

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

HEVC BASED SCREEN CONTENT

CODING AND TRANSCODING USING

MACHINE LEARNING TECHNIQUES

KUANG WEI

PhD

The Hong Kong Polytechnic University

2019

The Hong Kong Polytechnic University

Department of

Electronic and Information Engineering

HEVC Based Screen Content Coding

and Transcoding Using Machine

Learning Techniques

Kuang Wei

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

August 2019

Certificate of Originality

i

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material that has

been accepted for the award of any other degree or diploma, except where due

acknowledgement has been made in the text.

(Signed)

(Name of student)
Kuang Wei

Abstract

 ii

Abstract

Screen content video is one of the emerging videos, and it usually shows mixed

content with both of nature image blocks (NIBs) and computer-generated screen content

blocks (SCBs). Since High Efficiency Video Coding (HEVC) is only optimized for NIBs

while SCBs exhibit different characteristics, new techniques are necessary for SCBs.

Screen Content Coding (SCC) extension was developed on top of HEVC to explore new

coding tools for screen content videos. SCC employs two additional coding modes, intra

block copy (IBC) mode and palette (PLT) mode for intra-prediction. However, the

exhaustive mode searching makes the computational complexity of SCC increase

dramatically. Therefore, in this thesis, some novel machine learning based techniques are

suggested to simplify both encoding and transcoding of SCC.

A fast intra-prediction algorithm for SCC by content analysis and dynamic

thresholding is firstly proposed. A scene change detection method is adopted to obtain a

learning frame in each scene, and the learning frame is encoded by the original SCC

encoder to collect learning statistics. The prediction models are tailor-made for the

following frames in the same scene according to the video content and QP of the learning

frame. Simulation results show that the proposed scheme can achieve remarkable

complexity reduction while preserving the coded video quality.

Afterwards, we propose a decision tree based framework for fast intra mode decision

by investigating various features in training sets. To avoid the exhaustive mode searching

process, a framework with a sequential arrangement of decision trees is proposed to check

each mode separately by inserting a classifier before checking a mode. As compared with

the previous approaches that both IBC and PLT modes are checked for SCBs, the

Abstract

 iii

proposed coding framework is more flexible which facilitates either IBC or PLT mode to

be checked for SCBs such that computational complexity is further reduced. Simulation

results show that the proposed scheme can provide significant complexity saving with

negligible loss of coded video quality.

To avoid the necessity of hand-crafted features, a deep learning based fast prediction

network DeepSCC is then proposed by using convolutional neural network (CNN), which

contains two parts, DeepSCC-I and DeepSCC-II. Before fed to DeepSCC, incoming

coding units (CUs) are divided into two categories: dynamic coding tree units (CTUs)

and stationary CTUs. For dynamic CTUs with different content as their collocated CTUs,

DeepSCC-I takes raw sample values as the input to make fast predictions. For stationary

CTUs with the same content as their collocated CTUs, DeepSCC-II additionally utilizes

the optimal mode maps of the stationary CTU to further reduce the computational

complexity. Simulation results show that the proposed scheme further improves the

complexity reduction.

Finally, we propose a fast HEVC to SCC transcoder. To migrate the legacy screen

content videos from HEVC to SCC to improve the coding efficiency, a fast transcoding

framework is proposed by analyzing various features from 4 categories. They are the

features from the HEVC decoder, static features, dynamic features, and spatial features.

First, the CU depth level collected from the HEVC decoder is utilized to early terminate

the CU partition in SCC. Second, a flexible encoding structure is proposed to make early

mode decisions with the help of various features. Simulation results show that the

proposed scheme dramatically shortens the transcoding time.

List of Publications

 iv

Publications Arising from the Thesis

International Journal Papers

1. Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “DeepSCC: Deep

Learning Based Fast Prediction Network for Screen Content Coding,” IEEE Transactions

on Circuits and Systems for Video Technology (Accepted on 2 July, 2019)

2. Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Online-Learning-Based

Bayesian Decision Rule for Fast Intra Mode and CU Partitioning Algorithm in HEVC

Screen Content Coding,” IEEE Transactions on Image Processing. (Accepted on 10 June,

2019)

3. Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Machine Learning Based

Fast Intra Mode Decision for HEVC Screen Content Coding Via Decision Trees,” IEEE

Transactions on Circuits and Systems for Video Technology. (Accepted on 20 February,

2019)

4. Wei Kuang, Yui-Lam Chan, and Sik-Ho Tsang, “Fast HEVC to SCC Transcoder by

Early CU Partitioning Termination and Decision Tree Based Flexible Mode Decision for

Intra-Frame Coding,” IEEE Access, vol. 7, pp. 8773–8788, January 2019.

5. Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Efficient Intra Bitrate

Transcoding for Screen Content Coding Based on Convolutional Neural Network,” IEEE

Access, vol. 7, pp. 107211-107224, August 2019.

6. Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Fast Intraprediction for

High-Efficiency Video Coding Screen Content Coding by Content Analysis and Dynamic

Thresholding,” Journal of Electronic Imaging, vol. 27, no. 5, pp. 053029-1–053029-18,

October 2018.

7. Sik-Ho Tsang, Yui-Lam Chan, Wei Kuang, “Mode Skipping for HEVC Screen Content

Coding via Random Forest,” IEEE Transactions on Multimedia, (Accepted on 7 March,

2019)

8. Sik-Ho Tsang, Yui-Lam Chan, Wei Kuang, and Wan-Chi Siu, “Reduced-Complexity

Intra Block Copy (IntraBC) Mode with Early CU Splitting and Pruning for HEVC Screen

Content Coding,” IEEE Transactions on Multimedia, vol. 21, no. 2, pp. 269-283, July

2018.

List of Publications

 v

International Conference Papers

1. Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Fast HEVC to SCC

Transcoding Based on Decision Trees,” in Proceedings of the IEEE International

Conference on Multimedia and Expo (ICME 2018), San Diego, California, USA,

July, 2018, pp.1-6.

2. Wei Kuang, Sik-Ho Tsang, Yui-Lam Chan and Wan-Chi Siu, “Fast mode decision

algorithm for HEVC screen content intra coding,” in Proceedings of the IEEE

International Conference on Image Processing (ICIP 2017), Beijing, China,

September, 2017, pp.2473-2477.

3. Sik-Ho Tsang, Wei Kuang, Yui-Lam Chan and Wan-Chi Siu, “Decoder side merge

mode and AMVP in HEVC screen content coding” in Proceedings of the IEEE

International Conference on Image Processing (ICIP 2017), Beijing, China,

September, 2017, pp.260-264.

4. Sik-Ho Tsang, Wei Kuang, Yui-Lam Chan and Wan-Chi Siu, “Fast HEVC screen

content coding by skipping unnecessary checking of intra block copy mode based

on CU activity and gradient,” in Proceedings of Signal and Information Processing

Association Annual Summit and Conference (APSIPA 2016), Jeju, Korea, Dec.

2016, pp.1-5.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7016284
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7016284
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7016284
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7016284

Acknowledgements

 vi

Acknowledgments

I would like to express my sincere gratitude to my chief supervisor, Dr. Yui-Lam

Chan, and my co-supervisor, Prof. Wan-Chi Siu for their continuous encouragement,

supervision throughout my research work. They offered me valuable suggestions and

guidance that make me complete my work successfully.

Also, I would like to express my sincere gratitude to Dr. Sik-Ho Tsang, Dr. Tsz-

Kwan Lee, Dr. Hong-Bin Zhang, Dr. Huan Dou, Dr. Meng Yao, Dr. Jun-Jie Huang, Dr.

Tian-Rui Liu, Mr. Song-Zhi Liu, Ms. Xue-Fei Yang, Mr. Chu-Tak Li, Mr. Li-Wen Wang,

Mr. Ting-Tian Li, Mr. Hui-Wai Lam, Mr. Chao Shi, and other members in Center for

Signal Processing. The sharing of ideas and experience with them has greatly contributed

to make every success of my work.

Meanwhile, I am greatly appreciative of the Department of Electronic and

Information Engineering and The Hong Kong Polytechnic University for providing me a

comfortable working environment and for their financial support to my research work.

Finally, I am deeply indebted to my parents and friends for their continuous company

and love. Without their understanding and patience, it is impossible for me to complete

this research study.

Table of Contents

 vii

Table of Contents

Certificate of Originality ... i

Abstract .. ii

Publications Arising from the Thesis ... iv

International Journal Papers .. iv

International Conference Papers ... v

Acknowledgments .. vi

List of Figures .. ix

List of Tables ... xii

Abbreviations .. xvi

Chapter 1 Introduction ... 1

1.1 Overview .. 1

1.2 Flexibility of Intra Coding Structures In SCC ... 2

1.3 Limitations of SCC for Intra Coding ... 6

1.4 Motivation and Objectives ... 7

1.5 Organization of This Thesis ... 9

Chapter 2 Literature Review.. 11

2.1 Background Research .. 11

2.2 Digital Video Compression Fundamentals .. 12

2.2.1 Intra-Prediction for Spatial Redundancy Elimination ... 13

2.2.2 Inter-Prediction for Temporal Redundancy Elimination 13

2.3 New Coding Tools in SCC Beyond HEVC ... 14

2.4 Complexity Reduction in the Encoding Problem .. 15

2.5 Complexity Reduction in the Transcoding Problem .. 17

2.6 Chapter Summary .. 19

Chapter 3 Determinations on Coding Structure by Online Learning 20

3.1 Introduction .. 20

3.2 Motivation for Content Dependent Rules .. 20

3.2.1 Content Dependent Mode Decision ... 21

3.2.2 Content Dependent CU Size Decision... 22

3.3 Proposed Coding Scheme by Content Analysis and Dynamic Thresholding 23

3.3.1 Rough CU Classification ... 23

3.3.2 Fine-granular Coding Unit Classification.. 25

3.3.3 Mode Skipping Rule with Adaptive Thresholding .. 27

3.3.4 Early Termination of CU Partitions with Adaptive Thresholding 31

3.3.5 Scene Change Detection for Adaptive Threshold Updating.................................. 34

3.3.6 Flowcharts of Overall Algorithm .. 35

3.4 Experimental Results and Discussions .. 36

3.4.1 Threshold Determination ... 36

3.4.2 Analysis for Computational Overheads ... 39

3.4.3 Performance Evaluation .. 40

3.4.4 Contribution Analysis of Different Techniques .. 44

3.4.5 Addption of Fast Encoding in Learning Frames ... 46

3.5 Chapter Summary .. 47

Chapter 4 Determinations on Coding Structure by Decision Trees 49

4.1 Introduction .. 49

4.2 Flexibility of Different Frameworks .. 50

Table of Contents

 viii

4.3 Proposed DT Based Framework .. 51

4.3.1 Description of the Classifier Using DT ... 51

4.3.2 Proposed Dynamic and Static Features ... 54

4.3.3 Fast Mode Decision Design ... 57

4.3.4 DT Constraint .. 64

4.4 Experimental Results and Discussions .. 66

4.4.1 Study on Different Training Set .. 67

4.4.2 Performance Evaluation .. 67

4.4.3 Performance of the Individual Mode Decision Algorithm 72

4.4.4 Evaluation of Feature Subset Selection and DT Constraint 74

4.5 Chapter Summary .. 75

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network . 77

5.1 Introduction .. 77

5.2 Difference Between Dynamic and Stationary CTUs ... 78

5.3 Proposed Deep Learning based Network DeepSCC .. 80

5.3.1 DeepSCC-I for Dynamic CTU .. 81

5.3.2 DeepSCC-II for Stationary CTU ... 83

5.3.3 Training Strategy for DeepSCC .. 84

5.3.4 Content-adaptive Threshold .. 87

5.3.5 Memory Overhead of DeepSCC ... 89

5.4 Experimental Results and Discussions .. 90

5.4.1 Ablation Study ... 90

5.4.2 Performance of DeepSCC ... 96

5.4.3 Performance of Individual DeepSCC-I and DeepSCC-II 102

5.5 Chapter Summary .. 103

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding 105

6.1 Introduction .. 105

6.2 Data Available from HEVC Decoder .. 106

6.3 Proposed FHST .. 107

6.3.1 Early CU Partitioning Termination ... 107

6.3.2 Flexible Mode Decision .. 108

6.4 Experimental Results and Discussions .. 116

6.4.1 Confidence Threshold Determination ... 117

6.4.2 Performance Comparison of YUV 4:2:0 Format .. 118

6.4.3 Discussion on the Structure of x Mode Decision Model 119

6.4.4 Performance of the Individual Technique ... 121

6.4.5 Discussion on the Feature Importance... 125

6.4.6 Performance Comparison of YUV 4:4:4 Format .. 127

6.5 Chapter Summary .. 129

Chapter 7 Conclusions and Future Work ... 130

7.1 Contributions of the Thesis .. 130

7.2 Future Work ... 132

7.2.1. Fast Inter-Prediction of SCC ... 132

7.2.2. Fast Bitrate Transcoding of SCC ... 133

7.2.3. GPU Based Parallel Encoding of SCC .. 133

References ... 135

List of Figures

 ix

List of Figures

Figure 1.1: NIB and SCB in the first frame of “MissionControlClip3”. 2

Figure 1.2: A CTU partition and its corresponding partitioning structure. 3

Figure 1.3: IBC mode in SCC. The current CU is predicted from a block in the reconstructed

region... 3

Figure 1.4: PLT mode in SCC. CUs are represented by base colors and an index map. 4

Figure 1.5: Encoding procedure implemented in SCM. .. 5

Figure 1.6: HEVC to SCC transcoder structure………………………………………………….8

Figure 2.1: Block diagram of a HEVC/SCC video encoder. ... 12

Figure 2.2: An example of a CU encoded by Intra mode……………………………………….13

Figure 3.1: (a) Encoding time and (b) mode distributions at the depth level of 2 and QP of 32.. 21

Figure 3.2: (a) Encoding time and (b) CU depth level distribution at QP of 32. 22

Figure 3.3: (a) Original content in “ChineseEditing” and its high gradient pixels detected by (b)

luminance component, and (c) all components. High gradient pixels are shown by white pixels.

 ... 24

Figure 3.4: Distributions of (a) Intra mode, (b) IBC mode, and (c) PLT mode in RNIBs, and (d)

Intra mode, (e) IBC mode, and (f) PLT mode in RSCBs in terms of 𝐾 for the first 100 frames of

“WebBrowsing” encoded with QP of 32 and the depth level of 2. .. 28

Figure 3.5: RD cost, 𝐽𝐶𝑈, distributions in term of Unsplit CUs and Split CUs for the first 100 frames

of “Desktop” encoded with QP of 32 and the depth level of 2. ... 32

List of Figures

 x

Figure 3.6: Flowcharts of (a) the overall algorithm in sequence level and (b) the fast encoding stage

in CTU level. ... 35

Figure 3.7: Performacne of (a) mode skipping rule with adaptive thresholding and (b) early

termination of CU partitions with adaptive thresholding with different value of 𝛼 and 𝛽……37

Figure 4.1: CU encoding flowcharts of various fast SCC encoding algorithms. (a) Typical fast CU

size decision algorithm [32]–[34], (b) typical fast mode decision algorithm by CU type

classification [35]–[38], and (c) proposed fast mode decision algorithm. 50

Figure 4.2: General structure of a DT-based classifier. .. 52

Figure 4.3: Two CUs with same content in a frame. .. 54

Figure 4.4: The percentages of the target mode and other modes in terms of 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 (a)–(c) and

𝐽𝑚𝑜𝑑𝑒 (d)–(e) for 16×16 CUs. ... 58

Figure 4.5: Intra, IBC and PLT mode distributions in terms of (a) Distinct color number DCN, (b)

high gradient pixel number 𝐻𝐺𝑁3, (c) horizontal activity HorAct, and (d) CU variance Var for

16×16 CUs. ... 59

Figure 4.6: IBCM&S mode DT for 32×32 CUs. ... 62

Figure 4.7: Flowchart of the proposed fast mode decision algorithm in a CTU. 66

Figure 4.8: Simulation results with two, five, eight training sequences. 67

Figure 4.9: BDBR and ΔTime of the proposed algorithm under LD configuration. 72

Figure 5.1: Structure of DeepSCC. The Optimal mode maps of the collocated CTU only exit in

DeepSCC-II, which is denoted by green blocks. ... 81

Figure 5.2: A collocated CTU and its optimal mode maps. .. 84

Figure 5.3: Training loss of DeepSCC-I and DeepSCC-II alongside iterations. 86

Figure 5.4: Optimal mode in the first frame of “Programming”. Intra, IBC and PLT modes coded

CUs are noted by blue, yellow and red blocks, respectively……………………………..………88

List of Figures

 xi

Figure 5.5: Performance of DeepSCC with various values of 𝛼𝑏𝑎𝑠𝑒 and the fixed value of 𝛼𝑑𝑒𝑐𝑎𝑦.

 ... 91

Figure 5.6: RD curve and ∆Time of the proposed DeepSCC for “ChineseEditing”,

“Programming”, “BasketballScreen”, and “MissionControlClip2”…………………….……100

Figure 5.7: Computational overhead of the proposed DeepSCC. ... 101

Figure 6.1: The partitioning structure of a CTU encoded by (a) HEVC and (b) SCC. 107

Figure 6.2: DT-based x mode decision model. ... 109

Figure 6.3: (a) NIB and SCB distribution over 𝑑𝐻𝐸𝑉𝐶𝑎𝑣𝑔 for 16×16 CU size, (b) Optimal CU

depth level distribution of NIBs over 𝑑𝐻𝐸𝑉𝐶𝑎𝑣𝑔, and (c) Mode distribution over 𝐸𝐴𝐶 111

Figure 6.4: NIB and SCB distribution over (a) 𝑆𝐶𝐵𝑁𝑢𝑚, (b) 𝐵𝐺𝐶𝑈𝑁𝑢𝑚 and (c) 𝐻𝐺𝑆3. 113

Figure 6.5: Flowchart of the proposed FHST………………………………………………….116

Figure 6.6: Re-encoding time reduction of (a) early CU partitioning termination technique, (b)

flexible mode decision technique, and (c) the proposed overall algorithm over 4 QPs. 122

Figure 6.7: Mode decisions of a region in “ChinaSpeed” with the depth level of 2 and QP of 22.

(a) Mode decision of CBFT, where Intra, IBC and PLT modes are denoted by blue, purple and

yellow blocks. (b) Intra mode skipped CUs, (c) IBC mode skippped CUs, (d) PLT mode skipped

CUs decided by our proposed FHST, where CUs with incorrectly and correctly skipped mode are

denoted by red shaded blocks and green shaded blocks, respectively. 124

Figure 6.8: Mode decisions of a region in “Programming” with the depth level of 2 and QP of 22.

(a) Mode decision of CBFT, where Intra, IBC and PLT modes are denoted by blue, purple and

yellow blocks. (b) Intra mode skipped CUs, (c) IBC mode skippped CUs, (d) PLT mode skipped

CUs decided by our proposed FHST, where CUs with incorrectly and correctly skipped mode are

denoted by red shaded blocks and green shaded blocks, respectively. 124

Figure 7.1: Adaptive screen content distribution over cloud………………………..………... 133

List of Tables

 xii

List of Tables

Table 1.1: BDBR and ΔTime of SCC compared to SCC with both IBC and PLT disabled 7

Table 3.1: Average mode distributions in each depth level for RSCBs and RNIBs……………25

Table 3.2: Hit rate of mode decision for various sequences by the fine-granular CU classification

technique. .. 27

Table 3.3: Hit rate of mode decision for various sequences by the proposed mode skipping rule

with adaptive. .. 31

Table 3.4: Hit rate of CU partition for various sequences by the proposed early termination of CU

partition. .. 33

Table 3.5: Performances with different values of 𝛼 and 𝛽………………………………….…..37

Table 3.6: Performances with different values of 𝑇𝐻𝑆. ... 38

Table 3.7: Computational overheads in the overall encoding time of the proposed algorithm…..40

Table 3.8: Performance comparisons with the state-of-the-art fast intra-prediction algorithms.. 41

Table 3.9: Performances of the proposed overall algorithm with and without scene change

detector. ... 43

Table 3.10: Performances of the proposed overall algorithm with HOD and DOH………..…44

Table 3.11: Performance of the proposed algorithm with different settings 45

Table 3.12: Performance of applying the proposed fine-granular CU classification in learning

frames .. 47

Table 4.1: Training data number for each DT…………………………………………….....….61

Table 4.2: Depth of each DT……………………………………………..……………………..61

List of Tables

 xiii

Table 4.3: The gain ratio of each feature for each DT. ... 63

Table 4.4: Decision accuracy for each DT. ... 64

Table 4.5: Incorrect decision for each DT. .. 64

Table 4.6: Same content neighboring CU number distributions for 8×8 CUs. 65

Table 4.7: Performance comparisons with the state-of-the-art fast intra-prediction algorithms..68

Table 4.8: Performance comparisons with the state-of-the-art fast intra-prediction algorithms for

sequences not in CTC. ... 70

Table 4.9: Average computational overheard of the proposed algorithm. 71

Table 4.10: Average ∆Time and BDBR of the proposed algorithm for YUV 4:2:0 and RGB 4:4:4

sequences under CTC. ... 71

Table 4.11: Performance of each individual mode decision algorithm and their combinations for

YVU 4:4:4 sequences. ... 72

Table 4.12: Mode decision distribution of the proposed overall algorithm for YVU 4:4:4

sequences... 74

Table 4.13: Performances of the proposed algorithm with other settings for YVU 4:4:4 Sequences

 ... 75

Table 5.1: Percentage of stationary areas in different sequences. ... 78

Table 5.2: Performance of encoding stationary CTUs with the same optimal modes of the

collocated CTUs of stationary areas in different sequences. ... 79

Table 5.3: Training sequences for DeepSCC. ... 85

Table 5.4: Validation sequences for DeepSCC. .. 90

Table 5.5: Performance of the proposed DeepSCC for validation sequences with different values

of 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦. ... 92

Table 5.6: Performance comparison of LFDeepSCC, GFDeepSCC and DeepSCC. 92

List of Tables

 xiv

Table 5.7: Performance comparison of DeepSCC with and without term normalization in loss

function ... 93

Table 5.8: Performance comparison of DeepSCC with different feature funsion functions……94

Table 5.9: Performance comparison of different learning policies …………………………..….95

Table 5.10: Performance comparison of DeepSCC with different number of channels. 96

Table 5.11: Performance of the proposed DeepSCC for training sequences. 97

Table 5.12: Performance of different algorithms compared with SCM-8.3 for sequences in YUV

4:4:4 format. .. 98

Table 5.13: Indirect comparison for sequences in YUV 4:4:4 format. 99

Table 5.14: Prediction accuracy of the proposed DeepSCC……………………………………100

Table 5.15: Performance of DeepSCC for sequences in RGB 4:4:4 and YUV 4:2:0 formats….102

Table 5.16: Performance of the individual DeepSCC-I and DeepSCC-II. 103

Table 6.1: Performance of the proposed DeepSCC for training sequences. 108

Table 6.2: Performance of the proposed FHST for YUV 4:2:0 sequences with different threshold

values... 117

Table 6.3: Performance comparison of the proposed FHST with different fast SCC encoding

algorithms for YUV 4:2:0 sequences………………………………………………………….119

Table 6.4: Performance of the proposed algorithm with other structures …………………….120

Table 6.5: Performance of each proposed technique for YUV 4:2:0 sequences. 121

Table 6.6: Hit rates of the proposed techniques for YUV 4:2:0 sequences. 123

Table 6.7: Performance of the proposed transcoder for YUV 4:2:0 sequences with different

feature combination. .. 126

Table 6.8: Performance comparison of the proposed transcoder with different fast SCC encoding

algorithms for YUV 4:4:4 sequences. ... 128

List of Tables

 xv

Table 6.9: Performance comparison of the proposed transcoder with other transcoder for YUV

4:4:4 sequences………………………………………………………………………………...129

Abbreviations

 xvi

Abbreviations

ITU-T Telecommunication Standardization Sector of ITU

VCEG Video Coding Experts Group

ISO International Organization for Standardization

IEC International Electrotechnical Commission

MPEG Moving Picture Experts Group

AVC Advanced Video Coding

HEVC High Efficiency Video Coding

NIB Natural Image Block

SCB Screen Content Block

JCT-VC Joint Collaborative Team on Video Coding

SCC Screen Content Coding

Intra HEVC Conventional Intra

CTU Coding Tree Unit

CU Coding Unit

QP Quantization Parameter

IBC Intra Block Copy

PLT Palette

BV Block Vector

PU Prediction Unit

RD Rate-Distortion

SCM Screen Content Model

BDBR Bjøntegaard Delta Bitrate

AI All intra

CTC Common Test Condition

CC Camera-Captured Content

A Animation

TGM Text and Graphics with Motion

M Mixed Content

SCM-8.3 HEVC Test Model Version 16.12 Screen Content Model Version 8.3

CBFT Conventional Brute-Force Transcoder

FHST Fast HEVC to SCC Transcoder

HOD Histogram of Difference

DOH Difference of Histogram

DT Decision Tree

SAD Sum of Absolute Differences

ME Motion Estimation

MV Motion Vector

AMVP Advanced Motion Vector Prediction

MC Motion Compensation

BV Block Vector
ACT Adaptive Color Transform

AMCP Adaptive Motion Compensation Precision

RNIB Rough Natural Image Block

RSCB Rough Screen Content Block

WEKA Waikato Environment for Knowledge Analysis

LD Low Delay

CNN Convolutional Neural Network

FHST Fast HEVC to SCC Transcoder

LSTM Long- and Short-Term Memory

Chapter 1 Introduction

 1

Chapter 1 Introduction

1.1 Overview

Digital video has become one of the most popular media for content representation

and distribution. However, the huge storage and transmission bandwidth requirements

limit the application of videos in the raw form. To reduce the storage and transmission

cost, video compression is desired. The Telecommunication Standardization Sector of

ITU (ITU-T) Video Coding Experts Group (VCEG) and the International Organization

for Standardization (ISO)/International Electrotechnical Commission (IEC) Moving

Picture Experts Group (MPEG) have developed a series of video coding standards such

as H.261, MPEG-1 Part 2, H.262/MPEG-2 Part 2, H.263, MPEG-4 Part 2,

H.264/Advanced Video Coding (AVC), and H.265/High Efficiency Video Coding

(HEVC) [1]–[11], which enable video encoders and decoders from different manufactures

work together across a range of applications [12]. All these standards were originally

developed for the compression of camera-capture videos. With the fast development of

the Internet and wireless communication, an emerging video type, screen content video,

is playing an essential role in many applications, such as cloud-mobile computing, remote

education, video conference with document sharing, wireless or Wi-Fi screen mirroring

[12], etc. In these applications, it requires transmitting the computer-generated screen

content video from one device to another for display. Efficient coding of screen content

videos with low complexity is crucial for the success of these applications. Screen content

videos usually shows a mixed content of traditional natural image blocks (NIBs) and

screen content blocks (SCBs), as shown in Figure 1.1. Compared with NIBs, SCBs have

Chapter 1 Introduction

 2

different signal characteristics, including no sensor noise, large flat areas with a single

color, many repeated patterns within one frame and limited colors. While NIBs can be

well compressed by the HEVC conventional intra (Intra) mode, new techniques are

necessary for SCBs. Therefore, the Joint Collaborative Team on Video Coding (JCT-VC)

established jointly by ITU-T VCEG and ISO/IEC MPEG has developed Screen Content

Coding (SCC) extension [13] of HEVC to explore new encoding tools for screen content

videos since January 2014, and it was finalized in 2016.

1.2 Flexibility of Intra Coding Structures In SCC

SCC inherits the same flexible quadtree-based block partitioning scheme from

HEVC with the introduction of several new coding modes. In SCC, frames are divided

into non-overlapping coding tree units (CTUs), which are the basic coding units with the

size of 64×64 pixels, i.e. depth level of 0. Then each CTU can be partitioned into four

coding units (CUs) of equal size, and each CU can be further partitioned into four smaller

Figure 1.1: NIB and SCB in the first frame of “MissionControlClip3”.

Chapter 1 Introduction

 3

CUs recursively until the smallest CUs of 8×8 pixels are reached, i.e. depth level of 3. An

example of the partition structure in a CTU is shown in Figure 1.2. The intra mode decision

process is performed for CUs with different sizes recursively. To efficiently encode a CU,

two additional modes, intra block copy (IBC) mode [15]–[21] and palette (PLT) [22]–[28]

mode, are introduced. IBC mode is a block matching based intraframe approach as shown

in Figure 1.3. IBC mode searches the reconstructed regions of the current frame to find the

best reference block for the current CU. It includes three steps – IBCPredictor, IBC

merge&skip (IBCM&S) and IBCSearch. IBCPredictor simply checks a set of block

vectors (BVs) from the two last encoded CUs and the neighboring CUs of left, above,

collocated, below left, above right and above left. IBCM&S is the intra version of the

Figure 1.2: A CTU partition and its corresponding partitioning structure.

Figure 1.3: IBC mode in SCC. The current CU is predicted from a block in the reconstructed

region.

Chapter 1 Introduction

 4

merge and skip mode for inter-prediction in HEVC, where IBCMerge signals residues to

a SCC decoder but IBCSkip does not. IBCSearch finds the best matched block in the

reconstructed region of the current frame for 16×16 CUs and 8×8 CUs, and it provides

different searching strategies for different CU and prediction unit (PU) sizes. The

searching strategies include the full vertical and horizontal searches, local vertical and

horizontal 1D searches, and 2D pre-defined area search. For a 16×16 CU, only the 2N×2N

PU with full vertical and horizontal searches are performed. It is due to the fact that a

large CU size tends to have fewer repeated patterns within the same frame. For an 8×8

CU, additional PU sizes are allowed to find more repeated patterns. If it is a N×2N PU,

only full vertical and horizontal searches are carried out. If it is a 2N×N or 2N×2N PU,

local vertical and horizontal 1D searches, and 2D pre-defined area search within the

current CTU and left CTU are performed. Besides, a hash value based fast searching

method is implemented for 8×8 CUs with 2N×2N PUs, where only blocks having the

same hash value as the current CU are searched. Therefore, IBCSearch comes with the

highest computational complexity among the three steps. PLT mode is designed to

improve the encoding efficiency for CUs with limited colors, as shown in Figure 1.4.

Several representative colors in a CU are selected to form a palette table. Then an index

map is generated to indicate the index of the representative color for each pixel location.

In the encoding process of a CU, Intra mode, IBC mode and PLT mode are exhaustively

Figure 1.4: PLT mode in SCC. CUs are represented by base colors and an index map.

Chapter 1 Introduction

 5

checked, and the encoding procedure implemented in the HEVC-SCC reference software,

Screen Content Model (SCM), is shown in Figure 1.5. At the beginning, IBCPredictor is

checked for CUs with sizes from 32×32 down to 8×8, If the distortion is zero after

checking IBCPredictor, Intra mode inherited from HEVC is skipped. Otherwise, Intra

mode is checked, which includes 33 directional modes, plus planar and DC modes. Then

it is followed by checking block vector (BV) predictors of IBCM&S for all CUs. If

IBCSkip is selected as the best mode among IBCPredictor, Intra, and IBCM&S, further

mode searching is terminated. Otherwise, if the best mode is IBCPredictor, Intra or

IBCMerge, the following IBCSearch and PLT modes are checked. Specifically, only CUs

with sizes of 16×16 and 8×8 need to check IBCSearch. Finally, PLT mode is checked for

CUs with sizes from 32×32 down to 8×8. In the mode searching process, the coding

performance of each mode is evaluated by calculating a Lagrange rate-distortion (RD)

cost function, 𝐽𝑚𝑜𝑑𝑒, as

𝐽𝑚𝑜𝑑𝑒 = 𝐷𝑆𝑆𝐸 + 𝜆 × 𝐵𝑚𝑜𝑑𝑒 (1.1)

where 𝐷𝑆𝑆𝐸 denotes the sum of the squared error between the current CU and its

reconstructed CU, λ is a Lagrange multiplier and 𝐵𝑚𝑜𝑑𝑒 is the actual encoding bits for

Figure 1.5: Encoding procedure implemented in SCM.

IBCPredictor

IBC search

PLT mode

Start

End

No

Yes

Yes

Intra mode search

No

Yes

No

Yes

Yes

No
No

Distortion=0?

Is IBCSkip the

best so far?

IBCM&S

CU size=64×64?

CU size 16×16?

CU size=64×64?

Chapter 1 Introduction

 6

signaling the mode and the residues. The mode with the smallest RD cost is selected as

the best mode of the CU, and its RD cost is represented as 𝐽𝐶𝑈. All CU partitions in a

CTU need to go through this mode searching process, and the final partitioning structure

of a CTU is selected as the one with the smallest RD cost, and it is involved in the final

encoding bitstream.

By adding coding tools specially designed for SCBs, SCC significantly improves the

coding efficiency and it is expected to enhance HEVC to compress screen content videos.

For example, the SCC reference software SCM version 4.0 achieves over 50%

Bjøntegaard delta bitrate (BDBR) [29] compared with the HEVC reference software HM-

16.4 for typical screen content sequences [13].

1.3 Limitations of SCC for Intra Coding

SCC achieves the coding gain than HEVC mainly from its adoption of more mode

candidates. However, the additional mode candidates induce very high computational

complexity. To analyze the additional complexity brought by IBC and PLT, we encode

the first 100 frames of testing sequences with quantitation parameters (QPs) of 22, 27, 32,

and 37 under all intra (AI) configuration, which are the settings recommended by

common test conditions (CTC) for SCC [30]. The testing sequences are YUV 4:4:4

sequences which include camera-captured content (CC), animation (A), text and graphics

with motion (TGM), and mixed content (M). In this thesis, reference software HEVC Test

Model Version 16.12 Screen Content Model Version 8.3 (HM-16.12+SCM-8.3, hereafter

called SCM-8.3 for the sake of simplicity) [31] is used. The test platform used for

simulations was a HP EliteDesk 800 G1 computer with a 64-bit Microsoft Windows 10

OS running on an Intel Core i7-4790 CPU of 3.6 GHz and 32.0 GB RAM. Table 1.1

tabulates the BDBR and the encoding time difference, ∆Time, of the conventional SCC

Chapter 1 Introduction

 7

increased by IBC and PLT compared to SCC with both IBC and PLT disabled. ∆Time is

defined as the percentage difference of the encoding time with and without IBC and PLT

modes. It can be observed that the BDBR is decreased by 45.05% on average and up to

83.47% which indicates that IBC and PLT are efficient coding tools for SC. However,

the encoding time is also increased largely by 85.82% on average and up to 143.37%

when both IBC and PLT are enabled.

1.4 Motivation and Objectives

In the encoding process, a SCC encoder needs to solve two problems:

1. Mode decision: Which mode should be chosen to encode the current CU to

minimize RD cost?

2. CU partitioning decision: Should the current CU be partitioned into smaller sub-

CUs to minimize RD cost?

To solve the above problems, the original SCC encoder adopts an exhaustive search

method, where all mode candidates and all CU partitions are searched, and then the best

coding structure is selected by comparing RD cost. For time-critical applications, the

Table 1.1: BDBR and ΔTime of SCC compared to SCC with both IBC and PLT disabled.

Sequences Type BDBR ∆Time

 BasketballScreen M -52.47 87.50

 MissionControlClip2 M -48.78 99.70

 MissionControlClip3 M -66.92 87.90

 ChineseEditing TGM -60.68 104.04

 Console TGM -69.34 52.41

 Desktop TGM -83.47 66.60

 FlyingGraphics TGM -63.79 89.28

 Map TGM -25.87 143.37

 Programming TGM -52.96 73.50

 SlideShow TGM -23.38 52.94

 WebBrowsing TGM -80.32 66.16

 Robot A -2.67 112.42

 EBURainFruits CC -0.08 91.35

 Kimono1 CC 0.03 74.30

Average -45.05 85.82

Chapter 1 Introduction

 8

exhaustive mode searching approach implemented in a SCC encoder is not practical.

Therefore, it is desired that the mode candidates and CU sizes can be checked adaptively

according to the content being encoded in order to speed up the encoding process.

On the other hand, the full adoption of SCC may take several years while HEVC is

still a widely used video compression standard. It motivates the development of the HEVC

to SCC transcoder. First, there are a significant number of legacy screen content videos

encoded by HEVC, and it is necessary to convert them from HEVC to SCC to achieve

low-cost storage. Second, a transcoder is desirable to alleviate the traffic load between

clients and clouds when users upload videos to a cloud server. Since the bandwidth

resources are very expensive, it is necessary for users to convert HEVC bitstreams into

SCC bitstreams with higher compression ratio for screen content videos. When users

download videos from the cloud server, they can either use a device with a SCC decoder

or let the server convert the bitstreams back to HEVC. Video transcoding can always be

done by using a conventional brute-force transcoder (CBFT), which contains an original

decoder and an original encoder. As shown in Figure 1.6, CBFT decodes the incoming

HEVC bitstream first, and then completely re-encodes the decoded video into a SCC

bitstream. Although this approach can be applied to any heterogeneous transcoding tasks

with high RD performance, it brings high computational complexity due to the exhaustive

search method. Therefore, it is desired that the decoder side information can be collected

to simplify the re-encoding process of CBFT, as illustrated in the upper part of Figure 1.6.

Figure 1.6: HEVC to SCC transcoder structure.

Chapter 1 Introduction

 9

1.5 Organization of This Thesis

This thesis is divided into seven chapters. Prior to the description of the objectives

and the main contributions in this thesis, Chapter 2 gives a broad literature review of

video coding techniques that are related to this work. The new coding tools in SCC

beyond HEVC are then introduced. Afterwards, a review of the previous fast video

encoding works is given. At the end of this chapter, a review of the previous fast video

transcoding works is also presented.

In Chapter 3, an online learning based fast SCC encoding algorithm is presented. To

eliminate the checking of unnecessary modes and CU partitions, content-denpendent

rules are derived according to the content being encoded. A scene change detection

method is adopted to update the content-denpendent rules by obtaining the learning

statistics from the first frame of a new scene.

In Chapter 4, a decision tree (DT) based fast prediction framework is designed. To

get rid of the exhaustive mode searching process, a flexible mode decision framework is

proposed by inserting a classifier before checking each mode. This framework facilitates

the use of dynamic features containing the unique intermediate coding information of a

coding unit, and it can make sepreate decision for IBC and PLT modes such that they are

not grouped together to be checked for a SCBs. Therefore, computational complexity can

be reduced.

In Chapter 5, a deep learning based fast prediction network DeepSCC is presented,

which contains two parts, DeepSCC-I and DeepSCC-II. For CTUs having different

content as their collocated CTUs, i.e., the sum of absolute differences (SAD) between the

current CTU and its collocated CTU is larger than 0, they are called as dynamic CTUs

and their sample values are fed to DeepSCC-I. Otherwise, they are called as stationary

CTUs and their sample values are fed to DeepSCC-II. Since there exists strong

Chapter 1 Introduction

 10

correlations between the optimal modes of a stationary CTU and its collocated CTU,

DeepSCC-II additionally utilizes the optimal mode maps of the collocated CTU to further

reduce the computational complexity.

