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ABSTRACT 

 

Offering the advantages of compact, portability, and low cost, fiber lasers have many 

applications. Mode-locked fiber laser is applied in many fields such as optical sensing, 

and super-continuum generation. Mode-locking requires balance of various effects 

such as gain, loss, dispersion and nonlinearity. An in depth understanding of how the 

various effects interact in a laser cavity would help the laser design.  

Laser modeling can be used to analyze laser dynamics. With given parameters, a 

good laser model can give a prediction from simulation results which match the 

experimental observations and give the guidance on choosing the parameters of a 

laser. A good model does not always mean it contains all the effects in a laser system 

or it can give results close to experimental results. On the contrary, it can be a simple 

heuristic model. A heuristic model might not accurately match experiment data but 

helps to check whether one (or some) effect(s) is (are) responsible for an observed 

behavior in a laser cavity and give a good understanding on the working mechanism 

of lasers. 

The theoretical works based on a simple heuristic model where only the most 

intrinsic factors, e.g. gain and loss, are contained have been proposed. The works 

point out that even only containing fundamental effects, various complex states, i.e. 

multi-pulse generation, chaos, still exist. One should note that in a heuristic model, 

the choice of physical effects to be included is crucial and not easy. In our former 

model, pulse shaping, i.e. dispersion and nonlinearity, was considered not influence 
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the pulse energy and it only contains gain and loss terms. However, such an 

assumption is not proper when a high peak pulse is lasing in the laser. Dispersion and 

nonlinearity have obvious impacts on the pulse, which further impacts the gain loss 

dynamics. In this thesis, we proposed an extension of our former model by taking into 

account the effects of pulse shaping. The model is applied to study the mode-locked 

fiber laser.  

In this thesis, we investigate both single- and multi-channel mode-locked fiber 

lasers. Obtaining a high energy (high peak and narrow pulse width) pulse in single-

channel mode-locking is attractive. But complex states such as multi-pulsing, 

periodic and chaotic states also exist in the laser. Mechanisms of multi-pulsing, 

periodic and chaotic states, which are thought to be factors that limit the pulse energy, 

are investigated and the guidance on obtaining high energy short pulse is given. 

Multi-channel mode-locking is also studied. The impacts of the devices in a laser 

cavity on the mode-locked pulse are studied. We found the energies of the mode-

locked pulses in different channels can be different. The light interaction through 

pulse shaping and the impact of the spectral filter are found to be crucial roles for this 

phenomenon. 
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Chapter 1 

Introduction 

 

 

 

 

1.1  Background   

 
“Laser” is the acronym for “light amplification by stimulated emission of 

radiation”[1]. Different from other light sources, e.g. LED which emits light through 

spontaneous radiation [2], a laser emits light through the optical amplification based 

on the stimulated emission [3], and in principle it can produce a single color of light. 

Laser has been applied in many aspects of our lives. In industry, lasers are sources for 

optical communications [4-8]. In defense, it can be used to mark targets, or guide 
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munitions [9]. In medicine, lasers can be used for the treatment of cancer, since they 

can shrink or destroy tumors or precancerous growths [9]. Lasers are also useful in 

people’s daily life, for example, in laser lighting displays of musical performance.  

The history of lasers dates back to 1960, when the first laser was invented by 

Theodore Maiman in Hughes Research Institute [10]. In the first laser, a synthetic 

pink ruby crystal is used as a lasing gain medium, and the pump of this laser is a 

helical xenon flash lamp. A laser operating at 694.3 nm was obtained. Since then, 

lasers attract much attention and undergo drastic development. The first mode-locked 

laser was invented in 1964 [11]. In the cavity, an acousto-optic modulator (AOM), 

which was driven by an electronical signal, was used as a modulator to produce loss 

modulation in the He-Ne cavity. A 2.5 ns width pulse operating at 633 nm was 

obtained. Then the mode-locked laser becomes crucial in many applications.  

Fiber lasers have the advantages of good compatibility, portability and low cost. 

The first fiber laser is invented by E. Snitzer in 1961. A Nd-doped fiber was used as 

an amplifier, and the laser operated at 1.06 m [12]. However, fiber loss was high, 

approximately 1000dB/km at that time. Fiber lasers did not receive much attention 

then. In 1970, based on the work of Charles K. Kao [13], first low loss fiber that had 

a loss lower than 20 dB/km was made by Corning [14]. Now the loss of single mode 

fiber in communication band (C band 1525~1565 nm) is lower than 0.15 dB/km [15] 

which contributes to the fiber laser operating at communication band. All these 

techniques have led to rapid development of fiber lasers.  
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1.2  Mode-locking 

Mode-locking technique allows a laser to emit pulses. Mode-locked lasers are 

essential scientific and industrial tools and attract lots of interests. They play an 

important role in many applications such as optical metrology [16-18], material 

processing [19], biomedical imaging [20], and supercontinuum spectrum generation 

[21-24].  

The light, as the wave, would constructively and destructively interfere with 

itself during propagation in an optical cavity. Only the frequencies that lead to a 

standing wave in a given laser cavity are allowed to oscillate. Consequently, the light 

in a cavity has a discrete set of frequencies which are called longitudinal modes [25]. 

For a cavity with a length L, the frequency separation between the modes is given by 

f = c/(nL), where c is the speed of light and n is the refractive index of the medium. 

Only the modes within the gain bandwidth medium survive, as shown in Fig. 1-1. 

In general, the modes in a laser oscillate independently. The cavity modes 

interfere with each other, leading to fluctuations in intensity since the modes are 

without any fixed relationship. Mode-locking introduces a fixed phase relation to the 

cavity modes, thereby causing the lasers to emit pulses. There are both active and 

passive mode-locking techniques.  
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Fig. 1-1. Laser mode structure. 

 

1.2.1 Active mode-locking 

Active mode-locking can be achieved by adding a modulator in a laser cavity to 

modulate the amplitude or phase of light. We take active mode-locking via an 

amplitude modulator as an example as shown in Fig. 1-2. The laser cavity consists of 

a gain medium and a modulator. The modulator is driven by an electronic signal at 

frequency ݉ൌ2ߨ/ܶ, where ܶ is the round-trip time of the cavity.  

We assume that the interval of the cavity modes is f. For the cavity mode f0, the 

light field can be written as 
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 0 0 0cos 2E B f t   ,     (1-1) 

where B is the amplitude and 0 is the initial phase of the light field in the laser cavity. 

The modulation signal M(t) on the AOM can be written as  

   m1 cos 2M t A ft   ,     (1-2) 

where Am is the modulation depth and f is the interval of cavity modes. After the 

modulation, the light field becomes 

    

    

  

0 0 0 m

m
0 0 0 0

m
0 0

cos 2 1 cos 2

cos 2 cos 2
2

cos 2
2

E M B f t A ft

A B
B f t f f t

A B
f f t .

  

   

 

   

     

  

  (1-3) 

From Eq. (1-3), the neighbor cavity modes at f0 + f and f0  f have the same 

initial phase 0 with their central cavity mode. Thus the phases of neighboring cavity 

modes are locked through the modulation. As a result, a mode-locked state is 

obtained and a pulse train can be observed in the time domain.  

Active mode-locking can also be realized by using a phase modulator. A phase 

shift of light produces a frequency shift. When a phase modulator that is driven by an 

electrical signal M(t) is placed in a laser cavity, the light in the cavity acquires a 

frequency shift (dM/dt) each time it passes through the modulator. The frequency 

shifts can make the frequency of light move away from gain bandwidth. However, if 

the light does not get frequency shift when it passes through the modulator, the light 

can survive. If the light is passing through the modulator at the time corresponding to 

the extreme points of the driven signal (dM/dt=0), the light will not get frequency 

shift. This results in a pulse output in the time domain. 
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The advantages of active mode-locking are that the repetition rate is determined 

by the driving signals of the modulators. Besides, the driving signals can be generated 

by the feedback signals that obtained by detecting the output pulse train of the laser 

cavity itself, leading to tunable pulse repetition rate and reduced timing jitter [26]. 

However, it is difficult to obtain short pulses below picoseconds by active mode-

locking, because of the limited response speed of the electronic devices. 

 

Fig. 1-2. Schematic of active mode-locking laser cavity. The modulation period equals to the 

roundtrip time of light in cavity.  

 

1.2.2 Passive mode-locking 

Recently, there is much interest in ultra-fast high power mode-locked pulse with 

a pulse width around hundreds of femtosecond or shorter, and the pulse energy larger 

than J. Such pulses can be achieved by passive mode-locking. In a passive mode-

locking laser, the modulator is replaced by a saturable absorber (SA), which is an 

intensity dependent loss device. The loss is larger when the light intensity is weak 
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and the loss is smaller when the light intensity is strong. Thus high intensity light in 

the laser cavity can be amplified while the low intensity light is attenuated, leading to 

pulse generation.  

There are many types of SAs. A typical SA in passive mode-locked lasers is the 

semiconductor saturable absorber mirror (SESAM) [27-30]. SESAM is a mirror 

structure with an incorporated saturable absorber and this structure requires expensive 

fabrication e.g. metal organic phase vapor epitaxy (MOPVE), metal organic chemical 

vapor deposition (MOCVD), or molecular beam epitaxy (MBE) [31]. An SA that 

based on the single-wall carbon nanotube (SWNT) had also been applied in a mode-

locked laser. Its fabrication is comparatively simple, with only three steps, namely 

nanotube growth, dispersion, and deposition [32]. Graphene has also been proposed 

to serve as SA since the first demonstrations of graphene SAs in 2009 [33]. Graphene 

SAs are used to generate pulses at wavelength from 0.8 to 2.9 μm [34, 35], while the 

working bands of SESAM and SWNT are approximately 0.1 and 1 m, respectively 

[36]. Other materials such as MoS2 [37, 38] and black  phosphorus [39, 40] have also 

been used as SAs for passive mode-locking. 

In addition to the materials mentioned above, there are other kinds of SAs that 

are based on the Kerr nonlinearity. Kerr nonlinearity modifies the refractive index of 

a medium as n = n0 + n2I, when the light is propagating in it. Here n0 is the refractive 

index of the medium, n2 is nonlinear refractive index coefficient, and I is optical 

intensity. Thus the nonlinear phase shift NL = (2π/λ)n2IL is proportional to the light 

intensity, where L and λ are the medium length and light wavelength, respectively.  
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Fig. 1-3. Schematic of the Figure-eight mode locked fiber laser setup. A main resonator on 

the left-hand side, and a NALM as the mode-locker element on the right-hand side. 

 

An figure-eight mode-locking fiber laser (F8L) utilizes Kerr nonlinearity to 

achieve mode-locking. The schematic of an F8L cavity is shown in Fig. 1-3. The ring 

on the right-hand side in the figure is a nonlinear amplifying loop mirror (NALM). 

The light splits into two counter-propagating components when it goes into NALM. 

In the NALM, the light that propagates in the anticlockwise direction first passes 

through the amplifier and then propagates in the fiber, while the light in the clockwise 

direction first passes the fiber and then gets amplified. As a result, the nonlinear 

phase shifts, which are proportional to the light intensity, are different among the 

light in two directions. When the combined light returns to the left loop in Fig. 1-3 

through the coupler, the two light will inference and the intensity dependent output is 

obtained. NALM was first used in mode-locked fiber in 1991 [41]. The author 

demonstrated the generation of 320 fs pulses at 1560 nm.  

Nonlinear polarization rotation (NPR) as a mode-locking mechanism [42-48], 

was first used in a fiber laser in 1992 [46], where a 1.55 ps mode-locked pulse was 
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obtained. The schematic representation of the cavity is shown in Fig. 1-4(a). NPR 

mode-locking is based on both the nonlinearity and fiber birefringence. An optical 

fiber supports two orthogonally polarized modes of the light. Their refractive indices 

are nx and ny. In an ideal fiber, they are identical, but a real fiber exhibits some 

birefringence (nx ≠ ny) because of the unintentional variations in the fiber core shape 

and anisotropic stress. There are two principal axes in a fiber with birefringence, 

which are the slow and fast axes. When light propagates in a fiber, the nonlinearity 

affects the light in both the fast and slow axes of the fiber. If the nonlinear phase 

shifts of the two components are different, the polarization of the light is changed. 

Since the nonlinear phase shift depends on the light intensity, the polarization of the 

light changes during the propagation in the fiber as shown in Fig. 1-4(b). If the light 

then passes a polarizer, intensity dependent output is obtained.  
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Fig. 1-4. (a) Schematic representation of the laser cavity. (b) the intensity depends on the 

transmission of NPR mode-locker. PI: polarization isolator, PC: polarization controller. 

 

1.3  Modeling for mode-locked fiber lasers 

A laser source that emits ultra-fast high power mode-locked pulse is attractive as 

mentioned above. Achieving such laser sources is not easy because as the pulse 

energy increases, multi-pulsing instability might occur [49].  

A laser consists of different elements, e.g. gain fiber, SA and filter. The pulse in 

a laser cavity is modified by these optical components in each roundtrip. Thus 

intuitively, a model in which each optical component is modeled separately would 

better describe the pulse evolution in a laser cavity. However, if the laser pulses are 

not significantly modified by each element in a roundtrip, the effects of each 
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component on the light can be distributed throughout the laser cavity. Hence the light 

evolution inside the cavity can be approximated by a partial differential equation 

(PDE) which allows the use of analytical techniques to study the mode-locking [50-

52]. In the following subsections, both distributed and discrete models are introduced. 

1.3.1 Haus’s master equation 

The master equation proposed by H. A. Haus is one of most successful models 

for the mode-locked lasers [50-52]. Light evolution in the laser cavity is given by  

  ,  (1-4) 

where U is the complex envelope of the electric field of light, 2 is dispersion 

coefficient,  is nonlinearity coefficient,  is gain bandwidth, l is loss and  is self-

amplitude modulation (SAM) coefficient. Here g is the gain term. The gain medium 

in a laser amplifies the light through stimulated radiation which requires population 

inversion of the ions. If the light energy increases, amplifying the light consumes 

more excited ions, and the inversion level of ions is reduced. Hence the gain of an 

amplifier will be reduced [53]. This effect is known as gain saturation. The gain term 

that contains gain saturation is written as [50-52] 

 0

1 sat

g
g

E E


 ,     (1-5) 

where Esat is the saturation energy and E = ∫|U|2dt is the light energy. From Eq. (1-5), 

the gain decreases when the pulse energy increases. The dispersion and Kerr 

nonlinearity are represented by the second and third term on left-hand side of Eq. (1-

4). The second and third term on the right-hand side represents the action of a 

Gaussian filter and SA, respectively [see Appendix D]. 

2 2
( )z tt ttiU U U U i g l U ig U i U U       
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The master equation has an analytical solution of the form [54, 55]  

,        (1-6) 

where x, y and T0 are real constants. Such analytical solution allows one to calculate 

pulse duration, chirp, and spectral bandwidth as functions of the laser parameters. 

The master equation captures the key characteristic of a mode-locked laser. 

However, it has been shown that Eq. (1-4) supports a stable mode-locked pulse in a 

relatively small parameter space only [55].  

1.3.2 cubic-quintic Ginzburg–Landau equation 

The action of SA in the master equation is modeled by the SAM term |U|2U 

which assumes a monotonic increase of the SA transmission as the function of pulse 

intensity [see Appendix D]. Such an assumption is unrealistic. The SA transmission 

curve may decrease at high pulse intensity such as in NALM, NPR. Besides, because 

of the monotonic transmission of the SA in the master equation, the pulse intensity 

might quickly grow with the distance z as shown in Fig. 1-5 [55].  

This can be solved by adding a high order term that prevents the transmission 

curve from monotonically increasing [see Appendix E]. Adding the quintic term in 

the master equation leads to the so-called cubic-quintic Ginzburg–Landau equation 

(CQGLE), which is written as 

.  (1-7) 

The quintic term introduces saturation to the nonlinear growth of the mode-locked 

pulse [see Appendix E]. Fig. 1-6 shows one example of the pulse evolution in 

CQGLE. The parameters used in Fig. 1-6 are the same as that used in Fig. 1-5, but 

with  = 0.02. Different to the case in Fig. 1-5 where the pulse dramatically grows up, 

1
0( ) sech ( )iyU t x t T

2 2 4
( )z tt ttiU U U U i g l U ig U i U U i U U         
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the pulse now does not blow-up as the propagation distance z increases, and here we 

give an example of z = 20.  

 

Fig. 1-5. The dynamics of the mode-locked pulse in the master equation. One example of 

the typical master mode-locking blow-up [55]. Other parameters:  = 4, l = 0.1, g0 = 0.2, 

Esat = 1,  = 0.1 and  = 0.1. 

 

Fig. 1-6. The mode-locked pulse in the CQGLE. The parameters are the same as the case 

in Fig. 1-5 except the quantic term is added,  = 0.02. The mode-locked pulse does not 

show the blow-up along the distance [55].   
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There are also mode-locked fiber lasers that produce mode-locked pulses at 

different central frequencies. They are called multi-channel mode-locked lasers [56, 

57], which are attractive for applications in terahertz generation and optical sensors 

[56, 58-61]. Such a laser can also be modeled by distributed models.  

1.3.3 Distributed models for multi-channel mode-locking 

The Swift-Hohenberg equation (SHE) describes mode-locked lasers with a dual-

channel filter. In both the master equation and CQGLE, the action of spectral filter is 

modeled by the second order differential terms igUtt (for details, please read 

Appendix D).  In SHE, a higher order differential term is added such that the filter 

profile now has more than one maximum [62].  

The SHE is written as 

. (1-8) 

The parameters 2and 4 are the coefficients of second and fourth order terms 

on the right-hand side of Eq. (1-8) which give the bandwidth and the distance 

between the two channels in the spectral response. In SHE, the filter is given by 

2 4z tt ttttU U U   ,      (1-9) 

where the filter function is F () = exp(l2244). If the fourth order differential 

term is removed, the filter profile (for instance, 2 = 10, 4 = 0 in a CQGLE) is 

reduced to that of a single channel filter, as shown in Fig. 1-7(a). A dual-channel 

filter is modeled with a nonzero value of 4, as shown in Fig. 1-7(b) (for instance, 2 

= 10, 4 = 5).  

 

2 2 4

2 4( )z tt tt ttttiU U U U i g l U i U i U i U U i U U           
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Fig. 1-7. The filter response curve in (a) CQGLE, where l = 0, 2 = 10, 4 = 0, (b) 

SHE where l = 10, 2 = 10, 4 = 5. 

