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Abstract 

The air logistics industry is playing a crucial role in the modern world through 

facilitating both passenger and cargo movement nationally and internationally. 

However, this industry is characterized by fierce competition, high operating costs, 

and diverse uncertainties. Therefore, air logistics operators are committed to 

improving decision quality for both passenger and cargo logistics to maintain 

profitability in the risky and competitive market. Among the air logistics management 

issues, the operational scheduling problems for air passenger logistics and strategic 

pricing strategies for air cargo logistics are the critically important and challenging 

decisions. Therefore, focusing on these two areas, this thesis aims at enhancing the 

operational and strategic decision making for modern airlines in the current volatile 

business environment. As cabin crews are crucial resources for airlines which are 

relatively under-studied compared to cockpit crews, this research firstly concentrates 

on improving the operational cabin crew scheduling methodologies by proposing a 

new practical pairing approach from the perspective of air passenger logistics 

operations. Then, the strategic risk-averse pricing decisions are investigated where the 

mean-variance theory is utilized for risk analysis from the perspective of air cargo 

logistics operations. 

 

Regarding the air passenger logistics operations, cabin crew scheduling is one of the 

most important but challenging operational scheduling problems faced by airlines, 

which is decomposed into a cabin crew pairing problem and a cabin crew assignment 

problem. Due to the high complexity and large scale of the problem, cabin crews are 

usually scheduled on a team basis separated by aircraft types as cockpit crews for 

simplicity. However, the cross-qualification of cabin crews and the manpower 

configuration heterogeneity of various flights make the scheduling problem for cabin 

crews totally different from that for cockpit crews. Besides, some airlines are adopting 

the individual cabin crew pairing approach, and applying the strategy of controlled 

crew substitution to hedge against the manpower requirement variation caused by 

flight fluctuation in the uncertain market. Motivated by the emergence of individual 

cabin crew pairing practice as well as the shortcomings of the team-based cabin crew 

pairing scheme, this research conducts an analytical study which aims at improving 
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manpower utilization while reducing costs by utilizing a new individual cabin crew 

pairing generation approach. The impacts of the relationship between manpower 

availability with requirement benchmarks on cabin crew scheduling strategies are 

investigated to derive deep insights regarding airline crew management in the volatile 

market. A customized column generation approach is developed to solve the problem. 

Computational experiments based on real-world collected flight schedules data 

demonstrate the advantages of the proposed approach over the existing team-based 

method, such as substantially improving manpower utilization by 199% and reducing 

cost by 61%. Furthermore, the proposed pairing approach shows great potential in 

alleviating the negative impact of flight fluctuation. 

 

On the other hand, the strategic pricing decisions for air cargo carriers are extremely 

challenging due to the intensive market competition and diverse uncertainties arising 

from both market demand and operating costs. However, this problem is rather under-

explored in the literature. It is reasonable that many freight airlines are holding risk-

averse attitudes in decision making in order to survive in the highly volatile and 

competitive market. Therefore, in this thesis, the mean-variance theory is applied to 

characterize the risk-averse behaviors of decision makers, and the equilibrium prices 

for two competing risk-averse air cargo carriers under demand and cost uncertainties 

are derived. Then, how the crucial factors like risk sensitivity coefficients, market 

competition, market share, demand uncertainty and cost uncertainty affect the airlines’ 

optimal prices is studied. In addition, important cost thresholds and relative risk-averse 

attitude thresholds are identified for the impacts of these factors on the equilibrium 

prices. The analytical results derived from this research demonstrate the symmetry in 

the optimal prices and critical thresholds for the two carriers. Besides, the importance 

to consider both carrier’s own and the competitor’s risk attitudes and operating 

characteristics in decision making when market competition exists is highlighted. 

Moreover, the direct and indirect impacts of risk attitudes on the optimal prices are 

identified, thus highlighting the importance to integrate risk considerations into the 

optimal pricing decision framework. Finally, it is found that market situations play a 

critical role in characterizing the effects of diverse parameters on the equilibrium 

prices, which should be carefully evaluated by decision makers.   
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To conclude, realizing the importance of improving the decision making for air 

logistics operations in the highly uncertain and competitive market, this research 

conducts the series of research described in this thesis. Specifically, a new individual 

cabin crew pairing generation approach which demonstrates superior performances in 

manpower utilization improvement and cost reduction for air passenger logistics 

operations is developed. Moreover, this study also conducts an analytical risk analysis 

for air cargo logistics operations, and explores the optimal pricing strategies for freight 

airlines facing diverse uncertainties through the application of the mean-variance 

theory. The insights derived from this thesis research not only contribute to the air 

logistics management literature, but they also provide valuable guidance to 

practitioners such as operations managers in airlines. 
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Chapter 1. Introduction 

1.1. Background of Study 

1.1.1. The Air Logistics Industry  

The air logistics industry is playing an important role in the modern world through 

facilitating both passenger and cargo movement nationally and internationally (Başar 

& Bhat, 2004). According to International Air Transport Association (IATA), 3.8 billion 

air passengers have spent almost 650 billion US dollars in 2016 (IATA 2017a), and air 

passenger demand is predicted to reach 8.2 billion passengers per year in 2037 (IATA 

2018b). Besides, the annual global statistics of International Civil Aviation 

Organization (ICAO) show that the number of worldwide flight departures reached 36.7 

million in 2017, achieving a 3.1% growth compared to 2016. On the other hand, air 

cargo logistics occupies a substantial share of the whole freight logistics service sector, 

and air-cargo carrier systems are an important part of the transportation logistics 

systems. Due to the increased global trades, higher demand for fast shipment, and 

companies’ efforts in keeping low inventory level through quick and frequent 

replenishments (Li et al., 2017a; Li et al., 2017b), the air freight transportation industry 

is growing rapidly in recent years. According to IATA (2016), in 2015, air logistics 

delivered over 6 trillion US dollars’ worth of cargos, accounting for 35% of 

international trade of value. Besides, it is reported that the industry-wide revenue of air 

freight transportation reaches 95.9 billion US dollars in 2017, achieving a remarkable 

growth of 18.69% compared to the year of 2016, while the global air freight tonne 

kilometers (FTKs) increased by 9.0% in 2017, which is the highest growth rate since 

2010 (IATA, 2017b). Moreover, in the next twenty years, the volume of air freight is 

forecasted to continue its growth to be “double of today” (Airbus 2017). Currently, air 

cargo has become a crucial component of revenue not only for dedicated cargo air 

carriers (e.g., Cargolux), but also for combinatorial air carriers (e.g., Cathay Pacific) 
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(Feng et al., 2015).  

However, despite the fast growth and increasing importance, the air logistics 

industry is facing diverse challenges. First of all, the industry is characterized by fierce 

and intensive market competition. For example, it is predicted that approximately 350 

new-built air cargo carriers in North America and 200 in Asia-Pacific will appear in the 

next twenty years (Airbus, 2017; Boeing, 2017). For the passenger transport sector, 

economists demonstrate that the state of global airline competition has intensified in 

recent years, with more choices offered in the market when traveling from one city to 

another 1 . Second, the market is highly volatile and uncertain, with remarkable 

variations in consumer demand (Powell & Winston, 1983; Tao et al., 2017). As reported 

by the Civil Aviation Department of the Government of the Hong Kong Special 

Administration Region2, the air passenger traffic volume keeps fluctuating throughout 

the year. For example, in the year of 2018, the minimum monthly air passenger traffic 

(both departure and arrival) is 5,539,901 passengers in September, while the maximum 

traffic is 6,817,626 in August. Regarding air cargo, IATA (2018a) reports that the 

monthly industry-wide freight traffic kept varying throughout the year of 2017, and the 

difference between the highest (in November) with the lowest (in February) volumes 

reaches around 5 billion FTKs. Third, as the fuel consumption comprises the largest 

part of an airline’s operating costs, the fluctuation in crude oil price creates significant 

challenges for the profitability and development of air freight companies (Azadian & 

Murat, 2018; Chao & Hsu, 2014).  

Consequently, airlines are fully committed to improving decision quality for both 

passenger and cargo logistics to maintain profitability (Sheu, 2014; Sheu & Li, 2014). 

With the objective of enhancing the operational and strategic decision making for 

modern airlines in the current volatile environment, this thesis research is established. 

First, considering the importance of cabin crews for air passenger logistics (which is 

detailed in Section 1.1.2), this PhD study concentrates on improving the pairing 

 
1 https://www.aviationpros.com/airlines/article/12419680/driven-by-competition-the-airline-industry-is-taking-off 

(Retrieved in July, 2018). 
2 https://www.cad.gov.hk/english/statistics.html (Retrieved in July, 2019). 

https://www.aviationpros.com/airlines/article/12419680/driven-by-competition-the-airline-industry-is-taking-off
https://www.cad.gov.hk/english/statistics.html
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approach for airline cabin crews which can significantly increase manpower utilization 

and reduce operating costs (as presented in Chapter 3). Second, realizing the great 

challenges of pricing decisions for freight airlines (which is explained in Section 1.1.3), 

analytical research focusing on enhancing the pricing strategies by integrating risk 

considerations into the decision framework for air cargo logistics is conducted (as 

presented in Chapter 4).  

 

1.1.2. Air Passenger Logistics Operations & Cabin 

Crew Scheduling 

Air passenger transportation is a core functional component of modern airlines, in 

which cabin crews play a critical role in serving passengers and monitoring the safety 

of passengers during flights. To facilitate passenger logistics, airlines have to manage 

diverse resources (like cabin crews) smoothly and efficiently to maintain normal flight 

operations. In general, airline scheduling is usually divided into four sequential stages, 

namely flight scheduling, fleet assignment, aircraft maintenance routing, and crew 

scheduling (Liang et al., 2015; Mukherjee & Hansen, 2009; Pita et al., 2014; Şafak et 

al., 2018). Among these problems, crew scheduling is an important but challenging 

component which assigns crews to serve the scheduled flights with a minimum cost 

(Boubaker et al., 2010). Besides, crew scheduling is further divided into a crew pairing 

problem and a crew assignment problem. Crew cost is known as the second largest 

composition of an airline’s total operating cost, just after fuel consumption. For 

example, a major Hong Kong based airline (denoted as The Airways), reports that 21% 

of its annual operating expenses are for manpower payment, which follows the biggest 

fuel cost (29.5%). Therefore, even a slight improvement in crew schedules can lead to 

a substantial cost saving (Cohn & Barnhart, 2003). Currently, there is little research 

studying the important cabin crew pairing problem with considerations of the 

distinctive characteristics of cabin crews. Therefore, in this thesis, Chapter 3 focuses 

on improving the financial performance of cabin crew scheduling decisions with an 
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individual management system to enhance the decision making for air passenger 

logistics operations. In the following, firstly, the two-stage crew scheduling problem is 

introduced, followed by the comparison between cockpit crews and cabin crews. Next, 

an important practical operation of controlled crew substitution for cabin crews is 

described. Finally, the importance of the pairing problem for cabin crews is highlighted. 

 

Crew scheduling: Crew pairing & crew assignment 

Due to the extensive regulations imposed by airlines, labor unions, and authorities, and 

numerous possible itineraries, the “unmanageable” crew scheduling is generally 

fulfilled by sequentially solving a crew pairing problem (CPP) and a crew assignment 

problem (CAP) (Chung et al., 2017; Doi et al., 2018; Eltoukhy et al., 2017). Generally, 

short-haul and long-haul flights are scheduled separately. The CPP aims to generate 

sufficient anonymous legal pairings to cover all flights’ requirements while minimizing 

costs under the assumption of infinite crews, usually for a week. A legal pairing is a 

sequence of flights to be served by the same crew while respecting all the regulations, 

which starts from and ends at the crew’s home base (Wei & Vaze, 2018). Next, in the 

CAP, the pairings generated in the CPP are connected to form monthly schedules for 

specific crews with the consideration of crew availability and pre-scheduled activities 

such as training and vacations (Chung et al., 2015). Although such a rigidly separated 

sequential scheduling approach leads to a substantial reduction in problem complexity, 

the pairings generated in the CPP might not be suitable for the CAP, producing poor-

quality outcomes (Quesnel et al., 2017). For example, Guo et al. (2006) state that failing 

to consider the crew availability constraint in the CPP can cause costly changes in the 

CAP, which leads to revisions of some generated pairings to identify a feasible solution. 

This thesis focuses on the single-based CPP for cabin crews and proposes a new pairing 

generation methodology to improve cabin crew utilization and reduce the related costs 

for air passenger logistics.  
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Two types of crews: Cockpit crew & cabin crew 

There are two types of crews in airlines: cockpit crews and cabin crews (Bard & Mohan, 

2008). A cockpit crew (pilot) is responsible for the duties essential to the operation of 

an aircraft, while a cabin crew is assigned with duties in the cabin for the interest of 

passengers’ safety (ICAO, 2010). Generally, cockpit crews are classified into captain, 

first officer, and officer, qualified for only one type of aircraft (Sohoni et al., 2004). The 

manpower requirement for cockpit crews of a type of aircraft is deterministic according 

to the operations manual. Therefore, the cockpit CPP is decomposed and solved within 

each type of aircraft, and cockpit crews are scheduled as teams (Shebalov & Klabjan, 

2006). Cabin crews are also categorized into multiple classes (e.g., stewards, hostesses, 

cabin mates, and head cabin mates) according to their skills and experiences to serve 

different cabin sections (Gamache et al., 1999). Traditionally, cabin crews are scheduled 

on a team basis separated by aircraft types as the way for cockpit crews. However, cabin 

crews are cross-qualified to serve multiple types of aircraft. Besides, even for the same 

aircraft type, the demand for cabin crews is not fixed due to various cabin layouts. For 

example, in The Airways, Airbus A330-300 has three types of layout, with 317, 262, 

and 251 seats in total respectively. Beyond the minimum requirements for the interest 

of passengers’ safety regulated by aviation authorities and governments (e.g., at least 

one cabin crew for each pair of doors (IATA, 2015)), airlines usually establish higher 

service levels by assigning more cabin crews of each class to each flight based on the 

seating plan of the aircraft (Barnhart & Cohn, 2004). Therefore, the manpower 

requirement for each class of cabin crews is generally heterogeneous across aircraft 

types, flights, and airlines. Consequently, although the team-based cabin crew pairing 

approach could bring benefits like enhancing team spirits and reducing problem 

complexity, it inevitably leads to low manpower flexibility and utilization, and produces 

high costs. Realizing that the pairing problem for cabin crews is totally different from 

that for cockpit crews and the shortcomings of the existing method, The Airways3 is 

currently adopting the individual pairing approach to enjoy the high manpower 

 
3 This finding is based on a discussion with the managers from a major Hong Kong based airline who choose to be 

anonymous, and this airline is denoted as “The Airways” in this thesis. 
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flexibility and utilization, and the resulting cost reduction, with the aim of maintaining 

profitability and competitiveness in a competition-intensive market. However, the 

problem scale and complexity of the individual cabin CPP are much higher than those 

of the traditional method. 

 

An important cabin crew operation: Controlled crew substitution 

Airlines usually operate a large-scale flight network. For example, The Airways is 

operating routes among 74 destinations around the world with hundreds of flights per 

day. Therefore, in order to make the problem manageable, The Airways divides the 

whole flight network into small regions, and conducts crew scheduling based on each 

divided region.4 Consequently, although fleet composition variation is not an important 

problem for an entire flight network of an airline as aircrafts always stay in the airline 

for more than 20 years, it is a crucial factor for the divided flight networks. Moreover, 

instead of staying static, flight schedules are usually affected by the dynamic passenger 

demand and airline competition decisions (Hansen & Liu, 2015; Hsu & Wen, 2003; 

Vaze & Barnhart, 2012). Accordingly, flight schedules naturally fluctuate along time 

either in flight frequency or in aircraft types used (called flight fluctuation). For 

example, a flight from Hong Kong to Singapore this week might employ A330, but in 

the next week, it might use A350. Besides, The Airways might operate more flights for 

this route during the weeks in public holidays than normal weeks. Accordingly, flight 

fluctuation could lead to a variation in the requirements for cabin crews. Therefore, due 

to the finite availability, cabin crew insufficiency in some classes may occur during 

flight fluctuation. The Airways thus takes the strategy of Controlled Crew Substitution 

(CCS) to deal with the cabin crew shortage. CCS is to assign a cabin crew from another 

class to substitute the originally required one, with the aim of identifying feasible 

solutions when the current available manpower encounters a shortage in certain classes, 

in order to facilitate the normal operations of all flights. On the other hand, to maintain 

service and safety levels, at least one qualified cabin crew of each class should be 

 
4 This finding is based on a discussion with the managers from a major Hong Kong based airline who choose to be 

anonymous. 
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assigned to each flight. Additionally, unnecessary substitutions should be avoided when 

all classes are sufficient. The CCS strategy is an approach to hedge against the cabin 

crew requirement variation and manpower shortage led by flight fluctuation through 

the improvement of cabin crew utilization. However, it makes the cabin CPP even more 

difficult to deal with. 

 

Importance of the pairing problem for cabin crews 

Cabin crews are crucial for airlines in maintaining quality service levels and providing 

essential emergency and evacuation functions (ICAO, 2010). The significance of the 

professional conduct of cabin crews on flights has been emphasized in Chang and Yeh 

(2004). Besides, cabin crews nowadays constitute a major proportion of airline 

manpower with a significant climbing cost expenditure. For example, currently, 45.8% 

of the employees in The Airways are cabin crews, which is more than three times the 

cockpit crews (only 14.6%). More importantly, the inferior performance of the cabin 

crew pairing solutions can incur both expensive costs for airlines and great 

inconvenience for air passengers, leading to a significant damage to the image of 

airlines. For instance, recently, a flight from Sapporo to Hong Kong had to stop at Taipei, 

in order to change the cabin crews who violated the maximum duty period restriction 

regulated by the government5. This unexpected stopover resulted in a three-hour delay 

for 367 passengers. Therefore, the priority for airline crew scheduling departments is to 

efficiently manage this expensive resource and improve cabin crew utilization while 

reducing the related costs (Anbil et al., 1991; Salazar-González, 2014). However, 

despite the realized significance of cabin crews, relatively less research has focused on 

exploring the decision quality improvement of the cabin CPP compared to the cockpit 

CPP due to the high problem complexity.  

 

 
5 http://hk.on.cc/hk/bkn/cnt/news/20171217/bkn-20171217100546523-1217_00822_001.html (Retrieved in 

December, 2017).   

http://hk.on.cc/hk/bkn/cnt/news/20171217/bkn-20171217100546523-1217_00822_001.html
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1.1.3. Air Cargo Logistics Operations & Risk Analysis 

There is no doubt that air cargo logistics plays a crucial role for modern airlines. It is 

reported that cargo transportation produces more than twice revenue than the first-class 

cabin passenger transport, and the throughput of air cargo grows 50% faster than that 

of air passenger (IATA, 2017b; Wong et al., 2009). However, under the highly volatile 

and competitive market environment, freight airlines are facing with diverse 

uncertainties, which create risks. In addition to demand, air cargo carriers are also 

challenged by uncertainties arising from costs. As reported by Airbus (2017), the 

international jet-fuel price kept fluctuating since 2000, which climbed by more than 

200% from 2000 to 2008, followed by a sharp reduction by 50% in 2009. After that, 

the oil price grew rapidly to the 2008-level in 2010. Airbus (2017) has also predicted a 

great fluctuation in fuel price in the next two decades. Although some airlines adopt 

financial instruments like fuel hedging to alleviate the impact of oil price fluctuation, 

cost uncertainty still exists. For instance, Cathay Pacific is reported to lose 6.45 billion 

HK dollars in fuel hedging in 2017, causing great financial burden for the corporate.6 

Therefore, the significant uncertainties in operating costs should be carefully 

considered during decision making for cargo airlines. Consequently, it is seen that the 

strategic decisions of air cargo airlines are challenged by uncertainties from both 

demand and cost perspectives, together with intensive market competition. Therefore, 

it is reasonable that some freight airlines hold a risk-averse attitude against profit 

uncertainties to ensure themselves to be economically sustainable in the highly volatile 

and competitive environment.7 As a result, enhancing the strategic decision making, 

especially with risk considerations, becomes crucial for air cargo logistics operations. 

As pointed out by Azadian and Murat (2018), among the air logistics operations 

management issues (e.g., pricing problem, revenue management, capacity allocation), 

the pricing problem is the most important but challenging one. It is reported that modern 

 
6 https://hongkongbusiness.hk/aviation/news/cathay-pacific-hit-massive-645b-fuel-hedging-loss-in-2017 

(Retrieved in March, 2018).  
7 https://centreforaviation.com/analysis/reports/a350-1000-order-changes-pragmatism-prevails-as-airlines-

become-more-risk-averse-370232 (Retrieved in October, 2017).   

https://hongkongbusiness.hk/aviation/news/cathay-pacific-hit-massive-645b-fuel-hedging-loss-in-2017
https://centreforaviation.com/analysis/reports/a350-1000-order-changes-pragmatism-prevails-as-airlines-become-more-risk-averse-370232
https://centreforaviation.com/analysis/reports/a350-1000-order-changes-pragmatism-prevails-as-airlines-become-more-risk-averse-370232
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companies are keen to identify the optimal pricing decisions that enable them to adapt 

to the increasingly competitive market (He et al., 2014; Zhang et al., 2018). Although 

it has been identified that the objectives and equilibrium decisions8 of risk-averse 

entities are totally different from those of risk-neutral ones (Chan et al., 2018), the 

optimal pricing decisions for competing risk-averse cargo airlines in the presence of 

demand and cost uncertainties are under-explored. Therefore, it is important and 

meaningful to explore such a problem and derive insightful managerial implications for 

air cargo logistics operators on how to enhance the competitiveness of freight airlines 

through investigating the impacts of risk aversion and market uncertainties on the 

equilibrium pricing decisions. 

Risk analysis has become a crucial topic in operations management (Chen et al., 

2007; Choi & Chiu, 2012b; Choi et al., 2016a, 2016b). Over the past few decades, 

different analytical models and measures have been proposed to help explore risks in 

operations and capture risk-averse behaviors (Keren & Pliskin, 2006). For example, 

CVaR (Chen et al., 2009), VaR (Chiu & Choi, 2010), semi-variance of profit (Choi & 

Chiu, 2012a), standard deviation of profit (Lau, 1980), variance of profit (Lau & Lau, 

1999; Agrawal & Seshardri, 2000b; Vaagen & Wallace, 2008; Choi et al., 2011; 

Buzacott et al., 2011; Shen et al., 2013; Chiu et al., 2015), etc., have all been proposed. 

Among them, an increasing trend of using the mean-variance (MV) theory (Markowitz, 

1959) for conducting risk analysis in operations management is observed (Chiu & Choi, 

2016). In particular, the MV theory can be applied to help conduct analyses for 

operations management problems in two perspectives: 1. As an analytical measure for 

risk aversion and being included in the optimization objective. 2. As a performance 

measure to capture the profit risk of the associated operations. Both perspectives are 

meaningful, and have been extensively applied in operations management. Besides, the 

MV theory is widely used to solve risk-hedging problems which can provide practical 

and implementable solutions. Moreover, compared with other risk measurement tools, 

the MV theory is understandable by the practitioners. Therefore, in Chapter 4, the MV 

 
8 In this thesis, the terms “optimal” decision and “equilibrium” decision are used interchangeably. 
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theory is utilized to measure the risk-averse attitudes of cargo airlines in characterizing 

the crucial pricing strategies for air cargo logistics operations, with the consideration of 

demand and cost uncertainties under market competition. 

 

1.2. Research Questions  

Realizing the significance of both air passenger and air cargo logistics operations for 

airlines, and the extensive challenges faced by the industry, this thesis aims to solve the 

following research questions, with the objective of improving the operational and 

strategic decision making for air carriers.  

First, regarding the air passenger logistics operations, this doctoral thesis research 

focuses on the important cabin CPP (presented in Chapter 3), tackling the following 

questions. 

1. How to analytically model the distinctive characteristics of airline cabin crews in 

the pairing formulation? 

2. How to deal with the flight requirement heterogeneity problem faced by airline 

cabin crew pairing problem? 

3. How does the practical operation of controlled crew substitution affect the 

optimal pairing solutions? 

4. How does the relationship between cabin crew availability levels with manpower 

requirement benchmarks impact cabin crew management? 

Second, regarding the air cargo logistics operations, this study then aims to address 

the following research questions (presented in Chapter 4). 

1. What are the optimal pricing decisions for two risk-averse air cargo carriers when 

they compete under stochastic demands? 

2. How do the crucial factors (e.g., market competition, risk sensitivity coefficients, 

demand uncertainty, market share) affect the optimal prices? 

3. What are the optimal prices if the two carriers face uncertain costs (e.g., related 

to the volatile oil prices)? 

4. How does cost uncertainty influence the decision making of the two carriers? 
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1.3. Research Contributions 

In this sub-chapter, the contributions of this research to the literature are summarized 

from two perspectives, air passenger logistics operations and air cargo logistics 

operations, in Section 1.3.1 and Section 1.3.2, respectively. 

 

1.3.1. Air Passenger Logistics Operations 

In Chapter 3 of the thesis, a novel individual cabin CPP approach is constructed for air 

passenger logistics operations (named Multi-class individual cabin crew pairing 

problem with availability and controlled crew substitution (MICCPP-ACCS)) which 

can greatly improve manpower utilization and reduce operating costs. The 

methodological characteristics and major contributions of the proposed models are 

outlined as follows. 

Firstly, to overcome the ineffectiveness of most existing cabin CPP research with 

the single aircraft type assumption and team-based approach, this work follows the 

airline practice to model the multi-class cabin crews individually who can operate 

mixed types of aircraft with varying manpower demands. Such an individual modelling 

approach improves the flexibility of cabin crews, and captures the unique features of 

heterogeneous flights, with the aim of improving manpower utilization. More 

importantly, global optimality is maintained without separating the problem by aircraft 

types. Besides, it should be pointed out that optimization software is now provided for 

airlines to deal with the problem of flight requirement heterogeneity, which applies 

many copies of a flight, each of which stands for a person (or group of persons) needed. 

Although this approach is currently used by some airlines, it has been scarcely studied 

in the academic domain. However, the team-based pairing approach still occupies the 

main research stream. Consequently, the team-based pairing approach is applied as a 

benchmark to demonstrate the importance of modelling cabin crews individually and 

the advantages of the proposed models.   
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Secondly, this study proposes to consider the crew availability constraint in the 

CPP for each class of cabin crews, so as to relieve the drawback of the separated 

sequential scheduling approach to a certain extent. As discussed in Guo et al. (2006), 

failing to consider the crew availability limit in the CPP could lead to extra crew 

proceedings (like pairing breaking and reconstruction), which causes undesirable 

increased operating costs. The existing studies that consider manpower availability are 

primarily based on crew teams (e.g., Dunbar et al., 2014). In this work, an upper limit 

for cabin crew availability of each class during the planning horizon is imposed, in 

order to improve the pairing generation process and cabin crew utilization. 

Thirdly, the proposed MICCPP-ACCS approach embeds the practical strategy of 

CCS into the model, and formulates it through a substitution penalty cost in the 

objective function, together with a set of substitution recording constraints, minimum 

satisfaction constraints, and total satisfaction constraints. This makes the model realistic 

and also different from the ones in the literature. When the current available manpower 

of each class is sufficient, the proposed MICCPP-ACCS acts as the simplified 

MICCPP-A (Multi-class individual cabin crew pairing problem with availability), to 

identify the least-cost “set of pairings” within each class to cover all flights’ 

requirements without any function of CCS. However, once there exists a manpower 

shortage in any class during flight fluctuation, the CCS strategy in MICCPP-ACCS will 

endeavor to sustain the normal operations of all flights by assigning cabin crews from 

other classes to substitute the originally required ones to form feasible solutions. This 

strategy significantly alleviates the impact of manpower variation and manpower 

shortage led by flight fluctuation on cabin crew management by raising cabin crew 

utilization. Therefore, the substitution penalty cost is also called the flight fluctuation 

coefficient. Through computational experiments based on real data, the CCS strategy 

has proven its crucial role in reducing the influence of flight fluctuation. Besides, extra 

cabin crew variables are introduced to ensure solution feasibility in case that the entire 

flight requirements could not be fully satisfied even with the application of CCS. 

Fourthly, this work generates managerial insights about the relationship between 
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the cabin crew availability levels with flight schedule manpower requirement 

benchmarks for airlines with the assistance of the proposed models. Specifically, 

MICCPP-ACCS and MICCPP-A can provide various manpower requirement 

benchmarks for flight schedules, like the minimum total manpower demand with CCS 

and the minimum manpower demand for each class without CCS. Through the analysis 

on the relationship between availability levels with the obtained benchmarks, 

knowledge regarding whether the current available manpower is in a shortage, and 

whether manpower substitution or extra manpower is needed could be derived, which 

can be utilized by the airline crew scheduling department to improve management 

decisions. To the best of our knowledge, such analysis on cabin crew availability levels 

has never been examined in the prior literature. This study is hence novel and makes an 

important contribution to the literature on airline transportation studies. 

In summary, this doctoral thesis research contributes to the literature by proposing 

a new individual cabin crew pairing generation approach which simultaneously 

considers flight manpower requirement heterogeneity, manpower availability, and the 

strategy of controlled crew substitution. Besides, the implications brought by the 

manpower availability-requirement relationships are explored.   

 

1.3.2. Air Cargo Logistics Operations 

In Chapter 4 of the thesis, the risk-sensitive pricing strategies for air cargo logistics 

operations are examined. To the best of our knowledge, this research is the first 

analytical study that comprehensively explores how risk-aversion, market competition, 

demand uncertainty and cost uncertainty affect the optimal pricing decisions for air-

cargo carrier operations. The incorporation of risk sensitivity in decision making is 

critically important. It helps to derive novel insights and implications regarding the 

impact of risk considerations on the pricing mechanisms for air cargo carriers. The 

mean-variance theory is applied to model the risk-averse behaviors of decision makers. 

Besides, cost uncertainty is considered, which provides useful information for 

practitioners to deal with the volatility arising from the crude oil market. All results are 
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derived in closed-form and proven mathematically. Considering the importance of 

optimal price decisions for cargo airlines and the increasing attention from both 

academia and industry, this study provides crucial managerial implications to advance 

the understanding on the optimal pricing decisions for the air cargo logistics industry, 

and helps enhance the competitiveness of air cargo carriers in the highly uncertain 

market. 

Moreover, it should be pointed out that the “risk analysis” in the thesis title refers 

to exploring both the risks arising from the cabin crew pairing problem (e.g., flight 

fluctuation, manpower shortage), and the profit uncertainty risks faced by the air cargo 

carrier operations (e.g., the profit risks derived from both the cost (from oil price 

variation) and demand volatilities).  

 

1.4. Thesis Organization 

This thesis is organized as follows. First, Chapter 2 comprehensively reviews the 

related literature from four aspects. Then, Chapter 3 builds a novel individual pairing 

approach for airline cabin crews with the aim of improving manpower utilization and 

reducing operating costs from the perspective of air passenger logistics management. 

Next, the optimal pricing strategies for cargo airlines with risk considerations measured 

by the mean-variance theory are investigated in Chapter 4 in order to improve the 

decision making for air cargo logistics management. Lastly, concluding remarks and 

potential future research directions of this thesis are given in Chapter 5. Besides, the 

parameters and variables used in Chapter 3 are summarized in Appendix A. The input 

data and operational parameters which facilitate the computational experiments of 

Chapter 3 are listed in Appendix B, while Appendix C gives some complementary 

materials for the computational analysis of Chapter 3. Moreover, the parameters and 

mathematical proofs for Chapter 4 are shown in Appendix D and Appendix E, 

respectively. 



27 

 

 

Chapter 2. Literature Review 

In this chapter, firstly, the literature regarding air passenger logistics operations is 

reviewed in Section 2.1. To be specific, the four sequential airline scheduling stages are 

reviewed in Section 2.1.1. Then, the important two-stage airline crew scheduling 

problem is introduced in Section 2.1.2, while the four research streams of the CPP are 

stated in Section 2.1.3. Next, the analytical research on air cargo logistics operations, 

especially the essential pricing strategies, are reviewed in Section 2.2. Besides, as this 

research aims to integrate risk considerations into the decision framework, the 

analytical operations research with risk considerations is surveyed in Section 2.3. 

Specifically, Section 2.3.1 reports the risk management literature for air cargo logistics, 

while Section 2.3.2 gives an overview about the pricing strategies with risk 

considerations. Finally, the application of the mean-variance theory for risk analysis 

with air logistics from four aspects is reviewed in Section 2.4. 

 

2.1. Air Passenger Logistics Operations 

2.1.1. Airline Scheduling Problem 

The air passenger logistics industry has experienced an increase in the awareness of 

effective and efficient operational strategies since the late 1950s (Barnhart et al., 2003a). 

The development of operations research (OR) has made considerable contributions for 

airlines to maintain a profitable growth rate. Air passenger logistics operations planning 

is very challenging, considering the stochastic passenger demand, hundreds of flights 

per day, different types of fleet, restrictions of airports and gates, air congestion, aircraft 

maintenance requirements, and abundant rules and regulations imposed by 

governments and labor unions. It is impractical to formulate and solve the whole 

scheduling problem in a single model due to the potential billions of constraints and 

decision variables. Consequently, decomposition of the uncontrollable problem into 
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relatively smaller sequential problems becomes essential (Burke et al., 2010; Lan et al., 

2006; Ball et al., 2007). Accordingly, the large-scale airline scheduling problem is 

generally solved by four consecutive sub-problems, i.e., flight scheduling, fleet 

assignment, aircraft maintenance routing, and crew scheduling. It should be pointed out 

that these decomposed problems are still on a large scale, with a high problem 

complexity. The formulation strategies and optimization approaches for each step are 

reviewed sequentially in the following. 

 

2.1.1.1. Flight Scheduling 

As the starting point of air passenger logistics operations planning, flight scheduling 

determines when to fly, where to fly, and the frequency of flights served for each 

particular market under competition. A typical flight schedule consists of flight number, 

arrival/departure time, and origin/destination. Flight schedule construction begins with 

traffic flow forecasting, and relies on manpower availability, operation features of fleet 

types, and government regulations.  

Generally, the flight scheduling problem is solved by heuristic approaches. Yan et 

al. (2007) formulate it as a nonlinear integer programming problem and build an 

efficient heuristic algorithm for a Taiwan airline to help maintain its profitability in a 

competitive market. Yan and Young (1996) develop a strategy for the draft flight 

schedule modification problem which is modeled as a multiple commodity network 

flow problem, and construct a Lagrangian Relaxation based heuristic solution algorithm. 

However, this strategy is inefficient considering its unreasonable complexity and 

unsatisfactory computation time. Therefore, a two-phase method is incorporated into 

the model of Yan and Young (1996) for higher efficiency by Yan and Tseng (2002). 

These research studies assume a static situation and ignore potential perturbations. With 

the development of stochastic modeling approaches, airlines are capable to consider the 

uncertain passenger demand in the flight scheduling procedure. Therefore, schedules 

with higher efficiency and reliability can be produced. For instance, Lee et al. (2007) 

develop a multi-objective genetic algorithm to improve the robustness of flight 
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schedules by adjusting the departing times according to real-time information. 

 

2.1.1.2. Fleet Assignment  

A typical flight schedule, as an output of the flight scheduling step, provides 

information about flight number, departure time, origin, arrival time, and destination. 

An appropriate aircraft type will then be assigned to each individual flight during the 

fleet assignment step. As stated by Rexing et al. (2000), the primary objective of fleet 

assignment is to maximize the capture / recapture rate of passengers and marginal 

revenue while minimizing total costs. The total flight costs consist of operating costs, 

passenger spill costs and potential deadhead costs. 

The main constraints for fleet assignment are flight coverage, aircraft balance, and 

aircraft capacity. The key issue in the problem is to track the locations of aircraft at any 

time. Accordingly, a time-space network is developed by Hane et al. (1995) to achieve 

such a track. In this work, the fleet assignment problem is formulated as a large-scale 

multiple commodity network flow problem with side constraints, and a combinatorial 

optimization algorithm is proposed to solve the problems of degeneration and long 

computation times, which is proved to be faster than the traditional Linear Programing 

method by more than two orders of magnitude. Since then, great improvements in the 

quality of fleet assignment plans have been implemented. For example, Rushmeier and 

Kontogiorgis (1997) claim that USAir could achieve savings of at least 15 million 

dollars annually by applying their model. Similarly, a basic fleet assignment model with 

a time window identifies a $67,000 reduction in the daily costs for a major airline in 

the US (Rexing et al., 2000). 

 

2.1.1.3. Aircraft Maintenance Routing 

The flight network is decomposed into several sub-networks after the fleet assignment 

plan has been completed. Each sub-network is associated with a fleet type. In the step 

of aircraft maintenance routing, a sequence of flights (routing) in each sub-network is 
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assigned to an aircraft from the related fleet type, while satisfying the maintenance 

requirements together with the flight coverage and aircraft availability constraints 

(Desaulniers et al., 1997b). Particularly, the flights in a routing should follow the rule 

that the destination of one flight is the same as the origin of the next flight. Additionally, 

a routing starts and ends at the same maintenance station, while each aircraft should 

visit a maintenance station during the regulated time interval along each routing. 