In Chapter 6, a fast HEVC to SCC transcoder (FHST) is presented to migrate the

legacy screen content videos from HEVC to SCC. First, the CU partition in SCC is early

terminated by utilizing the CU depth level collected from the HEVC decoder. Second,

various features from 4 categories are obtained to improve the mode decision accuracy,

which are the features from the HEVC decoder, static features, dynamic features, and

spatial features. With the help of these features, a flexible transcoding structure is

proposed to make early mode decisions by using DTs.

Chapter 7 is devoted to a conclusion of the work herein, and we summarize the

contributions of the thesis. Suggestions are also included for further research in this area.

Chapter 2 Literature Review

 11

Chapter 2 Literature Review

2.1 Background Research

To improve the compression rate of digital videos, various video coding standards

such as H.264/AVC and HEVC have been proposed. These standards are designed to

reduce the video size by eliminating data redundancy. For example, HEVC employs 33

intra-prediction directions and DC plus planer mode to predict the content of a CU based

on spatial neighboring blocks. Nowadays, the proliferation of applications that use video

devices to display a mixed content of NIBs and SCBs leads to the development of SCC

extension. To further reduce the data redundancy beyond HEVC, SCC is developed as an

extension of HEVC by including some additional coding tools. Consequently, more

computational efforts are needed in data redundancy elimination. Therefore, fast

algorithms for reducing the computational complexity in video coding are desired. In the

literature, many efforts have been devoted to accelerating the encoding process.

This chapter is organized as follows. In the first section, a brief description of some

fundamental concepts about video coding is presented, with an emphasis on the coding

structure of HEVC. Then, we present the new coding tools in SCC beyond HEVC. Next,

various works aimed at the complexity reduction in the encoding problem of HEVC and

SCC are described. The last section reviews several existing fast video transcoding

algorithms among various video standards.

Chapter 2 Literature Review

 12

2.2 Digital Video Compression Fundamentals

Digital video is stored and transmitted in digital form, which requires a large amount

of data. Consequently, the cost of storing and transmitting a raw video is extremely high.

To overcome the drawback of the raw video, spatial and temporal redundancy can be

utilized to reduce the video size with negligible quality loss. Various video coding

standards have been developed by ITU-T VCEG and ISO/IEC MPEG separately or

jointly, such as H.261, MPEG-1 Part 2, H.262/MPEG-2 Part 2, H.263, MPEG-4 Part 2,

H.264/AVC, and the recent HEVC. HEVC mainly inherits coding features from

H.264/AVC, and then it induces the flexible quadtree-based block partitioning scheme to

further improve coding efficiency beyond H.264/AVC. It is reported that HEVC achieves

a 50% bitrate reduction over H.264/AVC with similar video quality [32]. As an extension

of HEVC which is specially developed for screen content videos, SCC further reduces

50% bitrate reduction over HEVC with similar video quality for them. The block diagram

of a HEVC/SCC video encoder is illustrated in Figure 2.1. Intra-prediction and inter-

prediction are employed to remove the spatial and temporal redundancy, respectively.

Then, the prediction error is signaled to a decoder by entropy coding after transform and

quantization.

Figure 2.1: Block diagram of a HEVC/SCC video encoder.

Chapter 2 Literature Review

 13

2.2.1 Intra-Prediction for Spatial Redundancy Elimination

Intra-prediction is an efficient tool to reduce the spatial redundancy within a frame,

where the content of a CU is predicted according to the reconstructed spatially

neighboring samples. HEVC employs 33 different directional orientations and DC mode

plus planner mode to reduce the redundancy, and they are referred to as Intra mode in this

thesis. Then, only the residues between the current block and its predicted block are

encoded. An example of a CU encoded by Intra mode is shown in Figure 2.2.

2.2.2 Inter-Prediction for Temporal Redundancy Elimination

Inter-prediction is another efficient tool in HEVC, which removes temporal

redundancy between adjacent frames. Instead of using reconstructed spatially

neighboring samples, the reference pixels are from a previously coded frame. Inter-

prediction is performed based on the assumption that objects are in translational motion

among adjacent frames so that a CU in the current frame can find a similar block in the

previously coded frame. HEVC performs Motion estimation (ME) to find the best

matched block for the current CU, and the relative location between the current CU and

the reference block is denoted by a motion vector (MV). ME can be done by merge &

skip mode or advanced motion vector prediction (AMVP). Merge & skip mode derives

several motion predictors from spatial and temporal neighboring blocks, and then directly

uses them to find the best matched block. More specifically, merge mode signals residues

Figure 2.2: An example of a CU encoded by Intra mode.

Chapter 2 Literature Review

 14

to the decoder but skip mode does not. On the other hand, AMVP first derives a motion

predictor from two spatial neighboring blocks, and then it further searches the best

matched block around the motion predictor. Unlike merge & skip mode, the motion vector

of AMVP is differentially coded with the motion vector predictor. After performing

motion compensation (MC), only the residual block between the current block and its

predicted block is encoded.

2.3 New Coding Tools in SCC Beyond HEVC

To improve the coding efficiency for screen content videos, SCC adopts four major

coding tools beyond HEVC, which are IBC mode [15]–[21] and PLT mode [22]–[28],

adaptive color transform (ACT) [33]–[37], adaptive motion compensation precision

(AMCP) [38]–[42]. IBC and PLT modes significantly improve the coding efficiency of

SCC but also induce great computational complexity.

IBC was first proposed in the contest of AVC/H.264 [43], but then removed because

it is not efficient for camera-captured videos. SCC includes IBC as a coding tool similar

to inter-prediction, but its search region is the reconstructed area in the current frames.

The syntax for IBC mode is unified with inter-prediction but it adopts a different

searching strategy. If IBC mode is chosen, a BV is signaled to denote the relative location

between the match block and the current CU.

PLT mode is an effective mode for CUs with limited colors. Several representative

colors in a CU are selected as base colors to form a palette table. Each entry in the palette

table consists of three components of YUV or RGB. Those color values not in the palette

table are treated as escape colors. Then, a palette index map is generated to send indices

for base colors and escape colors. For base colors, only the indices in the palette are

encoded. For escapes colors, the quantized color values are directly encoded.

Chapter 2 Literature Review

 15

ACT is developed to remove the inter-color component redundancy. A residual

block is adaptively converted into a different color space, i.e., YCgCo. The RD cost

function is employed to decide whether to code the residual signal in the original

RGB/YUV color space or in the converted YCgCo color space.

AMCP adaptively switches motion vectors between full and fractional resolutions.

Unlike screen camera-capture content where motion is continuous and motion vectors in

the fractional resolution are necessary, computer-generated content usually has a

granularity of one or more samples. By using AMCP, it eliminates the need to signal

fractional motion vectors for computer-generated contents.

2.4 Complexity Reduction in the Encoding Problem

To simplify the encoding process of HEVC, a fast CU partitioning algorithm was

proposed in [44] by using Bayesian decision rule. The CU partitioning process is early

terminated by using joint online and offline learning. In [45], a fast mode decision

algorithm was proposed to predict the RD cost and bit cost of a CU based on the statistical

analysis. Then unnecessary modes are skipped according to the prediction. In [46], both

the mode searching process and the CU partitioning process are terminated adaptively by

analyzing the RD cost of the current CU. Although they work well for computational

complexity reduction of HEVC, they are not suitable for SCC in which new coding modes

such as IBC and PLT have been adopted.

To reduce the computational complexity of SCC, fast mode searching algorithms

were designed in [47]–[49], and fast CU size decision algorithms were suggested in [50]–

[52]. Then, various algorithms were integrated to make both fast mode decision and CU

size decision in [53]–[56]. In [47], a new mode was proposed to fill a noiseless smooth

CU by its boundary samples. In [48], a hash value is calculated to adaptively skip the

Chapter 2 Literature Review

 16

local search process in IBC mode. In [49], IBC mode is skipped for zero activity CUs and

low gradient CUs. In [50], a neural network based fast algorithm was proposed to make

fast CU size decision by utilizing features that describe CU statistics and sub-CU

homogeneity. However, high RD performance loss is induced by this approach. In [51],

for static regions, collocated CU depth and mode information are utilized to predict the

current CU size. Besides, an approach with the adaptive searching step was proposed to

simplify the block matching process of IBC mode. However, this algorithm is not suitable

for screen content videos with many dynamic regions. In [52], a fast CU size decision

algorithm based on entropy was proposed. Some rules are firstly set based on entropy to

make CU partitioning decision, and then the coding bits are used to improve the decision

accuracy. The algorithms in [53]–[56] are mainly based on the assumption that NIBs

select Intra mode while SCBs select IBC and PLT modes. They then classify CUs into

NIBs and SCBs to make fast mode decision. In [53], a DT-based classifier was firstly

designed to classify CUs into NIBs and SCBs, so that NIBs only check Intra mode while

SCBs check both IBC and PLT modes. Besides, to speed up the encoding of NIBs, two

classifiers were designed to predict the Intra mode direction from 35 prediction modes

and early terminate the partitions of NIBs, respectively. In [54], a CU type classification

is performed by CU content analysis. While IBC and PLT modes are skipped for some

smooth NIBs, all modes are checked for SCBs and non-smooth NIBs. Then the depth

information of temporal and spatial neighboring CUs, as well as coding bits, are utilized

to make fast CU size decision. In [55], Intra mode is firstly checked for all CUs with

2N×2N PUs, and then an early CU partitioning decision is made. If a CU is classified as

a partitioning CU, it directly goes to the next depth level. Otherwise, it is further classified

as a SCB or NIB. If it is a SCB, both IBC and PLT modes are checked. If it is a NIB, only

Intra mode for N×N PUs in the depth level of 3 is tested. In [56], neural network-based

Chapter 2 Literature Review

 17

classifiers are trained to classify CUs in NIBs and SCBs. Again, IBC, PLT modes and a

subset of Cintra mode are checked for SCBs, while only Cintra mode is checked for NIBs.

Then, various heuristic rules based on the information from spatial and temporal adjacent

CUs is proposed to make fast CU partitioning decision. Although the methods in [53]–

[56] provide better performance compared with the previous works, they mainly focus on

the fast encoding of NIBs. For SCBs, either both IBC and PLT modes or all modes need

to be checked. Therefore, it is desired that mode candidates can be further reduced for

SCBs.

2.5 Complexity Reduction in the Transcoding Problem

In the literature, transcoding techniques can be divided into two categories:

homogeneous transcoding and heterogeneous transcoding. Homogeneous transcoding

refers to the conversion within the same format to meet a new functionality, such as

different bit rates [57], different frame rates [58]–[60], different spatial resolutions[61],

or even the insertion of new information such as watermarking [62] and error resilience

layers [63], [64]. Heterogeneous transcoding refers to the bitstream conversion between

different formats, and the HEVC to SCC transcoding belongs to this category. For

heterogeneous transcoding, many fast transcoding algorithms have been proposed for

different tasks, such as MPEG-2 to H.264 transcoding [65], [66], MPEG-2 to HEVC

transcoding [67] and H.264 to HEVC transcoding [68]–[71]. These transcoders all focus

on the fast CU partitioning decision because of different CU partitioning structures of the

various standards. However, the fast HEVC to SCC transcoding is different from the

previous transcoding problem due to the introduction of the new IBC and PLT modes.

Therefore, new challenges are introduced in the HEVC to SCC transcoding problem.

Chapter 2 Literature Review

 18

To reduce the computational complexity of a HEVC to SCC transcoder, one possible

way is to use various fast encoding algorithms [47]–[56] to replace the original SCC

encoder of CBFT in Figure 1.6. These fast algorithms all utilize the SCC encoder side

information only, and they are not optimal when applied to the HEVC to SCC transcoding

problem. On the one hand, the information from SCC encoder side contains noise due to

the lossy encoding and decoding of HEVC, and it may lead to high RD performance loss.

On the other hand, it is desired that the information from the HEVC decoder side can be

utilized to improve decision accuracy.

In the literature, there is only one paper [72] studying the fast transcoding scheme of

HEVC to SCC, and it was designed for screen content videos in YUV 4:4:4 format. First,

it directly maps the optimal CU size from HEVC to SCC and classifies CUs into non-

partitioning CUs and partitioning CUs. For partitioning CUs, it utilizes a CU type

classifier to further classify them into SCBs and NIBs like other fast mode decision

algorithms [53]–[56]. SCBs check both IBC and PLT modes before going to the next

depth level, while NIBs directly go to the next depth level. For non-partitioning CUs, only

Intra mode is checked and then CU partitions are terminated. Besides, some thresholds

are set to skip remaining modes and CU partitions if the bit cost of a CU is small. However,

it has two drawbacks. First, it only utilizes some static features describing the current CU

content to perform classifications while ignoring the information from the intermediate

encoding stage and neighboring CUs. Therefore, the prediction accuracy is not high, and

all mode candidates need to be checked for 8×8 CUs. Second, it treats the decision for

IBC and PLT modes the same like other fast mode decision algorithms [53]–[56], where

both IBC and PLT modes are checked for SCBs. In fact, a SCB will only select one mode

from IBC and PLT modes, and higher re-encoding time reduction can be provided if mode

candidates are further reduced for SCBs.

Chapter 2 Literature Review

 19

2.6 Chapter Summary

To reduce the computation complexity of the SCC encoding and transcoding

problems, many recently proposed algorithms have been reviewed in this chapter. We

started this chapter by reviewing the compression techniques employed in current video

standards. Next, four new coding tools in SCC beyond HEVC were introduced. Specially,

IBC and PLT modes significantly improve the coding efficiency for screen content videos,

but they also induce great computational complexity. Afterward, various works aimed at

reducing the encoding time of SCC were presented. The existing algorithms always

perform simple CU type classification for making mode decision. Therefore, at least two

modes, IBC and PLT, need to be checked for SCBs. To further reduce the encoding time,

the classification between IBC-coded SCBs and PLT-coded SCBs should be made. In

addition, the existing algorithms related to the fast video transcoding problem were

reviewed, and there is only one work aimed at accelerating the transcoding of HEVC to

SCC. It shows that there is plenty of room for improvement. Therefore, in the following

chapters, we examine the possibility of further accelerating the encoding and transcoding

process by various machine learning algorithms.

Chapter 3 Determinations on Coding Structure by Online Learning

 20

Chapter 3 Determinations on Coding Structure

by Online Learning

3.1 Introduction

It is well known that the characteristics of successive frames in a video are usually

very similar. By taking this into account, content dependent rules can be considered to

predict the optimal modes and CU partitions of the current frame. In this chapter, a fast

intra-prediction algorithm by content analysis and dynamic thresholding is presented,

where the prediction models are tailor-made according to the video content and QP. The

organization of this chapter is as follows. Section 3.2 presents the motivation of this

research work. Section 3.3 describes the details of the proposed coding scheme by content

analysis and dynamic thresholding. Section 3.4 evaluates the performance of the proposed

scheme, where simulation results are provided in BDBR and ∆Time. Finally, conclusions

are given in Section 3.5.

Parts of the contents of this chapter are extracted from our published work [73]:

⚫ Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Fast Intraprediction

for High-Efficiency Video Coding Screen Content Coding by Content Analysis and

Dynamic Thresholding,” Journal of Electronic Imaging, vol. 27, no. 5, pp. 053029-

1–053029-18, October 2018.

3.2 Motivation for Content Dependent Rules

Different sequences usually show very different characteristics, and they have

different mode decision and CU partitioning decision. On the contrary, a video sequence

Chapter 3 Determinations on Coding Structure by Online Learning

 21

is usually composed of a series of similar frames, and they exhibit similar characteristics.

If content dependent rules can be derived for different sequences, encoding time can be

further reduced.

3.2.1 Content Dependent Mode Decision

To analyze the mode decision in SCC, the encoding time distribution and mode

distribution at the depth level of 2 with QP of 32 are shown in Figure 3.1. It is noted that

similar distributions can be observed with other QPs and depth levels. From Figure 3.1, it

is observed that the distributions vary remarkably for different sequences. For example, in

“Console”, Intra mode only takes up 7.55% of the mode distribution but it costs 22.09%

of the encoding time. In “EBURainFruits”, IBC and PLT modes take up 38.03% and

15.94% of the encoding time while only negligible percentage of CUs (0.21% and 0.06%,

respectively) select them, respectively. For “Map”, IBC mode only takes up 6.72% of the

mode distribution while it costs 43.64% of the encoding time. Besides, it is observed that

although IBC mode can be skipped for many CUs of “Map”, PLT mode is a frequently

selected mode which takes up 56.51% of total modes. Although CU type classification

algorithms such as [53]–[56] work well for “EBURainFruits” by skipping both IBC and

Figure 3.1: (a) Encoding time and (b) mode distributions at the depth level of 2 and QP of 32.

(a) (b)

Chapter 3 Determinations on Coding Structure by Online Learning

 22

PLT modes for NIBs, they are not optimal for “Map” because their fixed rules treat IBC

and PLT modes equally. The variability of distributions among various sequences in

Figure 3.1 implies that content dependent rules should be beneficial for making fast mode

decisions in addition to performing CU type classifications.

3.2.2 Content Dependent CU Size Decision

To analyze the CU size decision in SCC, the encoding time and optimal CU depth

level distributions of all test sequences are presented in Figure 3.2 with QP of 32. As

mentioned before, similar distributions can be observed with other QPs. It is observed that

the computational complexity increases as the CU depth level gets higher, and the CU

depth level of 3 takes up over 50% of the total encoding time for many sequences such as

“Map”, “SlideShow”, “Robot”, “EBURainFruit”, and “Kimnono1”. However, the optimal

CU depth level distributions of these sequences differ a lot. For example, 58.02% of CUs

in “Map” select the depth level of 3, while only 5.65% of CUs in “SlideShow” are encoded

by the depth level of 3. Again, it is desirable that content dependent rules can be derived

to early terminate the CU partitioning process. For sequences with many CUs selecting

lower depth levels like “SlideShow”, the content dependent rules with an adaptive

Figure 3.2: (a) Encoding time and (b) CU depth level distribution at QP of 32.

(a) (b)

Chapter 3 Determinations on Coding Structure by Online Learning

 23

thresholding technique will terminate more CU partitions to pursuit higher encoding time

reduction.

3.3 Proposed Coding Scheme by Content Analysis and Dynamic

Thresholding

Among those coding modes, Intra mode works well for NIBs while PLT and IBC

modes are specially designed based on the characteristics of the repeated pattern and

limited colors for SCBs. Therefore, PLT and IBC modes can be skipped for NIBs while

Intra mode can be skipped for SCBs. In this section, this CU type classification will be

carried out through a rough CU classification, followed by a fine-granular CU

classification. Then, content dependent rules with adaptive thresholding based on

background color ratio and RD cost are proposed to further speed up mode decisions and

skip redundant partitions for efficiently encoded CUs, respectively.

3.3.1 Rough CU Classification

There are usually many sharp edges in a SCB while a NIB tends to be smoother.

Based on this observation, high gradient pixels are adopted to classify CUs into rough

NIBs (RNIBs) and rough SCBs (RSCBs). The use of high gradient pixels is first

employed in [74] for an early version of PLT, which utilizes the number of high gradient

pixels HGN in a CU to decide whether PLT should be tested for the CU. This is very

similar to our purpose to distinguish regions with shape edges and smooth pixels for

RSCBs and RNIBs, respectively. A pixel is defined as a high gradient pixel if the

luminance difference of the current pixel 𝑌𝑖,𝑗 and one of the neighboring pixels 𝑌𝑖±1,𝑗

and 𝑌𝑖,𝑗±1 located at 0, 90, 180 and 270 is larger than a threshold 𝑇𝐻𝑆

|𝑌𝑖,𝑗 − 𝑌𝑖±1,𝑗| > 𝑇𝐻𝑆 or |𝑌𝑖,𝑗 − 𝑌𝑖,𝑗±1| > 𝑇𝐻𝑆 (3.1)

Chapter 3 Determinations on Coding Structure by Online Learning

 24

where 𝑖 and 𝑗 denote the row and column indices of the pixel. 𝑇𝐻𝑆 is a threshold

controlling the sharpness of the edges for detection, which is experimentally set to 64.

Furthermore, if HGN in a CU is larger than TH_HGN, it is classified as a RSCB in the

proposed algorithm. Otherwise, it is classified as a RNIB.

As shown in Figure 3.3(b), some sharp edges cannot be detected by high gradient

pixels that only use the luminance component. But we find that they can be well detected

if all components of a pixel are taken into consideration, which is clearly shown in the

example shown in Figure 3.3(c). Therefore, instead of using the luminance component

only, our proposed algorithm further improves it by utilizing all color components to

avoid the missed detection of sharp edges. In the proposed algorithm, high gradient pixels

are firstly detected by using each color component separately with 𝑇𝐻𝑆, and then 𝐻𝐺𝑁 is

set to the maximum number of high gradient pixels detected by the three components

𝐻𝐺𝑁 = 𝑚𝑎𝑥(𝐻𝐺𝑁𝑌, 𝐻𝐺𝑁𝐶𝑟 , 𝐻𝐺𝑁𝐶𝑏) (3.2)

where max(⋅) is the maximum function to return the largest value from a set of data. 𝐻𝐺𝑁𝑌,

𝐻𝐺𝑁𝐶𝑟, and 𝐻𝐺𝑁𝐶𝑏 are the number of high gradient pixels detected by the components

of Y, Cr and Cb, respectively. Since a larger CU usually has a larger number of high

gradient pixels, the value of TH_HGN is set according to CU sizes of 2N2N pixels as

𝑇𝐻_𝐻𝐺𝑁 =
2𝑁×2𝑁

256
× 4 (3.3)

We perform the rough CU classification as

Figure 3.3: (a) Original content in “ChineseEditing” and its high gradient pixels detected by (b)

luminance component, and (c) all components. High gradient pixels are shown by white pixels.

Chapter 3 Determinations on Coding Structure by Online Learning

 25

CU ∈ {
RSCB, 𝑖𝑓 𝐻𝐺𝑁 > 𝑇𝐻_𝐻𝐺𝑁
RNIB, 𝑖𝑓 𝐻𝐺𝑁 𝑇𝐻_𝐻𝐺𝑁

 (3.4)

Thus, if HGN in a CU is larger than TH_HGN, it is classified as a RSCB in the

proposed algorithm. Otherwise, it is classified as a RNIB. To analyze the mode

distributions in terms of RNIBs and RSCBs, we encoded all 14 SCC standard sequences.

The average mode distributions for RSCBs and RNIBs with QP of 32 are shown in Table

3.1, and similar distributions can be observed with other QPs. It is observed that RSCBs

tend to select IBC or PLT mode while RNIBs tend to select Intra mode. However, it is

also observed that the accuracy of the CU type classification is not high enough. For

example, 52.64% of RSCBs still select Intra mode at the depth level of 0. Therefore,

instead of making early mode decisions according to the rough CU type directly, it is

adopted as a pre-processing step and then two fast mode decision techniques are built on

the top of the rough CU classification result.

3.3.2 Fine-granular Coding Unit Classification

In this sub-section, the background color information in a CU is used to perform a

more fine-granular CU type classification. For a CU, the background color is defined as

the color with the highest occurrence frequency within the CU by considering all the three

components. As shown in Figure 1.1, there is usually a large area filled with a background

Table 3.1: Average mode distributions in each depth level for RSCBs and RNIBs.

CU Type Depth Level PLT/IBC (%) Intra (%)

RSCB

0 47.04 52.64

1 87.91 12.09

2 89.14 10.86

3 80.65 19.35

RNIB

0 6.29 93.71

1 20.31 79.39

2 34.06 65.94

3 29.34 70.66

Chapter 3 Determinations on Coding Structure by Online Learning

 26

color for a SCB. If the background color of the current CU exists in all its four sub-CUs,

it is more likely to be a SCB. Otherwise, if the background color of the current CU

disappears in one of its sub-CUs, it is more likely to be a NIB. Therefore, by utilizing

both the rough CU classification result and the background color, incoming CUs are

further classified as SCBs, NIBs and Uncertain CUs as

CU ∈ {
SCB, 𝑖𝑓 CU ∈ RSCB and 𝐵𝐶 ∈ {𝑆1⋂𝑆2⋂𝑆3⋂𝑆4}
NIB, 𝑖𝑓 CU ∈ RNIB and 𝐵𝐶 ∉ {𝑆1⋂𝑆2⋂𝑆3⋂𝑆4}
Uncertain CU, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.5)

where 𝐵𝐶 denotes the background color of the current CU. 𝑆1, 𝑆2, 𝑆3, and 𝑆4 denote the

sample spaces of its four sub-CUs. It should be noted that {𝑆1⋂𝑆2⋂𝑆3⋂𝑆4} would contain

𝐵𝐶 only if all the sub-CUs contain the background color of the current CU. Therefore, a

CU is classified as a SCB if it is a RSCB and its four sub-CUs contain the background

color of the current CU. On the contrary, a CU is classified as a NIB if it is a RNIB and

the background color of the CU disappears from at least one of its four sub-CUs.

Otherwise, it is treated as an Uncertain CU and no early mode decision is made. Since

IBC mode and PLT mode are designed for SCBs, they are skipped for NIBs. Similarly,

Intra mode is designed for NIBs and it is skipped for SCBs. To evaluate the accuracy of

the fine-granular CU classification technique, we analyzed the hit rate of mode decision

by calculating the percentage of the CUs whose optimal mode from the original SCM-8.3

is not skipped by using the proposed technique. Table 3.2 shows the hit rate for all test

sequences under QP of 32, and similar results can be observed with other QPs. It is

observed that the hit rates vary from 87.96% to 100% for different sequences and depth

levels. Besides, the average hit rates for the depth levels of 0, 1, 2, and 3 are 96.04%,

97.33%, 96.89% and 94.70%, respectively. Considering that IBC mode is a very efficient

mode for encoding small NIBs with repeated patterns, we still check IBC mode for NIBs

at the depth level of 3. By adding this condition, it is observed in Table 3.2 that the hit

Chapter 3 Determinations on Coding Structure by Online Learning

 27

rate for the depth levels of 3 is increased to 97.99%, and our experiments shows that the

increase in BDBR brought by our proposed algorithm is reduced by 0.90%.

3.3.3 Mode Skipping Rule with Adaptive Thresholding

In this sub-section, based on the rough CU classification result, a content dependent

rule with adaptive thresholding based on background color ratio K is derived to perform

more flexible fast mode decisions. Let BCN be the number of pixels with the background

color of a 2N2N CU, then K is defined as

𝐾 =
𝐵𝐶𝑁

2𝑁×2𝑁
. (3.6)

Since SCBs usually have a large area filled with a background color, they have higher

values of K than NIBs. Therefore, CUs with high values of K are more likely to select

IBC and PLT modes while CUs with low values of K tend to select Intra mode. To analyze

the distributions of Intra, IBC and PLT modes in terms of K, the first 100 frames of

Table 3.2: Hit rate of mode decision for various sequences by the fine-granular CU classification

technique.

Sequences Depth=0 (%) Depth=1 (%) Depth=2 (%) Depth=3 (%)

Depth=3 with

additional IBC

checking (%)

BasketballScreen 92.97 93.69 94.48 92.67 97.73

MissionControlClip2 96.80 94.41 94.07 92.73 97.95

MissionControlClip3 93.20 95.38 93.72 95.32 98.25

ChineseEditing 87.96 96.66 97.47 96.45 98.24

Console 92.93 99.26 99.68 98.44 98.61

Desktop 98.19 99.64 98.25 97.20 99.43

FlyingGraphics 99.59 99.78 99.15 93.56 95.50

Map 98.43 97.20 94.73 92.13 96.90

Programming 90.20 94.12 96.60 94.23 97.63

SlideShow 97.30 96.32 93.79 89.20 93.98

WebBrowsing 97.60 97.11 98.97 97.88 99.21

Robot 99.94 99.34 96.48 91.31 98.54

EBURainFruits 99.50 99.66 99.58 98.00 99.87

Kimono1 100 100 99.52 96.70 99.98

Average 96.04 97.33 96.89 94.70 97.99

Chapter 3 Determinations on Coding Structure by Online Learning

 28

“WebBrowsing” were encoded. Considering that RSCBs and RNIBs have different mode

distributions, as shown in Table 3.1, the optimal mode distributions are investigated for

RSCBs and RNIBs separately. Figure 3.4(a)–(c) and Figure 3.4(d)–(f) show the Intra,

IBC, PLT mode distributions in RNIBs and RSCBs with QP of 32 and the depth level of

2, respectively, and similar distributions can be observed with other QPs and depth levels.

It is noted that if a CU has same samples in each row or each column, it is regarded as a

simple CU, as depicted in Figure 1.1. It is well known that simple CUs can be encoded

by all modes efficiently with low complexity, they are excluded in Figure 3.4. It is

observed that for both RNIBs and RSCBs, Intra mode is rarely selected in the region with

high values of K, while IBC and PLT modes are rarely selected in the region with low

values of K. More specifically, while IBC and PLT modes have similar distributions in

RSCBs, they have different distributions in RNIBs. This explains why the mode skipping

rule with adaptive thresholding should consider RSCBs and RNIBs separately. Compared

with IBC mode, the number of RNIBs selecting PLT mode is relatively low, and they are

Figure 3.4: Distributions of (a) Intra mode, (b) IBC mode, and (c) PLT mode in RNIBs, and (d)

Intra mode, (e) IBC mode, and (f) PLT mode in RSCBs in terms of 𝐾 for the first 100 frames of

“WebBrowsing” encoded with QP of 32 and the depth level of 2.

K

K

C
o
u

n
t

Skip region

K

K

Skip region

K

Skip region
Skip region

Skip region

𝑇𝐻_𝐾𝐼 𝑟𝑎
 𝑁𝐼𝐵,𝑑

𝑇𝐻_𝐾𝐼𝐵𝐶
 𝑁𝐼𝐵,𝑑 𝑇𝐻_𝐾

 𝑁𝐼𝐵,𝑑

𝑇𝐻_𝐾𝐼 𝑟𝑎
 𝑆𝐶𝐵,𝑑 𝑇𝐻_𝐾𝐼𝐵𝐶

 𝑆𝐶𝐵,𝑑

𝑇𝐻_𝐾
 𝑆𝐶𝐵,𝑑

Skip region

K

(a) (b) (c)

(d) (e) (f)

0 0.5 1

Chapter 3 Determinations on Coding Structure by Online Learning

 29

concentrated on a narrower region with very high values of K. Therefore, for CUs in the

depth level 𝑑 (𝑑 ∈ {0,1,2,3}) and rough type 𝑡 (𝑡 ∈ {RNIB , RSCB}), content dependent

thresholds 𝑇𝐻_𝐾𝐼 𝑟𝑎
 ,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

, and 𝑇𝐻_𝐾
 ,𝑑

 of K can be derived to perform mode

skipping for Intra, IBC and PLT modes, respectively. Based on the observation from

Figure 3.4(a) and Figure 3.4(d), the skip region of Intra mode is on the right side of

𝑇𝐻_𝐾𝐼 𝑟𝑎
 ,𝑑

. By rounding the value of K down to one-hundredth of its original value, the

ratio of Intra mode, 𝑅𝐼 𝑟𝑎
 ,𝑑

, to all modes in its skip region is calculated as

𝑅𝐼 𝑟𝑎
 ,𝑑 =

∑ 𝑁𝑢𝑚𝐶𝑈𝐼𝑛𝑡𝑟𝑎
𝑡,𝑑 (𝐾)1

𝐾=𝑇𝐻_𝐾𝐼𝑛𝑡𝑟𝑎
𝑡,𝑑

∑ 𝑁𝑢𝑚𝐶𝑈𝐴𝑙𝑙
𝑡,𝑑(𝐾)1

𝐾=𝑇𝐻_𝐾𝐼𝑛𝑡𝑟𝑎
𝑡,𝑑

 (3.7)

where 𝑁𝑢𝑚𝐶𝑈𝐼 𝑟𝑎
 ,𝑑 (𝐾) denotes the number of Intra CUs with the background color ratio

of K. 𝑁𝑢𝑚𝐶𝑈𝐴𝑙𝑙
 ,𝑑(𝐾) denotes the number of all CUs with the background color ratio of K.

On the other hand, as shown in Figure 3.4(b)–(c) and Figure 3.4(e)–(f), the skip regions

of IBC and PLT modes are on the left side of 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

, and 𝑇𝐻_𝐾
 ,𝑑

. Then, for a given

value of 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 and 𝑇𝐻_𝐾
 ,𝑑

, the ratios of IBC and PLT modes, 𝑅𝐼𝐵𝐶
 ,𝑑

 and 𝑅
 ,𝑑

, to all

modes in their own skip regions are calculated as

𝑅𝐼𝐵𝐶
 ,𝑑 =

∑ 𝑁𝑢𝑚𝐶𝑈𝐼𝐵𝐶
𝑡,𝑑 (𝐾)

𝑇𝐻_𝐾𝐼𝐵𝐶
𝑡,𝑑

𝐾=0

∑ 𝑁𝑢𝑚𝐶𝑈𝐴𝑙𝑙
𝑡,𝑑(𝐾)

𝑇𝐻_𝐾𝐼𝐵𝐶
𝑡,𝑑

𝐾=0

 (3.8)

𝑅
 ,𝑑 =

∑ 𝑁𝑢𝑚𝐶𝑈𝑃𝐿𝑇
𝑡,𝑑 (𝐾)

𝑇𝐻_𝐾𝑃𝐿𝑇
𝑡,𝑑

𝐾=0

∑ 𝑁𝑢𝑚𝐶𝑈𝐴𝑙𝑙
𝑡,𝑑(𝐾)

𝑇𝐻_𝐾𝑃𝐿𝑇
𝑡,𝑑

𝐾=0

 (3.9)

where 𝑁𝑢𝑚𝐶𝑈𝐼𝐵𝐶
 ,𝑑 (𝐾) and 𝑁𝑢𝑚𝐶𝑈

 ,𝑑 (𝐾) denote the number of IBC CUs, and PLT CUs

with the background color ratio of K, respectively. It is noted that 𝑁𝑢𝑚𝐶𝑈𝐴𝑙𝑙
 ,𝑑(𝐾) is

calculated as the sum of 𝑁𝑢𝑚𝐶𝑈𝐼 𝑟𝑎
 ,𝑑 (𝐾) , 𝑁𝑢𝑚𝐶𝑈𝐼𝐵𝐶

 ,𝑑 (𝐾) and 𝑁𝑢𝑚𝐶𝑈
 ,𝑑 (𝐾) . To

reduce the computational complexity of the mode searching process, it is desired that the

skip regions are set as large as possible. However, larger skip regions also induce larger

Chapter 3 Determinations on Coding Structure by Online Learning

 30

RD performance loss, because more modes are incorrectly skipped. Therefore, a

confidence threshold 𝛼 is set to control the skip region of each mode. For a given value

of 𝛼 , 𝑇𝐻_𝐾𝐼 𝑟𝑎
 ,𝑑

 is set to the minimum value by keeping 𝑅𝐼 𝑟𝑎
 ,𝑑

 smaller than 𝛼 while

𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 and 𝑇𝐻_𝐾
 ,𝑑

 are set to the maximum values by keeping 𝑅𝐼𝐵𝐶
 ,𝑑

 and 𝑅
 ,𝑑

 smaller

than 𝛼.

For the first frame of a new scene in a sequence, the encoder follows the original

encoding process to search all modes in all depth levels while collecting the statistics of

𝑁𝑢𝑚𝐶𝑈𝐼 𝑟𝑎
 ,𝑑 (𝐾), 𝑁𝑢𝑚𝐶𝑈𝐼𝐵𝐶

 ,𝑑 (𝐾) and 𝑁𝑢𝑚𝐶𝑈
 ,𝑑 (𝐾). Then, based on the statistics in the

first frame, the values of 𝑇𝐻_𝐾𝐼 𝑟𝑎
 ,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 and 𝑇𝐻_𝐾
 ,𝑑

 are derived according to the

confidence threshold 𝛼. Finally, 𝑇𝐻_𝐾𝐼 𝑟𝑎
 ,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 and 𝑇𝐻_𝐾
 ,𝑑

 are used to perform

early mode skipping for the following frames. When a CU with the background color

ratio of K is being encoded, intra mode is skipped if

𝐾 > 𝑇𝐻_𝐾𝐼 𝑟𝑎
 ,𝑑

. (3.10)

Similarly, IBC mode and PLT mode are skipped separately if

𝐾 < 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 (3.11)

𝐾 < 𝑇𝐻_𝐾
 ,𝑑

. (3.12)

To analyze the hit rate of the mode decision with our adaptive thresholding, a value

of 𝛼 is set to 0.05 in this sub-section, and the analysis of the effects on selecting 𝛼 will be

examined in Section 3.4.1. Table 3.3 shows the hit rate of mode decision for all test

sequences under QP of 32, and similar distributions are observed with other QPs. It is

observed that the hit rates vary from 90.65% to 100% for different sequences and depth

levels. For the depth levels of 0, 1, 2, and 3, the average hit rates are 99.11%, 95.51%,

97.91% and 98.21%, respectively. Therefore, the mode skipping rule with the proposed

adaptive thresholding technique will bring negligible RD performance loss to screen

Chapter 3 Determinations on Coding Structure by Online Learning

 31

content sequences. As compared with the works in [53]–[56] and our mode skipping rule

using fine-granular CU classification in Section 3.3.2 where IBC and PLT modes are

checked together for SCBs, the new mode skipping rule with adaptive thresholding

facilitates to check only one mode (IBC or PLT mode) for the SCBs.

To avoid the situation that a CTU cannot be encoded, the decision for skipping all

modes in a CU is considered as invalid, and then all mode candidates are checked for the

CU. It is noted that, from our experimental results, only 0.03% CUs have all modes

decided to be skipped after going through our mode skipping rule with adaptive

thresholding.

3.3.4 Early Termination of CU Partitions with Adaptive Thresholding

To encode each CTU, the original encoding process needs to search all depth levels

to determine the final CTU partition structure. However, if a CU is already encoded

efficiently, the remaining partitions can be skipped without RD performance loss. For

Table 3.3: Hit rate of mode decision for various sequences by the proposed mode skipping rule

with adaptive.

