
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 

 

 

 
OPTIMAL PLANNING OF POWER SYSTEMS WITH 

RENEWABLE ENERGY INTEGRATION 

 

 

 

 

 

XU XU 

 

 

 

 

PhD 

 

 

 
The Hong Kong Polytechnic University 

2019 

 



 

 

 

 

The Hong Kong Polytechnic University 
 

 

Department of Electrical Engineering 

 

 

 

 

Optimal Planning of Power Systems with 

Renewable Energy Integration 
 

 

 

 

Xu XU 
 

 
A thesis submitted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy 

 

May 2019 

 

  



Certificate of Originality 

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it reproduces no material previously published or written, nor material that 

has been accepted for the award of any other degree or diploma, except where due 

acknowledgement has been made in the text. 

(Signed) 

Xu XU (Name of student) 



 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents, 

 

Xiqiang Xu and Aihong Han 
 



i 
 

Abstract 

In the last decade, the growth of renewable energy capacity has been increased 

rapidly in power systems. Large-scale renewable energy integration of the power 

systems may bring many economic interests and environmental benefits. However, 

due to the stochastic characteristics of renewable generation output, widespread 

installation of renewable generators will pose some great challenges to the normal 

power system operation. For example, power flow patterns of transmission lines will 

significantly change and become inevitably fluctuating due to high renewable 

penetration. This may result in some potential negative effects, including but are not 

limited to line congestion, increased active power loss and large voltage deviation. To 

deal with these issues, the traditional power system expansion can be taken into 

consideration, such as power system line expansion and reconstruction, new electrical 

plants installation and existing facilities upgrade. However, these system expansion 

options are usually investment-intensive and time-consuming and may cause 

environmental problems. In this regard, this thesis focuses on dealing with negative 

concerns caused by renewable energy integration via optimal advanced flexible AC 

transmission systems (FACTS) devices planning in transmission networks, and 

enhancing renewable energy hosting capacity via optimal advanced electrical devices 

in distribution networks, respectively. 

The thesis firstly focuses on planning in transmission networks, which is to cope 

with the negative effects introduced by high wind power penetration. To tackle the 

negative impacts caused by wind energy integration, a stochastic optimal TCSC 

location-allocation model is proposed. This planning model is formulated as a two-

stage optimization program, where the planning decisions including sites and sizes for 

TCSC devices installation are determined in the first stage and the second stage is to 
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minimize the expected operation cost of transmission systems under various wind-

load uncertainty scenarios. The proposed planning model is firstly formulated as a 

mixed integer nonlinear programming (MINLP), and then both the linearization 

technique as well as the approximation approach are used to transform this MINLP to 

a mixed integer linear programming (MILP), which can be directly solved by 

commercial solvers such as CPLEX and GUROBI. The TCSC planning model 

considers uncertainties of wind energy output and load demand, which are represented 

by wind-load scenarios. These scenarios are originally generated by using classical 

copula theory and then reduced by a well-established backward-reduction algorithm. 

Finally, a modified IEEE 57-bus transmission system is utilized to verify the 

effectiveness of the proposed planning model. 

 The thesis secondly focuses on planning in distribution networks, which is to 

improve the ability of distribution networks to accommodate more photovoltaic (PV) 

generations. To improve PV hosting capacity, a two-stage optimal var compensator 

(SVC) planning model is proposed. In detail, the first stage is to determine the PV 

hosing capacity of the given sites and SVC location-allocation decisions and the 

second stage is to minimize the operation cost of SVC devices in all considered 

uncertainty scenarios. Besides, the concept of PV accommodation capability (PVAC) 

is proposed to describe the amount of PV generation that can be reliably 

accommodated at a certain node of a distribution network within a certain time period. 

To enhance the daily PVAC, this thesis proposes two-stage MILP based voltage 

regulator (VR) placement model, where the hourly PVAC and VR allocation decisions 

are determined in the first stage and a stochastic programming based feasibility 

checking model is developed to ensure the network constraints security in the second 

stage. These two planning problems are both intractable due to numerous operation 
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scenarios involved as well as the time-coupling constraints. In this regard, to reduce 

the computational complexity, a Benders decomposition algorithm based solution 

method is developed to solve the proposed two-stage stochastic problems. IEEE 

distribution systems are utilized to verify the effectiveness of the proposed planning 

model and solution method. 
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Chapter 1  Introduction 

1.1 Background 

In recent years, the installation of renewable generators has been increased 

rapidly in power systems worldwide due to increased environmental awareness 

and fast development of advanced renewable generation technologies, e.g. 

distributed photovoltaic (PV) generators and wind turbines [1-3]. According to 

a recent report [4], the global capacity of renewable generation has reached 

2351 GW by the end of 2018, and it is estimated to rise by about 4000 GW in 

the next decade. The increase rate of renewable power capacity in 2018 was 

the same as in 2017, 7.9% (171 GW). PV energy capacity increased mostly, 

which was 24% (94 GW), followed by wind power capacity with an increase 

of 10% (49 GW), as shown in Fig. 1-1 and Fig. 1-2. Besides, Fig. 1-3 shows 

the detailed information of renewable generation capacity at the regional level. 

By the end of 2018, 61% of new renewable generation capacity was installed 

in Asia, resulting in 1024 GW (44%) of renewable energy capacity. Europe and 

North America expanded 24 GW (4.6%) and 19 GW (5.4%) of renewable 

resources, respectively. Renewable energy capacity growth in Africa was the 

same as in 2017, with an increase of 3.6 GW (+8.4%). In addition, thanks to 

the decreasing investment cost of renewable generators and hortative 

government policies introduced by many countries, distributed renewable 

generators become popular among end-use customers [5-7]. For example, due 

to favorable policies made by the California Public Utilities Commission 

(CPUC), more than 230,000 houses in California have installed rooftop PV 

panels since 2014 [8]. Besides, other countries like Australia, Canada, 
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Germany and Denmark have also carried out attractive subsidy schemes to 

encourage the customers to install distributed renewable generators [9]. 

 

 

Fig. 1-1 Renewable generation capacity by energy source in 2018 [4] 

 

 

Fig. 1-2 Renewable capacity growth form 2014-2018 [4] 
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Fig. 1-3 Renewable generation capacity at the regional level in 2018[4] 

 

With the widespread installation of renewable generators, many economic 

and environmental benefits can be obtained [10-13]. Firstly, renewable energy 

can not only reduce greenhouse gas emission but also reduce air pollution. This 

is because renewable energy can relieve energy dependence on fossil fuels, 

leading to a positive effect on the natural environment. Secondly, compared 

with traditional generation expansion, the installation of renewable generators 

has the advantages of lower operation cost and shorter construction time. 

Thirdly, renewable energy systems have the potentials to provide ancillary 

services to the power systems, such as voltage regulation and contingency 

reserves, thus supporting the reliability and resilience of power systems. 

However, with the rapid growth of renewable energy integration, the stochastic 

renewable energy output presents significant uncertainties to the power 

systems, including but are not limited to line congestion, increased active 

power loss and large voltage deviation [14-16]. 

In order to handle the negative effects caused by renewable energy 

integration in the transmission networks, installing flexible AC transmission 
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systems (FACTS) devices in the transmission systems is an effective option. 

The FACTS comprises a group of power electronic devices which is able to 

control one or more parameters of the power systems [17]. Many potential 

benefits can be obtained from FACTS controllers, such as the power quality 

improvement, power transfer capability enhancement, power flow control, 

transient and dynamic stability improvement, damping of power system 

oscillations, better voltage regulation, flexible operation and control of the 

system, secure loading of the transmission lines close to their thermal limits, 

prevention of cascading outages, etc. [18-20]. Due to the rapid development of 

power electronics technology, optimal FACTS devices installation becomes a 

promising way to enhance the operational capacity of the existing power 

system. Besides, FACTS devices placement has two main advantages, 

including installation flexibility and economic efficiency [21]. Therefore, 

compared with transmission system expansion, investing FACTS devices is 

economically preferable by transmission network planners. Thyristor 

controlled series capacitor (TCSC) [22] is one of the most useful FACTS 

devices since it can be inserted into the transmission lines to improve the 

system loadability, increase the power transmission capacity, improve the 

transient stability, reduce transmission loss and suppress the network low 

frequency oscillation by adjusting the transmission line impedances [23, 24]. 

In order to acquire these benefits, the optimal locations and sizes of TCSC 

devices should be optimally determined [25, 26]. 

High renewable energy integration in the distribution networks will pose 

significant challenges to the power system operation, e.g. overvoltage and 

overload of certain distribution lines [27-29]. In this regard, it is important to 
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continuously evaluate and improve the renewable hosting capacity (RHC) of 

the distribution networks before PV generators deployment or during actual 

operation. RHC is defined by Electric Power Research Institute (EPRI) as “the 

amount of renewable generation that can be accommodated without adversely 

impacting quality or reliability under existing control configurations and 

without requiring infrastructure upgrades” [30]. RHC can be affected by two 

main factors [31-33]. The first one is related to the configuration of distribution 

networks, including voltage control approach, system topology, load 

consumption, thermal limits and weather conditions. The second one is about 

the characteristics of renewable generators, such as renewable generator type, 

control functions, manufacture technology, installation locations and 

generation efficiency. 

 

1.2 Purpose of the Thesis 

This thesis intends to hedge against the negative impacts introduced by 

high renewable energy integration in transmission networks by optimally 

planning FACTS devices, and evaluate and enhance RHC to safeguard 

distribution system operation by developing efficient approaches. Therefore, 

the purpose of the thesis can be summarized to two aspects: the first one is to 

address negative issues caused by large-scale renewable energy integration in 

transmission networks and the second one is to enable the distribution 

networks to securely improve its capability of accommodating more renewable 

generations. 

Firstly, this thesis proposes a novel FACTS device planning framework 

considering uncertainties of wind energy output and load demand in 
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transmission networks. Flexible FACTS device investment in transmission 

networks can be another alternative to address the aforementioned negative 

impacts and enhance the operational capacity of the existing transmission 

network. Among the most useful FACTS devices, TCSC is selected to be 

optimally deployed to increase the loadability of the existing transmission 

network. To handle the issues caused by wind power penetration in the 

transmission network, a two-stage stochastic planning model is proposed. With 

optimal planning of TCSC devices, several goals can be achieved, which 

includes maximizing the use of existing transmission facilities, reducing the 

active power loss cost and improving the loadibility of transmission networks. 

Secondly, this thesis proposes a novel stochastic programming based static 

var compensator (SVC) location-allocation framework in the distribution 

networks. It aims at enhancing PV hosting capacity to safeguard distribution 

network operation. PV hosting capacity plays an important role in identifying 

the capability of accommodating PV generations without operational 

constraints violations. Uncertainties including PV energy output and load 

consumption should be considered since these uncertainties may affect the 

optimal solutions. After solving this SVC planning model, a tradeoff 

relationship between PV hosting capacity and SVC planning cost can be 

obtained. After optimal SVC installation, significant PV hosting capacity 

enhancement can be achieved. This means that the distribution network can 

accommodate more PV power generators, which can bring economic and 

environmental benefits such as reduction of greenhouse gas emission and 

energy cost. 
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Thirdly, this thesis improves the daily PV accommodation capability 

(PVAC) of distribution networks via optimal voltage regulator (VR) allocation. 

The concept of PV accommodation capability is proposed to describe the 

amount of PV generation that can be reliably accommodated at a certain node 

of a distribution network within a certain time period. The PVAC dynamically 

varies according to operation conditions, such as time-varying demand and PV 

generation. Optimal VR placement is another alternative to tackle the 

aforementioned negative influences though providing continuous voltage 

regulation. Two criterions are introduced to maintain the safety and reliability 

of the distribution network operation, i.e., voltage variation and distribution 

line capacity. A stochastic feasibility check model is proposed to guarantee the 

security of distribution networks for any considered operation scenarios. 

 

1.3 Primary Contributions 

To achieve the objectives of the research, the main contributions achieved 

in this thesis are summarized as follows, 

1) In this thesis, the classical copula theory is used to sample uncertainties of 

wind generation and load demand in transmission networks, where the 

temporal interdependence between wind energy output and load is taken 

into account. Especially, the inverse transform method is used to model 

these two uncertainties. Previous works usually use Monte Carlo 

simulation method to generate scenarios. In comparison, this method has 

been widely applied to the generation of forecasted operational scenarios 

for renewable production, which can better resemble reality. 
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2) The stochastic programming based framework is proposed for TCSC 

planning model considering uncertainties in the transmission networks. 

This planning model is formulated to a two-stage model where the first 

stage determines the TCSC location-allocation decisions and the second 

stage is to minimize the expected system operation cost under different 

wind-load scenarios. The proposed TCSC planning model is originally 

formulated a mixed integer nonlinear programming (MINLP), then a 

linearization technique and an approximation method are utilized to 

transform this MINLP into a mixed integer linear programming (MILP). 

Numerical results demonstrate that the performance of the proposed 

stochastic scheme is better than that of the traditional deterministic scheme. 

3) The PV hosting capacity is innovatively modeled as a decision variable in 

the optimization text. Empirically, PV hosting capacity is difficult to be 

evaluated and it is generally assessed by using simulation-based 

approaches. In this thesis, the PV hosting capacity is incorporated into the 

objective function of optimal SVC planning problem by using sum 

weighted method. Therefore, the tradeoff between the PV hosting capacity 

and the SVC planning cost can be obtained, which is enforceable for 

practical application. 

4) VR has the potential to improve the hourly PVAC of distribution networks 

since it can handle the overvoltage issue caused by PV energy integration 

through its continuous voltage regulation, which is not well studied in the 

existing works. To fill this research gap, a novel two-stage framework is 

proposed to investigate the extent of the potential benefits from optimal 

VR placement as an option to improve the PVAC. The hourly PVAC is 
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modeled as a continuous variable which is formulated in the objective 

function. Two criterions are introduced to maintain the safety and 

reliability of the distribution network operation, i.e., voltage variation and 

distribution line capacity. Moreover, a stochastic programming based 

feasibility checking model is established to ensure that the distribution 

network always remains secure operation under different uncertainty 

scenarios. Considering the widespread application of VR in power systems, 

this thesis has practical significance. 

5) Time-coupling constraints across the time periods and numerous 

uncertainty scenarios result in an intractable two-stage stochastic planning 

problem. To reduce the computation burden, an efficient solution approach 

based on Benders decomposition is developed to solve this two-stage 

problem. Specifically, the two-stage problem can be decomposed into a 

master problem and multiple subproblems corresponding to all time 

periods in all scenarios. Furthermore, stochastic Benders cuts are built to 

link the master problem with the subproblems. To the best knowledge, this 

is the first study to employ the Benders decomposition algorithm to solve 

the two-stage planning problem for PV hosting capacity improvement by 

far. 

 

1.4 Thesis Layout 

The remainder of the thesis is organized as follows, 

Chapter 2 proposes a two-stage stochastic programming based optimal 

TCSC location-allocation model. This planning model is formulated as a two-

stage problem in which the planning variables of sites and sizes for TCSC 
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investment are optimized in the first stage and the power flow is optimized 

under representative wind-load scenarios in the second stage. The objective is 

to minimize the total costs of power system operation and TCSC investment, 

subject to linear power flow equations. This planning model is a MINLP, and 

then a general linear relaxation technique is employed to formulate this 

nonlinear model to a MILP. Wind-load scenarios are adopted to represent 

uncertainties, which are derived by using the classical copula theory where the 

temporal interdependence between wind power and load is considered. Finally, 

the modified IEEE 57-bus power system is used to verify the effectiveness of 

the proposed planning model. 

Chapter 3 propose a two-stage stochastic optimal SVC location-allocation 

model. The primary goal of this planning model is to maximize the PV hosting 

capacity of the distribution networks by finding the optimal sites and sizes of 

SVC devices. In this two-stage problem, the PV hosting capacity and the 

corresponding SVC location-allocation decisions are determined in the first-

stage before the uncertainty realization, while the SVC operation decisions are 

optimized under representative PV-load scenarios in the second stage. The 

numerous coupled constraints result in an intractable problem, so a solution 

approach is developed where the Benders decomposition algorithm is used to 

decompose the original problem into master problem and subproblems. Thus, 

commercial solvers can be used to directly solve this two-stage problem. The 

modified IEEE 37-node and 123-node distribution networks are employed to 

demonstrate the effectiveness of the proposed model and the solution method. 

Chapter 4 proposes an optimal VR placement model for maximizing daily 

PVAC in distribution systems while maintaining the safety and reliability of 
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the distribution network operation. This allocation model is firstly formulated 

as a deterministic MINLP problem, subject to piecewise linearized DistFlow 

equations. The General linearization techniques are employed to transform the 

original nonlinear program into a MILP. The stochastic operation scenarios of 

PV outputs and load demand are considered, which creates a two-stage 

stochastic MILP problem. The first stage determines the hourly PVAC values 

and the corresponding VR allocation decisions while the second stage is related 

to the proposed stochastic feasibility checking model which is imposed to 

ensure that the distribution network operation always remains secure under 

different uncertainty scenarios. The decomposition-based method is adopted to 

reduce the computation complexity caused by a mass of time-coupled 

constraints. The modified 33-node distribution system is utilized to verify the 

effectiveness of the proposed model and solution method. 