Network circulation with side constraints is generally employed to solve the 

aircraft maintenance routing problem (Barnhart & Cohn, 2004). In the related literature, 

Sriram and Haghani (2003) propose a maintenance scheduling model for a middle-size 

airline aiming at minimizing the maintenance costs, and develop a heuristic approach 

to solve it in satisfactory computation times. Bartholomew-Biggs et al. (2003) compare 

the performances of a deterministic method with two searching methods for the aircraft 

routing problem based on real data. In the work of Sarac et al. (2006), a novel 

operational aircraft routing problem with comprehensive resource availability 

constraints and maintenance requirements is formulated. A branch-and-price approach 

with customized branching rules shows high solution efficiency when combined with a 

heuristic routing selection system.   

 

2.1.1.4. Airline Crew Scheduling 

As the last step of air passenger logistics operations planning, crew scheduling 

determines which crew from which home base to fly which flight, while satisfying 

numerous rules and regulations. Home bases are cities or stations where a crew is 

actually located (Aydemir-Karadag et al., 2013). 

Salaries for airline crew are much higher than their counterparts in other 

transportation modes like railways. The expenditure on crews, which is reported to 

reach $1.3 billion annually for major U.S. airlines, takes up the second largest part of 

the total operating costs for airlines. Therefore, even a slight improvement in crew 

scheduling can bring dramatic savings (Hoffman & Padberg, 1993). Additionally, there 

are enormous rules and regulations imposed by governments, airlines, and labor 
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agreements that crews should follow (e.g., the maximum elapsed time of a pairing, the 

maximum flying hours allowed, and the maximum number of flights in a duty). 

Combined with the flight coverage constraints and the cost minimization requirement, 

crew scheduling remains a challenge for OR researchers. 

Due to its significance and complexity, the crew scheduling optimization problem 

has been investigated by many researchers for decades (e.g. Levine, 1996; Cordeau et 

al., 2001; Borndörfer et al., 2006). Ball (2003) point out that integer programming (IP), 

one of the most important techniques in operations research, has achieved one of its 

first applications on this problem. Furthermore, research on crew scheduling has 

motivated the early development of the set-partitioning and set-covering problem. Most 

airlines have implemented IP-based crew scheduling systems to construct crew 

schedules by the end of 1980s. Arabeyre et al. (1969) provide the earliest overview 

about the work on crew scheduling. More surveys on crew scheduling problems can be 

found in Desaulniers et al. (1998), Barnhart et al. (2003a), Barnhart et al. (2003b) and 

Barnhart and Cohn (2004).  

It should be pointed out that the rules and regulations for crews vary across airlines. 

Therefore, the research on crew scheduling concentrates on particular cases instead of 

general applications. Besides, the ways of scheduling domestic and international flights 

are different. In the next part, the two-stage airline crew scheduling problem is reviewed 

in detail. 

 

2.1.2. Two-Stage Airline Crew Scheduling Problem 

As discussed, crew scheduling is typically decomposed into two sequential processes: 

a CPP and a CAP. Medard and Sawhney (2007) demonstrate the reasons for such a 

decomposition as follows. 

i. Explosive numbers of variables and constraints are derived when the integrated 

problem is considered. 

ii. The rules and regulations are generally divided into a pairing-phase category and an 

assignment-phase category from the aspect of planning time.  
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iii. The quality of a crew scheduling plan largely depends on costs. The pairing process 

considers all the costs that are associated with operating a flight schedule. However, 

the objective of the CAP is to find a balance between costs and the specific needs of 

crews. 

In conclusion, decomposing the airline crew scheduling problem into two 

processes is essential. Detailed discussions are as follows. 

 

2.1.2.1. Crew Pairing Problem  

The CPP selects a subset from all feasible pairings to cover each flight at least once, 

with a minimum cost (Anbil et al., 1992). Consequently, this problem is generally 

formulated as a large scale set-partitioning or set-covering problem. In the model, each 

constraint represents a flight coverage restriction, while each decision variable 

determines whether to select a pairing.  

However, the number of possible pairings is counted in billions for major airlines. 

In addition, the complicated non-linear crew costs are generally represented by a 

function of the total elapsed time, total flying hours, and the minimum guaranteed 

payment, which increases the complexity of the problem (Barnhart et al., 2003b). 

Although the problem remains a challenge, there has been increasing research interests 

for the optimization of crew pairings. The reason is that it directly affects the quality of 

crew schedules and further influences the total crew costs (Stojković, et al., 1998; 

Zeghal & Minoux, 2006).  

As stated by Klabjan (2005), in the U.S., a three-stage method (daily problem, 

weekly problem, and monthly problem) is generally applied to solve the monthly CPP 

without the consideration of crew levels. In the first stage of the daily problem, flights 

that repeat at least four days per week are selected to generate daily pairings. Next, in 

the second stage, the impossible pairings produced in the first stage are broken. Then, 

the flights released, together with the flights repeating at least three weeks per month, 

are combined to generate weekly schedules. Lastly, in the monthly problem, the 

unexpected pairings produced in the second stage are disconnected and the flights in 
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these broken pairings are released. In this stage, the set of flights to be paired includes 

all the remaining flights. The ultimate solution to the original monthly problem is the 

sum of pairings generated in all the three stages. Due to the reduction in the scale of the 

problem, the three-stage method is useful and efficient for the monthly pairing problem. 

Moreover, the pairings generated can significantly maintain regularity which benefits 

management and is preferred by crews. However, Saddoune et al. (2013) present two 

weaknesses of the three-stage method. One is that the first two stages are worthless 

when the flight schedule is irregular, while the other concern is that it is impossible to 

repeat the same flight number in a daily pairing due to formulation limitations. They 

also show that skipping the first stage can produce solutions with higher quality. 

Additionally, Barnhart et al. (2003b) point out that the weekly problem (where the 

schedules repeat every week) and dated problem (a couple of days in a month) are 

valuable to research. For many airlines, decision makers usually develop pairings for a 

time range of seven days (a week) (Desaulniers et al., 1997a).  

 

2.1.2.2. Crew Assignment Problem  

Following the crew pairing stage, the second process of crew scheduling is the CAP, 

where specific individual crews are assigned to schedules, a legal sequence of pairings 

connected by days-off (Barnhart et al., 2003b). The CAP applies a pairing-based 

network, where nodes are pairings or activities including ground duties, trainings, and 

reserved duties, while arcs connect two pairings or activities. In such a network, a 

source-sink path represents a possible schedule for an individual crew. Similarly, there 

are also many rules and regulations that schedules should follow. Different from the 

flight coverage constraints considered in the CPP, the CAP is constrained by the pairing 

coverage restriction and the crew availability constraint at each base. In addition to cost 

minimization, airlines also concern about the preferences and requests of crews, and 

attempt to seek a satisfactory balance between these two aspects in the CAP. 
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2.1.3. Crew Pairing Problem by Crew Categories 

As discussed, there are two types of crews in airlines: cockpit crews and cabin crews. 

Besides, these two types of air crews are characterized with totally different features 

which should be considered separately during scheduling. In this part, the existing CPP 

literature for different types of air crews is reviewed. Specifically, Section 2.1.3.1 

focuses on the works studying the cockpit CPP, while Section 2.1.3.2 reviews the 

studies which consider both cockpit and cabin crews. Moreover, Section 2.1.3.3 

concentrates on reporting the works for the cabin CPP, and Section 2.1.3.4 identifies a 

research stream that treats air crews as a general category without specifying the 

specific class. 

 

2.1.3.1. The Crew Pairing Problems for Cockpit Crews 

In the first research stream, studies are concentrating on the pairing problems for 

cockpit crews (e.g., Chu et al., 1997; Marsten et al., 1979; Saddoune et al., 2012; 

Sandhu & Klabjan, 2007; Schaefer et al., 2005; Shebalov & Klabjan, 2006). In these 

works, the cockpit CPP is decomposed by the types of aircraft with the same manpower 

requirement configurations owing to the features of cockpit crews. Consequently, the 

challenges caused by flight requirement heterogeneity no longer exist in the cockpit 

CPP. Here, decision variables are formulated for cockpit crew team pairings in which 

team members can work together for the whole pairing (Vance et al., 1997b; Yan & 

Chang, 2002).  

Most of the cockpit CPP research takes the assumption of infinite manpower, 

except Guo et al. (2006), Dunbar et al. (2014), Stojković and Soumis (2001), and Yildiz 

et al. (2017). For example, Dunbar et al. (2014) impose an upper bound on the number 

of cockpit crew teams used when dealing with an aircraft routing-crew pairing 

integrated problem. Recently, Yildiz et al. (2017) propose to integrate the manpower 

fatigue factor into the crew pairing process for pilots, considering the severe outcomes 

it can lead to. The Three Process Model of Alertness is applied to formulate the fatigue 
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level for pilots based on the so-called homeostatic and circadian processes. Moreover, 

crew availability is considered by modelling decision variables for each individual pilot. 

Interestingly, Yildiz et al. (2017) illustrate that with the application of the Three Process 

Model of Alertness, some of the existing rules and regulations imposed by authorities 

and airlines can be omitted.  

 

2.1.3.2. The Crew Pairing Problems for Cockpit Crews & 

Cabin crews 

This stream solves the pairing problem for both cockpit crews and cabin crews, which 

is further divided into two sub-streams. The first sub-stream, with the majority of 

research, applies the same modelling approach for the two types of crews, ignoring the 

distinctive characteristics of cabin crews (e.g., AhmadBeygi et al., 2009; Anbil et al., 

1991; Dunbar et al., 2012; Erdoğan et al., 2015; Hoffman & Padberg, 1993; Muter et 

al., 2013; Salazar-González, 2014). Specifically, cabin crews are assumed to fly only a 

single type of aircraft and modelled as teams like cockpit crews, while the flight 

coverage constraint is to cover each flight (at least) once. Accordingly, the varying 

requirements among heterogeneous flights and the multiple classes of cabins crews are 

ignored. Therefore, the cabin CPP is much simplified and easier to solve in this sub-

stream (Saddoune et al., 2013; Shao et al., 2017; Tekiner et al., 2009; Weide et al., 2010; 

Yen & Birge, 2006). However, this scheduling approach is inconsistent with the 

characteristics of cabin crews and the emerging airline practice. The flexibility of cabin 

crews is greatly restricted by being scheduled bundling with teams. Besides, the 

solution obtained this way is only locally optimal with respect to the separated problem 

by aircraft types. More importantly, the solution efficiency and cabin crew utilization 

are significantly impaired because the flight requirement heterogeneity is not 

considered. Moreover, in this sub-stream, most research ignores the manpower 

availability constraint expect Desaulniers et al. (1997a), Graves et al. (1993), and 

Stojković et al. (1998). The second sub-stream, with only one piece of related research 

(Medard & Sawhney, 2007), treats the two types of crews differently. Medard and 
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Sawhney (2007) recognize the flight requirement heterogeneity when making pairings 

for cabin crews. The so-called crew-need vectors are proposed to incorporate the 

varying flight requirements into the model. However, the authors formulate cabin crews 

as crew-slices (a form of team), rather than individuals, without the availability limit. 

 

2.1.3.3. The Crew Pairing Problems for Cabin Crews 

The third stream focuses on the CPP for cabin crews, with only two research works. 

For the first work, similar to the first sub-stream of the second stream, Yan and Tu (2002) 

build cabin crew team pairings to cover homogeneous flights without identifying the 

differences among multiple classes and manpower availability limitation. Differently, 

the second work, Yan et al. (2002), considers the various flight requirements across 

aircraft types of a Taiwan airline when making pairings for each class of cabin crews 

individually. Besides, Yan et al. (2002) use higher class cabin crews to substitute lower 

class ones. To the best of our knowledge, Yan et al. (2002) is the only literature that 

models cabin crews individually and crew substitution. However, the crew substitution 

in Yan et al. (2002) is random and uncontrolled where unnecessary substitutions cannot 

be avoided. Besides, it is not guaranteed that at least one qualified cabin crew from the 

required class is assigned to each flight. Furthermore, their model ignores the 

manpower availability constraints. 

 

2.1.3.4. The Crew Pairing Problems for General Crews 

The papers in the fourth stream consider the pairing problem for air crews. However, 

they do not specify whether “cockpit” crews or “cabin” crews are considered. Instead, 

they use the term of “crew” in a general sense. For instance, Chung et al. (2017) 

combine big data technology with the CPP to improve the robustness of solutions for 

crews, while Quesnel et al. (2017) consider an extended CPP where each crew base is 

constrained by total working time. In this stream, the distinctive characteristics of cabin 

crews are not considered in the pairing models. Besides, only homogeneous flights are 

considered and the infinite general crews are scheduled as teams without recognition of 
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specific classes, which makes this stream similar to the research on cockpit crews. 

Many other studies belong to this stream (e.g., Barnhart & Shenoi, 1998; Barnhart et 

al., 1995; Cacchiani & Salazar-González, 2017; Cohn & Barnhart, 2003; Cordeau et al., 

2001; Gao et al., 2009; Klabjan et al., 2001a, 2001b; Klabjan et al., 2002; Lavoie et al., 

1988; Lettovský et al., 2000; Levine, 1996; Makri & Klabjan, 2004; Mercier & Soumis, 

2007; Mercier et al., 2005; Papadakos, 2009; Ruther et al., 2017)  

 

2.2. Air Cargo Logistics Operations 

2.2.1. Analytical Research for Air Cargo Logistics 

As an important part of air logistics, air cargo transportation has become increasingly 

critical to the success of global supply chains. However, in the literature, the majority 

of airline-related analytical operations research concentrates on passenger transport 

(Chen & Chou, 2017; Chung et al., 2017; Doi et al., 2018; Liang et al., 2018; Wei & 

Vaze, 2018), while much less explores air cargo transportation (Wang et al., 2017). 

Most of the existing literature on air freight operations investigates the topics like 

revenue management, capacity management, entry decisions, and booking control. For 

instance, Barz and Gartner (2016) construct heuristics for network air freight revenue 

management based on linear programming, decomposition and approximate dynamic 

programming, while Wada et al. (2017) investigate the capacity allocation problem for 

risk-averse cargo airlines. From the perspective of market entry decisions, Wang et al. 

(2017) study an air freight service supply chain with promised delivery time 

competition. The authors identify the win-win and lose-lose situations for both mainline 

carriers and regional carriers if the mainline carriers enter the upstream regional market. 

They also find that the multi-dimensional competition could reduce the negative impact 

of the upstream entry on the incumbent regional carriers. On the other hand, Hellermann 

et al. (2013) propose an option contract to derive the optimal booking policy for a 

system consisting of a freight forwarder and a cargo airline. They analyse the impact of 

overbooking on cargo airline’s profitability, and demonstrate the advantageous 
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performance of the proposed contractual agreement over the existing one by applying 

industrial real data.  

Other analytical research topics related to air cargo management include shipment 

integration and consolidation (Leung et al., 2009), network planning (Derigs et al., 

2009), and loading planning (Li et al., 2009). For example, Leung et al. (2009) focus 

on identifying the optimal air cargo shipments integration and consolidation decisions. 

In the problem setting of Leung et al. (2009), a freight forwarder plans the execution of 

diverse shipments for his consumers, and each shipment is composed of a series of 

sequential activities. Besides, each activity should be operated by a number of 

processing units. The authors claim that cost reduction can be achieved if some 

activities could be consolidated. Therefore, Leung et al. (2009) aim to decide which 

activity should be operated by which processing unit with the objective of minimizing 

the overall costs. To solve the problem, a branch-and-bound algorithm is built with 

some heuristics. From the perspective of air cargo flight network planning, Derigs et al. 

(2009) construct a novel planning approach and build new solution algorithms for the 

top global cargo airlines. The authors insist that the network planning procedure for air 

cargo logistics is challenging because it involves different business units to identify 

market potentials and allocate airlines’ resources simultaneously. In Derigs et al. (2009), 

three scheduling stages (i.e., flight selection, aircraft scheduling, and cargo routing) are 

solved in two integrated models, while the objective of the optimization problem is to 

maximize the profits of the cargo airlines. Besides, the authors test the applicability of 

the proposed models based on real-world collected instances. On the other hand, Li et 

al. (2009) examine the impact of air cargo loading strategies on the financial 

performances of airlines with limited containers. A novel neighbourhood search 

heuristic which relaxes the subset-disjoint constraint is proposed to improve the 

solution efficiency by Li et al. (2009). 
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2.2.2. Pricing Strategies for Cargo Airlines 

Regarding the pricing problem, although the significance and challenges of this crucial 

decision for air freight carriers have been realized, only a few pieces of studies have 

explored this critical issue. First, Azadian and Murat (2018) study a group pricing 

problem for an air cargo company. The authors state that it is a common practice for 

the transportation industry to group several locations and price these services on a group 

basis. Therefore, they formulate an integrated model to simultaneously decide the 

optimal group service locations and the corresponding prices. Besides, the authors 

construct a mixed-integer nonlinear programming model for the integrated problem 

which is solved by algorithms based on decomposition approaches. Second, 

considering a service supply chain consisting of an air freight airline and freight 

forwarders who compete for uncertain demand, Tao et al. (2017) explore the option 

contracts between the agents, and derive the optimal prices for the airline and the 

optimal reservation strategies for freight forwarders to maximize their expected profits. 

A Stackelberg game is established to model the behaviours of the supply chain members, 

while numerical experiments and sensitivity analyses are conducted to generate 

managerial insights in Tao et al. (2017). Similar to the above two studies, Chapter 4 

also explores the pricing problems for air cargo carriers. However, different from them, 

this study simultaneously incorporates the uncertainties from both demand and 

operating costs, and market competition into the decision framework. Accordingly, the 

impacts of these crucial factors on the equilibrium prices can be investigated, thus 

generating useful insights and implications. More importantly, this work considers the 

carriers’ risk attitudes towards profit uncertainties, which is novel in the air cargo 

pricing literature. 

 

2.3. Decisions with Risk Considerations 

Risk analysis is one of the most crucial topics in operations management over the past 

decade (Ching et al., 2009; Du et al., 2018; Shang et al., 2017). For example, Shen et 
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al. (2013) study the performance of markdown money policy in a fashion supply chain 

composed of a risk-averse manufacturer and a risk-neutral retailer. Besides, Choi (2016) 

examines the supply chain coordination issues with risk-sensitive retail buyers under 

both symmetric and asymmetric information settings. The author illustrates that the risk 

attitudes of decision makers significantly influence the achievability of prefer 

coordination for a supply chain. Similarly, Xie et al. (2018) explore the conditions to 

achieve supply chain coordination with the consideration of retailers’ risk behaviours. 

In the model setting of Xie et al. (2018), retailers could be risk-neutral, risk-averse, or 

risk-take in a unified framework. Therefore, the significant impact of risk attitudes on 

decision making is demonstrated through comparing the various settings (Xie et al., 

2018). Furthermore, Zhang et al. (2016) investigate the effects of risk-averse behaviour 

and capital constraint on the optimal price and ordering quantity decisions for a 

newsvendor supply chain. In addition, risk analysis has been widely applied in the areas 

like personnel assignment (Lazzerini & Pistolesi, 2018), cybersecurity protection (Qin 

et al., 2018), Bayesian network modelling (Yang et al., 2018), and contamination of 

food production facilities (Chang et al., 2017).  

 

2.3.1. Risk Analysis for Air Cargo Logistics  

In the air cargo industry, if uncertainties (like uncertain demand and cost) exist, the 

performance of airlines will be affected and their profitability becomes volatile (Chiu 

& Choi, 2016). Therefore, how to improve decision making under an uncertain 

environment to alleviate profit risks becomes a critical problem for freight airlines. 

However, this topic is scarcely studied in the existing literature. From the perspective 

of capacity allocation, Wada et al. (2017) explore the optimal strategy for freight 

airlines with risk considerations. The authors propose that there are two capacity 

reservation tactics in the air cargo transportation industry. The first is to reserve by 

allotment with fixed prices (which is based on long-term contracts), while the second 

is to reserve the remaining capacity which is not allocated to allotment agreements. 
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Although the available capacity becomes uncertain, the second reservation tactic 

enables decisions to be made near the departure date. Both risk-averse and risk-neutral 

attitudes of airlines are considered in the decision framework of Wada et al. (2017) 

using the Conditional Value-at-Risk (CVaR) approach. Besides, Sample Average 

Approximation approach is applied to test the models using real data in Wada et al. 

(2017). From the discussion above, it is obvious that more research is needed to 

improve the decision making for cargo airlines with risk behaviour considerations. 

 

2.3.2. Pricing Strategies with Risk Considerations 

Some research has integrated risk considerations into the pricing decision framework. 

For example, Zheng et al. (2017) study the optimal pricing decisions for liner shipping 

companies who compete for uncertain demand, and the risk-averse behaviour of one 

participant is modelled by the conditional value at risk approach. Conditions when the 

equilibrium prices will increase or decrease along with competition level are analysed 

in Zheng et al. (2017). Besides, Agrawal and Seshadri (2000a) explore the pricing and 

ordering decisions for a risk-averse newsvendor facing with uncertain demand. They 

show that the risk-averse attitude could either raise or lower the retail price in different 

model settings. Besides, Li et al. (2014a) study the impact of risk preference of a retailer 

on the optimal pricing decisions for a dual-channel supply chain. They show that when 

the retailer becomes more risk-averse, the equilibrium retail price will decline if the 

uncertain demand follows a uniform distribution. A similar study could be found in Liu 

et al. (2016). Furthermore, Li et al. (2014c) analytically explore how the risk attitude 

of a retailer could affect the optimal price and promised delivery time decisions.  
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2.4. Mean-Variance Theory for Risk Analysis 

with Air Logistics 

Regarding risk analysis, one of the most commonly applied analytical approaches is the 

mean-variance (MV) theory. The MV theory was firstly introduced for portfolio 

optimization in financial engineering (Markowitz, 1959), and then is widely used in 

supply chain and logistics operations problems (Chiu et al., 2015; Chiu et al., 2018; 

Choi et al., 2018; Li et al., 2014b). For instance, Chiu et al. (2015) solve the supply 

chain coordination problem with several risk-averse retailers and a risk-neutral 

manufacturer based on the framework of the MV theory. The authors find that the risk 

parameters play a crucial role in determining the efficiency of coordination contracts. 

They also show that the manufacturer could manage the retailer profit variance through 

adjusting the risk indicators. This study follows this research stream on risk analysis to 

apply the MV theory to measure the risk aversion behaviours of air cargo carriers. 

Specifically, like the literature, an MV objective is proposed which maximizes the 

expected profit of the air cargo carrier minus the variance of profit to characterize the 

equilibrium risk-averse pricing strategies. 

To facilitate this research, the application of mean-variance theory in air logistics 

operations is reviewed in this sub-chapter.9 Specifically, the MV analysis of operations 

management problems in global supply chains associated with air logistics is focused. 

Air logistics are related to operations management in various perspectives. First of all, 

for air-logistics related operations, such as crew scheduling, pricing, airline 

coordination, etc., the MV theory can be used for the respective risk analysis. Second, 

for non-air-logistics related companies and organizations, they need air logistics to 

provide express delivery services to them. Thus, from demand management, and supply 

management perspectives, air logistics plays a critical role and the MV theory can be 

applied to conduct analysis.  

 
9 As a remark, most part of this section is summarized in Choi, T. M., Wen, X., Sun. X.T., & Chung, S.-H. (2019). 

The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era. 

Transportation Research Part E: Logistics and Transportation Review, 127, 178-191. 
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This sub-chapter on the review of the MV theory application is organized as follows. 

Section 2.4.1 explores the air-logistics specific operations. Then, Section 2.4.2 

examines the demand management operations with the use of air. Next, Section 2.4.3 

reviews the literature on supply management with the application of air transport. At 

last, the application issues for supply-demand coordination are discussed in Section 

2.4.4. 

 

2.4.1. Air Logistics Related Operations 

This part reviews the literature in air logistics related operations from the perspective 

of strategic decision making, and discusses the risk analysis issues and applications of 

the MV theory in these areas.  

Strategic decisions in air logistics management, such as service pricing, airline 

alliances and competitions, entry decisions, revenue management, capacity 

management, and booking control management, are crucial for the profitability and 

development of air cargo companies. For example, Wang et al. (2017) study the 

strategic upstream entry decisions for mainline air carriers in an air cargo service supply 

chain when the competition on promised delivery time is intensive. The value of vertical 

cooperation and upstream competition, equilibrium profits, and channel structures are 

investigated by Wang et al. (2017). Interestingly, the authors find that the upstream 

entries of mainline carriers could lead to either a win-win situation or a lose-lose 

situation for the mainline carrier and the incumbent regional carrier. 

In the literature, Azadian and Murat (2018) point out that among all the strategic 

air logistics management problems, pricing strategy is the most important but 

challenging decision for freight airlines. Azadian and Murat (2018) focus on a group-

to-group air logistics service pricing problem, and develop an integrated model to 

determine the optimal group service locations and the corresponding prices 

simultaneously. In their model, the price elasticity of consumer demand is considered, 

and computational experiments are conducted to show the effectiveness of the proposed 
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model in Azadian and Murat (2018). Additionally, facing uncertain market demand, Tao 

et al. (2017) investigate the optimal prices for freight airlines to sell capacity to 

forwarders, as well as the optimal prices charged for the end consumers by forwarders. 

A Stackelberg game is established to model the behaviors of airlines and forwarders to 

maximize their expected profits. Besides, the authors also examine the efficiency of 

option contracts between cargo airlines and freight forwarders where the contract could 

be executed after the uncertain market demand is realized. However, despite the 

intrinsic diverse uncertainties in the air logistics mediated supply chains (e.g., demand, 

cost), in the above reviewed works, the profit risks or profit volatility have not been 

explored. Therefore, the MV theory can be applied to characterize the profit risks 

aversion objective function for airlines to improve their decision making. 

 

2.4.2. Demand Management 

Air logistics can help a lot for companies to deal with demand variation. For example, 

in securing supplies from vendors, companies employ air transportation to help reduce 

the delivery lead time and this relates to industrial practices such as quick response, 

emergency supply, responsive supply, etc. With a reduced lead time, the global supply 

chain becomes more responsive to market demand changes and the buyers can achieve 

better forecasting and improve its ordering decisions and inventory planning. 

In the literature, this subject has been examined under the topic of quick response. 

For instance, Iyer and Bergen (1997) establish that in a supply chain, postponing the 

ordering decision under quick response can yield a higher benefit for the retailer but 

not for the manufacturer when the inventory service level is not very low. The authors 

propose measures to achieve Pareto improvement in the supply chain channel. Cachon 

and Swinney (2011) study the use of quick response in the fashion industry to build the 

fast fashion business model. The authors consider the presence of forward-looking 

strategic consumers and they propose the use of enhanced design as a part of the 

business strategy. Chen et al. (2016) study the use of multiple shipments which employ 

information benefits similar to what quick response achieves. The authors highlight the 
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significance and application of the inventory subsidizing supply contract. Lin and 

Parlaktürk (2012) investigate quick response under a competitive market. They uncover 

that the findings towards quick response under competition are very different from the 

ones without competition. Yang et al. (2015) examine quick response with the 

consideration of forward-looking consumer behaviors. The authors also reveal how the 

structure of the supply chain would make a difference. Recently, Choi et al. (2018) 

study quick response supply chain systems in which the retailers possess a stochastic 

risk attitude. They discover the fact that it is unwise to ignore the stochastic risk attitude 

because it will lead to mistakes in supply contracting. In all of the above quick response 

programs, one way to achieve speedy response is to employ a quick delivery mode. For 

global supply chains, air transportation is the most reliable and speedy delivery mode 

which can help. In the above reviewed studies, they all focus on exploring quick 

response (which could relate to the use of air transportation) from the perspective of 

expected benefits. They do not explore the profit volatility or the profit risk. Recently, 

Choi (2018) extends the classic study by Iyer and Bergen (1997) and studies the quick 

response supply chain using the MV theory. The mechanism of using MV theory to 

model the risk-sensitive decision making for the buyer to achieve quick response is 

described as follows. 

To be specific, here, an operations problem similar to Choi (2018) is considered: A 

buyer orders a newsvendor type of seasonal product from the supplier using a wholesale 

pricing contract. The unit wholesale price is w, the unit product revenue is p, and the 

product leftover carries a net unit value v. The order quantity is denoted by q. Define 

the scenario with the use of air shipping by AIR  and the scenario without using air 

shipping by AIR .  

Using the normal distribution and formulating the problem using the Bayesian 

conjugate pair, the following could be obtained: Demand uncertainty at the time point 

when the buyer places the order without the use of air shipping, i.e. the slow delivery 

mode, is denoted by 
AIR

 . With air shipping, the buyer places the order at a time point 
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closer to the selling season and the demand uncertainty is 
AIR . By Bayesian theory, it 

is known that AIR AIR
  .  

Under Scenario { , }l AIR AIR , the respective expected profit and variance of profit 

are represented as follows: ( )lEP q  and ( )lVP q . Under the newsvendor problem setting, 

it is known that ( )lEP q   is concave and ( )lVP q   is monotonically increasing. The 

standard normal density function, the standard normal cumulative distribution function 

and the standard normal right linear loss function are represented as ( )a , ( )a  and 

( )a , respectively. In particular, 

( )lVP q = 2 2( ) l
l

l

q
p v


 



 −
−   

 
 , where ( ) 2 2( ) ( 1) ( ) [ ( ) ( )]a a a a a a a a  = + +  − +  . 

Under the MV theory, a risk aversion tolerance threshold 0RiskK   is defined and 

the following optimization problem for the buyer is formulated: 

max ( )

. . ( ) , { , }.

l
q

l Risk

EP q

s t VP q K l AIR AIR 

  

Note that the problem above is a classic mean-variance optimization problem. 

Solving it and getting the answer will yield the optimal ordering quantity under 

Scenario { , }l AIR AIR . 

 

2.4.3. Supply Management 

Supply side can be stochastic and unreliable. Even if a situation when demand is 

perfectly known in advance is considered, if supply is uncertain and highly volatile, the 

global supply chain’s efficiency is still under threat. For instance, supplier capacity, 

product yield, supply disruption, etc., are all important parameters which may be 

random. If the buyer can acquire better information regarding supply, it can do a better 

job in its operations management. Thus, air logistics play a role because the buyer can 
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employ the air logistics to reduce lead time and grant itself more time to observe the 

supply side information and improve its decision making. 

Now, some studies related to supply side uncertainty are reviewed. Altug and 

Muharremoglu (2011) explore the early supply information for the buyer. They 

theoretically derive the value of supply side information which consists of operations 

downtime and inspection time. Atasoy et al. (2012) explore the case in which the 

supplier can forecast the supplier’s inventory situation. The authors study how advance 

supply information can be used to reduce supply uncertainty. Çınar and Güllü (2012) 

examine the advance capacity information for a buyer in a supply chain with flexible 

production capacity. The authors highlight that the use of advance capacity information 

is especially effective if the supplier’s capacity has a high level of volatility. Dettenbach 

and Thonemann (2015) study the value of supplier’s yield information. The authors 

focus on uncovering how supply side yield information can be used to improve 

inventory planning and reduce costs. Luo and Chen (2017) examine the supply chain 

system with random yields from supply side. The authors consider the case when 

demand is fixed. They demonstrate how the option contract can be set in a way which 

achieves coordination in the supply chain for both the manufacturer’s purchasing 

quantity and the supplier’s production quantity. Gao et al. (2017) investigate how the 

early supply signal can be used to improve supply chain operations. The authors 

develop a mechanism for the buyer to consider when it is wise to acquire supply 

information. Li (2017) explores the optimal purchasing policy in the presence of 

random yield suppliers. The author considers the presence of a manufacturer with a 

fixed demand, who needs to place orders and get supplies from two suppliers. Yields of 

suppliers are uncertain which create challenges. Note that in the above reviewed studies, 

supply information is treated as a critical treasure and supply information updating 

helps to improve operations performance. One way to allow the buyer to observe the 

supply side is to employ air shipping so that lead time is reduced. In this case, the buyer 

can spend more time to observe the situation of the supplier and make a wiser decision. 

In terms of profit risk, none of the above reviewed studies have considered profit 
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uncertainty and the implied risk. 

Thus, similar to demand management, the MV theory can also be applied to 

conduct risk analysis for the global supply chains with supply side uncertainty. For 

example, a global supply chain in which a single buyer needs to order from a supplier 

is considered. The supplier is unreliable and hence may not fulfill all the ordered 

quantity. The specific allocation of inventory (e.g., granting 60%, 70%, 80%, 90%, etc., 

of the ordered quantity to the buyer) depends on the level of shortage at the supplier 

side. In this situation, if the buyer chooses the slow mode of delivery, it will have to 

order earlier, and it has poorer knowledge regarding the supply’s situation in the 

shortage level. If the buyer can choose the quick delivery mode using air shipping, it 

will be able to learn and get more up-to-date information regarding the shortage level 

in supply and then make the optimal decision. In terms of modeling analysis, a similar 

MV optimization problem as shown in Section 2.4.2 can also be constructed. 

 

2.4.4. Supply-Demand Coordination 

In general, both demand and supply sides can be associated with uncertainties and 

hence risks are present. To achieve supply-demand coordination with respect to the 

presence of dual-uncertainty is an uneasy task as it means there exist multiple sources 

of uncertainties (Choi et al. 2017).  

To be specific, by shortening lead time, the buyer is benefited with respect to the 

management to both demand and supply sides. For example, for the demand side, the 

quick response program can be implemented. For the supply side, air logistics is known 

to be stable and hence it can reduce supply lead time uncertainty. The buyer can also 

observe and acquire more information regarding the supply side situation.  

In the literature, studies exploring both supply and demand uncertainties have 

appeared in recent years. Some of them are reviewed as follows.  

Chen and Xiao (2015) study outsourcing strategies with demand and supply 

uncertainties. The authors also explore the impact brought by channel leadership. They 
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uncover that the manufacturer does not want to go outsourcing when the risk of 

disruption is low and the available production capacity is sufficient. They also 

interestingly find that if the risk of disruption is very high, the manufacturer will go 

outsourcing irrespective of the availability of production capacity. Jabbarzadeh et al. 

(2016) explore global supply chains with disruptions from supply and demand. They 

establish a stochastic optimization model and conduct computational studies. The 

authors discover how demand volatility and supply uncertainty (in terms of capacity) 

affect the optimal decisions. Negahban and Smith (2016) investigate how demand and 

supply uncertainties affect new product development. The authors highlight the 

importance of taking both demand and supply uncertainties into considerations. By 

conducting Monte Carlo simulation experiments, the authors show that when risks are 

included in the decision-making problem, the optimal decision would be very different. 

Jabbarzadeh et al. (2017) study supply and demand uncertainties by exploring a 

production–distribution control problem. The authors illustrate the application of their 

proposed method via conducting extensive computational studies. 

In terms of analytical modelling, as an example, one can simply combine the 

demand management and supply management models that are proposed in previous 

sections. Of course, when both sources of uncertainties as well as the impact of using 

air shipping mode are considered, one may come across the situation that for the 

derivation of the variance of profit function, there are two sources of uncertainties. As 

a result, it is necessary to employ the following formula for the correct estimation of 

the unconditional variance of profit: 
/ /( ) [ ( )] [ ( )]X Y X X Y XV P E V P V E P= + . In words, if P 

denotes profit, the unconditional variance of profit is the sum of “expected conditional 

variance of profit” and “variance of conditional expected profit”.  

 

2.5. Summary 

From the above literature review, the following crucial research gaps regarding air 

logistics operations can be summarized. 
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From the perspective of air passenger logistics, it is obvious that cabin crews are 

studied much less than cockpit crews in the CPP literature. This is mainly caused by the 

larger problem scale and complexity of the cabin crew pairing problems, and the 

relatively higher importance of cockpit crews for the operations of aircrafts. However, 

the significance of cabin crews is also realized, and the associated managerial decisions 

are also crucial for the performance of flights and the profitability of airlines. The 

detailed research gaps are listed as follows. 

First, most of the existing cabin CPP research treats cabin crews as identical as 

cockpit crews. That is, cabin crews are assumed to fly a single aircraft type and 

modelled as teams without considering the multiple classes. However, in practice (e.g., 

The Airways), cabin crews are cross-qualified to fly mixed types of aircraft, and they 

are scheduled based on their classes. Besides, the team modelling approach fails to 

characterize the heterogeneous requirements for multi-class cabin crews of different 

flights. Accordingly, the team modelling approach can lead to low manpower utilization 

because the actual cabin crews required by a team must satisfy the maximum 

requirements among all the flights in that team pairing. However, on the other flights 

with fewer requirements, some of the manpower assigned is not used. Although 

working as teams is helpful for employees’ psychological health, this thesis research 

focuses on highlighting the impact of individual modelling approach on airlines’ cost 

reduction and manpower utilization improvement, which provides useful guidelines for 

airlines in decision making. 

Second, there is no literature integrating the availability constraint for each class 

of cabin crews into the CPP. As discussed, the crew scheduling problem is divided into 

two sequential problems of a CPP and a CAP. Without considering the crew availability 

constraint in the CPP, additional proceedings (e.g., pairing breaking & reconstruction) 

which causes undesirable increased operating costs could be induced in the stage of 

crew assignment problem. Although some previous studies have proposed to impose an 

upper limit on the manpower used in the stage of CPP (in teams), the related study of 

this thesis research is different from them because the availability constraint for each 
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individual class of cabin crews is considered.  

Third, the airline practical operation of CCS is rather underexplored in the 

literature. As mentioned, CCS is essentially a practical strategy to deal with the cabin 

crew shortage problem caused by the variations in manpower requirement during flight 

fluctuation. Observing this real-world practice and the importance of this strategy on 

airline operations, it is significant and worthwhile to investigate the impact of CCS on 

cabin crew management.  

