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for the degree of Doctor of Philosophy in 

Electrical Engineering 

at The Hong Kong Polytechnic University in (05/2019) 

Abstract 

Power transformer is one of the key equipment in power systems, and higher 

requirements on the capacity, efficiency, size, and stability are generated from the 

utilities. An accurate and efficient design process, especially the thermal design, is 

crucial to fulfill these requirements. In order to tackle the existing problems in 

transformer cooling, the transformer analysis and design methods are investigated 

along with the application of a novel coolant, namely, nanofluid.  

An adaptive degrees-of-freedom (DoFs) finite element method (FEM) solver is 

developed for the 3-dimensonal (3D) coupled magneto-thermal field analysis, which 

is based on the independent solvers for the magnetic field and thermal field. In the 

adaptive DoFs FEM, the system size reduction is realized by eliminating the redundant 

DoFs from the unknown list rather than removing the corresponding nodes, which is 

adopted in conventional adaptive FEMs. Hence the rearrangement of mesh data and 

the storage space for the former mesh are avoided. The slave-master technique is 

employed in the elimination process in combination with the constraint proposed for 

3D field. One set of FEM mesh is used in the coupled magneto-thermal analysis to 

build the finite element (FE) spaces for these two fields, and the DoFs in each field are 

adjusted separately according to the field’s requirement in discretization. Hence, the 

different discretization requirements of these two fields are met with one set mesh, and 

the mapping algorithms for different meshes are no longer required. Several numerical 
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examples are solved to showcase the effectiveness of this method in terms of efficiency 

and accuracy.  

Excessive temperature rises of hot-spots, which are commonly located in the 

windings, accelerate the aging of insulating materials and reduce the transformer 

service life. In addition, the electrification of oil is exacerbated by the increased flow 

velocity. The novel coolant, i.e. nanofluid, has the potential to reduce the hot-spot 

temperature rise by improving the thermal conductivity. In order to apply the nanofluid 

in transformer cooling, the convective heat transfer of oil/SiC nanofluid in disc-type 

transformer windings is numerically investigated. The computational fluid dynamics 

(CFD) model and numerical method used in the study are validated with the existing 

results of oil cooled transformer windings. One pass of the winding is modelled 

numerically, in which two different inlet position are concerned. It is the first time to use 

the multi-phase mixture model to analyze such a nanofluid flow. In addition, the single-

phase model is also employed for mutual authentication and comparison. Although the 

effects that the oil/SiC nanofluid of 1% concentration has on the flows in passes of 

different inlet positions vary, comprehensive temperature drop over these two types of 

passes is observed after adding the nanoparticles. For the pass with inlet in the internal 

vertical duct, the ameliorative mass flow rate distribution further improves the heat 

transfer performance. In addition, the relation between the volume fraction of 

nanoparticles and the effect on the thermal and fluidic field is positive. To further 

investigate the nanofluid flow in disc-type transformer windings, a numerical mode is 

built for the entire winding with four passes. The results show that there is an overall 

reduction on the disc average temperature after adding nanoparticles, and the 

temperature distribution along the passes is maintained. It can be concluded that the heat 

transfer improvement after using nanofluid is mainly produced by the enhanced thermal 

conductivity, and the mass flow rate distribution changes produce the inhomogeneous 

temperature reduction of discs. In addition, the lower coolant temperature enhances the 

effect of nanofluid in the fourth pass.  

Since the numerical analysis process is exceedingly time-consuming, a response 

surface optimization method is proposed to improve the efficiency of oil-immersed 
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transformers cooling system design. Based on the accurate CFD modeling and the 

central composite design method, surrogate models, which are used to replace the 

initial CFD model in the optimization, are produced by these two adopted response 

surface methods, namely, the Kriging method and the second order polynomial method. 

Refinement points are gradually added into the set of design points until the derived 

surrogate models meet the predefined criterion. The surrogate model obtained with the 

Kriging method, which is validated to be more accurate, is adopted in the response 

surface optimization process, and the direct optimization method combined with the 

CFD model is also adopted for comparison. An oil-immersed transformer optimization 

problem is employed to showcase the effectiveness of this proposed optimization 

method, in which roughly 40% of the computational resources used in the direct 

optimization method are saved by the proposed method.  
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Chapter 1   Introduction 

 

 

1.1 Background and Motivation of the Thesis 

Electromagnetic devices, such as generators, transformers, power electronics, 

motors and so on, build the modern energy conversion system. With the advancement 

of industry and the improvement of environmental awareness, increasing requirements 

are raised on the performance of electromagnetic devices. In China, ultra-high voltage 

(UHV) power transmission is constructed to connect the energy resources in the 

northern and western areas with the power utilization in the central and eastern areas 

[A1]. Large capacity power transformers with high insulation level and good cooling 

performance are needed to fulfill the practical application. In addition, miniaturization 

is the major concern for transformers used in downtown. In order to meet these targets, 

both electromagnetic design and thermal design should be included in the design 

process [A2].  

With the advantages in convenience and efficiency, analytical equations based 

design methods are widely used in the transformer industry in combination with 

empirical coefficients [A3-A5]. Computer was introduced into the transformer design 

for the first time in 1955 [A6], followed by many studies on computer aided 

transformer design [A7-A12]. The manufacturing cost and the operating cost are two 

common objective functions for transformer design[A3], while the obtained optimal 

design should satisfy the utility’s requirements and the transformer standards, such as 

ANSI/IEEE standards, CENELEC standards, and IEC standards. In order to achieve 

the best utilization of existing materials, optimization algorithms are employed in the 

design process. Several optimization methods, such as geometric programming [A13], 

genetic algorithm [A14-A16], neural network [A17, A18], gamma differential 

evolution approach [A19] and so on [A20-A22], are applied in the transformer design 
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optimization (TDO). According to the number of object functions, optimization 

algorithms are classified into two categories, the single-objective optimization method 

and the multi-objective optimization method.  

Benefitting from the advancement of computer technology and simulation tools, 

it is common to conduct a numerical analysis of one separate field in transformers to 

derive the electromagnetic or thermal performance [A3]. The finite element method 

(FEM), which was applied to solve the electromagnetic field since 1960s [A23], is the 

dominant algorithm in low-frequency electromagnetics. Potentials are introduced to 

transform the Maxwell equations to facilitate the computation, and the generated 

formulations are classified to the magnetic vector potential (MVP) formulation [A24-

A29] and the magnetic scalar potential (MSP) formulation [A30-A36]. Compared with 

the MVP formulations, the number of unknowns in the MSP formulations are 

dramatically reduced. However, complicated treatments are required for MSP 

formulations when solving eddy current problems with multiply-connected conductors 

[A35-A38]. The nonlinear materials can be handled with the Newton-Raphson (NR) 

method, and the resulted sparse linear system is solved by linear solvers, such as 

Pardiso solver and ICCG solver. Similarly, several numerical methods, such as the 

finite difference method (FDM) and the FEM, are applied to solve the heat conduction 

problem of thermal field [A39, A40]. In addition, co-simulation for the coupled 

magneto-thermal field was introduced to the analysis and design of transformers to 

obtain a more accurate solution [A2, A41, A42], while the computational burden is 

increased dramatically. Two common coupling strategies are adopted for the magneto-

thermal field analysis. The first strategy is generating a sufficiently refined mesh for 

both fields, and two meshes are generated separately for each field in the other strategy 

[A43]. Additional mapping algorithms are needed for two different meshes, while 

unnecessary cost of computational resources is produced in the first strategy [A44, 

A45].  

Since analytical equations have poor accuracy and extensibility, FEM was 

introduced to the design process to validate the performance estimated by analytical 

equations [A46, A47] or to compute some parameters, such as no-load losses [A48] 
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and load losses [A49]. Limited by the computational resources, TDO fully based on 

numerical models is very rare [A50, A51], and the design process is exceedingly time-

consuming. In the numerical analysis tools, the device to be designed is parameterized, 

and the design variables values are changed according to the feedbacks from 

optimization algorithms. To improve the optimization efficiency, response surface 

methods are introduced into the optimization process to generate a surrogate model to 

replace the numerical model [A52].  

In addition to improving the comprehensive utilization of materials with 

optimization algorithms, the development of new materials, which may have superior 

properties compared to existing materials, is critical. The concept of enhancing the 

thermal conductivity of liquid by adding solid particles with high thermal conductivity, 

which was proposed in 1873 by Maxwell, was realized with nanoparticles in 1995 

[A53]. For this reason, this type of multi-phase mixture is named as nanofluid. Several 

types of transformer oil based nanofluids are prepared and measured [A54-A56], and 

it is reported that the thermal conductivity is improved dramatically after dispersing 

nanoparticles, which indicates the potential application in transformer cooling. The 

nanofluid flows in simple containers are investigated numerically and experimentally 

[A57-A60], and models are proposed to estimate or predict the nanofluid properties 

[A61]. In addition, the multi-phase model and the single-phase model are used in the 

numerical study to investigate the nanofluid flow, and the multi-phase model is 

reported to be more accurate [A58-A60].  

In the challenges involved to improve the transformer cooling performance, this 

thesis mainly focuses on numerical method, design algorithm and the application of 

nanofluid. For real-life engineering optimization problems with many design 

parameters, the design points needed to be estimated with simulation tools are 

tremendous even with efficient evolutionary algorithms. Moreover, a large scale 

system may be produced to ensure the accuracy, and highly nonlinear materials may 

be included in the problem. Hence, the entire transformer design process will be 

exceedingly time-consuming. Secondly, coupled magneto-thermal field analysis is 

becoming increasingly critical for the analysis and design of transformers, and the 
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existing solvers for coupled magneto-thermal field analysis is either time-consuming 

or complicated. Lastly, most of the former studies of transformer oil based nanofluids 

were focused on the material properties, and there is no experimental study or 

numerical analysis on the flow and temperature distribution in nanofluid cooled 

transformers. 

 

 

1.2 Research Objectives and Contributions 

This study focuses to tackle the existing problems of transformer cooling through 

proposing efficient analysis and design methods, and applying the novel coolants, i.e. 

nanofluids, in the transformer cooling system. The contributions of this study are: 

1) An adaptive degrees-of-freedom (DoFs) FEM solver is developed for the 3-

dimensional (3D) nonlinear magnetic field analysis with the objective 

oriented C++ programming language, and this method is then extended to 

solve the heat conduction problem of thermal field.  

2) Based on the adaptive DoFs FEM, a coupled solver is developed for the 

magneto-thermal field analysis. One set of FEM mesh is used for both fields, 

while meeting the different discretization requirements.  

3) A response surface optimization algorithm is proposed for the transformer 

cooling system optimization, in which the numerical model of transformer 

built with computational fluid dynamics (CFD) tools is included.  

4) The natural convective heat transfer of nanofluid-filled transformer windings 

is numerically studied with the 2-dimensional (2D) models of one pass and 

the entire winding.  

 

 

1.3 Thesis Organization 

The remainder of this thesis is organized in the following manner. Chapter 2 
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reviews the computational electromagnetics, the computational heat conduction, and 

the coupled analysis of these two fields. Detailed discretization equations of the 

governing equations derived by the FEM are given in this chapter. In addition, the 

analysis and design methods of power transformers are introduced along with the 

transformer oil based nanofluid. In Chapter 3, the adaptive DoFs FEM is introduced 

and is developed to solve the 3D nonlinear magnetic field, thermal field, and coupled 

magneto-thermal field. The natural convective heat transfer of nanofluid-filled 

transformer windings is studied with the numerical models of windings in Chapter 4. 

In Chapter 5, a response surface optimization method, which is proposed for the 

cooling system design optimization, is presented. Finally, Chapter 6 gives conclusion 

of this thesis and scope for future work. 
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Chapter 2   Literature Review 

 

 

2.1 The FEM for Low-frequency Electromagnetic 

Problems 

2.1.1 Maxwell Equations 

Nowadays, numerical analysis of electromagnetic fields has become a powerful 

tool for industrial application, such as transformer analysis and design [B1]. The 

numerical analysis process includes a series of procedures, such as building the 

numerical model, discretizing the field and the computational domain, solving the 

resulting algebraic equations, and post-processing the derived results [B2]. The most 

widely used numerical method in the electromagnetic field analysis is the FEM, which 

is based on the differential form of Maxwell equations,   

⎩
⎪
⎨

⎪
⎧𝛻 × 𝑯 = 𝑱 +

𝜕𝑫

𝜕𝑡
   (𝑎)

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡
     (𝑏)

𝛻 ∙ 𝑩 = 0         (𝑐)
𝛻 ∙ 𝑫 = 𝜌         (𝑑)

(2 − 1) 

where; 𝑯  is the magnetic field intensity (A/m) , 𝑱  is the current density (𝐴/

𝑚ଶ), 𝑫 is the electric displacement vector (𝐶/𝑚ଶ), 𝑬 is the electric field intensity 

(𝑉/𝑚), 𝑩 is the magnetic flux density (𝑇), 𝑡 is the time (𝑠) and 𝜌 is the charge 

density (𝐶/𝑚ଷ) . The second term of the right-hand-side of equation (2 − 1a)  is 

named as displacement current density, which is generally neglected in the low-

frequency electromagnetic field analysis. These four equations are not independent, as 

the latter two equations can be derived from the first and second equations. Three more 

constitutive relations are needed for the definite solution of Maxwell equations, 
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ቐ

𝑩 = 𝜇𝑯  (𝑎)

𝑱 = 𝜎𝑬  (𝑏)
𝑫 = 𝜀𝑬  (𝑐)

(2 − 2) 

where, 𝜇 , 𝜎 , 𝜀  are, respectively, the magnetic permeability, the electrical 

conductivity, and the permittivity of the dielectric. In addition, the current continuity 

equation, which is critical for the following numerical computation, can be derived 

from equation (2 − 1a) and (2 − 1𝑑),  

𝛻 ∙ 𝑱 +
𝜕𝜌

𝜕𝑡
= 0 (2 − 3) 

In the low-frequency electromagnetic field, the wavelength is much longer than 

the size of devices, and the field varies instantaneously with the source rather than 

lagging behind the source. Thus, the displacement current is very small when 

compared with the conducting current, and it can be ignored in the electromagnetic 

field analysis for low frequency devices, such as power transformers, electric motors, 

sensors, induction heating devices and so on. This type of problems, in which the 

displacement current is neglected, are named as eddy current problems. The governing 

equations for the eddy current problem can be further modified for specific problems 

to simplify the computation. Besides, it is quite difficult to solve the Maxwell 

equations directly, since it involves five vector unknowns. A general pattern is to 

introduce electric and magnetic potentials to replace the field functions, and there are 

several types of combinations for these two potentials, such as the MVP (𝑨) form 

and the MSP or the electric vector potential (EVP, 𝑻) form. 

 

 

2.1.2 The 𝑨 − 𝝋 Formulation for the Eddy Current Problems 

In eddy current problems, the computational domain is generally divided into two 

parts, the eddy current free region and the eddy current region [B3]. Components filled 

with non-conducting material, such as air, insulation, non-conducting ferromagnet, 

and some special components, in which the eddy current is negligible, are assigned to 
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the eddy current free region with 𝜎 = 0. The corresponding governing equations are 

given by  

൜
𝛻 × 𝑯 = 𝑱        (𝑎)

𝛻 ∙ 𝑩 = 0         (𝑏)
(2 − 4) 

Other components, including the solid conductors, conducting ferromagnet, and steel 

structure, are assigned to the eddy current part with 𝜎 > 0 , and the governing 

equations are given by 

൞

𝛻 × 𝑯 = 𝜎𝑬     (𝑎)

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡
   (𝑏)

𝛻 ∙ 𝑩 = 0        (𝑐)

(2 − 5) 

 

 

Fig. 2.1. A typical computational domain for eddy current problems. 

 

As shown in Fig. 2.1, a typical computational domain for eddy current problems 

is divided into two parts, the eddy current region 𝑉ଵ without source current and the 

eddy current free region 𝑉ଶ, which contains the source current. The definite conditions 

for the differential governing equations are also given, including the decomposed 

external boundary conditions (𝑆஻, 𝑆ு)  and the internal boundary condition (𝑆ଵଶ) . 

The normal component of the magnetic flux density is predefined on 𝑆஻ , and the 

predefined parameter on 𝑆ு  is the tangential component of the magnetic field 

intensity [B3, B4]. For simplicity, the boundary conditions on 𝑆஻  and 𝑆ு  are 

assumed to be homogenous. The internal boundary 𝑆ଵଶ is the interface between the 

conducting material and the non-conducting material. Across this interface, the 
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continuity of the tangential component of the magnetic field intensity and the 

continuity of the normal component of the magnetic flux density hold. Thus, these 

three boundary conditions are given as follows:  

𝑩 ∙ 𝒏|ௌಳ
= 0

𝑯 × 𝒏|ௌಹ
= 𝟎

𝑆ଵଶ: ൜
𝑩ଵ ∙ 𝒏ଵଶ = 𝑩ଶ ∙ 𝒏ଵଶ

𝑯ଵ × 𝒏ଵଶ = 𝑯ଵ × 𝒏ଵଶ

(2 − 6) 

Where; 𝒏 is the unit normal vector of boundary 𝑆; 𝒏ଵଶ is the unit normal vector of 

boundary 𝑆ଵଶ. For a simple-connected domain with determined initial conditions, the 

uniqueness of 𝑩 and 𝑬 can be ensured by the equations listed above. 

In the 3D eddy current field analysis, there are totally six unknown functions in 

the electromagnetic field (𝑩  and 𝑬 ). To reduce the computational effort, different 

potential formulas, which are derived from the field governing equations, are widely 

adopted in the numerical analysis of eddy current problems. The potential formulations 

are classified into two types, the 𝑨 form [B3, B5-B9] and the 𝑻 form [B10-B16]. 

Generally, the eddy current problem is formulated with the vector potential of one field 

and the scalar potential of the other field, such as the 𝑨 − 𝜑 formula and the 𝑻 − Ω 

formula. Although the combinations are different from each other, a vector potential 

and a scalar potential are required to model the eddy current, while either a scalar 

potential or a vector potential is used for the eddy current free region. Thus, the number 

of the unknown functions in the eddy current region is four, and it is fixed for each 

form. The number of the unknown functions in the eddy current free region varies, one 

for the 𝑻 formula, three for the 𝑨 formula. Therefore, the total unknowns of the 𝑨 

formula are much larger than that of the 𝑻 formula. Even though the number of the 

unknowns involved in the 𝑨  formula is relatively large, the 𝑨  formula has many 

merits [B17]: 

1) The boundary condition on the internal interface is natural boundary condition, 

which is automatically satisfied in the finite element analysis.  

2) The source current density is readily handled. 

3) Most of the 𝑨 formulas apply to the multiple-connected conductor problem.  
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Meanwhile, the 𝑻 formula has several demerits: 

1) The source current density is included in the governing equations by a newly 

defined magnetic flux density, which is calculated according to the current density 

distribution and the Biot-Savart Law. 

2) To ensure the current continuity at the surface of conductors, the tangential 

component of the EVP at the conductor surface should be preset to zero.  

3) It is complicated for the 𝑻 formula to deal with the multiply-connected domains. 

Surface cuts or volume cuts are required to ensure the monodromy of the 

computed MSP.  

In this thesis, a high precision 𝑨 form, the 𝑨 − 𝜑 formula, is adopted. From the 

Gauss’s law or equation (2 − 1c), the divergence of the magnetic flux density equals 

to zero. Since the divergence of curl field equals to zero, a new vector function 𝑨, 

namely, the MVP, is defined 

𝑩 = 𝛻 × 𝑨 (2 − 7) 

Substitute this equation into the equation (2 − 5𝑏) and adjust the sequence of the 

curl and the time derivative, which gives  

𝛻 × ൬𝑬 +
𝜕𝑨

𝜕𝑡
൰ = 0 (2 − 8) 

From equation (2 − 8), it is noted that the term ቀ𝑬 +
డ𝑨

డ௧
ቁ construct an irrotational 

field. Since an irrotational field can be formulated as the gradient of a scalar function,  

𝛻 × (𝛻𝜑) = 0 (2 − 9) 

Thus, the 𝑬  can be expressed by the MVP 𝑨  and a scalar potential 𝜑 , which is 

named the electric scalar potential (ESP), 

𝑬 = −
𝜕𝑨

𝜕𝑡
− 𝛻𝜑 (2 − 10) 

Then the governing equations (2 − 5𝑎)  and (2 − 4𝑎)  can be rewritten with the 

potentials, 
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𝑉ଵ: 𝛻 × (𝑣𝛻 × 𝑨) + 𝜎 ൬
𝜕𝑨

𝜕𝑡
+ 𝛻𝜑൰ = 0 (2 − 11) 

𝑉ଶ: 𝛻 × (𝑣𝛻 × 𝑨) = 𝑱 (2 − 12) 

And the boundary conditions given in equation (2 − 6)  are rewritten for the 

potentials, 

𝑆஻: 𝒏 ∙ 𝛻 × 𝑨 = 0                    (𝑎)

𝑆ு: 𝑣(𝛻 × 𝑨) × 𝒏 = 𝟎                (𝑏)

𝑆ଵଶ: ൜
𝒏ଵଶ ∙ 𝛻 × 𝑨ଵ = 𝒏ଵଶ ∙ 𝛻 × 𝑨ଶ        (𝑐)

𝑣ଵ𝛻 × 𝑨ଵ × 𝒏ଵଶ = 𝑣ଶ𝛻 × 𝑨ଶ × 𝒏ଵଶ  (𝑑)

(2 − 13) 

Owing to the introduced MVP, the equation 𝛻 ∙ 𝑩 = 0 is satisfied automatically. 

To ensure the uniqueness of the MVP, its divergence and boundary conditions should 

be predefined. The following homogenous boundary conditions are defined for the 

MVP [B18] 

𝑆஻: 𝒏 × 𝑨 = 𝟎                  (𝑎)

𝑆ு: 𝒏 ∙ 𝑨 = 0                   (𝑏)
(2 − 14) 

Two typical gauges, Coulomb Gauge and Lorentz Gauge, were proposed to define the 

divergence of the magnetic vector potential. In the relatively more convenient 

Coulomb Gauge, the divergence of MVP is defined as 

𝛻 ∙ 𝑨 = 0 (2 − 15) 

In addition, there are some further treatments for the boundary conditions and the 

governing equations. The equation (2 − 14𝑎)  implies the equation (2 − 13𝑎) , 

which does not need to be listed again. If the MVP is continuous across the internal 

interface, the (2 − 13𝑐) will be satisfied automatically, 

𝑆ଵଶ: 𝑨ଵ = 𝑨ଶ (2 − 16) 

The eddy current cannot flow through the interface 𝑆ଵଶ between conducting region 

and non-conducting region, 

𝑆ଵଶ: 𝒏 ∙ ൬−𝜎
𝜕𝑨

𝜕𝑡
− 𝜎𝛻𝜑൰ = 0 (2 − 17) 

The next step is to integrate the Coulomb Gauge into these governing equations 
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through adding the item −𝛻(𝑣𝛻 ∙ 𝑨) [B3],  

𝑉ଵ: ൞
𝛻 × (𝑣𝛻 × 𝑨) − 𝛻(𝑣𝛻 ∙ 𝑨) + 𝜎 ൬

𝜕𝑨

𝜕𝑡
+ 𝛻𝜑൰ = 0  (𝑎)

𝛻 ∙ ൬−𝜎
𝜕𝑨

𝜕𝑡
− 𝜎𝛻𝜑൰ = 0                     (𝑏)

(2 − 18) 

𝑉ଶ: 𝛻 × (𝑣𝛻 × 𝑨) − 𝛻(𝑣𝛻 ∙ 𝑨) = 𝑱 (2 − 19) 

Since the eddy current continuity is no longer implied in the equation (2 − 18𝑎), the 

current continuity equation is explicitly listed for the eddy current region 𝑉ଵ. In order 

to meet the Coulomb Gauge, the added item should identically equal to zero in the 

domain, and homogeneous boundary conditions are defined for this term. A 

homogeneous Dirichlet boundary condition is given on 𝑆஻, 

𝑆஻: 𝑣𝛻 ∙ 𝑨 = 0 (2 − 20) 

The boundary 𝑆ு  is specified with a homogeneous Neumann boundary condition, 

which is implicitly implied in the equation (2 − 19) 

𝑆ு:
𝜕

𝜕𝑛
𝑣𝛻 ∙ 𝑨 = 0 (2 − 21) 

In addition, this item should be continuous across the internal interface, 

𝑆ଵଶ: 𝑣ଵ𝛻 ∙ 𝑨ଵ = 𝑣ଶ𝛻 ∙ 𝑨ଶ (2 − 22) 

To conclude, all the boundary conditions are listed as below:  

𝑆୆: ቄ
𝒏 × 𝑨 = 𝟎
𝑣𝛻 ∙ 𝑨 = 0

(2 − 23) 

𝑆ு: ൜
𝒏 ∙ 𝑨 = 𝟎

𝑣(𝛻 × 𝑨) × 𝒏 = 0
(2 − 24) 

𝑆ଵଶ:

⎩
⎪
⎨

⎪
⎧

𝑨ଵ = 𝑨ଶ

𝑣ଵ𝛻 ∙ 𝑨ଵ = 𝑣ଶ𝛻 ∙ 𝑨ଶ

𝑣ଵ𝛻 × 𝑨ଵ × 𝒏ଵଶ = 𝑣ଶ𝛻 × 𝑨ଶ × 𝒏ଵଶ

𝒏 ∙ ൬−𝜎
𝜕𝑨

𝜕𝑡
− 𝜎𝛻𝜑൰ = 0

(2 − 26) 

From the equation (2 − 10), it is worth noting that once the reference value is 

given, the unique solution of 𝑬 can be determined after solving the 𝑨. 
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2.1.3 The Galerkin Finite Element Method 

In numerical analysis, the computational domain is discretized into tons of cells, 

and the initial problem, which attempts to derive an analytical solution for infinite 

DoFs, is simplified to solving the equations of finite DoFs, which locate on the nodes 

or the edges of the mesh. The solution of other infinite DoFs are formulated with the 

calculated solution and the interpolation functions. The weighted residual method is a 

popular approximation method for solving differential equations. A set of linearly 

independent weighting functions 𝑊௜(𝑖 = 1,2, ⋯ , 𝑛), which has the same size as the 

set of unknowns, is constructed, and the weighted integral of the residual of the 

equation (𝐿𝑢 = 𝑓) in the computational domain Ω is set to zero, 

න 𝑊௜(𝐿𝑢∗ − 𝑓)
ఆ

= 0 (2 − 27) 

The unknown function 𝑢∗ in the integral is expanded with the chosen basis functions, 

and an equation set with 𝑛  equations and 𝑛  unknowns are constructed. If the 

weighting function and the basis function are consistent, a proprietary name, i.e. the 

Galerkin method, is used to distinguish this type of weighted residual method from 

others. The widely adopted Galerkin FEM is a combination of the Galerkin method 

and the finite element discretization.  