 

In addition to the model for dual-channel mode-locking, we can also easily 

model multi-channel mode-locking. Coupled equations can be used to study the 

mode-locking in the multi-channel laser. In these coupled equations, each channel is 

modeled by a single equation. The coupled equations are written as [63, 64] 
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z t t t
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 ,  (1-10) 

where Un is the light field in n-th channel (n = 1,2, . . . ,N). N is the total number of 

channels. gn is the gain term to the light in n-th channel and  represents the gain 

bandwidth. Due to the group-velocity dispersion (GVD), the light in different 

channels has different group velocity. The parameter n is used to model the walk-off 

of the pulses in different channels. The coefficients n and n are used to model the 

SA for generating mode-locking.  
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With the help of coupled equations, multi-channel mode-locking can be modeled. 

Coupled equation requires multiple equations for the model, not as easy as SHE 

where only one equation is used. However, to this model, it is easier to model a laser 

cavity with a multiple channel filter. The reason is to SHE, we should adding more 

higher order terms along with 2 and 4 to describe the profile of a multi-channel 

filter. 

1.3.4 Discrete models 

In the models discussed so far, the effects of the discrete laser devices on the 

circulating light are distributed throughout the whole cavity. Such models allow the 

use of analytical techniques to investigate the mode-locking. Modeling on ultra-fast 

high power mode-locked laser sources is attractive, since such laser sources are 

powerful tools for the research in nonlinear optics and biomedicine as mentioned 

above. To an ultra-fast high power mode-locked laser, its duration might be as short 

as 100 fs and its spectrum might be around 20 nm. The pulse spectrum is comparable 

or even wider than the gain bandwidth (around 10 nm homogeneous gain bandwidth 

for EDFA [65]). The laser pulse undergoes significant evolution in each roundtrip in 

the cavity. Thus the distributed model cannot adequately describe the evolution of 

light in such a laser cavity. Instead, the action of each element on the light should be 

modeled separately. Although we cannot use the analytical tools as we did in 

distributed models, discrete models give a more realistic description of a laser cavity.  
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1.4  Outline of the thesis 

The main objective of laser modeling is to provide insight of the mode-locking 

mechanism, rather than a quantitative description of the laser output in one special 

laser cavity. Recently, a discrete laser model with only the effect of gain and loss is 

shown to contain complex laser dynamics, including chaos and multi-pulsing.  

The pulse shaping effect such as dispersion and Kerr nonlinearity were not 

included in the model because they are assumed not to affect the gain and loss. 

However, Kerr nonlinearity and spectral filtering, or dispersion and SA, give rise to 

energy dependent loss. Thus a full description of laser dynamics should contain the 

pulse shaping effects.   

Chapter 1 of this thesis gives the background of mode-locked fiber lasers and 

laser models. Chapter 2 discusses a heuristic model and its extension to study the 

mode-locking mechanism in a fiber laser. Both the multi-pulsing and chaos can be 

observed with the model, and the guidance to obtain high energy pulse is given. In 

Chapter 3, a simpler case, dual-channel mode-locking is studied. The phases of the 

mode-locked pulses in the two channels can be either locked or unlocked. When the 

channels are locked, the impacts of different elements in a laser cavity are 

investigated. The gain loss dynamics is found to be different to the single-channel 

filter cavity. In Chapter 4, a comb filter is used in the laser cavity. The mode-locking 

states and the gain loss dynamics in such multi-channel mode-locking laser are 

investigated. Chapter 5 gives the conclusion and discusses the prospected works. 
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2.1 Theoretical model 

2.1.1. Review of a heuristic model 

Achieving a high energy ultra-fast mode-locked pulse from a laser is attractive. 

However, when pump power increases, other phenomena such as multi-pulsing and 

chaos can happen, which prevents the energy of the pulse from increasing. Multi-

pulsing and chaos have been investigated both theoretically and experimentally [49, 

66-73]. Li et al. proposed a geometrical heuristic model which includes only the gain 

and loss but can successfully describe and study the laser output, e.g. onset of multi-

pulsing and chaos [49, 71, 74]. Here “geometrical” refers to the fact that solution and 

the nature of the solution of the theoretic model can be determined through graphic 

methods, in a manner similar to determining the solutions of the logistic map in 

nonlinear dynamics [see Appendix F]. In the model, a laser is divided to gain and loss 

parts as shown in Fig. 2-1(a). The energy at point A is the input energy of the gain 

part and is also the output energy of the loss part . The energy at point B is 

the input energy of loss part  and also output energy of gain part . Since 

pulse shaping effects are not included, the gain only depends on the total energy in 

the laser cavity. So the saturated gain is calculated as  

   
0

tol s1
g

g z
E z / E


 ,     (2-1) 

where g0 is the small signal gain coefficient. Es is saturation energy and z is the 

propagating distance in the gain fiber. In a mode-locked laser, both the pulse and the 

small signal (or noise) are included in Etol to estimate the total energy of the light in 

gain
inE loss

outE

loss
inE gain

outE



21 
 

the cavity. Indicating from Eq. (2-1), we know that the small signal and pulse share 

the same strength of gain. 

loss
outE

gain
outE loss

inE

gain
inE

loss
outE

gain
inE

gain
outE

loss
inE

loss
outE

gain
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gain
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gain
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inE gain
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Fig. 2-1. (a) Schematics of the cavity configuration in the geometrical model which consists 

of a saturable gain element and a nonlinear loss element. (b) A typical gain and nonlinear 

loss curves. When the nonlinear loss term is modeled as a sinusoidal function as 

 loss loss
out in0 3 0 3cosE . . E   ,  we observe (c) stable steady state, (d) period-2 state and (e) period-

4, state and (f) chaotic states for increasing values of Esat.    

 

To simplify the system, the nonlinear loss term is considered as an explicit 

function of the pulse energy without including the pulse shaping. Such qualitative 

modeling of the nonlinear loss will allow us to model the gain loss dynamics in a very 

simple way and provide intuitive understanding of the mechanism without 

considering the realistic situation of laser cavities. In different experiments, the 

transmission function could vary significantly for different nonlinear loss elements. 
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For example, for mode-locking using NPR, the transmission of the nonlinear loss 

term varies periodically along the increase of input energy, e.g. a sinusoidal function 

[49]. In such case the transmission can first increase and then decrease when the pulse 

energy increases, as shown in Fig. 2-1(b). 

The intersection point of gain and loss curve in Fig. 2-1(b) represents gain equal 

to lose in one roundtrip. Hence the intersection point represents an equilibrium 

solution in the cavity. Similar to the logistic map, we can determine the stability of 

the mode-locked solution as shown in Fig. 2-1(b). To an equilibrium solution, when 

there is a perturbation on the energy of the solution, the geometrical procedure shows 

the stability of the solution. Fig. 2-1(b) shows an example of a stable solution. In the 

following, we discussed the results of the geometrical model. In Figs. 2-1(c)-(f), the 

nonlinear loss term is modeled as a sinusoidal function in the form 

 loss loss
out in0 3 0 3cosE . . E   , which can be considered as an NPR based mode-locker, for 

example.  We note that as the pump increases, the gain curve moves towards the 

right-hand side.  The steady state solution, i.e. the mode-locked state, is given by the 

intersection of the nonlinear loss curves and the gain curves. Theoretically, the laser 

will operate at the steady state solution if the laser is started there.  However, if the 

laser is initiated away from the steady state solution in the parameter space, it might 

or might not converge to the steady state solution. The nature of the steady solutions 

can be determined graphically as shown in Figs. 2-1(c)-(f). For example, when Esat = 

0.13, the output energy loss
outE  converges to the intersection point. As the pump 

increases, the output energy may settle in a periodic state, e.g. period-2 state in Fig. 2-

1(d), and period-4 state in Fig. 2-1(e). When the pump is further increased, e.g. Esat = 
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0.25, the output energy varies from roundtrip to roundtrip. In this state, the output 

data is sensitive to the initial input and it can be shown that the laser operates in a 

chaotic state [see Appendix G]. 

The model also helps to explain the multi-pulsing in a laser cavity. In a laser 

cavity, the pulse and the small signal share the same strength of gain, but they receive 

different strength of loss. To a pulse, its loss equals to the cavity gain. The loss value 

depends on the pulse energy because the SA in the model gives a light transmission 

that depends on the pulse energy. To small signal, its loss is a constant. The loss 

depends on the cavity linear loss, e.g. output coupler. In the gain loss map in Fig. 2-

1(b), the loss seen by the small signal is given by the initial part of the loss curve, 

which is represented by the tangent to the initial point of the loss curve (dashed line) 

to describe the loss seen by the small signal in the cavity. In the region above (below) 

this tangent, gain seen by the noise is smaller (larger) than its loss, and hence the 

noise cannot (can) increase. If the nonlinear loss curve hits the threshold line, the 

noise receives a gain equal to its loss. Further increase of gain will make the noise 

grow up. In such a case, the additional pump gives the energy to the growing up noise, 

rather than making the original pulse to grow up. 

The heuristic model successfully describes the mechanisms that prevent the 

increase on the energy of the mode-locked pulse. It shows that multi-pulsing and 

chaos can be avoided by engineering the transmission curve of the SA. However, the 

heuristic model is oversimplified as it assumes that the pulse shape does not affect the 

gain and loss in a cavity. The equations of both the gain and the nonlinear loss 

therefore depend on the light energy only. However, as mentioned in Chapter 1, for 
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high power ultra-fast lasers, the pulse shaping effects have obvious impacts on the 

gain and loss in the cavity. The nonlinearity broadens the pulse bandwidth and the 

newly created higher frequency components face higher loss induced by the filter. 

Furthermore, the dispersion changes the pulse shape in the time domain and hence 

SA will induce a different loss. The shape of the pulse is hence believed to affect the 

gain loss dynamics. Thus the heuristic model should be extended by including the 

pulse shaping effects, so as to study the dynamics of a high power pulsed laser cavity. 

The details of the extended model are given in the next subsection.  

2.1.2 An extended heuristic model  

Fig. 2-2 shows the schematic of a mode-locked fiber laser cavity. The cavity gain is 

provided by the gain fiber. The effects of dispersion and nonlinearity are also 

included. The SA provides the mode-locking mechanism and the spectral filter 

controls the pulse’s bandwidth. An output coupler is placed after the spectral filter. 

The output points of the gain fiber, spectral filter (and output coupler) and SA are 

marked as A, B, and C, respectively in Fig. 2-2. 

 

Fig. 2-2.  Schematic of a typical mode-locked fiber laser cavity that consists of a section of 

gain fiber, an SA, a spectral filter and an output coupler. 
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Pulse evolution in the gain fiber is modeled by the nonlinear Schrödinger 

equation (NLS) with gain as [70], 

   (2-2) 

where A is the slowly varying envelope of the electric field, t is the time, z is the 

distance in the fiber, β2, β3 and γ are the second order dispersion, third order 

dispersion, and nonlinear coefficients, respectively. The effect of dispersion and 

nonlinearity are added in the model in order to take into account the impact of the 

pulse shaping effects. The gain coefficient g(z) is given by  

 
0

2

s

( ) ,
1 ( , )

g
g z

A z t dt E


      (2-3) 

where g0 is the small signal gain coefficient. Es is saturation energy. A flat gain 

profile is adopted here for g(z) as the effective gain profile is the combined effect of 

gain and the spectral filter. We assume a homogeneous gain, thus the gain depends on 

the total energy in the cavity, as shown in Eq. (2-3). 

The SA is modeled by a power dependent transmittance function [70, 73, 75]  

    (2-4) 

where Psat is the saturation power and l0 is the unsaturated loss of the SA. One can 

note the unsaturated loss l0 determines the transmission seen by the small signal. The 

transmission of the small signal can be obtained by setting |A(t)|2 ~ 0 and then the 

transmission of SA on the small signal is TSA = l0. 

The spectral filter is assumed to be a Gaussian bandpass filter [70] 
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where band  is the filter bandwidth and H0 is the maximum of transmission of the 

spectral filter. Both the linear loss in the cavity loss and the output coupler are 

included in H0. Hence in the revised geometrical model, the loss term, i.e. SA and 

filter, are functions of the pulse shapes in the time and frequency domain, 

respectively.   

We normalize Eq. (2-2) as  

,    (2-6) 

where the normalized variables are 
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The transfer functions of SA and filter are normalized to 
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where  is the normalized angular frequency and band = 2f is the 

normalized filter bandwidth. 

Equations (2-6), (2-8) and (2-9) together describe the action of each component 

in the cavity on the light field. In the simulation, the action of increasing pump power 
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is modeled by varying Esat. The actions of gain fiber, SA and filter are modeled 

iteratively. Here Eq. (2-6) is solved numerically with the split-step Fourier method 

[76]. The white Gaussian noise is added after the gain fiber which can model the 

amplifier noise. The noise has a zero mean and a variance of ~ 107 to 109, which is 

within the range of typical noise level in a fiber laser [58, 61, 77]. The pulse after the 

gain fiber is subsequently multiplied by the point functions of SA and filter in the 

simulation. The simulation is stopped when the solution converges (generally, about 

3000 roundtrips is enough), which means the differences of pulse profiles between 

roundtrips are nearly unchanged (at the level of noise, e.g. 109 in our case, as we 

added amplifier noise after gain fiber) in both time and frequency domain. Otherwise, 

the simulation is stopped after 20,000 roundtrips. We started with white Gaussian 

noise (a zero mean and a variance ~ 10-9) and a mode-locked pulse is obtained with a 

relatively small value of Esat (i.e. ~0.01). The output at this value of Esat is used as the 

seed for next Esat. This action corresponds to the realistic changing of the pump 

power of the laser in experiments.  

2.2 Pulse dynamics in a laser cavity  

In the original heuristic model, the laser dynamics is determined by the gain and loss 

curve only. In the extended heuristic model, the laser dynamics will be more complex. 

As the loss now depends on the profiles of the pulses in both the time and frequency 

domain, a deterministic loss curve does not exist. It is not possible to determine the 

equilibrium solution by a simple geometrical method. The final states have to be 

determined by simulations. Due to the frequency dependent loss, the spectral filter 

induces a dynamical loss to the pulse, which has an obvious impact on the laser 
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dynamics. In the following sections, the impact of spectral filtering on the laser 

dynamics is investigated with different filter bandwidths f and cavity energy Esat.   

2.2.1 Multi-pulse generation   

We study the pulse dynamics as the filter bandwidth is varied. We first set the 

filter bandwidth to 0.08 as an example. Other values of bandwidth will be studied 

later. For typical values in fiber laser cavity, e.g.  = 1/W/km, 2 = 20 ps2/km and 

Psat = 200 W, this filter bandwidth (0.08) corresponds to ~ 250 GHz which is a typical 

value used in fiber lasers [78]. In the simulations, the small signal gain is chosen to be 

30 dB. For SA and filter, l0=0.85, and the length of gain fiber is 3. 

Simulation starts from Gaussian white noise with a zero mean and a variance ~ 109. 

The parameters chosen here are typical parameters as referred to the study on mode-

locked fiber lasers in Ref. [49, 70-72, 79, 80]. Third order dispersion D3 is first set to 

0, and its impact will be studied in Section 2.2.3. 

 
Fig. 2-3. (a) The pulse temporal profiles and (b) spectra after the gain fiber when the Esat is 

gradually increased from 0.6 to 0.9 with f = 0.08. The pulse spectrum is broadened by the 

nonlinearity in gain fiber. Other parameters: l0 = 0.85, f = 0.08, D3 = 0. 
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Fig. 2-3 shows the pulse temporal and spectral profiles at point A of Fig. 2-2 

when Esat varies from 0.6 to 0.9 in step of 0.1. As we start with noise, the pulse 

temporal center can locate at any temporal position in our time window. To the 

obtained mode-locked pulses with different values of Esat, the pulse shape varies in 

the both time and frequency domain as shown in Fig. 2-3(a). The peak pulse intensity 

increases from 2.30 to 4.97 and the full width at half maximum (FWHM) decreases 

from 1.31 to 0.79 when Esat increases from 0.6 to 0.9. The variations of the pulse 

spectra are shown in Fig. 2-3(b). The pulse bandwidth increases as Esat increases. 

From Fig. 2-3, it might appear that the pulse peak intensity can be increased by 

increasing Esat. However, as Esat increases, the pulse does not continuously absorb 

energy. Other states such as multi-pulsing and chaos will be found which prevent us 

from obtaining a high energy ultra-fast pulse. 

Now we try to determine the mechanisms of multi-pulsing and chaos. As the loss 

curve is not fixed, we cannot analyze the laser dynamics by the geometric method as 

in the original heuristic model. However, the energies of the mode-locked pulses with 

different values of Esat can be obtained by the simulations. We can put the final states 

on the gain loss map, e.g. in Fig. 2-1(b), by monitoring the energies at point A and 

point B in the laser cavity shown in Fig. 2-2.  

The energies at point A and B in final states for different Esat are shown in Fig. 2-

4. Each black dot in Fig 2-4 corresponds to a mode-locked state with their 

corresponding value of Esat. We cannot link these points and treat them as the loss 

curve. To each black dot, the corresponding mode-locked pulse experiences a loss 

equal to its gain. Hence the black dots also locate on a corresponding gain curve. For 
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example, the black dot obtained with Esat = 0.6 is also on its gain curve [see Fig. 2-4]. 

As a flat gain profile is used, the gain remains dependent on the total energy in the 

cavity only and we can get the gain curve by solving the gain model in Eq. (2-7) with 

Esat = 0.6.  

As shown in Fig. 2-4, the pulse energy at first increases when Esat increases.  

Inferred from Fig. 2-3(b), the pulse bandwidth increases when Esat increases. When 

the pulse bandwidth increases, the filter loss increases. As a result, the pulse energy 

then decreases as Esat is further increased. The black dots then decreases as Esat 

increases as shown in Fig. 2-4. The black dots reach the gray dashed line when the 

Esat increases to of Esat = 0.91. From the previous heuristic model, we know now the 

small signal gets a gain equal to its loss. If Esat  is further increased, the small signal 

will grow and an example of multi-pulsing transition is shown in Fig. 2-5 where the 

Esat is increased to 0.92. We find the small signal is increased and two identical pulses 

are circulating in the cavity.  