Fourth, to the best of our knowledge, no prior study analyzes the impacts of the 

relationship between cabin crew availability with manpower requirement benchmarks 

on cabin crew management in the literature. However, the analysis in this study shows 

this relationship is critical to determine the cabin crew planning strategies to be adopted. 

In conclusion, the research on the cabin CPP is rather inadequate, and the pairing 

generation methodology for cabin crews still has a large room for improvement. The 

literature will benefit from bridging these gaps to mitigate the deficiencies of the 

existing methodologies. Accordingly, this study has proposed a novel individual cabin 

crew pairing approach which considers the distinctive characteristics of cabin crews (as 

presented in Chapter 3). 

On the other hand, from the perspective of air cargo logistics, it is clear that 

relatively limited research has studied the pricing decisions for air cargo carriers. 

Besides, none of the current studies has investigated the integrated impact of market 

competition, demand uncertainty and cost uncertainty on the optimal prices. More 

importantly, to be best of our knowledge, no previous research has explored how risk 

behaviors of decision makers affect the equilibrium pricing decisions for the air cargo 

logistics industry. Therefore, one of the objectives of this thesis is to bridge these 

significant literature gaps by conducting risk analysis for cargo airlines’ pricing 

strategies, which is described in Chapter 4. This work differs from other studies and 

becomes the first research that explores the pricing problem for competing risk-averse 

air cargo carriers facing uncertain demand and costs. 
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Chapter 3. A Novel Pairing Approach 

for Cabin Crews 

Realizing the research gaps in the cabin crew pairing literature and the real problems 

revealed from the air passenger logistics operations management (from Chapter 2), this 

chapter proposes a novel pairing generation methodology for multi-class cabin crews, 

which is proven to significantly improve cabin crew utilization and reduce associated 

costs (named as Multi-class individual cabin crew pairing problem with availability 

and controlled crew substitution (MICCPP-ACCS)), solved by a branch-and-price 

exact method which combines column generation and branch-and-bound10. With the 

consideration of flight requirement heterogeneity, the proposed pairing generation 

methodology incorporates the cross-qualification and availability constraints for multi-

class cabin crews into the model. Rather than modelling teams as in the most existing 

literature, this work formulates each cabin crew individually in accordance with the 

emerging airline practice. Besides, the strategy of CCS is embedded to hedge against 

cabin crew requirement variation and manpower shortage during flight fluctuation. 

Compared with the literature, the proposed methodology distinguishes itself from 

others by its unique characterization of cabin crews and the effect of CCS on the cabin 

CPP, which underlies the modelling and analysis of this work. Furthermore, the crew 

substitution modelled in this work (CCS) exhibits the following specific features: i) the 

cabin crew availability constraint for each class is considered; ii) the crew substitution 

in this work could be controlled to ensure that at least one qualified cabin crew is 

assigned to each flight and no unnecessary substitution is allowed; iii) extra cabin crew 

variables are introduced to ensure solution feasibility. Besides, it should be pointed out 

that the planning horizon of the cabin CPP studied here is one week, while the 

“manpower availability” considered in this work refers to the maximum number of 

 
10 As a remark, most part of this chapter is summarized in Wen, X., Chung, S.-H., Ji, P., Sheu, J.-B. & Choi, T. M. 

(2019). Multi-Class Cabin Crew Pairing Problems with Controlled Crew Substitution in Airline Operations. 

Transportation Research Part B: Methodological, under the second round review. 
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pairings that can be generated for the planning horizon in the cabin CPP (similar to the 

literature like Graves et al. (1993)). Note that this study is not aiming at considering the 

precise availability for each specific cabin crew every day by building a CPP&CAP 

fully-integrated model. Instead, this research focuses on demonstrating the importance 

of scheduling cabin crews individually and considering the entire flight schedule rather 

than decomposing it by aircraft types, and showing the advantages of the controlled 

crew substitution strategy based on the crew pairing framework. Therefore, the number 

of individual pairings used is applied to approximate the number of cabin crews 

required for a week at the stage of CPP, instead of considering the precise manpower 

availability each day. Accordingly, this study proposes to impose an upper limit on the 

individual pairings derived to alleviate the shortcomings of the rigid separated 

scheduling approach to some extent, and to show the crucial impact of such an upper 

limit on the solutions. Apart from the primary methodology MICCPP-ACCS, a Multi-

class individual cabin crew pairing problem with availability (MICCPP-A) which is a 

simplified version of MICCPP-ACCS without the function of CCS is constructed, to 

derive more managerial insights regarding airline cabin crew resource management. 

This chapter is structured as follows. First of all, Section 3.1 provides problem 

statement which consists of definition (Section 3.1.1), duty-based flight network 

construction (Section 3.1.2), flight requirement heterogeneity (Section 3.1.3), and the 

strategy of controlled crew substitution (Section 3.1.4). Then, the mathematical models 

are developed in Section 3.2, in which the traditional crew pairing model (TCCPP), the 

proposed individual pairing model with controlled crew substitution (MICCPP-ACCS), 

and the simplified individual pairing model without controlled crew substitution 

(MICCPP-A) are constructed sequentially in Section 3.2.1, Section 3.2.2, and Section 

3.2.3. Next, Section 3.3 presents diverse crucial manpower availability-requirement 

relationships and their managerial insights regarding cabin crew management, followed 

by the solution approach development stated in Section 3.4. Finally, real-world 

collected flight schedule based computational experiments are shown in Section 3.5 to 

demonstrate the merits of the proposed models. 
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3.1. Problem Statement 

This sub-chapter details the distinctive characteristics of the multi-class cabin CPP 

arising from the airline practice, which underlines the differences between this work 

with the literature. First, the definitions regarding the cabin CPP are introduced. Then, 

the duty-based networks are constructed according to the collective rules and 

regulations. Third, the impact of flight heterogeneity in terms of cabin crew requirement 

is demonstrated. Lastly, the principles and mechanisms of CCS are introduced. The 

notations used in this work are summarized in Table A-1 in Appendix A. 

 

3.1.1. Definitions 

The analysis in this part of the thesis employs the aviation terminologies from Belobaba 

et al. (2015) and The Airways and The Avoidance of Fatigue in Aircrews (CAD 371) 

published by the Civil Aviation Department of the Government of the Hong Kong 

Special Administrative Region. Given a flight schedule containing the information 

regarding flight departure / arrival airports, flight departure /arrival times, types of 

aircraft with unique cabin crew requirements, the cabin CPP aims to determine 

sufficient legal pairings to cover all flights’ requirements for each class with the 

minimum cost, while satisfying all the regulations imposed by labor unions, civil 

aviation departments, and airlines. A duty is composed of a sequence of flights 

separated by transits, coupled with a briefing period at the start and a debriefing at the 

end. A duty period refers to the elapsed time from the start of the duty to the end of the 

duty. A rest is a continuous time period between two consecutive duties, during which 

cabin crews are free of any duty. A legal pairing is a sequence of duties connected by 

rests, operated by the same cabin crew, which starts and ends at the home base, and 

satisfies diverse regulations such as maximum elapsed time and maximum number of 

flights. The total elapsed time of a pairing is known as the time away from base (TAFB) 

in the literature (Gao et al., 2009). In some cases, cabin crews are placed on a scheduled 
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flight as passengers for repositioning to an airport where they are required to operate 

duties. This type of flights is called deadhead (Yan & Chang, 2002). A typical pairing 

generally lasts for two to five days (Cordeau et al., 2001), while a cabin crew commonly 

flies four to five pairings in a month (Anbil et al., 1992). The TAFB is applied to 

represent the pairing cost in this study. In the following, the pairings for individual cabin 

crews considered in the current work are called as individual pairings, while those for 

cabin crew teams in the literature as team pairings. A cabin crew team consists of certain 

quantities of cabin crews of each class who stay together throughout the team pairing. 

 

3.1.2. Duty-based Networks 

In this part, flight networks for pairing generation are built, where the planning horizon 

is a week. In the literature, two types of flight network have been developed: Flight-

based network and duty-based network. In both networks, a source node and a sink 

node are used to represent the home base for cabin crews. However, the two types of 

network are different in terms of intermediate nodes and arcs. In a flight-based network, 

each intermediate node stands for a flight, while arcs perform as the connections 

between flights. The source node connects every flight that departs from the home base, 

while each flight arriving at the home base is connected with the sink node. On the other 

hand, in a duty-based network, intermediate nodes represent duties, while arcs stand for 

the connections between duties. Here, the source node connects every duty that departs 

from the home base, while each duty arriving at the home base is connected with the 

sink node. In order to build a duty-based network, flights are firstly connected to form 

duties according to the duty-related regulations imposed by authorities and airlines (e.g., 

maximum number of flights per duty). Therefore, the duty-based network is widely 

applied in the literature due to the enhanced optimization efficiency because some 

regulations are already considered during the network construction process (Vance et 

al., 1997a). Hence, this work utilizes the duty-based network.  

Rules and regulations. To ensure the safety level of flights and reduce the fatigue 
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level of cabin crews, governmental authorities, labor union, and airlines have prescribed 

many rigid regulations on cabin crews, which influences the development of duties and 

pairings. This study considers the following rules based on the practical operations of 

CAD 371. Firstly, two consecutive flights could be connected and operated by the same 

cabin crew only when the arrival airport of the first flight is the departure airport of the 

second flight, with a minimum 75 minutes and a maximum 240 minutes of transit time 

between these two flights. Secondly, the briefing period before a duty lasts 60 minutes 

while the debriefing period after a duty lasts 30 minutes, with a maximum of three 

flights in a duty. Regarding the longest length of a duty period, it varies according to 

the local starting time and the number of flights of the duty, as explained in Table 3-1. 

For example, if a duty starts at 07:30 in local time with two flight legs, the longest duty 

period is then 12.25 hours. Thirdly, regarding the connection of two duties to be flew 

by the same cabin crew, the arrival airport of the first duty should be the departure 

airport of the second duty. Besides, there should be a rest period lasting from 720 

minutes to 2160 minutes between the two duties if the former duty lasts no more than 

12 hours; otherwise, a minimum of 840 minutes of rest should be assigned to the cabin 

crew. Lastly, maximum 5 duties, maximum 12 flights, and maximum 7200 minutes of 

TAFB are allowed for a pairing. It should be pointed out that the rules and regulations 

for cabin crews are identical for the pairing models proposed in this work. 

 

Table 3-1. Maximum duty periods (in hours). 

Local starting time 
No. of flight legs 

1 2 3 

07:00-07:59 13 12.25 11.5 

08:00-12:59 14 13.25 12.5 

13:00-17:59 13 12.25 11.5 

18:00-21:59 12 11.25 10.5 

22:00-06:59 11 10.25 9.5 
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 Figure 3-1. Typical duty-based networks for multi-class cabin crews. 

 

 

  

 

 

 

 

 

 

Network construction. Based on the regulations described above, the acyclic 

duty-based networks 𝐺𝑟 = (𝑁𝑟 , 𝐴𝑟) for each class (𝑟 ∈ 𝑅) of cabin crews (an example 

is depicted in Figure 3-1) are constructed. Note that all possible duties are built for the 

network development according to the rules and regulations. Specifically, 𝑁𝑟 is the set 

of nodes, denoted by 𝑛𝑟, while 𝐴𝑟 is the set of arcs, denoted by 𝑎𝑟𝑐(𝑛𝑟,𝑛𝑟
′ ). Note that 

the networks for each class are identical since the working rules are the same. Therefore, 

it is only necessary to develop the network for one class, which then is applicable to 

others. First of all, flights (𝑖 ∈ 𝐹) are connected to form duty nodes (𝑑𝑘
𝑟 ∈ 𝐷𝑟) through 

transits according to the first and second sets of rules mentioned above. Note that one 

flight could appear in more than one duty (because a flight could be connected with 

different flights to form different duties). 𝐹𝑑𝑘
𝑟  represents the set of flights contained in 

the duty node 𝑑𝑘
𝑟 . A typical duty is illustrated in the upper right corner of Figure 3-1, 

where duty 𝑑3
1 is composed of 𝐹𝑑3

1 (Flights 4, 5, and 6). Deadhead arcs are parallel 

to flights. Then, the constructed duty nodes are linked by rest arcs (i.e., 𝑎𝑟𝑐(𝑑𝑘1
𝑟 ,𝑑𝑘2

𝑟 )) 

with respect to the third set of regulations. All duties starting from the home base are 

connected with the source node (s) through starting arcs (i.e., 𝑎𝑟𝑐(𝑠,𝑑𝑘
𝑟)), while those 

ending at the home base are linked with the sink node (m) through ending arcs (i.e., 

𝑎𝑟𝑐(𝑑𝑘
𝑟 ,𝑚)). Both s and m represent the home base, while 𝑆𝐴𝑟 , 𝐸𝐴𝑟and 𝑅𝐴𝑟 are the 

sets of starting, ending, and rest arcs respectively. After the construction of duty nodes 
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and arcs, the duty-based network 𝐺𝑟 for Class r cabin crews is obtained. Specifically, 

the node set 𝑁𝑟 contains the source/sink nodes together with all the built duty nodes 

(𝑁𝑟 = 𝐷𝑟 ∪ {𝑠, 𝑚}), while the arc set 𝐴𝑟 is composed of all the starting/ending arcs 

together with the developed rest arcs (𝐴𝑟 = 𝑆𝐴𝑟 ∪ 𝐸𝐴𝑟 ∪ 𝑅𝐴𝑟). For each individual 

Class r cabin crew, a s-m path in 𝐺𝑟 corresponds to a potential individual pairing. All 

feasible individual pairings are contained in the networks. However, not all s-m paths 

in 𝐺𝑟 are feasible individual pairings due to the violation of pairing related regulations 

(the last set of rules) which are usually called resources (𝜏 ∈ 𝛩) in the literature. A legal 

individual pairing (path), for example, 𝑠 → 𝑑1
1 → 𝑑2

1 → 𝑑3
1 → 𝑚, which respects all the 

resources of maximum number of duties, number of flights, and TAFB, is denoted by 

𝑗𝑟 ∈ 𝐽𝑟, where 𝐽𝑟 is the set of all feasible Class r individual pairings (paths). Selecting 

an individual pairing for a cabin crew means that all the flights contained will be 

operated by the corresponding staff. As each flight 𝑖 requires a varying quantity of 

cabin crews for Class r (𝑏𝑖
𝑟), the corresponding number of individual pairings of Class 

r that contains flight 𝑖  should be selected in the solution to facilitate the normal 

operations of the flight.  

 

3.1.3. Flight Requirement Heterogeneity 

This part discusses the impact of flight requirement heterogeneity and the deficiency of 

the traditional modelling approach of treating cabin crews as teams in the most existing 

literature. 

An example based on Class 1 is illustrated in Figure 3-2, in which three flights, 

Flights 7, 8, and 9 (i.e., F7, F8, and F9), are covered by three pairings. Specifically, path 

1 contains 𝑑4
1 (Flights 7 and 9), while path 2 covers 𝑑5

1 (Flight 8). Besides, Flights 8 

and 9 (𝑑6
1 ) are included in path 3. The three flights have heterogeneous manpower 

requirements. Specifically, Flights 7 and 8 demand only one (𝑏7
1 = 𝑏8

1 = 1 ), while 

Flight 9 needs two (𝑏9
1 = 2) Class 1 cabin crews. It is assumed that all the remaining 

flights on these pairings (not shown in Figure 3-2) require only one Class 1 cabin crew. 
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Two scenarios, one modelling cabin crews as teams while the other modelling 

individually, are compared to show the deficiencies of the traditional team modelling 

approach. In the first (team) scenario, the teams corresponding to team pairings 1 and 

3 should be equipped with two Class 1 cabin crews because Flight 9 needs two, 

although Flights 7 and 8 only require one. Therefore, for these two team pairings, one 

staff will be redundant on Flights 7 and 8, respectively. Besides, the team pairing 2 

needs one Class 1 cabin crew. To cover all flights’ requirements, the team pairings 1 

and 2, or 1 and 3 should be selected. Consequently, regarding these two solutions, a 

minimum of three Class 1 cabin crews are demanded to cover all three flights (two for 

team pairing 1 and one for team pairing 2), with a manpower waste on Flight 7. In the 

second (individual) scenario, cabin crews serve flights individually with the flexibility 

to operate any feasible flights without the restriction of teams. In this example, only 

two Class 1 cabin crews, one for individual pairing 1 and another for individual pairing 

3, are needed to satisfy all the flight requirements, without any manpower waste. 

Consequently, it is shown that modelling cabin crews as teams working together 

throughout the pairing will lead to low cabin crew flexibility and utilization when the 

flights requirements are heterogeneous. This is because the actual cabin crews required 

by a team must satisfy the maximum requirements among all the flights in the team 

pairing. However, on the other flights with fewer requirements, some of the manpower 

assigned becomes redundant. Differently, modelling cabin crews individually can avoid 

the deficiencies of the traditional team modelling approach and lead to an improvement 

in manpower flexibility, which further enhances cabin crew utilization. Actually, some 

airlines and companies nowadays are providing optimization software which deals with 

the flight requirement heterogeneity problem for airlines. To be specific, the 

optimization software uses many copies of a flight, each of which represents a person 

(or group of persons) needed. Then, it builds pairings to cover these flight copies, which 

are further covered by monthly schedules. However, this industrial optimization 

approach is in advance of academic publications, which has been scarcely studied. On 

the other hand, in the literature, the team-based pairing approach still occupies the main 
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research stream. Therefore, this work utilizes the team-based pairing approach as a 

benchmark to demonstrate the importance of modelling cabin crews individually and 

the advantages of the proposed models. 

 

 

 

 

 

 

 

3.1.4. Controlled Crew Substitution 

With finite availability, there might be insufficient cabin crews to cover all the flights 

scheduled during the manpower requirement variation led by flight fluctuation. Cabin 

crew shortage (insufficiency) refers to a situation where the available Class r cabin 

crews cannot fulfill all flight requirements on their own. To deal with the manpower 

shortage problem, The Airways, apply the strategy of CCS, to utilize cabin crews from 

other classes (substituter) to substitute the originally required ones (substitutee), to 

derive feasible solutions11, and reduce the impact of manpower shortage. It should be 

emphasized that crew substitution can be applied only when some classes of cabin crew 

are in a shortage. If all classes of cabin crew are sufficient, no substitution is allowed. 

That is, crew substitution is under control for the purpose of facilitating normal flight 

operations, instead of saving costs. Arranging cabin crews individually facilitates the 

implementation of CCS by allowing them to fly any feasible flights with high flexibility, 

instead of being bundled with teams. The impact of flight fluctuation on airline 

manpower management is significantly reduced by CCS through the improvement of 

cabin crew utilization. With this strategy, the normal operations of a flight are not 

disrupted, by assigning sufficient cabin crews of all classes that is no less than the total 

requirements of the flight, no matter which specific classes are insufficient.  

 
11 Note that short-haul and long-haul flights are always scheduled separately in airlines practice. Therefore, it 

rarely happens that a short-haul cabin crew is assigned with a substitution job on a long-haul flight. 
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Figure 3-2. An example of flight manpower requirement heterogeneity based on Class 1. 
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This condition is called the total satisfaction constraint. The number of Class r 

cabin crews assigned to flight 𝑖 is denoted as 𝑞𝑖
𝑟, and the number of Class r cabin 

crews required by flight 𝑖  as 𝑏𝑖
𝑟 . Therefore, the total satisfaction constraint is 

translated into Eqs. (3-1), where the right-hand side ∑ 𝑏𝑖
𝑟

𝑟∈𝑅  is the total number of 

cabin crews of all classes required by flight i. Note that according to the practice of The 

Airways, all classes of cabin crews can be substituted by other classes when they are in 

a shortage. 

∑ 𝑞𝑖
𝑟

𝑟∈𝑅 ≥ ∑ 𝑏𝑖
𝑟

𝑟∈𝑅 ,  ∀𝑖 ∈ 𝐹. Eqs. (3-1) 

On the other hand, The Airways also regulate that at least one qualified cabin crew 

from the required class should be assigned to each flight (called the minimum 

satisfaction constraint), as in Eqs. (3-2). 

𝑞𝑖
𝑟 ≥ 1,  ∀𝑖 ∈ 𝐹, ∀𝑟 ∈ 𝑅. Eqs. (3-2) 

A simple example of CCS is illustrated in Figure 3-3. The example considers 

Flight 10 with manpower requirements for Class 1 and 2 cabin crews. To be specific, 

Flight 10 demands two Class 1 cabin crews (𝑏10
1 = 2 ) and one Class 2 cabin crew 

(𝑏10
2 = 1). Regarding manpower availability, it is assumed that Class 1 has one cabin 

crew available, while Class 2 has two. Therefore, a shortage of Class 1 happens, while 

a Class 2 cabin crew flies a deadhead arc on Flight 10. With the application of CCS, the 

deadhead Class 2 cabin crew on Flight 10 (substituter) could be a temporal Class 1 

member (substitutee), to prevent Flight 10 from operation disruptions due to manpower 

shortage. On the other hand, if substitution is not applied, one extra Class 1 cabin crew 

should be employed to satisfy the requirement of Flight 10, causing extra costs. From 

this point, the application of CCS could not only facilitate normal flight operations, but 

also help reduce costs. 

In conclusion, CCS is essentially a methodology to deal with the manpower 

shortage dilemma during manpower demand variation through cabin crew utilization 

improvement, which helps maintain normal flight operations and relieve the influence 

of flight fluctuation. Furthermore, it should be pointed out that the manpower 

substitution can be applied only when certain classes are insufficient. Unnecessary 



62 

 

substitutions must be avoided when the cabin crew availability of each class is adequate 

to operate all flights.  

 

 

 

 

3.2. Model Development 

In this sub-chapter, the traditional models in the literature are first reviewed. Next, the 

proposed MICCPP-ACCS model is formulated, followed by the simplified version 

MICCPP-A.  

 

3.2.1. The Traditional Model 

In the most existing literature, the cabin CPP is solved in each separate aircraft type 

while the flight requirements are assumed to be homogeneous (e.g., Erdoğan et al., 2015, 

Weide et al., 2010). The traditional cabin CPP is denoted as TCCPP hereafter, and is 

modeled as follows. Note that the index t is used to represent cabin crew teams for each 

separate aircraft type, while 𝑗𝑡 is applied to stand for the team pairing for cabin crews. 

The binary decision variable 𝑥𝑗𝑡
  is for cabin crew teams, representing whether the 

team pairing 𝑗𝑡 ∈ 𝐽𝑡 is selected or not. Besides, the binary flight coverage coefficient 

𝑎𝑖𝑗𝑡
 represents whether the team pairing 𝑗𝑡 covers flight 𝑖. The cost of a team pairing 

𝑐𝑗𝑡
 is represented by the TAFB of 𝑗𝑡. 

(TCCPP) Min ∑ 𝑐𝑗𝑡
𝑥𝑗𝑡𝑗𝑡∈𝐽𝑡

   Eq. (3-3)  

s.t. ∑ 𝑎𝑖𝑗𝑡
𝑥𝑗𝑡𝑗𝑡∈𝐽𝑡

≥ 1,  ∀𝑖 ∈ 𝐹, Eqs. (3-4)  

 𝑥𝑗𝑡
= 0 or 1,  ∀𝑗𝑡 ∈ 𝐽𝑡. Eqs. (3-5)  

The objective Eq. (3-3) is to determine a subset of cabin crew team pairings from 

the entire team pairing pool with a minimum (pairing) cost, subject to a set of flight 

coverage constraints Eqs. (3-4), requiring that each flight is covered by at least one 
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Shortage 

Class 2 individual pairing 5  

Class 1 individual pairing 4  

s …… 

s …… F10:  m …… 

m 
…… Available Class 2 cabin crew 

Available Class 1 cabin 

 
Substitute 

𝑏10
1 = 2 

𝑏10
2 = 1 

Figure 3-3. A simple example of CCS. 



63 

 

team. Besides, following the main stream of the CPP literature (e.g., Erdoğan et al., 

02015), the manpower availability limitation is not considered in TCCPP. As TCCPP 

fails to recognize the multiple classes of cabin crews, only one duty-based network is 

needed for the generation of team pairings.  

Although the complexity of the cabin CPP can be significantly reduced by TCCPP, 

this scheduling approach is inconsistent with airline practice. Moreover, due to the 

decomposition by aircraft types, TCCPP fails to find the global optimal solution over 

the whole flight schedule involving various types of aircraft. More importantly, the 

flexibility and utilization of cabin crews are greatly impaired.  

 

3.2.2. The Proposed MICCPP-ACCS 

This part presents the mathematical model of the proposed novel pairing generation 

methodology MICCPP-ACCS. Given a flight schedule containing mixed aircraft types 

with heterogeneous cabin crew requirements, the mechanism of MICCPP-ACCS is to 

select a least-cost set of individual cabin crew pairings of each class from the entire 

individual pairing family, to satisfy the varying requirements of each flight with the 

assistance of CCS and a restriction on cabin crew availability. Herein, different from 

TCCPP, cabin crews are classified into different classes and modelled individually, 

rather than teams, through which the heterogeneous flights could be differentiated, and 

their specific manpower requirements could be considered. Moreover, the problem is 

not decomposed by aircraft types and cabin crews could fly any flights in the schedule 

in accordance with airline practice. The proposed MICCPP-ACCS is formulated in Eq. 

(3-6) to Eqs. (3-13). Specifically, 𝑥𝑗𝑟
 is the non-negative integer decision variable for 

individual pairing 𝑗𝑟  for class 𝑟 available cabin crew, while 𝑥𝑗𝑟
𝑒   is for individual 

pairing 𝑗𝑟
𝑒 for class 𝑟 extra cabin crew. 𝜇 is used to represent the unit substitution 

penalty cost, and M stands for the unit big penalty cost for extra manpower employment. 

Besides, the substitution recording variable 𝑠𝑖
𝑟 records the number of times of class 𝑟 

cabin crews being substituted by other classes on flight 𝑖. Similar to TCCPP, the binary 
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flight coverage coefficient 𝑎𝑖𝑗𝑟
 and 𝑎𝑖𝑗𝑟

𝑒  are applied for class 𝑟 available and extra 

cabin crews, respectively. In addition, 𝑑𝑟 represents the number of Class r available 

cabin crews. 

Min ∑ ∑ 𝑐𝑗𝑟
𝑥𝑗𝑟𝑗𝑟∈𝐽𝑟𝑟∈𝑅 + ∑ ∑ 𝜇𝑠𝑖

𝑟
𝑖∈𝐹𝑟∈𝑅 + ∑ ∑ (𝑐𝑗𝑟

𝑒 + 𝑀𝑗𝑟
𝑒∈𝐽𝑟

𝑒 )𝑥𝑗𝑟
𝑒𝑟∈𝑅   Eq. (3-6) 

s.t.  ∑ ∑ 𝑎𝑖𝑗𝑟
𝑥𝑗𝑟𝑗𝑟∈𝐽𝑟𝑟∈𝑅 + ∑ ∑ 𝑎𝑖𝑗𝑟

𝑒𝑥𝑗𝑟
𝑒𝑗𝑟

𝑒∈𝐽𝑟
𝑒𝑟∈𝑅 ≥ ∑ 𝑏𝑖

𝑟
𝑟∈𝑅 ,  ∀𝑖 ∈ 𝐹,  Eqs. (3-7) 

 ∑ 𝑎𝑖𝑗𝑟
𝑥𝑗𝑟𝑗𝑟∈𝐽𝑟

+ ∑ 𝑎𝑖𝑗𝑟
𝑒𝑥𝑗𝑟

𝑒𝑗𝑟
𝑒∈𝐽𝑟

𝑒 ≥ 1, ∀𝑖 ∈ 𝐹, ∀𝑟 ∈ 𝑅, Eqs. (3-8) 

 ∑ 𝑎𝑖𝑗𝑟
𝑥𝑗𝑟𝑗𝑟∈𝐽𝑟

+ ∑ 𝑎𝑖𝑗𝑟
𝑒𝑥𝑗𝑟

𝑒𝑗𝑟
𝑒∈𝐽𝑟

𝑒 + 𝑠𝑖
𝑟 ≥ 𝑏𝑖

𝑟, ∀𝑖 ∈ 𝐹, ∀𝑟 ∈ 𝑅,  Eqs. (3-9) 

 ∑ 𝑥𝑗𝑟𝑗𝑟∈𝐽𝑟
≤ 𝑑𝑟 ,  ∀𝑟 ∈ 𝑅,  Eqs. (3-10) 

 𝑥𝑗𝑟
= non-negative integer, ∀𝑟 ∈ 𝑅, ∀𝑗𝑟 ∈ 𝐽𝑟,   Eqs. (3-11) 

 𝑥𝑗𝑟
𝑒 = non-negative integer, ∀𝑟 ∈ 𝑅, ∀𝑗𝑟

𝑒 ∈ 𝐽𝑟
𝑒 ,  Eqs. (3-12) 

 𝑠𝑖
𝑟 = non-negative integer, ∀𝑖 ∈ 𝐹, ∀𝑟 ∈ 𝑅.  Eqs. (3-13) 

 

In MICCPP-ACCS, the available cabin crews are always the first resource to be 

selected to satisfy the flights scheduled. Instead of just taking binary values, the value 

of non-negative decision variable 𝑥𝑗𝑟
 represents how many times the individual 

pairing 𝑗𝑟 is selected for class 𝑟 available cabin crew. Once any class encounters a 

manpower shortage during flight fluctuation, CCS will identify the cabin crews of other 

classes to fill the vacancy with a substitution penalty cost 𝜇. Additionally, the extra 

cabin crew variables 𝑥𝑗𝑟
𝑒  with a big penalty cost M are introduced, to ensure solution 

feasibility in case the flights cannot be completely covered even with CCS. In practice, 

airlines can always employ temporary cabin crews and part-time cabin crews as extra 

manpower. Besides, as The Airways’ pairing-related payment mechanism is based on 

the time length of pairings, in this work, TAFB is used to represent the pairing cost of 

(available and extra) cabin crew individual pairings (i.e., 𝑐𝑗𝑟
 and 𝑐𝑗𝑟

𝑒). Note that both 

available and extra cabin crews are paid a fixed payment for a week (𝑐𝑓𝑎 and 𝑐𝑓𝑒, 

respectively, where 𝑐𝑓𝑒 > 𝑐𝑓𝑎) by The Airways that should be considered in the overall 

cost analysis, but not affecting the MICCPP-ACCS objective value. Accordingly, the 

fixed payment cost is ignored during the model development, but shall be considered 

in the overall cost analysis in the Computational Experiments section (Total cost = 



65 

 

TAFB pairing cost + Available manpower fixed cost + Extra manpower fixed cost). 

The minimization objective function Eq. (3-6) is characterized by three parts: i) 

Sum of the costs of available cabin crew individual pairings selected; ii) total 

substitution penalty costs across all flights and classes; ii) sum of the costs of extra 

cabin crews introduced. Specifically, the cost of an extra cabin crew further consists of 

the corresponding individual pairing cost 𝑐𝑗𝑟
𝑒  and a big penalty value M12. Note that in 

MICCPP-ACCS, the substitution penalty cost 𝜇  is much larger than the general 

individual pairing cost, but much smaller than the big penalty cost M induced by the 

generation of an extra cabin crew individual pairing (that is, 𝑐𝑗𝑟
, 𝑐𝑗𝑟

𝑒  ≪ 𝜇 ≪ 𝑀). The 

constraints are classified into four groups – Eqs. (3-7) as group 1, Eqs. (3-8) and Eqs. 

(3-9) as group 2, Eqs. (3-10) as group 3, and Eqs. (3-11) to (3-13) as group 4. 

The first group (Eqs. (3-7)) concerns flight coverage and crew substitution, which 

is equivalent to Eqs. (3-1). Specifically, the right-hand side of each row in Eqs. (3-7) 

specifies the total manpower demand across all classes of each flight to be scheduled 

(that is, ∑ 𝑏𝑖
𝑟

𝑟∈𝑅 ). The left-hand side represents the total number of cabin crews across 

all classes assigned to each flight (that is, ∑ 𝑞𝑖
𝑟

𝑟∈𝑅  in Eqs. (3-1)). Therefore, Eqs. (3-

7) ensure that for each flight scheduled, the number of total cabin crews of all classes 

assigned is no less than the number of total manpower demand. In other words, Eqs. 

(3-7) facilitate the function of CCS, allowing cabin crews to substitute colleagues of 

other classes to ensure that all flights are completely covered. It is noteworthy that the 

cabin crews assigned to each flight could be either the available ones (𝑥𝑗𝑟
) or extra ones 

(𝑥𝑗𝑟
𝑒). However, the big M added into the objective function ensures that the least extra 

cabin crews will be selected. 

Then, the cabin crew substitution proposed in Eqs. (3-7) is controlled by the 

second group of constraints. Firstly, Eqs. (3-8) represent the minimum satisfaction 

constraint (as discussed in Section 3.1.4, Eqs. (3-2)), to allocate at least one qualified 

 
12 For the part of extra cabin crews in the objective function (Eq. (3-6)), ∑ ∑ (𝑐𝑗𝑟

𝑒 + 𝑀𝑗𝑟
𝑒∈𝐽𝑟

𝑒 )𝑥𝑗𝑟
𝑒𝑟∈𝑅 , although the 

insertion of 𝑀 eliminates the impact of 𝑐𝑗𝑟
𝑒, it is necessary to keep 𝑐𝑗𝑟

𝑒 so that the TAFB information of extra 

cabin crew individual pairings could be recorded for the purpose of analysis.   
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cabin crew from the required class to each flight. The left-hand side of each row in Eqs. 

(3-8) is actually the total number of Class r cabin crews assigned to the flight (i.e., 𝑞𝑖
𝑟). 

Secondly, Eqs. (3-9) play a pivotal role in avoiding unnecessary substitutions. In 

particular, each row of Eqs. (3-9) records the number of times of Class r being 

substituted by other classes on Flight 𝑖. Each substitution is coupled with a substitution 

penalty cost 𝜇 in the objective function. The relationship between 𝑐𝑗𝑟
 and 𝜇 (𝑐𝑗𝑟

≪

𝜇 ) ensures that the model will (i) find the cost-least set of individual pairings for 

available cabin crews within each class to cover all flights in priority, and (ii) guarantee 

that no unnecessary substitutions will happen when there is enough manpower available. 

Once there is a shortage existing in a certain class on a flight when the manpower 

requirement increases along with flight fluctuation, CCS will function to support flight 

operations with a penalty 𝜇. In light of this, the substitution penalty cost 𝜇 is also 

called the flight fluctuation coefficient because it helps hedge against the cabin crew 

requirement variation and manpower shortage arising during flight fluctuation. On the 

other hand, the relationship between 𝜇 and 𝑀 (𝜇 ≪ 𝑀) ensures that only when CCS 

fails to help complete all the duties, will the model turn to extra cabin crews to find 

feasible solutions. Regarding the value of 𝜇 and 𝑀, as the maximum TAFB pairing 

cost (𝑐𝑗𝑟,𝑐𝑗𝑟
𝑒) is 7200 (recall that maximum 7200 minutes of TAFB are allowed for a 

pairing), this study sets 𝜇 as 500000 to ensure 𝑐𝑗𝑟
≪ 𝜇, and 𝑀 as 50000000 to ensure 

𝜇 ≪ 𝑀. 

The third group (Eqs. (3-10)) relates to the restriction of manpower availability, 

which ensures that the number of individual pairings generated for each class of 

available cabin crew will not exceed an upper limit. Actually, each individual pairing 

generated requires a cabin crew to operate. Therefore, the number of individual pairings 

used is applied to approximate the number of cabin crews required in the stage of 

pairing process. Moreover, this pre-set number constraint for each class of cabin crew 

could also be regarded as a belief that airlines expect at most how many pairings could 

be operated for one week based on their cabin crew manpower pool. Actually, these 

availability constraints are not hard constraints, as extra manpower is allowed with a 
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penalty. 

The last group (Eqs. (3-11) to (3-13)) guarantees that all variables are non-negative 

integers. 

Besides, the proposed MICCPP-ACCS is utilized to calculate an important flight 

schedule manpower requirement benchmark for the managerial analyses presented in 

Section 3.3. Specifically, the minimum number of cabin crews of all classes required to 

completely cover a flight schedule with CCS (named as the minimum total manpower 

demand with CCS, denoted as 𝑀𝑆) could be obtained. The calculation procedure is 

described as follows. First, the availability of available cabin crew for each class is set 

as zero (that is, each 𝑑𝑟 is set as zero) for the proposed MICCPP-ACCS. Therefore, 

only 𝑥𝑗𝑟
𝑒  exists in this 𝑑𝑟-Zero-MICCPP-ACCS model. As the generation of an extra 

cabin crew individual pairing (𝑥𝑗𝑟
𝑒) leads to a big penalty cost M, the number of total 

extra cabin crews required in the solution obtained from this 𝑑𝑟-Zero-MICCPP-ACCS 

(i.e., ∑ ∑ 𝑥𝑗𝑟
𝑒𝑗𝑟

𝑒∈𝐽𝑟
𝑒𝑟∈𝑅 ) then stands for the 𝑀𝑆 for the flight schedule. 