In this thesis, the nodal element is adopted in the finite element discretization, 

thus the MVP and the ESP are all defined on the nodes. For a FEM mesh with n nodes, 

the ESP 𝜑 is approximately formulated as 

𝜑 ≈ ෍ 𝜑௝𝑁௝

௡

௝ୀଵ

(2 − 28) 

where; 𝜑௝ is the ESP at node 𝑗, and 𝑁௝ is the global basis function of node 𝑗 [B19].  

Apply the Galerkin FEM to the eddy current continuity function (2 − 18𝑏) with 



 

20 
 

the scalar weighting function 𝑊, and the weighted integral of the residual reads 

න 𝑊𝛻 ∙ ൬−𝜎
𝜕𝑨

𝜕𝑡
− 𝜎𝛻𝜑൰ 𝑑𝑉

௏భ

= 0 (2 − 29) 

With the vector identity ∇ ∙ (𝑓𝑨) = 𝑓(∇ ∙ 𝑨) + 𝑨 ∙ (∇𝑓), the equation (2 − 29) can 

be rewritten as  

න 𝛻 ∙ ൤𝑊 ൬−𝜎
𝜕𝑨

𝜕𝑡
− 𝜎𝛻𝜑൰൨ 𝑑𝑉

௏భ

+ න 𝛻𝑊 ∙ ൬𝜎
𝜕𝑨

𝜕𝑡
+ 𝜎𝛻𝜑൰ 𝑑𝑉

௏భ

= 0 (2 − 30) 

Transform the first term to surface integral with the Gauss theorem, 

න 𝑊 ൬−𝜎
𝜕𝑨

𝜕𝑡
− 𝜎𝛻𝜑൰ ∙ 𝒏ଵଶ𝑑𝑆

ௌభమ

+ න 𝛻𝑊 ∙ ൬𝜎
𝜕𝑨

𝜕𝑡
+ 𝜎𝛻𝜑൰ 𝑑𝑉

௏భ

= 0 (2 − 31) 

According to the boundary condition (2 − 17) on the internal interface, the surface 

integral equals to zero, and the weighted residual finally reads 

න 𝛻𝑊 ∙ ൬𝜎
𝜕𝑨

𝜕𝑡
+ 𝜎𝛻𝜑൰ 𝑑𝑉

௏భ

= 0 (2 − 32) 

Compared to the straightforward expansion of the ESP, the interpolation of the 

MVP and the following transformation of the governing equations, equation 

(2 − 18𝑎) and (2 − 19), are a bit complicated. Actually, three scalar equations for 

the three directions (𝑥, 𝑦 and 𝑧) are included in these two equations. Each scalar 

weighting function forms three vector weighting functions, 𝑁௝𝒊 , 𝑁௝𝒋  and 𝑁௝𝒌 , to 

isolate the scalar equation for each direction. Like the ESP, the MVP can be expanded 

by the basis function as  

𝑨 = [𝐴௫ 𝐴௬ 𝐴௭] ≈ ෍ 𝑨௝𝑁௝

௡

௝ୀଵ

= ൥෍ 𝐴௫௝𝑁௝

௡

௝ୀଵ

෍ 𝐴௬௝𝑁௝

௡

௝ୀଵ

෍ 𝐴௭௝𝑁௝

௡

௝ୀଵ

൩ (2 − 33) 

For those known potential components at the boundary, the corresponding weighting 

function should be set to zero to ensure that the number of equations is equal to the 

number of DoFs. According to the boundary conditions (2 − 14) , the following 
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equations are defined for the weighting functions, 

𝑆஻: 𝒏 × 𝑾 = 𝟎                  (𝑎)

𝑆ு: 𝒏 ∙ 𝑾 = 0                   (𝑏)
(2 − 34) 

Dislike the current continuity equation (2 − 18𝑏), there is a second derivative 

in the governing equation (2 − 18𝑎)  and (2 − 19) , which are summarized into a 

general form 

𝛻 × (𝑣𝛻 × 𝑨) − 𝛻(𝑣𝛻 ∙ 𝑨) + 𝜎 ൬
𝜕𝑨

𝜕𝑡
+ 𝛻𝜑൰ − 𝑱 = 0 (2 − 35) 

In the following steps, the weighted integral of the residual of this equation is 

transformed into the Galerkin Weak Formulation (GWF) [B20], which only has first 

derivative. The weighted integral of the residual of equation (2 − 35) reads, 

න 𝑾 ∙ ൤𝛻 × (𝑣𝛻 × 𝑨) − 𝛻(𝑣𝛻 ∙ 𝑨) + 𝜎 ൬
𝜕𝑨

𝜕𝑡
+ 𝛻𝜑൰ − 𝑱൨ 𝑑𝑉

௏

= 0 (2 − 36) 

With the vector identity ∇ ∙ (𝑨 × 𝑩) = 𝑩 ∙ (∇ × 𝑨) − 𝑨 ∙ (∇ × 𝑩), the first item in the 

integral are transformed to  

න 𝑾 ∙ 𝛻 × (𝑣𝛻 × 𝑨)𝑑𝑉
௏

= න (𝑣𝛻 × 𝑨 ∙ 𝛻 × 𝑾)𝑑𝑉
௏

− න 𝛻 ∙ [𝑾 × (𝑣𝛻 × 𝑨)]𝑑𝑉
௏

(2 − 37)

 

Then the second term on the right-hand-side is transformed to the surface integral by 

using Gauss theorem, 

න 𝑾 ∙ 𝛻 × (𝑣𝛻 × 𝑨)𝑑𝑉
௏

= න (𝑣𝛻 × 𝑨 ∙ 𝛻 × 𝑾)𝑑𝑉
௏

− ቈන [𝑾 × (𝑣𝛻 × 𝑨)] ∙ 𝒏𝑑𝑆 + න [𝑾 × (𝑣ଵ𝛻 × 𝑨ଵ)] ∙ 𝒏ଵଶ𝑑𝑆
ௌభమௌಹ

+ න [𝑾 × (𝑣𝛻 × 𝑨)] ∙ 𝒏𝑑𝑆
ௌಳ

− න [𝑾 × (𝑣ଶ𝛻 × 𝑨ଶ)] ∙ 𝒏ଵଶ𝑑𝑆
ௌభమ

቉ (2 − 38)

 

With the vector identity ∇ ∙ (𝑓𝑨) = 𝑓(∇ ∙ 𝑨) + 𝑨 ∙ (∇𝑓) and the Gauss theorem, the 

second term of the equation (2 − 36) is transformed to 
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න 𝑾 ∙ 𝛻(𝑣𝛻 ∙ 𝑨)𝑑𝑉
௏

= න 𝛻 ∙ [(𝑣𝛻 ∙ 𝑨)𝑾]𝑑𝑉
௏

− න (𝑣𝛻 ∙ 𝑨)𝛻 ∙ 𝑾𝑑𝑉
௏

= න (𝑣𝛻 ∙ 𝑨)𝑾 ∙ 𝒏𝑑𝑆 + න (𝑣ଵ𝛻 ∙ 𝑨ଵ)𝑾 ∙ 𝒏ଵଶ𝑑𝑆
ௌభమௌಹ

+ න (𝑣𝛻 ∙ 𝑨)𝑾 ∙ 𝒏𝑑𝑆
ௌಳ

− න (𝑣ଶ𝛻 ∙ 𝑨ଶ)𝑾 ∙ 𝒏ଵଶ𝑑𝑆
ௌభమ

− න (𝑣𝛻 ∙ 𝑨)𝛻 ∙ 𝑾𝑑𝑉
௏

(2 − 39)

 

Substitute the equations (2 − 38) and (2 − 39) into the equation (2 − 36), 

න ൤(𝑣𝛻 × 𝑨 ∙ 𝛻 × 𝑾) + (𝑣𝛻 ∙ 𝑨)𝛻 ∙ 𝑾 + 𝜎𝑾 ∙ ൬
𝜕𝑨

𝜕𝑡
+ 𝛻𝜑൰ − 𝑾 ∙ 𝑱൨ 𝑑𝑉

௏

− න [𝑾 × (𝑣ଵ𝛻 × 𝑨ଵ)] ∙ 𝒏ଵଶ𝑑𝑆
ௌభమ

+ න [𝑾 × (𝑣ଶ𝛻 × 𝑨ଶ)] ∙ 𝒏ଵଶ𝑑𝑆
ௌభమ

− න (𝑣ଵ𝛻 ∙ 𝑨ଵ)𝑾 ∙ 𝒏ଵଶ𝑑𝑆
ௌభమ

+ න (𝑣ଶ𝛻 ∙ 𝑨ଶ)𝑾 ∙ 𝒏ଵଶ𝑑𝑆
ௌభమ

− න [𝑾 × (𝑣𝛻 × 𝑨)] ∙ 𝒏𝑑𝑆
ௌಹ

− න [𝑾 × (𝑣𝛻 × 𝑨)] ∙ 𝒏𝑑𝑆
ௌಳ

− න (𝑣𝛻 ∙ 𝑨)𝑾 ∙ 𝒏𝑑𝑆
ௌಹ

− න (𝑣𝛻 ∙ 𝑨)𝑾 ∙ 𝒏𝑑𝑆
ௌಳ

(2 − 40)

 

With the scalar triple product 𝑭 ∙ (𝑩 × 𝑪) = 𝑩 ∙ (𝑪 × 𝑭) = 𝑪 ∙ (𝑭 × 𝑩)  and the 

boundary condition (2 − 13𝑑) on the internal interface 𝑆ଵଶ, the first term and the 

second term offset. From the boundary condition (2 − 22) on 𝑆ଵଶ, it is noted that 

the sum of the third term and the fourth term equals to zero. According to the boundary 

condition (2 − 13𝑏)  on the 𝑆ு  and the boundary condition (2 − 20)  on 𝑆஻ , the 

fifth term and the eighth term are zero. The sixth term and the seventh term are also 

equal to zero based on the boundary conditions of the basis function (2 − 34). Thus, 

the equation (2 − 40) can be rewritten as  

න ൤(𝑣𝛻 × 𝑨 ∙ 𝛻 × 𝑾) + (𝑣𝛻 ∙ 𝑨)𝛻 ∙ 𝑾 + 𝜎𝑾 ∙ ൬
𝜕𝑨

𝜕𝑡
+ 𝛻𝜑൰ − 𝑾 ∙ 𝑱൨ 𝑑𝑉

௏

= 0

(2 − 41)

 

It is noted that the time derivative of MVP is involved in the integral equations 

(2 − 41) and (2 − 32). Dislike the space derivative, the time derivative is generally 

discretized by the FDM, which includes several forms with different characteristics 
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[B21]. The forward difference method, also known as the explicit method, construct a 

simple but unstable equation set. The system formed by the backward difference 

method is unconditionally stable. These two difference methods are first order accurate. 

The central difference method is second order accurate, while the resulted algebraic 

system is conditionally stable. In this thesis, the time derivative is approximated with 

the backward difference method,  

𝜕𝑨

𝜕𝑡
=

𝑨(௞ାଵ) − 𝑨(௞)

∆𝑡
(2 − 42) 

These two governing equations (2 − 41)  and (2 − 32)  are rewritten after 

expanding the time derivative, 

න ൣ൫𝑣𝛻 × 𝑨(௞ାଵ) ∙ 𝛻 × 𝑾൯ + ൫𝑣𝛻 ∙ 𝑨(௞ାଵ)൯𝛻 ∙ 𝑾
௏

+𝜎𝑾 ∙ ቆ
𝑨(௞ାଵ)

∆𝑡
+ 𝛻𝜑(௞ାଵ)ቇ቉ 𝑑𝑉 = න 𝑾 ∙ 𝑱 + 𝜎𝑾 ∙ ቆ

𝑨(௞)

∆𝑡
ቇ 𝑑𝑉

௏

(2 − 43)

 

න 𝛻𝑊 ∙ ቆ𝜎
𝑨(௞ାଵ)

∆𝑡
+ 𝜎𝛻𝜑(௞ାଵ)ቇ 𝑑𝑉

௏భ

= න 𝛻𝑊 ∙ ቆ𝜎
𝑨(௞)

∆𝑡
ቇ 𝑑𝑉

௏భ

(2 − 44) 

As introduced before, three scalar equations are included in the equation 

(2 − 43), and three sets of vector shape functions along the 𝑥, 𝑦 and 𝑧 axes are 

referred as the weighting functions to isolate these scalar equations in different 

directions. It is noted that the curl, divergence, and gradient of these parameters are 

involved in the integral equations. To facilitate the calculation, the following identities 

are given for the operators,  



 

24 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧𝛻 × 𝑨 = ቆ

𝜕𝐴௭

𝜕𝑦
−

𝜕𝐴௬

𝜕𝑧
ቇ 𝒊 + ൬

𝜕𝐴௫

𝜕𝑧
−

𝜕𝐴௭

𝜕𝑥
൰ 𝒋 + ቆ

𝜕𝐴௬

𝜕𝑥
−

𝜕𝐴௫

𝜕𝑦
ቇ 𝒌

𝛻 ∙ 𝑨 =
𝜕𝐴௫

𝜕𝑥
+

𝜕𝐴௬

𝜕𝑦
+

𝜕𝐴௭

𝜕𝑧

𝛻𝜑 =
𝜕𝜑

𝜕𝑥
𝒊 +

𝜕𝜑

𝜕𝑦
𝒋 +

𝜕𝜑

𝜕𝑧
𝒌

𝛻𝑊 =
𝜕𝑁௜

𝜕𝑥
𝒊 +

𝜕𝑁௜

𝜕𝑦
𝒋 +

𝜕𝑁௜

𝜕𝑧
𝒌

𝛻 × 𝑾 =
𝜕𝑁௜

𝜕𝑧
𝒋 −

𝜕𝑁௜

𝜕𝑦
𝒌, 𝑾 = [𝑁௜ 0 0]

𝛻 ∙ 𝑾 =
𝜕𝑁௜

𝜕𝑥
, 𝑾 = [𝑁௜ 0 0]

𝛻 × 𝑾 = −
𝜕𝑁௜

𝜕𝑧
𝒊 +

𝜕𝑁௜

𝜕𝑥
𝒌, 𝑾 = [0 𝑁௜ 0]

𝛻 ∙ 𝑾 =
𝜕𝑁௜

𝜕𝑦
, 𝑾 = [0 𝑁௜ 0]

𝛻 × 𝑾 =
𝜕𝑁௜

𝜕𝑦
𝒊 −

𝜕𝑁௜

𝜕𝑥
𝒋, 𝑾 = [0 0 𝑁௜]

𝛻 ∙ 𝑾 =
𝜕𝑁௜

𝜕𝑧
, 𝑾 = [0 0 𝑁௜]

(2 − 45) 

Applying the first set of vector weighting functions 𝑾 = [𝑁௜ 0 0]  and 

expanding the potentials with the basis functions, the equation (2 − 43)  is 

transformed to  

න 𝑣
𝜕𝑁௜

𝜕𝑧
ቌ෍ 𝐴௫௝

(௞ାଵ) 𝜕𝑁௝

𝜕𝑧
− ෍ 𝐴௭௝

(௞ାଵ) 𝜕𝑁௝

𝜕𝑥

௡

௝ୀଵ

௡

௝ୀଵ

ቍ 𝑑𝑉
௏

− න 𝑣
𝜕𝑁௜

𝜕𝑦
ቌ෍ 𝐴௬௝

(௞ାଵ) 𝜕𝑁௝

𝜕𝑥
− ෍ 𝐴௫௝

(௞ାଵ) 𝜕𝑁௝

𝜕𝑦

௡

௝ୀଵ

௡

௝ୀଵ

ቍ 𝑑𝑉
௏

+ න 𝑣
𝜕𝑁௜

𝜕𝑥
ቌ෍ 𝐴௫௝

(௞ାଵ) 𝜕𝑁௝

𝜕𝑥
+ ෍ 𝐴௬௝

(௞ାଵ) 𝜕𝑁௝

𝜕𝑦

௡

௝ୀଵ

+ ෍ 𝐴௭௝
(௞ାଵ) 𝜕𝑁௝

𝜕𝑧

௡

௝ୀଵ

௡

௝ୀଵ

ቍ 𝑑𝑉
௏

+ න
𝜎

∆𝑡
෍ 𝐴௫௝

(௞ାଵ)
𝑁௜𝑁௝𝑑𝑉

௡

௝ୀଵ௏

+ න 𝜎 ෍ 𝜑௝
(௞ାଵ)

𝑁௜

𝜕𝑁௝

𝜕𝑥
𝑑𝑉

௡

௝ୀଵ௏

= න 𝑁௜𝐽௫𝑑𝑉
௏

+ න
𝜎

∆𝑡
෍ 𝐴௫௝

(௞)
𝑁௜𝑁௝𝑑𝑉

௡

௝ୀଵ௏

                 (2 − 46) 

Adjust the order of the terms in this equation and congregate the coefficients for 
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different variables, 

෍ 𝐴௫௝
(௞ାଵ)

௡

௝ୀଵ

න ቈ𝑣 ቆ
𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑦
+

𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑧
+

𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑥
ቇ +

𝜎

∆𝑡
𝑁௜𝑁௝቉ 𝑑𝑉

௏

+ ෍ 𝐴௬௝
(௞ାଵ)

௡

௝ୀଵ

න ቈ𝑣 ቆ−
𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑥
+

𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑦
ቇ቉ 𝑑𝑉

௏

+ ෍ 𝐴௭௝
(௞ାଵ)

௡

௝ୀଵ

න ቈ𝑣 ቆ−
𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑥
+

𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑧
ቇ቉ 𝑑𝑉

௏

+ ෍ 𝜑௝
(௞ାଵ)

௡

௝ୀଵ

𝜎 න 𝑁௜

𝜕𝑁௝

𝜕𝑥
𝑑𝑉

௏

= න 𝑁௜𝐽௫𝑑𝑉
௏

+ ෍ 𝐴௫௝
(௞) 𝜎

∆𝑡

௡

௝ୀଵ

න 𝑁௜𝑁௝𝑑𝑉
௏

(2 − 47) 

Rewrite the equation in a simplified form, 

෍ቂ𝐶௫௫𝐴௫௝
(௞ାଵ)

+ 𝐶௫௬𝐴௬௝
(௞ାଵ)

+ 𝐶௫௭𝐴௭௝
(௞ାଵ)

+ 𝐶௫ఝ𝜑௝
(௞ାଵ)

ቃ

௡

௝ୀଵ

= 𝐹௫௜ + ෍ 𝐷௫௫𝐴௫௝
(௞)

௡

௝ୀଵ

(2 − 48) 

where; 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝐶௫௫ = න ቈ𝑣 ቆ

𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑦
+

𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑧
+

𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑥
ቇ +

𝜎

∆𝑡
𝑁௜𝑁௝቉ 𝑑𝑉

௏

𝐶௫௬ = න ቈ𝑣 ቆ−
𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑥
+

𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑦
ቇ቉ 𝑑𝑉

௏

𝐶௫௭ = න ቈ𝑣 ቆ−
𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑥
+

𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑧
ቇ቉ 𝑑𝑉

௏

𝐶௫ఝ = 𝜎 න 𝑁௜

𝜕𝑁௝

𝜕𝑥
𝑑𝑉

௏

(2 − 49) 

𝐹௫௜ = න 𝑁௜𝐽௫𝑑𝑉
௏

(2 − 50) 
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𝐷௫௫ =
𝜎

∆𝑡
න 𝑁௜𝑁௝𝑑𝑉

௏

(2 − 51) 

Other two scalar equations are extracted from the equation (2 − 43) in a similar 

way. With the second set of vector weighting functions 𝑾 = [0 𝑁௜ 0], other 

𝑛 equations are obtained,  

෍ቂ𝐶௬௫𝐴௫௝
(௞ାଵ)

+ 𝐶௬௬𝐴௬௝
(௞ାଵ)

+ 𝐶௬௭𝐴௭௝
(௞ାଵ)

+ 𝐶௬ఝ𝜑௝
(௞ାଵ)

ቃ

௡

௝ୀଵ

= 𝐹௬௜ + ෍ 𝐷௬௬𝐴௬௝
(௞)

௡

௝ୀଵ

(2 − 52) 

where; 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐶௬௫ = න ቈ𝑣 ቆ−

𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑦
+

𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑥
ቇ቉ 𝑑𝑉

௏

𝐶௬௬ = න ቈ𝑣 ቆ
𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑦
+

𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑧
+

𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑥
ቇ +

𝜎

∆𝑡
𝑁௜𝑁௝቉ 𝑑𝑉

௏

𝐶௬௭ = න ቈ𝑣 ቆ−
𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑦
+

𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑧
ቇ቉ 𝑑𝑉

௏

𝐶௬ఝ = 𝜎 න 𝑁௜

𝜕𝑁௝

𝜕𝑦
𝑑𝑉

௏

(2 − 53) 

𝐹௬௜ = න 𝑁௜𝐽௬𝑑𝑉
௏

(2 − 54) 

𝐷௬௬ =
𝜎

∆𝑡
න 𝑁௜𝑁௝𝑑𝑉

௏

(2 − 55) 

With the last set of vector weighting functions 𝑾 = [0 0 𝑁௜] , the equation 

(2 − 43) is transformed to 

෍ቂ𝐶௭௫𝐴௫௝
(௞ାଵ)

+ 𝐶௭௬𝐴௬௝
(௞ାଵ)

+ 𝐶௭௭𝐴௭௝
(௞ାଵ)

+ 𝐶௭ఝ𝜑௝
(௞ାଵ)

ቃ

௡

௝ୀଵ

= 𝐹௭௜ + ෍ 𝐷௭௭𝐴௭௝
(௞)

௡

௝ୀଵ

(2 − 56) 
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where; 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐶௭௫ = න ቈ𝑣 ቆ−

𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑧
+

𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑥
ቇ቉ 𝑑𝑉

௏

𝐶௭௬ = න ቈ𝑣 ቆ−
𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑧
+

𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑦
ቇ቉ 𝑑𝑉

௏

𝐶௭௭ = න ቈ𝑣 ቆ
𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑦
+

𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑧
+

𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑥
ቇ +

𝜎

∆𝑡
𝑁௜𝑁௝቉ 𝑑𝑉

௏

𝐶௭ఝ = 𝜎 න 𝑁௜

𝜕𝑁௝

𝜕𝑧
𝑑𝑉

௏

(2 − 57) 

𝐹௭௜ = න 𝑁௜𝐽௭𝑑𝑉
௏

(2 − 58) 

𝐷௭௭ =
𝜎

∆𝑡
න 𝑁௜𝑁௝𝑑𝑉

௏

(2 − 59) 

Substitute the weighting function 𝑁௜ and the operators of these parameters 

into the equation (2 − 44),  

න
𝜎

∆𝑡
൬

𝜕𝑁௜

𝜕𝑥
𝒊 +

𝜕𝑁௜

𝜕𝑦
𝒋 +

𝜕𝑁௜

𝜕𝑧
𝒌൰ ∙ ෍ቀ𝐴௫௝

(௞ାଵ)
𝑁௝𝒊 + 𝐴௬௝

(௞ାଵ)
𝑁௝𝒋 + 𝐴௭௝

(௞ାଵ)
𝑁௝𝒌ቁ

௡

௝ୀଵ

𝑑𝑉
௏భ

+

න 𝜎 ൬
𝜕𝑁௜

𝜕𝑥
𝒊 +

𝜕𝑁௜

𝜕𝑦
𝒋 +

𝜕𝑁௜

𝜕𝑧
𝒌൰ ∙ ෍ ቆ

𝜕𝑁௝

𝜕𝑥
𝜑௝

(௞ାଵ)
𝒊 +

𝜕𝑁௝

𝜕𝑦
𝜑௝

(௞ାଵ)
𝒋 +

𝜕𝑁௝

𝜕𝑧
𝜑௝

(௞ାଵ)
𝒌ቇ

௡

௝ୀଵ

𝑑𝑉
௏భ

= න
𝜎

∆𝑡
൬

𝜕𝑁௜

𝜕𝑥
𝒊 +

𝜕𝑁௜

𝜕𝑦
𝒋 +

𝜕𝑁௜

𝜕𝑧
𝒌൰ ∙ ෍ቀ𝐴௫௝

(௞)
𝑁௝𝒊 + 𝐴௬௝

(௞)
𝑁௝𝒋 + 𝐴௭௝

(௞)
𝑁௝𝒌ቁ

௡

௝ୀଵ

𝑑𝑉
௏భ

                                                          (2 − 60)