 

Fig. 2-4. The gain and loss map in the laser cavity for f = 0.08. The red solid curves are the 

gain curves with Esat=0.6 and 0.91 respectively. The black solid points are the working points 

of combined nonlinear loss. The gray dashed line is the multi-pulsing threshold. 
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Fig. 2-5 Evolution from 1-pulse to 2-pulse by increasing the pump. Small signal is amplified 

to be another pulse. Other parameters: l0 = 0.85, Esat = 0.93, f = 0.08, D3 = 0. 

 

Such a multi-pulsing transition which a new pulse grows up from the background 

noise qualitatively agrees with the original heuristic model [49, 71]. The difference is 

that in the extended model the loss is not only caused by SA, but also from spectral 

filtering. In the original heuristic model, the loss curve is only determined by SA 

transmission. The authors suggested to engineer an SA with transmission far from the 

multi-pulsing threshold as the pump increases, e.g. a monotonic SA transmission, to 

avoid multi-pulsing [49, 71]. When pulse shaping is taken into account, even with an 

SA with a monotonic transmission, the filter induced loss can trigger the multi-

pulsing. The results are consistent with the experiments in [69, 81, 82] where a 

SESAM was used in the laser cavity. A SESAM has a monotonic transmission. From 

the former model, multi-pulsing should not occur as the loss response would not 

reach the multi-pulsing threshold. However, multi-pulse state was still observed, 

indicating that effects other than gain and loss play a role in multi-pulsing. 

 Multi-pulsing has also been observed in distributed models [68, 69, 83].  These 

are distributed models and they contain many physical effects, such as the relaxation 
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time of gain and SA, all of them will affect the pulse profiles. The authors pointed out 

that a new pulse could grow from the background noise if its gain larger than loss. 

Our model shows that multi-pulsing is an intrinsic property of a laser cavity, it will 

occur even if only the most intrinsic effects, gain and loss, are included in the model.  

2.2.2 Chaos and high energy single pulse 

From the previous section, multi-pulsing is observed as the pump increases. Thus 

the occurrence of multi-pulsing has to be delayed in order to obtain higher energy 

single pulses. We observe that the filter loss contributes for multi-pulsing. Intuitively, 

a wider filter bandwidth might delay off multi-pulsing. However, other nonlinear 

dynamical phenomena such as periodic and chaotic states might occur as shown in 

the previous heuristic model. In the following section, we will study whether a higher 

energy pulse can be obtained with a wider filter bandwidth.  

Fig. 2-6(a) shows one example of gain and loss of the mode-locked pulse when f 

= 0.11. Other values of the bandwidth f will be studied later. Before the black dots 

reach the multi-pulsing threshold, we observe that as the pump increases a mode-

locked pulse could not be formed. In the original heuristic model, a solution is 

determined by the intersection of the gain and loss curve, although the solution might 

not be stable. In the extended model, we determine the solutions with simulation. 

Therefore we can no longer find a solution that is not stable. To study the states that 

do not converge, we keep the last 100 values of the pulse energy in the last 100 

roundtrips if the pulse does not converge. The pulse energy as a function of Esat is 

shown in Fig. 2-6(b), and if the pulse does not converge, we plot the last 100 values 

for the corresponding Esat. Periodic state is found when Esat is increased to 0.803. We 
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observe that the pulse energy is switching between two values until the Esat is 

increased to 0.816, where the pulse experiences a chaotic state as positive Lyapunov 

exponents are found [see Appendix G]. After the periodic and chaotic regions when 

Esat varies from 0.803 to 0.959, a high energy single pulse is found.  

 

Fig. 2-6. (a) The gain and loss map in the laser cavity for f = 0.11. (b) The output energy of 

the filter Eout versus Esat. (c) Details of the periodic and chaotic region in (b). The higher 

energy single pulse is obtained after periodic and chaos states.  

 

Hence in our model, different states such as periodic states, chaotic states, and 

high energy single pulse state can be observed. Periodic and chaotic states are 

common phenomena in a nonlinear dynamical system like a mode-locked laser. We 
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note that the high energy single pulse state is obtained without any special designed 

SA transmission, as suggested in [49, 71]. 

We first discuss the periodic and chaotic states. We have observed that it is likely 

the multi-pulsing threshold is higher than the periodic and chaotic threshold in most 

cases in the previous heuristic model [49, 71]. Here in our extended heuristic model, 

although it is not possible to predict the threshold of chaos and periodic states without 

simulation, we can change or delay the multi-pulsing threshold to see its impact on 

the chaos or periodic states.  

The multi-pulsing threshold is determined by the small signal loss. The 

transmission seen by the small signal is determined by the linear cavity loss, e.g. 

output coupler, and unsaturated loss l0 of SA. From Eq. 2-8, we can estimate the 

transmission seen by the small signal from SA by setting P() ~ 0. Then TSA ≈ (1l0). 

The total transmission seen by the small signal is Tloss×(1l0), where Tloss is the 

transmission of the linear loss in the cavity on the small signal.  

Thus, if we vary the value of l0, the small signal loss will vary and the multi-

pulsing threshold will also be changed. Fig. 2-7(a) shows the gain and loss of the 

laser cavity when f = 0.08 while the unsaturated loss l0 is increased to 0.96 from its 

original value of 0.85 in Fig. 2-4. Comparing with Fig. 2-4, we find that as multi-

pulsing is put off, the periodic and chaotic states are found before the black dots hit 

the gray dashed line. Another comparison can also be done by decreasing the 

unsaturated value of SA. Fig. 2-7(b) shows the gain and loss in a cavity when f = 

0.11 while the unsaturated loss l0 is decreased to 0.7 from 0.85. This time, the multi-

pulsing threshold can be reached earlier. Instead of periodic and chaotic states in Fig. 
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2-6, we observed multi-pulsing generation as the pump is increased. Inferred from 

Fig. 2-7, periodic and chaotic states and multi-pulsing are all theoretically exist in 

laser systems. Which effect will occur first when the pump power increase depends of 

the respective thresholds. Starting from a single pulse state, if the thresholds of 

periodic and chaotic are smaller than that of multi-pulsing, periodic and chaotic states 

would be observed when the pump is increased [84, 85]. However, there are also laser 

systems in which the multi-pulsing state is reached without going through the 

periodic and chaotic states [81-83]. 
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Fig. 2-7. The gain and loss map in the laser cavity for (a)  f = 0.08 and l0 = 0.96, (b)f = 0.11 

and l0 = 0.7. Gray dashed line represents the current multi-pulsing threshold, while the brown 

dash-dot line represents the previous multi-pulsing threshold. Other parameters are same. 

 

Next, we will study the high energy single pulse state. As pulse shaping effects 

are included, we monitor the pulse profiles in both the time and frequency domain in 

the whole cavity. We compare the pulse evolution inside the laser cavity of both the 

lower and higher energy single pulse. Figs. 2-8(a) and (b) show the evolutions of the 

lower energy pulse in the laser cavity when Esat = 0.8 in the time and frequency 
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domain, respectively. Fig. 2-8(a) shows the peak power of the pulse increases 

monotonically in the gain fiber, and Fig. 2-9(a) shows that the pulse bandwidth 

increases monotonically in the gain fiber as well. The pulse bandwidth is decreased 

after passing through SA and filter. Figs. 2-8(c) and (d) show the evolution of a high 

energy single pulse in the cavity when Esat = 1. We observed that the pulse spectrum 

in the gain fiber evolves to its maximum bandwidth and subsequently begins to 

narrow as shown in Fig. 2-8(d) and in Fig. 2-9(b). The pulse bandwidth at the output 

of gain fiber is 1.03. To the lower energy pulse, its bandwidth at the output of gain 

fiber is 4.15. Hence the pulse evolution in the gain fiber can produce a much narrower 

pulse bandwidth, and significantly decrease the filter loss. Consequently, the pulse 

evolution contributes to a high energy single pulse. 
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Fig. 2-8. The evolutions of (a), (c) pulse temporal and (b), (d) spectral waveforms in the laser 

cavity with (a), (b) Esat = 0.8, and (c), (d) Esat = 1.0, where f=0.11. The black arrows show 

the direction of pulse propagation. 
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Fig. 2-9. The evolutions of the pulse spectral bandwidth in the gain fiber when (a) Esat = 0.8, 

and (b) Esat = 1.0, where f=0.11.  

 

Then the question arises on the reason of pulse evolution in the gain fiber. Based 

on the theoretical works on the nonlinear Schrodinger equation with gain term, the 

pulse evolution is significantly influenced by the strength of the gain [86-88]. As Esat 

increases, the increase in energy will create a new pulse within the existing pulse in 

the time domain [87, 88], as shown in Fig. 2-10. The newly created pulse and the 

existing pulse have different phases during the propagation. Hence the two pulses 

interfere and the overall pulse profile varies, leading to the evolution with both 

spectral broadening and narrowing in the gain fiber [87, 88].  

          
Gain fiber

Pulse amplification 

Additional pulse 
creation Input pulse

 

Fig. 2-10. Additional pulse creation during the pulse amplification in the gain fiber. 
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We define the length that a pulse performs a complete spectral broadening and 

narrowing process as the breathing period, as showed in Fig. 2-8 (d). If the length of a 

gain fiber is much shorter than the pulse’s breathing period, we will only observe 

spectral broadening, as showed in Fig. 2-8 (b). As the pump increases, the peak of the 

pulse increases and the pulse width decreases and hence the breathing period of the 

pulse decreases [87, 88]. If the breathing period is shorter than, or comparable to, the 

length of a gain fiber, the pulse spectrum will evolve to its maximum bandwidth and 

then become narrow, as we showed in Figs. 2-8(c) and (d).  

Fig. 2-11 shows the output state of the fiber laser as a function of filter 

bandwidth and Esat. When a smaller pump is used, only one pulse is output from the 

cavity, shown as Region I, (black inverted triangles). When the filter bandwidth is 

narrow, i.e. f < 0.09, multi-pulsing (red stars, Region II) will occur when the pump is 

increased. In these cases, we did not observe periodic and chaotic states as before. If 

the filter bandwidth f is increased, f ≥ 0.09, periodic and chaotic states occur as 

shown in Region III (red solid circles) when Esat is increased. If Esat is further 

increased, a high-energy single pulse is observed. From Fig. 2-11, with a narrow 

bandwidth filter, we found the laser dynamics is dominantly controlled by the gain 

loss dynamics in the cavity which causes multi-pulsing. Different nonlinear dynamics 

are observed if the bandwidth of the filter is large. In such a case, the pulse evolution 

in the gain fiber plays an important role and we know the laser cavity can attain a 

high-energy single pulse output. 
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Fig. 2-11. Output states of the fiber laser as the function of filter bandwidth. Region I: single 

pulse (black triangle); Region II: 2-pulse state (red star); Region III: periodic and chaotic 

states (red dot); Region IV: high energy single pulse state (blue diamond) 

 

On first glance, the high energy single pulse state may be utilized to obtain a high 

power ultra-fast laser source. However, in the following section, we will show that 

the high energy single pulse is unstable in the presence of high order dispersion. 

2.2.3 Impact of third order dispersion 

Recall that the high energy single pulse is obtained because of a new pulse is 

created in the gain fiber as mentioned above. In other words, multi-pulsing has 

occurred but the new pulse grows up within the existing pulse during the propagation 

in gain fiber. Apparently, the two pulses move with the same speed [87, 88], thus one 

does not recognize that it is a multi-pulsing state. Guided from the theoretical works 

in Refs. [87-89], we know the constituent pulses in the high energy single pulse do 

not have to move with the same speed. Higher order dispersion, e.g. third order 

dispersion (TOD) can induce different speeds in the constituent pulses and cause the 
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higher energy single pulse to split. Hence TOD might also be one of the factors of 

multi-pulsing and prevents the formation of a high energy ultra-fast pulse. In this 

section, we will study the impact of TOD. 

We first study whether the higher energy single pulse is consisted of multiple 

pulses. To do this, we perform artificial simulations to investigate the nature of the 

high energy single pulse. We use the high energy pulse obtained without TOD as the 

initial condition and artificially turn on the TOD by setting D3 = 0.05. The evolutions 

of the pulse temporal and spectral profiles in the first roundtrip are shown in Figs. 2-

12(a) and (b), respectively. We observe that the pulse initially undergoes a temporal 

compression and spectral broadening. One can note a resonated narrow band exists at 

normal dispersion region as shown in Fig. 2-12(b). The resonance sideband is 

induced by the phase matching between the solitary wave, i.e. the high energy pulse, 

and the dispersive wave [89-91]. When the solitary pulse circulates in the cavity, it 

will shed energy, also called dispersive wave, soliton pulse shaping in the cavity [89]. 

To the dispersion relation ൎ ఉమఠమ

ଶ
൅ ఉయఠయ

଺
 , where k  is the wave number, we know for 

a nonzero 3, there exists a frequency r = 3/ near which k(r) = k(0) ≈ 0, i.e. 

the phase matching condition is satisfied [89-91]. In the time domain, a radiation is 

found near the main pulse (high energy pulse) as shown in Fig. 2-12(a). The initial 

emission of dispersive radiation is primarily from the high energy single pulse that 

possesses its broadest bandwidth during the propagation in the gain fiber (L ~ 2.25) 

and thus has the maximum overlap with the resonated band.  
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Radiation 

 

   
Fig. 2-12. The temporal (a) and spectral (b) evolution in the gain fiber of the high-energy 

single pulse, when TOD is turned on.  

 

We also give the details of the pulse evolution at different distances L in the gain 

fiber, and in order to observe the time and frequency characters of these pulses 

simultaneously, the spectrograms are shown in Fig. 2-13. After the propagation in the 

gain fiber (L = 3), we observe a smaller amplitude temporal pedestal (at a temporal 

position of  ~ 7.3) which corresponds to the radiation caused by TOD, since its 
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central frequency locates at the resonated sideband as shown in Fig. 2-13(d). It shows 

that the radiation is emitted during the propagation in the gain fiber, and it separates 

from the main pulse in the positive time direction. The lower amplitude pulse at the 

edge of the main pulse is also observed.  
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Fig. 2-13. Spectrogram of the pulse in gain fiber at (a) L = 0, (b) L = 0.75, (c) L = 2.25 

and (d) L = 3. 

 

 



44 
 

Theoretical work [89] shows that the TOD induces different speeds to the 

constituent pulses resulting in pulse splitting. The time delays between the constituent 

pulses increases as the value of TOD increases. We believe this phenomenon also 

hold in the laser cavity. Hence we also compare the impact of different values of 

TOD on the high energy single pulse seed. The pulse profiles at the output of gain 

fiber, SA and filter are shown in Fig. 2-14. Fig. 2-14(a) shows the pulse profiles when 

TOD equals to 0.01. The third order dispersion length ଴ܶ
ଷ ⁄ଷܦ  is more than 100 times 

longer than the length of the gain fiber, where T0 is the pulse width of the mode-

locked pulse that is going into the gain fiber. In such a case, the impact of TOD is not 

obvious as shown in Fig. 2-14(a). We cannot see an obvious radiation and the delay 

between the constituent pulses. For a higher value of TOD such as D3 equals 0.03, 

0.05 and 0.07, the TOD length is around 40, 30 and 20 times of the gain fiber length, 

respectively. The impact of TOD is more obvious. Fig. 2-14(b) shows that when D3 = 

0.03, a stronger radiation can be seen after the gain fiber, and we can also note there 

is a smaller pulse trying to move away from the main pulse. If the value of TOD is 

further increased, a split pulse can be observed after the gain fiber as shown in Figs. 

2-14(c) and (d). The time delay between the pulses is larger if a higher value of TOD 

is used.  

As a smaller value of TOD induces a smaller time delay between the two 

constituent pulses, only a small portion of the smaller pulse is separated from the 

larger pulse after the propagation in gain fiber [see Fig. 2-14(b)]. After the gain fiber, 

the SA will attenuate the separated part of the smaller pulse as shown by the green 

dash-dotted line in Fig. 2-14(b) which hinders the separation between the two pulses. 
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However, from Figs. 2-14(c) and (d), the hindrance from SA will not be sufficient to 

prevent pulse separation if the two pulses have been largely or almost completely 

separated after the propagation in gain fiber. After the spectral filter, the pulse 

spectrum is decreased and the pulse width increase. The filter attenuates the resonated 

sideband since it locates far from the central frequency of the pulse, and hence the 

radiation (at ~  = 7) becomes weak. 

 

Fig. 2-14. Pulse characters after gain fiber, SA and spectral filter in the first roundtrip 

when TOD is (a) D3 = 0.01, (b) D3 = 0.03, (c) D3 = 0.05 and (d) D3 = 0.07.  

 

From the study of the pulse evolution in the first roundtrip we learnt that a small 

value of TOD induces a weak walk-off between the constituent pulses, and the SA 

might even hinder the pulse splitting for weak TOD effect. Thus, in subsequent 

roundtrips we might not see multiple pulses lasing in the cavity. Fig. 2-15 shows the 

pulse profiles as the function roundtrip for different values of TOD. For small TOD 

values, e.g. D3 = 0.01 or 0.03, only one pulse is observed in the cavity. Figs. 2-15(c) 
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and (d) show the pulse profiles when D3 is increased to 0.05 and 0.07, respectively. 

At first, the pulse shows both the radiation and a small pulse splitting from the main 

pulse. After several roundtrips, the radiation is attenuated by the filter, while the 

small pulse splits from the main pulse is amplified to be a second pulse. Finally, two 

identical pulses are mode-locked in the cavity. 

 Based on the results in Figs. 2-11 to 2-15, we confirmed that the high energy 

single pulse actually consists of two pulses. Tuning on sufficiently large TOD in the 

laser cavity will split the high energy mode-locked pulse into its two constituent 

pulses. 
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Fig. 2-15. Pulse profiles after gain fiber as the function of roundtrip when TOD is (a) D3 = 

0.01, (b) D3 = 0.03, (c) D3 = 0.05 and (d) D3 = 0.07. 

 

To study the impact of TOD in the laser dynamics, we also repeated the 

simulations in Fig. 2-6 with nonzero values of TOD. Figs. 2-16(a) and (b) show the 

Eout as the function of Esat with D3 = 0.005 and 0.05, respectively. For D3 = 0.005, a 
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high-energy single pulse could be obtained, but for D3 = 0.05, two pulses are 

observed. We would like to emphasis that, comparing with the previous heuristic 

model, a new mechanism of multi-pulsing is found. The new pulse is obtained from 

the existing high energy pulse during the amplification in the gain fiber. Higher order 

effects such as TOD can produce multiple pulses in the cavity through pulse splitting. 