 

3.2.3. The Simplified MICCPP-A 

The relationship between 𝜇 and M actually puts different emphasis on the application 

of CCS and extra cabin crews. In the proposed MICCPP-ACCS, CCS is always the 

primary strategy to tackle the problem of manpower shortage, while extra cabin crews 

are utilized to obtain feasible solutions only when CCS does not work. On the other 

hand, if the substitution penalty cost 𝜇 is far larger than the extra manpower penalty 

cost 𝑀 (that is, 𝑐𝑗𝑟
, 𝑐𝑗𝑟

𝑒 ≪ 𝑀 ≪ 𝜇), the extra manpower employment is then always 

chosen by the model to overcome the dilemma of cabin crew insufficiency, while CCS 

is not allowed in this case (𝑠𝑖
𝑟 is always equal to zero). In this regard, different classes 

of cabin crews will not substitute each other. Accordingly, the CCS-related constraints, 

the total satisfaction constraint (Eqs. (3-7)) and the minimum satisfaction constraint 

(Eqs. (3-8)), are no longer useful. Besides, as each class of cabin crews are scheduled 
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independently in this case, the proposed MICCPP-ACCS is hence simplified and 

decomposed by cabin crew classes (r), which is denoted as MICCPP-A (see Eq. (3-14) 

to Eqs. (3-18)). In other words, MICCPP-A can be regarded as a simplified version of 

MICCPP-ACCS where the strategy of CCS is forbidden. Although MICCPP-ACCS is 

the primary model constructed in this work, the author would like to show that the 

individual cabin crew pairing model is in the format of MICCPP-A when the various 

cabin crew classes are scheduled independently (i.e., without the application of the CCS 

strategy).  

 (MICCPP-A) Min ∑ 𝑐𝑗𝑟
𝑥𝑗𝑟𝑗𝑟∈𝐽𝑟

+ ∑ (𝑐𝑗𝑟
𝑒 + 𝑀𝑗𝑟

𝑒∈𝐽𝑟
𝑒 )𝑥𝑗𝑟

𝑒    Eq. (3-14)  

For each 𝑟 ∈ 𝑅: s.t. ∑ 𝑎𝑖𝑗𝑟
𝑥𝑗𝑟𝑗𝑟∈𝐽𝑟

+ ∑ 𝑎𝑖𝑗𝑟
𝑒𝑥𝑗𝑟

𝑒𝑗𝑟
𝑒∈𝐽𝑟

𝑒  ≥ 𝑏𝑖
𝑟,  ∀𝑖 ∈ 𝐹,  Eqs. (3-15)  

  ∑ 𝑥𝑗𝑟𝑗𝑟∈𝐽𝑟
≤ 𝑑𝑟,    Eqs. (3-16)  

  𝑥𝑗𝑟
= non-negative integer, ∀𝑗𝑟 ∈ 𝐽𝑟,  Eqs. (3-17)  

  𝑥𝑗𝑟
𝑒 = non-negative integer, ∀𝑗𝑟

𝑒 ∈ 𝐽𝑟
𝑒.  Eqs. (3-18) 

 

Table 3-2. The comparisons among TCCPP, MICCPP-ACCS and MICCPP-A. 

Model 
Flight requirements Pairing type Model features 

Heterogeneous Homogeneous  Team Individual Crew availability CCS No. of constraints No. of networks 

TCCPP  √ √    |𝐹| 1 

MICCPP-ACCS √   √ √ √ (2|𝑅| + 1) × |𝐹| + |𝑅| |𝑅| 

MICCPP-A √   √ √  |𝐹| + 1 1 

 

In MICCPP-A, each class of cabin crews is planned independently because they 

are not permitted to substitute colleagues of other classes. For each class, the purpose 

of MICCPP-A is to identify a minimum-(pairing) cost set of individual pairings to 

satisfy all flight requirements of this class, under a certain level of availability. Besides, 

extra manpower variables (𝑥𝑗𝑟
𝑒) are introduced to ensure solution feasibility when the 

available cabin crews are insufficient. As The Airways prefers hiring the minimum extra 

cabin crews, a big M is imposed with the application of extra manpower (𝑥𝑗𝑟
𝑒), which is 

similar to MICCPP-ACCS. When the big M becomes smaller, it implies that the 

application of extra cabin crews is increasingly welcomed by the airline. When M =0, 

the airline shows no preferences between extra cabin crews and available cabin crews. 
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In short, MICCPP-A is a simplified version of MICCPP-ACCS without CCS. The 

outputs of these two models could be compared to demonstrate the advantages of the 

CCS strategy for airline operations. Table 3-2 summarizes the comparisons among 

TCCPP, MICCPP-ACCS, and MICCPP-A. From Table 3-2, it is seen that the 

complexity of MICCPP-ACCS is much larger than MICCPP-A and TCCPP. 

Table 3-3. The three flight requirement benchmarks for a flight schedule. 

Benchmarks Dimension 
Obtained from Parameter setting 

MICCPP-ACCS MICCPP-A 𝑑𝑟 𝑏𝑖
𝑟 

𝑀𝑆 = ∑ ∑ 𝑥𝑗𝑟
𝑒𝑗𝑟

𝑒∈𝐽𝑟
𝑒𝑟∈𝑅   For all classes √  0 𝑏𝑖

𝑟 

𝑀𝐶𝑟 = ∑ 𝑥𝑗𝑟
𝑒𝑗𝑟

𝑒∈𝐽𝑟
𝑒   For Class r  √ 0 𝑏𝑖

𝑟 

𝑀𝑀𝑟 = ∑ 𝑥𝑗𝑟
𝑒𝑗𝑟

𝑒∈𝐽𝑟
𝑒   For Class r  √ 0 1 

 

Furthermore, two insightful flight schedule manpower requirement benchmarks 

could be obtained from MICCPP-A. Note that although they can also be obtained from 

MICCPP-ACCS, MICCPP-A is utilized to demonstrate them in a clearer way because 

these two benchmarks both relate to a specific Class r, rather than the whole of all 

classes. They are i) the minimum number of Class 𝑟 cabin crews required for a flight 

schedule without CCS (named as the minimum manpower demand for Class r without 

CCS, denoted as 𝑀𝐶𝑟), and ii) the minimum number of class 𝑟 cabin crews required 

to cover each flight at least by one crew member for a flight schedule without 

substitution (named as the minimum satisfaction constraint manpower demand for 

Class r, denoted as 𝑀𝑀𝑟). The approaches to obtain the two benchmarks are described 

as follows. For 𝑀𝐶𝑟, the number of extra cabin crews needed in the solution obtained 

from MICCPP-A where no available manpower is used (setting 𝑑𝑟 as 0) represents 

𝑀𝐶𝑟. For 𝑀𝑀𝑟, all flight manpower requirements are arbitrarily set as one (setting 

𝑏𝑖
𝑟 (∀𝑖 ∈ 𝐹) as 1), to simulate the minimum satisfaction situation. Similarly, there is 

no available cabin crew applied (setting 𝑑𝑟 as 0). After solving the MICCPP-A model, 

the population of extra cabin crews required in the solution is hence 𝑀𝑀𝑟. Generally, 

𝑀𝑀𝑟 is smaller than 𝑀𝐶𝑟. Only when all flights require just one Class r cabin crew, 

will 𝑀𝑀𝑟 equal 𝑀𝐶𝑟. Besides, it is noted that the 𝑀𝑀𝑟 values for all classes are the 

same regarding a flight schedule. Table 3-3 concludes the model used and parameter 
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setting to obtain the three benchmarks. By comparing the airline manpower availability 

levels with the three generated benchmarks, some insightful managerial implications 

could be derived, as will be explained in Section 3.3.  

 

3.3. Manpower Availability-Requirement 

Analysis 

Applying the proposed MICCPP-ACCS, this sub-chapter presents analyses about the 

relationship between cabin crew availability levels (that is, the maximum number of 

pairings allowed for a week) and the obtained flight schedule manpower requirement 

benchmarks, in order to derive some managerial insights for airline cabin crew 

management. First of all, recall the three manpower requirement benchmarks built for 

a flight schedule in Section 3.2: The minimum total manpower demand with CCS (𝑀𝑆), 

the minimum manpower demand for Class r without CCS (𝑀𝐶𝑟), and the minimum 

satisfaction constraint manpower demand for Class r (𝑀𝑀𝑟). Besides, 𝑇𝐴 is used to 

represent the summation of current available cabin crews of all classes (𝑇𝐴 = ∑ 𝑑𝑟𝑟∈𝑅 ). 

Obviously, Class r becomes insufficient when the quantity of available Class r cabin 

crews is less than 𝑀𝐶𝑟  (i.e., 𝑑𝑟 < 𝑀𝐶𝑟), which implies that the tactics of CCS or 

hiring extra cabin crews should be taken to sustain the normal operations of the flight 

schedule. In reality, the specific managerial strategies (such as the application of CCS, 

the employment of extra manpower, or both) to be adopted depend on the particular 

relationships between the manpower availability levels (i.e., 𝑇𝐴, 𝑑𝑟 ) with the 

benchmarks (i.e., 𝑀𝑆, 𝑀𝐶𝑟 , 𝑀𝑀𝑟) (e.g., smaller, equal, or larger). For instance, the 

employment of Class r extra manpower is inevitable once 𝑑𝑟 is smaller than 𝑀𝑀𝑟, 

which means that the current Class r available cabin crews fail to respect the minimum 

satisfaction constraint regulated by the CCS mechanism. During flight fluctuation, the 

manpower requirement benchmarks vary along time, leading to different availability-

requirement relationships. Consequently, it is crucial to excavate the characteristics of 

various scenarios under the diverse availability-requirement relationships, which is 
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summarized in Table 3-4. Detailed explanations for each scenario are illustrated as 

follows. In the following discussions, 𝑅∗ is used to represent the set of classes where 

𝑑𝑟 <  𝑀𝑀𝑟. Besides, subsets 𝑅1, 𝑅2, 𝑅3, 𝑅4 and 𝑅5 that are used for analysis are 

defined in Table 3-4. 

 

Table 3-4. The impact of availability-requirement relationship on cabin crew 

management. 

Availability-requirement relationship 

Scenario 

Implications on manpower 

management 

First-

layer 

(A) 

Second-layer (B) Third-layer (C) 
Manpower 

shortage 
CCS 

Extra 

manpower 

(A1) If 

𝑇𝐴 <
𝑀𝑆 

(B1) If for some 

𝑟 ∈ 𝑅, 𝑑𝑟 > 𝑀𝐶𝑟 

(this subset is 

denoted as 𝑅1) 

(C1) Denote the subset of classes 

where 𝑑𝑟 < 𝑀𝐶𝑟 as 𝑅2(𝑅2 ⊆
(𝑅 − 𝑅1)). If for all 𝑟 ∈ 𝑅2 ,

𝑀𝑀𝑟 = 𝑀𝐶𝑟  

1 √   √ 

(C2) If for some 𝑟 ∈ 𝑅2 , 𝑀𝑀𝑟 <
𝑀𝐶𝑟 (this subset is denoted as 

𝑅3(𝑅3 ⊆ 𝑅2)) 

2 √ √ √ 

(B2) If for all 𝑟 ∈
𝑅, 𝑑𝑟 ≤ 𝑀𝐶𝑟 

(C3) If 𝑀𝑆 = ∑ 𝑀𝐶𝑟𝑟∈𝑅   3 √   √ 

(C4) If 𝑀𝑆 < ∑ 𝑀𝐶𝑟𝑟∈𝑅   4 √ √ √ 

(A2) If 

𝑇𝐴 ≥
𝑀𝑆 

(B3) If for some 

𝑟 ∈ 𝑅, 𝑑𝑟 < 𝑀𝐶𝑟 

(this subset is 

denoted as 𝑅4) 

(C5) If for all 𝑟 ∈ 𝑅4, 𝑑𝑟 ≥ 𝑀𝑀𝑟  5 √ √   

If for some 

𝑟 ∈ 𝑅4, 𝑑𝑟 <
𝑀𝑀𝑟 

(C6) If for all 𝑟 ∈ 𝑅4, 

𝑀𝑀𝑟 = 𝑀𝐶𝑟 
6 √   √ 

(C7) If for some 𝑟 ∈
𝑅4, 𝑀𝑀𝑟 < 𝑀𝐶𝑟 (this 

subset is denoted as 

𝑅5(𝑅5 ⊆ 𝑅4))  

7 √ √ √ 

(B4) If for all 𝑟 ∈ 𝑅, 𝑑𝑟 ≥ 𝑀𝐶𝑟 8  No manpower shortage 

 

A1. [𝑇𝐴 < 𝑀𝑆]. In this case, the total available manpower is insufficient, failing to 

complete the flight schedule even applying CCS. Herein, extra cabin crews are 

inevitable to find feasible solutions, while CCS is possibly needed as discussed in the 

following (Scenarios 1 to 4). 

B1. [For some 𝑟 ∈ 𝑅 , 𝑑𝑟 > 𝑀𝐶𝑟  (𝑟 ∈ 𝑅1 )]. In this situation, the number of 

available cabin crews for class 𝑟 ∈ 𝑅1 is larger than the minimum requirement 

𝑀𝐶𝑟 . Therefore, the class 𝑟 ∈ 𝑅1  has exceeding available staff (the exceeding 

number is 𝑑𝑟 − 𝑀𝐶𝑟 ). However, whether CCS could be utilized to solve the 

manpower shortage problem depends on the characteristics of the classes that are 

in a shortage, as Scenario 1 and Scenario 2.  
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C1. Scenario 1 [For all 𝑟 where 𝑑𝑟 < 𝑀𝐶𝑟 (𝑟 ∈ 𝑅2(𝑅2 ⊆ (𝑅 − 𝑅1))) ,

𝑀𝑀𝑟 = 𝑀𝐶𝑟 ]. In this scenario, for the classes 𝑟 ∈ 𝑅2  which are 

insufficient, the minimum manpower requirement 𝑀𝐶𝑟  is equal to the 

minimum satisfaction constraint manpower demand 𝑀𝑀𝑟 . Therefore, 

𝑅2 = 𝑅∗. As a result, for each class 𝑟 ∈ 𝑅2(𝑅∗), it is enough to employ the 

number of (𝑀𝑀𝑟 −  𝑑𝑟)  extra staff to satisfy the minimum satisfaction 

constraint, while CCS would not function.  

C2. Scenario 2 [For some 𝑟 ∈ 𝑅2 , 𝑀𝑀𝑟 < 𝑀𝐶𝑟  (𝑟 ∈ 𝑅3(𝑅3 ⊆ 𝑅2) )]. In 

this scenario, because the minimum manpower requirement for class 𝑟 ∈

𝑅3 is higher than the minimum satisfaction constraint manpower demand 

(i.e., 𝑀𝐶𝑟 > 𝑀𝑀𝑟), the manpower from other classes could be utilized as a 

“substituter” to fulfil some jobs for those from class 𝑟 ∈ 𝑅3. Besides, extra 

manpower is necessary to build feasible solution. The total number of extra 

cabin crews needed is Max{∑ (𝑀𝑀𝑟 − 𝑑𝑟)𝑟∈𝑅∗ , (𝑀𝑆 − 𝑇𝐴)}. 

B2. [For all 𝑟 ∈ 𝑅, 𝑑𝑟 ≤ 𝑀𝐶𝑟]. In this situation, the number of available cabin 

crews for each class is smaller than or equal to the minimum requirement 𝑀𝐶𝑟. 

Whether CCS could play an effective role in hedging against manpower shortage 

depends on the relationship between 𝑀𝑆  and ∑ 𝑀𝐶𝑟𝑟∈𝑅  , as discussed in 

Scenario 3 and Scenario 4. 

C3. Scenario 3 [ 𝑀𝑆 = ∑ 𝑀𝐶𝑟𝑟∈𝑅  ]. 𝑀𝑆 = ∑ 𝑀𝐶𝑟𝑟∈𝑅   means that the 

minimum total manpower demand with the application of CCS is the same 

as the case where CCS is not employed. That is, the minimum overall 

manpower requirement for the flight schedule involves no CCS. In this 

scenario, the number (𝑀𝐶𝑟 −  𝑑𝑟) of extra cabin crews for each class 𝑟 ∈ 𝑅 

will be employed to facilitate the flight operations. No CCS is needed. 

C4. Scenario 4 [ 𝑀𝑆 < ∑ 𝑀𝐶𝑟𝑟∈𝑅  ]. 𝑀𝑆 < ∑ 𝑀𝐶𝑟𝑟∈𝑅   implies that the 

minimum total manpower demand with the application of CCS is lower than 

the case where CCS is not employed. In other words, CCS succeeds in 

reducing the minimum total manpower demand. Therefore, the total 
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Max{∑ (𝑀𝑀𝑟 − 𝑑𝑟)𝑟∈𝑅∗ , (𝑀𝑆 − 𝑇𝐴)}  extra cabin crews are demanded to 

help fulfill all the duties with crew substitutions. 

 

A2. [𝑇𝐴 ≥ 𝑀𝑆]. In this case, the total available manpower has the potential to cover all 

flight requirements. However, whether the available manpower is in a shortage, and 

whether CCS or extra manpower is needed should be further examined (Scenarios 5 to 

8). 

B3. [For some 𝑟 ∈ 𝑅, 𝑑𝑟 < 𝑀𝐶𝑟  ( 𝑟 ∈ 𝑅4 )]. In this situation, the number of 

available cabin crews for class 𝑟 ∈ 𝑅4 is smaller than the minimum requirement 

𝑀𝐶𝑟, which means that this class is insufficient to cover all flight requirements on 

its own. Therefore, manpower shortage exists in this situation. Whether CCS or 

extra manpower is needed is further divided into three scenarios (5, 6, and 7) as 

follows.  

C5. Scenario 5 [For all 𝑟 ∈ 𝑅4, 𝑑𝑟 ≥ 𝑀𝑀𝑟]. In this scenario, as 𝑇𝐴 ≥ 𝑀𝑆 

and the available manpower of each class is sufficient to cover the minimum 

satisfaction constraints (i.e., 𝑑𝑟 ≥ 𝑀𝑀𝑟), although certain classes are in a 

shortage, the application of CCS will assist in completing the whole flight 

operations without the employment of extra cabin crews.  

C6. Scenario 6 [For some 𝑟 ∈ 𝑅4, 𝑑𝑟 < 𝑀𝑀𝑟; and for all 𝑟 ∈ 𝑅4, 𝑀𝑀𝑟 =

𝑀𝐶𝑟]. In this scenario, for the classes which are insufficient, the minimum 

manpower requirement 𝑀𝐶𝑟  is equal to the minimum satisfaction 

constraint manpower demand 𝑀𝑀𝑟. Therefore, 𝑅4 = 𝑅∗. As a result, it is 

sufficient to employ class 𝑟 ∈ 𝑅∗ (𝑅4) extra staff to satisfy the minimum 

satisfaction constraints. The number of extra staffs needed for class 𝑟 ∈

𝑅∗(𝑅4) is equal to (𝑀𝑀𝑟 −  𝑑𝑟). No CCS is needed. 

C7. Scenario 7 [For some 𝑟 ∈ 𝑅4, 𝑑𝑟 < 𝑀𝑀𝑟 ; and for some 𝑟 ∈ 𝑅4 , 

𝑀𝑀𝑟 < 𝑀𝐶𝑟 (𝑟 ∈ 𝑅5(𝑅5 ⊆ 𝑅4))]. Extra manpower is necessary for class 

𝑟 ∈ 𝑅∗ with the number of (𝑀𝑀𝑟 −  𝑑𝑟). At the same time, some duties of 

class 𝑟 ∈ 𝑅5 could be operated by the manpower of other class with the 
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strategy of CCS due to the fact that 𝑀𝑀𝑟 < 𝑀𝐶𝑟 (for 𝑟 ∈ 𝑅5). 

B4. Scenario 8 [For all 𝑟 ∈ 𝑅, 𝑑𝑟 ≥ 𝑀𝐶𝑟 ]. In this situation, the number of 

available cabin crews for all classes 𝑟 ∈ 𝑅  are larger than the minimum 

requirement 𝑀𝐶𝑟, which means that no manpower shortage exists. Accordingly, 

no CCS or extra manpower is required.  

 

In conclusion, the analysis in this sub-chapter demonstrates that the relationship 

between cabin crew availability levels (that is, the maximum number of pairings 

allowed for a week) and flight schedule manpower requirement benchmarks is critical 

to determine which cabin crew management strategies should be adopted (for example, 

whether CCS or extra cabin crews are required). Although the focus of this research is 

not on the daily manpower availability at this stage, it is important to demonstrate that 

the manpower availability level is indeed a crucial determinant in cabin crew 

management, which is believed to provide some useful insights for airlines. Through 

comprehensive and careful analysis, eight scenarios are identified. Specifically, the 

strategy of CCS is especially valuable in Scenarios 2, 4, 5, and 7 in dealing with the 

dilemma of cabin crew shortage, and alleviating the dependence on extra manpower 

during the manpower demand variation caused by flight fluctuation. The summary of 

extra manpower demand of MICCPP-ACCS in each scenario is summarized in the 

second column of Table 3-5, together with the comparisons between that of MICCPP-

A without the function of CCS. The last column specifies whether CCS helps in 

reducing the demand for extra manpower compared with the situation where CCS is 

not formulated. Specifically, the extra manpower requirement declines when CCS 

succeeds to function (Scenarios 2, 4, 5, and 7). In Scenario 5, the extra manpower 

demand is even eliminated. Therefore, it is shown that CCS plays a pivotal role in 

dealing with the disruption brought by flight fluctuation through manpower utilization 

improvement. 

Finally, it should be noted that flights generally require more than one cabin crews 

of each class. Hence, the value of 𝑀𝐶𝑟  is usually larger than 𝑀𝑀𝑟 . Therefore, 
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Scenarios 1 and 6 are special cases where all flights on the schedule need only one cabin 

crew of the considered classes (that is, for the considered class 𝑟 and all flights 𝑖 ∈ 𝐹, 

𝑏𝑖
𝑟=1; then, 𝑀𝑀𝑟 = 𝑀𝐶𝑟).  

Table 3-5. Summary of extra manpower demand in each scenario of MICCPP-ACCS 

and MICCPP-A. 

Scenario 
Total extra manpower demand obtained from the model CCS reduce 

extra manpower 
demand 

MICCPP-ACCS MICCPP-A Identical 

1 ∑ (𝑀𝑀𝑟 − 𝑑𝑟)𝑟∈𝑅∗
#  ∑ (𝑀𝐶𝑟 − 𝑑𝑟)𝑟∈𝑅2   √  

2 
Max{∑ (𝑀𝑀𝑟 −𝑟∈𝑅∗

𝑑𝑟) , (𝑀𝑆 − 𝑇𝐴)}  
∑ (𝑀𝐶𝑟 − 𝑑𝑟)𝑟∈𝑅2    √ 

3 ∑ (𝑀𝐶𝑟 − 𝑑𝑟)𝑟∈𝑅   ∑ (𝑀𝐶𝑟 − 𝑑𝑟)𝑟∈𝑅   √  

4 
Max{∑ (𝑀𝑀𝑟 −𝑟∈𝑅∗

𝑑𝑟) , (𝑀𝑆 − 𝑇𝐴)}  
∑ (𝑀𝐶𝑟 − 𝑑𝑟)𝑟∈𝑅    √ 

5 0 ∑ (𝑀𝐶𝑟 − 𝑑𝑟)𝑟∈𝑅4    √ 
6 ∑ (𝑀𝑀𝑟 − 𝑑𝑟)𝑟∈𝑅∗

##  ∑ (𝑀𝐶𝑟 − 𝑑𝑟)𝑟∈𝑅4   √  
7 ∑ (𝑀𝑀𝑟 − 𝑑𝑟)𝑟∈𝑅∗   ∑ (𝑀𝐶𝑟 − 𝑑𝑟)𝑟∈𝑅4    √ 
8 0 0 √  

#In Scenario 1, 𝑅2 = 𝑅∗ and 𝑀𝑀𝑟 = 𝑀𝐶𝑟. 
## In Scenario 6, 𝑅4 = 𝑅∗ and 𝑀𝑀𝑟 = 𝑀𝐶𝑟. 

 

3.4. Solution Approach 

In the literature, the continuous relaxation of the CPP is generally solved by column 

generation (e.g., Lavoie et al., 1988, Saddoune et al., 2013), a popular continuous 

optimization technique that can solve large-scale linear programming problems without 

the difficulty of explicitly considering all the columns (Barnhart et al., 1998; Liang et 

al., 2018). The problem is divided into a restricted master problem (RMP) and a pricing 

problem (PP). The RMP is initiated by an initial feasible solution with a restricted 

number of columns, while the PP generates better columns to iteratively update the 

RMP column pool. The whole iterative process terminates when no better columns 

could be found. The current optimal RMP solution is also optimal for the whole 

problem. The proposed model MICCPP-ACCS has exponentially many variables 

(columns). Therefore, a customized branch-and-price process is built to identify the 

optimal solutions for MICCPP-ACCS13, which is illustrated in this sub-chapter. Besides, 

 
13 Column generation is also applied to solve TCCPP and the simplified MICCPP-A in a similar but much simpler 

manner. For brevity, details are not shown in the thesis. 
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it is noted that as the main focus of this work is to propose a new cabin crew pairing 

generation model, rather than proposing solution methodological advancements, the 

standard solution approach is thus applied. 

 

3.4.1. Restricted Master Problem 

The RMP is the linear relaxed version of MICCPP-ACCS by releasing the integrality 

constraints Eqs. (3-11) to (3-13) into non-negative restrictions. The column in the 

model associated with each decision variable ( 𝑥𝑗𝑟
 and 𝑥𝑗𝑟

𝑒 ) is denoted as 𝝃𝒙 , a 

((2|𝑅| + 1) × |𝐹| + |𝑅|) × 1 vector with elements of 0 or 1. Different from TCCPP 

where each column simply represents a team pairing 𝑗𝑡 , the columns in MICCPP-

ACCS are more complicated. For the 𝜉𝑥𝑗𝑟
of 𝑥𝑗𝑟

, the elements in Eqs. (3-7), in the rth 

set of Eqs. (3-8), and in the rth set of Eqs. (3-9) represent the corresponding individual 

pairing 𝑗𝑟, while the element in the rth row of Eqs. (3-10) equals one. All the remaining 

elements in 𝜉𝑥𝑗𝑟
 are zero. For 𝑥𝑗𝑟

𝑒 , 𝜉𝑥𝑗𝑟
𝑒  is similar to 𝜉𝑥𝑗𝑟

, except that the element in 

the rth row of Eqs. (3-10) equals zero. 

Due to the limitation of available cabin crews (that is, Eqs. (3-10)), it is difficult 

to identify an initial feasible solution using the available manpower, especially when 

some classes are insufficient. Herein, an efficient tailored initiation methodology called 

the dynamic programming based initialization algorithm (DPIA) is proposed, to 

quickly initiate the RMP using the unlimited extra cabin crews. In DPIA, a set of legal 

individual pairings (𝑄) that covers each flight at least once is identified based on the 

constructed duty-based networks. Note that the networks for extra cabin crews are 

identical as those for available cabin crews. Table 3-6 shows the pseudo-code of DPIA, 

where 𝑈 is the set of unprocessed partial paths and 𝑂 is the set of covered flights. In 

particular, 𝑈 is initialized by adding the trivial partial path only containing the source 

node s. 

As there is no upper limit on extra manpower, the individual pairings generated in 



77 

 

𝑄 could be applied to each class of extra cabin crews to cover all flight requirements, 

satisfying all the constraints in Eqs. (3-7)- Eqs. (3-13). Therefore, the RMP is initiated 

by inserting the variables 𝑥𝑗𝑟
𝑒  (𝑗𝑟

𝑒 ∈ 𝑄) and corresponding columns 𝜉𝑥𝑗𝑟
𝑒  into the pool, 

which is solved by the Simplex method. The dual prices associated with each constraint 

obtained are then passed to the PP. 

Table 3-6. Dynamic programming based initialization algorithm (DPIA). 

1. Begin 

2.  𝑈 ={(s)}, 𝑂 = ∅, 𝑄 = ∅; 

3.  While the size of 𝑂 ≠ the number of flights to be scheduled, do  

4.  Begin 

5.   Select the last element 𝐿∈𝑈, and delete it from 𝑈; 

6.   Extend 𝐿 to all possible directions if no resource (𝜏 ∈ 𝛩) is violated; 

7.   For each newly generated (partial) path 𝐻, do 

8.   Begin 

9.    If 𝐻 ends at the sink node m, then 

10.     If any flight 𝑧 in 𝐻 is not contained in 𝑂, then  

11.      add 𝑧 in 𝑂, and add H in 𝑄; 

12.    Else  

13.     Add 𝐻 to 𝑈; 

14.   End   

15.  End    

16. End     

 

3.4.2. Pricing Problem 

In each iteration, the aim of PP is to find promising columns with negative reduced 

costs to update the RMP column pool. The reduced costs (𝑅𝐶𝑥) of decision variables 

𝑥𝑗𝑟
 and 𝑥𝑗𝑟

𝑒  are formulated as Eq. (3-19) and Eq. (3-20). Specifically, 𝜋𝑖 is the dual 

price for the ith row (flight i) of Eqs. (3-7), 𝜆𝑖
𝑟 is the dual price for the ith row of the rth 

set (flight i, Class r) of Eqs. (3-8), 𝜃𝑖
𝑟 is the dual price for the ith row of the rth set 

(flight i, Class r) of Eqs. (3-9), and 𝜑𝑟 is the dual price for the rth row (Class r) of Eqs. 

(3-10). 

For 𝑥𝑗𝑟
 𝑅𝐶𝑥𝑗𝑟

= 𝑐𝑗𝑟
+ ∑ (−𝜋𝑖 − 𝜆𝑖

𝑟 − 𝜃𝑖
𝑟)𝑎𝑖𝑗𝑟𝑖∈𝐹 − 𝜑𝑟.  Eq. (3-19) 

For 𝑥𝑗𝑟
𝑒  𝑅𝐶𝑥𝑗𝑟

𝑒 = 𝑐𝑗𝑟
𝑒 + ∑ (−𝜋𝑖 − 𝜆𝑖

𝑟 − 𝜃𝑖
𝑟)𝑎𝑖𝑗𝑟

𝑒𝑖∈𝐹 + 𝑀.  Eq. (3-20) 

For 𝑅𝐶𝑥𝑗𝑟
 , the first part ( 𝑐𝑗𝑟

) is the TAFB cost of 𝑗𝑟 . The second part 
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(∑ (−𝜋𝑖 − 𝜆𝑖
𝑟 − 𝜃𝑖

𝑟)𝑎𝑖𝑗𝑟𝑖∈𝐹 ) is the sum of negative dual prices of each flight covered in 

𝑗𝑟, where (−𝜋𝑖 − 𝜆𝑖
𝑟 − 𝜃𝑖

𝑟) is called the flight negative dual price cost (FNDPC) for 

flight i. The third part (𝜑𝑟) is the negative dual price for the corresponding Class r, 

which is unrelated with 𝑗𝑟. For 𝑥𝑗𝑟
𝑒 , 𝑅𝐶𝑥𝑗𝑟

𝑒  is similar to 𝑅𝐶𝑥𝑗𝑟
, except that the third 

part (𝑀) is the big penalty cost induced by the generation of an extra cabin crew, which 

is also irrelevant with the feature of 𝑗𝑟
𝑒 . In addition, the number of substitution 

recording variable 𝑠𝑖
𝑟  is a constant as (|𝐹| × |𝑅|), and the reduced cost for 𝑠𝑖

𝑟  is 

(𝜇 − 𝜃𝑖
𝑟).  

Now, for each class of available cabin crews, it is assumed that in the duty-based 

network, the arc cost 𝑎𝑐𝑎𝑟𝑐
(𝑛𝑟,𝑛𝑟

′ )
 is equal to the time duration of the arc (as in Eq. (3-

21) to Eq. (3-23)), while the duty node cost 𝑛𝑐𝑑𝑘
𝑟  equals the aggregated FNDPC of the 

flights contained in 𝑑𝑘
𝑟  (see Eq. (3-24)). Besides, there is no cost for the source/sink 

node (Eq. (3-25)). Therefore, the total arc cost for a resource-feasible s-m path (𝑡𝑎𝑐𝑗𝑟
) 

is the TAFB of 𝑗𝑟 (as in Eq. (3-26)). Besides, the total node cost 𝑡𝑛𝑐𝑗𝑟
 for path 𝑗𝑟 is 

the sum of FNDPC of all the flights contained in 𝑗𝑟 (Eq. (3-27)). Furthermore, the total 

cost for path 𝑗𝑟 (𝑡𝑐𝑗𝑟
) is formulated as Eq. (3-28), as the summation of total arc cost, 

total node cost, together with −𝜑𝑟, which is exactly the reduced cost 𝑅𝐶𝑥𝑗𝑟
 in Eq. (3-

19). Accordingly, the PP is transformed to solve a resource constrained shortest path 

problem (RCSPP) in each class of duty-based network, to identify new paths with 

negative 𝑡𝑐𝑗𝑟
 (𝑅𝐶𝑥𝑗𝑟

). The label correcting algorithm is applied to solve the RCSPP 

problem, which is widely used in the pricing problem of column generation, like Irnich 

and Desaulniers (2005). With the labels recording costs and resource consumptions, the 

state of each path in the network could be analyzed to dominate the “worse” paths and 

the most cost-efficient legal path can be selected. The negative-cost solution obtained 

from RCSPP corresponds to a potential individual pairing to improve the RMP. The 

next iteration is triggered by adding the identified new variable into the RMP pool, until 

no better paths could be found. The PP mechanism for 𝑥𝑗𝑟
𝑒  is similar to that for 𝑥𝑗𝑟

, 
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except that the total path cost consists of total arc cost, total node cost, together with 

𝑀, rather than −𝜑𝑟. Finally, the column generation process is embedded into a branch-

and-bound scheme to obtain integer solutions. 

Cost of a rest arc 𝑎𝑐𝑎𝑟𝑐(𝑑𝑘1
𝑟 ,𝑑𝑘2

𝑟 )
= duration from the end of 𝑑𝑘1

𝑟 to the end of 

𝑑𝑘2

𝑟 . 

Eq. (3-21) 

Cost of a starting arc 𝑎𝑐𝑎𝑟𝑐
(𝑠,𝑑𝑘

𝑟 )
= the duration of  𝑑𝑘

𝑟 . Eq. (3-22)  

Cost of an ending arc 𝑎𝑐𝑎𝑟𝑐(𝑑𝑘
𝑟 ,𝑡)

= 0. Eq. (3-23) 

Cost of a duty node 𝑛𝑐𝑑𝑘
𝑟  = ∑ (−𝜋𝑖 − 𝜆𝑖

𝑟 − 𝜃𝑖
𝑟).𝑖∈𝐹𝑑𝑘

𝑟   Eq. (3-24) 

Cost of source/sink node 𝑛𝑐𝑠, 𝑛𝑐𝑚  = 0. Eq. (3-25) 

Total arc cost of path 𝑗𝑟 𝑡𝑎𝑐𝑗𝑟
= ∑ 𝑎𝑐(𝑛𝑟,𝑛𝑟

′ )(𝑛𝑟,𝑛𝑟
′ )∈𝑗𝑟

= TAFB of path (pairing) 𝑗𝑟=𝑐𝑗𝑟
. Eq. (3-26) 

Total node cost of path 𝑗𝑟 𝑡𝑛𝑐𝑗𝑟
= ∑ 𝑛𝑐𝑑𝑘

𝑟𝑑𝑘
𝑟∈𝑗𝑟

= ∑ ∑ (−𝜋𝑖 − 𝜆𝑖
𝑟 − 𝜃𝑖

𝑟)𝑖∈𝐹𝑑𝑘
𝑟𝑑𝑘

𝑟∈𝑗𝑟
.  Eq. (3-27) 

Total cost of path 𝑗𝑟 𝑡𝑐𝑗𝑟
= 𝑡𝑎𝑐𝑗𝑟

+ 𝑡𝑛𝑐𝑗𝑟
− 𝜑𝑟 = 𝑅𝐶𝑥𝑗𝑟

. Eq. (3-28) 

 

3.5. Computational Experiments 

This sub-chapter presents analyses that demonstrate the superior performance of the 

proposed MICCPP-ACCS model through computational experiments based on real-

world collected flight schedules. Experiments were conducted on a PC with Windows 

7 operation system and Intel (R) Core (TM) i7-4790 @ 3.60 GHz (32 GB RAM). The 

implementations are coded in Java programming language. The RMP is solved using 

CPLEX Concert Technology in IBM ILOG CPLEX Optimization Studio (Version 

12.6.3). Firstly, the real flight schedules selected in the study are described in Section 

3.5.1. Then, the initial flight schedules are preprocessed for experiments and the 

characteristics of the derived instances are introduced in Section 3.5.2. Thirdly, the 

manpower requirement benchmarks for the derived instances are obtained, based on 

which the tested cabin crew availability levels are generated in Section 3.5.3. With the 

derived manpower availability levels, Section 3.5.4 demonstrates the applicability and 

high efficiency of the novel MICCPP-ACCS over TCCPP, especially in terms of cabin 

crew utilization and associated costs. Besides, Section 3.5.5 compares the performance 
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of MICCPP-ACCS with the simplified version of MICCPP-A to illustrate the effect of 

CCS. Lastly, the special availability-requirement Scenarios 1 and 6 are tested in Section 

3.5.6. 

 

3.5.1. Selected Flight Schedules 

The main focus is to show the merits of the proposed individual pairing approach (i.e., 

MICCPP-ACCS) in terms of manpower utilization improvement and cost reduction. 

Therefore, considering the large scale and complexity of MICCPP-ACCS, the proposed 

model is tested using a relatively small-scale set of instances based on The Airways. 