Sequences Depth=0 (%) Depth=1 (%) Depth=2 (%) Depth=3 (%)

BasketballScreen 98.72 95.77 98.62 98.65

MissionControlClip2 99.02 91.64 97.26 97.99

MissionControlClip3 98.32 92.62 96.69 98.40

ChineseEditing 98.31 91.01 96.02 97.83

Console 100 98.79 99.27 98.34

Desktop 98.67 98.45 99.50 98.47

FlyingGraphics 99.12 95.49 99.38 99.87

Map 99.25 90.65 97.68 98.86

Programming 98.18 92.98 99.43 98.89

SlideShow 98.68 94.88 95.43 97.04

WebBrowsing 99.27 95.82 98.05 98.06

Robot 100 99.02 94.65 98.36

EBURainFruits 100 99.98 99.48 97.91

Kimono1 100 99.97 99.30 96.23

Average 99.11 95.51 97.91 98.21

Chapter 3 Determinations on Coding Structure by Online Learning

 32

traditional camera-captured videos, homogeneous content tends to select large CU sizes

while small CU sizes are more likely to be selected to encode complex content. However,

due to the adoption of new coding modes, complex content in screen content videos can

also be encoded efficiently with large CU sizes by PLT mode and IBC mode. Therefore,

instead of analyzing the content of a CU, we use the RD cost of a CU, 𝐽𝐶𝑈, to perform

early termination of CU partitions.

 A CU with 𝑑 ∈ {0,1,2} is classified as an Unsplit CU if it has been efficiently

encoded and further partitions are unnecessary. Otherwise, it is classified as a Split CU

and it needs to continue partitioning to search the optimal size. To reveal the different 𝐽𝐶𝑈

distributions in Unsplit CUs and Split CUs, the first 100 frames of “Desktop” were

encoded. The results with QP of 32 are shown in Figure 3.5, and similar distributions can

be observed with other QPs and depth levels. We can see that CUs with small values of

𝐽𝐶𝑈 are most likely to be Unsplit CUs whereas CUs with relatively large values of 𝐽𝐶𝑈

values are likely to be Split CUs. Thus, a content dependent threshold 𝑇𝐻_ 𝐽
𝑑 can be

extracted to early terminate remaining partitions, and the termination region should be on

the left side of 𝑇𝐻_ 𝐽
𝑑 . Similar as Section 3.3.3, for reducing the computational

complexity of the CU partitioning process, it is desirable that the termination region is as

Figure 3.5: RD cost, 𝐽𝐶𝑈, distributions in term of Unsplit CUs and Split CUs for the first 100 frames

of “Desktop” encoded with QP of 32 and the depth level of 2.

Chapter 3 Determinations on Coding Structure by Online Learning

 33

large as possible. However, a larger termination region leads to larger RD performance

loss, because more CUs are terminated incorrectly. Therefore, a confidence threshold 𝛽

is set to control the termination region. By rounding the value of 𝐽𝐶𝑈 into integer values

which are one-hundredth of the original RD costs, the ratio of Split CUs, 𝑅𝑆𝑝𝑙𝑖
𝑑 , to all

CUs in the termination region is calculated as

𝑅𝑆𝑝𝑙𝑖
𝑑 =

∑ 𝑁𝑢𝑚𝐶𝑈𝑆𝑝𝑙𝑖𝑡
𝑑 (𝐽𝐶𝑈)

𝑇𝐻_ 𝐽𝑇
𝑑

𝐽𝐶𝑈=0

∑ (𝑁𝑢𝑚𝐶𝑈𝑆𝑝𝑙𝑖𝑡
𝑑 (𝐽𝐶𝑈)+𝑁𝑢𝑚𝐶𝑈𝑈𝑛𝑠𝑝𝑙𝑖𝑡

𝑑 (𝐽𝐶𝑈))
𝑇𝐻_ 𝐽𝑇

𝑑

𝐽𝐶𝑈=0

 (3.13)

where 𝑁𝑢𝑚𝐶𝑈𝑆𝑝𝑙𝑖
𝑑 (𝐽𝐶𝑈) and 𝑁𝑢𝑚𝐶𝑈𝑈 𝑠𝑝𝑙𝑖

𝑑 (𝐽𝐶𝑈) denote the number of Split CUs and

Unsplit CUs with RD cost of 𝐽𝐶𝑈. 𝑇𝐻_ 𝐽
𝑑 is set to the maximum value while keeping the

value of 𝑅𝑆𝑝𝑙𝑖
𝑑 smaller than 𝛽.

By applying the original encoding process to the first frame of a scene, the statistics

of 𝑁𝑢𝑚𝐶𝑈𝑆𝑝𝑙𝑖
𝑑 (𝐽𝐶𝑈) and 𝑁𝑢𝑚𝐶𝑈𝑈 𝑠𝑝𝑙𝑖

𝑑 (𝐽𝐶𝑈) are obtained to calculate the value of the

content dependent threshold 𝑇𝐻_ 𝐽
𝑑 according to 𝛽. After the first frame, the previously

extracted 𝑇𝐻_ 𝐽
𝑑 is used to terminate partitions for a CU. To evaluate the accuracy of the

proposed early termination of the CU partition technique, the hit rate of CU partition was

Table 3.4: Hit rate of CU partition for various sequences by the proposed early termination of CU

partition.

Sequences Depth=0 (%) Depth=1 (%) Depth=2 (%)

BasketballScreen 99.31 99.10 98.83

MissionControlClip2 99.29 99.22 98.24

MissionControlClip3 98.58 98.90 98.69

ChineseEditing 99.83 98.77 98.43

Console 99.91 99.42 97.55

Desktop 98.96 99.25 98.72

FlyingGraphics 99.85 98.98 98.66

Map 99.34 98.32 98.12

Programming 99.94 99.96 98.49

SlideShow 98.98 98.98 98.05

WebBrowsing 99.86 98.29 97.85

Robot 100 99.90 99.41

EBURainFruits 100 99.26 98.87

Kimono1 100 99.95 97.90

Average 99.56 99.16 98.42

Chapter 3 Determinations on Coding Structure by Online Learning

 34

analyzed by calculating the percentage of the CUs whose optimal partitions from the

original SCM-8.3 are not falsely skipped by using the proposed technique. The hit rates

are shown in Table 3.4 for all test sequences under QP of 32, and similar results are

observed with other QPs. Here the value of 𝛽 is set to 0.05, and the detailed analysis of

choosing 𝛽 will be studied in Section 3.4.1. It is observed that the hit rates for the early

termination of the CU partition technique are very high, which vary from 97.55% to 100%

for different sequences and depth levels. On average, hit rates of 99.56%, 99.16%, and

98.42% are provided for CUs in the depth levels of 0, 1, and 2, respectively.

3.3.5 Scene Change Detection for Adaptive Threshold Updating

In screen content videos, scene changes occur frequently such as document opening

or closing, slideshow playing, etc. If the video content changes significantly, it is regarded

as a scene change. A scene change makes the learning statistics change a lot, and the

content dependent rules are not accurate. To correctly extract the values of 𝑇𝐻_𝐾𝐼 𝑟𝑎
 ,𝑑

,

𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 , 𝑇𝐻_𝐾
 ,𝑑

 and 𝑇𝐻_ 𝐽
𝑑, we use a simple yet efficient correlation measurement

method, histogram of difference (HOD) [44], [75], to update the statistics adaptively for

different scenes in a sequence. In HOD, the correlation between two adjacent frames is

calculated by comparing the collocated luminance values of the two frames, and it is

represented as

 𝐻𝑂𝐷 =
∑ ℎ𝑜𝑑𝑙∉[-𝜏,𝜏]

∑ ℎ𝑜𝑑
𝑞−1
𝑙=−𝑞+1

 (3.14)

where ℎ𝑜𝑑denotes the histogram of difference between two adjacent frames, and 𝑞

denotes the number of luminance levels. 𝜏 is a threshold used to select the pixels with a

large difference, which is usually set to 32. The further the histogram of difference is

distributed from the origin of ℎ𝑜𝑑, the more different the frames are. Therefore, a scene

change is regarded to happen if

Chapter 3 Determinations on Coding Structure by Online Learning

 35

𝐻𝑂𝐷 > 𝑇𝐻_𝐻𝑂𝐷𝑆𝐶 (3.15)

where 𝑇𝐻_𝐻𝑂𝐷𝑆𝐶 is a threshold to detect the scene change, and it is experimentally set

to 0.2 in our proposed algorithm. Then, the first frame of the new scene is encoded by the

original encoding process to update the statistics and calculate the values of 𝑇𝐻_𝐾𝐼 𝑟𝑎
 ,𝑑

,

𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 , 𝑇𝐻_𝐾
 ,𝑑

 and 𝑇𝐻_ 𝐽
𝑑.

3.3.6 Flowcharts of Overall Algorithm

Based on the above analysis, our proposed algorithm is divided into two stages,

which are the threshold updating stage and fast encoding stage, and the flowchart of the

overall algorithm is shown in Figure 3.6. In the threshold updating stage, the first frame

of a new scene is encoded by the original encoding process to search all modes in all

depth levels while collecting the statistics in Equations (3.7)–(3.9) and (3.13). Then, the

values of 𝑇𝐻_𝐾𝐼 𝑟𝑎
 ,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 , 𝑇𝐻_𝐾
 ,𝑑

 and 𝑇𝐻_ 𝐽
𝑑 are calculated according to 𝛼 and

Figure 3.6: Flowcharts of (a) the overall algorithm in sequence level and (b) the fast encoding stage

in CTU level.

CTU encoding start

Intra mode

No

Yes

Rough CU classification using (3.4)

Fine-granular CU classification using (3.5)

SCB r 𝐾 > 𝑇𝐻_𝐾𝐼 𝑟𝑎
𝑖,𝑑

?

(NIB & 𝑑 3)

 r 𝐾 < 𝑇𝐻_𝐾𝐼𝐵𝐶
𝑖,𝑑

?

NIB r 𝐾 < 𝑇𝐻_𝐾
𝑖,𝑑

?PLT mode

All modes are skipped?

Check all modes

CTU encoding end

Background color ratio K extraction using (3.6)

Next depth level

IBC mode

Last depth level?

Yes
Yes

Yes

Yes

Yes

No

No

No

No

No

Sequence encoding start

Original SCC encoding

Statistics estimation in (3.7)-(3.9)

and (3.13)

𝑇𝐻_𝐾𝐼 𝑟𝑎
𝑖,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
𝑖,𝑑

, 𝑇𝐻_𝐾
𝑖,𝑑

and 𝑇𝐻_ 𝐽
𝑑

calculation

Go to the next frame

Scene change

using (3.14)?

Fast encoding stage

Sequence encoding end

Last frames?

Yes

Yes

No

No

(a) (b)

Computational

overheads

𝐽𝐶𝑈 < 𝑇𝐻_ 𝐽
𝑑?

Chapter 3 Determinations on Coding Structure by Online Learning

 36

𝛽. In the fast encoding stage, the fine-granular CU classification technique and the content

dependent thresholds are used to make fast mode and CU partition decisions.

3.4 Experimental Results and Discussions

The proposed fast intra-prediction has been implemented in SCM-8.3 for simulations.

BDBR and encoding time reduction, ∆Time, with QPs at 22, 27, 32, and 37 were compared

with that of the original SCM-8.3. ∆Time is defined as

∆𝑇𝑖𝑚𝑒 =
1

4
∑ (

 𝑖𝑚𝑒𝑁𝐸𝑊,𝑄𝑃− 𝑖𝑚𝑒𝑅𝐸𝐹,𝑄𝑃

 𝑖𝑚𝑒𝑅𝐸𝐹,𝑄𝑃
)𝑄 × 100% (3.16)

where 𝑇𝑖𝑚𝑒𝑁𝐸𝑊,𝑄 denotes the encoding time of a new algorithm with a value of QP, and

𝑇𝑖𝑚𝑒 𝐸𝐹,𝑄 is the encoding time of the original SCM-8.3 with a value of QP. Since

sequences in TGM and M are videos containing both pictorial content and textual content,

while sequences in A and CC are pictorial content videos, we will show the average

performance results for TGM+M and A+CC, respectively. Three kinds of experiments

were conducted to analyze the performance of the proposed algorithm. First, the values of

thresholds were tested to find a good trade-off between the coding efficiency and encoding

complexity. Second, the computational overhead of the proposed algorithm is analyzed.

Third, the performance of the proposed overall algorithm was evaluated by comparing

with the existing fast intra-prediction methods. Fourth, the contribution of different

proposed techniques was assessed. Fifth, the performance of the proposed algorithm with

the adoption of fast encoding in learning frames is investigated.

3.4.1 Threshold Determination

In our proposed fast intra-prediction algorithm, two confidence thresholds 𝛼 and 𝛽

are used to balance the computational complexity reduction and the high coding

efficiency of SCC. Figure 3.7 shows the individual performance of the proposed

Chapter 3 Determinations on Coding Structure by Online Learning

 37

techniques with difference values of 𝛼 and 𝛽 . It is observed that as the value of 𝛼

increases from 0.2% to 0.14%, the proposed mode skipping rule with adaptive

thresholding provides 15% - 35% encoding time reduction with 0.11% - 2.83% BDBR

increment. As the value of 𝛽 increases from 0.2% to 0.14%, the proposed early

termination of CU partitions with adaptive thresholding provides 9% to 16% encoding

time reduction with 0.09% to 1.22% BDBR increment.

To achieve a good trade-off between the coding efficiency and encoding complexity,

different values of 𝛼 and 𝛽 were tested to evaluate the performance of the overall

Table 3.5: Performances with different values of 𝛼 and 𝛽.

Sequences

𝛼=0.025,

𝛽=0.025

𝛼=0.025,

𝛽=0.075

𝛼=0.05,

𝛽=0.05

𝛼=0.075,

𝛽=0.025

𝛼=0.075,

𝛽=0.075

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BasketballScreen 0.95 -22.89 1.17 -25.29 1.14 -25.21 1.55 -26.91 1.75 -28.97

MissionControlClip2 1.12 -23.71 1.14 -27.72 1.64 -28.73 2.26 -28.12 2.36 -30.80

MissionControlClip3 0.67 -23.81 0.89 -26.69 1.15 -29.82 1.53 -30.45 1.71 -31.94

ChineseEditing 0.31 -25.66 0.45 -27.45 0.43 -33.77 0.63 -38.34 0.74 -38.89

Console 0.42 -32.11 1.01 -34.34 0.69 -35.90 0.48 -35.50 1.08 -37.20

Desktop 0.67 -31.06 1.20 -33.39 1.21 -33.68 1.14 -37.85 1.65 -39.50

FlyingGraphics 1.11 -20.43 1.36 -22.27 1.27 -23.25 1.24 -23.15 1.57 -23.63

Map 1.24 -25.49 1.46 -26.86 1.54 -31.56 1.81 -32.17 1.26 -32.49

Programming 0.49 -19.92 0.63 -22.04 0.73 -23.85 0.82 -25.03 2.04 -26.99

SlideShow 3.27 -55.10 3.44 -58.03 3.63 -58.82 5.36 -58.06 5.84 -60.55

WebBrowsing 0.82 -32.89 1.89 -35.10 1.83 -41.76 1.87 -43.96 3.32 -45.91

Robot 0.77 -24.27 0.79 -24.32 1.21 -39.00 2.35 -50.40 2.40 -50.89

EBURainFruits 0.20 -48.15 0.23 -51.12 0.23 -52.92 0.27 -52.96 0.30 -55.29

Kimono1 0.10 -42.02 0.15 -46.72 0.12 -44.97 0.10 -41.17 0.15 -46.67

Average (TGM+M) 1.01 -28.46 1.33 -30.83 1.39 -33.30 1.70 -34.50 2.12 -36.08

Average (A+CC) 0.36 -38.15 0.39 -40.72 0.52 -45.63 0.91 -48.18 0.95 -50.95

Average (ALL) 0.87 -30.54 1.13 -32.95 1.20 -35.95 1.53 -37.43 1.87 -39.27

(a) (b)

Figure 3.7: Performacne of (a) mode skipping rule with adaptive thresholding and (b) early

termination of CU partitions with adaptive thresholding with different value of 𝛼 and 𝛽.

𝛼 = 0.2

𝛼 = 0.5

𝛼 = 0.8
𝛼 = 0.11

𝛼 = 0.14

BDBR (%)

∆
𝑇
𝑖𝑚
𝑒

(%
)

-

-

-

-
𝛽= 0.2

𝛽= 0.5 𝛽= 0.8
𝛽= 0.11

𝛽= 0.14

-

-

-

-∆
𝑇
𝑖𝑚
𝑒

(%
)

BDBR (%)

Chapter 3 Determinations on Coding Structure by Online Learning

 38

algorithm, and the results are shown in Table 3.5. It is expected that as the values of 𝛼 and

𝛽 increase, more reduction in encoding time can be achieved at the expense of BDBR

increase. The proposed algorithm shows encoding time saving from 30.54% to 39.27%,

while BDBR is increased from 0.87% to 1.87% with 𝛼 and 𝛽 varying from 0.025 to 0.075.

Therefore, the proposed algorithm has the advantage that it can make the trade-off between

the RD performance and time saving by setting different confidence threshold values. If

the encoding time is the key issue, a large value can be set to the confidence thresholds.

Otherwise, a small value can be set to preserve the high coding efficiency of SCC. To

balance the encoding time and coding efficiency, we set the values of 𝛼 and 𝛽 to 0.05 for

later discussions.

In the rough CU classification, 𝑇𝐻𝑆 is set to 64 empirically to detect high gradient

pixels. We also list the performance of our proposed algorithm with different values of

𝑇𝐻𝑆 in Table 3.6. It is observed that the overall performance varies little with different

Table 3.6: Performances with different values of 𝑇𝐻𝑆.

Sequences

𝑇𝐻𝑆=16 𝑇𝐻𝑆=32 𝑇𝐻𝑆=48 𝑇𝐻𝑆=64 𝑇𝐻𝑆=80

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BasketballScreen 1.40 -25.88 1.22 -25.05 1.03 -24.39 1.14 -25.21 1.26 -25.15

MissionControlClip2 2.18 -26.75 1.74 -30.25 1.61 -28.22 1.64 -28.73 1.78 -28.02

MissionControlClip3 1.23 -26.05 1.08 -27.81 1.04 -28.83 1.15 -29.82 1.23 -29.65

ChineseEditing 0.43 -31.59 0.42 -32.14 0.45 -33.45 0.43 -33.77 0.49 -32.58

Console 0.74 -34.57 0.71 -34.56 0.71 -35.59 0.69 -35.90 0.65 -33.37

Desktop 0.83 -32.38 0.81 -33.22 1.15 -33.53 1.21 -33.68 1.03 -32.80

FlyingGraphics 1.27 -22.82 1.57 -23.99 1.41 -23.53 1.27 -23.25 1.17 -21.59

Map 1.54 -37.35 2.25 -34.68 1.66 -31.90 1.54 -31.56 1.58 -29.99

Programming 0.73 -21.16 1.01 -22.37 0.87 -22.88 0.73 -23.85 0.64 -23.22

SlideShow 3.63 -57.98 3.78 -58.63 3.87 -59.25 3.63 -58.82 4.22 -57.65

WebBrowsing 1.82 -41.70 2.09 -43.97 1.73 -43.25 1.83 -41.76 2.00 -41.22

Robot 1.21 -33.94 1.74 -40.18 1.20 -37.24 1.21 -39.00 1.26 -39.18

EBURainFruits 0.23 -54.43 0.28 -55.76 0.28 -54.10 0.23 -52.92 0.24 -51.82

Kimono1 0.11 -44.11 0.07 -44.10 0.10 -44.80 0.12 -44.97 0.11 -43.07

Average (TGM+M) 1.44 -32.57 1.52 -33.33 1.42 -33.17 1.39 -33.30 1.46 -32.29

Average (A+CC) 0.52 -44.16 0.70 -46.68 0.53 -45.38 0.52 -45.63 0.54 -44.69

Average (ALL) 1.24 -35.05 1.34 -36.19 1.22 -35.78 1.20 -35.95 1.26 -34.95

Chapter 3 Determinations on Coding Structure by Online Learning

 39

values of 𝑇𝐻𝑆 from 16 to 80, and the least increase in BDBR of 1.20% is provided with

𝑇𝐻𝑆 of 64, as adopted in our proposed algorithm.

3.4.2 Analysis for Computational Overheads

Except the encoding process, the proposed algorithm includes the additional

processes such as statistics estimation for threshold updating, rough CU classification,

fine-granular CU classification, background color ratio K extraction and scene change

detection, as highlighted in Figure 3.6. During threshold updating, the first frame of the

new scene is encoded by the original SCM-8.3, and various statistics are then collected

to calculate the content dependent thresholds 𝑇𝐻_𝐾𝐼 𝑟𝑎
 ,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 , 𝑇𝐻_𝐾
 ,𝑑

 and

𝑇𝐻_ 𝐽
𝑑 according to and . This process is only applied to the first frame with scene

change. It is noted that the calculation of these content dependent thresholds is very

simple, and it is about 0.66% on average of the encoding time required for the first frame

of the new scene compared to the first frame encoded by the original SCM-8.3. Table 3.7

further analyzes these computational overheads, which are calculated as the ratio of the

overhead to the overall encoding time of the proposed algorithm. Results in Table 3.7

show that the threshold updating process only consumes about 0.015% on average of the

overall encoding time of the proposed algorithm. On the other hand, the rough CU

classification, fine-granular CU classification, background color ratio extraction and

scene change detection are necessary to be carried out in all frames. The proportion of

these overheads is also listed in Table 3.7, which is about 0.885% on average of the

overall encoding time of the proposed algorithm. It can be concluded that the encoding

time required for these overheads is negligible. Moreover, in the following evaluation of

the proposed algorithm, the encoding time consumed by these processes and all frames

are included when calculating the complexity reduction.

Chapter 3 Determinations on Coding Structure by Online Learning

 40

3.4.3 Performance Evaluation

To validate the efficiency of the proposed algorithm, our overall algorithm is

compared with the state-of-the-art fast intra-prediction algorithms [52]–[55] for SCC. It

is noted that they were implemented in different reference software from ours in their

original publications. Zhang et al.’s method [52] was simulated using HM-12.1+RExt-5.1

rather than SCM, while Duanmu et al.’s method [53], Lei et al.’s method [54] and Yang

et al.’s method [55] were simulated using SCM-4.0, SCM-2.0 and SCM-5.0, respectively.

There are numerous enhancements, speed-up techniques and codes clean-up in SCM-8.3

compared with the older versions. In the older versions, the BV signal in IBC mode was

not unified with the inter mode which only has left and above BVs as predictors without

IBCM&S. Consequently, incoming CUs always need to check the time-consuming

IBCSearch and PLT modes without early termination. Moreover, N×N IBCSearch was

done after 2N×N search while it is eliminated in SCM-8.3. In addition, the older versions

enable PLT mode in the depth level of 0 while it is disabled in SCM-8.3 because of the

Table 3.7: Computational overheads in the overall encoding time of the proposed algorithm.

Sequences

Proportion (%)

Threshold updating
Classification tasks/ K extraction/

scene change detection

BasketballScreen 0.007 0.705

MissionControlClip2 0.024 0.857

MissionControlClip3 0.007 0.751

ChineseEditing 0.004 0.350

Console 0.003 0.299

Desktop 0.003 0.287

FlyingGraphics 0.013 0.272

Map 0.006 0.616

Programming 0.008 0.583

SlideShow 0.038 0.782

WebBrowsing 0.009 0.623

Robot 0.021 1.592

EBURainFruits 0.031 1.893

Kimono1 0.042 2.784

Average 0.015 0.885

Chapter 3 Determinations on Coding Structure by Online Learning

 41

occasional use. Due to those differences, we re-implemented them into SCM-8.3 for fair

comparisons. Table 3.8 shows the detailed performance comparisons in terms of BDBR

and ∆Time. It is observed that our proposed algorithm can achieve up to 58.82% encoding

time reduction as compared with the anchor SCM-8.3. TGM+M sequences show 33.30%

complexity reduction with 1.39% increase in BDBR. Specifically, it provides 33.68%,

35.90% and 33.77% encoding time reduction for “Desktop”, “Console” and

“ChineseEditing”, while the BDBR is increased by 1.21%, 0.69% and 0.43%, which is

slightly better than the performance of skipping Intra mode entirely. Besides, A+CC

sequences show 45.63% complexity reduction with 0.52% increase in BDBR, and it is

similar to the performance of skipping IBC+PLT modes entirely where 46.99% encoding

time is reduced with 0.81% increase in BDBR. On average, 35.95% encoding time can be

saved with a negligible increase in BDBR of 1.20%. Zhang et al.’s method [52] only

optimizes the CU partitioning process, so that it shows the least encoding time reduction

by only 14.53%, and it is not enough considering the high computational complexity of

Table 3.8: Performance comparisons with the state-of-the-art fast intra-prediction algorithms.

Sequences

Zhang [52] Duanmu [53] Lei [54] Yang [55] Proposed

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BasketballScreen 0.45 -11.98 1.25 -22.43 1.46 -24.83 3.00 -31.54 1.14 -25.21

MissionControlClip2 0.40 -20.50 2.86 -33.90 1.71 -25.49 2.51 -38.54 1.64 -28.73

MissionControlClip3 0.37 -11.28 2.03 -24.61 1.69 -33.81 2.90 -34.15 1.15 -29.82

ChineseEditing 0.14 -3.40 1.10 -17.47 0.99 -18.96 5.47 -31.19 0.43 -33.77

Console 2.64 -8.23 1.87 -28.12 2.87 -23.40 6.27 -35.91 0.69 -35.90

Desktop 0.67 -4.94 2.19 -26.24 1.97 -23.85 7.38 -42.83 1.21 -33.68

FlyingGraphics 0.54 -3.24 0.98 -20.13 1.72 -18.13 4.30 -34.16 1.27 -23.25

Map 0.97 -10.66 1.55 -19.16 1.23 -20.05 4.71 -27.38 1.54 -31.56

Programming 0.44 -11.76 1.89 -22.16 2.50 -22.92 3.69 -34.45 0.73 -23.85

SlideShow 0.36 -46.92 2.82 -52.47 2.32 -55.58 5.00 -53.00 3.63 -58.82

WebBrowsing 0.79 -6.99 1.91 -28.17 6.02 -26.75 2.84 -41.66 1.83 -41.76

Robot 0.43 -17.89 1.18 -29.36 5.21 -46.91 0.59 -28.19 1.21 -39.00

EBURainFruits 0.21 -18.96 0.88 -26.47 1.76 -48.58 0.17 -25.89 0.23 -52.92

Kimono1 0.14 -26.67 1.23 -25.75 1.52 -75.55 0.13 -36.18 0.12 -44.97

Average (TGM+M) 0.71 -12.72 1.86 -26.81 2.23 -26.71 4.37 -36.80 1.39 -33.30

Average (A+CC) 0.26 -21.17 1.10 -27.19 2.83 -57.01 0.30 -30.09 0.52 -45.63

Average (ALL) 0.61 -14.53 1.70 -26.89 2.36 -33.20 3.50 -35.36 1.20 -35.95

Chapter 3 Determinations on Coding Structure by Online Learning

 42

the SCC encoder. Duanmu et al.’s method [53] shows a less encoding time saving of

26.89%, and a higher increase in BDBR of 1.70% than the proposed algorithm.

Particularly, only 27.19% complexity reduction is shown for A+CC sequences, which is

much smaller than our algorithm. The reason is that unlike Duanmu et al.’s method [53]

where fixed rules for mode skipping are applied to all sequences, our algorithm calculates

the thresholds for mode skipping adaptively by extracting the statistics in the first frame

of a scene. For A+CC sequences, because almost no CU selects IBC and PLT modes in

the first frame, the dynamic thresholds can skip IBC and PLT modes for all CUs in the

following frames, and it leads to much higher encoding time reduction than Duanmu et

al.’s method [53]. Lei et al.’s method [54] and Yang et al.’s method [55] achieve similar

encoding time reduction as our algorithm, which are 33.20% and 35.36%, respectively.

However, it is observed that their methods bring a much higher increase in BDBR than the

proposed algorithm, which are 2.36% and 3.50%, respectively. Again, they also set many

fixed rules to skip some mode candidates and CU partitions without taking the distinct

characteristics of each sequence into account. Besides, they focus on the fast encoding

scheme for A+CC sequences but not for TGM+M sequences. While both Lei et al.’s

method [54] and Yang et al.’s method [55] can skip IBC and PLT modes for NIBs, they

need to check Intra mode (either for 2N×2N PUs or all PUs), IBC mode and PLT mode

for SCBs. Comparatively, the proposed fine-granular CU classification technique can skip

both IBC and PLT modes for NIBs and skip Intra mode for SCBs. Then, the proposed

mode skipping rule with the adaptive thresholding technique allows the case that only one

mode is checked for SCBs, which further reduces the encoding time.

In the proposed algorithm, a scene change detector is utilized to update the content

dependent thresholds adaptively. While similar performances are observed for sequences

Chapter 3 Determinations on Coding Structure by Online Learning

 43

without obvious scene changes by enabling and disabling the scene change detector, the

performances for sequences with more than 3 scene changes are shown in Table 3.9 for

comparison. It is observed that by enabling the scene change detector, the BDBR

increment is reduced by 0.18% for those sequences without affecting the encoding time

on average. Specially, “SlideShow” shows performance improvement in both BDBR and

∆𝑇𝑖𝑚𝑒 because more suitable values of the content dependent thresholds are updated with

the scene change detector.

Furthermore, we also investigate the performance of the proposed algorithm by

replacing HOD by difference of histogram (DOH) [75]. For DOH, it calculates the

absolute sum of the histogram difference between two adjacent frames, 𝐹𝑎 and 𝐹𝑏 , by

using luma samples, and the value of DOH is given as the ratio of the absolute sum of the

histogram difference to all histograms of 𝐹𝑎

𝐷𝑂𝐻(𝐹𝑎, 𝐹𝑏)=
∑ |ℎ𝑎(𝑙)−ℎ𝑏(𝑙)|
𝑞−1
𝑙=0

∑ ℎ𝑎(𝑙)
𝑞−1
𝑙=0

 (3.16)

where 𝑞 is the number of luma level, ℎ𝑎 and ℎ𝑏 are the histograms of 𝐹𝑎 and 𝐹𝑏. If DOH

is larger than 𝑇𝐻_𝐻𝑂𝐷𝑆𝐶, which is usually set to 0.25, a scene change is regarded to

happen. The results are shown in Table 3.10. It is observed that DOH cannot detect the

scene change and update the learning statistics adaptively.

Table 3.9: Performances of the proposed overall algorithm with and without scene change

detector.

Sequences
Without HOD With HOD

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%)

MissionControlClip2 1.72 -32.71 1.64 -28.73

MissionControlClip3 1.55 -29.89 1.15 -29.82

FlyingGraphics 1.35 -24.34 1.27 -23.25

SlideShow 3.77 -53.64 3.63 -58.82

Average 2.10 -35.15 1.92 -35.16

Chapter 3 Determinations on Coding Structure by Online Learning

 44

3.4.4 Contribution Analysis of Different Techniques

To further investigate the contribution of each individual proposed technique and

their combinations, simulations were performed for another 4 settings with 𝛼=0.05,

𝛽=0.05 and 𝑇𝐻_𝑃𝐷𝐼𝐹𝐹=64: fine-granular CU classification (TECH1), mode skipping rule

with adaptive thresholding (TECH2), early termination of CU partitions with adaptive

thresholding (TECH3), and TECH1+TECH2. The performance of each setting is shown

in Table 3.11. Besides, the performance of the overall algorithm is also shown in the table

as TECH1+TECH2+TECH3.

TECH1 provides 17.72% encoding time saving with 0.55% increase in BDBR on

average. TGM+M sequences show 18.00% complexity reduction with 0.64% increase in

BDBR, while A+CC sequences show 16.68% complexity reduction with 0.24% increase

in BDBR. We can see that it works well for the sequences with almost pure textual content,

which contains both sharp edges and large background area in the same CUs, such as

“Console”, “ChineseEditing” and “Desktop”. Significant encoding time reduction can be

achieved by 23.50%, 24.96% and 22.88% with a small increase in BDBR by 0.45%,

0.24% and 0.18% for these three sequences, respectively. Besides, TECH1 can encode CC

sequences “EBURainFruits” and “Kimono1” efficiently with almost no increase in BDBR.

No RD performance loss is observed for “Kimono1” with encoding time saved by 17.13%,

Table 3.10: Performances of the proposed overall algorithm with HOD and DOH.

Sequences
HOD DOH

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%)

MissionControlClip2 1.27 -23.25 1.72 -32.04

MissionControlClip3 3.63 -58.82 1.52 -28.46

FlyingGraphics 1.64 -28.73 0.51 -8.83

SlideShow 1.15 -29.82 4.91 -56.87

Average 1.92 -35.16 2.17 -31.55

Chapter 3 Determinations on Coding Structure by Online Learning

 45

and BDBR is increased by only 0.05% for “EBURainFruits” with encoding time saved by

14.13%.

For the TECH2, 21.09% encoding time can be saved while BDBR is increased by

0.60% on average. TGM+M sequences show 16.65% complexity reduction with 0.65%

increase in BDBR while A+CC sequences show a very high complexity reduction of

37.39% with 0.40% increase in BDBR. CC sequences “EBURainFruits” and “Kimono1”

show the largest encoding time reduction by 43.83% and 37.83% while the increases in

BDBR are only 0.18% and 0.10%, respectively. The reason is that IBC mode and PLT

mode are rarely selected for CC sequences when encoded by the original SCC encoder.

Then in the fast encoding stage, the content dependent thresholds 𝑇𝐻_𝐾
 ,𝑑

 and 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

are set to large values, so that PLT mode and IBC mode are skipped for almost all CUs in

the following frames.

By combining the two mode decision techniques together, TECH1+TECH2 provides

28.31% encoding saving with 1.04% increase in BDBR on average. TGM+M sequences

Table 3.11: Performance of the proposed algorithm with different settings.

Sequences

TECH1 TECH2 TECH3 TECH1+TECH2
TECH1+TECH2+

TECH3

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BasketballScreen 0.82 -16.94 0.23 -10.69 0.10 -4.43 0.99 -19.83 1.14 -25.21

MissionControlClip2 0.68 -12.62 1.05 -12.90 0.12 -11.25 1.52 -22.58 1.64 -28.73

MissionControlClip3 0.47 -18.06 0.56 -14.47 0.13 -5.80 0.99 -24.67 1.15 -29.82

ChineseEditing 0.18 -22.88 0.20 -22.35 0.13 -3.14 0.32 -32.61 0.43 -33.77

Console 0.24 -24.96 0.20 -21.78 0.38 -6.85 0.34 -29.68 0.69 -35.90

Desktop 0.45 -23.50 0.77 -22.54 0.28 -4.64 0.99 -28.70 1.21 -33.68

FlyingGraphics 0.99 -17.60 0.09 -8.21 0.16 -3.42 1.11 -20.04 1.27 -23.25

Map 0.77 -12.81 0.58 -18.49 0.22 -4.62 1.28 -26.87 1.54 -31.56

Programming 0.44 -14.42 0.22 -8.79 0.08 -6.39 0.58 -18.44 0.73 -23.85

SlideShow 1.76 -10.81 2.38 -13.83 0.28 -41.37 3.64 -17.58 3.63 -58.82

WebBrowsing 0.24 -23.39 0.88 -29.07 0.63 -5.94 1.22 -36.33 1.83 -41.76

Robot 0.67 -18.78 0.92 -30.52 0.01 -3.74 1.22 -34.99 1.21 -39.00

EBURainFruits 0.05 -14.13 0.18 -43.83 0.02 -9.09 0.21 -44.38 0.23 -52.92

Kimono1 0.00 -17.13 0.10 -37.83 0.03 -5.09 0.10 -39.66 0.12 -44.97

Average (TGM+M) 0.64 -18.00 0.65 -16.65 0.23 -8.90 1.18 -25.21 1.39 -33.30

Average (A+CC) 0.24 -16.68 0.40 -37.39 0.02 -5.97 0.51 -39.68 0.52 -45.63

Average (ALL) 0.55 -17.72 0.60 -21.09 0.18 -8.27 1.04 -28.31 1.20 -35.95

Chapter 3 Determinations on Coding Structure by Online Learning

 46

show 25.21% complexity reduction with 1.18% increase in BDBR, while A+CC

sequences show 39.68% complexity reduction with 0.51% increase in BDBR. When

compared with the individual performance of TECH1 and TECH2, higher encoding time

is provided by TECH1+TECH2, especially for TGM+M sequences which contains both

NIBs and SCBs. It is noted that TECH1 performs the conventional CU classification like

method [53]–[55] where both IBC and PLT modes are checked for SCBs. Comparatively,

TECH2 provides a more flexible mode checking scheme by deriving content dependent

thresholds, where the decisions of IBC and PLT modes can be different. By combining

them together, 7.21% and 8.56% higher encoding time are reduced for TGM+M

sequences compared with TECH1 and TECH2, respectively. This proves that TECH1 and

TECH2 can complement each other to provide higher encoding time reduction.

For TECH3, 8.27% encoding time saving can be achieved with the increase in BDBR

by 0.18% on average. TGM+M sequences show 8.90% complexity reduction with 0.23%

increase in BDBR while A+CC sequences show 5.97% complexity reduction with 0.02%

increase in BDBR. We can see from Table 3.11 that “SlideShow” is the most benefited

sequence by employing this approach, and 41.37% encoding time can be saved while

BDBR is only increased by 0.28%. As analyzed in Figure 3.2, most CUs in “SlideShow”

are determined with sizes of 64×64 and 32×32. Therefore, many CU partitions can be

terminated by deriving the content dependent thresholds 𝑇𝐻_ 𝐽
𝑑 in the fast encoding stage.

3.4.5 Addption of Fast Encoding in Learning Frames

In the proposed algorithm, the encoder follows the original encoding process for the

learning frames. The reason is that we want to collect the correct learning statistics, and

then the derived content dependent rules can be applied to the following frames for fast

encoding. To reduce the computational complexity in the learning frames, some hand-craft

Chapter 3 Determinations on Coding Structure by Online Learning

 47

rules or offline learning-based rules can be applied. However, it makes the learning

statistics not accurate. Table 3.12 shows the peformacen of applying the proposed fine-

granular CU classification in the learning frames, and it is observed that the encoding time

reduction is further improved by 0.83% with BDBR further increased by 0.2%. The

encoding time are similar because the number of learning frames is very small.

3.5 Chapter Summary

In this chapter, a fast intra-prediction algorithm is proposed based on both content

analysis and dynamic thresholding using AI configuration. To skip unnecessary modes

for a CU, two early mode decision techniques are proposed based on the rough CU

classification, where mode candidates are checked adaptively according to the fine-

granular CU types and content dependent thresholds, respectively. Then, content

dependent thresholds of RD cost are derived to make early termination of CU partitions.

Experimental results under AI configuration show that the proposed algorithm can

Table 3.12: Performance of applying the proposed fine-granular CU classification in learning

frames.

