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Abstract 

Screen content video is one of the emerging videos, and it usually shows mixed 

content with both of nature image blocks (NIBs) and computer-generated screen content 

blocks (SCBs). Since High Efficiency Video Coding (HEVC) is only optimized for NIBs 

while SCBs exhibit different characteristics, new techniques are necessary for SCBs. 

Screen Content Coding (SCC) extension was developed on top of HEVC to explore new 

coding tools for screen content videos. SCC employs two additional coding modes, intra 

block copy (IBC) mode and palette (PLT) mode for intra-prediction. However, the 

exhaustive mode searching makes the computational complexity of SCC increase 

dramatically. Therefore, in this thesis, some novel machine learning based techniques are 

suggested to simplify both encoding and transcoding of SCC. 

A fast intra-prediction algorithm for SCC by content analysis and dynamic 

thresholding is firstly proposed. A scene change detection method is adopted to obtain a 

learning frame in each scene, and the learning frame is encoded by the original SCC 

encoder to collect learning statistics. The prediction models are tailor-made for the 

following frames in the same scene according to the video content and QP of the learning 

frame. Simulation results show that the proposed scheme can achieve remarkable 

complexity reduction while preserving the coded video quality.  

Afterwards, we propose a decision tree based framework for fast intra mode decision 

by investigating various features in training sets. To avoid the exhaustive mode searching 

process, a framework with a sequential arrangement of decision trees is proposed to check 

each mode separately by inserting a classifier before checking a mode. As compared with 

the previous approaches that both IBC and PLT modes are checked for SCBs, the 
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proposed coding framework is more flexible which facilitates either IBC or PLT mode to 

be checked for SCBs such that computational complexity is further reduced. Simulation 

results show that the proposed scheme can provide significant complexity saving with 

negligible loss of coded video quality. 

To avoid the necessity of hand-crafted features, a deep learning based fast prediction 

network DeepSCC is then proposed by using convolutional neural network (CNN), which 

contains two parts, DeepSCC-I and DeepSCC-II. Before fed to DeepSCC, incoming 

coding units (CUs) are divided into two categories: dynamic coding tree units (CTUs) 

and stationary CTUs. For dynamic CTUs with different content as their collocated CTUs, 

DeepSCC-I takes raw sample values as the input to make fast predictions. For stationary 

CTUs with the same content as their collocated CTUs, DeepSCC-II additionally utilizes 

the optimal mode maps of the stationary CTU to further reduce the computational 

complexity. Simulation results show that the proposed scheme further improves the 

complexity reduction. 

Finally, we propose a fast HEVC to SCC transcoder. To migrate the legacy screen 

content videos from HEVC to SCC to improve the coding efficiency, a fast transcoding 

framework is proposed by analyzing various features from 4 categories. They are the 

features from the HEVC decoder, static features, dynamic features, and spatial features. 

First, the CU depth level collected from the HEVC decoder is utilized to early terminate 

the CU partition in SCC. Second, a flexible encoding structure is proposed to make early 

mode decisions with the help of various features. Simulation results show that the 

proposed scheme dramatically shortens the transcoding time. 
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Chapter 1 Introduction 

1.1 Overview 

Digital video has become one of the most popular media for content representation 

and distribution. However, the huge storage and transmission bandwidth requirements 

limit the application of videos in the raw form. To reduce the storage and transmission 

cost, video compression is desired. The Telecommunication Standardization Sector of 

ITU (ITU-T) Video Coding Experts Group (VCEG) and the International Organization 

for Standardization (ISO)/International Electrotechnical Commission (IEC) Moving 

Picture Experts Group (MPEG) have developed a series of video coding standards such 

as H.261, MPEG-1 Part 2, H.262/MPEG-2 Part 2, H.263, MPEG-4 Part 2, 

H.264/Advanced Video Coding (AVC), and H.265/High Efficiency Video Coding 

(HEVC) [1]–[11], which enable video encoders and decoders from different manufactures 

work together across a range of applications [12]. All these standards were originally 

developed for the compression of camera-capture videos. With the fast development of 

the Internet and wireless communication, an emerging video type, screen content video, 

is playing an essential role in many applications, such as cloud-mobile computing, remote 

education, video conference with document sharing, wireless or Wi-Fi screen mirroring 

[12], etc. In these applications, it requires transmitting the computer-generated screen 

content video from one device to another for display. Efficient coding of screen content 

videos with low complexity is crucial for the success of these applications. Screen content 

videos usually shows a mixed content of traditional natural image blocks (NIBs) and 

screen content blocks (SCBs), as shown in Figure 1.1. Compared with NIBs, SCBs have 
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different signal characteristics, including no sensor noise, large flat areas with a single 

color, many repeated patterns within one frame and limited colors. While NIBs can be 

well compressed by the HEVC conventional intra (Intra) mode, new techniques are 

necessary for SCBs. Therefore, the Joint Collaborative Team on Video Coding (JCT-VC) 

established jointly by ITU-T VCEG and ISO/IEC MPEG has developed Screen Content 

Coding (SCC) extension [13] of HEVC to explore new encoding tools for screen content 

videos since January 2014, and it was finalized in 2016.  

1.2 Flexibility of Intra Coding Structures In SCC 

SCC inherits the same flexible quadtree-based block partitioning scheme from 

HEVC with the introduction of several new coding modes. In SCC, frames are divided 

into non-overlapping coding tree units (CTUs), which are the basic coding units with the 

size of 64×64 pixels, i.e. depth level of 0. Then each CTU can be partitioned into four 

coding units (CUs) of equal size, and each CU can be further partitioned into four smaller 

 

Figure 1.1: NIB and SCB in the first frame of “MissionControlClip3”. 
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CUs recursively until the smallest CUs of 8×8 pixels are reached, i.e. depth level of 3. An 

example of the partition structure in a CTU is shown in Figure 1.2. The intra mode decision 

process is performed for CUs with different sizes recursively. To efficiently encode a CU, 

two additional modes, intra block copy (IBC) mode  [15]–[21] and palette (PLT) [22]–[28] 

mode, are introduced. IBC mode is a block matching based intraframe approach as shown 

in Figure 1.3. IBC mode searches the reconstructed regions of the current frame to find the 

best reference block for the current CU. It includes three steps – IBCPredictor, IBC 

merge&skip (IBCM&S) and IBCSearch. IBCPredictor simply checks a set of block 

vectors (BVs) from the two last encoded CUs and the neighboring CUs of left, above, 

collocated, below left, above right and above left. IBCM&S is the intra version of the 

 

Figure 1.2: A CTU partition and its corresponding partitioning structure. 

 

 

Figure 1.3: IBC mode in SCC. The current CU is predicted from a block in the reconstructed 

region. 
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merge and skip mode for inter-prediction in HEVC, where IBCMerge signals residues to 

a SCC decoder but IBCSkip does not. IBCSearch finds the best matched block in the 

reconstructed region of the current frame for 16×16 CUs and 8×8 CUs, and it provides 

different searching strategies for different CU and prediction unit (PU) sizes. The 

searching strategies include the full vertical and horizontal searches, local vertical and 

horizontal 1D searches, and 2D pre-defined area search. For a 16×16 CU, only the 2N×2N 

PU with full vertical and horizontal searches are performed. It is due to the fact that a 

large CU size tends to have fewer repeated patterns within the same frame. For an 8×8 

CU, additional PU sizes are allowed to find more repeated patterns. If it is a N×2N PU, 

only full vertical and horizontal searches are carried out. If it is a 2N×N or 2N×2N PU, 

local vertical and horizontal 1D searches, and 2D pre-defined area search within the 

current CTU and left CTU are performed. Besides, a hash value based fast searching 

method is implemented for 8×8 CUs with 2N×2N PUs, where only blocks having the 

same hash value as the current CU are searched. Therefore, IBCSearch comes with the 

highest computational complexity among the three steps. PLT mode is designed to 

improve the encoding efficiency for CUs with limited colors, as shown in Figure 1.4. 

Several representative colors in a CU are selected to form a palette table. Then an index 

map is generated to indicate the index of the representative color for each pixel location. 

In the encoding process of a CU, Intra mode, IBC mode and PLT mode are exhaustively 

 

Figure 1.4: PLT mode in SCC. CUs are represented by base colors and an index map. 
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checked, and the encoding procedure implemented in the HEVC-SCC reference software, 

Screen Content Model (SCM), is shown in Figure 1.5. At the beginning, IBCPredictor is 

checked for CUs with sizes from 32×32 down to 8×8, If the distortion is zero after 

checking IBCPredictor, Intra mode inherited from HEVC is skipped. Otherwise, Intra 

mode is checked, which includes 33 directional modes, plus planar and DC modes. Then 

it is followed by checking block vector (BV) predictors of IBCM&S for all CUs. If 

IBCSkip is selected as the best mode among IBCPredictor, Intra, and IBCM&S, further 

mode searching is terminated. Otherwise, if the best mode is IBCPredictor, Intra or 

IBCMerge, the following IBCSearch and PLT modes are checked. Specifically, only CUs 

with sizes of 16×16 and 8×8 need to check IBCSearch. Finally, PLT mode is checked for 

CUs with sizes from 32×32 down to 8×8. In the mode searching process, the coding 

performance of each mode is evaluated by calculating a Lagrange rate-distortion (RD) 

cost function, 𝐽𝑚𝑜𝑑𝑒, as  

𝐽𝑚𝑜𝑑𝑒 = 𝐷𝑆𝑆𝐸 + 𝜆 × 𝐵𝑚𝑜𝑑𝑒                                     (1.1) 

where 𝐷𝑆𝑆𝐸  denotes the sum of the squared error between the current CU and its 

reconstructed CU, λ is a Lagrange multiplier and 𝐵𝑚𝑜𝑑𝑒 is the actual encoding bits for 

 

Figure 1.5: Encoding procedure implemented in SCM. 
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signaling the mode and the residues. The mode with the smallest RD cost is selected as 

the best mode of the CU, and its RD cost is represented as 𝐽𝐶𝑈. All CU partitions in a 

CTU need to go through this mode searching process, and the final partitioning structure 

of a CTU is selected as the one with the smallest RD cost, and it is involved in the final 

encoding bitstream.  

By adding coding tools specially designed for SCBs, SCC significantly improves the 

coding efficiency and it is expected to enhance HEVC to compress screen content videos. 

For example, the SCC reference software SCM version 4.0 achieves over 50% 

Bjøntegaard delta bitrate (BDBR) [29] compared with the HEVC reference software HM-

16.4 for typical screen content sequences [13]. 

1.3 Limitations of SCC for Intra Coding 

SCC achieves the coding gain than HEVC mainly from its adoption of more mode 

candidates. However, the additional mode candidates induce very high computational 

complexity. To analyze the additional complexity brought by IBC and PLT, we encode 

the first 100 frames of testing sequences with quantitation parameters (QPs) of 22, 27, 32, 

and 37 under all intra (AI) configuration, which are the settings recommended by 

common test conditions (CTC) for SCC [30]. The testing sequences are YUV 4:4:4 

sequences which include camera-captured content (CC), animation (A), text and graphics 

with motion (TGM), and mixed content (M). In this thesis, reference software HEVC Test 

Model Version 16.12 Screen Content Model Version 8.3 (HM-16.12+SCM-8.3, hereafter 

called SCM-8.3 for the sake of simplicity) [31] is used. The test platform used for 

simulations was a HP EliteDesk 800 G1 computer with a 64-bit Microsoft Windows 10 

OS running on an Intel Core i7-4790 CPU of 3.6 GHz and 32.0 GB RAM. Table 1.1 

tabulates the BDBR and the encoding time difference, ∆Time, of the conventional SCC 
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increased by IBC and PLT compared to SCC with both IBC and PLT disabled. ∆Time is 

defined as the percentage difference of the encoding time with and without IBC and PLT 

modes. It can be observed that the BDBR is decreased by 45.05% on average and up to 

83.47% which indicates that IBC and PLT are efficient coding tools for SC. However, 

the encoding time is also increased largely by 85.82% on average and up to 143.37% 

when both IBC and PLT are enabled. 

1.4 Motivation and Objectives 

In the encoding process, a SCC encoder needs to solve two problems:  

1. Mode decision: Which mode should be chosen to encode the current CU to 

minimize RD cost? 

2. CU partitioning decision: Should the current CU be partitioned into smaller sub-

CUs to minimize RD cost? 

To solve the above problems, the original SCC encoder adopts an exhaustive search 

method, where all mode candidates and all CU partitions are searched, and then the best 

coding structure is selected by comparing RD cost. For time-critical applications, the 

Table 1.1: BDBR and ΔTime of SCC compared to SCC with both IBC and PLT disabled. 

Sequences Type BDBR ∆Time 

 BasketballScreen M -52.47   87.50 

 MissionControlClip2 M -48.78   99.70 

 MissionControlClip3 M -66.92   87.90 

 ChineseEditing TGM -60.68 104.04 

 Console TGM -69.34   52.41 

 Desktop TGM -83.47   66.60 

 FlyingGraphics TGM -63.79   89.28 

 Map TGM -25.87 143.37 

 Programming TGM -52.96   73.50 

 SlideShow TGM -23.38   52.94 

 WebBrowsing TGM -80.32   66.16 

 Robot A   -2.67 112.42 

 EBURainFruits CC   -0.08   91.35 

 Kimono1 CC    0.03   74.30 

Average -45.05   85.82 
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exhaustive mode searching approach implemented in a SCC encoder is not practical. 

Therefore, it is desired that the mode candidates and CU sizes can be checked adaptively 

according to the content being encoded in order to speed up the encoding process.  

On the other hand, the full adoption of SCC may take several years while HEVC is 

still a widely used video compression standard. It motivates the development of the HEVC 

to SCC transcoder. First, there are a significant number of legacy screen content videos 

encoded by HEVC, and it is necessary to convert them from HEVC to SCC to achieve 

low-cost storage. Second, a transcoder is desirable to alleviate the traffic load between 

clients and clouds when users upload videos to a cloud server. Since the bandwidth 

resources are very expensive, it is necessary for users to convert HEVC bitstreams into 

SCC bitstreams with higher compression ratio for screen content videos. When users 

download videos from the cloud server, they can either use a device with a SCC decoder 

or let the server convert the bitstreams back to HEVC. Video transcoding can always be 

done by using a conventional brute-force transcoder (CBFT), which contains an original 

decoder and an original encoder. As shown in Figure 1.6, CBFT decodes the incoming 

HEVC bitstream first, and then completely re-encodes the decoded video into a SCC 

bitstream. Although this approach can be applied to any heterogeneous transcoding tasks 

with high RD performance, it brings high computational complexity due to the exhaustive 

search method. Therefore, it is desired that the decoder side information can be collected 

to simplify the re-encoding process of CBFT, as illustrated in the upper part of Figure 1.6.  

 

Figure 1.6: HEVC to SCC transcoder structure. 
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1.5 Organization of This Thesis 

This thesis is divided into seven chapters. Prior to the description of the objectives 

and the main contributions in this thesis, Chapter 2 gives a broad literature review of 

video coding techniques that are related to this work. The new coding tools in SCC 

beyond HEVC are then introduced. Afterwards, a review of the previous fast video 

encoding works is given. At the end of this chapter, a review of the previous fast video 

transcoding works is also presented.  

In Chapter 3, an online learning based fast SCC encoding algorithm is presented. To 

eliminate the checking of unnecessary modes and CU partitions, content-denpendent 

rules are derived according to the content being encoded. A scene change detection 

method is adopted to update the content-denpendent rules by obtaining the learning 

statistics from the first frame of a new scene. 

In Chapter 4, a decision tree (DT) based fast prediction framework is designed. To 

get rid of the exhaustive mode searching process, a flexible mode decision framework is 

proposed by inserting a classifier before checking each mode. This framework facilitates 

the use of dynamic features containing the unique intermediate coding information of a 

coding unit, and it can make sepreate decision for IBC and PLT modes such that they are 

not grouped together to be checked for a SCBs. Therefore, computational complexity can 

be reduced. 

In Chapter 5, a deep learning based fast prediction network DeepSCC is presented, 

which contains two parts, DeepSCC-I and DeepSCC-II. For CTUs having different 

content as their collocated CTUs, i.e., the sum of absolute differences (SAD) between the 

current CTU and its collocated CTU is larger than 0, they are called as dynamic CTUs 

and their sample values are fed to DeepSCC-I. Otherwise, they are called as stationary 

CTUs and their sample values are fed to DeepSCC-II. Since there exists strong 
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correlations between the optimal modes of a stationary CTU and its collocated CTU, 

DeepSCC-II additionally utilizes the optimal mode maps of the collocated CTU to further 

reduce the computational complexity. 

In Chapter 6, a fast HEVC to SCC transcoder (FHST) is presented to migrate the 

legacy screen content videos from HEVC to SCC. First, the CU partition in SCC is early 

terminated by utilizing the CU depth level collected from the HEVC decoder. Second, 

various features from 4 categories are obtained to improve the mode decision accuracy, 

which are the features from the HEVC decoder, static features, dynamic features, and 

spatial features. With the help of these features, a flexible transcoding structure is 

proposed to make early mode decisions by using DTs. 

Chapter 7 is devoted to a conclusion of the work herein, and we summarize the 

contributions of the thesis. Suggestions are also included for further research in this area. 
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Chapter 2 Literature Review  

2.1 Background Research 

To improve the compression rate of digital videos, various video coding standards 

such as H.264/AVC and HEVC have been proposed. These standards are designed to 

reduce the video size by eliminating data redundancy. For example, HEVC employs 33 

intra-prediction directions and DC plus planer mode to predict the content of a CU based 

on spatial neighboring blocks. Nowadays, the proliferation of applications that use video 

devices to display a mixed content of NIBs and SCBs leads to the development of SCC 

extension. To further reduce the data redundancy beyond HEVC, SCC is developed as an 

extension of HEVC by including some additional coding tools. Consequently, more 

computational efforts are needed in data redundancy elimination. Therefore, fast 

algorithms for reducing the computational complexity in video coding are desired. In the 

literature, many efforts have been devoted to accelerating the encoding process. 

This chapter is organized as follows. In the first section, a brief description of some 

fundamental concepts about video coding is presented, with an emphasis on the coding 

structure of HEVC. Then, we present the new coding tools in SCC beyond HEVC. Next, 

various works aimed at the complexity reduction in the encoding problem of HEVC and 

SCC are described. The last section reviews several existing fast video transcoding 

algorithms among various video standards. 
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2.2 Digital Video Compression Fundamentals 

Digital video is stored and transmitted in digital form, which requires a large amount 

of data. Consequently, the cost of storing and transmitting a raw video is extremely high. 

To overcome the drawback of the raw video, spatial and temporal redundancy can be 

utilized to reduce the video size with negligible quality loss. Various video coding 

standards have been developed by ITU-T VCEG and ISO/IEC MPEG separately or 

jointly, such as H.261, MPEG-1 Part 2, H.262/MPEG-2 Part 2, H.263, MPEG-4 Part 2, 

H.264/AVC, and the recent HEVC. HEVC mainly inherits coding features from 

H.264/AVC, and then it induces the flexible quadtree-based block partitioning scheme to 

further improve coding efficiency beyond H.264/AVC. It is reported that HEVC achieves 

a 50% bitrate reduction over H.264/AVC with similar video quality [32]. As an extension 

of HEVC which is specially developed for screen content videos, SCC further reduces 

50% bitrate reduction over HEVC with similar video quality for them. The block diagram 

of a HEVC/SCC video encoder is illustrated in Figure 2.1. Intra-prediction and inter-

prediction are employed to remove the spatial and temporal redundancy, respectively. 

Then, the prediction error is signaled to a decoder by entropy coding after transform and 

quantization.  

 

Figure 2.1: Block diagram of a HEVC/SCC video encoder. 
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2.2.1 Intra-Prediction for Spatial Redundancy Elimination 

Intra-prediction is an efficient tool to reduce the spatial redundancy within a frame, 

where the content of a CU is predicted according to the reconstructed spatially 

neighboring samples. HEVC employs 33 different directional orientations and DC mode 

plus planner mode to reduce the redundancy, and they are referred to as Intra mode in this 

thesis. Then, only the residues between the current block and its predicted block are 

encoded. An example of a CU encoded by Intra mode is shown in Figure 2.2. 

2.2.2 Inter-Prediction for Temporal Redundancy Elimination 

Inter-prediction is another efficient tool in HEVC, which removes temporal 

redundancy between adjacent frames. Instead of using reconstructed spatially 

neighboring samples, the reference pixels are from a previously coded frame. Inter-

prediction is performed based on the assumption that objects are in translational motion 

among adjacent frames so that a CU in the current frame can find a similar block in the 

previously coded frame. HEVC performs Motion estimation (ME) to find the best 

matched block for the current CU, and the relative location between the current CU and 

the reference block is denoted by a motion vector (MV). ME can be done by merge & 

skip mode or advanced motion vector prediction (AMVP). Merge & skip mode derives 

several motion predictors from spatial and temporal neighboring blocks, and then directly 

uses them to find the best matched block. More specifically, merge mode signals residues 

 

Figure 2.2: An example of a CU encoded by Intra mode. 

 



Chapter 2 Literature Review 

 14 

to the decoder but skip mode does not. On the other hand, AMVP first derives a motion 

predictor from two spatial neighboring blocks, and then it further searches the best 

matched block around the motion predictor. Unlike merge & skip mode, the motion vector 

of AMVP is differentially coded with the motion vector predictor. After performing 

motion compensation (MC), only the residual block between the current block and its 

predicted block is encoded.  

2.3 New Coding Tools in SCC Beyond HEVC 

To improve the coding efficiency for screen content videos, SCC adopts four major 

coding tools beyond HEVC, which are IBC mode [15]–[21] and PLT mode [22]–[28], 

adaptive color transform (ACT) [33]–[37], adaptive motion compensation precision 

(AMCP) [38]–[42]. IBC and PLT modes significantly improve the coding efficiency of 

SCC but also induce great computational complexity.  

IBC was first proposed in the contest of AVC/H.264 [43], but then removed because 

it is not efficient for camera-captured videos. SCC includes IBC as a coding tool similar 

to inter-prediction, but its search region is the reconstructed area in the current frames. 

The syntax for IBC mode is unified with inter-prediction but it adopts a different 

searching strategy. If IBC mode is chosen, a BV is signaled to denote the relative location 

between the match block and the current CU. 

PLT mode is an effective mode for CUs with limited colors. Several representative 

colors in a CU are selected as base colors to form a palette table. Each entry in the palette 

table consists of three components of YUV or RGB. Those color values not in the palette 

table are treated as escape colors. Then, a palette index map is generated to send indices 

for base colors and escape colors. For base colors, only the indices in the palette are 

encoded. For escapes colors, the quantized color values are directly encoded.  
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ACT is developed to remove the inter-color component redundancy. A residual 

block is adaptively converted into a different color space, i.e., YCgCo. The RD cost 

function is employed to decide whether to code the residual signal in the original 

RGB/YUV color space or in the converted YCgCo color space.   

AMCP adaptively switches motion vectors between full and fractional resolutions. 

Unlike screen camera-capture content where motion is continuous and motion vectors in 

the fractional resolution are necessary, computer-generated content usually has a 

granularity of one or more samples. By using AMCP, it eliminates the need to signal 

fractional motion vectors for computer-generated contents. 

2.4 Complexity Reduction in the Encoding Problem 

To simplify the encoding process of HEVC, a fast CU partitioning algorithm was 

proposed in [44] by using Bayesian decision rule. The CU partitioning process is early 

terminated by using joint online and offline learning. In [45], a fast mode decision 

algorithm was proposed to predict the RD cost and bit cost of a CU based on the statistical 

analysis. Then unnecessary modes are skipped according to the prediction. In [46], both 

the mode searching process and the CU partitioning process are terminated adaptively by 

analyzing the RD cost of the current CU. Although they work well for computational 

complexity reduction of HEVC, they are not suitable for SCC in which new coding modes 

such as IBC and PLT have been adopted. 

To reduce the computational complexity of SCC, fast mode searching algorithms 

were designed in [47]–[49], and fast CU size decision algorithms were suggested in [50]–

[52]. Then, various algorithms were integrated to make both fast mode decision and CU 

size decision in [53]–[56]. In [47], a new mode was proposed to fill a noiseless smooth 

CU by its boundary samples. In [48], a hash value is calculated to adaptively skip the 
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local search process in IBC mode. In [49], IBC mode is skipped for zero activity CUs and 

low gradient CUs. In [50], a neural network based fast algorithm was proposed to make 

fast CU size decision by utilizing features that describe CU statistics and sub-CU 

homogeneity. However, high RD performance loss is induced by this approach. In [51], 

for static regions, collocated CU depth and mode information are utilized to predict the 

current CU size. Besides, an approach with the adaptive searching step was proposed to 

simplify the block matching process of IBC mode. However, this algorithm is not suitable 

for screen content videos with many dynamic regions. In [52], a fast CU size decision 

algorithm based on entropy was proposed. Some rules are firstly set based on entropy to 

make CU partitioning decision, and then the coding bits are used to improve the decision 

accuracy. The algorithms in [53]–[56] are mainly based on the assumption that NIBs 

select Intra mode while SCBs select IBC and PLT modes. They then classify CUs into 

NIBs and SCBs to make fast mode decision. In [53], a DT-based classifier was firstly 

designed to classify CUs into NIBs and SCBs, so that NIBs only check Intra mode while 

SCBs check both IBC and PLT modes. Besides, to speed up the encoding of NIBs, two 

classifiers were designed to predict the Intra mode direction from 35 prediction modes 

and early terminate the partitions of NIBs, respectively. In [54], a CU type classification 

is performed by CU content analysis. While IBC and PLT modes are skipped for some 

smooth NIBs, all modes are checked for SCBs and non-smooth NIBs. Then the depth 

information of temporal and spatial neighboring CUs, as well as coding bits, are utilized 

to make fast CU size decision. In [55], Intra mode is firstly checked for all CUs with 

2N×2N PUs, and then an early CU partitioning decision is made. If a CU is classified as 

a partitioning CU, it directly goes to the next depth level. Otherwise, it is further classified 

as a SCB or NIB. If it is a SCB, both IBC and PLT modes are checked. If it is a NIB, only 

Intra mode for N×N PUs in the depth level of 3 is tested. In [56], neural network-based 
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classifiers are trained to classify CUs in NIBs and SCBs. Again, IBC, PLT modes and a 

subset of Cintra mode are checked for SCBs, while only Cintra mode is checked for NIBs. 

Then, various heuristic rules based on the information from spatial and temporal adjacent 

CUs is proposed to make fast CU partitioning decision. Although the methods in [53]–

[56] provide better performance compared with the previous works, they mainly focus on 

the fast encoding of NIBs. For SCBs, either both IBC and PLT modes or all modes need 

to be checked. Therefore, it is desired that mode candidates can be further reduced for 

SCBs.  

2.5 Complexity Reduction in the Transcoding Problem 

In the literature, transcoding techniques can be divided into two categories: 

homogeneous transcoding and heterogeneous transcoding. Homogeneous transcoding 

refers to the conversion within the same format to meet a new functionality, such as 

different bit rates [57], different frame rates [58]–[60], different spatial resolutions[61], 

or even the insertion of new information such as watermarking [62] and error resilience 

layers [63], [64]. Heterogeneous transcoding refers to the bitstream conversion between 

different formats, and the HEVC to SCC transcoding belongs to this category. For 

heterogeneous transcoding, many fast transcoding algorithms have been proposed for 

different tasks, such as MPEG-2 to H.264 transcoding [65], [66], MPEG-2 to HEVC 

transcoding [67] and H.264 to HEVC transcoding [68]–[71]. These transcoders all focus 

on the fast CU partitioning decision because of different CU partitioning structures of the 

various standards. However, the fast HEVC to SCC transcoding is different from the 

previous transcoding problem due to the introduction of the new IBC and PLT modes. 

Therefore, new challenges are introduced in the HEVC to SCC transcoding problem.  
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To reduce the computational complexity of a HEVC to SCC transcoder, one possible 

way is to use various fast encoding algorithms [47]–[56] to replace the original SCC 

encoder of CBFT in Figure 1.6. These fast algorithms all utilize the SCC encoder side 

information only, and they are not optimal when applied to the HEVC to SCC transcoding 

problem. On the one hand, the information from SCC encoder side contains noise due to 

the lossy encoding and decoding of HEVC, and it may lead to high RD performance loss. 

On the other hand, it is desired that the information from the HEVC decoder side can be 

utilized to improve decision accuracy. 

In the literature, there is only one paper [72] studying the fast transcoding scheme of 

HEVC to SCC, and it was designed for screen content videos in YUV 4:4:4 format. First, 

it directly maps the optimal CU size from HEVC to SCC and classifies CUs into non-

partitioning CUs and partitioning CUs. For partitioning CUs, it utilizes a CU type 

classifier to further classify them into SCBs and NIBs like other fast mode decision 

algorithms [53]–[56]. SCBs check both IBC and PLT modes before going to the next 

depth level, while NIBs directly go to the next depth level. For non-partitioning CUs, only 

Intra mode is checked and then CU partitions are terminated. Besides, some thresholds 

are set to skip remaining modes and CU partitions if the bit cost of a CU is small. However, 

it has two drawbacks. First, it only utilizes some static features describing the current CU 

content to perform classifications while ignoring the information from the intermediate 

encoding stage and neighboring CUs. Therefore, the prediction accuracy is not high, and 

all mode candidates need to be checked for 8×8 CUs. Second, it treats the decision for 

IBC and PLT modes the same like other fast mode decision algorithms [53]–[56], where 

both IBC and PLT modes are checked for SCBs. In fact, a SCB will only select one mode 

from IBC and PLT modes, and higher re-encoding time reduction can be provided if mode 

candidates are further reduced for SCBs. 
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2.6 Chapter Summary 

To reduce the computation complexity of the SCC encoding and transcoding 

problems, many recently proposed algorithms have been reviewed in this chapter. We 

started this chapter by reviewing the compression techniques employed in current video 

standards. Next, four new coding tools in SCC beyond HEVC were introduced. Specially, 

IBC and PLT modes significantly improve the coding efficiency for screen content videos, 

but they also induce great computational complexity. Afterward, various works aimed at 

reducing the encoding time of SCC were presented. The existing algorithms always 

perform simple CU type classification for making mode decision. Therefore, at least two 

modes, IBC and PLT, need to be checked for SCBs. To further reduce the encoding time, 

the classification between IBC-coded SCBs and PLT-coded SCBs should be made. In 

addition, the existing algorithms related to the fast video transcoding problem were 

reviewed, and there is only one work aimed at accelerating the transcoding of HEVC to 

SCC. It shows that there is plenty of room for improvement. Therefore, in the following 

chapters, we examine the possibility of further accelerating the encoding and transcoding 

process by various machine learning algorithms.
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Chapter 3 Determinations on Coding Structure 

by Online Learning 

3.1 Introduction 

It is well known that the characteristics of successive frames in a video are usually 

very similar. By taking this into account, content dependent rules can be considered to 

predict the optimal modes and CU partitions of the current frame. In this chapter, a fast 

intra-prediction algorithm by content analysis and dynamic thresholding is presented, 

where the prediction models are tailor-made according to the video content and QP. The 

organization of this chapter is as follows. Section 3.2 presents the motivation of this 

research work. Section 3.3 describes the details of the proposed coding scheme by content 

analysis and dynamic thresholding. Section 3.4 evaluates the performance of the proposed 

scheme, where simulation results are provided in BDBR and ∆Time. Finally, conclusions 

are given in Section 3.5. 

Parts of the contents of this chapter are extracted from our published work [73]: 

⚫ Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Fast Intraprediction 

for High-Efficiency Video Coding Screen Content Coding by Content Analysis and 

Dynamic Thresholding,” Journal of Electronic Imaging, vol. 27, no. 5, pp. 053029-

1–053029-18, October 2018. 

3.2 Motivation for Content Dependent Rules  

Different sequences usually show very different characteristics, and they have 

different mode decision and CU partitioning decision. On the contrary, a video sequence 



Chapter 3 Determinations on Coding Structure by Online Learning 

 21 

is usually composed of a series of similar frames, and they exhibit similar characteristics. 

If content dependent rules can be derived for different sequences, encoding time can be 

further reduced. 

3.2.1 Content Dependent Mode Decision 

To analyze the mode decision in SCC, the encoding time distribution and mode 

distribution at the depth level of 2 with QP of 32 are shown in Figure 3.1. It is noted that 

similar distributions can be observed with other QPs and depth levels. From Figure 3.1, it 

is observed that the distributions vary remarkably for different sequences. For example, in 

“Console”, Intra mode only takes up 7.55% of the mode distribution but it costs 22.09% 

of the encoding time. In “EBURainFruits”, IBC and PLT modes take up 38.03% and 

15.94% of the encoding time while only negligible percentage of CUs (0.21% and 0.06%, 

respectively) select them, respectively. For “Map”, IBC mode only takes up 6.72% of the 

mode distribution while it costs 43.64% of the encoding time. Besides, it is observed that 

although IBC mode can be skipped for many CUs of “Map”, PLT mode is a frequently 

selected mode which takes up 56.51% of total modes. Although CU type classification 

algorithms such as [53]–[56] work well for “EBURainFruits” by skipping both IBC and 

 

Figure 3.1: (a) Encoding time and (b) mode distributions at the depth level of 2 and QP of 32. 