 

Rewrite the equation by congregating the coefficients for different variables, 
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෍ 𝐴௫௝
(௞ାଵ)

௡

௝ୀଵ

න ൤
𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑥
൨ 𝑑𝑉

௏భ

+ ෍ 𝐴௬௝
(௞ାଵ)

௡

௝ୀଵ

න ൤
𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑦
൨ 𝑑𝑉

௏భ

+ ෍ 𝐴௭௝
(௞ାଵ)

௡

௝ୀଵ

න ൤
𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑧
൨ 𝑑𝑉

௏భ

+ ෍ 𝜑௝
(௞ାଵ)

௡

௝ୀଵ

𝜎 න ൤
𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑥
+

𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑦
+

𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑧
൨ 𝑑𝑉

௏

= ෍ 𝐴௫௝
(௞)

௡

௝ୀଵ

න ൤
𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑥
൨ 𝑑𝑉

௏భ

+ ෍ 𝐴௬௝
(௞)

௡

௝ୀଵ

න ൤
𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑦
൨ 𝑑𝑉

௏భ

+ ෍ 𝐴௭௝
(௞)

௡

௝ୀଵ

න ൤
𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑧
൨ 𝑑𝑉

௏భ

(2 − 61) 

Then simplify the equation as 

෍ቂ𝐶ఝ௫𝐴௫௝
(௞ାଵ)

+ 𝐶ఝ௬𝐴௬௝
(௞ାଵ)

+ 𝐶ఝ௭𝐴௭௝
(௞ାଵ)

+ 𝐶ఝఝ𝜑௝
(௞ାଵ)

ቃ

௡

௝ୀଵ

= ෍ቂ𝐷ఝ௫𝐴௫௝
(௞)

+ 𝐷ఝ௬𝐴௬௝
(௞)

+ 𝐷ఝ௭𝐴௭௝
(௞)

ቃ

௡

௝ୀଵ

(2 − 62) 

Where; 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝐶ఝ௫ = න ൤

𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑥
൨ 𝑑𝑉

௏భ

𝐶ఝ௬ = න ൤
𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑦
൨ 𝑑𝑉

௏భ

𝐶ఝ௭ = න ൤
𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑧
൨ 𝑑𝑉

௏భ

𝐶ఝఝ = 𝜎 න ൤
𝜕𝑁௜

𝜕𝑥

𝜕𝑁௝

𝜕𝑥
+

𝜕𝑁௜

𝜕𝑦

𝜕𝑁௝

𝜕𝑦
+

𝜕𝑁௜

𝜕𝑧

𝜕𝑁௝

𝜕𝑧
൨ 𝑑𝑉

௏

(2 − 63) 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧𝐷ఝ௫ = න ൤

𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑥
൨ 𝑑𝑉

௏భ

𝐷ఝ௬ = න ൤
𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑦
൨ 𝑑𝑉

௏భ

𝐷ఝ௭ = න ൤
𝜎

∆𝑡
𝑁௝

𝜕𝑁௜

𝜕𝑧
൨ 𝑑𝑉

௏భ

(2 − 64) 

To conclude, for a mesh file with 𝑛  nodes, there are total 4𝑛  equations are 

generated from the equations (2 − 43) and (2 − 44). The number of equations is 

equal to the number of DoFs, which are included in the computational domain. To 

facilitate the following programming, these 4𝑛 equations are rewritten in the matrix 

form 

[𝑆]൛𝑢(௞ାଵ)ൟ = [𝐹] + [𝐷]൛𝑢(௞)ൟ (2 − 65) 

where; {𝑢}  is a column vector of the unknowns, 𝑨  and  𝜑 ; [𝑆]  is the stiffness 

matrix assembled according to the unknown vector; [𝐹] is the load vector calculated 

with the source current density 𝑱; [𝐷] is the matrix related to the former step solution; 

𝑘 + 1  and 𝑘  represent the current step and the former step, respectively. The 

unknown vector {𝑢}  is arranged as follows with the sub-vector 𝑢௜ =

[𝐴௫௜ 𝐴௬௜ 𝐴௭௜ 𝜑௜],  

𝑢 = [𝑢ଵ 𝑢ଶ ⋯ 𝑢௡]் (2 − 66) 

Similarly, the sub-vector 𝐹௜ and the load vector [𝐹] is expressed as  

൜
𝐹௜ = [𝐹௫௜ 𝐹௬௜ 𝐹௭௜ 0]   (𝑎)

𝐹 = [𝐹ଵ 𝐹ଶ ⋯ 𝐹௡]்    (𝑏)
(2 − 67) 

The size of these two vectors is 4𝑛 × 1, and the other two matrixes are 4𝑛 × 4𝑛 in 

size. The stiffness matrix [𝑆] is formed by 𝑛 × 𝑛 sub-matrixes,  

[𝑆] = ൦

𝑆ଵଵ 𝑆ଵଶ ⋯ 𝑆ଵ௡

𝑆ଶଵ 𝑆ଶଶ ⋯ 𝑆ଶ௡

⋮
𝑆௡ଵ

⋮
𝑆௡ଶ

⋱
⋯

⋮
𝑆௡௡

൪ (2 − 68) 

where the entry 𝑆௜௝ is assembled as follows, 
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ൣ𝑆௜௝൧ =

⎣
⎢
⎢
⎢
⎡
𝐶௫௫ 𝐶௫௬ 𝐶௫௭ 𝐶௫ఝ

𝐶௬௫ 𝐶௬௬ 𝐶௬௭ 𝐶௬ఝ

𝐶௭௫

𝐶ఝ௫

𝐶௭௬

𝐶ఝ௬

𝐶௭௭

𝐶ఝ௭

𝐶௭ఝ

𝐶ఝఝ⎦
⎥
⎥
⎥
⎤

 (𝑖, 𝑗 = 1,2, … , 𝑛) (2 − 69) 

The matrix [𝐷] is arranged in a similar way with the entries of sub-matrix assembled 

as 

ൣ𝐷௜௝൧ =

⎣
⎢
⎢
⎡
𝐷௫௫ 0 0 0

0 𝐷௬௬ 0 0

0
𝐷ఝ௫

0
𝐷ఝ௬

𝐷௭௭

𝐷ఝ௭

0
0⎦

⎥
⎥
⎤
 (𝑖, 𝑗 = 1,2, … , 𝑛) (2 − 70) 

 

 

2.1.4 Calculation of the Element Matrices 

Tetrahedron, which can handle complicated geometries, is the most widely used 

element to discretize 3-D problems. In the linear tetrahedron element, only the four 

vertexes are defined as the nodes of finite element. Since the basis function can be 

directly formulated with the original coordinates, coordinate transformation is not 

indispensable for this type of element. According to the right-hand-screw rule, the four 

nodes are indexed as 𝐾, 𝑀, 𝑁, and 𝐿, successively, as shown in Fig. 2.2. For one 

tetrahedron element 𝑒, the element basis function is given by 

𝑁௜
௘ =

1

6𝑉௘

(𝑝௜ + 𝑞௜𝑥 + 𝑟௜𝑦 + 𝑠௜𝑧), (𝑖 = 𝐾, 𝑀, 𝑁, 𝐿) (2 − 71) 

 

Fig. 2.2. The tetrahedron element. 
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where; 𝑉௘  is the volume of the tetrahedral element 𝑒 ; 𝑝௜  𝑞௜  𝑟௜  and 𝑠௜  are the 

coefficients for node 𝑖. All the parameters that are involved in the shape functions are 

calculated as follows: 

𝑉௘ =
1

6
൦

1 𝑥௄ 𝑥௄ 𝑧௄

1 𝑥ெ
𝑦ெ 𝑧ெ

1
1

𝑥ே

𝑥௅

𝑦ே

𝑦௅

𝑧ே

𝑧௅

൪  

𝑝௄ = ൥

𝑥ெ 𝑦ெ 𝑧ெ

𝑥ே 𝑦ே 𝑧ே

𝑥௅ 𝑦௅ 𝑧௅

൩   𝑝ெ = − ൥

𝑥௄ 𝑦௄ 𝑧௄

𝑥ே 𝑦ே 𝑧ே

𝑥௅ 𝑦௅ 𝑧௅

൩  

𝑝ே = ൥

𝑥௄ 𝑦௄ 𝑧௄

𝑥ெ 𝑦ெ 𝑧ெ

𝑥௅ 𝑦௅ 𝑧௅

൩   𝑝௅ = − ൥

𝑥௄ 𝑦௄ 𝑧௄

𝑥ெ 𝑦ெ 𝑧ெ

𝑥ே 𝑦ே 𝑧ே

൩ 

𝑞௄ = − ൥

1 𝑦ெ 𝑧ெ

1 𝑦ே 𝑧ே

1 𝑦௅ 𝑧௅

൩   𝑞ெ = ൥

1 𝑦௄ 𝑧௄

1 𝑦ே 𝑧ே

1 𝑦௅ 𝑧௅

൩ 

𝑞ே = ൥

1 𝑦௄ 𝑧௄

1 𝑦ெ 𝑧ெ

1 𝑦௅ 𝑧௅

൩   𝑞௅ = − ൥

1 𝑦௄ 𝑧௄

1 𝑦ெ 𝑧ெ

1 𝑦ே 𝑧ே

൩ (2 − 72) 

𝑟௄ = ൥

𝑥ெ 1 𝑧ெ

𝑥ே 1 𝑧ே

𝑥௅ 1 𝑧௅

൩   𝑟ெ = − ൥

𝑥௄ 1 𝑧௄

𝑥ே 1 𝑧ே

𝑥௅ 1 𝑧௅

൩  

𝑟ே = ൥

𝑥௄ 1 𝑧௄

𝑥ெ 1 𝑧ெ

𝑥௅ 1 𝑧௅

൩   𝑟௅ = − ൥

𝑥௄ 1 𝑧௄

𝑥ெ 1 𝑧ெ

𝑥ே 1 𝑧ே

൩ 

𝑠௄ = ൥

𝑥ெ 𝑦ெ 1
𝑥ே 𝑦ே 1
𝑥௅ 𝑦௅ 1

൩   𝑠ெ = − ൥

𝑥௄ 𝑦௄ 1
𝑥ே 𝑦ே 1
𝑥௅ 𝑦௅ 1

൩  

𝑠ே = ൥

𝑥௄ 𝑦௄ 1
𝑥ெ 𝑦ெ 1
𝑥௅ 𝑦௅ 1

൩   𝑠௅ = − ൥

𝑥௄ 𝑦௄ 1
𝑥ெ 𝑦ெ 1
𝑥ே 𝑦ே 1

൩ 

From the fully expanded equations, it is found that the coefficients of these 

unknowns are formulated by the integral of shape function and its derivative. For the 

linear tetrahedron element, an identity for the volume integral of shape functions is 

obtained by applying the integration by substitution, 
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න 𝑁ଵ
௠భ𝑁ଶ

௠మ𝑁ଷ
௠య𝑁ସ

௠ర𝑑𝑉 =
𝑚ଵ! 𝑚ଶ! 𝑚ଷ! 𝑚ସ!

(𝑚ଵ + 𝑚ଶ + 𝑚ଷ + 𝑚ସ + 3)!௏೐

6𝑉௘ (2 − 73) 

According to this identity, the values of two common integrals are given,  

⎩
⎪
⎨

⎪
⎧ න 𝑁௜𝑑𝑉

௏೐

=
1

4
𝑉௘                  

න 𝑁௜𝑁௝𝑑𝑉 =
𝑚

20
𝑉௘

௏೐

  𝑚 = ൜
2 (𝑖 = 𝑗)

1 (𝑖 ≠ 𝑗)

(2 − 74) 

Hence, the contribution of this element 𝑒  to the sub-matrix ൣ𝑆௜௝൧ , ൣ𝐷௜௝൧ , and [𝐹௜] 

can be calculated as follows, 

ൣ𝑆௜௝
௘ ൧ =

⎣
⎢
⎢
⎢
⎡
𝐶௫௫

௘ 𝐶௫௬
௘ 𝐶௫௭

௘ 𝐶௫ఝ
௘

𝐶௬௫
௘ 𝐶௬௬

௘ 𝐶௬௭
௘ 𝐶௬ఝ

௘

𝐶௭௫
௘

𝐶ఝ௫
௘

𝐶௭௬
௘

𝐶ఝ௬
௘

𝐶௭௭
௘ 𝐶௭ఝ

௘

𝐶ఝ௭
௘ 𝐶ఝఝ

௘
⎦
⎥
⎥
⎥
⎤

 (𝑖, 𝑗 = 𝐾, 𝑀, 𝑁, 𝐿) (2 − 75) 

ൣ𝐷௜௝
௘ ൧ =

⎣
⎢
⎢
⎡
𝐷௫௫

௘ 0 0 0
0 𝐷௬௬

௘ 0 0

0
𝐷ఝ௫

௘
0

𝐷ఝ௬
௘

𝐷௭௭
௘

𝐷ఝ௭
௘

0
0⎦

⎥
⎥
⎤

 (𝑖, 𝑗 = 𝐾, 𝑀, 𝑁, 𝐿) (2 − 76) 

[𝐹௜
௘] = [𝐹௫௜

௘ 𝐹௬௜
௘ 𝐹௭௜

௘ 0] (𝑖 = 𝐾, 𝑀, 𝑁, 𝐿) (2 − 77) 

where 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝐶௫௫

௘ =
𝑣

36𝑉௘
൫𝑟௜𝑟௝ + 𝑠௜𝑠௝ + 𝑞௜𝑞௝൯ +

𝜎

∆𝑡

𝑚

20
𝑉௘

𝐶௫௬
௘ =

𝑣

36𝑉௘
൫−𝑟௜𝑞௝ + 𝑞௜𝑟௝൯

𝐶௫௭
௘ =

𝑣

36𝑉௘
൫−𝑠௜𝑞௝ + 𝑞௜𝑠௝൯

𝐶௫ఝ
௘ =

𝜎

24
𝑞௝

(2 − 78) 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝐶௬௫

௘ =
𝑣

36𝑉௘
൫−𝑞௜𝑟௝ + 𝑟௜𝑞௝൯

𝐶௬௬
௘ =

𝑣

36𝑉௘
൫𝑞௜𝑞௝ + 𝑠௜𝑠௝ + 𝑟௜𝑟௝൯ +

𝜎

∆𝑡

𝑚

20
𝑉௘

𝐶௬௭
௘ =

𝑣

36𝑉௘
൫−𝑠௜𝑟௝ + 𝑟௜𝑠௝൯

𝐶௬ఝ
௘ =

𝜎

24
𝑟௝

(2 − 79) 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝐶௭௫

௘ =
𝑣

36𝑉௘
൫−𝑞௜𝑠௝ + 𝑠௜𝑞௝൯

𝐶௭௬
௘ =

𝑣

36𝑉௘
൫−𝑟௜𝑠௝ + 𝑠௜𝑟௝൯

𝐶௭௭
௘ =

𝑣

36𝑉௘
൫𝑞௜𝑞௝ + 𝑠௜𝑠௝ + 𝑟௜𝑟௝൯ +

𝜎

∆𝑡

𝑚

20
𝑉௘

𝐶௭ఝ
௘ =

𝜎

24
𝑠௝

(2 − 80) 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝐶ఝ௫

௘ =
𝜎

24∆𝑡
𝑞௜

𝐶ఝ௬
௘ =

𝜎

24∆𝑡
𝑟௜

𝐶ఝ௭
௘ =

𝜎

24∆𝑡
𝑠௜

𝐶ఝఝ
௘ =

𝜎

36𝑉௘
൫𝑞௜𝑞௝ + 𝑠௜𝑠௝ + 𝑟௜𝑟௝൯

(2 − 81) 

[𝐹௜
௘] = [𝐹௫௜

௘ 𝐹௬௜
௘ 𝐹௭௜

௘ 0] (𝑖 = 𝐾, 𝑀, 𝑁, 𝐿) (2 − 82) 

⎩
⎪
⎨

⎪
⎧𝐹௫௜

௘ =
1

4
𝐽௫𝑉௘

𝐹௬௜
௘ =

1

4
𝐽௬𝑉௘

𝐹௭௜
௘ =

1

4
𝐽௭𝑉௘

(2 − 83) 

𝐷௫௫
௘ = 𝐷௬௬

௘ = 𝐷௭௭
௘ =

𝜎

∆𝑡

𝑚

20
𝑉௘ (2 − 84) 

⎩
⎪
⎨

⎪
⎧𝐷ఝ௫

௘ =
𝜎

24∆𝑡
𝑞௜

𝐷ఝ௬
௘ =

𝜎

24∆𝑡
𝑟௜

𝐷ఝ௭
௘ =

𝜎

24∆𝑡
𝑠௜

(2 − 85) 

For the element 𝑒, a block stiffness matrix with the size of 4 × 4 is formulated, 
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[𝑆௘] =

⎣
⎢
⎢
⎡
𝑆ଵଵ

௘ 𝑆ଵଶ
௘ 𝑆ଵଷ

௘ 𝑆ଵସ
௘

𝑆ଶଵ
௘ 𝑆ଶଶ

௘ 𝑆ଶଷ
௘ 𝑆ଶସ

௘

𝑆ଷଵ
௘

𝑆ସଵ
௘

𝑆ଷଶ
௘

𝑆ସଶ
௘

𝑆ଷଷ
௘ 𝑆ଷସ

௘

𝑆ସଷ
௘ 𝑆ସସ

௘ ⎦
⎥
⎥
⎤

(2 − 86) 

which contains the contribution of this element to these four nodes. The load vector 

[𝐹௘] and the matrix [𝐷௘] are calculated in a similar way. These local matrixes and 

vectors are finally assembled to the global matrixes and vectors according to the global 

indexes of these nodes.  

 

 

2.1.5 Handling Nonlinear Materials 

In practical problems, nonlinear magnetic materials are generally included, such 

as the iron material. Because of the varying magnetic reluctivity, the stiffness matrix 

is no longer fixed and should be updated along with the solution of magnetic potential. 

The NR method, which has second order rate of convergence, is an efficient approach 

to solve nonlinear problems [B22]. In this method, the first order derivative of the 

nonlinear equations is used to linear the problem approximately.  

From the equation (2 − 43), it is found that the curl-curl operator and the Gauge 

term contain nonlinear part, hence the magnetostatic problem is sufficient to illustrate 

the implementation of NR method. The weighting integral of the governing equation 

of magnetostatic problem is given as follows, 

න [(𝑣𝛻 × 𝑨 ∙ 𝛻 × 𝑾) + (𝑣𝛻 ∙ 𝑨)𝛻 ∙ 𝑾
௏

𝑑𝑉 = න 𝑾 ∙ 𝑱𝑑𝑉
௏

(2 − 87) 

The elemental Jacobian matrix is derived by calculating the first-order derivative to 

unknowns, 

𝐽௚௛
௘ = න 𝑣൫𝛻 × 𝑵௚ ∙ 𝛻 × 𝑵௛൯

௏

𝑑𝑉 + න 𝑣൫𝛻 ∙ 𝑵௚𝛻 ∙ 𝑵௛൯
௏

𝑑𝑉

+ න 𝑣
𝜕𝑣

𝜕𝐴௛
൫𝛻 × 𝑵௚ ∙ 𝛻 × 𝑨൯

௏

𝑑𝑉 + න 𝑣
𝜕𝑣

𝜕𝐴௛
൫𝛻 ∙ 𝑵௚𝛻 ∙ 𝑨൯

௏

𝑑𝑉

(2 − 88) 
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where,  

𝜕𝑣

𝜕𝐴௛
=

𝜕𝑣

𝜕𝐵

ඥ(𝛻 × 𝑨, 𝛻 × 𝑨)

𝜕𝐴௛

(2 − 89) 

The 𝜕𝜗/𝜕𝐵 is calculated with the 𝐵 − 𝐻 curve of the nonlinear material, which is 
interpolated from the discrete points by the spline function. The detailed entries of the 
Jacobian matrix are given as follows: 

𝜕𝑓௫௜

𝜕𝐴௫௝
=

𝑣

36𝑉௘
൫𝑟௜𝑟௝ + 𝑠௜𝑠௝ + 𝑞௜𝑞௝൯ +

1

𝑣𝐵

𝜕𝑣

𝜕𝐵
𝑠𝑓௫௜ × 𝑠𝑡௫௝ (2 − 90) 

𝜕𝑓௫௜

𝜕𝐴௬௝
=

𝑣

36𝑉௘
൫−𝑟௜𝑞௝ + 𝑞௜𝑟௝൯ +

1

𝑣𝐵

𝜕𝑣

𝜕𝐵
𝑠𝑓௫௜ × 𝑠𝑡௬௝ (2 − 91) 

𝜕𝑓௫௜

𝜕𝐴௭௝
=

𝑣

36𝑉௘
൫−𝑠௜𝑞௝ + 𝑞௜𝑠௝൯ +

1

𝑣𝐵

𝜕𝑣

𝜕𝐵
𝑠𝑓௫௜ × 𝑠𝑡௭௝ (2 − 92) 

𝜕𝑓௬௜

𝜕𝐴௫௝
=

𝑣

36𝑉௘
൫−𝑞௜𝑟௝+𝑟௜𝑞௝൯ +

1

𝑣𝐵

𝜕𝑣

𝜕𝐵
𝑠𝑓௬௜ × 𝑠𝑡௫௝ (2 − 93) 

𝜕𝑓௬௜

𝜕𝐴௬௝
=

𝑣

36𝑉௘
൫𝑟௜𝑟௝ + 𝑠௜𝑠௝ + 𝑞௜𝑞௝൯ +

1

𝑣𝐵

𝜕𝑣

𝜕𝐵
𝑠𝑓௬௜ × 𝑠𝑡௬௝ (2 − 94) 

𝜕𝑓௬௜

𝜕𝐴௭௝
=

𝑣

36𝑉௘
൫−𝑠௜𝑟௝ + 𝑟௜𝑠௝൯ +

1

𝑣𝐵

𝜕𝑣

𝜕𝐵
𝑠𝑓௬௜ × 𝑠𝑡௭௝ (2 − 95) 

𝜕𝑓௭௜

𝜕𝐴௫௝
=

𝑣

36𝑉௘
൫−𝑞௜𝑠௝+𝑠௜𝑞௝൯ +

1

𝑣𝐵

𝜕𝑣

𝜕𝐵
𝑠𝑓௭௜ × 𝑠𝑡௫௝ (2 − 96) 

𝜕𝑓௭௜

𝜕𝐴௬௝
=

𝑣

36𝑉௘
൫−𝑟௜𝑠௝ + 𝑠௜𝑟௝൯ +

1

𝑣𝐵

𝜕𝑣

𝜕𝐵
𝑠𝑓௭௜ × 𝑠𝑡௬௝ (2 − 97) 

𝜕𝑓௭௜

𝜕𝐴௭௝
=

𝑣

36𝑉௘
൫𝑟௜𝑟௝ + 𝑠௜𝑠௝ + 𝑞௜𝑞௝൯ +

1

𝑣𝐵

𝜕𝑣

𝜕𝐵
𝑠𝑓௭௜ × 𝑠𝑡௭௝ (2 − 98) 

where; 𝑓௫௜ , 𝑓௬௜ , and 𝑓௭௜  are the weighting integral equations of the weighting 

function 𝑁௜; other parameters are defined as 
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𝑠𝑡௫௝ =
𝑠௝

6𝑉௘
൬

𝜕𝐴௫

𝜕𝑧
−

𝜕𝐴௭

𝜕𝑥
൰ −

𝑟௝

6𝑉௘
ቆ

𝜕𝐴௬

𝜕𝑥
−

𝜕𝐴௫

𝜕𝑦
ቇ (2 −  99) 

𝑠𝑡௬௝ = −
𝑠௝

6𝑉௘
ቆ

𝜕𝐴௭

𝜕𝑦
−

𝜕𝐴௬

𝜕𝑧
ቇ +

𝑞௝

6𝑉௘
ቆ

𝜕𝐴௬

𝜕𝑥
−

𝜕𝐴௫

𝜕𝑦
ቇ (2 − 100) 

𝑠𝑡௭௝ =
𝑟௝

6𝑉௘
ቆ

𝜕𝐴௭

𝜕𝑦
−

𝜕𝐴௬

𝜕𝑧
ቇ −

𝑞௝

6𝑉௘
൬

𝜕𝐴௫

𝜕𝑧
−

𝜕𝐴௭

𝜕𝑥
൰ (2 − 101) 

𝑠𝑓௫௝ = 𝑣𝑉௘ ቈ𝑠𝑡௫௝ +
𝑞௝

6𝑉௘
ቆ

𝜕𝐴௫

𝜕𝑥
+

𝜕𝐴௬

𝜕𝑦
+

𝜕𝐴௭

𝜕𝑧
ቇ቉ (2 − 102) 

𝑠𝑓௬௝ = 𝑣𝑉௘ ቈ𝑠𝑡௬௝ +
𝑟௝

6𝑉௘
ቆ

𝜕𝐴௫

𝜕𝑥
+

𝜕𝐴௬

𝜕𝑦
+

𝜕𝐴௭

𝜕𝑧
ቇ቉ (2 − 103) 

𝑠𝑓௭௝ = 𝑣𝑉௘ ቈ𝑠𝑡௭௝ +
𝑠௝

6𝑉௘
ቆ

𝜕𝐴௫

𝜕𝑥
+

𝜕𝐴௬

𝜕𝑦
+

𝜕𝐴௭

𝜕𝑧
ቇ቉ (2 − 103) 

The element Jacobian matrixes are calculated separately and are assembled to the 

global Jacobian matrix as the linear problem. The unknowns involved in the linearized 

equations are arranged in a residual vector, and the exact solution is approximated after 

several iterations. The iteration of NR method, which is formulated as  

൜
𝑱𝒂(௞ାଵ)∆𝑨(௞ାଵ) = −𝒇(௞ାଵ)

𝑨(௞ାଵ) = 𝑨(௞) + ∆𝑨(௞ାଵ)
(2 − 104) 

will terminate when the convergence criterion 

ൣ−𝒇(௞ାଵ)൧
ଶ

≤ 𝜀 (2 − 105) 

is met. 𝑱𝒂 is the global Jacobian matrix; ൣ−𝒇(௞ାଵ)൧ is the residual vector; 𝜀 is the 

predefined control error.  

