodes being coupled. The various selections of the node criticality metrics have

a significant impact on examining the relationship between robustness of coupled sys-

tems and the coefficient ρ.

6.5 Summary

Smart grids, regarded as cyber-physical systems, are vital infrastructures demanding

high robustness. With the integration of intelligent monitoring and controlling pro-

vided by cyber networks, a cyber-coupled power system becomes vulnerable to cyber

attack and thus severe power outages might be caused. In this chapter, we introduce

a model used for simulating the cascading failure in coupled systems. In particular,

one coupled system is modeled as a coupled network consisting of a power network

and a cyber network. More importantly, one network-based parameter called relative

coupling correlation coefficient ρ is defined, which is used to quantify coupling pat-

terns in coupled networks. Specifically, for a coupled network consisting of network

A and B, by adopting different network-based metrics such as node degree and node

capacity as node criticality metrics, a higher ρ indicates that the nodes of higher node

criticality in network A tend to be connected to the nodes of higher node criticality

in the network B while a lower ρ indicates that the nodes of higher node criticality in

network A tend to be connected to the nodes of lower node metrics in network B. It

has been remarkably found that for a given coupled system, a higher ρ, also character-

ized as a more assortative coupling pattern, increases the vulnerability. Notably, when

identifying the optimal coupling pattern for robustness improvement, taking the node
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capacity and node degree as node criticality metrics for the power and cyber networks,

respectively, can achieve an improvement of the robustness of coupled networks. The

main findings in this chapter cannot be obtained due the consideration of the physical

power flow process in the network-based model.
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Chapter 7

Conclusions and Suggestions for

Future Work

In this chapter, we summarize the main contributions of the thesis and discuss the

future plan for some potential research directions.

7.1 Main Contributions of the Thesis

Complex network theory has been applied for studying large real-world networked

systems, especially in revealing the impact of their topological characteristics on ro-

bustness. Power systems, being critical infrastructures supporting the development of

modern society, should be highly robust against cascading failure and have a low risk

of a large-scale blackout. In a power network, nodes represent power substations and

links represent power transmission lines. Different from the previous studies that em-

phasize pure topological properties and vulnerabilities of power systems, one of the

main objectives in this project is to assess and enhance the robustness of power sys-

tems by using a network-based approach with the incorporation of the physical power

flow process.

Moreover, power grids have evolved into smart grids by integrating with cyber

149
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networks which provide intelligent control but at the same time pose the threat of

cyber attack to power systems. A smart grid, characterized as a cyber-coupled power

system can be modeled as a coupled network. The other main objective in this project

is to assess the robustness of coupled systems, with employment of a model which

adequately describes the failure mechanisms of cyber networks and power networks as

well as the interdependence of the two networks.

The main contributions of this thesis can be summarized as follows:

1. The robustness of a power system has been assessed and enhanced from a

complex network’s perspective.

Enhancing the robustness of power systems has emerged as an essential topic for

reducing the risk of a fast and large-scale blackout. First, a system-level method to as-

sess the vulnerability of power systems has been developed. Specifically, one critical

parameter called onset time is introduced to reveal the rapidity of cascading failure.

Based on the onset time and the scale of the failed grid in a cascading failure event, we

categorize each component in a power network into three types, corresponding to three

levels of severity of the failed grid upon the initial failure of that component. Second, a

decision tree-based learning model has been developed to extract significant network-

based features. It has been found that these features can serve as effective indicators

for robustness enhancement of power networks. The decision tree can provide a set of

rules based on some network-based features. Through examining the effectiveness of

different rules, experimental results suggest that a power network has higher robust-

ness against cascading failure if its topology exhibits less random features and more

decentralized generator distribution.

2. The profile of failure propagation in cyber-coupled power systems has been

analyzed with employment of an interdependent network model.

As suggested by evidence of the cause of large-scale blackouts being initiated from

a cyber attack, we have developed a model to analyze the profile of failure propagation

in smart grids by considering the effect of cyber coupling. In particular, to assess the
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robustness of smart grids, regarded as cyber-coupled power systems, a model is devel-

oped by considering the failure mechanisms of cyber networks and power networks as

well as the interdependence of the two networks. The implementation of this model

can realistically simulate the cascading failure in coupled systems. It has been found

that the coupling of cyber networks accelerates and intensifies the blackout of power

systems. Moreover, the profile pattern of failure propagation in a cyber-coupled power

system is different from that of an individual power system.

3. The interdependence between cyber and power networks involved in mod-

eling cascading failure in cyber-coupled power systems has been studied by con-

sidering interaction between attack and defense.

One challenge, which has been raised in the network-based model used to study

the cascading failure in cyber-coupled power systems, is the interpretation of the inter-

dependence between cyber and power networks. To comprehend the interdependence,

we have developed an extended network-based model by considering the interaction

between two processes, one aiming to attack (cause damage) and the other aiming to

defend (protect) the components in the power network. Simulation results offer two

significant findings. First, the preferred defense strategies have been identified for

protecting a cyber-coupled power network, and the factors affecting the propagation

profiles of the cascading failure of power networks have been highlighted. Besides,

much enhanced understanding of the key parameters and their roles in controlling fail-

ure propagation have been gained through the attack-defense interaction viewpoint and

the incorporation of essential physical processes in the model for analysis and possible

prediction.