(a) (b)
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PLT modes for NIBs, they are not optimal for “Map” because their fixed rules treat IBC 

and PLT modes equally. The variability of distributions among various sequences in 

Figure 3.1 implies that content dependent rules should be beneficial for making fast mode 

decisions in addition to performing CU type classifications. 

3.2.2 Content Dependent CU Size Decision 

To analyze the CU size decision in SCC, the encoding time and optimal CU depth 

level distributions of all test sequences are presented in Figure 3.2 with QP of 32. As 

mentioned before, similar distributions can be observed with other QPs. It is observed that 

the computational complexity increases as the CU depth level gets higher, and the CU 

depth level of 3 takes up over 50% of the total encoding time for many sequences such as 

“Map”, “SlideShow”, “Robot”, “EBURainFruit”, and “Kimnono1”. However, the optimal 

CU depth level distributions of these sequences differ a lot. For example, 58.02% of CUs 

in “Map” select the depth level of 3, while only 5.65% of CUs in “SlideShow” are encoded 

by the depth level of 3. Again, it is desirable that content dependent rules can be derived 

to early terminate the CU partitioning process. For sequences with many CUs selecting 

lower depth levels like “SlideShow”, the content dependent rules with an adaptive 

 

Figure 3.2: (a) Encoding time and (b) CU depth level distribution at QP of 32. 

 

(a) (b)
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thresholding technique will terminate more CU partitions to pursuit higher encoding time 

reduction. 

3.3 Proposed Coding Scheme by Content Analysis and Dynamic 

Thresholding 

Among those coding modes, Intra mode works well for NIBs while PLT and IBC 

modes are specially designed based on the characteristics of the repeated pattern and 

limited colors for SCBs. Therefore, PLT and IBC modes can be skipped for NIBs while 

Intra mode can be skipped for SCBs. In this section, this CU type classification will be 

carried out through a rough CU classification, followed by a fine-granular CU 

classification. Then, content dependent rules with adaptive thresholding based on 

background color ratio and RD cost are proposed to further speed up mode decisions and 

skip redundant partitions for efficiently encoded CUs, respectively. 

3.3.1 Rough CU Classification  

There are usually many sharp edges in a SCB while a NIB tends to be smoother. 

Based on this observation, high gradient pixels are adopted to classify CUs into rough 

NIBs (RNIBs) and rough SCBs (RSCBs). The use of high gradient pixels is first 

employed in [74] for an early version of PLT, which utilizes the number of high gradient 

pixels HGN in a CU to decide whether PLT should be tested for the CU. This is very 

similar to our purpose to distinguish regions with shape edges and smooth pixels for 

RSCBs and RNIBs, respectively. A pixel is defined as a high gradient pixel if the 

luminance difference of the current pixel 𝑌𝑖,𝑗  and one of the neighboring pixels 𝑌𝑖±1,𝑗 

and 𝑌𝑖,𝑗±1 located at 0, 90, 180  and 270 is larger than a threshold 𝑇𝐻𝑆 

|𝑌𝑖,𝑗 − 𝑌𝑖±1,𝑗| > 𝑇𝐻𝑆   or   |𝑌𝑖,𝑗 − 𝑌𝑖,𝑗±1| > 𝑇𝐻𝑆                        (3.1) 
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where 𝑖  and 𝑗  denote the row and column indices of the pixel. 𝑇𝐻𝑆  is a threshold 

controlling the sharpness of the edges for detection, which is experimentally set to 64. 

Furthermore, if HGN in a CU is larger than TH_HGN, it is classified as a RSCB in the 

proposed algorithm. Otherwise, it is classified as a RNIB. 

As shown in Figure 3.3(b), some sharp edges cannot be detected by high gradient 

pixels that only use the luminance component. But we find that they can be well detected 

if all components of a pixel are taken into consideration, which is clearly shown in the 

example shown in Figure 3.3(c). Therefore, instead of using the luminance component 

only, our proposed algorithm further improves it by utilizing all color components to 

avoid the missed detection of sharp edges. In the proposed algorithm, high gradient pixels 

are firstly detected by using each color component separately with 𝑇𝐻𝑆, and then 𝐻𝐺𝑁 is 

set to the maximum number of high gradient pixels detected by the three components 

𝐻𝐺𝑁 = 𝑚𝑎𝑥(𝐻𝐺𝑁𝑌, 𝐻𝐺𝑁𝐶𝑟 , 𝐻𝐺𝑁𝐶𝑏)                         (3.2) 

where max(⋅) is the maximum function to return the largest value from a set of data. 𝐻𝐺𝑁𝑌, 

𝐻𝐺𝑁𝐶𝑟, and 𝐻𝐺𝑁𝐶𝑏 are the number of high gradient pixels detected by the components 

of Y, Cr and Cb, respectively. Since a larger CU usually has a larger number of high 

gradient pixels, the value of TH_HGN is set according to CU sizes of 2N2N pixels as 

𝑇𝐻_𝐻𝐺𝑁 =
2𝑁×2𝑁

256
× 4                                          (3.3) 

We perform the rough CU classification as 

 

Figure 3.3: (a) Original content in “ChineseEditing” and its high gradient pixels detected by (b) 

luminance component, and (c) all components. High gradient pixels are shown by white pixels. 
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CU ∈ {
RSCB, 𝑖𝑓 𝐻𝐺𝑁 > 𝑇𝐻_𝐻𝐺𝑁
RNIB, 𝑖𝑓 𝐻𝐺𝑁  𝑇𝐻_𝐻𝐺𝑁

                                  (3.4) 

Thus, if HGN in a CU is larger than TH_HGN, it is classified as a RSCB in the 

proposed algorithm. Otherwise, it is classified as a RNIB. To analyze the mode 

distributions in terms of RNIBs and RSCBs, we encoded all 14 SCC standard sequences. 

The average mode distributions for RSCBs and RNIBs with QP of 32 are shown in Table 

3.1, and similar distributions can be observed with other QPs. It is observed that RSCBs 

tend to select IBC or PLT mode while RNIBs tend to select Intra mode. However, it is 

also observed that the accuracy of the CU type classification is not high enough. For 

example, 52.64% of RSCBs still select Intra mode at the depth level of 0. Therefore, 

instead of making early mode decisions according to the rough CU type directly, it is 

adopted as a pre-processing step and then two fast mode decision techniques are built on 

the top of the rough CU classification result.  

3.3.2 Fine-granular Coding Unit Classification 

In this sub-section, the background color information in a CU is used to perform a 

more fine-granular CU type classification. For a CU, the background color is defined as 

the color with the highest occurrence frequency within the CU by considering all the three 

components. As shown in Figure 1.1, there is usually a large area filled with a background 

Table 3.1: Average mode distributions in each depth level for RSCBs and RNIBs. 

CU Type Depth Level  PLT/IBC (%) Intra (%) 

RSCB 

0 47.04 52.64 

1 87.91 12.09 

2 89.14 10.86 

3 80.65 19.35 

RNIB 

0 6.29 93.71 

1 20.31 79.39 

2 34.06 65.94 

3 29.34 70.66 
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color for a SCB. If the background color of the current CU exists in all its four sub-CUs, 

it is more likely to be a SCB. Otherwise, if the background color of the current CU 

disappears in one of its sub-CUs, it is more likely to be a NIB. Therefore, by utilizing 

both the rough CU classification result and the background color, incoming CUs are 

further classified as SCBs, NIBs and Uncertain CUs as 

CU ∈ {
SCB, 𝑖𝑓 CU ∈ RSCB and 𝐵𝐶 ∈ {𝑆1⋂𝑆2⋂𝑆3⋂𝑆4}
NIB, 𝑖𝑓 CU ∈ RNIB and 𝐵𝐶 ∉ {𝑆1⋂𝑆2⋂𝑆3⋂𝑆4}   
Uncertain CU,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

                    (3.5) 

where 𝐵𝐶 denotes the background color of the current CU. 𝑆1, 𝑆2, 𝑆3, and 𝑆4 denote the 

sample spaces of its four sub-CUs. It should be noted that {𝑆1⋂𝑆2⋂𝑆3⋂𝑆4} would contain 

𝐵𝐶 only if all the sub-CUs contain the background color of the current CU. Therefore, a 

CU is classified as a SCB if it is a RSCB and its four sub-CUs contain the background 

color of the current CU. On the contrary, a CU is classified as a NIB if it is a RNIB and 

the background color of the CU disappears from at least one of its four sub-CUs. 

Otherwise, it is treated as an Uncertain CU and no early mode decision is made. Since 

IBC mode and PLT mode are designed for SCBs, they are skipped for NIBs. Similarly, 

Intra mode is designed for NIBs and it is skipped for SCBs. To evaluate the accuracy of 

the fine-granular CU classification technique, we analyzed the hit rate of mode decision 

by calculating the percentage of the CUs whose optimal mode from the original SCM-8.3 

is not skipped by using the proposed technique. Table 3.2 shows the hit rate for all test 

sequences under QP of 32, and similar results can be observed with other QPs. It is 

observed that the hit rates vary from 87.96% to 100% for different sequences and depth 

levels. Besides, the average hit rates for the depth levels of 0, 1, 2, and 3 are 96.04%, 

97.33%, 96.89% and 94.70%, respectively. Considering that IBC mode is a very efficient 

mode for encoding small NIBs with repeated patterns, we still check IBC mode for NIBs 

at the depth level of 3. By adding this condition, it is observed in Table 3.2 that the hit 
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rate for the depth levels of 3 is increased to 97.99%, and our experiments shows that the 

increase in BDBR brought by our proposed algorithm is reduced by 0.90%.  

3.3.3 Mode Skipping Rule with Adaptive Thresholding 

In this sub-section, based on the rough CU classification result, a content dependent 

rule with adaptive thresholding based on background color ratio K is derived to perform 

more flexible fast mode decisions. Let BCN be the number of pixels with the background 

color of a 2N2N CU, then K is defined as 

𝐾 =
𝐵𝐶𝑁

2𝑁×2𝑁
.                                                       (3.6) 

Since SCBs usually have a large area filled with a background color, they have higher 

values of K than NIBs. Therefore, CUs with high values of K are more likely to select 

IBC and PLT modes while CUs with low values of K tend to select Intra mode. To analyze 

the distributions of Intra, IBC and PLT modes in terms of K, the first 100 frames of 

Table 3.2: Hit rate of mode decision for various sequences by the fine-granular CU classification 

technique. 

Sequences Depth=0 (%) Depth=1 (%) Depth=2 (%) Depth=3 (%) 

Depth=3 with 

additional IBC 

checking (%) 

BasketballScreen 92.97 93.69 94.48 92.67 97.73 

MissionControlClip2 96.80 94.41 94.07 92.73 97.95 

MissionControlClip3 93.20 95.38 93.72 95.32 98.25 

ChineseEditing 87.96 96.66 97.47 96.45 98.24 

Console 92.93 99.26 99.68 98.44 98.61 

Desktop 98.19 99.64 98.25 97.20 99.43 

FlyingGraphics 99.59 99.78 99.15 93.56 95.50 

Map 98.43 97.20 94.73 92.13 96.90 

Programming 90.20 94.12 96.60 94.23 97.63 

SlideShow 97.30 96.32 93.79 89.20 93.98 

WebBrowsing 97.60 97.11 98.97 97.88 99.21 

Robot 99.94 99.34 96.48 91.31 98.54 

EBURainFruits 99.50 99.66 99.58 98.00 99.87 

Kimono1 100 100 99.52 96.70 99.98 

Average 96.04 97.33 96.89 94.70 97.99 
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“WebBrowsing” were encoded. Considering that RSCBs and RNIBs have different mode 

distributions, as shown in Table 3.1, the optimal mode distributions are investigated for 

RSCBs and RNIBs separately. Figure 3.4(a)–(c) and Figure 3.4(d)–(f) show the Intra, 

IBC, PLT mode distributions in RNIBs and RSCBs with QP of 32 and the depth level of 

2, respectively, and similar distributions can be observed with other QPs and depth levels. 

It is noted that if a CU has same samples in each row or each column, it is regarded as a 

simple CU, as depicted in Figure 1.1. It is well known that simple CUs can be encoded 

by all modes efficiently with low complexity, they are excluded in Figure 3.4. It is 

observed that for both RNIBs and RSCBs, Intra mode is rarely selected in the region with 

high values of K, while IBC and PLT modes are rarely selected in the region with low 

values of K. More specifically, while IBC and PLT modes have similar distributions in 

RSCBs, they have different distributions in RNIBs. This explains why the mode skipping 

rule with adaptive thresholding should consider RSCBs and RNIBs separately. Compared 

with IBC mode, the number of RNIBs selecting PLT mode is relatively low, and they are 

 

Figure 3.4: Distributions of (a) Intra mode, (b) IBC mode, and (c) PLT mode in RNIBs, and (d) 

Intra mode, (e) IBC mode, and (f) PLT mode in RSCBs in terms of 𝐾 for the first 100 frames of 

“WebBrowsing” encoded with QP of 32 and the depth level of 2. 
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concentrated on a narrower region with very high values of K. Therefore, for CUs in the 

depth level 𝑑 (𝑑 ∈ {0,1,2,3}) and rough type 𝑡 (𝑡 ∈ {RNIB , RSCB}), content dependent 

thresholds 𝑇𝐻_𝐾𝐼  𝑟𝑎
 ,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

, and 𝑇𝐻_𝐾   
 ,𝑑

 of K can be derived to perform mode 

skipping for Intra, IBC and PLT modes, respectively. Based on the observation from 

Figure 3.4(a) and Figure 3.4(d), the skip region of Intra mode is on the right side of 

𝑇𝐻_𝐾𝐼  𝑟𝑎
 ,𝑑

. By rounding the value of K down to one-hundredth of its original value, the 

ratio of Intra mode, 𝑅𝐼  𝑟𝑎
 ,𝑑

, to all modes in its skip region is calculated as  

𝑅𝐼  𝑟𝑎
 ,𝑑 =

∑ 𝑁𝑢𝑚𝐶𝑈𝐼𝑛𝑡𝑟𝑎
𝑡,𝑑 (𝐾)1

𝐾=𝑇𝐻_𝐾𝐼𝑛𝑡𝑟𝑎
𝑡,𝑑

∑ 𝑁𝑢𝑚𝐶𝑈𝐴𝑙𝑙
𝑡,𝑑(𝐾)1

𝐾=𝑇𝐻_𝐾𝐼𝑛𝑡𝑟𝑎
𝑡,𝑑

                                (3.7) 

where 𝑁𝑢𝑚𝐶𝑈𝐼  𝑟𝑎
 ,𝑑 (𝐾) denotes the number of Intra CUs with the background color ratio 

of K. 𝑁𝑢𝑚𝐶𝑈𝐴𝑙𝑙
 ,𝑑(𝐾) denotes the number of all CUs with the background color ratio of K. 

On the other hand, as shown in Figure 3.4(b)–(c) and Figure 3.4(e)–(f), the skip regions 

of IBC and PLT modes are on the left side of 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

, and 𝑇𝐻_𝐾   
 ,𝑑

. Then, for a given 

value of 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 and 𝑇𝐻_𝐾   
 ,𝑑

, the ratios of IBC and PLT modes, 𝑅𝐼𝐵𝐶
 ,𝑑

 and 𝑅   
 ,𝑑

, to all 

modes in their own skip regions are calculated as 

𝑅𝐼𝐵𝐶
 ,𝑑 =

∑ 𝑁𝑢𝑚𝐶𝑈𝐼𝐵𝐶
𝑡,𝑑 (𝐾)

𝑇𝐻_𝐾𝐼𝐵𝐶
𝑡,𝑑

𝐾=0

∑ 𝑁𝑢𝑚𝐶𝑈𝐴𝑙𝑙
𝑡,𝑑(𝐾)

𝑇𝐻_𝐾𝐼𝐵𝐶
𝑡,𝑑

𝐾=0

                                       (3.8) 

𝑅   
 ,𝑑 =

∑ 𝑁𝑢𝑚𝐶𝑈𝑃𝐿𝑇
𝑡,𝑑 (𝐾)

𝑇𝐻_𝐾𝑃𝐿𝑇
𝑡,𝑑

𝐾=0

∑ 𝑁𝑢𝑚𝐶𝑈𝐴𝑙𝑙
𝑡,𝑑(𝐾)

𝑇𝐻_𝐾𝑃𝐿𝑇
𝑡,𝑑

𝐾=0

                                      (3.9) 

where 𝑁𝑢𝑚𝐶𝑈𝐼𝐵𝐶
 ,𝑑 (𝐾) and 𝑁𝑢𝑚𝐶𝑈   

 ,𝑑 (𝐾) denote the number of IBC CUs, and PLT CUs 

with the background color ratio of K, respectively. It is noted that 𝑁𝑢𝑚𝐶𝑈𝐴𝑙𝑙
 ,𝑑(𝐾) is 

calculated as the sum of 𝑁𝑢𝑚𝐶𝑈𝐼  𝑟𝑎
 ,𝑑 (𝐾) , 𝑁𝑢𝑚𝐶𝑈𝐼𝐵𝐶

 ,𝑑 (𝐾)  and 𝑁𝑢𝑚𝐶𝑈   
 ,𝑑 (𝐾) . To 

reduce the computational complexity of the mode searching process, it is desired that the 

skip regions are set as large as possible. However, larger skip regions also induce larger 
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RD performance loss, because more modes are incorrectly skipped. Therefore, a 

confidence threshold 𝛼 is set to control the skip region of each mode. For a given value 

of 𝛼 , 𝑇𝐻_𝐾𝐼  𝑟𝑎
 ,𝑑

 is set to the minimum value by keeping 𝑅𝐼  𝑟𝑎
 ,𝑑

 smaller than 𝛼 while 

𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 and 𝑇𝐻_𝐾   
 ,𝑑

 are set to the maximum values by keeping 𝑅𝐼𝐵𝐶
 ,𝑑

 and 𝑅   
 ,𝑑

 smaller 

than 𝛼.  

For the first frame of a new scene in a sequence, the encoder follows the original 

encoding process to search all modes in all depth levels while collecting the statistics of 

𝑁𝑢𝑚𝐶𝑈𝐼  𝑟𝑎
 ,𝑑 (𝐾), 𝑁𝑢𝑚𝐶𝑈𝐼𝐵𝐶

 ,𝑑 (𝐾) and 𝑁𝑢𝑚𝐶𝑈   
 ,𝑑 (𝐾). Then, based on the statistics in the 

first frame, the values of 𝑇𝐻_𝐾𝐼  𝑟𝑎
 ,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 and 𝑇𝐻_𝐾   
 ,𝑑

 are derived according to the 

confidence threshold 𝛼. Finally, 𝑇𝐻_𝐾𝐼  𝑟𝑎
 ,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 and 𝑇𝐻_𝐾   
 ,𝑑

 are used to perform 

early mode skipping for the following frames. When a CU with the background color 

ratio of K is being encoded, intra mode is skipped if  

𝐾 > 𝑇𝐻_𝐾𝐼  𝑟𝑎
 ,𝑑

.                                                (3.10) 

Similarly, IBC mode and PLT mode are skipped separately if   

𝐾 < 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

                                                    (3.11) 

𝐾 < 𝑇𝐻_𝐾   
 ,𝑑

.                                                   (3.12) 

To analyze the hit rate of the mode decision with our adaptive thresholding, a value 

of 𝛼 is set to 0.05 in this sub-section, and the analysis of the effects on selecting 𝛼 will be 

examined in Section 3.4.1. Table 3.3 shows the hit rate of mode decision for all test 

sequences under QP of 32, and similar distributions are observed with other QPs. It is 

observed that the hit rates vary from 90.65% to 100% for different sequences and depth 

levels. For the depth levels of 0, 1, 2, and 3, the average hit rates are 99.11%, 95.51%, 

97.91% and 98.21%, respectively. Therefore, the mode skipping rule with the proposed 

adaptive thresholding technique will bring negligible RD performance loss to screen 
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content sequences.  As compared with the works in [53]–[56] and our mode skipping rule 

using fine-granular CU classification in Section 3.3.2 where IBC and PLT modes are 

checked together for SCBs, the new mode skipping rule with adaptive thresholding 

facilitates to check only one mode (IBC or PLT mode) for the SCBs. 

To avoid the situation that a CTU cannot be encoded, the decision for skipping all 

modes in a CU is considered as invalid, and then all mode candidates are checked for the 

CU. It is noted that, from our experimental results, only 0.03% CUs have all modes 

decided to be skipped after going through our mode skipping rule with adaptive 

thresholding. 

3.3.4 Early Termination of CU Partitions with Adaptive Thresholding 

To encode each CTU, the original encoding process needs to search all depth levels 

to determine the final CTU partition structure. However, if a CU is already encoded 

efficiently, the remaining partitions can be skipped without RD performance loss. For 

Table 3.3: Hit rate of mode decision for various sequences by the proposed mode skipping rule 

with adaptive. 

Sequences Depth=0 (%) Depth=1 (%) Depth=2 (%) Depth=3 (%) 

BasketballScreen 98.72 95.77 98.62 98.65 

MissionControlClip2 99.02 91.64 97.26 97.99 

MissionControlClip3 98.32 92.62 96.69 98.40 

ChineseEditing 98.31 91.01 96.02 97.83 

Console 100 98.79 99.27 98.34 

Desktop 98.67 98.45 99.50 98.47 

FlyingGraphics 99.12 95.49 99.38 99.87 

Map 99.25 90.65 97.68 98.86 

Programming 98.18 92.98 99.43 98.89 

SlideShow 98.68 94.88 95.43 97.04 

WebBrowsing 99.27 95.82 98.05 98.06 

Robot 100 99.02 94.65 98.36 

EBURainFruits 100 99.98 99.48 97.91 

Kimono1 100 99.97 99.30 96.23 

Average 99.11 95.51 97.91 98.21 
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traditional camera-captured videos, homogeneous content tends to select large CU sizes 

while small CU sizes are more likely to be selected to encode complex content. However, 

due to the adoption of new coding modes, complex content in screen content videos can 

also be encoded efficiently with large CU sizes by PLT mode and IBC mode. Therefore, 

instead of analyzing the content of a CU, we use the RD cost of a CU, 𝐽𝐶𝑈, to perform 

early termination of CU partitions.  

 A CU with 𝑑 ∈ {0,1,2}  is classified as an Unsplit CU if it has been efficiently 

encoded and further partitions are unnecessary. Otherwise, it is classified as a Split CU 

and it needs to continue partitioning to search the optimal size. To reveal the different 𝐽𝐶𝑈 

distributions in Unsplit CUs and Split CUs, the first 100 frames of “Desktop” were 

encoded. The results with QP of 32 are shown in Figure 3.5, and similar distributions can 

be observed with other QPs and depth levels. We can see that CUs with small values of  

𝐽𝐶𝑈 are most likely to be Unsplit CUs whereas CUs with relatively large values of  𝐽𝐶𝑈 

values are likely to be Split CUs. Thus, a content dependent threshold 𝑇𝐻_ 𝐽 
𝑑  can be 

extracted to early terminate remaining partitions, and the termination region should be on 

the left side of 𝑇𝐻_ 𝐽 
𝑑 . Similar as Section 3.3.3, for reducing the computational 

complexity of the CU partitioning process, it is desirable that the termination region is as 

 

Figure 3.5: RD cost, 𝐽𝐶𝑈, distributions in term of Unsplit CUs and Split CUs for the first 100 frames 

of “Desktop” encoded with QP of 32 and the depth level of 2. 
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large as possible. However, a larger termination region leads to larger RD performance 

loss, because more CUs are terminated incorrectly. Therefore, a confidence threshold 𝛽 

is set to control the termination region. By rounding the value of 𝐽𝐶𝑈 into integer values 

which are one-hundredth of the original RD costs, the ratio of Split CUs, 𝑅𝑆𝑝𝑙𝑖 
𝑑 , to all 

CUs in the termination region is calculated as  

𝑅𝑆𝑝𝑙𝑖  
𝑑 =

∑ 𝑁𝑢𝑚𝐶𝑈𝑆𝑝𝑙𝑖𝑡
𝑑 (𝐽𝐶𝑈)

𝑇𝐻_ 𝐽𝑇
𝑑

𝐽𝐶𝑈=0

∑ (𝑁𝑢𝑚𝐶𝑈𝑆𝑝𝑙𝑖𝑡
𝑑 (𝐽𝐶𝑈)+𝑁𝑢𝑚𝐶𝑈𝑈𝑛𝑠𝑝𝑙𝑖𝑡

𝑑 (𝐽𝐶𝑈))
𝑇𝐻_ 𝐽𝑇

𝑑

𝐽𝐶𝑈=0

                   (3.13) 

where 𝑁𝑢𝑚𝐶𝑈𝑆𝑝𝑙𝑖 
𝑑 (𝐽𝐶𝑈) and 𝑁𝑢𝑚𝐶𝑈𝑈 𝑠𝑝𝑙𝑖 

𝑑 (𝐽𝐶𝑈) denote the number of Split CUs and 

Unsplit CUs with RD cost of 𝐽𝐶𝑈.  𝑇𝐻_ 𝐽 
𝑑 is set to the maximum value while keeping the 

value of 𝑅𝑆𝑝𝑙𝑖 
𝑑  smaller than 𝛽. 

By applying the original encoding process to the first frame of a scene, the statistics 

of 𝑁𝑢𝑚𝐶𝑈𝑆𝑝𝑙𝑖 
𝑑 (𝐽𝐶𝑈) and 𝑁𝑢𝑚𝐶𝑈𝑈 𝑠𝑝𝑙𝑖 

𝑑 (𝐽𝐶𝑈) are obtained to calculate the value of the 

content dependent threshold 𝑇𝐻_ 𝐽 
𝑑 according to 𝛽. After the first frame, the previously 

extracted 𝑇𝐻_ 𝐽 
𝑑 is used to terminate partitions for a CU. To evaluate the accuracy of the 

proposed early termination of the CU partition technique, the hit rate of CU partition was 

Table 3.4: Hit rate of CU partition for various sequences by the proposed early termination of CU 

partition. 

Sequences Depth=0 (%) Depth=1 (%) Depth=2 (%) 

BasketballScreen 99.31 99.10 98.83 

MissionControlClip2 99.29 99.22 98.24 

MissionControlClip3 98.58 98.90 98.69 

ChineseEditing 99.83 98.77 98.43 

Console 99.91 99.42 97.55 

Desktop 98.96 99.25 98.72 

FlyingGraphics 99.85 98.98 98.66 

Map 99.34 98.32 98.12 

Programming 99.94 99.96 98.49 

SlideShow 98.98 98.98 98.05 

WebBrowsing 99.86 98.29 97.85 

Robot 100 99.90 99.41 

EBURainFruits 100 99.26 98.87 

Kimono1 100 99.95 97.90 

Average 99.56 99.16 98.42 
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analyzed by calculating the percentage of the CUs whose optimal partitions from the 

original SCM-8.3 are not falsely skipped by using the proposed technique. The hit rates 

are shown in Table 3.4 for all test sequences under QP of 32, and similar results are 

observed with other QPs. Here the value of 𝛽 is set to 0.05, and the detailed analysis of 

choosing 𝛽 will be studied in Section 3.4.1. It is observed that the hit rates for the early 

termination of the CU partition technique are very high, which vary from 97.55% to 100% 

for different sequences and depth levels. On average, hit rates of 99.56%, 99.16%, and 

98.42% are provided for CUs in the depth levels of 0, 1, and 2, respectively. 

3.3.5 Scene Change Detection for Adaptive Threshold Updating 

In screen content videos, scene changes occur frequently such as document opening 

or closing, slideshow playing, etc. If the video content changes significantly, it is regarded 

as a scene change. A scene change makes the learning statistics change a lot, and the 

content dependent rules are not accurate. To correctly extract the values of 𝑇𝐻_𝐾𝐼  𝑟𝑎
 ,𝑑

, 

𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 , 𝑇𝐻_𝐾   
 ,𝑑

 and 𝑇𝐻_ 𝐽 
𝑑, we use a simple yet efficient correlation measurement 

method, histogram of difference (HOD) [44], [75], to update the statistics adaptively for 

different scenes in a sequence. In HOD, the correlation between two adjacent frames is 

calculated by comparing the collocated luminance values of the two frames, and it is 

represented as  

 𝐻𝑂𝐷 =
∑ ℎ𝑜𝑑𝑙∉[-𝜏,𝜏]

∑ ℎ𝑜𝑑
𝑞−1
𝑙=−𝑞+1

                                        (3.14) 

where ℎ𝑜𝑑denotes the histogram of difference between two adjacent frames, and 𝑞 

denotes the number of luminance levels. 𝜏 is a threshold used to select the pixels with a 

large difference, which is usually set to 32. The further the histogram of difference is 

distributed from the origin of ℎ𝑜𝑑, the more different the frames are. Therefore, a scene 

change is regarded to happen if 
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𝐻𝑂𝐷 > 𝑇𝐻_𝐻𝑂𝐷𝑆𝐶                                          (3.15) 

where 𝑇𝐻_𝐻𝑂𝐷𝑆𝐶 is a threshold to detect the scene change, and it is experimentally set 

to 0.2 in our proposed algorithm. Then, the first frame of the new scene is encoded by the 

original encoding process to update the statistics and calculate the values of 𝑇𝐻_𝐾𝐼  𝑟𝑎
 ,𝑑

, 

𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 , 𝑇𝐻_𝐾   
 ,𝑑

 and 𝑇𝐻_ 𝐽 
𝑑. 

3.3.6 Flowcharts of Overall Algorithm 

Based on the above analysis, our proposed algorithm is divided into two stages, 

which are the threshold updating stage and fast encoding stage, and the flowchart of the 

overall algorithm is shown in Figure 3.6. In the threshold updating stage, the first frame 

of a new scene is encoded by the original encoding process to search all modes in all 

depth levels while collecting the statistics in Equations (3.7)–(3.9) and (3.13). Then, the 

values of 𝑇𝐻_𝐾𝐼  𝑟𝑎
 ,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 , 𝑇𝐻_𝐾   
 ,𝑑

 and 𝑇𝐻_ 𝐽 
𝑑 are calculated according to 𝛼 and 

 

Figure 3.6: Flowcharts of (a) the overall algorithm in sequence level and (b) the fast encoding stage 

in CTU level. 
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𝛽. In the fast encoding stage, the fine-granular CU classification technique and the content 

dependent thresholds are used to make fast mode and CU partition decisions.  

3.4 Experimental Results and Discussions  

The proposed fast intra-prediction has been implemented in SCM-8.3 for simulations. 

BDBR and encoding time reduction, ∆Time, with QPs at 22, 27, 32, and 37 were compared 

with that of the original SCM-8.3. ∆Time is defined as  

∆𝑇𝑖𝑚𝑒 =
1

4
∑ (

 𝑖𝑚𝑒𝑁𝐸𝑊,𝑄𝑃− 𝑖𝑚𝑒𝑅𝐸𝐹,𝑄𝑃

 𝑖𝑚𝑒𝑅𝐸𝐹,𝑄𝑃
)𝑄 × 100%                  (3.16) 

where 𝑇𝑖𝑚𝑒𝑁𝐸𝑊,𝑄  denotes the encoding time of a new algorithm with a value of QP, and 

𝑇𝑖𝑚𝑒 𝐸𝐹,𝑄  is the encoding time of the original SCM-8.3 with a value of QP. Since 

sequences in TGM and M are videos containing both pictorial content and textual content, 

while sequences in A and CC are pictorial content videos, we will show the average 

performance results for TGM+M and A+CC, respectively. Three kinds of experiments 

were conducted to analyze the performance of the proposed algorithm. First, the values of 

thresholds were tested to find a good trade-off between the coding efficiency and encoding 

complexity. Second, the computational overhead of the proposed algorithm is analyzed. 

Third, the performance of the proposed overall algorithm was evaluated by comparing 

with the existing fast intra-prediction methods. Fourth, the contribution of different 

proposed techniques was assessed. Fifth, the performance of the proposed algorithm with 

the adoption of fast encoding in learning frames is investigated.  

3.4.1 Threshold Determination 

In our proposed fast intra-prediction algorithm, two confidence thresholds 𝛼 and 𝛽 

are used to balance the computational complexity reduction and the high coding 

efficiency of SCC. Figure 3.7 shows the individual performance of the proposed 
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techniques with difference values of 𝛼 and 𝛽 . It is observed that as the value of 𝛼 

increases from 0.2% to 0.14%, the proposed mode skipping rule with adaptive 

thresholding provides 15% - 35% encoding time reduction with 0.11% - 2.83% BDBR 

increment. As the value of 𝛽  increases from 0.2% to 0.14%, the proposed early 

termination of CU partitions with adaptive thresholding provides 9% to 16% encoding 

time reduction with 0.09% to 1.22% BDBR increment.  