 

 

2.1.6 Numerical examples 
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Fig. 2.3. (a) The geometry of the solenoid with an air core. (b) The magnetic vector 

potential derived by the FEM.  

 

 

Fig. 2.4. The magnetic flux density along the axis of the air core.  

 

The numerical example is to solve the magnetic field of a solenoid [B23], which 

has an air core, as shown in Fig. 2.3. The height (ℎ), out radius (𝑟ଶ) and inner radius 

(𝑟ଵ) of the coil, in which 1000 ampere-turns (𝐼𝑛) are applied, are 0.1𝑚, 0.002𝑚, 

and 0.0018𝑚, respectively. In the numerical model, a sphere with the radius of 0.5𝑚 

is set as the computational domain for this problem, and homogeneous Dirichlet 

boundary conditions are specified on the surface. The calculated magnetic vector 

potential on the coil surface, which is shown in Fig. 2.3 (b), is in good agreement with 

the direction of the current in the coil. In addition, the numerical solution for the 

magnetic flux density on the solenoid axis is compared with the analytical solution, 
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which is given by [B24] 

𝐵 =
𝜇଴𝐼𝑛

2(𝑟ଶ − 𝑟ଵ)
൥𝑥ଶ𝑙𝑛 ൭

ඥ𝑟ଶ
ଶ + 𝑥ଶ

ଶ + 𝑟ଶ

ඥ𝑟ଵ
ଶ + 𝑥ଶ

ଶ + 𝑟ଵ

൱ − 𝑥ଵ𝑙𝑛 ൭
ඥ𝑟ଶ

ଶ + 𝑥ଵ
ଶ + 𝑟ଶ

ඥ𝑟ଵ
ଶ + 𝑥ଵ

ଶ + 𝑟ଵ

൱൩ (2 − 106) 

where; 𝑥ଶ is the distance from the bottom of the solenoid to the measuring point; 𝑥ଵ 

is equal to 𝑥ଶ − ℎ. As shown in Fig. 2.4, the analytical solution and the numerical 

solution are plotted in red color and blue color, respectively. It can be seen that 

sufficiently accurate solutions are derived by the FEM solver.  

 

 

2.2  The FEM for Thermal Field Analysis and 

Coupled Magneto-Thermal Field Analysis 

2.2.1 Thermal Field Analysis 

Heat is another form of energy, and it is transferred from high temperature region 

to low temperature region by conduction, convection and radiation. In the heat 

conduction process, the heat is transferred by movement of electrons and microscopic 

collisions of particles. In the fluids, such as liquid and gas, heat is transferred by the 

movement of fluids, and this convection process is accompanied by the heat 

conduction. In the heat radiation process, heat is emitted by electromagnetic radiation. 

In electromagnetic devices, the heat dissipated by radiation is relatively small, hence 

this process is generally neglected in the thermal analysis.  

In addition to the thermal resistance based lumped-parameter thermal network 

[B25], numerical methods, such as FEM and finite volume method (FVM), are widely 

used in the thermal field analysis [B26]. Based on the conservation of heat and the 

Fourier's law, the governing equation for heat conduction in solids is formulated with 

the partial differential equation,  

𝛻 ∙ 𝜆𝛻𝑇 = −𝑄 + 𝜌𝑐
𝜕𝑇

𝜕𝑡
(2 − 107) 
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where; 𝜆 is the thermal conductivity (𝑊/(𝑚 · 𝐾)) ; 𝑇 is temperature (𝐾), i.e. the 

potential function of thermal field; 𝑄  is the heat source (𝑊) ; 𝜌  is density 

(𝑘𝑔/𝑚ଷ) ; 𝑐  is the specific heat capacity (𝐽/(𝑘𝑔 · 𝐾)).  The left-hand-side 

represents the transferred heat, while these two terms in the right-hand-side are the 

generated heat and the heat change owing to the temperature variations. With 

appropriate boundary and initial conditions, the thermal conduction problem can be 

solved with the Galerkin FEM. Compared with magnetic field, the governing equation 

of thermal field is simpler, as there is only one DoF on each node. Like the ESP, the 

temperature is expanded with the shape functions, 

𝑇 ≈ ෍ 𝑇௝𝑁௝

௡

௝ୀଵ

(2 − 108) 

To illustrate the calculation process, a generic problem is constructed in region 𝛺, 

which considers three common boundary conditions on 𝛤ଵ, 𝛤ଶ, and 𝛤ଷ 

𝛻 ∙ 𝜆𝛻𝑇 + 𝑄 − 𝜌𝑐
𝜕𝑇

𝜕𝑡
= 0 (2 − 109) 

⎩
⎪
⎨

⎪
⎧

𝛤ଵ: 𝑇 = 𝑇௚                (𝑎)

𝛤ଶ: 𝜆
𝜕𝑇

𝜕𝑛
+ 𝑞௚ = 0          (𝑏)

𝛤ଷ: 𝜆
𝜕𝑇

𝜕𝑛
+ 𝑎௦𝑇 = 𝑎௦𝑇଴ = 𝑞   (𝑐)

(2 − 110) 

With the weighting function 𝑊, the weighting integral of the residual of the governing 

equation reads, 

න 𝑊 ൬𝛻 ∙ 𝜆𝛻𝑇 + 𝑄 − 𝜌𝑐
𝜕𝑇

𝜕𝑡
൰ 𝑑𝛺

ఆ

= 0 (2 − 111) 

Rewrite the equation with the Gauss theorem 

න 𝜆𝛻𝑊 ∙ 𝛻𝑇𝑑𝛺
ఆ

− න 𝑊 ൬𝑄 − 𝜌𝑐
𝜕𝑇

𝜕𝑡
൰ 𝑑𝛺

ఆ

+ න 𝑊𝑞௚𝑑𝑆
௰మ

+ න 𝑊𝑎௦(𝑇 − 𝑇଴)𝑑𝑆
௰య

= 0 (2 − 112)

 

Substituting boundary equations into equation (2-112) yields 
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න 𝜆𝛻𝑊 ∙ 𝛻𝑇𝑑𝛺
ఆ

+ න 𝑊𝜌𝑐
𝜕𝑇

𝜕𝑡
𝑑𝛺

ఆ

+ න 𝑊𝑎௦𝑇𝑑𝑆
௰య

= න 𝑊𝑄𝑑𝛺
ఆ

− න 𝑊𝑞௚𝑑𝑆
௰మ

+ න 𝑊𝑎௦𝑇଴𝑑𝑆
௰య

= 0 (2 − 113)

 

Expanding the temperature with shape functions and discretizing the time derivative 

with backward difference method derive 

෍ 𝑇௝
(௞ାଵ)

𝜆 න 𝛻𝑁௜ ∙ 𝛻𝑁௝𝑑𝛺
ఆ

௡

௝ୀଵ

+ ෍ 𝑇௝
(௞ାଵ) 𝜌𝑐

∆𝑡
න 𝑁௜𝑁௝𝑑𝛺

ఆ

௡

௝ୀଵ

+ ෍ 𝑇௝
(௞ାଵ)

𝑎௦ න 𝑁௜𝑁௝𝑑𝑆
௰య

௡

௝ୀଵ

= ෍ 𝑇௝
(௞) 𝜌𝑐

∆𝑡
න 𝑁௜𝑁௝𝑑𝛺

ఆ

௡

௝ୀଵ

+ න 𝑁௜𝐺𝑑𝛺
ఆ

− න 𝑁௜𝑞௚𝑑𝑆
௰మ

+ න 𝑁௜𝑎௦𝑇଴𝑑𝑆
௰య

  (2 − 114)

 

Rewrite the equation in a compact form: 

෍ 𝑆௜௝𝑇௝
(௞ାଵ)

௡

௝ୀଵ

= 𝐹௜ (𝑖, 𝑗 = 1,2, … , 𝑛) (2 − 115) 

where 

𝑆௜௝ = 𝜆 න 𝛻𝑁௜ ∙ 𝛻𝑁௝𝑑𝛺
ఆ

+
𝜌𝑐

∆𝑡
න 𝑁௜𝑁௝𝑑𝛺

ఆ

+ 𝑎௦ න 𝑁௜𝑁௝𝑑𝑆
௰య

(2 − 116) 

𝐹௜ = ෍ 𝑇௝
(௞) 𝜌𝑐

∆𝑡
න 𝑁௜𝑁௝𝑑𝛺

ఆ

௡

௝ୀଵ

+ න 𝑁௜𝐺𝑑𝛺
ఆ

− න 𝑁௜𝑞௚𝑑𝑆
௰మ

+ න 𝑁௜𝑎௦𝑇଴𝑑𝑆
௰య

(2 − 117) 

In this thesis, the same finite element, namely, the linear tetrahedron, is used to 

discretize the thermal field. Hence, the shape functions and the identity for the volume 

integral of shape functions, which are introduced in the former section, are also applied 

to the matrixes calculation of thermal field. In addition, an identity for the surface 

integral of shape functions is given, 

න 𝑁௜𝑁௝𝑑𝑆
௰య

=
𝑚௰య

12
𝑆௰య

  ൜
𝑚 = 2, 𝑖 = 𝑗
𝑚 = 1, 𝑖 ≠ 𝑗

(2 − 118) 

න 𝑁௜𝑑𝑆
௰య

=
1

3
𝑆௰య

(2 − 119) 
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Based on these identities, the entries 𝑆௜௝ and 𝐹௜ are calculated as  

𝑆௜௝ =
𝜆

36𝑉௘
൫𝑞௜𝑞௝ + 𝑠௜𝑠௝ + 𝑟௜𝑟௝൯ +

𝜌𝑐𝑚ఆ

20∆𝑡
𝑉௘ +

𝑎௦𝑚௰య

12
𝑆௰య

(2 − 120) 

𝐹௜ = ෍ 𝑇௝
(௞) 𝜌𝑐𝑚ఆ

20∆𝑡
𝑉௘

௡

௝ୀଵ

+
1

4
𝐺𝑉௘ −

1

3
𝑞௚𝑆௰మ

+
1

3
𝑎௦𝑇଴𝑆௰య

(2 − 121) 

The second term of 𝑆௜௝  and the first term of 𝐹௜ , which contain the time step ∆𝑡 ,  

represent the transient process. The contribution of boundary surfaces is specified to 

the related nodes, and there is no need for those internal elements to calculate the terms 

related to boundary surfaces. To showcase the details, the contribution of a face 𝐾𝑀𝑁 

on the boundary 𝛤ଷ is given, 

𝑆௜௝
ଷ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2𝑎௦

12
𝑆௰య

𝑎௦

12
𝑆௰య

𝑎௦

12
𝑆௰య

0

𝑎௦

12
𝑆௰య

2𝑎௦

12
𝑆௰య

𝑎௦

12
𝑆௰య

0

𝑎௦

12
𝑆௰య

0

𝑎௦

12
𝑆௰య

0

2𝑎௦

12
𝑆௰య

0

0
0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (2 − 122) 

It is noted that all the boundary conditions, except the first one, are integrated into 

the weak formulation after the transformation. Before the assembly, the DoFs of nodes 

on the Dirichlet boundary are removed from the unknown list and the right-hand-side 

vector is modified to take these DoFs into consideration. The related columns and rows 

in the stiffness matrix are deleted to maintain the equivalence between the number of 

equations and the number of unknowns.  

 

 

2.2.2 Coupled Field Analysis 

Thermal analysis has attracted increasing attentions in the design of 

electromagnetic devices to acquire high efficiency, small size, large capacity, and 

strong stability [B27]. In addition, an accurate thermal analysis is crucial for the device 

operation and the decision making [B28]. During operation, the losses, which are 
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generated in the active parts, are dissipated to the ambient and the temperature of 

device rises in the meantime. The temperature rise is directly determined by the losses, 

and the losses are critically temperature-dependent. Hence, the thermal field and the 

electromagnetic field should be analyzed simultaneously. In addition, the heat transfer 

process is strongly coupled with the fluid flow in some devices, such as the 

transformers and the water cooled motors [B29]. To derive an accurate solution, the 

fluid field should be considered in the thermal field analysis. The governing equations 

for the convection heat transfer of fluid and the related calculation process are covered 

in the following section. Numerical methods, which can handle different fields, 

complex geometries, nonlinear materials, and transient problems, have been applied 

in the coupled field analysis [B30].  

 

Fig. 2.5. The coupled magneto-thermal field analysis 

 

Owing to the complicated coupling between fields, indirect coupling is generally 

adopted in the analysis. In other words, these two fields are solved separately and 

iteratively. As shown in Fig. 2.5, the magnetic field is solved with a predefined 

temperature, and the derived solution is used to calculate the loss distribution, which 

is transferred to the thermal field as the heat sources. The thermal field is solved based 

on the current losses, and the calculated temperature distribution is transferred to the 

magnetic field solver to updated the temperature-dependent parameters, such as the 

electric conductivity and the magnetic permeability. The magnetic field is recalculated 

with these updated parameters. These two fields are solved iteratively until the 

predefined convergence criterion for temperature or loss is met. 

To facilitate the design and analysis of electromagnetic devices, the FEM solver 

for thermal field has been added in several commercial electromagnetic field 

simulation software packages, such as the Infolytica Magnet/Thermnet [B31] and 
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JMAG [B32]. In addition, some universal simulation platform, such as the ANSYS 

Workbench [B33] and the COMSOL Multiphysics [B34], can handle more 

complicated problems, like the turbulent heat transfer.  

Two categories of approaches are generally adopted in the numerical methods to 

solve the coupled magneto-thermal field. The first approach to deal with the coupling 

is to build the FE spaces for these two fields with one set of mesh. With this strategy, 

the memory space and meshing time for a second mesh are not required, and the data 

transfer between fields is readily accomplished. The major drawbacks are the 

unnecessary waste of computational work and the potential convergence problems, 

which are resulted by the different requirements for discretization. Solving each field 

with different meshes is the other common approach. This approach requires more 

storage resources and an additional mapping algorithm for different meshes, which 

may introduce extra errors to the solution [B35]. Compared with the former coupling 

approach, this approach is relatively robust by sacrificing precision and storage 

resources. In the ANSYS Workbench, the barycenter of elements, which are read from 

the fluid field solver Fluent, is mapped to the mesh used in the Maxwell solver to read 

the corresponding loss. This mapping algorithm is so coarse that large transfer errors 

are introduced to the solution. Radial basis function method, and non-matching mesh 

mapping method, which is based on the Gauss integral and coordinate transformation, 

are proposed to improve the mapping precision [B36].  

The core losses and the cooper losses are considered in the losses calculation. For 

the core loss, the separation model proposed by Bertotti, which divides the core loss 

into three components, is given as follows 

𝑃௙௘ = 𝑘௛𝑓𝐵௠
ଶ + 𝑘௖(𝑓𝐵௠)ଶ + 𝑘௘(𝑓𝐵௠)ଵ.ହ (2 − 123) 

where; 𝑘௛ is the hysteresis coefficient; 𝑓 is the frequency (𝐻𝑧); 𝑘௖ is the classical 

eddy coefficient; and 𝑘௘ is the excess coefficient. In the finite element analysis, the 

element copper loss is calculated by the following formula 

𝑃௖௨ = 𝑉𝐽ଶ/𝜎௧ (2 − 124) 
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where; 𝑉  is the volume of the element; 𝜎௧  is the electric conductivity; 𝐽  is the 

current density.  

In the coupled analysis, two material properties related to the electromagnetic 

field, i.e. the magnetic permeability and the electric conductivity, are modelled with 

the temperature dependent characteristic. The temperature-dependent electric 

conductivity is expressed by the following formula  

𝜎௧ = 𝜎଴/൫1.0 + 𝑘ఙ × (𝑇 − 𝑇଴)൯ (2 − 125) 

where; 𝜎଴  is the referenced electric conductivity at temperature 𝑇଴ ; 𝑘ఙ  is the 

temperature coefficient of electric conductivity. The temperature-dependent 

permeability of steel is represented by the following formula 

𝜇௧ = 𝜇଴ ቀ1.0 + 𝑘ఓ × (𝑇 − 𝑇଴)ቁ (2 − 126) 

where; 𝜇଴  is the referenced magnetic permeability at temperature 𝑇଴ ; 𝑘ఓ  is the 

temperature coefficient of magnetic permeability. 

 

 

2.3 The Analysis and Design of Power Transformers 

2.3.1 The Analysis of Power Transformers 

Power transformers have served as the main electrical equipment in alternating 

current power systems since last century and still play a vital role in modern High 

Voltage Direct Current system as the connector between systems. According to the 

insulating medium, the transformers are classified into oil-immersed transformers, dry 

type transformers, and resin type transformers [B37]. For high- power and high-

voltage applications, oil-immersed transformer is the most commonly used type, and 

the mineral oil is a good coolant as well. Based on the cooling method, oil-immersed 

transformers are classified into three categories, natural oil cooling (ON) transformer, 
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oil forced cooling (OF) transformer, and oil directed cooling (OD) transformer. 

Combined with the external cooling medium and its circulation mechanism, a four-

letter code, like ONAF for oil natural air forced transformer, is generally used to 

express the identification of oil-immersed transformers. Without any auxiliary 

equipment for oil circulation, the structure of ON transformer is simple, making for a 

highly stable operation. The natural convection is drifted by the lift force generated by 

the density discrepancy of oil. In OF transformers, the velocity of flow in cooling 

equipment is increased by the oil pumps, while there is still a thermosiphon flow in 

the windings. The OD technique, in which the oil is pumped and directed to flow 

through the cooling ducts in the winding, is used to reduce the hot-spot temperature. 

The accurate analysis of the power transformers is crucial for the design optimization, 

safe operation and decision making [B28]. Several areas are involved in the analysis, 

such as the electromagnetic analysis, the thermal analysis, and the insulation analysis. 

In some cases, the coupling analysis is used to cope with the naturally coupled field in 

transformers [B38, B39].  

 

 

Fig. 2.6. Front view of the transformer. 

 

Magnetic circuit method is a common approach for the magnetic field analysis. 

A three-phase, dry type power transformer, which is rated at 30𝑀𝑊, 115𝑘𝑉/13.8𝑘𝑉, 

60𝐻𝑧 , is used to illustrate the analysis process of power transformers. The high-



 

46 
 

voltage winding and the low-voltage winding are connected in delta and star, 

respectively. The front view of this transformer is given in Fig. 2.6, in which 𝐸௨ and 

𝐺 represent the thickness of the core leg and the height of the window. In addition, 

the deepness of the transformer is notated by 𝐷. 

With the given dimensions, the cross-section area of core can be computed as 

𝑆௖ = 𝐷 × 𝐸௨ (2 − 127) 

The volts per turn is computed as follows: 

𝑉𝑃𝑇 =
13800

√3𝑁ଶ

(2 − 128) 

where 𝑁ଶ is the number of low-voltage winding turns. Then the magnetic flux density 

is given by 

𝐵௠ =
𝑉𝑃𝑇

4.44𝑓𝑆௖

(2 − 129) 

This formula is based on an assumption that the magnetic field is evenly distributed in 

the core. This procedure can be replaced by the finite element analysis to derive a more 

accurate field [B40-B42]. Moreover, FEM is also used in combination with 

optimization methods for the design optimization of transformers [B43].  

If the number of high-voltage winding turns is not given, it can be computed 

according to the transformation ratio, 

𝑁ଵ =
115000

𝑉𝑃𝑇
(2 − 130) 

It is worth noting that the windings are connected in different modes. The following 

analysis on losses are based on the solution of magnetic field and the detailed 

dimensions. The volume of core is calculated from the following equation,  

𝑉௖ = 𝐸௨ × (6𝐸௨ + 4𝑊 + 3𝐺) × 𝐷 (2 − 131) 

According to the magnetic flux density and the interpolated B-loss curve for the 

frequency, the total core losses of this transformer are derived by  

𝑃௖ = 𝑃௩ × 𝑉௖ (2 − 132) 
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where 𝑃௩ is the core loss per volume at the specific magnetic flux density.  

The copper losses are calculated in a similar way, and the first step is to compute 

the dimensions of these two windings. The height of winding is derived with the 

distance to core and the height of window,  

𝑇𝐷௅௏ = 𝐺 − 2𝐷௅௏ି஼ (2 − 132) 

𝑇𝐷ு௏ = 𝐺 − 2𝐷ு௏ି஼ (2 − 133) 

where; 𝐷௅௏ି஼  is the distance between core and secondary winding; 𝐷ு௏ି஼  is the 

distance between core and primary winding. Then the width of winding is to be 

determined, in which the wire type is considered. The primary and secondary windings 

are winded by copper wire with the diameter of 𝑑ு௏  and copper sheet with the 

thickness of 𝑡௅௏, respectively. The number of wire layers in the primary winding is 

calculate based on its height and the number of turns, 

𝐿𝑎𝑦𝑒𝑟𝑠ு௏ =
𝑁ଵ

𝑇𝐷ு௏ 𝑑ு௏⁄
(2 − 134) 

The width of winding is derived from the following equation, 

𝑊௅௏ = 𝑡௅௏ି஼ × 𝑁ଶ (2 − 135) 

𝑊ு௏ = 𝑑ு௏ × 𝐿𝑎𝑦𝑒𝑟𝑠ு௏ (2 − 136) 

The length of winding is approximately calculated by 

𝐿௅௏ = 𝜋(𝑊௅௏ + 2𝑊௅௏ି஼ + 𝐸௨) (2 − 137) 

𝐿ு௏ = 𝜋(2𝑊௅௏ + 2𝑊௅௏ି஼ + 2𝑊௅௏ିு௏ + 𝐸௨ + 𝑊ு௏) (2 − 138) 

where; 𝑊௅௏ି஼  is the width between core and secondary winding; 𝑊௅௏ିு   is the 

width between secondary winding and primary winding. With all the dimensions of 

windings determined, the volume of winding is obtained, 

𝑉௅௏ = 𝑇𝐷௅௏ × 2𝑊௅௏ × 𝑊௅௏ × 3 (2 − 139) 

𝑉ு௏ =
𝜋 × 𝑑ு௏ × 𝑑ு௏ × 𝐿ு௏ × 𝑁ଵ

4
× 3 (2 − 140) 
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Then the copper losses for these two windings are calculated by  

𝑃௅௏ = 𝑉௅௏𝐽௅௏
ଶ /𝜎௧ (2 − 141) 

𝑃ு௏ = 𝑉ு௏𝐽ு௏
ଶ /𝜎௧ (2 − 142) 

where 𝐽 is the current density of winding. The main components of transformer losses 

are obtained with these analytical formulas, while other losses, such as stray losses on 

the tank and structures, are neglected in the analysis. In some cases, the stray losses 

have a significant effect on the hot-spot temperature, and should be treated carefully. 

Other parameters, like the impedance voltage, can be derived with the related 

analytical approaches.  

Based on the solution of electromagnetic field, the thermal analysis of 

transformer can be conducted by analytical methods in combination with empirical 

coefficients. In oil-immersed transformers, the average winding temperature-rise is 

calculated with the gradient and the average oil temperature-rise [B37]. The empirical 

equation for the gradient is formulated with the thermal load per surface, which equals 

to the quotient of copper loss to the effective heat dissipation area. Generally, the 

empirical equation is only suitable for a certain type of transformer, and the 

coefficients require modification to fit different dimensions. For ON transformers, the 

average oil temperature-rise is determined by a similar approach as the winding, while 

the oil flow should be considered for the OF transformers. The average oil 

temperature-rise of OF transformers is formulated with the volume flow rate and the 

cooling capacity of chiller, when the head of the oil pump is equal to the total resistance 

[B44]. According to the flow path, the entire cooling system is split into several parts, 

which are calculated separately with specific formulas. Because of the complex fluid 

field, these analytical formulas are not very accurate. In addition, detailed temperature 

distribution, like the hot-spot temperature, cannot be obtained with this type of method.  

It is well known that high temperature accelerates the aging of dielectric, which 

reduces the service life of power transformer and may cause severe faults [B28]. As 

the dominating heating component, the overheating problem of windings has attracted 

increasing attentions [B45]. Thermal network method [B46, B47] and numerical 
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methods [B48-B53] are applied to model the isolated windings to give an accurate 

estimation of the temperature-rise at hot-spot. To reduce the size of computational 

domain and the complexity of problem, heat-run test is used to derive the inlet flow 

rate of the windings. The bottom oil temperature is specified as the other parameter of 

the inlet boundary condition, and the inlet oil flow rate is iterated until the calculated 

average winding temperature-rise is matched with the measured value. Hence, the 

winding is isolated form the rest of the cooling system.  

