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Abstract

This work concerns numerical simulations of diffuse interface models with Peng-

Robinson equation of state (EOS). The motivation of our research arises from in-

creasing attention of complex fluids flow problems in the oil industry.

There are two basic concerns in the oil industry: oil exploration and oil exploita-

tion. In oil exploration, properties of petroleum substances at the equilibrium state

are mainly concerned. This requires us to construct numerical schemes that can

accurately capture the interface information between hydrocarbon substances and

phases. In oil exploitation, some fluids flow problems with complex boundary con-

ditions need to be considered. Designed numerical schemes need to have a kinetic

nature and a simple algorithm structure because of the huge amount of calculation

required. In this thesis, based on these two specific needs of numerical algorithms,

we introduce the energy stable scheme and Lattice Boltzmann method (LBM) to

solve the equilibrium and fluids flow problems, respectively.

Firstly, a Cahn-Hilliard type equation is derived to describe the single-component

two-phase equilibrium problem. A first-order scalar auxiliary variable (SAV) scheme

and a second-order SAV scheme are proposed to simulate the evolution process of

single-component two-phase hydrocarbon substances. Mass conservation and energy

stability in discrete sense are proved for these two schemes. Moreover, this approach

has been expanded to the multi-component two-phase equilibrium case in this thesis.

Based on the previous work [18], we modify this Cahn-Hilliard type model by in-
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troducing the mobility term. This improvement makes the multi-component model

more physically compatible. A second-order SAV scheme is designed to solve the

multi-component model. Numerical experiments have been carried out for both the

single-component case and the multi-component case. Our numerical results match

well with the laboratory data. It is worth mentioning that we have improved the

calculation of interface tension and capillary pressure comparing with previous work.

For multi-phase fluids flow problems, in order to verify the feasibility of the LBM

for oil exploitation problems, we firstly use the single-relaxation-time LBM to solve a

single-component equilibrium problem based on an Allen-Cahn type equation. Then,

we design a multi-phase fluids dynamics model combined with Peng-Robinson EOS

with a constant temperature under thermodynamics principles. Here, we use the

multi-relaxation-time (MRT) LBM combining with Beam-Warming scheme to solve

the proposed fluid model. Alterable CFL numbers can be used in the numerical

simulation. High-order accurate numerical results have been obtained, which meet

well with our expectations and have a great agreement with previous published results

and laboratory data.

Key words: Peng-Robinson equation of state, equilibrium problems, multi-phase

flow problems, scalar auxiliary variable approach, Lattice Boltzmann method.
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Chapter 1

Introduction

1.1 Background

Modeling and numerical simulation of the multi-phase flow is a significant issue in

many scientific and engineering applications, including groundwater contamination,

carbon sequestration, air pollution, petroleum exploration and recovery, chemical

and biological separation processes, etc. While simulating the multi-phase flow,

especially in the oil industry, capillary pressure caused by interface tension between

various fluids is one of major proprieties. Some physical properties are influenced by

the capillary pressure, such as relative permeability and residual saturations. These

impact the transportation of the vapor and liquid in a porous medium and bring

many multiple phases problems.

In order to understand physical phenomena involving multiple phases, such as liq-

uid droplets, gas bubbles and phase change and separation, it is necessary to model

and simulate the interface between phases. The truth is, properties on the interface

are always accompanied with complex physical activities (sometimes, chemical re-

actions involved). This makes it difficult to model the phenomena on the interface

between different substances or different phases. There exist several methodologies

to describe interfaces in different scales [10, 11, 14, 21, 22, 26, 79]. At the micro-

scopic scale, Molecular Dynamics and Monte Carlo method [10, 20, 83] are main

1
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tools to resolve the interface. Using the randomness to solve problems is its essen-

tial idea and it shows great advantages when target problems combined with many

coupled degrees of freedom. Besides, at the macroscopic scale, the sharp interface

model [26, 60] is a common approach while considering large-scale problems. In this

method, the interface is treated as a zero-thickness entity and molar densities of

substances undergo a jump through the interface. Inter-facial conditions including

interface tensions should be given to keep the nature of interfaces in the simulation.

When physical properties, such as the interface tension or the capillary pressure,

become the primary concern, it is obviously that the sharp interface model is not

an appropriate approach to catch the interface information. Here, we introduce a

continuous model to catch these properties, which is known as the diffuse-interface

model or phase-field model [2, 5, 6, 78]. In this theory, the interface is described as a

continuum entity to separate the two bulk single-phase fluid regions. It means that

molar distributions are continuous within the interface. Compared with molecular

scale methods, the diffuse interface model is more efficient and it can also provide

the quantity of the interface tension. In our work, we focus on the diffuse interface

model and its numerical schemes.

Diffuse interface models have been extensively studied for multi-phase flow prob-

lems in recent years [4, 51, 67, 72]. In these works, double-well Ginzburg-Landau free

energy are usually considered. This free energy can describe some interface prop-

erties qualitatively. While considering some real problems that occurred in the oil

industry problems, it is impossible to use quantitatively meaningful parameters of

a simple double-well potential for simulations of realistic hydrocarbon species in an

oil-gas two-phase system. As a result, we need realistic equation of state (EOS) to

describe hydrocarbon substances. Here, we introduce Peng-Robinson EOS [54] to

do the simulation. This EOS can be applicable to calculations of all fluid properties

in natural hydrocarbon gas processes, which is an important part in the pore scale

— 2 —
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modeling and simulations of the subsurface fluid. Because of the realistic thermo-

dynamics properties involved, some physical properties should be preserved when

we design numerical schemes. Usually, the mass conservation law and the energy

dissipation principle are two mainly concerned nature of the process. Therefore,

designing numerical schemes with physical compatibility is very important.

For the diffuse-interface model with Peng-Robinson EOS, some efforts have been

made in literature. For the single-component case, in [59], Qiao and Sun investigated

an Allen-Cahn type two-phase single-component model with Peng-Robinson EOS

in two-dimensional space while only one-dimensional problems were considered in

previous applications. A convex splitting approach was developed in this work to

solve the proposed model. After that, in [33, 34, 56], energy stable schemes were

also proposed by convex splitting method. In [55], Peng proposed a Cahn-Hilliard

type two-phase model with Peng-Robinson EOS and used convex splitting scheme

to solve it. Recently, based on the Allen-Cahn type two-phase single-component

model, an invariant energy quadratization scheme was also developed to study the

Peng-Robinson EOS problems [43]. For the multi-component case, Kou and Sun

proposed a multi-component two-phase model with Peng-Robinson EOS in [31], and

the modified Newton’s method with a relaxation parameter was employed to solve

the model. Soon after, in [18], Fan, Kou, Qiao and Sun designed a component-

wise convex splitting scheme of this multi-component model. More applications of

multi-component model can be found in [32, 35].

In this research, two fundamental issues in the oil industry will be studied: oil

exploration and oil exploitation. For oil exploration, which concerns about physical

properties on phase interfaces, we use so-called energy stable methods to solve single-

component and multi-component two-phase equilibrium problems. Because of the

physical compatibility of these algorithms, some physical properties of the system

can be preserved automatically during numerical simulations. This allows us to get

— 3 —
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laboratory-data-comparable numerical solutions. On the other hand, if we consider

the oil exploitation problem with complex geometries and boundary conditions, the

Lattice Boltzmann method (which is very popular in engineering calculations) is more

suitable. This approach has a great compatibility for complex fluids flow problems. In

this work, we mainly study the Lattice Boltzmann method for the single-component

hydrocarbon fluids flow problems.

1.2 Peng-Robinson EOS in the diffuse-interface

problem

In this section, we will give a brief introduction of Peng-Robinson EOS and its

Helmholtz free energy form in the diffuse-interface problem. The basic expression of

Peng-Robinson EOS can be shown as

P “
nRT

1´ bn
´

n2apT q

1` 2bn´ b2n2
, (1.1)

where n “
N

V
is the molar density of the substance with N representing the total

particle number and V being the total volume. a “ apT q is the pressure correction

coefficient and b “ bpT q is the volume correction coefficient. They are given as follows

apT q “
m
ÿ

i“1

m
ÿ

j“1

qiqjpaiajq
1
2 p1´ kijq,

bpT q “
m
ÿ

i“1

yibi.

Here qi represents the mole fraction of the ith component, kij represents the binary

interaction of Peng-Robinson EOS. ai and bi in the equation above are shown as

— 4 —
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follows

aipT q “ 0.45724
R2T 2

ci

Pci
p1`mip1´

c

T

Tci
qq

2,

bi “ 0.7780
RTci
Pci

,

where Tci and Pci are the properties of the ith substance representing the critical

temperature and critical pressure, respectively. mi has the form

mi “ 0.37464` 1.54226ωi ´ 0.26992ω2
i , ωi ď 0.49;

mi “ 0.379642` 1.485030ωi ´ 0.164423ω2
i ` 0.01666666ω3

i ;ωi ą 0.49.

Using the critical data of the substance we can calculate ωi in mi above

ωi “
3

7
p
log10p

Pci

14.695PSI
q

Tci
Tbi
´ 1

q.

When we consider the real inhomogeneous fluid system, in order to describe

the phenomenon around the interface, the diffuse-interface model with the gradient

contribution is taken. Here, the total energy density fpnq takes the following form

fpnq “ fbpnq ` f∇pnq,

where n “ pn1, ¨ ¨ ¨ , nmq, m is the amount of the substances, ni “
Ni

V
is the molar

density of the ith substance with Ni representing the total particle number of the

ith substance. The Helmholtz free energy fbpnq of a homogeneous fluid with Peng-

Robinson EOS is given by

fbpnq “ f idealb pnq ` f excessb pnq,

f idealb pnq “ RT
m
ÿ

i“1

niplnni ´ 1q,

f excessb pnq “ ´nRT lnp1´ bnq `
apT qn

2
?

2b
lnp

1` p1´
?

2qbn

1` p1`
?

2qbn
q,

(1.2)

— 5 —
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where R “ 8.31432JK´1mol´1 is the gas constant, T is the temperature, n “
řm
i ni.

The inhomogeneous term of the gradient contribution f∇pnq can be modeled by a

simple relation

f∇pnq “
1

2

m
ÿ

i,j“1

cij∇ni ¨∇nj, (1.3)

where cij is the influence parameter given as follows

cij “ p1´ βijq
?
cicj. (1.4)

Here, βij P r0, 1q is the binary coefficient. In this research, we set βii “ 0 and βij “ 0.5

as in [35]. ci represents the influence of the pure substance given as below, which

has the relation with the pressure correction parameter and the volume correction

parameter of Peng-Robinson EOS.

ci “ aib
3
2
i pm

c
1,ip1´

Tci
T
`mc

2,iqq,

mc
1,i “

10´16

1.2326` 1.357457ωi
,

mc
2,i “

10´16

0.9051` 1.5410ωi
.

1.3 Initial values of the multi-phase system

How to set the initial value of multi-component mixture is a critical modeling issue

when the real EOS is introduced (Peng-Robinson EOS is involved in this work). In

practice, phase splitting problems need to be considered. The NPT calculation (tem-

perature T, pressure P and composition N) and the NVT flash calculation (temper-

ature T, volume V and composition N) are two common phase splitting approaches.

As discussed in [57], classical coupled schemes based on NPT flash calculation suffer

from some essential limitations, such as the requirement of constructing a pressure

— 6 —
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equation as there is no intrinsic pressure equation. An alternative modeling frame-

work, based on the NVT flash calculation with moles, volume and temperature as

primal state variables, has been actively studied very recently [29, 30]. Flash cal-

culations allow us to get the molar density of gas and liquid of a specific substance

when the phase transition occurs. It has been shown that the NVT flash calculation

is better posed than the NPT flash calculation [29, 30]. In this section, we give a

brief introduction to the NVT flash calculation. The obtained solution can be used

as the initial value of diffuse-interface problems with given substances [50].

First of all, we specify the overall composition, i.e. mole fraction of each species

in the overall fluid mixture consisting n components and possibly multiple phases

and we define zi “
Ni

N
as the overall mole fraction of the i-th component in the

entire mixture. Ni is the total amount of i-th component. N “
řm
i Ni and V are

the total amount and total volume, respectively. Then we will go through two steps

to get molar concentrations of substances that can guarantee the phase separation

numerically and the given mixture is not thermodynamic phase-stable.

At the beginning, we need to give some notations: c “
N

V
is the total molar

density of the mixture and czi “
Ni

V
, i “ 1, ¨ ¨ ¨ ,m, is the molar concentration of

i-th component. c1 is the trial molar density or the total molar density of the new

phase (which can be found in Fig. 1.1, and details will be discussed shortly). c2 is the

molar density of the original phase after the phase separation (which can be found in

Fig. 1.2, and details will be discussed shortly). V 1i is the volume of i-th component in

the new phase and V 2i is the volume of of i-th component in the original phase after

the phase separation. V 1 “
ř

i V
1
i and V 2 “

ř

i V
2
i . N 1

i is the particle number of i-th

component in the new phase and N2
i is the particle number of of i-th component in

the original phase after the phase separation. N 1 “
ř

iN
1
i and N2 “

ř

iN
2
i and we

— 7 —
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denote ȳi “
N2
i

N2
, i “ 1, ¨ ¨ ¨ ,m.

STEP 1. Infinitesimal splitting

It is believed that, if the phase splitting happens, the new phase (here we call it

the trial phase) will form with an infinitesimal volume (here we use 0` to describe

this volume) at the very beginning of the phase separation. So our first step is to

determine whether or not this phenomenon happens under given conditions.

Figure 1.1: Infinite small splitting.

As we can see in the Fig. 1.1, if the phenomenon happens, the original single-

phase mixture (with n components’ molar densities cz1, ..., czn) will split into the

trial phase part (infinitesimal volume part) with the volume 0` and the rest part

with the volume V ´ “ V ´ 0` during the progress of the infinite small splitting. In

this step, our aim is to find the trial molar density c1 of the new phase.

First, we need to calculate the saturation pressure psat which has the following

form

psat
“ pcexpr5.37p1` ωqp1´

Tc
T
qs, (1.5)

where ω “
3

7
p
log10p

pc
patm

q

Tc
Tb
´ 1

q. Given critical properties Tc, Pc and boiling point TP of

different components, we will get different psat of different components. Here we

note that patm represents the unit standard atmosphere pressure. Usually it has the

following relation with the Mpa: 1Mpa « 9.8atm. After we have the saturation
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pressure psat
i for each component, we will calculate the trial phase composition under

the framework of the NVT flash calculation.

The truth is, from the beginning, we do not know the phase state of the mixture.

So we have following two assumptions.

• Case 1: If the trial phase is in the liquid phase, we first calculate the total

initial pressure by

pini “

n
ÿ

i

psat
i pT qzi, i “ 1, ¨ ¨ ¨ ,m, (1.6)

and then we give the formulation of the trial phase composition (liquid-like)

x̄i “
psat
i

pini

zi i “ 1, ¨ ¨ ¨ ,m. (1.7)

After that we calculate the compressibility factor Z of the system by solving the

following equation based on Peng-Robinson EOS (different EOS has different

formulation which respects to Z).

Z3
´ p1´BqZ2

` pA´ 2B ´ 3B2
qZ ´ pAB ´B2

´B3
q “ 0, (1.8)

where

A “
apTcqpini

R2T 2
,

B “
bpini

RT
.

(1.9)

We use all the real solutions Z of the function (1.8) to do the analysis.

• Case 2: If the trial phase is in the gas phase, first we calculate the trial phase

composition (gas-like)

x̄i “

zi
psati

Σ
zj
psatj

i “ 1, ¨ ¨ ¨ ,m. (1.10)

— 9 —
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Then the initial pressure are given by

pini “ Σpsat
i pT qx̄i i “ 1, ¨ ¨ ¨ ,m. (1.11)

We can get Z in the same way as in Case 1.

We then can use the obtained Z to calculate the total molar density of trail phase

c1 by the following relation (the non-ideal gas equation)

pini “ Zc1RT. (1.12)

Here, we need to mention that pini we used in (1.12) should be calculated under the

same assumption with the Z we choose.

Then we will show a method to determine whether or not the system will experi-

ence a phase separation under the overall composition that we gave at the beginning.

Here we introduce the tangent plane distance function D

DpT, 1, c1x̄1, ..., c
1x̄nq “ ΣrµippT, 1, c

1x̄1, ..., c
1x̄nqq ´ µippT, 1, cz1, ..., cznqqsc

1x̄i´

rP ppT, 1, c1x̄1, ..., c
1x̄nqq ´ P ppT, 1, cz1, ..., cznqqs,

(1.13)

The P here is given by (1.1). The function D is used to determine whether the

phase separation will happen. If D is less than 0, it means that there will be a

phase separation and the molar density of trial phase is c1. Otherwise we need to

use another Z to do the same process (More details can be seen in the paper by Jiri

[50]). If we fail to find the appropriate c1 from all the Z we got in Case 1 and Case 2,

we need to consider a new set of zi for the purpose of two-phase system specification.