To achieve a good trade-off between the coding efficiency and encoding complexity, 

different values of 𝛼 and 𝛽  were tested to evaluate the performance of the overall 

Table 3.5: Performances with different values of 𝛼 and 𝛽. 

Sequences 

𝛼=0.025, 

𝛽=0.025 

𝛼=0.025, 

𝛽=0.075 

𝛼=0.05, 

𝛽=0.05 

𝛼=0.075, 

𝛽=0.025 

𝛼=0.075, 

𝛽=0.075 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BasketballScreen 0.95 -22.89 1.17 -25.29 1.14 -25.21 1.55 -26.91 1.75 -28.97 

MissionControlClip2 1.12 -23.71 1.14 -27.72 1.64 -28.73 2.26 -28.12 2.36 -30.80 

MissionControlClip3 0.67 -23.81 0.89 -26.69 1.15 -29.82 1.53 -30.45 1.71 -31.94 

ChineseEditing 0.31 -25.66 0.45 -27.45 0.43 -33.77 0.63 -38.34 0.74 -38.89 

Console 0.42 -32.11 1.01 -34.34 0.69 -35.90 0.48 -35.50 1.08 -37.20 

Desktop 0.67 -31.06 1.20 -33.39 1.21 -33.68 1.14 -37.85 1.65 -39.50 

FlyingGraphics 1.11 -20.43 1.36 -22.27 1.27 -23.25 1.24 -23.15 1.57 -23.63 

Map 1.24 -25.49 1.46 -26.86 1.54 -31.56 1.81 -32.17 1.26 -32.49 

Programming 0.49 -19.92 0.63 -22.04 0.73 -23.85 0.82 -25.03 2.04 -26.99 

SlideShow 3.27 -55.10 3.44 -58.03 3.63 -58.82 5.36 -58.06 5.84 -60.55 

WebBrowsing 0.82 -32.89 1.89 -35.10 1.83 -41.76 1.87 -43.96 3.32 -45.91 

Robot 0.77 -24.27 0.79 -24.32 1.21 -39.00 2.35 -50.40 2.40 -50.89 

EBURainFruits 0.20 -48.15 0.23 -51.12 0.23 -52.92 0.27 -52.96 0.30 -55.29 

Kimono1 0.10 -42.02 0.15 -46.72 0.12 -44.97 0.10 -41.17 0.15 -46.67 

Average (TGM+M) 1.01 -28.46 1.33 -30.83 1.39 -33.30 1.70 -34.50 2.12 -36.08 

Average (A+CC) 0.36 -38.15 0.39 -40.72 0.52 -45.63 0.91 -48.18 0.95 -50.95 

Average (ALL) 0.87 -30.54 1.13 -32.95 1.20 -35.95 1.53 -37.43 1.87 -39.27 
 

           
(a)                                                                                    (b) 

Figure 3.7: Performacne of (a) mode skipping rule with adaptive thresholding and (b) early 

termination of CU partitions with adaptive thresholding with different value of 𝛼 and 𝛽. 
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algorithm, and the results are shown in Table 3.5. It is expected that as the values of 𝛼 and 

𝛽 increase, more reduction in encoding time can be achieved at the expense of BDBR 

increase. The proposed algorithm shows encoding time saving from 30.54% to 39.27%, 

while BDBR is increased from 0.87% to 1.87% with 𝛼 and 𝛽 varying from 0.025 to 0.075. 

Therefore, the proposed algorithm has the advantage that it can make the trade-off between 

the RD performance and time saving by setting different confidence threshold values. If 

the encoding time is the key issue, a large value can be set to the confidence thresholds. 

Otherwise, a small value can be set to preserve the high coding efficiency of SCC. To 

balance the encoding time and coding efficiency, we set the values of 𝛼 and 𝛽 to 0.05 for 

later discussions.  

In the rough CU classification, 𝑇𝐻𝑆 is set to 64 empirically to detect high gradient 

pixels. We also list the performance of our proposed algorithm with different values of 

𝑇𝐻𝑆 in Table 3.6. It is observed that the overall performance varies little with different 

Table 3.6: Performances with different values of 𝑇𝐻𝑆. 

Sequences 

𝑇𝐻𝑆=16 𝑇𝐻𝑆=32 𝑇𝐻𝑆=48 𝑇𝐻𝑆=64 𝑇𝐻𝑆=80 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BasketballScreen 1.40 -25.88 1.22 -25.05 1.03 -24.39 1.14 -25.21 1.26 -25.15 

MissionControlClip2 2.18 -26.75 1.74 -30.25 1.61 -28.22 1.64 -28.73 1.78 -28.02 

MissionControlClip3 1.23 -26.05 1.08 -27.81 1.04 -28.83 1.15 -29.82 1.23 -29.65 

ChineseEditing 0.43 -31.59 0.42 -32.14 0.45 -33.45 0.43 -33.77 0.49 -32.58 

Console 0.74 -34.57 0.71 -34.56 0.71 -35.59 0.69 -35.90 0.65 -33.37 

Desktop 0.83 -32.38 0.81 -33.22 1.15 -33.53 1.21 -33.68 1.03 -32.80 

FlyingGraphics 1.27 -22.82 1.57 -23.99 1.41 -23.53 1.27 -23.25 1.17 -21.59 

Map 1.54 -37.35 2.25 -34.68 1.66 -31.90 1.54 -31.56 1.58 -29.99 

Programming 0.73 -21.16 1.01 -22.37 0.87 -22.88 0.73 -23.85 0.64 -23.22 

SlideShow 3.63 -57.98 3.78 -58.63 3.87 -59.25 3.63 -58.82 4.22 -57.65 

WebBrowsing 1.82 -41.70 2.09 -43.97 1.73 -43.25 1.83 -41.76 2.00 -41.22 

Robot 1.21 -33.94 1.74 -40.18 1.20 -37.24 1.21 -39.00 1.26 -39.18 

EBURainFruits 0.23 -54.43 0.28 -55.76 0.28 -54.10 0.23 -52.92 0.24 -51.82 

Kimono1 0.11 -44.11 0.07 -44.10 0.10 -44.80 0.12 -44.97 0.11 -43.07 

Average (TGM+M) 1.44 -32.57 1.52 -33.33 1.42 -33.17 1.39 -33.30 1.46 -32.29 

Average (A+CC) 0.52 -44.16 0.70 -46.68 0.53 -45.38 0.52 -45.63 0.54 -44.69 

Average (ALL) 1.24 -35.05 1.34 -36.19 1.22 -35.78 1.20 -35.95 1.26 -34.95 
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values of 𝑇𝐻𝑆 from 16 to 80, and the least increase in BDBR of 1.20% is provided with 

𝑇𝐻𝑆 of 64, as adopted in our proposed algorithm.  

3.4.2 Analysis for Computational Overheads 

Except the encoding process, the proposed algorithm includes the additional 

processes such as statistics estimation for threshold updating, rough CU classification, 

fine-granular CU classification, background color ratio K extraction and scene change 

detection, as highlighted in Figure 3.6. During threshold updating, the first frame of the 

new scene is encoded by the original SCM-8.3, and various statistics are then collected 

to calculate the content dependent thresholds 𝑇𝐻_𝐾𝐼  𝑟𝑎
 ,𝑑

, 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 , 𝑇𝐻_𝐾   
 ,𝑑

 and 

𝑇𝐻_ 𝐽 
𝑑 according to  and . This process is only applied to the first frame with scene 

change. It is noted that the calculation of these content dependent thresholds is very 

simple, and it is about 0.66% on average of the encoding time required for the first frame 

of the new scene compared to the first frame encoded by the original SCM-8.3. Table 3.7 

further analyzes these computational overheads, which are calculated as the ratio of the 

overhead to the overall encoding time of the proposed algorithm. Results in Table 3.7 

show that the threshold updating process only consumes about 0.015% on average of the 

overall encoding time of the proposed algorithm. On the other hand, the rough CU 

classification, fine-granular CU classification, background color ratio extraction and 

scene change detection are necessary to be carried out in all frames. The proportion of 

these overheads is also listed in Table 3.7, which is about 0.885% on average of the 

overall encoding time of the proposed algorithm. It can be concluded that the encoding 

time required for these overheads is negligible. Moreover, in the following evaluation of 

the proposed algorithm, the encoding time consumed by these processes and all frames 

are included when calculating the complexity reduction. 
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3.4.3 Performance Evaluation  

To validate the efficiency of the proposed algorithm, our overall algorithm is 

compared with the state-of-the-art fast intra-prediction algorithms [52]–[55] for SCC. It 

is noted that they were implemented in different reference software from ours in their 

original publications. Zhang et al.’s method [52] was simulated using HM-12.1+RExt-5.1 

rather than SCM, while Duanmu et al.’s method [53], Lei et al.’s method [54] and Yang 

et al.’s method [55] were simulated using SCM-4.0, SCM-2.0 and SCM-5.0, respectively. 

There are numerous enhancements, speed-up techniques and codes clean-up in SCM-8.3 

compared with the older versions. In the older versions, the BV signal in IBC mode was 

not unified with the inter mode which only has left and above BVs as predictors without 

IBCM&S. Consequently, incoming CUs always need to check the time-consuming 

IBCSearch and PLT modes without early termination. Moreover, N×N IBCSearch was 

done after 2N×N search while it is eliminated in SCM-8.3. In addition, the older versions 

enable PLT mode in the depth level of 0 while it is disabled in SCM-8.3 because of the 

Table 3.7: Computational overheads in the overall encoding time of the proposed algorithm. 

Sequences 

Proportion (%) 

Threshold updating  
Classification tasks/ K extraction/ 

scene change detection 

BasketballScreen 0.007 0.705 

MissionControlClip2 0.024 0.857 

MissionControlClip3 0.007 0.751 

ChineseEditing 0.004 0.350 

Console 0.003 0.299 

Desktop 0.003 0.287 

FlyingGraphics 0.013 0.272 

Map 0.006 0.616 

Programming 0.008 0.583 

SlideShow 0.038 0.782 

WebBrowsing 0.009 0.623 

Robot 0.021 1.592 

EBURainFruits 0.031 1.893 

Kimono1 0.042 2.784 

Average 0.015 0.885 
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occasional use. Due to those differences, we re-implemented them into SCM-8.3 for fair 

comparisons. Table 3.8 shows the detailed performance comparisons in terms of BDBR 

and ∆Time. It is observed that our proposed algorithm can achieve up to 58.82% encoding 

time reduction as compared with the anchor SCM-8.3. TGM+M sequences show 33.30% 

complexity reduction with 1.39% increase in BDBR. Specifically, it provides 33.68%, 

35.90% and 33.77% encoding time reduction for “Desktop”, “Console” and 

“ChineseEditing”, while the BDBR is increased by 1.21%, 0.69% and 0.43%, which is 

slightly better than the performance of skipping Intra mode entirely. Besides, A+CC 

sequences show 45.63% complexity reduction with 0.52% increase in BDBR, and it is 

similar to the performance of skipping IBC+PLT modes entirely where 46.99% encoding 

time is reduced with 0.81% increase in BDBR. On average, 35.95% encoding time can be 

saved with a negligible increase in BDBR of 1.20%. Zhang et al.’s method [52] only  

optimizes the CU partitioning process, so that it shows the least encoding time reduction 

by only 14.53%, and it is not enough considering the high computational complexity of 

Table 3.8: Performance comparisons with the state-of-the-art fast intra-prediction algorithms. 

Sequences 

Zhang [52] Duanmu [53] Lei [54] Yang [55] Proposed  

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BasketballScreen 0.45 -11.98 1.25 -22.43 1.46 -24.83 3.00 -31.54 1.14 -25.21 

MissionControlClip2 0.40 -20.50 2.86 -33.90 1.71 -25.49 2.51 -38.54 1.64 -28.73 

MissionControlClip3 0.37 -11.28 2.03 -24.61 1.69 -33.81 2.90 -34.15 1.15 -29.82 

ChineseEditing 0.14 -3.40 1.10 -17.47 0.99 -18.96 5.47 -31.19 0.43 -33.77 

Console 2.64 -8.23 1.87 -28.12 2.87 -23.40 6.27 -35.91 0.69 -35.90 

Desktop 0.67 -4.94 2.19 -26.24 1.97 -23.85 7.38 -42.83 1.21 -33.68 

FlyingGraphics 0.54 -3.24 0.98 -20.13 1.72 -18.13 4.30 -34.16 1.27 -23.25 

Map 0.97 -10.66 1.55 -19.16 1.23 -20.05 4.71 -27.38 1.54 -31.56 

Programming 0.44 -11.76 1.89 -22.16 2.50 -22.92 3.69 -34.45 0.73 -23.85 

SlideShow 0.36 -46.92 2.82 -52.47 2.32 -55.58 5.00 -53.00 3.63 -58.82 

WebBrowsing 0.79 -6.99 1.91 -28.17 6.02 -26.75 2.84 -41.66 1.83 -41.76 

Robot 0.43 -17.89 1.18 -29.36 5.21 -46.91 0.59 -28.19 1.21 -39.00 

EBURainFruits 0.21 -18.96 0.88 -26.47 1.76 -48.58 0.17 -25.89 0.23 -52.92 

Kimono1 0.14 -26.67 1.23 -25.75 1.52 -75.55 0.13 -36.18 0.12 -44.97 

Average (TGM+M) 0.71 -12.72 1.86 -26.81 2.23 -26.71 4.37 -36.80 1.39 -33.30 

Average (A+CC) 0.26 -21.17 1.10 -27.19 2.83 -57.01 0.30 -30.09 0.52 -45.63 

Average (ALL) 0.61 -14.53 1.70 -26.89 2.36 -33.20 3.50 -35.36 1.20 -35.95 
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the SCC encoder. Duanmu et al.’s method [53] shows a less encoding time saving of 

26.89%, and a higher increase in BDBR of 1.70% than the proposed algorithm. 

Particularly, only 27.19% complexity reduction is shown for A+CC sequences, which is 

much smaller than our algorithm. The reason is that unlike Duanmu et al.’s method [53] 

where fixed rules for mode skipping are applied to all sequences, our algorithm calculates 

the thresholds for mode skipping adaptively by extracting the statistics in the first frame 

of a scene. For A+CC sequences, because almost no CU selects IBC and PLT modes in 

the first frame,  the dynamic thresholds can skip IBC and PLT modes for all CUs in the 

following frames, and it leads to much higher encoding time reduction than Duanmu et 

al.’s method [53]. Lei et al.’s method [54] and Yang et al.’s method [55] achieve similar 

encoding time reduction as our algorithm, which are 33.20% and 35.36%, respectively. 

However, it is observed that their methods bring a much higher increase in BDBR than the 

proposed algorithm, which are 2.36% and 3.50%, respectively. Again, they also set many 

fixed rules to skip some mode candidates and CU partitions without taking the distinct 

characteristics of each sequence into account. Besides, they focus on the fast encoding 

scheme for A+CC sequences but not for TGM+M sequences. While both Lei et al.’s 

method [54] and Yang et al.’s method [55] can skip IBC and PLT modes for NIBs, they 

need to check Intra mode (either for 2N×2N PUs or all PUs), IBC mode and PLT mode 

for SCBs. Comparatively, the proposed fine-granular CU classification technique can skip 

both IBC and PLT modes for NIBs and skip Intra mode for SCBs. Then, the proposed 

mode skipping rule with the adaptive thresholding technique allows the case that only one 

mode is checked for SCBs, which further reduces the encoding time.  

In the proposed algorithm, a scene change detector is utilized to update the content 

dependent thresholds adaptively. While similar performances are observed for sequences 
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without obvious scene changes by enabling and disabling the scene change detector, the 

performances for sequences with more than 3 scene changes are shown in Table 3.9 for 

comparison. It is observed that by enabling the scene change detector, the BDBR 

increment is reduced by 0.18% for those sequences without affecting the encoding time 

on average. Specially, “SlideShow” shows performance improvement in both BDBR and 

∆𝑇𝑖𝑚𝑒 because more suitable values of the content dependent thresholds are updated with 

the scene change detector. 

Furthermore, we also investigate the performance of the proposed algorithm by 

replacing HOD by difference of histogram (DOH) [75]. For DOH, it calculates the 

absolute sum of the histogram difference between two adjacent frames, 𝐹𝑎  and 𝐹𝑏 , by 

using luma samples, and the value of DOH is given as the ratio of the absolute sum of the 

histogram difference to all histograms of 𝐹𝑎  

𝐷𝑂𝐻(𝐹𝑎, 𝐹𝑏)= 
∑ |ℎ𝑎(𝑙)−ℎ𝑏(𝑙)|
𝑞−1
𝑙=0

∑ ℎ𝑎(𝑙)
𝑞−1
𝑙=0

                                (3.16) 

where 𝑞 is the number of luma level, ℎ𝑎 and ℎ𝑏 are the histograms of 𝐹𝑎 and 𝐹𝑏. If DOH 

is larger than 𝑇𝐻_𝐻𝑂𝐷𝑆𝐶, which is usually set to 0.25, a scene change is regarded to 

happen. The results are shown in Table 3.10. It is observed that DOH cannot detect the 

scene change and update the learning statistics adaptively.  

 

Table 3.9: Performances of the proposed overall algorithm with and without scene change 

detector. 

Sequences 
Without HOD With HOD 

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) 

MissionControlClip2 1.72 -32.71 1.64 -28.73 

MissionControlClip3 1.55 -29.89 1.15 -29.82 

FlyingGraphics 1.35 -24.34 1.27 -23.25 

SlideShow 3.77 -53.64 3.63 -58.82 

Average 2.10 -35.15 1.92 -35.16 
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3.4.4 Contribution Analysis of Different Techniques 

To further investigate the contribution of each individual proposed technique and 

their combinations, simulations were performed for another 4 settings with 𝛼=0.05, 

𝛽=0.05 and 𝑇𝐻_𝑃𝐷𝐼𝐹𝐹=64: fine-granular CU classification (TECH1), mode skipping rule 

with adaptive thresholding (TECH2), early termination of CU partitions with adaptive 

thresholding (TECH3), and TECH1+TECH2. The performance of each setting is shown 

in Table 3.11. Besides, the performance of the overall algorithm is also shown in the table 

as TECH1+TECH2+TECH3. 

TECH1 provides 17.72% encoding time saving with 0.55% increase in BDBR on 

average. TGM+M sequences show 18.00% complexity reduction with 0.64% increase in 

BDBR, while A+CC sequences show 16.68% complexity reduction with 0.24% increase 

in BDBR. We can see that it works well for the sequences with almost pure textual content, 

which contains both sharp edges and large background area in the same CUs, such as 

“Console”, “ChineseEditing” and “Desktop”. Significant encoding time reduction can be 

achieved by 23.50%, 24.96% and 22.88% with a small increase in BDBR by 0.45%, 

0.24% and 0.18% for these three sequences, respectively. Besides, TECH1 can encode CC 

sequences “EBURainFruits” and “Kimono1” efficiently with almost no increase in BDBR. 

No RD performance loss is observed for “Kimono1” with encoding time saved by 17.13%, 

Table 3.10: Performances of the proposed overall algorithm with HOD and DOH. 

Sequences 
HOD DOH 

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) 

MissionControlClip2 1.27 -23.25 1.72 -32.04 

MissionControlClip3 3.63 -58.82 1.52 -28.46 

FlyingGraphics 1.64 -28.73 0.51 -8.83 

SlideShow 1.15 -29.82 4.91 -56.87 

Average 1.92 -35.16 2.17 -31.55 
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and BDBR is increased by only 0.05% for “EBURainFruits” with encoding time saved by 

14.13%.  

For the TECH2, 21.09% encoding time can be saved while BDBR is increased by 

0.60% on average. TGM+M sequences show 16.65% complexity reduction with 0.65% 

increase in BDBR while A+CC sequences show a very high complexity reduction of 

37.39% with 0.40% increase in BDBR. CC sequences “EBURainFruits” and “Kimono1” 

show the largest encoding time reduction by 43.83% and 37.83% while the increases in 

BDBR are only 0.18% and 0.10%, respectively. The reason is that IBC mode and PLT 

mode are rarely selected for CC sequences when encoded by the original SCC encoder. 

Then in the fast encoding stage, the content dependent thresholds 𝑇𝐻_𝐾   
 ,𝑑

 and 𝑇𝐻_𝐾𝐼𝐵𝐶
 ,𝑑

 

are set to large values, so that PLT mode and IBC mode are skipped for almost all CUs in 

the following frames.  

By combining the two mode decision techniques together, TECH1+TECH2 provides 

28.31% encoding saving with 1.04% increase in BDBR on average. TGM+M sequences 

Table 3.11: Performance of the proposed algorithm with different settings. 

Sequences 

TECH1 TECH2 TECH3 TECH1+TECH2 
TECH1+TECH2+ 

TECH3 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BasketballScreen 0.82 -16.94 0.23 -10.69 0.10 -4.43 0.99 -19.83 1.14 -25.21 

MissionControlClip2 0.68 -12.62 1.05 -12.90 0.12 -11.25 1.52 -22.58 1.64 -28.73 

MissionControlClip3 0.47 -18.06 0.56 -14.47 0.13 -5.80 0.99 -24.67 1.15 -29.82 

ChineseEditing 0.18 -22.88 0.20 -22.35 0.13 -3.14 0.32 -32.61 0.43 -33.77 

Console 0.24 -24.96 0.20 -21.78 0.38 -6.85 0.34 -29.68 0.69 -35.90 

Desktop 0.45 -23.50 0.77 -22.54 0.28 -4.64 0.99 -28.70 1.21 -33.68 

FlyingGraphics 0.99 -17.60 0.09 -8.21 0.16 -3.42 1.11 -20.04 1.27 -23.25 

Map 0.77 -12.81 0.58 -18.49 0.22 -4.62 1.28 -26.87 1.54 -31.56 

Programming 0.44 -14.42 0.22 -8.79 0.08 -6.39 0.58 -18.44 0.73 -23.85 

SlideShow 1.76 -10.81 2.38 -13.83 0.28 -41.37 3.64 -17.58 3.63 -58.82 

WebBrowsing 0.24 -23.39 0.88 -29.07 0.63 -5.94 1.22 -36.33 1.83 -41.76 

Robot 0.67 -18.78 0.92 -30.52 0.01 -3.74 1.22 -34.99 1.21 -39.00 

EBURainFruits 0.05 -14.13 0.18 -43.83 0.02 -9.09 0.21 -44.38 0.23 -52.92 

Kimono1 0.00 -17.13 0.10 -37.83 0.03 -5.09 0.10 -39.66 0.12 -44.97 

Average (TGM+M) 0.64 -18.00 0.65 -16.65 0.23 -8.90 1.18 -25.21 1.39 -33.30 

Average (A+CC) 0.24 -16.68 0.40 -37.39 0.02 -5.97 0.51 -39.68 0.52 -45.63 

Average (ALL) 0.55 -17.72 0.60 -21.09 0.18 -8.27 1.04 -28.31 1.20 -35.95 
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show 25.21% complexity reduction with 1.18% increase in BDBR, while A+CC 

sequences show 39.68% complexity reduction with 0.51% increase in BDBR. When 

compared with the individual performance of TECH1 and TECH2, higher encoding time 

is provided by TECH1+TECH2, especially for TGM+M sequences which contains both 

NIBs and SCBs. It is noted that TECH1 performs the conventional CU classification like 

method [53]–[55] where both IBC and PLT modes are checked for SCBs. Comparatively, 

TECH2 provides a more flexible mode checking scheme by deriving content dependent 

thresholds, where the decisions of IBC and PLT modes can be different. By combining 

them together, 7.21% and 8.56% higher encoding time are reduced for TGM+M 

sequences compared with TECH1 and TECH2, respectively. This proves that TECH1 and 

TECH2 can complement each other to provide higher encoding time reduction.  

For TECH3, 8.27% encoding time saving can be achieved with the increase in BDBR 

by 0.18% on average. TGM+M sequences show 8.90% complexity reduction with 0.23% 

increase in BDBR while A+CC sequences show 5.97% complexity reduction with 0.02% 

increase in BDBR. We can see from Table 3.11 that “SlideShow” is the most benefited 

sequence by employing this approach, and 41.37% encoding time can be saved while 

BDBR is only increased by 0.28%. As analyzed in Figure 3.2, most CUs in “SlideShow” 

are determined with sizes of 64×64 and 32×32. Therefore, many CU partitions can be 

terminated by deriving the content dependent thresholds 𝑇𝐻_ 𝐽 
𝑑 in the fast encoding stage. 

3.4.5 Addption of Fast Encoding in Learning Frames 

In the proposed algorithm, the encoder follows the original encoding process for the 

learning frames. The reason is that we want to collect the correct learning statistics, and 

then the derived content dependent rules can be applied to the following frames for fast 

encoding. To reduce the computational complexity in the learning frames, some hand-craft 
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rules or offline learning-based rules can be applied. However, it makes the learning 

statistics not accurate. Table 3.12 shows the peformacen of applying the proposed fine-

granular CU classification in the learning frames, and it is observed that the encoding time 

reduction is further improved by 0.83% with BDBR further increased by 0.2%. The 

encoding time are similar because the number of learning frames is very small.  

 

3.5 Chapter Summary  

In this chapter, a fast intra-prediction algorithm is proposed based on both content 

analysis and dynamic thresholding using AI configuration. To skip unnecessary modes 

for a CU, two early mode decision techniques are proposed based on the rough CU 

classification, where mode candidates are checked adaptively according to the fine-

granular CU types and content dependent thresholds, respectively. Then, content 

dependent thresholds of RD cost are derived to make early termination of CU partitions. 

Experimental results under AI configuration show that the proposed algorithm can 

Table 3.12: Performance of applying the proposed fine-granular CU classification in learning 

frames. 

Sequences 
Fast in learning frames Proposed 

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) 

BasketballScreen 1.46 -25.69 1.14 -25.21 

MissionControlClip2 1.12 -33.34 1.64 -28.73 

MissionControlClip3 1.40 -32.65 1.15 -29.82 

ChineseEditing 0.35 -32.05 0.43 -33.77 

Console 0.68 -36.51 0.69 -35.90 

Desktop 1.38 -34.52 1.21 -33.68 

FlyingGraphics 2.13 -27.73 1.27 -23.25 

Map 2.38 -30.94 1.54 -31.56 

Programming 1.24 -26.08 0.73 -23.85 

SlideShow 3.78 -56.71 3.63 -58.82 

WebBrowsing 1.97 -41.28 1.83 -41.76 

Robot 1.25 -40.07 1.21 -39.00 

EBURainFruits 0.28 -52.33 0.23 -52.92 

Kimono1 0.13 -44.95 0.12 -44.97 

Average (ALL) 1.40 -36.78 1.20 -35.95 
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achieve 35.95% encoding time reduction with 1.20% negligible increase in BDBR on 

average for typical screen content videos compared with the reference software SCM-8.3. 
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Chapter 4 Determinations on Coding Structure 

by Decision Trees 

4.1 Introduction 

We have observed from the previous chapter that mode decision in SCC is related 

to CU content, and Chapter 3 utilizes several static features describing CU content reduce 

mode candidates. In this chapter, dynamic features revealing the unique intermediate 

coding information of a CU are further explored. The exhaustive mode searching process 

can then be avoided by a sequential arrangement of DTs, which is constructed to check 

each mode separately with the insertion of a classifier before checking a mode. In contrast 

to the approaches that both IBC and PLT modes are examined for SCBs, the proposed 

coding arrangement becomes more flexible and allows either IBC or PLT mode to be 

checked for SCBs to further reduce the computational complexity of mode decision in 

SCC. 

The rest of this chapter is organized as follows. Section 4.2 analyzes the flexibility 

of different fast encoding frameworks, and it discusses the advantage of the proposed 

framework. The proposed idea of utilizing both static features and dynamic features to 

make mode decision is presented in Section 4.3. First, we give the classification principle 

of DT-based classifiers. Second, the proposed dynamic features and their advantage are 

presented. Third, the details of the proposed DT-based mode decision classifiers are given. 

Forth, a DT constraint technique by using spatial mode correlation is introduced to 

improve the accuracy of the proposed classifiers. Section 4.4 shows the simulation results 

of the proposed algorithm. Finally, Section 4.5 concludes this chapter. 
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Parts of the contents of this chapter are extracted from our published work [76]: 

⚫ Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Machine Learning 

Based Fast Intra Mode Decision for HEVC Screen Content Coding Via Decision 

Trees,” IEEE Transactions on Circuits and Systems for Video Technology, 2019. 

4.2 Flexibility of Different Frameworks 

The previous fast SCC encoding algorithms are mainly focused on fast CU size 

decision and fast mode decision made by CU type classification, as shown in Figure 4.1 

(a) and (b), respectively. However, these frameworks are not flexible and are difficult to 

achieve a good trade-off between the computational complexity and coding efficiency. 

For fast CU size decision approaches [50]–[52], all modes are either checked or skipped 

together in a CU as shown in Figure 4.1(a). For fast mode decision approaches [53]–[56] 

using CU type classification in Figure 4.1(b), the screen content modes, IBC mode and 

PLT mode, are either checked or skipped together. In screen content videos, some CUs 

are very difficult to be decided whether they are SCBs or NIBs even by human beings, 

 
(a)                                                (b)                                              (c) 

Figure 4.1: CU encoding flowcharts of various fast SCC encoding algorithms. (a) Typical fast 

CU size decision algorithm [50]–[52], (b) typical fast mode decision algorithm by CU type 

classification [53]–[56], and (c) proposed fast mode decision algorithm. 
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and the CU type classification approaches are not efficient for these CUs. On the contrary, 

our proposed framework provides larger flexibility by inserting a classifier before 

checking a mode in a CU, as shown in Figure 4.1(c). By deriving the dynamic features 

right before checking a mode, more accurate decision is made. On the one hand, encoding 

time can be further reduced by allowing the case that only one mode is checked for a SCB. 

On the other hand, RD performance can be improved by allowing PLT mode to be 

checked for a SCB even if IBC mode is wrongly skipped. It is also noted that the values 

of the dynamic features are changing as a CU goes through different classifiers, and only 

our framework in Figure 4.1(c) can adopt these dynamic features proposed in this work. 

 

4.3 Proposed DT Based Framework 

Since there are numerous mode candidates in different CU sizes, it is difficult to 

manually select the optimal features and classification criteria to build accurate 

mathematical models. To solve this problem, 11 features, which are related to the mode 

decision, are proposed to train various DT-based classifiers from offline learning. 

Therefore, the optimal features and classification criteria are reasonably selected based 

on the training data. In the test phase, the trained classifiers are implemented in SCM to 

make fast mode decision. 

4.3.1 Description of the Classifier Using DT 

DT is one of the most popular machine learning algorithms. In this chapter, we 

utilize a DT as the classifier, because it comes with low complexity in the testing phase 

and can be easily implemented into a SCC encoder as a set of “if-then-else” conditions. 

A DT-based classifier is a flowchart-like tree structure, as shown in Figure 4.2. It is 

composed of a root node, internal nodes and leaf nodes. For each non-leaf node, i.e., a 
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root node or an internal node, it denotes a test on a feature of the incoming sample. Each 

branch after a non-leaf node denotes the outcome of the test, and each leaf node denotes 

a class label. In the specific case of the mode selection problem in a CU, the class label 

of 1 or 0 represents whether the target mode is checked or not. The classifiers based on 

DTs are trained by the C4.5 algorithm [77] in the Waikato Environment for Knowledge 

Analysis (WEKA) [78] version 3.8. To generate training frames which reflect the 

characteristic of SCC sequences, 8 frame-skipped sequences are formed by extracting the 

first frame of each second from the 8 sequences, which are “ChineseEditing”, 

“FlyingGraphics”, “SlideShow”, “BasketballScreen”, “MissionControlClip2”, “Robot”, 

“EBURainFruits”, “Map”. Training frames from different sequences were encoded by the 

original SCM-8.3 encoder with QPs at 22, 27, 32, and 37 using AI configuration to 

generate training data.  