Sequences
Fast in learning frames Proposed

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%)

BasketballScreen 1.46 -25.69 1.14 -25.21

MissionControlClip2 1.12 -33.34 1.64 -28.73

MissionControlClip3 1.40 -32.65 1.15 -29.82

ChineseEditing 0.35 -32.05 0.43 -33.77

Console 0.68 -36.51 0.69 -35.90

Desktop 1.38 -34.52 1.21 -33.68

FlyingGraphics 2.13 -27.73 1.27 -23.25

Map 2.38 -30.94 1.54 -31.56

Programming 1.24 -26.08 0.73 -23.85

SlideShow 3.78 -56.71 3.63 -58.82

WebBrowsing 1.97 -41.28 1.83 -41.76

Robot 1.25 -40.07 1.21 -39.00

EBURainFruits 0.28 -52.33 0.23 -52.92

Kimono1 0.13 -44.95 0.12 -44.97

Average (ALL) 1.40 -36.78 1.20 -35.95

Chapter 3 Determinations on Coding Structure by Online Learning

 48

achieve 35.95% encoding time reduction with 1.20% negligible increase in BDBR on

average for typical screen content videos compared with the reference software SCM-8.3.

Chapter 4 Determinations on Coding Structure by Decision Trees

 49

Chapter 4 Determinations on Coding Structure

by Decision Trees

4.1 Introduction

We have observed from the previous chapter that mode decision in SCC is related

to CU content, and Chapter 3 utilizes several static features describing CU content reduce

mode candidates. In this chapter, dynamic features revealing the unique intermediate

coding information of a CU are further explored. The exhaustive mode searching process

can then be avoided by a sequential arrangement of DTs, which is constructed to check

each mode separately with the insertion of a classifier before checking a mode. In contrast

to the approaches that both IBC and PLT modes are examined for SCBs, the proposed

coding arrangement becomes more flexible and allows either IBC or PLT mode to be

checked for SCBs to further reduce the computational complexity of mode decision in

SCC.

The rest of this chapter is organized as follows. Section 4.2 analyzes the flexibility

of different fast encoding frameworks, and it discusses the advantage of the proposed

framework. The proposed idea of utilizing both static features and dynamic features to

make mode decision is presented in Section 4.3. First, we give the classification principle

of DT-based classifiers. Second, the proposed dynamic features and their advantage are

presented. Third, the details of the proposed DT-based mode decision classifiers are given.

Forth, a DT constraint technique by using spatial mode correlation is introduced to

improve the accuracy of the proposed classifiers. Section 4.4 shows the simulation results

of the proposed algorithm. Finally, Section 4.5 concludes this chapter.

Chapter 4 Determinations on Coding Structure by Decision Trees

 50

Parts of the contents of this chapter are extracted from our published work [76]:

⚫ Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Machine Learning

Based Fast Intra Mode Decision for HEVC Screen Content Coding Via Decision

Trees,” IEEE Transactions on Circuits and Systems for Video Technology, 2019.

4.2 Flexibility of Different Frameworks

The previous fast SCC encoding algorithms are mainly focused on fast CU size

decision and fast mode decision made by CU type classification, as shown in Figure 4.1

(a) and (b), respectively. However, these frameworks are not flexible and are difficult to

achieve a good trade-off between the computational complexity and coding efficiency.

For fast CU size decision approaches [50]–[52], all modes are either checked or skipped

together in a CU as shown in Figure 4.1(a). For fast mode decision approaches [53]–[56]

using CU type classification in Figure 4.1(b), the screen content modes, IBC mode and

PLT mode, are either checked or skipped together. In screen content videos, some CUs

are very difficult to be decided whether they are SCBs or NIBs even by human beings,

(a) (b) (c)

Figure 4.1: CU encoding flowcharts of various fast SCC encoding algorithms. (a) Typical fast

CU size decision algorithm [50]–[52], (b) typical fast mode decision algorithm by CU type

classification [53]–[56], and (c) proposed fast mode decision algorithm.

Intra mode

IBC mode

PLT mode

Classifier

Encoding of a CU

No

Yes

Intra mode

IBC mode

PLT mode

Encoding of a CU

Yes

Classifier
No

Encoding of a CU

Intra mode

Classifier 1

IBC mode

Classifier 2

PLT mode

Classifier 3

No

Yes

No

Yes

No

Yes

𝐽𝑚𝑜𝑑𝑒
1

𝐽𝑚𝑜𝑑𝑒
3

𝐽𝑚𝑜𝑑𝑒
2

Chapter 4 Determinations on Coding Structure by Decision Trees

 51

and the CU type classification approaches are not efficient for these CUs. On the contrary,

our proposed framework provides larger flexibility by inserting a classifier before

checking a mode in a CU, as shown in Figure 4.1(c). By deriving the dynamic features

right before checking a mode, more accurate decision is made. On the one hand, encoding

time can be further reduced by allowing the case that only one mode is checked for a SCB.

On the other hand, RD performance can be improved by allowing PLT mode to be

checked for a SCB even if IBC mode is wrongly skipped. It is also noted that the values

of the dynamic features are changing as a CU goes through different classifiers, and only

our framework in Figure 4.1(c) can adopt these dynamic features proposed in this work.

4.3 Proposed DT Based Framework

Since there are numerous mode candidates in different CU sizes, it is difficult to

manually select the optimal features and classification criteria to build accurate

mathematical models. To solve this problem, 11 features, which are related to the mode

decision, are proposed to train various DT-based classifiers from offline learning.

Therefore, the optimal features and classification criteria are reasonably selected based

on the training data. In the test phase, the trained classifiers are implemented in SCM to

make fast mode decision.

4.3.1 Description of the Classifier Using DT

DT is one of the most popular machine learning algorithms. In this chapter, we

utilize a DT as the classifier, because it comes with low complexity in the testing phase

and can be easily implemented into a SCC encoder as a set of “if-then-else” conditions.

A DT-based classifier is a flowchart-like tree structure, as shown in Figure 4.2. It is

composed of a root node, internal nodes and leaf nodes. For each non-leaf node, i.e., a

Chapter 4 Determinations on Coding Structure by Decision Trees

 52

root node or an internal node, it denotes a test on a feature of the incoming sample. Each

branch after a non-leaf node denotes the outcome of the test, and each leaf node denotes

a class label. In the specific case of the mode selection problem in a CU, the class label

of 1 or 0 represents whether the target mode is checked or not. The classifiers based on

DTs are trained by the C4.5 algorithm [77] in the Waikato Environment for Knowledge

Analysis (WEKA) [78] version 3.8. To generate training frames which reflect the

characteristic of SCC sequences, 8 frame-skipped sequences are formed by extracting the

first frame of each second from the 8 sequences, which are “ChineseEditing”,

“FlyingGraphics”, “SlideShow”, “BasketballScreen”, “MissionControlClip2”, “Robot”,

“EBURainFruits”, “Map”. Training frames from different sequences were encoded by the

original SCM-8.3 encoder with QPs at 22, 27, 32, and 37 using AI configuration to

generate training data.

If a node of a DT only contains samples from one class, it is defined to have pure

samples. Otherwise, the impurity is calculated to represent how impure the samples in the

node are. To reduce the impurity of the node, a feature 𝑓 with a classification threshold

𝑇𝐻𝑓 is selected to further classify the samples into two child nodes, and the impurity

reduction is calculated by comparing the impurities of two child nodes and the parent

node. In the training process of a DT, the impurity reduction by splitting a parent node to

two child nodes is calculated iteratively for each feature 𝑓 with a classification threshold

Figure 4.2: General structure of a DT-based classifier.

Chapter 4 Determinations on Coding Structure by Decision Trees

 53

𝑇𝐻𝑓. The larger the impurity reduction is, the better the feature and the classification

threshold are. In the C4.5 algorithm, the impurity is calculated by entropy. Then the

impurity reduction with 𝑓 and 𝑇𝐻𝑓 is measured by the gain ratio 𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑓, 𝑇𝐻𝑓)

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑓, 𝑇𝐻𝑓) =
𝐼 𝑓𝑜𝐺𝑎𝑖 (𝑓, 𝐻𝑓)

𝑆𝑝𝑙𝑖 𝐼 𝑓𝑜(𝑓, 𝐻𝑓)
 (4.1)

where 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓, 𝑇𝐻𝑓) is the information gain by splitting a node 𝑛0 into its child

nodes 𝑛1 , 𝑛2 using a feature 𝑓 with a threshold 𝑇𝐻𝑓 . It is calculated by the entropy

reduction after splitting as

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓, 𝑇𝐻𝑓) = 𝐸𝑛(𝑛0) − ∑
𝑁𝑛𝑖

𝑁𝑛0
𝐸𝑛(𝑛𝑖)𝑖 (4.2)

where 𝑁 0 and 𝑁 𝑖 represent the number of samples in the node 𝑛0 and child nodes 𝑛𝑖,

𝑖 ∈ {1,2}. Let 𝑝(𝜔𝑗) be the probability of training samples belonging to the class 𝜔𝑗 in a

node 𝑛, 𝑗 ∈ {0,1}. The entropy 𝐸𝑛(𝑛) in the node 𝑛 is calculated as

𝐸𝑛(𝑛) = −∑ 𝑝(𝜔𝑗)𝑙𝑜𝑔2
1
𝑗=0 𝑝(𝜔𝑗). (4.3)

The normalization term 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑓, 𝑇𝐻𝑓) is defined by

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑓, 𝑇𝐻𝑓) = −∑
𝑁𝑛𝑖

𝑁𝑛0
𝑙𝑜𝑔2

𝑁𝑛𝑖

𝑁𝑛0

2
𝑖=1 . (4.4)

The best feature and the threshold are selected as the ones with maximum gain ratio to

split a node. A DT is trained node by node, and the splitting of a node is terminated if the

number of training samples arrived the node is less than or equal to 1% of the total training

samples. Then a reduced error pruning process [79] is performed to prune the DT

backward to avoid overfitting. After generating a DT, the classification accuracy of the

tree is given by a 10-fold cross-validation process [80], which calculates the percentage

of correctly classified samples in the total training samples.

Chapter 4 Determinations on Coding Structure by Decision Trees

 54

4.3.2 Proposed Dynamic and Static Features

In general, the precision of SCC mode decision in a classification task is highly

dependent on the feature space used to train the model. In most of the machine learning

algorithms adopted in mode decision of video coding, the features extracted from a CU

is always determined by its static content, such as background color number, gradient, etc.

These features are called as static features in this thesis.

In contrast, we find that the probability of selecting IBC mode as the optimal one

depends on the spatial location of the current CU, as shown in Figure 4.3. Assume that

CUA and CUB in the example of Figure 4.3 have the same static content. Even though the

static features extracted from CUA and CUB are the same, the mode decision of these two

CUs may be different. For example, CUA may select PLT mode while CUB with the same

content is likely to select IBC mode. The reason is that the search window of CUB is larger,

and it results in a higher chance to find a good repeated pattern with very low RD cost by

using IBC mode. By taking this specific characteristic of screen content videos into

account, we propose to extract the IBC mode flag of the current CU before checking the

target mode, 𝐹𝑙𝑎𝑔𝐼𝐵𝐶, as the dynamic feature 𝑓1. If the best mode so far of the current CU

before checking the target mode is a sub-mode (i.e. IBCPredictor, IBCM&S, or

IBCSearch) of IBC mode, 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 is set to 1. Otherwise, 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 is set to 0. It is noted

Figure 4.3: Two CUs with same content in a frame.

CUB

CUA

Search window of CUB

Search window of CUA

Chapter 4 Determinations on Coding Structure by Decision Trees

 55

that, for CUB in Figure 4.3, the chance of 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 equal to 1 is higher as compared with

that of CUA even though they the have same content. Therefore, this feature may vary

according to the spatial location, and it is considered as a dynamic feature.

In addition, the dynamic RD cost of the best mode so far in the current CU before

checking the target mode, 𝐽𝑚𝑜𝑑𝑒, is another dynamic feature 𝑓2 for fast mode decision.

Similarly, 𝐽𝑚𝑜𝑑𝑒 of CUB in Figure 4.3 is likely to become smaller since it is easier to get

a good repeated pattern in the reconstructed area. Besides, 𝐽𝑚𝑜𝑑𝑒 is not only related to the

spatial location but varies during the encoding process. For instance, 𝐽𝑚𝑜𝑑𝑒
2 to Classifier

2 in Figure 4.1(c) may be different from 𝐽𝑚𝑜𝑑𝑒
3 to Classifier 3 since 𝐽𝑚𝑜𝑑𝑒

3 has already gone

through Intra mode and IBC mode while only intra mode is tested for computing 𝐽𝑚𝑜𝑑𝑒
2 .

The variation property is well suited for our proposed framework in Figure 4.1(c) in which

the values of this dynamic feature entered to various DTs are different. This new

arrangement is of great importance to SCC mode decision process using classification,

which will be verified in the following sections. 𝐽𝑚𝑜𝑑𝑒 reveals the unique intermediate

coding information of a CU, and its value varies as the CU goes through different DTs.

By implementing DTs right before the target mode, the most updated values of these

dynamic features (𝑓1 and 𝑓2) are obtained for different trees to improve the decision

accuracy.

By using the proposed framework with DTs prior to checking a mode in a CU, the

new dynamic features with the following nine static features are then selected based on

our prior knowledge for the training of DTs in Figure 4.1(c).

𝑓3: Background color number BCN. The background color in a CU is defined as the

color with the highest occurrence frequency within the CU, and BCN is calculated by

counting the number of the background color pixels.

Chapter 4 Determinations on Coding Structure by Decision Trees

 56

𝑓4: Distinct color number DCN. DCN is calculated by counting the pixels in a CU

with different sample values.

For BCN and DCN, all three components of a pixel (Y, U, V in YVV 4:4:4 or R, G,

B in RGB 4:4:4) are stacked to form a 24-bit sample value. For sequences in YUV 4:2:0

format, only the luminance component is utilized as an 8-bit sample value.

𝑓5– 𝑓8: High gradient pixel number 𝐻𝐺𝑁0, 𝐻𝐺𝑁1, 𝐻𝐺𝑁2, 𝐻𝐺𝑁3. The high gradient

pixel is utilized to detect sharp edges in a CU, as in Equation (3.1). To detect edges with

different sharpness in our proposed algorithm, 4 different high gradient pixel numbers,

𝐻𝐺𝑁0, 𝐻𝐺𝑁1, 𝐻𝐺𝑁2, and 𝐻𝐺𝑁3, are calculated by counting high gradient pixels with

𝑇𝐻𝑆 of 4, 8, 16, and 32, respectively. Considering that the proposed algorithm is a

machine learning based approach, it lets the DT select the features to be used based on

the off-line training. It implies to select which value(s) of 𝑇𝐻𝑆 to be used in each DT.

Therefore, we do not need to manually select which particular value(s) of 𝑇𝐻𝑆 in the final

DTs.

It is noted that sequences in RGB 4:4:4 format are converted to YUV 4:4:4 format to

get the luminance component.

𝑓9–𝑓10: CU horizontal and vertical activities HorAct and VerAct. They have been

used for skipping IBC mode adaptively in the original SCM-8.3 and defined as

𝐻𝑜𝑟𝐴𝑐𝑡 = ∑ ∑ |𝑌𝑖,𝑗 −
2𝑁−1
𝑗=0

2𝑁
𝑖=0 𝑌𝑖,𝑗+1| (4.5)

𝑉𝑒𝑟𝐴𝑐𝑡 = ∑ ∑ |𝑌𝑖,𝑗 −
2𝑁−1
𝑖=0

2𝑁
𝑗=0 𝑌𝑖+1,𝑗|. (4.6)

𝑓11: CU variance Var. Var can well represent the smoothness of a CU, which is

defined as

𝑉𝑎𝑟 =
1

2𝑁×2𝑁
∑ ∑ (𝑌𝑖,𝑗 − �̅�)

22𝑁
𝑖=0

2𝑁
𝑗=0 (4.7)

where Y̅ is the average luminance value over the current CU.

Chapter 4 Determinations on Coding Structure by Decision Trees

 57

𝑓3– 𝑓11 are static features which have fixed values in a CU. Therefore, they are

obtained once for a CU and shared among different DTs.

4.3.3 Fast Mode Decision Design

To make fast mode decision in SCC, the selection of Intra mode, IBC mode, and

PLT mode is investigated by adopting different DTs in our new coding framework. Then,

a DT for performing CU type classification is trained at the last depth level to avoid the

situation that all modes are skipped for a CTU. The proposed framework inserts a

classifier before checking a target mode. Unlike the existing methods that inserts a

classifier before the entire mode-checking, it can extract features that reflect the

intermediate coding information, such as the best RD cost so far and the IBC flag so far.

Those dynamic features help to improve the decision accuracy. In this sub-section, the

detailed design of the new coding framework is discussed.

A. Feature Analysis

Among the three coding modes in SCC, Intra mode is the only mode inherited

directly from HEVC. While Intra mode is very efficient for NIBs, IBC mode and PLT

mode are both specially designed for SCBs. To perform fast mode decision, a common

idea is to classify CUs into NIBs and SCBs by analyzing their content characteristics.

Then IBC and PLT modes are checked for SCBs while Intra mode is checked for NIBs.

However, such an approach is not optimal since IBC and PLT modes are always checked

together for SCBs.

To understand the distributions of Intra, IBC and PLT modes over different features,

we randomly selected 300,000 16×16 CUs from the training samples, and the number of

the CUs with each mode is 100,000. First, the mode distributions over the dynamic

features obtained right before the target mode were investigated. Figure 4.4 shows the

Chapter 4 Determinations on Coding Structure by Decision Trees

 58

percentages of CUs selecting the target mode and other modes in terms of 𝐹𝑙𝑎𝑔𝐼𝐵𝐶

(Figure 4.4 (a)–(c)) and 𝐽𝑚𝑜𝑑𝑒 (Figure 4.4 (d)–(e)). If 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 before checking the target

mode is 1, the CU is more likely to be a SCB, otherwise, it more likely to be a NIB.

Therefore, it is observed in Figure 4.4(a) that the percentage of Intra mode is very low if

𝐹𝑙𝑎𝑔𝐼𝐵𝐶 before checking Intra mode is 1. On the contrary, the percentages of IBC mode

and PLT mode are low if 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 before checking the target mode is 0, as shown in

Figure 4.4(b) and Figure 4.4(c), respectively. Before checking Intra mode, 𝐽𝑚𝑜𝑑𝑒 is highly

correlated to 𝐹𝑙𝑎𝑔𝐼𝐵𝐶. If IBCPredictor does not provide a valid BV for a CU, 𝐹𝑙𝑎𝑔𝐼𝐵𝐶

would be 0 and the value of 𝐽𝑚𝑜𝑑𝑒 becomes very large. Otherwise, the value of 𝐽𝑚𝑜𝑑𝑒 is

relatively small if 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 is 1. Therefore, the percentage of CUs selecting Intra mode is

very low if the value of 𝐽𝑚𝑜𝑑𝑒 is small, as shown in Figure 4.4(d). It is also observed in

Figure 4.4(e) that if 𝐽𝑚𝑜𝑑𝑒 before checking IBC mode is very large, the percentage of IBC

mode would be low. The reason is that for CUs with very large values of 𝐽𝑚𝑜𝑑𝑒, they

usually have complex texture, and it is difficult to find repeated patterns for the complex

 (a) (b) (c)

 (d) (e) (f)

Figure 4.4: The percentages of the target mode and other modes in terms of 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 (a)–(c) and

𝐽𝑚𝑜𝑑𝑒 (d)–(e) for 16×16 CUs.

𝐹𝑙𝑎𝑔𝐼𝐵𝐶 before Intra 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 before IBC 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 before PLT

0 1 0 1 0 1

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

𝐽𝑚𝑜𝑑𝑒 before Intra 𝐽𝑚𝑜𝑑𝑒 before IBC 𝐽𝑚𝑜𝑑𝑒 before PLT

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

Chapter 4 Determinations on Coding Structure by Decision Trees

 59

texture CUs by IBC mode. Besides, Figure 4.4(f) shows that the percentage of PLT mode

is low for CUs with a small value of 𝐽𝑚𝑜𝑑𝑒. The reason is that the CU with a small value

of 𝐽𝑚𝑜𝑑𝑒 before checking PLT mode may have been efficiently encoded and the checking

of PLT mode becomes unnecessary. The discrepancy between Figure 4.4(e) and Figure

4.4(f) verifies that PLT mode and IBC mode have different characteristics and should not

use the same classifier when the dynamic features are adopted.

Then the mode distributions of the static features shared among different DTs were

also investigated. Figure 4.5 shows the mode distributions in terms of 5 representative

features: (a) DCN, (b) BCN (c) 𝐻𝐺𝑁3, (d) HorAct and (e) Var. It is observed that the

percentage of Intra mode increases as DCN gets larger, or BCN, 𝐻𝐺𝑁3, HorAct, and Var

get smaller. The reason is that Intra mode is designed for NIBs, and they tend to have

larger DCN, smaller BCN and be smoother. Besides, it is also observed that the percentage

(a) (b)

 (c) (d) (e)

Figure 4.5: Intra, IBC and PLT mode distributions in terms of (a) Distinct color number DCN,

(b) high gradient pixel number 𝐻𝐺𝑁3, (c) horizontal activity HorAct, and (d) CU variance Var

for 16×16 CUs.

DCN BCN

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

Chapter 4 Determinations on Coding Structure by Decision Trees

 60

of PLT mode is much higher than IBC mode when CUs get more complex, such as CUs

with larger values of 𝐻𝐺𝑁3, HorAct and Var. It further implies that PLT mode and IBC

mode should not share the same classifier for SCC intra mode selection that is always

adopted in the algorithms proposed in the literature [53]–[55].

Based on these observations, we trained DTs in the proposed coding framework to

adaptively check Intra mode, IBC mode and PLT mode separately.

B. Training of DT-based Classifier

As described before, IBC mode contains three steps, which are IBCPredictor,

IBCM&S and IBCSearch. While the step of the IBCPredictor only checks several BV

predictors and our experiment shows that it takes up only 1.24% of the total encoding time,

and the computational complexities of IBCM&S and IBCSearch are relatively high.

Therefore, we always check IBC-Step1 as the first check. By collecting the most updated

features, two sets of DTs are generated inside IBC mode to adaptively check IBCM&S

and IBCSearch. After generating the DTs for all modes, they are implemented in the

SCM-8.3 encoder to perform fast mode decision. Before checking a mode, the incoming

CU goes through the DT for the mode to decide whether it should be tested. If the outcome

or the class label of the DT is 1, it is involved in the mode searching process. Otherwise,

the current CU does not check the target mode so that the computational complexity

brought by this mode is reduced. However, there is a case that all modes are decided to be

skipped for a CTU when all mode DTs are implemented, and finally the CTU cannot be

encoded. To solve this problem, a CU type DT is also trained at the last depth level, and

at least one possible mode is assigned to the CU if all modes are skipped for it. The CU

type DT can classify incoming CUs into NIBs and SCBs. If the outcome for a CU is a

Chapter 4 Determinations on Coding Structure by Decision Trees

 61

NIB, i.e., 1, Intra mode is checked for it. Otherwise, IBC and PLT modes are both checked

for it.

As SCC supports CU sizes of 64×64, 32×32, 16×16, and 8×8, 4 DTs are trained for

CUs with different sizes. To avoid the data imbalance problem caused by more training

samples in one class than in the other [81], we let 50% of the training samples come from

CUs with the target mode as their optimal modes, and they are treated as the positive data.

The other 50% of training samples come from the CUs which are not encoded by the

target mode, and they are treated as the negative data. Besides, for the training of the CU

type DT at the last depth level, the positive training data are from NIBs, i.e. CUs encoded

by Intra mode, while the negative data are from SCBs, i.e. CUs encoded by IBC or PLT

mode.

The training data number and the depth of each DT are shown in Table 4.1 and Table

4.2, respectively. Since a frame can be partitioned into more CUs with a small size than

CUs with a large size, more training data are obtained as the CU size gets smaller. Besides,

we can see that the largest depth of the trained DTs is 14, which means the decision for a

mode is made after going through at most 14 “if-then-else” conditions. Therefore, the

Table 4.2: Depth of each DT.

CU Size Intra
IBC PLT CU Type

Merge & Skip Search

64×64 14 13

32×32 7 4 6

16×16 8 1 10 6

8×8 9 9 6 7 7

Table 4.1: Training data number for each DT.

CU Size Intra
IBC PLT CU Type

Merge & Skip Search

64×64 28452 14224 64×64

32×32 216072 111980 80804 32×32

16×16 715548 573848 168736 219192 16×16

8×8 3166280 2724108 1522712 453080 8×8

Chapter 4 Determinations on Coding Structure by Decision Trees

 62

computational complexity brought by those DTs is negligible. As an example, the DT

based IBCM&S mode classifier for 32×32 CUs is shown in Figure 4.6, and other trained

classifiers can be found in our website [82].

C. Feature Subset Selection

When training classifiers for different tasks, the valid features are quite different,

and the performance of a classifier is very sensitive to the features utilized to train the

classifier. Therefore, to eliminate the impact of irrelevant or redundant features and

provide a better understanding of the valid features for each mode decision, a feature

subset selection [83] approach is applied.

We implemented the feature subset selection in WEKA using the wrapper evaluation

with a greedy search strategy, which is computationally advantageous and robust against

overfitting. The feature subset selection consists of the following steps:

Step 1: Initialize the feature subset set F𝑘=∅ at 𝑘=0.

Step 2: Find the best remaining feature 𝑓 which provides the largest accuracy

increase when added to F𝑘.

Step 3: 𝑘++ and F𝑘=F𝑘−1 ∪{𝑓}.

Step 4: Iterate step 2 and step 3 until the classifier accuracy is no longer improved.

Figure 4.6: IBCM&S mode DT for 32×32 CUs.

𝐹𝑙𝑎𝑔𝐼𝐵𝐶>0?

𝐻𝐺𝑁1 548?

0 𝑉𝑎𝑟<=2841.4994?

HorAct<=11896?0

1 0

1

Yes No

NoYes

NoYes

NoYes

Chapter 4 Determinations on Coding Structure by Decision Trees

 63

Table 4.3 shows the valid features of each DT, and the importance of each valid

feature is also shown in this table by measuring its gain ratio. It is observed that the

proposed dynamic features, 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 and 𝐽𝑚𝑜𝑑𝑒 obtained right before the target mode, are

quite important for most DTs, with the gain ratio up to 0.669 and 0.102, respectively. This

verifies that the dynamic features play a critical role in the decision process with the

introduction of the new coding framework. By adopting the feature subset selection

approach, the number of features fed into a DT is reduced to 1–8, and 6.07 on average.

Compared with the original feature set with 11 features, the feature number is reduced by

44.92%, and the impact of the feature subset selection approach in terms of coding

performance will be discussed in Section 4.4.4.

D. Accuracy of DTs

The decision accuracy for each DT is shown in Table 4.4. We can see from the table

that the accuracies of those DTs vary from 75.44% to 94.51%, where the decision

accuracies for 64×64 CUs are relatively low. The reason is that there are many CUs with

pure horizontal edges, pure vertical edges or a single color in the training data set of 64×64

CUs, and they are difficult for making classification. However, this kind of CUs can be

encoded efficiently by all modes with very low computational complexity. Therefore, the

Table 4.3: The gain ratio of each feature for each DT.

DT 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 𝐽𝑚𝑜𝑑𝑒 BCN DCN 𝐻𝐺𝑁0 𝐻𝐺𝑁1 𝐻𝐺𝑁2 𝐻𝐺𝑁3 HorAct VerAct Var

Intra

64×64 0.044 0.029 0.071 0.094 0.074 0.065 0.054

32×32 0.179 0.043 0.022 0.084 0.045 0.046

16×16 0.102 0.035 0.029 0.029 0.025 0.027

8×8 0.180 0.051 0.046 0.005 0.020 0.019 0.025

IBCM&S

64×64 0.065 0.099 0.084 0.097 0.100

32×32 0.669 0.045 0.070 0.066

16×16 0.431

8×8 0.178 0.014 0.032 0.019 0.024 0.017 0.018 0.025

IBCSearch
16×16 0.275 0.007 0.028 0.030 0.019 0.023 0.010 0.016 0.022

8×8 0.281 0.039 0.027 0.061 0.067 0.035 0.036

PLT

32×32 0.001 0.048 0.064 0.041 0.026 0.035

16×16 0.166 0.038 0.035 0.025 0.009 0.034 0.031

8×8 0.105 0.027 0.029 0.021 0.031 0.039 0.027 0.023

CU Type 8×8 0.058 0.045 0.031 0.028

Chapter 4 Determinations on Coding Structure by Decision Trees

 64

low decision accuracy of 64×64 CUs will not lead to large computational complexity or

coding efficiency degradation.

There are two kinds of false classifications for each mode DT. One is the missed

detection, which is the case that the optimal mode of a CU is not a certain mode, but it is

not detected, and the mode is checked for the CU redundantly. Although the missed

detection leads to the increase in computational complexity, it does not bring RD

performance loss. The other is the incorrect decision, which is the case that the optimal

mode of a CU is a certain mode, but the mode is skipped for the CU incorrectly. The

incorrect decision leads to RD performance loss because the optimal mode for a CU is

skipped. The incorrect decision rate of each DT is shown in Table 4.5, and we can see

that only 3.12% to 13.14% of the mode decision leads to RD performance loss.

4.3.4 DT Constraint

To reduce the RD performance loss caused by skipping the optimal mode for a CU

incorrectly, a DT constraint technique based on the spatial content correlation is derived

for CUs with the size of 8×8 in this sub-section.

Table 4.5: Incorrect decision for each DT.

CU Size Intra (%)
IBC

PLT (%)
Merge & Skip (%) Search (%)

64×64 3.81 5.00

32×32 2.88 3.77 5.33

16×16 4.07 13.14 8.73 5.06

8×8 9.95 6.07 6.75 6.60

Table 4.4: Decision accuracy for each DT.

CU Size Intra (%)
IBC

PLT (%) CU Type (%)
Merge & Skip (%) Search (%)

64×64 75.44 82.31

32×32 87.95 94.51 82.27

16×16 83.34 84.57 81.89 82.48

8×8 78.23 83.13 85.66 79.83 83.17

Chapter 4 Determinations on Coding Structure by Decision Trees

 65

There is usually a strong spatial content correlation in screen content videos. A CU

with the neighbor of NIBs is very likely to be a NIB while a CU with the neighbor of

SCBs is very likely to be a SCB. To prove the strong spatial correlation, we encoded the

frame-skipped sequences with QPs at 22, 27, 32, and 37 by using the original SCM-8.3

encoder. For each CU, the optimal modes of its top and left neighboring CUs were

recorded. We treat a CU selecting Intra mode as a NIB, and a CU selecting IBC mode or

PLT mode as a SCB. If a top or left neighboring CU has the same type of content as the

current CU, we call it a same content neighboring CU. Table 4.6 shows the spatial content

correlation of 8×8 CUs by giving the distributions of the same content neighboring CU

number. We can see from the table that over 90% CUs have one or two same content

neighboring CUs. Only 7.58% of SCBs and 4.28% of NIBs have no same content

neighboring CU. Therefore, when encoding an 8×8 CU, if one of its neighboring CUs

from the top and left selects Intra mode, i.e. 𝐹𝑙𝑎𝑔𝑁𝐼𝐵=1, we additionally check Intra mode

for it based on the outcomes of DTs, and if one of its neighboring CUs from the top and

left selects PLT or IBC mode, i.e. 𝐹𝑙𝑎𝑔𝑆𝐶𝐵=1, we additionally check IBC mode and PLT

mode for it based on the outcomes of DTs. Although there is also the strong spatial

correction of optimal modes for large CU sizes, it is unnecessary to check more mode

candidates for them in order to achieve higher encoding reduction. For a large CU, if DTs

assign an incorrect mode to it, it still has a chance to select good modes when partitioned

into 8×8 CUs by using the DT constraint technique, so that the RD performance loss

brought by the incorrect decision of large CU is decreased. The impact of the DT

constraint technique will be discussed in Section 4.4.4.

Table 4.6: Same content neighboring CU number distributions for 8×8 CUs.

CU content 0 (%) 1 (%) 2 (%)

NIB 7.58 18.12 74.30

SCB 4.28 15.08 80.64

Chapter 4 Determinations on Coding Structure by Decision Trees

 66

All proposed techniques are treated as additional mode checking conditions based

on the original encoding process when implemented in SCM-8.3. As a summary, the

flowchart of the proposed fast mode decision algorithm is shown in Figure 4.7, where

𝐹𝑙𝑎𝑔𝑆𝐶𝐵, and 𝐹𝑙𝑎𝑔𝑁𝐼𝐵 are used to denote the outcome of the DT constraint technique,

and DT_Intra, DT_IBCM&S, DT_IBCSearch, and DT_PLT are used to denote the

outcomes of the DTs for Intra, IBCM&S, IBCSearch, and PLT modes, respectively. For

simplicity, the original mode checking conditions in SCM-8.3 are not shown in this figure.

4.4 Experimental Results and Discussions

Four sets of experiments have been conducted to analyze the performance of the

proposed work from different aspects. First, a study on the different number of training

sequences is discussed. Second, the performance of the proposed framework is evaluated

by comparing it with existing fast SCC encoding algorithms. Third, the contribution of

Proposed techniques: 1. The DT constraint, 2. Intra mode DT, 3. IBCM&S DT, 4. IBCSearch mode DT, 5.

PLT mode DT, and 6. CU type DT.

Figure 4.7: Flowchart of the proposed fast mode decision algorithm in a CTU.

CTU start

IBCPredictor

8 8 CU?

IBCM&S

IBCSearch

DT_PLT=1 or

𝐹𝑙𝑎𝑔𝑆𝐶𝐵=1?

PLT mode

Are all modes

skipped?

𝐹𝑙𝑎𝑔𝑁𝐼𝐵=1

Is a neighboring

CU a NIB?

Is a neighboring

CU a SCB?

𝐹𝑙𝑎𝑔𝑆𝐶𝐵=1

No

Yes

Yes

No

Intra mode

Intra decision tree

IBCM&S

decision tree

IBCSearch

decision tree

PLT decision tree

Set 𝐹𝑙𝑎𝑔𝑆𝐶𝐵=0

𝐹𝑙𝑎𝑔𝑁𝐼𝐵=0

DT_IBC_M&S=1

or 𝐹𝑙𝑎𝑔𝑆𝐶𝐵=1?

DT_Intra=1 or

𝐹𝑙𝑎𝑔𝑁𝐼𝐵=1?

DT_IBCSearch=1

or 𝐹𝑙𝑎𝑔𝑆𝐶𝐵=1?

It is a NIB?

CTU end

Intra mode PLT and IBC modes

No

Yes

No

Yes

Go to next depth level

No

No

No

No

Yes

Yes

Yes

Yes

No

Yes1

6

2

3

4

5

8 8 CU?
No

Yes

CU type

decision tree

Chapter 4 Determinations on Coding Structure by Decision Trees

 67

each individual mode decision algorithm is analyzed. At last, the efficiency of the feature

subset selection and DT constraint techniques is validated.

4.4.1 Study on Different Training Set

To understand the impact of the training sequences to the performance of the

proposed algorithm, we gradually reduce the number of training sequences and then

compare their performances. Figure 4.8 shows the simulation results with two, five, eight

training sequences, respectively. It is observed that the proposed algorithm can provide

relatively good performance even though two training sequences are used, where 48.72%

encoding time is reduced with 1.97% increase in BDBR. Besides, it is observed that using

more training sequences helps to reduce the increase in BDBR. When training sequences

are increased from two to eight, the increase in BDBR is reduced from 1.97% to 1.42%.

4.4.2 Performance Evaluation

 Table 4.7 shows the performance of the proposed framework using 8 training

sequences in Figure 4.8 and four state-of-the-art SCC fast intra-prediction algorithms

[52]–[55] in terms of BDBR and ΔTime, where the largest value of ΔTime in each

sequence is marked in boldface. It is observed that our proposed framework shows the

Figure 4.8: Simulation results with two, five, eight training sequences.

Training Sequences:

ChineseEditing

FlyingGraphics

Map

SlideShow

BasketballScreen

MissionControlClip2

Robot

EBURainFruits

Training Sequences:

ChineseEditing

SlideShow

BasketballScreen

MissionControlClip2

Robot

Training Sequences:

ChineseEditing

MissionControlClip2

∆Time (%)

B
D

B
R

 (%
)

Chapter 4 Determinations on Coding Structure by Decision Trees

 68

best performance compared with other SCC fast intra-prediction algorithms [52]–[56], and

it provides the largest encoding time reduction for 10 sequences out of 14 sequences.

Compared with the anchor SCM-8.3, our proposed framework achieves up to 62.34%

encoding time reduction on the “Desktop” sequence. On average, 47.62% encoding time

reduction is obtained with a negligible increase in BDBR of 1.42%. Zhang et al.’s method

[52] adopts the fast CU size decision framework shown in Figure 4.1(a), and it is observed

in Table 4.7 that it only reduces the encoding time by 14.53% on average. Compared with

Duanmu et al.’s method [53], Lei et al.’s method [54] and Yang et al.’s method [55] which

adopt the hybrid method by combining the frameworks in Figure 4.1(a) and (b) for fast

CU size decision and fast mode decision based on CU type classification, the proposed

framework substantially outperforms them in both coding efficiency and computation

complexity. Duanmu et al.’s method [53] provides 26.89% encoding time reduction while

BDBR is increased by 1.70% on average. When compared with the anchor SCM-8.3, our

proposed framework shows 22.60% larger encoding time reduction with 0.21% smaller

Table 4.7: Performance comparisons with the state-of-the-art fast intra-prediction algorithms.