STEP 2. Finite-amount splitting

The existing of c1 means that the original single-phase mixture will experience the

phase separation with the initial fraction zi. Under the assumption that the molar

density of the new phase still equals to the trial phase molar density c1 and the phase

— 10 —
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composition still equals to x̄i (which means x̄i “
N 1
i

N 1
) after the phase separation.

We can get molar density c2 , the phase composition ȳi and the total volume V 2

of another phase. We call this progress the ”finite-amount splitting” and it can be

shown in the Fig. 1.2.

Figure 1.2: Finite amount splitting.

To be specific, in this step, we calculate the molar density of both phases of the

i-th component by using

V 1 ` V 2 “ V,

c1V 1 ` c2V 2 “ cV,

fbpc
1
qV 1 ` fbpc

2
qV 2 ´ fbV ă 0,

(1.14)

where fb represents the Helmholtz free energy density. Here we use the bisection

method to get the values of V 2 and c2. First we set V 1 “ 0.5V and we can get the

c2 and V 2 by the relation

V 2 “ V ´ V 1,

c2 “
cV ´ c1V 1

V 2
,

(1.15)

where V is the initial volume. For simplicity, we set V “ 1. Then we put c1, V 1, c2, V 2

into the determination equation fbpc
1qV 1 ` fbpc

2qV 2 ´ fbV ă 0. If the inequality is

established, we can get molar densities of two phases under the given thermodynamic

properties.
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Figure 1.3: Flowchart of the NVT flash calculation.

For multi-component systems, we can further calculate the composition of both

phases by using the relation

c1x̄iV
1
` c2ȳiV

2
“ cziV i “ 1, ¨ ¨ ¨ ,m, (1.16)

which leads to

ȳi “
cziV ´ c

1x̄iV
1

c2V 2
i “ 1, ¨ ¨ ¨ ,m. (1.17)

Similarly, we can calculate ȳi by using

fbpc
1x̄1, ..., c

1x̄nqV
1
` fbpc

2ȳ1, ..., c
2ȳnqV

2
´ fbpcz1, ..., cznqV ă 0

as the determination function. Until now, we can get the molar concentrations c1x̄i

and c2ȳi of each component of different phases. We can use these molar concen-

trations as our model’s initial value npliquidq and npgasq, or we can optimize them

further using additional schemes, e.g. the method in [50].

Fig. 1.3 gives a flowchart to describe the NVT flash calculation. Based on the

above flash calculation scheme, molar density distributions of both components can

be determined as the initial conditions of our further numerical simulation. For the

convenience of researchers in this field, we pre-computed two-phase two-component

system of the methane and the n-decane with the procedure described method. The

composition results can be found in Table 1.1. In the following chapters, we will use

this method to get initial values of the studied substances.
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Table 1.1: Initial values pmol{m3q for the methane (n1) and n-decane (n2) in the gas
and liquid phases

Temperature (K) n1pliqq n1pgasq n2pliquidq n2pgasq
450 4062 1028 438 3522
400 3832 1428 488 2938
350 3675 1536 512 2861
300 3569 1648 564 2497

1.4 Numerical approaches

In this section, we will introduce two kinds of numerical approaches involved in this

thesis. Both methods can effectively solve diffuse-interface problems, but they have

different emphases.

1.4.1 Energy stable schemes for diffuse-interface models

Energy stable schemes are highly needed for large time-stepping simulations of the

diffuse-interface models. Otherwise, it may require extremely small time steps to

keep the energy dissipation. For a general free energy functional of the double-well

potential, many energy stable schemes have been developed. To obtain an energy

dissipative scheme, the linear term is usually treated implicitly in some manner, while

different approaches have to be proposed for nonlinear terms. The convex splitting

method is a popular method to develop energy stable schemes for diffuse-interface

models. It splits the homogeneous free energy into a convex part and a concave part

and treats them implicitly and explicitly in the time discretization, respectively. It

was perhaps firstly studied for diffuse-interface problems in [15] but popularized by

[8, 21, 22, 72], and was proved only first-order. While it is possible to construct

second-order convex splitting schemes under certain situations (see, for instance,

[63]), a general formulation of second-order convex splitting schemes is not available.

Generally, nonlinear iterative solvers are needed for convex splitting schemes from

a natural decomposition of energy functional. Another popular approach is the so-
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called stabilization method, which treats the nonlinear term explicitly, and adds a

stabilization term to avoid strict time step constraint. The stabilization term is

usually treated implicitly and used to control the nonlinear term of the origional

model, see e.g., [3, 66] and references therein. The stabilization method generates

linear schemes and is easy to be extended to high-order schemes [28, 75], but in

general it can not be unconditionally energy stable [19, 40, 41, 42]. Recently, the

invariant energy quadratization (IEQ) approach was proposed in [9, 77] to solve a

variety of diffuse-interface models. This approach allows one to construct linear and

unconditionally energy stable schemes in the sense that the modified discrete energy

is non-increasing in time. However, at each time step, the linear system resulting from

the IEQ approach has variable coefficients. Thus, fast calculation methods could not

be used when solving the linear system because of the variable coefficient matrix.

To overcome it, the so-called scalar auxiliary variable (SAV) approach was proposed

in [64, 65]. Using Cahn-Hilliard type equation as an example, it is shown that

the SAV approach has the following advantages: (i) For single-component diffuse-

interface problems, it leads to, at each time step, linear equations with constant

coefficients so it is remarkably easy to implement. (ii) For multi-component diffuse-

interface problems, it leads to, at each time step, decoupled linear equations with

constant coefficients. In our work, we will use the SAV approach to solve the diffuse-

interface model with Peng-Robinson EOS for single-component and multi-component

problems. For this model, many advantages could be observed in comparison to

existing energy stable schemes in [18, 43, 56, 59].

1.4.2 The Lattice Boltzmann method for multi-phase flow
problems

In the oil exploitation, many complex situations arise in porous media flow problems

and pore scale simulations, such as complex geometries and boundary conditions.
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Therefore, we need to develop efficient and robust methods for these problems. In

recent years, the Lattice Boltzmann method (LBM), which is originated from lattice

gas automata (LGA) and also could be derived from the kinetic Boltzmann equation,

has emerged as an powerful method for simulating complex fluids dynamics prob-

lems [1, 7, 24]. The kinetic nature brings many advantages to the LBM, including

clear physical pictures, simple algorithm structure, easy implementation of boundary

conditions and natural parallelism. In addition, it is also very easy to incorporate

internal interactions between the fluid and external environment at the microscopic

level, which makes the LBM very suitable for simulating multi-component and multi-

phase flows. Up to now, various types of LBMs have been constructed from different

viewpoints for multi-phase and multi-component flows, such as the color-fluid model

[23], the pseudo-potential model [61, 62], the free energy model [69, 70], the kinetic

model based on Enskog equation [47, 48], and the phase-field model (or diffuse-

interface model or mean-field theory model) [27, 38, 39, 80]. Among them, due to

the aforementioned attractive features, phase-field based LBM has become a widely

used method for simulating multi-phase flows with low and large density ratios. The

initial phase-field based LBM was proposed by He et al. [27]. In their work, two

distribution functions were introduced. One is a pressure distribution function and

the other one is an order parameter distribution function to track interfaces between

different fluids. Whereafter, based on the work of He et al. [27], a three-stage stable

scheme was developed by Lee and Lin [38]. Through discretizing gradient terms in

different manners before and after the streaming step, the multi-phase flow with a

large density ratio can be simulated. Later, Zheng et al. [80] proposed a modified

LBM that can accurately recover the interface capturing equation, i.e. Cahn-Hilliard

equation. Several improved Lattice Boltzmann models for the Navier-Stokes-Cahn-

Hilliard coupled system have been developed [44, 73, 74, 76, 82, 81]. These three

marvelous multi-phase LBMs have achieved remarkable success in simulating various
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interfacial flows.
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Chapter 2

Energy stable schemes for the

equilibrium problem of

hydrocarbon substances

In this chapter, the aim of our research is to use the SAV approach to solve multi-

phase problems under equilibrium conditions. These problems are mostly used to

acquire some physical quantities on the interface between different phases or different

substances, such as the interface tension and the capillary pressure. In this chapter,

we consider the Cahn-Hilliard type equation not the Allen-Cahn type equation which

is more suitable for multi-phase systems in multi-component condition. The structure

of this chapter is shown as below.

First, we develop two SAV schemes to solve the single-component phase equi-

librium problem in three dimensional space. After that, based on thermodynamic

principles, by involving the mobility term, we give a new Cahn-Hilliard type model to

describe the multi-component two-phase equilibrium problem. Then, an SAV solver

is proposed to solve the developed model. All numerical results of the developed

scheme will be compared with the laboratory data.
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2.1 A single-component two-phase model

In order to study behaviours of oil substances in the equilibrium state, first, we

need to find an appropriate way to describe the single-component equilibrium be-

haviour. In this section, we will study the energy stable scheme of a single-component

two-phase model and we just consider about the one component case. The multi-

component problem will be discussed in the next section.

In [59], an Allen-Cahn type model was considered

$

’

’

’

&

’

’

’

%

Bn

Bt
´ c∆n “ µ´ µb,

ż

Ω

ndx “ N,

(2.1)

where µb “
Bfb
Bn

is the chemical potential, c is the influence parameter calculated

by (1.4) while i “ j and βij “ 0. µ is a Lagrange multiplier to guarantee the mass

conservation of the system. It is an L2-gradient flow of

F “

ż

Ω

fb `
c

2
|∇n|2dΩ. (2.2)

In our work, a Cahn-Hilliard type model is considered as follows

nt ` c∆
2n “ ∆µb, (2.3)

which could preserve the mass conservation in a natural way.

Remark 2.1. We will use the periodic boundary conditions in this research.
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2.1.1 The SAV approach for a diffuse interface model with
Peng-Robinson EOS

A. Model reformulation

Considering Eq. (2.3), we use the SAV approach to reformulate it. The homogeneous

term of the free energy has the form

Ep “

ż

Ω

fbdΩ. (2.4)

We introduce the following term

rptq “
a

Ep ` C0, (2.5)

where C0 is a constant such that Ep ` C0 ě 0. Therefore, the total Helmholtz free

energy (2.2) can be rewritten into the form

F̂ “

ż

Ω

c

2
|∇n|2dΩ` r2

´ C0. (2.6)

By using (2.5), the original problem can be transformed into the following system

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

nt “ ∆µ;

µ “ ´c∇2n`
r

a

Ep ` C0

µbpnq;

rt “
1

2
a

Ep ` C0

ż

Ω

µbpnqntdΩ,

(2.7)

which can be further simplified into

$

’

’

’

&

’

’

’

%

nt ` c∆
2n´

r
a

Ep ` C0

∆µbpnq “ 0,

rt “
1

2
a

Ep ` C0

ż

Ω

µbpnqntdΩ.

(2.8)

This system has the following energy dissipation property, which could be proved in

a similar way as in [59].
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Lemma 2.1. The total Helmholtz free energy F̂ satisfies the following energy law:

dF̂

dt
“ ´

ż

Ω

∇µb∇µbdx. (2.9)

Remark 2.2. (2.8) also satisfies the mass conservation
d

dt

ż

Ω

ndΩ “ 0 as in [56],

so it is no need to add a Lagrange multiplier as for the second order model in [59].

B. Spectral discretization

In this part, we will give notations of some spatial operators for the spectral collo-

cation method on the three-dimensional space Ω “ p0, Xq ˆ p0, Y q ˆ p0, Zq.

Let Nx, Ny, Nz be any positive even numbers, the Nx ˆ Ny ˆ Nk mesh Ωh of Ω

can be described as the following nodes set pxi, yj, zkq, where xi “ ihx, yj “ jhy and

zk “ khz, 1 ď i ď Nx, 1 ď j ď Ny, 1 ď k ď Nz. hx “
X
Nx
, hy “

Y
Ny

and hz “
Z
Nz

. We

define index sets

Jh “ tpi, j, kq P N3
|1 ď i ď Nx, 1 ď j ď Ny, 1 ď k ď Nzu,

Ĵh “ tpl,m, nq P Z3
| ´

Nx

2
` 1 ď l ď

Nx

2
,´

Ny

2
` 1 ď m ď

Ny

2
,´

Nz

2
` 1 ď n ď

Nz

2
u.

Then we define all the periodic grid functions on Ωh as Fh, which has the following

form

Fh “ tf : Ωh Ñ R|fi`lNx,j`mNy ,k`nNz “ fi,j,k, for any pi, j, kq P Jh and pl,m, nq P Z3
u.

(2.10)

For any function f P Fh, we can define the following 3-D Fourier transform

f̂ “ Pf and the inverse Fourier transform f “ P´1f̂ by

f̂l,m,n “
1

NxNyNz

ÿ

pi,j,kqPJh

fi,j,k expp´i
2lπ

X
xiq expp´i

2mπ

Y
yjq expp´i

2nπ

Z
zkq, pl,m, nq P Ĵh;

fi,j,k “
ÿ

pl,m,nqPĴh

f̂l,m,n exppi
2lπ

X
xiq exppi

2mπ

Y
yjq exppi

2nπ

Z
zkq, pi, j, kq P Jh.
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Let F̂h “ tPf |f P Fhu. First order partial operators D̂x , D̂y and D̂z are defined on

F̂h as follows:

pD̂xf̂ql,m,n “ p
2lπi

X
qf̂l,m,n,

pD̂yf̂ql,m,n “ p
2mπi

Y
qf̂l,m,n,

pD̂zf̂ql,m,n “ p
2nπi

Z
qf̂l,m,n,

where pl,m, nq P Ĵh. Then the spectral form of second order partial operators can

be written as

D2
x “ P´1D̂2

xP, D2
y “ P´1D̂2

yP, D2
z “ P´1D̂2

zP.

Spontaneously, we can define the discrete Laplace operator ∆h as

∆hf “ D2
xf `D

2
yf `D

2
zf.

The inner product can also be denoted as

pf, gqh “ h3
xh

3
yh

3
z

Nx
ÿ

i“1

Ny
ÿ

j“1

Nz
ÿ

k“1

fi,j,k ¨ gi,j,k.

2.1.2 A First order SAV scheme (SAV1)

In this section, we propose and analyze a first order SAV scheme. First, we assume

that the whole system is solved in the time interval r0, T s and the space domain

Ω “ r0, Xs3. For a given positive integer Nt, we set the time step ∆t as ∆t “
T

Nt

.

For a given positive integer N , we set the grid size h as h “
X

N
. The first order SAV

scheme is constructed by using the spectral collocation method in space as follows:
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for 0 ď s ď Nt ´ 1, find ns`1 P Fh such that

ns`1 ´ ns

∆t
` c∆2

hn
s`1
´

rs`1

a

Eppnsq ` C0

∆hµbpn
s
q “ 0, (2.11)

rs`1
´ rs “

1

2
a

Eppnsq ` C0

pµbpn
s
q, ns`1

´ nsqh. (2.12)

Solving ns`1 from (2.11) leads to

ns`1
“ p1`∆tc∆2

hq
´1ns `∆t

rs`1

a

Eppnsq ` C0

p1`∆tc∆2
hq
´1∆hµbpn

s
q. (2.13)

Substituting (2.13) into (2.12) we can get the expression of rs`1 as

rs`1
“

rs `
1

2
a

Eppnsq ` C0

pµbpn
s
q, rp1`∆tc∆2

hq
´1
´ 1snsqh

1´
∆t

2pEppnsq ` C0q
pµbpn

s
q, p1`∆tc∆2

hq
´1∆hµbpn

s
qqh

. (2.14)

In order to get ns`1, we need to solve (2.14) to get rs`1 firstly. Then we substitute

rs`1 into (2.13) and get ns`1.

Theorem 2.1. The first order SAV scheme (2.11)-(2.12) is unconditionally energy

stable, meaning that for any time step size ∆t ą 0,

F̂ s`1
´ F̂ s

ď 0. (2.15)

Proof. First, we consider the discrete form of (2.7)

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ns`1 ´ ns

∆t
“ ∆hµ

s`1;

µk`1
“ ´c∆hn

s`1
`

rs`1

a

Es
p ` C0

µsb;

rs`1 ´ rs

∆t
“

1

2
a

Es
p ` C0

pµsb,
ns`1 ´ ns

∆t
qh.

(2.16)
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Then we take the discrete inner product of the first two functions of (2.16) with µs`1,

ns`1 ´ ns

∆t
respectively and multiply the last function of (2.16) with 2rs`1.

Then we can get

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

pµs`1,
ns`1 ´ ns

∆t
qh “ p∆hµ

s`1, µs`1
qh;

pµs`1,
ns`1 ´ ns

∆t
qh “ p´c∆n

s`1,
ns`1 ´ ns

dt
qh `

rs`1

b

Ek
p ` C0

pµkb ,
ns`1 ´ ns

∆t
q;

2rs`1 r
s`1 ´ rs

∆t
“

rs`1

b

Ek
p ` C0

pµkb ,
ns`1 ´ ns

∆t
qh.