Eventually, Chapter 5 concludes this thesis and provides perspectives for 

future work. 
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Chapter 2   Stochastic Thyristor Controlled Series 

Capacitor Devices Planning with High Wind Energy 

Penetration 

2.1 Introduction  

In the last decade, wind energy capacity investments have been increased 

rapidly. Large-scale wind power integration of the power system brings about 

many economic interests and environmental benefits. However, due to the 

stochastic characteristic of wind power output, widespread wind farms 

installation poses some great challenges to the normal power system operation. 

Due to high wind power penetration, power flows on the transmission lines 

will be significantly changed and become inevitably fluctuating [14, 15]. This 

may result in some potential negative effects, including transmission line 

congestion, increased active power loss and large voltage deviation. In order 

to deal with these issues caused by uncertainties and risks associated with high 

wind power penetration, the traditional transmission system expansion can be 

taken into consideration [34]. However, the transmission system expansion, 

such as transmission line expansion and reconstruction, novel electrical plants 

installation and existing facilities upgrade, is usually investment-intensive and 

time-consuming and may cause environmental problems. 

In this regard, flexible AC transmission systems (FACTS) devices 

investment in the transmission networks can be regarded as an attractive 

alternative to improve the operational capacity of the power system. FACTS 

devices are able to be inserted into the transmission lines or installed on the 

transmission buses to control the phase angle, consume or generate reactive 
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power, improve voltage files and adjust transmission line impedances [35]. 

Hence, many advantages can be obtained by planning FACTS devices, such as 

maximizing of the use of existing electrical facilities, deferring the 

transmission systems upgrade and improving the transmission loadability [36]. 

Besides, FACTS devices placement has two main characters, installation 

flexibility and economic efficiency, due to their short installation period and 

less capital cost. Therefore, compared with transmission system expansion 

options, investing FACTS devices is economically preferable for transmission 

network planners. Thyristor controlled series capacitor (TCSC) [22] is one of 

the most useful FACTS devices since it can be inserted into the transmission 

lines to improve the system loadability, increase the power transmission 

capacity, improve the transient stability, reduce transmission loss and suppress 

the network low frequency oscillation by adjusting the transmission line 

impedances [23, 24]. In order to acquire these benefits, the optimal locations 

and sizes of TCSC devices should be optimally determined [25, 26]. 

In the past, sensitivity analysis-based approaches are widely investigated 

for solving optimal TCSC allocation problems. The main idea of these kinds 

of approaches is to calculate sensitivity indexes for optimal TCSC locations. 

Ref. [37] proposes a method to obtain the sensitivity index by calculating 

indicators to find the most critical transmission lines for installing TCSC 

devices. Ref. [38] presents a TCSC placement model where the sensitivity 

index is introduced for seeking the optimal locations for TCSC devices 

allocation. However, the sensitivity analysis-based approaches have their own 

disadvantages on low computation efficiency since the computation runs 

repeatedly given different inputs [15]. In addition, these methods cannot 
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optimize the sitting and sizing of TCSC devices simultaneously [39]. Therefore, 

in order to handle the issues described above, heuristic algorithms are 

extensively developed for obtaining the optimal TCSC planning decisions. In 

Ref. [40], the genetic algorithm (GA) is employed to acquire the suitable sitting 

and sizing of TCSC devices in the transmission networks. Ref. [41] uses the 

particle swarm optimization (PSO) algorithm to optimize the position and 

parameter of TCSC devices considering the capital cost minimization and 

network loadability enhancement. Nevertheless, these heuristic algorithms 

have two main disadvantages, one is that the global optimality of the solutions 

cannot be guaranteed and the other one is that the huge computation burden 

may occur in the large-scale test systems. Another popular method is to 

formulate the TCSC planning problem as a mixed-integer linear programming 

(MILP), which can be directly solved by some commercial solvers. As the 

TCSC devices are inserted into the transmission lines, the line parameters are 

transformed to the decision variables, resulting in the mixed integer nonlinear 

programming (MINLP). Due to the great computation complex in solving 

MINLP, reach efforts are paid to transform the MINLP the MILP via relaxation 

or approximation of the nonlinear terms. In Ref. [42], the MILP is formulated 

for TCSC location-allocation problems where the approximation method is 

adopted. In Ref. [42], the DC load flow model is utilized for neglecting the 

nonlinear power flow appearing in the TCSC planning problem. Ref. [43] uses 

a decomposition method to decompose the complicated MINLP based TCSC 

planning problem into some MILPs. Refs [44, 45] give more examples about 

MILP based approach for TCSC installation problems. Although these 

methods exhibit high computation efficiency in solving complex TCSC 
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investment problems, most researchers consider simply or even overlook the 

uncertainties of wind energy out and load consumption. Note that these 

uncertainties have a direct effect on TCSC planning results. With the 

increasing wind power integration, the existing TCSC location-allocation 

methodology may be not suitable. 

In this chapter, a stochastic programming based TCSC location-allocation 

model considering the uncertainties in the transmission networks is proposed. 

This planning model is formulated to a two-stage model in which the first stage 

determines the TCSC location-allocation decisions and the second stage is to 

minimize the expected system operation cost under different wind-load 

scenarios given the first-stage results. To present the uncertainties of wind 

energy output and load demand, the scenario approach is adopted to describe 

these uncertainties with the form of several daily wind-load scenarios. Subject 

to line flow-based equations, optimal locations and sizes of TCSC devices can 

be obtained by minimizing the sum of power loss cost and TCSC planning cost. 

The classical copula theory is used to develop these scenarios where the 

temporal interdependence between wind energy output and load demand is 

considered. The proposed TCSC planning model is originally formulated a 

MINLP, then a linearization technique and an approximation method are 

utilized to transform this MINLP into a MILP. Finally, the modified IEEE 57-

bus transmission system is employed to verify the effectiveness of the 

proposed model. 

The nomenclature of symbols used in this chapter is given as follows, 

Sets and Indices 

𝑗/𝐽 Index/set of transmission buses. 

𝑖/I Index/set of child transmission buses. 
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𝑛/N Index/set of transmission lines. 

𝛿(𝑗) Set of child nodes of the bus 𝑗. 

𝜑(𝑗) Set of transmission lines all connected to the bus 𝑗. 

𝑡/𝑇 Index/set of time slots. 

𝑤/𝑊 Index/set of net load scenarios. 

𝑘/𝐾 Index/set of generation units. 

Variables 

𝑃𝑛,𝑡,𝑤/𝑄𝑛,𝑡,𝑤 Active/Reactive power flow through transmission 

line 𝑛 at 𝑡, 𝑤. 

𝑃𝑘,𝑡,𝑤
𝑔

/𝑄𝑘,𝑡,𝑤
𝑔

 Active/Reactive power generation at 𝑘, 𝑡, 𝑤. 

𝐿𝑛,𝑡,𝑤
𝑃 /𝐿𝑛,𝑡,𝑤

𝑄
 Active/Reactive power loss of transmission line 𝑛 at 

𝑡, 𝑤. 

𝐿𝑛,𝑡,𝑤
𝐾  Derived variable of transmission line 𝑛 at 𝑡, 𝑤, as 

defined in (4c). 

𝑥𝑛
𝑇𝐶𝑆𝐶  Compensation rate of TCSC of transmission line 𝑛. 

𝑢𝑛 Binary decision variable flagging TCSC placement of 

line 𝑛. 

𝑉𝑗,𝑡,𝑤 Bus voltage at 𝑗, 𝑡, 𝑤. 

Parameters 

𝑐𝑝 Objective function coefficient associated with the 

electricity price ($/kWh). 

𝑐𝑇𝐶𝑆𝐶 Objective function coefficient associated with the 

amortized cost price of installed TCSC ($/day). 

𝐹, 𝐹𝐿𝑂𝑆𝑆, 𝐹𝐼𝑁𝑉 Total cost, power loss cost, and investment cost. 

𝑁𝑏,𝑁𝑙 The total number of busbars, lines. 

𝑝𝑤 Probability of scenario 𝑤. 

𝐵𝑛
𝑖  The element of bus-line incidence matrix, 1 when bus 

𝑖 is the sending bus of line 𝑛, -1 when bus 𝑗 is the 

receiving bus of line 𝑛, 0 otherwise. 

𝐵𝑛
𝑚 The element of modified bus-line incidence matrix. 

𝐵𝑗
𝑞
 The element of the diagonal matrix associated with 

reactive power compensation devices of bus 𝑗. 
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𝐵𝑘
𝑔

 The element of the coefficient matrix of 𝑃𝑘,𝑡,𝑤
𝑔

 and 

𝑄𝑘,𝑡,𝑤
𝑔

. 

𝑅𝑛/𝑋𝑛 Resistance/Reactance of transmission line 𝑛. 

𝑃𝑗,𝑡,𝑤
𝑑 /𝑄𝑗,𝑡,𝑤

𝑑  Active/Reactive net load at 𝑗, 𝑡, 𝑤. 

𝑃𝑛
𝑚𝑖𝑛/𝑃𝑛

𝑚𝑎𝑥 Lower/Upper bound of active power flow through 

transmission line 𝑛. 

𝑄𝑛
𝑚𝑖𝑛/𝑄𝑛

𝑚𝑎𝑥 Lower/Upper bound of reactive power flow through 

transmission line 𝑛. 

𝑃𝑘
𝑔,𝑚𝑖𝑛

/𝑃𝑘
𝑔,𝑚𝑎𝑥

 Lower/Upper bound of active power generation of 

generator unit 𝑘. 

𝑄𝑘
𝑔,𝑚𝑖𝑛

/𝑄𝑘
𝑔,𝑚𝑎𝑥

 Lower/Upper bound of reactive power generation of 

generator unit 𝑘. 

𝑅𝑘
𝑃,𝑚𝑖𝑛/𝑅𝑘

𝑃,𝑚𝑎𝑥
 Active power generator ramp down/up limitation of 

generator unit 𝑘. 

𝑅𝑘
𝑄,𝑚𝑖𝑛/𝑅𝑘

𝑄,𝑚𝑎𝑥
 Reactive power generator ramp down/up limitation of 

generator unit 𝑘. 

𝐿𝑛
𝑃,𝑚𝑖𝑛/𝐿𝑛

𝑃,𝑚𝑎𝑥
 Lower/Upper bound of active power loss of 

transmission line 𝑛. 

𝐿𝑛
𝑄,𝑚𝑖𝑛/𝐿𝑛

𝑄,𝑚𝑎𝑥
 Lower/Upper bound of reactive power loss of 

transmission line 𝑛. 

𝐿𝑛
𝐾,𝑚𝑖𝑛/𝐿𝑛

𝐾,𝑚𝑎𝑥
 Lower/Upper bound of the derived variable of 

transmission line 𝑛. 

𝑉𝑗
𝑚𝑖𝑛/𝑉𝑗

𝑚𝑎𝑥 Lower/Upper bound of bus voltage of bus 𝑗. 

𝑉𝑗
𝑑,𝑚𝑖𝑛/𝑉𝑗

𝑑,𝑚𝑎𝑥
 Lower/Upper bound of bus voltage deviation of bus 

𝑗. 

𝑥𝑛
𝑇𝐶𝑆𝐶,𝑚𝑖𝑛

/𝑥𝑛
𝑇𝐶𝑆𝐶,𝑚𝑎𝑥

 

Lower/Upper bound of TCSC compensation rate, 

20% to 80% of line 𝑛 (p.u.). 

𝑇𝐿𝑛 Thermal limits of the transmission line 𝑛. 

𝑁𝑇𝐶𝑆𝐶
𝑚𝑎𝑥  Maximum allowed TCSC installation number. 
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2.2 Uncertainties Consideration in Transmission Networks 

2.2.1 Uncertainties Modeling 

In this TCSC planning model, time-varying wind energy output and 

uncertain load demand are taken into consideration. The wind power 

generation is highly related to the wind speed which can be modeled by 

Weibull distribution [46] and load demand can be considered as the normal 

distribution in the long-term run [47]. On the bus 𝑗 within time period 𝑡, the 

Weibull distribution of active wind energy generation is 𝑌𝑗,𝑡
𝑝 ~𝑊(𝜆𝑗,𝑡, 𝑘𝑗,𝑡), 

where 𝜆𝑗,𝑡  and 𝑘𝑗,𝑡  are scale and shape parameters, respectively, and the 

normal distribution of active load demand is 𝑋𝑗,𝑡
𝑝 ~𝑁(𝜇𝑗,𝑡, 𝜎𝑗,𝑡

2 ), where 𝜇𝑗,𝑡 

and 𝜎𝑗,𝑡 are the mean value and variance, respectively. Besides, the active net 

load on the bus with both load demand and wind energy integration can be 

expressed as 𝑃𝑗,𝑡
𝑑 = 𝑋𝑗,𝑡

𝑝 − 𝑌𝑗,𝑡
𝑝

. Therefore, the active net load is generally 

regarded as a negative load demand because the active wind power output can 

reduce the overall active load on the same bus. The additive results of these 

two independent variables can be derived by a well-studied approach based on 

Gram-Charlier Series expressions and cumulants [23]. In the same way, the 

reactive net load 𝑄𝑗,𝑡
𝑑  can be obtained. 

2.2.2 Scenarios Generation and Reduction 

As described in the previous subsection, the marginal distribution of the 

net load within each time period can be acquired. Then the Gaussian copula 

theory [48] is adopted to generate numerous scenarios with consideration of 

temporal dependence. Specifically, in the first step, a multivariate Gaussian 

random number generator is used to address uncertainty realizations 𝑊 set 
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{𝜒𝑗,𝑡1

𝑤 , 𝜒𝑗,𝑡2

𝑤 , … , 𝜒𝑗,𝑡24

𝑤 }, 𝑤 = 1, … , 𝑊  with a chosen covariance structure. In 

some realistic cases [48], the covariance structure is issued by an exponential 

covariance function considering the empirical correlations, given as follows,  

1 2
1 2( , ) ( ) ,0

1 2j ,t j ,t

| t t |
cov exp , j J t ,t T 



−
= −      (2.1) 

where 𝛸𝑗,𝑡 represents the Gaussian random variable on the bus 𝑗 within time 

period 𝑡, and 𝛾 denotes the range parameter which controls the strength of 

the random variable correlation among the set of lead time periods. In this 

thesis, an empirical value 𝛾 = 10 is utilized [48]. 

In the second step, inverse probit function 𝛷  and the marginal 

distribution 𝐹𝑗,𝑡 are used to transform these multivariate Gaussian realizations 

𝜒𝑗,𝑡
𝑤  into trajectories 𝑦𝑗,𝑡 of net load at 𝑗,𝑡. 

( ( ))1 w

j ,t j ,t j ,t , j J , WF T wy t , −      =  (2.2) 

To reduce the computational complexity of the proposed TCSC planning 

problem, as the inputs of the second stage of the TCSC planning model, the 

representative scenarios should be distinguished from the obtained numerous 

ones. With this consideration, a scenario selection approach based on 

backward-reduction algorithm [49] is adopted since this approach can select 

scenarios with corresponding probabilities which can show the importance of 

the associated scenarios. After scenario reduction, the remains of probabilistic 

scenarios are fed into the stochastic TCSC planning model. 
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2.3 Mathematical Formulation of the Stochastic TCSC 

Planning Model 

2.3.1 Line Flow based Model 

Generally, the AC model [50] and the DC model [51] can be used to model 

complex power flow in power systems. The AC model has advantages in 

describing the electrical networks precisely. However, most operation or 

planning optimization problems based on AC model are formulated as 

nonlinear and nonconvex problems, which are difficult to be solved due to 

heavy computational burden and only local optimal solutions can be found. 

Hence, the AC model is not applicable in large-scale systems with 

consideration of uncertainties. As for the DC model, it is widely used for power 

system planning and operation problems, which can be efficiently solved by 

some commercial solvers. It should be noted that the DC model ignores the 

reactive power balance, tap dependence and power loss, so this model is not 

suitable for the proposed optimal TCSC planning model. By contrast, line flow 

based (LFB) model [52] is based on voltage magnitudes and line power flow, 

which directly relate to TCSC device variables. Besides, the LFB model has a 

good performance on computation efficiency [53]. In this regard, the 

advantageous LFB model is adopted to model the power flow in the proposed 

TCSC planning model, given as follows, 

2 2

( ) ( ) ( )

( )g g d n n
n

i

k k j n2
j k j j

m

n

n j

n

n

P Q
P B P P R , j J

V
B B

  

+
= − −    (2.3) 

2 2

( ) ( ) ( )

( )g g d q n n
k k j j j n2

j k

i m

n

nj j

n

n j

nB Q B X ,
P Q

B Q Q B U j J
V   

= +
+

− −    (2.4) 
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2 2
2 2

2
( ) ( )

( )
( ) ( ) ( )n n

n n

n n
j i n n n n

j j j

P Q
U U R X R X , j J ,2 i

V
Q jP

 


 

+
= + + + +       (2.5) 

j i

2 2

j iV ,U U V= =  (2.6) 

where (2.3) defines the active power injection 𝑃𝑛 which is summarized by the 

active generation output, active load demand and the total active power loss of 

transmission lines connected to this bus; (2.4) defines the reactive power 

injection 𝑄𝑛 which is summarized by the reactive generation output, reactive 

load demand, reactive power compensation (related with voltage) and the total 

reactive power loss of transmission lines connected to this bus; and (2.5) 

describes the voltage transmit along the transmission line, the voltage drop is 

determined by the quadratic active/reactive power, quadratic voltage (2.6) and 

line conductance. 𝐵𝑛
𝑖 , 𝐵𝑘

𝑔
, 𝐵𝑗

𝑞
 𝐵𝑛

𝑚 are bus incidence matrixes for 𝑃𝑛 , 𝑃𝑘
𝑔

 

and 𝑄𝑘
𝑔

, 𝑉𝑗
2 , active and reactive power loss, respectively. Detailed 

expressions of these incidence matrixes can be found in [54]. 