If a node of a DT only contains samples from one class, it is defined to have pure 

samples. Otherwise, the impurity is calculated to represent how impure the samples in the 

node are. To reduce the impurity of the node, a feature 𝑓 with a classification threshold 

𝑇𝐻𝑓 is selected to further classify the samples into two child nodes, and the impurity 

reduction is calculated by comparing the impurities of two child nodes and the parent 

node. In the training process of a DT, the impurity reduction by splitting a parent node to 

two child nodes is calculated iteratively for each feature 𝑓 with a classification threshold 

 

Figure 4.2: General structure of a DT-based classifier. 
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𝑇𝐻𝑓. The larger the impurity reduction is, the better the feature and the classification 

threshold are. In the C4.5 algorithm, the impurity is calculated by entropy. Then the 

impurity reduction with 𝑓 and 𝑇𝐻𝑓 is measured by the gain ratio 𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑓, 𝑇𝐻𝑓) 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑓, 𝑇𝐻𝑓) =
𝐼 𝑓𝑜𝐺𝑎𝑖 (𝑓, 𝐻𝑓)

𝑆𝑝𝑙𝑖 𝐼 𝑓𝑜(𝑓, 𝐻𝑓)
                                 (4.1) 

where 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓, 𝑇𝐻𝑓) is the information gain by splitting a node 𝑛0  into its child 

nodes 𝑛1 ,  𝑛2  using a feature 𝑓  with a threshold 𝑇𝐻𝑓 . It is calculated by the entropy 

reduction after splitting as 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓, 𝑇𝐻𝑓) = 𝐸𝑛(𝑛0) − ∑
𝑁𝑛𝑖

𝑁𝑛0
𝐸𝑛(𝑛𝑖)𝑖                          (4.2) 

where 𝑁 0 and 𝑁 𝑖 represent the number of samples in the node 𝑛0 and child nodes 𝑛𝑖, 

𝑖 ∈ {1,2}. Let 𝑝(𝜔𝑗) be the probability of training samples belonging to the class 𝜔𝑗 in a 

node 𝑛, 𝑗 ∈ {0,1}. The entropy 𝐸𝑛(𝑛) in the node 𝑛 is calculated as 

𝐸𝑛(𝑛) = −∑ 𝑝(𝜔𝑗)𝑙𝑜𝑔2
1
𝑗=0 𝑝(𝜔𝑗).                                 (4.3) 

The normalization term 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑓, 𝑇𝐻𝑓) is defined by 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑓, 𝑇𝐻𝑓) = −∑
𝑁𝑛𝑖

𝑁𝑛0
𝑙𝑜𝑔2

𝑁𝑛𝑖

𝑁𝑛0

2
𝑖=1 .                            (4.4) 

The best feature and the threshold are selected as the ones with maximum gain ratio to 

split a node. A DT is trained node by node, and the splitting of a node is terminated if the 

number of training samples arrived the node is less than or equal to 1% of the total training 

samples. Then a reduced error pruning process [79] is performed to prune the DT 

backward to avoid overfitting. After generating a DT, the classification accuracy of the 

tree is given by a 10-fold cross-validation process [80], which calculates the percentage 

of correctly classified samples in the total training samples. 
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4.3.2 Proposed Dynamic and Static Features  

In general, the precision of SCC mode decision in a classification task is highly 

dependent on the feature space used to train the model. In most of the machine learning 

algorithms adopted in mode decision of video coding, the features extracted from a CU 

is always determined by its static content, such as background color number, gradient, etc. 

These features are called as static features in this thesis. 

In contrast, we find that the probability of selecting IBC mode as the optimal one 

depends on the spatial location of the current CU, as shown in Figure 4.3. Assume that 

CUA and CUB in the example of Figure 4.3 have the same static content. Even though the 

static features extracted from CUA and CUB are the same, the mode decision of these two 

CUs may be different. For example, CUA may select PLT mode while CUB with the same 

content is likely to select IBC mode. The reason is that the search window of CUB is larger, 

and it results in a higher chance to find a good repeated pattern with very low RD cost by 

using IBC mode. By taking this specific characteristic of screen content videos into 

account, we propose to extract the IBC mode flag of the current CU before checking the 

target mode, 𝐹𝑙𝑎𝑔𝐼𝐵𝐶, as the dynamic feature 𝑓1. If the best mode so far of the current CU 

before checking the target mode is a sub-mode (i.e. IBCPredictor, IBCM&S, or 

IBCSearch) of IBC mode, 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 is set to 1. Otherwise, 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 is set to 0. It is noted 

 

Figure 4.3: Two CUs with same content in a frame. 

 

CUB

CUA

Search window of CUB

Search window of CUA
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that, for CUB in Figure 4.3, the chance of 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 equal to 1 is higher as compared with 

that of CUA even though they the have same content. Therefore, this feature may vary 

according to the spatial location, and it is considered as a dynamic feature. 

In addition, the dynamic RD cost of the best mode so far in the current CU before 

checking the target mode, 𝐽𝑚𝑜𝑑𝑒, is another dynamic feature 𝑓2 for fast mode decision. 

Similarly, 𝐽𝑚𝑜𝑑𝑒 of CUB in Figure 4.3 is likely to become smaller since it is easier to get 

a good repeated pattern in the reconstructed area. Besides, 𝐽𝑚𝑜𝑑𝑒 is not only related to the 

spatial location but varies during the encoding process. For instance, 𝐽𝑚𝑜𝑑𝑒
2  to Classifier 

2 in Figure 4.1(c) may be different from 𝐽𝑚𝑜𝑑𝑒
3 to Classifier 3 since 𝐽𝑚𝑜𝑑𝑒

3  has already gone 

through Intra mode and IBC mode while only intra mode is tested for computing 𝐽𝑚𝑜𝑑𝑒
2 . 

The variation property is well suited for our proposed framework in Figure 4.1(c) in which 

the values of this dynamic feature entered to various DTs are different. This new 

arrangement is of great importance to SCC mode decision process using classification, 

which will be verified in the following sections. 𝐽𝑚𝑜𝑑𝑒 reveals the unique intermediate 

coding information of a CU, and its value varies as the CU goes through different DTs. 

By implementing DTs right before the target mode, the most updated values of these 

dynamic features (𝑓1  and 𝑓2 ) are obtained for different trees to improve the decision 

accuracy. 

By using the proposed framework with DTs prior to checking a mode in a CU, the 

new dynamic features with the following nine static features are then selected based on 

our prior knowledge for the training of DTs in Figure 4.1(c).   

𝑓3: Background color number BCN. The background color in a CU is defined as the 

color with the highest occurrence frequency within the CU, and BCN is calculated by 

counting the number of the background color pixels.  
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𝑓4: Distinct color number DCN. DCN is calculated by counting the pixels in a CU 

with different sample values.  

For BCN and DCN, all three components of a pixel (Y, U, V in YVV 4:4:4 or R, G, 

B in RGB 4:4:4) are stacked to form a 24-bit sample value. For sequences in YUV 4:2:0 

format, only the luminance component is utilized as an 8-bit sample value. 

𝑓5– 𝑓8: High gradient pixel number 𝐻𝐺𝑁0, 𝐻𝐺𝑁1,  𝐻𝐺𝑁2, 𝐻𝐺𝑁3. The high gradient 

pixel is utilized to detect sharp edges in a CU, as in Equation (3.1). To detect edges with 

different sharpness in our proposed algorithm, 4 different high gradient pixel numbers, 

𝐻𝐺𝑁0, 𝐻𝐺𝑁1, 𝐻𝐺𝑁2, and 𝐻𝐺𝑁3, are calculated by counting high gradient pixels with 

𝑇𝐻𝑆  of 4, 8, 16, and 32, respectively. Considering that the proposed algorithm is a 

machine learning based approach, it lets the DT select the features to be used based on 

the off-line training.  It implies to select which value(s) of 𝑇𝐻𝑆 to be used in each DT. 

Therefore, we do not need to manually select which particular value(s) of 𝑇𝐻𝑆 in the final 

DTs. 

It is noted that sequences in RGB 4:4:4 format are converted to YUV 4:4:4 format to 

get the luminance component.  

𝑓9–𝑓10: CU horizontal and vertical activities HorAct and VerAct. They have been 

used for skipping IBC mode adaptively in the original SCM-8.3 and defined as 

𝐻𝑜𝑟𝐴𝑐𝑡 = ∑ ∑ |𝑌𝑖,𝑗 −
2𝑁−1
𝑗=0

2𝑁
𝑖=0 𝑌𝑖,𝑗+1|                                    (4.5) 

𝑉𝑒𝑟𝐴𝑐𝑡 = ∑ ∑ |𝑌𝑖,𝑗 −
2𝑁−1
𝑖=0

2𝑁
𝑗=0 𝑌𝑖+1,𝑗|.                                   (4.6) 

𝑓11: CU variance Var. Var can well represent the smoothness of a CU, which is 

defined as  

𝑉𝑎𝑟 =
1

2𝑁×2𝑁 
∑ ∑ (𝑌𝑖,𝑗 − �̅�)

22𝑁
𝑖=0

2𝑁
𝑗=0                                      (4.7) 

where Y̅ is the average luminance value over the current CU.  
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𝑓3– 𝑓11  are static features which have fixed values in a CU. Therefore, they are 

obtained once for a CU and shared among different DTs. 

4.3.3 Fast Mode Decision Design  

To make fast mode decision in SCC, the selection of Intra mode, IBC mode, and 

PLT mode is investigated by adopting different DTs in our new coding framework. Then, 

a DT for performing CU type classification is trained at the last depth level to avoid the 

situation that all modes are skipped for a CTU. The proposed framework inserts a 

classifier before checking a target mode. Unlike the existing methods that inserts a 

classifier before the entire mode-checking, it can extract features that reflect the 

intermediate coding information, such as the best RD cost so far and the IBC flag so far. 

Those dynamic features help to improve the decision accuracy. In this sub-section, the 

detailed design of the new coding framework is discussed. 

A. Feature Analysis 

Among the three coding modes in SCC, Intra mode is the only mode inherited 

directly from HEVC. While Intra mode is very efficient for NIBs, IBC mode and PLT 

mode are both specially designed for SCBs. To perform fast mode decision, a common 

idea is to classify CUs into NIBs and SCBs by analyzing their content characteristics. 

Then IBC and PLT modes are checked for SCBs while Intra mode is checked for NIBs. 

However, such an approach is not optimal since IBC and PLT modes are always checked 

together for SCBs.  

To understand the distributions of Intra, IBC and PLT modes over different features, 

we randomly selected 300,000 16×16 CUs from the training samples, and the number of 

the CUs with each mode is 100,000. First, the mode distributions over the dynamic 

features obtained right before the target mode were investigated. Figure 4.4 shows the 
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percentages of CUs selecting the target mode and other modes in terms of 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 

(Figure 4.4 (a)–(c)) and 𝐽𝑚𝑜𝑑𝑒 (Figure 4.4 (d)–(e)). If 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 before checking the target 

mode is 1, the CU is more likely to be a SCB, otherwise, it more likely to be a NIB. 

Therefore, it is observed in Figure 4.4(a) that the percentage of Intra mode is very low if 

𝐹𝑙𝑎𝑔𝐼𝐵𝐶 before checking Intra mode is 1. On the contrary, the percentages of IBC mode 

and PLT mode are low if 𝐹𝑙𝑎𝑔𝐼𝐵𝐶  before checking the target mode is 0, as shown in 

Figure 4.4(b) and Figure 4.4(c), respectively. Before checking Intra mode, 𝐽𝑚𝑜𝑑𝑒 is highly 

correlated to 𝐹𝑙𝑎𝑔𝐼𝐵𝐶. If IBCPredictor does not provide a valid BV for a CU, 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 

would be 0 and the value of 𝐽𝑚𝑜𝑑𝑒 becomes very large. Otherwise, the value of 𝐽𝑚𝑜𝑑𝑒 is 

relatively small if 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 is 1. Therefore, the percentage of CUs selecting Intra mode is 

very low if the value of 𝐽𝑚𝑜𝑑𝑒 is small, as shown in Figure 4.4(d). It is also observed in 

Figure 4.4(e) that if 𝐽𝑚𝑜𝑑𝑒 before checking IBC mode is very large, the percentage of IBC 

mode would be low. The reason is that for CUs with very large values of 𝐽𝑚𝑜𝑑𝑒, they 

usually have complex texture, and it is difficult to find repeated patterns for the complex 

 

                                   (a)                                                                      (b)                                                                (c)     

 

                                     (d)                                                                  (e)                                                             (f) 

Figure 4.4: The percentages of the target mode and other modes in terms of 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 (a)–(c) and 

𝐽𝑚𝑜𝑑𝑒 (d)–(e) for 16×16 CUs. 
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texture CUs by IBC mode. Besides, Figure 4.4(f) shows that the percentage of PLT mode 

is low for CUs with a small value of 𝐽𝑚𝑜𝑑𝑒. The reason is that the CU with a small value 

of 𝐽𝑚𝑜𝑑𝑒 before checking PLT mode may have been efficiently encoded and the checking 

of PLT mode becomes unnecessary. The discrepancy between Figure 4.4(e) and Figure 

4.4(f) verifies that PLT mode and IBC mode have different characteristics and should not 

use the same classifier when the dynamic features are adopted.  

Then the mode distributions of the static features shared among different DTs were 

also investigated. Figure 4.5 shows the mode distributions in terms of 5 representative 

features: (a) DCN, (b) BCN (c) 𝐻𝐺𝑁3, (d) HorAct and (e) Var. It is observed that the 

percentage of Intra mode increases as DCN gets larger, or BCN, 𝐻𝐺𝑁3, HorAct, and Var 

get smaller. The reason is that Intra mode is designed for NIBs, and they tend to have 

larger DCN, smaller BCN and be smoother. Besides, it is also observed that the percentage 

 

(a)                                              (b) 

 

                                   (c)                                              (d)                                             (e) 

Figure 4.5: Intra, IBC and PLT mode distributions in terms of (a) Distinct color number DCN, 

(b) high gradient pixel number 𝐻𝐺𝑁3, (c) horizontal activity HorAct, and (d) CU variance Var 

for 16×16 CUs. 
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of PLT mode is much higher than IBC mode when CUs get more complex, such as CUs 

with larger values of 𝐻𝐺𝑁3, HorAct and Var. It further implies that PLT mode and IBC 

mode should not share the same classifier for SCC intra mode selection that is always 

adopted in the algorithms proposed in the literature [53]–[55].  

Based on these observations, we trained DTs in the proposed coding framework to 

adaptively check Intra mode, IBC mode and PLT mode separately. 

B. Training of DT-based Classifier 

As described before, IBC mode contains three steps, which are IBCPredictor, 

IBCM&S and IBCSearch. While the step of the IBCPredictor only checks several BV 

predictors and our experiment shows that it takes up only 1.24% of the total encoding time, 

and the computational complexities of IBCM&S and IBCSearch are relatively high. 

Therefore, we always check IBC-Step1 as the first check. By collecting the most updated 

features, two sets of DTs are generated inside IBC mode to adaptively check IBCM&S 

and IBCSearch. After generating the DTs for all modes, they are implemented in the 

SCM-8.3 encoder to perform fast mode decision. Before checking a mode, the incoming 

CU goes through the DT for the mode to decide whether it should be tested. If the outcome 

or the class label of the DT is 1, it is involved in the mode searching process. Otherwise, 

the current CU does not check the target mode so that the computational complexity 

brought by this mode is reduced. However, there is a case that all modes are decided to be 

skipped for a CTU when all mode DTs are implemented, and finally the CTU cannot be 

encoded. To solve this problem, a CU type DT is also trained at the last depth level, and 

at least one possible mode is assigned to the CU if all modes are skipped for it. The CU 

type DT can classify incoming CUs into NIBs and SCBs. If the outcome for a CU is a 
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NIB, i.e., 1, Intra mode is checked for it. Otherwise, IBC and PLT modes are both checked 

for it.  

As SCC supports CU sizes of 64×64, 32×32, 16×16, and 8×8, 4 DTs are trained for 

CUs with different sizes. To avoid the data imbalance problem caused by more training 

samples in one class than in the other [81], we let 50% of the training samples come from 

CUs with the target mode as their optimal modes, and they are treated as the positive data. 

The other 50% of training samples come from the CUs which are not encoded by the 

target mode, and they are treated as the negative data. Besides, for the training of the CU 

type DT at the last depth level, the positive training data are from NIBs, i.e. CUs encoded 

by Intra mode, while the negative data are from SCBs, i.e. CUs encoded by IBC or PLT 

mode.  

The training data number and the depth of each DT are shown in Table 4.1 and Table 

4.2, respectively. Since a frame can be partitioned into more CUs with a small size than 

CUs with a large size, more training data are obtained as the CU size gets smaller. Besides, 

we can see that the largest depth of the trained DTs is 14, which means the decision for a 

mode is made after going through at most 14 “if-then-else” conditions. Therefore, the 

Table 4.2: Depth of each DT. 

CU Size Intra 
IBC PLT CU Type 

Merge & Skip Search   

64×64 14 13    

32×32 7 4  6  

16×16 8 1 10 6  

8×8 9 9 6 7 7 

 

 

Table 4.1: Training data number for each DT. 

CU Size Intra 
IBC PLT CU Type 

Merge & Skip Search   

64×64 28452 14224   64×64 

32×32 216072 111980  80804 32×32 

16×16 715548 573848 168736 219192 16×16 

8×8 3166280 2724108 1522712 453080 8×8 
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computational complexity brought by those DTs is negligible. As an example, the DT 

based IBCM&S mode classifier for 32×32 CUs is shown in Figure 4.6, and other trained 

classifiers can be found in our website [82]. 

C. Feature Subset Selection 

When training classifiers for different tasks, the valid features are quite different, 

and the performance of a classifier is very sensitive to the features utilized to train the 

classifier. Therefore, to eliminate the impact of irrelevant or redundant features and 

provide a better understanding of the valid features for each mode decision, a feature 

subset selection [83] approach is applied.  

We implemented the feature subset selection in WEKA using the wrapper evaluation 

with a greedy search strategy, which is computationally advantageous and robust against 

overfitting. The feature subset selection consists of the following steps: 

Step 1: Initialize the feature subset set F𝑘=∅ at 𝑘=0. 

Step 2: Find the best remaining feature 𝑓  which provides the largest accuracy 

increase when added to F𝑘. 

Step 3: 𝑘++ and F𝑘=F𝑘−1 ∪{𝑓}. 

Step 4: Iterate step 2 and step 3 until the classifier accuracy is no longer improved.  

 

Figure 4.6: IBCM&S mode DT for 32×32 CUs. 
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Table 4.3 shows the valid features of each DT, and the importance of each valid 

feature is also shown in this table by measuring its gain ratio. It is observed that the 

proposed dynamic features, 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 and 𝐽𝑚𝑜𝑑𝑒 obtained right before the target mode, are 

quite important for most DTs, with the gain ratio up to 0.669 and 0.102, respectively. This 

verifies that the dynamic features play a critical role in the decision process with the 

introduction of the new coding framework. By adopting the feature subset selection 

approach, the number of features fed into a DT is reduced to 1–8, and 6.07 on average. 

Compared with the original feature set with 11 features, the feature number is reduced by 

44.92%, and the impact of the feature subset selection approach in terms of coding 

performance will be discussed in Section 4.4.4. 

D. Accuracy of DTs 

The decision accuracy for each DT is shown in Table 4.4. We can see from the table 

that the accuracies of those DTs vary from 75.44% to 94.51%, where the decision 

accuracies for 64×64 CUs are relatively low. The reason is that there are many CUs with 

pure horizontal edges, pure vertical edges or a single color in the training data set of 64×64 

CUs, and they are difficult for making classification. However, this kind of CUs can be 

encoded efficiently by all modes with very low computational complexity. Therefore, the 

Table 4.3: The gain ratio of each feature for each DT. 

DT 𝐹𝑙𝑎𝑔𝐼𝐵𝐶 𝐽𝑚𝑜𝑑𝑒 BCN DCN 𝐻𝐺𝑁0 𝐻𝐺𝑁1 𝐻𝐺𝑁2 𝐻𝐺𝑁3 HorAct VerAct Var 

Intra 

64×64   0.044 0.029  0.071 0.094  0.074 0.065 0.054 

32×32 0.179  0.043 0.022    0.084 0.045 0.046  

16×16  0.102 0.035 0.029     0.029 0.025 0.027 

8×8 0.180  0.051 0.046   0.005  0.020 0.019 0.025 

IBCM&S 

64×64  0.065 0.099  0.084     0.097 0.100 

32×32 0.669     0.045   0.070  0.066 

16×16 0.431           

8×8 0.178 0.014 0.032 0.019   0.024  0.017 0.018 0.025 

IBCSearch 
16×16 0.275 0.007 0.028 0.030   0.019 0.023 0.010 0.016 0.022 

8×8 0.281  0.039 0.027   0.061 0.067 0.035 0.036  

PLT 

32×32 0.001 0.048 0.064 0.041  0.026   0.035   

16×16 0.166 0.038 0.035 0.025 0.009  0.034  0.031   

8×8 0.105 0.027 0.029 0.021   0.031 0.039 0.027 0.023  

CU Type 8×8   0.058 0.045     0.031 0.028  
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low decision accuracy of 64×64 CUs will not lead to large computational complexity or 

coding efficiency degradation.   

There are two kinds of false classifications for each mode DT. One is the missed 

detection, which is the case that the optimal mode of a CU is not a certain mode, but it is 

not detected, and the mode is checked for the CU redundantly. Although the missed 

detection leads to the increase in computational complexity, it does not bring RD 

performance loss. The other is the incorrect decision, which is the case that the optimal 

mode of a CU is a certain mode, but the mode is skipped for the CU incorrectly. The 

incorrect decision leads to RD performance loss because the optimal mode for a CU is 

skipped. The incorrect decision rate of each DT is shown in Table 4.5, and we can see 

that only 3.12% to 13.14% of the mode decision leads to RD performance loss. 

4.3.4 DT Constraint 

To reduce the RD performance loss caused by skipping the optimal mode for a CU 

incorrectly, a DT constraint technique based on the spatial content correlation is derived 

for CUs with the size of 8×8 in this sub-section.  

Table 4.5: Incorrect decision for each DT. 

CU Size Intra (%) 
IBC 

PLT (%) 
Merge & Skip (%) Search (%) 

64×64 3.81 5.00   

32×32 2.88 3.77  5.33 

16×16 4.07 13.14 8.73 5.06 

8×8 9.95 6.07 6.75 6.60 

 

Table 4.4: Decision accuracy for each DT. 

CU Size Intra (%) 
IBC 

PLT (%) CU Type (%) 
Merge & Skip (%) Search (%) 

64×64 75.44 82.31    

32×32 87.95 94.51  82.27  

16×16 83.34 84.57 81.89 82.48  

8×8 78.23 83.13 85.66 79.83 83.17 
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There is usually a strong spatial content correlation in screen content videos. A CU 

with the neighbor of NIBs is very likely to be a NIB while a CU with the neighbor of 

SCBs is very likely to be a SCB. To prove the strong spatial correlation, we encoded the 

frame-skipped sequences with QPs at 22, 27, 32, and 37 by using the original SCM-8.3 

encoder. For each CU, the optimal modes of its top and left neighboring CUs were 

recorded. We treat a CU selecting Intra mode as a NIB, and a CU selecting IBC mode or 

PLT mode as a SCB. If a top or left neighboring CU has the same type of content as the 

current CU, we call it a same content neighboring CU. Table 4.6 shows the spatial content 

correlation of 8×8 CUs by giving the distributions of the same content neighboring CU 

number. We can see from the table that over 90% CUs have one or two same content 

neighboring CUs. Only 7.58% of SCBs and 4.28% of NIBs have no same content 

neighboring CU. Therefore, when encoding an 8×8 CU, if one of its neighboring CUs 

from the top and left selects Intra mode, i.e. 𝐹𝑙𝑎𝑔𝑁𝐼𝐵=1, we additionally check Intra mode 

for it based on the outcomes of DTs, and if one of its neighboring CUs from the top and 

left selects PLT or IBC mode, i.e. 𝐹𝑙𝑎𝑔𝑆𝐶𝐵=1, we additionally check IBC mode and PLT 

mode for it based on the outcomes of DTs. Although there is also the strong spatial 

correction of optimal modes for large CU sizes, it is unnecessary to check more mode 

candidates for them in order to achieve higher encoding reduction. For a large CU, if DTs 

assign an incorrect mode to it, it still has a chance to select good modes when partitioned 

into 8×8 CUs by using the DT constraint technique, so that the RD performance loss 

brought by the incorrect decision of large CU is decreased. The impact of the DT 

constraint technique will be discussed in Section 4.4.4. 

Table 4.6: Same content neighboring CU number distributions for 8×8 CUs. 

CU content 0 (%) 1 (%) 2 (%) 

NIB 7.58 18.12 74.30 

SCB 4.28 15.08 80.64 
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All proposed techniques are treated as additional mode checking conditions based 

on the original encoding process when implemented in SCM-8.3. As a summary, the 

flowchart of the proposed fast mode decision algorithm is shown in Figure 4.7, where 

𝐹𝑙𝑎𝑔𝑆𝐶𝐵, and 𝐹𝑙𝑎𝑔𝑁𝐼𝐵 are used to denote the outcome of the DT constraint technique, 

and DT_Intra, DT_IBCM&S, DT_IBCSearch, and DT_PLT are used to denote the 

outcomes of the DTs for Intra, IBCM&S, IBCSearch, and PLT modes, respectively. For 

simplicity, the original mode checking conditions in SCM-8.3 are not shown in this figure. 

4.4 Experimental Results and Discussions 

Four sets of experiments have been conducted to analyze the performance of the 

proposed work from different aspects. First, a study on the different number of training 

sequences is discussed.  Second, the performance of the proposed framework is evaluated 

by comparing it with existing fast SCC encoding algorithms. Third, the contribution of 

 

Proposed techniques: 1. The DT constraint, 2. Intra mode DT, 3. IBCM&S DT, 4. IBCSearch mode DT, 5. 

PLT mode DT, and 6. CU type DT. 

Figure 4.7: Flowchart of the proposed fast mode decision algorithm in a CTU.  
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each individual mode decision algorithm is analyzed. At last, the efficiency of the feature 

subset selection and DT constraint techniques is validated. 

4.4.1 Study on Different Training Set  

To understand the impact of the training sequences to the performance of the 

proposed algorithm, we gradually reduce the number of training sequences and then 

compare their performances. Figure 4.8 shows the simulation results with two, five, eight 

training sequences, respectively. It is observed that the proposed algorithm can provide 

relatively good performance even though two training sequences are used, where 48.72% 

encoding time is reduced with 1.97% increase in BDBR. Besides, it is observed that using 

more training sequences helps to reduce the increase in BDBR. When training sequences 

are increased from two to eight, the increase in BDBR is reduced from 1.97% to 1.42%. 

4.4.2 Performance Evaluation  

 Table 4.7 shows the performance of the proposed framework using 8 training 

sequences in Figure 4.8 and four state-of-the-art SCC fast intra-prediction algorithms 

[52]–[55] in terms of BDBR and ΔTime, where the largest value of ΔTime in each 

sequence is marked in boldface. It is observed that our proposed framework shows the 

 

Figure 4.8: Simulation results with two, five, eight training sequences. 
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best performance compared with other SCC fast intra-prediction algorithms [52]–[56], and 

it provides the largest encoding time reduction for 10 sequences out of 14 sequences. 

Compared with the anchor SCM-8.3, our proposed framework achieves up to 62.34% 

encoding time reduction on the “Desktop” sequence. On average, 47.62% encoding time 

reduction is obtained with a negligible increase in BDBR of 1.42%. Zhang et al.’s method 

[52] adopts the fast CU size decision framework shown in Figure 4.1(a), and it is observed 

in Table 4.7 that it only reduces the encoding time by 14.53% on average. Compared with 

Duanmu et al.’s method [53], Lei et al.’s method [54] and Yang et al.’s method [55] which 

adopt the hybrid method by combining the frameworks in Figure 4.1(a) and (b) for fast 

CU size decision and fast mode decision based on CU type classification, the proposed 

framework substantially outperforms them in both coding efficiency and computation 

complexity. Duanmu et al.’s method [53] provides 26.89% encoding time reduction while 

BDBR is increased by 1.70% on average. When compared with the anchor SCM-8.3, our 

proposed framework shows 22.60% larger encoding time reduction with 0.21% smaller 

Table 4.7: Performance comparisons with the state-of-the-art fast intra-prediction algorithms. 

Sequences 

Zhang [52] Duanmu [53] Lei [54] Yang [55] Proposed  

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BasketballScreen (T) 0.45 -11.98 1.25 -22.43 1.46 -24.83 3.00 -31.54 1.87 -48.60 

MissionControlClip2 (T) 0.40 -20.5 2.86 -33.9 1.71 -25.49 2.51 -38.54 2.51 -47.30 

MissionControlClip3 (NT) 0.37 -11.28 2.03 -24.61 1.69 -33.81 2.90 -34.15 1.68 -52.21 

ChineseEditing (T) 0.14 -3.40 1.10 -17.47 0.99 -18.96 4.30 -34.16 0.60 -53.06 

Console (NT) 2.64 -8.23 1.87 -28.12 2.87 -23.40 7.38 -42.83 0.60 -54.14 

Desktop (NT) 0.67 -4.94 2.19 -26.24 1.97 -23.85 6.27 -35.91 1.03 -62.34 

FlyingGraphics (T) 0.54 -3.24 0.98 -20.13 1.72 -18.13 5.47 -31.19 1.56 -52.13 

Map (T) 0.97 -10.66 1.55 -19.16 1.23 -20.05 2.84 -41.66 1.36 -31.89 

Programming (NT) 0.44 -11.76 1.89 -22.16 2.50 -22.92 4.71 -27.38 2.20 -48.94 

SlideShow (T) 0.36 -46.92 2.82 -52.47 2.32 -55.58 3.69 -34.45 3.76 -35.67 

WebBrowsing (NT) 0.79 -6.99 1.91 -28.17 6.02 -26.75 5.00 -53.00 0.98 -57.23 

Robot (T) 0.43 -17.89 1.18 -29.36 5.21 -46.91 0.59 -28.19 1.51 -47.19 

EBURainFruits (T) 0.21 -18.96 0.88 -26.47 1.76 -48.58 0.17 -25.89 0.16 -39.07 

Kimono1(NT) 0.14 -26.67 1.23 -25.75 1.52 -75.55 0.13 -36.18 0.05 -36.93 

Average (NT) 0.84 -11.65 1.85 -25.84 2.76 -34.38 4.40 -38.24 1.09 -51.97 

Average (TGM+M) 0.71 -12.72 1.86 -26.81 2.23 -26.71 4.37 -36.80 1.65 -49.41 

Average (A+CC) 0.26 -21.17 1.10 -27.19 2.83 -57.01 0.30 -30.09 0.57 -41.06 

Average (ALL) 0.61 -14.53 1.70 -26.89 2.36 -33.20 3.50 -35.36 1.42 -47.62 

Sequences with T are videos used to generate training frames. Sequences with NT are unseen sequences to the trained 

DTs. 
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increase in BDBR than Duanmu et al.’s method [53] for sequences in TGM+M. For 

sequences in A+CC, the proposed framework shows 13.87% larger encoding time 

reduction with 0.53% smaller increase in BDBR than Duanmu et al.’s method [53]. Lei et 

al.’s method [54] achieves 33.20% encoding time reduction while BDBR is increased by 

2.36% on average. Although Lei et al.’s method [54] shows a larger encoding time 

reduction than the proposed framework for sequences in A and CC, the increase in BDBR 

is about 4 times higher than the proposed framework. For the sequences in TGM+M, Lei 

et al.’s method [54] also shows a very high increase in BDBR while the encoding time is 

only reduced by 26.71%. Yang et al.’s method [55] shows 35.36% encoding time 

reduction with a very high increase in BDBR of 3.50% on average. Since it always checks 

Intra mode for 2N×2N PUs, it brings only 0.30% increase in BDBR to the sequences in 

A+CC. However, the BDBR of the sequences in TGM+M is increased by 4.37% due to 

the low decision accuracy for SCBs.  

It should be noted that our proposed DTs were trained by the frames in sequences 

marked with T, while the sequences were not used for training are marked with NT. It is 

observed in Table 4.7 that our proposed framework provides similar performance for the 

training sequences and the unseen sequences. Besides, the best performance of our 

proposed framework is not achieved for the training sequences but for the unseen 

“Desktop” sequence where 62.34% encoding time is reduced with 1.03% negligible 

increase in BDBR. Specifically, the average performances of the NT sequences are also 

shown in Table 4.7. The NT sequences show 51.97% encoding time reduction with 1.09% 

increase in BDBR, which outperforms algorithms in [52]–[55]. This shows that the 

proposed framework is generalizable to the unseen sequences. It is noted that the 14 

sequences in CTC [30] are carefully selected to be representatives for other screen content 

sequences, and all existing fast SCC encoding algorithms always utilize some sequences 
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from CTC [30] for both training and testing. To further show the generalization of the 

proposed algorithm to other screen content sequences, ten more test sequences [84]–[88] 

that are not included in CTC [30] were evaluated. The results are shown in Table 4.8 with 

comparison to the existing fast SCC encoding algorithms [52]–[55], where the largest 

value of ΔTime in each sequence is marked in boldface. It is observed that the proposed 

algorithm again outperforms the fast SCC encoding algorithms [52]–[55], and it provides 

the largest encoding time reduction for seven sequences out of the ten test sequences. 

Although Lei et al.’s method [54] shows a larger encoding time reduction in the other 

three sequences, the increase in BDBR is remarkably higher than the proposed framework. 

On average, the fast SCC encoding algorithms [52]–[55] reduce 11.78%–36.80% 

encoding time with 0.94%–4.29% increase in BDBR. Comparatively, the proposed 

algorithm reduces 51.34% encoding time with only 0.98% increase in BDBR. Again, this 

confirms the generalization ability of the proposed algorithm.  

The proposed algorithm includes additional processes of feature extraction and 

decision determination for making fast mode decision, and these computational 

overheads are further analyzed and summarized in Table 4.9. It is observed that the 

Table 4.8: Performance comparisons with the state-of-the-art fast intra-prediction algorithms for 

sequences not in CTC. 