Sequences

Zhang [52] Duanmu [53] Lei [54] Yang [55] Proposed

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BasketballScreen (T) 0.45 -11.98 1.25 -22.43 1.46 -24.83 3.00 -31.54 1.87 -48.60

MissionControlClip2 (T) 0.40 -20.5 2.86 -33.9 1.71 -25.49 2.51 -38.54 2.51 -47.30

MissionControlClip3 (NT) 0.37 -11.28 2.03 -24.61 1.69 -33.81 2.90 -34.15 1.68 -52.21

ChineseEditing (T) 0.14 -3.40 1.10 -17.47 0.99 -18.96 4.30 -34.16 0.60 -53.06

Console (NT) 2.64 -8.23 1.87 -28.12 2.87 -23.40 7.38 -42.83 0.60 -54.14

Desktop (NT) 0.67 -4.94 2.19 -26.24 1.97 -23.85 6.27 -35.91 1.03 -62.34

FlyingGraphics (T) 0.54 -3.24 0.98 -20.13 1.72 -18.13 5.47 -31.19 1.56 -52.13

Map (T) 0.97 -10.66 1.55 -19.16 1.23 -20.05 2.84 -41.66 1.36 -31.89

Programming (NT) 0.44 -11.76 1.89 -22.16 2.50 -22.92 4.71 -27.38 2.20 -48.94

SlideShow (T) 0.36 -46.92 2.82 -52.47 2.32 -55.58 3.69 -34.45 3.76 -35.67

WebBrowsing (NT) 0.79 -6.99 1.91 -28.17 6.02 -26.75 5.00 -53.00 0.98 -57.23

Robot (T) 0.43 -17.89 1.18 -29.36 5.21 -46.91 0.59 -28.19 1.51 -47.19

EBURainFruits (T) 0.21 -18.96 0.88 -26.47 1.76 -48.58 0.17 -25.89 0.16 -39.07

Kimono1(NT) 0.14 -26.67 1.23 -25.75 1.52 -75.55 0.13 -36.18 0.05 -36.93

Average (NT) 0.84 -11.65 1.85 -25.84 2.76 -34.38 4.40 -38.24 1.09 -51.97

Average (TGM+M) 0.71 -12.72 1.86 -26.81 2.23 -26.71 4.37 -36.80 1.65 -49.41

Average (A+CC) 0.26 -21.17 1.10 -27.19 2.83 -57.01 0.30 -30.09 0.57 -41.06

Average (ALL) 0.61 -14.53 1.70 -26.89 2.36 -33.20 3.50 -35.36 1.42 -47.62

Sequences with T are videos used to generate training frames. Sequences with NT are unseen sequences to the trained

DTs.

Chapter 4 Determinations on Coding Structure by Decision Trees

 69

increase in BDBR than Duanmu et al.’s method [53] for sequences in TGM+M. For

sequences in A+CC, the proposed framework shows 13.87% larger encoding time

reduction with 0.53% smaller increase in BDBR than Duanmu et al.’s method [53]. Lei et

al.’s method [54] achieves 33.20% encoding time reduction while BDBR is increased by

2.36% on average. Although Lei et al.’s method [54] shows a larger encoding time

reduction than the proposed framework for sequences in A and CC, the increase in BDBR

is about 4 times higher than the proposed framework. For the sequences in TGM+M, Lei

et al.’s method [54] also shows a very high increase in BDBR while the encoding time is

only reduced by 26.71%. Yang et al.’s method [55] shows 35.36% encoding time

reduction with a very high increase in BDBR of 3.50% on average. Since it always checks

Intra mode for 2N×2N PUs, it brings only 0.30% increase in BDBR to the sequences in

A+CC. However, the BDBR of the sequences in TGM+M is increased by 4.37% due to

the low decision accuracy for SCBs.

It should be noted that our proposed DTs were trained by the frames in sequences

marked with T, while the sequences were not used for training are marked with NT. It is

observed in Table 4.7 that our proposed framework provides similar performance for the

training sequences and the unseen sequences. Besides, the best performance of our

proposed framework is not achieved for the training sequences but for the unseen

“Desktop” sequence where 62.34% encoding time is reduced with 1.03% negligible

increase in BDBR. Specifically, the average performances of the NT sequences are also

shown in Table 4.7. The NT sequences show 51.97% encoding time reduction with 1.09%

increase in BDBR, which outperforms algorithms in [52]–[55]. This shows that the

proposed framework is generalizable to the unseen sequences. It is noted that the 14

sequences in CTC [30] are carefully selected to be representatives for other screen content

sequences, and all existing fast SCC encoding algorithms always utilize some sequences

Chapter 4 Determinations on Coding Structure by Decision Trees

 70

from CTC [30] for both training and testing. To further show the generalization of the

proposed algorithm to other screen content sequences, ten more test sequences [84]–[88]

that are not included in CTC [30] were evaluated. The results are shown in Table 4.8 with

comparison to the existing fast SCC encoding algorithms [52]–[55], where the largest

value of ΔTime in each sequence is marked in boldface. It is observed that the proposed

algorithm again outperforms the fast SCC encoding algorithms [52]–[55], and it provides

the largest encoding time reduction for seven sequences out of the ten test sequences.

Although Lei et al.’s method [54] shows a larger encoding time reduction in the other

three sequences, the increase in BDBR is remarkably higher than the proposed framework.

On average, the fast SCC encoding algorithms [52]–[55] reduce 11.78%–36.80%

encoding time with 0.94%–4.29% increase in BDBR. Comparatively, the proposed

algorithm reduces 51.34% encoding time with only 0.98% increase in BDBR. Again, this

confirms the generalization ability of the proposed algorithm.

The proposed algorithm includes additional processes of feature extraction and

decision determination for making fast mode decision, and these computational

overheads are further analyzed and summarized in Table 4.9. It is observed that the

Table 4.8: Performance comparisons with the state-of-the-art fast intra-prediction algorithms for

sequences not in CTC.

Sequences

Zhang [52] Duanmu [53] Lei [54] Yang [55] Proposed

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BigBuckBunnyStudio 0.64 -20.44 1.90 -31.34 2.58 -44.83 1.98 -35.08 1.78 -41.94

ClearTypeSpreadsheet 0.54 -1.14 1.81 -22.83 0.72 -20.86 7.67 -41.76 0.71 -62.56

EBULupoCandlelight 0.33 -36.23 1.18 -41.42 3.41 -66.49 0.43 -43.05 0.13 -38.35

CadWaveform 1.22 -6.19 6.40 -33.64 4.66 -19.97 4.85 -36.16 0.50 -58.40

PcbLayout 0.96 -10.77 2.58 -36.07 3.08 -27.30 4.95 -38.08 1.67 -48.82

PptDocXls 1.35 -4.31 1.47 -24.01 1.29 -17.38 4.16 -32.72 0.74 -55.70

RealTimeData 3.32 -6.19 1.55 -26.15 2.11 -22.43 7.11 -34.65 0.82 -50.62

VideoConferencingDocSharing 0.37 -3.60 1.57 -24.57 3.63 -19.93 7.06 -34.76 0.55 -58.27

Viking 0.33 -18.66 1.00 -30.41 5.00 -65.84 0.47 -29.61 1.36 -45.02

WordEditing 0.36 -10.30 0.97 -23.17 1.24 -24.42 4.21 -42.10 1.57 -53.71

Average (ALL) 0.94 -11.78 2.04 -29.36 2.78 -32.95 4.29 -36.80 0.98 -51.34

Chapter 4 Determinations on Coding Structure by Decision Trees

 71

average computational overhead proportions of feature extraction and decision

determination are only 1.32% and 0.01%, respectively. It is noted that these

computational overheads have been counted in Table 4.7 to calculate the encoding time

reduction.

We also extend our work to support sequences in YUV 4:2:0 and RGB 4:4:4 formats

based on the same methodology, and their performances are summarized in Table 4.10. It

is observed that for sequences in YUV 4:2:0 and RGB 4:4:4 formats, encoding time of

41.68% and 49.98% is reduced with 1.68% and 1.41% increase in BDBR on average,

respectively. The results are very similar to that of YUV 4:4:4 sequences, which

demonstrates the proposed framework is generalizable to other color formats. Since the

fast SCC encoding algorithms [52]–[55] only investigated the fast prediction for YUV

4:4:4 sequences, we cannot make comparisons for sequences in YUV 4:2:0 and RGB 4:4:4

formats.

Since Intra-prediction is also needed in inter frame coding, Figure 4.9 also shows the

impact of the proposed algorithm on inter frame coding under Low Delay (LD)

configuration. BDBR and ΔTime of five typical sequences in YUV 4:4:4 format are

Table 4.9: Average computational overheard of the proposed algorithm.

Computational Overhead

Proportion (%)

Feature Extraction Decision Determination

1.32 0.01

Table 4.10: Average ∆Time and BDBR of the proposed algorithm for YUV 4:2:0 and RGB 4:4:4

sequences under CTC.

Sequence Categories
YUV 4:2:0 RGB 4:4:4

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

Average (TGM+M) 1.66 -37.92 1.58 -48.98

Average (A+CC) 1.79 -59.82 0.80 -55.30

Average (ALL) 1.68 -41.29 1.41 -49.98

Chapter 4 Determinations on Coding Structure by Decision Trees

 72

shown in Figure 4.9, and similar results are observed for other sequences. It is observed

that the proposed algorithm reduces 6.52%–8.44% encoding time with negligible increase

in BDBR, which implies the proposed algorithm also benefits to inter frame coding.

4.4.3 Performance of the Individual Mode Decision Algorithm

To further investigate the contribution of each mode decision algorithm, additional

experiments were performed by implementing DTs for IBC mode, PLT mode, IBC+PLT

Figure 4.9: BDBR and ΔTime of the proposed algorithm under LD configuration.

Table 4.11: Performance of each individual mode decision algorithm and their combinations for

YVU 4:4:4 sequences.

Sequences

IBC Mode

Decision

PLT Mode

Decision

PLT+IBC Mode

Decision

Intra Mode

Decision

Overall

Framework

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BasketballScreen (T) 1.05 -22.76 0.21 -8.98 1.31 -31.58 0.56 -17.85 1.87 -48.60

MissionControlClip2 (T) 1.65 -21.72 0.58 -11.66 2.10 -33.55 0.74 -14.50 2.51 -47.30

MissionControlClip3 (NT) 0.91 -24.09 0.30 -8.28 1.04 -31.53 0.67 -19.42 1.68 -52.21

ChineseEditing (T) 0.31 -26.52 0.11 -2.01 0.45 -27.40 1.21 -24.14 1.56 -52.13

Console (NT) 0.34 -13.97 0.06 -4.24 0.57 -17.97 0.85 -14.56 1.36 -31.89

Desktop (NT) 0.87 -21.64 0.93 -6.17 1.88 -27.62 0.37 -20.84 2.20 -48.94

FlyingGraphics (T) 2.26 -16.23 0.41 -11.09 3.09 -28.26 0.71 -8.31 3.76 -35.67

Map (T) 0.67 -31.58 0.11 -3.83 0.78 -34.83 0.25 -22.56 0.98 -57.23

Programming (NT) 0.35 -21.79 0.27 -1.37 0.62 -23.08 0.17 -29.54 0.60 -53.06

SlideShow (T) 0.15 -26.56 0.12 -2.12 0.25 -27.68 0.37 -27.81 0.60 -54.14

WebBrowsing (NT) 0.45 -33.40 0.37 -1.58 0.65 -34.64 0.33 -27.74 1.03 -62.34

Robot (T) 0.57 -23.08 0.67 -17.97 1.38 -43.02 0.12 -3.11 1.51 -47.19

EBURainFruits (T) 0.12 -26.12 0 -11.03 0.13 -38.15 0.02 0.22 0.16 -39.07

Kimono1(NT) 0.04 -24.28 0 -9.76 0.04 -37.48 0.04 2.51 0.05 -36.93

Average (NT) 0.52 -26.93 0.31 -5.29 0.77 -32.30 0.34 -19.31 1.09 -51.97

Average (TGM+M) 0.82 -23.66 0.32 -5.58 1.16 -28.92 0.57 -20.66 1.65 -49.41

Average (A+CC) 0.24 -24.49 0.22 -12.92 0.52 -39.55 0.06 -0.13 0.57 -41.06

Average (ALL) 0.70 -23.84 0.30 -7.15 1.02 -31.20 0.46 -16.26 1.42 -47.62

Sequences with T are videos used to generate training frames. Sequences with NT are unseen sequences to the trained

DTs.

Chapter 4 Determinations on Coding Structure by Decision Trees

 73

modes, Intra mode, respectively, and the results are shown in Table 4.11. We can see from

the table that IBC mode DTs provide the largest encoding time reduction, followed by

Intra mode and PLT mode, which are 23.84%, 16.26% and 7.15%, respectively. When the

DTs of IBC mode and PLT mode are both implemented, sequences in A+CC show 39.55%

encoding time reduction, which is nearly the same as the results of the overall framework

with all DTs enabled. It is because nearly all CUs in A+CC sequences are encoded by Intra

mode, and it shows that the IBC and PLT DTs can efficiently skip these CUs. Smaller

encoding time is saved for sequences in TGM+M because they contain many SCBs, so

that fewer IBC mode and PLT mode are skipped. In contrast, only 0.13% encoding time

reduction is observed for sequences in A+CC when only the Intra mode DTs are

implemented. For sequences with almost pure SCBs, such as “ChineseEditing”, “Console”

and “Desktop”, over 27% encoding time is saved by using Intra mode DTs. The reason is

that almost all CUs in these sequences can skip Intra mode and large encoding time

reduction is achieved. Furthermore, Table 4.11 shows that the overall framework provides

23.52%–34.60% larger encoding time reduction for “ChineseEditing”, “Console” and

“Desktop”, as compared with the results that only intra mode DTs are enabled. The reason

is that besides the Intra mode which is not suitable for encoding SCBs, the overall

framework considers PLT mode and IBC mode separately and then further skips

unnecessary PLT mode and IBC mode for SCBs. To support this statement, we

investigated the mode decision of the proposed overall framework by encoding all

sequences with QPs of 22, 27, 32, 37, and the average distribution of mode decision is

shown in Table 4.12.

It is observed that in the depth level of 3, IBC or PLT mode is always checked with

other modes because of the DT constraint technique. However, the proposed overall

framework is very efficient for larger CU sizes. In the depth level of 0, 56.84% CUs

Chapter 4 Determinations on Coding Structure by Decision Trees

 74

directly go to the next depth level because only Intra mode and IBC mode exist. In the

depth levels of 1 and 2, 42.67% and 28.20% CUs select either IBC mode or PLT mode,

respectively. By further reducing the mode candidates for SCBs in the proposed overall

framework, it provides 20.48%–38.49% larger encoding time reduction for

“ChineseEditing”, “Console” and “Desktop” compared with [53]–[55], as shown in Table

4.7.

4.4.4 Evaluation of Feature Subset Selection and DT Constraint

To validate the efficiency of the feature subset selection and the DT constraint

techniques, experiments were performed by implementing the overall framework without

the feature subset selection and DT constraint techniques, and the results are shown in

Table 4.13. Compared with the case without performing feature subset selection, the

proposed overall framework provides 3.97% larger encoding time reduction with 0.13%

decrease in BDBR. Therefore, better performance is provided by adopting the feature

subset selection technique, because the impact of irrelevant or redundant features is

removed. Besides, it is observed that the DT constraint technique helps to reduce BDBR

increase of the proposed framework at the cost of less encoding time reduction. On average,

the encoding time saving of the proposed framework is slightly reduced from 52.90% to

47.62% while the increase in BDBR is reduced from 3.07% to 1.42% by implementing the

DT constraint technique. Specifically, we can see that the performance improvement for

Table 4.12: Mode decision distribution of the proposed overall algorithm for YVU 4:4:4

sequences.

CU Size Intra only IBC only PLT only Intra+IBC Intra+PLT IBC+PLT Intra+IBC+PLT No Mode

64×64 27.60 6.70 8.86 56.84

32×32 41.79 1.15 41.52 0.08 4.30 3.674 0.02 7.48

16×16 53.23 3.89 24.31 1.49 3.06 12.18 1.03 0.82

8×8 52.06 0 0 4.01 1.97 27.14 14.81 0

Chapter 4 Determinations on Coding Structure by Decision Trees

 75

sequences in A+CC is limited, but sequences in TGM+M gain large benefits from the DT

constraint technique and the increase in BDBR is reduced by 2.03%. The reason is that

IBC and PLT modes are very effective in 8×8 SCBs. Therefore, even a small incorrect

decision rate of IBC and PLT modes in 8×8 SCBs leads to large RD performance loss. By

using the DT constraint technique, additional mode candidates are available at the last

depth level (depth level of 3), and the RD performance loss brought by the incorrect

decision is reduced effectively.

4.5 Chapter Summary

In this chapter, a machine learning based fast mode decision framework is proposed

for SCC. To avoid the exhaustive mode searching process, a flexible intra mode decision

framework is proposed by utilizing a sequential arrangement of mode classifiers.

Compared with the traditional methods that IBC and PLT modes are both checked for

Table 4.13: Performances of the proposed algorithm with other settings for YVU 4:4:4

Sequences.

Sequences

Without Feature Subset

Selection
Without DT Constraint Overall Framework

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%)

BasketballScreen 0.60 -48.06 1.77 -57.46 1.87 -48.60

MissionControlClip2 0.81 -48.06 1.75 -59.07 2.51 -47.30

MissionControlClip3 1.00 -58.62 3.06 -66.93 1.68 -52.21

ChineseEditing 1.68 -42.28 3.35 -55.79 1.56 -52.13

Console 1.52 -28.83 3.38 -40.19 1.36 -31.89

Desktop 2.17 -43.10 4.98 -55.51 2.20 -48.94

FlyingGraphics 3.93 -33.84 6.94 -56.91 3.76 -35.67

Map 1.25 -57.68 2.17 -60.75 0.98 -57.23

Programming 1.79 -43.58 4.72 -54.01 0.60 -53.06

SlideShow 3.13 -42.57 4.85 -51.85 0.60 -54.14

WebBrowsing 1.98 -45.97 3.52 -56.63 1.03 -62.34

Robot 1.61 -45.69 2.11 -48.76 1.51 -47.19

EBURainFruits 0.15 -37.16 0.29 -39.13 0.16 -39.07

Kimono1 0.05 -35.68 0.07 -37.64 0.05 -36.93

Average (TGM+M) 1.81 -44.78 3.68 -55.92 1.65 -49.41

Average (A+CC) 0.60 -39.51 0.82 -41.84 0.57 -41.06

Average (ALL) 1.55 -43.65 3.07 -52.90 1.42 -47.62

Chapter 4 Determinations on Coding Structure by Decision Trees

 76

SCBs, we insert a DT before checking each mode with the help of new dynamic features,

so that the decision of each mode is made separately, and it allows the case that only one

mode is checked for a SCB. Experimental results have shown that the proposed framework

can provide an average computational complexity reduction of 47.62% with a negligible

increase in BDBR of 1.42%.

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 77

Chapter 5 Determinations on Coding Structure

by Convolutional Neural Network

5.1 Introduction

The DT-based fast SCC encoding algorithm in Chapter 4 and some other recent

algorithms heavily rely on the limited number of hand-crafted features or heuristic rules.

However, they have the risk that human may ignore some important features during feature

extraction. In this chapter, we present a deep learning based fast prediction network,

DeepSCC, to reduce the computational complexity of SCC. DeepSCC takes raw sample

values as the input, and it makes fast predictions for all CUs of a CTU in a single test. It

contains much more trainable parameters than the traditional machine learning based

approaches, so that it is able to make more accurate classification. This chapter is started

by introducing the difference between dynamic and stationary CTUs. Then we present the

proposed deep learning network DeepSCC. Next, experimental results of the proposed

algorithm are provided. Finally, conclusion is given for this chapter.

Parts of the contents of this chapter are extracted from our submitted work [89]:

⚫ Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “DeepSCC: Deep

Learning Based Fast Prediction Network for Screen Content Coding,” IEEE

Transactions on Circuits and Systems for Video Technology (Accepted on 2 July,

2019).

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 78

5.2 Difference Between Dynamic and Stationary CTUs

Unlike the traditional camera-captured sequences only containing dynamic CTUs

which show different content in adjacent frames, screen content sequences contain many

stationary CTUs, i.e., the sum of SAD between the current CTU and its collocated CTU

is 0. Table 5.1 shows the percentage of stationary CTUs in different sequences. It is

observed that sequences in A+CC only contain dynamic CTUs, while 70.98% CTUs in

TGM+M sequences are stationary CTUs. To simplify the encoding of stationary CTUs,

an intuitive idea is to directly encode stationary CTUs with the same optimal modes of

the collocated CTUs. However, this approach brings high RD performance loss because

whether a CU selects the same mode as its collocated CU is related to its actual content.

For example, a SCB with simple texture usually has many repeated patterns within the

current frame while a SCB with complex texture has few repeated patterns. If the

collocated CU of a simple SCB selects IBC mode, this SCB usually select IBC mode. On

Table 5.1: Percentage of stationary areas in different sequences.

Categories Sequences Stationary CTU (%)

TGM

ChineseEditing 93.41

Console 62.72

Desktop 78.57

FlyingGraphics 2.50

Map 79.20

Programming 48.11

SlideShow 75.41

WebBrowsing 96.43

M

BasketballScreen 86.80

MissionControlClip2 83.82

MissionControlClip3 73.78

A Robot 0

CC
EBURainFruits 0

Kimono1 0

Average (TGM+M) 70.98

Average (A+CC) 0

Average (ALL) 55.77

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 79

the contrary, if the collocated CU of a complex SCB selects IBC mode, this SCB may

select PLT mode since its very limited repeated patterns can be disappeared in the current

frame. Table 5.2 shows BDBR and the change in encoding time, ΔTime, brought by this

approach compared with the original SCM-8.3. It is observed that for sequences in

TGM+M that contain many stationary CTUs, this approach provides 44.37% encoding

time reduction, but it brings 6.32% increase in BDBR. Although the algorithms in [51],

[54], [56] utilize some heuristic rules to reduce the RD performance loss brought by this

approach, such as disabling the fast approach every ten frames to avoid error propagation

[51], and jointly analyzing the coding information from the collocated CU and spatial

neighboring CUs [54], [56], they still do not achieve a good trade-off between encoding

time reduction and BDBR. To further improve the performance for stationary CTUs, it is

desired that the optimal mode of the collocated CTU and the actual CTU content are

jointly analyzed.

Table 5.2: Performance of encoding stationary CTUs with the same optimal modes of the

collocated CTUs of stationary areas in different sequences.

Categories Sequences BDBR (%) ∆Time (%)

TGM

ChineseEditing 3.44 -51.81

Console 4.20 -47.83

Desktop 6.16 -57.22

FlyingGraphics 0.13 -1.28

Map 4.94 -49.39

Programming 2.52 -31.84

SlideShow 13.01 -43.26

WebBrowsing 8.55 -65.98

M

BasketballScreen 7.38 -47.51

MissionControlClip2 12.40 -44.42

MissionControlClip3 6.77 -48.67

A Robot 0 0

CC
EBURainFruits 0 0

Kimono1 0 0

Average (TGM+M) 6.32 -44.37

Average (A+CC) 0 0

Average (ALL) 4.96 -34.95

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 80

5.3 Proposed Deep Learning based Network DeepSCC

Generally, humans are sensitive to the difference between SCBs and NIBs, so that

many approaches [53]–[56] have successfully differentiated SCBs from NIBs relying on

a limited number of hand-crafted features. However, it is inefficient to make further

classification inside SCBs with hand-crafted features because humans are less sensitive

to the difference between IBC-coded SCBs and PLT-coded SCBs. To overcome the

limitation of hand-crafted features, a deep learning based fast prediction network

DeepSCC is proposed, which contains two parts, DeepSCC-I and DeepSCC-II.

DeepSCC-I is used to make predictions for dynamic CTUs, while DeepSCC-II is used to

make predictions for stationary CTUs. Since the proposed DeepSCC contains many

trainable parameters and learns extensive features, it is able to make the more accurate

mode decision of Intra, IBC, and PLT rather than the simple CU type classification of

NIBs and SCBs. The previous fast prediction approaches of SCC always make predictions

in the CU level, which means the derived model is tested for multiple times to make fast

prediction for a single CTU. The drawback of this strategy is that it scarifies the encoding

time reduction due to the multiple tests of the derived models. To reduce the computation

overhead, the proposed DeepSCC directly outputs 85 labels for 85 CUs of a CTU in a

single test. Since a CU can either skip all modes or select one mode from Intra, IBC, and

PLT, each predicted label contains the probabilities of four classes, i.e., P(Allskip),

P(Intra), P(IBC), and P(PLT), in accordance with the probabilities for skipping all modes,

and checking Intra, IBC, PLT modes, respectively. Noted that Allskip is not an actual

mode, and a SCC encoder will not employ it to encode a CU. We include class Allskip to

denote the case that video content should be encoded in other depth levels, so that all

modes of Intra, IBC, and PLT in the current CU can be skipped for computational

complexity reduction. Figure 5.1 illustrates the structure of the proposed DeepSCC,

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 81

where the kernel sizes and feature map dimensions are also presented. The only difference

between DeepSCC-I and DeepSCC-II is that the optimal mode maps of the collocated

CTU are concatenated to the extracted feature maps before going through the convolution

layers conv6–conv9 in DeepSCC-II, which is denoted by green color. The details of

DeepSCC are given in the following sub-sections.

5.3.1 DeepSCC-I for Dynamic CTU

As shown in Figure 5.1, DeepSCC-I takes the luminance component of a CTU as

the input. It is noted that the luminance component of a CTU is preprocessed by mean

removal before it is fed to DeepSCC-I. Finally, it is able to output 85 labels for 85 CUs

with different sizes, where each label shows the probabilities of selecting different modes.

DeepSCC-I is composed of nine convolutional layers (conv1–conv9), three

deconvolutional layers (deconv1–deconv3), and three concatenating layers (concat1–

concat3). Each convolutional or deconvolutional layer is followed by a rectified linear

unit (ReLU) activation function, except for conv6–conv9, where softmax is utilized to

generate the output labels. The details of these layers are presented as followings.

Figure 5.1: Structure of DeepSCC. The optimal mode maps of the collocated CTU only exist in

DeepSCC-II, which is denoted by green blocks.

Labels for 8× 8 CUs

Labels for 16× 16 CUs

Labels for 32× 32 CUs

Label for 64× 64 CU

4× 8× 8

4× 4× 4

4× 2× 2

4× 1× 1

Softmax

Softmax

Softmax

Softmax

8× 16× 16

16× 8× 8
32× 4× 4

64× 2× 2 128× 1× 1

64× 2× 2

32× 4× 4

16× 8× 8

conv1 conv2 conv3 conv4 conv5 conv6

conv7

conv8

conv9

d
ec

o
n

v
1

d
ec

o
n

v
2

d
ec

o
n

v
3

Copy

Copy

Copy

concat1

concat2

concat3

concat4

concat5

concat6

concat7

Convolutional layer

Deconvolution layer

Concatenate layer

Feature maps of a convolution layer

Feature maps of a deconvolution layer

Optimal mode map of the collocated CTU

(Only existed in DeepSCC-II)

4× 4 2× 2 2× 2 2× 2 2× 2

2
×

2
2
×

2
2
×

2

1× 1

1× 1

1× 1

1× 1

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 82

Convolutional layers: At the beginning, the luminance component of a CTU goes

through five convolutional layers, i.e., conv1–conv5, to generate feature maps. As shown

in Figure 5.1, the kernel size of conv1 is 4×4 and the kernel sizes of conv2–conv5 are

2×2. The strides of conv1–conv5 are set to the width of the kernel sizes for non-

overlapping convolutions, in accordance with the non-overlapping CU partitioning

structure. By using this arrangement, the receptive field of each node in a feature map is

always equal to a CU size, so that the feature maps of conv2–conv5 reflect the local

features of CUs from 8×8 to 64×64, respectively. It is noted that the spatial down-

sampling in DeepSCC-I is achieved by convolutions with strides, rather than the

deterministic spatial pooling functions. Therefore, it allows the network to learn its own

spatial down-sampling strategy. At each down-sampling step, we double the channel

number of feature maps. After concatenating the feature maps of convolutional layers and

deconvolutional layers, conv6–conv9 incorporate those feature maps and generate the last

set of feature maps with the kernel size of 1×1 and stride of 1. Each layer of conv6–conv9

outputs four feature maps since each CU contains four classes. Finally, the feature maps

of conv6–conv9 are used to output the predicted labels after going through a softmax

function.

Deconvolutional layers: In contrast to the convolution layer which reduces the size

of a feature map, a deconvolutional layer is used to enlarge the size of a feature map.

After generating the 128 feature maps of conv5 with the size of 1×1, three

deconvolutional layers i.e., deconv1–deconv3, are used to enlarge the feature maps of

conv5 using the kernel size of 2×2 and stride of 2. Since the receptive field of each node

in the feature maps of conv5 is the entire CTU, the receptive field of each node in the

feature maps of deconv1–deconv3 also becomes the entire CTU, and they reflect the

global features for CUs with size from 32×32 to 8×8, respectively. The global features

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 83

help to improve the prediction accuracy because there exists spatial content correlation in

a CTU. For example, if other CUs are SCBs in a CTU, the current CU is more likely to

be a SCB and it would check IBC or PLT mode. On the contrary, if other CUs are NIBs

in a CTU, the current CU is more likely to be a NIB and it would check Intra mode. At

each feature map enlarging step, we halve the channel number of feature maps. Finally,

the global feature maps and local feature maps have the same dimension for each CU size.

Concatenating layers: DeepSCC-I adopts three concatenating layers, i.e., concat1–

concat3, to concatenate the global feature maps and local feature maps for CUs with sizes

from 32×32 to 8×8, respectively.

As shown in Figure 5.1, DeepSCC-I outputs 1, 4, 16, and 64 labels for a CTU, in

accordance with the hierarchical CTU partitioning structure in Figure 1.2, which contains

1 CU of 64×64 pixels, 4 CUs of 32×32 pixels, 16 CUs of 16×16 pixels, and 64 CUs of

8×8 pixels.

5.3.2 DeepSCC-II for Stationary CTU

As analyzed in Section 5.2, directly encoding a stationary CTU with the same

optimal modes of the collocated CTU leads to a very high increase in BDBR. To address

this problem, the optimal mode maps of the collocated CTU are jointly analyzed with the

actual CTU content to reduce the BDBR loss for stationary CTUs. By defining the indices

for classes of Allskip, Intra, IBC and PLT as 0, 1, 2 and 3, an example of a collocated

CTU and its optimal mode maps is shown in Figure 5.2. To obtain the optimal mode maps

of a collocated CTU, its optimal modes are analyzed in four depth levels. Since the CTU

in Figure 5.2 is not encoded as a single 64×64 CU, the optimal mode map for the 64×64

CU has the class index of Allskip, which means all modes are skipped in the 64×64 CU.

Then, there are two 32×32 CUs encoded by PLT mode and Intra mode in the CTU,

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 84

respectively, so that the class indices of the corresponding positions in the optimal mode

map for 32×32 CUs are 3 and 1, which denote PLT and Intra, respectively. The other two

positions in this optimal mode map still contain the index of Allskip since they are not

encoded as 32×32 CUs. This process is repeated until the four optimal mode maps are all

generated in the collocated CTU.

It is noted that the four optimal mode maps of the collocated CTU have the same

size as the corresponding feature maps from conv2–covn5 and deconv1–deconv3. To

utilize the optimal mode correlation between the current stationary CTU and its collocated

CTU, the four optimal mode maps of the collocated CTU are concatenated to the

corresponding feature maps of the current CTU by using four concatenate layers concat4–

concat7, as shown in Figure 5.1. After using conv6–conv9 to incorporate those feature

maps and the optimal mode maps, a softmax function is used to output the predicted labels.

5.3.3 Training Strategy for DeepSCC

To avoid the overlapping between the training set and testing set, we selected 12

training sequences from [84]–[88], [90] which are not included in CTC [30] to generate

the training samples. Based on the content classification criterion of CTC, we also classify

the 12 training sequences into the four categories of TGM, M, A and CC, and they are

Figure 5.2: A collocated CTU and its optimal mode maps.

0

0 0

3 1

0 3

0 2

3 3

2 2

0 0

0 0

0 0

0 0

2 3

2 3

0 0

0 0

3 2

3 2

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Optimal mode map

for a 64×64 CU

Optimal mode map

for 32×32 CUs

Optimal mode map

for 16×16 CUs

Optimal mode map

for 8×8 CUs

Intra IBC PLT

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 85

shown in Table 5.3. Then, the 14 sequences in CTC are used as the testing sequences to

evaluate the performance of the proposed DeepSCC. A single model of DeepSCC is

trained for QPs of 22, 27, 32, and 37 by using training data from the four QPs. For each

training sequence, 50 frames were extracted with equal intervals, and they were encoded

by the original SCM-8.3 with QPs of 22, 27, 32 and 37 to obtain the ground truth labels.

Finally, 750,000 CTUs were generated with their ground truth labels to train DeepSCC-

I, while 440,000 CTUs with their ground truth labels and the optimal mode maps of the

collocated CTUs were obtained to train DeepSCC-II.

The training process of DeepSCC was implemented in Caffe [91]. A GPU of

GeForce GTX 1080 Ti was used to accelerate the training process, and then it was

disabled in the testing phase, so that only a CPU was used to evaluate the performance of

DeepSCC. To make the maximum use of GPU memory, a large batch size of 1024 CTUs

was adopted. The loss of an i-th training sample in a batch is defined as the sum of cross-

entropy over all labels in four depth levels, and it is represented by

𝑙𝑖 = 𝑓(𝜔
0, �̂�0) + ∑ 𝑓(𝜔1_𝑗, �̂�1_𝑗)3

𝑗=0 + ∑ 𝑓(𝜔2_𝑗, �̂�2_𝑗)15
𝑗=0 + ∑ 𝑓(𝜔3_𝑗 , �̂�3_𝑗)63

𝑗=0 (5.1)

where 𝜔0 and 𝜔1_𝑗, 𝜔2_𝑗, 𝜔3_𝑗 denote the ground truth classes of the CU in the depth

level of 0, and the j-th CU in the depth levels of 1, 2, 3, respectively. Similarly, �̂�0_𝑗, �̂�1_𝑗,

Table 5.3: Training sequences for DeepSCC.

Categories Sequences Resolution No. of Frame

TGM

ClearTypeSpreadsheet 1920×1080 300

PptDocXls 1920×1080 200

RealTimeData 1920×1080 600

WordEditing 1920×1080 600

VideoConferencingDocSharing 1280×720 300

M

BigBuck 1920×1080 400

KristenAndSaraScreen 1920×1080 600

MissionControlClip1 2560×1440 600

A Viking 1280×720 300

CC

EBULupoCandlelight 1920×1080 250

Seeking 1920×1080 250

ParkScene 1920×1080 240

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 86

�̂�2_𝑗, and �̂�3_𝑗 denote the predicted classes of the corresponding CUs. 𝑓() represents the

cross-entropy function between the ground truth class and predicted class, and it is

represented as

𝑓(𝜔, �̂�) = −∑ 𝑦(𝜔𝑘 = 𝜔)𝑘 𝑙𝑜𝑔(𝑃(𝜔𝑘 = �̂�)) (5.2)

where k denotes the class index. 𝑦(𝜔𝑘 = 𝜔) is 1 if 𝜔𝑘 is the same as the ground truth

class 𝜔, otherwise, 𝑦(𝜔𝑘 = 𝜔) is 0. 𝑃(𝜔𝑘 = �̂�) denotes the probability that 𝜔𝑘 is the

same as the predicted class �̂�. By averaging the loss over all training samples in one batch,

the loss function L is written as

𝐿 =
1

𝑁
∑ 𝑙𝑖
𝑁
𝑖=1 (5.3)

where N is the number of training samples in one batch. All trainable parameters in

DeepSCC are initialized by the “msra” filter [92]. Then, Adam optimizer [93] is adopted

to update the trainable parameters in DeepSCC with the default values of momentum and

momentum2, which are 0.9 and 0.999, respectively. A weight decay of 0.005 is used to

alleviate the overfitting problem. Instead of using the conventional learning rate policy of

“Step”, we adopt the learning rate policy of “Poly” as in [94], and the learning rate in

each iteration (iter), 𝑙𝑟𝑖 𝑒𝑟, is

𝑙𝑟𝑖 𝑒𝑟 = 𝑙𝑟𝑏𝑎𝑠𝑒 × (1 −
𝑖 𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
)𝑝𝑜𝑤𝑒𝑟 (5.4)

Figure 5.3: Training loss of DeepSCC-I and DeepSCC-II alongside iterations.

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 87

where 𝑙𝑟𝑏𝑎𝑠𝑒 is the base learning rate of 0.01, 𝑝𝑜𝑤𝑒𝑟 is set to 0.9, and 𝑚𝑎𝑥𝑖 𝑒𝑟 is set to

50,000. Started from 0.01, 𝑙𝑟𝑖 𝑒𝑟 is gradually reduced to 0 as the iteration increases.

The training losses of DeepSCC-I and DeepSCC-II calculated by Equation (5.3) are

shown in Figure 5.3. Compared with the traditional classification task, the mode decision

framework only has three class, and it is easier to make classification, so it is observed

that the training processes of DeepSCC-I and DeepSCC-II converge very fast. Besides,

the final loss of DeepSCC-II is smaller than DeepSCC-I, because DeepSCC-II

additionally utilizes the optimal mode maps of the collocated CTUs. Although DeepSCC-

I can reduce encoding time for all CTUs by only taking sample values as the input, we

only enable it for dynamic CTUs. For stationary CTUs, DeepSCC-II is enabled instead

of DeepSCC-I because it has a smaller loss. The advantage of DeepSCC-II over

DeepSCC-I for stationary CTUs is further discussed in Section 5.4.3.

5.3.4 Content-adaptive Threshold

To make fast prediction for an input CTU, the proposed DeepSCC outputs 85 labels

for 85 CUs, and each label contains four probabilities, i.e., P(𝜔), 𝜔 ∈{Allskip, Intra, IBC,

PLT}. In the testing phase, a threshold 𝛼𝑥 is used to decide whether a CU needs to check

the mode x, 𝑥 ∈{Intra, IBC, PLT}. If the probability of checking a mode x is smaller than

the value of 𝛼𝑥, i.e., P(𝜔=x)<𝛼𝑥, the mode x is regarded as unnecessary, and the current

CU does not check it for encoding time reduction. It should be noted that the selection of

the class Allskip is not directly decided but depended on the probabilities of checking

other classes from {Intra, IBC, PLT}. If the probabilities of checking all classes from

{Intra, IBC, PLT} are smaller than 𝛼𝑥, the optimal class of the CU becomes Allskip, and

the mode checking for the CU can be skipped.

In SCC, NIBs and SCBs usually show the concentrated distribution in a frame, and

there exists an optimal mode correlation in spatial neighboring CUs. Therefore, 𝛼𝑥 is

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 88

treated as a content-adaptive threshold, and its value is adjusted by utilizing the spatial

optimal mode correlation. The mode distribution of the first frame in “Programming” is

shown in Figure 5.4, and it was encoded by the original SCM-8.3 with QP of 22. It is

observed that many CUs select the same modes as their top or left CUs at the same depth

levels. Besides, many IBC-coded CUs and PLT-coded CUs are mixed together because

IBC and PLT modes are both valid mode candidates for SCBs. Based on this observation,

the value of 𝛼𝑥 for a CU is decided by the optimal modes of its top and left neighboring

CUs at the same depth level

𝛼𝑥 = 𝛼𝑏𝑎𝑠𝑒 − 𝐼𝑥 × 𝛼𝑑𝑒𝑐𝑎𝑦 (5.5)

where 𝐼𝑥 is a content-adaptive parameter, 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦 are two predefined

parameters that control the value of 𝛼𝑥 . The impact of their values to DeepSCC is

discussed in Section 5.4.1. Since IBC and PLT modes show mixed distribution, they are

grouped together to decide the value of 𝐼𝑥. For 𝑥 ∈{IBC, PLT}, 𝐼𝑥 is represented as

𝐼𝑥 = {
1, 𝑖𝑓 𝜔𝑙𝑒𝑓 ∈ {𝐼𝐵𝐶, 𝑃𝐿𝑇} 𝑜𝑟 𝜔 𝑜𝑝 ∈ {𝐼𝐵𝐶, 𝑃𝐿𝑇}

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.6)

For 𝑥 ∈{Intra}, 𝐼𝑥 is represented as

 𝐼𝑥 = {
1, 𝑖𝑓 𝜔𝑙𝑒𝑓 ∈ {𝐼𝑛𝑡𝑟𝑎} 𝑜𝑟 𝜔 𝑜𝑝 ∈ {𝐼𝑛𝑡𝑟𝑎}

0, 𝑜ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.7)

Figure 5.4: Optimal mode in the first frame of “Programming”. Intra, IBC and PLT modes coded

CUs are noted by blue, yellow and red blocks, respectively.