As shown in (2.3)-(2.6), the LFB model is nonlinear so it is difficult to be 

solved. In order to linear the LFB model, two continuous variables 𝐿𝑛
𝑃  and 𝐿𝑛

𝑄
 

are introduced to denote the active power loss term and the reactive power loss 

term appearing in (2.3) and (2.4), respectively. Besides, the variable 𝐿𝑛
𝐾  is 

introduced to describe the nonlinear term in (2.5). The expressions of these 

three auxiliaries are as follows, 

2 2( )
( )P n n

n n

j

P Q
L R , j J, n j

U


+
=      (2.7) 

2 2( )
( )Q n n
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j

P Q
L X , j J, n j

U


+
=      (2.8) 
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2 2
2 2( )

( ) ( )K n n
n n n

j

P Q
L R X , j J, n j

U


+
= +     (2.9) 

After substituting 𝐿𝑛,𝑡,𝑤
𝑃 , 𝐿𝑛,𝑡,𝑤

𝑄  and 𝐿𝑛,𝑡,𝑤
𝐾  for active power loss, 

reactive power loss and nonlinear term in (2.5), respectively, the linear LFB 

model in the time period 𝑡 of the scenario 𝑤 is written as follows, 

, , , ,
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The following two equations (2.13) and (2.14) define the relationships 

among 𝐿𝑛,𝑡,𝑤
𝑃 , 𝐿𝑛,𝑡,𝑤

𝑄
 and 𝐿𝑛,𝑡,𝑤

𝐾 . 

, , , , 0P Q

n n t w n n t wX L R L , n N, t T, w W− =        (2.13) 

, , , , , , 0, , ,P Q K

n n t w n n t w n t wR L X L L n N t T w W+ − =        (2.14) 

2.3.2 TCSC Installed LFB Model 

From the perspective of the long term, the TCSC device can be ideally 

regarded as a variant capacitive reactance compensator consisting of a series 

capacitor and a shunt thyristor-controlled reactor [23], as shown in Fig. 2-1. 

For the steady-state power flow study, after a TCSC device installation on a 

transmission line, the reactive −𝑗𝑥𝑛
𝑇𝐶𝑆𝐶  is offered by the TCSC, as shown in 

Fig. 2-2.  
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Fig. 2-1 Simple diagram of a TCSC device 

 

 

Fig. 2-2 Simplified model of the transmission line with a TCSC device 

installed 

 

Therefore, the original transmission line reactance 𝑋𝑛 is changed to the 

new reactance 𝑋𝑛
′ , described as follows, 

,TCSC

n n n nX X x u n N = +    (2.15) 

where the binary variable 𝑢𝑛 denotes the TCSC device placement status on 

the transmission line 𝑛 , 𝑢𝑛 = 1  denoting the TCSC device installation, 

otherwise, 𝑢𝑛 = 0. 

Then 𝑋𝑛 should be replaced by 𝑋𝑛
′  in the LFB model so that the LFB-

TCSC model is derived from (2.10)-(2.14), given as follows, 
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, , , ,

( ) ( ) ( )

g g d m P

n,t,w k k t w j t w n n

n j k j

i

n

n j

P B P P B L ,

n N, t T W

B

, w

   

= − −

     

  
 (2.16) 

, , , , , ,

( )

,

( )

,

) (

g g d q m Q

k k t w j t w j j t w n

i

n n n

n j k j n j

t w B Q Q B U B L ,B Q

n N, t T, w W

  

= − + −

     

  
 (2.17) 

( ) ( )

( )+ TCSC K

j ,t ,w i ,t ,w n n n,t ,w nn,t ,w n,t ,w n,t ,w

n n

n,t ,w

j j

2 PU U R X x u L ,

n N, T

Q Q

t , w W

  

= + + +

     

 
 (2.18) 

, , , , , , , , 0P TCSC P Q

n n t w n t w n n t w n n t wX L x u L R L ,

n N, t T, w W

+ − =

     
 (2.19) 

, , , , , , , , , , 0P Q TCSC Q K

n n t w n n t w n t w n n t w n t wR L X L x u L L ,

n N, t T, w W

+ + − =

     
 (2.20) 

2.3.3 Linearization of LFB-TCSC Model 

Note that the LFB-TCSC model (2.16)-(2.20) is formulated as a MINLP 

including cubic terms 𝑥𝑛
𝑇𝐶𝑆𝐶𝑢𝑛𝑄𝑛,𝑡,𝑤 , 𝑥𝑛

𝑇𝐶𝑆𝐶𝑢𝑛𝐿𝑛,𝑡,𝑤
𝑃 , and 𝑥𝑛

𝑇𝐶𝑆𝐶𝑢𝑛𝐿𝑛,𝑡,𝑤
𝑄

. 

This MINLP problem cannot be directly solved by commercial solvers since it 

is nonconvex. To linear these three cubic terms, a two-step transformation is 

developed. In the first step, an auxiliary continuous variable 𝑧𝑛
𝑇𝐶𝑆𝐶  is 

introduced for representing 𝑧𝑛
𝑇𝐶𝑆𝐶 = 𝑥𝑛

𝑇𝐶𝑆𝐶𝑢𝑛. Then the LFB-TCSC model is 

reformulated as follows, 

, , , ,

( ) ( ) ( )

g g d m P

n,t,w k k t w j t w n n

n j k j

i

n

n j

P B P P B L ,

n N, t T W

B

, w

   

= − −

     

  
 (2.21) 

, , , , , ,

( )

,

( )

,

) (

g g d q m Q

k k t w j t w j j t w n

i

n n n

n j k j n j

t w B Q Q B U B L ,B Q

n N, t T, w W

  

= − + −

     

  
 (2.22) 
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( ) ( )

( )+n,t ,w n,t ,w n

TCSC K

j i n n n n,t ,w

n j n

t ,w

j

,U U R X z L2 ,

n N, t T, w

P Q

W

Q
  

= + + +

     


 (2.23) 

, , , , , , 0P TCSC P Q

n n t w n n t w n n t wX L z L R L , n N, t T, w W+ − =        (2.24) 

, , , , , , , , 0P Q TCSC Q K

n n t w n n t w n n t w n t wR L X L z L L , n N, t T, w W+ + − =        (2.25) 

Meanwhile, the following auxiliary constraints should be considered in the 

LFB-TCSC formulation to make the equation 𝑧𝑛
𝑇𝐶𝑆𝐶 = 𝑥𝑛

𝑇𝐶𝑆𝐶𝑢𝑛 workable,  

,max 0TCSC TCSC

n n nx u z , Nn− +    (2.26) 

,min 0TCSC TCSC

n n nx u z n N,−     (2.27) 

,min ,minTCSC TCSC TCSC TCSC

n n n n nx u z x x , n N− +  −    (2.28) 

,max ,maxTCSC TCSC TCSC TCSC

n n n n nx u z x x N, n− +  −  +  (2.29) 

In the second step, the bilinear terms 𝑧𝑛
𝑇𝐶𝑆𝐶𝑄𝑛,𝑡,𝑤 , 𝑧𝑛

𝑇𝐶𝑆𝐶𝐿𝑛,𝑡,𝑤
𝑃  and 

𝑧𝑛
𝑇𝐶𝑆𝐶𝐿𝑛,𝑡,𝑤

𝑄
 in (2.23)-(2.25) should be linearized. Here, an approximation 

method is utilized to transform three equality constraints (2.23)-(2.25) to six 

inequality constraints (2.30)-(2.35) where the reactive power flow 𝑄𝑛,𝑡,𝑤 , 

active power loss 𝐿𝑛,𝑡,𝑤
𝑃  and reactive power loss 𝐿𝑛,𝑡,𝑤

𝑄
 are replaced by their 

upper and lower bounds. 

max
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 (2.30) 
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j J , i j , t w

P

T , W

Q
 



 

− − + −





      

 
 (2.31) 

,max

, , , , , , 0P TCSC P Q

n n t w n n t w n n t wX L z L R L , n N, t T, w W+ −         (2.32) 
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,min

, , , , , , 0P TCSC P Q

n n t w n n t w n n t wX L z L R L , n N, t T, w W− − +         (2.33) 

,max

, , , , , , , , 0P Q TCSC Q

n n t w n n t w n n t w n t wR L X L z L L , n N, t T, w W+ + −         (2.34) 

,min

, , , , , , , , 0P Q TCSC Q

n n t w n n t w n n t w n t wR L X L z L L , n N, t T, w W− − − +         (2.35) 

2.3.4 Stochastic TCSC Planning Model 

The primary goal of the stochastic programming based TCSC devices 

planning model is to obtain the optimal sitting and sizing of TCSC devices by 

minimizing the sum of TCSC investment cost and expected power loss cost 

under considered uncertainty scenarios. This planning model is formulated to 

a two-stage model in which the first stage determines the TCSC location-

allocation decisions and the second stage is to minimize the expected system 

operation cost under different wind-load scenarios given the first-stage results. 

The objective of this planning problem is given as follows, 

Minimize F


 (2.36) 

LOSS INVF F F= +  (2.37) 

LOSS w p P

n,t ,w

w W t T n N

F p c L
 

=    (2.38) 

INV TCSC TCSC

n

n N

F c z


=  (2.39) 

where the variable set
, , , , , , , , , ,, , , , , ,{ , , , , , , , , , , }k t w k t

g g l l TCSC TCSC

n t w n t w n tj t w n t w n t w n n nwwP Q P Q P Q L x u zU = . The 

objective (2.36) comprises two terms, the first one 𝐹𝐿𝑂𝑆𝑆  (2.38) is to 

minimize the expected power loss cost overall operation scenarios and the 

second one 𝐹𝐼𝑁𝑉 (2.39) is to minimize the TCSC investment cost. It should 

be noted that 𝑐𝑇𝐶𝑆𝐶 representing the daily TCSC capital cost is presented in 

an amortized way [43] so as to match the daily power loss cost 𝐹𝐿𝑂𝑆𝑆. 
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The constraints of this planning problem are given as follows, 

(1) Power flow balance constraints: (2.21)-(2.35). 

(2) Power flow limits 

min max

, ,n n t w nP P P , n N, t T, w W         (2.40) 

min max

, ,n n t w nQ Q Q , n N, t T, w W         (2.41) 

max 2 max 2+Qn n nP TL , n N    (2.42) 

where the active and reactive power flow limits are defined in (2.40) and (2.41), 

respectively. (2.42) considers the transmission line capacity limit to ensure no 

thermal limit violations. 

(3) Bus voltage limits 

min max

, ,j j t w jU U U , j J, t T, w W         (2.43) 

min min2 max max2,j j j jU V U V= =  (2.44) 

(4) Conventional generator limits 

,min ,max

, ,

g g g

k k t w kP P P , k K, t T, w W         (2.45) 

,min ,max

, ,

g g g

k k t w kQ Q Q , k K, t T, w W         (2.46) 

, ,

, , , 1,

P down g g P up

k k t w k t w kR P P R , k K, t T, w W− −         (2.47) 

, ,

, , , 1,

Q down g g Q up

k k t w k t w k ,,R Q Q R , k K t T w W− −         (2.48) 

where active and reactive generation limits are described in (2.45) and (2.46), 

respectively. Active and reactive generation ramp limits are given in (2.47) and 

(2.48), respectively. 

(5) Power loss limits 

,min ,max

, ,

P P P

n n t w n , ,L L L , n N t T w W         (2.49) 
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,min ,max

, ,

Q Q Q

n n t w n ,L L L , n N t T, w W         (2.50) 

,min ,max

, ,

K K K

n n T W nL L L , n N, t T, w W         (2.51) 

where the constraints (2.49)-(2.51) give the bounds of active power loss 𝐿𝑛,𝑡,𝑤
𝑃 , 

reactive power loss 𝐿𝑛,𝑡,𝑤
𝑄

 and derived variable 𝐿𝑛,𝑡,𝑤
𝐾 . It should be noted that 

the upper and lower bounds of active and reactive power loss are quite 

important to the linearization of this planning model. Consider that one 

objective of the proposed TCSC planning model is to reduce power loss cost, 

in this regard, upper bounds of active and reactive power loss are assumed to 

be equal to the maximum active and reactive power loss obtained from the 

optimal power flow (OPF) before TCSC installation. Therefore, the power loss 

after TCSC placement is ensured to be less than that without TCSC installation. 

Besides, the lower bounds of active and reactive power loss are both zero. 

(6) TCSC device installation number limit 

max max {0,1,2,..., } {0,1}n TCSC TCSC b n

Nn

u N ,N N ,u , n N


 =     (2.52) 

From the practical view, (2.52) is included to limit the maximum 

investment number of TCSC devices in transmission networks, where 𝑁𝑇𝐶𝑆𝐶
𝑚𝑎𝑥  

is the maximum TCSC installation number which can be given by transmission 

network planners with practical considerations. 

  

2.4 Numerical Results 

In this section, a modified IEEE 57-bus transmission system is used to 

verify the effectiveness of the proposed TCSC planning model. The total active 

and reactive loads of this system are set as 1250.8 MW and 336.4 MVar 



29 
 

respectively. The test system comprises seven conventional generators, 42 load 

buses and 80 transmission lines. Other detailed parameters of this 57-bus test  

system can be referred to the MATPOWER [55]. Two wind farms are assumed 

to be connected to bus 8 and bus 36 of the test system, with each capacity at 

200MVA, as depicted in Fig. 2-3. Besides, in this section, it is assumed that 

the operation and maintenance cost of these two wind farms are zero. Ten 

thousand wind-load scenarios are generated and ten representative ones are 

selected. As the inputs of the proposed stochastic programming-based planning 

model, these ten wind-load scenarios can reduce the computational complexity 

with acceptable optimal solutions. Fig. 2-4 shows the representative active 

wind-load (net load) scenarios with their probabilities. The widely-used 

commercial solver YALMIP [56] based on the platform CPLEX [57] is 

adopted to directly solve the two-stage stochastic TCSC device planning 

problem. Besides, in this section, the deterministic TCSC placement model is 

regarded as the benchmark. The deterministic model only considers one wind-

load scenario where the wind energy output and load demand are set as their 

mean values, which is quite different from the proposed stochastic model. 
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Fig. 2-3 Modified IEEE 57-bus test system 

 

 
Fig. 2-4 Representative wind-load scenarios with their probabilities 
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2.4.1 The Approximation Approach Verification 

In this chapter, six linear inequality constraints (2.30)-(2.35) are 

introduced to substitute for three original nonlinear equality constraints (2.23)-

(2.25). However, the accuracy of this approximation approach needs to be 

concerned. To denote the mismatch values of equations (2.23)-(2.25), 𝐸1, 𝐸2 

and 𝐸3 are defined as follows, 

2 2

( ) ( )

( + )

( )

TCSC K

1 j i n n n n,t ,w

n

n,t ,w n,t ,w n,t

j n j

,wE =V V R X z L ,

j J , i j , t T

2 P

,

Q Q

w W

 



 

− − +

    

−

  


 (2.53) 

2 , , , , , ,

, ( ), ,

P TCSC P Q

n n t w n n t w n n t wE X L z L R L ,

j J i j t T w W

= + −

     
 (2.54) 

3 , , , , , , , ,

, ( ), ,

P Q TCSC Q K

n n t w n n t w n n t w n t wE R L X L z L L ,

j J i j t T w W

=



+ + −

      
 (2.55) 

To verify the accuracy of this approximation approach, a wind-load 

scenario with the maximum probability is utilized to calculate the values of 𝐸1, 

𝐸2 and 𝐸3. The maximum mismatch values of 𝐸1, 𝐸2 and 𝐸3 in all time 

periods are illustrated in Fig. 2-5, Fig. 2-6 and Fig. 2-7, respectively. As shown 

in these three figures, the maximum errors caused by approximation are quite 

small. Moreover, for the transmission line without TCSC devices placement, 

the approximation approach is not applied so the errors are zero. Hence, it can 

be concluded that this reasonable approximation approach has a minor effect 

on the optimal solutions. Considering that this approximation approach is able 

to linearize the nonlinear constraints containing quadratic terms so as to make 

the original problem become convex, these small errors are acceptable for a 

planning solution. 
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Fig. 2-5 Maximum mismatches of residue value 𝐄𝟏 

 

 

 
Fig. 2-6 Maximum mismatches of residue value 𝐄𝟐 

 

 
Fig. 2-7 Maximum mismatches of residue value 𝐄𝟑 
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2.4.2 TCSC Devices Location-allocation Results 

The optimal location and allocation results of TCSC devices obtained by 

the deterministic model and the stochastic model are shown in Table 2-1. It can 

be observed from this table that the TCSC devices installation number and 

capacity of the stochastic model are both larger than those of the deterministic 

model. This is because uncertainties of wind energy output and load demand 

are taken into account in the stochastic model so more TCSC devices with 

larger capacity are installed in the transmission lines to achieve a good 

performance on all considered operational scenarios. 