(2.17)

According to (2.17), we can get

p∆hµ
s`1, µs`1

qh “ p´c∆hn
s`1,

ns`1 ´ ns

∆t
qh ` 2rs`1 r

s`1 ´ rs

∆t

“
1

2∆t
rp´c∆hn

s`1, ns`1
qh ´ p´c∆hn

s, nsqh ` p´c∆hpn
s`1
´ nsq, ns`1

´ nsqhs

`
1

∆t
pprs`1

q
2
´ prsq2 ` prs`1

´ rsq2q

“
1

∆t
pF̂ k`1

´ F̂ k
q `

1

2∆t
rp´c∆hpn

s`1
´ nsq, ns`1

´ nsqh ` 2prs`1
´ rsq2s.

(2.18)

Note that ∆h is a non-positive symmetric operator. So from (2.18), we conclude that

F̂ s`1
´ F̂ s

ď 0.

Theorem 2.2. The first order SAV scheme (2.11)-(2.12) can preserve the total mass

of the system as follows

N
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“1

ns`1
i,j,kh

3
“

N
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“1

nsi,j,kh
3. (2.19)
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Proof. From (2.11), we can get

N
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“1

ns`1
i,j,k ´ n

s
i,j,k

∆t
h3
“

N
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“1

r´c∆2
hn

s`1
i,j,k `

rs`1

a

Eppnsq ` C0

∆hµbpn
s
i,j,kqsh

3.

(2.20)

Under the periodic boundary condition, we can find that the right hand side of (2.20)

equals to zero. Thus we have

N
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“1

ns`1
i,j,kh

3
“

N
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“1

nsi,j,kh
3. (2.21)

2.1.3 A Second order SAV scheme (SAV2)

In this section, based on the Crank-Nicolson (CN) method, we construct a second-

order SAV scheme as follows

For 0 ď s ď Nt ´ 1, find ns`1 P Fh such that

ns`1 ´ ns

∆t
`
c

2
∆2
hpn

s`1
` nsq ´

rs`1 ` rs

2

b

Eppn̂
s` 1

2 q ` C0

∆hµbpn̂
s` 1

2 q “ 0, (2.22)

rs`1
´ rs “

1

2

b

Eppn̂
s` 1

2 q ` C0

pµbpn̂
s` 1

2 q, pns`1
´ nsqqh, (2.23)

where n̂s`
1
2 can be regraded as an explicit approximation of ns`

1
2 . However, due to

the highly nonlinearity of the Helmholtz free energy from Peng-Robinson EOS, it

has a strictly constraint on the time step ∆t using the explicit approximation. So

we employ the following equation for solving n̂s`
1
2

n̂s`
1
2 ´ ns

∆t{2
“ ´c∆2

hn̂
s` 1

2 `∆hµbpn
s
q. (2.24)
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Then solving ns`1 from (2.22) leads to

ns`1
“ p1`

1

2
∆tc∆2

hq
´1
p1´

1

2
∆tc∆2

hqn
s
`∆t

rs`1 ` rs

2

b

Eppn̂
s` 1

2 q ` C0

p1`∆tc∆2
hq
´1∆hµbpn̂

s` 1
2 q.

(2.25)

Substituting (2.25) into (2.23),

rs`1
“rrs ` p

µbpn
s` 1

2 q

2

b

Eppn̂
s` 1

2 q ` C0

, rp1`∆t
1

2
c∆2

hq
´1
p1´∆t

1

2
c∆2

hq ´ 1sns∆tqh

` p∆t
rsµbpn̂

s` 1
2 q

4Eppn̂
s` 1

2 q ` C0

, p1`∆t
1

2
c∆2

hq
´1∆hµbpn̂

s` 1
2 qqhs{

r1´ p∆t
µbpn̂

s` 1
2 q

4Eppn̂
s` 1

2 q ` C0

, p1`∆t
1

2
c∆2

hq
´1∆hµbpn̂

s` 1
2 qqhs.

(2.26)

In order to get ns`1, first, we need to solve (2.26) to get rs`1. Then we substitute

rs`1 into (2.25) and get ns`1.

Theorem 2.3. The second order SAV scheme (2.22)-(2.23) is unconditionally energy

stable, meaning that for any time step size ∆t ą 0,

F̂ s`1
´ F̂ s

ď 0. (2.27)

Proof. First, we consider the discrete form of (2.7)

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

ns`1 ´ ns

∆t
“ ∆hµ

s` 1
2 ;

µs`
1
2 “ ´

C

2
∆hpn

s`1
` nsq `

rs`1 ` rs

2

b

Eppn̂
s` 1

2 q ` C0

µbpn̂
s` 1

2 q;

rs`1 ´ rs

∆t
“

1

2

b

Eppn̂
s` 1

2 q ` C0

pµbpn̂
s` 1

2 q,
ns`1 ´ ns

∆t
qh.

(2.28)

Then we take the discrete inner product on the first two equations of (2.28) with

µs`
1
2 and

ns`1 ´ ns

∆t
respectively and multiply rs`1 ` rs with the last equation. We
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can get

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

p
ns`1 ´ ns

∆t
, µs`

1
2 qh “ p∆hµ

s` 1
2 , µs`

1
2 qh,

p
ns`1 ´ ns

∆t
, µs`

1
2 qh “ p´

c

2
∆hpn

s`1
` nsq,

ns`1 ´ ns

∆t
qh

`
rs`1 ` rs

2

b

Eppn̂
s` 1

2 q ` C0

pµbpn̂
s` 1

2 q,
ns`1 ´ ns

∆t
qh,

prs`1q2 ´ prsq2

∆t
“

rs`1 ` rs

2

b

Eppn̂
s` 1

2 q ` C0

pµbpn̂
s` 1

2 q,
ns`1 ´ ns

∆t
qh.

(2.29)

According to (2.29), we can get

p∆hµ
s` 1

2 , µs`
1
2 qh “ p´

c

2
∆hpn

s`1
` nsq,

ns`1 ´ ns

∆t
qh `

prs`1q2 ´ prsq2

∆t

“
1

∆t
pF̂ s`1

´ F̂ s
q.

(2.30)

Note that ∆h is a non-positive symmetric operator, so we have

F̂ s`1
´ F̂ s

ď 0.

Theorem 2.4. The second-order SAV scheme (2.22)-(2.23) can preserve the total

mass of the system as follows

N
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“1

ns`1
i,j,kh

3
“

N
ÿ

i“1

N
ÿ

j“1

N
ÿ

k“1

nsi,j,kh
3. (2.31)

The proof of mass conservation is similar as that of the first-order SAV scheme.

Here we do not show details of the proof.

Remark 2.3. For both first order and second order SAV schemes (2.11)-(2.12) and

(2.22)-(2.23), we only need to solve linear systems with constant coefficient at each
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time step. This is very different from the IEQ scheme, which has the variable coeffi-

cient. Constant coefficient makes it possible to use the fast Fourier transformation to

solve the linear system. This will greatly reduce the computational cost in numerical

simulations.

2.1.4 Numerical experiments

A. Convergence test

Numerical experiments are designed in two dimensional space to demonstrate the

temporal accuracy of presented SAV schemes. For the initial configuration, we

adopt the case of single droplet. The liquid density of isobutane under a satu-

rated pressure condition at the temperature 350K is imposed in the square subre-

gion, and a saturated gas of isobutene under the same temperature is full of the

rest of the domain. In this part, in order to test the convergence of the schemes,

we choose a smooth initial value. The refinement test is performed with time steps

∆t “ 2 ˆ 10´4, 1 ˆ 10´4, 5 ˆ 10´5, 2.5 ˆ 10´5, 1.25 ˆ 10´5 for both first and sec-

ond order schemes, and the solution obtained by second order SAV schemes with

∆t “ 1.25 ˆ 10´6 is selected as the benchmark solution for computing errors. The

space is discretized by using the spectral method on the uniform 1024 ˆ 1024 mesh

of the domain Ω to remove the effect of errors from spatial discretization. We define

the relative error by

Error “
||n˚ ´ nh||

||n˚||
, (2.32)

where n˚ is the benchmark solution and nh is the numerical solution on Ωh. Table

2.1 lists relative errors and convergence rates of numerical solutions at t “ 0.05 with

different time step sizes. It is obvious that both first and second order schemes

show expected accuracies. In addition, the second order scheme gives much better

accuracy than the first order one.
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Table 2.1: Relative errors and temporal convergence of approximation solutions for
first order and second order SAV schemes (SAV1 and SAV2) on a 1024ˆ1024 uniform
mesh

Time Step
SAV1 SAV2

Error Order Error Order
2.0E-4 9.375E-6 – 5.1336E-6 –
1.0E-4 4.9342E-6 1.022 1.316E-6 1.9552
5.0E-5 2.5969E-6 1.012 3.3751E-7 1.9764
2.5E-5 1.3667E-6 1.007 8.654E-8 1.9964
1.25E-5 7.193E-7 1.002 2.219E-8 2.0375

B. Scheme verification

In this section, we simulate the separation of two phases of isobutane (nC4) at the

temperature around 250K to 350K. First order SAV scheme (SAV1) and first-order

convex splitting scheme will be compared in this experiment. The computation

domain is a two-dimensional area Ω “ p0ˆLDq
2, and LD “ 2ˆ 10´8 meters. In the

two-dimensional simulation, the discrete domain has 200ˆ200 uniformed rectangular

meshes. The time step is 10´4.

Firstly, Fig. 2.1 shows the evolution of the solution of SAV1. The initial condition

is to impose the liquid nC4 under the saturated steam pressure at 350K in the region

of p0.3LD, 0.7LDq
2. The rest of the domain is filled with the gas nC4 under the same

external condition. It is obviously that the gas-liquid interface formed within the

whole process and the shape of the liquid drop becomes circle finally. This process

meets well with the classical convex splitting scheme in the literature, as in [17] and

[56].

With the same initial value and boundary condition, it can be referred from Fig.

2.2 that when the system reach to the stable state, both schemes give similar results.

The two curves meet very well. However, the calculation time of the SAV scheme is

much smaller than that of the convex splitting scheme. Fig. 2.3 shows CPU times of

two schemes on different meshes. It is clear that SAV1 is much more efficient than
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Figure 2.1: The evolution history of solutions of SAV1 from a single droplet.

the convex splitting scheme in this simulation.
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Figure 2.2: The comparison between results of the SAV1 and the convex splitting
scheme (the 1D cross section of the final state).

Then, we compute another benchmark problem to test the feasibility of algorithm.

In this problem, the computation area is still Ω and this time we put four square
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Figure 2.3: CPU times of SAV1 and the convex splitting scheme on different meshes.

liquid drops in the middle of the gas region. Theoretically, firstly, the four drops start

to go through the same progress as the single drop case. Then, when their shapes

become round, the interface of the drops will contact with each other. Under the

force of the surface tension, physically, these four liquid drops will become one big

drop. As we can see in the Fig. 2.4, our numerical results can perfectly reproduce

this phenomenon.

— 30 —



PhD Thesis
CHAPTER 2. ENERGY STABLE SCHEMES FOR THE EQUILIBRIUM

PROBLEM OF HYDROCARBON SUBSTANCES
i = 0

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

1000

2000

3000

4000

5000

6000

7000

8000

i = 200

50 100 150 200

20

40

60

80

100

120

140

160

180

200

1000

2000

3000

4000

5000

6000

7000

8000

9000

i = 800

50 100 150 200

20

40

60

80

100

120

140

160

180

200

1000

2000

3000

4000

5000

6000

7000

8000

9000

i = 4000

50 100 150 200

20

40

60

80

100

120

140

160

180

200

1000

2000

3000

4000

5000

6000

7000

8000

i = 20000

50 100 150 200

20

40

60

80

100

120

140

160

180

200

1000

2000

3000

4000

5000

6000

7000

8000

i = 40000

50 100 150 200

20

40

60

80

100

120

140

160

180

200

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 2.4: The evolution history of solutions of SAV1 from four droplets.

C. 3D simulation

The efficiency and accuracy of presented SAV schemes have been verified. Now we

use the second order SAV scheme (2.22)-(2.22) for three dimensional simulations

to compare with laboratory data. The whole domain can be represented by Ω “

p0 ˆ LDq
3. A uniform mesh is of 200 ˆ 200 ˆ 200 grids and the time step is taken

as ∆t “ 0.0001. In the initial condition, the liquid phase of nC4 is imposed at

350K in the region of p0.3L, 0.7Lq3, and the rest domain is full of nC4 in gas phase.

Here initial values of the liquid molar density and gas molar density are 8878.893849

mol{m3 and 403.172584 mol{m3, respectively. Fig. 2.5 shows the evolution history

of the solution which describes a cube liquid droplet turning its shape into a perfect

ball shape by the force of the surface tension. The 3D simulation only takes a few

minutes to reach the final state.

Fig. 2.6 shows the evolution history of the total energy and total mass of the

system that solved by SAV2. An obvious dissipative trend has been observed during

the evolution history of the total Helmholtz free energy, with a sharp decline at the

start and gradually flat in the later time. In the mean time, the mass conservation
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Figure 2.5: 3D simulation results of the evolution of nC4 at 350K.

property has also been maintained during the whole process. Here, the mass is

represented by molar density. Assuming that the volume of the droplet does not

change with time and that the steady state droplet has a perfect circular shape, we

make the comparison between the surface tension (N{m) obtained by the numerical

experiment and the data from laboratory. Also, we make the comparison between

the capillary pressure (Pa) calculated from numerical results and the Young-Laplace

method. The surface tension is the net contractive force per unit length of the
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Figure 2.6: The evolution history of the total mass (mol/m3) (Left) and the evolution
history of the total free energy (Right).

interface which has the following form

σsur “
F pnq ´ F pninitialq

A
, (2.33)

where A is the cross surface area of the liquid droplet. In our 3D simulation, the

volume of the liquid droplet is

Vd “
4

3
πr3

“ p0.4ˆ LDq
3. (2.34)

After evaluating r from (2.34), we could get A “ 4πr2. In the previous work, Qiao

and Sun [59] set the radius of the liquid drop under the assumption that the volume

of the drop does not change all along the experiment. This assumption comes from

the sharp interface theory. In the same way, Li et al. [43] used the same method

to calculate the surface tension. On the other hand, our numerical experiment is

based on the diffuse interface theory. When we calculate the cross surface area of the

droplet, the thickness of the interface needs to be considered. The determination of

the width of the interface L is illustrated in Fig. 2.7. So we could get the cross surface

area of the droplet as A “ 4πpr ` L
2
q2. We can see from the left figure in (2.8), the

difference between the surface tension trend calculated by the steady state of (2.23)

and the experimental data, which comes mainly from modeling errors, is much better

than that in paper [43] due to the improvement on surface width treatment. That
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Figure 2.7: The width of the interface.

makes our result more acceptable from the engineering point of view. Therefore, we

could calculate another physical quality, capillary pressure, which is also of major

concerns in two phase flow problems, based on the value of surface tension provided

by the fourth-order parabolic equation. The relation between the surface tension σ

and the capillary pressure, PC , could be represented by the Young-Laplace equation

in the form as

PC “ Pliquid ´ Pgas “
2σ

r
. (2.35)

Here the thermodynamic pressure for the liquid Pliquid or the gas Pgas is defined by

(1.1). Based on this formula, we could obtain the capillary pressure by applying the

previously calculated value of the surface tension divided by radius, and depicted by

the right figure in Fig. 2.8. It could be observed that, the capillary pressure obtained

from our method and the previous literature are in nice agreement, which guarantees

the reliability of the model (2.3) and our proposed numerical schemes.

2.2 A multi-component two-phase flow model

It is well known that, in the oil exploration and oil gathering problem, the multi-

component and multi-phase problem is an unavoidable problem. For this kind of

multi-component problem along with Peng-Robinson EOS, Fan etc. [18] proposed a
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Figure 2.8: The comparison of the surface tension (N/m) obtained by the numer-
ical experiment and the data from laboratory (left); The capillary pressure (Pa)
calculated from the numerical results and the Young-Laplace method (right).

component-wise convex splitting scheme. However, during the numerical experiment,

we found the model in their multi-component model is very sensible with very strict

space time grid. As a result, we modify their model by involving the mobility term.

After that, we use the SAV approach to solve the multi-component multi-phase

system.

2.2.1 A diffuse-interface model of multi-component flows

While modeling the multi-component system, the mobility tensor is a significant

element to be considered. Mobility, which is a variable defined in phase field models,

plays an essential role to keep the developed model consistent with thermodynamic

laws. The mobility matrix M shall be symmetric and positive semi-definite so that

Onsager’s reciprocal principle and the second law of thermodynamics are satisfied.