Sequences 

Zhang [52] Duanmu [53] Lei [54] Yang [55] Proposed  

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BigBuckBunnyStudio 0.64 -20.44 1.90 -31.34 2.58 -44.83 1.98 -35.08 1.78 -41.94 

ClearTypeSpreadsheet 0.54 -1.14 1.81 -22.83 0.72 -20.86 7.67 -41.76 0.71 -62.56 

EBULupoCandlelight 0.33 -36.23 1.18 -41.42 3.41 -66.49 0.43 -43.05 0.13 -38.35 

CadWaveform 1.22 -6.19 6.40 -33.64 4.66 -19.97 4.85 -36.16 0.50 -58.40 

PcbLayout 0.96 -10.77 2.58 -36.07 3.08 -27.30 4.95 -38.08 1.67 -48.82 

PptDocXls 1.35 -4.31 1.47 -24.01 1.29 -17.38 4.16 -32.72 0.74 -55.70 

RealTimeData 3.32 -6.19 1.55 -26.15 2.11 -22.43 7.11 -34.65 0.82 -50.62 

VideoConferencingDocSharing 0.37 -3.60 1.57 -24.57 3.63 -19.93 7.06 -34.76 0.55 -58.27 

Viking 0.33 -18.66 1.00 -30.41 5.00 -65.84 0.47 -29.61 1.36 -45.02 

WordEditing 0.36 -10.30 0.97 -23.17 1.24 -24.42 4.21 -42.10 1.57 -53.71 

Average (ALL) 0.94 -11.78 2.04 -29.36 2.78 -32.95 4.29 -36.80 0.98 -51.34 
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average computational overhead proportions of feature extraction and decision 

determination are only 1.32% and 0.01%, respectively. It is noted that these 

computational overheads have been counted in Table 4.7 to calculate the encoding time 

reduction. 

We also extend our work to support sequences in YUV 4:2:0 and RGB 4:4:4 formats 

based on the same methodology, and their performances are summarized in Table 4.10. It 

is observed that for sequences in YUV 4:2:0 and RGB 4:4:4 formats, encoding time of 

41.68% and 49.98% is reduced with 1.68% and 1.41% increase in BDBR on average, 

respectively. The results are very similar to that of YUV 4:4:4 sequences, which 

demonstrates the proposed framework is generalizable to other color formats.  Since the 

fast SCC encoding algorithms [52]–[55] only investigated the fast prediction for YUV 

4:4:4 sequences, we cannot make comparisons for sequences in YUV 4:2:0 and RGB 4:4:4 

formats.  

Since Intra-prediction is also needed in inter frame coding, Figure 4.9 also shows the 

impact of the proposed algorithm on inter frame coding under Low Delay (LD) 

configuration. BDBR and ΔTime of five typical sequences in YUV 4:4:4 format are 

Table 4.9: Average computational overheard of the proposed algorithm. 

Computational Overhead 

Proportion (%) 

Feature Extraction Decision Determination 

1.32 0.01 
 

Table 4.10: Average ∆Time and BDBR of the proposed algorithm for YUV 4:2:0 and RGB 4:4:4 

sequences under CTC. 

Sequence Categories 
YUV 4:2:0 RGB 4:4:4 

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

Average (TGM+M) 1.66 -37.92 1.58 -48.98 

Average (A+CC) 1.79 -59.82 0.80 -55.30 

Average (ALL) 1.68 -41.29 1.41 -49.98 
 



Chapter 4 Determinations on Coding Structure by Decision Trees 

 72 

shown in Figure 4.9, and similar results are observed for other sequences. It is observed 

that the proposed algorithm reduces 6.52%–8.44% encoding time with negligible increase 

in BDBR, which implies the proposed algorithm also benefits to inter frame coding.  

4.4.3 Performance of the Individual Mode Decision Algorithm  

To further investigate the contribution of each mode decision algorithm, additional 

experiments were performed by implementing DTs for IBC mode, PLT mode, IBC+PLT 

 

Figure 4.9: BDBR and ΔTime of the proposed algorithm under LD configuration. 

 

Table 4.11: Performance of each individual mode decision algorithm and their combinations for 

YVU 4:4:4 sequences. 

Sequences 

IBC Mode 

Decision 

PLT Mode 

Decision 

PLT+IBC Mode 

Decision 

Intra Mode 

Decision 

Overall 

Framework 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BasketballScreen (T) 1.05 -22.76 0.21 -8.98 1.31 -31.58 0.56 -17.85 1.87 -48.60 

MissionControlClip2 (T) 1.65 -21.72 0.58 -11.66 2.10 -33.55 0.74 -14.50 2.51 -47.30 

MissionControlClip3 (NT) 0.91 -24.09 0.30 -8.28 1.04 -31.53 0.67 -19.42 1.68 -52.21 

ChineseEditing (T) 0.31 -26.52 0.11 -2.01 0.45 -27.40 1.21 -24.14 1.56 -52.13 

Console (NT) 0.34 -13.97 0.06 -4.24 0.57 -17.97 0.85 -14.56 1.36 -31.89 

Desktop (NT) 0.87 -21.64 0.93 -6.17 1.88 -27.62 0.37 -20.84 2.20 -48.94 

FlyingGraphics (T) 2.26 -16.23 0.41 -11.09 3.09 -28.26 0.71 -8.31 3.76 -35.67 

Map (T) 0.67 -31.58 0.11 -3.83 0.78 -34.83 0.25 -22.56 0.98 -57.23 

Programming (NT) 0.35 -21.79 0.27 -1.37 0.62 -23.08 0.17 -29.54 0.60 -53.06 

SlideShow (T) 0.15 -26.56 0.12 -2.12 0.25 -27.68 0.37 -27.81 0.60 -54.14 

WebBrowsing (NT) 0.45 -33.40 0.37 -1.58 0.65 -34.64 0.33 -27.74 1.03 -62.34 

Robot (T) 0.57 -23.08 0.67 -17.97 1.38 -43.02 0.12 -3.11 1.51 -47.19 

EBURainFruits (T) 0.12 -26.12 0 -11.03 0.13 -38.15 0.02 0.22 0.16 -39.07 

Kimono1(NT) 0.04 -24.28 0 -9.76 0.04 -37.48 0.04 2.51 0.05 -36.93 

Average (NT) 0.52 -26.93 0.31 -5.29 0.77 -32.30 0.34 -19.31 1.09 -51.97 

Average (TGM+M) 0.82 -23.66 0.32 -5.58 1.16 -28.92 0.57 -20.66 1.65 -49.41 

Average (A+CC) 0.24 -24.49 0.22 -12.92 0.52 -39.55 0.06 -0.13 0.57 -41.06 

Average (ALL) 0.70 -23.84 0.30 -7.15 1.02 -31.20 0.46 -16.26 1.42 -47.62 

Sequences with T are videos used to generate training frames. Sequences with NT are unseen sequences to the trained 

DTs. 
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modes, Intra mode, respectively, and the results are shown in Table 4.11. We can see from 

the table that IBC mode DTs provide the largest encoding time reduction, followed by 

Intra mode and PLT mode, which are 23.84%, 16.26% and 7.15%, respectively. When the 

DTs of IBC mode and PLT mode are both implemented, sequences in A+CC show 39.55% 

encoding time reduction, which is nearly the same as the results of the overall framework 

with all DTs enabled. It is because nearly all CUs in A+CC sequences are encoded by Intra 

mode, and it shows that the IBC and PLT DTs can efficiently skip these CUs. Smaller 

encoding time is saved for sequences in TGM+M because they contain many SCBs, so 

that fewer IBC mode and PLT mode are skipped. In contrast, only 0.13% encoding time 

reduction is observed for sequences in A+CC when only the Intra mode DTs are 

implemented. For sequences with almost pure SCBs, such as “ChineseEditing”, “Console” 

and “Desktop”, over 27% encoding time is saved by using Intra mode DTs. The reason is 

that almost all CUs in these sequences can skip Intra mode and large encoding time 

reduction is achieved. Furthermore, Table 4.11 shows that the overall framework provides 

23.52%–34.60% larger encoding time reduction for “ChineseEditing”, “Console” and 

“Desktop”, as compared with the results that only intra mode DTs are enabled. The reason 

is that besides the Intra mode which is not suitable for encoding SCBs, the overall 

framework considers PLT mode and IBC mode separately and then further skips 

unnecessary PLT mode and IBC mode for SCBs. To support this statement, we 

investigated the mode decision of the proposed overall framework by encoding all 

sequences with QPs of 22, 27, 32, 37, and the average distribution of mode decision is 

shown in Table 4.12.  

It is observed that in the depth level of 3, IBC or PLT mode is always checked with 

other modes because of the DT constraint technique. However, the proposed overall 

framework is very efficient for larger CU sizes. In the depth level of 0, 56.84% CUs 
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directly go to the next depth level because only Intra mode and IBC mode exist. In the 

depth levels of 1 and 2, 42.67% and 28.20% CUs select either IBC mode or PLT mode, 

respectively. By further reducing the mode candidates for SCBs in the proposed overall 

framework, it provides 20.48%–38.49% larger encoding time reduction for 

“ChineseEditing”, “Console” and “Desktop” compared with [53]–[55], as shown in Table 

4.7.  

4.4.4 Evaluation of Feature Subset Selection and DT Constraint  

To validate the efficiency of the feature subset selection and the DT constraint 

techniques, experiments were performed by implementing the overall framework without 

the feature subset selection and DT constraint techniques, and the results are shown in 

Table 4.13. Compared with the case without performing feature subset selection, the 

proposed overall framework provides 3.97% larger encoding time reduction with 0.13% 

decrease in BDBR. Therefore, better performance is provided by adopting the feature 

subset selection technique, because the impact of irrelevant or redundant features is 

removed. Besides, it is observed that the DT constraint technique helps to reduce BDBR 

increase of the proposed framework at the cost of less encoding time reduction. On average, 

the encoding time saving of the proposed framework is slightly reduced from 52.90% to 

47.62% while the increase in BDBR is reduced from 3.07% to 1.42% by implementing the 

DT constraint technique. Specifically, we can see that the performance improvement for 

Table 4.12: Mode decision distribution of the proposed overall algorithm for YVU 4:4:4 

sequences. 

CU Size Intra only IBC only PLT only Intra+IBC Intra+PLT IBC+PLT Intra+IBC+PLT No Mode 

64×64 27.60 6.70  8.86    56.84 

32×32 41.79 1.15 41.52 0.08 4.30 3.674 0.02 7.48 

16×16 53.23 3.89 24.31 1.49 3.06 12.18 1.03 0.82 

8×8 52.06 0 0 4.01 1.97 27.14 14.81 0 
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sequences in A+CC is limited, but sequences in TGM+M gain large benefits from the DT 

constraint technique and the increase in BDBR is reduced by 2.03%. The reason is that 

IBC and PLT modes are very effective in 8×8 SCBs. Therefore, even a small incorrect 

decision rate of IBC and PLT modes in 8×8 SCBs leads to large RD performance loss. By 

using the DT constraint technique, additional mode candidates are available at the last 

depth level (depth level of 3), and the RD performance loss brought by the incorrect 

decision is reduced effectively.  

4.5 Chapter Summary 

In this chapter, a machine learning based fast mode decision framework is proposed 

for SCC. To avoid the exhaustive mode searching process, a flexible intra mode decision 

framework is proposed by utilizing a sequential arrangement of mode classifiers. 

Compared with the traditional methods that IBC and PLT modes are both checked for 

Table 4.13: Performances of the proposed algorithm with other settings for YVU 4:4:4 

Sequences. 

Sequences 

Without Feature Subset 

Selection 
Without DT Constraint Overall Framework 

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) 

BasketballScreen  0.60 -48.06 1.77 -57.46 1.87 -48.60 

MissionControlClip2 0.81 -48.06 1.75 -59.07 2.51 -47.30 

MissionControlClip3  1.00 -58.62 3.06 -66.93 1.68 -52.21 

ChineseEditing 1.68 -42.28 3.35 -55.79 1.56 -52.13 

Console  1.52 -28.83 3.38 -40.19 1.36 -31.89 

Desktop  2.17 -43.10 4.98 -55.51 2.20 -48.94 

FlyingGraphics 3.93 -33.84 6.94 -56.91 3.76 -35.67 

Map  1.25 -57.68 2.17 -60.75 0.98 -57.23 

Programming  1.79 -43.58 4.72 -54.01 0.60 -53.06 

SlideShow 3.13 -42.57 4.85 -51.85 0.60 -54.14 

WebBrowsing  1.98 -45.97 3.52 -56.63 1.03 -62.34 

Robot  1.61 -45.69 2.11 -48.76 1.51 -47.19 

EBURainFruits  0.15 -37.16 0.29 -39.13 0.16 -39.07 

Kimono1 0.05 -35.68 0.07 -37.64 0.05 -36.93 

Average (TGM+M) 1.81 -44.78 3.68 -55.92 1.65 -49.41 

Average (A+CC) 0.60 -39.51 0.82 -41.84 0.57 -41.06 

Average (ALL) 1.55 -43.65 3.07 -52.90 1.42 -47.62 
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SCBs, we insert a DT before checking each mode with the help of new dynamic features, 

so that the decision of each mode is made separately, and it allows the case that only one 

mode is checked for a SCB. Experimental results have shown that the proposed framework 

can provide an average computational complexity reduction of 47.62% with a negligible 

increase in BDBR of 1.42%.
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Chapter 5 Determinations on Coding Structure 

by Convolutional Neural Network 

5.1 Introduction 

The DT-based fast SCC encoding algorithm in Chapter 4 and some other recent 

algorithms heavily rely on the limited number of hand-crafted features or heuristic rules. 

However, they have the risk that human may ignore some important features during feature 

extraction. In this chapter, we present a deep learning based fast prediction network, 

DeepSCC, to reduce the computational complexity of SCC. DeepSCC takes raw sample 

values as the input, and it makes fast predictions for all CUs of a CTU in a single test. It 

contains much more trainable parameters than the traditional machine learning based 

approaches, so that it is able to make more accurate classification. This chapter is started 

by introducing the difference between dynamic and stationary CTUs. Then we present the 

proposed deep learning network DeepSCC. Next, experimental results of the proposed 

algorithm are provided. Finally, conclusion is given for this chapter. 

Parts of the contents of this chapter are extracted from our submitted work [89]: 

⚫ Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “DeepSCC: Deep 

Learning Based Fast Prediction Network for Screen Content Coding,” IEEE 

Transactions on Circuits and Systems for Video Technology (Accepted on 2 July, 

2019). 
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5.2 Difference Between Dynamic and Stationary CTUs 

Unlike the traditional camera-captured sequences only containing dynamic CTUs 

which show different content in adjacent frames, screen content sequences contain many 

stationary CTUs, i.e., the sum of SAD between the current CTU and its collocated CTU 

is 0. Table 5.1 shows the percentage of stationary CTUs in different sequences. It is 

observed that sequences in A+CC only contain dynamic CTUs, while 70.98% CTUs in 

TGM+M sequences are stationary CTUs. To simplify the encoding of stationary CTUs, 

an intuitive idea is to directly encode stationary CTUs with the same optimal modes of 

the collocated CTUs. However, this approach brings high RD performance loss because 

whether a CU selects the same mode as its collocated CU is related to its actual content. 

For example, a SCB with simple texture usually has many repeated patterns within the 

current frame while a SCB with complex texture has few repeated patterns. If the 

collocated CU of a simple SCB selects IBC mode, this SCB usually select IBC mode. On 

Table 5.1: Percentage of stationary areas in different sequences. 

Categories Sequences Stationary CTU (%) 

TGM 

ChineseEditing 93.41 

Console 62.72 

Desktop 78.57 

FlyingGraphics 2.50 

Map 79.20 

Programming 48.11 

SlideShow 75.41 

WebBrowsing  96.43 

M 

BasketballScreen 86.80 

MissionControlClip2 83.82 

MissionControlClip3 73.78 

A Robot 0 

CC 
EBURainFruits 0 

Kimono1 0 

Average (TGM+M) 70.98 

Average (A+CC) 0 

Average (ALL) 55.77 
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the contrary, if the collocated CU of a complex SCB selects IBC mode, this SCB may 

select PLT mode since its very limited repeated patterns can be disappeared in the current 

frame. Table 5.2 shows BDBR and the change in encoding time, ΔTime, brought by this 

approach compared with the original SCM-8.3. It is observed that for sequences in 

TGM+M that contain many stationary CTUs, this approach provides 44.37% encoding 

time reduction, but it brings 6.32% increase in BDBR. Although the algorithms in [51], 

[54], [56] utilize some heuristic rules to reduce the RD performance loss brought by this 

approach, such as disabling the fast approach every ten frames to avoid error propagation 

[51], and jointly analyzing the coding information from the collocated CU and spatial 

neighboring CUs [54], [56], they still do not achieve a good trade-off between encoding 

time reduction and BDBR. To further improve the performance for stationary CTUs, it is 

desired that the optimal mode of the collocated CTU and the actual CTU content are 

jointly analyzed.  

Table 5.2: Performance of encoding stationary CTUs with the same optimal modes of the 

collocated CTUs of stationary areas in different sequences. 

Categories Sequences BDBR (%) ∆Time (%) 

TGM 

ChineseEditing 3.44 -51.81 

Console 4.20 -47.83 

Desktop 6.16 -57.22 

FlyingGraphics 0.13 -1.28 

Map 4.94 -49.39 

Programming 2.52 -31.84 

SlideShow 13.01 -43.26 

WebBrowsing 8.55 -65.98 

M 

BasketballScreen 7.38 -47.51 

MissionControlClip2 12.40 -44.42 

MissionControlClip3 6.77 -48.67 

A Robot 0 0 

CC 
EBURainFruits 0 0 

Kimono1 0 0 

Average (TGM+M) 6.32 -44.37 

Average (A+CC) 0 0 

Average (ALL) 4.96 -34.95 
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5.3 Proposed Deep Learning based Network DeepSCC 

Generally, humans are sensitive to the difference between SCBs and NIBs, so that 

many approaches [53]–[56] have successfully differentiated SCBs from NIBs relying on 

a limited number of hand-crafted features. However, it is inefficient to make further 

classification inside SCBs with hand-crafted features because humans are less sensitive 

to the difference between IBC-coded SCBs and PLT-coded SCBs. To overcome the 

limitation of hand-crafted features, a deep learning based fast prediction network 

DeepSCC is proposed, which contains two parts, DeepSCC-I and DeepSCC-II. 

DeepSCC-I is used to make predictions for dynamic CTUs, while DeepSCC-II is used to 

make predictions for stationary CTUs. Since the proposed DeepSCC contains many 

trainable parameters and learns extensive features, it is able to make the more accurate 

mode decision of Intra, IBC, and PLT rather than the simple CU type classification of 

NIBs and SCBs. The previous fast prediction approaches of SCC always make predictions 

in the CU level, which means the derived model is tested for multiple times to make fast 

prediction for a single CTU. The drawback of this strategy is that it scarifies the encoding 

time reduction due to the multiple tests of the derived models. To reduce the computation 

overhead, the proposed DeepSCC directly outputs 85 labels for 85 CUs of a CTU in a 

single test. Since a CU can either skip all modes or select one mode from Intra, IBC, and 

PLT, each predicted label contains the probabilities of four classes, i.e., P(Allskip), 

P(Intra), P(IBC), and P(PLT), in accordance with the probabilities for skipping all modes, 

and checking Intra, IBC, PLT modes, respectively. Noted that Allskip is not an actual 

mode, and a SCC encoder will not employ it to encode a CU. We include class Allskip to 

denote the case that video content should be encoded in other depth levels, so that all 

modes of Intra, IBC, and PLT in the current CU can be skipped for computational 

complexity reduction. Figure 5.1 illustrates the structure of the proposed DeepSCC, 
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where the kernel sizes and feature map dimensions are also presented. The only difference 

between DeepSCC-I and DeepSCC-II is that the optimal mode maps of the collocated 

CTU are concatenated to the extracted feature maps before going through the convolution 

layers conv6–conv9 in DeepSCC-II, which is denoted by green color. The details of 

DeepSCC are given in the following sub-sections. 

5.3.1 DeepSCC-I for Dynamic CTU 

As shown in Figure 5.1, DeepSCC-I takes the luminance component of a CTU as 

the input. It is noted that the luminance component of a CTU is preprocessed by mean 

removal before it is fed to DeepSCC-I. Finally, it is able to output 85 labels for 85 CUs 

with different sizes, where each label shows the probabilities of selecting different modes. 

DeepSCC-I is composed of nine convolutional layers (conv1–conv9), three 

deconvolutional layers (deconv1–deconv3), and three concatenating layers (concat1–

concat3). Each convolutional or deconvolutional layer is followed by a rectified linear 

unit (ReLU) activation function, except for conv6–conv9, where softmax is utilized to 

generate the output labels. The details of these layers are presented as followings.  

 

Figure 5.1: Structure of DeepSCC. The optimal mode maps of the collocated CTU only exist in 

DeepSCC-II, which is denoted by green blocks. 
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Convolutional layers: At the beginning, the luminance component of a CTU goes 

through five convolutional layers, i.e., conv1–conv5, to generate feature maps. As shown 

in Figure 5.1, the kernel size of conv1 is 4×4 and the kernel sizes of conv2–conv5 are 

2×2. The strides of conv1–conv5 are set to the width of the kernel sizes for non-

overlapping convolutions, in accordance with the non-overlapping CU partitioning 

structure. By using this arrangement, the receptive field of each node in a feature map is 

always equal to a CU size, so that the feature maps of conv2–conv5 reflect the local 

features of CUs from 8×8 to 64×64, respectively. It is noted that the spatial down-

sampling in DeepSCC-I is achieved by convolutions with strides, rather than the 

deterministic spatial pooling functions. Therefore, it allows the network to learn its own 

spatial down-sampling strategy. At each down-sampling step, we double the channel 

number of feature maps. After concatenating the feature maps of convolutional layers and 

deconvolutional layers, conv6–conv9 incorporate those feature maps and generate the last 

set of feature maps with the kernel size of 1×1 and stride of 1. Each layer of conv6–conv9 

outputs four feature maps since each CU contains four classes. Finally, the feature maps 

of conv6–conv9 are used to output the predicted labels after going through a softmax 

function. 

Deconvolutional layers: In contrast to the convolution layer which reduces the size 

of a feature map, a deconvolutional layer is used to enlarge the size of a feature map. 

After generating the 128 feature maps of conv5 with the size of 1×1, three 

deconvolutional layers i.e., deconv1–deconv3, are used to enlarge the feature maps of 

conv5 using the kernel size of 2×2 and stride of 2. Since the receptive field of each node 

in the feature maps of conv5 is the entire CTU, the receptive field of each node in the 

feature maps of deconv1–deconv3 also becomes the entire CTU, and they reflect the 

global features for CUs with size from 32×32 to 8×8, respectively. The global features 
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help to improve the prediction accuracy because there exists spatial content correlation in 

a CTU. For example, if other CUs are SCBs in a CTU, the current CU is more likely to 

be a SCB and it would check IBC or PLT mode. On the contrary, if other CUs are NIBs 

in a CTU, the current CU is more likely to be a NIB and it would check Intra mode. At 

each feature map enlarging step, we halve the channel number of feature maps. Finally, 

the global feature maps and local feature maps have the same dimension for each CU size. 

Concatenating layers: DeepSCC-I adopts three concatenating layers, i.e., concat1–

concat3, to concatenate the global feature maps and local feature maps for CUs with sizes 

from 32×32 to 8×8, respectively. 

As shown in Figure 5.1, DeepSCC-I outputs 1, 4, 16, and 64 labels for a CTU, in 

accordance with the hierarchical CTU partitioning structure in Figure 1.2, which contains 

1 CU of 64×64 pixels, 4 CUs of 32×32 pixels, 16 CUs of 16×16 pixels, and 64 CUs of 

8×8 pixels. 

5.3.2 DeepSCC-II for Stationary CTU 

As analyzed in Section 5.2, directly encoding a stationary CTU with the same 

optimal modes of the collocated CTU leads to a very high increase in BDBR. To address 

this problem, the optimal mode maps of the collocated CTU are jointly analyzed with the 

actual CTU content to reduce the BDBR loss for stationary CTUs. By defining the indices 

for classes of Allskip, Intra, IBC and PLT as 0, 1, 2 and 3, an example of a collocated 

CTU and its optimal mode maps is shown in Figure 5.2. To obtain the optimal mode maps 

of a collocated CTU, its optimal modes are analyzed in four depth levels. Since the CTU 

in Figure 5.2 is not encoded as a single 64×64 CU, the optimal mode map for the 64×64 

CU has the class index of Allskip, which means all modes are skipped in the 64×64 CU. 

Then, there are two 32×32 CUs encoded by PLT mode and Intra mode in the CTU, 
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respectively, so that the class indices of the corresponding positions in the optimal mode 

map for 32×32 CUs are 3 and 1, which denote PLT and Intra, respectively. The other two 

positions in this optimal mode map still contain the index of Allskip since they are not 

encoded as 32×32 CUs. This process is repeated until the four optimal mode maps are all 

generated in the collocated CTU.  

It is noted that the four optimal mode maps of the collocated CTU have the same 

size as the corresponding feature maps from conv2–covn5 and deconv1–deconv3. To 

utilize the optimal mode correlation between the current stationary CTU and its collocated 

CTU, the four optimal mode maps of the collocated CTU are concatenated to the 

corresponding feature maps of the current CTU by using four concatenate layers concat4–

concat7, as shown in Figure 5.1. After using conv6–conv9 to incorporate those feature 

maps and the optimal mode maps, a softmax function is used to output the predicted labels. 

5.3.3 Training Strategy for DeepSCC 

To avoid the overlapping between the training set and testing set, we selected 12 

training sequences from [84]–[88], [90] which are not included in CTC [30] to generate 

the training samples. Based on the content classification criterion of CTC, we also classify 

the 12 training sequences into the four categories of TGM, M, A and CC, and they are 

 

Figure 5.2: A collocated CTU and its optimal mode maps. 
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shown in Table 5.3. Then, the 14 sequences in CTC are used as the testing sequences to 

evaluate the performance of the proposed DeepSCC. A single model of DeepSCC is 

trained for QPs of 22, 27, 32, and 37 by using training data from the four QPs. For each 

training sequence, 50 frames were extracted with equal intervals, and they were encoded 

by the original SCM-8.3 with QPs of 22, 27, 32 and 37 to obtain the ground truth labels. 

Finally, 750,000 CTUs were generated with their ground truth labels to train DeepSCC-

I, while 440,000 CTUs with their ground truth labels and the optimal mode maps of the 

collocated CTUs were obtained to train DeepSCC-II. 

The training process of DeepSCC was implemented in Caffe [91]. A GPU of 

GeForce GTX 1080 Ti was used to accelerate the training process, and then it was 

disabled in the testing phase, so that only a CPU was used to evaluate the performance of 

DeepSCC. To make the maximum use of GPU memory, a large batch size of 1024 CTUs 

was adopted. The loss of an i-th training sample in a batch is defined as the sum of cross-

entropy over all labels in four depth levels, and it is represented by 

𝑙𝑖 = 𝑓(𝜔
0, �̂�0) + ∑ 𝑓(𝜔1_𝑗, �̂�1_𝑗)3

𝑗=0 + ∑ 𝑓(𝜔2_𝑗, �̂�2_𝑗)15
𝑗=0 + ∑ 𝑓(𝜔3_𝑗 , �̂�3_𝑗)63

𝑗=0   (5.1) 

where 𝜔0 and  𝜔1_𝑗, 𝜔2_𝑗, 𝜔3_𝑗 denote the ground truth classes of the CU in the depth 

level of 0, and the j-th CU in the depth levels of 1, 2, 3, respectively. Similarly, �̂�0_𝑗, �̂�1_𝑗, 

Table 5.3: Training sequences for DeepSCC. 

Categories Sequences Resolution No. of Frame 

TGM 

ClearTypeSpreadsheet 1920×1080 300 

PptDocXls 1920×1080 200 

RealTimeData 1920×1080 600 

WordEditing 1920×1080 600 

VideoConferencingDocSharing 1280×720 300 

M 

BigBuck 1920×1080 400 

KristenAndSaraScreen 1920×1080 600 

MissionControlClip1 2560×1440 600 

A Viking 1280×720 300 

CC 

EBULupoCandlelight 1920×1080 250 

Seeking 1920×1080 250 

ParkScene 1920×1080 240 
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�̂�2_𝑗, and �̂�3_𝑗 denote the predicted classes of the corresponding CUs. 𝑓() represents the 

cross-entropy function between the ground truth class and predicted class, and it is 

represented as 

𝑓(𝜔, �̂�) = −∑ 𝑦(𝜔𝑘 = 𝜔)𝑘 𝑙𝑜𝑔(𝑃(𝜔𝑘 = �̂�))                   (5.2) 

where k denotes the class index. 𝑦(𝜔𝑘 = 𝜔) is 1 if 𝜔𝑘 is the same as the ground truth 

class 𝜔, otherwise, 𝑦(𝜔𝑘 = 𝜔) is 0. 𝑃(𝜔𝑘 = �̂�) denotes the probability that 𝜔𝑘  is the 

same as the predicted class �̂�. By averaging the loss over all training samples in one batch, 

the loss function L is written as  

𝐿 =
1

𝑁
∑ 𝑙𝑖
𝑁
𝑖=1                                                       (5.3) 

where N is the number of training samples in one batch. All trainable parameters in 

DeepSCC are initialized by the “msra” filter [92]. Then, Adam optimizer [93] is adopted 

to update the trainable parameters in DeepSCC with the default values of momentum and 

momentum2, which are 0.9 and 0.999, respectively. A weight decay of 0.005 is used to 

alleviate the overfitting problem. Instead of using the conventional learning rate policy of 

“Step”, we adopt the learning rate policy of “Poly” as in [94], and the learning rate in 

each iteration (iter), 𝑙𝑟𝑖 𝑒𝑟, is 

𝑙𝑟𝑖 𝑒𝑟 = 𝑙𝑟𝑏𝑎𝑠𝑒 × (1 −
𝑖 𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
)𝑝𝑜𝑤𝑒𝑟                                  (5.4) 

 

Figure 5.3: Training loss of DeepSCC-I and DeepSCC-II alongside iterations. 
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where 𝑙𝑟𝑏𝑎𝑠𝑒 is the base learning rate of 0.01, 𝑝𝑜𝑤𝑒𝑟 is set to 0.9, and 𝑚𝑎𝑥𝑖 𝑒𝑟 is set to 

50,000. Started from 0.01, 𝑙𝑟𝑖 𝑒𝑟 is gradually reduced to 0 as the iteration increases. 

The training losses of DeepSCC-I and DeepSCC-II calculated by Equation (5.3) are 

shown in Figure 5.3. Compared with the traditional classification task, the mode decision 

framework only has three class, and it is easier to make classification, so it is observed 

that the training processes of DeepSCC-I and DeepSCC-II converge very fast. Besides, 

the final loss of DeepSCC-II is smaller than DeepSCC-I, because DeepSCC-II 

additionally utilizes the optimal mode maps of the collocated CTUs. Although DeepSCC-

I can reduce encoding time for all CTUs by only taking sample values as the input, we 

only enable it for dynamic CTUs. For stationary CTUs, DeepSCC-II is enabled instead 

of DeepSCC-I because it has a smaller loss. The advantage of DeepSCC-II over 

DeepSCC-I for stationary CTUs is further discussed in Section 5.4.3. 

5.3.4 Content-adaptive Threshold 

To make fast prediction for an input CTU, the proposed DeepSCC outputs 85 labels 

for 85 CUs, and each label contains four probabilities, i.e., P(𝜔), 𝜔 ∈{Allskip, Intra, IBC, 

PLT}. In the testing phase, a threshold 𝛼𝑥 is used to decide whether a CU needs to check 

the mode x, 𝑥 ∈{Intra, IBC, PLT}. If the probability of checking a mode x is smaller than 

the value of 𝛼𝑥, i.e., P(𝜔=x)<𝛼𝑥, the mode x is regarded as unnecessary, and the current 

CU does not check it for encoding time reduction. It should be noted that the selection of 

the class Allskip is not directly decided but depended on the probabilities of checking 

other classes from {Intra, IBC, PLT}. If the probabilities of checking all classes from 

{Intra, IBC, PLT} are smaller than 𝛼𝑥, the optimal class of the CU becomes Allskip, and 

the mode checking for the CU can be skipped. 