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 89

where 𝜔𝑙𝑒𝑓 and 𝜔 𝑜𝑝 are the optimal mode classes of the left and top neighboring CUs.

By using the content-adaptive threshold 𝛼𝑥, a CU has a larger chance to be coded by the

optimal modes of its left and top CUs.

Since the proposed DeepSCC treats the case of skipping all modes as the class

Allskip in mode decision, the CU partitioning decision is integrated into DeepSCC. If

DeepSCC selects the class Allskip for a CU, it means that the current depth level is not

optimal and the mode checking of the CU is skipped. Therefore, additional testing of

another model specially designed for CU partitioning decision as in [53]–[56] is not

necessary, and it further reduces the testing time. Before a CU in the depth level of 0, 1,

or 2 continues the partitioning process shown in Figure 1.2, the labels of CUs in the deeper

depth levels are analyzed to perform CU partitioning decision. If an area of a CU always

selects the class Allskip in all deeper depth levels, the CU cannot be encoded if it continues

partitioning. Therefore, we early terminate the CU partitioning process to avoid

unnecessary computation.

5.3.5 Memory Overhead of DeepSCC

To make fast prediction, the trained Caffe model needs to be invoked in SCM-8.3.

The memory overhead of DeepSCC comes from two parts, which are the size of the

parameters stored in the Caffe model and the size of generated feature maps when running

DeepSCC. If a CTU is a dynamic CTU, the Caffe model of DeepSCC-I is invoked, which

takes up 348.47KB. To store the generated feature maps, 47.66KB is needed by using the

double-precision floating point which requires 8B in C language. Therefore, the memory

overhead is 396.13KB for DeepSCC-I. On the other hand, the Caffe model of DeepSCC-

II is invoked for stationary CTUs, which takes up 348.80KB, and the associated feature

maps require 48.32KB. Therefore, the memory overhead is 397.12KB for DeepSCC-II.

Comparatively, a video frame with the resolution of 2560×1440 pixels takes up 108,00KB

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 90

(2560×1440×3÷1024). Therefore, the memory overhead percentages of DeepSCC-I and

DeepSCC-II over the frame memory are only 3.67% and 3.68%, respectively.

5.4 Experimental Results and Discussions

To evaluate the performance of the proposed DeepSCC, it has been implemented in

SCM-8.3 [31], and the DNN tool of OpenCV 3.4.1 is used to invoke the trained Caffe

model in SCM-8.3. The trained Caffe model and the source code of the proposed

DeepSCC can be found on our website [95]. It should be noted that no GPU but only a

CPU is enabled for making fair comparisons. Three sets of experiments have been

conducted to analyze the performance of the proposed DeepSCC. First, a series of

ablation experiments were performed to decide the optimal structure of DeepSCC by

using validation sequences [86], [88], [90], [96] in Table 5.4. Second, the performance of

DeepSCC is evaluated by comparing it with existing fast SCC prediction algorithms.

Third, the performances of the individual DeepSCC-I and DeepSCC-II are analyzed.

5.4.1 Ablation Study

In this sub-section, various experiments were performed to decide the optimal

structure of the proposed DeepSCC by using the validation sequences shown in Table 5.4.

Table 5.4: Validation sequences for DeepSCC.

Categories Sequences Resolution No. of Frame

TGM

BitstreamAnalyzer 1920×1080 300

Doc 1280×720 500

Web 1280×720 500

M KimonoError2 2560×1440 500

CC

BirdsInCage 1920×1080 600

DucksAndLegs 1920×1080 300

Traffic 2560×1440 60

VenueVu 1920×1080 300

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 91

A. Threshold Determination

As aforementioned in Section 5.3.4, a content-adaptive threshold 𝛼𝑥 is used to

eliminate unnecessary mode candidates in a CU, and its value is controlled by two

predefined parameters 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦 . First, a fixed value of 𝛼𝑑𝑒𝑐𝑎𝑦 is applied to

analyze the impact of 𝛼𝑏𝑎𝑠𝑒, and the results are shown in Figure 5.5. It is observed that as

the value of 𝛼𝑏𝑎𝑠𝑒 increases, more encoding time is reduced at the cost of a larger increase

of BDBR. Besides, when the gap between 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦, i.e., 𝛼𝑏𝑎𝑠𝑒 − 𝛼𝑑𝑒𝑐𝑎𝑦, is large,

BDBR increases quickly. For example, when the gap between 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦 increases

from 0 to 0.02, the encoding time is further reduced by 5.50% while BDBR is further

increased by only 0.37%. When the gap between 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦 increases from 0.02

to 0.04, the encoding time is further reduced by 3.96% while BDBR is further increased

by 0.86%. Therefore, we limit the gap between 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦 to a small value to

balance the encoding time reduction and increase in BDBR, and the results are shown in

Table 5.5. It is observed that the DeepSCC is complexity scalable and it provides 46.60%–

56.34% encoding time reduction with BDBR increased by 0.48–1.33%. In the following

sub-sections, 𝛼𝑏𝑎𝑠𝑒 is set to 0.05 and 𝛼𝑑𝑒𝑐𝑎𝑦 is set to 0.04 for further discussions, where

52.35% encoding time is reduced with 0.83% increase in BDBR.

Figure 5.5: Performance of DeepSCC with various values of 𝛼𝑏𝑎𝑠𝑒 and the fixed value of 𝛼𝑑𝑒𝑐𝑎𝑦.

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 92

B. Decoupling Local Features and Global Features

 The proposed DeepSCC utilizes convolutional layers and deconvolutional layers to

extract local features and global features in a CTU, respectively. Then, they are

concatenated together to predict the mode labels. To evaluate the importance of the

proposed structure, two sets of experiments were performed by decoupling local features

and global features, i.e., removing concat1–concat3 from DeepSCC. First, only the

feature maps of conv2–conv5 are fed to concat4–concat7 so that only local features are

utilized to make mode prediction. Second, only the feature maps of conv5 and deconv1–

Table 5.6: Performance comparison of LFDeepSCC, GFDeepSCC and DeepSCC.

Sequences
LFDeepSCC GFDeepSCC DeepSCC

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%)

BitstreamAnalyzer 0.82 -45.20 0.83 -40.86 0.79 -45.29

Doc 1.44 -49.02 1.79 -50.18 1.35 -50.47

Web 1.77 -51.11 1.45 -51.61 1.43 -52.71

KimonoError2 0.87 -37.28 0.82 -39.75 0.76 -37.24

BirdsInCage 0.03 -29.38 0.11 -58.02 0.09 -59.07

DucksAndLegs 0.03 -20.02 0.19 -61.32 0.24 -64.21

Traffic 0.29 -35.24 0.93 -52.94 0.90 -56.96

VenueVu 0.57 -27.93 1.10 -50.58 1.08 -52.85

Average (TGM+M) 1.23 -45.65 1.22 -45.60 1.08 -46.43

Average (A+CC) 0.23 -28.14 0.58 -55.72 0.58 -58.27

Average (ALL) 0.73 -36.90 0.90 -50.66 0.83 -52.35

Table 5.5: Performance of the proposed DeepSCC for validation sequences with different values

of 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦.

Sequences

 𝛼𝑏𝑎𝑠𝑒=0.03

𝛼𝑑𝑒𝑐𝑎𝑦=0.02

𝛼𝑏𝑎𝑠𝑒=0.03

𝛼𝑑𝑒𝑐𝑎𝑦=0.01

𝛼𝑏𝑎𝑠𝑒=0.05

𝛼𝑑𝑒𝑐𝑎𝑦=0.04

𝛼𝑏𝑎𝑠𝑒=0.05

𝛼𝑑𝑒𝑐𝑎𝑦=0.03

𝛼𝑏𝑎𝑠𝑒=0.07

𝛼𝑑𝑒𝑐𝑎𝑦=0.06

𝛼𝑏𝑎𝑠𝑒=0.07

𝛼𝑑𝑒𝑐𝑎𝑦=0.05

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BitstreamAnalyzer 0.43 -40.74 0.44 -41.49 0.79 -45.29 0.91 -45.43 1.42 -48.60 1.52 -49.35

Doc 0.38 -45.05 0.34 -44.13 1.35 -50.47 1.52 -51.56 2.06 -55.60 2.13 -56.70

Web 0.86 -47.17 1.03 -48.32 1.43 -52.71 1.57 -54.04 2.71 -56.66 2.99 -57.82

KimonoError2 0.66 -31.63 0.70 -29.75 0.76 -37.24 0.82 -37.14 0.90 -39.98 0.93 -39.98

BirdsInCage 0.04 -49.37 0.04 -49.95 0.09 -59.07 0.10 -59.03 0.14 -63.01 0.14 -63.10

DucksAndLegs 0.17 -62.23 0.17 -62.22 0.24 -64.21 0.24 -64.48 0.33 -65.51 0.33 -65.76

Traffic 0.57 -51.02 0.59 -51.33 0.90 -56.96 0.91 -56.64 1.16 -60.05 1.16 -60.37

VenueVu 0.76 -45.55 0.81 -45.93 1.08 -52.85 1.10 -52.60 1.36 -56.77 1.40 -57.67

Average (TGM+M) 0.58 -41.15 0.63 -40.92 1.08 -46.43 1.21 -47.04 1.77 -50.21 1.89 -50.96

Average (A+CC) 0.39 -52.04 0.40 -52.36 0.58 -58.27 0.59 -58.19 0.75 -61.34 0.76 -61.73

Average (ALL) 0.48 -46.60 0.52 -46.64 0.83 -52.35 0.90 -52.62 1.26 -55.77 1.33 -56.34

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 93

3 are fed to concat4–concat7 so that only global features are utilized to make mode

prediction. Let us call them LFDeepSCC and GFDeepSCC, respectively, and their

performances are shown in Table 5.6. It is observed that LFDeepSCC provides 36.90%

encoding time reduction with 0.73% increase in BDBR. DeepSCC outperforms it by

providing a much higher encoding time reduction of 52.35% with a similar increase in

BDBR. GFDeepSCC also shows worse performance than DeepSCC by providing 50.66%

encoding time reduction with 0.90% increase in BDBR. Therefore, concatenating the

local features and global features helps to improve the performance of the proposed

DeepSCC.

C. Term Normalization in Loss Function

In Equation (5.1), the loss function of a training sample is derived as the sum of

cross-entropy over all labels in the four depth levels, and the terms for different depth

levels are not normalized. For example, the loss function contains only one term in the

depth level of 0 while it contains 64 terms in the depth level of 4. The reason that we do

not normalize the loss function to let the terms of different depth levels have equal weight

is that the mode classifications in deeper depth levels are more complex. Therefore, the

Table 5.7: Performance comparison of DeepSCC with and without term normalization in loss

function.

Sequences

DeepSCC with term

normalization

DeepSCC without term

normalization

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%)

BitstreamAnalyzer 1.82 -38.81 0.79 -45.29

Doc 0.92 -47.90 1.35 -50.47

Web 1.10 -49.04 1.43 -52.71

KimonoError2 0.82 -33.19 0.76 -37.24

BirdsInCage 0.07 -51.96 0.09 -59.07

DucksAndLegs 0.22 -61.15 0.24 -64.21

Traffic 0.72 -40.78 0.90 -56.96

VenueVu 0.92 -44.79 1.08 -52.85

Average (TGM+M) 1.17 -42.23 1.08 -46.43

Average (A+CC) 0.48 -49.67 0.58 -58.27

Average (ALL) 0.82 -45.95 0.83 -52.35

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 94

loss function without term normalization will be naturally more focused on the mode

classification of small CUs. To prove its advantage, Table 5.7 shows the performance of

DeepSCC using loss function with term normalization. It is observed that the original

DeepSCC outperforms DeepSCC with term normalization by providing 6.4% more

encoding time reduction with almost the same increase in BDBR.

D. Feature Fusion Function

To join the convolution features, deconvolution features, and optimal mode maps of

the collocated CTU, the concatenating layer is adopted in DeepSCC. It is one of the most

widely used feature fusion layers and it can join feature maps with the arbitrary channel

number. An alternative way is to use element wise addition layer which can only join two

sets of feature maps with the equal channel numbers. Therefore, element wise addition

layers can be adopted to join convolution features and deconvolution features since they

have equal channel numbers, then they are concatenated to the optimal mode maps of the

collocated CTU. Table 5.8 shows the results of DeepSCC with element wise addition

layers. It is observed it almost shows the same results as the original DeepSCC. Therefore,

different feature fusion functions have a minor impact on the DeepSCC.

Table 5.8: Performance comparison of DeepSCC with different feature funsion functions.

Sequences
DeepSCC with element

wise addition layer

DeepSCC with

concatenating layer

 BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%)

BitstreamAnalyzer 0.78 -44.69 0.79 -45.29

Doc 1.24 -49.20 1.35 -50.47

Web 1.60 -52.15 1.43 -52.71

KimonoError2 0.81 -37.30 0.76 -37.24

BirdsInCage 0.09 -61.91 0.09 -59.07

DucksAndLegs 0.22 -64.27 0.24 -64.21

Traffic 0.78 -54.61 0.90 -56.96

VenueVu 1.00 -53.16 1.08 -52.85

Average (TGM+M) 1.11 -45.84 1.08 -46.43

Average (A+CC) 0.52 -58.49 0.58 -58.27

Average (ALL) 0.82 -52.16 0.83 -52.35

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 95

E. Learning Policy

In the training process of DeepSCC, the learning rate policy of “Poly” is adopted

rather than the conventional “Step”. To evaluate the efficiency of this strategy,

experiments were done by training DeepSCC with “Step” with the same values of 𝑙𝑟𝑏𝑎𝑠𝑒

and 𝑚𝑎𝑥𝑖 𝑒𝑟 , and the learning rate is multiplied by 0.1 every 10,000 iterations. The

performance comparison is shown in Table 5.9. It is observed that DeepSCC with “Step”

achieves 51.18% encoding time reduction with 0.94% increase in BDBR. By replacing

“Step” with “Poly”, DeepSCC shows slightly better performance of 1.17% larger

encoding time reduction and 0.11% smaller increase in BDBR.

F. Number of Channels

The proposed DeepSCC has the advantage of automatically learning useful features

by using extensive learnable parameters, which is controlled by the number of channels

in each layer. If a small number of channels are employed, DeepSCC may run into the

underfitting problem. On the contrary, if a larger number of channels are employed,

DeepSCC may run into the overfitting problem. As shown in Figure 5.1, the channel

number of the feature maps after going through conv1 is 8. Before fed to concat4–concat7,

Table 5.9: Performance comparison of different learning policies.

Sequences
DeepSCC with “Step” DeepSCC with “Poly”

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%)

BitstreamAnalyzer 1.30 -47.50 0.79 -45.29

Doc 1.48 -50.01 1.35 -50.47

Web 1.68 -51.02 1.43 -52.71

KimonoError2 0.73 -36.25 0.76 -37.24

BirdsInCage 0.09 -57.68 0.09 -59.07

DucksAndLegs 0.32 -63.11 0.24 -64.21

Traffic 0.82 -53.89 0.90 -56.96

VenueVu 1.12 -50.01 1.08 -52.85

Average (TGM+M) 1.30 -46.20 1.08 -46.43

Average (A+CC) 0.59 -56.17 0.58 -58.27

Average (ALL) 0.94 -51.18 0.83 -52.35

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 96

the channel number of the feature maps is doubled if they go through a convolutional

layer or halved if they go through a deconvolutional layer. To evaluate the impact of the

channel number in DeepSCC, another four sets of experiments were performed, i.e.,

multiplying the channel number of each layer before concat4–concat7 by 1/4, 1/2, 2, 4,

and they are denoted as NumChannel/4, NumChannel/2, NumChannel×2,

NumChannel×4, respectively. The performance comparison of DeepSCC with the

different number of channels is shown in Table 5.10. It is observed that the original

DeepSCC shows slightly better performance than the networks with the other number of

channels. As the channel number increases, the performance of DeepSCC is improved

first because of underfitting, and then it is dropped because of overfitting. Therefore,

DeepSCC with the proposed channel number achieves a good trade-off.

5.4.2 Performance of DeepSCC

Table 5.11 shows the performance of the proposed DeepSCC for training sequences.

It is observed that DeepSCC provides 50.17% encoding time reduction with 1.13%

negligible increase in BDBR. As compared with the results for validation sequences in

Table 5.5, DeepSCC provides similar performance for both training sequences and

Table 5.10: Performance comparison of DeepSCC with different number of channels.

Sequences

NumChannel/4 NumChannel/2 Original DeepSCC NumChannel×2 NumChannel×4

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BitstreamAnalyzer 1.35 -38.14 1.67 -38.9 0.79 -45.29 1.36 -47.26 1.10 -47.93

Doc 1.36 -49.86 1.32 -50.52 1.35 -50.47 1.31 -47.23 1.35 -47.88

Web 1.32 -50.67 1.50 -51.76 1.43 -52.71 1.45 -51.23 1.41 -50.56

KimonoError2 0.78 -35.67 0.79 -38.04 0.76 -37.24 0.68 -36.72 0.91 -36.82

BirdsInCage 0.08 -55.92 0.07 -66.94 0.09 -59.07 0.07 -55.16 0.09 -50.04

DucksAndLegs 0.17 -43.67 0.18 -62.15 0.24 -64.21 0.23 -64.74 0.29 -63.38

Traffic 0.53 -49.04 0.79 -56.14 0.90 -56.96 0.96 -52.78 1.02 -52.23

VenueVu 1.10 -49.85 1.12 -54.27 1.08 -52.85 1.10 -53.85 1.11 -45.24

Average (TGM+M) 1.20 -43.59 1.32 -44.81 1.08 -46.43 1.20 -45.61 1.19 -45.80

Average (A+CC) 0.47 -49.62 0.54 -59.88 0.58 -58.27 0.59 -56.63 0.63 -52.72

Average (ALL) 0.84 -46.60 0.93 -52.34 0.83 -52.35 0.90 -51.12 0.91 -49.26

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 97

validation sequences. This shows that the proposed DeepSCC is generalizable to the

unseen sequences.

 Then, to evaluate the performance of the proposed DeepSCC, it is directly compared

with four state-of-the-art SCC fast intra-prediction algorithms [51], [53]–[55]. The results

for 14 testing sequences in YUV 4:4:4 format are shown in Table 5.12. It is observed that

DeepSCC outperforms the SCC fast intra-prediction algorithms [51], [53]–[55] by

providing 48.81% encoding time reduction with only 1.18% increase in BDBR.

Specifically, DeepSCC provides 46.12% and 58.69% encoding time reduction with 1.30%

and 0.76% increase in BDBR for sequences in TGM+M and A+CC, respectively.

Comparatively, Zhang et al.’s method [51] shows 1.25% increase in BDBR, which is

similar to the proposed DeepSCC. However, DeepSCC outperforms it by providing

15.62% larger encoding time reduction. Since Zhang et al.’s method [51] strongly relies

on CUs having similar content as their collocated CUs, it shows very limited encoding

time reduction for sequences with almost only dynamic regions, such as “FlyingGraphics”,

“Robot”, “EBURainFruits”, and “Kimono1”, where only 4.60%, 12.04%, 16.48%, and

0.46% encoding time is reduced. Comparatively, DeepSCC can efficiently address

Table 5.11: Performance of the proposed DeepSCC for training sequences.

Training Sequences BDBR (%) ∆Time (%)

ClearTypeSpreadsheet 1.01 -53.59

PptDocXls 1.99 -45.60

RealTimeData 1.04 -40.91

WordEditing 1.40 -53.54

VideoConferencingDocSharing 1.86 -52.61

BigBuck 1.18 -42.48

KristenAndSaraScreen 0.90 -46.69

MissionControlClip1 1.37 -47.43

Viking 1.78 -54.40

EBULupoCandlelight 0.25 -53.60

Seeking 0.30 -52.65

ParkScene 0.47 -58.51

Average (TGM+M) 1.34 -47.86

Average (A+CC) 0.70 -54.79

Average (ALL) 1.13 -50.17

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 98

dynamic CTUs, and it provides 30.76%, 49.73%, 55.94% and 70.68% encoding time

reduction for those sequences. Duanmu et al.’s method [53], Lei et al.’s method [54] and

Yang et al.’s method [55] all eliminate the mode candidates for a CU by classifying it

into a NIB or a SCB, and at most one mode, i.e., Intra mode, is skipped for a SCB. On

the contrary, DeepSCC directly performs the mode classification rather than the simple

CU type classification, so IBC and PLT modes are no longer always checked together for

a SCB. As a result, DeepSCC outperforms the fast algorithms [53]–[55] by providing

21.92%, 15.61% and 13.45% larger encoding time reduction with 0.52%, 1.18% and

2.32% smaller increase in BDBR, respectively.

Furthermore, we make an indirect comparison of the proposed DeepSCC with Huang

et al.’s method [56] because we do not have the source code of their approach. However,

the proposed DeepSCC is implemented in the same reference software as Huang et al.’s

method [56], SCM-8.3, which makes the indirect comparison to be fair. Huang et al.’s

method [56] adopts a hybrid framework of neural network-based classifiers for CU type

Table 5.12: Performance of different algorithms compared with SCM-8.3 for sequences in YUV

4:4:4 format.

Sequences

Zhang [51] Duanmu [53] Lei [54] Yang [55] DeepSCC

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

BDBR

(%)

∆𝑇𝑖𝑚𝑒

(%)

ChineseEditing 0.65 -49.73 1.10 -17.47 0.99 -18.96 4.30 -34.16 1.07 -48.80

Console 3.36 -39.35 1.87 -28.12 2.87 -23.40 7.38 -42.83 1.06 -41.85

Desktop 1.95 -47.94 2.19 -26.24 1.97 -23.85 6.27 -35.91 1.00 -53.46

FlyingGraphics 0.84 -4.60 0.98 -20.13 1.72 -18.13 5.47 -31.19 0.99 -30.76

Map 0.85 -36.95 1.55 -19.16 1.23 -20.05 2.84 -41.66 1.79 -36.36

Programming 1.16 -40.44 1.89 -22.16 2.50 -22.92 4.71 -27.38 0.87 -42.74

SlideShow 1.39 -44.15 2.82 -52.47 2.32 -55.58 3.69 -34.45 2.78 -55.36

WebBrowsing 2.05 -51.73 1.91 -28.17 6.02 -26.75 5.00 -53.00 0.88 -54.09

BasketballScreen 1.06 -41.84 1.25 -22.43 1.46 -24.83 3.00 -31.54 1.27 -46.78

MissionControlClip2 1.29 -39.08 2.86 -33.90 1.71 -25.49 2.51 -38.54 1.56 -51.16

MissionControlClip3 1.05 -39.91 2.03 -24.61 1.69 -33.81 2.90 -34.15 1.01 -45.96

Robot 0.92 -12.04 1.18 -29.36 5.21 -46.91 0.59 -28.19 1.81 -49.43

EBURainFruits 0.71 -16.48 0.88 -26.47 1.76 -48.58 0.17 -25.89 0.29 -55.94

Kimono1 0.15 -0.46 1.23 -25.75 1.52 -75.55 0.13 -36.18 0.17 -70.69

Average (TGM+M) 1.42 -39.61 1.86 -26.81 2.23 -26.71 4.37 -36.80 1.30 -46.12

Average (A+CC) 0.59 -9.66 1.10 -27.19 2.83 -57.01 0.30 -30.09 0.76 -58.69

Average (ALL) 1.25 -33.19 1.70 -26.89 2.36 -33.20 3.50 -35.36 1.18 -48.81

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 99

classification and various heuristic rules to make CU partitioning decisions.

Comparatively, the proposed DeepSCC integrates the mode decision and CU partitioning

decision into the same network. Therefore, DeepSCC is easier for implementation than

Huang et al.’s method [56]. As observed in Table 5.13, Huang et al.’s method [56]

provides 49.34% encoding time reduction with 1.36% increase in BDBR for their selected

sequences. However, the proposed DeepSCC outperforms Huang et al.’s method [56] by

providing nearly the same encoding time reduction with 0.16% less increase in BDBR.

Besides, the training sequences of Huang et al.’s method [56] are partly overlapped with

its testing sequences, where “WebBrowsing” and “Kimono1” are utilized as both training

sequences and testing sequences. On the contrary, the training sequences and testing

sequences of the proposed DeepSCC are totally different, which avoids the situation of

overfitting.

Table 5.14 shows the prediction accuracy of the proposed DeepSCC by calculating

the percentage of the areas encoded by the same mode as the original SCM-8.3. It is

observed that the prediction accuracy of DeepSCC is very high and it varies from 94.47%

Table 5.13: Indirect comparison for sequences in YUV 4:4:4 format.

Sequences

Huang [56] Proposed DeepSCC

BDBR (%) ∆Time (%) BDBR (%) ∆Time

(%)

ChineseEditing 1.07 -48.80

Console 1.06 -41.85

Desktop 0.84 -46.48 1.00 -53.46

FlyingGraphics 1.10 -43.45 0.99 -30.76

Map 1.25 -42.60 1.79 -36.36

Programming 2.05 -53.66 0.87 -42.74

SlideShow 1.54 -68.38 2.78 -55.36

WebBrowsing 0.99 -55.33 0.88 -54.09

BasketballScreen 0.87 -39.83 1.27 -46.78

MissionControlClip2 1.47 -46.39 1.56 -51.16

MissionControlClip3 1.63 -39.42 1.01 -45.96

Robot 2.52 -40.31 1.81 -49.43

EBURainFruits 0.67 -50.56 0.29 -55.94

Kimono1 1.35 -65.74 0.17 -70.69

Average (Huang [56]’s sequences) 1.36 -49.34 1.20 -49.39

Average (ALL) 1.18 -48.81

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 100

to 98.71% for different sequences with different QPs. On average, the prediction accuracy

is 96.86%, 97.37%, 97.68%, 97.51% for QP of 22, 27, 32, 37, respectively. Since the

proposed DeepSCC is trained by using a mixed training data from 22, 27, 32 and 37, it

shows stable accuracy for the testing sequenecs under the four QPs.

Figure 5.6 shows the RD curve and ∆Time for four sequences over different QPs by

using DeepSCC, and it is noted that other sequences have similar results. It is observed

that the RD curves of DeepSCC are very close to those of the original SCC encoder, which

indicates that DeepSCC has a negligible influence on video quality. Besides, ∆Time varies

little over different QPs for all sequences. Therefore, DeepSCC provides stable

performance in both high and low bitrate cases.

Table 5.14: Prediction accuracy of the proposed DeepSCC.

Sequences QP=22 QP=27 QP=32 QP=37

ChineseEditing 96.79 96.85 96.53 96.03

Console 97.77 97.71 97.58 96.62

Desktop 98.10 97.96 97.81 97.49

FlyingGraphics 97.67 97.70 97.71 97.39

Map 96.57 96.86 97.22 97.05

Programming 96.27 96.83 97.07 97.08

SlideShow 96.40 97.29 97.79 98.17

WebBrowsing 98.58 98.12 98.40 98.07

BasketballScreen 96.79 96.91 97.67 97.38

MissionControlClip2 96.17 96.88 97.58 97.59

MissionControlClip3 96.86 97.32 97.60 97.75

Robot 94.47 96.48 97.46 97.52

EBURainFruits 97.11 97.86 98.40 98.30

Kimono1 96.53 98.38 98.70 98.71

Average (TGM+M) 97.09 97.31 97.54 97.33

Average (A+CC) 96.07 97.57 98.19 98.18

Average (ALL) 96.86 97.37 97.68 97.51

Figure 5.6: RD curve and ∆Time of the proposed DeepSCC for “ChineseEditing”,

“Programming”, “BasketballScreen”, and “MissionControlClip2”.

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 101

Figure 5.7 shows the computational overhead of the proposed DeepSCC, which is

calculated as the ratio of running DeepSCC for mode prediction to the total encoding time

of various sequences. Since DeepSCC adopts non-overlapping convolutions and outputs

85 labels in a single test, the computational overhead is very low, which is from 1.17% to

3.94% of the total encoding time for all test sequences. It is noted that the computational

overhead is included to calculate the total encoding time of the proposed DeepSCC for all

simulations.

Table 5.15 shows the performance of DeepSCC applied to sequences in RGB 4:4:4

and YUV 4:2:0 formats. While the luminance samples of sequences in YUV 4:2:0 format

are directly input to DeepSCC, color space conversion is performed for sequences in RGB

4:4:4 format to get the luminance samples. It should be noted that DeepSCC is only

trained by sequences in YUV 4:4:4 format. However, DeepSCC shows good

generalization for sequences in YUV 4:2:0 and RGB 4:4:4 formats, where 46.49% and

43.69% encoding time can be reduced with only 1.13% and 1.29% increase in BDBR,

respectively. Since YUV 4:4:4 is the most widely adopted format for screen content

sequences and most existing fast SCC prediction algorithms do not support sequences in

other formats, we cannot make the comparison for sequences in YUV 4:2:0 and RGB 4:4:4

formats.

Figure 5.7: Computational overhead of the proposed DeepSCC.

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 102

5.4.3 Performance of Individual DeepSCC-I and DeepSCC-II

The proposed overall DeepSCC utilizes DeepSCC-I and DeepSCC-II to make

separate predictions for dynamic CTUs and stationary CTUs. To show the advantage of

this arrangement, two sets of experiments were performed by only enabling DeepSCC-I

and DeepSCC-II for all CTUs, respectively. The results are shown in Table 5.16. When

applying DeepSCC-II to all CTUs, a very high increase in BDBR of 3.96% is brought

since the mode correlation between the current CTU and the collected CTU is not

guaranteed. Although some sequences contain very high percentages of stationary CTUs,

they still suffer from very high increases of BDBR. For example, “ChineseEditing”

contains 93.41% stationary CTUs, and it shows 6.11% increase in BDBR by

implementing the individual DeepSCC-II for all CTUs. When applying DeepSCC-I to all

CTUs, it provides 41.86% encoding time reduction with 1.03% increase in BDBR. It

proves that DeepSCC-I can address both dynamic CTUs and stationary CTUs by only

Table 5.15: Performance of DeepSCC for sequences in RGB 4:4:4 and YUV 4:2:0 formats.

Sequences
RGB 4:4:4 YUV 4:2:0

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

ChineseEditing 1.08 -43.97 1.31 -42.53

Console 0.95 -36.47 1.42 -34.97

Desktop 1.30 -49.15 1.30 -47.70

FlyingGraphics 1.14 -30.59 0.83 -23.48

Map 1.33 -32.45 1.19 -38.78

Programming 1.26 -40.75 0.67 -40.41

SlideShow 2.43 -53.07 2.68 -52.93

WebBrowsing 1.20 -48.36 1.01 -50.78

BasketballScreen 1.11 -43.34 1.23 -46.30

MissionControlClip2 1.52 -47.71 1.42 -48.54

MissionControlClip3 0.87 -42.98 0.95 -43.16

Robot 1.29 -48.71 0.86 -57.90

ChinaSpeed 1.94 -40.55

EBURainFruits 0.22 -58.85

Kimono1 0.12 -74.47

Average (TGM+M) 1.29 -42.62 1.27 -42.69

Average (A+CC) 0.54 -60.68 1.40 -49.23

Average (ALL) 1.13 -46.49 1.29 -43.69

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 103

take the luminance samples as the input. However, it shows less encoding time reduction

compared with the overall DeepSCC, especially for sequences with many stationary

CTUs. For example, the proposed overall DeepSCC shows 13.91% larger encoding time

reduction for “ChineseEditing” than the individual DeepSCC-I. Therefore, the proposed

overall DeepSCC which integrates DeepSCC-I and DeepSCC-II together helps to

improve coding performance.

5.5 Chapter Summary

In this chapter, a deep learning based fast prediction network DeepSCC is proposed

to reduce the computational complexity of SCC. To avoid the exhaustive mode search in

a CTU, DeepSCC outputs 85 labels for 85 CUs of the CTU in a single test. For dynamic

CTUs, DeepSCC-I is designed to take the luminance samples of a CTU as the input. For

stationary CTUs, DeepSCC-II additionally utilizes the optimal mode maps of the

collocated CTUs for further performance improvement. Compared with the traditional

Table 5.16: Performance of the individual DeepSCC-I and DeepSCC-II.

Sequences
DeepSCC-I DeepSCC-II

Proposed Overall

DeepSCC

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

ChineseEditing 0.69 -35.49 6.11 -43.62 1.07 -48.80

Console 0.83 -33.95 4.92 -26.79 1.06 -41.85

Desktop 0.64 -42.75 4.08 -44.78 1.00 -53.46

FlyingGraphics 0.98 -30.48 6.58 -0.78 0.99 -30.76

Map 1.62 -25.32 4.10 -33.52 1.79 -36.36

Programming 0.76 -33.65 5.40 -26.75 0.87 -42.74

SlideShow 3.19 -51.07 8.73 -40.50 2.78 -55.36

WebBrowsing 0.49 -42.58 7.13 -51.63 0.88 -54.09

BasketballScreen 0.88 -37.05 1.00 -38.29 1.27 -46.78

MissionControlClip2 1.36 -40.62 3.44 -39.25 1.56 -51.16

MissionControlClip3 0.66 -36.94 2.20 -32.25 1.01 -45.96

Robot 1.81 -49.78 1.19 0 1.81 -49.43

ChinaSpeed 0.29 -55.67 0.37 0 0.29 -55.94

EBURainFruits 0.17 -70.69 0.21 0 0.17 -70.69

Kimono1 0.69 -35.49 6.11 -43.62 1.07 -48.80

Average (TGM+M) 1.10 -37.27 4.88 -34.38 1.30 -46.12

Average (A+CC) 0.76 -58.71 0.59 0 0.76 -58.69

Average (ALL) 1.03 -41.86 3.96 -27.01 1.18 -48.81

Chapter 5 Determinations on Coding Structure by Convolutional Neural Network

 104

fast SCC prediction algorithms heavily relying on the limited number of hand-crafted

features or heuristic rules, the proposed DeepSCC automatically learns useful features

from the input. With extensive trainable parameters, DeepSCC is able to make direct

mode decision for Intra, IBC, and PLT rather than the simple CU type classification.

Experimental results show that the proposed DeepSCC provides an average

computational complexity reduction of 48.81% with a negligible increase in BDBR of

1.18%, and the computational overhead of DeepSCC is less than 4% of the total encoding

time.

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 105

Chapter 6 Determinations on Coding Structure

for HEVC-SCC Transcoding

6.1 Introduction

HEVC has dominated the market for many years and it leaves many legacy screen

content videos encoded by HEVC. Therefore, this chapter presents a fast HEVC to SCC

transcoder FHST that migrate the legacy screen content videos from HEVC to SCC to

improve the coding efficiency. FHST analyzes various features from 4 categories to early

terminate CU partitions and makes early mode decision. They are the features from the

HEVC decoder, static features, dynamic features, and spatial features. First, the CU depth

level collected from the HEVC decoder is utilized to early terminate the CU partition in

SCC. Second, a flexible encoding structure is proposed to make early mode decisions with

the help of various features. In this chapter, we start by presenting the data available from

HEVC decoder. We then proceed to present our novel fast transcoder FHST. Next, the

experimental results of the proposed algorithm are provided. Finally, the conclusion is

given for this chapter.

Parts of the contents of this chapter are extracted from our published work [97]:

⚫ Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Fast HEVC to SCC

transcoder by early CU partitioning termination and decision tree based flexible

mode decision for intra-frame coding,” IEEE Access, vol. 7, pp. 8773–8788, Jan.

2019.

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 106

6.2 Data Available from HEVC Decoder

When a HEVC encoder encodes a CU at the depth level of d, where 𝑑 ∈ {0,1,2,3}, it

calculates the residual block 𝑅𝑒𝑠 between the predicted CU, 𝐶𝑈 𝑟𝑒𝑑, and the original CU,

𝐶𝑈𝑂𝑟𝑖𝑔,

𝑅𝑒𝑠 = 𝐶𝑈𝑂𝑟𝑖𝑔 − 𝐶𝑈 𝑟𝑒𝑑 (6.1)

After transformation and quantization, the quantized transform coefficients C are

obtained

𝐶 = (𝐷𝑅𝑒𝑠𝐷) ⊗ 𝑆𝑓⊘𝑄 (6.2)

where D is the transformation matrix, 𝑆𝑓 is the forward scaling matrix, Q is the

quantization matrix, ⊗ is the element wise multiplication operator, and ⊘ is the element-

wise division operator. Finally, the HEVC encoder signals the quantized transform

coefficients C to represent the CU.

In the HEVC decoder side, the quantized transform coefficients C are obtained for

each CU by decoding the HEVC bitstream. After the corresponding inverse

transformation and dequantization processes, the reconstructed residual block 𝑅𝑒𝑠′ is

obtained as

𝑅𝑒𝑠′ = 𝐷 (𝐶 ⊗ Q⊗ 𝑆𝑖)𝐷 (6.3)

where 𝑆𝑖 is the inverse scaling matrix. Finally, a reconstructed CU, 𝐶𝑈 𝑒𝑐𝑜 , is represented

as

𝐶𝑈 𝑒𝑐𝑜 = 𝑅𝑒𝑠
′ + 𝐶𝑈 𝑟𝑒𝑑 (6.4)

To simplify the re-encoding process of SCC, the data from the HEVC decoder side

can be utilized, such as the optimal depth level d, transform coefficients C and the

reconstructed residual block 𝑅𝑒𝑠′.

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 107

6.3 Proposed FHST

To meet the challenge of computation-constrained applications, it is desired that the

features from both the HEVC decoder and the SCC encoder are collected to simplify the

re-encoding process. First, the features are utilized to early terminate the CTU partitions.

Second, the features are also used to skip unnecessary mode candidates in a CU.