 

Table 2-1 TCSC devices planning results of the stochastic model and 

deterministic model 

 

2.4.3 Comparisons on Total cost  

This subsection gives a comparison of total cost consisting of TCSC 

devices investment cost and system power loss cost. The corresponding costs 

of the stochastic model and the deterministic model under the expected wind-

load scenario are listed in Table 2-2. It can be observed from this table that the 

total cost obtained by the stochastic model is lower than that of the 

deterministic model. In detail, the planning decisions of the stochastic model 

result in higher TCSC devices investment cost but lower power loss cost. 
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Table 2-2 Total costs of investment and power loss using the stochastic model 

and deterministic model 

 
 

2.4.4 Comparison of Power Loss 

This subsection compares the performance of the stochastic model and the 

deterministic model on decreasing transmission system power loss. Under the 

expected wind-load scenario, the comparison of total power loss is shown in 

Fig. 2-8. It can be seen from this figure that the stochastic model is able to 

produce less power loss. Since the wind power output and load demand are 

both uncertain and time-varying, the proposed stochastic TCSC planning 

model is more suitable and realistic than the traditional deterministic model. 

 

 

Fig. 2-8 Comparison of total power loss given the expected wind-load 

scenario 
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2.4.5 Comparison of Transmission Line Capacity Margin 

 

Fig. 2-9 Maximum apparent power of all transmission lines given the 

expected load-wind output 

 

 

Fig. 2-10 Maximum apparent power of all transmission lines given the critical 

scenario of load-wind output 

 
In this subsection, the performance of the stochastic model and the 

deterministic model on transmission line capacity margin improvement is 

compared. The transmission line capacity margin is defined as the difference 

value between the transmission line capacity and apparent power flow along 

this line. The transmission line capacity of this modified 57-bus test system is 
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assumed to be 300 MVA [55]. Fig. 2-9 depicts the apparent power of these two 

models under the expected wind-load scenario. As seen in this figure, the 

apparent power flow on the transmission lines with stochastic TCSC planning 

is smaller and less fluctuant than that of deterministic TCSC planning.  

 

 

Fig. 2-11 Comparison of transmission line security in five representative 

scenarios under the deterministic model 

 

 

Fig. 2-12 Comparison of transmission line security in five representative 

scenarios under the stochastic model 
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To further demonstrate the effectiveness of the stochastic model, the 

critical wind-load scenario (high wind energy output and low load 

consumption) is employed. Fig. 2-10 shows the apparent power of these two 

models under the critical wind-load scenario. It can be seen from this figure 

that the apparent power of the stochastic model is quite smaller than that of the 

deterministic model. Besides, the apparent power of the deterministic model 

exceeds the transmission line capacity within some time periods, which may 

cause line congestion. Moreover, Fig. 2-11 and Fig. 2-12 illustrate the 

maximum apparent power of the deterministic model and stochastic model 

given all ten representative scenarios as shown in Fig. 2-4, respectively. The 

overload can be seen in the deterministic model while it is alleviated by the 

stochastic model. The reason is that the stochastic model considers uncertain 

wind power output and load consumption, so the transmission line congestion 

can be relieved since more TCSC devices with large capacity are installed. 

Hence, after stochastic TCSC placement, the marginal security of transmission 

line is higher. 

 

2.4.6 Sensitivity Analysis on Wind Power Penetration 

In this subsection, sensitivity analysis is conducted to investigate the 

impact of increased wind power penetration level on marginal security of 

transmission line capacity with stochastic and deterministic TCSC placement. 

Fig. 2-13 shows the maximum apparent power flow along all transmission lines 

with stochastic and deterministic TCSC placement under different wind energy 

integration levels. Then the corresponding marginal security of the 

transmission line capacity is shown in Fig. 2-14. As depicted in these two 
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figures, the apparent power flow rises with increasing wind energy integration 

level and the marginal security of transmission lines is accordingly decreases. 

However, the stochastic model shows better performance on maintaining the 

marginal security of the transmission lines. After stochastic TCSC planning, 

the transmission network is more robust so as to be capable of dealing with 

uncertainties of wind power output and load consumption. 

 

Fig. 2-13 Impact of wind power penetration level on maximum apparent 

power flow 

 

 

Fig. 2-14 Impact of wind power penetration level on transmission line 

capacity margin 
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2.5 Summary 

In this chapter, a stochastic programming based TCSC location-allocation 

model considering the uncertainties of the transmission networks is proposed. 

This planning model is formulated to a two-stage model in which the first stage 

determines the TCSC location-allocation decisions and the second stage is to 

minimize the expected system operation cost under different wind-load 

scenarios given the first-stage results. To present the uncertainties of wind 

energy output and load demand, the scenario approach is adopted to describe 

these uncertainties with the form of daily wind-load scenarios. Subject to line 

flow-based equations, optimal locations and sizes of TCSC devices can be 

obtained by minimizing the sum of power loss cost and TCSC planning cost. 

The classical copula theory is used to develop these scenarios where the 

temporal interdependence between wind energy output and load demand is 

considered. The proposed TCSC planning model is originally formulated a 

MINLP, then a linearization technique and an approximation method are 

utilized to transform this MINLP into a MILP. Finally, the modified IEEE 57-

bus transmission system is utilized to verify the effectiveness of the proposed 

model. The numerical results indicate that the proposed stochastic model 

outperforms the traditional deterministic model in reducing active power loss 

cost and enhancing the marginal security of transmission lines. 
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Chapter 3  Improving Photovoltaic Hosting Capacity via 

Optimal Location-allocation of Static Var Compensators 

3.1 Introduction 

Chapter 2 intends to hedge against the negative impacts introduced by 

wind energy integration in transmission networks by optimally planning 

thyristors controlled series capacitors (TCSCs). However, this chapter tries to 

eliminate the negative effects caused by photovoltaic (PV) energy penetration 

in distribution networks by enhancing the PV hosting capacity via efficient 

planning approaches. Distributed PV generation technology is becoming a 

promising solution to the global energy crisis and environmental pollution 

problem [58, 59]. However, with the rapid growth of PV power systems in the 

distribution networks, the stochastic PV energy output presents significant 

uncertainties to the distribution networks. Besides, the over-proliferation of PV 

generators brings various negative effects to normal operating conditions of 

distribution networks [27-29]. These negative impacts limit the ability of the 

distribution networks to accommodate more PV generation. Thus, PV 

curtailment frequently happens [60], resulting in PV energy waste. In this 

regard, the distribution network planners need a reasonable and effective 

method to improve PV hosting capacity in distribution networks meanwhile 

ensure no violations of normal distribution system operation constraints, 

especially voltage magnitude violations and distribution line capacity 

violations. 

PV hosting capacity is defined as the amount of PV production that can be 

accommodated by the distribution network without endangering the reliability 
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and security of the network operation [31-33]. Several methods have been 

proposed to improve PV energy penetration of distribution networks. Monte 

Carlo simulation-based analysis is used to access the ability to hold PV 

generations in Ref. [61] and then an active distribution network (ADN) 

management approach is presented to increase PV hosting capacity by 

optimally deploying control devices and smart inverters. Ref. [62] formulates 

a multi-objective optimization model to enhance the ability to hold wind 

energy in distribution networks and minimize costs of the purchased energy 

from the upstream network, which is an effective tool for distribution network 

operators (DNOs) to consider both technical and economic aspects of wind 

energy hosting capacity. In Ref. [63], to increase the PV hosting capacity of 

the low-voltage (LV) grid, a voltage droop control is presented to efficiently 

control the active medium-voltage to low-voltage transformers in the condition 

of high PV energy integration. Ref. [64] provides an approach in which a multi-

objective and multi-period nonlinear programming optimization model is 

formulated where the demand response is used as to enhance the ability to hold 

PV generations and decrease the active power losses simultaneously. Ref. [65] 

presents a control approach based on the voltage sensitivity analysis to prevent 

overvoltage occurrence and increase the PV hosting capacity of LV grids by 

determining dynamic set points for distributed electrical energy storage 

systems (ESS) management. In Ref. [66], distributed generation hosting 

capacity is improved by modifying the operating parameters of existing 

components, including on load tap changer (OLTC) and static var 

compensators (SVCs). However, most of these existing works only focus on 

increasing PV energy penetration by using short-term operation strategies but 
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overlook the long-term effects arising from the planning perspective. This may 

limit renewable energy hosting capacity improvement. Since the PV power 

integration increases continuously, the distribution network planners need a 

considerate way to improve the ability of the grid to absorb PV generation. In 

this regard, this chapter maximizes the PV hosting capacity of distribution 

networks from the perspective of long-term planning. 

Optimal SVC devices planning provides an outlook of enhancing the PV 

hosting capacity in distribution networks since SVC has the ability to regulate 

voltage magnitude and adjust power flow by consuming or generating reactive 

power. Capacity banks (CBs) are widely used in the distribution network since 

it has advantages on the low cost of installation and maintenance. Nevertheless, 

CB can only provide reactive power by the discontinuous adjustment which 

results in a low lifetime of CB components. By contrast, SVC can not only 

release reactive power but also absorb reactive power by continuous 

adjustment. Besides, SVC is capable of reacting sensitively in response to the 

nodal voltage variations. Therefore, SVC can be used to relieve the overvoltage 

issues caused by the high level of PV power integration, so optimal SVC 

devices planning results in a positive effect on PV hosting capacity 

enhancement. Classical studies related to SVC location-allocation problems 

regard the considerable potential of SVC planning on improving PV hosting 

capacity. Ref. [67] aims to improve the voltage profiles via optimal sitting and 

sizing of SVC and Ref. [68] focuses on improving the system load margin by 

finding SVC installation locations. Instead of improving the performance of 

voltage regulation and system loadability, the primary goal of this planning 
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model is to enhance the PV hosting capacity by optimally determining the SVC 

devices planning decisions. 

When dealing with uncertainties, two typical approaches including 

stochastic programming [69] and robust optimization (RO) [70] are generally 

used for power system planning problems. In many cases, compared with the 

stochastic programming solutions, the solutions obtained by RO are usually 

over-conservative. This is because the worst-case scenarios are excessively 

considered in RO models but the occurrence probabilities of these scenarios 

are practically low. In General, stochastic programming is used to model 

operation or planning problems in electrical networks considering 

representative uncertainties scenarios, aiming at minimizing expected 

operation or planning cost in all considered scenarios subject to network 

constraints. Therefore, the stochastic programming solutions are less 

conservative than the RO solutions but more robust than the traditional 

deterministic optimization solutions. In this regard, stochastic programming is 

employed to model this planning problem. 

In this chapter, a two-stage stochastic optimal SVC location-allocation 

model is proposed. The primary goal of this planning model is to maximize the 

PV hosting capacity of the distribution networks by finding the optimal sites 

and sizes of SVC devices. In this two-stage problem, the PV hosting capacity 

and the corresponding SVC location-allocation decisions are determined in the 

first-stage which is before the uncertainty realization, while the operational 

constraints are evaluated with given first-stage results under representative PV-

load scenarios in the second stage. The numerous coupled constraints result in 

an intractable problem, so a solution approach is developed where the Benders 
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decomposition algorithm is used to decompose the original problem into 

master problem and subproblems. Thus, commercial solvers can be used to 

directly solve this two-stage problem. The modified IEEE 37-node and 123-

node distribution networks are employed to demonstrate the effectiveness of 

the proposed model and the solution method. The major contributions are 

summarized in threefold as below, 

1) The main contribution of this work is that it investigates the extent of 

the potential benefits from optimal SVC planning as an option to improve the 

PV hosting capacity of distribution networks. Considering the widespread 

application of SVC in power systems, this work has practical significance. 

2) Simulation-based methods are widely adopted to assess PV hosting 

capacity but they are inapplicable in studying its improvement. Conversely, in 

this thesis, the PV hosting capacity is originally modeled as the decision 

variable and incorporate it into the objective function. Hence, a tradeoff 

between PV hosting capacity and SVC planning cost can be achieved. 

3) The proposed two-stage stochastic optimal SVC location-allocation 

problem is practically intractable because coupled objective and constraints 

across the time periods and numerous uncertainty scenarios. In this regard, 

based on Benders decomposition, an efficient solution approach is developed 

to solve this two-stage problem so as to reduce computational complexity.  

The nomenclature of symbols used in this chapter is given as follows, 

Sets and Indices 

/i N  Index/set of distribution node. 

/ ( )PVm N i  Index/set of candidate distribution node for PV 

generation installation. 

/t T  Index/set of the time period. 
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/s S  Index/set of PV-load scenario. 

Variables 

SVC

ia  Binary decision variable flagging SVC installation status 

at the node i . 

SVC

iQ  SVC installation capacity at the node i . 

SVC

itsq  Reactive power support of SVC at the node i  in t , s . 

/its itsP Q  Active/Reactive power flow through the distribution line 

between node 1i −  and node i  in t , s . 

itsV  Voltage magnitude at the node i  in t , s . 

PV

mE  PV hosting capacity allocated to the node m . 

Parameters 

SVC

FC  The Objective coefficient associated with the fixed 

capital cost of SVC ($). 

SVC

VC  The objective coefficient associated with the varying 

operation cost of SVC ($/h). 

PVw  Weight factor of the PV hosting capacity. 

SVCw  Weight factor of the SVC planning cost (SVC 

investment cost and SVC operation cost). 

sp  The occurrence probability of the scenario s . 

SVC

invN  Maximum SVC installation number. 

PV

ts  PV output factor (ratio of PV hosting capacity) in the 

period t , s , [0,1]PV

ts   

 

3.2 Formulation of SVC Planning Problem 

3.2.1 Two-stage Stochastic Framework 

Fig. 3-1 demonstrates the basic two-stage stochastic framework planning 

model. The first-stage variables comprise sitting and sizing of SVC devices 

and the PV hosting capacity values of candidate locations. These first-stage 

results are obtained before the uncertainty realizations, so they are named as 
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here-and-now decisions. The second-stage variables comprise the distribution 

network operation decisions within all time periods in all uncertainty scenarios 

with the given first-stage variables. These second-stage variables are optimized 

after the uncertainty realizations, named as wait-and-see decisions. 

s=1 s=2 s=S-1 s=S 

First stage

Second stage

 

Fig. 3-1 Diagram of the two-stage stochastic framework 

 

Uncertainties of PV energy output and load consumption of the 

distribution network are taken into account in the second stage of the proposed 

stochastic SVC planning model. Based on historical data collected from [71], 

daily uncertainty scenarios are used to represent uncertainties. In detail, ten 

thousand daily scenarios including five thousand PV energy output scenarios 

and five thousand load demand scenarios are gathered. To improve the 

computation efficiency, representative scenarios need to be selected from 

collected numerous scenarios. In this chapter, a scenario reduction approach 

based on Kantorovich Distance (KD) is utilized since this approach is able to 

select most potential scenarios associated with their probabilities which can 

have a direct effect on the optimal solutions. The detailed procedure of this 

scenario reduction method can be referred to [49]. 
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3.2.2 Distribution Network Model 

In this chapter, the widely-used DistFlow model [72, 73] is adopted to 

describe the power flow equations of a radial distribution network, as depicted 

in Fig. 3-2, 

 

Fig. 3-2 The radial distribution network 

The DistFlow equations are given as follows, 

2 2

1 2
= ,g di i

i+ i i i i

i

P Q
P P r p p i N

V

+
− + −    (3.1) 

2 2

1 2
= ,g di i

i+ i i i i

i

P Q
Q Q x q q i N

V

+
− + −    (3.2) 

2 2
2 2 2 2 1 1
1 1 1 1 1 1 1 2
= 2( ) ( ) ,i i

i i i i i i i i

i

P Q
V V r P x Q r x i N

V

+ +
+ + + + + + +

+
− + + +    (3.3) 

where active and reactive power flow balance at each node of the distribution 

network are denoted in (3.1) and (3.2), respectively. (3.3) represents the 

voltage transmit along each distribution line connected to two adjacent nodes. 

To reduce the computation complexity, the original DistFlow model can be 

transformed into a linear one by ignoring the second-order terms 
2

iP , 
2

iQ  and 

2

iV  [74]. Refs. [72, 73] verifies the effectiveness of this linearized DistFlow 

model, which is given as follows, 

1= ,g d

i+ i i iP P p p i N+ −    (3.4) 
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1= ,g d

i+ i i iQ Q q q i N+ −    (3.5) 

1 1 1 1
1

0

= ,i i i i
i i

r P x Q
V V i N

V

+ + + +
+

+
−    (3.6) 

3.2.3 PV Hosting Capacity Improvement 

As shown in the voltage transmit equation (3.6), the voltage increasement 

V can be expressed as follows, 

1 1 1 1
1

0

= i i i i
i i

r P x Q
V V V

V

+ + + +
+

+
 = −  (3.7) 

According to (3.7), when the PV generation increases at the node i , the 

inverse active power flow 1iP+  increases, resulting in voltage increasement 

V increase. Therefore, the overvoltage problem may be caused. However, 

SVC is able to relieve the voltage rise by absorbing reactive power. 

Specifically, SVC is able to absorb reactive power so as to decrease reactive 

power flow 1iQ + , leading to the decrease of voltage increasement V . In 

this regard, optimal SVC planning poses a positive effect on PV hosting 

capacity improvement. 