The thermal network model consists of two sub-models, the hydraulic sub-model 

and the heat conduction sub-model. The mass flow rate distribution in the cooling 

ducts is obtained with the first sub model, and the heat conduction sub-model is to 

calculate the temperature distribution in the winding. Since the oil flow and the heat 

transfer is strongly coupled, these two sub-models are coupled through the boundary 

conditions on the liquid-solid interfaces and are solved iteratively until meeting the 

convergence criterion. On account of the complexity of numerical analysis for flow 

field, the hydraulic sub-model is analytically built based on the mass and pressure loss 

conservation, while the heat conduction in winding is analyzed either numerically or 

analytically. For winding with several passes, either successive analysis of passes or 

building a whole model for all the passes is accepted.  

As reported in the former paragraph, the computing costs for numerical heat 

transfer analysis of windings, in which the fluid domain is taken into consideration, is 

much higher than the analytical method. Tens of millions grids are required to 

discretize the 2D winding model [B48], and the number will increase to hundreds of 

millions for 3D model [B49]. Limited by the computing equipment, the numerical 

analysis was not widely applied in the thermal analysis of transformers. However, with 

the advancement of computer technology and parallel algorithms, numerical software 

is widely used in the thermal field analysis, in which the heat transfer in solids and 

liquids is coupled in a numerical model and solved by the fluid field solver.  

Since the oil velocity in ON transformers is small, the flow is laminar. These three 

conservation equations for the laminar flow are given by  

Continuity, 
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𝛻 ∙ (𝜌𝑽) = 0 (2 − 143) 

Momentum and, 

𝛻 ∙ (𝜌𝑽𝑽) = −𝛻𝑃 + 𝛻 ∙ (𝜇𝛻𝑽) + 𝜌𝒈 (2 − 144) 

Energy, 

𝛻 ∙ (𝜌𝑽𝐶𝑇) = 𝛻 ∙ (𝑘𝛻𝑇) + 𝑆௘ (2 − 145) 

where; 𝑃 is the pressure; 𝒈 is the gravity vector; 𝑽 is the velocity vector; 𝑆௘ is the 

heat source. For turbulent flow, extra models for the turbulence are required and are 

solved along with these three equations for the conservation of continuity, momentum 

and energy.  

In addition, the radiator is isolated from the rest of power transformer, and the 

numerical model [B54] and semi-analytical reduced model [B55] are used to analyze 

the radiator performance. To cope with the coupled problem existing in transformers, 

a coupling analysis that involving thermal, fluid and electromagnetic field was 

conducted for a three-phase medium-power dry-type power transformer, and the 

numerical solution is validated by the experimental temperature-rise test [B30].  

 

 

2.3.2 Power Transformer Design Optimization 

Transformer design optimization has received considerable attentions with the 

development of power industry [B1]. The most commonly used objective functions of 

TDO are to minimize the manufacturing cost and to minimize the total owing cost. 

According to the objective functions, the cost of each part should be measured with 

the market price. Under some circumstances, there are always more than one 

objectives to be optimized through transformer design process, such as manufacturing 

cost, total owing cost, loss, efficiency, and temperature rise, which is a typical multi-

objective optimization problem [B56-B59]. Multi-objective optimization aims to find 
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a set of optimal solutions among all the conflicting objectives under certain constraints, 

which are supplied to the transformer manufacturer. These optimal solutions are called 

Pareto solutions, which are different from the single solution obtained in the single-

objective optimization problem. In addition, there are several constraints to be met for 

all the candidates. International technical specifications on transformers, like IEC 

60076-1, IEC 60076-2, IEC 60076-3 and IEC 60076-5, are the main constraints to 

satisfy. Another possible set of constraints stems from the needs of customer, such as 

the dimension limits.  

Design based on the analytical model, which is introduced in the former section, 

is the most commonly used approach in industry [B37, B60]. For optimization 

problems of integer variables, all candidates should be evaluated to ensure the validity 

of optimal solution, while it is impossible to enumerate all the combinations for 

continuous variables. Another weakness of this method is the low accuracy of 

analytical transformer model, which may lead to wrong solutions. Many optimization 

algorithms, such as mixed integer programming, branch and bound technique, genetic 

algorithms, steepest descent method and evolution approaches, are applied in the TDO 

[B37]. To obtain an accurate evaluation of the transformer characteristics, FEM is used 

in the entire design process or the final validation process.  

The thermal design of power transformers is also investigated in many studies. 

Based on the analytical model of ONAN transformer windings, the effects that 

geometrical parameters, flow arrangement, and mass flow rate have on the heat 

transfer performance were investigated, which gives a guidance for the subsequent 

design of windings [B47]. In addition, the optimization of radiator is performed with 

the numerical simulation tool, ANSYS Fluent, and an optimized radiator with 

optimum length of sections and optimum spacing between sections are derived. The 

cooling capacity is improved by 14% when compared with the existing design [B61]. 

To attain the goal of cooling optimization of power transformers, six different 

geometric configurations of a power transformer are numerically studied with six 

different flow rates imposed on the inlet. In this study, the temperature dependent 

characteristics of fluid properties and boundary conditions are taken into consideration 
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[B51]. In [B38], the genetic algorithm is combined with the CFD to obtain an optimal 

configuration of the cooling ducts and windings. The losses are calculated by the 

coupled CFD-electromagnetic 3D model, in which anisotropic and temperature-

dependent quantities are specified for the thermal properties. An optimal positioning 

of the air ducts and winding is obtained, and the hot-spot temperature is reduced along 

with an overall heat transfer performance improvement when compared with the 

current transformer.  

 

 

2.4 Literature Review of Nanofluid  

Mineral oil is the most commonly used coolant and dielectric in oil-immersed 

power transformers, especially for high-power and high-voltage transformers. Owing to 

the inherently low thermal conductivity, oil pumps are introduced into the OF and OD 

transformers to improve the cooling performance by increasing the oil velocity. 

However, the electrification of oil is exacerbated by the increased flow velocity. The 

accumulated charges may accelerate the aging of insulation board and shorten the 

service life of transformer [B62].  

An innovative approach to improve the heat transfer performance of liquid coolant 

is to enhance the thermal conductivity by adding solid particles with order-of-magnitude 

higher thermal conductivity. In 1873, this idea was proposed by Maxwell for the first 

time, after which many investigations were conducted until Choi et al. produced the 

colloidal fluid with metallic nanoparticles in 1995 [B63]. The term “nanofluid” was 

created to represent the colloidal fluid suspended with nanoparticles. The measured 

thermal property validated the original concept proposed by Maxwell. This innovative 

approach has been applied in the common coolants, such as water [B64, B65], 

transformer oil [B66, B67], vegetable oil [B68] and so on. The nanofluids prepared with 

different nanoparticles and concentrations are tested. In addition, the effect that 

preparation methods have on the thermal properties of nanofluids is considered in some 
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studies [B69]. The most commonly concerned nanofluid properties are thermal 

conductivity, breakdown voltage, viscosity, and dielectric dissipation factor.  

The transformer oil based nanofluids have been investigated by many researchers 

with different types of nanoparticles. C. Choi prepared three kinds of transformer oil 

based nanofluids with the Al2O3 and AlN nanoparticles [B70]. It is found that the 

thermal conductivity of nanofluids is in positive correlation with the thermal 

conductivity of nanoparticles and the volume fraction. In [B71], the multi-walled carbon 

nanotubes are dispersed in the transformer oil in two mass concentrations of 0.001 and 

0.01%. An experimental set-up was designed to resemble the oil-immersed transformer, 

and the performance of nanofluids under natural and forced convection is 

experimentally studied. In this study, eight properties or parameters, namely, thermal 

conductivity, viscosity, breakdown voltage, electrical conductivity, density, shear stress, 

flash point, and pour point, are determined. The thermal conductivity increases with the 

rising concentration, while the effect that temperature has on the thermal conductivity is 

not monotonous. Once the temperature is higher than a specific value, about 60 degrees 

centigrade, a dramatic decrease in the thermal conductivity is observed with the 

increasing temperature. As expected, there is a dramatic decrease in the breakdown 

voltage after adding multi-walled carbon nanotubes, and this phenomenon is aggravated 

by the increasing concentration. To tackle the potential deterioration in insulating 

property, ceramic nanoparticles with higher relative permittivity are used to prepare the 

nanofluids. In [B72], the transformer oil based nanofluids are prepared using 

Zirconia(ZrO2) and Titania(TiO2), and their dielectric and thermal properties are 

measured. The AC breakdown voltages and impulse breakdown voltages of all the 

nanofluids, except the AC breakdown voltage of the TiO2 nanofluid at 0.05%wt, 

witnessed a significant growth when compared with the base oil.  

The preparation methods for nanofluids are classified to two categories, the single-

step method and the two-step method [B69]. In the single-step method, the development 

and the dispersion of nanoparticles are conducted at the same time. Using this method, 

a stable suspension can be derived with a relatively higher cost. In the two-step method, 

the nanoparticles are prepared separately and then dispersed into the base fluid by 
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ultrasonic dissolution, ball milling, magnetic stirring, or high-shear mixing. Compared 

with the first method, the application of the two-step method is more broad [B73].  

To facilitate the preparation of nanofluids and the subsequent simulation, many 

models, based on theoretical analysis or experimental data, are proposed to express the 

equivalent properties of nanofluids [B74]. Except for the concentration and the 

properties of nanoparticles, some other parameters, such as the dimension of 

nanoparticles, may be used to present the microscopic phenomenon in nanofluids. The 

models for the density, the specific heat, and the thermal expansion coefficient of 

nanofluid are generally formulated according to the solid-liquid equations, as given by 

𝜌௡௙ = (1 − ∅)𝜌௙ + ∅𝜌௣ (2 − 146) 

𝐶௡௙𝜌௡௙ = (1 − ∅)𝐶௙𝜌௙ + ∅𝐶௣𝜌௣ (2 − 147) 

𝛽௡௙𝜌௡௙ = (1 − ∅)𝛽௙𝜌௙ + ∅𝛽௣𝜌௣ (2 − 148) 

where; ∅  is the volume fraction of nanoparticles; 𝛽  is the thermal expansion 

coefficient; the nanoparticle and nanofluid are noted by the subscript 𝑛𝑓  and 𝑝 , 

respectively. Due to the lack of experimental data, the effect that temperature has on 

these properties is neglected.  

To conduct the thermal analysis of nanofluids, there are other two important 

thermal properties to be determined, i.e. the thermal conductivity and the viscosity. 

Although various models based on theoretical or experimental analysis have been 

proposed to estimate these two properties for nanofluid, a uniform model that applies to 

all the nanofluids does not exist. Lacking consensus on the mechanism of nanofluids, 

the proposed models should cope with varying parameters, such as the Brownian motion, 

size, thermal diffusivity, temperature and so on, and this aspect limits the application 

scenarios of these models. A review on the latest models for thermal conductivity and 

viscosity is given in [B75]. 

In this thesis, the Einstein viscosity formula based model [B76], in which the 

radius of the nanoparticle is considered, is adopted to estimate the viscosity and the 

thermal conductivity model [B77], which is based on experimental investigations, is 
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used 

𝜇௡௙ = 𝜇௙ ൤1 + 2.5∅ ൬1 +
8.868

𝑟
൰൨ (2 − 149) 

𝑘௡௙ = 𝑘௙ ൥1 + 4.4𝑅𝑒௣
଴.ସ𝑃𝑟௙

଴.଺଺ ቆ
𝑇

𝑇௙௥
ቇ

ଵ଴

ቆ
𝑘௣

𝑘௙
ቇ

଴.଴ଷ

∅଴.଺଺൩ (2 − 150) 

where; 𝑃𝑟 is the Prandtl number; 𝑇௙௥ is the freezing point of the carrier liquid; 𝑟 is 

the average radius of the nanoparticle; the Reynolds number of nanoparticle is given 

by 

𝑅𝑒௣ =
2𝜌௙𝑘௕𝑇

𝜋𝜇௙
ଶ𝑑௣

(2 − 151) 

where; 𝑑௣  is the diameter of the nanoparticle; 𝑘௕  is the Boltzmann constant 

(1.38066×10-23 𝐽 𝐾ିଵ ). From these two models, it can be found that the thermal 

conductivity and the viscosity increase after adding nanoparticles, which has been 

validated in numerous experimental studies. In addition, only the temperature 

dependence of thermal conductivity is concerned in the model, while other properties 

are regarded as temperature independent.  

In the experimental investigations and numerical studies of nanofluids, the mostly 

commonly used devices are simple containers, such as tube [B67], cavity [B78], and 

microchannel heat sink [B79]. Both laminar flow [B80] and turbulent flow [B81] are 

concerned in the former studies, which give a comprehensive insight for the heat transfer 

of nanofluids. In the numerical studies, two types of methods are widely employed to 

analyze the nanofluid flow, and they are the multi-phase method and the single-phase 

method [B75]. As there are two phases, i.e. the liquid phase and the solid phase 

(nanoparticle), involved in the nanofluids, the utilization of multi-phase method is 

straightforward [B79, B82, B83]. Even so, the simple single-phase method is broadly 

adopted by scholars [B75, B84, B85], and the solution derived with this approach is 

reasonable as well. In the single-phase method, the nanofluid is regarded as a 

homogenous mixture with equivalent properties, and these two phases are in thermal 

equilibrium and flow in the same velocity. In the single-phase method, the governing 
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equations are formulated for the mixture, and turbulence models are added into the 

governing equations for the turbulent flow. In the multi-phase method, the differences 

in velocities and temperatures between phases are considered. The multi-phase method 

is further classified into two categories, the Lagrangian-Eulerian method and the 

Eulerian-Eulerian method, which consists of three popular models, the volume of fluid 

(VOF) model, the mixture model, and the Eulerian model. The Eulerian-Eulerian 

method is suitable for mixture with large amount of particles. The Eulerian model is a 

complete multi-phase approach, in which the governing equations are formulated for 

each phase separately. In the mixture model, the governing equations are formulated for 

the mixture rather than for each phase. In addition, there is one more conservation 

equation of the volume fraction in the governing equations. The interaction between 

phases and the velocity difference are considered in the mixture model by modifying the 

momentum and energy equations. The VOF model gives shared temperatures and 

velocities for both phases, while the volume fraction is derived by solving a continuity 

equation of the second phase. Compared with the single-phase method, more equations 

are involved in the calculation of multi-phase method, and the requirement for 

computational resources increases accordingly. In the open literature with experimental 

validation, the multi-phase method is reported to be more accurate when compared with 

the single-phase method [B82, B83].  

The heat transfer of an oil-immersed distribution transformer after adding carbon 

nanotubes (CNT) and graphite of different concentrations is studied with the single-

phase method [B86]. A 3D slice model is built for the distributor transformer, and 

transformer oil cooling is included for comparison. Significant improvement on the heat 

transfer performance was observed from the numerical results. In [B87], the heat transfer 

characteristics of transformer oil based nanofluid in a transformer is numerically 

analyzed with the COMSOL. The Eulerian model is used, and the distribution of 

nanoparticles are derived along with the temperature and velocity. In addition, the 

hysteresis loop of nanofluid materials should be taken into consideration when 

conducting the electromagnetic analysis [B88]. A special type of nanofluid, namely, 

ferrofluid, is prepared with magnetic nanoparticles, and has more applications other than 
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improving the cooling performance [B89-B91], such as enlarging the torques or forces 

of electrical machines by filling the gaps [B92, B93]. 

 

 

2.5 Summary  

The potential formulations for Maxwell equations and heat conduction equations 

are reviewed along with the detailed discretization process of FEM. The commonly 

used NR method for nonlinear problems is also included. In addition, these two 

common coupling strategies for magneto-thermal analysis are presented.  

The analytical method used in the transformer analysis and design is reviewed 

along with the optimization methods. Numerical methods, such as finite element 

analysis and CFD analysis, have been gradually introduced into the design process to 

partially or completely replace the analytical models. To reduce the computational 

burden, isolated parts of transformers, such as windings and radiators, are investigated 

separately. 

This chapter also reviews the studies on transformer oil based nanofluid, such as 

preparation, measurement, experimental investigations, and numerical analysis. The 

prediction models for nanofluid properties and the numerical models for nanofluid 

flows are covered.  
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Chapter 3 The Adaptive Degrees-of-

Freedom Finite Element Method 

Adaptive FEMs were proposed to solve real-life electromagnetic problems by 

automatically modify the discretization of specific problems [C1], and the major aim 

of adaptive FEMs is to derive accurate solutions while avoiding the unnecessary waste 

of computational resources. In this chapter, an adaptive DoFs FEM is presented for the 

3D nonlinear magnetic field, thermal field, and coupled magneto-thermal field 

analysis.  

 

 

3.1 Introduction to Adaptive Finite Element Method  

With the given criterion on precision, an optimal discretization file is generated 

for the problem during the adaptive calculation, and this discretization file should be 

as coarse as possible while satisfying the criterion [C2]. For transient problems, the 

optimal discretization file may vary for different time steps, and automatic control of 

time step sizes should be included in the solver as well. Generally, there are two key 

techniques, namely, error estimators and discretization adjustment, involved in the 

adaptive FEMs [C1]. Based on the estimated errors of current solution, the 

discretization file is automatically refined or coarsened, and the modified 

discretization file is used in the following step or time step.  

According to the discretization adjustment method, the adaptive FEMs are 

divided into three categories, namely, the r-method [C3, C4], p-method [C5] and h-

method [C1, C6, C7]. In the r-method, the mesh topology is maintained during the 

modification, and nodes are concentrated to these areas with large errors to enhance 

the resolution. This method is not flexible in some situations, especially for these 

problems with coarse meshes. In the p-method, the order of the polynomial basis 
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functions is changed adaptively, while the mesh is maintained to be unchanged. Since 

several different local stiffness matrixes are involved, the implementation of this 

method is relatively complicated. Hence, the r-method and the p-method are also used 

in combination with the h-method. As the most commonly used adaptive FEM, the h-

method changes the mesh successively by adding and removing nodes.  

With the ability to handle complicated geometries, triangle and tetrahedron are 

two common elements that are used to discretise the magnetic field. Recursive 

refinement algorithms were proposed to refine the mesh of triangle and tetrahedron 

element, such as the longest edge bisection algorithm [C8] for triangle and the 

recursive algorithm proposed by Kossaczký [C9] for 3-D problems. No handing point 

and other type of element are generated in the refinement process. In addition, the 

unicity of element can be maintained during the coarsening process. The mesh 

information, such as the finite element information, geometric data, and DoFs 

information, needs to be reorganized after the refinement and coarsening [C2].  

The adaptive control of procedures in space and time step sizes is generally 

included in the adaptive FEMs for transient problems. Several strategies are presented 

to realize the adaptive procedures in space [C10], namely, explicit strategy, semi-

implicit strategy, implicit strategy A and implicit strategy B. Meanwhile, the 

algorithms for controlling time step sizes vary in the usage of grid adaption. Hence, 

these two controls can be combined in several ways [C2].  

The discretization modification and the control of adaptive procedures are guided 

by the estimated errors of the current solution. Since the exact results of most of the 

DoFs are unknown, many researchers aim to propose an accurate, effective, and 

broadly suitable error estimator, such as the recovery-type [C11-C13], the residual 

type [C14], the energy based method [C15], the norm of the gradient of the solution 

[C1], the magnetic flux line method [C16] and so on.  

The broadly used recovery type error estimator, the ZZ error estimator [C11] is 

simple and easy to implement. The exact value of flux density is assumed to be the 

interpolation of numerical solution [C17], 
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𝑩௧௥௨௘
௘ = ෍ 𝑁௜௘ ቌ

1

𝑀௜
෍ 𝑩௝

ெ೔

ଵ

ቍ

௡௩

௜ୀଵ

(3 − 1) 

where; 𝑩௝ is the current flux density in element 𝑗; 𝑩௧௥௨௘
௘  is the exact value of 𝑩௘; 

𝑛𝑣 is the number of vertexes; and 𝑁௜ is the complement function for element 𝑒; 𝑀௜ 

is the number of elements consisting node 𝑖 . Here, the flux density at a node is 

interpolated by the average flux density of its surrounding elements. For the node on 

the interface between materials, these 𝑀௜ elements are divided according to material 

and then are used to estimate the nodal average flux density for each material. The 

errors of the current numerical solution are then calculated based on the magnetic 

energy as  

(ε௘)ଶ =

1
2 ∫ (𝑩௘ − 𝑩௧௥௨௘

௘ )
௏௘

∙ 𝜗(𝑩௘ − 𝑩௧௥௨௘
௘ )𝑑𝑉

1
2𝑁𝐸

∑ ∫ 𝑩௜ ∙ 𝜗𝑩௜𝑑𝑉
௏௜

ோ
௜ୀଵ

× 100% (3 − 2) 

where 𝑁𝐸 is the number of elements. 

 

 

3.2 The Adaptive DoFs FEM for 3D Nonlinear 

Magnetic Field Analysis 

During the calculation of nonlinear problems, the iteration process may generate 

some local refinement, which is not required for the following steps [C2]. To control 

the computational scale, local mesh coarsening may be needed. Hence, both mesh 

coarsening and mesh refinement may be involved in one single step, which increases 

the complexity in reorganizing the mesh information. Recently, a novel h-method, 

namely, the adaptive DoFs FEM, was proposed to solve 2D magnetic field [C18, C19]. 

The explicit nodes elimination, which is used in conventional h-method, is replaced 

by implicitly removing these redundant DoFs (slave DoFs) from the unknown list, 

which distinguishes this method from other h-methods. The slave-master technique is 
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introduced into this process to impose extra constraints on these slave DoFs, and these 

constraint formulations are formulated with master DoFs [C20]. After the 

transformation, the problem scale is reduced without actually coarsening the mesh. In 

addition, the subsequent information administration after mesh coarsening are 

obviated. A common refinement algorithm for triangle element, namely the longest 

edge bisection algorithm, is used in the refinement process. The proposed method is 

developed in combination with a simple constraint formulation, and its effectiveness 

has been validated by solving several 2D nonlinear problems.  

To extend this method to solve 3D problems, a novel category of constraint, 

which has higher precision, is presented. The coefficients of the constraint formulation 

are derived with a uniform interpolation function for polyhedrons [C21]. More master 

DoFs are used in the proposed constraint to deal with the complex field. The 

improvement in accuracy is showcased by individual and overall assessment. 

Tetrahedral element is used in the spatial discretization, and the coarse mesh is refined 

with a bisection based algorithm. In addition, the nonlinearity introduced by materials 

are handled with the NR method, and the ZZ error estimator is used to calculate the 

errors of the numerical results.  

 

 

3.2.1 The Proposed Constraint  

Nodes of minimal errors are removed in conventional h-methods, and the adapted 

mesh according to the current solution is used in the subsequent step. Although the 

DoFs at these nodes do not exist any longer, the potentials at these positions can be 

computed with the adjacent DoFs and the shape function of these related elements. 

Moreover, the accuracy of the solution, which is derived with the adapted mesh, is still 

acceptable. In the adaptive DoFs FEM, these redundant DoFs are interpolated with the 

adjacent DoFs reasonably and then removed from the unknown list implicitly. The 

DoFs are divided into three categories, slave DoFs, master DoFs, and normal DoFs. 

To differentiate these three types of DoFs, an identifier dofId is introduced into the 
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data structure, and the slave, master, and normal DoF are identified by 1, 2, and 0, 

respectively.  

The extra interpolation functions of slave DoFs are formulated with master DoFs. 

A uniform linear interpolation function is given by 

𝑢௦ = ෍ 𝛼௜𝑢௜
௠

௞

௜ୀଵ

(3 − 3) 

where; the superscript (𝑠 and 𝑚) is the attribute of DoF; the subscript is the index of 

mater DoF; 𝛼௜ is the coefficient of the 𝑖௧௛ master DoF; 𝑘 is the number of master 

DoFs. These interpolation equations are then substituted into the algebraic system to 

remove the slave DoFs from the unknown list, which is the so-called slave-master 

technique. The extra interpolation formulations are also called constraints, which are 

imposed on the slave DoFs.  

There are two key factors involved in the constraint, the choice of master DoFs 

and the determination of coefficients. The simple constraint, which is validated to be 

effective in 2D problems, adopts two adjacent master DoFs and average coefficients, 

𝑢௦ =
𝑢ଵ

௠ + 𝑢ଶ
௠

2
(3 − 4) 

However, this constraint is unable to deal with the complicated 3D magnetic field. To 

extend the adaptive DoFs FEM to solve 3D problems, a novel constraint adopting more 

master DoFs with rational coefficients is presented.  

For a slave node, the neighboring nodes, which are connected to the salve node 

by edges, are the first choice for master nodes. The number of neighboring nodes of 

slave nodes is different from each other, and the number of master nodes used for each 

slave node also varies. Then a general strategy is required to deal with the variation in 

the number of master nodes. In order to derive an accurate interpolation function for 

the slave DoF, a general shape function of polyhedrons [C21] is adopted, and the shape 

function is calculated by normalizing the weighting functions of nodes, 

𝛼௜(𝐱) =
𝑤௜(𝐱)

∑ 𝑤௠(𝐱)ே௩
௠ୀଵ

(3 − 5) 
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where;  𝑁𝑣 is the number of master nodes; 𝐱 is the coordinate vector of the slave 

node; 𝑤௜(𝐱) is the weighting function of the 𝑖௧௛ master node, which is defined as, 

𝑤௜(𝐱) = ෍ ቈ
𝛾௝,௝ାଵ

𝑉௜,௝,௝ାଵ
+

𝛾௜,௝𝑉௝ିଵ,௝ାଵ,௝

𝑉௜,௝ିଵ,௝𝑉௜,௝,௝ାଵ
቉

௟

௝ୀଵ

(3 − 6) 

where; 𝑗 and 𝑙 are the respective index of and the number of the neighboring master 

node for the 𝑖௧௛ master node; 𝑉 is the volume of the tetrahedron consisting of the 

slave node and other three nodes indexed by its subscripts; and the coefficient 𝛾 is 

given by 

𝛾௔,௕ =
‖(𝐱௔ − 𝐱) × (𝐱௕ − 𝐱)‖

6
𝑎𝑟𝑐𝑐𝑜𝑠 ቈ

(𝐱௔ − 𝐱)்(𝐱௕ − 𝐱)

‖𝐱௔ − 𝐱‖‖𝐱௕ − 𝐱‖
቉ (3 − 7) 

 

Table 3.1. Neighboring information for the master nodes. 