Different methods have been proposed to model the mobility tensor, which could

be summarized into three types. The first one is to define mobility as a diagonal

matrix with positive diagonal elements, which satisfies the above two principles, and

is convenient to implement. Only the diffusivity of each component is considered,

so that the mobility tensor could be represented simply as: Mii. The second one is

to take mobility matrix as a full matrix, and we have two tensors Mii and Mij. It
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should be noted that the mole mean diffusivity matrix D has properties with matrix

elements Dii “ 0 and Dij ą 0. The third one is to use mass mean diffusivity instead

of mole mean diffusivity. In this section, inspiring from the first choice of mobility,

we propose a new multi-component two-phase diffuse-interface model in order to use

certain fast calculation approaches.

We now formulate a thermodynamic consistent mathematical model to describe

the multi-component two-phase flow based on Peng-Robinson EOS, which is widely

used in practice especially in petroleum industry, as it can accurately represent the

thermodynamic properties of hydrocarbon mixture in the multi-phase fluids flow with

the capability of handling large set of components and a large range of environment

conditions. As a start, we model the flow under an isothermal condition, i.e. with a

constant temperature.

The general framework we choose here is still Cahn-Hilliard type model. This

is because when we consider the multi-component problem, Allen-Cahn type model

can not describe the multi-component mixture. The multi-component Cahn-Hilliard

model with Peng-Robinson equation of state can be written as the following form

Bni
Bt
`∇ ¨ Ji “ 0,

Ji “ ´
m
ÿ

j“1

Mij∇µj,
(2.36)

for i “ 1, 2, ...,m. Here ni, Ji and µi are the molar density, the diffusive flux and

the total chemical potential of the i-th component, respectively. M “ pMijqmˆm is

the mobility tensor, which should be symmetric and at least positive semi-definite

(and in most cases, strictly positive definite) to satisfy Onsager’s reciprocal principle

and the second law of thermodynamics. In [35], Kou and Sun introduced several

approaches to form the mobility term. In our work, we give a new approach of
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M by using a diagonal matrix with positive diagonal elements to meet the above

requirements. We set

Mii “
Di

N0
i

|Ω|

RT
, i “ 1, 2, ¨ ¨ ¨ ,m, (2.37)

where N0
i is the total particle amount of the i-th component at the initial state and

|Ω| is the calculated volume (area in 2D). R stands for the universal gas constant

and Di ą 0 is the diffusion coefficient of component i. Therefore, the diffusion flux

can be written as

Ji “ ´
Di

N0
i

|Ω|

RT
∇µi, i “ 1, 2, ¨ ¨ ¨ ,m. (2.38)

We need to mention that the above modeling of mobility by a diagonal matrix allows

us to design certain fast calculation numerical schemes (such the SAV scheme studied

in this thesis) because of its constant coefficients.

Using the mobility (2.38), the origin problem can be rewritten as

Bni
Bt
`∇ ¨ Ji “ 0,

Ji “ ´Mii∇µi,
(2.39)

for i “ 1, 2, ¨ ¨ ¨ ,m. The total chemical potential of the i-th component µi as used in

(2.36) has the bulk contribution µb,i and the gradient contribution µ∆,i:

µi “ µb,i ´ µ∆,i “ µb,i ´
m
ÿ

j“1

cij∆nj, (2.40)

where the influence parameter cij is usually assumed to be a constant and its ex-

pression we have already given in (1.4). The bulk part µb,i is the derivative of the

bulk Helmholtz free energy density fb with respect to ni. The expression of fb in

Peng-Robinson EOS case can also be found in (1.2). The Helmholtz free energy of

the total system are defined as

F “ Fb ` F∇, (2.41)

— 37 —



CHAPTER 2. ENERGY STABLE SCHEMES FOR THE EQUILIBRIUM
PROBLEM OF HYDROCARBON SUBSTANCES PhD Thesis

where

Fb “

ż

Ω

fbpnqdx,

F∇ “
1

2

ż

Ω

m
ÿ

i

m
ÿ

j

cij∇ni ¨∇njdx.
(2.42)

Next, an SAV scheme will be introduced to solve (2.39) for multi-component two-

phase fluids flow problems.

2.2.2 The SAV approach of the multi-component model with
Peng-Robinson EOS

A. Model reformulation

Considering the multi-component two-phase model (2.39), we use the SAV approach

to reformulate it. First, we introduce Vptq, which has the following form

Vptq “

d

Fb `
m
ÿ

i“1

CT,iN t
i . (2.43)

Here, CT,i ě 0 is the thermodynamic coefficient of component i to ensure Fb `
řm
i“1CT,iN

t
i ě 0, and we need to choose the CT,i based on the temperature T but

independent of the molar density. One thing we would like to mention here is that

Fb is always larger than 0 during all numerical experiments we carried out for real

substances. Using Vptq to rewrite the chemical potential, we can get

µi “
Vptq

a

Fb `
řm
i“1CT,iN

t
i

µb,i ´
m
ÿ

j“1

cij∆nj. (2.44)
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With this, the origin system (2.39) changes to for i “ 1, 2, ...,m

Bni
Bt
“Mii∆µi,

µi “
Vptq

a

Fb `
řm
i“1CT,iN

t
i

µb,i ´
m
ÿ

j“1

cij∆nj,

BV
Bt
“

m
ÿ

i“1

ż

Ω

µb,i

2
b

Fb `
řm
j“1CT,jN

t
j

Bni
Bt
dx.

(2.45)

The total energy F can be reformulated as F “ F∇ ` V2. The following energy

law can be easily obtained by integrating the three equations in (2.45) with µi,
Bni

Bt

and V, respectively and using periodic boundary conditions.

Lemma 2.2. The total energy F satisfies the following energy law:

dF

dt
“ ´

m
ÿ

i“1

Mii

ż

Ω

∇µi∇µidx. (2.46)

Remark 2.4. (2.46) implies that the energy F is non-increasing in time. It is easy to

get that (2.45) also satisfies the mass conservation
d

dt

ż

Ω

nidx “ 0, i “ 1, 2, ...,m.

B. Notations of spectral discretization

For the space discretization, we still use the spectral method. In the previous section,

we have introduced the 3D form of the spectral discretization. Under the same

principle, in this section, we will give notations of some spatial operators for the

spectral collocation method on the two-dimensional space Ω “ p0, Xq ˆ p0, Y q.

Let Nx, Ny be any positive even numbers, and the Nx ˆNy mesh Ωh of Ω can be

described as the following nodes set pxi, yjq, where xi “ ihx, yj “ jhy, 1 ď i ď Nx,

1 ď j ď Ny. hx “
X
Nx
, hy “

Y
Ny

. We define index sets

Jh “ tpi, jq P N2
|1 ď i ď Nx, 1 ď j ď Ny, 1 ď ku,

Ĵh “ tpl,mq P Z2
| ´

Nx

2
` 1 ď l ď

Nx

2
,´

Ny

2
` 1 ď m ď

Ny

2
u.
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Then we define all periodic grid functions on Ωh as Fh, which has the following form

Fh “ tf : Ωh Ñ R|fi`lNx,j`mNy “ fi,j, for any pi, jq P Jh and pl,mq P Z2
u.

For any function f P Fh, we can define the following 2-D Fourier transform

f̂ “ Pf and the inverse Fourier transform f “ P´1f̂ by

f̂l,m “
1

NxNy

ÿ

pi,jqPJh

fi,j expp´i
2lπ

X
xiq expp´i

2mπ

Y
yjq, pl,mq P Ĵh;

fi,j “
ÿ

pl,mqPĴh

f̂l,m exppi
2lπ

X
xiq exppi

2mπ

Y
yjq, pi, jq P Jh.

Let F̂h “ tPf |f P Fhu. First order partial operators D̂x and D̂y are defined on F̂h

as follows:

pD̂xf̂ql,m “ p
2lπi

X
qf̂l,m, pD̂yf̂ql,m “ p

2mπi

Y
qf̂l,m, pl,mq P Ĵh.

Then the spectral form of second order partial operators can be written as

D2
x “ P´1D̂2

xP, D2
y “ P´1D̂2

yP,

We can define the discrete Laplace operator ∆h as

∆hf “ D2
xf `D

2
yf.

The inner product can also be denoted as

pf, gqh “ h2
xh

2
y

Nx
ÿ

i“1

Ny
ÿ

j“1

fi,j ¨ gi,j.

2.2.3 An SAV-CN scheme

In this work, we consider a two-component model with Peng-Robinson EOS. We

solve the system in the time interval r0,Ts and the space domain Ω “ r0, Xs2. For a
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given positive integer Nt, we set the time step ∆t as ∆t “
T

Nt

. For a given positive

integer Ns, we set the gride size h as h “
X

Ns

. An SAV-CN scheme of the system

(2.39) is constructed by using the spectral collocation method in space as follows:

for 0 ď s ď Nt ´ 1, find ns`1 P Fh such that

ns`1
i ´ nsi

∆t
“Mii∆hµ

s`1{2
i ,

µ
s`1{2
i “ ´

1

2

2
ÿ

j“1

cijp∆hn
s`1
j `∆hn

s
jq `

µ
s`1{2
b,i

2F1{2
pVs`1

` Vs
q, i “ 1, 2,

Vs`1
´ Vs

“

2
ÿ

j“1

p
µ
s`1{2
b,j

2Fs`1{2
, ns`1

j ´ nsjqh,

(2.47)

where Fs`1{2 “

b

Fbpn̂1
s`1{2, n̂2

s`1{2
q `

ř2
i“1CT,iN

t
i and n̂i

s`1{2 can be regarded as

an explicit approximation of n
s`1{2
i . However, due to the high nonlinearity of the

Helmholtz free energy from Peng-Robinson EOS, it has a strict constraint on the

time step ∆t using the explicit approximation. So we employ the following equation

for solving n̂i
s`1{2

n̂i
s`1{2

´ ns

p1{2q∆t
“Mii∆hµ

s
b,i ´

2
ÿ

j“1

cij∆hn̂j
s`1{2, i “ 1, 2.

Due to cij “ cji, we can have the following property

p

2
ÿ

j“1

cij∆hpn
s`1
j ` nsjq, n

s`1
i ´ nsi qh “

2
ÿ

j“1

cijrp∆hn
s`1
j , ns`1

i qh ´ p∆hn
s
j , n

s
i qhs, i “ 1, 2.

— 41 —



CHAPTER 2. ENERGY STABLE SCHEMES FOR THE EQUILIBRIUM
PROBLEM OF HYDROCARBON SUBSTANCES PhD Thesis

Using this property, we multiply three equations of (2.47) with ∆tµs`1{2, n
s`1{2
i ´nsi

and Vs`1 ` Vs, respectively, and then get for i “ 1, 2

pµ
s`1{2
i , ns`1

i ´ nsi qh “p∆tµ
s`1{2
i ,Mii∆hµ

s`1{2
i qh,

pµ
s`1{2
i , ns`1

i ´ nsi qh “´
1

2
p

2
ÿ

j“1

cijp∆hn
s`1
j `∆hn

s
jq, n

s`1
i ´ nsi qh

` p
µ
s`1{2
b,i

2F1{2
pVs`1

` Vs
q, ns`1

i ´ nsi qh,

pVs`1
q
2
´ pVs

q
2
“

2
ÿ

j“1

p
µ
s`1{2
b,i

2Fs`1{2
pVs`1

` Vs
q, ns`1

i ´ nsi qh.

(2.48)

Then

2
ÿ

i“1

p∆tµ
s`1{2
i ,Mii∆hµ

s`1{2
i qh “ ´

1

2

2
ÿ

i“1

2
ÿ

j“1

cijrp∆hn
s`1
j , ns`1

i qh´p∆hn
s
j , n

s
i qhs`pVs`1

q
2
´pVs

q
2.

In the mean time, we define the modified discrete total energy at time level s as

F s
m “ ´

1

2

2
ÿ

i“1

2
ÿ

j“1

cijp∆hn
s
j , n

s
i qh ` pVs

q
2.

The operator ∆h is negative definite, so it is now clear that the following theorem

holds:

Theorem 2.5. The second order SAV-CN scheme (2.47) is unconditionally energy

stable meaning that for any ∆t ą 0 we have

F s`1
m ´ F s

m ď 0.

Remark 2.5. The following mass conservation property of (2.47) is easy to be ob-

tained:

Ns
ÿ

i“1

Ns
ÿ

i“1

ns`1
i,j h

2
“

Ns
ÿ

i“1

Ns
ÿ

i“1

nsi,jh
2, k “ 1, 2.
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2.2.4 Numerical experiments

In this section, we carry out numerical experiments with proposed SAV-CN scheme.

The numerical experiments are designed in two dimensional space with the mixture

consists of methane (CH4) and n-decane (nC10H22). In the following numerical

example, the temperature we choose is 450K. The computational domain is set as a

square area Ω “ p0, LDq
2 with LD “ 2 ˆ 10´8 meters and 200ˆ200 mesh grids are

used. The time step ∆t “ 10´4. Initial values of methane and n-decane are shown

in Table 1.1. The initial condition is to impose the liquid phase of the substances

under the saturated steam pressure at 450K in the region of p0.3LD, 0.7LDq
2. The

rest of the domain is filled with the mixture of the gas phase of the substances under

the same external conditions.

A. Distributions of the molar density and other properties

Obviously, at the initial state, there exists a jump in molar density between two

different phases. During the simulation, the square corners will be changed into

round circular corners at the equilibrium state by the surface force. The molar

density distributions (Figs. 2.9 and 2.10) evolution of methane and n-decane match

well with those from the component-wise convex splitting scheme in [18].
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Figure 2.9: Molar density distributions of methane at different time: (a) t=0, (b)
t=500, (c) t=1500.
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Figure 2.10: Molar density distributions of n-decane at different time: (a) t=0, (b)
t=500, (c) t=1500.

The mass evolution of each phase in the process are illustrated in Fig. 2.11, which

verify the mass conservation property of our scheme.
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Figure 2.11: The mass evolution of the methane (left) and n-decane (right).

Fig. 2.12 shows the evolution history of the total Helmholtz free energy. It

has been confirmed that an obvious dissipative trend is shown during the evolution

history of the total Helmholtz free energy, with a sharp decline at the start and

gradually flat in the later time. This energy evolution trend meets well with the

second law of thermodynamics, which indicates the energy dissipation nature.
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Figure 2.12: The energy evolutions of the system.

B. Calculation of the interface tension

The interface tension formula has been given in (2.33). When we calculate the cross

surface of the liquid droplet area A, the thickness of the interface needs to be taken

into consideration. Furthermore, in the multi-component case, the diffusion of liquid-

gas interface may be different between substances. This could be observed in Fig.

2.9 and Fig. 2.10. It is natural to determine A by the weighted mean of the area of

different substances

A “
ÿ

i

ωiAi,

where ωi “
Ni

ř

iNi
and Ai represents the area of the i-th component. Here, we have

two different approaches to get the area Ai.

Method 1. This method is same as the one we discussed in the single-component

case. Which can be shown in Fig. 2.13(a) (here we use the methane as an example).

In this approach, we implicitly assume that the volume (area in 2D) of the liquid

droplet is conserved.

Method 2. In general, the volume (area in 2D) of the liquid droplet may not be

conserved exactly during the process of the interface formation. Without having to

— 45 —



CHAPTER 2. ENERGY STABLE SCHEMES FOR THE EQUILIBRIUM
PROBLEM OF HYDROCARBON SUBSTANCES PhD Thesis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-8

500

1000

1500

2000

2500

3000

L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-8

500

1000

1500

2000

2500

3000

middle point of

the liquid drop

Radius of the droplet

(a) (b)
Figure 2.13: The width chosen of the interface: (a) Method 1; (b) Method 2.

assume the conservation of the liquid droplet volume, we provide another approach

to get the radius of the droplet, which can be found in Fig. 2.13(b). Here, we set

the distance from the middle point of the interface to the middle point of the pure

liquid droplet as the radius to get the area Ai.
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Figure 2.14: Comparison of interface tension between the laboratory data and the
numerical scheme.

Fig. 2.14 shows interface tensions calculated by these two approaches. At the

same time, the laboratory data and previous results in [18] are also marked. We can

see that interface tensions from our methods are much better than those in paper [18]

due to the involving interface width. It is now acceptable from the engineering point
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of view. We also find that the difference between the two approaches of getting the

interface area is relatively small. This is because when the real substances especially

the hydrocarbon matters are involved, the density of the liquid phase is usually

larger than the density of the gas phase. When these two phases contribute same

mass to the interface, the gas phase will lose much more volume than the liquid phase.

Generally, this reflects to the fact that the volume of the liquid phase experiences

a small change during the interfacial formation. Until now, we have preliminarily

constructed a framework to solve the hydrocarbon system in the equilibrium state.