The Airways’ flight network mainly has a hub-and-spoke structure. There are more than 

twelve thousand four-class (|𝑅| = 4) cabin crews working for The Airways, which 

makes cabin crew management significantly challenging.  

The tested instances are derived from an eight-week flight schedule of a route 

between the home base Hong Kong (HKG) and Singapore (SIN). Each week of 

schedule is an independent instance. Therefore, the proposed models are run for each 

instance to obtain solutions for comparison. Note that instead of solving a dated 

monthly pairing problem, this study aims to show the performances of the proposed 

pairing generation approach using these eight independent week-instances. The flight 

data, for example, flight number, departure time, arrival time, and aircraft type used, 

are collected from the website of The Airways, spanning from 19, Nov 2017 to 13, Jan 

2018. The considered HKG-SIN route averagely takes 235.7 minutes, involving five 

aircraft types of Airbus Industrie A330-300, Airbus Industrie A350-900, Boeing 777-

200/200ER, Boeing 777-300, and Boeing 777-300ER, denoted as Type 1, Type 2, Type 

3, Type 4, and Type 5 respectively. Particularly, Type 1 has three different cabin layouts, 

denoted as Type 1-1, Type 1-2, and Type 1-3, while Type 5 has two, denoted as Type 

5-1 and Type 5-2. The details of cabin layouts, seat capacities, and cabin crew 

requirements are illustrated in Table B-1 and Table B-2 (see Appendix B). Considering 

that the flight schedules collected from The Airways website only give the aircraft type 
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used without the specific layouts, the experiments randomly select layouts for Type 1 

flights and Type 5 flights. Besides, according to the average salary statistics in the 

service industry in Hong Kong14, the weekly fixed payment for an available cabin crew 

and extra cabin crew are approximated as 3,000 and 6,000 Hong Kong dollars, 

respectively (𝑐𝑓𝑎 = 3,000 and 𝑐𝑓𝑒 = 6,000).  

Table 3-7. Number of flights and aircraft types contained in the selected flight 

schedules. 

Week No. of flights  
 No. of aircraft of each type contained 

 Type 1 % Type 2 % Type 3 % Type 4 % Type 5 % 

Week 1 105   13  12.4% 29  27.6% 3  2.9% 24  22.9% 36  34.3% 

Week 2 106   11  10.4% 32  30.2% 5  4.7% 26  24.5% 32  30.2% 

Week 3 100   7  7.0% 34  34.0% 7  7.0% 30  30.0% 22  22.0% 

Week 4 103   22  21.4% 28  27.2% 3  2.9% 32  31.1% 18  17.5% 

Week 5 104   13  12.5% 38  36.5% 8  7.7% 28  26.9% 17  16.4% 

Week 6 100   20  20.0% 39  39.0% 5  5.0% 16  16.0% 20  20.0% 

Week 7 109   30  27.5% 39  35.8% 7  6.4% 7  6.4% 26  23.9% 

Week 8 110   28  25.5% 41  37.3% 5  4.6% 19  17.3% 17  15.5% 

 

Table 3-7 summarizes the number of flights and the number of each type of 

aircraft contained in the selected weekly schedules. Obviously, there are mixed types 

of aircraft in a flight schedule, which requires the individual modelling approach for 

cabin crews. Besides, it could be seen that the flight frequency and aircraft types 

involved typically fluctuate over time. One typical flight (Flight 636) is used to 

demonstrate the flight fluctuation in Figure 3-4, with the horizontal axis representing 

the day of time and the vertical axis standing for the aircraft type used. In specific, the 

vertical axis value of zero implies that there is no flight on that day, while an integer 

positive value means that Flight 636 is operated on that day with the corresponding type 

of aircraft. As can be seen, during the considered period, Flight 636 is not operated on 

three days (19 Nov, 26 Nov, and 03 Dec). Besides, five types of aircraft are used to 

conduct Flight 636. For example, a Type 5 aircraft (Boeing 777-300ER) is assigned on 

28 Dec, while a Type 2 aircraft (Airbus Industrie A350-900) is appointed on 29 Dec. 

 
14 https://www.censtatd.gov.hk/hkstat/sub/sp210.jsp?tableID=028&ID=0&productType=8 (Retrieved in 

December, 2017). 

https://www.censtatd.gov.hk/hkstat/sub/sp210.jsp?tableID=028&ID=0&productType=8


82 

 

 

 

Figure 3-4. An example of flight fluctuation. 

 

3.5.2. Preprocessing and Instance Characteristics 

As the objective is to compare the performance of the proposed MICCPP-ACCS with 

TCCPP, it is necessary to pre-process the raw flight schedules to ensure feasible 

solutions for TCCPP. As mentioned, TCCPP is solved within each separate aircraft type; 

therefore, each original weekly flight schedule in Table 3-7 is decomposed by aircraft 

types into five sub-schedules for each type of TCCPP. For example, Week 1 schedule 

(105 flights) is decomposed into a Type 1 sub-schedule (13 flights) for Type 1 TCCPP, 

a Type 2 sub-schedule (29 flights) for Type 2 TCCPP, a Type 3 sub-schedule (3 flights) 

for Type 3 TCCPP, a Type 4 sub-schedule (24 flights) for Type 4 TCCPP, and a Type 

5 sub-schedule (36 flights) for Type 5 TCCPP. Then, within each separate sub-schedule, 

those flights that cannot be covered by any feasible pairing are examined and deleted. 

This is because a partial set of flights of The Airways is considered for computational 

experiments. Thus, some of the flights selected might not appear in any feasible path in 

the constructed duty-based network. Moreover, after the flight schedule is decomposed 

by aircraft types (as TCCPP is solved within each separate aircraft type), the flight un-

coverage problem becomes severer. Therefore, to facilitate analyses and achieve the 

comparison between MICCPP-ACCS and TCCPP, the selected flight schedules are 

preprocessed to delete the uncovered flights. The processed instances are shown in 

Table 3-8, and the number of uncovered flights for each schedule is summarized in the 
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fourth column of the table. In addition, as could be seen from Table 3-7, the number of 

flights using certain aircraft types is much lower than those using other types. For 

example, for each selected weekly schedule, more than twenty flights apply Type 2 

aircraft, while only a few flights (less than ten) use Type 3 aircraft. Therefore, it is 

reasonable that the number of remained flights after preprocessing for Type 3 aircraft 

could be much smaller than that for Type 2 aircraft. From Table 3-8, it could be seen 

that for three instances (I1, I2, and I4), no flights using Type 3 aircraft are remained. 

Accordingly, the number of feasible paths in the corresponding networks could become 

very small (see Table 3-9). This could also show the shortcoming of solving the cabin 

crew pairing problem by decomposing the flight schedule according to aircraft types in 

the traditional cabin CPP practice. Therefore, regarding Week 1 schedule, 4, 27, 0, 21, 

and 32 flights remain for Types 1, 2, 3, 4, and 5 TCCPP, respectively. The whole set of 

these remaining flights (84 flights) forms the real test instance 1 (I1). For ease of 

expression, the instances are denoted as Ix-M when the proposed MICCPP-ACCS is 

tested (as in the second column of Table 3-8), while each aircraft type of instance for 

TCCPP is denoted as Ix-Ty (as in the 5th, 7th, 9th, 11th, and 13th columns of Table 3-8). 

For example, I1 for MICCPP-ACCS is I1-M, while Type 1 of I1 for TCCPP is I1-T1.  

Table 3-9 compares the instance characteristics of the proposed MICCPP-ACCS 

with TCCPP in terms of the number of duties, arcs, and feasible paths (pairings). 

Obviously, the problem scale and complexity are much higher in the proposed 

MICCPP-ACCS. With fewer flights considered, the number of duties, arcs, and feasible 

paths in TCCPP are much less than those in the MICCPP-ACCS instances. On average, 

there are 114.63 duties in MICCPP-ACCS, while only 14 in type 1 TCCPP, 32.13 in 

type 2 TCCPP, 2.25 in type 3 TCCPP, 23.88 in type 4 TCCPP, and 23.63 in type 5 

TCCPP. Besides, MICCPP-ACCS averagely has 247.02% more arcs than the sum of 

all five types of TCCPP. With a larger set of nodes and arcs, the number of candidate 

itineraries for MICCPP-ACCS is exponentially higher than that for the sum of all five 

types of TCCPP (67.04 times averagely). Consequently, larger computational efforts 

should be paid when solving the proposed MICCPP-ACCS. Note that the instances for 
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the simplified MICCPP-A are identical with those for MICCPP-ACCS without 

decomposition by aircraft types, but MICCPP-A solves for each cabin class separately 

without the function of CCS. Table C-1 (see Appendix C) summarizes the number of 

constraints and size of the initial pool for each model, which also shows the difficulty 

of MICCPP-ACCS. 

 

Table 3-8. Number of flights contained in the processed instances. 

Instance 
MICCPP-

ACCS  

No. of 

flights 

No. of 

uncovered 

flights  

TCCPP 

Type 

1  

No. of 

flights 

Type 

2  

No. of 

flights 

Type 

3  

No. of 

flights 

Type 

4  

No. of 

flights 

Type 

5  

No. of 

flights 

I1 I1-M 84 21 I1-T1 4 I1-T2 27 I1-T3 0 I1-T4 21 I1-T5 32 

I2 I2-M 85 21 I2-T1 5 I2-T2 29 I2-T3 0 I2-T4 23 I2-T5 28 

I3 I3-M 77 23 I3-T1 0 I3-T2 29 I3-T3 2 I3-T4 26 I3-T5 20 

I4 I4-M 85 18 I4-T1 18 I4-T2 25 I4-T3 0 I4-T4 28 I4-T5 14 

I5 I5-M 81 23 I5-T1 7 I5-T2 33 I5-T3 6 I5-T4 24 I5-T5 11 

I6 I6-M 77 23 I6-T1 14 I6-T2 33 I6-T3 2 I6-T4 14 I6-T5 14 

I7 I7-M 92 17 I7-T1 27 I7-T2 34 I7-T3 5 I7-T4 2 I7-T5 24 

I8 I8-M 83 27 I8-T1 21 I8-T2 37 I8-T3 2 I8-T4 10 I8-T5 13 

 

Table 3-9. Instance characteristics of MICCPP-ACCS and TCCPP. 

MICCPP-ACCS    TCCPP 

Instance Duty Arc 
Feasib-

le paths 

 Type 1 

Instance 
Duty Arc 

Feasible 

paths 

Type 2 

Instance 
Duty Arc 

Feasible 

paths 

Type 3 

Instance 
Duty Arc 

Feasible 

paths 

Type 4 

Instance 
Duty Arc 

Feasible 

paths 

Type 5 

Instance 
Duty Arc 

Feasible 

paths 

I1-M 121  1104  50803  
 

I1-T1 4  6  2  I1-T2 28  81  134  I1-T3 0  0  0  I1-T4 27  77  130  I1-T5 43  174  981  

I2-M 120  1069  50150  
 

I2-T1 5  8  3  I2-T2 31  99  184  I2-T3 0  0  0  I2-T4 30  94  198  I2-T5 36  118  380  

I3-M 104  862  27215  
 

I3-T1 0  0  0  I3-T2 30  92  186  I3-T3 2  3  1  I3-T4 33  119  316  I3-T5 23  60  86  

I4-M 121  1158  59619  
 

I4-T1 23  75  57  I4-T2 25  68  86  I4-T3 0  0  0  I4-T4 35  126  424  I4-T5 16  36  32  

I5-M 109  882  32422  
 

I5-T1 7  13  6  I5-T2 36  129  383  I5-T3 6  9  3  I5-T4 32  105  248  I5-T5 12  25  16  

I6-M 103  787  21259  
 

I6-T1 16  35  31  I6-T2 34  110  282  I6-T3 2  3  1  I6-T4 18  44  25  I6-T5 17  40  49  

I7-M 128  1228  67625  
 

I7-T1 33  105  227  I7-T2 35  113  262  I7-T3 6  9  3  I7-T4 3  4  1  I7-T5 27  86  190  

I8-M 111  953  38330    I8-T1 24  60  60  I8-T2 38  133  377  I8-T3 2  3  1  I8-T4 13  24  11  I8-T5 15  31  24  

Average 115 1005 43428   14 38 48  32 103 237  2 3 1  24 74 169  24 71 220 

 

3.5.3. Benchmarks and Availability Levels 

Based on the details described in Table 3-3, the manpower requirement benchmarks for 

each instance are obtained as illustrated in Table 3-10, which shows the variation in 

the (minimum) manpower demand during flight fluctuation. For the first instance with 

84 flights, the minimum total manpower demand with CCS (𝑀𝑆) is 184, less than the 
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summation of the minimum manpower demand without CCS of all classes (i.e., 

∑ 𝑀𝐶𝑟𝑟∈𝑅 =189), which implies that the application of CCS succeeds in reducing the 

minimum total manpower demand by 5. However, in I3, 𝑀𝑆 = ∑ 𝑀𝐶𝑟𝑟∈𝑅 =196, which 

means that CCS fails to reduce the minimum total manpower demand. Note that for all 

instances,  𝑀𝑀𝑟 is smaller than 𝑀𝐶𝑟. Therefore, Scenarios 1 and 6 will not happen in 

the derived instances, which will be tested later in Section 3.5.6. 

Table 3-10. Manpower requirement benchmarks of the instances. 

Instance 
Manpower requirement benchmarks 

𝑀𝑆 𝑀𝐶1 𝑀𝐶2 𝑀𝐶3 𝑀𝐶4 ∑ 𝑀𝐶𝑟𝑟∈𝑅    𝑀𝑀𝑟 

I1 184  30  40  56  63  189  14  

I2 180  29  36  54  63  182  14  

I3 196  32  40  58  66  196  15  

I4 188  30  39  55  65  189  14  

I5 217  34  42  66  76  218  17  

I6 194  32  35  62  66  195  16  

I7 227  36  40  72  79  227  19  

I8 218  34  39  69  76  218  18  

 

Table 3-11. Manpower availability levels and corresponding scenarios. 

Availability level Instance - Scenario 

Index 
Class 

1 

Class 

2 

Class 

3 

Class 

4 
I1-M I2-M I3-M I4-M I5-M I6-M I7-M I8-M 

Level 

1 
36  42  72  79  

Scenario 

8 

Scenario 

8 

Scenario 

8 

Scenario 

8 

Scenario 

8 

Scenario 

8 

Scenario 

8 

Scenario 

8 

Level 

2 
29  35  54  63  

Scenario 

4 

Scenario 

5 

Scenario 

3 

Scenario 

4 

Scenario 

4 

Scenario 

4 

Scenario 

3 

Scenario 

3 

Level 

3 
41  14  73  70  

Scenario 

5 

Scenario 

5 

Scenario 

7 

Scenario 

5 

Scenario 

2 

Scenario 

7 

Scenario 

2 

Scenario 

2 

 

In reality, the cabin crew availability in airlines may vary over time due to 

vacations, day-offs, medical checks, training or employee turnover. In this study, three 

cabin crew availability levels are derived to test the performance of the proposed 

approach based on the obtained benchmarks. Firstly, the maximum value of 𝑀𝐶𝑟 for 

each class among the instances is selected to form Level 1 cabin crew availability (36, 

42, 72, and 79 respectively, 229 totally). Secondly, the minimum value of 𝑀𝐶𝑟 for 

each class among the instances is selected to form Level 2 cabin crew availability (29, 

35, 54, and 63 respectively, 181 totally). Observing the relationship between the formed 

availability levels (i.e., Levels 1 and 2) with the obtained manpower requirement 
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benchmarks (as shown in Table 3-10), it is found that Scenarios 2 and 7 are not 

involved. Therefore, Level 3 is randomly generated (41, 14, 73, and 70 respectively, 

198 totally)15 to derive these two scenarios. Under these three manpower availability 

levels, various scenarios could be generated with the test instances, indicating the 

advantages and efficiency of the proposed model. 

As discussed in Section 3.3, when the proposed MICCPP-ACCS is applied, the 

relationship between cabin crew availability levels and manpower requirement 

benchmarks determines whether there is a shortage in the existing manpower, and 

whether CCS or extra cabin crews are required to complete the schedule (as explained 

in Scenario 1 to Scenario 8 in Table 3-4). Table 3-11 summarizes the scenarios 

corresponding to each generated availability level in each instance. For example, for 

I1-M under Level 1, the quantity of available cabin crews for each class is larger than 

𝑀𝐶𝑟. Therefore, there is no manpower shortage or need for CCS/extra crews, which 

corresponds to Scenario 8. On the other hand, for I1-M under Level 2, the total 

availability 𝑇𝐴(181) is lower than 𝑀𝑆(184), and the quantity of available cabin crews 

for each class is equal to or smaller than 𝑀𝐶𝑟, which implies a manpower shortage in 

this case. Moreover, 𝑀𝑆 < ∑ 𝑀𝐶𝑟𝑟∈𝑅  holds in I1-M. Therefore, Scenario 4 applies to 

this case, requiring both CCS and extra manpower to cover all duties. In particular, the 

total extra manpower demand is 𝑀𝑆 − 𝑇𝐴 = 3 . In I1-M with Level 3, the total 

availability 𝑇𝐴(198) is larger than 𝑀𝑆(184), while the availability of Class 2 is lower 

than 𝑀𝐶2 and equal to 𝑀𝑀2. Accordingly, this situation corresponds to Scenario 5, 

where only CCS is needed to deal with the manpower shortage. For I3-M,  𝑀𝑆 =

∑ 𝑀𝐶𝑟𝑟∈𝑅 , which means that CCS fails to reduce the minimum manpower demand. 

When Level 2 is applied, all classes of available manpower fail to complete their tasks 

on their own (that is, for all r, 𝑑𝑟 ≤ 𝑀𝐶𝑟 ). Accordingly, the total number of 

∑ (𝑀𝐶𝑟 −  𝑑𝑟𝑟∈𝑅 )  (3, 5, 4, and 3 for each class, totally 15) extra cabin crews are 

 
15 The manpower availability of each class under Level 3 is randomly generated within the interval of [9, 41], [9, 

47], [9, 77], and [9, 84] respectively. In particular, the lower bound (9) is equal to the minimum MMr among all 

instances minus 5 (14-5=9), while the upper bound is equal to the maximum MCr among all instances plus 5 for each 

class, in order to derive Scenario 2 for some instances (TA<MS, while for any r, the availability number is higher 

than MCr) and Scenario 7 for some instances (TA≥MS, while for any r, the availability number is lower than MMr). 
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required, without the requirement for CCS (as Scenario 3). On the other hand, when 

Level 3 is applied to I3-M, Scenario 7 occurs, with the total availability larger than 

𝑀𝑆(196), while Class 2 is lower than 𝑀𝑀2. In this situation, both CCS and one Class 

2 extra cabin crew (𝑀𝑀2 −  𝑑2 = 1) are demanded. Moreover, let’s see I8-M under 

Level 3 that corresponds to Scenario 2. Herein, the total availability is smaller than 

𝑀𝑆(218), suggesting a great manpower shortage, although the availability levels for 

Class 1 and 3 are higher than 𝑀𝐶1  and 𝑀𝐶3  respectively. Besides, the Class 2 

availability is lower than 𝑀𝑀2 . Consequently, overall 20 extra cabin crews 

(Max{∑ (𝑀𝑀𝑟 − 𝑑𝑟)𝑟∈𝑅∗ , (𝑀𝑆 − 𝑇𝐴)} =20) should be employed. More importantly, 

CCS plays a pivotal role in dealing with the manpower shortage dilemma in this case. 

The details of all scenarios corresponding to each instance and availability level are 

illustrated in Table C-2 in Appendix C. 

 

3.5.4. Demonstration: The Merits of MICCPP-ACCS 

over TCCPP 

To demonstrate the relative advantages of the proposed model, particularly in terms of 

utilization improvement and cost reduction, the solutions obtained from MICCPP-

ACCS and TCCPP (the sum of all five aircraft types) under Level 1, Level 2, and Level 

3 for the derived instances are compared. Note that TCCPP ignores the manpower 

availability limitation, which implies that the solution process under all the three 

availability levels are identical for each instance. The computation times of MICCPP-

ACCS and TCCPP are listed in Table C-6 and Table C-7 (in Appendix C), respectively. 

Specifically, the overall average computation time for each instance (all three 

availability levels) is 24.193s by MICCPP-ACCS, while the total computation time for 

all five aircraft types of each instance is 0.333s by TCCPP. It is reasonable to witness 

the difference in computation time between MICCPP-ACCS and TCCPP, considering 

the great discrepancy in problem scale and complexity of the two models. The total 

extra manpower demand under each availability level in TCCPP equals the total 
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manpower demand obtained in the solution minus the availability quantity. On the other 

hand, as the cabin crew availability constraints are considered in MICCPP-ACCS, 

MICCPP-ACCS is solved for each instance under each availability level separately. 

According to the discussion with the managers from The Airways, it is identified that 

manpower utilization improvement is an important objective for them when conducting 

cabin crew scheduling. Besides, higher utilization means less manpower waste, which 

translates into cost reduction. Therefore, manpower utilization is utilized as a criterion 

to judge the solutions from the perspective of airlines. However, it should be pointed 

out that higher manpower utilization might not be welcomed by cabin crews due to the 

associated higher workload and greater fatigue. The manpower utilization is defined as 

follows: 

Utilization=Total effective flight time / Total maximum allowed TAFB of all 

manpower; 

Total effective flight time=∑ (∑ 𝑏𝑖
𝑟

𝑟∈𝑅 × flight period)𝑖∈𝐹 . 

In the following, the performance of the two models are compared to show the 

advantageous characteristics of the proposed MICCPP-ACCS over TCCPP. Then, the 

impact of manpower availability levels on manpower management is discussed by 

analyzing the outcomes under the three levels of each model. Finally, focusing on Type 

5 instances, the results obtained from the two methodologies are measured to illustrate 

the importance to integrate the flight manpower requirement heterogeneity into the 

decision framework when constructing pairings for cabin crews. 

 

3.5.4.1. Relative Performance of MICCPP-ACCS Over 

TCCPP 

The solution details of the two models are summarized in Table C-3 and Table C-4, 

while Table C-5 represents the relative performance of the two models (see Appendix 

C). The performance comparisons between the two models are depicted in Figure 3-5 

to Figure 3-7, with each under an availability level, revealing the potential merits of 

the proposed approach in terms of the high manpower utilization and low cost incurred. 
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The bold solid line represents MICCPP-ACCS while the thin dotted line stands for 

TCCPP. In each figure, parts (a), (b), (c), and (d) represent the results regarding 

manpower utilization, associated cost, total manpower used, and extra manpower 

demand respectively. From these three figures, some managerial remarks could be 

derived as follows. 

Firstly, analyzing parts (a) and (b) of Figure 3-5 to Figure 3-7, it is obvious that 

the proposed MICCPP-ACCS achieves significant improvement in manpower 

utilization than TCCPP, by a mean of 199.4%, coupled with a remarkable cost reduction 

of an average of 61%. The maximum utilization increase even reaches 266.9% in I2 

under Level 2 availability and the maximum cost reduction is 66.4% in I1 under Level 

3. However, the improvement in manpower utilization inevitably leads to an increase 

in the average number of flights and duties in a pairing, and the average length of 

pairing elapsed time. The results show that there are on average 166% more flights, 

105.7% more duties, and 183.3% longer elapsed time in the pairings obtained from 

MICCPP-ACCS than those from TCCPP (see Table C-5). 

Secondly, examining parts (c) and (d) of Figure 3-5 to Figure 3-7, it is found that 

with a higher manpower utilization, the proposed MICCPP-ACCS requires much less 

manpower to complete the flight schedules than TCCPP, which further implies a 

reduction in the demand for extra cabin crews. Remarkably, the proposed approach 

averagely achieves 66.3% and 97.9% reduction in total manpower used and extra 

manpower demand respectively than TCCPP, which proves the higher solution 

efficiency of the proposed approach. In 12 out of all 24 cases, the requirement for extra 

manpower is even eliminated in MICCPP-ACCS (e.g., I1 under Level 1).  

Thirdly, the obtained TCCPP manpower demand fluctuates much more 

significantly than that obtained from MICCPP-ACCS. The average standard deviation 

of the total manpower used across all instances under the three availability levels for 

TCCPP reaches 40.24, while that for MICCPP-ACCS is only 9.15 (reduced by 77.26%), 

which proves the lower impact of flight fluctuation on cabin crew management of the 

proposed approach over TCCPP. Similar conclusions could be drawn when the 
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outcomes in terms of extra manpower demand are examined. Besides, the cost of 

TCCPP also fluctuates more greatly than that of MICCPP-ACCS.  
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Figure 3-5. The performance comparisons between MICCPP-ACCS  

and TCCPP (under Level 1). 
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Figure 3-6. The performance comparisons between MICCPP-ACCS 

 and TCCPP (under Level 2). 
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Figure 3-7. The performance comparisons between MICCPP-ACCS 

 and TCCPP (under Level 3). 
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Figure 3-8. The performance comparisons among the three availability levels  

applying MICCPP-ACCS. 



92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.4.2. The Effect of Manpower Availability Levels 

The solutions obtained from MICCPP-ACCS under the three levels are summarized in 

Figure 3-8, while those from TCCPP are illustrated in Figure 3-9. The dashed line, 

solid line, and dotted line stand for Levels 1, 2, and 3, respectively. From these two 

figures, the effect of manpower availability levels on cabin crew management could be 

investigated when the two models are utilized. 

Firstly, for MICCPP-ACCS, the cabin crew utilization increases along with the 

decrease in the availability levels examined. As could be seen in part (a) of Figure 3-8, 

Level 2 with the least available manpower achieves the highest cabin crew utilization, 

while Level 1 achieves the lowest. However, the realized manpower utilization for 

TCCPP under the three availability levels are identical (part (a) of Figure 3-9). This is 

primarily because the proposed MICCPP-ACCS has the ability to identify feasible 

 

 

a b 

c d 

Figure 3-9. The performance comparisons among the three availability levels 

 applying TCCPP. 
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solutions that guarantee the flight schedule to be fully served using available manpower 

as much as possible before hiring extra cabin crews, thus raising manpower utilization 

when the availability level is low, while TCCPP is not equipped with this function. 

Secondly, based on the discussions above regarding the variation of manpower 

utilization along with availability levels, one could expect that the availability level 

with the lowest utilization (Level 1) should apply the most cabin crews while the level 

with the highest utilization (Level 2) shall use the least manpower to serve the flights 

in MICCPP-ACCS. Part (c) in Figure 3-8 verifies this expectation. Actually, as the 

available manpower under Level 1 is larger than the minimum total manpower demand 

(TA>MS) for all instances, there is no need for extra cabin crews, making the dashed 

line in part (c) of Figure 3-8 a straight line equal to 229 (the sum of available manpower 

under Level 1) and that in part (d) equal to 0. However, manpower insufficiency occurs 

in some instances under Level 2 and Level 3, which leads to demands for extra 

manpower, causing the solid and dotted lines in part (c) and (d) curves. Specifically, 

Level 2 with the least available manpower requires the most extra cabin crews. 

Differently, the manpower availability level imposes no influence on the total 

manpower requirement for TCCPP, and it only affects the extra manpower demand. 

Thirdly, it is observed that the impact of flight fluctuation on cabin crew 

management could be affected by the manpower availability levels in MICCPP-ACCS, 

while could not in TCCPP. When comparing the two “part (c)” in Figure 3-8 and Figure 

3-9, it is seen that the total number of cabin crews used obtained from TCCPP always 

fluctuates along with flight fluctuation, regardless of the manpower availability levels. 

On the contrast, for MICCPP-ACCS, the flight fluctuation imposes less or even no 

impact on cabin crew management. For example, under Level 1, the available 

manpower has the ability to deal with any change in the tested flight schedules without 

facing the trouble of manpower shortage, thus eliminating the influence of flight 

fluctuation. 

Lastly, the cost curves obtained under the three availability levels have the same 

shape in TCCPP, while those in MICCPP-ACCS have more complicated structures. For 
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each instance of TCCPP, the TAFB cost remains unchanged regardless of the 

availability levels. The only difference in the total costs among the three levels is about 

the fixed payment for manpower. For Level 1, although the fixed payment cost for the 

available manpower is the highest among the three levels, the total cost is the lowest 

due to the minimum extra cabin crew employment. Oppositely, Level 2 encounters the 

highest total cost owing to the intensive extra manpower fixed payment (part (b) of 

Figure 3-9). However, the TAFB cost varies according to the manpower availability 

levels in MICCPP-ACCS. In general, the TAFB cost under Level 1 is the lowest in each 

instance among the three levels because better (cost-effective) combinations of pairings 

could be found using more available manpower. However, due to the fixed payments 

for both available and extra manpower, there are various relationships among the costs 

of the three levels. For example, in I1, Level 1 derives the most expensive cost among 

all levels due to the costly fixed payment for available cabin crews despite its lowest 

TAFB cost. However, in I8, the overall expenditure under Level 1 becomes the smallest 

due to the avoidance of extra manpower employment. 

 

3.5.4.3. The Impact of Flight Manpower Requirement 

Heterogeneity 

To highlight the importance of considering the flight manpower requirement 

heterogeneity when building pairings for cabin crews, the results obtained from 

MICCPP-ACCS and TCCPP are compared based on Type 5 instances (involving two 

cabin layouts, thus leading to heterogeneous flight manpower requirements). The Type 

5 MICCPP-ACCS is denoted as Ix-M-T5. The availability level applied here consists 

of the minimum 𝑀𝐶𝑟 for each class among the Type 5 instances (12, 16, 13, and 17 

respectively (Level 4)). The relative performance is shown in Table 3-12. Apparently, 

even within the same type of aircraft, the manpower requirement heterogeneity caused 

by different cabin layouts leads to low manpower utilization and high costs for TCCPP. 

On average, MICCPP-ACCS achieves 124.3% improvement in manpower utilization 
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and 45.4% reduction in costs than TCCPP, which proves the necessity and importance 

to integrate the consideration of flight manpower requirement heterogeneity into the 

decision framework during the cabin crew pairing problem.     

Table 3-12. Relative performance of MICCPP-ACCS over TCCPP  

for Type 5 instances under Level 4. 

Index 
Reduction 

Utilization improvement 
Total manpower used  Extra manpower used  Cost 

I1-M-T5 / I1-T5 66.0% 82.8% 57.4% 193.8% 

I2-M-T5 / I2-T5 67.8% 87.8% 57.3% 211.0% 

I3-M-T5 / I3-T5 47.2% 73.3% 36.8% 89.5% 

I4-M-T5 / I4-T5 43.4% 82.8% 40.0% 76.8% 

I5-M-T5 / I5-T5 43.9% 95.9% 38.5% 78.3% 

I6-M-T5 / I6-T5 48.1% 85.3% 40.6% 92.8% 

I7-M-T5 / I7-T5 64.7% 86.2% 53.3% 182.9% 

I8-M-T5 / I8-T5 40.8% 79.0% 39.6% 69.0% 

Average 52.8% 84.2% 45.4% 124.3% 

 

At last, the reasons for the large deviation in the performances of MICCPP-ACCS 

and TCCPP (e.g., manpower utilization, average number of flights per pairing, extra 

manpower demand) are highlighted, with the aim of further emphasizing the 

importance to consider manpower availability limitation and flight requirement 

heterogeneity, and to model cabin crews individually for the cabin CPP. It should be 

noted that this deviation will decrease when the available manpower becomes 

increasingly sufficient. 

First of all, these two approaches have different objectives and constraints. 

Specifically, TCCPP aims to identify a minimum-cost set of team pairings that cover 

each flight at least once, while MICCPP-ACCS aims to identify a minimum-cost set of 

individual pairings using the available manpower to satisfy the heterogeneous 

requirements of flights. Accordingly, in the objective function of TCCPP, only the total 

TAFB cost for the team pairings is considered, while the number of pairings used is not 

restricted. On the other hand, MICCPP-ACCS tries to fulfill the flight requirements 

using the available manpower as much as possible. Therefore, in MICCPP-ACCS, 

cabin crews are required to fly more flights, especially when manpower availability 

becomes increasingly insufficient. Accordingly, it is reasonable that the individual 
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pairings obtained from MICCPP-ACCS have higher density (e.g., the number of flights 

per pairing) than the team pairings obtained from TCCPP. After the team pairings are 

generated, airlines have to assign cabin crews to form each obtained team pairing. As 

the team pairings have low density, the assigned cabin crews then have low workload, 

which causes low manpower utilization. 

Second, for the team pairings generated by TCCPP, the flight manpower 

requirement heterogeneity makes the problem of low manpower utilization even worse. 

Due to the fact that flights require heterogeneous cabin crew configurations, the actual 

demand for each class of cabin crew for such teams are calculated based on the 

maximum requirement of the flights on those team pairings, which causes manpower 

wastes in the flights with less requirements. This manpower waste effect is common 

across all the four classes of cabin crews when using the team-based pairing approach. 

However, through the individual scheduling approach, the specific requirements for 

each class of cabin crew of each flight can be considered and satisfied, which greatly 

reduces manpower waste. 

Third, MICCPP-ACCS applies the CCS strategy that further improves manpower 

utilization. 

 

3.5.5. Demonstration: The Effect of CCS 

This part demonstrates the effect of CCS on improving cabin crew utilization to hedge 

against the variation in manpower demand during flight fluctuation, by comparing the 

results obtained from MICCPP-ACCS with those from the simplified MICCPP-A (all 

four cabin classes). As CCS only allows manpower substitution when certain classes 

are in a shortage, only Level 2 and Level 3 are considered in this part.  

The relative performances of the two models are concluded in Table 3-13. The 4th 

-7th and 10th -13th columns in the table show the information in terms of the CCS 

solutions obtained from MICCPP-ACCS under the two availability levels, respectively, 

while the 2nd and 3rd, and 8th and 9th columns show the extra manpower demand 

reduction and manpower utilization improvement for MICCPP-ACCS over MICCPP-
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A under the two availability levels respectively. The number in the 4th -7th and 10th -13th 

columns represents the times that this class of cabin crews being substituted by other 

colleagues, while the flights in the brackets explain where the CCS occurs. For example, 

I4 under Level 2 corresponds to Scenario 4, where 𝑇𝐴 (181) <  𝑀𝑆(188), and 𝑑𝑟 <

 𝑀𝐶𝑟  for each r. Besides, 𝑀𝑆 (188) < ∑ 𝑀𝐶𝑟𝑟∈𝑅 (189) . Therefore, totally 𝑀𝑆 −

𝑇𝐴 (7) extra cabin crews shall be employed, coupled with the application of CCS to 

fulfill the flight schedule. In the solution obtained, 𝑀𝐶2 −  𝑑2 (4) extra Class 2 cabin 

crews, 𝑀𝐶3 −  𝑑3 (1) extra Class 3 cabin crews, 𝑀𝐶4 −  𝑑4 (2) extra Class 4 cabin 

crews are employed, while a job of Class 1 is substituted by a Class 4 colleague on 

Flight 13. However, in the model of MICCPP-A without the function of CCS (under 

Level 2), the job of Class 1 on Flight 13 could not be substituted by others, thus leading 

to the employment of an extra Class 1 cabin crew to finish the work. Accordingly, 

totally eight (∑ (𝑀𝐶𝑟 −  𝑑𝑟) = 8𝑟=1,2,3,4 ) extra cabin crews are required. Consequently, 

CCS achieves 12.5% reduction in extra manpower demand and 0.5% growth in 

manpower utilization compared with the situation where CCS is not applied. 

It can be seen that for both availability levels (Level 2, Level 3), MICCPP-ACCS 

averagely performs better than MICCPP-A in terms of manpower utilization and extra 

manpower demand. However, the degree of the performance improvement is different 

between the two levels. Under Level 3, MICCPP-ACCS improves manpower 

utilization by 9.2% and reduces extra manpower demand by 72.9% over MICCPP-A on 

average, while the figures are only 0.6% and 23.1%, respectively under Level 2. This 

is actually determined by the relationship between the availability levels with 

manpower requirement benchmarks which affects the application of CCS. Take I3 as 

an example. Under Level 2, no possible CCS could be found (Scenario 3). Therefore, 

the extra manpower demand and manpower utilization for the two models are the same. 

However, under Level 3, the total available manpower has the ability to finish all the 

duties with the assistance of CCS (94 times). Besides, the availability of Class 2 is lower 

than 𝑀𝑀2 , which inevitably needs extra manpower (Scenario 7). Therefore, under 

Level 3, only 𝑀𝑀2 − 𝑑2 =1 extra cabin crew is needed in MICCPP-ACCS, while 
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𝑀𝐶2 − 𝑑𝑟 =26 extra cabin crews are needed in MICCPP-A. Accordingly, MICCPP-

ACCS reduces 96.15% extra manpower demand and increases utilization by 12.56% 

compared to MICCPP-A under Level 3. Therefore, the relationship between Level 3 

with the flight schedule manpower requirement benchmarks generally facilitates more 

substitutions than Level 2 in MICCPP-ACCS, which in turn achieves higher cabin crew 

utilization improvement and greater reduction in extra manpower demand than 

MICCPP-A. This alleviates the impact of manpower variation on cabin crew 

management to a higher degree. 

Table 3-13. Relative performance of MICCPP-ACCS over MICCPP-A  

(all four cabin classes). 