Master node Id Sequenced neighboring master nodes 

6252 11618 4590 5275 10687 11219 9438 

4590 11618 6252 5275 8533 

5275 10687 6252 4590 8533 4143 10078 

8533 4143 5275 4590 11618 10617 11997 

4143 10078 5275 8533 11997 

5315 10617 6013 9438 11618 

6013 10617 5315 9438 11219 5314 10078 11997 

9438 11618 5315 6013 11219 6252 

10687 10078 5275 6252 11219 5314 

10078 11997 4143 5275 10687 5314 6013 

5314 6013 10078 10687 11219 

11219 6252 10687 5314 6013 9438 

10617 8533 11618 5315 6013 11997 

11618 8533 10617 5315 9438 6252 4590 

11997 8533 4143 10078 6013 10617 
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The index of neighboring master node is numbered independently for each master 

node, and the weighting function is computed according to the neighboring 

information. This strategy applies to any polyhedron with no less than four faces.  

 

Table 3.2. The MVP at master nodes and the constraint coefficients. 

Id Ax Ay Az α 

6252 -6.81E-05 -5.44E-05 2.47E-06 0.05780 

4590 -8.52E-05 -4.99E-05 2.67E-06 0.05469 

5275 -7.44E-05 -6.52E-05 1.94E-06 0.05504 

8533 -8.35E-05 -5.26E-05 2.04E-06 0.07081 

4143 -7.73E-05 -6.50E-05 1.30E-06 0.06132 

5315 -7.04E-05 -3.56E-05 1.39E-06 0.05946 

6013 -6.33E-05 -4.54E-05 1.12E-06 0.08440 

9438 -6.78E-05 -4.13E-05 2.34E-06 0.05863 

10687 -6.01E-05 -6.36E-05 1.59E-06 0.05512 

10078 -6.82E-05 -6.13E-05 1.14E-06 0.09634 

5314 -5.60E-05 -5.71E-05 9.65E-07 0.05777 

11219 -5.98E-05 -5.29E-05 1.73E-06 0.07132 

10617 -7.73E-05 -4.12E-05 1.35E-06 0.06856 

11618 -7.80E-05 -4.41E-05 2.27E-06 0.08910 

11997 -7.45E-05 -5.05E-05 8.90E-07 0.05965 

 

A slave node with Id 1311 is chosen from the second numerical example in 

section 3.2.3 to illustrate the constraint details. 15 adjacent nodes are adopted as the 

master nodes for this slave node, and the neighboring information among these master 

nodes are administrated and sorted, as listed in Table 3.1. The dummy polyhedron 

formed by these master nodes have 26 triangular faces. Based on the neighboring 

information, the constraint coefficients are obtained by normalizing the calculated 

weighting functions. The derived coefficients are listed in Table 3.2 with the solution 
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of the DoFs at these nodes. The approximation results of the proposed constraint and 

the simple constraint are compared, as listed in Table 3.3. Two subscripts, c1 and c2, 

are used to identify the proposed constraint and the simple constraint, respectively. An 

error analysis is conducted with the FE solution of the slave DoFs as the references. It 

is found that the performance of the simple constraint is unpredictable, and there are 

huge discrepancies among the errors of three directions. In contrast, a robust 

performance is observed when using the proposed constraint, although there is not any 

pre-knowledge of the field. The analysis of more slave DoFs reflects the same 

conclusion, and the overall performance in numerical problems is analyzed in the 

section 3.2.3.  

 

Table 3.3. Error analysis of these two constraints. 

A Vref Vc1 Vc2 Ec1 E c2 

Ax -7.13E-05 -7.09E-05 -7.66E-05 0.5% 7.5% 
Ay -5.27E-05 -5.18E-05 -5.22E-05 1.8% 1.1% 
Az 1.71E-06 1.66E-06 2.57E-06 2.7% 50.6% 

 

3.2.2 Adaptive DoFs Adjustment 

The number of DoFs is increased along with the mesh refinement process, in 

which new nodes are added in regions with steep gradients. During the generation of 

new nodes, edges, faces and elements, the indexes, relations, and neighboring 

information are changed, which needs to be reorganized. The recursive refinement 

algorithm proposed for tetrahedron element is adopted in this study to increase the 

DoFs [C9]. The six edges in a tetrahedron element is separated into three “edges”, two 

“face diagonals”, and one “diagonal”. As shown in Fig. 3.1, the recursive refinement 

is a process to bisect the diagonal-face diagonal-edge in turn. Accordingly, the 

elements are divided into three categories to facilitate the refinement. Preconditioning 

may be required to ensure the edge to be bisected is compatibly divisible, which means 

all the elements consisting of this edge are in one type.  
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Fig. 3.1. The edge classification and the recursive refinement by bisecting (a) the 

diagonal, (b) one of the face diagonals and (c) one of the edges 

 

The slave DoFs is removed by the slave-master technique in the element level, 

accompanied by an identical assembly process as the conventional FEM [C22]. During 

the elimination, the element algebraic equation is transformed with the constraints of 

slave DoFs. To illustrate this technique, the transformation process of the FE equation 

of a tetrahedron, in which the DoFs at the third node are assumed to be slaves, is given 

in detail. The element algebraic equation derived by discretizing the MVP is given by  

𝑲𝒖 = 𝒇 (3 − 8) 

where; 𝑲 is the element stiffness matrix (size 12 × 12); 𝒖 is the element unknown 

vector (size 12 × 1); 𝒇 is the element load vector (size 12 × 1). Replace the slave 

DoFs in the unknown vector with the constraints,  

𝒖 = ൞

𝑨𝟏

𝑨𝟐

𝑨𝟑

𝑨𝟒

ൢ = ൞

𝑰𝟑

𝑰𝟑

𝜶
𝑰𝟑

ൢ ൞

𝑨𝟏

𝑨𝟐

𝑨𝟑
ᇱ

𝑨𝟒

ൢ = 𝑻𝒖ෝ (3 − 9) 

where; 𝑰𝟑  a unit matrix (size 3 ); 𝜶  is the constraint matrix (size 3 × 3𝑘 ); 𝑨𝟑
ᇱ   is 

the master unknown vector (size 3𝑘 × 1 ); 𝑻  is a compact notation for the 

transformation matrix (size 12 × (9 + 3𝑘)); 𝒖ෝ is the transformed unknown vector 

(size (9 + 3𝑘) × 1). After the substitution, the slave DoFs are eliminated from the 
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transformed unknown vector. The constraint matrix 𝜶 is given as follows, 

𝜶 = ቎

𝛼ଵ … 𝛼௞

𝛼ଵ … 𝛼௞

𝛼ଵ
… 𝛼௞

቏ (3 − 10) 

and the master unknown vector is given by 

𝑨𝟑
ᇱ = ൣ𝐴ଵ௫

௠ … 𝐴௞௫
௠ 𝐴ଵ௬

௠ … 𝐴௞௬
௠ 𝐴ଵ௭

௠ … 𝐴௞௭
௠

൧
𝑻

(3 − 11) 

Substituting equation (3-9) into the element algebraic equation (3-8) and pre-

multiplying the newly generated equation with the transpose of 𝑻 gives   

𝑲𝑻𝒖ෝ = 𝒇 → 𝑻்𝑲𝑻𝒖ෝ = 𝑻்𝒇 → 𝑲෡ 𝒖ෝ = 𝒇෠ (3 − 12) 

where; 𝑲෡  is the transformed element stiffness matrix (size (9 + 3𝑘) × (9 + 3𝑘)); 𝒇෠ 

is the transformed element load vector (size (9 + 3𝑘) × 1). The transformation does 

not change the symmetry characteristic of the stiffness matrix. After the global 

assembly, the reduction of the algebraic system dimension is realized. These slave 

DoFs are recovered from their constraints after solving the algebraic equations.  

Two types of adaptive procedures are adopted to solve the nonlinear problems in 

combination with the simple constraint and the proposed constraint. In the first strategy, 

the error estimator is only invoked after the first iteration. The adapted DoFs are then 

solved in the following steps until convergence. The other strategy uses the solve-

estimate-adapt process until the given criterion is met.  

 

 

3.2.3 Numerical Examples 

In order to check the mesh refinement algorithm, an artificial static problem with 

analytical solutions are used, 
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⎩
⎪
⎨

⎪
⎧ ∇ × ൬

1

𝜇
∇ × 𝑨൰ − 𝛻𝜗𝛻 ∙ 𝑨 = 𝑱𝒔

𝜇 = 2.0

𝑱𝒔 = (−2, −2, −2)

𝑨 = (𝑦ଶ + 𝑧ଶ, 𝑧ଶ + 𝑥ଶ, 𝑥ଶ + 𝑦ଶ )

(3 − 13) 

The problem is defined within a unit cube, the surface of which are specified with 

Dirichlet boundary conditions. A coarse mesh is generated firstly and then refined 

successively, and the L2 error is used to estimate the solutions, 

‖𝜀‖௅మ
= ቆන (𝑢 − 𝑢௛)ଶ𝑑𝑉

௏

ቇ

ଵ
ଶ

(3 − 14) 

where; 𝑢  and 𝑢௛  are the numerical result and the exact value, respectively. This 

formula is incorporate to the FEM solver by the Gauss integral of second order 

precision. As listed in Table 3.4, the computed L2 errors for the magnetic potentials 

continuously decrease along the refinement process, which verifies the effectiveness 

of this refinement algorithm.  

 

Table 3.4 The convergence test for mesh refinement algorithm. 

No. of elements L2 error of Ax L2 error of Ay L2 error of Az 

642 1.47E-2 1.42E-3 1.48E-3 

5004 4.02E-3 3.99E-3 4.13E-3 

37632 2.13E-3 2.05E-3 1.99E-3 

 

A nonlinear artificial problem [C23], which is defined within a unit cube, is used 

to showcase the correctness of the proposed constraint,  

ቐ

∇ × (ϑ∇ × 𝑨) − 𝛻𝜗𝛻 ∙ 𝑨 = 𝑱𝒔

ϑ = 𝑒௫ା௬ √2⁄

𝑱𝒔 = (0,0, −2𝑒ଶ௫ାଶ௬)

(3 − 15) 

The analytical solution of this problem is given by 𝑨 = ൫0,0, 𝑒௫ା௬ √2⁄  ൯, with which 

the Dirichlet boundary conditions are derived for the artificial numerical problem. The 
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nonlinear reluctivity is linearized by the NR method, and the criterion for convergence 

is a residual below 1.0 × 10ି଺. In the generated mesh, there are 33074 nodes and 

81567 DoFs.  

These two adaptive procedures are tested in combination with the simple 

constraint and the proposed constraint, and the estimated L2 errors of the magnetic 

potentials are listed in Table 3.5. It is observed that the errors of the simple constraint 

are at least an order of magnitude larger than the proposed constraint. In addition, 

compared with the first adaptive strategy, the second adaptive procedure derives more 

accurate solution by a smaller number of DoFs.  

 

Table 3.5 Error analysis of these two constraints in the second example 

No. of DoFs L2 error of Ax L2 error of Ay L2 error of Az 

74394 1.55E-2 2.50E-2 3.61E-2 

About 72522 8.20E-3 1.22E-2 2.77E-2 

74394 1.03E-3 1.03E-3 2.11E-3 

About 69354 1.59E-4 1.65E-4 3.75E-4 

The second row and the third row list the results of the simple constraint, and the results of the proposed 

constraint are given in the last two rows.  

 

The numerical problem in the section 2.1.6 is recalculated with the adaptive DoFs 

method. An algebraic system with 164574 unknowns are generated from the mesh with 

55325 nodes. After 18480 DoFs are specified as slaves, the system is re-solved with 

the proposed constraint (constraint 2). The numerical solution of the magnetic flux 

density along the solenoid axis shows good consistency with the analytical solution 

[C24] (see Fig. 3.2), which validates the correctness of the proposed constraint. The 

simple constraint (constraint 1) is also considered for comparison, and the derived 

solution, which is drawn in black color, reveals that large errors are introduced into the 

solution by this constraint.  
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Fig. 3.2. The magnetic flux density along the axis of the air core.  

 

 

Fig. 3.3. The geometry of TEAM problem 20. 

 

To check the performance in nonlinear engineering problems, the TEAM 

workshop problem 20 [C25] is solved using this adaptive DoFs FEM. Owing to the 

symmetry structure, one quarter of the geometry is modelled (see Fig. 3.3) and solved. 

The yoke and the center pole are made of a material with nonlinear magnetic reluctivity. 

An exciting current of 5000 ampere-turns is flowing in the coil. For the nonlinear 

iteration, the convergence criterion predefined on the residual is below 1.0 × 10ି଺. 

The second adaptive procedure is adopted, and about 12253 DoFs are chosen from the 

total 129287 DoFs and then specified as salve DoFs in each adaption. Hence, during 

the iteration, the scale of the problem is roughly reduced by 15%. The virtual work 

method [C26] is used to calculate the magnetic force, and the force acting on the center 
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pole in the z direction is 19.55N. For a full scale geometry, the calculate force would 

be 78.2N, which is close to the measured value [C27]. In addition, the calculated 

magnetic flux density and magnetic vector potential are given in Fig. 3.4 for 

illustration. This method is easily implemented and also applicable to solving other 

fields and transient problems.  

 

       

(a)                          (b) 

Fig. 3.4. (a) The magnetic flux density and (b) the vector potential derived with the 

adaptive DoFs FEM. 

 

 

Fig. 3.5. The geometry of TEAM workshop problem 7. 
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Fig. 3.6. Z-components Bz of magnetic flux densities along the line A1-B1. 

 

   
Fig. 3.7. The eddy current density in the aluminum plate at time instant t. 

 

As another engineering application, the TEAM workshop problem 7 is solved 

with this adaptive DoFs FEM [18]. As shown in Fig. 3.5, the stranded racetrack-shaped 

coil over the asymmetrical conductor is excited by a 2742AT current, which varies 

sinusoidally at a frequency of 50 Hz. The conductivity of the aluminum plate is 3.526 

× 107 S/m. The drive current is excited from zero value at the starting point, and zero 

initial value is set for the unknown in this time dependent problem. The adaptive DoFs 

FEM time-stepping process is calculated to 25ms with a uniform time step of 0.5ms. 

The calculated Z-components Bz of magnetic flux densities along line A1-B1 (from 

(0, 72, 34) to (288, 72, 34)) are given in Fig. 3.6 along with the measured results. 
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During the time-stepping calculation, roughly about 37000 DoFs in the mesh 

containing 259869 DoFs are constrained in each step according to the guidance from 

the error estimator. The good agreement between calculated results and measured 

results, which is observed from Fig. 3.6, shows that the accuracy of the solution is not 

affected by the constrained DoFs. Moreover, about 20% of the computing time is saved 

for this problem when compared to conventional FEM, which showcases the 

effectiveness of the proposed method in solving 3-D transient magnetic problems. In 

addition, the calculated eddy current in the aluminum plate is shown in Fig. 3.7. 

 

 

3.3 The Adaptive DoFs FEM for Thermal and 

Magneto-Thermal Field Analysis 

Based on the investigation of adaptive DoFs FEM, it is found that this method is 

applicable to magneto-thermal field analysis. The FE space of each field is built with 

one set of FEM mesh, and the requirement on discretization of each field is met by 

adapting the DoFs separately. The scale of the problem is reduced without intruding 

an extra mapping algorithm, and the errors resulted by the mapping algorithm are 

avoided.  

 

 

3.3.1 The Extension of Adaptive DoFs FEM 

Before applying the adaptive DoFs to solve coupled magneto-thermal problems, 

it is firstly extended to solve the thermal field. As introduced in the section 2.2, the 

numerical calculation process of the heat conduction equation is similar to that of the 

Maxwell equations. Also, h-type adaptive FEMs was proposed to solve the heat 

conduction problems [C28]. Error estimators, adaptive procedures in space, and 

control of time step sizes are involved in the method. When extending the adaptive 
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DoFs FEM to solve thermal field, the error estimator, which was used and validated in 

[C29], is adopted.  

The exact values of temperature are derived in the same way as the magnetic field. 

The heat flux corresponds to the flux density in the magnetic field, and the 

corresponding parameter of magnetic potential is the temperature. With the assumed 

exact values, the energy error for the numerical solution is formulated as [C29] 

(ε௠
௘ )ଶ =

∫
1
𝑘

(𝒒௘ − 𝒒௧௥௨௘
௘ )

௏௘
∙ (𝒒௘ − 𝒒௧௥௨௘

௘ )𝑑𝑉

∫
1
𝑘

𝒒௘ ∙ 𝒒௘𝑑𝑉
௏௘

× 100% (3 − 16) 

where the heat flux 𝒒௘ is defined as 

𝒒௘ = ൤𝑘
𝜕𝑇

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑧
൨ (3 − 17) 

Other techniques that are involved in the adaptive DoFs FEM are identical for 

these two field. In addition, owing to the scalar potential, the implementation process 

in thermal field is simpler when compared to the magnetic field. With the solvers 

developed for the magnetic and thermal field, the coupling procedures, and the 

temperature dependent characteristics, the extension of adaptive DoFs FEM to coupled 

magneto-thermal field is straightforward. These two fields are solved iteratively until 

the convergence criterion is met. Another coupling strategy, in which the same mesh 

is used for both fields without any adaption, is considered for comparison and mutual 

authentication. Two types of numerical examples, one for thermal field analysis and 

the other for coupled magneto-thermal field analysis, are calculated to showcase the 

effectiveness of this method.  

 

 

3.3.2 Numerical Examples 

The numerical example for thermal field analysis is a validation case from 

ANSYS [C30]. The numerical problem is to compute the temperature distribution in a 
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long thick-walled cylinder, the outer and inner surfaces of which are maintained at the 

temperature of −17.78℃  and −18.33℃ , respectively. As shown in Fig. 3.8, a 

numerical model is built with one-quarter of the cylinder and the axial length specified 

as 2.54𝑚𝑚. Owing to the special structure, these four cutting surfaces are adiabatic. 

With 400 nodes in the mesh with 3505 nodes specified as slaves, the calculated 

temperature, which is shown in Fig. 3.8, is consistent with the reference. In addition, 

the temperatures of thee points, P1 (4.76, 0.0, 0.0) , P2 (7.08, 0.0, 0.0) , and 

P3 (15.88, 0.0, 0.0), are compared with the referenced values given in [C30], which 

validates the correctness of the adaptive DoFs FEM solver developed for thermal field. 

 

 

Fig. 3.8. The geometry and temperature of the cylinder.  

 

Table 3.6. Comparison of the temperature for three fixed points. 

 Target (°∁) Numerical(°∁) Error (°∁) 
Temperature (P1) -18.33 -18.33 0.00 
Temperature (P2) -18.15 -18.12 0.03 
Temperature (P3) -17.78 -17.78 0.00 

 

Based on the TEAM workshop problem 20, which is solved in the section 3.2.3, 

a magneto-thermal coupling problem is formed by considering the temperature 

dependence of the materials. The effect of eddy currents is neglected and the sinusoidal 

field (𝑓 = 60𝐻𝑧) is approximated by the static analysis results. All the surfaces, except 
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the symmetry faces, are specified with convective boundaries. The formulas for the 

losses computation and properties update are introduced in section 2.2.2, and the 

related coefficients of these formulas are listed in Table 3.7. A mesh with 19193 

thermal DoFs and 129287 magnetic DoFs are generated for the coupling problem.  

 

Table 3.7. The parameters in the fourth example. 

Parameter 𝑘௛ 𝑘௖ 𝑘௘ 𝑘ఙ 𝑘ఓ 

Value 0.005697 0.000078 0.0 0.006800 0.001088 

 

 

Fig. 3.9. The convergence curve of the calculated copper loss.  

 

It takes nine steps for the iteration between these two fields to converge, and the 

convergence curve of the copper losses is shown in Fig. 3.9. There are roughly fifteen 

hundred thermal DoFs and ten thousand magnetic DoFs are specified as slave DoFs in 

each iteration. For magnetic field involving nonlinearity, the NR iteration terminates 

after thirteen steps. As shown in Fig.3.10, the magnetic flux density derived by the 

coupledsimulation is slight smaller than the solution obtained in the magnetic field 

analysis. In other words, the magnetic field analysis gives overestimated results when 

neglecting the effect of temperature. In addition, the core losses witness a decrease 

trend in the iteration process. The same phenomenon is observed for the magnetic force 

acting on the center pole. As shown in Fig. 3.11, the temperature distribution derived 
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by the adaptive DoFs coupling analysis is in good accordance with the solution 

obtained by the referenced strategy, in which the same mesh is used for both fields 

without any adaption, while the proposed method only takes 30% of the time 

consumed by the referenced strategy.  

 

 

Fig. 3.10. The magnetic flux density obtained by the coupling analysis. 

 

 

(a)                (b)                     (c) 

Fig. 3.11. The temperature of (a) the yoke, (b) the center pole and (c) the coil. 

 

The modified TEAM workshop problem 7 [11], in which the temperature 

dependence of conductivity is considered, is solved using the proposed method. In 

order to obtain the steady state performance, the magnetic transient solver is coupled 
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with the thermal static solver. The temperature coefficients for the conductivity of 

aluminum plate and copper winding are 0.0039 and 0.00404, respectively. The 

adaptive DoFs FEM time-stepping process is calculated to 𝑡 = 25 𝑚𝑠  with a 

uniform time step of 0.5𝑚𝑠, and the thermal solver is invoked after every ten steps of 

magnetic field computation. During the adaptive computation, a mesh with 467202 

elements are produced, and roughly 17% of the magnetic DoFs and 29% of the thermal 

DoFs are constrained in each step. As shown in Fig. 3.12, the calculated Z-components 

Bz of magnetic flux densities along line A1-B1 (from (0, 72, 34) to (288, 72, 34)) are 

plotted along with the measured results, and the good agreement between these two 

solutions validates the correctness of the propose method. The derived temperature, 

which is shown in Fig. 3.13, is close to the results obtained without any constrained 

DoFs. Overall, the computational load is reduced by about 18% using the proposed 

method, while the accuracy of the results is not affected. For illustration, the derived 

eddy current density in the aluminum plate is given in Fig. 3.14. It is observed that the 

magnitude is slightly smaller than that obtained in the magnetic field analysis, and this 

is consistent with the variation in resistance after considering the temperature 

characteristics. 

 

Fig. 3.12. Z-components Bz of magnetic flux densities along the line A1-B1 (coupled). 
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Fig. 3.13. The temperature contours of the aluminum plate at time instant 𝑡. 
 

 
Fig. 3.14. The eddy current density in the aluminum plate at time instant t (coupled). 

 

3.4 Summary  

An adaptive DoFs FEM is presented for 3D nonlinear magnetic field, thermal 

field, and coupled magneto-thermal field analysis in this chapter, and several 

numerical examples for this three types of fields are calculated. In this method, the 

explicit nodes removing is replaced by eliminating the corresponding DoFs implicitly, 

and a type of constraint is proposed to tackle the 3D field. The dimensions of system 

are reduced mathematically, while the rearrangement of mesh data for coarsening 

operation is no longer needed. Owing to the simple and flexible constraint, this 
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algorithm is easily implemented and extended.  

In the coupled analysis, the FE spaces of these two fields are built with one set of 

mesh, and the DoFs of these two fields are adjusted separately according to their 

respective requirements. These slave DoFs are eliminated and recovered by using the 

constraint and the slave-master technique. Hence, mapping algorithms are not required 

for the data transfer between fields, and the different discretization requirements are 

met. The effectiveness of this method in terms of efficiency and accuracy is showcased 

by numerical examples.  
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Chapter 4 Convective Heat Transfer of 

Nanofluids in Transformers  

As introduced in the section 2.3.1, the hot-spot temperature-rise of oil-immersed 

transformers has attracted increasing attentions [D1]. Many investigations have been 

conducted for the heat transfer of disc-type windings. Based on the existing studies, a 

comprehensive investigation on the natural convective nanofluids in disc-type windings 

is presented in this chapter. It is the first time to employ the multi-phase mixture model 

to study such a nanofluid flow, and the single-phase model is also considered for mutual 

authentication and comparison. 

 

 

4.1 Introduction to the Heat Transfer in Transformer 

The power losses of transformer active parts, such as iron structures, core, and 

windings, are converted into heat during the operation, and the generated heat is then 

diffused to the ambient, which results in a synchronous temperature rise through the 

heat transfer path. Five stages are included in the heat transfer path of ON transformer: 

1) heat conduction from the interior hot-spot to surfaces in the active parts; 2) 

convective heat transfer between the active parts and oil; 3) convective heat transfer 

between oil and the internal tank surface; 4) heat conduction in the tank; 5) convective 

heat transfer over the tank surface and heat radiation. In the OF transformer, there is 

one more heat transfer path, which is the warmed up and pumped out transformer oil. 

It takes several hours for the transformers to reach the thermal equilibrium.  