In SCC, NIBs and SCBs usually show the concentrated distribution in a frame, and 

there exists an optimal mode correlation in spatial neighboring CUs. Therefore, 𝛼𝑥  is 
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treated as a content-adaptive threshold, and its value is adjusted by utilizing the spatial 

optimal mode correlation. The mode distribution of the first frame in “Programming” is 

shown in Figure 5.4, and it was encoded by the original SCM-8.3 with QP of 22. It is 

observed that many CUs select the same modes as their top or left CUs at the same depth 

levels. Besides, many IBC-coded CUs and PLT-coded CUs are mixed together because 

IBC and PLT modes are both valid mode candidates for SCBs. Based on this observation, 

the value of 𝛼𝑥 for a CU is decided by the optimal modes of its top and left neighboring 

CUs at the same depth level 

𝛼𝑥 = 𝛼𝑏𝑎𝑠𝑒 − 𝐼𝑥 × 𝛼𝑑𝑒𝑐𝑎𝑦                                           (5.5) 

where 𝐼𝑥  is a content-adaptive parameter, 𝛼𝑏𝑎𝑠𝑒  and 𝛼𝑑𝑒𝑐𝑎𝑦  are two predefined 

parameters that control the value of 𝛼𝑥 . The impact of their values to DeepSCC is 

discussed in Section 5.4.1. Since IBC and PLT modes show mixed distribution, they are 

grouped together to decide the value of 𝐼𝑥. For 𝑥 ∈{IBC, PLT}, 𝐼𝑥 is represented as 

𝐼𝑥 = {
1, 𝑖𝑓 𝜔𝑙𝑒𝑓 ∈ {𝐼𝐵𝐶, 𝑃𝐿𝑇} 𝑜𝑟 𝜔 𝑜𝑝 ∈ {𝐼𝐵𝐶, 𝑃𝐿𝑇} 

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                
                    (5.6) 

For 𝑥 ∈{Intra}, 𝐼𝑥 is represented as 

 𝐼𝑥 = {
1, 𝑖𝑓 𝜔𝑙𝑒𝑓 ∈ {𝐼𝑛𝑡𝑟𝑎} 𝑜𝑟 𝜔 𝑜𝑝 ∈ {𝐼𝑛𝑡𝑟𝑎} 

0,                         𝑜ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
                        (5.7) 

 

Figure 5.4: Optimal mode in the first frame of “Programming”. Intra, IBC and PLT modes coded 

CUs are noted by blue, yellow and red blocks, respectively. 
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where 𝜔𝑙𝑒𝑓  and 𝜔 𝑜𝑝 are the optimal mode classes of the left and top neighboring CUs. 

By using the content-adaptive threshold 𝛼𝑥, a CU has a larger chance to be coded by the 

optimal modes of its left and top CUs. 

Since the proposed DeepSCC treats the case of skipping all modes as the class 

Allskip in mode decision, the CU partitioning decision is integrated into DeepSCC. If 

DeepSCC selects the class Allskip for a CU, it means that the current depth level is not 

optimal and the mode checking of the CU is skipped. Therefore, additional testing of 

another model specially designed for CU partitioning decision as in [53]–[56] is not 

necessary, and it further reduces the testing time. Before a CU in the depth level of 0, 1, 

or 2 continues the partitioning process shown in Figure 1.2, the labels of CUs in the deeper 

depth levels are analyzed to perform CU partitioning decision. If an area of a CU always 

selects the class Allskip in all deeper depth levels, the CU cannot be encoded if it continues 

partitioning. Therefore, we early terminate the CU partitioning process to avoid 

unnecessary computation. 

5.3.5 Memory Overhead of DeepSCC  

To make fast prediction, the trained Caffe model needs to be invoked in SCM-8.3. 

The memory overhead of DeepSCC comes from two parts, which are the size of the 

parameters stored in the Caffe model and the size of generated feature maps when running 

DeepSCC. If a CTU is a dynamic CTU, the Caffe model of DeepSCC-I is invoked, which 

takes up 348.47KB. To store the generated feature maps, 47.66KB is needed by using the 

double-precision floating point which requires 8B in C language. Therefore, the memory 

overhead is 396.13KB for DeepSCC-I. On the other hand, the Caffe model of DeepSCC-

II is invoked for stationary CTUs, which takes up 348.80KB, and the associated feature 

maps require 48.32KB. Therefore, the memory overhead is 397.12KB for DeepSCC-II. 

Comparatively, a video frame with the resolution of 2560×1440 pixels takes up 108,00KB 
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(2560×1440×3÷1024). Therefore, the memory overhead percentages of DeepSCC-I and 

DeepSCC-II over the frame memory are only 3.67% and 3.68%, respectively. 

5.4 Experimental Results and Discussions  

To evaluate the performance of the proposed DeepSCC, it has been implemented in 

SCM-8.3 [31], and the DNN tool of OpenCV 3.4.1 is used to invoke the trained Caffe 

model in SCM-8.3. The trained Caffe model and the source code of the proposed 

DeepSCC can be found on our website [95]. It should be noted that no GPU but only a 

CPU is enabled for making fair comparisons. Three sets of experiments have been 

conducted to analyze the performance of the proposed DeepSCC. First, a series of 

ablation experiments were performed to decide the optimal structure of DeepSCC by 

using validation sequences [86], [88], [90], [96] in Table 5.4. Second, the performance of 

DeepSCC is evaluated by comparing it with existing fast SCC prediction algorithms. 

Third, the performances of the individual DeepSCC-I and DeepSCC-II are analyzed.  

5.4.1 Ablation Study 

In this sub-section, various experiments were performed to decide the optimal 

structure of the proposed DeepSCC by using the validation sequences shown in Table 5.4. 

Table 5.4: Validation sequences for DeepSCC. 

Categories Sequences Resolution No. of Frame 

TGM 

BitstreamAnalyzer 1920×1080 300 

Doc 1280×720 500 

Web 1280×720 500 

M KimonoError2 2560×1440 500 

CC 

BirdsInCage 1920×1080 600 

DucksAndLegs 1920×1080 300 

Traffic 2560×1440 60 

VenueVu 1920×1080 300 
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A. Threshold Determination 

As aforementioned in Section 5.3.4, a content-adaptive threshold 𝛼𝑥  is used to 

eliminate unnecessary mode candidates in a CU, and its value is controlled by two 

predefined parameters 𝛼𝑏𝑎𝑠𝑒  and 𝛼𝑑𝑒𝑐𝑎𝑦 . First, a fixed value of 𝛼𝑑𝑒𝑐𝑎𝑦  is applied to 

analyze the impact of 𝛼𝑏𝑎𝑠𝑒, and the results are shown in Figure 5.5. It is observed that as 

the value of 𝛼𝑏𝑎𝑠𝑒 increases, more encoding time is reduced at the cost of a larger increase 

of BDBR. Besides, when the gap between 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦, i.e., 𝛼𝑏𝑎𝑠𝑒 − 𝛼𝑑𝑒𝑐𝑎𝑦, is large, 

BDBR increases quickly. For example, when the gap between 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦 increases 

from 0 to 0.02, the encoding time is further reduced by 5.50% while BDBR is further 

increased by only 0.37%. When the gap between 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦 increases from 0.02 

to 0.04, the encoding time is further reduced by 3.96% while BDBR is further increased 

by 0.86%. Therefore, we limit the gap between 𝛼𝑏𝑎𝑠𝑒  and 𝛼𝑑𝑒𝑐𝑎𝑦  to a small value to 

balance the encoding time reduction and increase in BDBR, and the results are shown in 

Table 5.5. It is observed that the DeepSCC is complexity scalable and it provides 46.60%–

56.34% encoding time reduction with BDBR increased by 0.48–1.33%. In the following 

sub-sections, 𝛼𝑏𝑎𝑠𝑒 is set to 0.05 and 𝛼𝑑𝑒𝑐𝑎𝑦 is set to 0.04 for further discussions, where 

52.35% encoding time is reduced with 0.83% increase in BDBR.  

 

Figure 5.5: Performance of DeepSCC with various values of 𝛼𝑏𝑎𝑠𝑒 and the fixed value of 𝛼𝑑𝑒𝑐𝑎𝑦. 
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B. Decoupling Local Features and Global Features  

 The proposed DeepSCC utilizes convolutional layers and deconvolutional layers to 

extract local features and global features in a CTU, respectively. Then, they are 

concatenated together to predict the mode labels. To evaluate the importance of the 

proposed structure, two sets of experiments were performed by decoupling local features 

and global features, i.e., removing concat1–concat3 from DeepSCC. First, only the 

feature maps of conv2–conv5 are fed to concat4–concat7 so that only local features are 

utilized to make mode prediction. Second, only the feature maps of conv5 and deconv1–

 

Table 5.6: Performance comparison of LFDeepSCC, GFDeepSCC and DeepSCC. 

Sequences 
LFDeepSCC GFDeepSCC DeepSCC 

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) 

BitstreamAnalyzer 0.82 -45.20 0.83 -40.86 0.79 -45.29 

Doc 1.44 -49.02 1.79 -50.18 1.35 -50.47 

Web 1.77 -51.11 1.45 -51.61 1.43 -52.71 

KimonoError2 0.87 -37.28 0.82 -39.75 0.76 -37.24 

BirdsInCage 0.03 -29.38 0.11 -58.02 0.09 -59.07 

DucksAndLegs 0.03 -20.02 0.19 -61.32 0.24 -64.21 

Traffic 0.29 -35.24 0.93 -52.94 0.90 -56.96 

VenueVu 0.57 -27.93 1.10 -50.58 1.08 -52.85 

Average (TGM+M) 1.23 -45.65 1.22 -45.60 1.08 -46.43 

Average (A+CC) 0.23 -28.14 0.58 -55.72 0.58 -58.27 

Average (ALL) 0.73 -36.90 0.90 -50.66 0.83 -52.35 

 

Table 5.5: Performance of the proposed DeepSCC for validation sequences with different values 

of 𝛼𝑏𝑎𝑠𝑒 and 𝛼𝑑𝑒𝑐𝑎𝑦. 

Sequences 

 𝛼𝑏𝑎𝑠𝑒=0.03 

𝛼𝑑𝑒𝑐𝑎𝑦=0.02 

𝛼𝑏𝑎𝑠𝑒=0.03 

𝛼𝑑𝑒𝑐𝑎𝑦=0.01 

𝛼𝑏𝑎𝑠𝑒=0.05 

𝛼𝑑𝑒𝑐𝑎𝑦=0.04 

𝛼𝑏𝑎𝑠𝑒=0.05 

𝛼𝑑𝑒𝑐𝑎𝑦=0.03 

𝛼𝑏𝑎𝑠𝑒=0.07 

𝛼𝑑𝑒𝑐𝑎𝑦=0.06 

𝛼𝑏𝑎𝑠𝑒=0.07 

𝛼𝑑𝑒𝑐𝑎𝑦=0.05 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BitstreamAnalyzer 0.43 -40.74 0.44 -41.49 0.79 -45.29 0.91 -45.43 1.42 -48.60 1.52 -49.35 

Doc 0.38 -45.05 0.34 -44.13 1.35 -50.47 1.52 -51.56 2.06 -55.60 2.13 -56.70 

Web 0.86 -47.17 1.03 -48.32 1.43 -52.71 1.57 -54.04 2.71 -56.66 2.99 -57.82 

KimonoError2 0.66 -31.63 0.70 -29.75 0.76 -37.24 0.82 -37.14 0.90 -39.98 0.93 -39.98 

BirdsInCage 0.04 -49.37 0.04 -49.95 0.09 -59.07 0.10 -59.03 0.14 -63.01 0.14 -63.10 

DucksAndLegs 0.17 -62.23 0.17 -62.22 0.24 -64.21 0.24 -64.48 0.33 -65.51 0.33 -65.76 

Traffic 0.57 -51.02 0.59 -51.33 0.90 -56.96 0.91 -56.64 1.16 -60.05 1.16 -60.37 

VenueVu 0.76 -45.55 0.81 -45.93 1.08 -52.85 1.10 -52.60 1.36 -56.77 1.40 -57.67 

Average (TGM+M) 0.58 -41.15 0.63 -40.92 1.08 -46.43 1.21 -47.04 1.77 -50.21 1.89 -50.96 

Average (A+CC) 0.39 -52.04 0.40 -52.36 0.58 -58.27 0.59 -58.19 0.75 -61.34 0.76 -61.73 

Average (ALL) 0.48 -46.60 0.52 -46.64 0.83 -52.35 0.90 -52.62 1.26 -55.77 1.33 -56.34 
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3 are fed to concat4–concat7 so that only global features are utilized to make mode 

prediction. Let us call them LFDeepSCC and GFDeepSCC, respectively, and their 

performances are shown in Table 5.6. It is observed that LFDeepSCC provides 36.90% 

encoding time reduction with 0.73% increase in BDBR. DeepSCC outperforms it by 

providing a much higher encoding time reduction of 52.35% with a similar increase in 

BDBR. GFDeepSCC also shows worse performance than DeepSCC by providing 50.66% 

encoding time reduction with 0.90% increase in BDBR. Therefore, concatenating the 

local features and global features helps to improve the performance of the proposed 

DeepSCC.  

C. Term Normalization in Loss Function  

In Equation (5.1), the loss function of a training sample is derived as the sum of 

cross-entropy over all labels in the four depth levels, and the terms for different depth 

levels are not normalized. For example, the loss function contains only one term in the 

depth level of 0 while it contains 64 terms in the depth level of 4. The reason that we do 

not normalize the loss function to let the terms of different depth levels have equal weight 

is that the mode classifications in deeper depth levels are more complex. Therefore, the 

Table 5.7: Performance comparison of DeepSCC with and without term normalization in loss 

function. 

Sequences 

DeepSCC with term 

normalization 

DeepSCC without term 

normalization 

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) 

BitstreamAnalyzer 1.82 -38.81 0.79 -45.29 

Doc 0.92 -47.90 1.35 -50.47 

Web 1.10 -49.04 1.43 -52.71 

KimonoError2 0.82 -33.19 0.76 -37.24 

BirdsInCage 0.07 -51.96 0.09 -59.07 

DucksAndLegs 0.22 -61.15 0.24 -64.21 

Traffic 0.72 -40.78 0.90 -56.96 

VenueVu 0.92 -44.79 1.08 -52.85 

Average (TGM+M) 1.17 -42.23 1.08 -46.43 

Average (A+CC) 0.48 -49.67 0.58 -58.27 

Average (ALL) 0.82 -45.95 0.83 -52.35 
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loss function without term normalization will be naturally more focused on the mode 

classification of small CUs. To prove its advantage, Table 5.7 shows the performance of 

DeepSCC using loss function with term normalization. It is observed that the original 

DeepSCC outperforms DeepSCC with term normalization by providing 6.4% more 

encoding time reduction with almost the same increase in BDBR.  

D. Feature Fusion Function 

To join the convolution features, deconvolution features, and optimal mode maps of 

the collocated CTU, the concatenating layer is adopted in DeepSCC. It is one of the most 

widely used feature fusion layers and it can join feature maps with the arbitrary channel 

number. An alternative way is to use element wise addition layer which can only join two 

sets of feature maps with the equal channel numbers. Therefore, element wise addition 

layers can be adopted to join convolution features and deconvolution features since they 

have equal channel numbers, then they are concatenated to the optimal mode maps of the 

collocated CTU. Table 5.8 shows the results of DeepSCC with element wise addition 

layers. It is observed it almost shows the same results as the original DeepSCC. Therefore, 

different feature fusion functions have a minor impact on the DeepSCC. 

Table 5.8: Performance comparison of DeepSCC with different feature funsion functions. 

Sequences 
DeepSCC with element 

wise addition layer 

DeepSCC with 

concatenating layer  

 BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) 

BitstreamAnalyzer 0.78 -44.69 0.79 -45.29 

Doc 1.24 -49.20 1.35 -50.47 

Web 1.60 -52.15 1.43 -52.71 

KimonoError2 0.81 -37.30 0.76 -37.24 

BirdsInCage 0.09 -61.91 0.09 -59.07 

DucksAndLegs 0.22 -64.27 0.24 -64.21 

Traffic 0.78 -54.61 0.90 -56.96 

VenueVu 1.00 -53.16 1.08 -52.85 

Average (TGM+M) 1.11 -45.84 1.08 -46.43 

Average (A+CC) 0.52 -58.49 0.58 -58.27 

Average (ALL) 0.82 -52.16 0.83 -52.35 
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E. Learning Policy  

In the training process of DeepSCC, the learning rate policy of “Poly” is adopted 

rather than the conventional “Step”. To evaluate the efficiency of this strategy, 

experiments were done by training DeepSCC with “Step” with the same values of 𝑙𝑟𝑏𝑎𝑠𝑒 

and 𝑚𝑎𝑥𝑖 𝑒𝑟 , and the learning rate is multiplied by 0.1 every 10,000 iterations. The 

performance comparison is shown in Table 5.9. It is observed that DeepSCC with “Step” 

achieves 51.18% encoding time reduction with 0.94% increase in BDBR. By replacing 

“Step” with “Poly”, DeepSCC shows slightly better performance of 1.17% larger 

encoding time reduction and 0.11% smaller increase in BDBR. 

F. Number of Channels  

The proposed DeepSCC has the advantage of automatically learning useful features 

by using extensive learnable parameters, which is controlled by the number of channels 

in each layer. If a small number of channels are employed, DeepSCC may run into the 

underfitting problem. On the contrary, if a larger number of channels are employed, 

DeepSCC may run into the overfitting problem. As shown in Figure 5.1, the channel 

number of the feature maps after going through conv1 is 8. Before fed to concat4–concat7, 

Table 5.9: Performance comparison of different learning policies. 

Sequences 
DeepSCC with “Step” DeepSCC with “Poly” 

BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) BDBR (%) ∆𝑇𝑖𝑚𝑒 (%) 

BitstreamAnalyzer 1.30 -47.50 0.79 -45.29 

Doc 1.48 -50.01 1.35 -50.47 

Web 1.68 -51.02 1.43 -52.71 

KimonoError2 0.73 -36.25 0.76 -37.24 

BirdsInCage 0.09 -57.68 0.09 -59.07 

DucksAndLegs 0.32 -63.11 0.24 -64.21 

Traffic 0.82 -53.89 0.90 -56.96 

VenueVu 1.12 -50.01 1.08 -52.85 

Average (TGM+M) 1.30 -46.20 1.08 -46.43 

Average (A+CC) 0.59 -56.17 0.58 -58.27 

Average (ALL) 0.94 -51.18 0.83 -52.35 
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the channel number of the feature maps is doubled if they go through a convolutional 

layer or halved if they go through a deconvolutional layer. To evaluate the impact of the 

channel number in DeepSCC, another four sets of experiments were performed, i.e., 

multiplying the channel number of each layer before concat4–concat7 by 1/4, 1/2, 2, 4, 

and they are denoted as NumChannel/4, NumChannel/2, NumChannel×2, 

NumChannel×4, respectively. The performance comparison of DeepSCC with the 

different number of channels is shown in Table 5.10. It is observed that the original 

DeepSCC shows slightly better performance than the networks with the other number of 

channels. As the channel number increases, the performance of DeepSCC is improved 

first because of underfitting, and then it is dropped because of overfitting. Therefore, 

DeepSCC with the proposed channel number achieves a good trade-off.  

5.4.2 Performance of DeepSCC 

Table 5.11 shows the performance of the proposed DeepSCC for training sequences. 

It is observed that DeepSCC provides 50.17% encoding time reduction with 1.13% 

negligible increase in BDBR. As compared with the results for validation sequences in 

Table 5.5, DeepSCC provides similar performance for both training sequences and 

Table 5.10: Performance comparison of DeepSCC with different number of channels. 

Sequences 

NumChannel/4 NumChannel/2 Original DeepSCC NumChannel×2 NumChannel×4 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BitstreamAnalyzer 1.35 -38.14 1.67 -38.9 0.79 -45.29 1.36 -47.26 1.10 -47.93 

Doc 1.36 -49.86 1.32 -50.52 1.35 -50.47 1.31 -47.23 1.35 -47.88 

Web 1.32 -50.67 1.50 -51.76 1.43 -52.71 1.45 -51.23 1.41 -50.56 

KimonoError2 0.78 -35.67 0.79 -38.04 0.76 -37.24 0.68 -36.72 0.91 -36.82 

BirdsInCage 0.08 -55.92 0.07 -66.94 0.09 -59.07 0.07 -55.16 0.09 -50.04 

DucksAndLegs 0.17 -43.67 0.18 -62.15 0.24 -64.21 0.23 -64.74 0.29 -63.38 

Traffic 0.53 -49.04 0.79 -56.14 0.90 -56.96 0.96 -52.78 1.02 -52.23 

VenueVu 1.10 -49.85 1.12 -54.27 1.08 -52.85 1.10 -53.85 1.11 -45.24 

Average (TGM+M) 1.20 -43.59 1.32 -44.81 1.08 -46.43 1.20 -45.61 1.19 -45.80 

Average (A+CC) 0.47 -49.62 0.54 -59.88 0.58 -58.27 0.59 -56.63 0.63 -52.72 

Average (ALL) 0.84 -46.60 0.93 -52.34 0.83 -52.35 0.90 -51.12 0.91 -49.26 
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validation sequences. This shows that the proposed DeepSCC is generalizable to the 

unseen sequences.  

 Then, to evaluate the performance of the proposed DeepSCC, it is directly compared 

with four state-of-the-art SCC fast intra-prediction algorithms [51], [53]–[55]. The results 

for 14 testing sequences in YUV 4:4:4 format are shown in Table 5.12. It is observed that 

DeepSCC outperforms the SCC fast intra-prediction algorithms [51], [53]–[55] by 

providing 48.81% encoding time reduction with only 1.18% increase in BDBR. 

Specifically, DeepSCC provides 46.12% and 58.69% encoding time reduction with 1.30% 

and 0.76% increase in BDBR for sequences in TGM+M and A+CC, respectively. 

Comparatively, Zhang et al.’s method [51] shows 1.25% increase in BDBR, which is 

similar to the proposed DeepSCC. However, DeepSCC outperforms it by providing 

15.62% larger encoding time reduction. Since Zhang et al.’s method [51] strongly  relies 

on CUs having similar content as their collocated CUs, it shows very limited encoding 

time reduction for sequences with almost only dynamic regions, such as “FlyingGraphics”, 

“Robot”, “EBURainFruits”, and “Kimono1”, where only 4.60%, 12.04%, 16.48%, and 

0.46% encoding time is reduced. Comparatively, DeepSCC can efficiently address 

Table 5.11: Performance of the proposed DeepSCC for training sequences. 

Training Sequences BDBR (%) ∆Time (%) 

ClearTypeSpreadsheet 1.01 -53.59 

PptDocXls 1.99 -45.60 

RealTimeData 1.04 -40.91 

WordEditing 1.40 -53.54 

VideoConferencingDocSharing 1.86 -52.61 

BigBuck 1.18 -42.48 

KristenAndSaraScreen 0.90 -46.69 

MissionControlClip1 1.37 -47.43 

Viking 1.78 -54.40 

EBULupoCandlelight 0.25 -53.60 

Seeking 0.30 -52.65 

ParkScene 0.47 -58.51 

Average (TGM+M) 1.34 -47.86 

Average (A+CC) 0.70 -54.79 

Average (ALL) 1.13 -50.17 
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dynamic CTUs, and it provides 30.76%, 49.73%, 55.94% and 70.68% encoding time 

reduction for those sequences. Duanmu et al.’s method [53], Lei et al.’s method [54] and 

Yang et al.’s method [55] all eliminate the mode candidates for a CU by classifying it 

into a NIB or a SCB, and at most one mode, i.e., Intra mode, is skipped for a SCB. On 

the contrary, DeepSCC directly performs the mode classification rather than the simple 

CU type classification, so IBC and PLT modes are no longer always checked together for 

a SCB. As a result, DeepSCC outperforms the fast algorithms [53]–[55] by providing 

21.92%, 15.61% and 13.45% larger encoding time reduction with 0.52%, 1.18% and 

2.32% smaller increase in BDBR, respectively.  

Furthermore, we make an indirect comparison of the proposed DeepSCC with Huang 

et al.’s method [56] because we do not have the source code of their approach. However, 

the proposed DeepSCC is implemented in the same reference software as Huang et al.’s 

method [56], SCM-8.3, which makes the indirect comparison to be fair. Huang et al.’s 

method [56] adopts a hybrid framework of neural network-based classifiers for CU type 

Table 5.12: Performance of different algorithms compared with SCM-8.3 for sequences in YUV 

4:4:4 format. 

Sequences 

Zhang [51] Duanmu [53] Lei [54] Yang [55] DeepSCC 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

BDBR 

(%) 

∆𝑇𝑖𝑚𝑒 

(%) 

ChineseEditing 0.65 -49.73 1.10 -17.47 0.99 -18.96 4.30 -34.16 1.07 -48.80 

Console 3.36 -39.35 1.87 -28.12 2.87 -23.40 7.38 -42.83 1.06 -41.85 

Desktop 1.95 -47.94 2.19 -26.24 1.97 -23.85 6.27 -35.91 1.00 -53.46 

FlyingGraphics 0.84 -4.60 0.98 -20.13 1.72 -18.13 5.47 -31.19 0.99 -30.76 

Map 0.85 -36.95 1.55 -19.16 1.23 -20.05 2.84 -41.66 1.79 -36.36 

Programming 1.16 -40.44 1.89 -22.16 2.50 -22.92 4.71 -27.38 0.87 -42.74 

SlideShow 1.39 -44.15 2.82 -52.47 2.32 -55.58 3.69 -34.45 2.78 -55.36 

WebBrowsing  2.05 -51.73 1.91 -28.17 6.02 -26.75 5.00 -53.00 0.88 -54.09 

BasketballScreen 1.06 -41.84 1.25 -22.43 1.46 -24.83 3.00 -31.54 1.27 -46.78 

MissionControlClip2 1.29 -39.08 2.86 -33.90 1.71 -25.49 2.51 -38.54 1.56 -51.16 

MissionControlClip3 1.05 -39.91 2.03 -24.61 1.69 -33.81 2.90 -34.15 1.01 -45.96 

Robot 0.92 -12.04 1.18 -29.36 5.21 -46.91 0.59 -28.19 1.81 -49.43 

EBURainFruits 0.71 -16.48 0.88 -26.47 1.76 -48.58 0.17 -25.89 0.29 -55.94 

Kimono1 0.15 -0.46 1.23 -25.75 1.52 -75.55 0.13 -36.18 0.17 -70.69 

Average (TGM+M) 1.42 -39.61 1.86 -26.81 2.23 -26.71 4.37 -36.80 1.30 -46.12 

Average (A+CC) 0.59 -9.66 1.10 -27.19 2.83 -57.01 0.30 -30.09 0.76 -58.69 

Average (ALL) 1.25 -33.19 1.70 -26.89 2.36 -33.20 3.50 -35.36 1.18 -48.81 
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classification and various heuristic rules to make CU partitioning decisions. 

Comparatively, the proposed DeepSCC integrates the mode decision and CU partitioning 

decision into the same network. Therefore, DeepSCC is easier for implementation than 

Huang et al.’s method [56]. As observed in Table 5.13, Huang et al.’s method [56] 

provides 49.34% encoding time reduction with 1.36% increase in BDBR for their selected 

sequences. However, the proposed DeepSCC outperforms Huang et al.’s method [56] by 

providing nearly the same encoding time reduction with 0.16% less increase in BDBR. 

Besides, the training sequences of Huang et al.’s method [56] are partly overlapped with 

its testing sequences, where “WebBrowsing” and “Kimono1” are utilized as both training 

sequences and testing sequences. On the contrary, the training sequences and testing 

sequences of the proposed DeepSCC are totally different, which avoids the situation of 

overfitting.  

Table 5.14 shows the prediction accuracy of the proposed DeepSCC by calculating 

the percentage of the areas encoded by the same mode as the original SCM-8.3. It is 

observed that the prediction accuracy of DeepSCC is very high and it varies from 94.47% 

Table 5.13: Indirect comparison for sequences in YUV 4:4:4 format. 

Sequences 

Huang [56] Proposed DeepSCC 

BDBR (%) ∆Time (%) BDBR (%) ∆Time 

(%) 

ChineseEditing   1.07 -48.80 

Console   1.06 -41.85 

Desktop 0.84 -46.48 1.00 -53.46 

FlyingGraphics 1.10 -43.45 0.99 -30.76 

Map 1.25 -42.60 1.79 -36.36 

Programming 2.05 -53.66 0.87 -42.74 

SlideShow 1.54 -68.38 2.78 -55.36 

WebBrowsing  0.99 -55.33 0.88 -54.09 

BasketballScreen 0.87 -39.83 1.27 -46.78 

MissionControlClip2 1.47 -46.39 1.56 -51.16 

MissionControlClip3 1.63 -39.42 1.01 -45.96 

Robot 2.52 -40.31 1.81 -49.43 

EBURainFruits 0.67 -50.56 0.29 -55.94 

Kimono1 1.35 -65.74 0.17 -70.69 

Average (Huang [56]’s sequences)  1.36 -49.34 1.20 -49.39 

Average (ALL)   1.18 -48.81 
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to 98.71% for different sequences with different QPs. On average, the prediction accuracy 

is 96.86%, 97.37%, 97.68%, 97.51% for QP of 22, 27, 32, 37, respectively. Since the 

proposed DeepSCC is trained by using a mixed training data from 22, 27, 32 and 37, it 

shows stable accuracy for the testing sequenecs under the four QPs.  

Figure 5.6 shows the RD curve and ∆Time for four sequences over different QPs by 

using DeepSCC, and it is noted that other sequences have similar results. It is observed 

that the RD curves of DeepSCC are very close to those of the original SCC encoder, which 

indicates that DeepSCC has a negligible influence on video quality. Besides, ∆Time varies 

little over different QPs for all sequences. Therefore, DeepSCC provides stable 

performance in both high and low bitrate cases.  

Table 5.14: Prediction accuracy of the proposed DeepSCC. 

Sequences QP=22 QP=27 QP=32 QP=37 

ChineseEditing 96.79 96.85 96.53 96.03 

Console 97.77 97.71 97.58 96.62 

Desktop 98.10 97.96 97.81 97.49 

FlyingGraphics 97.67 97.70 97.71 97.39 

Map 96.57 96.86 97.22 97.05 

Programming 96.27 96.83 97.07 97.08 

SlideShow 96.40 97.29 97.79 98.17 

WebBrowsing  98.58 98.12 98.40 98.07 

BasketballScreen 96.79 96.91 97.67 97.38 

MissionControlClip2 96.17 96.88 97.58 97.59 

MissionControlClip3 96.86 97.32 97.60 97.75 

Robot 94.47 96.48 97.46 97.52 

EBURainFruits 97.11 97.86 98.40 98.30 

Kimono1 96.53 98.38 98.70 98.71 

Average (TGM+M) 97.09 97.31 97.54 97.33 

Average (A+CC) 96.07 97.57 98.19 98.18 

Average (ALL) 96.86 97.37 97.68 97.51 

 

 

Figure 5.6: RD curve and ∆Time of the proposed DeepSCC for “ChineseEditing”, 

“Programming”, “BasketballScreen”, and “MissionControlClip2”. 
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Figure 5.7 shows the computational overhead of the proposed DeepSCC, which is 

calculated as the ratio of running DeepSCC for mode prediction to the total encoding time 

of various sequences. Since DeepSCC adopts non-overlapping convolutions and outputs 

85 labels in a single test, the computational overhead is very low, which is from 1.17% to 

3.94% of the total encoding time for all test sequences. It is noted that the computational 

overhead is included to calculate the total encoding time of the proposed DeepSCC for all 

simulations. 

Table 5.15 shows the performance of DeepSCC applied to sequences in RGB 4:4:4 

and YUV 4:2:0 formats. While the luminance samples of sequences in YUV 4:2:0 format 

are directly input to DeepSCC, color space conversion is performed for sequences in RGB 

4:4:4 format to get the luminance samples. It should be noted that DeepSCC is only 

trained by sequences in YUV 4:4:4 format. However, DeepSCC shows good 

generalization for sequences in YUV 4:2:0 and RGB 4:4:4 formats, where 46.49% and 

43.69% encoding time can be reduced with only 1.13% and 1.29% increase in BDBR, 

respectively. Since YUV 4:4:4 is the most widely adopted format for screen content 

sequences and most existing fast SCC prediction algorithms do not support sequences in 

other formats, we cannot make the comparison for sequences in YUV 4:2:0 and RGB 4:4:4 

formats.  

 

Figure 5.7: Computational overhead of the proposed DeepSCC. 
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5.4.3 Performance of Individual DeepSCC-I and DeepSCC-II 

The proposed overall DeepSCC utilizes DeepSCC-I and DeepSCC-II to make 

separate predictions for dynamic CTUs and stationary CTUs. To show the advantage of 

this arrangement, two sets of experiments were performed by only enabling DeepSCC-I 

and DeepSCC-II for all CTUs, respectively. The results are shown in Table 5.16. When 

applying DeepSCC-II to all CTUs, a very high increase in BDBR of 3.96% is brought 

since the mode correlation between the current CTU and the collected CTU is not 

guaranteed. Although some sequences contain very high percentages of stationary CTUs, 

they still suffer from very high increases of BDBR. For example, “ChineseEditing” 

contains 93.41% stationary CTUs, and it shows 6.11% increase in BDBR by 

implementing the individual DeepSCC-II for all CTUs. When applying DeepSCC-I to all 

CTUs, it provides 41.86% encoding time reduction with 1.03% increase in BDBR. It 

proves that DeepSCC-I can address both dynamic CTUs and stationary CTUs by only 

Table 5.15: Performance of DeepSCC for sequences in RGB 4:4:4 and YUV 4:2:0 formats. 