Instance 

Level 2 

 

Level 3 

Extra 
manpower 

demand 
reduction 

Utilization 
improvement 

 
CCS details (Class) Extra 

manpower 
demand 

reduction 

Utilization 
improvement 

 
CCS details# (Class) 

1 2 3 4 1 2 3 4 

I1 62.5% 2.7%  1 (F83*) 2 (F73) 2 (F0, 13) 0  100.0% 13.1%  0 115 0 0 
I2 100.0% 0.6%  0 1 (F84) 1 (F81) 0  100.0% 11.1%  0 126 0 0 
I3 0.0% 0.0%  0 0 0 0  96.2% 12.6%  0 94 0 0 
I4 12.5% 0.5%  1 (F13) 0 0 0  100.0% 12.6%  0 109 0 0 
I5 2.7% 0.5%  0 1 (F53) 3  0  44.1% 6.9%  0 11 0 6 
I6 7.1% 0.5%  2  0 1 (F75) 0  90.5% 9.5%  0 70 0 0 
I7 0.0% 0.0%  0 0 0 0  17.1% 2.6%  0 0 0 7 

I8 0.0% 0.0%  0 0 0 0  35.5% 5.1%  0 5 0 6 

Average 23.1% 0.6%             72.9% 9.2%           

*The flights in each instance are numbered chronologically from zero. 
#The substitution details under Level 3 are not shown for brevity. 

 

3.5.6. Special Scenarios 

Observe that for each class, 𝑀𝑀𝑟  is smaller than 𝑀𝐶𝑟  in the derived instances. In 

order to test the special Scenarios 1 and 6 where  𝑀𝑀𝑟 = 𝑀𝐶𝑟  for the considered 

classes, a set of semi-artificial instances is constructed by modifying all flight 

manpower requirements of each class to one for the originally derived instances. The 

semi-artificial instances are denoted by A-Ix. In the second and fourth columns of Table 

3-14, all  𝑀𝐶𝑟  equal 𝑀𝑀𝑟  for each semi-artificial instance. The cabin crew 

availability is set as 18, 13, 14, and 15 (Level 5, 𝑇𝐴 = 60) to form Scenarios 1 and 6. 

The fifth column in the table concludes the scenario that each semi-artificial instance 

corresponds to under Level 5. For example, 𝑇𝐴 (60) is larger than 𝑀𝑆 (56) in A-I1, 
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while the availability for Class 2 is lower than 𝑀𝐶2(𝑀𝑀2) . Therefore, A-I1 under 

Level 5 corresponds to Scenario 6. Although there is exceeding manpower in other 

classes, they could not be used for substitution since 𝑀𝑀2 = 𝑀𝐶2. Therefore, one Class 

2 extra crew is needed. For A-I5, 𝑇𝐴 is lower than 𝑀𝑆(68), and 𝑑𝑟 < 𝑀𝐶𝑟(𝑀𝑀𝑟) 

for classes 2, 3, and 4 (Scenario 1). Similarly, although there is an exceeding cabin crew 

in Class 1 (𝑑1 =18>𝑀𝐶1 =17), no substitution will occur due to the equality between 

 𝑀𝑀𝑟 and 𝑀𝐶𝑟 for the three classes under “insufficiency”. Accordingly, the number 

of 𝑀𝑀𝑟 −  𝑑𝑟 extra manpower is necessary for each of the three classes (that is, 4, 3, 

2, respectively). 

Table 3-14. Special scenarios in MICCPP-ACCS under Level 5. 

Instance 𝑀𝐶𝑟 𝑀𝑆 𝑀𝑀𝑟 Scenario 
Extra manpower used 

CCS 
Class 1 Class 2 Class 3 Class 4 

A-I1 14  56 14  6  0 1 0 0 0 

A-I2 14  56 14  6  0 1 0 0 0 

A-I3 15  60 15  6  0 2 1 0 0 

A-I4 14  56 14  6  0 1 0 0 0 

A-I5 17  68 17  1  0 4 3 2 0 

A-I6 16  64 16  1  0 3 2 1 0 

A-I7 19  76 19  3  1 6 5 4 0 

A-I8 18  72 18  3  0 5 4 3 0 

 

 

3.6. Summary 

The cabin crew pairing problem is a crucial challenge faced by airlines, but is 

understudied in the transportation literature compared to the related problem for cockpit 

crews. Most existing related works treat cabin crews as identical as cockpit crews 

regardless of the distinctive characteristics and the practical operations of controlled 

crew substitution of cabin crews, which leads to low manpower utilization and high 

operating costs. Based on the research gaps and the observed real-world airline 

operations, this chapter has presented a new approach named MICCPP-ACCS to 

generate pairings for multi-class cabin crews individually with the aim of overcoming 

the deficiencies of the existing team-based method, rooted in the distinctive 

characterization of airline cabin crews and the effect of the strategy of Controlled Crew 
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Substitution (CCS). The proposed approach takes into account the multiple cabin crew 

classes, flight manpower requirement heterogeneity, and manpower availability 

constraint according to airlines practice. The strategy of CCS that seeks the opportunity 

to identify feasible solutions with the current available manpower, in order to alleviate 

the impact of manpower shortage disruption on cabin crew management during flight 

fluctuation, is then formulated. Besides, a simplified version without the function of 

CCS, named MICCPP-A, is developed to derive managerial insights. A customized 

column generation approach is developed to solve the large-scale problem. The 

relationship between cabin crew availability levels with flight schedule manpower 

requirement benchmarks is analyzed to derive managerial insights regarding cabin crew 

management on whether the current available manpower is in a shortage and whether 

CCS or extra manpower is required. Computational experiments are then conducted to 

obtain mathematical generalizations and insights. Note that although optimization 

software using flight copies to deal with the problem of flight requirement 

heterogeneity has been developed for airlines, this approach is in advance of academic 

publication. As a result, the importance of modelling cabin crews individually and the 

advantages of the proposed models are demonstrated based on the team-based pairing 

approach which is widely applied in the literature. 

To validate and confirm the superior performance of the proposed MICCPP-ACCS, 

computational studies based on real-world collected flight schedules of a Hong Kong 

based major airline are conducted, through which several conclusions could be 

generated. First, numerically comparing the performance of the proposed approach with 

that of the existing method reveals the distinctive characteristics and relative advantages 

of the proposed approach, especially in terms of manpower utilization improvement 

(199%) and cost reduction (61%), indicating that the proposed approach is practically 

useful. Specifically, in the tested cases, the proposed approach shows potential to 

generate higher manpower utilization when the cabin crew availability level is lower. 

Second, it is observed that the impact of flight fluctuation on manpower demand is 

much larger in the existing method than in the proposed approach, which implies the 
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low efficiency of the existing method and the distinctive merits of the proposed 

approach in hedging against manpower demand variation. Third, the comparison 

between the proposed approach with its simplified version demonstrates the superior 

efficacy of CCS in dealing with the manpower shortage dilemma during flight 

fluctuation by further improving manpower utilization. Specifically, the efficiency of 

CCS depends on the relationship between the manpower availability levels and the 

flight schedule manpower requirement benchmarks. 

In conclusion, the proposed novel cabin crew pairing model not only improves 

cabin crew utilization and reduces costs, but also clarifies the significance of 

considering the unique characteristics of cabin crews and the effect of CCS during the 

pairing generation process, which provides important managerial insights for air 

passenger logistics operations.  
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Chapter 4. Risk-averse Pricing 

Strategies for Cargo Airlines 

Chapter 2 has examined the importance of considering risk in air cargo operations 

management. Motivated by the importance of the air freight transportation industry and 

the various challenges faced by freight airlines, this chapter analytically studies the 

pricing decisions of cargo airlines with the consideration of risk-averse behaviors.16 

Specifically, a system consisting of two competing carriers who are risk-averse to profit 

uncertainties is considered. First, the basic model explores the optimal prices for the 

carriers under market demand uncertainty, and investigates the impacts of diverse 

parameters on the equilibrium prices to generate respective managerial insights. Then, 

the analyses are extended to integrate cost uncertainty into consideration, and the 

importance of considering this crucial factor for decision making is highlighted. 

As will be shown later on in this chapter, a number of major important insights is 

derived. First, the equilibrium prices for the two competing risk-averse cargo airlines 

are perfectly symmetric, determined by various critical parameters. Second, it is 

identified that carriers should consider not only its own risk attitudes and costs, but also 

the competitor’s risk preferences and operating characteristics during decision making 

when market competition exists. Third, it is found that the impacts of risk attitudes of 

decision makers on the optimal prices are twofold as follows: (i) A carrier’s risk attitude 

could directly increase the optimal prices for both carriers if its operating cost is 

sufficiently large in a duopoly market with competition; and (ii) risk behaviors could 

affect the optimal prices indirectly by characterizing the effects of other crucial 

parameters (e.g., demand and cost uncertainties, market competition). For instance, it 

is identified that a carrier is prone to charge a higher price when the market demand is 

becoming more volatile if its operating cost is sufficiently high and it is very risk-averse 

 
16 As a remark, most part of this chapter is summarized in Wen, X., Xu, X., Choi, T. M., & Chung, S.-H. (2019). 

Optimal Pricing Decisions of Competing Air-Cargo-Carrier Systems – Impacts of Risk Aversion, Demand and Cost 

Uncertainties. IEEE Transactions on Systems, Man and Cybernetics: Systems, forthcoming. 
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relative to its competitor in a duopoly market with competition. On the other hand, if 

the operating cost becomes increasingly stochastic, a carrier will not increase its price 

unless the fixed part of its cost is sufficiently low and its relative risk-averse attitude is 

very high compared to its competitor. Besides, carriers are inclined to raise their prices 

when the market competition becomes intensified due to the aversion to profit 

uncertainties. Fourth, it is shown that market situations affect the impacts of diverse 

critical factors on the optimal prices significantly. For example, results indicate if a 

carrier dominates the market, the risk attitude of the other carrier then becomes 

nonsignificant. Moreover, market share is demonstrated to influence the optimal prices 

differently when demand is deterministic or uncertain and when market competition 

does or does not exist. 

This chapter is organized as below. First, a basic model is built and the mean-

variance objectives for two competing risk-averse air cargo carriers under demand 

uncertainty are constructed in Section 4.1. Next, Section 4.2 derives the equilibrium 

solutions and managerial insights based on the basic model. Section 4.3 extends the 

analyses to integrate the factor of cost uncertainties. Finally, Section 4.4 concludes for 

the work presented in this chapter. 

 

4.1. Basic Model 

In the basic model17,18, an air transport system consisting of two competing risk-averse 

freight carriers who need to determine their optimal pricing decisions with volatile 

market demand is considered. The two carriers are denoted by r=1 or 2. Here, the unit 

operating cost for each carrier is fixed as 𝑐𝑟 , while the competition level between the 

two players is denoted by 𝜆. The uncertain market demand �̃� (�̃� = 𝑎0 + ε) consists of 

a fixed part 𝑎0 and an uncertain part 𝜀 which follows a normal distribution19 with 

the mean of zero and the standard deviation of 𝜎  (i.e., 𝜀~𝑁(0, 𝜎2) ). 𝜃  is used to 

 
17 Note that the notations used in Chapter 3 and Chapter 4 are totally independent. For example, the “r” in Chapter 

3 stands for cabin crew classes, while it represents carriers in Chapter 4. 
18 All parameters are normalized within [0,1] in the analyses. 
19 Actually, the results will hold for the case when the randomness follows any symmetric distribution with a zero 

mean. 
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represent the market share of Carrier 2 which is determined by various factors like 

reputation, service quality and company size. Accordingly, 1 − 𝜃  stands for the 

market share of Carrier 1. Besides, note that 𝜃  could also be treated as consumer 

preference or loyalty. Therefore, it is sensible that 𝜃 is usually not affected by prices. 

The unit price for each carrier is represented by 𝑃𝑟 (𝑟 = 1 or 2) . Following the 

literature in supply chain and logistics management (Liu et al., 2016; Wang et al., 2017; 

Zheng et al., 2017), the demand functions for the two carriers (𝐷1, 𝐷2) are modelled as 

in Eq. (4-1) and Eq. (4-2).  

Eq. (4-1)  𝐷1 = (1 − 𝜃)�̃� − 𝑃1 + 𝜆𝑃2, 

Eq. (4-2)  𝐷2 = 𝜃�̃� − 𝑃2 + 𝜆𝑃1. 

Then, the profits for the two carriers could be expressed in Eq. (4-3) and Eq. (4-

4). To be specific, the demand for one carrier is dependent on both its own and 

competitor’s prices. 

Eq. (4-3)  𝜋1 = (𝑃1 − 𝑐1)[(1 − 𝜃)�̃� − 𝑃1 + 𝜆𝑃2], 

Eq. (4-4)  𝜋2 = (𝑃2 − 𝑐2)(𝜃�̃� − 𝑃2 + 𝜆𝑃1). 

The competition parameter 𝜆  actually indicates the impact of the price 

adjustment of one carrier on its competitor’s demand. For example, when the price of 

Carrier 2 (𝑃2) increases by one unit, the demand for its competitor (𝐷1) would increase 

by 𝜆. Note that this study only considers the situation when the unit price is no smaller 

than the unit cost, and the demand for each carrier is non-negative (i.e., 𝑃𝑟 ≥ 𝑐𝑟 and 

𝐷𝑟 ≥ 0) to assure no lose for the carriers. With Eq. (4-3) and Eq. (4-4), the expected 

profit functions for the two carriers could be obtained in Eq. (4-5) and Eq. (4-6). 

Eq. (4-5)  𝐸(𝜋1) = (𝑃1 − 𝑐1)[(1 − 𝜃) 𝑎0 − 𝑃1 + 𝜆𝑃2], 

Eq. (4-6)  𝐸(𝜋2) = (𝑃2 − 𝑐2)(𝜃𝑎0 − 𝑃2 + 𝜆𝑃1). 

Considering that both carriers are risk-averse to profit uncertainties, the mean-

variance (MV) theory is adopted to model the risk-averse preference of the decision 

makers. The objective function for the MV theory is shown in Eq. (4-7), which equals 

the expected profit minus the variance of profit multiplying the risk sensitivity 

coefficient (k).  
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Eq. (4-7)  Maximize: 𝑂 = 𝐸(𝜋) − 𝑘𝑉(𝜋). 

Therefore, the respective MV objectives for the two carriers are formulated in Eq. 

(4-8) and Eq. (4-9). Specifically, the risk sensitivity coefficient for Carrier r (𝑘𝑟) is a 

risk aversion indicator for Carrier r. The growth of 𝑘𝑟  represents the increasing 

aversion against profit volatilities for the decision maker. When 𝑘𝑟 = 0, the freight 

airline is risk-neutral. 

Eq. (4-8)  𝑀𝑎𝑥: 𝑂1 = (𝑃1 − 𝑐1)[(1 − 𝜃) 𝑎0 − 𝑃1 + 𝜆𝑃2] − 𝑘1[(𝑃1 − 𝑐1)2(1 − 𝜃)2𝜎2], 

Eq. (4-9)  𝑀𝑎𝑥: 𝑂2= (𝑃2 − 𝑐2)(𝜃𝑎0 − 𝑃2 + 𝜆𝑃1) − 𝑘2(𝑃2 − 𝑐2)2𝜃2𝜎2. 

 

Besides, it is pointed out that in the problem setting, consumers could place an 

order to the carriers long before the event date, which enables the carriers to suitably 

manage the utilization of aircrafts. Therefore, the capacity limitation is not considered 

in this work. This is commonly observed in the practice. For instance, the Switzerland-

based freight forwarder Panalpina is reported to encourage shippers to book their air 

cargo shipment orders as early as possible before the start of peak seasons to avoid 

capacity shortages20. Besides, many air cargo carriers allow customers to make ordering 

one month or even months in advance (like UPS and Emirates SkyCargo). On the other 

hand, in the literature, Wada et al. (2017) consider long-term agreement orders where 

capacity is allocated in advance. Therefore, the model setting is reasonable in both 

practice and academics. 

 

4.2. Optimal Decisions: An Equilibrium 

Analysis 

To focus on exploring the impact of the risk-averse behaviours of carriers, in the 

following analyses, only the cases when both carriers are risk averse (i.e., 𝑘𝑟 > 0)21 

are considered. The optimal pricing decisions for the two competitors in the basic model 

 
20 https://www.aircargonews.net/news/freight-forwarder/single-view/news/shippers-warned-to-book-now-or-face-

rate-spikes-and-delays-in-busy-peak-for-air-cargo.html (Retrieved in July, 2017). 
21 The case when the carriers are risk neutral can be explored by setting the risk coefficient kr to be 0. 

https://www.aircargonews.net/news/freight-forwarder/single-view/news/shippers-warned-to-book-now-or-face-rate-spikes-and-delays-in-busy-peak-for-air-cargo.html
https://www.aircargonews.net/news/freight-forwarder/single-view/news/shippers-warned-to-book-now-or-face-rate-spikes-and-delays-in-busy-peak-for-air-cargo.html
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(𝑃1
∗, 𝑃2

∗) could be obtained by solving Eq. (4-8) and Eq. (4-9), which are summarized in 

Lemma 1. Note that the list of notation used in the analyses is summarized in Table 

D-1 (Appendix D). Besides, in the analyses, some important relative risk-averse attitude 

thresholds and cost thresholds are identified, which are listed in Table D-2 (Appendix 

D) and Table D-3 (Appendix D), respectively. Furthermore, all mathematical proofs 

are relegated to Appendix E.  

Lemma 1. In the basic model with uncertain demand and fixed costs, the MV 

objective functions for the two competing risk-averse carriers are strictly concave, and 

the respective optimal prices are given as follows: 

* 2 2 0 1 1 1 0 2 2 2
1 2

1 1 2 2

2(1 )[(1 ) (1 2 )] [ (1 2 )]

4(1 )(1 )

S k a c S k a c S k
P

S k S k

  



+ − + + + + +
=

+ + −
, 

* 1 1 0 2 2 2 0 1 1 1
2 2

1 1 2 2

2(1 )[ (1 2 )] [(1 ) (1 2 )]

4(1 )(1 )

S k a c S k a c S k
P

S k S k

  



+ + + + − + +
=

+ + −
.  

Using the notation summarized in Table D-1, 
*

1P  and 
*

2P  can be represented as 

* 2 3 4
1 2

1 2

A A A
P

A A





+
=

−
and * 1 4 3

2 2

1 2

A A A
P

A A





+
=

−
, respectively. Lemma 1 shows that when a risk-

averse freight airline facing market competition tries to maximize its own MV objective 

under demand uncertainty, an optimal pricing decision exists. Besides, the equilibrium 

prices for the two carriers are perfectly symmetric. The major parameters, like market 

share (𝜃), competitional level (𝜆) and demand uncertainty (σ), all impose great effects 

on the optimal solutions for the two players involved. More importantly, it is interesting 

to note that the risk attitudes of both carriers impose critical influences on the 

equilibrium prices for each individual participant (that is, 𝑃𝑟
∗ is determined by both 𝑘1 

and 𝑘2 ). Therefore, the importance of considering not only the carrier’s own risk 

attitude, but also the risk behavior of its competitor in the decision process is 

highlighted. Next, the impacts of the diverse crucial factors on the equilibrium prices 

will be investigated sequentially. 

 

Proposition 1.  In the basic model where two risk-averse carriers compete for 

uncertain demand with fixed costs, it is found that: 
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(i) The optimal prices for the two carriers increase with market competition (i.e.,

* *

1 20, 0
P P

 

 
 

 
); 

(ii) With market competition ( 0  ), a carrier’s optimal price increases with both its 

own and competitor’s operating costs, while the increase is faster with its’ own cost 

than with the competitor’s;  

(iii) Without market competition ( 0 = ), a carrier’s optimal price increases with its 

own operating cost, but is unrelated to its competitor’s operating cost. 

Proposition 1 summarizes the important insights regarding the impacts of market 

competition and operating costs on the optimal pricing decisions for the risk-averse 

carriers. From Proposition 1(i), it could be seen that under demand uncertainty, when 

market competition is becoming more intensified, both two participants intend to 

increase their prices. The intuition is explained as follows. Considering that the two 

carriers are risk-averse to profit uncertainties, when the two companies compete against 

each other more fiercely, the threats of demand shrinkage drive them to raise their prices, 

with the aim of maintaining profitability in the uncertain market. Therefore, it is implied 

that the risk attitudes of decision makers are crucial in characterizing the impact of 

market competition on the equilibrium prices. From Proposition 1(ii), it is reasonable 

that the carrier will charge a higher price if its own operating cost increases. On the 

other hand, due to the competition between the two participants, it is interesting to note 

that the rise in competitor’s cost could also drive a carrier to raise its price. This is 

mainly because the competitor is prone to increase its price according to the growth of 

its cost to hedge against profit risks, which leaves a room for the carrier to charge a 

higher price. Consequently, it is identified that the operating costs of both entities are 

important determinants for risk-averse carriers when they engage in a competition. 

However, the influencing power of competitor’s cost growth on a carrier’s price is 

smaller than that of the company’s own cost growth. Naturally, the driving force of 

competitor’s cost growth vanishes if the two players terminate competition, as shown 

in Proposition 1(iii).   
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Proposition 2. In the basic model where two risk-averse carriers compete for 

uncertain demand with fixed costs, the impacts of risk sensitivity coefficients of carriers 

(i.e., 
1 2,k k ) on the optimal prices are diverse as follows: 

(i) With deterministic demand ( =0), the risk attitudes of the two carriers impose no 

impact on 
*

1P and 
*

2P . 

(ii) With uncertain demand ( 0  ),  

a) Under a duopoly22 market with carrier competition (0 < 𝜃 < 1, 0  ): 

*

1P and 
*

2P  are increasing with the risk sensitivity coefficient of Carrier r (
rk ), 

if rc is sufficiently large (i.e., 
r rc CT ), or decreasing with 

rk  if rc  is 

sufficiently small (i.e., 
r rc CT ). The threshold 

rCT  is increasing in 
3 rc −

.  

b) When there is no competition in the market ( 0 = ): 

Carrier r’s risk attitude (
rk ) would not affect the optimal price of Carrier (3-r). 

Besides, 
rCT is unrelated with

3 rc −
. 

c) Under a monopoly market (𝜃 = 0 𝑜𝑟 1): 

If Carrier r occupies all the market, the other carrier’s risk attitude (
3 rk −

) would 

not affect the optimal prices of both carriers.  

 

Proposition 2 indicates that the impacts of risk attitudes of decision makers on the 

equilibrium prices depend on market situations. To be specific, whether the market 

demand is fixed or uncertain, whether market competition exists, and whether the 

market is monopoly or duopoly, are crucial in determining the role of risk behaviors in 

decision making. First of all, as all risks are derived from uncertainties, Proposition 2(i) 

shows that the risk-averse attitudes of the carriers are irrelevant to the optimal pricing 

decisions when the market demand is deterministic without any uncertainty. On the 

other hand, with volatile market demand, risk attitudes impact decision making 

 
22 In the analyses, the market is named as “duopoly” market if 0 < 𝜃 < 1, or “monopoly” market if 𝜃 = 0 or 1. 

When  𝜃 = 0 , Carrier 1 is called “dominator”, while Carrier 2 becomes “dominator” if 𝜃 = 1.   
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significantly, which is further affected by market segmentation and market competition. 

Firstly, under a duopoly market (0 < 𝜃 < 1), if the two carriers compete for uncertain 

market ( 0  ), there exists a critical cost threshold (
rCT ) to determine the influence 

of risk attitudes. Proposition 2(ii)a) establishes the threshold-setting result on whether 

a carrier becoming more risk-averse leads to a growth or reduction in the optimal prices 

for both two participants. Specifically, if the operating cost of a carrier is very high 

(
r rc CT  ), when it becomes more risk-averse, both two carriers will raise their 

equilibrium prices. Intuitively, carriers are prone to charge a higher price when they 

become more risk-averse. However, due to the competition in the market and 

uncertainties in demand, a carrier would not increase its price along with risk aversion 

unless its operating cost is sufficiently high, which creates great challenges for the 

company to maintain profitability. Observing the growth in the competitor’s price, the 

other carrier in the market will thus follow. On the opposite, if a carrier’s cost is very 

low (
r rc CT ), then the two participants will increase their prices if it becomes less 

risk-averse. The reason behind is explained as follows. When the operating cost is low 

enough, the difficulty in achieving a target profit is low. Therefore, a carrier could be 

more ambitious to make higher profits by increasing its price, especially when it is less 

risk-averse. After that, the other carrier in the market will react to follow. Regarding the 

cost threshold 
rCT  for a carrier, an increase in the competitor’s cost will lead to a 

higher 
rCT . That is, with competition, the increase in the competitor’s operating cost 

would make it more difficult for the two carriers to raise their optimal prices when a 

carrier becomes more risk-averse. Therefore, it is implied that the competitor’s cost 

imposes a moderating effect on the impact of the risk behavior of a carrier on the 

optimal prices for the two carriers under the influence of market competition. On the 

other hand, without the driving force of competition ( 0 = ), it is natural that the other 

carrier’s operating cost has no influence on a carrier’s own cost threshold, while the 

optimal price of a carrier is independent from the other carrier’s risk behaviors (see 

Proposition 2(ii)b)). In addition, when one carrier dominates the whole market (𝜃 =
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0 𝑜𝑟 1), it is reasonable to observe that the impact of the other carrier’s risk attitude 

becomes nonsignificant on the equilibrium decisions for both two participants (as 

shown in Proposition 2(ii)c)).  

In conclusion, Proposition 2 underlines the importance of considering the risk 

attitudes of decision makers in the optimal pricing decisions when market demand is 

volatile. Besides, the significant impacts of market competition in determining the role 

of competitor’s risk behaviors and operating costs in the optimal prices of a carrier are 

highlighted. Furthermore, market segmentation is also shown to be crucial in the 

impacts of risk attitudes on decision making. 

 

Proposition 3. In the basic model where two risk-averse carriers compete for 

uncertain demand with fixed costs, the impacts of market share on the optimal prices 

are shown as follows: 

(i) With deterministic demand ( 0 = ): Carrier r increases its optimal price according 

to the expansion of its own market share.  

(ii) With uncertain demand ( 0  ), for Carrier r: 

a) With market competition ( 0  ), its optimal price increases (or decreases) along 

with its own market share if 
r rc DT  (or 

r rc DT ). Besides, 
rDT  is positively 

related to 
3 rc −

. 

b) With market competition ( 0  ), its optimal price increases (or decreases) along 

with its competitor’s market share if 
3 3r rc ET− −  (or 

3 3r rc ET− − ). Besides, 
3 rET −

 

is positively related to 
rc .  

c) Without market competition ( =0 ), its optimal price increases along with its own 

market share. 

 

Proposition 3 demonstrates the various influences of market share on carriers’ 

optimal pricing decisions. First, as shown in Proposition 3(i), when there is no 

uncertainty in the market threatening decision makers, carriers will increase their prices 
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to improve profitability according to the expansion of its own market share. However, 

Proposition 3(ii) indicates that the impacts of market share under demand uncertainty 

are much different, which is further affected by market competition. Specifically, under 

competition, a carrier is prone to charge a higher (or lower) price along with the increase 

of its own market share if its own cost is high (or low) enough (see Proposition 3(ii)a)). 

The principle behind is explained as follows. The risk of profit volatilities (due to the 

competition and demand uncertainty in the market) would prevent a carrier from 

increasing its price when it occupies a larger market unless its operating cost is too high 

to achieve a targeted profitability level. The threshold 
rDT  is positively related to the 

competitor’s cost. Therefore, one could expect that when a carrier’s own cost is 

becoming increasingly high while the competitor’s cost is becoming increasingly low, 

the carrier will be easier to raise its price along with the expansion of its market size. 

On the other hand, when the operating cost is sufficiently low, in order to compete with 

its competitor for uncertain demand, it is optimal for a carrier to decline its price to 

attract more consumers when its market share is expanded. In this case, the carrier could 

maintain a certain profitability level owing to the low cost and expanded market share. 

Interestingly, this strategy is easier to operate when the competitor’s cost becomes 

higher (which means 
rDT  becomes higher, and 

r rc DT becomes easier). Regarding 

the impact of competitor’s market share, critical thresholds for competitor’s operating 

cost (i.e., 
3 rET −

) also exist, as indicated in Proposition 3(ii)b). To be specific, Carrier r 

intends to raise (or reduce) its price when its competitor’s market share increases, with 

the condition that the competitor’s operating cost is higher than
3 rET −

 (or lower than 

3 rET −
 ). The threshold 

3 rET −
  is positively related to the carrier’s own cost ( rc  ). 

Therefore, one could expect that when rc  is very low (that is, 
3 3r rc ET− − is easier to 

be satisfied), if the competitor seizes more and more market share, the risk-averse 

carrier has to rise its price to keep profitability. On the other hand, if the two carriers do 

not compete, carriers could always promote their profits in the volatile market by 
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increasing prices along with the expansion of market share (as shown in Proposition 

3(ii)c)). 

As a remark, Proposition 3 highlights the significant effects of demand uncertainty 

and risk attitudes of decision makers on the impacts of market share on the optimal 

prices. Besides, the critical role of market competition in risk-averse decision making 

is further demonstrated.  

Next, how demand uncertainty affects risk-averse decision making is explored. 

Denote 𝜏𝑟 as the relative risk-averse attitude of Carrier r over its competitor, which 

is equal to 
𝑘𝑟

𝑘3−𝑟
. Then, Proposition 4 is obtained as follows. 

 

Proposition 4. In the basic model where two risk-averse carriers compete for 

uncertain demand with fixed costs, the impacts of demand uncertainty on the optimal 

prices are derived as follows: 

(i) Under a duopoly market (0 < 𝜃 < 1) with competition ( 0  ), for Carrier r:  

a) If 
r r   , its optimal price increases with demand uncertainty if 

r rc YT .  

b) If 
3 3r r − −  , its optimal price increases with demand uncertainty if 

3- 3r rc PT − . 

(ii) Under a duopoly market (0 < 𝜃 < 1) without competition ( 0 = ), for Carrier 1, 

its optimal price increases with demand uncertainty if ( )1 0 1c a  −  , while for 

Carrier 2, its optimal price increases with demand uncertainty if 
2 0c a  . 

(iii) Under a monopoly market (𝜃 = 0 𝑜𝑟 1):  

a) With market competition ( 0   ), when the market is dominated Carrier r, 

*

1P






and 

*

2P






 are positive if 

r rc OT .  

b) Without market competition ( 0 = ), when the market is dominated by Carrier 

r, 
*

3 0rP


−
=


. Besides, 

*

0rP







 if 

0rc a . 
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Proposition 4 shows that the relative risk-averse attitudes and market situations 

(i.e., market segmentation and competition) play critical roles in determining the 

impacts of demand uncertainty on the optimal prices. Proposition 4(i) considers a 

duopoly market shared by two competing carriers (0 < 𝜃 < 1, 0   ). Specifically, 

Proposition 4(i)a) indicates that if the operating cost is very large, a carrier would charge 

a higher price when the market becomes more volatile if its relative risk-averse attitude 

over its competitor is sufficiently high. A higher relative risk-averse attitude actually 

implies that a carrier is becoming more risk-averse to profit uncertainties relative to its 

competitor. Therefore, when a carrier with high relative risk-averse attitude is facing 

with increasing demand uncertainty, due to the fear of demand losses, it will not raise 

its price unless it is challenged by a high operating cost. Interestingly, a carrier will also 

increase its price according to demand uncertainty if both the relative risk-averse 

attitude and the operating cost of its competitor are sufficiently large (see Proposition 

4(i)b)). This is essentially motivated by the competitor’s intension to raise price to deal 

with profit volatilities in a more volatile environment. On the other hand, if there is no 

competition in the duopoly market, each carrier will increase its price to hedge against 

the increasing demand volatility if its own operating cost is high enough, while the other 

carrier’s risk attitudes and costs are irrelevant, as shown in Proposition 4(ii). Moreover, 

Proposition 4(iii) considers a monopoly market where the market is dominated by one 

player (𝜃 = 0 𝑜𝑟 1). First, if competition exists, both two carriers will choose a higher 

price with the increase of demand uncertainty if the dominator’s operating cost is 

sufficiently large (as shown in Proposition 4(iii)a)). It is intuitive that the dominator 

will increase its price to withstand the profit risks brought by the increased demand 

volatility when its operating cost is very high, while the other carrier in the market will 

act as a follower due to competition. Second, as shown in Proposition 4(iii)b), if there 

is no market competition, the rise in demand uncertainty will lead the dominator to 

increase its price if its cost is sufficiently high, which is similar to the situation with 

market competition. However, the other carrier in the market will keep its price no 

matter when demand becomes increasingly or decreasingly uncertain, which is different 
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from the situation with market competition. 

In short, Proposition 4 indicates that in addition to market competition and market 

segmentation, the relative risk-averse attitude of the two carriers also plays a pivotal 

role in characterizing the impacts of demand uncertainty on the optimal prices. 

Therefore, it is suggested for an air cargo carrier that it is essential to consider not only 

its own risk behaviors and operating characteristics, but also its competitor’s decisions 

and features for strategic decision making in the uncertain and competitive environment. 

Finally, some important relationships between the optimal price (
*

rP ) with major 

coefficients and corresponding conditions identified in the basic model are summarized 

in Table 4-1. This table aims to provide a quick look about the impacts of the diverse 

crucial parameters on the optimal prices for risk-averse air cargo carriers. 

 

Table 4-1. Important relationships between
*

rP with major parameters. 

 A Conditions B Conditions C Conditions D Conditions Remarks 

  ↑         

rc  ↑         

3 rc −
 ↑ 0          

rk  → =0  ↑ 0  ,0 < 𝜃 < 1, 

0  , 
r rc CT  

→ 0  , the market is 

dominated by Carrier 

(3-r) 

    

3-rk  → =0  ↑ 0  ,0 < 𝜃 < 1, 

0  ,
3- 3-r rc CT  

→ 0  , the market is 

dominated by Carrier r 

→ 0  , 0 =   

 (1-

 ) 

↑ 0 =  ↑ 0  , 0  ,

r rc DT  

↑ 0  , 0  ,

3 3r rc ET− −  

↑ 0  , 0 =  For Carrier 2 

(Carrier 1) 

  ↑ 0 < 𝜃 < 1, 0  , 

r r   , 

r rc YT  

↑ 0 < 𝜃 < 1, 0  , 

3 3r r − − , 

3- 3r rc PT −  

↑ 0  , 
r rc OT , the 

market is dominated by 

Carrier r 

   

 

4.3. Extended Analyses: Uncertain Costs 

As discussed in the introduction, cost uncertainty is a crucial and challenging problem 

which significantly affects the profitability and development of air cargo carriers. 

Therefore, after evaluating the pricing decisions under uncertain demand, in this sub-

chapter, the basic model is extended to the case when the operating cost is stochastic, 
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to study the impact of cost uncertainty on the optimal pricing decisions. Here, the air 

freight carriers are facing with uncertain unit costs, 𝑐�̃�(𝑐�̃� = 𝑐𝑟0 + 𝜑). 𝑐�̃� consists of a 

fixed part 𝑐𝑟0 and an uncertain part 𝜑 which follows a normal distribution with the 

mean of zero and standard deviation of 𝛿 (𝜑~𝑁(0, 𝛿2)). It is reasonable that the two 

carriers face the same cost uncertainty as it is derived from fuel price fluctuation. 

Besides, the unit price for the carriers in the extended model is denoted as 𝑃𝑟
𝑒. Therefore, 

the updated profit functions for the two players could be formulated as in Eq. (4-10) 

and Eq. (4-11). The updated expected profits are then shown in Eq. (4-12) and Eq. (4-

13), while the corresponding variances of profits are illustrated in Eq. (4-14) and Eq. 

(4-15). 

 

Eq. (4-10)  𝜋1
𝑒 = (𝑃1

𝑒 − 𝑐1̃)[(1 − 𝜃)�̃� − 𝑃1
𝑒 + 𝜆𝑃2

𝑒], 

Eq. (4-11)  𝜋2
𝑒 = (𝑃2

𝑒 − 𝑐2̃)(𝜃�̃� − 𝑃2
𝑒 + 𝜆𝑃1

𝑒). 

Eq. (4-12)  𝐸(𝜋1
𝑒) = (𝑃1

𝑒 − 𝑐10)[(1 − 𝜃) 𝑎0 − 𝑃1
𝑒 + 𝜆𝑃2

𝑒], 

Eq. (4-13)  𝐸(𝜋2
𝑒) = (𝑃2

𝑒 − 𝑐20)(𝜃𝑎0 − 𝑃2
𝑒 + 𝜆𝑃1

𝑒). 

Eq. (4-14)  𝑉(𝜋1
𝑒) = (1 − 𝜃)2𝜎2[𝛿2 + (𝑃1

𝑒 − 𝑐10)2] + 𝛿2[(1 − 𝜃) 𝑎0 − 𝑃1
𝑒 + 𝜆𝑃2

𝑒]2, 

Eq. (4-15)  𝑉(𝜋2
𝑒) = 𝜃2𝜎2[𝛿2 + (𝑃2

𝑒 − 𝑐20)2] + 𝛿2(𝜃𝑎0 − 𝑃2
𝑒 + 𝜆𝑃1

𝑒)2. 

 

Similarly, the MV theory is applied to measure the impact of risk-averse attitudes 

on pricing decisions with the influence of cost uncertainty. The MV objective function 

for the extended model is constructed in Eq. (4-16). 

Eq. (4-16)  Maximize: 𝑂𝑟
𝑒 = 𝐸(𝜋𝑟

𝑒) − 𝑘𝑟𝑉(𝜋𝑟
𝑒). (r=1,2) 

 

Solving Eq. (4-16), the optimal pricing decisions for the two risk-averse 

competing carriers under demand and cost uncertainties (i.e., *

1

eP and *

2

eP ) could be 

obtained, which are summarized in Lemma 2. 