Since this mechanism of multi-pulsing comes from the pulse shaping effects, it 

cannot be observed in the original heuristic model. In the former model, multi-pulsing 

is induced from the growth of the background noise. In the extended model, besides 

the growth of background noise, a new pulse can be created by the soliton mechanism 

inherent in the interaction of anomalous dispersion and self-phase modulation (SPM). 

The additional pulse split by higher order effects such as TOD will be observed.   

 

Fig. 2-16. The impact of TOD on the laser dynamics. Eloss,out as the function of Esat when (a) 

D3 = 0.005, and (b) D3 = 0.05.  

 

Up to now, various nonlinear dynamical states such as periodic, chaotic, multi-
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pulsing, and high energy single pulse states are observed in our model. The high 

energy single pulse state is attractive in applications. However, the presence of pulse 

splitting due to higher order effects such as TOD have to be suppressed. Otherwise, 

the splitting of multiple pulses in the cavity prevents the formation of a high energy 

single pulse. From the extended heuristic model we show that the spectral filter has a 

significant impact on the mode-locking dynamics of a fiber laser. We conclude that a 

wider filter bandwidth and a smaller value of TOD will help to produce higher energy 

single pulse output.  

Summary  

We extended a heuristic geometrical model by including the pulse shaping 

effects. Based on the extended model, we investigated the impact of spectral filtering 

in a laser cavity. The pulse shaping effects include dispersion, SPM, and spectral 

filtering. The spectral filter introduces frequency dependent loss, thus multi-pulsing 

will be triggered even if a monotonic transmission of SA is used. 

Both the occurrence of the multi-pulsing and periodic and chaotic states prevents 

the formation of high energy single pulse laser source. We observed that a new pulse 

grown from noise is more likely to occur if the filter bandwidth is narrow. On these 

cases, periodic and chaotic states will not be observed as the pump power increases.  

A high energy single pulse state was also observed and its formation is 

dominated by the interaction of anomalous dispersion and SPM. The high energy 

single pulse is potential to offer an ultra-fast laser source, but it should be noted that 

TOD could induce the splitting of high energy single pulse. 
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Chapter 3 

Dual-channel Mode-

locked Fiber Lasers 

 

 

 

In Chapter 2, the proposed heuristic model is used to investigate the mode-locking in 

a single-channel laser cavity. There are also laser sources that emit mode-locked 

pulses with different central frequencies simultaneously in one laser cavity. They are 

called multi-channel mode-locked lasers, and are attractive for the applications on 

terahertz generation and optical sensors. Multi-channel mode-locked lasers exhibit 

rich dynamics. In this Chapter, we apply the proposed heuristic model to investigate 
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the mode-locking in a multi-channel laser cavity. We start with the simplest case, 

which is a dual-channel mode-locking cavity.  

3.1 Introduction  

Dual-channel output can be realized by inserting a dual-channel filter in the cavity to 

select the lasing wavelength as observed in the experiments [56, 57]. Such a laser 

source can output various mode-locked states which are determined by the profile of 

a dual-channel filter. When the pump is weak, one mode-locked pulse is obtained in 

either of the two channels, while the light in the other channel is at the noise level. As 

the pump power increases, different cases can happen. For a given filter (channel) 

bandwidth, if the two channels locate near to each other in the frequency domain, a 

dual-channel simultaneously mode-locked (DSML) state can be obtained [59, 61-64, 

92-94]. Such an output is believed to be potential laser sources for terahertz 

generation and optical sensors [56, 58-61].  

A DSML state means each channel achieves mode-locked and the phases of the 

pulses in different channels are also locked. In such a state, when observing at one 

position in the laser cavity, e.g. output coupler, the pulses in different channels are 

combined in the time domain, despite their different central frequencies which should 

have caused the walk-off between the pulses [59, 61-64, 92-94]. The energies in 

different channels are not always identical in a DSML state [62, 63, 92-94]. For 

example, for given channel bandwidth, the energies in channels are different if the 

channel separation in the frequency domain is increased [92, 93].  

If the two channels are located quite far away in the frequency domain, one may 

not get a DSML state. Instead, when there is a pulse in one channel, as the pump is 
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further increased multi-pulsing is triggered. The new pulse can grow up in either 

channel. If they are in the same channel, one can obtain a state that one channel has 

two pulses while the other channel is at the noise level. If the two pulses are in 

different channels, a dual-channel lasing is obtained but the pulses are lasing 

independently in their respective channel frequencies. The two pulses cannot see each 

other except the time that they cross over in the time domain, as they have different 

group velocities [61].  

In this chapter, we will delineate the mode-locked states and the dynamics in a 

dual-channel laser cavity. We will study how the DSML state is built up. The 

balances inside the DSML state are also discussed. We would also investigate why no 

DSML is obtained if the channels locate quite far apart.  

3.2 Theoretical model  

Laser modeling is helpful for the understanding of the working mechanism of lasers. 

There are distributed models used to study the multi-(dual-) channel mode-locked 

fiber lasers. For example, the Swift-Hohenberg equation has been used to study the 

dual-channel mode-locking [62, 93, 94]. Edward D. Farnum et al. proposed a set of 

coupled equations, where each equation describes the light in one channel, to study 

multi-(dual-) channel laser cavity [59, 63, 64]. Different mode-locked states such as 

multi-(dual-) channel simultaneously or independently mode-locked state are 

observed in these models. These models showed which set of parameters can provide 

the corresponding mode-locked states.  

In our work, we pay more attention to the laser dynamics, not just parameter 

sweeping. Thus we would like to know the interplay of various physical effects inside 
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a DSML state, and the discrete actions of different laser elements, e.g. SA and filter. 

The discrete actions are more easily studied with discrete models. As a result, a 

discrete heuristic model is preferred to be utilized in our work. The heuristic model 

that was used to study single-channel mode-locking can be adopted to study the 

multi-(dual-) channel cavity by modifying the single-channel filter model to a multi-

(dual-) channel filter model. This can be done to either the previous or the extended 

heuristic model. Hence one question has to be asked is whether we should still keep 

the pulse shaping effects.  

We observe that the pulse shaping effects are important to a multi-(dual-) 

channel laser cavity. As the pulses in different channels have different central 

frequencies, the group velocities are supposed to be different due to the dispersion. 

Throwing away the dispersion would lose the walk-off effect between the pulses in 

different channels. In addition, if a homogeneous gain medium, e.g. EDFA, is used, 

the gain competition might make one channel absorb all the cavity energy and thus 

prevent achieving a multi-(dual-) channel lasing [63]. The Kerr nonlinearity induces 

the four-wave mixing (FWM) process and helps to transfer energy to different 

channels. Thus the nonlinearity helps to overcome the gain competition and 

contribute to a multi-channel lasing. For these reasons, the pulse shaping effects are 

still retained in our model.  

The schematic of the fiber laser cavity is shown in Fig. 3-1. The discrete gain is 

followed by a passive fiber that provides dispersion and nonlinearity in the cavity. 

The SA gives the intensity discrimination for mode-locking. The dual-channel filter 
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limits the spectral bandwidth of the light in each channel. An output coupler is 

located right after the spectral filter. 

 

Fig. 3-1.  Schematic of a dual-channel mode-locked fiber laser cavity. 

 

The gain element which provides a saturating gain is modeled as 
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where g0 is the small signal gain coefficient and Es is the saturation energy. The 

increase of cavity energy could be realized by increasing Es. Similar as we did in the 

last Chapter, the white Gaussian noise (zero mean and a variance ~ 10-9) is added 

after the gain element to model the amplifier noise. 

For the pulse evolution in a fiber in a laser cavity, the pulse behavior is governed 

by the NLS 

2
2

2 2
,

2

A i A
i A A

z t
  

  
 

     (3-2) 

where 2, and  are second order dispersion and nonlinear coefficients, respectively.  

The SA is modeled by a power transfer function 
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In a dual-channel laser cavity, two filters are required. The central frequencies 

are ± shift, which corresponds to a separation of 2shift in our system. The field 

transmittance of a dual-channel filter is modeled as 
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where Ωband is the filter bandwidth. The amplitude is normalized by its maximums, 

   f f f/ Max[ ( )]H H H    .  

The equations above could be normalized by using the following transformation. 
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       Then the discrete gain becomes 
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where Esat = Es/[Psat(|2|Lcavity)
0.5]. The equation for the passive fiber is  
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where D = 1 in anomalous dispersion region, and  = PsatLcavity, where Lcavity is the 

length of the total cavity.  

For SA and filter, the equations are 
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where  is the normalized angle frequency and the filter bandwidth band = 

band(|2|Lcavity)
0.5. The channel separation is sep = 2shift. 

Eqs. (3-6), (3-7), (3-8) and (3-9) comprehensively describe a dual-channel mode-

locking fiber laser cavity. We do the simulation as the way we did in last Chapter 

with these equations. Based on the models, the discrete actions of each element and 

the laser dynamics can be studied. 

3.3  Nonlinear dynamics  

A single-channel mode-locked state can be obtained in either channel of the cavity, 

and both channels can get mode-locked if the pump is further increased. On one hand, 

the pulses in different channels can affect each other through the saturable gain if a 

homogeneous gain medium is used. On the other hand, the pulses in different 

channels sometimes can even lock their phases and produce a DSML state. Different 

effects such as dispersion, SPM, cross-phase modulation (XPM) and FWM all exist 

in our system. Thus the pulse interactions among different channels are complex and 

may induce a different laser dynamics when compared to the dynamics in a single-

channel laser. In the following, the laser dynamics are investigated.  

3.3.1 Building up of a DSML state 

Starting from noise, a pulse can grow up in either one of the channels if the pump is 

increased, as in the examples shown in Fig. 3-2 (sep = 2 and Esat = 0.1). A DSML 

state might be achieved if the pump is further increased. The mode-locked state can 

be determined by the spectral profile of a dual-channel filter. For a given channel 

bandwidth, the mode-locking is determined by the channel separation. We first set the 
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channel bandwidth as band = 0.2 which corresponds to a realistic filter bandwidth of 

~ 118 GHz if other parameters are  = 1/W/km, 2 =  ps2/km and Psat = 100 W, 

which are all typical values for laser cavities [59, 61-64, 92-94]. Other values of 

channel bandwidth have also been used to the study in the following. 

 

Fig. 3-2. The spectra of the mode-locked pulse in dual-channel mode-locking cavity when 

Esat = 0.1. For a weak pump, only one channel achieves mode-locking. The mode-locked 

pulse could exist in either of the two channels.  

 

To the single-channel mode-locked state in a dual-channel laser cavity, one may 

believe the pulse will absorb all the cavity energy as the pump is further increased 

since a homogeneous gain model is used in our laser system. However, as the pump 

is further increased, the light in the other channel is increased. The phases between 

the light in two channels might also be locked. This will be the case if the channel 

separation is small such that the cross-talk between channels is strong. The dual-

channel filter can even be treated as a single-channel filter with two humps if the 

channel separation is too small. If that is the case, the pulse spectrum at one hump 

will easily leak to the other hump as the pump is increased. Both the energy and 
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phase relationships are transferred to the other channel (hump) and hence producing a 

DSML state. However, a DSML state can also be achieved if the channels are weakly 

overlapped, e.g. the filter in Fig. 3-2 where the power transmission of the filter is ~ 

10-11 around  = 0. Achieving a DSML state with this filter profile indicates that 

other effects help to produces the DSML state. In the following, the building up of a 

DSML state is studied.  

In order to study the mechanisms that build up a DSML state, we use a single-

channel mode-locked state (in left channel as an example) obtained with Esat = 0.5 as 

the initial seed and increase the pump to Esat = 0.6. We choose the filter in Fig. 3-2 

(band = 0.2 and sep = 2) where the cross-talk of the two channels is weak. The 

transient from a single-channel mode-locked state to DSML state is shown in Fig. 3-3. 

Figs. 3-3(a) and (b) show the evolutions of the pulse profiles after the output coupler 

in the time domain during the transient in the right and left channel, respectively. Figs. 

3-3(a), (b) and (c) show that a new pulse is growing in the right channel after ~ 500 

roundtrips. Compared with Figs. 3-3(a) and (b), we note the temporal position of the 

growing pulse in the right channel is close to the temporal position of the original 

pulse in the left channel. Fig. 3-3(d) shows the combined temporal profiles of the 

pulses in the two channels during the transient. The combined pulse performs an 

obvious modulation on its temporal profile after ~ 500 roundtrips. The modulation 

depth increases as the energy of the pulse in the right channel is increased. Finally, a 

DSML state is observed as shown in Fig. 3-4.  
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Fig. 3-3. The transient from a single-channel mode-locked state to a DSML state in a dual-

channel laser cavity. The evolution of the pulse in the (a) right and (b) left channels in the 

time domain, and the evolution of combination of the two pulses in the (c) frequency and (d) 

time domain are given. The spectral evolution in the passive fiber at the (e) 300-th, (f) 500-th, 

and (g) 700-th roundtrip are shown. 
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Fig. 3-4. (a) DSML pulse which consists of two mode locked pulses in (b) left and (c) right 

channel. (d) The spectrum after the filter of the mode-locked pulse. Both the spectrum and 

spectral filter are normalized by its maximum.  

 

As the pulse shaping effects are included in the model, nonlinear processes such 

as SPM, XPM and FWM can all affect the pulses during the propagation in the 

passive fiber. Figs. 3-3(e), (f) and (g) show the examples of the spectral evolution in 

the passive fiber at the 300-th, 500-th and 700-th roundtrip. We observe that the 

FWM process exits in the system and the light energy can be transferred to different 

frequencies. In the passive fiber, to the light in different channels that are temporally 

overlapped, FWM and XPM can introduce a phase relation between them, and FWM 

can even transfer energy among them [76, 95]. Thus the new pulse in the right 

channel grows up at a temporal position near the original pulse in the left channel [see 

in Figs. 3-3(a) and (b)] and the phase relation between the two channels produces the 

temporal modulations on the combined pulse profiles [see in Fig. 3-3(d)]. 

The energy transfer through FWM can help to overcome gain competition. 
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Besides, we note SA can also help the built up of a DSML state. During the transient, 

when the combined pulse passes through the SA, it gives higher loss to the stronger 

pulse in the left channel and smaller loss to the weak pulse in the right channel. This 

equivalently enhances the weak pulse. The reason is the combined pulse performs a 

modulation on its temporal profile during the transient, as shown in Fig. 3-3(d). SA 

gives an intensity (pulse shape) dependent loss that is larger when the light intensity 

is weak and smaller when the light intensity is strong. Consequently, during the 

transient, the modulation depth on the combined pulse is enhanced when the 

combined pulse passes through the SA, as shown in Fig. 3-5. Such effect on the 

combined pulse during the transient can make the energies of the two channels closer. 
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Fig. 3-5. The pulse profiles after the passive fiber (red solid line) and after SA (green dash-

dotted line) during the transient at the (a) 400-th, (b) 500-th and (c) 600-th roundtrip. The 

pulse intensities are normalized by their maxima.  

 

From Figs. 3-3 and 3-5, we found that the light interaction through Kerr 

nonlinearity, e.g. XPM and FWM, and the effect of SA are important for the buildup 

of a DSML state. The nonlinearity helps to produce the phase relation between 

channels during the propagation in the passive fiber. FWM transfers the energy from 

the original (stronger) pulse to other sidebands, and SA can also make the energies in 
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weak and strong channel closer so as to counterbalance the gain competition.  

Like the mode-locking in a single-channel laser cavity, a DSML state requires 

the balances of different effects in a laser cavity. Intuitively, the balances and the 

laser dynamics in a DSML state should not be a simple extension of that of the 

single-channel mode-locked state. Hence after the building up of a DSML state, we 

will investigate the dynamics and the balance among different effects in it.   

3.3.2 Balances inside a DSML state  

Up till now, the balances inside the DSML state have not been delineated. For 

example, in such a state, the pulses in the two different channels have different group 

velocities due to the dispersion. However, the pulses in the two channels move 

together. Thus a different laser dynamics exists in the DSML state. In this section, 

both the laser dynamics and the balance of different physical effects in the DSML 

state are investigated.  

We first observe the evolution of a DSML state in the whole cavity. Fig. 3-6 

shows an example of the spectral evolution of a DSML state obtained with sep = 2 

and Esat = 1. The gain element amplifies the mode-locked pulse. In the passive fiber, 

the spectrum in each channel is broadened because of the nonlinearity. We note that 

the sidebands increases in the passive fiber (at ) because of the FWM process 

[76]. The SA and spectral filter act as loss elements in the cavity. The energy is 

reduced by SA. The sidebands generated in the passive fiber are obviously reduced 

by the spectral filter. From Fig. 3-6, we note the elements in the cavity induce an 

obvious evolution of the mode-locked pulse along the laser cavity. The distributed 

models that average all the effects of different elements [59, 62-64, 93, 94] obviously 
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cannot capture such intra-cavity evolution.  

 
Fig. 3-6.  Dynamics of the mode-locked pulse along the entire laser cavity in the frequency 

domain. The elements in the laser cavity induce an obvious evolution of the pulse. 

 

More details can be seen by simultaneously observing the impact of laser 

elements on the pulses in both the time and frequency domain by using a time-

frequency map (TFM), i.e. a spectrogram. We can determine the effect of each 

element by calculating the differential TFM (diff-TFM) which is the difference of the 

two TFMs before and after the element. The diff-TFM reveals the direction of the 

energy movement after passing through an element [54]. The diff-TFMs that tell the 

effects of passive fiber, SA and a dual-channel filter are shown in Figs. 3-7(a), (b) 

and (c). The warm colors indicate increase in energy while cool colors indicate 

decrease in energy.  
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Fig. 3-7. The diff-TFMs of the mode-locked pulse along the cavity which show the impact of 

(a) passive fiber, (b) SA, and (c) spectral filter. Warm color side indicates the energy 

increase and cold color side indicates energy decrease. 

 

The effect of passive fiber is shown in Fig. 3-7(a). From the time domain side of 

Fig. 3-7(a), the shorter wavelength channel signal (top pulse) travelled faster than the 

longer wavelength channel signal (bottom pulse) as indicated by the strong yellow 

color in the left side of the top pulse and right side of the bottom pulse of the 

respective channel signals in the diff-TFM. Thus, the pulses are temporally pulled 

apart by the dispersive effect of the passive fiber. As both channels are in the 

anomalous dispersive regime of the passive fiber, the mode-locked pulse of the longer 

wavelength channel (bottom pulse) travelled slower than the shorter wavelength 

channel pulse (top pulse). As seen from the frequency domain side of Fig. 3-7(a), for 

the pulses in both channels the blue color in the center of the spectra and warm 
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yellow color in either sides of the center of the spectra indicate spectral broadening. 