With the ability to handle complex flow field, irregular geometry, and nonlinear 

materials, numerical methods, such as FVM and FEM, have been widely used in the 

heat transfer analysis of transformers. Some studies focus on the integral analysis of 

transformers, which can derive a comprehensive solution on the thermal and flow field. 
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In [D2], the heat transfer in an ONAN three-phase three-limb transformer is analyzed 

by the FVM. The measured losses are used as heat sources in the thermal field solver, 

and the simulation results of temperature are validated by the measured temperatures. In 

addition, coupled analysis, such as magneto-fluidic-thermal analysis, is also used to 

consider the temperature dependent parameters. In [D3], a 3D magneto-fluidic-thermal 

analysis of a 10kV oil-immersed triangular wound core transformer is presented. Heat 

generated by the core and windings are derived in the electromagnetic analysis using the 

FEM, and the thermal and fluidic field are solved by the FVM. The effect that 

temperature has on the losses is taken into consideration, and the numerical results are 

validated by the analytical method presented in the IEC standards. DC bias is considered 

with the field-circuit coupled FEM in [D4]. The implementation process of magneto-

fluidic-thermal analysis is presented in detail by a three-phase dry-type power 

transformer.  

Since the hot-spot temperature rise in transformers is critical for the safe operation, 

many investigations have been conducted on the related topics. The hot-spot 

temperature-rise in the structural parts of an ODFS-334 MVA/500 kV single-phase auto-

transformer is computed by a coupling approach. The stray losses in the structural parts 

are obtained by the magnetic field analysis, and are then transferred to the fluid-thermal 

solver to compute the convective heat transfer coefficient, with which the thermal field 

is finally solved by the magnetic-thermal coupling algorithm [D5]. To investigate the 

hot-spot temperature rise in windings, the convective heat transfer in the windings is 

widely studied. A comprehensive literature review on the thermal modeling, which 

including the analytical model, CFD model, and measurement, are published by the 

CIGRE working group A2.38 [D1]. F. Torriano et al. investigated the effect that the inlet 

boundary conditions and the numerical model have on the temperature and flow 

distributions numerically [D6, D7]. A 2D model is constructed for one pass of the disc-

type transformer winding, and the effect of inlet position is studied [D6]. Since the effect 

of sticks and duct spacers is neglected in the 2D model, a 3D model is built to derive a 

more accurate solution [D7]. The 3D computations are however very time consuming, 

and for this reason a modification strategy for the 2D model is proposed based on the 
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3D field computations. To investigate the coupling between passes, Alex Skillen et al. 

built a complete numerical model for a transformer winding with four passes, and the 

temperature rise at hot-spot is predicted by an open source CFD code [D8].  

 

 

4.2 Numerical Study for One Pass of the Winding 

In order to apply the nanofluid to the transformer cooling, the heat transfer of 

nanofluid in windings needs to be investigated. To the best knowledge of the author, 

there is no experimental or numerical studies on the heat transfer in nanofluid cooled 

transformer windings. Limited studies [D9, D10] were conducted on the convective heat 

transfer of nanofluid in simple containers. In this section, the numerical study of natural 

convective heat-transfer of nanofluid (oil/Sic) in disc-type winding is presented. The 

study is based on the numerical model of one pass of the winding [D6], and both the 

single-phase model and multi-phase mixture model are used for mutual authentication 

and comparison. The numerical model and solver are validated by the existing results of 

the referenced model, which has the same dimensions as [D6] and is cooled by 

transformer oil. The mass flow distribution and the pressure drop are evaluated along 

with the temperature distribution.  

 

 

4.2.1 The Numerical Model  

In order to estimate the performance of nanofluid, an ON transformer [D6], which 

is rated at 66MVA, is modified by replacing the regular transformer oil with nanofluid 

(oil/SiC), and then studied numerically. As shown in Fig. 4.1, an axisymmetric 2D 

model rather than 3D model is constructed for one pass of the low-voltage windings, 

and the effect of sticks and duct spacers is neglected in the 2D model. Nineteen discs, 

twenty horizontal ducts, and two vertical ducts are included in the pass. The horizontal 
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ducts and discs are sequentially numbered from bottom to top. In this numerical model, 

the insulation board surrounding the conductors are considered, and no heat sources are 

imposed on this component. The dimensions of the notations shown in Fig. 4.1 are given 

as below: 

 

 

Fig. 4.1 The model of one pass of the low-voltage windings. 

 

      𝐿ௗ௜௦௖ =  0.0522 (𝑚) 

      𝑅௪ =  0.3162 (𝑚) 

      𝐻ௗ௨௖௧ =  0.0051 (𝑚) 

      𝐻ௗ௜௦௖ =  0.015 (𝑚) 

      𝐿௢ =  0.0064 (𝑚) 

      𝐿௜ =  0.0089 (𝑚) 
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      𝐻௜௣ =   0.0004 (𝑚) 

      𝐿௜௣ =  0.0008  (𝑚)  

      𝐿௖ =  0.0021 (𝑚) 

      𝐻௖ =  0.0143 (𝑚) 

 

Oil is directed into the pass through the outer vertical duct, flows through the 

horizontal ducts, joins together and flows out at the inner vertical duct. For windings 

with several passes, the direction of the horizontal oil flows changes inversely along 

the passes. The zig-zag windings form an efficient cooling system by these two types 

of passes, which have opposite inlet positions. Hence, both types of passes are included 

in the study.  

A homogeneous heat source (676.9𝑊/𝑑𝑖𝑠𝑐) is imposed on the conductors, and 

the error produced by non-uniform eddy losses is ignored. The surrounding cylinders 

and these two oil washers, which have low thermal conductivity, are as assumed to be 

adiabatic. A pressure boundary condition (0 𝑃𝑎) is specified for the outlet. The inlet 

boundary condition, which is obtained by heat run test for transformer oil cooling 

[D11], is used for nanofluid cooling, and the velocity and temperature of the inlet flow 

are 0.0592 𝑚/𝑠 and 319.85𝐾, respectively. The effect that the usage of nanofluid 

has on the inlet boundary condition is ignored to isolated the influence of nanofluid on 

heat transfer in windings.  

All the properties of the materials, except for the transformer oil properties, are 

treated as temperature independent and are given in table 1. The temperature 

dependent properties of transformer oil are formulated as follows [D12]:  

𝜌௙ = 1098.72 − 0.712𝑇 (4 − 1) 

𝐶௙ = 807.163 + 3.58𝑇 (4 − 2) 

𝜇௙ = 0.08467 − 4.0 × 10ିସ𝑇 + 5.0 × 10ି଻𝑇ଶ (4 − 3) 
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𝑘௙ = 0.1509 − 7.101 × 10ିହ𝑇 (4 − 4) 

where; the subscript 𝑓  is the index of transformer oil; 𝜌  is the density; 𝐶  is the 

specific heat; 𝜇 is the viscosity; 𝑘 is the thermal conductivity.  

 

Table 4.1. Material Properties. 

Material 
Density 

(𝑘𝑔 𝑚ିଷ) 
Specific heat 

(𝑊 𝑘𝑔ିଵ 𝐾ିଵ) 
Thermal conductivity  

(𝑊 𝑚ିଵ 𝐾ିଵ) 

Copper 8933 385 401 

Insulation 930 1340 0.19 

SiC 3160 750 490 

 

 

 

4.2.2 The Nanofluid Model 

The governing equations, which are used to represent the fluid field, depend on the 

nanofluid model and the pattern of fluid motion. The nanofluid is regarded as 

conventional single-phase fluid in the single-phase model, and is integrally modelled by 

the measured or calculated equivalent properties [D13-D18]. No more equations and 

additional terms are required to model the dispersed nanoparticles and the interaction 

between phases. In the multi-phase mixture model [D15, D16], the volume fraction 

conservation equation and modified terms regarding to the velocity discrepancy between 

phases are considered in the governing equations. The pattern of fluid motion is 

evaluated by the Reynolds number, and the critical value for laminar flow is below than 

2100. To calculate the Reynolds number for the studied flow, the nanofluid flow is 

regarded as a pure single-phase model, and the properties of the studied nanofluid are 

predicted by the models introduced in section 2.4. The average flow velocity is replaced 

by a larger inlet velocity. The calculated Reynolds number is about 1000, which is far 

below the critical value. Hence, the nanofluid flow is laminar and no turbulence model 

is required.  
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With the governing equations determined, the problem is then discretized and 

solved using the numerical methods. The momentum and energy are discretized in space 

with the second order upwind scheme. This convective heat transfer problem is finally 

solved by the FVM based software ANSYS-Fluent.  

In the single-phase model, the governing equations for the nanofluid flow 

represented are identical to the conventional single-phase flow, while the equations are 

formulated for the mixture, as given by 

Continuity, 

𝛻 ∙ ൫𝜌௡௙𝑽൯ = 0 (4 − 5) 

Momentum and, 

𝛻 ∙ ൫𝜌௡௙𝑽𝑽൯ = −𝛻𝑃 + 𝛻 ∙ ൫𝜇௡௙𝛻𝑽൯+𝜌௡௙𝒈 (4 − 6) 

Energy, 

𝛻 ∙ ൫𝜌௡௙𝑽𝐶௡௙𝑇൯ = 𝛻 ∙ ൫𝑘௡௙𝛻𝑇൯ + 𝑆௘ (4 − 7) 

where the subscript 𝑛𝑓 is the index of nanofluid.  

Since the mixture model is an incomplete multi-phase model, its governing 

equations are also formulated for the mixture. Dislike the single-phase model, the 

interaction and velocity difference between phases are concerned in the conservation 

equations of energy and momentum. In addition, one more equation for the 

conservation of volume fraction is added to the governing equations, which are given 

by 

Continuity, 

𝛻 ∙ ൫𝜌௡௙𝑽𝒎൯ = 0 (4 − 8) 

Momentum and, 

𝛻 ∙ ൫𝜌௡௙𝑽𝒎𝑽𝒎൯ = −𝛻𝑃 + 𝛻 ∙ 𝜏 + 𝜌௡௙𝒈 + 𝛻 ∙ ൬෍ ∅௞𝜌௞𝑽ௗ௥,௞𝑽ௗ௥,௞

ଶ

௞ୀଵ
൰ (4 − 9) 

Energy, 
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𝛻 ∙ ൬෍ ∅௞𝑽௞(𝜌௞𝐸௞ + 𝑃)
ଶ

௞ୀଵ
൰ = 𝛻 ∙ ൫𝑘௡௙𝛻𝑇൯ + 𝑆௘ (4 − 10) 

Volume fraction, 

𝛻 ∙ ൫∅𝜌௣𝑽௠൯ = 𝛻 ∙ ൫∅𝜌௣𝑽ௗ௥,௣൯ (4 − 11) 

The mass-averaged velocity of the nanofluid is defined by 

𝑽𝒎 =
∑ ∅௞𝜌௞𝑽௞

ଶ
௞ୀଵ

𝜌௡௙

(4 − 12) 

The stress tensor 𝜏 is  

𝜏 = 𝜇௡௙𝛻𝑽௠ (4 − 13) 

The drift velocity 𝑽ௗ௥,௣ is formulated with the relative velocity 𝑽௣௙ 

𝑽ௗ௥,௣ = 𝑽௣௙ − ෍
∅௞𝜌௞

𝜌௡௙
𝑽௙௞

ଶ

௞ୀଵ
(4 − 14) 

where the relative velocity is derived with the assumption of a local equilibrium [D19] 

𝑽௣௙ =
𝜌௣𝑑௣

ଶ

18𝜇௙𝑓ௗ௥௔௚

൫𝜌௣ − 𝜌௘௙௙൯

𝜌௣
𝒂 (4 − 15) 

The acceleration 𝒂 is defined as 

𝒂 = 𝒈 − (𝑽௠ ∙ 𝛻)𝑽௠ (4 − 16) 

and the 𝑓ௗ௥௔௚ is the drag force function [D20] 

𝑓ௗ௥௔௚ = ቊ
1 + 0.15𝑅𝑒௣

଴.଺଼଻  𝑅𝑒௣ ≤ 1000

0.0183𝑅𝑒௣           𝑅𝑒௣ > 1000
(4 − 17) 

It can be found that the governing equations of the mixture model include the 

continuity, momentum, and energy equations of nanofluid, the volume fraction 

equation of nanoparticles, and the algebraic expressions of the relative velocities. 

Hence, more variables are involved in the multi-phase mixture model when compared 

with the single-phase model, while the volume fraction distribution can be obtained 
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using the mixture model.  

 

 

4.2.3 The Validation of Numerical Model and the Grid 

Independence Study 

 

Fig. 4.2. The temperature contours of the referenced winding. 

 

The nanofluid flow is solved by the same solver as transformer oil flow. In order 

to verify the effectiveness of the solver and numerical model, the referenced winding 

cooled by transformer oil is modelled and recalculated, and the derived solutions are 

compared with the exisiting results in [D6]. As shown in Fig. 4.2, the numerical 

analysis gives the same hot-spot location (disc 16), and the maximum temperature is 

365.04K, about 0.9% (3.5K) lower than the reference. Moreover, the derived mass 

flow rate fractions, which are shown in Fig. 4.3, are in good accordance with the 
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referenced results. Among the horizontal ducts, most of the oil (18% to 19%) flows 

into the first duct, and the last duct have a relatively small mass flow rate fraction 

(about 3%). These are consistent with the reference, hence the effectiveness of the 

solver and the correctness of the model are validated.  

 

 

Fig. 4.3. The mass flow rate distribution of the referenced winding. 

 

The validated solver is used to compute these two modified passes cooled by 

transformer oil, and the derived results are used as the references to estimate the heat 

transfer performance improvement after usingnanofluid. Since the inlet of the former 

pass is narrower than the latter one, it temperature is much higher than the latter pass, 

as shown in Fig. 4.4. The generated FVM mesh contains about 1.2 million quadrilateral 

elements, and part of the mesh is given in Fig. 4.4(a). Form the obtained mass flow 

rate distribution among the horizontal ducts (see Fig. 4.5), it is found that the mass 

flow rate distribution of the pass with inlet on the inner vertical duct is relatively 

uniform when compared with the other pass, which leads to a smaller temperature 

difference among the discs. The mass flow rate distribution (𝑀𝐹𝑅𝐷 ) is used to 

estimate the flow distribution, and it is defined as  
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𝑀𝐹𝑅𝐷௜ =
𝑀௜

(∑ 𝑀௞
ଶ଴
௞ୀଵ )/20

=
𝑀௜

𝑀௠௘௔௡

(4 − 18) 

As shown in Fig. 4.5, discs, which are surrounded by horizontal ducts with the smallest 

𝑀𝐹𝑅𝐷, have the highest temperature-rise. The hot-spot locations of these two passes 

are disc fourteen and disc fifteen, respectively. 

 

∆𝑇௠௔௫ 

 

                   (a)                          (b) 

Fig. 4.4. (a) The temperature contours of the pass with inlet on the outer vertical duct 
and part of the mesh. (b) The temperature contours of the pass with inlet on the inner 
vertical duct. 

 

The mesh generated for the simulation of transformer oil cooled winding is 

adopted to investigate the oil/SiC nanofluid flow, which has 1% concentration of 

nanoparticles. The grid-independence of the simulation is ensured by two refined 

meshes. For simple flows, the grid-independence of results is estimated with the 

variation of the average Nusselt number [D21]. However, this parameter is difficult to 
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determine in complicated geometries. For this reason, another alternative is to estimate 

the variation of maximum and mean temperature. With the element sizing constrained 

globally, the mesh is refined for two times, producing two meshes with roughly 8% 

and 16% more elements. By comparing the results of these tree meshes, it is found that 

the changes of maximum and average temperature are 0.4% (1.39K) and 0.3% (0.85K) 

when using the mixture model, and the corresponding variations for the single-phase 

model are 0.2% (0.59K) and 0.3% (0.97K), respectively. Hence, for this studied 

problem, the initial mesh is feasible.  

 

  

Fig. 4.5. The flow and temperature distribution for these two passes. 

 

 

4.2.4 Results and Discussion 

The convective heat transfer coefficient increases if the thermal conductivity is 

improved. Hence, it is possible to dissipate the same amount of heat with a smaller 

temperature difference. After adding the SiC nanoparticles, the viscosity and thermal 

conductivity of the transformer oil is increased. Hence, the cooling performance is 

expected to be improved. In the following studies, both the multi-phase mixture model 
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and the single-phase model are used for mutual authentication and comparison. 

 

 

(a) 

 

(b) 

Fig. 4.6. (a) The maximum temperature-rise reduction and (b) relative mass flow rate 

increment for the pass with inlet on the outer vertical duct and nanofluid cooling.  

 

From the numerical results of the nanofluid flow in the pass with inlet on the outer 

vertical duct, which are given in Fig. 4.6 and Fig. 4.7(b), it is found that there is an 

overall temperature reduction when compared with the references. The vertical axis 

title of Fig. 4.6(a), namely, the maximum temperature-rise reduction, which is 

computed for each disc, is defined as: 
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𝑝ଵ = 𝑇௙
௠௔௫ − 𝑇௡௙

௠௔௫ (4 − 19) 

The peak locations of the curves in Fig. 4.6(a) are almost consistent with the hot-spot 

location of the corresponding transformer oil cooled winding, which is given in Fig. 

4.5. The vertical axis title of Fig. 4.6(b), namely, the relative mass flow rate increment, 

is computed for each duct as: 

𝑝ଶ =
𝑀𝐹𝑅𝐷௡௙ − 𝑀𝐹𝑅𝐷௙

𝑀𝐹𝑅𝐷௙

(4 − 20) 

 The changes in the maximum temperature-rise reduction of discs is explained and 

confirmed by the results of relative mass flow rate increment. In addition, based on the 

numerical results of the heat transfer coefficients, a similar curve as those shown in 

Fig. 4.6(a) can be plotted for the increments in heat transfer coefficients. It is found 

that quite close results are obtained by these two models for the thermal and fluidic 

field, hence the effectiveness of the numerical study is strengthened by mutual 

authentication.  

 

 
Fig. 4.7. (a) The distribution of nanoparticles volume fraction and (b) temperature 
contours derived by the mixture model for the pass with inlet on the outer vertical duct 
and nanofluid cooling. 
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Table 4.2. Mass Flow Rate Distribution. 

Duct MFRDP MFRDS MFRDM 𝑝ଶ
ௌ 𝑝ଶ

ெ 
1 4.486 4.478 4.485 -0.18% -0.03% 
2 3.223 3.208 3.216 -0.45% -0.20% 
3 2.373 2.360 2.367 -0.55% -0.23% 
4 1.763 1.752 1.758 -0.62% -0.25% 
5 1.326 1.316 1.322 -0.71% -0.26% 
6 1.012 1.004 1.009 -0.81% -0.30% 
7 0.787 0.779 0.784 -0.95% -0.37% 
8 0.622 0.616 0.619 -1.12% -0.50% 
9 0.499 0.495 0.498 -0.98% -0.36% 
10 0.403 0.402 0.407 -0.30% 0.84% 
11 0.327 0.329 0.332 0.79% 1.80% 
12 0.261 0.273 0.273 4.59% 4.65% 
13 0.191 0.224 0.218 17.28% 13.96% 
14 0.147 0.187 0.172 27.34% 16.84% 
15 0.147 0.172 0.158 17.19% 7.29% 
16 0.186 0.203 0.195 9.09% 4.56% 
17 0.303 0.290 0.294 -4.03% -2.93% 
18 0.437 0.417 0.420 -4.45% -3.88% 
19 0.623 0.606 0.601 -2.83% -3.59% 
20 0.885 0.889 0.873 0.44% -1.37% 

Sum 20.000 20.000 20.000   

 

For a clear illustration, the detailed mass flow rate distribution is listed in Table 

4.2. The multi-phase mixture model, the single-phase model and the transformer oil 

are represented by these three superscripts M, S, and P, respectively. Compared with 

the results of the multi-phase mixture model, the single-phase model gives larger 

𝑀𝐹𝑅𝐷 increments in the ducts 13, 14, 15, and 16, through which the smallest 𝑀𝐹𝑅𝐷 

flows. Hence, a better heat transfer performance in the vicinity of hot-spot locations is 

estimated by the single-phase model. However, the maximum difference in the heat 

transfer coefficient of disc is 1.7% for these two nanofluid models. The average flow 

velocity in the pass decreases slightly after adding nanoparticles, while the density of 

nanofluid, which is another variable included in the drag equation, increases. With the 

combined effect of these two parameters, the pressure drop through this pass decreases 

slightly after using the nanofluid (see Fig. 4.8). 



 

108 
 

 

 

Fig. 4.8. Pressure drop of nanofluids in different volume fraction. 

 

The volume fraction distribution of nanoparticles is obtained as well, since the 

conservation equation of volume fraction is included in the governing equations of 

mixture model. As shown in Fig. 4.7(a), there is a negative correlation between the 

nanofluid temperature and the concentration of nanoparticle. In the horizontal ducts, 

the outside temperature is much lower than the inside temperature, while the volume 

fraction has a downward trend from the outside of ducts to the inside of ducts. 

The nanofluid flow in the other pass is simulated and analyzed in the same manner. 

From the numerical results shown in Fig. 4.9(b), the effect that nanofluid has on the 

mass flow rate distribution is little, while the single-phase model derives a more 

pronounced solution. The differences between the heat transfer coefficients of discs 

calculated by these two models are less than 0.2%. Hence, the results of thermal field 

are roughly consistent for these two models, as shown in Fig. 4.9(a), and the 

improvement of thermal transfer performance is mainly generated by the enhanced 

thermal conductivity. Owing to the strong effect on density and the weak effect on 

flow field, the usage of nanofluid leads to a slight increase in the pressure drop through 

this pass (see Fig. 4.8). 

Although the effect that nanofluids have  on the flow fields is different, distinct 

temperature drops are generated by the enhanced thermal conductivity. In addition, 
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further improvement in the heat transfer performance may be produced by the adjusted 

mass flow rate distribution. The comparison of these two models strengthens the 

effectiveness of the numerical study by mutual authentication. In the following study 

one volume fraction, only the mixture model is considered, since it is reported to be 

more precise [D15, D16].  

 

 

   (a) 

 

  (b) 

Fig. 4.9. (a) The maximum temperature-rise reduction and (b) relative mass flow rate  
increment for the pass with inlet on the inner vertical duct and nanofluid cooling. 
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     (a) 

 

    (b) 

Fig. 4.10. (a) The maximum temperature-rise reduction and (b) relative mass flow rate 
increment for the pass with inlet on the outer vertical duct and cooled by nanofluids in 
different volume fraction. 

 

In order to investigate the impact of volume fraction on the heat transfer 

performance, four more nanofluids with the concentration of 1.5%, 2%, 2.5%, and 3% 

are concerned in the study. Fig. 4.10 and Fig. 4.11 show the results of these four 

concentrations along with the results of 1% concentration for these two passes. The 

effect of nanofluids on the thermal and fluidic field is enhanced when increasing the 

volume fraction, while the overall tendency of these two evaluation parameters along 

the flow direction maintains. Hence, the correlation between the heat transfer 
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performance and the volume fraction is positive. A distinct drawback for increasing the 

volume fraction is the growing pressure drops (see Fig. 4.8), especially for the first pass. 

To compensate the increasing loss in the windings, more powerful pumps are needed. It 

can be concluded that all the variations in the thermal and fluidic field are correlated 

with the nanofluid properties, which are directly determined by the concentration of 

nanoparticles. To cope with the material cost and these mentioned factors, optimization 

algorithms combined with the numerical methods may be used to find the appropriate 

concentration for practical application.  

 

 

(a) 

 

  (b) 

Fig. 4.11. (a) The maximum temperature-rise reduction and (b) relative mass flow rate 

increment for the pass with inlet on the inner vertical duct and cooled by nanofluids in 

different volume fraction. 
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4.3 Numerical Study for the Entire Winding 

In the former section, the convective heat transfer of nanofluid in disc-type 

windings are studied with the numerical model of one pass. Since the flows in adjacent 

passes are strongly coupled [D8], a complete numerical model, which contains all the 

passes of transformer windings, is built and simulated with the mixture model in this 

section. The solver, which is validated in the former section, is adopted.  

 

 

4.3.1 The Numerical Model 

As shown in Fig. 4.12, four passes divided by the oil washers are included in the 

low-voltage windings [D8]. All the passes, except the first one, contains 19discs, and 

the first pass has an additional oil washer and 21 discs. With the commercial software 

package, we built a 2D and axisymmetric model for the low voltage windings. Like 

the numerical model for one pass, sticks and spacers are not concerned, and the 

insulation boards around the conductors are considered. For a better illustration, the 

passes, discs and horizontal ducts are numbered form the bottom to the top of the 

windings.  

The cooled oil flows into the winding through these two inlets, and the oil is 

heated in the winding and then flows out form the outlet. Other circulation loops, such 

as the radiator, are excluded from the domain, and the boundary condition is obtained 

by the heat-run test. Hence, a complex heat transfer problem of the transformer is 

simplified to a simple convection problem in the windings. The inlet boundary 

condition is a homogeneous flow with the temperature 319.85 𝐾 of and the velocity 

of 0.02695 𝑚/𝑠. The bottom surface of the first disc is specified with a convective 

boundary condition, and the heat transfer coefficient is 100 𝑊 𝑚ିଶ 𝑘ିଵ . Other 

settings on the rest of the boundary conditions and the heat sources are identical to 
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those in section 4.2.  

4.3.2 Results and Discussion 

Before conducting the detailed analysis, the grid-independence is checked for this 

problem. The initial mesh, which is generated according to the criterions used in the 

former section, have about 4.7 million cells, and 26% extra cells are generated in the 

refined mesh after globally constraining the elements sizing. The difference in the disc 

average temperature is less than 1.1K, hence the initial mesh is feasible for this study.  