Sequences 
RGB 4:4:4 YUV 4:2:0 

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

ChineseEditing 1.08 -43.97 1.31 -42.53 

Console 0.95 -36.47 1.42 -34.97 

Desktop 1.30 -49.15 1.30 -47.70 

FlyingGraphics 1.14 -30.59 0.83 -23.48 

Map 1.33 -32.45 1.19 -38.78 

Programming 1.26 -40.75 0.67 -40.41 

SlideShow 2.43 -53.07 2.68 -52.93 

WebBrowsing  1.20 -48.36 1.01 -50.78 

BasketballScreen 1.11 -43.34 1.23 -46.30 

MissionControlClip2 1.52 -47.71 1.42 -48.54 

MissionControlClip3 0.87 -42.98 0.95 -43.16 

Robot 1.29 -48.71 0.86 -57.90 

ChinaSpeed   1.94 -40.55 

EBURainFruits 0.22 -58.85   

Kimono1 0.12 -74.47   

Average (TGM+M) 1.29 -42.62 1.27 -42.69 

Average (A+CC) 0.54 -60.68 1.40 -49.23 

Average (ALL) 1.13 -46.49 1.29 -43.69 
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take the luminance samples as the input. However, it shows less encoding time reduction 

compared with the overall DeepSCC, especially for sequences with many stationary 

CTUs. For example, the proposed overall DeepSCC shows 13.91% larger encoding time 

reduction for “ChineseEditing” than the individual DeepSCC-I. Therefore, the proposed 

overall DeepSCC which integrates DeepSCC-I and DeepSCC-II together helps to 

improve coding performance. 

5.5 Chapter Summary 

In this chapter, a deep learning based fast prediction network DeepSCC is proposed 

to reduce the computational complexity of SCC. To avoid the exhaustive mode search in 

a CTU, DeepSCC outputs 85 labels for 85 CUs of the CTU in a single test. For dynamic 

CTUs, DeepSCC-I is designed to take the luminance samples of a CTU as the input. For 

stationary CTUs, DeepSCC-II additionally utilizes the optimal mode maps of the 

collocated CTUs for further performance improvement. Compared with the traditional 

Table 5.16: Performance of the individual DeepSCC-I and DeepSCC-II. 

Sequences 
DeepSCC-I DeepSCC-II 

Proposed Overall 

DeepSCC 

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

ChineseEditing 0.69 -35.49 6.11 -43.62 1.07 -48.80 

Console 0.83 -33.95 4.92 -26.79 1.06 -41.85 

Desktop 0.64 -42.75 4.08 -44.78 1.00 -53.46 

FlyingGraphics 0.98 -30.48 6.58 -0.78 0.99 -30.76 

Map 1.62 -25.32 4.10 -33.52 1.79 -36.36 

Programming 0.76 -33.65 5.40 -26.75 0.87 -42.74 

SlideShow 3.19 -51.07 8.73 -40.50 2.78 -55.36 

WebBrowsing  0.49 -42.58 7.13 -51.63 0.88 -54.09 

BasketballScreen 0.88 -37.05 1.00 -38.29 1.27 -46.78 

MissionControlClip2 1.36 -40.62 3.44 -39.25 1.56 -51.16 

MissionControlClip3 0.66 -36.94 2.20 -32.25 1.01 -45.96 

Robot 1.81 -49.78 1.19 0 1.81 -49.43 

ChinaSpeed 0.29 -55.67 0.37 0 0.29 -55.94 

EBURainFruits 0.17 -70.69 0.21 0 0.17 -70.69 

Kimono1 0.69 -35.49 6.11 -43.62 1.07 -48.80 

Average (TGM+M) 1.10 -37.27 4.88 -34.38 1.30 -46.12 

Average (A+CC) 0.76 -58.71 0.59 0 0.76 -58.69 

Average (ALL) 1.03 -41.86 3.96 -27.01 1.18 -48.81 
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fast SCC prediction algorithms heavily relying on the limited number of hand-crafted 

features or heuristic rules, the proposed DeepSCC automatically learns useful features 

from the input. With extensive trainable parameters, DeepSCC is able to make direct 

mode decision for Intra, IBC, and PLT rather than the simple CU type classification. 

Experimental results show that the proposed DeepSCC provides an average 

computational complexity reduction of 48.81% with a negligible increase in BDBR of 

1.18%, and the computational overhead of DeepSCC is less than 4% of the total encoding 

time.
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Chapter 6 Determinations on Coding Structure 

for HEVC-SCC Transcoding  

6.1 Introduction 

HEVC has dominated the market for many years and it leaves many legacy screen 

content videos encoded by HEVC. Therefore, this chapter presents a fast HEVC to SCC 

transcoder FHST that migrate the legacy screen content videos from HEVC to SCC to 

improve the coding efficiency. FHST analyzes various features from 4 categories to early 

terminate CU partitions and makes early mode decision. They are the features from the 

HEVC decoder, static features, dynamic features, and spatial features. First, the CU depth 

level collected from the HEVC decoder is utilized to early terminate the CU partition in 

SCC. Second, a flexible encoding structure is proposed to make early mode decisions with 

the help of various features. In this chapter, we start by presenting the data available from 

HEVC decoder. We then proceed to present our novel fast transcoder FHST. Next, the 

experimental results of the proposed algorithm are provided. Finally, the conclusion is 

given for this chapter. 

Parts of the contents of this chapter are extracted from our published work [97]: 

⚫ Wei Kuang, Yui-Lam Chan, Sik-Ho Tsang, and Wan-Chi Siu, “Fast HEVC to SCC 

transcoder by early CU partitioning termination and decision tree based flexible 

mode decision for intra-frame coding,” IEEE Access, vol. 7, pp. 8773–8788, Jan. 

2019. 
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6.2 Data Available from HEVC Decoder  

When a HEVC encoder encodes a CU at the depth level of d, where 𝑑 ∈ {0,1,2,3}, it 

calculates the residual block 𝑅𝑒𝑠 between the predicted CU, 𝐶𝑈 𝑟𝑒𝑑, and the original CU, 

𝐶𝑈𝑂𝑟𝑖𝑔, 

𝑅𝑒𝑠 = 𝐶𝑈𝑂𝑟𝑖𝑔 − 𝐶𝑈 𝑟𝑒𝑑                                             (6.1) 

After transformation and quantization, the quantized transform coefficients C are 

obtained 

𝐶 = (𝐷𝑅𝑒𝑠𝐷 ) ⊗ 𝑆𝑓⊘𝑄                                           (6.2) 

where D is the transformation matrix,  𝑆𝑓  is the forward scaling matrix, Q is the 

quantization matrix, ⊗ is the element wise multiplication operator, and ⊘ is the element-

wise division operator. Finally, the HEVC encoder signals the quantized transform 

coefficients C to represent the CU. 

In the HEVC decoder side, the quantized transform coefficients C are obtained for 

each CU by decoding the HEVC bitstream. After the corresponding inverse 

transformation and dequantization processes, the reconstructed residual block 𝑅𝑒𝑠′ is 

obtained as 

𝑅𝑒𝑠′ = 𝐷 (𝐶 ⊗ Q⊗ 𝑆𝑖)𝐷                                          (6.3) 

where 𝑆𝑖 is the inverse scaling matrix. Finally, a reconstructed CU, 𝐶𝑈 𝑒𝑐𝑜 , is represented 

as  

𝐶𝑈 𝑒𝑐𝑜 = 𝑅𝑒𝑠
′ + 𝐶𝑈 𝑟𝑒𝑑                                         (6.4) 

To simplify the re-encoding process of SCC, the data from the HEVC decoder side 

can be utilized, such as the optimal depth level d, transform coefficients C and the 

reconstructed residual block 𝑅𝑒𝑠′. 
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6.3 Proposed FHST 

To meet the challenge of computation-constrained applications, it is desired that the 

features from both the HEVC decoder and the SCC encoder are collected to simplify the 

re-encoding process. First, the features are utilized to early terminate the CTU partitions. 

Second, the features are also used to skip unnecessary mode candidates in a CU. 

6.3.1 Early CU Partitioning Termination 

Although HEVC and SCC share the same CTU partitioning structure, the optimal CU 

size decided by HEVC may change during the transcoding process, and an example is 

shown in Figure 6.1. It is observed that due to the adoption of the new coding modes, SCC 

allows inhomogeneous content to select larger CU sizes than HEVC. However, we also 

notice that the most optimal CUs decided by HEVC do not continue partitioning in SCC. 

Therefore, the CU partitioning process in SCC can be early terminated by utilizing the 

decoder side information of HEVC.  

To derive the early CU partitioning termination rule, we encoded and decoded 13 

typical SCC test sequences [30] by HEVC reference software HM-16.12 [98] with QPs of 

22, 27, 32, and 37 under AI configuration, and then the decoded sequences were re-encoded 

by SCC reference software SCM-8.3 with the same QPs. Table 6.1 shows the average 

           

                                                  (a)                                             (b) 

Figure 6.1: The partitioning structure of a CTU encoded by (a) HEVC and (b) SCC. 
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percentages of the further partitioned CUs from HEVC to SCC, where 𝑑𝐻𝐸𝑉𝐶  and 𝑑𝑆𝐶𝐶  

represent the CU depth level in HEVC and SCC, respectively. It is observed that for CUs 

with 𝑑𝐻𝐸𝑉𝐶  of 1 or 2, they rarely continue partitioning in SCC. However, for CUs with 

𝑑𝐻𝐸𝑉𝐶  of 0, 11.02% of them are partitioned to 𝑑𝑆𝐶𝐶  of 1. Based on this observation, we set 

the early CU partitioning termination rule for different CU sizes adaptively by limiting the 

maximum CU depth level 𝑑𝑆𝐶𝐶
𝑚𝑎𝑥 allowed to be checked as 

𝑑𝑆𝐶𝐶
𝑚𝑎𝑥 = {

1,       𝑖𝑓 𝑑𝐻𝐸𝑉𝐶 = 0
𝑑𝐻𝐸𝑉𝐶 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.                                           (6.5) 

Therefore, for CUs with 𝑑𝐻𝐸𝑉𝐶  of 1 or 2, further partitions are not allowed in SCC. 

For CUs with 𝑑𝐻𝐸𝑉𝐶  of 0, FHST only allows them to be partitioned to 𝑑𝑆𝐶𝐶  of 1, and then 

further partitions are terminated. 

6.3.2 Flexible Mode Decision 

We propose a flexible mode decision structure in our algorithm, where the decision of 

each mode is considered separately. The objective of the flexible mode decision technique 

is to design a decision model for each mode, so that it can assist the transcoder in making 

the decision of checking a mode or, on the contrary, skipping a mode. Therefore, in the re-

encoding process, two classes are defined for a mode x, where x∈{Intra, IBCM&S, 

IBCSearch, PLT}, i.e., checking the mode (𝜔𝑥) and skipping the mode (𝜔𝑥̅̅̅̅ ). By collecting 

features from both the HEVC decoder and the SCC encoder, the objective can be solved as 

a supervised classification task, and the model G is represented as  

Table 6.1: Performance of the proposed DeepSCC for training sequences. 

𝑑𝐻𝐸𝑉𝐶 
 Partitioned to  
𝑑𝑆𝐶𝐶 = 1 (%) 

Partitioned to  
𝑑𝑆𝐶𝐶 = 2 (%) 

 Partitioned to  
𝑑𝑆𝐶𝐶 = 3 (%) 

0 11.02 0.91 0.23 

1  4.83 0.25 

2   3.25 
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𝐺(𝑓1, 𝑓2, 𝑓3, … , 𝑓 ) →{𝜔𝑥, 𝜔𝑥̅̅̅̅ }                                       (6.6) 

where 𝑓𝑖 represents the features used to generate the model and i=1,…,n. Therefore, the 

decision of each mode is made adaptively by inserting a model G before checking a mode. 

A. Algorithm Description 

We implement a DT-based mode decision model right before checking a mode. 

Therefore, some dynamic features showing the intermediate coding information, such as 

the RD cost and IBC mode flag, can be employed to make mode decisions. Figure 6.2 

shows the DT-based x mode decision model of our proposed algorithm, where x∈{Intra, 

IBCM&S, IBCSearch, PLT}. It can be seen from Figure 6.2 that the x mode decision 

model contains two parts, which are the x mode classifier and the Spatial-Info classifier. 

The x mode classifier utilizes the features from the current CU to make the decision of a 

mode x, including features from both the HEVC decoder side and the SCC encoder side, 

and the class label is set to 𝜔𝑥 if the outcome of the x mode classifier is 1. Besides, we 

 

Figure 6.2: DT-based x mode decision model. 

 

𝑑𝑆𝐶𝐶 = 𝑑𝑆𝐶𝐶
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find that the mode decision accuracy for CUs arrived at their last depth levels, i.e., 𝑑𝑆𝐶𝐶
𝑚𝑎𝑥, 

is very important to reduce the RD performance loss. The reason is that if the optimal 

mode is skipped for a large CU, it can still find relatively good modes when it continues 

partitioning and arrives at its last depth level. To achieve a good trade-off between the 

computational complexity and coding efficiency, we additionally train a set of Spatial-

Info classifiers for CUs arrived at their last depth levels. We define CUs coded by Intra 

mode as NIBs and CUs coded by IBC or PLT mode as SCBs. The Spatial-Info classifier 

is trained by utilizing the spatial features to decide whether the current CU is a NIB or a 

SCB. If it is a SCB, the class label is set to 𝜔𝑥  for x∈{IBCM&S, IBCSearch, PLT}. 

Otherwise, the class label is set to 𝜔𝑥 for x∈{Intra}. After going through the classifiers, a 

decision voting strategy is adopted for making decisions. The label of the x mode decision 

model is set to 𝜔𝑥 if at least one classifier outputs 𝜔𝑥. More discussions on the structure 

of the x mode decision model are provided in Section 6.4.3. 

B. Feature Selection 

Features from the HEVC decoder: 

 

𝑓1: The average CU depth level of HEVC 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

, which is represented as  

𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

=
∑ 𝐴𝑟𝑒𝑎(𝑑𝐻𝐸𝑉𝐶)×𝑑𝐻𝐸𝑉𝐶𝑑𝐻𝐸𝑉𝐶

2N×2N
                                         (6.7) 

where 𝐴𝑟𝑒𝑎(𝑑𝐻𝐸𝑉𝐶) represents the area with 𝑑𝐻𝐸𝑉𝐶  in a CU, and 2N×2N represents the 

size of the CU. In HEVC, screen content is encoded by small CUs due to their 

inhomogeneity. Therefore, CUs with larger values of 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 are more likely to be SCBs. 

To verify this claim, 10000 16×16 NIBs and 10000 16×16 SCBs were randomly selected 

from the training set, and the distributions of NIBs and SCBs over 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 are given in 

Figure 6.3(a). Since CUs with 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 of 0 and 1 are usually encoded as 64×64 or 32×32 

CUs in SCC,  Figure 6.3(a) only shows the 16×16 CU type distributions over 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 of 2 
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and 3. It is observed that many CUs with 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 of 2 are NIBs while most CUs with 

𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 of 3 are SCBs. Besides, the CU depth level distribution of NIBs in SCC over 

𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 is investigated by randomly selecting 10000 NIBs at each depth level, and the 

results are shown in Figure 6.3(b), where NIB0, NIB1, NIB2 and NIB3 denote the NIBs 

encoded at the depth levels of 0, 1, 2, and 3 in SCC, respectively. It is observed that that 

NIBs from HEVC are very likely to be encoded at the same depth levels in SCC. 

Therefore, Intra mode at other depth levels is very likely to be skipped for NIBs. 

𝑓2: The AC coefficient energy 𝐸𝐴𝐶 of the quantized transform coefficients C, which 

is defined as the sum of square of the AC coefficients 

𝐸𝐴𝐶 = ∑ 𝑐𝑖,𝑗
2

𝑐𝑖,𝑗∈𝐶, 𝑐𝑖,𝑗≠𝑐0,0
                                              (6.8) 

where 𝑐𝑖,𝑗 is a quantized transform coefficient with the row index of 𝑖 and column index of 

𝑗 in C, and 𝑐0,0 is the DC coefficient. SCBs have many high frequency components and 

they contain higher values of 𝐸𝐴𝐶 than NIBs. Besides, we also notice that while many IBC 

coded CUs are smooth, PLT coded CUs are usually more complex, and they have even 

higher values of 𝐸𝐴𝐶 than IBC coded CUs. Statistics that support this claim are shown in 

Figure 6.3(c), where 10000 Intra, 10000 IBC and 10000 PLT coded 16×16 CUs were 

                                                    

(a)                                                 (b)                                                  (c)     

Figure 6.3: (a) NIB and SCB distribution over 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 for 16×16 CU size, (b) Optimal CU depth 

level distribution of NIBs over 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

, and (c) Mode distribution over 𝐸𝐴𝐶 . 
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randomly selected from the training set. Therefore, 𝐸𝐴𝐶 provides a chance to differentiate 

PLT mode from IBC mode. 

𝑓3: The number of zeros in the residual block 𝑁𝑍 , which is also adopted in the fast 

transcoding algorithm [72], and it is defined as 

𝑁𝑍 = ∑ 𝛿(𝑟𝑖,𝑗, 0)𝑟𝑖,𝑗∈ 𝑒𝑠
′                                                (6.9) 

where 𝑟𝑖,𝑗  is an element with row index of 𝑖 and column index of 𝑗 in the reconstructed 

residual block 𝑅𝑒𝑠′, and Kronecker delta 𝛿(𝑟𝑖,𝑗 , 0) is represented as 

𝛿(𝑎, 𝑏) = {
0,  if 𝑎  𝑏
1,  if 𝑎 = 𝑏

                                               (6.10) 

Since SCBs have many uniform background pixels, they tend to have a larger value of 

𝑁𝑍 . 

Static features:  

𝑓4–𝑓7: High gradient pixel number 𝐻𝐺𝑁0, 𝐻𝐺𝑁1, 𝐻𝐺𝑁2, 𝐻𝐺𝑁3. The high gradient 

pixel is utilized to detect sharp edges in a CU, as in Equation (3.1). To detect edges with 

different sharpness in the proposed algorithm, 4 different high gradient pixel numbers, 

𝐻𝐺𝑁0, 𝐻𝐺𝑁1, 𝐻𝐺𝑁2, and 𝐻𝐺𝑁3, are calculated by counting high gradient pixels with 

𝑇𝐻𝑆 of 8, 16, 32 and 64, respectively. As analyzed in Chapter 4, SCBs have a larger high 

gradient pixel number because they have many sharp edges. Besides, because PLT coded 

CUs are usually more complex, they also have a larger high gradient pixel number than 

IBC coded CUs. 

𝑓8: Distinct color number 𝑁𝐷𝐶, which is also used in fast SCC encoding algorithms 

[54], [55] and the fast transcoding algorithm [72]. It is calculated by counting the pixels 

with different luminance values. Since SCBs contain limited colors, they usually have a 

smaller value of 𝑁𝐷𝐶 than NIBs. 

Dynamic features: 
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𝑓9–𝑓10: The RD cost and IBC flag of the best mode, 𝐽𝑚𝑜𝑑𝑒  and 𝐹𝑙𝑎𝑔𝐼𝐵𝐶, respectively, 

before checking the target mode in the current CU. As analyzed in Chapter 4, they reflect 

the intermediate coding information of a CU. 

Spatial features:  

𝑓11: The neighboring SCB number, SCBNum, by counting the top and left neighboring 

CUs. SCBNum is denoted by 

𝑆𝐶𝐵𝑁𝑢𝑚 = 𝛿(𝑚 , 𝐼𝐵𝐶) + 𝛿(𝑚 , 𝑃𝐿𝑇) + 𝛿(𝑚 , 𝐼𝐵𝐶) + 𝛿(𝑚 , 𝑃𝐿𝑇)          (6.11) 

where 𝑚  and 𝑚  represent the optimal modes of the left and top CUs of the current CU, 

respectively. The current CU is more likely to be a SCB if it has SCB neighbors, and the 

evidence is shown in Figure 6.4(a), where 10000 16×16 NIBs and 10000 16×16 SCBs were 

randomly selected from the training set. 

𝑓12: The same background sub-CUs number, BGCUNum, by counting its four sub-CUs 

which have the same background color as the current CU. BGCUNum is defined as 

𝐵𝐺𝐶𝑈𝑁𝑢𝑚 = ∑ 𝛿(𝑌𝐵𝐶,𝑑 , 𝑌𝐵𝐶,𝑑+1
𝑖 )3

𝑖=0                                (6.12) 

where 𝑌𝐵𝐶,𝑑 and 𝑌𝐵𝐶,𝑑+1
𝑖 are the background colors of the current CU at the depth level of d 

and its i-th sub-CU at the depth level of d + 1, respectively. We define the background color 

in a CU/sub-CU as the luminance value with the highest occurrence frequency within the 

CU/sub-CU. If more sub-CUs have the same background color as the current CU, it is more 

 
(a)                                              (b)                                                    (c)     

Figure 6.4: NIB and SCB distribution over (a) SCBNum, (b) BGCUNum and (c) 𝐻𝐺𝑆3. 
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likely to be a SCB. To support our claim, 10000 16×16 NIBs and 10000 16×16 SCBs were 

randomly selected, and their distributions over BGCUNum are shown in Figure 6.4(b).  

𝑓13– 𝑓16: The high gradient pixel strength, 𝐻𝐺𝑆0, 𝐻𝐺𝑆1, 𝐻𝐺𝑆2 and 𝐻𝐺𝑆3, which are 

calculated by considering if the neighboring CUs from the left, right, top and bottom 

contain high gradient pixels with 𝑇𝐻𝑆 of 8, 16, 32 and 64, respectively. Let us call a CU 

that contains high gradient pixels as a high gradient CU (HGCU). It is observed that if 

the current CU is a HGCU, the more neighboring HGCUs it has, the more likely it is a 

SCB. Otherwise, if the current CU is a non-HGCU, the more neighboring non-HGCUs it 

has, the more likely it is a NIB. We set the initial value of 𝐻𝐺𝑆𝑖 (𝑖 ∈{0,1,2,3}) to 0. If the 

current CU is a HGCU, 𝐻𝐺𝑆𝑖 is set to a non-negative value, and its absolute value is 

calculated by counting the number of HGCUs from the left, right, top and bottom 

neighboring CUs. Otherwise, if the current CU is a Non-HGCU, 𝐻𝐺𝑆𝑖 is set to a non-

positive value, and its absolute value is calculated by counting the number of Non-

HGCUs from the left, right, top and bottom neighboring CUs. Therefore, as the value of 

𝐻𝐺𝑆𝑖 goes from small to large, the probability of the current CU being a SCB is increased, 

and statistics that give the evidence in this observation is shown in Figure 6.4(c), where 

10000 16×16 NIBs and 10000 16×16 SCBs were randomly selected. 

C. Training Implementation 

As in Chapter 4, we select DTs as the classification model. In our case that decides 

whether a mode is checked or not, a CU with several features is input to the DT. Each 

non-leaf node runs a test on a feature, and each branch denotes an outcome of the test. 

After going through a series of tests, the CU comes to a leaf node, and a class label of 𝜔𝑥 

or 𝜔𝑥̅̅̅̅  is assigned to it. Specifically, the class label is decided as the label of majority 

training samples in a leaf node, and the decision accuracy of a leaf node is denoted by the 
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percentage of correctly classified samples in it. The training data for building DTs are 

selected from 5 sequences, which are “Console”, “Desktop”, “Map”, 

“MissionControlClip2”, and “Robot”. To generate the training data, 10 frames were 

extracted from each sequence with an equal time interval. Those frames were firstly 

encoded by HM-16.12 with QPs of 22, 27, 32 and 37, and then the decoded frames were 

re-encoded by SCM-8.3 with the same QPs. When training the x mode classifier, the 

positive data come from CUs encoded by x mode, and the negative data are from CUs 

encoded by other modes. Therefore, the class label of x mode is 𝜔𝑥 if the outcome is 1. 

Otherwise, the class label is 𝜔𝑥̅̅̅̅ . To train the Spatial-Info classifier, the positive data are 

collected from SCBs while the negative data are collected from NIBs. Therefore, for 

SCBs, i.e., x∈{IBCM&S, IBCSearch, PLT}, the class label is set to 𝜔𝑥 if the outcome is 

1. For NIB, i.e., x∈{Intra}, the class label is set to 𝜔𝑥 if the outcome is 0. To avoid the 

data imbalance problem [81] caused by more training samples in one class than the other, 

we set the numbers of positive and negative training data to be equal. To balance the 

coding efficiency and computational complexity, we set two confidence thresholds 𝛼 and 

β in the Spatial-Info classifier and x mode classifier, respectively. If the accuracy of a 

decision made by the Spatial-Info classifier or x mode classifier is lower than the value 

of 𝛼 or β, the class label for mode x is set to 𝜔𝑥 regardless of its outcome. As SCC inherits 

the CTU hierarchical partitioning structure from HEVC, which supports 4 different CU 

sizes from 8×8 to 64×64, the classifiers for each mode were trained for CUs with different 

sizes, respectively. 

As a summary, the flowchart of our proposed algorithm is shown in Figure 6.5, 

where the DT-based x mode decision model is shown in Figure 6.2. A CU goes through 

a mode decision model before checking a mode. If the label given by the decision model 

is 𝜔𝑥, the mode x would be checked. Otherwise, it would be skipped. Besides, when the 
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CU partitioning termination rule described in Equation (6.5) is satisfied, the encoding 

process of this CU is finished.  

6.4 Experimental Results and Discussions 

Since there are many legacy screen content videos encoded by HEVC in YUV4:2:0 

format, we conducted various experiments to evaluate the transcoding performance of 

YUV4:2:0 screen content videos. We implemented our proposed FHST in HM-16.12 and 

HM-16.12+SCM-8.3, and all experiments were conducted with QPs of 22, 27, 32 and 37 

under AI configuration and CTC [30]. All test sequences were firstly encoded by HM-

16.12 with QPs of 22, 27, 32 and 37, and then the decoded frames were re-encoded by 

the proposed FHST with the same QPs. The coding efficiency and re-encoding time of 

the proposed FHST were compared with the conventional brute-force transcoder CBFT, 

and they are measured by BDBR and re-encoding time increase, ∆Time, in percentage 

 

Figure 6.5: Flowchart of the proposed FHST. 
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(%). It is noted that BDBR is calculated by comparing the HEVC decoded video and the 

final transcoded video. 

6.4.1 Confidence Threshold Determination 

To achieve a good trade-off between the coding efficiency and computational 

complexity, two confidence thresholds 𝛼 and 𝛽 were set in the Spatial-Info classifier and x 

mode classifier, respectively. If the accuracy of a decision made by the Spatial-Info 

classifier or x mode classifier is smaller than the value of 𝛼 or β, the class label for mode x 

is set to 𝜔𝑥 regardless of its outcome. In this sub-section, the performance of our proposed 

FHST is investigated by adopting a greedy searching strategy. The default values of 𝛼 and 

β are always 0.5 in a DT. First, the value of 𝛼 was fine-tuned with β = 0.5. Second, the 

value of β was fine-tuned with 𝛼 set to the value providing the best performance. The 

performances with different values of 𝛼 and β are shown in Table 6.2. It is observed that 

FHST with the default values of confidence thresholds (𝛼 = 0.5, β = 0.5) provides 53.19% 

re-encoding time reduction with BDBR increased by 1.89%. By adjusting the values of 𝛼 

Table 6.2: Performance of the proposed FHST for YUV 4:2:0 sequences with different threshold 

values. 

Sequences 

Tuning of α (β=0.5) Tuning of β (α=0.75) 

α=0.50 α=0.75 α=0.95 β=0.55 β=0.60 β=0.65 

BDBR 

(%) 

∆Time 

(%) 

BDBR 

(%) 

∆Time 

(%) 

BDBR 

(%) 

∆Time 

(%) 

BDBR 

(%) 

∆Time 

(%) 

BDBR 

(%) 

∆Time 

(%) 

BDBR 

(%) 

∆Time 

(%) 

Console (T) 3.39 -40.86 2.89 -39.57 2.51 -33.33 2.83 -39.26 2.82 -39.01 2.57 -33.54 

Desktop (T) 1.18 -40.67 1.15 -40.38 0.99 -32.14 1.12 -40.27 1.12 -39.21 0.55 -33.54 

Map (T) 1.29 -59.36 0.11 -57.02 0.17 -38.11 0.16 -54.92 0.16 -54.81 0.03 -54.58 

MissionControlClip2 (T) 1.96 -55.88 1.11 -53.46 0.88 -43.40 1.15 -52.72 0.99 -52.17 0.89 -49.10 

Robot (T) 1.94 -78.58 2.00 -74.87 2.01 -53.17 2.04 -72.31 2.05 -72.22 2.09 -73.85 

BasketballScreen (NT) 2.06 -55.17 1.15 -52.95 0.77 -39.80 1.12 -51.48 1.02 -51.07 0.80 -48.44 

ChineseEditing (NT) 1.11 -37.68 0.80 -36.16 0.57 -29.01 0.77 -35.68 0.75 -35.05 0.45 -29.50 

ChinaSpeed (NT) 1.36 -63.28 0.99 -60.02 0.86 -46.05 0.97 -58.55 0.97 -58.54 0.93 -57.19 

FlyingGraphics (NT) 2.74 -41.28 2.08 -40.13 1.28 -31.24 1.95 -39.18 1.81 -38.52 1.49 -32.24 

MissionControlClip3 (NT) 2.33 -50.53 1.70 -48.81 1.42 -37.29 1.69 -47.97 1.60 -46.97 1.31 -43.07 

Programming (NT) 1.70 -47.30 0.88 -45.88 0.60 -37.50 0.87 -45.04 0.81 -44.62 0.67 -40.39 

SlideShow (NT)  1.50 -71.22 0.71 -68.71 0.70 -59.47 0.66 -67.00 0.60 -66.92 0.63 -66.16 

WebBrowsing (NT) 1.92 -49.59 1.62 -48.15 1.42 -39.32 1.87 -47.49 1.74 -47.02 0.98 -42.32 

Average (T) 1.95 -55.07 1.45 -53.06 1.31 -40.03 1.46 -51.90 1.43 -51.48 1.23 -48.92 

Average (NT) 1.84 -52.00 1.24 -50.10 0.95 -39.96 1.24 -49.05 1.16 -48.59 0.91 -44.91 

Average (ALL) 1.89 -53.19 1.32 -51.24 1.09 -39.99 1.32 -50.14 1.26 -49.70 1.03 -46.46 

T: Sequence used for training. NT: Sequence not used for training. 
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and β (𝛼 = 0.75, β = 0.65), BDBR increment is reduced to 1.03%, and the re-encoding time 

is reduced by 46.46%.  

Besides, it is also observed from Table 6.2 that the proposed FHST provides similar 

performance for sequences used for training (T) and sequences not used for training (NT). 

For example, with 𝛼 = 0.75 and β = 0.5, the average re-encoding time reductions of T and 

NT sequences are 53.06 % and 50.10%, while the BDBR of T and NT sequences are 

increased by 1.45% and 1.24%, respectively. It proves that the training process of our 

proposed FHST does not run into overfitting, and it can be well applied to other screen 

content sequences. In the following sub-sections, we set 𝛼 to 0.75 and β to 0.5 for further 

discussions, which provides 51.24% encoding time reduction with 1.32% increase in 

BDBR on average. 

6.4.2 Performance Comparison of YUV 4:2:0 Format 

To evaluate the efficiency of FHST, we compared it with CBFT in which the original 

SCC encoder of CBFT in Figure 1.6 is replaced by the fast SCC encoding algorithms in 

[51], [54], [55]. It is noted that the work in [72], which is the only existing fast HEVC to 

SCC transcoding algorithm, is only worked for sequences in YUV 4:4:4 format, and the 

comparison will be shown later in Section 6.4.6. Table 6.3 shows the performance 

comparisons based on HM-16.12 and HM-16.12+SCM-8.3. Compared with the fast SCC 

encoding algorithms in [51], [54], [55], the proposed FHST additionally utilizes features 

from the HEVC decoder to improve prediction accuracy, and it is observed that the 

performance of our proposed FHST outperforms the fast SCC encoding algorithms [51], 

[54], [55]. On average, the proposed FHST provides 51.24% re-encoding time reduction 

with a negligible increase in BDBR of 1.32%. Comparatively, Zhang et al.’s algorithm [51], 

Lei et al.’s algorithm [54] and Yang et al.’s algorithm [55] all bring very high increase in 
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BDBR, where 27.15%, 25.34% and 39.49% re-encoding time is saved with 2.30%, 2.91% 

and 3.87% increase in BDBR, respectively. The fast SCC encoding algorithms [51], [54], 

[55] only utilize features from the SCC encoder, and they heavily rely on the assumption 

that the computer-generated content is noiseless. However, this assumption does not hold 

for decoded videos due to the lossy encoding and decoding of HEVC. Therefore, the fast 

SCC encoding algorithms [51], [54], [55] provide less improvement. 