6.3.1 Early CU Partitioning Termination

Although HEVC and SCC share the same CTU partitioning structure, the optimal CU

size decided by HEVC may change during the transcoding process, and an example is

shown in Figure 6.1. It is observed that due to the adoption of the new coding modes, SCC

allows inhomogeneous content to select larger CU sizes than HEVC. However, we also

notice that the most optimal CUs decided by HEVC do not continue partitioning in SCC.

Therefore, the CU partitioning process in SCC can be early terminated by utilizing the

decoder side information of HEVC.

To derive the early CU partitioning termination rule, we encoded and decoded 13

typical SCC test sequences [30] by HEVC reference software HM-16.12 [98] with QPs of

22, 27, 32, and 37 under AI configuration, and then the decoded sequences were re-encoded

by SCC reference software SCM-8.3 with the same QPs. Table 6.1 shows the average

 (a) (b)

Figure 6.1: The partitioning structure of a CTU encoded by (a) HEVC and (b) SCC.

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 108

percentages of the further partitioned CUs from HEVC to SCC, where 𝑑𝐻𝐸𝑉𝐶 and 𝑑𝑆𝐶𝐶

represent the CU depth level in HEVC and SCC, respectively. It is observed that for CUs

with 𝑑𝐻𝐸𝑉𝐶 of 1 or 2, they rarely continue partitioning in SCC. However, for CUs with

𝑑𝐻𝐸𝑉𝐶 of 0, 11.02% of them are partitioned to 𝑑𝑆𝐶𝐶 of 1. Based on this observation, we set

the early CU partitioning termination rule for different CU sizes adaptively by limiting the

maximum CU depth level 𝑑𝑆𝐶𝐶
𝑚𝑎𝑥 allowed to be checked as

𝑑𝑆𝐶𝐶
𝑚𝑎𝑥 = {

1, 𝑖𝑓 𝑑𝐻𝐸𝑉𝐶 = 0
𝑑𝐻𝐸𝑉𝐶 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (6.5)

Therefore, for CUs with 𝑑𝐻𝐸𝑉𝐶 of 1 or 2, further partitions are not allowed in SCC.

For CUs with 𝑑𝐻𝐸𝑉𝐶 of 0, FHST only allows them to be partitioned to 𝑑𝑆𝐶𝐶 of 1, and then

further partitions are terminated.

6.3.2 Flexible Mode Decision

We propose a flexible mode decision structure in our algorithm, where the decision of

each mode is considered separately. The objective of the flexible mode decision technique

is to design a decision model for each mode, so that it can assist the transcoder in making

the decision of checking a mode or, on the contrary, skipping a mode. Therefore, in the re-

encoding process, two classes are defined for a mode x, where x∈{Intra, IBCM&S,

IBCSearch, PLT}, i.e., checking the mode (𝜔𝑥) and skipping the mode (𝜔𝑥̅̅̅̅). By collecting

features from both the HEVC decoder and the SCC encoder, the objective can be solved as

a supervised classification task, and the model G is represented as

Table 6.1: Performance of the proposed DeepSCC for training sequences.

𝑑𝐻𝐸𝑉𝐶
 Partitioned to
𝑑𝑆𝐶𝐶 = 1 (%)

Partitioned to
𝑑𝑆𝐶𝐶 = 2 (%)

 Partitioned to
𝑑𝑆𝐶𝐶 = 3 (%)

0 11.02 0.91 0.23

1 4.83 0.25

2 3.25

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 109

𝐺(𝑓1, 𝑓2, 𝑓3, … , 𝑓) →{𝜔𝑥, 𝜔𝑥̅̅̅̅ } (6.6)

where 𝑓𝑖 represents the features used to generate the model and i=1,…,n. Therefore, the

decision of each mode is made adaptively by inserting a model G before checking a mode.

A. Algorithm Description

We implement a DT-based mode decision model right before checking a mode.

Therefore, some dynamic features showing the intermediate coding information, such as

the RD cost and IBC mode flag, can be employed to make mode decisions. Figure 6.2

shows the DT-based x mode decision model of our proposed algorithm, where x∈{Intra,

IBCM&S, IBCSearch, PLT}. It can be seen from Figure 6.2 that the x mode decision

model contains two parts, which are the x mode classifier and the Spatial-Info classifier.

The x mode classifier utilizes the features from the current CU to make the decision of a

mode x, including features from both the HEVC decoder side and the SCC encoder side,

and the class label is set to 𝜔𝑥 if the outcome of the x mode classifier is 1. Besides, we

Figure 6.2: DT-based x mode decision model.

𝑑𝑆𝐶𝐶 = 𝑑𝑆𝐶𝐶
𝑚𝑎𝑥?

x mode classifier

Spatial-Info classifier

Decision voting for x mode

Yes

No

Incoming CU

Next mode decision model

x mode decision model

No

Yes

Label=𝜔𝑥?

x mode checking

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 110

find that the mode decision accuracy for CUs arrived at their last depth levels, i.e., 𝑑𝑆𝐶𝐶
𝑚𝑎𝑥,

is very important to reduce the RD performance loss. The reason is that if the optimal

mode is skipped for a large CU, it can still find relatively good modes when it continues

partitioning and arrives at its last depth level. To achieve a good trade-off between the

computational complexity and coding efficiency, we additionally train a set of Spatial-

Info classifiers for CUs arrived at their last depth levels. We define CUs coded by Intra

mode as NIBs and CUs coded by IBC or PLT mode as SCBs. The Spatial-Info classifier

is trained by utilizing the spatial features to decide whether the current CU is a NIB or a

SCB. If it is a SCB, the class label is set to 𝜔𝑥 for x∈{IBCM&S, IBCSearch, PLT}.

Otherwise, the class label is set to 𝜔𝑥 for x∈{Intra}. After going through the classifiers, a

decision voting strategy is adopted for making decisions. The label of the x mode decision

model is set to 𝜔𝑥 if at least one classifier outputs 𝜔𝑥. More discussions on the structure

of the x mode decision model are provided in Section 6.4.3.

B. Feature Selection

Features from the HEVC decoder:

𝑓1: The average CU depth level of HEVC 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

, which is represented as

𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

=
∑ 𝐴𝑟𝑒𝑎(𝑑𝐻𝐸𝑉𝐶)×𝑑𝐻𝐸𝑉𝐶𝑑𝐻𝐸𝑉𝐶

2N×2N
 (6.7)

where 𝐴𝑟𝑒𝑎(𝑑𝐻𝐸𝑉𝐶) represents the area with 𝑑𝐻𝐸𝑉𝐶 in a CU, and 2N×2N represents the

size of the CU. In HEVC, screen content is encoded by small CUs due to their

inhomogeneity. Therefore, CUs with larger values of 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 are more likely to be SCBs.

To verify this claim, 10000 16×16 NIBs and 10000 16×16 SCBs were randomly selected

from the training set, and the distributions of NIBs and SCBs over 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 are given in

Figure 6.3(a). Since CUs with 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 of 0 and 1 are usually encoded as 64×64 or 32×32

CUs in SCC, Figure 6.3(a) only shows the 16×16 CU type distributions over 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 of 2

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 111

and 3. It is observed that many CUs with 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 of 2 are NIBs while most CUs with

𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 of 3 are SCBs. Besides, the CU depth level distribution of NIBs in SCC over

𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 is investigated by randomly selecting 10000 NIBs at each depth level, and the

results are shown in Figure 6.3(b), where NIB0, NIB1, NIB2 and NIB3 denote the NIBs

encoded at the depth levels of 0, 1, 2, and 3 in SCC, respectively. It is observed that that

NIBs from HEVC are very likely to be encoded at the same depth levels in SCC.

Therefore, Intra mode at other depth levels is very likely to be skipped for NIBs.

𝑓2: The AC coefficient energy 𝐸𝐴𝐶 of the quantized transform coefficients C, which

is defined as the sum of square of the AC coefficients

𝐸𝐴𝐶 = ∑ 𝑐𝑖,𝑗
2

𝑐𝑖,𝑗∈𝐶, 𝑐𝑖,𝑗≠𝑐0,0
 (6.8)

where 𝑐𝑖,𝑗 is a quantized transform coefficient with the row index of 𝑖 and column index of

𝑗 in C, and 𝑐0,0 is the DC coefficient. SCBs have many high frequency components and

they contain higher values of 𝐸𝐴𝐶 than NIBs. Besides, we also notice that while many IBC

coded CUs are smooth, PLT coded CUs are usually more complex, and they have even

higher values of 𝐸𝐴𝐶 than IBC coded CUs. Statistics that support this claim are shown in

Figure 6.3(c), where 10000 Intra, 10000 IBC and 10000 PLT coded 16×16 CUs were

(a) (b) (c)

Figure 6.3: (a) NIB and SCB distribution over 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 for 16×16 CU size, (b) Optimal CU depth

level distribution of NIBs over 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

, and (c) Mode distribution over 𝐸𝐴𝐶 .

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 112

randomly selected from the training set. Therefore, 𝐸𝐴𝐶 provides a chance to differentiate

PLT mode from IBC mode.

𝑓3: The number of zeros in the residual block 𝑁𝑍 , which is also adopted in the fast

transcoding algorithm [72], and it is defined as

𝑁𝑍 = ∑ 𝛿(𝑟𝑖,𝑗, 0)𝑟𝑖,𝑗∈ 𝑒𝑠
′ (6.9)

where 𝑟𝑖,𝑗 is an element with row index of 𝑖 and column index of 𝑗 in the reconstructed

residual block 𝑅𝑒𝑠′, and Kronecker delta 𝛿(𝑟𝑖,𝑗 , 0) is represented as

𝛿(𝑎, 𝑏) = {
0, if 𝑎 𝑏
1, if 𝑎 = 𝑏

 (6.10)

Since SCBs have many uniform background pixels, they tend to have a larger value of

𝑁𝑍 .

Static features:

𝑓4–𝑓7: High gradient pixel number 𝐻𝐺𝑁0, 𝐻𝐺𝑁1, 𝐻𝐺𝑁2, 𝐻𝐺𝑁3. The high gradient

pixel is utilized to detect sharp edges in a CU, as in Equation (3.1). To detect edges with

different sharpness in the proposed algorithm, 4 different high gradient pixel numbers,

𝐻𝐺𝑁0, 𝐻𝐺𝑁1, 𝐻𝐺𝑁2, and 𝐻𝐺𝑁3, are calculated by counting high gradient pixels with

𝑇𝐻𝑆 of 8, 16, 32 and 64, respectively. As analyzed in Chapter 4, SCBs have a larger high

gradient pixel number because they have many sharp edges. Besides, because PLT coded

CUs are usually more complex, they also have a larger high gradient pixel number than

IBC coded CUs.

𝑓8: Distinct color number 𝑁𝐷𝐶, which is also used in fast SCC encoding algorithms

[54], [55] and the fast transcoding algorithm [72]. It is calculated by counting the pixels

with different luminance values. Since SCBs contain limited colors, they usually have a

smaller value of 𝑁𝐷𝐶 than NIBs.

Dynamic features:

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 113

𝑓9–𝑓10: The RD cost and IBC flag of the best mode, 𝐽𝑚𝑜𝑑𝑒 and 𝐹𝑙𝑎𝑔𝐼𝐵𝐶, respectively,

before checking the target mode in the current CU. As analyzed in Chapter 4, they reflect

the intermediate coding information of a CU.

Spatial features:

𝑓11: The neighboring SCB number, SCBNum, by counting the top and left neighboring

CUs. SCBNum is denoted by

𝑆𝐶𝐵𝑁𝑢𝑚 = 𝛿(𝑚 , 𝐼𝐵𝐶) + 𝛿(𝑚 , 𝑃𝐿𝑇) + 𝛿(𝑚 , 𝐼𝐵𝐶) + 𝛿(𝑚 , 𝑃𝐿𝑇) (6.11)

where 𝑚 and 𝑚 represent the optimal modes of the left and top CUs of the current CU,

respectively. The current CU is more likely to be a SCB if it has SCB neighbors, and the

evidence is shown in Figure 6.4(a), where 10000 16×16 NIBs and 10000 16×16 SCBs were

randomly selected from the training set.

𝑓12: The same background sub-CUs number, BGCUNum, by counting its four sub-CUs

which have the same background color as the current CU. BGCUNum is defined as

𝐵𝐺𝐶𝑈𝑁𝑢𝑚 = ∑ 𝛿(𝑌𝐵𝐶,𝑑 , 𝑌𝐵𝐶,𝑑+1
𝑖)3

𝑖=0 (6.12)

where 𝑌𝐵𝐶,𝑑 and 𝑌𝐵𝐶,𝑑+1
𝑖 are the background colors of the current CU at the depth level of d

and its i-th sub-CU at the depth level of d + 1, respectively. We define the background color

in a CU/sub-CU as the luminance value with the highest occurrence frequency within the

CU/sub-CU. If more sub-CUs have the same background color as the current CU, it is more

(a) (b) (c)

Figure 6.4: NIB and SCB distribution over (a) SCBNum, (b) BGCUNum and (c) 𝐻𝐺𝑆3.

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 114

likely to be a SCB. To support our claim, 10000 16×16 NIBs and 10000 16×16 SCBs were

randomly selected, and their distributions over BGCUNum are shown in Figure 6.4(b).

𝑓13– 𝑓16: The high gradient pixel strength, 𝐻𝐺𝑆0, 𝐻𝐺𝑆1, 𝐻𝐺𝑆2 and 𝐻𝐺𝑆3, which are

calculated by considering if the neighboring CUs from the left, right, top and bottom

contain high gradient pixels with 𝑇𝐻𝑆 of 8, 16, 32 and 64, respectively. Let us call a CU

that contains high gradient pixels as a high gradient CU (HGCU). It is observed that if

the current CU is a HGCU, the more neighboring HGCUs it has, the more likely it is a

SCB. Otherwise, if the current CU is a non-HGCU, the more neighboring non-HGCUs it

has, the more likely it is a NIB. We set the initial value of 𝐻𝐺𝑆𝑖 (𝑖 ∈{0,1,2,3}) to 0. If the

current CU is a HGCU, 𝐻𝐺𝑆𝑖 is set to a non-negative value, and its absolute value is

calculated by counting the number of HGCUs from the left, right, top and bottom

neighboring CUs. Otherwise, if the current CU is a Non-HGCU, 𝐻𝐺𝑆𝑖 is set to a non-

positive value, and its absolute value is calculated by counting the number of Non-

HGCUs from the left, right, top and bottom neighboring CUs. Therefore, as the value of

𝐻𝐺𝑆𝑖 goes from small to large, the probability of the current CU being a SCB is increased,

and statistics that give the evidence in this observation is shown in Figure 6.4(c), where

10000 16×16 NIBs and 10000 16×16 SCBs were randomly selected.

C. Training Implementation

As in Chapter 4, we select DTs as the classification model. In our case that decides

whether a mode is checked or not, a CU with several features is input to the DT. Each

non-leaf node runs a test on a feature, and each branch denotes an outcome of the test.

After going through a series of tests, the CU comes to a leaf node, and a class label of 𝜔𝑥

or 𝜔𝑥̅̅̅̅ is assigned to it. Specifically, the class label is decided as the label of majority

training samples in a leaf node, and the decision accuracy of a leaf node is denoted by the

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 115

percentage of correctly classified samples in it. The training data for building DTs are

selected from 5 sequences, which are “Console”, “Desktop”, “Map”,

“MissionControlClip2”, and “Robot”. To generate the training data, 10 frames were

extracted from each sequence with an equal time interval. Those frames were firstly

encoded by HM-16.12 with QPs of 22, 27, 32 and 37, and then the decoded frames were

re-encoded by SCM-8.3 with the same QPs. When training the x mode classifier, the

positive data come from CUs encoded by x mode, and the negative data are from CUs

encoded by other modes. Therefore, the class label of x mode is 𝜔𝑥 if the outcome is 1.

Otherwise, the class label is 𝜔𝑥̅̅̅̅ . To train the Spatial-Info classifier, the positive data are

collected from SCBs while the negative data are collected from NIBs. Therefore, for

SCBs, i.e., x∈{IBCM&S, IBCSearch, PLT}, the class label is set to 𝜔𝑥 if the outcome is

1. For NIB, i.e., x∈{Intra}, the class label is set to 𝜔𝑥 if the outcome is 0. To avoid the

data imbalance problem [81] caused by more training samples in one class than the other,

we set the numbers of positive and negative training data to be equal. To balance the

coding efficiency and computational complexity, we set two confidence thresholds 𝛼 and

β in the Spatial-Info classifier and x mode classifier, respectively. If the accuracy of a

decision made by the Spatial-Info classifier or x mode classifier is lower than the value

of 𝛼 or β, the class label for mode x is set to 𝜔𝑥 regardless of its outcome. As SCC inherits

the CTU hierarchical partitioning structure from HEVC, which supports 4 different CU

sizes from 8×8 to 64×64, the classifiers for each mode were trained for CUs with different

sizes, respectively.

As a summary, the flowchart of our proposed algorithm is shown in Figure 6.5,

where the DT-based x mode decision model is shown in Figure 6.2. A CU goes through

a mode decision model before checking a mode. If the label given by the decision model

is 𝜔𝑥, the mode x would be checked. Otherwise, it would be skipped. Besides, when the

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 116

CU partitioning termination rule described in Equation (6.5) is satisfied, the encoding

process of this CU is finished.

6.4 Experimental Results and Discussions

Since there are many legacy screen content videos encoded by HEVC in YUV4:2:0

format, we conducted various experiments to evaluate the transcoding performance of

YUV4:2:0 screen content videos. We implemented our proposed FHST in HM-16.12 and

HM-16.12+SCM-8.3, and all experiments were conducted with QPs of 22, 27, 32 and 37

under AI configuration and CTC [30]. All test sequences were firstly encoded by HM-

16.12 with QPs of 22, 27, 32 and 37, and then the decoded frames were re-encoded by

the proposed FHST with the same QPs. The coding efficiency and re-encoding time of

the proposed FHST were compared with the conventional brute-force transcoder CBFT,

and they are measured by BDBR and re-encoding time increase, ∆Time, in percentage

Figure 6.5: Flowchart of the proposed FHST.

CU start

IBCPredictor

No

Yes

CU end

Go to next depth level

Early CU partitioning

termination in (6.5)?

𝑑𝑆𝐶𝐶 = 3?

Yes

Yes

No

DT-based Intra mode

decision model

Label=𝜔𝐼 𝑟𝑎?

Intra mode

DT-based IBCSearch

decision model

Label 𝜔𝐼𝐵𝐶𝑆𝑒𝑎𝑟𝑐ℎ?

IBCSearch

DT-based PLT mode

decision model

Label=𝜔 ?

PLT mode

DT-based IBCM&S

decision model

Label=𝜔𝐼𝐵𝐶 𝑆?

IBCM&S

No

No

No No

Yes

YesYes
SCC encoding process

Additional procedure of

the proposed algorithm

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 117

(%). It is noted that BDBR is calculated by comparing the HEVC decoded video and the

final transcoded video.

6.4.1 Confidence Threshold Determination

To achieve a good trade-off between the coding efficiency and computational

complexity, two confidence thresholds 𝛼 and 𝛽 were set in the Spatial-Info classifier and x

mode classifier, respectively. If the accuracy of a decision made by the Spatial-Info

classifier or x mode classifier is smaller than the value of 𝛼 or β, the class label for mode x

is set to 𝜔𝑥 regardless of its outcome. In this sub-section, the performance of our proposed

FHST is investigated by adopting a greedy searching strategy. The default values of 𝛼 and

β are always 0.5 in a DT. First, the value of 𝛼 was fine-tuned with β = 0.5. Second, the

value of β was fine-tuned with 𝛼 set to the value providing the best performance. The

performances with different values of 𝛼 and β are shown in Table 6.2. It is observed that

FHST with the default values of confidence thresholds (𝛼 = 0.5, β = 0.5) provides 53.19%

re-encoding time reduction with BDBR increased by 1.89%. By adjusting the values of 𝛼

Table 6.2: Performance of the proposed FHST for YUV 4:2:0 sequences with different threshold

values.

Sequences

Tuning of α (β=0.5) Tuning of β (α=0.75)

α=0.50 α=0.75 α=0.95 β=0.55 β=0.60 β=0.65

BDBR

(%)

∆Time

(%)

BDBR

(%)

∆Time

(%)

BDBR

(%)

∆Time

(%)

BDBR

(%)

∆Time

(%)

BDBR

(%)

∆Time

(%)

BDBR

(%)

∆Time

(%)

Console (T) 3.39 -40.86 2.89 -39.57 2.51 -33.33 2.83 -39.26 2.82 -39.01 2.57 -33.54

Desktop (T) 1.18 -40.67 1.15 -40.38 0.99 -32.14 1.12 -40.27 1.12 -39.21 0.55 -33.54

Map (T) 1.29 -59.36 0.11 -57.02 0.17 -38.11 0.16 -54.92 0.16 -54.81 0.03 -54.58

MissionControlClip2 (T) 1.96 -55.88 1.11 -53.46 0.88 -43.40 1.15 -52.72 0.99 -52.17 0.89 -49.10

Robot (T) 1.94 -78.58 2.00 -74.87 2.01 -53.17 2.04 -72.31 2.05 -72.22 2.09 -73.85

BasketballScreen (NT) 2.06 -55.17 1.15 -52.95 0.77 -39.80 1.12 -51.48 1.02 -51.07 0.80 -48.44

ChineseEditing (NT) 1.11 -37.68 0.80 -36.16 0.57 -29.01 0.77 -35.68 0.75 -35.05 0.45 -29.50

ChinaSpeed (NT) 1.36 -63.28 0.99 -60.02 0.86 -46.05 0.97 -58.55 0.97 -58.54 0.93 -57.19

FlyingGraphics (NT) 2.74 -41.28 2.08 -40.13 1.28 -31.24 1.95 -39.18 1.81 -38.52 1.49 -32.24

MissionControlClip3 (NT) 2.33 -50.53 1.70 -48.81 1.42 -37.29 1.69 -47.97 1.60 -46.97 1.31 -43.07

Programming (NT) 1.70 -47.30 0.88 -45.88 0.60 -37.50 0.87 -45.04 0.81 -44.62 0.67 -40.39

SlideShow (NT) 1.50 -71.22 0.71 -68.71 0.70 -59.47 0.66 -67.00 0.60 -66.92 0.63 -66.16

WebBrowsing (NT) 1.92 -49.59 1.62 -48.15 1.42 -39.32 1.87 -47.49 1.74 -47.02 0.98 -42.32

Average (T) 1.95 -55.07 1.45 -53.06 1.31 -40.03 1.46 -51.90 1.43 -51.48 1.23 -48.92

Average (NT) 1.84 -52.00 1.24 -50.10 0.95 -39.96 1.24 -49.05 1.16 -48.59 0.91 -44.91

Average (ALL) 1.89 -53.19 1.32 -51.24 1.09 -39.99 1.32 -50.14 1.26 -49.70 1.03 -46.46

T: Sequence used for training. NT: Sequence not used for training.

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 118

and β (𝛼 = 0.75, β = 0.65), BDBR increment is reduced to 1.03%, and the re-encoding time

is reduced by 46.46%.

Besides, it is also observed from Table 6.2 that the proposed FHST provides similar

performance for sequences used for training (T) and sequences not used for training (NT).

For example, with 𝛼 = 0.75 and β = 0.5, the average re-encoding time reductions of T and

NT sequences are 53.06 % and 50.10%, while the BDBR of T and NT sequences are

increased by 1.45% and 1.24%, respectively. It proves that the training process of our

proposed FHST does not run into overfitting, and it can be well applied to other screen

content sequences. In the following sub-sections, we set 𝛼 to 0.75 and β to 0.5 for further

discussions, which provides 51.24% encoding time reduction with 1.32% increase in

BDBR on average.

6.4.2 Performance Comparison of YUV 4:2:0 Format

To evaluate the efficiency of FHST, we compared it with CBFT in which the original

SCC encoder of CBFT in Figure 1.6 is replaced by the fast SCC encoding algorithms in

[51], [54], [55]. It is noted that the work in [72], which is the only existing fast HEVC to

SCC transcoding algorithm, is only worked for sequences in YUV 4:4:4 format, and the

comparison will be shown later in Section 6.4.6. Table 6.3 shows the performance

comparisons based on HM-16.12 and HM-16.12+SCM-8.3. Compared with the fast SCC

encoding algorithms in [51], [54], [55], the proposed FHST additionally utilizes features

from the HEVC decoder to improve prediction accuracy, and it is observed that the

performance of our proposed FHST outperforms the fast SCC encoding algorithms [51],

[54], [55]. On average, the proposed FHST provides 51.24% re-encoding time reduction

with a negligible increase in BDBR of 1.32%. Comparatively, Zhang et al.’s algorithm [51],

Lei et al.’s algorithm [54] and Yang et al.’s algorithm [55] all bring very high increase in

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 119

BDBR, where 27.15%, 25.34% and 39.49% re-encoding time is saved with 2.30%, 2.91%

and 3.87% increase in BDBR, respectively. The fast SCC encoding algorithms [51], [54],

[55] only utilize features from the SCC encoder, and they heavily rely on the assumption

that the computer-generated content is noiseless. However, this assumption does not hold

for decoded videos due to the lossy encoding and decoding of HEVC. Therefore, the fast

SCC encoding algorithms [51], [54], [55] provide less improvement.

6.4.3 Discussion on the Structure of x Mode Decision Model

Apart from the x mode decision model in Figure 6.2, there are other possible

structures, such as training a single DT by utilizing all features (FHST2) and applying the

Spatial-Info classifier to all depth levels (FHST3). For FHST2, all features in Section

6.3.2 are used to train the x mode classifier without the Spatial-Info classifier. For FHST3,

the condition for checking the Spatial-Info classifier in Figure 6.2 is removed. However,

it is found that they fail to achieve a good tread-off between the re-encoding time and RD

performance. The performances of FHST2 and FHST3 are shown in Table 6.4 with the

Table 6.3: Performance comparison of the proposed FHST with different fast SCC encoding

algorithms for YUV 4:2:0 sequences.

Sequences
CBFT + Zhang [51] CBFT + Lei [54] CBFT + Yang [55] Proposed FHST

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

Console (T) 2.61 -24.29 2.25 -18.97 5.43 -38.62 2.89 -39.57

Desktop (T) 1.60 -27.90 1.32 -19.59 4.10 -41.38 1.15 -40.38

Map (T) 1.58 -27.64 4.05 -21.45 5.13 -32.55 0.11 -57.02

MissionControlClip2 (T) 2.19 -28.03 2.71 -28.18 2.69 -40.41 1.11 -53.46

Robot (T) 11.37 -15.22 12.85 -34.15 4.90 -36.15 2.00 -74.87

BasketballScreen (NT) 1.69 -29.43 1.41 -24.06 3.17 -37.80 1.15 -52.95

ChineseEditing (NT) 0.52 -31.19 0.59 -17.52 3.32 -35.54 0.80 -36.16

ChinaSpeed (NT) 0.82 -22.00 0.47 -27.31 1.32 -41.14 0.99 -60.02

FlyingGraphics (NT) 0.41 -12.75 1.10 -16.97 3.68 -36.31 2.08 -40.13

MissionControlClip3 (NT) 1.57 -26.09 1.78 -22.26 2.95 -37.19 1.70 -48.81

Programming (NT) 1.29 -27.91 1.57 -23.32 4.00 -38.57 0.88 -45.88

SlideShow (NT) 1.89 -43.19 4.88 -51.60 4.05 -57.34 0.71 -68.71

WebBrowsing (NT) 2.35 -37.28 2.85 -24.01 5.58 -40.34 1.62 -48.15

Average (T) 3.87 -24.62 4.64 -24.47 4.45 -37.82 1.45 -50.06

Average (NT) 1.31 -28.73 1.83 -25.88 3.50 -40.53 1.24 -52.10

Average (ALL) 2.30 -27.15 2.91 -25.34 3.87 -39.49 1.32 -51.24

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 120

default values of confidence thresholds (𝛼 = 0.5, β = 0.5). It is observed that FHST2

brings a very high increase in BDBR of 5.99%. The reason is that FHST2 is strongly

affected by error propagation due to the adoption of spatial features into the single DT.

For example, the DT would directly skip IBC and PLT modes for the current CUs if the

neighboring CUs are NIBs. Comparatively, FHST avoids the error propagation by

treating the spatial features as additional features, and they are utilized to train another

DT. On the other hand, FHST3 needs to check more mode candidates by applying the

Spatial-Info classifiers to all depth levels. Therefore, it provides a limited encoding time

reduction of 39.48%. Comparatively, the proposed FHST achieves a good trade-off

between the encoding time and RD performance by applying the Spatial-Info classifier to

the last depth level. With the default values of confidence thresholds, FHST provides

53.19% re-encoding time reduction with BDBR increased by 1.89%. By setting 𝛼 to 0.75

and β to 0.5, FHST has an even smaller increase of BDBR than FHST3, where 51.24%

re-encoding time is reduced with BDBR increased by 1.32%. Therefore, we adopt it as

the optimal structure to the x mode decision model.

Table 6.4: Performance of the proposed algorithm with other structures.

Sequences
FHST2 FHST3

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

Console (T) 8.90 -50.22 3.00 -25.73

Desktop (T) 4.95 -46.04 0.50 -24.01

Map (T) 5.14 -71.20 1.38 -47.84

MissionControlClip2 (T) 6.62 -61.22 1.68 -44.98

Robot (T) 3.95 -78.73 2.30 -67.94

BasketballScreen (NT) 8.12 -58.85 1.71 -41.86

ChineseEditing (NT) 3.71 -43.45 0.64 -21.85

ChinaSpeed (NT) 6.00 -68.85 0.83 -52.27

FlyingGraphics (NT) 8.97 -48.04 2.18 -22.73

MissionControlClip3 (NT) 7.39 -53.60 1.99 -35.34

Programming (NT) 4.68 -55.15 1.49 -32.57

SlideShow (NT) 6.61 -74.33 1.40 -63.47

WebBrowsing (NT) 2.82 -50.03 1.18 -32.69

Average 5.99 -58.43 1.56 -39.48

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 121

6.4.4 Performance of the Individual Technique

In this sub-section, the performances of the early CU partitioning termination

technique and the flexible mode decision technique are evaluated separately, and the

results are shown in Table 6.5. It is observed that the proposed flexible mode decision

technique achieves 45.11% re-encoding time reduction with BDBR increased by 1.28%

on average. Besides, the early CU partitioning termination technique provides 17.31% re-

encoding time reduction while BDBR is increased by 0.60% on average. More

specifically, it provides the largest re-encoding time reduction of 46.65% for “SlideShow”.

The reason is that “SlideShow” contains many smooth areas, which are encoded with

many large CUs by HEVC. Therefore, with the help of the decoder side information of

HEVC, many CU partitions in SCC are early terminated, and it leads to large re-encoding

time reduction. Furthermore, to understand the re-encoding time reduction of our

proposed FHST in low and high bit rate cases, we compared the re-encoding time

reduction with different QPs. Figure 6.6 shows the results of 4 sequences including

“BasketballScreen”, “ChinaSpeed”, “Desktop” and “WebBrowsing”, and similar results

Table 6.5: Performance of each proposed technique for YUV 4:2:0 sequences.

Sequences

Early CU partitioning

termination
Flexible mode decision

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

Console (T) 1.82 -9.06 2.32 -37.20

Desktop (T) 0.25 -5.95 1.09 -39.03

Map (T) 0.35 -14.03 -0.09 -52.90

MissionControlClip2 (T) 0.37 -23.11 1.65 -44.50

Robot (T) 2.55 -34.82 1.20 -62.00

BasketballScreen (NT) 0.15 -16.11 1.62 -48.28

ChineseEditing (NT) 0.13 -6.21 0.87 -34.52

ChinaSpeed (NT) 0.23 -24.12 0.94 -50.99

FlyingGraphics (NT) 0.31 -5.65 2.08 -38.93

MissionControlClip3 (NT) 0.83 -13.26 1.65 -44.29

Programming (NT) 0.18 -14.25 0.89 -41.27

SlideShow (NT) 0.30 -46.65 0.73 -47.42

WebBrowsing (NT) 0.35 -11.79 1.74 -45.13

Average 0.60 -17.31 1.28 -45.11

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 122

are observed for other sequences. The re-encoding time reductions provided by the early

CU partitioning termination technique, flexible mode decision technique, and overall

algorithm are shown in Figure 6.6(a), (b) and (c), respectively. It is observed in Figure

6.6(a) that the early CU partitioning termination technique provides more re-encoding

time reduction as QP increases. The reason is that many CUs are encoded with large sizes

by HEVC with a large value of QP, and more CUs are early terminated in SCC by using

the early CU partitioning termination technique. On the contrary, the re-encoding time

reduction provided by the flexible mode decision technique decreases as QP increases.

The reason is that static features contain more noise as QP increases, which leads to a

decrease of the decision accuracy. Although the re-encoding reduction provided by each

sub-algorithm is different as QP changes, it is observed in Figure 6.6(c) that the re-

encoding reduction of the overall algorithm varies little across different values of QP.

Therefore, our proposed FHST has stable performance as the bit rate varies.

Another way to evaluate the proposed FHST is to investigate the hit rates of the

proposed techniques compared with the CBFT transcoder. In this sub-section, the hit rates

of the early CU partitioning termination and flexible mode decision techniques are given

by calculating the percentages of the areas encoded by the same mode as in CBFT, and

the results are shown in Table 6.6. It is observed that the average hit rates of the proposed

early CU partitioning termination and flexible mode decision techniques are all above

 (a) (b) (c)

Figure 6.6: Re-encoding time reduction of (a) early CU partitioning termination technique, (b)

flexible mode decision technique, and (c) the proposed overall algorithm over 4 QPs.

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 123

90%. More specifically, the hit rate of the early CU partitioning termination technique

varies from 92.72% to 99.06%, while the hit rate of the flexible mode decision technique

varies from 85.96% to 96.23% for different sequences with different QPs. Besides, the

average hit rate of the early CU partitioning termination technique varies little under

different QPs, while the average hit rate of the flexible mode decision technique is

increased from 90.97% to 93.17% as QP gets smaller. It is due to the fact that the decoded

HEVC videos contain less noise as QP gets smaller, and the static features utilized in our

proposed mode decision models can describe the CU content characteristics more

precisely.

Since the flexible mode decision technique contributes significantly to our proposed

FHST, the mode decision of FHST is further studied. The decision of each mode is

visualized, and it is compared with the mode decision made by CBFT. Figure 6.7 and

Figure 6.8 show the mode decision of a region in “ChinaSpeed” and a region in

“Programming”, respectively, at the depth level of 2 and QP of 22. Figure 6.7(a) and

Figure 6.8(a) show the optimal mode decided by CBFT, where Intra, IBC and PLT modes

are denoted by blue, purple and yellow blocks, respectively. It should be noted that for

CUs without any denoted color, they are not encoded at the depth level of 2. Figure

Table 6.6: Hit rates of the proposed techniques for YUV 4:2:0 sequences.

Sequences
Early CU partitioning termination (%) Flexible mode decision (%)

QP22 QP27 QP32 QP37 QP22 QP27 QP32 QP37

Console (T) 95.78 93.67 92.72 96.30 91.27 90.43 87.97 88.81

Desktop (T) 98.03 98.25 98.40 97.78 92.90 91.71 88.37 85.96

Map (T) 98.65 98.62 98.10 98.02 94.40 95.00 94.79 94.45

MissionControlClip2 (T) 97.63 97.69 97.96 98.18 92.11 90.88 92.91 93.85

Robot (T) 97.46 97.32 97.64 97.84 95.89 94.74 94.64 93.71

BasketballScreen (NT) 97.49 98.06 98.08 98.00 92.90 91.54 90.38 90.51

ChineseEditing (NT) 98.09 98.34 98.50 98.54 91.12 90.81 90.91 90.50

ChinaSpeed (NT) 99.06 94.44 94.75 94.71 94.71 92.90 91.30 89.44

FlyingGraphics (NT) 98.50 98.52 98.28 97.20 92.16 90.77 89.03 88.87

MissionControlClip3 (NT) 98.05 98.14 98.27 98.19 91.92 91.97 91.73 91.39

Programming (NT) 97.50 97.83 98.15 97.84 93.58 92.84 91.79 91.12

SlideShow (NT) 98.90 98.91 99.06 99.04 95.55 95.81 95.98 96.23

WebBrowsing (NT) 98.03 97.78 98.50 98.46 92.81 92.07 88.12 87.81

Average (T) 97.51 97.11 96.96 97.62 93.31 92.55 91.74 91.36

Average (NT) 98.20 97.75 97.95 97.75 93.09 92.33 91.16 90.74

Average (ALL) 97.94 97.51 97.57 97.70 93.17 92.42 91.37 90.97

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 124

6.7(b)–(d) and Figure 6.8(b)–(d) show the Intra mode skipped CUs, IBC mode skipped

CUs, PLT mode skipped CUs decided by our proposed flexible mode decision technique,

 (a) (b)

 (c) (d)

Figure 6.7: Mode decisions of a region in “ChinaSpeed” with the depth level of 2 and QP of 22.

(a) Mode decision of CBFT, where Intra, IBC and PLT modes are denoted by blue, purple and

yellow blocks. (b) Intra mode skipped CUs, (c) IBC mode skippped CUs, (d) PLT mode skipped

CUs decided by our proposed FHST, where CUs with incorrectly and correctly skipped mode are

denoted by red shaded blocks and green shaded blocks, respectively.

 (a) (b)

 (c) (d)

Figure 6.8: Mode decisions of a region in “Programming” with the depth level of 2 and QP of 22.

(a) Mode decision of CBFT, where Intra, IBC and PLT modes are denoted by blue, purple and

yellow blocks. (b) Intra mode skipped CUs, (c) IBC mode skippped CUs, (d) PLT mode skipped

CUs decided by our proposed FHST, where CUs with incorrectly and correctly skipped mode are

denoted by red shaded blocks and green shaded blocks, respectively.

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 125

where CUs with incorrectly and correctly skipped modes are denoted by red shaded

blocks and green shaded blocks, respectively. It is observed in Figure 6.7(b) that Intra

mode is skipped for many NIBs, because 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 of these CUs are not equal to the current

depth level in SCC, as analyzed in Section 6.3.2. Besides, IBC mode and PLT mode are

skipped for many CUs as shown in Figure 6.7(c) and (d). However, almost all SCBs are

well detected and decided to check PLT mode by the proposed FHST. It is also noted that

some smooth CUs need to check all modes, as shown in Figure 6.7(b)–(d). The reason is

that those smooth CUs may select any mode in the training frames so that it is difficult to

make flexible mode decisions. When compared with the mode decisions made by CBFT,

only 4 CUs are incorrectly skipped, while the remaining 106 CUs are correctly skipped

and then encoded by the optimal modes correctly.