 

 

Fig. 4.12. The configuration of the low-voltage winding.  

 

The temperature distribution of the nanofluid cooled winding is shown in Fig. 

4.13, from which it is observed that the overall distribution is in good accordance with 

that of transformer oil cooled winding. In addition, the hots-spot location of the 
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winding is in the upper portions of pass three (see Fig. 4.14), which is also consistent 

with the result of transformer oil cooling. The variation trend of the disc temperature 

is directly related to the mass flow rate distribution, which is given in Fig. 4.15. From 

Fig. 4.13, it is observed that the inlet flows of pass 2 and pass 4 are inhomogeneous, 

and hot coolants flow into the ducts surrounding the bottom disc of these two passes. 

As a consequence, the first disc in these passes has a higher average temperature than 

the subsequent few discs.  

 

 

Fig. 4.13. The Contours of the temperature of the winding cooled by nanofluid. 

 

As illustrated in Fig. 4.14, an overall temperature reduction is observed after 

using nanolfuid. The variation in the heat transfer coefficient when compared to the 

coefficient in transformer oil cooled winding, as given in Fig. 4.16, is another 

reflection for the heat transfer performance improvement. The enhanced thermal 

conductivity is the main reason for the overall improvement, while the inhomogeneous 

temperature variation is produced by the effects that the usage of nanofluid has on the 

coolant temperature and the mass flow rate distribution. Since the variation of coolant 
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temperature is subtle in the first three passes, the related effects can be ignored. 

 

 

Fig. 4.14. The average disc temperature cooled by transformer oil and nanofluid. 

 

Fig. 4.15. The normalized mass flow rate through the horizontal ducts. 

 

Overall, the variation in mass flow rate after using nanofluid is not appreciable 

(see Fig. 4.15), while the relative changes for those ducts with little mass flow rate are 

significant. For a better illustration, parts of the curves in Fig. 4.15, which are located 

in the dashed boxes, are enlarged and shown in Fig. 4.17. The mass flow rates in the 

middle ducts of pass one are reduced, while there are distinct increases in the mass 
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flow rates of the upper ducts. Since there is a positive correlation between the heat 

transfer coefficient and the mass flow rate, the temperatures of these corresponding 

discs vary reversely. For the remaining passes, the same analysis approach can be used. 

In addition, the heat transfer performance of pass four is further improved by the lower 

coolant temperature (see Fig. 4.14), and the maximum temperature-rise of this winding 

is reduced by 3.2K. 

 

 

Fig. 4.16. The area-weighted average heat transfer coefficient of nanofluid cooling and 

its change relative to oil cooling.  

 

 

Fig. 4.17. The detailed mass flow rate at the joints of passes.  
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4.4 Experiment Study for the Nanofluid-filled Transformer 

A single-phase transformer, which is rated at 500VA, 50Hz, and 220V/36V, are 

used to investigate the heat transfer performance of oil/Al2O3 nanofluid. The 

experiment set up is shown in Fig. 4.18, and temperatures at eight points are measured 

(see Fig. 4.19). The experiment is conducted at rated and over-load conditions, and the 

heat transfer performance of nanofluid and transformer oil are compared. It takes 

roughly 9 hours for the transformer to reach a steady temperature (about 50℃) after 

operation.  

 

 

Fig. 4.18. The experiment set up for a nanofluid-filled transformer. 

 

Fig. 4.19. The locations of thermocouples.  
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For these eight measurement points, the maximum temperature reduction after 

using nanofluid is 2.5 ℃, while the corresponding value for rated condition is 1.8℃. 

The heat losses produced at over-load condition are increased when compared with the 

rated condition such that higher temperature rise of coolants is observed from the 

measured results. It can be concluded that the nanofluid has a better cooling capacity, 

and the performance of nanofluid can be enhanced to some extent with the increasing 

power.  

 

 

4.5 Summary  

In this section, the convective heat transfer of nanofluid in disc-type windings is 

numerically studied by modelling one pass of the windings. Both the single-phase model 

and the multi-phase mixture model are used to represent the nanofluid, and results of 

these two models strengthen the effectiveness of the numerical study by comparison and 

mutual authentication. Despite of the varying effect of nanofluids on the flows, these 

two passes witness a distinct and comprehensive temperature drop after using the 

nanofluid. The heat transfer performance of nanofluid in the pass with inlet on the outer 

vertical duct is further enhanced by the ameliorative mass flow rate distribution. The 

effect of nanofluids on the thermal and fluidic field is enhanced by the increasing volume 

fraction of nanoparticles.  

In addition, the entire winding is modelled to further investigate the convective heat 

transfer of nanofluid in disc-type windings. An overall reduction on the disc average 

temperature is observed after using nanofluids, while the temperature distribution along 

the flow direction is kept. Then enhanced thermal conductivity is the main reason for 

the heat transfer performance improvement, and the inhomogeneous temperature 

reduction of disc is produced by the variation of mass flow rate distribution. In addition, 

the effect of nanofluid is enhanced by the lower temperature in the fourth path.  
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Chapter 5 A Response Surface Optimization 

Method for Oil-immersed Transformer 

Cooling System Design 

In this chapter, a response surface optimization method is presented for the 

cooling system design of oil-immersed transformers. An accurate numerical 

simulation of the cooling system is realized firstly, based on which is a surrogate model 

is generated by the response surface method. With this surrogate model, the 

optimization efficiency is improved significantly, which is showcased with a 

numerical problem.  

 

 

5.1 Introduction to the Optimization Methods Applied 

in Power Transformers Cooling System Design 

Analytical methods in combination with the specific coefficients developed for 

certain types of oil-immersed transformers are widely adopted in the cooling system 

design [E1]. This type of method is easily implemented and efficient in estimating the 

heat transfer capacity. However, these empirical coefficients are not universal and are 

difficult to acquire. The analytical methods have low accuracy when compared with 

numerical methods, and detailed results, such as the hot-spot temperature, are 

generally not be able to acquire by analytical methods.  

With the development of computer technology and numerical methods, CFD have 

been introduced in the cooling system design of power transformers [E2-E6]. In the 

analysis process of heat transfer in transformers, several types of flow motions, such 

as laminar flow and turbulent flow, nonlinear material properties, temperature 

dependent parameters, and complex geometry may be encountered, and CFD can 
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handle all these circumstances and gives the detailed results of fields. CFD analysis is 

applied either in the optimization of entire cooling system or in optimizing certain 

section of transformers. In order to optimize the cooling system of a step-down 3-

phase oil-immersed power transformer, a numerical model is built for one section 

containing a core and the wounded two windings, and six configurations with six inlet 

boundary conditions are studied [E3]. The active parts are however not included in the 

computational domain. In [E4], the cooling capacity of an ONAN power transformer 

radiator is determined by numerical simulation, and the section length and the space 

between sections are optimized. Compared with the existing design, the cooling 

capacity of the optimized radiator is improved by 14%. To minimize the hot-spot 

temperature rise in windings, the active parts is included in the computational domain 

and is solved along with the flow field. Based on a validated CFD model, the 

dimensions of cooling ducts and coils of an ANAN power transformer are optimized 

simultaneously using the Genetic Algorithm (GA) [E5, E6]. The power losses used in 

the thermal analysis are derived by a coupled CFD-electromagnetic model for each 

configuration. The optimized result indicates that the heat transfer performance can be 

improved by the nonuniform positioning of cooling ducts and coils. According to the 

literatures, it is found that the CFD analysis of power transformers requires enormous 

computational resources due to the high nonlinearity and the large scale mesh, and this 

limits its extensive applications in the optimization.  

Response surface methods (RSMs) are introduced to many engineering problems, 

such as thermal analysis of multichip module [E7, E8], material properties prediction 

[E9], bidirectional flow passage components design [E10], and electromagnetic device 

design [E11, E12], to generate surrogate models, which are used to replace the 

numerical models in optimization. Hence, the RSMs are generally used in combination 

with optimization methods. The training data used in the RSMs are obtained by 

measurement or numerical simulation based on the design of experiment. Compared 

with the direct optimization method based on numerical model, the efficiency of RSM 

based optimization method is dramatically improved, while the sacrifice on accuracy 

is few.  
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5.2 The Response Surface Optimization Method 

Two types of RSMs, namely, the Kriging method and the second order 

polynomial (SOP) method [12] [13], are introduced into the optimization process to 

produce the surrogate model. The CFD model, which is used to generate the training 

points for RSMs, is built firstly, and the grid independence of the simulation is verified. 

The surrogate model with smaller prediction error is incorporated in the optimization 

and the optimized result of a numerical problem is compared with the result of a direct 

optimization method to evaluate the performance of the proposed method.  

 

 

5.2.1 CFD Modeling 

The numerical problem is to optimize a three-phase OFAN transformer, which is 

rated at 30MW, 60 Hz, and 115-13.8kV. To reduce the computation burden, the 

transformer body is isolated from the external oil circulation path, such as the chillers, 

and the insulation boards and structural parts are neglected. Based on these 

simplifications, the CFD model of the initial design of this transformer is built, as 

shown in Fig. 5.1. Owing to the symmetry geometry, only half of the transformer is 

concerned with the middle section imposed on symmetry boundary conditions. Since 

the majority of heat in OF transformer is taken away by the heated oil, the heat 

radiation is neglected in the numerical model. The tank surface is specified with a fixed 

convective coefficient of 5W/(𝑚ଶ ∙ 𝐾), and the ambient temperature is assumed to 

be fixed at 293K. In addition, the inlet boundary condition is isothermal flow with the 

temperature of 293K and the velocity of 0.5m/s.  

The losses are obtained at rated condition, and the losses distribution is assumed 

to be homogeneous in each part. The stray losses in the transformer are neglected. The 

heat density (HD) of these three active parts are listed in Table 5.1 along with the 
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corresponding material properties, i.e. density, specific heat capacity (SHC), thermal 

conductivity (TC). In addition, the properties of transformer oil, which are assumed to 

be temperature independent, are also included in Table 5.1.  

 

   

Fig. 5.1. The CFD model of the oil-immersed transformer. 

 

Table 5.1 Material properties. 

Part 
Densitya 

𝑘𝑔/𝑚ଷ 
SHCb 

J/(𝑘𝑔 ∙ 𝐾) 
HDc 

𝑊/𝑚ଷ 
TCd 

𝑊/(𝑚 ∙ 𝐾) 
Viscositye 

𝑃𝑎 ∙ 𝑠 
Core 7850 480 7000 50 - 

Primary winding 8900 390 33320 250 - 
Secondary winding 8900 390 44835 250 - 

Oil 912.8 1621 - 0.15454 0.033396 

 

It is well recognized that the results of CFD analysis are dramatically influenced 

by the mesh quality, and totally wrong solutions or convergence problems may be 

generated by a poor quality mesh. In addition, different fluid motions have distinctive 

requirements for the mesh quality. The Reynolds number is calculated to determine 

the fluid motion of the studied flow. The calculated Reynolds number is much larger 

than 4000, hence the oil flow in the transformer is turbulent. To deal with the viscous 

sublayer, in which turbulence is not fully developed, the mesh of fluid near wall 

surfaces is refined with hexahedron elements, as shown in Fig. 5.2(b). In addition, 

extra turbulent models are required to model the turbulence, and the standard k-epsilon 
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model is adopted in combination with the standard wall function. Except the general 

governing equations, two more equations related to turbulence are introduced by this 

model.  

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) scheme is 

used to solve the CFD problem with the convergence criterion specified for the energy 

equation and other governing equations as 1.0 × 10ିହ and 1.0 × 10ିଷ, respectively. 

In addition, the temperature changes are concerned to monitor the convergence. When 

the transformer reaches the thermal equilibrium, the generated heat is equal to the 

dissipated heat, and the temperature of transformer is stable. The derived results should 

satisfy the conservation laws, such as the inlet-outlet mass flow. Moreover, the grid 

independence of the results is verified with refined meshes.  

 

        

(a)                                  (b) 

Fig. 5.2. Mesh of (a)core, windings, and (b) oil.  

 

Table 5.2. Details of the mesh. 

Object name Element type No. of element 
Oil Hexahedron, Tetrahedron 822636 

Core Tetrahedron 46138 
Primary winding (A) Tetrahedron 80959 

Secondary winding (A) Tetrahedron 89795 
Primary winding (B) Tetrahedron 82112 

Secondary winding (B) Tetrahedron 90072 
Primary winding (C) Tetrahedron 80712 

Secondary winding (C) Tetrahedron 90368 
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5.2.2 RSM and Optimization 

Several types of RSMs, which are based on different algorithms, have been 

proposed, such as the regression method, neural network, space grid, Kriging and so 

on. For the transformer cooling problems, two types of RSMs, namely, the SOP 

method and the Kriging method, are tested and compared on the performance in this 

thesis. The SOP method is efficient in extracting the nonlinear characteristics from 

training data, and the Kriging method combines the regression model with extra 

corrections.   

The general function for the SOP model [12] is formulated as 

𝑉 =  𝛼଴ + ෍ 𝛼௜𝑥௜

௡

௜ୀଵ

+ ෍ 𝛼௜௜

௡

௜ୀଵ

𝑥௜
ଶ + ෍ 𝛼௜௝𝑥௜

௡

௜ஷ௝

𝑥௝ (5 − 1) 

where; 𝑥௜  and 𝑉  are the 𝑖௧௛  design variable and the function of interest, 

respectively; α is the polynomial coefficient; 𝑛 is the number of design variables. 

The polynomial coefficients are calculated by the least-square regression with a set of 

design points. For a set in size of 𝑘, the equation (5-1) is rewritten as 
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or 

𝑽 = 𝒙𝜶 + 𝜺 (5 − 3) 

where 𝜺  is the error matrix. The coefficient matrix is derived by the following 

formula when the 2-norm of 𝛆 is minimized 

𝜶 = (𝒙𝑻𝒙)ି𝟏𝒙𝑻𝑽 (5 − 4) 
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The Kriging method [13] was proposed for geological problems and have been 

applied in many areas. In this method, the regression model is combined with local 

derivation as 

𝑉 = 𝑓(𝑥) + 𝑧(𝑥) (5 − 5) 

where; 𝑓(𝑥) is a polynomial equation; 𝑧(𝑥) is the local derivation, which is derived 

by accomplishing a normally distributed Gaussian random process with zero mean, σ2 

variance, and nonzero covariance. Hence the derived surrogate model is accurately 

fitted to all the design points, and the prediction error is zero for design points. The 

local derivation is formulated as  

𝑧(𝑥) = ෍ 𝜆௜𝛾൫𝑥௜ , 𝑥൯

௞

௜ୀଵ

(5 − 6) 

where; 𝛾 is the Gaussian correlation function; 𝜆 is the weighting coefficient. It is 

concluded that the global behavior is represented by the polynomial equation while 

the local characteristic is indicated by the derivation. 

The initial design points, which are used as the training data for the RSMs, are 

chosen from the design space by the central composite design (CCD) method, and are 

solved by the CFD solver. Generally, the precision of the surrogate model derived 

based on the initial design points is low, and more refinement points are required to 

improve the precision. The performance of the surrogate model is estimated by 

comparing the predicted results and the numerical results of the verification points. 

The root mean square error (RMSE) and the coefficient of determination (CoD) are 

two common estimation parameters. Once an accurate surrogate model is obtained, the 

subsequent optimization is readily to implement and the time consumed is negligible.  

Since excessive temperature rise accelerates the aging of insulating materials and 

reduces the transformer service life, the reduction of maximum temperature rise is 

taken as the optimization objective. Five continuous and independent design variables 

are included in the optimization, i.e. (1) the gap between the top surface of tank and 

the core center (P1, 1.35m-1.50m), (2) the gap between the undersurface of tank and 
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the core center (P2, 1.35m-1.50m), (3) the gap between the left side surface of tank 

and the core center (P3, 1.85m-2.00m), (4) the gap between the right side surface of 

tank and the core center (P4, 1.85m-2.00m), and (5) half thickness of the tank (P5, 

0.65m-0.80m). To validate the effectiveness of the response surface optimization 

method, the direct optimization is conducted with the CFD model. Since the generation 

and the computation of surrogate model are not time-consuming, the number of CFD 

analysis is adopted to estimate the efficiency.  

 

 

Fig. 5.3. The calculated residuals and temperature at origin. 

 

5.2.3 Solutions of the Original Transformer 

Before conducting the optimization process, the original transformer is solved 

firstly, and the gird-independence of the simulation is verified. The residuals of the 

governing equations are monitored along with the temperature at the center of core, as 

shown in Fig. 5.3. The nonlinear problem takes 247 iterations to converge, and the 

monitored temperature has stabilized at 324K. The temperature distribution of this 

transformer is given in Fig. 5.4(A), from which it is found that the hot spot is located 

in the upper middle of secondary windings. In addition, the conservation between the 

generated heat and the dissipated heat is verified. Two refined meshes, which have 
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1627743 elements and 1691506 elements respectively, are generated by constraining 

the element sizing globally, and the temperature distributions derived based on these 

two meshes are in good agreement with the results of the initial mesh, as shown in Fig. 

4. Hence, the initial mesh is feasible for this specific problem.  

 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.4. The calculated temperature of active parts with (a) the first mesh, (b) the 

second mesh, and (c) the last mesh. 
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5.2.4 Analysis of RSMs and Optimization Results 

With the CCD method, 27 initial design points are generated for this optimization 

problem with five design variables. The initial surrogate models are produced with 

these two RSMs, and both these two models have large forecast errors. Hence 35 

refinement points are gradually added to the design point set to improve the 

performance of surrogate model, and two more surrogate models are obtained finally. 

The goodness of fit of these two SOP models is given in Fig. 5.5(a) and (b), from 

which it is found that the distribution of design points on either side of the centerline 

is almost average. As introduced in the former section, the Kriging model fits the 

design points perfectly, as shown in Fig. 5(c) and (d). Since the derivations used in the 

Kriging method can characterize the local behavior, the Kriging method is expected to 

generate more accurate models, and this is validated by the comparison of the 

goodness of fit of these four models produced by these two RSMs. In addition, the 

RSMEs of the SOP models are always larger than that of the Kriging model, as listed 

in Table 5.3. Compared with the initial surrogate models, the precision of the finial 

surrogate models is improved. The RMSE of the surrogate model produced by the 

Kriging method is reduced form 0.76K to 0.43K. 

 

Table 5.3. Error analysis of the surrogate models. 

Method Point Set CoD RMSE 

SOP 
Design points 0.775/0.803a 0.76/0.87 

Verification points - 0.84/0.53 

Kriging 
Design points 1/1 2.6E-8/5.2E-7 

Verification points - 0.76/0.43 
aData in front of and behind the slash are the values for response surfaces before and 

after adding refinement points, respectively.   
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(a)                             (b) 

 

(c)                             (d) 

Fig. 5.5. Goodness of fit for (a) the initial SOP model, (b) the final SOP model, (c) the 

initial Kriging model (d) the final Kriging model. 

 

Table 5.4. Optimized solutions. 

Method P1/m P2/m P3/m P4/m P5/m T/K No.a 

RSM 1.37 1.42 1.85 1.98 0.65 332.5 62+10b 

Direct 1.49 1.42 1.86 1.97 0.66 332.2 120 

aNo. represents the No. of CFD analysis.  

b10 is the number of CFD analysis for final validation. 

 

Based on the final Kriging model, the problem is optimized by the screening 

method. The optimization generates ten candidates, and CFD analysis is invoked to 

verify these candidates, based on which the optimized solution is selected. Meanwhile, 



 

133 
 

a direct optimization is conducted by the adaptive single-objective method combined 

with the CFD model. The optimized solutions derived by these two methods are listed 

in Table 5.4. It is found that there is a large discrepancy between the first variable P1 

of these two optimized solutions. A sensitivity analysis of this variable is conducted 

with the response surface. P1 varies with a small interval of 6.25E-3m, while other 

four variables are fixed at the dimensions given in Table 5.4. 25 cases are generated 

based on the strategy, and the maximum discrepancy among the calculated object 

functions of these cases is 0.5 degree centigrade. It could be concluded that the 

correlation between the objective function and the first variable is weak. In addition, 

the temperature distributions in the active parts are almost identical for these two 

optimized solutions, and a small net error, about 0.04 degree centigrade, is obtained 

for the average temperature of active parts. The time consumed by the proposed 

optimization method is roughly 60% of that consumed by the direct method.  

 

 

5.3 Summary 

Based on the accurate numerical modelling of oil-immersed transformers and the 

CCD method, surrogate models are produced by the SOP method and the Kriging 

method. The Kriging model, which is validated to be more accurate, is used in the 

RSM based optimization process. Direct optimization method combined with the CFD 

model is conducted for comparison, and the effectiveness of the proposed response 

surface optimization method is showcased by an oil-immersed transformer 

optimization problem.  
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Chapter 6 Conclusion and Future Work 

 

 

6.1 Conclusion 

In order to tackle the existing problems in transformer cooling, the transformer 

analysis and design method are investigated along with the novel coolants, nanofluids. 

An adaptive DoFs FEM solver is developed for the 3D nonlinear magnetic field 

analysis, thermal field analysis, and coupled magneto-thermal field analysis, and 

coupled analysis is based on the independent solvers for magnetic field and thermal 

field. In the adaptive DoFs FEM, the system reduction is realized by eliminating the 

redundant DoFs from the unknown list rather than removing the corresponding nodes. 

Hence the rearrangement of mesh data and the storage space for the former mesh are 

avoided. The slave-master technique is used in the elimination process in combination 

with the constraint proposed for 3D field. One set of FEM mesh is used in the coupled 

magneto-thermal analysis to build the FE spaces of these two fields, and the DoFs in 

each field are adjusted separately according to the field’s requirement in discretization. 

Hence, the different discretization requirements of these two fields are met with one 

set of mesh, and the mapping algorithms for different meshes are no longer needed. 

Several numerical examples are solved to showcase the effectiveness of this method 

in terms of efficiency and accuracy.  

Winding is the common hot-spot location in transformers, and the hot-spot 

temperature rise in transformers is critical for the safe operation. In order to apply this 

novel coolant, i.e. nanofluid, in transformer cooling, the convective heat transfer of 

oil/SiC nanofluid in disc-type transformer windings is numerically investigated. The 

numerical model and method used in the study is validated with the existing results of 

oil cooled transformer windings. One pass of the winding is modelled numerically, in 

which the changes in inlet position are concerned. This is the first time to employ the 
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multi-phase mixture model to analyze such a nanofluid field, and the single-phase model 

is also used for comparison and mutual authentication. Although the effects that the 

oil/SiC nanofluid of 1% concentration has on the flows in wingdings vary, 

comprehensive temperature drop over these two passes is observed after using the 

nanofluid. For the pass with inlet in the internal vertical duct, the heat transfer 

performance is further improved by the ameliorative mass flow rate distribution. In 

addition, there is a positive relation between the volume fraction of nanoparticles and 

the effect on the thermal and fluidic field. To further investigate the nanofluid flow in 

disc-type transformer windings, a numerical mode is built for the entire winding. The 

results show that there is an overall reduction on the disc average temperature after 

adding nanoparticles, and the temperature distribution along the flow direction is 

maintained. It can be concluded that the heat transfer improvement is mainly produced 

by the enhanced thermal conductivity, and the changes in mass flow rate distribution 

produce the inhomogeneous temperature reduction of discs. In addition, the lower 

coolant temperature enhances the effect of nanofluid in the fourth pass.  

A response surface optimization method is proposed for the cooling system 

design of oil-immersed transformers. Based on the accurate numerical modeling and 

the CCD method, surrogate models to be used in the optimization are produced by 

these two adopted response surface methods, the SOP method and the Kriging method. 

Refinement points are gradually added into the set of design points until the derived 

surrogate models meet the predefined criterion. The surrogate model obtained with the 

Kriging method, which is validated to be more accurate, is adopted in the response 

surface optimization process, and the direct optimization method combined with the 

CFD model is also adopted for comparison. An oil-immersed transformer optimization 

problem is employed to showcase the effectiveness of the proposed method.  

 

6.2 Future Work 

Since fluid coolants are involved in many devices, more accurate field can be 
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obtained when the fluid field in concerned in the analysis. Hence, the adaptive DoFs 

FEM can be further extended to solve the coupled magneto-thermal-fluidic field. In 

this coupled analysis, the thermal interaction between solid and liquid parts should be 

handled. In addition, the fluid field solver should be developed according to the flow 

characteristics, such as laminar flow, turbulent flow, single-phase model, and multi-

phase flow. In order to further improve the computation efficiency, other numerical 

techniques, such as domain decomposition methods, model order reduction methods, 

and machine learning algorithms, can be introduced into the adaptive method.  

Based on the numerical analysis of transformers, co-design method for the 

electromagnetic, thermal and insulation design can be developed. Since the numerical 

analysis process is time-consuming and massive design points need to be estimated, 

surrogate model can be introduced into the optimization to improve design efficiency. 

In addition, the emerging artificial methods, such as deep learning, can be applied in 

the rapid field calculation.  

In order to accurately reflect the reality, 3D models should be developed for the 

nanofluid cooled transformer. In addition, different types of transformers or 

transformers under different operation status should be investigated. Except the 

thermal properties, other properties of oil based nanofluids, such as dielectric 

characteristics, breakdown voltage, will be studied based on the transformer 

application. The effect of volume fraction and nanoparticle should be included in the 

study. To promote the industrial application, efficient nanofluids preparation method 

should be developed.  

 