3.2.4 Mathematical Formulation of the SVC Planning Problem 

This subsection describes the mathematical formulation of the stochastic 

SVC location-allocation problem. In this formulation, two objectives are 

considered, including the maximization of PV hosting capacity (3.8) and 

minimization of SVC planning cost (installation cost and operation cost) (3.9). 

Max PV

m

m

E  (3.8) 

Min SVC SVC SVC SVC SVC

F i s V i its

i s t i

C a p C a q +    (3.9) 
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where 
(1 )

365[(1 ) 1]

y

y

r r

r


+
=

+ −
 is introduced to denote the daily recovery factor of 

SVC devices, r denotes the interest rate and y  represents the planning 

horizon of this problem. 

Then the multi-objective function is constructed by using the weighted 

sum approach [75] to address objectives (3.8) and (3.9) simultaneously, given 

as follows, 

1 2,
Min  

        + ( )

PV PV

m

m

SVC SVC SVC SVC SVC SVC

F i s V i its

i s t i

w E

w C a p C a q

 



−

+



  
 

     where :SVC SVC

its itsq q=  

(3.10) 

where 1 ,{ },SVC SVC PV

i i ma Q E =  and 2 , ,{ , }SVC

its its its itsP Q V q =  denote the first-

stage variables set and the second-stage variables set, respectively. Here, the 

unit of the first term related to PV hosting capacity (kV) is different from that 

of the rest two terms ($).Therefore, to sum these three terms in the single-

dimensional case ($), weight factors
PVw  and 

SVCw  are employed to represent 

weight factors of PV hosting capacity and SVC planning cost, respectively, 

subject to + =1PV SVCw w . Note that different combinations of weight factors 

will result in different tradeoff relationships between PV hosting capacity and 

SVC planning cost. From the perspective of practical implementation, these 

two weight factors can be adjusted according to the preference of distribution 

network planners. For example, if the distribution network planners want the 

system to have a relative high PV hosting capacity, 
PVw  should be large and 

the corresponding 
SVCw  should be small. 
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The constraints are classified into first-stage constraints and second-stage 

constraints, where the first-stage constraints are given as, 

a) PV hosting capacity limit 

0, ( )PV PV

mE m N i    (3.11) 

where (3.11) ensures that the PV hosting capacity is non-negative. 

b) SVC devices investment limit 

0 ,SVC SVC

i iQ Q i N     (3.12) 

,SVC SVC

i inv

i

a N i N    (3.13) 

where (3.12) limits the SVC investment capacity. (3.13) describes that the total 

SVC installation number cannot exceed a predefined number considering the 

limit of the total capital cost in practical application. 

The second-stage constraints are given as, 

a) Power flow limits 

1 = , , ( ), ,PV d PV

i+ ts its mts itsP P p p i N m N i t T s S+ −          (3.14) 

1 = , , ,SVC d

i+ ts its its itsQ Q q q i N t T s S+ −        (3.15) 

1 1 1 1
1

0

= , , ,i i ts i i ts
i ts its

r P x Q
V V i N t T s S

V

+ + + +
+

+
−        (3.16) 

=PV PV PV

mts ts mp E  (3.17) 

1 , , ,i+ ts iP P i N t T s S        (3.18) 

1 , , ,i+ ts iQ Q i N t T s S        (3.19) 

where (3.14)-(3.16) are derived from the linearized from the DistFlow 

equations (3.4)-(3.6). In (3.17), PV energy output factor [0,1]PV

ts   is 
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introduced to capture uncertain PV energy output which is PV PV

ts mE . (3.18) 

and (3.19) demonstrate the active and reactive power flow limits, respectively. 

b) Voltage magnitude limits 

, , ,its iV V i N t T s S        (3.20) 

, , ,its iV V i N t T s S        (3.21) 

where (3.20) and (3.21) give the lower and upper bounds of voltage magnitude, 

respectively. 

c) SVC operation limits 

, , ,SVC SVC SVC SVC SVC

i i its i ia Q q a Q i N t T s S−          (3.22) 

, , ,SVC SVC

its itsq q i N t T s S        (3.23) 

, , ,SVC SVC

its itsq q i N t T s S −        (3.24) 

where (3.22) is considered to limit reactive compensation provided by SVC 

devices. (3.23) and (3.24) are imposed to convert 
SVC

itsq  to 
SVC

itsq . 

Note that the bilinear SVC SVC

i ia Q  in (3.22) renders the proposed planning 

problem nonconvex, resulting in low computational efficiency. To linear this 

nonlinear term, a continuous variable SVC

iz  is introduced to substitute for 

SVC SVC

i ia Q  with the following linear inequality constraints, 

0,SVC SVC SVC

i i ia Q z i N− +     (3.25) 

0,SVC SVC SVC

i i ia Q z i N−     (3.26) 

,SVC SVC SVC SVC SVC

i i i i ia Q z Q Q i N− +  −    (3.27) 

,SVC SVC SVC SVC SVC

i i i i ia Q z Q Q i N−  − +    (3.28) 

Therefore, (3.22) can be rewritten as (3.29), given as follows, 
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, , ,SVC SVC SVC

i its iz q z i N t T s S−          (3.29) 

 

3.3 Solution Methodology 

This section proposes a solution approach in which the Benders 

decomposition algorithm [76] is employed to decompose the proposed two-

stage stochastic SVC location-allocation problem. The original problem is a 

mixed integer nonlinear program (MINLP) and it is intractable because of the 

time-coupling constraints as well as numerous scenarios. Therefore, 

commercial solvers, like CPLEX [77] and GUROBI [78], cannot be directly 

used to solve this complicated problem. However, Benders decomposition 

algorithm is properly applied to solve this two-stage problem. Specifically, the 

original two-stage problem is decomposed into a master problem 

corresponding to the first-stage problem and many subproblems corresponding 

to all second-stage problems. Note that each subproblem is associated with one 

time period in one scenario. During the Benders decomposition procedure, 

Benders cuts are built to link the master problem with subproblems. 

3.3.1 Subproblem and Master problem 

The subproblem is to minimize the penalty cost for voltage magnitude 

violation and the expected SVC cost over all time periods in all scenarios. The 

subproblem for the time period t  of scenario s  in Benders iterative v  is 

formulated as follows, 

( ) ( ) ( ): Min  
sp

sub v SVC SVC SVC v SVC v

ts V i its

i

Z w C a q


=   (3.30) 

s.t. (3.14)-(3.21), (3.23) and (3.24), (3.29) (3.31) 
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( ) , ( ): , ( )PV v PV fix PV v PV

m m mtsE E m N i=    (3.32) 

( ) , ( ): ,SVC v SVC fix SVC v

i i itsz z i N=    (3.33) 

The decision variables set of the subproblem is given by follows, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

, , , , , , ,{ , , ,

            , }

sub v PV v SVC v v v SVC v SVC v SVC v SVC v v

ts m i its its i i its its its

PV v SVC v

mts its

sp Z E z P Q Q a q q V







=
 

(3.31) summarizes all second-stage constraints. In (3.32) and (3.33), PV 

hosting capacity ( )PV v

mE  and SVC planning decision 
( )SVC v

iz  are fixed to the 

given value obtained by solving the master problem. After solving all 

subproblems which correspond to all time periods of all scenarios, the upper 

bound of 
( )v

upperZ  for the optimal value of original problem (3.10)-(3.29) can 

be acquired by the following equation, 

( ) ( ) , ,v sub v PV PV fix SVC SVC SVC fix

upper s ts m F i

s t m i

Z p Z w E w C a= − +     (3.34) 

The master problem is to determine the PV hosting capacity and SVC 

planning decisions before the uncertainty realizations. The master problem for 

the time period t  of scenario s  in Benders iterative v  is formulated as follows, 

( ) ( ) ( ) ( ): Min  
mp

v v PV PV v SVC SVC SVC v

lower m F i

m i

Z w E w C a


 = − +   (3.35) 

s.t. (3.11)-(3.13), (3.25)-(3.28) (3.36) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

    1,2,..      ( .,, 1)

v Sub k PV k PV v PV k

s ts s mts m m

s t m s t

SVC k SVC v SVC k

s its i i

i s t

p Z p E E

p z k vz

 



 +

+ =

−

−−

   

 
 (3.37) 

( )v down   (3.38) 

( ) ( ) ( )v PV PV v SVC SVC SVC v opt

m F i

m i

w E w C a Z − +    (3.39) 

The decision variables set of the master problem is given by follows, 
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( ) ( ) ( ) ( ) ( ) ( ),{ , , , , }v PV v SVC v SVC v SVC v v

lower m i

m

i

p

iZ E z Q a  =  

The master problem (3.35)-(3.39) is a MILP problem which can be 

directly by most commercial solvers. (3.36) summarizes the first-stage 

constraints. (3.37) describes the Benders cut, which is utilized to build a link 

between the master problem and subproblems. Note that Dual variables 
( )PV v

mts  

and 
( )SVC v

its  of first-stage variables 
( )PV v

mE  and 
( )SVC v

iz  are used to calculate 

the sensitivities ( )PV k

s mts

s t

p    and ( )SVC k

s its

s t

p    for generating Benders 

cuts. (3.38) is added to accelerate the iteration convergence, where a lower 

bound down  is introduced. (3.39) is imposed to ensure that the lower bound 

( )v

lowerZ  of the original problem is lower or equal to the minimum upper bound 

optZ  obtained from the subproblems. 

3.3.2 Benders Decomposition Algorithm Procedure 

The convergence is guaranteed until the upper bound meets the lower 

bound. Detailed proof process of Benders decomposition convergence 

condition can be referred to [79]. The proposed Benders decomposition 

algorithm procedure for solving the proposed two-stage planning model is 

given as follows, 

Step 1. Initialization:  

Set the iteration index 1v =  . Set the initial upper bound 
( )v

upperZ =    and 

lower bound 
( )v

lowerZ = −  . Set the convergence tolerance   . Initialize the 

first-stage variables, 
(0)PV

mE   and 
(0)SVC

iz  . Set 
, (0)PV fix PV

m mE E=  and 

, (0)SVC fix SVC

i iz z= . 
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Step 2. Iteration 

Solve the subproblem (3.30)-(3.33) for each time period and each uncertainty 

scenario. Obtain the upper bound 
( )v

upperZ  of the original problem according to 

(3.34). 

Step 3. Minimum upper bound update 

If 
( )v opt

upperZ Z , update the global solution 
( )opt v

upperZ Z= . 

Step 4. Convergence check 

If 
( ) ( )| |v v

upper lowerZ Z −  , then stop the procedure. Otherwise, set 1v v + . 

Step 5. Solve master problem 

Solve the master problem (3.35)-(3.39), calculate 
( )v

lowerZ  and update the values 

of 
,PV fix

mE  and 
,SVC fix

iz . Go back to Step 2 and continue. 

 

3.4 Numerical Results 

3.4.1 IEEE 37-node Distribution Network 

In this subsection, the IEEE 37-node distributing network is utilized to 

verify the proposed planning model and solution method, as depicted in Fig. 

3-3. The base power value is 1 MVA and the voltage value is 12.66 kV. The 

37-node test system is modified by randomly selecting six potential locations 

for PV generators installation, such as nodes 3, 8, 11, 23, 29 and 33. Practically, 

these sites are considered based on many factors, such as irradiation and 

regulations, more information can be referred to [80]. One hundred 

representative scenarios (10*10) of PV generation and load consumption are 

taken into account. Fig. 3-4 and Fig.3-5 show these daily uncertainty scenarios 
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with their probabilities. As an example, the combination of weight factors, 

0.5PVw =  and 0.5SVCw = , is employed to demonstrate the performance of the 

proposed planning model and solution approach. 
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Fig. 3-3 IEEE 37-node test system 

 

 

Fig. 3-4 PV output factor for daily PV generations 
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Fig. 3-5 Load factor for daily load consumptions 

 

The convergence performance of the developed Benders decomposition 

algorithm based solution approach is shown in Fig. 3-6. The optimal solutions 

including SVC planning decisions and PV hosting capacity decision can be 

obtained after the sixteen iterations in which the upper bound meets the lower 

bound. To illustrate the efficiency of the developed solution method, as the 

benchmark, a widely-used commercial solver GUROBI [78] on the platform 

of CVX [81] is used to directly solve the original problem (3.10)-(3.29), 

denoted as CVX-GUROBI. Table 3-1 lists the comparison between CVX-

GUROBI and CVX_BD-GUROBI which is the proposed solution method via 

the same solver and platform. As shown in this table, CVX-GUROBI cannot 

directly solve the original problem since it contains a mass of variables and 

coupled constraints. By contrast, CVX_BD-GUROBI is able to solve the same 

problem with acceptable computation time. This is because the proposed 

solution method decomposes the complicated original problems into a master 
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problem and subproblems, which can significantly reduce the computation 

complexity. 

 

 

Fig. 3-6 Performance of convergence 

 

Table 3-1 Comparison of the computation time under two methods 

 
 

 

Table 3-2 PV hosting capacity of candidate locations in the 37-node test 

system 

 

 

Table 3-3 SVC planning decisions in the 37-node test system 
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Table 3-2 and Table 3-3 list the PV hosting capacity on candidate each 

location and the corresponding optimal results of SVC planning, respectively. 

To investigate the effects of candidate locations for PV generations connection 

on PV hosting capacity, several cases are designed with different candidate 

sites of PV energy integration. Case A is regarded as the benchmark which is 

the original assumption and the following cases are given as follows, 

1) Case B: according to Case A, move PV generation installation from 

nodes 29, 33 to nodes 25, 35, respectively.  

2) Case C: according to Case A, move PV generation installation from 

nodes 23, 29, 33 to nodes 17, 21, 32, respectively. 

3) Case D: according to Case A, move PV generation installation from 

nodes 11, 23, 29, 33 to nodes 10, 16, 26, 34, respectively. 

4) Case E: according to Case A, move PV generation installation from 

nodes 8, 11, 23, 29, 33 to nodes 5, 12, 19, 24, 31, respectively. 

5) Case F: according to Case A, move PV generation installation from 

nodes 3, 8, 11, 23, 29, 33 to nodes 4, 7, 13, 18, 22, 30, respectively. 

 

Table 3-4 Comparison on different candidate nodes for PV energy connection 

(The underlined numbers indicate the different candidate nodes with Case A) 
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Table 3-4 compares PV integration size for each candidate locations, PV 

hosting capacity of the grid and SVC planning cost under different 

combinations of potential PV energy penetration sites. As seen in this table, 

both PV hosting capacity values and the corresponding SVC planning cost will 

be changed with different locations of PV energy integration. Hence, it can be 

concluded that the sites of PV generations connection affect the PV hosting 

capacity and SVC planning cost. From the perspective of practical 

implementation, candidate locations for PV generators installation should be 

included in the SVC planning scheme so that the most economic benefits can 

be obtained. Nevertheless, the distribution network planners try to minimize 

the total cost of SVC devices investment and operation meanwhile maintaining 

the reliability and security of distribution networks. Therefore, distribution 

network planners determine the reasonable sites for PV energy integration in 

terms of the policy-making process. 

 Candidate nodes PV size (p.u.) PV hosting capacity (p.u.) SVC planning cost ($ 105) 

Case A (3, 8, 11, 23, 29, 33) (0.121, 0.082, 0.062, 0.109, 0.036, 0.081) 0.491 1.756 

Case B (3, 8, 11, 23, 25, 35) (0.100, 0.098, 0.088, 0.085, 0.043, 0.060) 0.474 1.748 

Case C (3, 8, 11, 17, 21, 32) (0.097, 0.057, 0.078, 0.119, 0.018, 0.095) 0.464 1.741 

Case D (3, 8, 10, 16, 26, 34) (0.086, 0.075, 0.055, 0.086, 0.122, 0.062) 0.486 1.754 

Case E (3, 5, 12, 19, 24, 31) (0.114, 0.056, 0.067, 0.081, 0.026, 0.153) 0.497 1.771 

Case F (4, 7, 13, 18, 22, 30) (0.091, 0.076, 0.054, 0.085, 0.104, 0.083) 0.493 1.762 
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Fig. 3-7 PV hosting capacity with and without SVC installation 

 

 

Fig. 3-8 Comparison on daily voltage profiles 

 

Fig. 3-7 compares the PV hosting capacity in two cases, the first one is the 

base case without SVC devices installation and the second one is the case with 

optimal SVC planning as shown in Table 3-3. As seen in this figure, the PV 

hosting capacity is significantly improved after SVC devices placement. 

Besides, Fig. 3-8 depicts three daily voltage profiles of node 13 at 1:00 pm in 

three cases, which are described as follows, 
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1) Case 1: base case without PV generation penetration and SVC devices 

installation. 

2) Case 2: the case with PV generation penetration as the result in Table 

3-2 but without SVC devices installation. 

3) Case 3: the case with PV generation penetration as the result in Table 

3-2 and SVC devices installation as the result in Table 3-3.  

According to Fig. 3-8, voltage violations can be observed in Case 2 where 

the voltage magnitudes at some nodes (i.e. nodes 9, 10, and 21) exceed the 

upper bound (1.05 p.u.). However, all overvoltage issues are solved after 

optimal SVC devices placement, as shown in Case 3.  