 

Lemma 2. In the extended model with uncertain demand and uncertain costs, the MV 

objective functions for the two competing risk-averse carriers are strictly concave, and 

the respective optimal prices are given as follows: 

2 2 2 2
* 2 2 2 0 1 10 1 1 1 0 2 20 2 2

1 2 2 2 2 2

1 1 1 2 2 2 1 2

2(1 )[(1 ) (1 2 ) (1 2 )] (1 2 )[ (1 2 ) (1 2 )]

4(1 )(1 ) (1 2 )(1 2 )

e S k k a k c S k k a k c S k
P

S k k S k k k k

      

    

+ + − + + + + + + + +
=

+ + + + − + +
,
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2 2 2 2
* 1 1 1 0 2 20 2 2 2 0 1 10 1 1

2 2 2 2 2 2

1 1 1 2 2 2 1 2

2(1 )[ (1 2 ) (1 2 )] (1 2 )[(1 ) (1 2 ) (1 2 )]

4(1 )(1 ) (1 2 )(1 2 )

e S k k a k c S k k a k c S k
P

S k k S k k k k

      

    

+ + + + + + + − + + +
=

+ + + + − + +
. 

Similar to the basic model, Lemma 2 shows that optimal pricing decisions exist for 

air cargo carriers to maximize the MV objectives when they face stochastic costs. 

Besides, the equilibrium prices for the two risk-averse carriers are perfectly symmetric 

in the extended model. In addition to the major parameters like market share (𝜃), market 

competition (𝜆), market uncertainty (σ), and risk attitudes of the two players (
rk ), it is 

important to note that cost uncertainty ( ) also plays an important role in determining 

the optimal prices. In the expressions, 21 2r rk = +  is defined as the cost uncertainty 

risk coefficient, which reflects the integrated impact of cost uncertainty and risk 

aversion on the optimal decision making. Applying the notation listed in Table D-1 

(Appendix D), *

1

eP  and *

2

eP  could be represented as * 2 3 1 4
1 2

1 2 1 2

e B B B
P

B B



 

+
=

−
 and 

* 1 4 2 3
2 2

1 2 1 2

e B B B
P

B B



 

+
=

−
, respectively. Obviously, *e

rP and *

rP have similar forms expect that 

*e

rP  is featured with the cost uncertainty risk coefficient 
r  . Next, Proposition 5 

demonstrates the specific impacts of cost uncertainty on the equilibrium prices under 

different scenarios. 

 

Proposition 5. In the extended model where two risk-averse carriers facing 

stochastic costs compete for uncertain demand, the impacts of cost uncertainty on the 

optimal prices are diverse as follows: 

(i) With market competition ( 0  ), for Carrier r: 

a) If 
r r  , its optimal price increases with cost uncertainty if 

0r rc WT . 

b) If 
3 3r r − − , its optimal price increases with cost uncertainty if 

3- 0 3r rc UT −（ ） . 

(ii) Without market competition ( 0 = ): 

a) Under a duopoly market (0 < 𝜃 < 1), for Carrier 1, its optimal price increases 

with cost uncertainty if 
10 0(1 )c a −  , while for Carrier 2, its optimal price 

increases with cost uncertainty if 
20 0c a . 
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b) Under a monopoly market (𝜃 = 0 𝑜𝑟 1 ), when the market is dominated by 

Carrier r, 
*

3 0
e

rP


− 



 . Besides, 
*

0
e

rP







 if 

0 0rc a . 

 

From Proposition 5, it could be seen that the role of cost uncertainty depends on 

market conditions such as market competition and segmentation. Besides, the relative 

risk-averse attitude (
r ) also serves as an important indicator to determine the effect of 

cost uncertainty, which is similar to the effect of demand uncertainty as discussed in 

Proposition 4. First of all, with market competition, Proposition 5(i)a) shows that an 

increase in cost uncertainty would lead to a growth in the optimal price if the fixed part 

of a carrier’s cost (
0rc ) is low enough (

0r rc WT ) and its relative risk-averse attitude 

over its competitor is high enough. Intuitively, a carrier will charge a higher price to 

hedge against the increased uncertainty in its operating cost. However, due to demand 

uncertainty and market competition, a rise in price may result in a reduction in 

consumer demand. Therefore, for a carrier who is very averse to profit uncertainties 

relative to its competitor, it will not rise its price when its cost is becoming increasingly 

stochastic unless the fixed part of its cost could be controlled in a low level (i.e., 

0r rc WT ). Besides, a carrier would also increase its price along with cost uncertainty 

if its competitor’s relative risk-averse attitude is very high and the competitor’s cost 

(fixed part) is very low (see Proposition 5(i)b)). The motivation is the competitor’s 

proneness to deal with the profit risks caused by the increased cost uncertainty through 

raising price. On the other hand, if the two participants do not compete ( 0 = ), the 

influence of cost uncertainty on a carrier’s optimal prices further depends on market 

segmentation, while the operating characteristics of the other carrier in the market 

becomes irrelevant. Specifically, if the market is a duopoly market (see Proposition 

5(ii)a)), the optimal price of a carrier would be positively related to cost uncertainty if 

the fixed part of its cost is low enough. The intuition is that only when the fixed 

component of cost is sufficiently low, will it be possible for the carrier to maintain 

profitability after increasing price (demand decreases accordingly) to deal with the 
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increased cost uncertainty. Similarly, Carrier r will raise its price along with cost 

uncertainty if 
0 0rc a  when the market is dominated by Carrier r (in Proposition 

5(ii)b)). However, in the monopoly market, the other carrier has to decrease its price 

when the operating cost becomes more stochastic to keep profitability.  

In short, Proposition 5 derives insights regarding the impacts of cost uncertainty on 

the optimal pricing decisions for risk-averse air cargo carriers under a competitive and 

uncertain market environment. Considering the highly volatile crude oil market and the 

significant fuel price fluctuation in the modern world, it is believed that the extended 

analyses in this sub-chapter could provide useful implications and guidelines for both 

practitioners and academics on the strategies to deal with the challenges arising from 

air freight operating costs. 

 

4.4. Summary 

Nowadays, air freight transportation is becoming increasingly important for global 

logistics systems to facilitate quick and reliable logistics services. However, despite the 

fast growth, the industry is challenged by intensive market competition and highly 

volatile consumer demand. Besides, airlines are also facing with significant operating 

cost uncertainty caused by jet-fuel price fluctuation. As a result, in order to enhance 

their survivability and profitability in the highly competitive and stochastic market 

environment, many air cargo carriers become conservative and behave as risk-averse in 

decision making. Among the strategic decisions of cargo airlines, the optimal pricing 

problem is the most crucial but challenging one, which significantly impacts the 

development of air cargo carriers. However, although the importance of pricing 

decisions with risk considerations has been realized, the optimal pricing decisions for 

risk-averse air cargo carriers in the presence of cost and demand uncertainties are still 

under-investigated. This thesis thus aims to examine the impacts of risk attitudes of 

decision makers, market competition, demand uncertainty and cost uncertainty on the 

optimal pricing decisions for air cargo logistics by applying the MV theory. 
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In this chapter, through analytically exploring a basic model where two risk-averse 

air cargo carriers with deterministic operating costs compete for uncertain demand and 

an extended model where both demand and cost are uncertain, the equilibrium prices 

for the two carriers and the impacts of diverse crucial parameters on the optimal 

decision making have been explored. The analytical results have generated the 

following major findings and insights. First, the optimal prices and important thresholds 

for the two carriers are perfectly symmetric either in the basic or the extended model. 

Second, the optimal price of a carrier is affected not only by its own risk attitudes and 

costs, but also by the competitor’s characteristics (e.g., costs, risk preferences) if they 

engage in a competition. Otherwise, without competition, the decisions of the two 

carriers are irrelevant. Third, the risk-averse behaviors of carrier managers could affect 

the optimal prices either directly or indirectly. For instance, if a carrier’s cost is high 

enough, its increasing risk-averse attitude could directly lead to a growth in the optimal 

prices for the two participants in a duopoly market with competition. On the other hand, 

the risk-averse behaviors could impose indirect impacts on the optimal prices through 

affecting the effects of other important parameters. For example, results show that the 

risk-averse attitude prevents a carrier who faces uncertain demand and market 

competition from raising its price according to the expansion of market share except 

that its operating cost is sufficiently large. More importantly, the relative risk-averse 

attitudes of the two carriers are demonstrated to be crucial in evaluating the impacts of 

both demand and cost uncertainties on the optimal decision making. Fourth, the market 

situations are critical determinants in the risk-averse pricing decisions. For example, 

when the two carriers compete more fiercely, both two players will increase their prices. 

Besides, market segmentation (i.e., whether the market is duopoly or monopoly) 

imposes great impacts on the effects of risk sensitivity coefficients, demand uncertainty 

and cost uncertainty. For instance, if the market is dominated by a carrier without 

competition, then the risk attitude of the other carrier becomes insignificant. Besides, 

the other carrier’s optimal price is irrelevant to demand uncertainty (or negatively 

related to cost uncertainty), while the dominator’s optimal price is positively related to 
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demand uncertainty (or cost uncertainty) if the dominator’s cost is sufficiently high (or 

low). 

To conclude, the research presented in this chapter contributes to the existing 

literature of systems engineering and science by integrating risk considerations, market 

competition and market uncertainties (demand and cost) into the optimal pricing 

decisions for air cargo carriers. The equilibrium solutions and how the crucial factors 

impact the optimal prices have been explored. Through comprehensive investigation, 

the importance to enhance pricing decisions for air cargo logistics operators by 

considering these critical factors in the current highly volatile and competitive market 

has been highlighted. 
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Chapter 5. Concluding Remarks and 

Future Studies 

5.1. Conclusions 

This thesis focuses on enhancing the decision making for air logistics operations from 

two aspects: cabin crew scheduling for air passenger logistics, and risk analysis for air 

cargo logistics. To be specific, considering the importance of cabin crews for air 

passenger logistics operations, a novel individual pairing approach for airline cabin 

crews which can significantly increase manpower utilization and reduce operating costs 

has been developed. Besides, realizing the great challenges of the pricing decisions of 

freight airlines under the highly volatile market, the pricing strategies have been 

analytically explored by integrating risk analysis into the decision framework for air 

cargo logistics operations. The well-established mean-variance theory is utilized to 

conduct risk analysis in this research.  

Chapter 2 has conducted detailed literature review regarding air logistics 

operations management from both air passenger and air cargo perspectives, and 

identified critical research gaps for these two domains. Besides, the existing studies 

with risk analysis have been analyzed, and the importance of integrating risk 

considerations into the decision framework under uncertainties has been highlighted. 

Moreover, the application of the mean-variance theory for risk analysis with air 

logistics has been comprehensively surveyed, which provides solid theoretical support 

for this research.  

Then in Chapter 3, based on the significant research gaps identified regarding the 

airline cabin crew pairing problem and the observed real-world air passenger logistics 

practice, a novel individual pairing approach for cabin crews (named Multi-class 

individual cabin crew pairing problem with availability and controlled crew 

substitution (MICCPP-ACCS)) has been developed to generate pairings for multi-class 

cabin crews individually with the objective of overcoming the deficiencies of the 
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existing team-based approach. Rooted in the distinctive characterization of airline cabin 

crews and the effect of the strategy of Controlled Crew Substitution (CCS), the 

proposed MICCPP-ACCS demonstrates superior performances compared to the 

existing team-based method, especially in terms of manpower utilization improvement 

and cost reduction. Besides, the proposed approach shows great potential to generate 

higher manpower utilization when the cabin crew availability level is lower, while the 

impact of flight fluctuation on manpower demand is much larger in the existing method 

than in the proposed approach. Moreover, a Multi-class individual cabin crew pairing 

problem with availability (MICCPP-A) has been constructed which is a simplified 

version of MICCPP-ACCS without the function of CCS, to derive more managerial 

insights. Besides, the proposed models have facilitated the analysis on the relationship 

between manpower availability levels with flight manpower requirement benchmarks 

to obtain insightful cabin crew planning implications, which can greatly enhance the 

decision making for air passenger logistics operations.  

Afterwards, in Chapter 4, realizing the diverse uncertainties faced by freight 

airlines and the intensive competition in the market, the important pricing strategies for 

air cargo logistics operators with the consideration of risk-averse behaviors have been 

explored. The mean-variance theory is applied to conduct risk analysis, which derives 

many crucial managerial insights. For example, it has been found that the optimal price 

of a carrier is affected not only by its own risk attitudes and costs, but also by the 

competitor’s operation characteristics (e.g., costs, risk preferences). Besides, the risk-

averse behaviors of carrier managers are demonstrated to affect the optimal prices either 

directly or indirectly. For instance, if a carrier’s cost is high enough, when it becomes 

more risk-averse, both two companies in a competitive duopoly market would increase 

their optimal prices. On the other hand, the risk-averse attitude is shown to indirectly 

prevent a carrier from raising its price according to the expansion of market share, 

except that its operating cost is sufficiently high. More importantly, the relative risk-

averse attitudes of the two carriers in the market are demonstrated to be crucial 

determinants for the impacts of both demand and cost uncertainties on the optimal 
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pricing decisions. Besides, the market situations (e.g., market segmentation) impact the 

optimal risk-averse pricing strategies significantly. 

In conclusion, this thesis has analytically studied the crucial cabin crew scheduling 

decisions for air passenger transportation by developing a novel pairing approach, and 

investigated the important pricing decisions for air cargo transportation through risk 

analysis, with the objective of enhancing the decision quality for modern air logistics 

operations. 

 

5.2. Future Studies 

In this sub-chapter, several interesting and important future research directions are 

proposed according to the work done in this doctoral thesis.  

Regarding the novel individual cabin crew pairing approach proposed in Chapter 

3, the proposed models have encountered several limitations which deserve future 

research as follows. First of all, as the main focus of this study is enhancing cabin crew 

pairing decisions from the perspective of airlines (i.e., improving manpower utilization 

and reducing costs), the psychological factors of cabin crews are ignored in the model 

setting. From the organizational psychology literature, it is known that colleague 

support can enhance employees’ job performance and work engagement, while 

familiarity with team members is helpful in improving productivity (Farh et al., 2012; 

Guzzo & Dickson, 1996). Therefore, although the individual scheduling approach is 

useful for airlines, it could impair the psychological needs of cabin crews. Hence, a 

promising future research direction is to consider both the financial cost of airlines and 

the psychological demands of cabin crews when making pairing decisions for them. It 

will be interesting to explore the trade-offs between the cost efficiency brought by the 

individual scheduling approach and the team spirit brought by the team scheduling 

approach. Moreover, Chapter 3 of this study concentrates on the first stage of crew 

scheduling problem, i.e., crew pairing problem. Therefore, future research could extend 

the analysis presented in this study to investigate the following crew assignment 
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problem. Besides, the problem here is considered under deterministic scenarios. It will 

be interesting to explore the related crew recovery problems under disruption 

management. Additionally, as discussed, imposing the manpower availability constraint 

(i.e., an upper limit for the pairings generated) might increase the densities of pairings 

generated (e.g., the number of flights per pairing), which saves operating costs for 

airlines. However, this would generate higher workload for cabin crews, causing fatigue 

and dissatisfaction among employees, which in turn produces negative impact on the 

airlines performances. Recently, Yildiz et al. (2017) propose to utilize the Three Process 

Model of Alertness to characterize the fatigue factor of pilots in the related pairing 

problem, with the multiple objectives of minimizing financial costs and pilot fatigue at 

the same time. Therefore, one interesting extension of the current study is to pursue a 

balance between manpower utilization improvement and cabin crew fatigue reduction. 

On the other hand, for the optimal pricing strategies of cargo airlines measured by 

the mean-variance theory which is presented in Chapter 4, more risk measurements like 

mean-downside risk (MDR) approach (Chan et al., 2018) could be applied to 

characterize the risk behaviors of air cargo carriers. Besides, the MV theory can also 

facilitate the profit risk analysis in the research topics like airline alliances and 

competitions, entry decisions, revenue management, capacity management, and 

booking control. Moreover, it will be interesting and challenging to apply the MV 

theory into the airline disruption management problem. In that case, the operations risk 

cost due to daily disruptions can be measured and discussed in a more theoretical way 

by including the variance of operations costs into the objective function. 
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Appendix A. Notation of Parameters and Variables 

for Chapter 3 

Table A-1 summarizes the notation of parameters and variables used in this work.  

Table A-1. Notation of parameters and variables used in Chapter 3. 

Parameter 

𝑅 The set of cabin crew classes, indexed by 𝑟 

𝐺𝑟 The duty-node based network for Class r of cabin crews 

𝑁𝑟 The set of nodes in the network for Class r of cabin crews, 𝑛𝑟 ∈ 𝑁𝑟, 𝑁𝑟 =
𝐷𝑟 ∪ {𝑠, 𝑚} 

𝐴𝑟 The set of arcs in the network for Class r of cabin crews, 𝑎𝑟𝑐(𝑛𝑟,𝑛𝑟
′ ) ∈ 𝐴𝑟, 

𝐴𝑟 = 𝑆𝐴𝑟 ∪ 𝐸𝐴𝑟 ∪ 𝑅𝐴𝑟 

𝐷𝑟 The set of duty nodes for Class r of cabin crews, indexed by 𝑑𝑘
𝑟  

𝐹𝑑𝑘
𝑟  The set of flights contained in duty node 𝑑𝑘

𝑟  

𝑅𝐴𝑟 The set of rest arcs, indexed by 𝑎𝑟𝑐(𝑑𝑘1
𝑟 ,𝑑𝑘2

𝑟 ), linking duty nodes 𝑑𝑘1

𝑟  and 

 𝑑𝑘2

𝑟   

𝑆𝐴𝑟 The set of starting arcs, indexed by 𝑎𝑟𝑐(𝑠,𝑑𝑘
𝑟), linking the source node to duty 

node 𝑑𝑘
𝑟  

𝐸𝐴𝑟 The set of ending arcs, indexed by 𝑎𝑟𝑐(𝑑𝑘
𝑟 ,𝑚), linking the duty node  𝑑𝑘

𝑟  to 

the sink node 

𝑠 The source node (home base) 

𝑚 The sink node (home base) 

𝛩 The set of resources that restrict the feasibility of individual pairings, indexed 

by 𝜏 

𝐽𝑟 The set of individual pairings of Class r available cabin crews, indexed by 𝑗𝑟 

𝐽𝑟
𝑒 The set of individual pairings of Class 𝑟 extra cabin crew, indexed by 𝑗𝑟

𝑒 

𝐽𝑡 The set of cabin crew team pairings, indexed by 𝑗𝑡; 

𝑏𝑖
𝑟 The number of class 𝑟 cabin crew required on flight 𝑖 

𝑞𝑖
𝑟 The number of class 𝑟 cabin crew assigned to flight 𝑖 

𝑐𝑓𝑎 The fixed payment for an available cabin crew 

𝑐𝑓𝑒 The fixed payment for an extra cabin crew 

𝑐𝑗𝑟
 The cost of individual pairing 𝑗𝑟 

𝑐𝑗𝑟
𝑒  The cost of individual pairing 𝑗𝑟

𝑒 

𝑐𝑗𝑡
 The cost of team pairing 𝑗𝑡; 

𝑎𝑖𝑗𝑟
 The binary flight coverage coefficient for individual pairing 𝑗𝑟 of class 𝑟 

available cabin crew; 𝑎𝑖𝑗𝑟
=1 if individual pairing 𝑗𝑟 covers flight 𝑖, 

otherwise 0 

𝑎𝑖𝑗𝑟
𝑒  The binary flight coverage coefficient for individual pairing 𝑗𝑟

𝑒 of class 𝑟 

extra cabin crew; 𝑎𝑖𝑗𝑟
𝑒=1 if individual pairing 𝑗𝑟

𝑒 covers flight 𝑖, otherwise 

0 

𝑎𝑖𝑗𝑡
 The binary flight coverage coefficient for cabin crew team pairing 𝑗𝑡; 𝑎𝑖𝑗𝑡

=1 

if team pairing 𝑗𝑡 covers flight 𝑖, otherwise 0. 

𝜇 The substitution penalty cost (also known as flight fluctuation coefficient) 

𝑀 The big penalty cost induced by the generation of an extra cabin crew 

individual pairing 
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𝑑𝑟 The number of class 𝑟 available cabin crews 

𝑀𝑆 The minimum total manpower demand with CCS  

𝑀𝐶𝑟 The minimum manpower demand for Class r without CCS 

𝑀𝑀𝑟 The minimum manpower demand to satisfy the minimum satisfaction 

constraints for Class r 

𝑁𝐴𝑟 The minimum-cost manpower demand for Class r 

𝑇𝐴 The number of available cabin crews of all classes 

𝜉𝑥 The column associated with each decision variable in the models, 𝑥 =
 𝑥𝑗𝑟

 𝑜𝑟 𝑥𝑗𝑟
𝑒  

𝑄 The set of legal individual pairings identified in DPIA 

𝑈 The set of unprocessed partial paths in DPIA 

𝑂 The set of covered flights in DPIA 

𝐿 The last element in 𝑈 

𝐻 Each newly generated (partial) path by extending L 

𝑧 The flight in H that is not contained in O 

𝑅𝐶𝑥 The reduced cost of decision variable 𝑥, 𝑥 =  𝑥𝑗𝑟
 𝑜𝑟 𝑥𝑗𝑟

𝑒  

𝜋𝑖 The dual price associated with the ith row of Eqs. (3-7) 

𝜆𝑖
𝑟 The dual price associated with the ith row of the rth set of Eqs. (3-8) 

𝜃𝑖
𝑟 The dual price associated with the ith row of the rth set of Eqs. (3-9) 

𝜑𝑟 The dual price associated with the rth row of Eqs. (3-10) 

𝑎𝑐𝑎𝑟𝑐
(𝑛𝑟,𝑛𝑟

′ )
 The arc cost of 𝑎𝑟𝑐(𝑛𝑟,𝑛𝑟

′ ) in PP, 𝑛𝑟 ∈ 𝑁𝑟  

𝑛𝑐𝑛𝑟
 The duty node cost of node 𝑛𝑟 in PP, 𝑛𝑟 ∈ 𝑁𝑟 

𝑡𝑎𝑐𝑗𝑟
 The total arc node cost of path (pairing) 𝑗𝑟 

𝑡𝑛𝑐𝑗𝑟
 The total node cost of path (pairing) 𝑗𝑟  

𝑡𝑐𝑗𝑟
 The total cost of path (pairing) 𝑗𝑟 

Variable  

𝑥𝑗𝑡
 The binary decision variable for team pairing 𝑗𝑡; 𝑥𝑗𝑡

=1 if team pairing 𝑗𝑡 is 

selected, otherwise 0; 

𝑥𝑗𝑟
 The nonnegative integer decision variable for individual pairing 𝑗𝑟 of class 

𝑟 available cabin crew (the value taken represents the number of times the 

corresponding individual pairing is selected) 

𝑥𝑗𝑟
𝑒  The nonnegative integer decision variable for individual pairing 𝑗𝑟 of class 

𝑟 extra cabin crew (the value taken represents the number of times the 

corresponding individual pairing is selected) 

𝑠𝑖
𝑟 The substitution recording variable of class 𝑟 cabin crew on flight 𝑖 (the 

value taken equals to the times of this class substituted by other classes on 

flight 𝑖) 
Abbreviation 

CPP Crew pairing problem 

CAP Crew assignment problem 

CCS Controlled crew substitution 

MICCPP-

ACCS 

Multi-class cabin crew pairing problem with availability and controlled crew 

substitution 

MICCPP-

A 

Multi-class cabin crew pairing problem with availability 

TCCPP Traditional cabin CPP problem 

RMP The restricted master problem in column generation 

PP The sub-problem in column generation 

DPIA Dynamic programming based initialization algorithm 

FNDPC Flight negative dual price cost 

RCSPP Resource constrained shortest path problem 
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Appendix B. Input Data and Operational 

Parameters for Chapter 3 

Table B-1 summarizes the number of seats, doors and sections of each aircraft type and 

layout. Note that the number in brackets represents the number of sections in the 

corresponding cabin class. Let’s take Type 5 as an example. Type 5 has two different 

cabin layouts (Type 5-1 and Type 5-2) with 340 and 275 seats in total, respectively. 

Type 5-1 has three cabin classes of a Business Class (40 seats), a Premium Economy 

Class (32 seats), and an Economy Class (268 seats). The Business Class has two 

sections, while the Premium Economy Class has only one section, and the Economy 

Class is divided into three sections. Therefore, Type 5-1 aircraft totally has six cabin 

sections with 10 doors. 

Table B-1. Layout of the aircrafts involved in the selected flight schedules. 

Aircraft type and layout 

Number of seats   Number of 

First Class Business Class 

Premium 

Economy 

Class 

Economy Class  Total    Doors 
Cabin 

sections 

Type 1-1 0  24 (1) 0  293 (3) 317   8  4  

Type 1-2 0  39 (2) 0  223 (2) 262   8  4  

Type 1-3 0  39 (2) 21 (1) 191 (2) 251   8  5  

Type 2 0  38 (2) 28 (1) 214 (2) 280   8  5  

Type 3 0  42 (1) 0  293 (2) 335   8  3  

Type 4 0  42 (1) 0  356 (3) 398   10  4  

Type 5-1 0  40 (2) 32 (1) 268 (3) 340   10  6  

Type 5-2 6 (1) 53 (2) 34 (1) 182 (2) 275    10  6  

 

Apart from the minimum requirements imposed by aviation authorities (e.g., at 

least one cabin crew for each pair of airplane doors, for each separate cabin section, and 

for every 50 passengers), The Airways establishes a higher service level by assigning 

more cabin crews to the flights. In this study, the following standards are utilized: Every 

4 passengers in the First Class, every 10 passengers in the Business Class, every 20 

passengers in the Premium Economy Class, and every 40 passengers in the Economy 

Class are equipped with one cabin crew. Besides, classes 1 and 2 cabin crews are 
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usually assigned with jobs in the First Class cabin and the Business Class cabin, while 

classes 3 and 4 cabin crews are generally allocated with those in the Premium Economy 

Class cabin and the Economy Class cabin. Accordingly, the number of cabin crews of 

each class required for each aircraft type and layout is obtained, as summarized in Table 

B-2. 

Table B-2. Cabin crew requirements for the aircraft types and layouts. 

Aircraft type and layout 
Number of cabin crews required 

Class 1 Class 2 Class 3 Class 4 Total  

Type 1-1 1  2  4  4  11  

Type 1-2 2  2  3  3  10  

Type 1-3 2  2  3  4  11  

Type 2 2  2  4  4  12  

Type 3 2  3  4  4  13  

Type 4 2  3  4  5  14  

Type 5-1 2  2  4  5  13  

Type 5-2 3  5  3  4  15  
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Appendix C. Computational Experiments Materials 

for Chapter 3 

Table C-1. Number of constraints and size of the initial pool of the three models. 

Insta

nce  

MICCPP-ACCS MICCPP-A 
TCCPP 

Type 1 Type 2 Type 3 Type 4 Type 5 

Constra

ints 

Initial 

pool 
𝑠𝑖

𝑟 
Constra

ints 

Initial 

pool 

Constra

ints 

Initial 

pool 

Constra

ints 

Initial 

pool 

Constra

ints 

Initial 

pool 

Constra

ints 

Initial 

pool 

Constra

ints 

Initial 

pool 

I1 760  256  336  85  64  4  2  27  24  0  0  21  14  32  29  

I2 769  264  340  86  66  5  3  29  25  0  0  23  15  28  24  

I3 697  256  308  78  64  0  0  29  25  2  1  26  19  20  14  

I4 769  264  340  86  66  18  14  25  19  0  0  28  20  14  9  

I5 733  268  324  82  67  7  5  33  31  6  3  24  16  11  7  

I6 697  244  308  78  61  14  9  33  29  2  1  14  9  14  9  

I7 832  296  368  93  74  27  22  34  30  5  3  2  1  24  19  

I8 751  276  332  84  69  21  17  37  32  2  1  10  7  13  8  

Aver-

age 
751  265.5  

33

2  
84.00  66.38  12  9  30.88  26.88  2.13  1.13  18.5  12.63  19.5  14.88  

 

Table C-1 illustrates the number of constraints and size of the initial pool for the three 

models in the computational experiments, showing the higher problem complexity of 

the proposed MICCPP-ACCS. Note that MICCPP-ACCS has a special variable 

(substitution recording variable (𝑠𝑖
𝑟)) which does not exist in MICCPP-A and TCCPP. 

Therefore, the number of substitution recording variable (𝑠𝑖
𝑟) for MICCPP-ACCS in 

each instance is shown in the fourth column of the table. It is seen that the size of 

constraints for MICCPP-ACCS is much higher than that for MICCPP-A (8.94 times 

averagely). When comparing with TCCPP, it is observed that there are averagely 751 

constraints in MICCPP-ACCS, while only 12 in type 1 TCCPP, 30.88 in type 2 TCCPP, 

2.13 in type 3 TCCPP, 18.5 in type 4 TCCPP, and 19.5 in type 5 TCCPP. Regarding 

the initial pool, MICCPP-ACCS has the largest size which is four times the size of 

MICCPP-A. This is because that there are four classes of cabin crew variables in 

MICCPP-ACCS, while only one class in MICCPP-A. Besides, in TCCPP, the entire 

flight network is separated into smaller networks for each type of aircraft. Therefore, 

the size of the initial pool for each type of TCCPP is greatly reduced. On average, there 
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are 265.5 initial cabin crew variables in MICCPP-ACCS, while only 9 in Type 1 

TCCPP, 26.88 in Type 2 TCCPP, 1.13 in Type 3 TCCPP, 12.63 in Type 4 TCCPP, and 

14.88 in Type 5 TCCPP. 

Table C-2 depicts the details of scenarios when the derived cabin crew availability 

levels (Level 1, Level 2, and Level 3) are applied in each MICCPP-ACCS instance. 

Table C-2. Details of the scenarios corresponding to the tested instances. 

Availability 

level 
Instance Scenario 

Manpower 

shortage 
CCS 

Extra 

manpower 

Total extra crew 

demand 

Level 1 

I1-M 8    0 

I2-M 8    0 

I3-M 8    0 

I4-M 8    0 

I5-M 8    0 

I6-M 8    0 

I7-M 8    0 

I8-M 8    0 

Level 2 

I1-M 4 √ √ √ 3 

I2-M 5 √ √  0 

I3-M 3 √  √ 15 

I4-M 4 √ √ √ 7 

I5-M 4 √ √ √ 36 

I6-M 4 √ √ √ 13 

I7-M 3 √  √ 46 

I8-M 3 √   √ 37 

Level 3 

I1-M 5 √ √  0 

I2-M 5 √ √  0 

I3-M 7 √ √ √ 1 

I4-M 5 √ √  0 

I5-M 2 √ √ √ 19 

I6-M 7 √ √ √ 2 

I7-M 2 √ √ √ 29 

I8-M 2 √ √ √ 20 

 

Table C-3 summarizes the solution details of the sum of all five aircraft types 

TCCPPs. In particular, the team pairings obtained in the solution are for cabin crew 

teams, rather than individuals. As a result, it is necessary to calculate the real manpower 

demand based on the obtained team pairings. Specifically, the real number of Class r 

cabin crews required for a team pairing equals the maximum demand for this class 

among all flights covered in the pairing. The second column in Table C-3 represents 

the real total demand for cabin crews for each instance. Besides, the third and fourth 

columns show the real total TAFB cost and manpower utilization, respectively. The last 
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three columns correspondingly represent the real average number of flights, average 

number of duties, and average length of pairings in the solution. When the cabin crew 

availability levels are considered, the corresponding extra manpower demand could be 

obtained by subtracting the availability quantity from the total real manpower demand, 

as shown in the 13th column in Table C-4. For example, the total real manpower 

demand for I1 in TCCPP is 668, while there are only 229 available cabin crews under 

Level 1. Accordingly, total 668-229=439 extra cabin crews are needed in this case. 

Therefore, based on the available manpower fixed cost (the 3rd column in Table C-4), 

the extra manpower fixed cost (the 14th column in Table C-4), and the TAFB cost (the 

3rd column in Table C-3), the total cost for each instance of TCCPP under each 

availability level is obtained, as illustrated in the last column of Table C-4.  

 

Table C-3. Solution details of TCCPP (all five aircraft types). 

Instance 

TCCPP solutions (all five aircraft types) 

Total manpower used  TAFB cost Utilization 
Average number in a pairing 

Flights Duties Elapsed time 

I1 (T1-T5) 668 1084325 5.4% 2.00  1.90  1623.24  

I2 (T1-T5) 664 1006420 5.5% 2.00  1.81  1515.69  

I3 (T1-T5) 576 886865 5.8% 2.00  1.82  1539.70  

I4 (T1-T5) 641 984960 5.5% 2.00  1.79  1536.60  

I5 (T1-T5) 589 935330 5.8% 2.00  1.86  1588.00  

I6 (T1-T5) 589 957935 5.3% 2.00  1.83  1626.38  

I7 (T1-T5) 693 1237425 5.3% 2.00  1.89  1785.61  

I8 (T1-T5) 630 1166215 5.3% 2.00  1.90  1851.13  

Average 631.25 1032434 5.5% 2.00  1.85  1633.29  

 

The 4th to 12th columns in Table C-4 show the total manpower demand, total extra 

manpower demand, TAFB cost, extra manpower fixed cost, total cost, manpower 

utilization, average number of flights, average number of duties, and average length of 

pairings for each instance of MICCPP-ACCS when the three availability levels are 

applied. 
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Table C-4. Solution details of MICCPP-ACCS and TCCPP (all five aircraft types). 

Availability 

level 
Instance 

Available 

manpower 

fixed cost 

MICCPP-ACCS solutions 

 

TCCPP (all five aircraft types) 

Total 

manpower 

used  

Extra 

manpower 

demand 

TAFB 

cost 

Extra 

manpower 

fixed cost  

Total 

cost 
Utilization 

Average number in a 

pairing Extra 

manpower 

demand 

Extra 

manpower 

fixed cost  

Total 

cost 
Flights Duties 

Elapsed 

time 

Level 1 

I1 687000 229 0 899365  0 1586365 15.7% 4.99  3.40  3927.36    439 2634000 4405325 

I2 687000 229 0 932865  0 1619865 15.9% 5.07  3.55  4073.65  
 

435 2610000 4303420 

I3 687000 229 0 888575  0 1575575 14.5% 4.60  3.38  3880.24  
 

347 2082000 3655865 

I4 687000 229 0 917505  0 1604505 15.4% 4.96  3.52  4006.57  
 

412 2472000 4143960 

I5 687000 229 0 946040  0 1633040 14.9% 4.82  3.53  4131.18  
 

360 2160000 3782330 

I6 687000 229 0 931890  0 1618890 13.7% 4.68  3.47  4069.39  
 

360 2160000 3804935 

I7 687000 229 0 1028915  0 1715915 16.1% 5.28  3.76  4493.08  
 

464 2784000 4708425 

I8 687000 229 0 929095  0 1616095 14.5% 4.72  3.46  4057.18  
 

401 2406000 4259215 

Average 687000 229 0 934281  0 1621281 15.1% 4.89  3.51  4079.83    402.25  2413500 4132934 

Level 2 

I1 543000 184 3 982655  18000 1543655 19.6% 6.24  4.22  5340.52  
 

487 2922000 4549325 

I2 543000 181 0 1013765  0 1556765 20.1% 6.34  4.42  5600.91  
 

483 2898000 4447420 

I3 543000 196 15 961525  90000 1594525 16.9% 5.52  4.02  4905.74  
 

395 2370000 3799865 

I4 543000 188 7 1014955  42000 1599955 18.8% 6.04  4.24  5398.70  
 

460 2760000 4287960 

I5 543000 217 36 972135  216000 1731135 15.8% 5.09  3.72  4479.88  
 

408 2448000 3926330 

I6 543000 194 13 1028685  78000 1649685 16.2% 5.59  4.09  5302.50  
 

408 2448000 3948935 

I7 543000 227 46 1040190  276000 1859190 16.2% 5.37  3.81  4582.33  
 

512 3072000 4852425 

I8 543000 218 37 971340  222000 1736340 15.3% 5.00  3.67  4455.69  
 

449 2694000 4403215 

Average 543000 200.63  19.63  998156  117750 1658906 17.4% 5.65  4.02  5008.28  
 

450.25  2701500 4276934 

Level 3 

I1 594000 198 0 918535  0 1512535 18.2% 5.70  3.86  4639.07    470 2820000 4498325 

I2 594000 198 0 961090  0 1555090 18.4% 5.83  4.03  4853.99  
 

466 2796000 4396420 

I3 594000 199 1 921600  6000 1521600 16.7% 5.28  3.87  4631.16  
 

378 2268000 3748865 

I4 594000 198 0 972440  0 1566440 17.8% 5.69  4.01  4911.31  
 

443 2658000 4236960 

I5 594000 217 19 1001545  114000 1709545 15.8% 5.12  3.77  4615.41  
 

391 2346000 3875330 

I6 594000 200 2 1002075  12000 1608075 15.7% 5.39  3.93  5010.38  
 

391 2346000 3897935 

I7 594000 227 29 1044290  174000 1812290 16.2% 5.39  3.82  4600.40  
 

495 2970000 4801425 

I8 594000 218 20 957370  120000 1671370 15.3% 4.95  3.63  4391.61  
 

432 2592000 4352215 

Average 594000 206.88  8.88  972368  53250 1619618 16.8% 5.42  3.87  4706.66    433.25  2599500 4225934 

Overage average 608000 212.17  9.50  968269  57000 1633269 16.4% 5.31958 3.7994 4598.26   428.58  2571500 4211934 

 

Table C-5 represents the relative performance of MICCPP-ACCS over TCCPP. 