This spectral broadening is caused by the nonlinearity of the passive fiber. But the 

stronger yellow colors in the interior (interacting) sides for both the pulses compared 

to the weaker yellow color in the exterior sides indicates an asymmetrical spectral 

broadening of the individual pulses of both channels. The shorter wavelength channel 

pulse (top pulse) undergoes more spectral broadening in the longer wavelength side 

compared to the shorter wavelength side and vice-versa. This asymmetrically spectral 

broadening causes the spectral attraction between the two pulses, in other words, the 

pulse spectra in the two channels are moving towards each other in the passive fiber 

[92]. This is caused by the interaction of the two pulses in the two channels through 

XPM. The details will be clarified in the following sections.  

Fig. 3-7(b) shows the effect of the SA. The exterior edges of the individual 

channel pulses undergo more intensity dependent loss as blue colored edges at the left 

side of the top pulse and right side of the bottom pulse. Thus the action of SA is to 

remove the walk-off parts of the pulses in both channels which are induced by the 

fiber. As a result, in a DSML state, the pulses would not move apart even the central 

frequencies are different. The dual-channel filter attenuates the spectra of the pulses 

in the two channels. The action broadens the pulse width in the time domain, as 

shown in Fig. 3-7(c). The spectral attraction between the pulses in the passive fiber is 

counter-acted by the dual-channel filter. The filtering action causes relatively higher 

loss for the longer wavelength side compared to the shorter wavelength side for the 

top pulse and vice-versa, as indicated by the relatively stronger blue colors in the 

interior edges of the pulses in Fig. 3-7(c). 
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From Fig. 3-7, in the time domain the pulses in the two channels are trying to 

move apart in the passive fiber due to the GVD. The SA chops the combined pulses 

in the time domain, such that the leading and trailing edges of the combined pulse get 

higher loss. This action suppresses the walk-off between the pulses in the two 

channels. In the frequency domain, the interaction among the pulses during the 

propagation in the passive fiber makes their spectra move towards each other. Such 

action is counter-balanced by the dual-channel filter. From Fig. 3-7, there are two set 

of balances in a DSML state. One is between the GVD and the SA on the walk-off of 

the two-channel pulses in the time domain. The other one is between the nonlinearity 

and the filter on the spectral detuning (attracting) in the frequency domain. 

Thus the laser dynamics in a dual-channel cavity is not a simple extension from a 

single-channel mode-locked state. Interactions between the pulses in the two channels 

make the laser dynamics more complex. We would like to point out that the new laser 

dynamics can even render the energies in the two channels unequal. This is counter-

intuitive because the light in both channels shares the same strength of gain, and the 

two channels in the dual-channel filter have the same profiles. The symmetry in our 

laser system is expected to produce identical energies in the two channels of a DSML 

state. In the next subsection, we will discuss the DSML state with unequal energy in 

the two channels. 

3.3.3 Energy discrimination in a DSML state  

Again, we assume that starting from noise a mode-locked pulse is achieved first 

in either one of the channels. If the channel separation is larger, when the pump 

increases, a DSML state with unequal energies between channels can be obtained. 
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Fig. 3-8 shows an example of such a state with channel separation sep = 2.4 and 

Esat = 1.8. Both channels have a mode-locked pulse, and the modulation in temporal 

profile is still observed as shown in Fig. 3-8(a) showing that the pulses in the two 

channels are still phase-locked. The pulse in one channel is much weaker than the 

pulse in the other channel as shown in Figs. 3-8(b) and (c). The energies of the two 

channels are unequal all along the laser cavity as shown in Fig. 3-9.  
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Fig. 3-8. (a) A DSML state with unequal energy. The mode locked pulse in (b) left and (c) 

right channel. (d) The spectrum after the output coupler. Both the spectrum and spectral 

filter are normalized by its maximum. 
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Fig. 3-9. Dynamics of the unequal energy DSML state along the entire laser cavity in 

frequency domain. The energies in two channels are not equal in the entire cavity. 

 
The differences in energy in the mode-locked pulses from different channels 

have been observed experimentally [61]. The gain profile certainly contributes to the 

energy difference observed in experiments. However, our model shows that even 

when a flat gain profile is used, the peak powers of the mode-locked pulses in 

different channels are not the same. Similar energy differences between mode-locked 

states were also reported in [62, 94] using distributed models but the mechanism 

leading to the energy differences are been addressed. We use the proposed discrete 

heuristic model to investigate the dynamics of this state. 

We start with the discrete actions of the laser elements in the cavity. The diff-

TFMs obtained with the mode-locked state in Fig. 3-8 are shown in Fig. 3-10. From 

the frequency domain side of Fig. 3-10(a), the spectra of both pulses are broadened. 

Similarly, the stronger yellow colors in the interior (interacting) sides for both pulses 
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compared to the weak yellow color in the exterior sides indicates an asymmetrical 

spectral broadening of the individual pulses in both channels. Fig. 3-10(b) shows the 

effect of SA. The SA chops the pulse edges of the combined pulse. The effect of the 

filter is shown in Fig. 3-10(c). It shows the spectral filter chops the spectra of the 

pulses in the two channels and simultaneously broadens the pulse width in the time 

domain. Similarly, the filter causes an asymmetrical loss on the pulse spectrum. It 

causes a relatively higher loss for the longer wavelength side compared to the shorter 

wavelength side for the top pulse and vice-versa, as indicated by the relatively 

stronger blue colors in the interior edges of the pulses in Fig. 3-10(c). 

 

Fig. 3-10.  The diff-TFMs of the mode-locked pulse along the cavity that showing the impact 

of (a) passive fiber, (b) SA and (c) spectral filter when the energies of the two pulses are 

unequal. 
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The impacts of the elements on the strong and weak pulse are different as 

depicted in Fig. 3-10. We note that the ratio of the energy of weak pulse to the energy 

of strong pulse in two channels appears to vary along the laser cavity. Fig. 3-11 

shows the evolution of ratio of energy of weak pulse to that of the strong pulse along 

the laser cavity. The energy is transferred between channels, which is caused by the 

FWM process in the passive fiber [76]. The weak pulse is enhanced, and the energy 

ratio is increased from 0.121 to 0.145 in the passive fiber. In our model, we use a fast 

SA whose loss response depends on the instantaneous intensity of the light. As a 

result, the modulation depth of the combined pulse is enhanced by SA. Such an action 

makes the energies in the weak and strong channel closer [see Appendix I]. Hence the 

SA further increases the energy ratio to 0.183. 

  

Fig. 3-11.  The energy ratio between the pulses in weak and strong channels along the cavity. 

 

The spectral filter decreases the energy ratio back to 0.121. Inferred from Fig. 3-

11, the filter hinders the relative increase of the energy of the weaker pulse, thus 
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prevents the formation of a DSML state with identical energies in the two channels. 

We also note that the effect of filter here is different from that in the single-channel 

laser cavity. From Chapter 2, we found the filter gives a larger loss to a stronger pulse 

because the stronger pulse has a wider spectrum because of the SPM effect. Based on 

this understanding, the filter should have enhanced, rather than reduced, the energy 

ratio in Fig. 3-11. The different role played by the filter is due to the intrinsic 

frequency detuning of the pulses in the two channels in our DSML state.  

From Figs. 3-4 and 3-8, the mode-locked pulses in both channels experience a 

slight frequency detune with respect to the central frequency of the spectral filter, 

which means the central frequencies of the pulses in these two channels are not equal 

to the respective central frequencies of the two channels. The frequency detuning is 

due to XPM and lead to additional filter loss to the mode-locked pulses in each 

channel. To investigate the frequency detuning, we monitor the central frequency c 

of the pulses in two channels. The c is calculated as c	 =∫|Y  ()|2d/∫|Y  ()|2d,	

where	 Y  ()	 is the spectrum of mode-locked pulse in the left or right channel. In the 

unequal mode-locking state as shown in Fig. 3-8, the evolution of c along the laser 

cavity is shown in Fig. 3-12(a). From Fig. 3-12(a), the central frequencies of the two 

pulses move towards each other in the fiber. The detuning of the two channels is 

different as depicted in Fig. 3-12(a). After the fiber, the strong pulse is detuned by 

0.03, while the weaker pulse is detuned by 0.17, which is almost six times larger than 

the strong pulse. 

 The action of the spectral filter is equivalent to pulling the central frequencies of 

the pulses back to their initial positions at the input point of the passive fiber. The 
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losses induced by the filter to the weak and strong pulses are hence different. As the 

weaker pulse experiences a larger frequency detune, it suffers a higher loss, about 1.5 

times larger in the case, than that suffered by the stronger pulse when they passes 

through the spectral filter. Thus the energy ratio is decreased by the spectral filter.   

For comparison, Fig. 3-12(b) shows the evolution of pulse central frequencies 

along the entire cavity in the case of DSML with identical energy in Fig. 3-6. We 

observed that the central frequency moves towards each other in the passive fiber. 

However, the amounts of the detuning in each channel are the same (which is 0.021). 

Thus, the two pulses suffer the same filter loss when they pass through the filter.  
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Fig. 3-12. The central frequency as the function of cavity positon for (a) unequal energy 

mode-locked state in Fig. 3-8 and, (b) equal energy DSML state in Fig. 3-6. 
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The frequency detuning is observed in both identical and unequal energy states. 

Inferred from Fig. 3-12, we know the frequency detuning mainly comes from the 

propagation in the passive fiber. In the following, we will study the mechanisms that 

cause the detuning. 

Both the GVD and the pulse interaction through XPM are responsible for the 

frequency detuning. These effects make the co-propagating pulses performs 

asymmetrical spectral broadening when they are temporally overlapped during the 

propagating in the fiber [76, 96]. We can use A and B to represent the complex field 

envelop of the pulses in left and right channel, respectively. The GVD causes the 

walk-off between A and B, and the pulse centers are different. In our case, B moves 

faster than A in anomalous dispersion region. In addition to the GVD, the nonlinear 

interaction, i.e. XPM, has an impact on A and B. Due to the temporally walk-off, B 

has more impact on the leading edge of A. The nonlinear phase shifts of leading and 

trailing edge of A are hence different. This induces an asymmetrical spectrum 

broadening of A [76], which induces a nonzero value of frequency detuning.  

If the pulse in one channel is stronger than the pulse in the other channel, the 

strong pulse causes an obvious XPM effect on the weak pulse but gets little impact of 

XPM back from the weak pulse. Consequently, the weak pulse performs a more 

obvious asymmetrical spectral broadening. Its frequency detuning is hence larger than 

that of the strong pulse, which agrees well with the result in Fig. 3-12(a). If the 

intensities of the two pulses are identical, the strengths of XPM effects from the two 

pulses are also identical. Hence the frequency detuning of the two pulses will be the 

same, which still agrees with the results in Fig. 3-12(b).  
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To give a more general insight on DSML state, we study the effect of different 

filter parameters, e.g. channel separation sep and channel bandwidth band, on the 

mode-locked state. Starting with a single-channel mode-locked state in the dual-

channel cavity, the threshold of pump Eth to build up a DSML state as the function of 

sep/band is shown in Fig. 3-13. We can achieve the DSML states with identical (iden-

ML) and unequal (uneq-ML) energies between channels. For a given channel 

bandwidth band, the threshold increases with the channel separation. This is because 

the mode-locked pulse in one channel acts as a pump and enhances the light in the 

other channel through FWM. However, the effect of the FWM decreases when the 

channel separation increases. In the time domain, the walk-off between light in 

different channels is more obvious if the channel separation sep increases. The 

nonlinear interactions, e.g. XPM and FWM which requires temporally overlapped of 

the light in two channels hence become weaker. As a result, when the channel 

separation increases, a higher value of pump is required to build up a DSML state as 

shown in Fig. 3-13. Starting from a single-channel mode-locked pulse, if the Eth is 

higher the peak power of the single-channel pulse is also higher. A stronger pulse 

induces a larger frequency detune on the weaker light in the other channel, leading to 

a higher filter loss. Hence we are more likely to obtain a uneq-ML state when the 

channel separation increases. 

If the channels separation is increased further, a much higher pump might be 

required for achieving a DSML state. However, the pulse in one channel might first 

reach the multi-pulsing threshold before it starts to build up a DSML state. If the 

multi-pulsing makes a new pulse grow up in the other channel, we can also obtain a 
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dual-channel mode-locked state. However, the pulses in the two channels will not be 

phase locked and they have different group velocities. In the following subsection, we 

will study such state. 

 

Fig. 3-13.  Mode-locking state impacted by filter profiles. The pump threshold of achieving 

dual-channel simultaneously mode-locking as the function of sep/band is given. The 

energies of the mode-locked pulses in the two channels can be either identical or unequal.  

 

3.3.4 Independent mode-locking 

We consider the channels of the dual-channel filter to be far apart from each 

other. In such a case a dual-channel mode-locked state can still be obtained, but the 

pulses are lasing independently in their respective channel frequencies. The two 

pulses do not interact with each other except the time that they cross over each other 

in the time domain [61]. Fig. 3-14(a) shows an example (sep = 3 and band = 0.2) of 

the evolution of dual-channel independent mode-locking as the function of roundtrips.  
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Fig. 3-14. (a) Contour of dual-channel intra-mode-locked pulses evolution the spectrum. 

Tracks of the centers of the two-channel pulses (b) sep = 3, (c) sep = 5 and (d) sep = 7. 

 

Fig. 3-14(b) shows the location of the pulse centers (left channel black colored 

and right channel red colored) during the cross-over. The location of the pulse centers 

are calculated as    
2 2

c q d q d         where q() is the pulse electric-field 

envelope of either the left or right channel. We know in the dual-channel independent 

mode-locked state, most time the pulses in different channels cannot see each other. 

However, they can still affect each other at the time they are temporally crossing over. 

During the crossing over, based on the study above, we know other laser elements 

such as SA have a more obvious impact on the walk-off between the pulses. Since the 

channel separation that provides different group velocities of the two-channel pulses 
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is large enough, the dispersion effect of the fiber separates the two pulses finally. We 

also present the results (tracks of two-channel pulses centers) of two different large 

channel frequency separations, viz., sep = 5 [Fig. 3-14(c)] and sep = 7 [Fig. 3-14(d)]. 

When the channel frequency separations are increased, the dispersive effect of the 

fiber is more dominant hence the pulses will continuously cross over. The transition 

from a DSML to an independent mode-locked state has been observed in experiment 

in Ref. [61]. For a given channel separation, the authors found that the DSML state is 

achieved for small dispersion only. When the net dispersion increases, the pulses in 

the two channels will eventually circulate independently. The observation agrees with 

our results as the pulses in different channels will separate if the temporal walk-off 

caused by the group velocity difference between the pulses dominates. 

Summary  

Multi-channel mode-locked fiber laser has potential applications in many fields. In 

this chapter, we start with the simplest case, a dual-channel mode-locked laser. The 

pulses in the two channels can be either phase locked or not. The pulses in two 

channels would not move apart if their phases are locked. The building up of such a 

state was studied. The interaction between the light in different channels is important 

for its building up and exhibits a different laser dynamics when compared with that of 

a single-channel mode-locked state. The pulses in such a state do not move apart in 

the time domain because SA can balance the walk-off of the pulse caused by GVD. 
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Chapter 4 

Multi-channel Mode-locked 

Fiber Laser and Its Nonlinear 

Dynamics  

 

 

 

In Chapter 3, we investigated dual-channel mode-locking which is the simplest case 

of a multi-channel laser cavity. In this Chapter, we will investigate multi-channel 

mode-locking using the proposed heuristic model. We found that nonlinear 

phenomena such as FWM, XPM, frequency detuning and the filter loss continue to 

play a role in the laser dynamics. 
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4.1 Theoretical model  

Multi-channel fiber lasers have attracted much research interest in past decades. It is 

possible to achieve multi-channel simultaneously mode-locked (MSML) state, in 

which each channel is mode-locked and the phases between the pulses from different 

channels are also locked [56]. Such output has potential applications in terahertz 

generation and optical sensors [56, 58-61].   

The laser cavity is similar to that in Fig. 3-1, except that the dual-channel filter is 

replaced by a comb filter, as shown in Fig. 4-1(a). The models of the gain, passive 

fiber and SA are the same as that in Eqs. (3-6) (3-7) and (3-8), respectively. As we 

did in the previous Chapters, the white Gaussian noise (zero mean and a variance of ~ 

10-9) is added after the gain element to model the amplifier noise. The comb filter in 

the cavity is modelled as 

 
2

n

n
H

 


  
   

   
 shift

band

exp ,    (4-1) 

where n is the channel number,  is the angular frequency, band is the bandwidth of 

each channel and shift is the channel separation between the channels.  

In experiments, the peak powers of the pulses in different channels are different. 

The difference is attributed to the gain profile of the gain fiber. Obviously, the gain 

profile can modify the energies in different channels, but we believe the laser 

dynamics is also responsible for the difference in pulse peak power in different 

channels. Hence in our study, we assume a flat gain profile to remove the impact of 

the gain profile on the pulse energies in different channels. 
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The number of channels in a multi-channel laser cavity can be quite different 

between different cavities, e.g. 3- [58, 97], 6- and 8-channel [59, 63], and more than 

50 channels lasing [98, 99] have been reported. We study the simplest non-trivial 

examples, i.e. 3-channel and 4-channel comb filter. In both cases, the comb filter is 

symmetric about  = 0 in the frequency domain as shown in Figs. 4-1(b) and (c). In a 

3-channel laser cavity, the channels from left to right in the frequency domain are 

labelled as (1)-th, 0-th and (+1)-th channel. In a 4-channel laser cavity, the four 

channels are named as (2)-th, (1)-th, (+1)-th and (+2)-th channel, respectively. 

 

Fig. 4-1.  (a) Schematic of a multi-channel mode-locked fiber laser cavity. The channel 

number can be (b) odd or (c) even but they are both symmetric about = 0. 
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4.2 Nonlinear dynamics  

Similar to a dual-channel cavity, when the pump power is increased from zero, 

one channel will first be mode-locked. It can be any channel of the comb filter as the 

simulation is started from noise and the gain profile is assumed to be flat. When the 

pump is further increased, we observe a variety of mode-locked states. The energies 

in the channels are not all identical. In some cases the spectra can even be asymmetric 

about the center of the spectrum although the comb filter is symmetric in the 

frequency domain.   