 

 

Fig. 3-9 Daily voltage profiles of node 30 in scenario 7 with and without SVC 

installation 
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Fig. 3-10 Daily voltage deviations of node 30 in scenario 7 with and without 

SVC installation 

 

 

Fig. 3-11 Daily voltage profiles on node 4 in scenario 26 with and without 

SVC installation 
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Fig. 3-12 Daily voltage deviations on node 4 in scenario 26 with and without 

SVC installation 

 

 

Fig. 3-13 Daily voltage profiles on node 15 in scenario 54 with and without 

SVC installation 
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Fig. 3-14 Daily voltage deviations on node 15 in scenario 54 with and without 

SVC installation 

 

Fig. 3-15 Daily voltage profiles on node 23 in scenario 81 with and without 

SVC installation 
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Fig. 3-16 Daily voltage deviations on node 23 in scenario 81 with and without 

SVC installation 

 
Figs. 3-9 to 3-16 compare the voltage magnitude and voltage deviation of 

nodes 4, 15, 23 and 30 in scenarios 7, 26, 54, and 81. Note that the voltage 

deviation can be obtained by the following equation,  

( )
2

2
 

i Ni

i N Ni

V V
Voltage deviation

V

−
=  (3.40) 

where iV  represents the voltage magnitude at the node i , NiV  denotes the 

nominal voltage at the node i . It should be noted that 1NiV = , where unit 

quantity is adopted. 

In some unfavorable operation conditions like scenario 7 and scenarios 81, 

overvoltage occurs when the SVC devices are not installed in the distribution 

network. By contrast, all voltage magnitudes are in the normal range, namely 

0.95 p.u. to 1.05 p.u., after SVC devices installation. In addition, the voltage 

deviations at most nodes become small with SVC placement. By conducting 

these comparisons, it can be concluded that the optimal SVC planning cannot 

only relieve overvoltage violations but also decrease voltage deviations, which 

ensures the reliability and security of normal distribution network operation. 
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Fig. 3-17 Daily voltage profiles obtained from the deterministic scheme under 

the critical scenario 

 

 

Fig. 3-18 Daily voltage profiles obtained from the stochastic scheme under 

the critical scenario 

 

To demonstrate the performance of the proposed stochastic scheme for 

SVC planning, the deterministic scheme is employed as the benchmark. The 

mathematical formulation of the deterministic SVC planning problem is 

similar to the original formulation (3.10)-(3.29) of stochastic SVC planning 

problem while the only expected operation condition is considered. After 
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solving the deterministic SVC planning problem, the optimal SVC planning 

decisions and PV hosting capacity can be obtained. The optimal sites for SVC 

installation are node 6, 7, 8, 9, 10, 11, 23, 24, 26, 29, 33, 34 and the 

corresponding SVC capacity are 0.02, 0.035, 0.05, 0.05, 0.019, 0.05, 0.05, 

0.043, 0.05, 0.05, 0.05, 0.043 p.u., respectively. The PV hosting capacity for 

the candidate nodes 3, 8, 11, 23, 29, and 33 are 0.1, 0.07, 0.04, 0.1, 0.03 and 

0.06 p.u, respectively. The critical combination of uncertainty scenario is used 

to compare the performance of the stochastic scheme and deterministic scheme. 

In this critical PV-load scenario, the PV power output is high and the load level 

is low. Fig. 3-17 and Fig. 3-18 depict the voltage magnitude at all nodes in the 

critical scenarios of the deterministic scheme and stochastic scheme, 

respectively. It can be seen from these two figures that the overvoltage problem 

caused by high PV energy integration can be issued by the stochastic scheme. 

This is because the stochastic scheme takes various uncertainties into 

consideration and thus it is more robust against the critical condition. 

 

 

Fig. 3-19 Tradeoff curve between PV hosting capacity and SVC planning cost 
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Fig. 3-20 Impact of SVC installation capacity on PV hosting capacity (with 

same installation number) 

 
Fig. 3-19 shows the tradeoff curve between PV hosting capacity and SVC 

planning cost. As seen in this figure, the PV hosting capacity rises gradually 

with the increase of SVC planning cost until it reaches $75,000. Next, the 

increasing rate of the PV hosting capacity decreases to zero so that the PV 

hosting capacity is insensitive to any increased SVC planning cost. The reason 

is that the large PV energy integration leads to overload on distribution lines 

so there is a threshold beyond which the PV hosting capacity cannot improve 

with increasing SVC planning cost. Under such circumstance, if the PV hosting 

capacity is too low to be accepted by the decision makers, the distribution 

system expansion is suggested. 

Sensitivity analysis is conducted to investigate the impacts of SVC 

installation capacity/number on PV hosting capacity enhancement. Fig. 3-20 

illustrates the impact of SVC installation capacity on PV hosting capacity 

improvement with fixed installation number. It can be observed from this 

figure that the PV hosting capacity improves almost linearly until the SVC 

installation capacity reaches 0.045 p.u.. Fig. 3-21 depicts the impact of SVC 



70 
 

installation number on PV hosting capacity improvement with fixed 

installation capacity. As seen in this figure, before the SVC installation number 

reaches nine, the PV hosting capacity increase rapidly. Beyond the threshold,  

more SVC devices or larger SVC sizes will have a minor effect on the PV 

hosting capacity enhancement since overload cannot be issued by distribution 

lines.  

 

 

Fig. 3-21 Impact of SVC installation number on PV hosting capacity (with 

same installation capacity: 0.05p.u.) 

 

3.4.2 IEEE 123-node Distribution Network 

To verify the performance of the proposed SVC location-allocation model 

and solution approach on the large-scale distribution network, a modified IEEE 

123-node is adopted, as shown in Fig. 3-22. In this case, the base value, 

operation scenarios and weight factors are the same as those described in the 

37-node case. The 123-node test system is modified by selecting twelve 

candidate sites for the PV energy generators installation, such as nodes 5, 23, 

31, 34, 45, 58, 62, 77, 84, 93, 109 and 118. Table 3-5 and Table 3-6 list the 

optimal results of the PV hosting capacity and SVC location-allocation 
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decisions, respectively. Fig. 3-23 demonstrates the daily voltage magnitudes at 

all nodes in the critical scenario. As seen in this figure, the voltage magnitudes 

are ensured within the allowable ranges with optimal SVC placement. 
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Fig. 3-22 The modified IEEE 123-node test system 

 

Table 3-5 PV hosting capacity value of candidate locations in the 123-node 

system 

 

 

Table 3-6 SVC planning decisions in the 123-node system 

 

Candidate location (Node) PV size (p.u.) Candidate location (Node) PV size (p.u.) 

5 0.209 62 0.093 

23 0.224 77 0.102 
31 0.214 84 0.315 

34 0.181 93 0.243 

45 0.212 109 0.102 

58 0.339 118 0.225 

 

Location (Node) SVC size (p.u.) Location (Node) SVC size (p.u.) Location (Node) SVC size (p.u.) 

5 0.050 37 0.009 84 0.050 

6 0.034 45 0.050 85 0.036 

22 0.015 47 0.040 93 0.050 
23 0.050 57 0.043 94 0.048 

25 0.003 58 0.050 109 0.050 

30 0.043 59 0.050 117 0.008 

31 0.050 62 0.050 118 0.050 

33 0.044 77 0.050 119 0.028 

34 0.050 83 0.050 - - 
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Fig. 3-23 Daily voltage profiles of the modified 123-node distribution system 

under the critical scenario 

 

3.5 Summary 

In this chapter, a two-stage stochastic optimal SVC location-allocation 

model is proposed. The primary goal of this planning model is to maximize the 

PV hosting capacity of the distribution networks by finding the optimal sites 

and sizes of SVC devices. In this two-stage problem, the PV hosting capacity 

and the corresponding SVC location-allocation decisions are determined in the 

first-stage before the uncertainty realization, while the operational constraints 

are evaluated with given first-stage results under representative PV-load 

scenarios in the second stage. The numerous time-coupled constraints result in 

an intractable problem, so a solution approach is developed where the Benders 

decomposition algorithm is used to decompose the original problem into 

master problem and subproblems. Thus, commercial solvers can be used to 

directly solve this two-stage problem. The modified IEEE 37-node and 123-

node distribution networks are employed to demonstrate the effectiveness of 

the proposed model and the solution method.  
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The main conclusions are summarized as follows, 

1) The main contribution of this work is that it investigates the extent of 

the potential benefits from optimal SVC planning as an option to improve the 

PV hosting capacity of distribution networks. Considering the widespread 

application of SVC in power systems, this work has practical significance. 

2) Simulation-based methods are widely adopted to assess PV hosting 

capacity but they are inapplicable in studying its improvement. Conversely, the 

PV hosting capacity is originally modeled as the decision variable and 

incorporate it into the objective function. Hence, a tradeoff between PV hosting 

capacity and SVC planning cost can be achieved. 

3) The proposed two-stage stochastic optimal SVC location-allocation 

problem is practically intractable because coupled objective and constraints 

across the time periods and numerous uncertainty scenarios. In this regard, 

based on Benders decomposition, an efficient solution approach is proposed to 

solve this two-stage problem so as to reduce computational complexity. 

4) At first, the PV hosting capacity improves gradually with the increasing 

static var compensator planning cost. However, because of the limit of 

distribution line capacity, there is a threshold (about $1.75*105) beyond which 

the PV hosting capacity becomes insensitive to the additional SVC planning 

cost. 

 

 

 



74 
 

Chapter 4   Optimal Voltage Regulators Placement 

Considering Photovoltaic Accommodation Capability 

Enhancement 

4.1 Introduction 

In the previous chapter, an optimal static var compensator (SVC) planning 

model is proposed for photovoltaic (PV) hosting capacity enhancement in the 

distribution networks. By optimizing the sitting and sizing of SVC devices, the 

maximum PV hosting capacity of the given locations can be obtained. 

Similarly, this chapter aims at improving the hourly PV accommodation 

capability (PVAC) via optimal advanced devices placement. The concept of 

PVAC is proposed to describe the amount of PV generation that can be reliably 

accommodated at a certain node of a distribution network within a certain time 

period. Installing voltage regulators (VRs) in the distribution networks is an 

appropriate alternative to enhance the operational capacity of the existing 

distribution networks. Compared with optimal SVC devices planning, this 

method is economically and technically preferable to distribution system 

planners due to its advantages on flexible placement, economic efficiency and 

short installation time [87]. Besides, two criterions are introduced to maintain 

the safety and reliability of the distribution network operation, i.e., voltage 

variation and distribution line capacity. Therefore, this chapter gives a continue 

study of the previous chapter. 

Optimal VR placement is an effective approach to enhance the PVAC of 

the distribution network since VR has the ability to regulate voltage magnitude. 

The VR is known as the step voltage regulator and includes an autotransformer 
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[88]. During the voltage regulation process, the voltage magnitude variation 

can be obtained by changing the number of turns (tap changers) of the series 

winding of the autotransformer. VR has many advantages, especially fast and 

efficient operation metrics [87]. To some extent, VR can address the voltage 

fluctuation problem caused by renewable energy and thus has an influence on 

PVAC enhancement by alleviating overvoltage violations.  

Many heuristic algorithms based approaches have been proposed to find 

the optimal locations of VRs. In Ref. [89], genetic algorithm (GA) is employed 

to solve the coordinated VR and capacity bank (CB) planning problem where 

the multi-objective function is considered. Ref. [90] proposes a local controller 

model to determine the number and location of VR and GA is also employed 

to solve this problem. Ref. [91] develops a fuzzy adaptive Particle Swarm 

Optimization (PSO) algorithm to find the optimal nodes for VR installation in 

the distribution networks. However, due to the lack of mathematically proven 

basis for obtaining global optimal solutions, the final results of these heuristic 

methods may be locally optimal. Also, there are other methods to deal with VR 

placement problem. In Ref. [92], a multicriteria model, including technical, 

regulatory, economic and social criteria, is presented to evaluate the 

prioritizing sites of VR placement in the distribution networks. Ref. [93] 

presents a plant growth simulation algorithm to select the optimal locations of 

VR with the consideration of voltage control and loss decrease. Ref. [94] solves 

the optimal VR placement problem by using a novel multi-objective 

optimization method, which is based on modified teaching-learning-based 

optimization (MTLBO) algorithm. Ref. [95] investigates the optimal 

placement of VR in low voltage(LV) distribution networks by using an existing 
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method based upon centralized voltage regulation compared to the distributed 

voltage control schemes. However, these works have no regard for the 

uncertainties of renewable output and load, which may result in an 

unreasonable VR placement solution. Besides, these classic works also 

overlook the potential of VR placement for improving the PVAC. Therefore, 

this chapter endeavors to improve the PVAC via optimal VR placement in 

distribution networks. 

In this chapter, a novel two-stage stochastic programming based VR 

placement model considering the PVAC enhancement is presented. The first 

stage determines the hourly PVAC values and the corresponding VR allocation 

decisions while the second stage is related to the proposed stochastic feasibility 

checking model which is imposed to ensure that the distribution network 

operation always remains secure under different uncertainty scenarios. Firstly, 

the VR allocation model is formulated as a deterministic mixed integer 

nonlinear programming (MINLP) problem. Then a technique approach is 

employed to transform the MINLP model to the mixed integer linear 

programming (MILP) model. To model the uncertainties of PV generation and 

load consumption, the scenario method is employed to obtain representative 

PV-load scenarios, creating a two-stage stochastic MILP problem. The 

decomposition-based solution method is proposed to solve this two-stage 

problem. To illustrate the effectiveness of the proposed allocation model and 

decomposition method, the IEEE 33-node distribution network is utilized as 

the test system. The major contributions are summarized in threefold as below, 

1) The main contribution of this work is that it investigates the extent of 

the potential benefits from optimal VR placement as an option to improve the 
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hourly PVAC of distribution networks. Considering the widespread 

application of VR in power systems, this work has practical significance. 

2) Two criterions are introduced to maintain the safety and reliability of 

the distribution network operation, i.e., voltage variation and distribution line 

capacity. Then a stochastic programming based feasibility check model is 

proposed to guarantee the security of distribution networks for any considered 

operation scenarios. 

3) Since numerous time-coupled constraints result in a huge computation 

burden, decomposition algorithm is developed to decompose the two-stage 

problem into a master program problem (the first-stage problem) and many 

subprogram problems (the second-stage problems), which can be directly 

solved by commercial solvers. 

The nomenclature of symbols used in this chapter is given as follows, 

Sets and Indices 

𝑗/𝐽 Index/set of distribution nodes. 

𝑡/𝑇 Index/set of time periods. 

𝑤/𝑊 Index/set of scenarios. 

𝑖/𝜑(𝑗) Index/set of child nodes of node 𝑗. 

𝛼 Index of piecewise linearization approximation method. 

Ω𝐴𝑃/Ω𝑅𝑃 Sets for the quadratic term of active/reactive power. 

Variables 

𝑃𝑗𝑡𝑤/𝑄𝑗𝑡𝑤 Active/Reactive power flow at 𝑗, 𝑡, 𝑤. 

𝑃𝑗𝑡𝑤
𝑄𝑇/𝑄𝑗𝑡𝑤

𝑄𝑇
 Quadratic terms of active/reactive power flow at 𝑗, 𝑡, 𝑤. 

𝑄𝑗𝑡𝑤
𝑃𝑉  Reactive PV output at 𝑗, 𝑡, 𝑤. 

𝑉𝑗𝑡𝑤 Node voltage magnitude at 𝑗, 𝑡, 𝑤. 

𝑉̃𝑗𝑡𝑤 Voltage magnitude at the point of VR installation, near 

to the node 𝑗, at 𝑡, 𝑤. 

𝑟𝑟% Regulator range of VR. 
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𝑢𝑗
𝑉𝑅 Binary decision variable flagging VR installation or not 

at 𝑗. 

𝑢𝑗
𝑃𝑉 Binary decision variable flagging PV energy connection 

or not at 𝑗. 

𝐸𝑗
𝑃𝑉 Size of PV integration at 𝑗. 

𝑍𝑗
𝑃𝑉 The auxiliary variable representing the bilinear term 

𝑢𝑗
𝑃𝑉𝐸𝑗

𝑃𝑉. 

Parameters 

𝑐𝑃𝑉 Subsidy for accommodating capability of PV generation 

($). 

𝑐𝑖𝑛𝑣
𝑉𝑅  The objective coefficient associated with the investment 

cost of VR devices ($). 

𝑐𝑜&𝑚
𝑉𝑅  The objective coefficient associated with the operation 

and maintenance cost of VR devices ($/day). 

𝑐𝑃𝑒𝑛𝑎𝑙𝑡𝑦 The objective coefficient associated with the penalty cost 

for voltage deviation and overload ($). 

𝑝𝑤 Probability of the combined scenario 𝑤. 

𝐶𝑉𝑅 Maximum allowed total VR installation budget. 

𝜉𝑡𝑤
𝑃𝑉 PV output factor (ratio of the accommodating capability 

of PV generation) at 𝑡, 𝑤. 

𝜅 Daily capital recovery factor for VR. 

𝑟𝑖𝑗/𝑥𝑖𝑗 Resistance/Reactance of the distribution branch 𝑖𝑗. 

𝜃𝑝𝑣 Power factor angle for PV power systems.  

𝑝𝑗𝑡𝑤/𝑞𝑗𝑡𝑤 Active/Reactive load at 𝑗, 𝑡, 𝑤. 

𝑉/V Lower/Upper bound of voltage magnitude. 

𝐿𝐶𝑖𝑗 The capacity of distribution network branch 𝑖𝑗. 