2.3 Chapter summary

In this chapter, we have proposed Cahn-Hilliard type models with Peng-Robinson

EOS for both single-component and multi-component hydrocarbon two-phase equi-

librium problems. For the single-component equilibrium problem, two SAV ap-

proaches have been proposed in order to describe the molar density distribution

and calculate physical quantities on the interface. For the multi-component equi-

librium problem, first, we develop a new multi-component diffuse interface model

with Peng-Robinson EOS by adding the mobility term on the previous model, which

is physically consistent. Then SAV approach is employed to develop an efficient

second-order accurate numerical scheme for solving the investigated model. Energy

stability is derived in the sense that the modified discrete energy is nonincreasing in

time. Moreover, our numerical results agree better with the laboratory experimental

data compared with existing results in the literature.
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Chapter 3

The Lattice Boltzmann method for
the hydrocarbon fluid system

In this chapter, the aim of our research is to use the Lattice Boltzmann method

(LBM) to solve hydrocarbon fluids flow problems. When we consider the porous

media flow problems with complex boundary conditions, which often occurs in the

oil exploitation process, the LBM has many advantages and this work is the first at-

tempt to develop effective LBMs for multi-phase flow problems with Peng-Robinson

EOS. To be simplified, we concern about the single-component fluid case. The frame-

work of this chapter can be shown as follows. First, we verify the efficiency of the

LBM on the equilibrium problem, which is the degenerate problem of the fluids flow

problem. Here we choose the Allen-Cahn (A-C) type model to describe the single-

component two-phase equilibrium problem and we use the single-relaxation-time

LBM (also called Bhatnagar-Gross-Krook (BGK) method) to simulate the proposed

model. Next, we introduce a fluids flow model which combines Peng-Robinson EOS

and Navier-Stokes equations and we use the multiple-relaxation-time (MRT) LBM

method to simulate the fluids flow model. We will compare our numerical results

with the laboratory data and results in the literature.
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3.1 LBM for the Allen-Cahn type equilibrium phase

problem with Peng-Robinson EOS

3.1.1 Derivation of the Allen-Cahn type phase equation

The A-C type phase equation for i-th component is given as follows[18, 59],

Bni
Bt
“

m
ÿ

j“1

cij∇2nj ´ µb,ipnq, i “ 1, 2, ¨ ¨ ¨ ,m. (3.1)

It is well known that the above A-C equation does not conserve the volume. To

enforce this conservation property, a Lagrange multiplier is introduced in this equa-

tion. Besides, for convenience of presentation, our numerical scheme is developed

based on the single-component two-phase system, which also can be extended to

multi-component case. Then, the modified A-C type phase equation is expressed as

follows,

Bnpx, tq

Bt
´ κ∇2npx, tq “ ζptq ´ µbpx, tq,x P Ω, (3.2)

ż

Ω

npx, tqdx “ N, (3.3)

where κ is the single component influence parameter, ζptq is the Lagrange multiplier.

Through selecting proper initial and boundary conditions, together with a specified

bulk chemical potential µb, the above PDE has a unique solution [59].

The strong nonlinearity in the source term of the above PDE and the quite small

values of κ gives rise to a great challenge of the numerical simulation. In the following

section, we will develop an efficient LBM for the above nonlinear A-C type phase

equation, and the definition of ζptq will be discussed in detail.

In fact, the LBM can be viewed as a special finite difference (FD) scheme for

the following continuous Boltzmann equations with discrete velocity space eipi “

1, 2, ..., Nq[24],
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Bgipx, tq

Bt
` ci ¨∇gipx, tq “ ´

1

τ0

pgipx, tq ´ g
eq
i px, tqq, (3.4)

where N is the number of different velocities in this model, gipx, tq is the discrete

distribution function at site x and time t moving with speed c along the direction

ei and ci “ cei. g
eq
i px, tq is the local equilibrium distribution function depending on

the macroscopic variables, and τ0 represents the relaxation time toward the equilib-

rium distribution. This model reflects that the distribution function relaxes to the

equilibrium state with collisions.

If we use the first order forward difference scheme to discretize time derivative

term, use the up-wind scheme for the spatial gradient term and use a downwind

collision term, we can get the following FD scheme for Eq. (3.4),

gipx, t` δtq “ gipx, tq ´ αrgipx, tq ´ gipx´Di, tqs ´
1

τ
rgipx´Di, tq ´ g

eq
i px´Di, tqs,

where, Di is the spatial displacement of the i-th discrete velocity, α “ δt|ci|{|Di| ,

and τ “ τ0{δt is the dimensionless relaxation time. If α “ 1, i.e. Di “ ciδt, the

following standard LB equation can be got,

gipx` ciδt, t` δtq “ gipx, tq ´
1

τ
rgipx, tq ´ g

eq
i px, tqs.

The key element in applying LBM for different problems is the equilibrium distri-

bution function. In fact, different physical problems can be solved by LBM provided

that a proper equilibrium distribution function is used. The general form of the

equilibrium distribution function can be written as [68],

geqi “ ωirφ`
ci ¨B

c2
s

`
pC` c2

spD´ φIqq : pcici ´ c
2
sIq

2c4
s

s,
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where, I is the unit tensor, φ stands for scalar parameter, such as density ρ, temper-

ature, or species concentration, B and D are the known differential functions of φ,

and C is a tensor function of φ, which is used to remove some additional terms in the

recovered macroscopic equation. Besides, ωi are weights and cs is the so called sound

speed, being related to the particle speed c and ωi by
ř

i ωicici “ c2
sI, and they all

depend on the lattice model used, where c “ δx{δt and δx is the lattice spacing.

By means of the multiscale Chapman-Enskog analysis [68], one can see that the

above LB method is used to solve the following convection-diffusion equation:

Btφ`∇ ¨B “ ∇ ¨ pα∇ ¨Dq,

where α is the diffusion coefficient.

Following the above idea, we can get the LB method for Eq. (3.2) as follows,

gipx` ciδt, t` δtq “ gipx, tq ´
1

τ
rgipx, tq ´ g

eq
i px, tqs ` δtRipx, tq, (3.5)

where the local equilibrium distribution function geqi px, tq and the distribution func-

tion for source term Ripx, tq are defined as,

geqi px, tq “ ωinpx, tq,

Ripx, tq “ ωipζptq ´ µbpx, tqq.

By the definition of the above distribution functions, the moment conditions can
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be computed explicitly provided the following lattice symmetries,
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N
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ωi “ 1,

N
ř
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ωicici “ c2
sI “ c2

sδij,

N
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ωici “ 0,

N
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ωicicici “ 0,

N
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ωicicicicici “ 0,

N
ř
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ωicicicici “ c4
s∆ “ c4

spδijδkl ` δikδjl ` δilδjkq.

(3.6)

Therefore, the moment conditions are:
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N
ř

i“1

geqi px, tq “
ř

gipx, tq “ npx, tq,

N
ř

i“1

cig
eq
i px, tq “ 0,

N
ř

i“1

cicig
eq
i px, tq “ c2

snpx, tqI,

N
ř

i“1

Ripx, tq “ µptq ´ µ0px, tq,

N
ř

i“1

ciRipx, tq “ 0,

N
ř

i“1

ciciRipx, tq “ c2
spµptq ´ µbpx, tqqI.

(3.7)

In general, the DnQm lattice model (n dimensional m velocity), which is proposed

by Qian et al [58], is widely used in the LB method. In Table 3.1, several popular

DnQm models are presented.

3.1.2 Chapman-Enskog analysis of the present LBM

The basic idea behind Chapman-Enskog expansion is to separate the physical time

and space as well as distribution function into multiple scales with respect to a small
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Table 3.1: Parameters of some DnQm models.

model lattice vector ei weight ωi c2
s

D1Q3 0, ˘1 2/3, 1/6 1/3
D2Q9 p0, 0q, p˘1, 0q, p0,˘1q, p˘1,˘1q 4/9, 1/9, 1/36 1/3

p0, 0, 0q 1/3
D3Q15 p˘1, 0, 0q, p0,˘1, 0q, p0, 0,˘1q 1/18 1/3

p˘1,˘1, 0q, p˘1, 0,˘1q, p0,˘1,˘1q 1/36

parameter ε (its value is proportional to Knudsen number Kn). Physical proper-

ties of the macroscopic variables are automatically separated into the corresponding

different scales.

The distribution function can be expanded in terms of ε as

gi “ g
p0q
i ` εg

p1q
i ` ε2g

p2q
i ` ¨ ¨ ¨ ,

where g
p0q
i is distribution function at the equilibrium conditions, equal to geqi . By

summing the above equation with respect to i, it leads to,

N
ÿ

i“1

gi “
N
ÿ

i“1

rg
p0q
i ` εg

p1q
i ` ε2g

p2q
i ` ¨ ¨ ¨ s.

From Eq. (3.7), the other expanded term in the above equation should be zero, i.e.,

N
ÿ

i“1

g
pkq
i “ 0, k ě 1.

Generally, the time t and space x are scaled in the following way,

x “ ε´1x1, t1 “ εt, t2 “ ε2t.

In this representation, x1, t1 describe the linear regime, or the fast convective scale,

whereas t2 is in charge of the long term dynamics, or slow diffusive scale. Noticed

that the solved Eq. (3.2) is a diffusion equation with source term, in order to keep

both sides of the equation at the same order of magnitude, the time t should be
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scaled by 1{ε2, i.e., t “ ε´2t2. Thus, we assume that the source term ζ ´ µb can be

expanded as follows,

ζ ´ µb “ ε2
pζ ´ µbq

p2q.

The above multiscale representation induces a corresponding representation of

the differential operators:

B

Bt
“ ε2 B

Bt2
,∇ “ ε∇1,

Using the above multiscale Chapman-Enskog expansions, by applying Taylor ex-

pansion to the evolution Eq. (3.5), and analyze it in different scales, we can get the

following equations:

Opεq : ci ¨∇1g
eq
i “ ´

1

τδt
g
p1q
i , (3.8)

Opε2
q : Bt2g

eq
i ` p1´

1

2τ
qci ¨∇1g

p1q
i “ ´

1

τδt
g
p2q
i `R

p2q
i , (3.9)

where R
p2q
i “ ωipζ ´ µbq

p2q.

With the aid of Eq. (3.7), Eqs. (3.8) and (3.9) can be integrated as

Opε2
q : Bt2n` p1´

1

2τ
q∇1 ¨

ÿ

i

cig
p1q
i “ pζ ´ µbq

p2q. (3.10)

Using Eqs. (3.7) and (3.8), we can get

ÿ

i

cig
p1q
i “ ´τδt∇1 ¨

ÿ

i

cicig
eq
i “ ´τδtp∇1 ¨ c

2
snIq. (3.11)

And then, substituting Eq. (3.11) into Eq. (3.10) and combining the equation on ε2

scale, the following equation can be obtained,

Bnpx, tq

Bt
“ κ∇2npx, tq ` ζptq ´ µbpnpx, tqq,

where we enforce c2
spτ ´ 1{2qδt “ κ.
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3.1.3 The definition of Lagrange multiplier

To guarantee the mass conservation of the proposed LB scheme, the Lagrange mul-

tiplier ζptq must be defined in a right way. To explore the relationship between ζptq

and the proposed LB scheme, we expand Eq. (3.5) at px, y, zq P Ω and time t ` δt

under the most used D3Q15 model as follows,

f0px, y, z, t` δtq “ p1´
1
τ
qf0px, y, z, tq `

1
τ
ω0npx, y, z, tq`

δtω0pζptq ´ µbpx, y, z, tqq,
f1px, y, z, t` δtq “ p1´

1
τ
qf1px´ δx, y, z, tq `

1
τ
ω1npx´ δx, y, z, tq`

δtω1pζptq ´ µbpx´ δx, y, z, tqq,
¨ ¨ ¨

f14px, y, z, t` δtq “ p1´
1
τ
qf14px´ δx, y ` δy, z ` δz, tq `

1
τ
ω14npx´ δx, y ` δy, z

`δz, tq ` δtω14pζptq ´ µbpx´ δx, y ` δy, z ` δz, tqq.

From the above expansions, if we sum all the nodes in Ω, the following equation can

be got,

G
ÿ

x,y,z“0

npx, y, z, t` δtq “
G
ÿ

x,y,z“0

npx, y, z, tq ` δt
G
ÿ

x,y,z“0

pζptq ´ µbpx, y, z, tqq,

where G is the grid number. To satisfy the mass conservation, ζptq must be defined

in the following way

ζptq “
1

pG` 1q3

G
ÿ

x,y,z“0

µ0px, y, z, tq.

It is worth mentioning that the above derivation is based on the periodic boundary

condition. However, it also can be applied to the standard bounce back boundary

condition.

3.1.4 Numerical experiments

In the numerical experiments below, we will consider the two-phase separation of

isobutane (nC4) and propane (C3) separately at different temperatures, where the
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(a) (b) (c)

Figure 3.1: Numerical results of nC4 at different time steps: (a) t=200, (b) t=500,
(c) t=1000.

Table 3.2: Initial molar densities of nC4.

T ng nl
255.02K 22.082 1.1274ˆ 104

270.90K 43.757 1.0939ˆ 104

285.43K 71.480 1.0639ˆ 104

299.48K 109.81 1.0321ˆ 104

315.82K 173.08 0.9912ˆ 104

333.28K 270.37 0.9419ˆ 104

D3Q15 lattice model will be used. The computational domain is Ω “ p0, LDq
3, where

LD “ 2ˆ 10´8 meters.

A. 3D numerical simulations of nC4 and C3

In the 3D numerical simulations, to simplify the computational process, the original

domain Ω is projected to its normalized map Ω̂ “ r0, L̂s3, where L̂ “ LD ˆ 108. The

whole discrete domain Ω̂ has 200ˆ 200ˆ 200 uniform rectangular meshes. The time

Table 3.3: Initial molar densities of C3.

T ng nl
253.08K 1.2357ˆ 102 1.3412ˆ 104

267.09K 1.9407ˆ 102 1.2921ˆ 104

279.39K 2.7939ˆ 102 1.2445ˆ 104

295.73K 4.3805ˆ 102 1.1732ˆ 104

315.71K 7.3396ˆ 102 1.0697ˆ 104

333.30K 1.1462ˆ 103 9.5705ˆ 103
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(a) (b)

(c) (d)

Figure 3.2: Numerical results of C3 at different time steps: (a) t=100, (b) t=500, (c)
t=1500, (d) t=4000.

step δt “ δx{c, and c is related to lattice sound speed, its value is always in r1, 2s.

The initial condition is to impose the liquid density of hydrocarbons (nl) under

saturated pressure condition at 350K in the region of p0.3LD, 0.7LDq
3, and the rest

of the domain is filled with saturate gas of hydrocarbons (nl) under the same temper-

ature. The detailed initial values of nC4 and C3 at different temperatures are given

in Tables 3.2 and 3.3, respectively. The periodic boundary condition is imposed as

in [55, 56]. The spatial distributions of molar densities for nC4 at different moments

have been depicted in Fig. 3.1. Initially, a cubic droplet is given, after several time

steps, we can see in Fig. 3.1(a) that the shape of the droplet is still in cube-shape.

After 500 time steps, the four corners of the droplet being rounded (see Fig. 3.1(b)).

At last, the droplet shape appears to be a perfect sphere in Fig. 3.1 (c).
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Furthermore, the coalescence of the separated droplets consisting of C3 is also

numerically simulated. Different from the simulation of nC4, four separated cubic

droplets are given as the initial state. When the gaps between the droplets are less

than twice of the interface thickness, the merging of the separated droplets will occur

due to surface tension. Fig. 3.2 shows the evolution of the interfacial shapes of the

separated droplets merged under capillary force. The quantitative comparison with

laboratory data will be listed in the next section.

In the diffuse interface model, the homogeneous chemical potential density µ0,

the surface tension contributed to the Helmholtz free energy density fintfTens and

the thermodynamic pressure p0 at the steady state are the most concerned variables.

Among them, µ0 and p0 are defined in equations. (3.20) and pressure form of the

Peng-Robinson EOS, and fintfTens has the same expressions as those presented in

Qiao and Sun’s work [59],

fintfTens “ 2f∇pnq “ κ∇n ¨∇n.

The following relationship can be given as

F pnq ´ F0pninitq“

ż

Ω

pf0pnq ´ f0pninitqqdx`

ż

Ω

f∇pnqdx –

ż

Ω

fintfTensdx.

Without loss of generality, we will take nC4 as an example. The numerical results

of the above variables after convergence are depicted in Fig. 3.3. It can be found

that all these variables experience a sharp variation at the interface at the steady

state. In particular, the homogeneous contribution of chemical potential µ0 changes

dramatically across the interface even though it must have the same value in the

liquid and gas bulk regions.