4.2.1 Different MSML states 

Figs. 4-2, 4-3 and 4-4 show examples of the different steady-state mode-locked 

outputs we observed with different pump powers in the 3-channel and 4-channel 

cavity. In a 3-channel cavity, if the pump is weak, e.g. Esat = 0.1, it is possible that 

only one of the side channel has a mode-locked pulse as shown in Fig. 4-2(a). If the 

pump power is further increased, the pulse will not absorb all the cavity energy but 

transfer the energy to its adjacent channels through FWM [56]. Similar to the dual-

channel case, the light in the adjacent channels will grow as shown in Figs. 4-2(b) 

and (c). These steady state outputs are not symmetric about  = 0. When the pump is 

further increased, the weak light at the (1)-th channel increases and a symmetric 

state can be obtained as shown in Fig. 4-2(d).  

Fig. 4-2(e) shows an example in which the 0-th channel is first mode-locked 

when the pump is weak. We note noise is able to break the symmetry and the light in 

the two side channels do not necessarily increase simultaneously when the pump is 

further increased (details are given later in this Chapter). Instead, as shown in Fig. 4-
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2(f), only the light in the (+1)-th channel increases (it is also possible that the light in 

the (1)-th channel increases, but not shown here). Similarly to Figs. 4-2(c) and (d), 

when the pump is further increased the light in the (1)-th channel will grow as 

depicted in Fig. 4-2(g) and (h).  

Figs. 4-3 and 4-4 show the different laser output observed in a 4-channel cavity 

(only the output in the right-hand side channels are shown because of symmetry). 

When the pump is weak, the single-channel pulse can locate at the (+2)-th channel as 

shown in Figs. 4-3(a). When the pump is increased, the light in other channels grow. 

The obtained steady states laser output can also be asymmetric about  = 0, as shown 

in Figs. 4-3(b) and (c). The light in the (2)-th and ()-th channel are much weaker 

than the light in the (+1)-th and (+2)-th channel in these states. Further increase of the 

pump enhances the light in both the (2)-th and ()-th channels and result in a 

symmetric state as shown in Fig. 4-3(d).  
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Fig. 4-2. Different steady state output of a multi-channel mode-locked laser. (a) Only the 

right-hand side channel is mode-locked for Esat = 0.1 in a 3-chanenl cavity. From the mode-

locked state in (a), the pump power is increased to (b) Esat = 0.3, (c) Esat = 0.5 and (d) Esat = 

0.7. (e) Only the central channel is mode-locked for Esat = 0.1 in a 3-channel cavity. From the 

mode-locked state in (e), the pump power is increased to (f) Esat = 0.3, (g) Esat = 0.5 and (h) 

Esat = 0.7. The spectra are normalized by their maxima and the channel bandwidth is 0.2 and 

they locate at  = 0 and ±1. 
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Fig. 4-3. (a) Single-channel mode-locked states when Esat = 0.1 in (+2)-th channel in a 4-

chanenl cavity. The obtained states from (a) by increasing the pump to (b) Esat = 0.3, (c) Esat = 

0.5 and (d) Esat = 0.7 are given. The spectra are normalized by their maxima and the channel 

bandwidth is 0.2 and they locate at  = ±0.5 and ±1.5. 

 

Fig. 4-4(a) shows that the light at the (+1)-th channel is mode-locked first. When 

the pump is increased, the energy in either side of the (+1)-th channel can grow. The 

energy in the (+2)-th channel is increased as shown in Fig. 4-4(b). It is the same state 

as that shown in Fig. 4-3(b). Thus further increase in the pump power will render the 

laser to repeat the states observed in Figs. 4-3(c) and (d), as shown in Figs. 4-4(c) and 

(d). To the state in Fig. 4-4(a), if the light in the (1)-th channel grows first when the 

pump is increased, we can obtain the state shown in Fig. 4-4(e). The energies in the 

(±1)-th channel are identical and the energies in the (±2)-th channel are also identical. 

The weak light in (±2)-th channels are enhanced if the pump is further increased, as 

shown in Figs. 4-4(f) and (g). 
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Fig. 4-4. (a) Single-channel mode-locked states when Esat = 0.1 in the (+1)-th channel in a 

4-chanenl cavity. The energy in the channel on either side of the (+1)-th channel might 

increase when pump is increased. (b) The (+2)-th channel might increase when the pump is 

Esat = 0.3. The obtained states from (b) by increasing the pump to (c) Esat = 0.5 and (d) Esat = 

0.7 are given. From (a), the (1)-th channel might also increase when the pump is Esat = 0.3 

as shown in (e). The obtained states from (e) by increasing the pump to (f) Esat = 0.5 and (g) 

Esat = 0.7 are given. The spectra are normalized by their maxima and the channel bandwidth 

is 0.2 and they locate at  = ±0.5 and ±1.5. 

 

Figs. 4-2, 4-3 and 4-4 show a rich variety of mode-locked states in a multi-

channel laser cavity. In these states, we note that the energies in the channels are not 

all identical and some MSML spectra are asymmetric even though a symmetric comb 

filter is used. Up till now, we have not found an MSML state that emits identical 

energies in all channels even a flat gain profile is used. It indicates that, in addition to 

the gain profile, there are other effects that cause the energy difference among 
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channels. In the following, we discuss the laser dynamics that affect the channel 

energy.  

4.2.2 Dynamics in the formation of MSML states 

We begin by looking at the buildup of the MSML state from a single-channel 

mode-locked pulse. As an example, Fig. 4-5(a) shows the transient from Fig. 4-2(a) 

to 4-2(b). The (+1)-th channel is mode-locked first. The energy at other channels is 

increased through FWM as shown in Fig. 4-5(b). Figs. 4-5(c) and (d) show the 

spectral evolution in the passive fiber at the 200-th and 400-th roundtrip, respectively. 

Thus in the beginning, the energy in the 0-th channel is increased by the light in the 

(+1)-th channel through FWM as shown in Fig. 4-5(c). When both the light in 0-th 

and (+1)-th channel are sufficiently high, the light in these channels can transfer 

energy to other channels, i.e. (1)-th and (+2)-th ( = +2) channel, through 

degenerated FWM process [76, 95] as shown in Fig. 4-5(d). The light at  = +2 is 

attenuated by the comb filter while the light at (1)-th channel continuously increases. 

Finally, the MSML state shown in Fig. 4-2(b) is observed. Both FWM and XPM  

introduce a phase relation between the light that are temporally overlapped [76, 95]. 

The pulses in the MSML state also locate closely in the time domain, as shown in 

Figs. 4-5(e), (f) and (g). Interference among the pulses in different channels results in 

a temporal modulation of the combined pulse as shown in Fig. 4-5(h).  
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Fig. 4-5. (a) The transient of the spectra evolution after the output coupler from a single-

channel mode-locked state in Fig. 4-2(a) to an MSML state in Fig. 4-2(b). (b) The energy 

evolution in different channels during the transient. The spectral evolution in the passive fiber 

at (c) 200-th and (d) 400-th roundtrip are shown. The temporal profiles of the final mode 

locked pulse in (e) the central, (f) the right and (g) the left channel. (h) Shows the combined 

pulse profile. 

 

Fig. 4-5(b) shows that, during the transient, the energy in the (1)-th channel first 

increases but stops before it grows to the same value as the energy in the (+1)-th 
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channel. Further growth of the (1)-th channel requires a higher pump power, as 

shown in Figs. 4-2(c) and (d). We believe that it is the laser dynamics in the multi-

channel cavity that hinders further growth of the pulse in the (1)-th channel. From 

the previous Chapter, the evolution of energy ratios between the light in different 

channels along the cavity reveals the laser dynamics. Figs. 4-6(a) and 4-6(b) show the 

energy ratios between the (+1)-th and 0-th channel, and the energy ratio between the 

(1)-th and 0-th channel, respectively. In the passive fiber, the light at different 

channels transfer the energy to other frequencies through the FWM process [76], 

hence the energy ratios vary along the passive fiber. The SA still increases the energy 

ratios for it enhances the modulation depth in the temporal profiles of the mode-

locked pulses. The spectral filter decreases the energy ratio.  

 

Fig. 4-6. The evolution of energy ratios of the state in Fig. 4-2(b). The ratios of the pulse 

energies between (a) the right and the central channel, (b) the left and the central channel. 
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From the last Chapter, the pulses in two channels induce frequency detuning to 

the central frequencies of each other. The detuning and the filter loss induce losses to 

the pulses in different channels, which could lead to the energy difference among 

channels in a DSML state. Similar action of the spectral filters in both dual-channel 

and multi-channel shown in Fig. 3-11 and Fig. 4-6 indicates that the filter loss and the 

frequency detuning play an important role in the dynamics of a multi-channel cavity. 

Thus, we monitored the central frequencies of the pulses in different channels.  

Fig. 4-7 shows the evolution of the central frequencies of the pulses in different 

channels. The detuning of the pulse in the (+1)-th channel and the 0-th channel are 

0.014 and 0.010, respectively. The detuning of the weak pulse in the (1)-th channel 

is 0.035, which is two to three times of the detuning in the other two channels. 

Similar to dual-channel cavity, the stronger pulses experience a smaller detuning and 

vice versa. The central channel experiences the smallest frequency detuning.  

The same is true for the symmetric spectra in both 3-channel and 4-channel 

cavity, e.g. the states in Figs. 4-2(d) and 4-3(d). Because of the symmetry of these 

states, we only calculate the energy ratio between the (+1)-th and 0-th channel in a 3-

channel cavity, and that between the (2)-th and (+1)-th channel in a 4-channel cavity. 

The evolution of the energy ratios in 3-channel and 4-channel cavity are shown in 

Figs. 4-8(a) and (b), respectively. Figs. 4-8(c) and (d) show that the weaker pulses in 

the side channel(s) in both the 3-channel and 4-channel experience a higher detune. 

Thus, the weaker pulse suffers a higher filter loss when compared to the stronger 

pulses in the cavity. Based on the results in Figs. 4-7 and 4-8, the FWM frequency 
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detune combined with the spectral filter lead to the energy difference among different 

channels even when a flat gain profile is assumed. 

 

 

Fig. 4-7. The evolution of the central frequencies of the pulses of the state in Fig. 4-2(b) in 

different channels as the function of the cavity position. 
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Fig. 4-8.  The dynamics of the symmetric MSML states in the 3-channel [Fig. 4-2(d)] and 4-

channel [Fig. 4-3(d)] cavity. (a) and (b) show the evolution of the energy ratios of the states 

in 3-channel and 4-channel, respectively. (c) and (d) show the central frequencies of the 

pulses in different channels as the function of cavity position in 3-channel and 4-channel 

cavity, respectively.  

 

Up till now, we know both the asymmetric and symmetric MSML states can 

survive in the cavity. The filter profile is symmetric in the frequency domain, and one 

may believe that, due to the symmetry of the system, if the 0-th channel is first mode-

locked, the (±1)-th channels should always have identical energy when the pump is 

increased. However, we should note that there is noise and accumulated numerical 

error [100, 101], (see Appendix J) in our simulation. The symmetry of the system can 
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be easily broken and hence it is not impossible to produce an asymmetric MSML 

state, as the example we given in Fig. 4-9 which shows the evolution from the state in 

Fig. 4-2(e) to Fig. 4-2(f). We note that the light in both (±1)-th channel are mode-

locked from noise. Hence their energies are not identical during the evolution. Either 

(+1)-th or (1)-th channel can have a higher energy depending on the noise. In Fig. 4-

9, the (+1)-th channel is higher and finally an asymmetric MSML state, i.e. Fig. 4-

2(f), is obtained. Its evolution in one roundtrip is shown in Fig. 4-6. 

 

Fig. 4-9. (a) The transition from single-channel mode-locking to an MSML state in the 

frequency domain. (b) The energy evolutions in the (+1)-th channel (orange solid) and (1)-

th channel (blue dashed).  

 

In addition to the impact of noise, multiple channel light interaction can also 

affect the energy distribution among channels. We note that to a pulse in one of the 
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channel of a DSML state, only the leading or trailing edge of the pulse is affected by 

the pulse in the other channel. In a multi-channel cavity, there are multiple pulse 

interactions. For example, in Fig. 4-8(c) both leading and trailing edges of the pulse 

in the 0-th channel are affected by the pulses in (±1)-th channels. The combined 

effect of the pulses in (1)-th and (+1)-th channel decreases the total frequency 

detuning of the pulse in the 0-th channel.  

As a result, in Fig 4-5 we note that even the (+1)-th channel is first mode-locked, 

the 0-th channel can get a higher energy than the (+1)-th channel when the pump is 

increased. Starting from the single channel mode-locked state in (+1)-th channel, the 

0-th and (1)-th channel start to grow, but the latter at a much slower rate. The 

frequency pull from the pulse in the (1)-th channel on that in the 0-th channel is 

opposite to the frequency pull by the (+1)-th channel on the 0-th channel. Thus the 0-

th channel suffers a smaller filter loss when compared to the (+1)-th channel, 

eventually, the 0-th channel has a higher energy, as shown in Fig. 4-5(b).  

Summary				

We studied multi-channel laser cavity using the extended heuristic model. The 

frequency detuning and gain loss dynamics determine the steady state output. We 

found that the FWM and XPM induced frequency shift and the spectral filtering lead 

to different energy in different channels even when a flat gain profile is assumed.   

Multi-channel mode-locked laser has also been found in other works with 

distributed models [59, 64]. The gain bandwidth and the nature of the gain, a 

combination of homogenous and inhomogeneous gain, were included. These works 
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focused on the impact of different parameters on the mode-locked solutions. In our 

work, besides the impact of parameters, we aim to delineate the working mechanisms 

and different balances among different dynamic states in the cavity.   
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We proposed an extended heuristic model by including the pulse shaping effects 

to study the nonlinear dynamics of different mode-locked lasers. We studied mode-

locking in single- , dual- and multi-channel laser cavities with the extended model. 

For single-channel mode-locking, we investigated the impact of spectral filtering 

in a laser cavity. With the pulse shaping effects, the nonlinear loss is not caused by 

the SA only. The filter also introduces loss to the pulse. Thus multi-pulsing will be 

triggered even if a monotonic transmission of SA is used. In addition to multi-pulsing 

and chaos, we also observed a high energy mode-locked pulse if the filter bandwidth 

is increased. The evolution of this pulse spectrum in the gain fiber plays a critical role 

in the laser dynamics. If TOD is included in the model, the multi-pulse state may also 

be obtained owing to pulse splitting.  

We also studied the laser dynamics in multi-channel mode-locked laser cavity. 

We started from a dual-channel cavity and found the state that both channels are 

mode-locked and the phases of these channels are also locked. Light interaction 

between the channels determines the final output. We found that the SA can balance 

the walk-off of the pulse caused by GVD, hence pulses with different central 

frequencies move together in the time domain. We also found that the FWM induced 

frequency shift and the spectral filtering introduced an additional loss mechanism 

which leads to the energy difference between the two channels. The same 

mechanisms are found to determine the output of multi-channel lasers. The 

interaction is more complex as more pulses are involved.  

The study of laser dynamics is important for understanding the mode-locking 

mechanism in the laser cavity. Our work in this thesis added to the understanding of 
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the laser cavity and its design. There are further works to be carried out in the future: 

First, there are multiple elements in different positions in a laser cavity. In our 

work, we placed the SA after the gain element as the gain element increases the pulse 

intensity.  The SA will give a smaller loss to the higher intensity light. As the pulse 

spectrum varies along the laser cavity, different arrangement of the filter, SA and 

fiber will lead to different pulse evolution in one roundtrip. The distributed model 

averages the effect of the elements over one roundtrip thus washing out the impact of 

the element locations. Differently, our model can easily study the impact of the 

element positon, which was not carried out in the current study. In future work, the 

impact of element positions should be carried out.  

Second, the work presented here assumed the fiber lasers have net anomalous 

dispersion. The heuristic model can also be applied to other lasers such as the ANDi 

lasers, where the cavities are in the normal dispersion region. In our work, the high 

energy pulse requires wider filter bandwidth, but Andy Chong [52] pointed out that 

decreasing the filter bandwidth would give a higher energy pulse. Also, the position 

of spectral filter is believed to significantly influence the mode-locking performance. 

In future work, we would study the mode-locking in ANDi laser and dispersion 

management (DM) laser cavity.  

Another direction worth investigating is whether the filter profile can be 

engineered to increase the pulse energy. The impact of the filter profile on the mode-

locked pulse energy should be studied. In addition, in a multi-channel mode-locked 

laser cavity, the comb filter profile can be designed to give a uniform laser output or 

any desired output. 
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We are also interested in extending the proposed model to other types of lasers, 

e.g. solid-state lasers or semiconductor lasers. We note that distributed models such 

as those based on the Ginsburg–Landau equation have been used to model 

Ti:Sapphire lasers. Thus, the proposed model can be applied to solid-state lasers as 

well. For semiconductor lasers, the gain dynamics are different from that of optical 

fiber and solid-state lasers. In semiconductor lasers, the lifetime of the upper-state is 

in the order of nanoseconds, which is much shorter than that of the gain medium in 

fiber lasers (~microseconds) or in Ti: Sapphire lasers (~milliseconds)  [102]. As a 

result, the leading and trailing edges of the mode-locked pulse will experience 

different gain in a semiconductor laser. In order to extend the proposed model to 

semiconductor lasers, the gain relaxation time should be taken into account. We 

might use the gain model in [103] as 0

sat

g g gP
g

E


    where g0 is small-signal gain, τ 

the relaxation time of the gain medium, P the power of the light in the cavity, and Esat 

the saturation energy. 
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Appendix A: Acronyms 

 

ANDi all normal dispersion 

AOM acousto-optic modulator 

CQGLE cubic-quintic Ginzburg–Landau equation  

cSHE complex Swift-Hohenberg equation 

diff-TFM difference time frequency map 

DM dispersion managed 

DS 

DSML 

dissipative soliton 

dual-channel simultaneously mode-locked 

EDFA erbium-doped optical fiber amplifier 

FWM four wave mixing  

FWHM 

FFT 

full width at half maximum 

fast Fourier transform 

GVD 

IFFT 

IST 

LED 

MBE 

MOCVD 

MOPVE 

MSML 

group velocity dispersion  

inverse fast Fourier transform 

inverse scattering transform 

light-emitting diode 

molecular beam epitaxy 

metal organic chemical vapor deposition  

metal organic phase vapor epitaxy  

multi-channel simultaneously mode-locked 
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NALM nonlinear amplifying loop mirror 

NLS nonlinear Schrödinger equation 

NPR 

ODE 

PC  

nonlinear polarization rotation 

ordinary differential equation 

polarization controller 

PDE 

PI 

SA 

SAM 

partial differential equation 

polarization isolator 

saturable absorber  

self-amplitude modulation 

SESAM semiconductor saturable absorber mirror 

SMF single mode fiber 

SPM self-phase modulation 

SWNT 

SSFM 

single-wall carbon nanotube 

split-step Fourier method 

TFM time frequency map 

TOD third order dispersion 

WDM wavelength division-multiplexing 

XPM cross-phase modulation 
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Appendix B: Split-step Fourier 

Method  

The light propagating in the fiber is modeled by the NLS equation which is written as 

2
2

2 2
,

2

A i A
i A A

z t
  

  
 

      (B-1) 

where 2 and  are the second order dispersion and nonlinear coefficients, 

respectively.  