6.4.3 Discussion on the Structure of x Mode Decision Model 

Apart from the x mode decision model in Figure 6.2, there are other possible 

structures, such as training a single DT by utilizing all features (FHST2) and applying the 

Spatial-Info classifier to all depth levels (FHST3). For FHST2, all features in Section 

6.3.2 are used to train the x mode classifier without the Spatial-Info classifier. For FHST3, 

the condition for checking the Spatial-Info classifier in Figure 6.2 is removed. However, 

it is found that they fail to achieve a good tread-off between the re-encoding time and RD 

performance. The performances of FHST2 and FHST3 are shown in Table 6.4 with the 

Table 6.3: Performance comparison of the proposed FHST with different fast SCC encoding 

algorithms for YUV 4:2:0 sequences. 

Sequences 
CBFT + Zhang [51] CBFT + Lei [54] CBFT + Yang [55] Proposed FHST 

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

Console (T) 2.61 -24.29 2.25 -18.97 5.43 -38.62 2.89 -39.57 

Desktop (T) 1.60 -27.90 1.32 -19.59 4.10 -41.38 1.15 -40.38 

Map (T) 1.58 -27.64 4.05 -21.45 5.13 -32.55 0.11 -57.02 

MissionControlClip2 (T) 2.19 -28.03 2.71 -28.18 2.69 -40.41 1.11 -53.46 

Robot (T) 11.37 -15.22 12.85 -34.15 4.90 -36.15 2.00 -74.87 

BasketballScreen (NT) 1.69 -29.43 1.41 -24.06 3.17 -37.80 1.15 -52.95 

ChineseEditing (NT) 0.52 -31.19 0.59 -17.52 3.32 -35.54 0.80 -36.16 

ChinaSpeed (NT) 0.82 -22.00 0.47 -27.31 1.32 -41.14 0.99 -60.02 

FlyingGraphics (NT) 0.41 -12.75 1.10 -16.97 3.68 -36.31 2.08 -40.13 

MissionControlClip3 (NT) 1.57 -26.09 1.78 -22.26 2.95 -37.19 1.70 -48.81 

Programming (NT) 1.29 -27.91 1.57 -23.32 4.00 -38.57 0.88 -45.88 

SlideShow (NT)  1.89 -43.19 4.88 -51.60 4.05 -57.34 0.71 -68.71 

WebBrowsing (NT) 2.35 -37.28 2.85 -24.01 5.58 -40.34 1.62 -48.15 

Average (T) 3.87 -24.62 4.64 -24.47 4.45 -37.82 1.45 -50.06 

Average (NT) 1.31 -28.73 1.83 -25.88 3.50 -40.53 1.24 -52.10 

Average (ALL) 2.30 -27.15 2.91 -25.34 3.87 -39.49 1.32 -51.24 
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default values of confidence thresholds (𝛼 = 0.5, β = 0.5). It is observed that FHST2 

brings a very high increase in BDBR of 5.99%. The reason is that FHST2 is strongly 

affected by error propagation due to the adoption of spatial features into the single DT. 

For example, the DT would directly skip IBC and PLT modes for the current CUs if the 

neighboring CUs are NIBs. Comparatively, FHST avoids the error propagation by 

treating the spatial features as additional features, and they are utilized to train another 

DT. On the other hand, FHST3 needs to check more mode candidates by applying the 

Spatial-Info classifiers to all depth levels. Therefore, it provides a limited encoding time 

reduction of 39.48%. Comparatively, the proposed FHST achieves a good trade-off 

between the encoding time and RD performance by applying the Spatial-Info classifier to 

the last depth level. With the default values of confidence thresholds, FHST provides 

53.19% re-encoding time reduction with BDBR increased by 1.89%. By setting 𝛼 to 0.75 

and β to 0.5, FHST has an even smaller increase of BDBR than FHST3, where 51.24% 

re-encoding time is reduced with BDBR increased by 1.32%. Therefore, we adopt it as 

the optimal structure to the x mode decision model.  

Table 6.4: Performance of the proposed algorithm with other structures. 

Sequences 
FHST2 FHST3 

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

Console (T) 8.90 -50.22 3.00 -25.73 

Desktop (T) 4.95 -46.04 0.50 -24.01 

Map (T) 5.14 -71.20 1.38 -47.84 

MissionControlClip2 (T) 6.62 -61.22 1.68 -44.98 

Robot (T) 3.95 -78.73 2.30 -67.94 

BasketballScreen (NT) 8.12 -58.85 1.71 -41.86 

ChineseEditing (NT) 3.71 -43.45 0.64 -21.85 

ChinaSpeed (NT) 6.00 -68.85 0.83 -52.27 

FlyingGraphics (NT) 8.97 -48.04 2.18 -22.73 

MissionControlClip3 (NT) 7.39 -53.60 1.99 -35.34 

Programming (NT) 4.68 -55.15 1.49 -32.57 

SlideShow (NT)  6.61 -74.33 1.40 -63.47 

WebBrowsing (NT) 2.82 -50.03 1.18 -32.69 

Average 5.99 -58.43 1.56 -39.48 
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6.4.4 Performance of the Individual Technique 

In this sub-section, the performances of the early CU partitioning termination 

technique and the flexible mode decision technique are evaluated separately, and the 

results are shown in Table 6.5. It is observed that the proposed flexible mode decision 

technique achieves 45.11% re-encoding time reduction with BDBR increased by 1.28% 

on average. Besides, the early CU partitioning termination technique provides 17.31% re-

encoding time reduction while BDBR is increased by 0.60% on average. More 

specifically, it provides the largest re-encoding time reduction of 46.65% for “SlideShow”. 

The reason is that “SlideShow” contains many smooth areas, which are encoded with 

many large CUs by HEVC. Therefore, with the help of the decoder side information of 

HEVC, many CU partitions in SCC are early terminated, and it leads to large re-encoding 

time reduction. Furthermore, to understand the re-encoding time reduction of our 

proposed FHST in low and high bit rate cases, we compared the re-encoding time 

reduction with different QPs. Figure 6.6 shows the results of 4 sequences including 

“BasketballScreen”, “ChinaSpeed”, “Desktop” and “WebBrowsing”, and similar results 

Table 6.5: Performance of each proposed technique for YUV 4:2:0 sequences. 

Sequences 

Early CU partitioning 

termination 
Flexible mode decision  

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

Console (T) 1.82 -9.06 2.32 -37.20 

Desktop (T) 0.25 -5.95 1.09 -39.03 

Map (T) 0.35 -14.03 -0.09 -52.90 

MissionControlClip2 (T) 0.37 -23.11 1.65 -44.50 

Robot (T) 2.55 -34.82 1.20 -62.00 

BasketballScreen (NT) 0.15 -16.11 1.62 -48.28 

ChineseEditing (NT) 0.13 -6.21 0.87 -34.52 

ChinaSpeed (NT) 0.23 -24.12 0.94 -50.99 

FlyingGraphics (NT) 0.31 -5.65 2.08 -38.93 

MissionControlClip3 (NT) 0.83 -13.26 1.65 -44.29 

Programming (NT) 0.18 -14.25 0.89 -41.27 

SlideShow (NT)  0.30 -46.65 0.73 -47.42 

WebBrowsing (NT) 0.35 -11.79 1.74 -45.13 

Average 0.60 -17.31 1.28 -45.11 
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are observed for other sequences. The re-encoding time reductions provided by the early 

CU partitioning termination technique, flexible mode decision technique, and overall 

algorithm are shown in Figure 6.6(a), (b) and (c), respectively. It is observed in Figure 

6.6(a) that the early CU partitioning termination technique provides more re-encoding 

time reduction as QP increases. The reason is that many CUs are encoded with large sizes 

by HEVC with a large value of QP, and more CUs are early terminated in SCC by using 

the early CU partitioning termination technique. On the contrary, the re-encoding time 

reduction provided by the flexible mode decision technique decreases as QP increases. 

The reason is that static features contain more noise as QP increases, which leads to a 

decrease of the decision accuracy. Although the re-encoding reduction provided by each 

sub-algorithm is different as QP changes, it is observed in Figure 6.6(c) that the re-

encoding reduction of the overall algorithm varies little across different values of QP. 

Therefore, our proposed FHST has stable performance as the bit rate varies.  

Another way to evaluate the proposed FHST is to investigate the hit rates of the 

proposed techniques compared with the CBFT transcoder. In this sub-section, the hit rates 

of the early CU partitioning termination and flexible mode decision techniques are given 

by calculating the percentages of the areas encoded by the same mode as in CBFT, and 

the results are shown in Table 6.6. It is observed that the average hit rates of the proposed 

early CU partitioning termination and flexible mode decision techniques are all above 

 

                              (a)                                                (b)                                                (c) 

Figure 6.6: Re-encoding time reduction of (a) early CU partitioning termination technique, (b) 

flexible mode decision technique, and (c) the proposed overall algorithm over 4 QPs. 
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90%. More specifically, the hit rate of the early CU partitioning termination technique 

varies from 92.72% to 99.06%, while the hit rate of the flexible mode decision technique 

varies from 85.96% to 96.23% for different sequences with different QPs. Besides, the 

average hit rate of the early CU partitioning termination technique varies little under 

different QPs, while the average hit rate of the flexible mode decision technique is 

increased from 90.97% to 93.17% as QP gets smaller. It is due to the fact that the decoded 

HEVC videos contain less noise as QP gets smaller, and the static features utilized in our 

proposed mode decision models can describe the CU content characteristics more 

precisely.  

Since the flexible mode decision technique contributes significantly to our proposed 

FHST, the mode decision of FHST is further studied. The decision of each mode is 

visualized, and it is compared with the mode decision made by CBFT. Figure 6.7 and 

Figure 6.8 show the mode decision of a region in “ChinaSpeed” and a region in 

“Programming”, respectively, at the depth level of 2 and QP of 22. Figure 6.7(a) and 

Figure 6.8(a) show the optimal mode decided by CBFT, where Intra, IBC and PLT modes 

are denoted by blue, purple and yellow blocks, respectively. It should be noted that for 

CUs without any denoted color, they are not encoded at the depth level of 2. Figure 

Table 6.6: Hit rates of the proposed techniques for YUV 4:2:0 sequences. 

Sequences 
Early CU partitioning termination (%) Flexible mode decision (%) 

QP22 QP27 QP32 QP37 QP22 QP27 QP32 QP37 

Console (T) 95.78 93.67 92.72 96.30 91.27 90.43 87.97 88.81 

Desktop (T) 98.03 98.25 98.40 97.78 92.90 91.71 88.37 85.96 

Map (T) 98.65 98.62 98.10 98.02 94.40 95.00 94.79 94.45 

MissionControlClip2 (T) 97.63 97.69 97.96 98.18 92.11 90.88 92.91 93.85 

Robot (T) 97.46 97.32 97.64 97.84 95.89 94.74 94.64 93.71 

BasketballScreen (NT) 97.49 98.06 98.08 98.00 92.90 91.54 90.38 90.51 

ChineseEditing (NT) 98.09 98.34 98.50 98.54 91.12 90.81 90.91 90.50 

ChinaSpeed (NT) 99.06 94.44 94.75 94.71 94.71 92.90 91.30 89.44 

FlyingGraphics (NT) 98.50 98.52 98.28 97.20 92.16 90.77 89.03 88.87 

MissionControlClip3 (NT) 98.05 98.14 98.27 98.19 91.92 91.97 91.73 91.39 

Programming (NT) 97.50 97.83 98.15 97.84 93.58 92.84 91.79 91.12 

SlideShow (NT)  98.90 98.91 99.06 99.04 95.55 95.81 95.98 96.23 

WebBrowsing (NT) 98.03 97.78 98.50 98.46 92.81 92.07 88.12 87.81 

Average (T) 97.51 97.11 96.96 97.62 93.31 92.55 91.74 91.36 

Average (NT) 98.20 97.75 97.95 97.75 93.09 92.33 91.16 90.74 

Average (ALL) 97.94 97.51 97.57 97.70 93.17 92.42 91.37 90.97 
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6.7(b)–(d) and Figure 6.8(b)–(d) show the Intra mode skipped CUs, IBC mode skipped 

CUs, PLT mode skipped CUs decided by our proposed flexible mode decision technique, 

     
    (a)                                                                                   (b)    

     

                                                              (c)                                                                                   (d) 

Figure 6.7: Mode decisions of a region in “ChinaSpeed” with the depth level of 2 and QP of 22. 

(a) Mode decision of CBFT, where Intra, IBC and PLT modes are denoted by blue, purple and 

yellow blocks. (b) Intra mode skipped CUs, (c) IBC mode skippped CUs, (d) PLT mode skipped 

CUs decided by our proposed FHST, where CUs with incorrectly and correctly skipped mode are 

denoted by red shaded blocks and green shaded blocks, respectively.  

 

              
  (a)                                                                           (b)    

                  

                                                            (c)                                                                            (d) 

Figure 6.8: Mode decisions of a region in “Programming” with the depth level of 2 and QP of 22. 

(a) Mode decision of CBFT, where Intra, IBC and PLT modes are denoted by blue, purple and 

yellow blocks. (b) Intra mode skipped CUs, (c) IBC mode skippped CUs, (d) PLT mode skipped 

CUs decided by our proposed FHST, where CUs with incorrectly and correctly skipped mode are 

denoted by red shaded blocks and green shaded blocks, respectively. 
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where CUs with incorrectly and correctly skipped modes are denoted by red shaded 

blocks and green shaded blocks, respectively. It is observed in Figure 6.7(b) that Intra 

mode is skipped for many NIBs, because 𝑑𝐻𝐸𝑉𝐶
𝑎𝑣𝑔

 of these CUs are not equal to the current 

depth level in SCC, as analyzed in Section 6.3.2. Besides, IBC mode and PLT mode are 

skipped for many CUs as shown in Figure 6.7(c) and (d). However, almost all SCBs are 

well detected and decided to check PLT mode by the proposed FHST. It is also noted that 

some smooth CUs need to check all modes, as shown in Figure 6.7(b)–(d). The reason is 

that those smooth CUs may select any mode in the training frames so that it is difficult to 

make flexible mode decisions. When compared with the mode decisions made by CBFT, 

only 4 CUs are incorrectly skipped, while the remaining 106 CUs are correctly skipped 

and then encoded by the optimal modes correctly.  

For the region containing many SCBs in “Programming”, it is observed in Figure 

6.8(b) that almost all SCBs are well detected and Intra mode is skipped for them. Besides, 

it is observed in Figure 6.8(c) and (d) that many SCBs are decided to check one mode 

either from IBC or PLT mode, so that the re-encoding time is further reduced when 

compared with the fast mode decision algorithms [54], [55], [72] that only perform CU 

type classification. When compared with the mode decisions made by CBFT in Figure 

6.8(a), only 3 CUs are incorrectly skipped, while the remaining 91 CUs are encoded by 

their optimal modes correctly. Therefore, many redundant mode candidates are skipped 

by the proposed FHST, while the optimal modes are well kept. 

 

6.4.5 Discussion on the Feature Importance  

Our proposed FHST utilizes features from 4 categories to reduce the re-encoding 

time of SCC, which are features from the HEVC decoder, static features, dynamic 

features, and spatial features. In this sub-section, we discuss the importance of each 
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feature category by removing it from our proposed FHST firstly and then observing the 

performance improvement when it is added back. In general, better performance is 

denoted by larger re-encoding time reduction and smaller BDBR increase. Therefore, we 

adopt a similar performance factor, PFactor, as in [99] to denote the coding performance 

𝑃𝐹𝑎𝑐𝑡𝑜𝑟 = −
∆Time

BDBR
.                                              (6.13) 

A larger value of 𝑃𝐹𝑎𝑐𝑡𝑜𝑟 represents better performance. Then based on PFactor, we 

calculate the importance factor, IFactor, of each feature category by  

𝐼𝐹𝑎𝑐𝑡𝑜𝑟 =
 𝐹𝑎𝑐 𝑜𝑟𝐹𝐴− 𝐹𝑎𝑐 𝑜𝑟𝐹𝑅

 𝐹𝑎𝑐 𝑜𝑟𝐹𝑅
                                    (6.14) 

where 𝑃𝐹𝑎𝑐𝑡𝑜𝑟𝐹  and 𝑃𝐹𝑎𝑐𝑡𝑜𝑟𝐹𝐴 are the performance factors of feature removed and 

feature added back transcoders, respectively. Table 6.7 presents the results of the 

proposed FHST when either one category of features is removed. It should be noted that 

removing spatial features means disabling the Spatial-Info classifier in Table 6.7. It is 

observed that all feature categories are helpful for improving coding performance, and 

the transcoder with all features implemented has the best performance with PFactor of 

38.82. For the transcoder without spatial features, decoder features, dynamic features and 

Table 6.7: Performance of the proposed transcoder for YUV 4:2:0 sequences with different 

feature combination. 

Sequences 

No spatial features No decoder features 
No dynamic 

features 
No static features All features  

BDBR 

(%) 

∆Time 

(%) 

BDBR 

(%) 

∆Time 

(%) 

BDBR 

(%) 

∆Time 

(%) 

BDBR 

(%) 

∆Time 

(%) 

BDBR 

(%) 

∆Time 

(%) 

Console (T) 7.64 -47.86 2.18 -36.30 3.57 -38.49 6.22 -47.88 2.89 -39.57 

Desktop (T) 3.57 -45.50 1.28 -38.05 1.50 -36.56 3.34 -49.20 1.15 -40.38 

Map (T) 5.01 -62.03 2.58 -56.83 1.62 -54.42 3.14 -62.92 0.11 -57.02 

MissionControlClip2 (T) 4.50 -58.86 2.95 -44.05 1.50 -51.18 2.82 -57.09 1.11 -53.46 

Robot (T) 2.24 -77.97 6.75 -58.27 1.97 -73.92 1.86 -76.56 2.00 -74.87 

BasketballScreen (NT) 4.63 -58.30 3.50 -47.58 1.63 -49.84 3.22 -57.13 1.15 -52.95 

ChineseEditing (NT) 3.41 -43.47 1.84 -34.05 0.96 -35.57 2.47 -44.26 0.80 -36.16 

ChinaSpeed (NT) 2.50 -66.12 1.44 -52.32 1.30 -58.16 1.41 -64.07 0.99 -60.02 

FlyingGraphics (NT) 7.06 -49.20 2.67 -39.00 2.28 -38.67 5.02 -47.29 2.08 -40.13 

MissionControlClip3 (NT) 4.43 -52.92 2.68 -44.46 1.73 -45.68 3.19 -54.04 1.70 -48.81 

Programming (NT) 3.89 -51.72 2.21 -40.24 1.24 -42.97 2.30 -52.06 0.88 -45.88 

SlideShow (NT)  4.97 -72.30 5.99 -43.01 1.17 -66.99 2.30 -71.28 0.71 -68.71 

WebBrowsing (NT) 4.38 -52.11 2.10 -43.66 1.77 -45.29 4.24 -53.43 1.62 -48.15 

Average 4.48 -56.80 2.94 -44.45 1.71 -49.06 3.19 -56.71 1.32 -51.24 

PFactor 12.68 15.12 28.69 17.78 38.82 

IFactor Spatial features 2.06 
Decoder features 

1.57 

Dynamic features 

0.83 
Static features 1.18  
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static features, 56.80%, 44.45%, 49.06% and 56.71% re-encoding time are saved while 

the BDBR is increased by 4.48%, 2.94%, 1.71%, and 3.19%, respectively. Therefore, the 

most important feature category to the proposed FHST is spatial features and then 

followed by decoder features, static features and dynamic features, whose IFactors are 

2.06, 1.57, 1.18 and 0.83, respectively.  

6.4.6 Performance Comparison of YUV 4:4:4 Format  

In this sub-section, the proposed FHST is further extended to support fast 

transcoding of screen content videos in YUV4:4:4 format, where “Console”, “Desktop”, 

“Map”, “MissionControlClip2”, “Robot” were used to generate training data, and 𝛼 is set 

to 0.75, β is set to 0.5. Similarly, the fast algorithms in [51], [54], [55] are used to replace 

the original SCC encoder of CBFT in Figure 1.6 for comparison. Besides, we also 

compared FHST with the fast HEVC to SCC transcoding algorithm [72], which is only 

designed for YUV4:4:4 format. Considering that Duanmu et al.’s algorithm [72] is the 

only existing fast HEVC to SCC transcoding algorithm, and it was implemented in HM-

16.4 [100] and HM-16.4+SCM-4.0 [101], we re-implemented all other algorithms in the 

same reference software as Duanmu et al.’s algorithm [72] to make fair comparisons.  

Table 6.8 shows the comparisons of the proposed FHST with the fast SCC encoding 

algorithms [51], [54], [55] under CTC [30]. It is also observed that the performance of 

FHST is much better than the fast SCC encoding algorithms [51], [54], [55]. For the T 

sequences, 53.50% re-encoding time is saved with 1.42% increase in BDBR. For the NT 

sequences, similar performance is obtained, where 55.29% re-encoding time is reduced 

with BDBR increased by 1.15%. It again proves that the proposed FHST is generalizable 

to the sequences which are not used in training. On average, the proposed FHST provides 

54.65% re-encoding time reduction with a negligible increase in BDBR of 1.25%. 
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Comparatively, Zhang et al.’s algorithm [51], Lei et al.’s algorithm [54] and Yang et al.’s 

algorithm [55] provide 24.14%, 27.26% and 27.88% re-encoding time reduction with 

BDBR increased by 3.13%, 3.53%, and 4.74%, respectively. Then, based on the same 

reference software of HEVC and SCC, we made an indirect comparison between our 

proposed FHST and the only existing fast HEVC to SCC transcoding algorithm [72], and 

the results are presented in Table 6.9. It is observed when compared with CBFT, Duanmu 

et al.’s algorithm [72] achieves 47.93% re-encoding time reduction for their selected 

sequences while BDBR is increased by 2.14%. Comparatively, our proposed FHST 

achieves 54.01% re-encoding time reduction for their selected sequences while BDBR is 

only increased by 1.11%. Compared with Duanmu et al.’s algorithm [72] which only 

utilizes features from the HEVC decoder and static features, our proposed FHST 

additionally utilizes spatial features and dynamic features, so that more accurate decision 

is provided. Besides, Duanmu et al.’s algorithm [72] always checks both IBC and PLT 

modes for SCBs. However, we allow the case that only one mode is checked for SCBs, 

as observed in Figure 6.7(c), (d) and Figure 6.7(c), (d), so that higher re-encoding time 

reduction is provided.  

Table 6.8: Performance comparison of the proposed transcoder with different fast SCC encoding 

algorithms for YUV 4:4:4 sequences. 

Sequences 
CBFT + Zhang [51] CBFT + Lei [54] CBFT + Yang [55] Proposed FHST 

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

Console (T) 1.67 -20.26 2.24 -21.93 4.79 -30.15 2.36 -50.24 

Desktop (T) 1.36 -30.16 1.35 -23.21 4.08 -35.06 0.52 -56.92 

Map (T) 1.21 -28.28 3.51 -20.04 7.26 -15.73 1.00 -45.79 

MissionControlClip2 (T) 2.22 -29.55 2.84 -28.02 3.87 -29.56 1.50 -54.29 

Robot (T) 10.89 -12.63 12.67 -30.92 5.47 -19.31 1.71 -60.26 

BasketballScreen (NT) 1.34 -30.95 1.19 -22.38 3.80 -25.11 0.92 -52.01 

ChineseEditing (NT) 0.33 -22.84 0.61 -19.42 3.63 -24.90 0.59 -47.26 

EBURainFruits (NT) 7.38 -18.61 7.34 -34.72 2.88 -20.61 2.23 -67.92 

FlyingGraphics (NT) 0.45 -4.39 1.08 -19.14 4.56 -26.84 1.03 -45.53 

Kimono1(NT) 10.29 -3.79 8.39 -41.82 4.18 -27.14 1.39 -56.99 

MissionControlClip3 (NT) 1.83 -26.93 1.43 -23.64 3.08 -29.30 1.24 -54.57 

Programming (NT) 1.28 -28.42 1.76 -22.19 7.27 -26.35 1.08 -50.74 

SlideShow (NT) 1.99 -41.03 1.76 -48.79 5.81 -45.94 1.37 -63.83 

WebBrowsing (NT) 1.57 -40.16 3.21 -25.38 5.65 -34.30 0.50 -58.80 

Average (T) 3.47 -24.18 4.52 -24.82 5.09 -25.96 1.42 -53.50 

Average (NT) 2.94 -24.12 2.97 -28.61 4.54 -28.94 1.15 -55.29 

Average (ALL) 3.13 -24.14 3.53 -27.26 4.74 -27.88 1.25 -54.65 
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6.5 Chapter Summary  

In this chapter, a fast HEVC to SCC transcoder FHST is proposed by early CU 

partitioning termination and flexible mode decision. Four categories of features are 

collected from both the HEVC decoder side and the SCC encoder side to simplify the 

transcoding process. First, an early CU partitioning termination technique is proposed to 

map the optimal CU size from HEVC to SCC. Then, a flexible encoding structure is 

proposed where DTs are generated to check each mode candidate adaptively in SCC. 

With the help of various features from the four categories and the flexible encoding 

structure, higher re-encoding time can be reduced with less RD performance loss 

compared with other algorithms. Experimental results show that the proposed FHST 

provides 51.24% and 54.65% re-encoding time reduction with a negligible increase in 

BDBR of 1.32% and 1.25% for YUV 4:2:0 and YUV 4:4:4 screen content sequences, 

respectively.

Table 6.9: Performance comparison of the proposed transcoder with other transcoder for YUV 

4:4:4 sequences. 

Sequences 
Duanmu [72] Proposed FHST 

BDBR (%) ∆Time (%) BDBR (%) ∆Time (%) 

Console (T) 1.85 -49.0 2.36 -50.24 

Desktop (T) 1.72 -48.1 0.52 -56.92 

Map (T)   1.00 -45.79 

MissionControlClip2 (T)   1.50 -54.29 

Robot (T)   1.71 -60.26 

BasketballScreen (NT) 3.13 -46.1 0.92 -52.01 

ChineseEditing (NT)   0.59 -47.26 

EBURainFruits (NT)   2.23 -67.92 

FlyingGraphics (NT) 1.94 -50.1 1.03 -45.53 

Kimono1(NT)   1.39 -56.99 

MissionControlClip3 (NT)   1.24 -54.57 

Programming (NT) 1.05 -42.9 1.08 -50.74 

SlideShow (NT) 2.21 -51.4 1.37 -63.83 

WebBrowsing (NT) 3.08 -47.9 0.50 -58.80 

Average ([72]’s sequences) 2.14 -47.93 1.11 -54.01 

Average (ALL)   1.25 -54.65 
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Chapter 7 Conclusions and Future Work  

In this thesis, we have carried out a research study on the fast mode and CU 

partitioning decision of SCC. To achieve high coding efficiency for screen coding videos, 

SCC adopts an exhaustive searching strategy among all depth levels and mode candidates. 

By implementing the proposed algorithms, unnecessary mode candidates and CU sizes 

are eliminated such that coding complexity can be reduced. In each chapter, the 

motivation of the proposed algorithm is firstly given, and then the proposed algorithms 

with the corresponding rationales were introduced with illustrations. Finally, simulation 

results were provided to show the effectiveness of the proposed algorithms. In this chapter, 

we first highlight the main contributions of this thesis. Then, some possible directions 

that could be the focus of the future research are discussed. 

7.1 Contributions of the Thesis 

In the objective of computational complexity reduction in SCC, our contributions 

chiefly include constructive machine learning based proposals of (1) an online learning 

based fast prediction algorithm which extract content dependent rules from learning 

frames; (2) a flexible encoding framework by sequential arrangement of DTs; (3) a deep 

learning based fast prediction network, DeepSCC, which contains much more trainable 

parameters than the traditional machine learning based approaches; (4) a fast HEVC to 

SCC transcoder FHST that migrates the legacy screen content videos from HEVC to SCC 

to improve the coding efficiency. 

In particular, our conclusions are: 

⚫ An online learning based fast SCC encoding algorithm was explored in Chapter 3. 
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Since the mode and CU partitioning decisions in the same scene have a high 

correlation, the first frame in a scene is used to derive content dependent rules. Then 

these rules are applied to the following frames in the same scene to eliminate 

unnecessary checking of mode candidates and CU size. The content-dependent rules 

can achieve high prediction accuracy since it is tailor-made for a certain scene. 

Simulation results have proven that this algorithm succeeds in reducing encoding 

time with negligible RD performance loss. 

⚫ A flexible encoding framework by a sequential arrangement of DTs was proposed 

in Chapter 4, and it explores both static features that describing CU content and 

dynamic features that reveal the unique intermediate coding information of a CU. 

To utilize dynamic features for prediction, this framework checks each mode 

separately by inserting a classifier before checking a mode, and it facilitates either 

IBC or PLT mode to be checked for SCBs. Simulation results show that 

computational complexity is further reduced.  

⚫ To avoid the risk that humans may ignore some important features when doing 

feature extraction, a deep learning based fast prediction network DeepSCC was 

presented in Chapter 5. It directly extracts features from the raw pixels by using 

extensive learnable parameters, and it is able to make the more accurate mode 

decision of Intra, IBC, and PLT rather than the simple CU type classification of NIBs 

and SCBs. By outputting labels for all CUs in a CTU in a single test, the 

computational overhead of DeepSCC is less than 4% by only using a CPU for testing, 

and simulation results show that 48.18% encoding time is reduced with a negligible 

BDBR increase of 1.18%. 

⚫ In Chapter 6, a fast HEVC to SCC transcoder FHST was proposed to migrate the 

legacy screen content videos from HEVC to SCC for coding efficiency improvement. 
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A flexible mode decision framework is adopted and various features from 4 

categories are employed, which are the HEVC decoder, static features, dynamic 

features, and spatial features. On the one hand, high decision accuracy is achieved 

because mode decision is considered from different aspects by utilizing features 

from more than one category. On the other hand, high computational complexity is 

reduced because the flexible structure considers the decision of each mode separately. 

Simulation results show that FHST provides 51.24% and 54.65% re-encoding time 

reduction with 1.32% and 1.25% negligible BDBR loss for YUV 4:2:0 and YUV 

4:4:4 screen content sequences. 

 

7.2 Future Work  

With the successful techniques proposed and evaluated in this thesis, we now 

provide some related directions for our future studies. 

7.2.1. Fast Inter-Prediction of SCC 

In this thesis we propose various fast algorithms focused on the fast intra-prediction 

of SCC, and we can extend our proposed algorithms to inter-prediction. In inter-

prediction, a CU needs to check more mode candidates, such as hash base ME, merge & 

skip, inter 2N×2N, inter 2N×N, inter N×2N. Since the mode selection of a CU in inter-

prediction is strongly affected by the temporal correlation, the mode selection for two 

CUs with the same content can be different. Therefore, we can insert a decision tree based 

mode classifier before each target mode to decide whether a mode should be checked or 

not. Furthermore, for CNN based framework, the long- and short-term memory (LSTM) 

can be adopted to utilize the temporal correlation for fast inter-prediction.  
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7.2.2. Fast Bitrate Transcoding of SCC 

With the proliferation of cloud-based video streaming technology, it is important to 

support screen content distributions from the cloud server to multiple clients. Those 

clients may have different bandwidths that prefer screen content videos with different 

quality levels. To meet the bandwidths of different clients, a cloud server needs to 

generate multiple bitstreams with reduced quality levels from the original high-quality 

video stream. As illustrated in Figure 7.1, each client can flexibly choose the most suitable 

stream given the network condition. For this purpose, fast bitrate transcoding of SCC is 

considered as our next work. Bitrate transcoding is a technology that transforms a high 

bit-rate video to a low bit-rate video with the same video format. To control the quality 

of the transcoded video, the value of QP is adjusted when doing video re-encoding. We 

can first decode the original bitstream of the high-quality video while collecting the 

decoder side information, such as optimal mode and CU size. Then, we re-encode the 

decoded video by a larger value of QP with help of decoder side information to reduce 

the re-encoding time.  

7.2.3.  GPU Based Parallel Encoding of SCC  

In this thesis, techniques are proposed to accelerate the encoding and transcoding of 

SCC by using CPU without parallel processing. To further reduce the computational 

complexity, GPU can be utilized as a co-processor to assist CPU for parallel encoding. 

 

Figure 7.1: Adaptive screen content distribution over cloud. 

Ferr 
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GPU is a highly parallel multi-threaded and many-core processor that has the tremendous 

computational ability. Before the encoding process, GPU can be enabled to find the rough 

optimal BV in IBC mode and the optimal direction of Intra mode for multiple CUs based 

on the uncompressed reference samples. Although this prediction is not accurate because 

the intermediate coding statistics might not be exactly the same as the true encoding 

process, this pre-processing step limits the search range. Then CPU is enabled to fine-

tune the optimal mode in the limited search range provided by GPU. 
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