𝑆𝐶 The capacity of distribution network substation. 

𝑃𝑗𝑡𝑤
𝑃𝑉  Active PV output at 𝑗, 𝑡, 𝑤. 

𝑄̅𝑃𝑉 Upper bound of reactive PV output. 

 

4.2 Problem Formulation 
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4.2.1 Mathematical Formulation based on Deterministic Mixed Integer 

Nonlinear Programming 

In this chapter, the proposed VR placement model considers two goals 

simultaneously, identifying the optimal VR installation locations and 

improving hourly PVAC of the distribution network. This optimization model 

minimizes the sum of VR investment, maintenance and operation cost, and 

meanwhile maximizes the economic benefits of the PVAC. Based on 

piecewise linearized DistFlow equations [96], the deterministic formulation 

can be presented by a MINLP, simplified as DMINLP, 

DMINLP:  

&Min  ( )
DMINLP

VR VR VR PV PV PV PV

inv o m j t j j

j J t T j J

c c u c u E 


  

+ −   
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𝑄𝑇 , 𝑄𝑗𝑡
𝑄𝑇, 𝑄𝑗𝑡
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PV PV PV

jt jtQ P tan=   

where the objective function (4.1) consists of two terms: the first term is the 

sum of investment, maintenance and operation cost of VR and the second term 

is daily economic benefit obtained from the PVAC. PV energy output factor 

𝜉𝑡
𝑃𝑉 represents the ratio of the PVAC 𝑢𝑗

𝑃𝑉𝐸𝑗
𝑃𝑉, which is introduced to capture 

the hourly generation of PV generators, so the PV energy out 𝑃𝑗𝑡
𝑃𝑉  can be 

obtained, 𝑃𝑗𝑡
𝑃𝑉 = 𝜉𝑡

𝑃𝑉𝑢𝑗
𝑃𝑉𝐸𝑗

𝑃𝑉. To match the unit of daily VR maintenance and 

operation cost 𝑐𝑜&𝑚
𝑉𝑅  , daily capital recovery factor 𝜅 =

𝑟𝑉𝑅(1+𝑟𝑉𝑅)𝑦

365((1+𝑟𝑉𝑅)𝑦−1)
  is 

employed to transfer the VR investment cost 𝑐𝑖𝑛𝑣
𝑉𝑅  from planning horizon to 

daily horizon, where 𝑟𝑉𝑅 is the interest rate and 𝑦 is the planning horizon. 

Note that the coefficient 𝑐𝑃𝑉 , representing the subsidy for the PVAC, is 

introduced to sum these two objectives in the single-dimensional case, e.g. $. 
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The actual value of 𝑐𝑃𝑉 is governed by practical considerations according to 

the preference of distribution network planners and have to be established on 

a case by case basis. For example, if the distribution network needs to obtain a 

relatively high PVAC, then the value of 𝑐𝑃𝑉 should be adjusted to be large. 

To deal with nonlinearity caused by quadratic terms, like 𝑃𝑖𝑡
2  and 𝑄𝑖𝑡

2 , the 

piecewise linearized DistFlow model [96] is utilized. This model linearizes the 

quadratic terms 𝑃𝑖𝑡
2   and 𝑄𝑖𝑡

2  , so the apparent power flow can be calculated 

more accurately. Constraints (4.2)-(4.10) are related to piecewise linearized 

DistFlow model, which describes the complex power flows at the node 𝑗 in a 

distribution network. (4.2) and (4.3) describe the active and reactive power 

flow balance, respectively. The quadratic terms 𝑃𝑗𝑡
𝑄𝑇

 and 𝑄𝑗𝑡
𝑄𝑇

 are employed 

to estimate 𝑃𝑗𝑡
2  and 𝑄𝑗𝑡

2  with two auxiliary inequality constraints (4.4) and 

(4.5) so 𝑃𝑗𝑡
𝑄𝑇

  and 𝑄𝑗𝑡
𝑄𝑇

  can be estimated by applying the piecewise 

linearization approximation (PLA) approach. (4.6) and (4.7) define the limits 

of active and reactive quadratic power flows 𝑃𝑗𝑡
𝑄𝑇

 and 𝑄𝑗𝑡
𝑄𝑇

, respectively. (4.8) 

denotes the voltage along the distribution line 𝑖𝑗, (4.9) gives the voltage of the 

substation and (4.10) includes the voltage magnitude limits. 

Constraints (4.11)-(4.14) are related to the ideal VR model, as shown in 

Fig. 4-1. For the simplification, it is assumed that each VR has a regulator range 

of 𝑟𝑟% and the VR tap position is considered as a continuous variable [97]. 

(4.11) describes the voltage transit along the distribution branch between the 

node 𝑖  and the VR installation point. (4.12) and (4.13) describe the 

relationship of the voltage magnitude between the VR installation point and 

the node 𝑗. Note that if 𝑢𝑗
𝑉𝑅 = 0, (without VR installation), then 𝑉𝑗𝑡 = 𝑉̃𝑗𝑡, 
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otherwise, 𝑉𝑗𝑡  varies in the range of [(1 − 𝑟𝑟%), (1 + 𝑟𝑟%)]𝑉̃𝑗𝑡 . Besides, 

(4.14) considers the practical total VR capital cost limit. 

 

 

Fig. 4-1 One distribution branch diagram with a voltage regulator 

 

Constraints (4.15)-(4.17) are related to the PVAC limits. In (4.15), the 

binary variable 𝑢𝑗
𝑃𝑉 represents whether the PV generation is connected to the 

node 𝑗 . The continuous variable 𝐸𝑗
𝑃𝑉  in (4.16) denotes the size of PV 

generation connected to the node 𝑗 and this constraint guarantees that 𝐸𝑗
𝑃𝑉 is 

non-negative. In this thesis, it is assumed that PV systems can provide reactive 

power support to the distribution network, the range of reactive power output 

is given in (4.17).  

4.2.2 Linearization Techniques for DMINLP Model 

Note that the proposed DMINLP problem (4.1)-(4.17) cannot be directly 

solved by some cutting-edge solvers, such as CPLEX and GUROBI, since this 

problem is nonconvex due to the presence of the bilinear term 𝐸𝑗
𝑃𝑉𝑢𝑗

𝑃𝑉. To 

reduce the computational complex, a continuous variable 𝑍𝑗
𝑃𝑉 is introduced to 

replace the bilinear term 𝐸𝑗
𝑃𝑉𝑢𝑗

𝑃𝑉, in other words, 𝑍𝑗
𝑃𝑉 = 𝐸𝑗

𝑃𝑉𝑢𝑗
𝑃𝑉. Then the 

following inequations should be considered, 
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0 ,PV PV M

j jZ u B j J     (4.18) 

,PV PV

j jZ E j J    (4.19) 

0,PV M SVC PV M

j j jZ B E u B j J+ − −     (4.20) 

where 𝐵𝑀 is a quite large positive constant. 

By doing so, the deterministic mixed integer linear programming (DMILP) 

model can be written as follows, 

DMILP:  

&Min  ( )
DMILP

VR VR VR PV PV PV

inv o m j t j

j J t T j J

c c u c Z 


  

+ −   
(4.21) 

Θ𝐷𝑀𝐼𝐿𝑃 = [𝑢𝑗
𝑃𝑉, 𝐸𝑗

𝑃𝑉 , 𝑍𝑗
𝑃𝑉 , 𝑢𝑗

𝑉𝑅 , 𝑃𝑗𝑡 , 𝑄𝑗𝑡, 𝑃𝑗𝑡
𝑄𝑇 , 𝑄𝑗𝑡

𝑄𝑇 , 𝑄𝑗𝑡
𝑃𝑉, 𝑉𝑗𝑡, 𝑉̃𝑗𝑡]  

Subject to  

(4.2)-(4.17) (4.22) 

(4.18)-(4.20) (4.23) 

where , ,PV PV PV

jt t jP Z j J t T=       

where the objective (4.21) in the DMILP formulation is the same as (4.1) in 

DMINLP formulation except the bilinear term 𝑢𝑗
𝑃𝑉𝐸𝑗

𝑃𝑉  is replaced by the 

auxiliary continuous variable 𝑍𝑗
𝑃𝑉 . The constraint set (4.22) refers to the 

constraints (4.2)-(4.17) of the DMINLP formulation and the constraint set 

(4.23) refers to the constraints (4.18)-(4.20) which are included to make the 

equation 𝑍𝑗
𝑃𝑉 = 𝑢𝑗

𝑃𝑉𝐸𝑗
𝑃𝑉 workable. 

4.2.3 Stochastic Programming based Feasibility Checking Model 

The proposed DMILP model (4.21)-(4.23) determines the optimal 

placement solution from the economic aspects without considering the 

reliability and security of the distribution network operation. Due to time-
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varying load demand and uncertain PV energy output, these two uncertainties 

should be incorporated in the DMILP model. In this thesis, the scenario 

approach is employed since it allows us to take representative combinations of 

load and PV generation into account with reasonable computation complexity. 

By using the scenario approach, uncertainties of load demand and PV output 

can be denoted in the form of daily uncertainty scenarios which can be sampled 

from historical data in [71] and then a well-established backward-reduction 

algorithm [98] is utilized for representative scenarios selection since this 

reduction algorithm can generate the probability of each scenario. Note that 

these associated probabilities have a direct effect on the optimal solutions since 

they are able to distinguish the significance of scenarios. 

Finally, a set of probabilistic scenarios describing most potential load and 

PV production can be acquired, which transforms the DMILP model described 

above to a two-stage stochastic model, as shown in Fig. 4-2 and Fig. 4-3. 

Specifically, in the first stage, the hourly PVAC and VR placement decisions 

are determined. Then in the second stage, considering the uncertainties of PV 

output and load demand, the feasibility of the first-stage results is checked to 

ensure no operation constraints violations, especially node voltage constraints 

violations and distribution line capacity constraints violations.  

 

 
Fig. 4-2 Decision-making process of the proposed VR placement problem 
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Fig. 4-3 Two-stage stochastic framework of the proposed voltage regulator 

placement problem 

 
In this regard, the feasibility checking constraints should be added into the 

DMILP formulation to ensure that the distribution network is able to remain 

secure under any considered operation scenarios. To guarantee the reliability 

and safety of the distribution network operation, the technical constraint should 

not be violated. Hence, non-negative slack variables are introduced to relax the 

voltage constraints and distribution line capacity constraints and then the 

stochastic programming based feasibility checking (SPFC) model is 

formulated as follows, 

SPFC:  

 
1 2

1 1

, ,Min Min ( + )Penalty V LB V UB PQ

jtw jtw jtw

w W t T j J

c s s s
   

  

+  
(4.24) 

where 𝑠𝑗𝑡𝑤
𝑉,𝐿𝐵

 and 𝑠𝑗𝑡𝑤
𝑉,𝑈𝐵

 represent the slack variables for upper voltage and 

lower voltage constraints, respectively. 𝑠𝑗𝑡𝑤
𝑃𝑄

 denotes the slack variable for 

distribution line capacity constraints. Since the positive penalty coefficient 

𝑐𝑃𝑒𝑛𝑎𝑙𝑡𝑦  is large enough, the value (4.24) should be zero since all slack 

variables 𝑠𝑗𝑡𝑤
𝑉,𝐿𝐵, 𝑠𝑗𝑡𝑤

𝑉,𝑈𝐵
 and 𝑠𝑗𝑡𝑤

𝑃𝑄
 will converge to zero. 

The uncertainty set Π1  and the first-stage variables describing the 

uncertainty Θ1 are given as follows, 
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 Π1 = {Θ1|Θ1 = [𝑢𝑗
𝑃𝑉, 𝐸𝑗

𝑃𝑉 , 𝑍𝑗
𝑃𝑉 , 𝑢𝑗

𝑉𝑅]}  

(4.14)-(4.16) (4.25) 

(4.18)-(4.20) (4.26) 

where (4.25) describes the first-stage constraints as described in the (4.14)-

(4.16) of the DMINLP model and (4.26) represents the auxiliary constraints 

(4.18)-(4.20) which are imposed to linear the DMINLP model.  

The uncertainty set Π2  and the second-stage variables describing the 

uncertainty Θ2 are given as follows, 

Π2 = {Θ2|Θ2 = [𝑃𝑗𝑡𝑤 , 𝑄𝑗𝑡𝑤, 𝑃𝑗𝑡𝑤
𝑄𝑇 , 𝑄𝑗𝑡𝑤

𝑄𝑇 , 𝑄𝑗𝑡𝑤
𝑃𝑉 , 𝑉𝑗𝑡𝑤, 𝑉̃𝑗𝑡𝑤, 𝑠𝑗𝑡𝑤

𝑉,𝐿𝐵, 𝑠𝑗𝑡𝑤
𝑉,𝑈𝐵, 𝑠𝑗𝑡𝑤

𝑃𝑄 ]} 

QT QT

2
( ) ( ) 0

= , , ,PVitw itw
jtw itw ij jtw jtw

i j i j

P Q
P P r P p j J t T w W

V  

+
+ + −         (4.27) 

where =PV PV PV

jtw tw jP Z   

QT QT

2
( ) ( ) 0

= , , ,PVitw itw
jtw itw ij jtw jtw

i j i j

P Q
Q Q x Q q j J t T w W

V  

+
+ + −         (4.28) 

QT , , , ,AP AP AP

jtw jtw jtw jtwP M P N j J t T w W   +          (4.29) 

QT , , , ,RP RP RP

jtw jtw jtw jtwQ M Q N j J t T w W   +          (4.30) 

QT 20 , , ,jtwP P j J t T w W         (4.31) 

QT 20 , , ,jtwQ Q j J t T w W         (4.32) 

0

= , , ( ), ,
ij itw ij itw

jtw itw

r P x Q
V V j J i j t T w W

V


+
+         (4.33) 

= , 1, ,Sub

jtwV V j t T w W=      (4.34) 

0

= , , ( ), ,
ij itw ij itw

jtw itw

r P x Q
V V j J i j t T w W

V


+
+         (4.35) 
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( ) ( )1 % 1 % , , ,jtw jtw jtwrr V V rr V j J t T w W−   +        (4.36) 

( ) , , ,VR

jtw jtw jV V V V u j J t T w W−  −        (4.37) 

, , ,PV PV PV

jtw jtw jtwQ Q Q j J t T w W−         (4.38) 

where PV PV PV

jtw jtwQ P tan=   

, , , ,V LB

jtw jtwV s V j J t T w W+         (4.39) 

, , , ,V UB

jtw jtwV s V j J t T w W−         (4.40) 

QT QT 2, \1, ,PQ

jtw jtw jtw ijP Q s LC j J t T w W+ −         (4.41) 

QT QT 2 , 1, ,PQ

jtw jtw jtwP Q s SC j t T w W+ −  =      (4.42) 

, , +, , , , ,V LB V UB PQ

jtw jtw jtws s s R j J t T w W        (4.43) 

where (4.27)-(4.43) are the second-stage constraints. (4.27)-(4.34) describe the 

power flow in the scenario 𝑤. (4.35)-(4.37) represent the voltage regulator 

operation in the scenario 𝑤. (4.38) limits the reactive PV energy output in the 

scenario 𝑤 . (4.39)-(4.43) describe the relaxed voltage constraints with the 

non-negative slack variables 𝑠𝑗𝑡𝑤
𝑉,𝐿𝐵

, 𝑠𝑗𝑡𝑤
𝑉,𝑈𝐵

 and the relaxed distribution line 

capacity constraints with non-negative slack variable 𝑠𝑗𝑡𝑤
𝑃𝑄

. 

4.2.4 Final Formulation of Stochastic VR Placement Model 

The two-stage stochastic MILP (SMILP) model is finally formulated by 

integrating the SPFC model (4.27) into the DNILP model, given as follows, 

SMILP:  

 
1 2,

, ,

Min  ( )

        ( + )

VR VR VR PV PV PV

inv ope j w tw j

j J w W t T j J

Penalty V LB V UB PQ

jtw jtw jtw

w W t T j J

c c u p c Z

c s s s

 
 

   

  

+ −

+ +

  


 (4.44) 
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Θ1 = [𝑢𝑗
𝑃𝑉, 𝐸𝑗

𝑃𝑉 , 𝑍𝑗
𝑃𝑉, 𝑢𝑗

𝑉𝑅] 

Θ2 = [𝑃𝑗𝑡𝑤 , 𝑄𝑗𝑡𝑤, 𝑃𝑗𝑡𝑤
𝑄𝑇 , 𝑄𝑗𝑡𝑤

𝑄𝑇 , 𝑄𝑗𝑡𝑤
𝑃𝑉 , 𝑉𝑗𝑡𝑤, 𝑉̃𝑗𝑡𝑤, 𝑠𝑗𝑡𝑤

𝑉,𝐿𝐵, 𝑠𝑗𝑡𝑤
𝑉,𝑈𝐵, 𝑠𝑗𝑡𝑤

𝑃𝑄 ] 

Subject to  

(4.14)-(4.16), (4.18)-(4.20) (4.45) 

(4.27)-(4.43) (4.46) 

where (4.45) and (4.46) formulate the first-stage constraints and second-stage 

constraints, respectively. Note that the sum of all probabilities of uncertainty 

scenarios should be equal to one, ∑ 𝑝𝑤𝑤 = 1. 