The NLS equation is a nonlinear PDE and it generally does not have analytic 

solutions except for some specific cases, e.g. inverse scattering transform (IST) 

method [104]. A numerical approach is hence often needed. Split-step Fourier method 

(SSFM) can be used to solve NLS numerically. Thanks to the fast Fourier transform 

(FFT) [105], SSFM can be a fast method for solving the NSL numerically.  

SSFM splits the NLS into two equations 

2

2 2
,

2

A i A

z t
 

 
 

      (B-2) 

2
.

A
i A A

z





      (B-3) 

Eq. (B-2) and Eq. (B-3) contain the effect of dispersion and nonlinearity only, 

respectively. In general, dispersion and nonlinearity are modifying the light together 

along the fiber. The SSFM gets an approximate solution by assuming that the 

dispersive and nonlinear effects are acting independently over a sufficiently small 

distance z in the fiber. For each propagation step z, the light is calculated as 
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       ˆ ˆz, exp zD exp zN , ,A z t A z t       (B-4) 

where 
2

2 2
D̂ ,

2

i

t
 

 


and 
2

N̂ i A are dispersion and nonlinearity operator.  
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Appendix C: Convergence of 

Split-step Fourier Method 

The SSFM is an approximation as mentioned above. It causes a numerical error 

and requires a careful selection of the z [106-110].  

We should note that in SSFM, the noncommuting operators D෡  and N෡  (D෡N෡ െ

N෡D෡ ് 0) cause the calculation error. Here the operators 
2

2 2
D̂

2

i

t
 

 


and 
2

N̂ i A . 

The exact solution of Eq. (B-1) is 

     ˆ ˆz, =exp z D+N ,A z t A z t    
.   (C-1) 

Using Baker-Hausdorff theorem [111], we have 

    1ˆ ˆ ˆ ˆ ˆ ˆexp zD exp zN exp z D+N+ D, N ...
2

            
.  (C-2) 

Comparing both Eqs. (C-1) and (C-2), one can note that the approximation in Eq. 

(B-4) only get the first order accuracy.  

In our work, the SSFM in Eq. (B-4) is replaced by a symmetrizing the algorithm. 

The approximation becomes  

         ˆ ˆ ˆz, exp zD 2 exp zN exp zD 2 ,A z t A z t     .   (C-3) 

Based on the calculation in [112], Eq. (C-3) contributes a second order accuracy. 

This means the numerical error is on C(z)3 in each step of z, and the total error 

after the propagation in the fiber is C(z)2. 

As a result, a correct SSFM calculation should return a result that converges to 
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the true value. This means if we decrease z, the obtained numerical results should be 

closer to the true value. 

This can be shown with the comparison of both the numerical results and the true 

analytical results for a fundamental soliton: Aana = sech(t)exp(iz/2). Using the Eq. (C-

3) with different values of z and start with Aana(0,t), we found the numerical error 

(calculated as    
1 22

num annA Aerror z,t z,t N  
  , where N stands for the 

sample points) of the numerical results Anum(z,t) decreases with z. As we use the 

symmetrizing algorithm form of SSFM, the total error after the fiber is C(z)2. Hence 

as shown in Fig. C-1, when the z decreases by half, the error decreases to its quarter.  

 

Fig. C-1. The convergence of the numerical results to the true analytical value of a fundamental 

soliton. The error decreases with z at its second order. 
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Appendix D: Haus’s Master 

Equation 

The mode-locking can be modeled by Haus’s Master equation as 

  2 2
+z tt ttiU U U U i g l U i U i U U       .  (D-1) 

It contains the action of gain, SA and spectral filter. The impact of the filter term 

can be shown in the following way. We drop other terms and only remain the filter 

term as 

z ttiU i U .     (D-2) 

We solve it in the frequency domain, and the equation above becomes an 

ordinary differential equation (ODE) 

2
zU U   .               (D-3) 

The solution is      20 expU z, U ,     . Physically, this represents the 

Gaussian filter action on the light. 

The mode-locking in the laser requires the action of SA. In Haus’s master 

equation, this is modeled by the SAM term 
2

i U U . Its impact can be shown as 

2

zU U U .      (D-4) 

We have 

2* *
zU U U U U ,     (D-5) 

2* *
zUU U UU ,     (D-6) 

Adding these two equations, we have 

4
2+* *

z zU U U U U .     (D-7) 
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Since the intensity is I = |U|2, the Eq. (D-7) can be written as 

22zI I ,      (D-8) 

we can know that the intensity after z is  

     20 2 0I z,t I ,t I ,t z   ,    (D-9) 

and the transmission of SA is  

 
   1 2 0
0

I z ,t
T I ,t z

I ,t



    .    (D-10)

 
The transmission increases with the pulse intensity when  is positive, which can 

be used to model the SA in the laser cavity.  

The transmission increases monotonically with the light intensity when  is 

positive. This might induce the blow up of the mode-locked pulse if the intensity is 

too high, as mentioned in Chapter 2.  
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Appendix E: Cubic-quintic 

Ginzburg-Landau Equation 

The pulse might blow up in Haus’s Master equation. This can be prevented by 

adding a saturation term to the model. The model becomes the cubic-quintic 

Ginzburg-Landau equation  

 2 2 4
+ +z tt ttiU U U U i g l U i U i U U i U U        .  (E-1) 

Now, the SA action can be shown as 

2 4
+zU U U U U  .     (E-2) 

Similarly, we have  

2 32 2zI I I   .      (E-3) 

We assume  = 0.5, the intensity after propagating z is  

       2 30
0 2 0

I z I
I I

z


 



 .    (E-4) 

The transmission of SA now is  

   21 0 2 0T z I I      .    (E-5) 

Different from the transmission in Eq. (D-10), the transmission of SA does not 

monotonically increase with the intensity if  is negative. When the intensity become 

high, the negative term in Eq. (E-5) becomes obvious and decreases the transmission. 

This could prevent the pulse blow up.  
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Appendix F: Logistic Map 

Logistic map is a polynomial mapping and mathematically written as 

 1 1n n nx rx x   ,     (F-1) 

where r is a positive constant. Eq. F-1 is a formula that is famous for approximating 

the evolution of an animal population over time. 

Take x0 as the initial value, Eq. F-1 can generate the sequence of values of xn as 

 
 

 

1 0 0

2 1 1

1 1

1 ,

1 ,

     

1k k k

x rx x

x rx x

x rx x . 

 

 

 


     (F-2) 

As the result, we can get the sequence of values x1, x2…xk.  

The logistic map can be computed using a graphical procedure as shown in Fig. 

F-1. One first sets the initial value of x0, and uses the function curve (black solid 

curve) to get x1. Then find the value of x1 on the horizontal axis through the gray 

dashed line (xn+1 = xn). We can get the value of x2 using the black solid curve again. 

Iteratively the sequence of xk is obtained.  
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 1 1n n nx rx x  

1n nx x 

 
Fig. F-1. Computing the Eq. F-1 via graphical procedure 
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Appendix G: Chaos and 

Lyapunov Exponent 

Chaos means the unpredictable results obtained in the systems that are sensitive to 

small changes in the initial conditions. It is known as the “Butterfly Effect” which 

states that the butterfly flapping its wings in Brazil can cause a hurricane in Texas 

[113].  

Here we take the Eq. F-1 in Appendix F as an example. The value r in the 

equation is r = 4. Then the equation is  

 1 4 1n n nx x x   .     (G-1) 

Fig. G-1 give an example of the sequence computed using a graphical procedure 

when, for example, initial value is x0 = 0.2. The result is different from last section 

where the iteration finally converges to the intersection.  

In fact, Eq. G-1 performs the chaotic behavior. It is sensitive to small changes in 

its initial condition. For example, we plot two sequences where x0 = 0.2 and x0 = 0.2 

10-14. The difference between the two trajectories is growing and when n is larger 

than ~ 50 the two sequences become obviously different as shown in Fig. G-2.  
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Fig. G-1. The Computing of Eq. G-1 where r = 4, x0=0.2. 

 
 

Fig. G-2. Obtained sequences from Eq. G-1 where r = 4, x0=0.2 (blue) and 

x0=0.2+10-14 (orange circle). The difference of the two trajectories is given blow. 

 

The sensitivity to initial conditions is quantified by the Lyapunov exponents. It 

describes the rate of separation of close trajectories as 
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   0Nd N e d  ,    (G-2) 

where |d(0)| is the initial distance between the two trajectories and |d(N)| is the 

distance of Nth data between the two trajectories. Here  is the Lyapunov exponent, 

and a positive  indicates chaos. 
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Appendix H: FWM Induced 

Frequency Detuning  

In addition to the XPM effect, the energy transfer caused by FWM process can also 

cause the frequency detuning. We can drop the effect of FWM by using a couple-

mode equation to replace Eq. (3-7). Hence when comparing with the results got from 

both the coupled-mode equation and full NLS in Eq. (3-7), we can know the impact 

of both XPM and FWM on the mode-locked pulses. 

The used couple-mode equation is obtained by substituting U = A +B to Eq. (3-7) 

and dropping the FWM terms. The Eq. (3-7) becomes 

2
2 2

2
2

2

A iD A
i A A i B A

 
 

    
 

,     (H-1-a) 

2
2 2

2
2

2

B iD B
i B B i A B

 
 

    
 

.        (H-1-b) 

 The spectra got from the Eqs. (H-1-a) and (H-1-b) are shown in Fig. H-1 with the 

blue-dashed line. Fig. H-1(a) shows the spectra of the unequal energy mode-locking 

state shown in Fig. 3-8. The XPM individually can cause the asymmetrically spectral 

broadening. As the XPM effect is more obvious to the weak pulse, the 

asymmetrically broadening is stronger in weak pulse than that of the strong pulse. 

The frequency detuning of the pulse in the weak channel is larger than that in the 

strong channel.  

FWM transfers the energy between the pulses in two channels and we believe it 

can also cause frequency detuning of the pulses. To compare the detuning caused by 
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FWM and XPM, we obtained the spectra obtained with full NLS in Eq. (3-7) where 

the FWM and XPM are all contained. Both the spectra in the case that the energies in 

two channels are unequal and identical are shown in Figs. H-1(a) and (b), respectively. 

In Fig. H-1(a), the strong pulse transfers its energy to the weak pulse through FWM 

process as shown by the green solid line in Fig. H-1. The central frequencies of both 

strong and weak pulses are modified by FWM. Quantitatively, the frequency 

detuning caused by XPM alone in Fig. H-1(a) is 0.092, while the detuning induced by 

the combination of XPM and FWM is 0.118, which increases nearly 28 %. In Fig. H-

1(b), XPM alone causes a frequency detuning of 0.019, while the combination of 

XPM and FWM causes a detuning of 0.021, which increases nearly 10 %. Hence in 

addition to XPM, the energy transfers through the FWM effect also contributes to the 

frequency detuning of the mode-locked pulses.  

 

 

Fig. H-1.  Impact of XPM and FWM on the spectral profile of the dual-channel mode-locked 

pulses when the energies of the two channels are (a) unequal and (b) identical. In (b), we 

only give the right half part of the spectrum because of its symmetry.  
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Appendix I: Impact of SA on 

energy ratio 

Saturable absorber (SA) is an intensity dependent loss element. The loss is large 

when the light intensity is weak, and the loss is small when the light intensity is 

strong. In our model, we assume a fast SA the response of which depends on the 

instantaneous intensity of the light.  

For the dual-channel simultaneous mode-locked pulse in Section 3.3.3, the two 

pulses move together in the time domain. When the two pulses go through the SA 

together, the combined pulse temporal profile suffers a larger loss where the 

instantaneous pulse intensity is lower, and vice versa. As a result, the modulation 

depth is enhanced as shown in Fig. I-1. An enhanced modulation depth indicates that 

the energies of the two pulses are closer.   In other words, the stronger of the two 

pulses suffer a higher loss, while the weaker of the two pulses suffer a smaller loss.  

This is counter-intuitive, and the opposite will happen if two pulses go through the 

SA individually.  

.    
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Fig. I-1. The pulse profiles of the DSML mode-locked state before and after the SA in the (a) 

time and (b) frequency domain. The pulse profiles are normalized by their maxima. 
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Appendix J: Accumulated Error 

in Simulations 

Besides the numerical error caused by algorithms, the simulation might also 

accumulate errors since we are doing the float-point calculation [100, 101]. Here we 

show one example of the accumulated error in order to remind others to be careful 

about it.  

One may note that in the SSFM algorithms, we have lots of FFT and IFFT 

calculations. However, the iteration on FFT and IFFT can accumulate the errors [100, 

101]. Here is one example. 

We have an array: In = [1, 2, 3, …, N-1, N, N, N-1, …, 3, 2, 1]. Then we will do 

the iteration of FFT and IFFT on the array In as: Out = (F1F)mIn, where F and F-1 

represent for Fourier and inverse Fourier transforms that are done with FFT and IFFT 

in MATLAB, and m stands for the step of iteration. 

Mathematically, the Fourier and inverse Fourier transform pairs should 

reproduce the input data. However, we observed that the iteration on such calculation 

can accumulate error as shown in Fig. J-1(a). We calculated the error as

    1 22
Error N     samOut In max In where Nsam represents the number of the 

elements in the array. We found that the error increases with m. The output data 

hence becomes different. At first, the 128-th and 129-th data are both exactly 128 in 
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the array In, but after 105 steps of iteration, as shown in Fig. J-1(b), these two data 

becomes 127.9999999999860 and 127.9999999999948.  

Generally, the accumulated error in FFT increases with the sample points Nsam 

and the steps of iteration m as pointed out in [100, 101]. Hence one should note that if 

there are too much iteration on the FFT and IFFT, the error will be accumulated to a 

higher level. 

 

Fig. J-1. (a)The error v.s. steps of iteration on Fourier and invers Fourier transform pairs. (b) 

The amplitude of the array after 105 steps of iteration. 

 

 

 

 

 

 

 

 

  



121 
 

Bibliography 

[1] R. G. Gould, "The LASER, light amplification by stimulated emission of radiation," 

in The Ann Arbor conference on optical pumping, the University of Michigan, 1959, 

p. 128. 

[2] P. A. Dirac, "The quantum theory of the emission and absorption of radiation," Proc. 

R. Soc. Lond. A, vol. 114, pp. 243-265, 1927. 

[3] B. Fain and P. W. Milonni, "Classical stimulated emission," JOSA B, vol. 4, pp. 78-

85, 1987. 

[4] O. Kamatani, S. Kawanishi, and M. Saruwatari, "Prescaled 6.3 GHz clock recovery 

from 50 Gbit/s TDM optical signal with 50 GHz PLL using four-wave mixing in a 

travelling-wave laser diode optical amplifier," Electronics Letters, vol. 30, pp. 807-

809, 1994. 

[5] T. Okoshi and K. t. Kikuchi, "Frequency stabilisation of semiconductor lasers for 

heterodyne-type optical communication systems," Electronics Letters, vol. 16, pp. 

179-181, 1980. 

[6] S. B. Alexander, Optical communication receiver design: SPIE Optical engineering 

press Bellingham, Washington, USA, 1997. 

[7] X. Zhu and J. M. Kahn, "Free-space optical communication through atmospheric 

turbulence channels," IEEE Transactions on communications, vol. 50, pp. 1293-

1300, 2002. 

[8] B. Mukherjee, "WDM optical communication networks: progress and challenges," 

IEEE Journal on Selected Areas in communications, vol. 18, pp. 1810-1824, 2000. 

[9] https://en.wikipedia.org/wiki/Laser#cite_note-Gould1959-1. 

[10] T. H. Maiman, "Stimulated optical radiation in ruby," 1960. 

[11] L. Hargrove, R. L. Fork, and M. Pollack, "Locking of He–Ne laser modes induced by 

synchronous intracavity modulation," Applied Physics Letters, vol. 5, pp. 4-5, 1964. 

[12] E. Snitzer, "Optical maser action of Nd+ 3 in a barium crown glass," Physical Review 

Letters, vol. 7, p. 444, 1961. 

[13] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical 

frequencies," in Proceedings of the Institution of Electrical Engineers, 1966, pp. 

1151-1158. 

[14] F. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass optical 

waveguides," Applied Physics Letters, vol. 17, pp. 423-425, 1970. 



122 
 

[15] "https://www.fiberoptics4sale.com/blogs/archive-posts/95048006-optical-fiber-loss-

and-attenuation." 

[16] S. T. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," 

Reviews of Modern Physics, vol. 75, p. 325, 2003. 

[17] S. A. Diddams, "The evolving optical frequency comb," JOSA B, vol. 27, pp. B51-

B62, 2010. 

[18] J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal 

fiber," Reviews of modern physics, vol. 78, p. 1135, 2006. 

[19] J. Mazumder and W. Steen, "Heat transfer model for CW laser material processing," 

Journal of Applied Physics, vol. 51, pp. 941-947, 1980. 

[20] S. Yun, C. Boudoux, M. Pierce, J. De Boer, G. Tearney, and B. Bouma, "Extended-

cavity semiconductor wavelength-swept laser for biomedical imaging," Ieee 

Photonics Technology Letters, vol. 16, pp. 293-295, 2004. 

[21] A. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons 

by fission in photonic crystal fibers," Physical Review Letters, vol. 87, p. 203901, 

2001. 