To illustrate the energy stability of the corresponding LB method, the time vary-

ing total Helmholtz free energy is depicted in Fig. 3.4(a). It can be clearly seen

that the free energy has a dissipative trend during the whole evolution history, and
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Figure 3.3: 3D profile along Z “ L{2 after convergence (nC4 at T=350K): (a)
surface tension contribution of Helmholtz free energy density; (b) cross profile of
(a); (c) homogeneous contribution of chemical potential; (d) cross profile of (c); (e)
thermal pressure; (f) cross profile of (e).

it decays rapidly initially and slows down in the rest of time. This illustrates that

the solution approaches its steady state. In addition, from Fig. 3.4(b), we can see

that the mass conservation property has been maintained strictly.

B. Calculation of interface tension

To verify our numerical results of nC4 and C3 from the perspective of quantitative,

the interface tension σ has been computed and compared with previous numerical

results and laboratory data. In this part, we use the Method 1 that mentioned in the

Chapter 2 to calculate the interface tensions. This is because that our target model
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Figure 3.4: Energy dissipation and mass conservation of 3D numerical simulation of
nC4: (a) energy dissipation, (b) total mass variation with time.
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Figure 3.5: Comparison of surface tension between numerical predictions and labo-
ratory data; (a) nC4, (b) C3.
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Figure 3.6: Comparison with Laplace law: (a) nC4, (b) C3.
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is a single-component model. There have few differences between the Method 1 and

Method 2 while considering the single-component problem.

The comparisons of the numerical results of σ for nC4 and C3 with the experimen-

tal data [45] are depicted in Fig. 3.5. It can be seen that the differences between the

predicted values and the laboratory data in reference [45] are less than 5%. However,

the predicted values in [59], which are computed from simulations in two-dimensional

space and without considering the width of the two-phase interface, are much larger

than the values from the 3D simulations in this thesis.

Next, we will compare our numerical results with Young-Laplace equation. In

Fig. 3.6, we can clearly see that the capillary pressures of nC4 and C3 predicted by

the LBM are matched well with those calculated from the Young-Laplace equation.

3.2 LBM for nonideal fluids with Peng-Robinson

EOS

In this section, based on the fundamental functions of thermodynamics and entropy

splitting structure, we derive the general model for the nonideal fluids flow with

Peng-Robinson EOS, in which the viscosity and density gradient contribution to free

energy are considered. Furthermore, based on the relation between the pressure

gradient and chemical potential gradient, the potential form of momentum balance

equation is developed, where the gradient of chemical potential becomes the primary

driving force of the fluid motion. In the numerical simulation, the derived model

brings great challenge to the construction of numerical scheme. The main difficul-

ties are the strong nonlinearity of Helmholtz free energy density and tight coupling

relations between molar densities and velocity. To solve these problems, an multiple-

relaxation-time (MRT) lattice Boltzmann equation model [12] with Beam-Warming

(B-W) scheme is proposed in this work. Because of the various relaxation processes,
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the MRT model is more flexible to incorporate additional physics that cannot be

naturally represented by the lattice BGK model. It is well known that multi-phase

flows involve additional physical complexity as a result of interfacial physics involved

i.e., phase segregation and surface tension effects. Naturally, to handle this complex

multi-phase fluid system with Peng-Robinson EOS, the MRT collision operator is

utilized in the proposed LB equation model. In addition, as mentioned in [59], the

free energy of Peng-Robinson model is approximately linear, which needs to be cap-

tured accurately. Thus, the B-W propagation scheme is developed base on the MRT

model, which gives rise to an adjustable Courant-Friedrichs-Lewy (CFL) number.

The second order accuracy can be naturally achieved by this scheme without any

other requirement and numerical boundary condition.

3.2.1 A thermodynamically consistent hydrocarbon model

From the fundamental laws of thermodynamics, we have the following relations

F “ U ´ TS,

U “ TS ´ pV `
m
ÿ

i“1

µiNi,
(3.12)

where U is the internal energy, T is the temperature, S is the entropy, p is the

pressure, and µi is the chemical potential of component i. Combining above two

equations and dividing V on the both side, we can get

f “
F

V
“ ´p`

m
ÿ

i“1

µini, (3.13)

where f is the free energy density. The system we considered is a consistent temper-

ature system, then we can have

dU “ TdS ´ pdV `
m
ÿ

i“1

µidNi, (3.14)
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dF “ ´SdT ´ pdV `
m
ÿ

i“1

µidNi. (3.15)

If we consider a constant temperature system, integrating the above equation we

have

F “ ´pV `
m
ÿ

i“1

µiNi.

From the Gibbs-Duhem equation

´V dp`
m
ÿ

i“1

Nidµi ` SdT “ 0,

the following formula can be obtained,

dp “
m
ÿ

i“1

nidµi. (3.16)

Considering the fpnq (3.13), the chemical potential µi and pressure can be computed

as

µi “ p
δfpnq

δni
qn‰i

, i “ 1, ¨ ¨ ¨ ,m, (3.17a)

p “
m
ÿ

i“1

µini ´ fpnq, (3.17b)

where δ{δni represents the variational derivative and n‰i denote by the vector

pn1, ¨ ¨ ¨ , ni´1, ni`1, ¨ ¨ ¨ , nmq.

For realistic fluids, diffuse-interfaces always exist between two phases. To describe

this feature, a local density gradient contribution is introduced into the Helmholtz

free energy of inhomogeneous fluids. As discussed in Chapter 2, the total Helmholtz
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free energy is the sum of two contributions: Helmholtz free energy of bulk homoge-

neous fluid and a local density gradient contribution:

F pn;T,Ωq “ Fbpn;T,Ωq ` F∇pn;T,Ωq

“

ż

Ω

fbpn;T qdx`

ż

Ω

f∇pn;T qdx.
(3.18)

For the single component two phase fluid system, f∇pnq can be expressed by a simple

quadratic relation:

f∇pnq “
1

2
κ∇n ¨∇n, (3.19)

where κ is the pure component influence parameter.

According to Eq. (3.17b), the pressure of homogeneous fluids p0 is related to the

Helmholtz free energy fbpnq in the following way:

p0 “ np
Bfb
Bn
q ´ fb “ nµb ´ fb. (3.20)

The homogeneous chemical potential µb can be expressed as the following nonlinear

form

µb “RT ln
n

1´ bn
`RT

bn

1´ bn

`
a

2
?

2b
lnp

1` p1´
?

2qbn

1` p1`
?

2qbn
q ´

an

1` bn` bnp1´ bnq

(3.21)

Replacing fb and µb, we have Peng-Robinson EOS,

p0 “
nRT

1´ bn
´

n2apT q

1` 2bn´ b2n2
. (3.22)

The total chemical potential µ is defined as

µ “
δfpnq

δn
“ µb ´ κ∇2n. (3.23)

Furthermore, the general pressure can be formulated as

p “ nµ´ f “ npµb´κ∇2nq´ pf0`
1

2
κ∇n ¨∇nq “ p0´κn∇2n´

1

2
κ∇n ¨∇n. (3.24)

— 64 —



PhD Thesis
CHAPTER 3. THE LATTICE BOLTZMANN METHOD FOR THE

HYDROCARBON FLUID SYSTEM

Lemma 1. In the isothermal condition, the gradient of the general pressure and total

chemical potential have the following relation

n∇µ “ ∇p` κ∇ ¨ p∇nb∇nq.

Proof.

n∇µ´∇p “ n∇pµb ´ κ∇2nq ´∇pp0 ´ κn∇2n´
1

2
κ∇n ¨∇nq

“ ´n∇pκ∇2nq `∇pκn∇2nq `
1

2
∇pκ∇n ¨∇nq

“ κ∇2n∇n` 1

2
∇pκ∇n ¨∇nq

“ κ∇2n∇n` p∇κ∇nq ¨∇n

“ κ
B2n

BxiBxi

Bn

Bxj
` κ

B2n

BxiBxj

Bn

Bxi

“ κ∇ ¨ p∇nb∇nq.

A. Entropy balance equation

In this section, we will use the first law of thermodynamics and entropy splitting

structure to derive the entropy balance equation. First, we define the entropy,

Helmholtz free energy and kinetic energy in a time dependent volume V ptq as

S “

ż

V ptq

sdV , F “

ż

V ptq

fdV ,E “
1

2

ż

V ptq

ρ|u|2dV, (3.25)

where s is the entropy density, u is the mass averaged velocity, ρ “ nMw is the mass

density and Mw is the molar weight.

Through using the Reynolds transport theorem and the Gauss divergence theo-

rem, we can get the following transport equation

dS

dt
“

ż

V ptq

Bs

Bt
dV `

ż

V ptq

∇ ¨ pusqdV , (3.26)

— 65 —



CHAPTER 3. THE LATTICE BOLTZMANN METHOD FOR THE
HYDROCARBON FLUID SYSTEM PhD Thesis

dF

dt
“

ż

V ptq

Bf

Bt
dV `

ż

V ptq

∇ ¨ pufqdV , (3.27)

and

dE

dt
“

1

2

ż

V ptq

Bpρu ¨ uq

Bt
dV `

1

2

ż

V ptq

∇ ¨ pupρu ¨ uqqdV

“

ż

V ptq

ρu ¨
Bu

Bt
`

1

2
u ¨ u

Bρ

Bt
dV `

1

2

ż

V ptq

ppρu ¨ uq∇ ¨ u` pu ¨ uqu ¨∇ρ` ρu ¨∇pu ¨ uqqdV

“

ż

V ptq

ρu ¨
Bu

Bt
`

1

2
u ¨ u

Bρ

Bt
dV `

1

2

ż

V ptq

ppu ¨ uq∇ ¨ pρuq ` 2ρu ¨ pu ¨∇uqqdV

“

ż

V ptq

ρu ¨ p
Bu

Bt
` u ¨∇uqdV `

1

2

ż

V ptq

u ¨ up
Bρ

Bt
`∇ ¨ pρuqqdV .

(3.28)

From the the mass balance equation

Bρ

Bt
`∇ ¨ pρuq “ 0, (3.29)

we can rewritten Eq. (3.28) as

dE

dt
“

ż

V ptq

ρu ¨
du

dt
dV (3.30)

where du{dt “ Bu{Bt` u ¨∇u.

Next, to determine the relationship among dS{dt, dF {dt and dE{dt, the total

entropy S is split into a summation of two contributions, i.e., S “ Ssys ` Ssurr. Ssys

is the entropy of the system, and Ssurr is the entropy of the surrounding, which can

be expressed as

dSsurr “ ´
dQ

T
, (3.31)

where Q is the heat transfer from the surrounding that occurs to keep the system

temperature constant. From the first law of thermodynamics, dQ satisfies the fol-

lowing equation

dQ

dt
“
dpU ` Eq

dt
´
dW

dt
, (3.32)
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where, E is the kinetic energy, W is the work done by the face force Ft.

Taking into account the relation U “ F`TSsys, and using Eqs. (3.31) and (3.32),

we have

dS

dt
“
dSsys
dt

`
dSsurr
dt

“
dSsys
dt

´
1

T

dQ

dt

“
dSsys
dt

´
1

T
p
dpU ` Eq

dt
´
dW

dt
q

“ ´
1

T

dpF ` Eq

dt
`

1

T

dW

dt
.

(3.33)

From the definition of W and Cauchys relation between face force Ft and the stress

tensor σ, we can get dW {dt as

dW

dt
“

ż

BV ptq

Ft ¨ uds

“ ´

ż

BV ptq

pσ ¨ νq ¨ uds

“ ´

ż

V ptq

pσT : ∇u` u ¨ p∇ ¨ σqqdV ,

(3.34)

where ν is the unit normal vector towards the outside of V ptq.

Substituting Eqs. (3.26), (3.27), (3.30) and (3.34) into Eq. (3.33), and taking

into account the arbitrariness of V ptq, we obtain the entropy balance equation

T p
Bs

Bt
`∇ ¨ pusqq “ ´pBf

Bt
`∇ ¨ pufqq ´ u ¨ pρ

du

dt
`∇ ¨ σq ´ σT : ∇u. (3.35)

To further reduce the entropy equation, we need to derive the transport equation

of Helmholtz free energy density. Using the relation ∇p0 “ n∇µb, mass balance

equation (3.29) and the thermodynamic relations, we obtain the transport equation
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of Helmholtz free energy density f0 as

Bfb
Bt
`∇ ¨ pufbq “ µb

Bn

Bt
` u ¨∇fb ` fb∇ ¨ u

“ µb
Bn

Bt
` u ¨ µb∇n` pnµb ´ p0q∇ ¨ u

“ ´p0∇ ¨ u.

(3.36)

Thus the transport equation of the Helmholtz free energy density f can be deduced

as

Bf

Bt
`∇ ¨ pufq “ Bfb

Bt
`∇ ¨ pufbq `

Bf∇
Bn

Bn

Bt
`∇ ¨ pf∇uq

“ ´p0∇ ¨ u´ κ∇2n
Bn

Bt
`∇ ¨ pκ

2
u∇n ¨∇nq

“ ´pp0 ´ κn∇2n´
κ

2
∇n ¨∇nq∇ ¨ u` κ∇2np∇n ¨ uq `∇pκ

2
∇n ¨∇nq ¨ u

“ ´p∇ ¨ u` p∇ ¨ pκ∇nb∇nqq ¨ u

“ ´p∇ ¨ u`∇ ¨ pκ∇nb∇n ¨ uq ´ pκ∇nb∇nq : ∇u.

(3.37)

Substituting Eq. (3.37) into Eq. (3.35), we reformulate the entropy equation as

T p
Bs

Bt
`∇ ¨ pusqq “ ppI`κ∇nb∇n´σT q : ∇u`∇ ¨ pκ∇nb∇n ¨uq´u ¨ pρ

du

dt
`∇ ¨σq,

(3.38)

where I is the second order identity tensor.

B. Hydrodynamic equations of nonideal fluids

To deduce the hydrodynamic equation from entropy equation, we consider the fluid

system in a closed system with fixed volume. Thus, the natural boundary conditions

can be formulated as

u ¨ γBΩ “ 0,
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where Ω is the fixed domain, γBΩ denotes a normal unit outward vector to the bound-

ary BΩ. Integrating Eq. (3.38) over the entire domain, we obtain the change of total

entropy S with time

T p
BS

Bt
`∇ ¨ puSqq “ ´

ż

Ω

pσT ´ pI´ κ∇nb∇nq : ∇udx´

ż

Ω

u ¨ pρ
du

dt
`∇ ¨ σqdx,

(3.39)

where x P Ω.

If we consider a realistic viscous flow, the total stress tensor σ should be formu-

lated as summation of two parts, reversible part (σrev) and irreversible part (σirrev),

σ “ σrev ` σirrev. (3.40)

To get the form of the reversible stress, an ideal reversible process is only considered.

In this case, the entropy shall be conserved and the total tress σ becomes equal to

the reversible stress σrev, which must have the form

σrev “ pI` κ∇nb∇n. (3.41)

The last term on the right hand side of Eq. (3.39) shall also be zero as

ρ
du

dt
`∇ ¨ σrev “ 0. (3.42)

Newtonian fluid theory suggests that the σirrev has the following form

σirrev “ 2ηpS´
1

D
TrSq ` ξp∇ ¨ uqI, (3.43)

where, S “ p∇u ` ∇uT q{2 is the strain rate tensor, η is the shear viscosity, ξ is

the volumetric viscosity, D is the spatial dimension. We assume that η ą 0 and

ξ ą 2{Dη, so the first term on the right-hand side of Eq. (3.39) is non-negative.

According to the second law of thermodynamics, the total entropy shall not decrease
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with time. Hence, the non-negativity of the last term on the right-hand side of Eq.

(3.39) requires that

ρ
du

dt
`∇ ¨ pσrev ` σirrevq “ 0. (3.44)

Substituting Eqs. (3.41), (3.43) into (3.44), we obtain the complete momentum

balance equation as

ρp
Bu

Bt
`u¨∇uq “ ´∇p`∇¨pηp∇u`∇uT q`pξ´

2

D
ηqp∇¨uqIq´∇¨pκ∇nb∇nq. (3.45)

From the above, the hydrodynamic equations for the nonideal fluids are

Bρ

Bt
`∇ ¨ pρuq “ 0. (3.46)

The momentum balance equation is

ρp
Bu

Bt
`u¨∇uq “ ´∇p`∇¨pηp∇u`∇uT q`pξ´

2

D
ηqp∇¨uqIq´∇¨pκ∇nb∇nq. (3.47)

From lemma 1, the above equation can be regrouped as a more compact form,

which is termed as potential form,

Bρu

Bt
`∇ ¨ pρub uq “ ´n∇µ`∇ ¨ pηp∇u`∇uT q ` pξ ´

2

D
ηqp∇ ¨ uqIq, (3.48)

where µ “ µ0 ´ κ∇2n. According to the relation ∇p0 “ n∇µ0, the momentum

balance equation can also be referred to as pressure form

Bρu

Bt
`∇¨pρubuq “ ´∇p0`∇¨pηp∇u`∇uT q`pξ´

2

D
ηqp∇¨uqIq`κn∇∇2n. (3.49)

Although the two formulations are totally identical mathematically, their discrete

versions may differ slightly due to some discretization errors, and may have signifi-

cant influences on the spurious currents [37, 71]. It is worth noting that the above

hydrodynamic equations are the general model for the diffuse interface two phase

fluid system. Any other realistic EOS can be incorporated into this model, once the

corresponding Helmholtz free energy density is known.
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3.2.2 Multiple-relaxation-time LBM

In the present work, the LBM with MRT collision operator is applied to solve the

hydrodynamic equations (3.46) and (3.48). In particular, to capture the tiny non-

convex perturbation from the linear trend of Peng-Robinson model precisely, the

Beam-Warming scheme is used in the present MRT-LBM.