Specifically, the third to fifth columns show the reduction percentage in total manpower 

used, extra manpower demand, and cost achieved by MICCPP-ACCS over TCCPP, 

while the sixth to ninth columns conclude the growth percentage in manpower 

utilization, and the average number of flights, average number of duties, and average 

length of elapsed time in the pairings generated. 
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Table C-5. Relative performance of MICCPP-ACCS over TCCPP. 

Availability 

level 
Instance 

Relative performance of MICCPP-ACCS over TCCPP 

Reduction 

 

Increase (in a pairing) 

Total 

manpower 

used 

Extra 

manpower 

demand  

Cost  Utilization 
Average no. 

of flights 

Average 

no. of 

duties 

Average 

length of 

elapsed time 

Level 1 

I1 65.7% 100.0% 64.0%   191.7% 149.3% 79.1% 142.0% 

I2 65.5% 100.0% 62.4%  190.0% 153.3% 96.6% 168.8% 

I3 60.2% 100.0% 56.9%  151.5% 130.1% 85.0% 152.0% 

I4 64.3% 100.0% 61.3%  179.9% 148.0% 96.9% 160.7% 

I5 61.1% 100.0% 56.8%  157.2% 141.1% 90.0% 160.2% 

I6 61.1% 100.0% 57.5%  157.2% 134.1% 89.4% 150.2% 

I7 67.0% 100.0% 63.6%  202.6% 164.2% 99.6% 151.6% 

I8 63.7% 100.0% 62.1%  175.1% 136.2% 82.4% 119.2% 

Average 63.6% 100.0% 60.6%   175.7% 144.5% 89.9% 150.6% 

Level 2 

I1 72.5% 99.4% 66.1%  263.0% 212.0% 122.6% 229.0% 

I2 72.7% 100.0% 65.0%  266.9% 217.1% 144.9% 269.5% 

I3 66.0% 96.2% 58.0%  193.9% 176.0% 120.3% 218.6% 

I4 70.7% 98.5% 62.7%  241.0% 202.1% 137.2% 251.3% 

I5 63.2% 91.2% 55.9%  171.4% 154.4% 100.2% 182.1% 

I6 67.1% 96.8% 58.2%  203.6% 179.4% 122.9% 226.0% 

I7 67.2% 91.0% 61.7%  205.3% 168.7% 102.0% 156.6% 

I8 65.4% 91.8% 60.6%  189.0% 150.0% 93.6% 140.7% 

Average 68.1% 95.6% 61.0%  216.8% 182.5% 118.0% 209.2% 

Level 3 

I1 70.4% 100.0% 66.4%   237.4% 184.9% 103.4% 185.8% 

I2 70.2% 100.0% 64.6%  235.4% 191.4% 122.9% 220.3% 

I3 65.5% 99.7% 59.4%  189.5% 163.8% 112.1% 200.8% 

I4 69.1% 100.0% 63.0%  223.7% 184.3% 124.1% 219.6% 

I5 63.2% 95.1% 55.9%  171.4% 156.2% 103.0% 190.6% 

I6 66.0% 99.5% 58.8%  194.5% 169.5% 114.6% 208.1% 

I7 67.2% 94.1% 62.3%  205.3% 169.6% 102.8% 157.6% 

I8 65.4% 95.4% 61.6%  189.0% 147.7% 91.5% 137.2% 

Average 67.1% 98.0% 61.5%   205.8% 170.9% 109.3% 190.0% 

Overall average 66.3% 97.9% 61.0%   199.4% 166.0% 105.7% 183.3% 

 

Table C-6 summarizes the computation time of MICCPP-ACCS under each 

availability level. The overall average computation time for the three availability levels 

is 24.193s. Table C-7 gives the computation time of TCCPP. As TCCPP ignores the 

manpower availability limitation, the solution process under all the three availability 

levels are the same for each instance. Besides, as discussed, TCCPP is solved within 

each separate aircraft type. Therefore, Table C-7 shows that (i) the average 

computation time across all five aircraft types of each instance, and (ii) the total 
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computation time for all five aircraft types of each instance. To be specific, for TCCPP, 

the average total computation time is 0.333s. In the numerical instances, optimal 

solutions could be identified within reasonable computation times using the proposed 

MICCPP-ACCS. 

Table C-6. Computation time of MICCPP-ACCS. 

Instance 

Level 1 - Computation time (s) Level 2 - Computation time (s) Level 3 -Computation time (s) 

Column 

generation 

Pricing 

problem 

Branch-

and-

Bound 

Total 
Column 

generation 

Pricing 

problem 

Branch-

and-

Bound 

Total 
Column 

generation 

Pricing 

problem 

Branch-

and-

Bound 

Total 

I1-M 20.779  19.444  0.342  21.121  37.666  35.391  0.527  38.193  19.796  18.395  0.651  20.447  

I2-M 19.321  17.885  0.632  19.953  32.749  31.010  10.019  42.768  18.182  16.690  0.894  19.076  

I3-M 12.409  11.293  0.147  12.556  14.782  13.687  0.210  14.992  11.722  10.662  0.760  12.482  

I4-M 23.296  21.587  0.368  23.664  42.613  40.475  0.990  43.603  23.485  21.854  1.776  25.261  

I5-M 19.638  17.980  0.163  19.801  25.105  23.235  0.494  25.599  23.806  22.150  0.748  24.554  

I6-M 12.747  11.621  0.050  12.797  13.637  12.493  0.868  14.505  8.155  7.212  0.616  8.771  

I7-M 33.996  32.301  6.008  40.004  34.040  32.041  0.873  34.913  37.435  35.140  0.444  37.879  

I8-M 19.723  17.817  3.164  22.887  20.047  18.145  0.328  20.375  24.131  21.604  0.296  24.427  

Average 20.239  18.741  1.359  21.598  27.580  25.810  1.789  29.369  20.839  19.213  0.773  21.612  

 

Table C-7. Computation time of TCCPP (five networks). 

Instance 

Average computation time (s) Total computation time (s) 

Column 

generation 

Pricing 

problem 

Branch-and-

Bound 
Total 

Column 

generation 

Pricing 

problem 

Branch-and-

Bound 
Total 

I1-(T1-T5) 0.059  0.005  0.007  0.066  0.296  0.027  0.036  0.332  

I2-(T1-T5) 0.058  0.003  0.003  0.060  0.288  0.015  0.013  0.301  

I3-(T1-T5) 0.052  0.002  0.005  0.057  0.259  0.011  0.024  0.283  

I4-(T1-T5) 0.053  0.002  0.002  0.055  0.265  0.012  0.010  0.275  

I5-(T1-T5) 0.074  0.003  0.003  0.077  0.370  0.013  0.016  0.386  

I6-(T1-T5) 0.068  0.002  0.003  0.072  0.341  0.009  0.017  0.358  

I7-(T1-T5) 0.071  0.004  0.003  0.075  0.356  0.020  0.017  0.373  

I8-(T1-T5) 0.068  0.005  0.003  0.072  0.342  0.024  0.017  0.359  

Average 0.063  0.003  0.004  0.067  0.315  0.016  0.019  0.333  
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Appendix D. Notation and Thresholds for Chapter 4 

Table D-1 summarizes the important notation used in the analyses (both in the main 

context and in the online mathematical proofs).  

Table D-1. Important notation used in Chapter 4. 

Notation Remarks Notation Remarks 
2 2

1 (1 )S  = −  
11 0S   

3 1 11T S k= +  
32 1T   

2 2

2S  =  
21 0S   

4 2 21T S k= +  
42 1T   

1 1 12(1 )A S k= +  
14 2A   2

1 11 2k = +   
13 1    

2 2 22(1 )A S k= +  
24 2A   2

2 21 2k = +   
23 1   

3 0 1 1 1(1 ) (1 2 )A a c S k= − + +  
34 0A   2

1 1 1 12(1 )B S k k = + +  
16 2B   

4 0 2 2 2(1 2 )A a c S k= + +  
44 0A   2

2 2 2 22(1 )B S k k = + +  
26 2B   

1 1 11 2T S k= +  
13 1T   2

3 0 1 10 1 1(1 ) (1 2 ) (1 2 )B a k c S k = − + + +  
36 0B   

2 2 21 2T S k= +  
23 1T   2

4 0 2 20 2 2(1 2 ) (1 2 )B a k c S k = + + +  
46 0B   

 

The crucial relative risk-averse attitude thresholds identified in the analyses are 

listed in Table D-2. It could be seen that each pair of relative risk-averse attitude 

thresholds for the two carriers are perfectly symmetric (e.g., 
1 and

2 ). 

Table D-2. Crucial relative risk-averse attitude thresholds identified in the analyses. 

1  

( ) ( )

2 2

1

2 2

2 21

T

A A

 

 − −

 1  2

1 2 2

2

2 2 2

( )

( )

B

B B

  

 

−

−
 

2  ( )

( )

22

2

2 2

1 1

1 T

A A

 

 

−

−

 2  2

2 1 1

2

1 1 1

( )

( )

B

B B

  

 

−

−
 

2  ( )

( )

2

2 2

2 2

1

1 A T

A



 

−

−

 1  
1 2 2

2

2 2 2

( )

( )

B B

B



  

−

−
 

1  

( ) ( )

2

1 1

2 2

21

AT

A



 − −

 2  
2 1 1

2

1 1 1

( )

( )

B B

B



  

−

−
 

 

Besides, Table D-3 concludes the important cost thresholds for the two carriers in 

determining the impacts of diverse parameters on the optimal prices. It is seen that all 

pairs of cost thresholds are perfectly symmetric (e.g., 
1CT and

2CT ). 
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Table D-3. Crucial cost thresholds identified in the analyses. 

1CT    2 2 0 0 2 2 2

2

2 2

2(1 )(1 ) (1 2 )

2(1 )

S k a a c S k

S k

  



+ − + + +

+ −
  

2CT    1 1 0 0 1 1 1

2

1 1

2(1 ) (1 ) (1 2 )

2(1 )

S k a a c S k

S k

  



+ + − + +

+ −
  

1DT  
( )( )

( ) ( )  

( ) ( )

( ) ( )

1 2 0 2 2 0 1
2 2

0 2 1 2 2

1 2 2 2 2 1 2

2 2 2

1 2 2 2 1

1 1 - + (1 )
4

[ 1 (1 2 )+ ]

4 1

k A a A k a A
a A A A

k A S k k A c

k A A k T

       
  

   

    

 −  − +  −  
− − +  

+ − + −  

 − − +
 

 

2DT  
( )( )

( ) ( )

( )( )

( ) ( )

2 1 0 1 1 0 2
2 2

0 1 1 2 2

2 1 1 1 1 2 1

2 2 2

2 1 1 1 2

[ (1 )] 1 1
4

[ (1 2 ) 1 ]

4 1

k A a A k a A
a A A A

k A S k k A c

k A A k T

       
  

   

    

 + − − −  − +   
− − +  

+ + + − −  

 − + −
 

 

1ET  
( )( )

  ( ) ( )

( ) ( )

( )( )

2 1 0 1 1 0 2
2 2

0 1 1 2 2 2

2 1 1 1 2 2 2

2 2

2 1 1 1 2

(1 ) 1 1
4

[ 1 (1 2 )]

4 1

k A a A k a A
a A A A

k A A k S k c

k A T k A

       
  

   

     

 − + − + −  − +   
− − +  

+ − + − +  

 + − −
 

 

2ET  
( )( )

( ) ( )

( ) ( )

( ) ( )

1 2 0 2 2 0 1
2 2

0 2 1 2 2 2

1 2 2 2 1 1 1

2 2

1 2 2 2 1

1 1 [ (1 )]
4

[ 1 (1 2 )]

4 1

k A a A k a A
a A A A

k A A k S k c

k A T k A

       
  

   

     

 − −  − +  + + −  
− − +  

+ − − + +  

 − + −
 

 

1YT  ( ) ( )   ( ) ( )

( ) ( )

2 22 2 2

0 1 2 2 2 1 2 2 1 1 2 2

2 2 2 2

1 2 2 2 1

1 1 (1 ) 1

1

a k A A k A c k A k A T

k A A k T

            

   

   −  − +  + + − − − − −    

− − −

 

2YT    ( ) ( ) ( ) ( )

( ) ( )

2 22 2 2

0 2 1 1 1 2 1 1 2 2 1 1

22 2 2

2 1 1 1 2

(1 ) 1 1 1

1

a k A A k A c k A k A T

k A A k T

            

   

   + − + −  − +  − − − −    

− − −

 

1PT    ( ) ( ) ( ) ( )

( ) ( )

2 22 2 2 2

0 2 1 1 1 2 2 2 1 1 1 2

2 2 2

1 2 2 1 1

(1 ) 1 1 1

1

a k A A k A c k A A k T

k A k A T

           

    

   + − + −  − +  − − − −    

− − −

 

2PT  ( ) ( )   ( ) ( )

( ) ( )

2 22 2 2 2

0 1 2 2 2 1 1 1 2 2 2 1

22 2

2 1 1 2 2

1 1 (1 ) 1

1

a k A A k A c k A A k T

k A k A T

           

    

   −  − +  + + − − − − −    

− − −

 

1WT  2 2 2

2 1 1 1 1 2 1 1 4 1 2 2 2 2 1 2 2 0 1

2

0 1 2 2 1 0 1 2 1 2

2 2

2 1 2 2 1 2 2 2 1 1

[ ( ) ( )] [ ( ) ( )](1 )

[(1 ) ]( )

[ ( ) ( )](1 2 )

k B k B B B k B B k B a

a k B k a B B

k B k B B S k

           

    

    

− − − + − − − −

− − + −

− + − +  

2WT  2 2 2

1 2 2 2 2 1 2 2 3 2 1 1 1 1 2 1 1 0 2

2

0 2 1 1 2 0 1 2 1 2

2 2

1 2 1 1 2 1 1 1 2 2

[ ( ) ( )] [ ( ) ( )]

[ (1 ) ]( )

[ ( ) ( )](1 2 )

k B k B B B k B B k B a

a k B k a B B

k B k B B S k

           

     

    

− − − + − − −

− + − −

− + − +
 

1UT  2 2 2

2 1 1 1 1 2 1 1 4 1 2 2 2 2 1 2 2 0 1

2

0 2 1 1 2 0 1 2 1 2

2

2 1 2 2 1 2 2 2 1 1

[ ( ) ( )] [ ( ) ( )](1 )

[ (1 ) ]( )

[ ( ) ( )](1 2 )

k B B k B B k B k B B a

a k B k a B B

k B B k B S k

           

     

    

− − − + − − − −

− + − −

− + − +
 

2UT  2 2 2

1 2 2 2 2 1 2 2 3 2 1 1 1 1 2 1 1 0 2

2

0 1 2 2 1 0 1 2 1 2

2

1 2 1 1 2 1 1 1 2 2

[ ( ) ( )] [ ( ) ( )]

[(1 ) ]( )

[ ( ) ( )](1 2 )

k B B k B B k B k B B a

a k B k a B B

k B B k B S k

           

    

    

− − − + − − −

− − + −

− + − +
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Appendix E. All Proofs for Chapter 4  

Basic model 

Proof of Lemma 1.  Checking the second-order derivatives of Eq. (4-8) and Eq. (4-

9), it is found that 
2

1
1 12

1

2 2 0
( )

O
S k

P


= − − 


 and 

2

2
2 22

2

2 2 0
( )

O
S k

P


= − − 


, which shows 

that both objective functions are concave in the respective unit price. Consequently, 

the reactive functions for the two players could be obtained through solving the first-

order conditions as follows: 

1

1
1

1

arg 0
P

O
P

P

 
= = 

 

→ 0 2 1 1 1
1 2

1 1

(1 ) (1 2 )

2(1 )

a P c S k
P P

S k

 − + + +
=

+
                                      

2

2
2

2

arg 0
P

O
P

P

 
= = 

 

→ 0 1 2 2 2
2 1

2 2

(1 2 )

2(1 )

a P c S k
P P

S k

 + + +
=

+
                                       

Solving the reactive functions, the optimal prices ( *

1P and *

2P ) for the two carriers 

could be identified. Besides, 2

1 2A A  always holds.  (Q.E.D.)                                                    

 

Proposition 1  

(i) Checking the first-order derivatives of 
*

1P and 
*

2P  with respect to 𝜆, it is 

found that ( ) ( ) 
*

21
4 1 2 2 3 42

2

1 2

1
2

P
A A A A A A

A A
  

 


= − + +

  − 

 and 

( ) ( ) 
*

22
3 1 2 1 4 32

2

1 2

1
2

P
A A A A A A

A A
  

 


= − + +

  − 

.   

It is easily seen that 
* *

1 20, 0
P P

 

 
 

 
.  (Q.E.D.)                                                  

(ii) When 0  , checking the first-order derivatives of 
*

1P and 
*

2P  with respect 

to 
1c and 

2c , it is obtained that 
*

1 2 2 1 1

2

1 1 1 2 2

2(1 )(1 2 )
0

4(1 )(1 )

P S k S k

c S k S k 

 + +
= 

 + + −
, 
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*

2 1 1 2 2

2

2 1 1 2 2

2(1 )(1 2 )
0

4(1 )(1 )

P S k S k

c S k S k 

 + +
= 

 + + −
,

*

1 2 2

2

2 1 1 2 2

(1 2 )
0

4(1 )(1 )

P S k

c S k S k





 +
= 

 + + −
, and 

*

2 1 1

2

1 1 1 2 2

(1 2 )
0

4(1 )(1 )

P S k

c S k S k





 +
= 

 + + −
.  

Besides, it is found that 
* *

1 1

1 2

P P

c c

 


 
 and 

* *

2 2

2 1

P P

c c

 


 
. (Q.E.D.)                                                                                      

(iii) When 0 = , checking the first-order derivatives of 
*

1P and 
*

2P  with respect to 

1c  and 
2c  , it is identified that 

*

1

2

0
P

c


=


 , 

*

2

1

0
P

c


=


 , 

*

1 2 2 1 1

2

1 1 1 2 2

2(1 )(1 2 )
0

4(1 )(1 )

P S k S k

c S k S k 

 + +
= 

 + + −
 and 

*

2 1 1 2 2

2

2 1 1 2 2

2(1 )(1 2 )
0

4(1 )(1 )

P S k S k

c S k S k 

 + +
= 

 + + −
.  

      (Q.E.D.) 

 

Proof of Proposition 2 

Regarding
1k , the first-order derivatives of *

1P and *

2P  are as follows: 

* 2 2
21 2

2 0 4 1 22
2

1
1 2

2 (1 )
(1 ) ( )

P A
A a A c A

k A A

 
  



 −
 = − − − + −   − 

, and 

* 2 2
22

2 0 4 1 22
2

1
1 2

2 (1 )
(1 ) ( )

P
A a A c A

k A A

  
  



 −
 = − − − + −   − 

. For
2k , it is obtained that 

( )
* 2 2

21
1 0 3 2 12

2
2

1 2

2P
A a A c A

k A A

 
  




 = − − + −
   − 

, and

( )
* 2 2

22 1
1 0 3 2 12

2
2

1 2

2P A
A a A c A

k A A

 
  




 = − − + −
   − 

. 

(i) When  =0, it is found that 
* * * *

1 2 1 2

1 1 2 2

0
P P P P

k k k k

   
= = = =

   
.  (Q.E.D.)                                    

(ii) When 0  , 

a) When 0 < 𝜃 < 1 and 0  , if 

 2 2 0 0 2 2 2

1 12

2 2

2(1 )(1 ) (1 2 )
( )

2(1 )

S k a a c S k
c CT

S k

  



+ − + + +
  =

+ −
, then, it is obtained that 
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* *

1 2

1 1

, ( )0
P P

k k

 
 

 
. Besides, if

 1 1 0 0 1 1 1

2 22

1 1

2(1 ) (1 ) (1 2 )
( )

2(1 )

S k a a c S k
c CT

S k

  



+ + − + +
  =

+ −
, then, it is identified that 

* *

1 2

2 2

, ( )0
P P

k k

 
 

 
. Besides, it could be identified that 

3

0r

r

CT

c −





.    (Q.E.D.)                              

b) When 0 = , it is obtained that 
3

0r

r

CT

c −


=


, and 

* *

2 1

1 2

=0
P P

k k

 
=

 
.   (Q.E.D.) 

c) When 𝜃 = 0, it is found that 
* *

1 2

2 2

0
P P

k k

 
= =

 
 ; When 𝜃 = 1, it is obtained that 

* *

1 2

1 1

0
P P

k k

 
= =

 
.  (Q.E.D.)                

                     

Proof of Proposition 3 

Checking the first order derivatives of *

1P and *

2P  with respect to 𝜃, it is found that: 

( )( )

( ) ( ) ( ) ( ) 

2
* 0 2 1 2

1

2 2 2 22
1 2 2 0 4 1 2 2 2 1 0 1 31 2

1

4 1 1

a A A A
P

k A A a A c A k c A a A AA A

 

          

− − +


=
    − − + + − + − − − −     

 

and 

( )( )

( ) ( ) ( ) ( ) 

2
* 0 1 1 2

2

2 2 2 22
2 1 1 0 3 2 1 1 1 2 0 2 41 2

1

4 1 1

a A A A
P

k A A a A c A k c A a A AA A

 

          

− − +


=
    − − + − + − − + − + −     

.  

(i) If σ = 0, it is identified that 
*

1 0 
P







 (which equals 

*

1 0
1-

P






（ ）
) and 

*

2 0
P







.    

(Q.E.D.)             

(ii) When 0  , 

a) With competition ( 0  ), for carrier 1, it is obtained that 
*

1 ( )0
BDP




 


 (which 

equals 
*

1 ( )0
1-

P




 

（ ）
)  when 
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( )( ) ( ) ( )   ( ) ( ) 
( ) ( )

2 2 2

0 2 1 2 1 2 0 2 2 0 1 1 2 2 2 2 1 2

1 12 2 2

1 2 2 2 1

4 1 1 - + (1 ) [ 1 (1 2 )+ ]
( )

4 1

a A A A k A a A k a A k A S k k A c
c DT

k A A k T

              

    

− − + −  − +  − + − + − 
  =

 − − +
 

 

is satisfied. For carrier 2, it is found that 
*

2 ( )0
BDP




 


 when 

( )( ) ( ) ( ) ( )( ) 
( ) ( )

2 2 2

0 1 1 2 2 1 0 1 1 0 2 2 1 1 1 1 2 1

2 22 2 2

2 1 1 1 2

4 [ (1 )] 1 1 [ (1 2 ) 1 ]
( )

4 1

a A A A k A a A k a A k A S k k A c
c DT

k A A k T

              

    

− − + + − − −  − +  + + + − − 
  =

 − + −
 

 

is satisfied. Besides, it is obtained that 
3

0r

r

DT

c −





 (when 0  ).    (Q.E.D.)                           

b) With competition ( 0  ), for carrier 2, it is identified that 
*

2 ( )0
BDP




 


 (which 

equals 
*

1 ( )0
1-

P




 

（ ）
) when 

( )( )   ( ) ( ) ( ) ( ) 
( )( )

2 2 2 2

0 1 1 2 2 1 0 1 1 0 2 2 1 1 1 2 2 2

1 12 2

2 1 1 1 2

4 (1 ) 1 1 [ 1 (1 2 )]
( )

4 1

a A A A k A a A k a A k A A k S k c
c ET

k A T k A

              

     

− − + − + − + −  − +  + − + − + 
  =

 + − −
 

 

is satisfied. For carrier 1, it is identified that 
*

1 ( )0
BDP




 


 when 

( )( ) ( ) ( ) ( ) ( ) 
( ) ( )

2 2 2 2

0 2 1 2 1 2 0 2 2 0 1 1 2 2 2 1 1 1

2 22 2

1 2 2 2 1

4 1 1 [ (1 )] [ 1 (1 2 )]
( )

4 1

a A A A k A a A k a A k A A k S k c
c ET

k A T k A

              

     

− − + − −  − +  + + − + − − + + 
  =

 − + −
 

 

is satisfied. Besides, 3 0r

r

ET

c

−



.    (Q.E.D.)                                       

c) Without competition ( =0 ), it is found that 

( )
*

21
0 1 1 1 12

1

1
[2 ( 1) 4 1 ] 0

P
a k S k c

A
 




= − − − 


and 

( )
*

22
0 2 2 2 22

2

1
[2 1 4 ] 0

P
a k S k c

A
 




= − + 


.   (Q.E.D.)                                     

 

Proof of Proposition 4 

Checking the first order derivatives of *

1P and *

2P  with respect to σ, it is found that 

( ) ( ) ( ) ( )

( ) ( )  

2 22 2 2 2 2
* 1 1 2 2 2 1 2 2 1 1 2 2

1

2 22 2
1 2 0 1 2 2 2 1

1 1
4

1 1 (1 )

c k A A k T c k A k A T
P

A A a k A A k A

        


         

    − − − + − − −
     

=  
   − − −  − +  + + −      

 

and 
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( ) ( ) ( ) ( )

  ( ) ( )

2 22 2 2 2 2
* 2 2 1 1 1 2 1 1 2 2 1 1

2

2 22 2
1 2 0 2 1 1 1 2

1 1
4

(1 ) 1 1

c k A A k T c k A k A T
P

A A a k A A k A

        


         

    − − − + − − −
     

=  
   − − + − + −  − +       

.  

(i) When 0 < 𝜃 < 1 and 0  ,  

Let 
( ) ( )

2 2

1
1 2 2

2 21

T

A A

 

 
 =

− −
, 

( )

( )

2

2 2

2 2 2

1

1 A T

A



 

−
 =

−
, and 

( )

( )

22

2

2 2 2

1 1

1 T

A A

 

 

−
 =

−
, and 

( ) ( )

2

1 1
1 2 2

21

AT

A



 
 =

− −
. 

a) For carrier 1, when , when 
1c  is sufficiently large, that is, 

( ) ( )   ( ) ( )

( ) ( )

2 22 2 2

0 1 2 2 2 1 2 2 1 1 2 2

1 12 2 2 2

1 2 2 2 1

1 1 (1 ) 1

1

a k A A k A c k A k A T
c YT

k A A k T

            

   

   −  − +  + + − − − − −    
 =

− − −

, then it is identified that 
*

1 0
P







. For carrier 2, if , if 

2c  is sufficiently 

large, that is, 

  ( ) ( ) ( ) ( )

( ) ( )

2 22 2 2

0 2 1 1 1 2 1 1 2 2 1 1

2 222 2 2

2 1 1 1 2

(1 ) 1 1 1

1

a k A A k A c k A k A T
c YT

k A A k T

            

   

   + − + −  − +  − − − −    
 =

− − −

, then it is found that 
*

2 0
P







.    (Q.E.D.) 

b) For carrier 2, when
1 1  , when 

1c  is sufficiently large, that is, 

  ( ) ( ) ( ) ( )

( ) ( )

2 22 2 2 2

0 2 1 1 1 2 2 2 1 1 1 2

1 12 2 2

1 2 2 1 1

(1 ) 1 1 1

1

a k A A k A c k A A k T
c PT

k A k A T

           

    

   + − + −  − +  − − − −    
 =

− − −

, then it is identified that 
*

2 0
P







. For carrier 1, when , if 

2c  is 

sufficiently large, that is, 

( ) ( )   ( ) ( )

( ) ( )

2 22 2 2 2

0 1 2 2 2 1 1 1 2 2 2 1

2 222 2

2 1 1 2 2

1 1 (1 ) 1

1

a k A A k A c k A A k T
c PT

k A k A T

           

    

   −  − +  + + − − − − −    
 =

− − −

, then 
*

1 0
P







.   (Q.E.D.)                                                      

1 1  

2 2  

2 2 
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(ii) When 0 < 𝜃 < 1 and 0 = , it is identified that 

( )
( )

2 2*
1 21

1 02

1 2

4 1
[ 1 ]

( )

k AP
c a

A A

 




−
= − −


and

* 2 2

2 2 1
2 02

1 2

4
( )

( )

P k A
c a

A A

 





= −


. Therefore, 

*

1 0
P







if ( )1 0 1c a  −  and 

*

2 0
P







if  

2 0c a  .     (Q.E.D.) 

(iii) When 𝜃 = 0 𝑜𝑟 1, 

a) When 𝜃 = 1 and 0  , it is obtained that 

( ) 
*

2 21
2 1 1 2 1 2 0 2 12

2

1 2

4P
k T c k A c a k A

A A


   

 


= − + − −

  − 

,

( ) 
*

2 22
2 1 1 1 2 1 1 2 0 2 12

2

1 2

4P
k A T c k A A c a k A

A A


 

 


= − + − −

  − 

; Therefore, 
*

1 0
P







 

and 
*

2 0
P







 if 

( )
1 1 0 1

2 22

1

( )T c a A
c OT

A





+
 =

−
.  

When 𝜃 = 0 and 0  , it is found that 

( ) 
*

2 21
1 2 2 1 1 2 2 2 0 1 22

2

1 2

4P
k A A c k A T c a k A

A A


 

 


= − − −

  − 

, 

( ) 
*

2 22
1 2 1 1 2 2 0 1 22

2

1 2

4P
k A c k T c a k A

A A


   

 


= − − −

  − 

. Therefore, 
*

1 0
P







 and 

*

2 0
P







if

( )
2 2 0 2

1 12

2

( )T c a A
c OT

A





+
 =

−
.    (Q.E.D.)                                                      

b) When 𝜃 = 1 and 0 = , it is obtained that 
*

1 0
P




=


, and 

*

2 0
P







 if 

2 0c a ; 

When 𝜃 = 0 and 0 = , it is found that 
*

2 0
P




=


, and 

*

1 0
P







 if 

1 0c a .    

(Q.E.D.)                                                

 

Extended analyses 

Proof of Lemma 2. Checking the second-order derivatives of Eq. (4-16), it is found 
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that 
2

21
1 1 12

1

2 2 2 0
( )

e

e

O
S k k

P



= − − − 


 and 

2
22

2 2 22

2

2 2 2 0
( )

e

e

O
S k k

P



= − − − 


, which proves 

that both objective functions are concave in the respective unit price. Consequently, 

the reactive functions for the two players could be identified through solving the first-

order conditions as follows: 

1

1
1

1

arg 0
e

e

e
P

O
P

P

 
= = 

 
→

2 2

0 1 2 1 10 1 1
1 2 2

1 1 1

(1 ) [1 2 ] [1 2 ] (1 2 )

2(1 )

e
e

e a k P k c S k
P P

S k k

   



− + + + + +
=

+ +
                                      

2

2
2

2

arg 0
e

e

e
P

O
P

P

 
= = 

 
→

2 2

0 2 1 2 20 2 2
2 1 2

2 2 2

(1 2 ) (1 2 ) (1 2 )

2(1 )

e
e

e a k P k c S k
P P

S k k

   



+ + + + +
=

+ +
                                       

Solving the reactive functions, the optimal prices for the two carriers could be 

obtained for the extended model. Besides, 2

1 2 1 2B B   always holds.     (Q.E.D.) 

 

Proof of Proposition 5 

Checking the first order derivatives of *

1

eP and *

2

eP  with respect to  , it is found that: 

2 2 2

2 1 2 2 1 2 2 2 1 1 10 1 2 1 1 2 1 1 1 2 2 20
*

2 2 21
2 1 2 2 1 2 2 2 0 1 1 2 1 1 2 1 1 1 0 22

2

1 2 1 2
0 1 2 2 1

[ ( ) ( )](1 2 ) [ ( ) ( )](1 2 )
4

[ ( ) ( )](1 ) [ ( ) ( )]

[(1 )

e
k B k B B S k c k B B k B S k c

P
k B k B B a k B B k B a

B B
a k B k

         


             
  

  

− − − + + − − − +


= + − − − − + − − −
  −  + − + 2

0 1 2 1 2]( )a B B  

 
 
 
 

− 

, and 

2 2 2

1 2 1 1 2 1 1 1 2 2 20 2 1 2 2 1 2 2 2 1 1 10
*

2 2 22
1 2 1 1 2 1 1 1 0 2 2 1 2 2 1 2 2 2 0 12

2

1 2 1 2
0 2 1 1 2

[ ( ) ( )](1 2 ) [ ( ) ( )](1 2 )
4

[ ( ) ( )] [ ( ) ( )](1 )

[ (1

e
k B k B B S k c k B B k B S k c

P
k B k B B a k B B k B a

B B
a k B k

         


             
  

   

− − − + + − − − +


= + − − − + − − − −
  −  + + − 2

0 1 2 1 2) ]( )a B B  

 
 
 
 

− 

. 

Besides, it is identified that 1 2 1r r r rB S k− = +   and 

2 2 2 2( 2) ( 1)2 2 0r r r r rB k S k    − = − + − −  . 

 

(i) When 0  , let 
2

1 2 2
1 2

2 2 2

( )

( )

B

B B

  


 

−
=

−
, 2 1 1

2 2

1 1 1

( )

( )

B B

B




  

−
=

−
, 

2

2 1 1
2 2

1 1 1

( )

( )

B

B B

  


 

−
=

−
, 

1 2 2
1 2

2 2 2

( )

( )

B B

B




  

−
=

−
 

a) For carrier 1, when 1 1  , when 
10c  is sufficiently small, that is, 

2 2 2

2 1 1 1 1 2 1 1 4 1 2 2 2 2 1 2 2 0 1

2

0 1 2 2 1 0 1 2 1 2
10 12 2

2 1 2 2 1 2 2 2 1 1

[ ( ) ( )] [ ( ) ( )](1 )

[(1 ) ]( )

[ ( ) ( )](1 2 )

k B k B B B k B B k B a

a k B k a B B
c WT

k B k B B S k

           

    

    

− − − + − − − −

− − + −
 =

− + − +
, 
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then it is identified that 
*

1 0
eP







.                                                            

For carrier 2, if 
2 2  , if 

20c  is sufficiently small, that is, 

2 2 2

1 2 2 2 2 1 2 2 3 2 1 1 1 1 2 1 1 0 2

2

0 2 1 1 2 0 1 2 1 2
20 22 2

1 2 1 1 2 1 1 1 2 2

[ ( ) ( )] [ ( ) ( )]

[ (1 ) ]( )

[ ( ) ( )](1 2 )

k B k B B B k B B k B a

a k B k a B B
c WT

k B k B B S k

           

     

    

− − − + − − −

− + − −
 =

− + − +

, then it is obtained that 
*

2 0
eP







.     (Q.E.D.)                                                         

b) For carrier 2, when
1 1  , when 

10c  is sufficiently small, that is, 

2 2 2

2 1 1 1 1 2 1 1 4 1 2 2 2 2 1 2 2 0 1

2

0 2 1 1 2 0 1 2 1 2
10 12

2 1 2 2 1 2 2 2 1 1

[ ( ) ( )] [ ( ) ( )](1 )

[ (1 ) ]( )

[ ( ) ( )](1 2 )

k B B k B B k B k B B a

a k B k a B B
c UT

k B B k B S k

           

     

    

− − − + − − − −

− + − −
 =

− + − +
, 

then it is identified that 
*

2 0
eP







.  

For carrier 1, when
2 2  , if 

20c  is sufficiently small, that is, 

2 2 2

1 2 2 2 2 1 2 2 3 2 1 1 1 1 2 1 1 0 2

2

0 1 2 2 1 0 1 2 1 2
20 22

1 2 1 1 2 1 1 1 2 2

[ ( ) ( )] [ ( ) ( )]

[(1 ) ]( )

[ ( ) ( )](1 2 )

k B B k B B k B k B B a

a k B k a B B
c UT

k B B k B S k

           

    

    

− − − + − − −

− − + −
 =

− + − +

, then 
*

1 0
eP







.   (Q.E.D.)                                                            

(ii) When 0 = , 

a) When 0 < 𝜃 < 1, it is identified that 

 
* 2

1 1 2
0 10 1 12

1 2

4
[(1 ) ](1 2 )

( )

eP k B
a c S k

B B







= − − +


.Therefore, 

*

1 0
eP







if 

10 0(1 )c a − . Besides,  
* 2

2 2 1
0 20 2 22

2

1 2 1 2

4
( )(1 2 )

eP k B
a c S k

B B




  


= − +

  − 

. 

Therefore, 
*

2 0
eP







if 

20 0c a .   (Q.E.D.)                                      

b) When 𝜃 = 0 𝑜𝑟 1,  

When 1 = , it is obtained that 
*

21
1 2 1 1 102

1 2

4
[ (1 2 ) ] 0

( )

eP
k B S k c

B B






= − + 


. Besides, 

 

* 2

2 2 1
0 20 2 22

1 2

4
( )(1 2 )

eP k B
a c S k

B B






= − +


. Therefore, 

*

2 0
eP







if 

20 0c a .  
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When 0 = , it is identified that 
*

22
2 1 2 2 202

1 2

4
[ (1 2 ) ] 0

( )

eP
k B S k c

B B






= − + 


. 

Besides, 

* 2

1 1 2
0 10 1 12

1 2

4
( )(1 2 )

( )

eP k B
a c S k

B B






= − +


. Therefore, 

*

1 0
eP







if 

10 0c a .  

(Q.E.D.)         
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