For the region containing many SCBs in “Programming”, it is observed in Figure

6.8(b) that almost all SCBs are well detected and Intra mode is skipped for them. Besides,

it is observed in Figure 6.8(c) and (d) that many SCBs are decided to check one mode

either from IBC or PLT mode, so that the re-encoding time is further reduced when

compared with the fast mode decision algorithms [54], [55], [72] that only perform CU

type classification. When compared with the mode decisions made by CBFT in Figure

6.8(a), only 3 CUs are incorrectly skipped, while the remaining 91 CUs are encoded by

their optimal modes correctly. Therefore, many redundant mode candidates are skipped

by the proposed FHST, while the optimal modes are well kept.

6.4.5 Discussion on the Feature Importance

Our proposed FHST utilizes features from 4 categories to reduce the re-encoding

time of SCC, which are features from the HEVC decoder, static features, dynamic

features, and spatial features. In this sub-section, we discuss the importance of each

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 126

feature category by removing it from our proposed FHST firstly and then observing the

performance improvement when it is added back. In general, better performance is

denoted by larger re-encoding time reduction and smaller BDBR increase. Therefore, we

adopt a similar performance factor, PFactor, as in [99] to denote the coding performance

𝑃𝐹𝑎𝑐𝑡𝑜𝑟 = −
∆Time

BDBR
. (6.13)

A larger value of 𝑃𝐹𝑎𝑐𝑡𝑜𝑟 represents better performance. Then based on PFactor, we

calculate the importance factor, IFactor, of each feature category by

𝐼𝐹𝑎𝑐𝑡𝑜𝑟 =
 𝐹𝑎𝑐 𝑜𝑟𝐹𝐴− 𝐹𝑎𝑐 𝑜𝑟𝐹𝑅

 𝐹𝑎𝑐 𝑜𝑟𝐹𝑅
 (6.14)

where 𝑃𝐹𝑎𝑐𝑡𝑜𝑟𝐹 and 𝑃𝐹𝑎𝑐𝑡𝑜𝑟𝐹𝐴 are the performance factors of feature removed and

feature added back transcoders, respectively. Table 6.7 presents the results of the

proposed FHST when either one category of features is removed. It should be noted that

removing spatial features means disabling the Spatial-Info classifier in Table 6.7. It is

observed that all feature categories are helpful for improving coding performance, and

the transcoder with all features implemented has the best performance with PFactor of

38.82. For the transcoder without spatial features, decoder features, dynamic features and

Table 6.7: Performance of the proposed transcoder for YUV 4:2:0 sequences with different

feature combination.

Sequences

No spatial features No decoder features
No dynamic

features
No static features All features

BDBR

(%)

∆Time

(%)

BDBR

(%)

∆Time

(%)

BDBR

(%)

∆Time

(%)

BDBR

(%)

∆Time

(%)

BDBR

(%)

∆Time

(%)

Console (T) 7.64 -47.86 2.18 -36.30 3.57 -38.49 6.22 -47.88 2.89 -39.57

Desktop (T) 3.57 -45.50 1.28 -38.05 1.50 -36.56 3.34 -49.20 1.15 -40.38

Map (T) 5.01 -62.03 2.58 -56.83 1.62 -54.42 3.14 -62.92 0.11 -57.02

MissionControlClip2 (T) 4.50 -58.86 2.95 -44.05 1.50 -51.18 2.82 -57.09 1.11 -53.46

Robot (T) 2.24 -77.97 6.75 -58.27 1.97 -73.92 1.86 -76.56 2.00 -74.87

BasketballScreen (NT) 4.63 -58.30 3.50 -47.58 1.63 -49.84 3.22 -57.13 1.15 -52.95

ChineseEditing (NT) 3.41 -43.47 1.84 -34.05 0.96 -35.57 2.47 -44.26 0.80 -36.16

ChinaSpeed (NT) 2.50 -66.12 1.44 -52.32 1.30 -58.16 1.41 -64.07 0.99 -60.02

FlyingGraphics (NT) 7.06 -49.20 2.67 -39.00 2.28 -38.67 5.02 -47.29 2.08 -40.13

MissionControlClip3 (NT) 4.43 -52.92 2.68 -44.46 1.73 -45.68 3.19 -54.04 1.70 -48.81

Programming (NT) 3.89 -51.72 2.21 -40.24 1.24 -42.97 2.30 -52.06 0.88 -45.88

SlideShow (NT) 4.97 -72.30 5.99 -43.01 1.17 -66.99 2.30 -71.28 0.71 -68.71

WebBrowsing (NT) 4.38 -52.11 2.10 -43.66 1.77 -45.29 4.24 -53.43 1.62 -48.15

Average 4.48 -56.80 2.94 -44.45 1.71 -49.06 3.19 -56.71 1.32 -51.24

PFactor 12.68 15.12 28.69 17.78 38.82

IFactor Spatial features 2.06
Decoder features

1.57

Dynamic features

0.83
Static features 1.18

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 127

static features, 56.80%, 44.45%, 49.06% and 56.71% re-encoding time are saved while

the BDBR is increased by 4.48%, 2.94%, 1.71%, and 3.19%, respectively. Therefore, the

most important feature category to the proposed FHST is spatial features and then

followed by decoder features, static features and dynamic features, whose IFactors are

2.06, 1.57, 1.18 and 0.83, respectively.

6.4.6 Performance Comparison of YUV 4:4:4 Format

In this sub-section, the proposed FHST is further extended to support fast

transcoding of screen content videos in YUV4:4:4 format, where “Console”, “Desktop”,

“Map”, “MissionControlClip2”, “Robot” were used to generate training data, and 𝛼 is set

to 0.75, β is set to 0.5. Similarly, the fast algorithms in [51], [54], [55] are used to replace

the original SCC encoder of CBFT in Figure 1.6 for comparison. Besides, we also

compared FHST with the fast HEVC to SCC transcoding algorithm [72], which is only

designed for YUV4:4:4 format. Considering that Duanmu et al.’s algorithm [72] is the

only existing fast HEVC to SCC transcoding algorithm, and it was implemented in HM-

16.4 [100] and HM-16.4+SCM-4.0 [101], we re-implemented all other algorithms in the

same reference software as Duanmu et al.’s algorithm [72] to make fair comparisons.

Table 6.8 shows the comparisons of the proposed FHST with the fast SCC encoding

algorithms [51], [54], [55] under CTC [30]. It is also observed that the performance of

FHST is much better than the fast SCC encoding algorithms [51], [54], [55]. For the T

sequences, 53.50% re-encoding time is saved with 1.42% increase in BDBR. For the NT

sequences, similar performance is obtained, where 55.29% re-encoding time is reduced

with BDBR increased by 1.15%. It again proves that the proposed FHST is generalizable

to the sequences which are not used in training. On average, the proposed FHST provides

54.65% re-encoding time reduction with a negligible increase in BDBR of 1.25%.

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 128

Comparatively, Zhang et al.’s algorithm [51], Lei et al.’s algorithm [54] and Yang et al.’s

algorithm [55] provide 24.14%, 27.26% and 27.88% re-encoding time reduction with

BDBR increased by 3.13%, 3.53%, and 4.74%, respectively. Then, based on the same

reference software of HEVC and SCC, we made an indirect comparison between our

proposed FHST and the only existing fast HEVC to SCC transcoding algorithm [72], and

the results are presented in Table 6.9. It is observed when compared with CBFT, Duanmu

et al.’s algorithm [72] achieves 47.93% re-encoding time reduction for their selected

sequences while BDBR is increased by 2.14%. Comparatively, our proposed FHST

achieves 54.01% re-encoding time reduction for their selected sequences while BDBR is

only increased by 1.11%. Compared with Duanmu et al.’s algorithm [72] which only

utilizes features from the HEVC decoder and static features, our proposed FHST

additionally utilizes spatial features and dynamic features, so that more accurate decision

is provided. Besides, Duanmu et al.’s algorithm [72] always checks both IBC and PLT

modes for SCBs. However, we allow the case that only one mode is checked for SCBs,

as observed in Figure 6.7(c), (d) and Figure 6.7(c), (d), so that higher re-encoding time

reduction is provided.

Table 6.8: Performance comparison of the proposed transcoder with different fast SCC encoding

algorithms for YUV 4:4:4 sequences.

Sequences
CBFT + Zhang [51] CBFT + Lei [54] CBFT + Yang [55] Proposed FHST

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

Console (T) 1.67 -20.26 2.24 -21.93 4.79 -30.15 2.36 -50.24

Desktop (T) 1.36 -30.16 1.35 -23.21 4.08 -35.06 0.52 -56.92

Map (T) 1.21 -28.28 3.51 -20.04 7.26 -15.73 1.00 -45.79

MissionControlClip2 (T) 2.22 -29.55 2.84 -28.02 3.87 -29.56 1.50 -54.29

Robot (T) 10.89 -12.63 12.67 -30.92 5.47 -19.31 1.71 -60.26

BasketballScreen (NT) 1.34 -30.95 1.19 -22.38 3.80 -25.11 0.92 -52.01

ChineseEditing (NT) 0.33 -22.84 0.61 -19.42 3.63 -24.90 0.59 -47.26

EBURainFruits (NT) 7.38 -18.61 7.34 -34.72 2.88 -20.61 2.23 -67.92

FlyingGraphics (NT) 0.45 -4.39 1.08 -19.14 4.56 -26.84 1.03 -45.53

Kimono1(NT) 10.29 -3.79 8.39 -41.82 4.18 -27.14 1.39 -56.99

MissionControlClip3 (NT) 1.83 -26.93 1.43 -23.64 3.08 -29.30 1.24 -54.57

Programming (NT) 1.28 -28.42 1.76 -22.19 7.27 -26.35 1.08 -50.74

SlideShow (NT) 1.99 -41.03 1.76 -48.79 5.81 -45.94 1.37 -63.83

WebBrowsing (NT) 1.57 -40.16 3.21 -25.38 5.65 -34.30 0.50 -58.80

Average (T) 3.47 -24.18 4.52 -24.82 5.09 -25.96 1.42 -53.50

Average (NT) 2.94 -24.12 2.97 -28.61 4.54 -28.94 1.15 -55.29

Average (ALL) 3.13 -24.14 3.53 -27.26 4.74 -27.88 1.25 -54.65

Chapter 6 Determinations on Coding Structure for HEVC-SCC Transcoding

 129

6.5 Chapter Summary

In this chapter, a fast HEVC to SCC transcoder FHST is proposed by early CU

partitioning termination and flexible mode decision. Four categories of features are

collected from both the HEVC decoder side and the SCC encoder side to simplify the

transcoding process. First, an early CU partitioning termination technique is proposed to

map the optimal CU size from HEVC to SCC. Then, a flexible encoding structure is

proposed where DTs are generated to check each mode candidate adaptively in SCC.

With the help of various features from the four categories and the flexible encoding

structure, higher re-encoding time can be reduced with less RD performance loss

compared with other algorithms. Experimental results show that the proposed FHST

provides 51.24% and 54.65% re-encoding time reduction with a negligible increase in

BDBR of 1.32% and 1.25% for YUV 4:2:0 and YUV 4:4:4 screen content sequences,

respectively.

Table 6.9: Performance comparison of the proposed transcoder with other transcoder for YUV

4:4:4 sequences.

Sequences
Duanmu [72] Proposed FHST

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%)

Console (T) 1.85 -49.0 2.36 -50.24

Desktop (T) 1.72 -48.1 0.52 -56.92

Map (T) 1.00 -45.79

MissionControlClip2 (T) 1.50 -54.29

Robot (T) 1.71 -60.26

BasketballScreen (NT) 3.13 -46.1 0.92 -52.01

ChineseEditing (NT) 0.59 -47.26

EBURainFruits (NT) 2.23 -67.92

FlyingGraphics (NT) 1.94 -50.1 1.03 -45.53

Kimono1(NT) 1.39 -56.99

MissionControlClip3 (NT) 1.24 -54.57

Programming (NT) 1.05 -42.9 1.08 -50.74

SlideShow (NT) 2.21 -51.4 1.37 -63.83

WebBrowsing (NT) 3.08 -47.9 0.50 -58.80

Average ([72]’s sequences) 2.14 -47.93 1.11 -54.01

Average (ALL) 1.25 -54.65

Chapter 7 Conclusions and Future Work

 130

Chapter 7 Conclusions and Future Work

In this thesis, we have carried out a research study on the fast mode and CU

partitioning decision of SCC. To achieve high coding efficiency for screen coding videos,

SCC adopts an exhaustive searching strategy among all depth levels and mode candidates.

By implementing the proposed algorithms, unnecessary mode candidates and CU sizes

are eliminated such that coding complexity can be reduced. In each chapter, the

motivation of the proposed algorithm is firstly given, and then the proposed algorithms

with the corresponding rationales were introduced with illustrations. Finally, simulation

results were provided to show the effectiveness of the proposed algorithms. In this chapter,

we first highlight the main contributions of this thesis. Then, some possible directions

that could be the focus of the future research are discussed.

7.1 Contributions of the Thesis

In the objective of computational complexity reduction in SCC, our contributions

chiefly include constructive machine learning based proposals of (1) an online learning

based fast prediction algorithm which extract content dependent rules from learning

frames; (2) a flexible encoding framework by sequential arrangement of DTs; (3) a deep

learning based fast prediction network, DeepSCC, which contains much more trainable

parameters than the traditional machine learning based approaches; (4) a fast HEVC to

SCC transcoder FHST that migrates the legacy screen content videos from HEVC to SCC

to improve the coding efficiency.

In particular, our conclusions are:

⚫ An online learning based fast SCC encoding algorithm was explored in Chapter 3.

Chapter 7 Conclusions and Future Work

 131

Since the mode and CU partitioning decisions in the same scene have a high

correlation, the first frame in a scene is used to derive content dependent rules. Then

these rules are applied to the following frames in the same scene to eliminate

unnecessary checking of mode candidates and CU size. The content-dependent rules

can achieve high prediction accuracy since it is tailor-made for a certain scene.

Simulation results have proven that this algorithm succeeds in reducing encoding

time with negligible RD performance loss.

⚫ A flexible encoding framework by a sequential arrangement of DTs was proposed

in Chapter 4, and it explores both static features that describing CU content and

dynamic features that reveal the unique intermediate coding information of a CU.

To utilize dynamic features for prediction, this framework checks each mode

separately by inserting a classifier before checking a mode, and it facilitates either

IBC or PLT mode to be checked for SCBs. Simulation results show that

computational complexity is further reduced.

⚫ To avoid the risk that humans may ignore some important features when doing

feature extraction, a deep learning based fast prediction network DeepSCC was

presented in Chapter 5. It directly extracts features from the raw pixels by using

extensive learnable parameters, and it is able to make the more accurate mode

decision of Intra, IBC, and PLT rather than the simple CU type classification of NIBs

and SCBs. By outputting labels for all CUs in a CTU in a single test, the

computational overhead of DeepSCC is less than 4% by only using a CPU for testing,

and simulation results show that 48.18% encoding time is reduced with a negligible

BDBR increase of 1.18%.

⚫ In Chapter 6, a fast HEVC to SCC transcoder FHST was proposed to migrate the

legacy screen content videos from HEVC to SCC for coding efficiency improvement.

Chapter 7 Conclusions and Future Work

 132

A flexible mode decision framework is adopted and various features from 4

categories are employed, which are the HEVC decoder, static features, dynamic

features, and spatial features. On the one hand, high decision accuracy is achieved

because mode decision is considered from different aspects by utilizing features

from more than one category. On the other hand, high computational complexity is

reduced because the flexible structure considers the decision of each mode separately.

Simulation results show that FHST provides 51.24% and 54.65% re-encoding time

reduction with 1.32% and 1.25% negligible BDBR loss for YUV 4:2:0 and YUV

4:4:4 screen content sequences.

7.2 Future Work

With the successful techniques proposed and evaluated in this thesis, we now

provide some related directions for our future studies.

7.2.1. Fast Inter-Prediction of SCC

In this thesis we propose various fast algorithms focused on the fast intra-prediction

of SCC, and we can extend our proposed algorithms to inter-prediction. In inter-

prediction, a CU needs to check more mode candidates, such as hash base ME, merge &

skip, inter 2N×2N, inter 2N×N, inter N×2N. Since the mode selection of a CU in inter-

prediction is strongly affected by the temporal correlation, the mode selection for two

CUs with the same content can be different. Therefore, we can insert a decision tree based

mode classifier before each target mode to decide whether a mode should be checked or

not. Furthermore, for CNN based framework, the long- and short-term memory (LSTM)

can be adopted to utilize the temporal correlation for fast inter-prediction.

Chapter 7 Conclusions and Future Work

 133

7.2.2. Fast Bitrate Transcoding of SCC

With the proliferation of cloud-based video streaming technology, it is important to

support screen content distributions from the cloud server to multiple clients. Those

clients may have different bandwidths that prefer screen content videos with different

quality levels. To meet the bandwidths of different clients, a cloud server needs to

generate multiple bitstreams with reduced quality levels from the original high-quality

video stream. As illustrated in Figure 7.1, each client can flexibly choose the most suitable

stream given the network condition. For this purpose, fast bitrate transcoding of SCC is

considered as our next work. Bitrate transcoding is a technology that transforms a high

bit-rate video to a low bit-rate video with the same video format. To control the quality

of the transcoded video, the value of QP is adjusted when doing video re-encoding. We

can first decode the original bitstream of the high-quality video while collecting the

decoder side information, such as optimal mode and CU size. Then, we re-encode the

decoded video by a larger value of QP with help of decoder side information to reduce

the re-encoding time.

7.2.3. GPU Based Parallel Encoding of SCC

In this thesis, techniques are proposed to accelerate the encoding and transcoding of

SCC by using CPU without parallel processing. To further reduce the computational

complexity, GPU can be utilized as a co-processor to assist CPU for parallel encoding.

Figure 7.1: Adaptive screen content distribution over cloud.

Ferr

Chapter 7 Conclusions and Future Work

 134

GPU is a highly parallel multi-threaded and many-core processor that has the tremendous

computational ability. Before the encoding process, GPU can be enabled to find the rough

optimal BV in IBC mode and the optimal direction of Intra mode for multiple CUs based

on the uncompressed reference samples. Although this prediction is not accurate because

the intermediate coding statistics might not be exactly the same as the true encoding

process, this pre-processing step limits the search range. Then CPU is enabled to fine-

tune the optimal mode in the limited search range provided by GPU.

References

 135

References

[1] ISO/IEC 10918-1, “Information technology -- digital compression and coding of continuous-

tone still images: requirements and guidelines”, 1994.

[2] Y. M. Lei and M. Ouhyoung, “Software-based motion JPEG with progressive refinement for

computer animation,” IEEE Transactions on Consumer Electronics, vol. 40, pp. 557-562, Aug.

1994.

[3] ISO/IEC 11172-2, “Information technology -- coding of moving pictures and associated audio

for digital storage media at up to about 1,5 Mbit/s -- Part 2: Video,” 1993.

[4] ISO/IEC 13818-2, “Information technology -- generic coding of moving pictures and

associated audio information: Video,” 1996.

[5] Video Codec for Audiovisual Services at p×64 kbit/s, ITU-T Recommendation H.261., 1993.

[6] Video Coding for Low Bitrate Communication, ITU-T Recommendation H.263, May. 1997.

[7] ISO/IEC 14496-2, “Information technology – coding of audio-visual objects – Part 2: Video,”

2001.

[8] ISO/IEC 14496-10, “Information technology – coding of audio-visual objects – Part 10:

Advanced Video Coding,” 2003.

[9] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC

video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol.13,

no.7, pp.560-576, Jul. 2003.

[10] Iain E. G. Richardson, “H.264 and MPEG-4 video vompression: video voding for next-

generation multimedia,” Wiley, 2003.

References

 136

[11] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video

coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[12] Y. Lu, S. Li, and H. Shen, “Virtualized screen: A third element for cloud-mobile

convergence,” IEEE Multimedia, vol. 18, no. 2, pp. 4–11, Feb. 2011.

[13] J. Xu, R. Joshi, and R. A. Cohen, “Overview of the emerging HEVC screen content coding

extension,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 1, pp.

50–62, Jan. 2016.

[14] J. Lainema, F. Bossen, W.-J. Han, J. Min, and K. Ugur, “Intra coding of the HEVC standard,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1792–

1801, Dec. 2012.

 [15] M. Budagavi and D.-K. Kwon, “AHG8: Video coding using intra motion compensation,”

document JCTVC-M0350, Apr. 2013.

[16] C. Pang, K. Rapaka, J. Sole, and M. Karczewicz, “SCCE1: Test 3.6—Block vector coding

for intra block copy,” document JCTVC-R0186, Jul. 2014.

[17] K. Rapaka, M. Karczewicz, C. Pang, K. Miyazawa, A. Minezawa, and S. Sekiguchi, “Non-

CE1: Block vector voding for intra block copy,” document JCTVC-S0143, Oct. 2014.

[18] X. Xu, T.-D. Chuang, S. Liu, and S. Lei, “Non-CE2: Intra BC merge mode with default

candidates,” document JCTVC-S0123, Oct. 2014.

[19] C. Pang, Y.-K. Wang, V. Seregin, K. Rapaka, M. Karczewicz, X. Xu, S. Liu, S. Lei, B. Li,

and J. Xu, “Non-CE2: Intra block copy and inter signalling unification,” document JCTVC-T0227,

Feb. 2015.

[20] X. Xu, S. Liu, T.-D. Chuang, and S. Lei, “Block vector prediction for intra block copying in

HEVC screen content coding,” Data Compression Conference, Apr. 2015, pp. 273-282.

[21] X. Xu et al., “Intra block copy in HEVC screen content coding extensions”, IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, vol. 6, no. 4, pp. 409-419, Dec. 2016.

References

 137

[22] Z. Ma, W. Wang, M. Xu, and H. Yu, “Advanced screen content coding using color table and

index map”, IEEE Transactions Image Processing, vol. 23, no. 10, pp. 4399-4412, Oct. 2014.

[23] Y.-C. Sun, T.-D. Chuang, P. Lai, Y-W. Chen, S. Liu, Y.-W. Huang, and S. Lei, “Palette

mode — A new coding tool in screen content coding extensions of HEVC”, IEEE International

Conference on Image Processing, pp. 2409-2413, Sept. 2015.

[24]L. Guo, W. Pu, F. Zou, J. Sole, M. Karczewicz, and R. Joshi, “Color palette for screen content

coding”, IEEE International Conference on Image Processing, pp. 5556-5560, Oct. 2014.

[25]X. Xiu, Y. He, R. Joshi, M. Karczewicz, P. Onno, C. Gisquet, and G. Laroche, “Palette-Based

Coding in the Screen Content Coding Extension of the HEVC Standard”, IEEE International

Conference on Image Processing, pp. 5556-5560, Apr. 2015.

[26]S. Ye, Z. Chen, W. Zhang, and L. Xu, “Parallel palette mode decoding for HEVC SCC”,

IEEE International Symposium on Circuits and Systems, pp. 2551-2554, May. 2016.

[27] W. Pu, R. Joshi, V. Seregin, F. Zou, J. Sole, Y.-C. Sun, T.-D. Chuang, P. Lai, S. Liu, S.-T.

Hsiang, J. Ye, and Y.-W. Huang, “Palette mode coding in HEVC screen content coding

extension”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 6, no.

4, pp. 420-432, Dec. 2016.

[28] L. Guo, M. Karczewicz, and J. Sole, “RCE3: Results of test 3.1 on palette mode for screen

content coding,” document JCTVC -N0247, Jul. 2013.

[29] G. Bjontegaard, “Calculation of average PSNR differences between rd-curves,” document

VCEG-M33, VCEG, Mar. 2001.

[30] H. -P. Yu, R. Cohen, K. Rapaka, and J. -Z Xu, “Common test conditions for screen content

coding”, document JCTVC-X1015-r1, May. 2016.

[31] HM-16.12+SCM-8.3, HEVC test model version 16.12 screen content model version 8.3,

[Online], available at: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-

16.12+SCM-8.3/.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7515073
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5503868
https://hevc.hhi.fraunhofer.de/

References

 138

[32] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro, “Comparative rate-distortion-

complexity analysis of HEVC and AVC video codecs,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 22, no. 12, pp. 1885–1898, Dec. 2012.

[33] H. S. Malvar, G. J. Sullivan, and S. Srinivasan, “Lifting-based reversible color

transformations for image compression,” in SPIE Applications of Digital Image Processing.

International Society for Optical Engineering, Aug. 2008.

[34] A. Minezawa, S. Sekiguchi, and T. Murakami, AHG5/AHG8: “On RGB to YCbCr

conversion for screen contents,” document JCTVC-N0115, ISO/IEC JTC1/SC29/WG11 and

ITU-T SG16 WP3, Aug. 2013.

[35] L. Zhang, J. Chen, J. Sole, M. Karczewicz, X. Xiu, Y. He, and Y. Ye, “SCCE5 Test 3.2.1:

In-loop color-space transform,” document JCTVC-R0147, Jul. 2014.

[36] L. Zhang, J. Chen, J. Sole, M. Karczewicz, X. Xiu, and J.-Z. Xu, “Adaptive color-space

transform for HEVC screen content coding,” Data Compression Conference, Apr. 2015, pp. 233-

242.

[37] L. Zhang, X. Xiu, J. Chen, M. Karczewicz, Y. He, Y. Ye, J. Xu, J. Sole, and W.-S. Kim,

“Adaptive color-space transform in HEVC screen content coding,” IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, vol. 6, no. 4, pp.446–459, Dec. 2016.

[38] Y.-J. Cho, J.-H, KO, H.-G Yu, J.-H. Lee, D.-J. Park and S.-H. Jun, “Adaptive motion vector

resolution based on the rate-distortion cost and coding unit depth,” IEEE International Advance

Computing Conference, Feb. 2014. pp.1000–1003.

[39] Z. Wang, J. Ma, F. Luo, and S. Ma, “Adaptive motion vector resolution prediction in block-

based video coding,” Visual Communications and Image Processing, Dec. 2015, pp.1–4.

[40] Z. Wang, J. Zhang, N. Zhang, and S. Ma, “Adaptive motion vector resolution scheme for

enhanced video coding,” Data Compression Conference, Mar. 2016. pp.101–110.

[41] B. Ray, J. Jung, and M.-C. Larabi, “A block level adaptive MV resolution for video coding,”

IEEE International Conference on Multimedia and Expo, Jul. 2017. pp.49–54.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6767436
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6767436
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7452873
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8014303

References

 139

[42] B. Li, J. Xu, G. Sullivan, Y. Zhou, and B. Lin, “Adaptive motion vector resolution for screen

content,” document JCTVC-S0085, Oct. 2014.

[43] S. L. Yu and C. Chrysafis, “New intra prediction using intra-macroblock motion

compensation,” document JVT-C151r1, May 2002.

[44] H.-S. Kim, and R.-H. Park, “Fast CU partitioning algorithm for HEVC using an online-

learning-based Bayesian decision rule,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 26, no. 1, pp. 130–138, Jan. 2016.

[45] S-H. Jung, and H.W. Park, “a fast mode decision method in HEVC using adaptive ordering

of modes,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 10, pp.

1846–1858, Oct. 2016.

[46] Q. Hu, X.-Y. Zhang, Z.-R. Shi, and Z.-Y. Gao, “Neyman-Pearson-based early mode decision

for HEVC encoding,” IEEE Transaction on Multimedia, vol. 18, no. 3, pp.379–391, Mar. 2016.

[47] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Fast and efficient intra coding techniques for

smooth regions in screen content coding based on boundary prediction samples,” IEEE

International Conference on Acoustics, Speech and Signal Processing, Apr. 2015, pp.1409–1413.

[48] S.-H. Tsang, Y.-L. Chan, and W.-C. Siu, “Hash based fast local search for intra block copy

(IntraBC) mode in HEVC screen content coding,” Signal and Information Processing Association

Annual Summit and Conference, Dec. 2015, pp. 396–400.

[49] S.-H. Tsang, W. Kuang, Y.-L. Chan and W.-C. Siu, “Fast HEVC screen content coding by

skipping unnecessary checking of intra block copy mode based on CU activity and gradient,”

Signal and Information Processing Association Annual Summit and Conference, Dec. 2016, pp.1–

5.

[50] F. Duanmu, Z. Ma, and Y. Wang, “Fast CU partition decision using machine learning for

screen content compression,” IEEE International Conference on Image Processing, Sept. 2015,

pp. 4972–4976.

References

 140

[51] H. Zhang, Q. Zhou, N.-N Shi, F. Yang, X. Feng, and Z. Ma, “Fast intra mode decision and

block matching for HEVC screen content compression,” IEEE International Conference on

Acoustics, Speech and Signal Processing, Mar. 2016, pp.1377–1381.

[52] M. Zhang, Y. Guo, and H. Bai, “Fast intra partition algorithm for HEVC screen content

coding,” IEEE Visual Communications and Image Processing Conference, Dec. 2014, pp. 390–

393.

[53] F. Duanmu, Z. Ma, and Y. Wang, “Fast mode and partition decision using machine learning

for intra-frame coding in HEVC screen content coding extension,” IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, vol. 6, no. 4, pp.517–531, Dec. 2016.

[54] J. Lei, D. Li, Z, Pan, Z. Sun, S. Kwong, and C. Hou, “Fast intra prediction based on content

property analysis for low complexity HEVC-based screen content coding,” IEEE Transactions on

Broadcasting, vol. 63, no.1, pp.48–58, Mar. 2017.

[55] H. Yang, L. Shen, and P. An, “An efficient intra coding algorithm based on statistical learning

for screen content coding”, IEEE International Conference on Image Processing, Sept. 2017, pp.

2468–2472.

[56] C. Huang, Z. Peng, F. Chen, Q. Jiang, G. Jiang and Q. Hu, “Efficient CU and PU decision

based on neural network and gray level co-occurrence matrix for Intra prediction of screen content

coding,” IEEE Access, vol. 6, pp. 46643 - 46655, Aug. 2018.

[57] J. D. Cock, S. Notebaert, P. Lambert, R. V. Walle, “Architectures for fast transcoding of

H.264/AVC to quality-scalable SVC streams,” IEEE Transaction on Multimedia, vol. 11, no. 7,

pp. 1209-1224, Nov. 2009.

[58] T.-K. Lee, C.-H. Fu, Y.-L. Chan, and W.-C. Siu, “A new motion vector composition

algorithm for fast-forward video playback in H.264,” International Symposium on Circuits and

Systems, Jun. 2010, pp. 3649-3652.

[59] K. T. Fung, Y. L. Chan, W. C. Siu, “Low-complexity and high-quality frame-skipping

transcoder for continuous presence multipoint video conferencing,” IEEE Transaction on

Multimedia, vol. 6, no. 1, pp. 31-46, Feb. 2006.

References

 141

[60] K.-T. Lai, Y.-L. Chan, and W.-C. Siu, “New architecture for dynamic frame-skipping

transcoder,” IEEE Transaction on Image Processing, vol. 11, no. 8, pp. 886–900, 2002.

[61] H. Shu and L.-P. Chau, “The realization of arbitrary downsizing video transcoding,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 16, no. 4, pp. 540-546, Apr.

2006.

[62] D. Xu and P. Nasiopoulos, “Logo insertion transcoding for H.264/AVC compressed video,”

IEEE International Conference on Image Processing, pp. 3693-3696, Nov. 2009.

[63] T. Shanableh, T. May, and F. Ishtiaq, “Error resiliency transcoding and decoding solutions

using distributed video coding techniques,” Signal Processing: Image Communication, vol. 23,

no. 8, pp. 610-623, 2008.

[64] Y.-L. Chan, H.-K Cheung and W.-C. Siu, “Compressed-domain techniques for error-resilient

video transcoding using RPS,” IEEE Transaction on Image Processing, vol. 18, no. 2, pp. 357–

370, 2009.

[65] G. Fernandez-Escribano, H. Kalva, P. Cuenca, L. Orozco-Barbosa, and A. Garrido, “A fast

MB mode decision algorithm for MPEG-2 to H.264 P-frame transcoding,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 18, no. 2, pp. 172-185, Feb. 2008.

[66] G. Fernandez-Escribano, H. Kalva, J. Martinez, P. Cuenca, L. Orozco-Barbosa, and A.

Garrido, “An MPEG-2 to H.264 video transcoder in the baseline profile,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 20, no. 5, pp. 763-768, 2010.

[67] T. Shanableh, E. Peixoto, and E. Izquierdo, “MPEG-2 to HEVC video transcoding with

content-based modeling,” IEEE Transactions on Circuits and Systems for Video Technology, vol.

23, no. 7, pp. 1191-1196, 2013.

[68] H. Yuan, C. Guo, J. Liu, X, Wang, and S. Kwong, “Motion-homogeneous based fast

transcoding method from H.264/AVC to HEVC,” IEEE Transactions on Multimedia, vol. 19, no

7, pp. 1416-1430, 2017.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6046

References

 142

[69] F. Zhang, Z. Shi, X, Zhang, and Z, Guo, “Fast H.264/AVC to HEVC transcoding based on

residual homogeneity,” in Proc. Int. Conf. Audio, Language and Image Processing, Jul. 2014, pp.

765-770.

[70] A. Nagaraghatta, Y. Zhao, G. Maxwell, and S. Kannangara, “Fast H.264/AVC to HEVC

transcoding using mode merging and mode mapping,” in Proc. Int. Conf. Consumer Electronics,

Sept. 2015, pp. 765-770.

[71] P. Xing, Y. Tian, X. Zhang, Y. Wang, and T. Huang, “A coding unit classification based

AVC-to-HEVC transcoding with background modeling for surveillance videos,” IEEE Visual

Communications and Image Processing Conference, Nov. 2013, pp. 1-6.

[72] F. Duanmu, Z. Ma, W. Wang, M. Xu, and Y. Wang, “A novel screen content fast transcoding

framework based on statistical study and machine learning,” IEEE International Conference on

Image Processing, Sept. 2016, pp. 4205-4209.

[73] W. Kuang, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu “Fast intraprediction for high-efficiency

video coding screen content coding by content analysis and dynamic thresholding,” Journal of

Electronic Imaging, vol. 27, no. 5, pp. 053029-1–053029-18, 8 October 2018.

[74] Z. Pan, H. Shen, Y. Lu, S. Li, and N. Yu, “A low-complexity screen compression scheme

for interactive screen sharing,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 23, no. 6, pp. 949–960, Jun. 2013.

[75] J. W. Lee, and B. W. Dickinson, “Temporally adaptive motion interpolation exploiting

temporal masking in visual perception,” IEEE Transaction on Image Processing, vol. 3, no. 5, pp.

513–526, Sept. 1994.

[76] W. Kuang, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu, “Machine learning based fast intra mode

decision for HEVC screen content coding via decision trees,” IEEE Transactions on Circuits and

Systems for Video Technology, early access, 2019.

[77] J. R. Quinlan, “C4.5: Programs for machine learning,” Morgan Kaufmann, 1993.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7369493
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7369493

References

 143

[78] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA

data mining software: An update,” ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp.

10–18, 2009.

[79] Y. Mansour, “Pessimistic decision tree pruning based on tree size,” International Conference

on Machine Learning, pp. 195–201, 1997.

[80] P. Burman, “A comparative study of ordinary cross-validation, v-fold cross-validation and

the repeated learning-testing methods,” Biometrika, vol. 76, no. 3, pp. 503-514, Sept. 1989.

[81] N. Japkowicz, “The class imbalance problem: Significance and strategies,” International

Conference on Artificial Intelligence, 2000, pp. 111–117.

[82] Machine Learning Based Fast Intra Mode Decision for HEVC Screen Content Coding Via

Decision Trees. [Online]. Available at: http://www.eie.polyu.edu.hk/~ylchan/research/DT-

FastSCC/.

[83] I. Guyon, and A. Elisseeff, “An introduction to variable and feature selection,” The Journal

of Machine Learning Research, vol. 3, pp. 1157–1182, Mar. 2003.

[84] J. Guo, L. Zhao, and T. Lin, “Response to B1002 call for test materials: Five test sequences

for screen content video coding”, document JVET-C0044, May. 2016.

[85] R. Cohen, “AHG8: 4:4:4 game content sequences for HEVC range extensions development”,

document JCTVC- N0294, Aug. 2013.

[86] A. M. Tourapis, D. Singer, and K. Kolarov, “New test sequences for screen content coding”,

document JCTVC-O0222, Nov. 2013.

[87] H. -P. Yu, W. Wang, X. Wang, J. Ye, and Z. Ma, “AHG8: New 4:4:4 test sequences with

screen content”, document JCTVC- O0256, Nov. 2013.

[88] K. Sharman, and K. Suehring, “Common test conditions”, document JCTVC-X1100, May.

2016.

[89] W. Kuang, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu, “DeepSCC: Deep Learning Based Fast

Prediction Network for Screen Content Coding,” IEEE Transactions on Circuits and Systems for

Video Technology, 2019.

http://www.eie.polyu.edu.hk/~ylchan/research/DT-FastSCC/
http://www.eie.polyu.edu.hk/~ylchan/research/DT-FastSCC/

References

 144

[90] J. Guo, L. Zhao, and T. Lin, “Response to B1002 Call for test materials: Five test sequences

for screen content video coding”, document JVET-C0044, May. 2016.

[91] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T.

Darrell, “Caffe: Convolutional architecture for fast feature embedding,” ACM International

Conference on Multimedia, USA, Nov. 2014, pp. 675–678.

[92] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification,” IEEE International Conference on Computer Vision,

Dec. 2015, pp. 1026–1034.

[93] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimization,” International

Conference on Learning Representations, May 2015, pp. 1–13.

[94] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic

image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848,

Apr. 2018.

[95] DeepSCC: Deep learning based fast prediction network for screen content coding. Available

at: http://www.eie.polyu.edu.hk/~ylchan/research/DeepSCC/.

[96] W. Ding, Y. Shi, and B. Yin, “YUV444 test sequences for screen content”, document

JCTVC-M0431, Apr. 2013.

[97] W. Kuang, Y.-L. Chan, S.-H. Tsang, and W.-C. Siu, “Fast HEVC to SCC transcoder by early

CU partitioning termination and decision tree based flexible mode decision for intra-frame

coding,” IEEE Access, vol. 7, pp. 8773–8788, 3 Jan. 2019.

[98] HM-16.12, HEVC test model version 16.12, [Online], available at:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.12/.

[99] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. da Silva Cruz, “Fast HEVC encoding

decisions using data mining,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 25, no. 4, pp. 660-673, Apr. 2015.

[100] HM-16.4, HEVC test model version 16.4, [Online], available at:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.4/.

http://www.eie.polyu.edu.hk/~ylchan/research/DeepSCC/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.12/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.4/

References

 145

[101] HM-16.4+SCM-4.0, HEVC test model version 16.4 screen content model version 4.0,

[Online], available at: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-

16.4+SCM-4.0/.

https://hevc.hhi.fraunhofer.de/svn/