The discrete velocity Boltzmann equation with MRT collision operator can be

expressed as

Bfi
Bt
` cei ¨∇fi “ ´Λijrfj ´ f

eq
j s ` Fi, (3.50)

where, fipx, tq is the discrete distribution function of particle at site x and time

t moving with speed c along the direction ei and ci “ cei, tei, i “ 0, ..., b ´ 1u

is the set of discrete velocity directions, c is the sound speed, Λij is the collision

matrix, f eqi px, tq is the equilibrium distribution function (EDF), and Fi is the force

distribution function. We now solve this discrete velocity Boltzmann equation using

a time-splitting scheme. Then, Eq. (3.50) is decomposed into two subprocesses, i.e.,

the collision process,

Bfi
Bt
“ ´Λijrfj ´ f

eq
j s ` Fi, (3.51)

and the streaming process,

Bfi
Bt
` cei ¨∇fi “ 0. (3.52)

In the MRT model, the collision subprocess can be carried out in the moment space.

Without loss of generality, we take the generally used D2Q9 model as an example.

The distribution functions fi in moment space are defined as

m “ M ¨ f “ pρ, e, ε, jx, qx, jy, qy, pxx, pxyq
T ,

where e and ε are related to total energy and the function of energy square; jx and

jy are relevant to the momentum; qx and qy are related to the x and y components of
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the energy; pxx and pxy are the corresponding diagonal and off-diagonal components

of the stress tensor, respectively. M is the transformation matrix, for the D2Q9

model, M is defined as

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1 1 1 1
´4 ´1 ´1 ´1 ´1 2 2 2 2
4 ´2 ´2 ´2 ´2 1 1 1 1
0 1 0 ´1 0 1 ´1 ´1 1
0 ´2 0 2 0 1 ´1 ´1 1
0 0 1 0 ´1 1 1 ´1 ´1
0 0 ´2 0 2 1 1 ´1 ´1
0 1 ´1 1 ´1 0 0 0 0
0 0 0 0 0 1 ´1 1 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

With the transformation matrix M, the collision process can be rewritten onto the

moment space as

Bm

Bt
“ ´rSpm´meq

q ` pF, (3.53)

where rS “ MΛM´1 is a diagonal relaxation matrix, which is given by

rS “ diagtrs0, rs1, rs2, rs3, rs4, rs5, rs6, rs7, rs8u.

Now we define the nondimensional relaxation matrix S “ δtrS, and

S “ diagts0, s1, s2, s3, s4, s5, s6, s7, s8u.

In simulations, s0 “ s3 “ s5, s4 “ s6 and s7 “ s8. We would like to point out that,

if si are equal to each other, the MRT model will reduce to the lattice BGK model.

Discretizing Eq. (3.53) using the explicit first order Euler scheme leads to

m`
“ m´ δtrSpm´meq

q ` δtpF, (3.54)

where m` “ Mf` is the postcollision moments with f` “ pf`0 , ..., f
`
8 q

T being the

postcollision distribution function.
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The equilibrium moments meq are defined as

meq
“ M ¨ f eq “ ρ

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1
´2` 3u2

1´ 3u2

u
´u
v
´v

u2 ´ v2

uv

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.55)

In addition, pF “ MF are the corresponding force moments, which have the following

form

pF0 “ 0,
pF1 “ 6p1´ s1

2
qu ¨ Ft,

pF2 “ ´6p1´ s2
2
qu ¨ Ft,

pF3 “ p1´
s3
2
qFtx

pF4 “ ´p1´
s4
2
qFtx,

pF5 “ p1´
s5
2
qFty,

pF6 “ ´p1´
s6
2
qFty,

pF7 “ 2p1´ s7
2
qpuFtx ´ vFtyq,

pF8 “ p1´
s8
2
qpuFty ` vFtxq,

(3.56)

where F “ pF0, ..., F8q
T . Ft is the total external force, which is expressed as

Ft “ Fs ` F “ pFtx, Ftyq,

where Fs represents the force associated with surface tension, and F is the exter-

nal body force, such as the gravity. For the potential form of the hydrodynamic

equations, Fs should be expressed as

Fs “ ∇pc2
sρq ´ n∇µ.

While for the pressure form, Fs has the following form

Fs “ ∇pc2
sρ´ p0q ` κn∇∇2n,
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in which the first term on the right hand side of the above equation is to cancel out

with the ideal-gas contribution to the pressure.

We solve Eq. (3.52) on a regular lattice with spacing δx using the second-order

Beam-Warming scheme,

fipx, t` δtq “f
`
i px, tq ´

A

2
p3f`i px, tq ´ 4f`i px´ eiδx, tq ` f

`
i px´ 2eiδx, tqq

`
A2

2
pf`i px, tq ´ 2f`i px´ eiδx, tq ` f

`
i px´ 2eiδx, tqq,

(3.57)

where 0 ă A ď 1 is the CFL number [25, 49] and the time step δt is determined from

the CFL condition, δt “ Aδx{c. Different from the LBM with standard propagation

scheme (called standard LBM), where the CFL number is fixed to 1, the CFL number

is an adjustable parameter in the present scheme.

The macroscopic quantities, ρ and u are calculated by using

ρ “
ÿ

i

fi, ρu “
ÿ

i

cifi `
δt

2
Ft. (3.58)

Furthermore, in the calculation of the interaction force, some gradients of scalar

variables are multiplied by the microscopic velocity set (ei ¨ ∇). These terms are

treated as directional derivatives along characteristics. The second order central

difference (CD) approximation of the directional derivative of a variable φ is expressed

as

ei ¨∇Cφpx, tq “
φpx` eiδx, tq ´ φpx´ eiδx, tq

2δx
. (3.59)

Derivatives other than the directional derivatives can be obtained by taking mo-

ments of the directional derivatives with appropriate weights to ensure isotropy

∇Cφpx, tq “
1

c2
s

ÿ

i‰0

ωiei b ei ¨∇Cφpx, tq. (3.60)
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The Laplacian term is calculated using the following isotropic differences with

second-order accuracy

∇2φpx, tq “
ÿ

i‰0

2ωirφpx` eiδx, tq ´ φpx, tqs

pcsδxq
2 (3.61)

3.2.3 From MRT-LBE to Hydrodynamic equations: Multi-
scale Chapman-Enskog expansion

Rewriting the evolution equation (3.57) up to Opδx3q, one can obtain the following

equation

fipx, t` δtq “ f`i px, tq ´ δtcei ¨∇f`i px, tq `
1

2
δt2pcei ¨∇q2f`i px, tq `Opδx3

q. (3.62)

Multiplying Eq. (3.54) by inverse of the transformation matrix M , and substituting

it into the above equation and expanding the variables around px, tq up to Opδx2q

and Opδt2q, we obtain

Btfi ` cei ¨∇fi “ Ωi ´
δt

2
rB

2
t fi ´ pcei ¨∇q2fi ` 2cei ¨∇Ωis `Opδx

2
` δt2q, (3.63)

where Ωi “ ´Λijpfj ´ f
eq
j q ` Fi.

B2
t fi can be expressed as

B
2
t fi “ pcei ¨∇q2fi ` BtΩi ´ cei ¨∇Ωi `Opδtq. (3.64)

Thus, Eq. (3.63) can be rewritten as

Difi “ p1´
δt

2
DiqΩi `Opδx

2
` δt2q, (3.65)

where Di “ Bt ` cei ¨∇.

In addition, from Eq. (3.63), we can see that Ωi “ Difi`Opδtq. Thus, Eq. (3.65)

is also equivalent to

— 75 —



CHAPTER 3. THE LATTICE BOLTZMANN METHOD FOR THE
HYDROCARBON FLUID SYSTEM PhD Thesis

Difi `
δt

2
D2
i fi “ ´Λijrfj ´ f

eq
j s ` Fi `Opδx

2
` δt2q. (3.66)

Then we introduce the following expansions:

fi “ f
p0q
i ` εf

p1q
i ` ε2f

p2q
i ` ¨ ¨ ¨ ,

B

Bt
“ ε

B

Bt1
` ε2 B

Bt2
,∇ “ ε∇1, Fi “ εF

p1q
i ,

(3.67)

where ε is a small parameter. With the expansions, Eq. (3.66) can be rewritten in

consecutive orders of ε as

Opε0
q : f

p0q
i “ f

peqq
i , (3.68a)

Opε1
q : D1if

peqq
i “ ´Λijf

p1q
j ` F

p1q
i , (3.68b)

Opε1
q : Bt2f

p0q
i `D1irpIij ´

Λij

2
qf
p1q
j s “ ´Λijf

p2q
j ´

δt

2
D1iF

p1q
i , (3.68c)

where D1i “ Bt1 ` ci ¨∇1.

Multiplying the transformation Matrix M on both side of Eq. (3.68), we can

obtain the following moment equations:

Opε0
q : mp0q

“ mpeqq, (3.69a)

Opε1
q : D1m

p0q
“ ´rSmp1q

`
pFp1q, (3.69b)

Opε2
q : Bt2m

p0q
`D1pI´

S

2
qmp1q

`
δt

2
D1

pFp1q “ ´rSmp2q, (3.69c)

where D1 “ Bt1I`CαB1α, Cα is the discrete velocity matrix.

In addition, from Eqs. (3.58) and (3.69a), we derive

ρp1q “ 0, jp1qx “ ´
δt

2
F
p1q
tx , j

p1q
y “ ´

δt

2
F
p1q
ty , ρ

pkq
“ jpkqx “ jpkqy “ 0, k ą 1. (3.70)
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On the t1 time scale, Eq. (3.69b) can be rewritten as follows:

Bt1

»

—

—

—

—

—

—

—

—

—

—

—

—

–

ρ
ρp´2` 3u2q

ρp1´ 3u2q

ρu
´ρu
ρv
´ρv

ρpu2 ´ v2q

ρuv

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

` B1x

»

—

—

—

—

—

—

—

—

—

—

—

—

–

ρu
0
´ρu

c2
sρ` ρu

2

ρBx{3
ρuv
ρuv

2ρu{3
ρv{3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

` B1y

»

—

—

—

—

—

—

—

—

—

—

—

—

–

ρv
0
´ρv
ρuv
ρuv

c2
sρ` ρv

2

ρBy{3
´2ρv{3
ρu{3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
´rs1e

p1q

´rs2ε
p1q

0

´rs4q
p1q
x

0

´rs6q
p1q
y

´rs7p
p1q
xx

´rs8p
p1q
xy

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0
6p1´ s1{2qu ¨ Ft

´6p1´ s2{2qu ¨ Ft

p1´ s3{2qFtx
´p1´ s4{2qFtx
p1´ s5{2qFty
´p1´ s6{2qFty

2p1´ s7{2qpuFtx ´ vFtyq
p1´ s8{2qpuFty ` vFtxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.71)

where Bx “ ´1` 6v2 ` 3u2, By “ ´1` 6u2 ` 3u2.

Similarly, From Eq. (3.69b), the scale equations of conserved quantities ρ, jx and

jy on the t2 time scale can be rewritten as

Bt2ρ “ 0. (3.72)

Bt2pρuq `
1

6
p1´

s1

2
qB1xe

p1q
` p1´

s7

2
qp

1

2
B1xp

p1q
xx ` B1yp

p1q
xy q `

δt

2
p1´

s1

2
qB1xpu ¨ F

p1q
t q

`
δt

2
p1´

s7

2
qB1xpuF

p1q
tx ´ vF

p1q
ty q `

δt

2
p1´

s8

2
qB1ypuF

p1q
ty ` vF

p1q
tx q “ 0,

(3.73)

Bt2pρvq `
1

6
p1´

s1

2
qB1ye

p1q
` p1´

s7

2
qpB1xp

p1q
xy ´

1

2
B1yp

p1q
xx q `

δt

2
p1´

s7

2
qB1xpuF

p1q
ty ` vF

p1q
tx q

`
δt

2
p1´

s1

2
qB1ypu ¨ F

p1q
t q ´

δt

2
p1´

s7

2
qB1ypuF

p1q
tx ´ vF

p1q
ty q “ 0.

(3.74)
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To close the hydrodynamic equations at the second order of ε, the terms of ep1q, p
p1q
xx

and p
p1q
xy in Eqs. (3.73) and (3.74) should be estimated. Under the low Mach number

assumption, these terms can be evaluated as

ep1q “ ´
1

rs1

r2ρpB1xu` B1yvq ` 3s1u ¨ F
p1q
t s `OpMa3

q, (3.75)

pp1qxx “ ´
1

rs7

r
2

3
ρpB1xu´ B1yvq ` s7puF

p1q
tx ´ vF

p1q
ty qs `OpMa3

q, (3.76)

pp1qxy “ ´
1

rs8

r
1

3
ρpB1xv ` B1yuq `

s8

2
puF

p1q
ty ` vF

p1q
tx qs `OpMa3

q. (3.77)

With Eqs. (3.75), (3.76) and (3.77), we can obtain the hydrodynamic equations

at t1 and t2 scales,

Continuity equations

Bt1ρ` B1xpρuq ` B1ypρvq “ 0, (3.78)

Bt2ρ “ 0. (3.79)

Momentum equations

Bt1ρu` B1xpc
2
sρ` ρu

2
q ` B1ypρuvq “ F

p1q
tx , (3.80)

Bt1ρv ` B1xpρuvq ` B1ypc
2
sρ` ρv

2
q “ F

p1q
ty , (3.81)

Bt2pρuq “ B1xpρνpB1xu´ B1yvq ` ρζpB1xu` B1yvqq ` B1ypρνpB1xv ` B1yuqq, (3.82)

Bt2pρvq “ B1xpρνpB1xv ` B1yuqq ` B1ypρνpB1yv ´ B1xuq ` ρζpB1xu` B1yvqq, (3.83)

where ν “ ρη and ζ “ ρξ are the kinematic and bulk viscosities, respectively. In the

present MRT-LB model, we enforce ν “ 1
3
p 1
s7
´ 1

2
qδt and ζ “ 1

3
p 1
s1
´ 1

2
qδt.
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Table 3.4: Eφ with different lattice spacings and different CFL numbers.

A=1.0 A=0.5 A=0.1 A=0.05
mesh Eφ order Eφ order Eφ order Eφ order
128 1.02ˆ 10´2 – 9.58ˆ 10´3 – 9.14ˆ 10´3 – 8.82ˆ 10´3 –
256 2.81ˆ 10´3 1.8923 2.56ˆ 10´3 1.9057 2.43ˆ 10´3 1.9112 2.54ˆ 10´3 1.9163
512 7.51ˆ 10´4 1.9015 6.78ˆ 10´4 1.9142 6.48ˆ 10´4 1.9069 6.67ˆ 10´4 1.9272

Combining the above equations on t0 and t1 scale, the following hydrodynamic

equations can be obtained,

Btρ`∇ ¨ pρuq “ 0, (3.84)

Bρu

Bt
`∇ ¨ pρubuq “ ´∇c2

sρ`∇ ¨ rρνp∇u`∇uT q ` ρpζ ´ νqp∇ ¨uqIs `Ft. (3.85)

3.2.4 Numerical experiments

In this section, we will implement a series of numerical simulations to demonstrate

the effectiveness of the proposed thermodynamic consistent MRT-LBM.

A. Accuracy test

In this subsection, numerical experiments are designed in two-dimensional space to

test the temporal accuracy of the proposed MRT-LB model with B-W scheme. The

substance isobutane (nC4) at temperature 350K is simulated. Critical properties,

initial molar densities of liquid nl and gas ng, and the normal boiling point of nC4

are provided in Table 3.5. The initial condition is set as: the molar density equals

the liquid isobutane under a saturated pressure in the region p0.3L, 0.7Lq2, where

L “ 2 ˆ 10´8 meters, thus the effect of gravity can be neglected in such scale. The

rest of the domain is filled with a saturated isobutane gas. The periodic boundary

condition is imposed.

The 1024ˆ1024 mesh is selected as the benchmark solution for computing errors

and the time step is fixed to 1.0 ˆ 10´9. The following global relative error is used
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Figure 3.7: Two phase coexistence curve.

to measure the accuracy:

Eφ “
Σ|φpx, tq ´ φ˚px, tq|

Σ|φ˚px, tq|
, (3.86)

where φ and φ˚ are the numerical solution and benchmark one, respectively, and

the summation is taken over all grid points. The errors are listed in Table 3.4 with

different meshes. It is shown that the proposed LBM gives second-order accuracy in

space and the accuracy is independent on the values of CFL number A.