4. The effect of coupling patterns on the robustness of cyber-coupled power

systems has been studied.

Another challenge to be addressed in modeling the cascading failure in cyber-

coupled power systems is to examine how power and cyber networks are connected

from a topological point of view. Specifically, the way in which the two networks are
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connected is termed coupling pattern, which plays an important role in determining

the robustness of the coupled network. We introduce a new parameter called relative

coupling correlation coefficient ρ to quantify coupling patterns. In terms of node crit-

icality metrics, various coupling patterns are constructed for robustness assessment of

coupled systems. Simulation results show that the value of ρ corresponds to vulnera-

bility of a coupled system and hence offers a perspective to designing robust coupled

networks.

7.2 Suggestions for Future Work

Following the work that has been done at the current stage, some suggestions are pre-

sented on some possible research topics that could be pursued in the future.

7.2.1 Data Acquisition of Cascading Failure Events

In Chapter 4, we have proposed a decision-tree-based learning model to extract signif-

icant network-based features for robustness enhancement of power systems. Decision

tree, being a popular tool in machine learning, is widely used for decision analysis.

To obtain a decision tree model which can offer precise prediction in decision analy-

sis, the availability and integrity of the data used to develop the model and to evaluate

the performance of the model are crucial. Typically, the data can be obtained in two

ways: collecting real-world data sets stored in power systems and generating data sets

by running simulation based on analytical models.

Obtaining data from real-world power systems is challenging because of the lim-

ited availability issue. Thus, using AC/DC power models mentioned in Section 2.3

to generate data sets is an alternative solution. Then, with the data-driven analysis to

enhance the robustness of power systems, effective algorithms might be gained for the

identification of critical nodes or links [56] as well as the forecasting of the path of
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failure propagation [155] in power systems.

7.2.2 Solutions to Mitigate Cascading Failure

One of the ultimate goals in the development of smart grids is to make power grids self-

healing so that the grids would take appropriate actions to recover from a vulnerable

operation status. Load shedding and islanding are two key technologies to suppress

the cascading failure in power systems.

The objective of load shedding is to maintain a balance between load and genera-

tion when generation in a power system cannot adequately support all loads. During a

cascading failure event, if power imbalance between generation and load demand oc-

curs, employing load shedding, which trips a certain amount of load appropriately, can

save the remaining portion of the system from a continuous process of failure propaga-

tion. Thus, a connection between identifying the appropriate power components where

load shedding is performed and detecting the critical components in the power system

can be built.

Islanding is used for preventing blackout by decomposing the entire power net-

work into a number of subnetworks where no overloading occurs. In complex network

theory, community detection has been used to identify the modules with high similar

characteristics. Incorporating the characteristics of power grids into the existing com-

munity detection algorithms seems to be a promising direction for developing effective

islanding strategies.

In Chapter 5, by considering the interaction between two processes, one aiming to

attack (cause damage) and the other aiming to defend (protect) the components in the

power network, it has been found that allocating defense strength in terms of capacity-

based distribution can most effectively suppress cascading failure in cyber-coupled

power systems. This finding provides a good starting point for discussion and further

research on the identification of effective protection mechanisms for risk reduction of
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severe blackout in smart grids.

7.2.3 Comprehension of Coupling Patterns

In Chapter 6, it has been demonstrated that coupling patterns have considerable impact

on the robustness of cyber-coupled power systems. As coupling patterns in real smart

grids have not been clearly analyzed yet, in order to optimize the coupling patterns

for robustness enhancement of cyber-coupled power systems, future research should

be conducted in more realistic settings, with emphasis on the way cyber and power

networks are coupled from a complex network’s perspective.

7.2.4 Model of Interconnected Systems

Interdependent network models serve as effective methodologies for the analysis of

interconnected systems. Besides smart grids, there are many other interconnected sys-

tems which could be modeled using interdependent network-based approaches.

Power networks can be interconnected with an electric vehicle network, which

forms a vehicle-to-grid [156] framework. Basically, the vehicle-to-grid infrastructure

provides an operational framework for electric vehicle networks and power networks

to interact. Specifically, power networks can charge electric vehicles and electric ve-

hicles can generate power back to power networks. Interdependent network models

might offer an alternative solution to study the vehicle-to-grid infrastructure and thus

to address different challenges on the planning, operation and control of the vehicle-

to-grid infrastructure.

One more consideration in the development of smart grids is the integration of

social networks into power grids. Wide discussion has been conducted on interaction

between social networks and power grids [157]. In particular, taking advantage of

social network data to develop robust and consumer-centric services has emerged as an

essential topic, which might be studied from an interdependent network’s perspective.
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