[22] W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. 

S. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber 

tapers: a novel light source," JOSA B, vol. 19, pp. 2148-2155, 2002. 

[23] T. Birks, W. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered 

fibers," Optics letters, vol. 25, pp. 1415-1417, 2000. 

[24] J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. Knight, et al., 

"Experimental evidence for supercontinuum generation by fission of higher-order 

solitons in photonic fibers," Physical Review Letters, vol. 88, p. 173901, 2002. 

[25] O. Svelto, "Ray and wave propagation through optical media," in Principles of 

Lasers, ed: Springer, 2010, pp. 131-161. 

[26] G. Huggett, "MODE‐LOCKING OF CW LASERS BY REGENERATIVE RF 

FEEDBACK," Applied Physics Letters, vol. 13, pp. 186-187, 1968. 

[27] "http://www.rp-photonics.com/semiconductor_saturable_absorber_mirrors.html." 

[28] D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. 

Keller, et al., "Semiconductor saturable-absorber mirror–assisted Kerr-lens mode-

locked Ti: sapphire laser producing pulses in the two-cycle regime," Optics letters, 

vol. 24, pp. 631-633, 1999. 

[29] F. Kartner, I. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," 



123 
 

IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, pp. 540-556, 1996. 

[30] G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, et al., 

"Semiconductor saturable absorber mirror structures with low saturation fluence," 

Applied Physics B, vol. 81, pp. 27-32, 2005. 

[31] H. H. Tan, C. Jagadish, M. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, et 

al., "Role of implantation-induced defects on the response time of semiconductor 

saturable absorbers," Applied physics letters, vol. 75, pp. 1437-1439, 1999. 

[32] A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, et al., "Sub-100 fs 

single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation 

near 1 µm," Optics express, vol. 17, pp. 20109-20116, 2009. 

[33] T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, et al., 

"Nanotube–polymer composites for ultrafast photonics," Advanced Materials, vol. 

21, pp. 3874-3899, 2009. 

[34] I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, et al., "Efficient 

mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber," 

Applied Physics Express, vol. 5, p. 032701, 2012. 

[35] G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, "Fe 2+: 

ZnSe and graphene Q-switched singly Ho 3+-doped ZBLAN fiber lasers at 3 μm," 

Optical Materials Express, vol. 3, pp. 1365-1377, 2013. 

[36] Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, et al., "Graphene-based passively 

Q-switched dual-wavelength erbium-doped fiber laser," Optics letters, vol. 35, pp. 

3709-3711, 2010. 

[37] H. Liu, A.-P. Luo, F.-Z. Wang, R. Tang, M. Liu, Z.-C. Luo, et al., "Femtosecond 

pulse erbium-doped fiber laser by a few-layer MoS 2 saturable absorber," Optics 

letters, vol. 39, pp. 4591-4594, 2014. 

[38] S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, et al., "Broadband few‐layer 

MoS2 saturable absorbers," Advanced materials, vol. 26, pp. 3538-3544, 2014. 

[39] Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, et al., "Mechanically exfoliated 

black phosphorus as a new saturable absorber for both Q-switching and mode-

locking laser operation," Optics express, vol. 23, pp. 12823-12833, 2015. 

[40] Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, et al., "Microfiber-

based few-layer black phosphorus saturable absorber for ultra-fast fiber laser," Optics 

express, vol. 23, pp. 20030-20039, 2015. 

[41] D. Richardson, R. Laming, D. Payne, M. Phillips, and V. Matsas, "320 fs soliton 



124 
 

generation with passively mode-locked erbium fibre laser," Electronics Letters, vol. 

27, pp. 730-732, 1991. 

[42] E. Kuzin, B. I. Escamilla, D. Garcia-Gomez, and J. Haus, "Fiber laser mode locked 

by a Sagnac interferometer with nonlinear polarization rotation," Optics letters, vol. 

26, pp. 1559-1561, 2001. 

[43] A. Komarov, H. Leblond, and F. Sanchez, "Multistability and hysteresis phenomena 

in passively mode-locked fiber lasers," Physical review A, vol. 71, p. 053809, 2005. 

[44] M. Hofer, M. Ober, F. Haberl, and M. Fermann, "Characterization of ultrashort pulse 

formation in passively mode-locked fiber lasers," IEEE journal of quantum 

electronics, vol. 28, pp. 720-728, 1992. 

[45] M. Fermann, M. Andrejco, Y. Silberberg, and M. Stock, "Passive mode locking by 

using nonlinear polarization evolution in a polarization-maintaining erbium-doped 

fiber," Optics letters, vol. 18, pp. 894-896, 1993. 

[46] V. Matsas, T. Newson, D. Richardson, and D. Payne, "Selfstarting passively mode-

locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electronics 

Letters, vol. 28, pp. 1391-1393, 1992. 

[47] K. Tamura, H. Haus, and E. Ippen, "Self-starting additive pulse mode-locked erbium 

fibre ring laser," Electronics Letters, vol. 28, pp. 2226-2228, 1992. 

[48] H. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, "Nonlinear polarization 

rotation in semiconductor optical amplifiers: Theory and application to all-optical 

flip-flop memories," IEEE Journal of Quantum Electronics, vol. 39, pp. 141-148, 

2003. 

[49] F. Li, P. Wai, and J. N. Kutz, "Geometrical description of the onset of multi-pulsing 

in mode-locked laser cavities," JOSA B, vol. 27, pp. 2068-2077, 2010. 

[50] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode 

locking," JOSA B, vol. 8, pp. 2068-2076, 1991. 

[51] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and 

Kerr lens mode locking," IEEE Journal of quantum electronics, vol. 28, pp. 2086-

2096, 1992. 

[52] H. A. Haus, "Mode-locking of lasers," IEEE Journal of Selected Topics in Quantum 

Electronics, vol. 6, pp. 1173-1185, 2000. 

[53] O. Svelto and D. C. Hanna, "Principles of lasers," 1998. 

[54] F. Li, J. Yuan, Z. Kang, Q. Li, and P. Wai, "Modeling frequency comb sources," 

Nanophotonics, vol. 5, pp. 292-315, 2016. 



125 
 

[55] J. N. Kutz, "Mode-locked soliton lasers," SIAM review, vol. 48, pp. 629-678, 2006. 

[56] X.-M. Tan, H.-J. Chen, H. Cui, Y.-K. Lv, G.-K. Zhao, Z.-C. Luo, et al., "Tunable and 

switchable dual-waveband ultrafast fiber laser with 100 GHz repetition-rate," Optics 

Express, vol. 25, pp. 16291-16299, 2017. 

[57] Z.-C. Luo, A.-P. Luo, W.-C. Xu, H.-S. Yin, J.-R. Liu, Q. Ye, et al., "Tunable 

multiwavelength passively mode-locked fiber ring laser using intracavity 

birefringence-induced comb filter," IEEE Photonics Journal, vol. 2, pp. 571-577, 

2010. 

[58] H. Zhang, D. Tang, X. Wu, and L. Zhao, "Multi-wavelength dissipative soliton 

operation of an erbium-doped fiber laser," Optics express, vol. 17, pp. 12692-12697, 

2009. 

[59] E. D. Farnum and J. N. Kutz, "Multifrequency mode-locked lasers," JOSA B, vol. 25, 

pp. 1002-1010, 2008. 

[60] G. Wei, S. Shalei, Z. Bo, S. Shuo, L. Faquan, and C. Xuewu, "Multi-wavelength 

canopy LiDAR for remote sensing of vegetation: Design and system performance," 

ISPRS Journal of Photogrammetry and Remote Sensing, vol. 69, pp. 1-9, 2012. 

[61] G. Hu, Y. Pan, X. Zhao, S. Yin, M. Zhang, and Z. Zheng, "Asynchronous and 

synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser 

with a mode-locker," Optics letters, vol. 42, pp. 4942-4945, 2017. 

[62] J. M. Soto-Crespo and N. Akhmediev, "Composite solitons and two-pulse generation 

in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg 

equation," Physical Review E, vol. 66, p. 066610, 2002. 

[63] B. G. Bale, J. N. Kutz, and E. D. Farnum, "Dynamics of multifrequency mode-

locking driven by homogenous and inhomogenous gain broadening effects," JOSA B, 

vol. 25, pp. 1479-1487, 2008. 

[64] B. G. Bale, E. Farnum, and J. N. Kutz, "Theory and simulation of passive 

multifrequency mode-locking with waveguide arrays," IEEE Journal of Quantum 

Electronics, vol. 44, pp. 976-983, 2008. 

[65] G. Walker, "Gain and noise characterisation of erbium doped fibre amplifiers," 

Electronics letters, vol. 27, pp. 744-745, 1991. 

[66] E. Ding, E. Shlizerman, and J. N. Kutz, "Generalized master equation for high-

energy passive mode-locking: the sinusoidal Ginzburg–Landau equation," IEEE 

journal of quantum electronics, vol. 47, pp. 705-714, 2011. 

[67] A. Grudinin, D. Richardson, and D. Payne, "Energy quantisation in figure eight fibre 



126 
 

laser," Electronics Letters, vol. 28, pp. 67-68, 1992. 

[68] F. Kurtner, J. A. Der Au, and U. Keller, "Mode-locking with slow and fast saturable 

absorbers-what's the difference?," IEEE Journal of Selected Topics in Quantum 

Electronics, vol. 4, pp. 159-168, 1998. 

[69] M. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. Akhmediev, and J. M. 

Soto-Crespo, "Multipulse operation of a Ti: sapphire laser mode locked by an ion-

implanted semiconductor saturable-absorber mirror," JOSA B, vol. 16, pp. 895-904, 

1999. 

[70] D. Li, D. Tang, L. Zhao, and D. Shen, "Mechanism of dissipative-soliton-resonance 

generation in passively mode-locked all-normal-dispersion fiber lasers," Journal of 

Lightwave Technology, vol. 33, pp. 3781-3787, 2015. 

[71] F. Li, E. Ding, J. N. Kutz, and P. Wai, "Dual transmission filters for enhanced energy 

in mode-locked fiber lasers," Optics express, vol. 19, pp. 23408-23419, 2011. 

[72] F. Li, X. Feng, H. Zheng, C. Lu, H. Tam, J. N. Kutz, et al., "Multiwavelength lasers 

with homogeneous gain and intensity-dependent loss," Optics Communications, vol. 

284, pp. 2327-2336, 2011. 

[73] X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, et al., "Impact of 

Spectral Filtering on Multipulsing Instability in Mode-Locked Fiber Lasers," IEEE 

Journal of Selected Topics in Quantum Electronics, vol. 24, pp. 1-9, 2018. 

[74] E. Ding, W. H. Renninger, F. W. Wise, P. Grelu, E. Shlizerman, and J. N. Kutz, 

"High-energy passive mode-locking of fiber lasers," International journal of optics, 

vol. 2012, 2012. 

[75] X. Zhang, F. Li, Z. Kang, J. Yuan, and P. K. A. Wai, "Spectral filtering induced multi-

pulsing in mode-locked soliton lasers," in Australian Conference on Optical Fibre 

Technology, 2016, p. JT4A. 7. 

[76] G. P. Agrawal, "Nonlinear fiber optics," in Nonlinear Science at the Dawn of the 21st 

Century, ed: Springer, 2000, pp. 195-211. 

[77] M. Zhang, E. Kelleher, A. Pozharov, E. Obraztsova, S. Popov, and J. Taylor, "Passive 

synchronization of all-fiber lasers through a common saturable absorber," Optics 

letters, vol. 36, pp. 3984-3986, 2011. 

[78] K. Tamura, E. Ippen, and H. Haus, "Optimization of filtering in soliton fiber lasers," 

IEEE photonics technology letters, vol. 6, pp. 1433-1435, 1994. 

[79] S. Wang, S. Droste, L. C. Sinclair, I. Coddington, N. R. Newbury, T. F. Carruthers, et 

al., "Wake mode sidebands and instability in mode-locked lasers with slow saturable 



127 
 

absorbers," Optics letters, vol. 42, pp. 2362-2365, 2017. 

[80] A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion 

femtosecond fiber lasers," JOSA B, vol. 25, pp. 140-148, 2008. 

[81] J. A. Der Au, D. Kopf, F. Morier-Genoud, M. Moser, and U. Keller, "60-fs pulses 

from a diode-pumped Nd: glass laser," Optics letters, vol. 22, pp. 307-309, 1997. 

[82] B. Collings, K. Bergman, and W. Knox, "True fundamental solitons in a passively 

mode-locked short-cavity Cr 4+: YAG laser," Optics letters, vol. 22, pp. 1098-1100, 

1997. 

[83] V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, "Multipulse operation and limits of 

the Kerr-lens mode-locking stability," IEEE journal of quantum electronics, vol. 39, 

pp. 323-336, 2003. 

[84] B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, "Transition dynamics for multi-pulsing 

in mode-locked lasers," Optics express, vol. 17, pp. 23137-23146, 2009. 

[85] J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, "Bifurcations and 

multiple-period soliton pulsations in a passively mode-locked fiber laser," Physical 

Review E, vol. 70, p. 066612, 2004. 

[86] A. Bednyakova and S. K. Turitsyn, "Adiabatic soliton laser," Physical review letters, 

vol. 114, p. 113901, 2015. 

[87] K. Blow, N. Doran, and D. Wood, "Trapping of energy into solitary waves in 

amplified nonlinear dispersive systems," Optics letters, vol. 12, pp. 1011-1013, 1987. 

[88] K. Blow, N. Doran, and D. Wood, "Generation and stabilization of short soliton 

pulses in the amplified nonlinear Schrödinger equation," JOSA B, vol. 5, pp. 381-

391, 1988. 

[89] P. Wai, C. R. Menyuk, Y. Lee, and H. Chen, "Nonlinear pulse propagation in the 

neighborhood of the zero-dispersion wavelength of monomode optical fibers," Optics 

letters, vol. 11, pp. 464-466, 1986. 

[90] J. N. Kutz, C. Lyngå, and B. Eggleton, "Enhanced supercontinuum generation 

through dispersion-management," Optics Express, vol. 13, pp. 3989-3998, 2005. 

[91] K. Ohkuma, Y. H. Ichikawa, and Y. Abe, "Soliton propagation along optical fibers," 

Optics letters, vol. 12, pp. 516-518, 1987. 

[92] X. Zhang, F. Li, J. Yuan, Z. Kang, and P. Wai, "Dynamics of Dual Frequency Mode-

Locked Fiber Lasers," in Conference on Lasers and Electro-Optics/Pacific Rim, 

2018, p. W3A. 49. 

[93] X. Zhang, S. Wang, F. Li, C. R. Menyuk, and P. Wai, "Design of a Dual-Channel 



128 
 

Modelocked Fiber Laser that Avoids Multi-Pulsing," in CLEO: Applications and 

Technology, 2018, p. JTh2A. 125. 

[94] N. Akhmediev and A. Ankiewicz, "Dissipative Solitons in the Complex Ginzburg-

Landau and Swift-Hohenberg Equations," in Dissipative Solitons. vol. 661, N. 

Akhmediev and A. Ankiewicz, Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 17-

34. 

[95] R. Stolen and J. Bjorkholm, "Parametric amplification and frequency conversion in 

optical fibers," IEEE Journal of Quantum Electronics, vol. 18, pp. 1062-1072, 1982. 

[96] C. Furst, A. Leitenstorfer, and A. Laubereau, "Mechanism for self-synchronization of 

femtosecond pulses in a two-color Ti: sapphire laser," IEEE Journal of Selected 

Topics in Quantum Electronics, vol. 2, pp. 473-479, 1996. 

[97] X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, et al., "Versatile multi-wavelength 

ultrafast fiber laser mode-locked by carbon nanotubes," Scientific reports, vol. 3, p. 

2718, 2013. 

[98] X. Liu, L. Zhan, S. Luo, Z. Gu, J. Liu, Y. Wang, et al., "Multiwavelength erbium-

doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped 

EDF," Optics express, vol. 20, pp. 7088-7094, 2012. 

[99] X. Feng, H.-Y. Tam, H. Liu, and P. Wai, "Multiwavelength erbium-doped fiber laser 

employing a nonlinear optical loop mirror," Optics communications, vol. 268, pp. 

278-281, 2006. 

[100] J. C. Schatzman, "Accuracy of the discrete Fourier transform and the fast Fourier 

transform," SIAM Journal on Scientific Computing, vol. 17, pp. 1150-1166, 1996. 

[101] T. Kaneko and B. Liu, "Accumulation of round-off error in fast Fourier transforms," 

Journal of the ACM (JACM), vol. 17, pp. 637-654, 1970. 

[102] "https://www.rp-photonics.com/upper_state_lifetime.html." 

[103] "https://www.rp-photonics.com/gain_saturation.html." 

[104] V. E. e. Zakharov and S. V. Manakov, "On the complete integrability of a nonlinear 

Schrödinger equation," Theoretical and Mathematical Physics, vol. 19, pp. 551-559, 

1974. 

[105] C. Van Loan, Computational frameworks for the fast Fourier transform vol. 10: 

Siam, 1992. 

[106] O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the split-

step Fourier method in modeling optical-fiber communications systems," Journal of 

lightwave technology, vol. 21, p. 61, 2003. 



129 
 

[107] J. Van Roey, J. Van der Donk, and P. Lagasse, "Beam-propagation method: analysis 

and assessment," Josa, vol. 71, pp. 803-810, 1981. 

[108] L. Thylen, "The beam propagation method: an analysis of its applicability," Optical 

and quantum electronics, vol. 15, pp. 433-439, 1983. 

[109] J. Saijonmaa and D. Yevick, "Beam-propagation analysis of loss in bent optical 

waveguides and fibers," JOSA, vol. 73, pp. 1785-1791, 1983. 

[110] D. Yevick and B. Hermansson, "New fast Fourier transform and finite‐element 

approaches to the calculation of multiple‐stripe‐geometry laser modes," Journal of 

applied physics, vol. 59, pp. 1769-1771, 1986. 

[111] G. H. Weiss and A. A. Maradudin, "The Baker‐Hausdorff Formula and a Problem in 

Crystal Physics," Journal of Mathematical Physics, vol. 3, pp. 771-777, 1962. 

[112] Q. Li, Pedestal-free pulse compression in nonlinear fibers and nonlinear fiber Bragg 

gratings, 2009. 

[113] G. Boeing, "Chaos theory and the logistic map," at UC Berkeley, 2015. 

 