B. The two-phase coexistence densities

The two-phase coexistence densities solved by the Maxwell equal-area construction

are used as the benchmark to verify the thermodynamic consistency of the numerical

multiphase models. With horizontal phase interfaces, the middle part of the domain

is initialized as liquid, and the remaining part is set as gas. The value of κ is set

to be 0.01. The Peng-Robinson EOS, which is widely used in the oil industries

and petroleum engineering, is considered in this work. The parameters are set as

apT q “ 2
49
r1` p0.37464` 1.54226ω ´ 0.26992ω2q ˆ p1´

a

T {Tcqs
2 with the acentric

factor ω “ 0.344, b “ 2{21 and R “ 1. Thus, the critical temperature and density are

Tc “ 0.072919 and ρc “ 2.657304, respectively. In simulations, the computational
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Table 3.5: Relevant data of nC4.

Tc, K Pc, MPa Tb, K ng nl
425.18 3.797 272.64 403.17 8878.89

domain is a 127ˆ 127 square with periodical boundary condition, the CFL number

is set to be 0.5, and the D2Q9 lattice model is used. The relaxation parameters can

be determined by a linear stability analysis [36] and noted that s0, s3 and s5 have

no influence on the deriving of the hydrodynamic equations. Thus, for simplicity,

the relation s0 “ s3 “ s5 “ 1.0 is used [46], and s7 “ s8 “ 1.2 is corresponded to

the kinematic viscosity ν “ 0.01. The other relaxation parameters are chosen as:

s1 “ s2 “ 1.0 and s4 “ s6 “ 1.7 [16]. It can be clearly seen from Fig. 3.7 that the

resulted coexistence densities of Peng-Robinson EOS are in excellent agreement with

the benchmark computed by the Maxwell equal-area construction. These results

numerically confirm that the present model is thermodynamically consistent.

C. Spurious currents

In this section, a realistic hydrocarbon component of isobutane (nC4) in three di-

mensional space is simulated to investigate the spurious currents. The computation

domain is Ω “ p0, LDq
3, where LD “ 2 ˆ 10´8 meters, thus the effect of gravity

can be neglected in such scale. The initial condition is to impose the liquid den-

sity of hydrocarbons under saturated pressure condition at 350K in the region of

p0.3LD, 0.7LDq
3, and the rest of the domain is filled with saturate gas of nC4 under

the same temperature. The critical properties, the initial molar densities of liquid

nl and gas ng, the normal boiling point of nC4 are provided in Table 3.5. In the

numerical simulation, a 200 ˆ 200 ˆ 200 uniform cubic mesh grid and the D3Q15

lattice model are used. The transformation matrix of the D3Q15 model and other

related parameters has the following form:

The 15 discrete velocities tei|i “ 0, 1, . . . , 14u of the D3Q15 lattice model are
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Time evolution of the molar density distribution.

given by

ei “

»

–

0 1 ´1 0 0 0 0 1 ´1 1 ´1 1 ´1 1 ´1
0 0 0 1 ´1 0 0 1 1 ´1 ´1 1 1 ´1 ´1
0 0 0 0 0 1 ´1 1 1 1 1 ´1 ´1 ´1 ´1

fi

fl ,

and the weight coefficients ωi are presented as

ωi “
2

9
, ω1´6 “

1

9
, ω7´14 “

1

72
.

The moment vector m is defined as

m “ pρ, e, ε, jx, qx, jy, qy, jy, qz, 3pxx, pww, pxy, pzx,mxyzq
T .
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Figure 3.9: Time evolution of the average kinetic energy.

The non-dimensional relaxation matrix S is given as

S “ diagp1, s1, s2, 1, s3, 1, s3, 1, s3, s4, s4, s4, s4, s4, s5q.

The transformation matrix M for the D3Q15-MRT model is a 15ˆ15 matrix, which

is given by[13]

M “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
´2 ´1 ´1 ´1 ´1 ´1 ´1 1 1 1 1 1 1 1 1
16 ´4 ´4 ´4 ´4 ´4 ´4 1 1 1 1 1 1 1 1
0 1 ´1 0 0 0 0 1 ´1 1 ´1 1 ´1 1 ´1
0 ´4 4 0 0 0 0 1 ´1 1 ´1 1 ´1 1 ´1
0 0 0 1 ´1 0 0 1 1 ´1 ´1 1 1 ´1 ´1
0 0 0 ´4 4 0 0 1 1 ´1 ´1 1 1 ´1 ´1
0 0 0 0 0 1 ´1 1 1 1 1 ´1 ´1 ´1 ´1
0 0 0 0 0 ´4 4 1 1 1 1 ´1 ´1 ´1 ´1
0 2 2 ´1 ´1 ´1 ´1 0 0 0 0 0 0 0 0
0 0 0 1 1 ´1 ´1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 ´1 ´1 1 1 ´1 ´1 1
0 0 0 0 0 0 0 1 1 ´1 ´1 ´1 ´1 1 1
0 0 0 0 0 0 0 1 ´1 1 ´1 ´1 1 ´1 1
0 0 0 0 0 0 0 1 ´1 ´1 1 ´1 1 1 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

For the numerical example, initially, a cubic bubble is put in the center of the

computational domain. As time evolves, the cubic droplet becomes a sphere-like
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Figure 3.10: Time history of the average kinetic energy with different CFL numbers.

shape due to the surface tension (see Fig. 3.8). After convergence, the droplet

shape appears to be a perfect sphere. Then, we take the average kinetic energy

E “
ş

1
2
ρ|u|2dx as an indicator of the spurious currents strength. To illustrate the

performance of the presented MRT-LB model, the MRT-LB models with standard

and B-W schemes for both pressure form and potential form of the surface force are

implemented to measure the average kinetic energy. From Fig. 3.9, we can see that

the average kinetic energy with potential form initially decreases at the same rate as

that with the pressure form of standard and B-W schemes. But as time evolves, the

average kinetic energy of the potential form is smaller than that of the pressure form.

In addition, we also found that the use of the B-W scheme with the potential form

of the surface force can effectively reduce the magnitude of the spurious currents.

Next, to examine the relationship between the value of CFL number A and the

spurious currents, the average kinetic energy with different values of A is numerically

studied by the B-W scheme with potential form. From Fig. 3.10, we can see that

the magnitude of the average kinetic energy decreases with the decrease of the value

of A. However, the computational efficiency is reduced with the decrease of A.

To balance the computational efficiency and the accuracy, a moderate value of A
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(a) (b)

(c) (d)

Figure 3.11: Time evolution of the multiple merging droplets; (a) t “ 100, (b)
t “ 400, (c) t “ 1000, (d) t “ 2000.

Table 3.6: Initial molar densities of nC4.

T ng nl
255.02K 22.082 1.1274ˆ 104

270.90K 43.757 1.0939ˆ 104

285.43K 71.480 1.0639ˆ 104

299.48K 109.81 1.0321ˆ 104

315.82K 173.08 0.9912ˆ 104

333.28K 270.37 0.9419ˆ 104

should be chosen. In addition, to demonstrate the capability of the proposed LBM,

the multiple merging droplets are simulated. Fig. 3.11 shows the simulated molar

density distribution for the eight droplet case at different times during the evolution.

The eight cubic droplets firstly evolve into eight separate spheres, then start to merge

and finally form one bigger sphere.
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Figure 3.12: Numerical validation: (a) Comparison of surface tension, (b) validation
of Laplace law.

D. Calculation of surface tension and validation of Young-Laplace law

To illustrate that the proposed MRT-LBM can simulate the realistic hydrocarbon

species in oil-gas system quantitatively, the interface tensions σ of nC4 at different

temperatures have been computed and compared with previous simulation results

and laboratory data. The initial values of nl and ng for nC4 at different temperatures

are give in Table 3.6. Here we still use the Method 1 in Chapter 2 to calculate the

interface tensions. The numerical results of σ for nC4 by the present MRT-LBM

are compared with the experimental data and the previous work [59] (see Fig. 3.12

(a)). It can be seen that the simulation results agree well with the laboratory data.

In addition, simulation results are more accurate than the results from the two

dimensional simulations without considering the width of the two phase interface.

Next, the well-known Young-Laplace equation is also verified in this work. In

Fig. 3.12 (b), we can clearly see that the capillary pressures of nC4 predicted by the

LBM and those by the Young-Laplace equation are well matched.
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3.3 Chapter summary

In this chapter, we study the LBM for the non-ideal hydrocarbon fluid problems.

First, in order to test the feasibility of the LBM, we use the lattice BGK method

to solve the equilibrium single-component multi-phase problem. We find that the

LBM can perfectly solve this kind of problems. After that, we use the MRT-LBM

with B-W scheme to solve the single-component hydrocarbon fluids flow problems

with a constant temperature. The multi-scale Chapman-Enskog analysis shows that

the second order accuracy can be naturally achieved by this MRT-LBM without any

other requirements and numerical boundary conditions. The quantitative numeri-

cal results in this work also show that predictions of surface tension have a great

agreement with laboratory data.
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Chapter 4

Conclusions & Future Work

In this chapter, we would like to end the thesis with some concluding remarks and

some possible future work.

4.1 Concluding remarks

In our research, we mainly concern about phase problems occurred in the oil industry.

For diffuse interface problems with Peng-Robinson EOS, we conduct our research in

two broad areas. For oil exploration related problems, which pay much attention

to the static physical properties on the phase interface, we use energy stable SAV

schemes to solve the single-component and multi-component equilibrium problems.

For oil exploitation problems, which concern about the dynamic nature of the hy-

drocarbon fluids, due to complex boundary conditions and geometries, we introduce

the LBM for solving the hydrocarbon fluid problems.

To be specific, in Chapter 2, we firstly investigate the fourth-order Cahn-Hilliard

type model to describe the equilibrium state of the multi-phase one-component

hydrocarbon substances. Then, we propose a first-order and a second-order SAV

schemes to solve the model in three dimensional space. After that, based on the

previous work [18], we modify the multi-component two-phase equilibrium model

by adding the mobility term. Then, a second-order SAV-CN scheme is applied to
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solve the model. Our numerical results have demonstrated the effectiveness of the

developed numerical schemes and have a great agreement with previous simulation

data and laboratory data.

In Chapter 3, we mainly focus on properties of single-component fluids and we

want to introduce the LBM to give an alternative way to solve the hydrocarbon fluids

flow problems efficiently. Therefore, we firstly investigate a second-order Allen-Cahn

type model to simulate the single-component two-phase hydrocarbon substances at

the equilibrium state. Then we use the lattice BGK model to solve the model to check

the feasibility of the LBM with the hydrocarbon species. After that, we design a

fluid model combined with Peng-Robinson EOS with a constant temperature under

principles of thermodynamics. Here, we use the MRT-LBM in combination with

B-W scheme to solve the model in order to get high-order numerical results and

alterable CFL number. Numerical results of proposed schemes can meet well with

our expectations and show that the potential form performs better than the pressure

form.

4.2 Future work

As mentioned above, in this thesis, we have a preliminary discussion on two important

issues of the oil industry. There are many aspects worthy of further investigations in

the future.

For energy stable schemes of equilibrium problems, firstly, in the research process,

we found that the calculation difficulty of the whole system is increased after adding

one more component. Therefore, we can do some works to optimize the existing

energy algorithm or modify the model itself. Secondly, for the phase-field model

based on the actual EOS, the selection of the initial value is still a challenging

problem. In this thesis, we have systematically summarized how to set up the initial
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value of the phase separation of hydrocarbon substances. However, the solution

process has much to be improved. Methods involved in this work are simple and

we can not get the globally optimal solution of the approach. In the future, we can

optimize existing methods to get the initial value. At last, for the SAV approach,

we found that, when we want to solve the problems with real EOS by using this

approach, some computational challenges will arise. To overcome this, sometimes

we need to add the stabilization term to ensure the stability of the system. In

the following research, it is worth modifying the SAV approach in order to make it

feasible for calculating some realistic problems without destroying its high-efficiency

nature.

Finally, for the LBM of hydrocarbon fluids flow problems, some further issues

need to be taken into consideration. Firstly, in numerical experiments, we com-

pare our simulation results with the experimental data for some common benchmark

problems. Advantages of the LBM in dealing with complex boundary and complex

geometry are not shown yet. In the future work, we can use the LBM to solve some

practical problems occurred in the oil transportation. Besides, all the current works

are concerned under isothermal conditions. In practice, when the phase transition

of a substance (evaporation or boiling) happens, non-isothermal conditions should

be considered in many cases. It has many challenges to solve non-isothermal multi-

phase flow problems, which is very important in the oil industry. In the future, we

will consider the corresponding non-isothermal model based on the Dynamic Van der

Waals theory [52, 53]. It can be shown as follows

In order to describe an inhomogeneous temperature fluid system, here, we use

the Dynamic Van der Waals theory to build the model. The internal energy density

e, pressure p and entropy per particle s have the following forms

e “ f ` Tsn “
3

2
nkBT ´ εv0n

2, (4.1)
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p “
nkBT

1´ v0n
´ εv0n

2, (4.2)

e “ ´kBlnr
λ3
thn

1´ v0n
s `

5kB
2
. (4.3)

They are given from the following thermodynamic relations: the Helmoholtz free

energy density

fpn, T q “ nkBT lnrλ3
th{p1´ v0nqs ´ nkBT ´ εv0n

2,

the pressure

p “ ´f ` nBf{Bn,

and the entropy relation

ns “ ´Bf{BT.

Here, v0 “ a3 represents the particle volume, n represents the number density, T

represents the absolute temperature, kB represents the Boltzmann constant, λth “

h
b

2π
mkBT

is the thermal Broigle wavelength (h is the Planck constant), m is the

particle mass and ε is the attractive interaction energy.

In order to describe the multi-phases in-homogeneous fluid, we consider to use the

number density n as the order parameter to build the framework. First, we introduce

the expansion of the internal energy and the entropy with the gradient contribution

because of the phase behaviour.

ê “ e`
Kpnq

2
|∇n|2, (4.4)

Ŝ “ ns´
Cpnq

2
|∇n|2. (4.5)

The coefficients Kpnq and Cpnq are positive to ensure that the total entropy reaches

the maximum and the total energy reaches the minimum when the gradient terms

vanish. Normally, we treat the coefficient Kpnq “ 0 and Cpnq equal to a constant C.
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The entropy in the bulk region is

Sb “

ż

drŜ,

using the Gibbs equation dpnsq “ 1
T
de´ µ

T
dn we can have

δSb “

ż

drt
1

T
δe´

µ

T
δn´ δr

C

2
|∇n|2su, (4.6)

where µ is the chemical potential and µ “ Bf
Bn

.

Considering the relation f “ e´ Tns, (4.6) can be reformed to

δSb “

ż

drt
1

T
δê´

1

T
δr
G

2
|∇n|2su, (4.7)

where G “ K`CT . In this system, the chemical potential should have the following

form

µ̂ “ ´T p
δSb
δn
q “ µ`

BG
Bn

2
|∇n|2 ´ T∇ ¨ pG

T
∇nq. (4.8)

Then considering the generalized Euler equation

ê´ T Ŝ ` p̂´ nµ̂ “ 0, (4.9)

we can get the generalized pressure p̂

p̂ “ p´
G

2
|∇n|2 `

nBG
Bn

2
|∇n|2 ´ Tn∇n ¨∇G

T
´Gn∇2n. (4.10)

In this work, we set Kpnq “ 0 and Cpnq equals to a constant. Then the generalized

can be simplified as p̂ “ p´ CT
2
|∇n|2 ´ CTn∇2n.

After these, we consider the following fluid function dynamic system:

Bn

Bt
`∇ ¨ p~vnq “ 0,

Bρ~v

Bt
`∇ ¨ p~vρ~vq “ ∇ ¨M ´ ρg~ez,

BeT
Bt
`∇ ¨ peT~vq “ ∇ ¨ rM~v ´ ~qs ´ ρgvz,

(4.11)
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which describes the transportation behaviour of the mass density ρ “ mn, the mo-

mentum density ρ~v and the total energy density eT “ ê ` ρ~v2{2. Variables in this

system are as follows: upward unit vector along the z axis ~ez along with vz “ ~v~ez,

the stress tensor M “ σ ´ Π, where σ “ ηp∇~v ` ∇~vT q ` pξ ´ 2η{3qp∇ ¨ ~vqI is the

irreversible part and the reversible part Π “ ´CT∇n∇n´ p̂I (η represents the shear

viscosity, ξ represents the bulk viscosity, ~q “ ´λc∇T represents heat flux where λc

is the heat conduction).

In the future, we will develop efficient LBM to solve (4.11).
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