 

4.3 Decomposition Algorithm for Solving SMILP 

Due to numerous uncertainty scenarios and time-coupling constraints, the 

computation burden of the proposed two-stage SMILP problem (4.44)-(4.46) 

is quite heavy. Fortunately, the two-stage structure of SMILP formulation 

permits decomposing this model into a master program corresponding to the 

first-stage problem and subprograms corresponding to the second-stage 

problems of all time periods in all scenarios, which can significantly reduce 

the computation complexity. Therefore, Benders decomposition algorithm [76]  

can be properly applied to solve this intractable two-stage problem. 

4.3.1 Subprograms Formulation 

Each subprogram is associated with each time period in each considered 

uncertainty. After solving all subprogram problems, operation variables can be 

obtained. The subprogram (SP) formulation in each iteration 𝑣 is given as follows, 

SP:  



89 
 

( ) , ,: Min  ( + )
SP

Sub v Penalty V LB V UB PQ

tw jtw jtw jtw

j J

Z c s s s




= +  (4.47) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , ( ) , ( ) ( ), , , , , , , , , },{ sub v v v QT v QT v PV v v v V LB v V UB v PQ v

tw jtw jtw jtw jtw jtw jtw jtw jtw itw j

SP

twZ P Q P Q Q V V s s s =  

Subject to  

(4.27)-(4.43) (4.48) 

( ) * ( )= : , , ,PV v PV PV v

j j jtwZ Z j J t T w W        (4.49) 

( ) ( ): , , ,VR v VR VR v

j j jtwu u j J t T w W=        (4.50) 

The objective function (4.47) is to minimize the objective value of the 

feasibility checking model (SFC) to ensure the constraints security of the 

distribution networks. (4.48) summarizes the second-stage constraints. (4.49) 

and (5.50) fix the first-stage variables 𝑍𝑗
𝑃𝑉(𝑣)

 and 𝑢𝑗
𝑉𝑅(𝑣)

 to the given value 

obtained from the solution of the master problem in each iteration 𝑣 , 

respectively. 

The upper bound 𝑍𝑈𝑝𝑝𝑒𝑟(𝑣) for the optimal value of the objective function 

in the SMILP problem in each iteration 𝑣 can be calculated by the following 

equation, 

( ) ( ) ( )( )

                

Upper v Sub v VR VR VR v

w tw inv m j

w W t T j J

PV PV PV

w tw j

w W t T j J

Z Z c c u

p c Z

 



  

  

= + +

−

  

 
 (4.51) 

Dual variables 𝜆𝑗𝑡𝑤
𝑃𝑉(𝑣)

 and 𝜆𝑗𝑡𝑤
𝑉𝑅(𝑣)

 of the first-stage variables can be used 

to provide sensitivities 𝜆𝑗
𝑃𝑉(𝑣)

 and 𝜆𝑗
𝑉𝑅(𝑣)

, which are further fed into the 

master problem to build the Benders cut, linking the subproblem and the master 

problem. These sensitivities can be acquired from the following equations, 
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( ) ( ) , , ,PV v W PV v

j jtw

w t

j J t T w W  =         (4.52) 

( ) ( ) , , ,VR v W VR v

j jtw

w t

j J t T w W  =         (4.53) 

4.3.2 Master Program Formulation 

The hourly PVAC values and VR placement decisions are determined in 

the master problem, which is subject to the first-stage constraints. The master 

program (MP) formulation in each iteration 𝑣 is given as follows, 

MP:  

( ) ( ) ( ):= Min  ( )
MP

Lower v v VR VR VR v PV PV PV

inv m j w tw j

j J w W t T j J

Z c c u p c Z  


   

+ + −    (4.54) 

( ) ( ) ( ) ( ) ( ) ( ), , , , ,{ }Lower v v PV v PV v PV v VR v

j j

M

j j

P Z u E Z u =   

Subject to  

(4.14)-(4.16), (4.18)-(4.20) (4.55) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

          ( ) 1,2,..., 1

v Sub k VR v VR v VR

w tw j j j

w W t T j J

PV v PV v PV

j j j

j J

Z u u

Z Z v









 



  



 + −

= −+ −

  


 (4.56) 

( )v down   (4.57) 

( )Lower v OptZ Z  (4.58) 

The objective value of the master problem (4.54) is the lower bound of the 

SMILP problem in each iteration 𝑣  since the master program relaxes the 

second-stage constraints. (4.55) summarizes the first-stage constraints. (4.56) 

represents the Benders cut 𝛾(𝑣), which is generated to link the master problem 

and the subproblem in each iteration. (4.57) gives a lower bound 𝛾𝑑𝑜𝑤𝑛 of 

𝛾(𝑣) to accelerate the convergence. (4.58) is to ensure that the lower bound 
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𝑍𝐿𝑜𝑤𝑒𝑟(𝑣)  is not greater than the minimum optimal solution value 𝑍𝑂𝑝𝑡 

acquired from the subproblem. 

4.3.3 Solution Algorithm Process 

The convergence is guaranteed until the upper bound meets the lower 

bound according to [79]. The proposed Benders decomposition algorithm 

procedure is as follows, 

Algorithm 1 Benders Decomposition Algorithm 

Step 1. Initialization: 

a) Set the iteration counter 𝑣 = 0 , 𝑍𝐿𝑜𝑤𝑒𝑟(𝑣) = −∞ , 𝑍𝑈𝑝𝑝𝑒𝑟(𝑣) =
−∞, 𝑍𝑂𝑝𝑡 = ∞. 

b) Set a small tolerance 𝜀 to control convergence. 

Step 2. Iteration: 

a) Solve MP and update 𝑍𝑗
𝑃𝑉(𝑣)

 and 𝑢𝑗
𝑉𝑅(𝑣)

 and 𝑍𝐿𝑜𝑤𝑒𝑟(𝑣). 

b) For each 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊, solve SP and update 𝑍𝑈𝑝𝑝𝑒𝑟(𝑣). 

c) If 𝑍𝑈𝑝𝑝𝑒𝑟(𝑣) < 𝑍𝑂𝑝𝑡, then update 𝑍𝑂𝑝𝑡 = 𝑍𝑈𝑝𝑝𝑒𝑟(𝑣). 

Step 3. Convergence check: If |𝑍𝑈𝑝𝑝𝑒𝑟(𝑣) − 𝑍𝐿𝑜𝑤𝑒𝑟(𝑣)| ≤ 𝜀, terminate 

the iteration with an optimal solution. Otherwise, build the next Benders 

cut, update 𝑣 ← 𝑣 + 1 and continue from Step 2. 

 

4.4 Numerical Results 

 

Fig. 4-4 IEEE 33-node test distribution system 
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Fig. 4-5 Load factor 

 

Fig. 4-6 Solar energy output factor 

The performance of the proposed method is validated on the IEEE 33-node 

distribution system, as shown in Fig. 4-4. Details about this test system can be 

found in [99]. In this case study, the base energy value is 1 MVA and the base 

voltage value is 12.66 kV. The per-unit value is used. A five-year planning 

horizon is taken into consideration. One thousand scenarios are sampled from 

the history data and 125 representative ones (5*5*5) with probabilities are 

selected as representatives in the proposed model, as shown in Fig. 4-5 and Fig. 

4-6. 
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4.4.1 Performance of Computational Efficiency 

 

 

Fig. 4-7 Evolution of Benders decomposition algorithm 

 

Table 4-1 Comparison of computation time by two methods 

 

 

Fig. 4-7 depicts the evolution of the proposed Benders decomposition 

algorithm. In the 37th iteration, this algorithm convergences, where the gap 

between the upper bound 𝑍𝑈𝑝𝑝𝑒𝑟(𝑣) and the lower bound 𝑍𝐿𝑜𝑤𝑒𝑟(𝑣) is smaller 

than the predefined toleration 𝜀 . To demonstrate the performance of the 

computational efficiency of the developed solution approach, a comparison 

between different solution methods is conducted. The first method is based on 

Scenario number 

Computation time (min) 

CVX_GUROBI BD 

1 (1*1*1) 0.22 0.19 

8 (2*2*2) 27.36 4.57 

27 (3*3*3) 132.27 18.56 

64 (4*4*4) N.A. 53.33 

125 (5*5*5) N.A. 105.28 
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the widely-used solver GUROBI [78] with the platform of CVX [81], marked 

as CVX_GUROBI. The second method is the proposed solution method, 

which is based on Benders decomposition algorithm via the same commercial 

solver and platform, marked as BD. As shown in Table 4-1, both two solution 

methods can be used to solve the proposed problem with low considered 

scenario numbers (e.g. 1, 8, 27) while the proposed method shows a clear 

advantage over the first method, and this advantage widened as the scenario 

number increases. With high scenarios numbers (e.g. 64, 125), the original 

problem cannot be directly solved by the first solution method due to huge 

computation burden. By contrast, the solution algorithm is able to solve the 

same problem with acceptable computation time. 

4.4.2 Performance of Optimal VR Placement 

 

Table 4-2 The result of the daily PVAC in the 33-node test system 

 

 

Table 4-3 The result of VR placement in the 33-node test system 

 

 

Locations for PV generation connection (node) ACPVG for PV generation location (p.u.) 

5 0.0187 

10 0.0028 

16 0.0042 

21 0.0044 

23 0,0123 

27 0.0010 

32 0.0010 

 

VR allocation locations (node) 5, 6, 22, 25, 26, 28, 30, 31 
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Fig. 4-8 Comparison on daily PVAC 

 
In this subsection, the performance of optimal VR placement is 

demonstrated. It can be seen from Table 4-2 that the daily PVAC is 0.0444 p.u 

and Table 4-3 shows the corresponding VR placement decisions. In order to 

demonstrate the performance of VR placement on the PVAC enhancement, 

Case 1 (the base case without VR installation), and Case 2 (the case with VR 

installation as the result in Table 3) are compared, as shown in Fig. 4-8. It can 

be observed from this figure that the daily PVAC is of Case 2 significantly 

larger than that of the Case 1, in other words, the daily PVAC is significantly 

improved after VR installation. 

 
Fig. 4-9 Comparison on voltage magnitude 
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Fig. 4-9 depicts two voltage profiles at 12:00 pm under the expected 

scenario: (1) voltage profile of the case with PV integration as the result in 

Table 2 but without VR installation, and (2) voltage profile of the case with 

both PV integration and VR installation, as the results in Table 2 and Table 3. 

It can be observed from this figure that the voltage magnitudes on some nodes 

(i.e. nodes 5, 14, 16, 17, 21, 22, 31, 32, and 33) exceed the upper bound (1.05 

p.u.) in the first case due to lack of the voltage adjustment of VR. However, 

the overvoltage violations caused by high PV penetration is able to be avoided 

after optimal VR placement, as shown in the second case. 

 

 
Fig. 4-10 Comparison of maximum apparent power in scenario 17 

 

 
Fig. 4-11 Comparison of maximum apparent power in scenario 55 
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Fig. 4-10 and Fig. 4-11 show the comparison results about the apparent 

power of the 33-node test system in two representative scenarios, i.e. scenario 

17 and scenario 55. Note the apparent power 𝑆𝑗𝑡𝑤 can be calculated by using 

follthe owing equation, 

QT QT , \1, ,jtw jtw jtwS P Q j J t T w W= +        (4.63) 

As shown in these two figures, before VR installation, distribution line 

overload can be observed. By comparison, after VR installation, apparent 

power flow is maintained within its desired range. According to these two 

comparisons, it can be concluded that optimal VR allocation cannot only avoid 

overvoltage occurrence but also ensure the safe and reliable operation of 

distribution lines. 

4.4.3 Comparison with Deterministic Model 

In this subsection, the deterministic VR placement model is employed as 

a benchmark. The formulation of the deterministic optimal VR placement 

problem is similar to the stochastic model but the deterministic model only 

uses one operation scenario as its input, in which the PV output and load 

demand are replaced by their expected values. By solving the deterministic VR 

placement problem, the optimal VR installation sites can be obtained: nodes 

15, 16, 19, 21, 23, and 27. Together with deterministic VR placement decisions, 

the daily PVAC values are obtained: 0.0106, 0.0001, 0.0007, 0.0064, 0.0021, 

0.0036 and 0.0079 p.u. for nodes 5, 10, 16, 21, 23, 27 and 32, respectively.  
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Fig. 4-12 Voltage profile of the deterministic model under the critical 

scenario 

 

 

Fig. 4-13 Voltage profile of the stochastic model under the critical scenario 

 

To compare the performance of the deterministic model and the stochastic 

model, a critical scenario corresponds to the maximum PV output factor 𝜇𝑡𝑤
𝑃𝑉 

with minimum load demand level is utilized. Fig. 4-12 and Fig. 4-13 depict the 

voltage profiles of the deterministic model and stochastic model under this 

critical scenario, respectively. From these two figures, overvoltage violation 

can be seen in Fig. 4-12 while this violation cannot be observed in Fig. 4-13. 
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Therefore, it can be concluded that the stochastic model shows a better 

performance on voltage profiles under the critical scenario. This is because the 

stochastic model takes numerous representative scenarios into account and 

thus its solution is more comprehensive and robust when dealing with the 

uncertainties of electrical networks. 

4.4.4 Tradeoff Curve between Daily PVAC and VR Planning Cost 

 

 

Fig. 4-14 Optimal tradeoff curve between the daily PVAC and VR planning 

cost 

 
The tradeoff curve between daily PVAC and VR planning cost (including 

the cost of investment, operation and maintenance) is depicted in Fig. 4-14. It 

can be seen from this figure that the PVAC enhances gradually with the 

increase of the VR planning cost until it reaches around $450,000. Then the 

increasing rate becomes zero, which means the PVAC is insensitive to the 

additional VR planning cost after it exceeds $450,000. The reason is that there 

is a threshold determined by the loadability of the distribution network, so 

overload may occur with the large PV energy integration. When the PVAC 
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improvement is too low to be accepted by distribution network planners, the 

network expansion is recommended. 

4.4.5 Impact of VR Installation Number on PVAC Enhancement 

 

 

Fig. 4-15 Impact of VR installation number on PVAC 

A sensitivity analysis is conducted to investigate the impact of the VR 

installation number on PVAC enhancement in this subsection. Fig. 4-15 

depicts the impact of VR installation number on the daily PVAC under the 

expected scenario. As seen in this figure, with the increase of the VR 

installation number, the PVAC improves linearly until the VR installation 

number reaches eight. Then the PVAC increases slowly until the installation 

number reaches twelve, after which the PVAC becomes insensitive to the 

increase of VR installation number. This is because larger PV penetration level 

may lead to the distribution line overload. 

 
 

4.5 Summary 

In this chapter, a novel two-stage stochastic programming based VR 

placement model considering the daily PVAC enhancement in distribution 
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networks is considered. Firstly, the VR allocation model is formulated as a 

deterministic mixed integer nonlinear programming (MINLP) problem. Then 

a technique approach is utilized to transform the MINLP model to the mixed 

integer linear programming (MILP) model. To model the uncertainties of PV 

generation and load consumption, the scenario method is employed to obtain 

representative PV-load scenarios, creating a two-stage stochastic MILP 

problem. Since numerous time-coupled constraints result in a huge 

computation burden, decomposition algorithm is used to decompose the two-

stage MILP problem into a master program problem (the first-stage problem) 

and many subprogram problems (the second-stage problems), which can be 

directly solved by commercial solvers. To illustrate the effectiveness of the 

proposed allocation model and decomposition method, the IEEE 33-node 

distribution network is utilized as the test system. 

The main conclusions are summarized as follows, 

(1) The proposed VR planning model can appropriately take the PVAC 

improvement into consideration. According to the numerical results, it can be 

concluded that the PVAC is significantly enhanced after optimal VR placement. 

(2) From the observation and analysis of the case study, it can also be 

concluded that optimal VR placement can effectively eliminate the overvoltage 

violations so as to ensure the reliability and security of normal distribution 

network operation. 

(3) The proposed solution method on the basic of Benders decomposition 

algorithm is quite suitable for solving the proposed two-stage stochastic 

problem considering a large number of uncertainty scenarios. The developed 

solution approach can be suggested when dealing with similar problems. 



102 
 

(4) With the increase of VR planning cost, the PVAC improves 

accordingly at first. However, there is a threshold beyond which the PVAC 

improvement becomes insensitive to the VR planning cost increasement. And 

this threshold is determined by the distribution network loadability. 
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Chapter 5  Conclusions and Future Works 

5.1 Conclusions  

The over-proliferation of renewable energy generators impact on normal 

operating conditions of power systems due to their stochastic characteristic of 

power output. This thesis mainly focuses on dealing with these negative 

impacts and improving the ability of power systems to accommodate more 

renewable power integration via advanced devices planning approaches. 

Stochastic programming based planning strategy is developed to address 

economic and technical problems within the domain of power system planning 

and operation. Specifically, the power system planning problem is investigated 

in the following aspects, given as follows, 

1) In this thesis, the classical copula theory is used to sample uncertainties of 

wind generation and load demand in transmission networks, where the 

temporal interdependence between wind energy output and load is taken 

into account. Especially, the inverse transform method is used to model 

these two uncertainties. Previous works usually use Monte Carlo 

simulation method to generate scenarios. In comparison, this method has 

been widely applied to the generation of forecasted operational scenarios 

for renewable production, which can better resemble reality. 

2) The stochastic programming based framework is proposed for TCSC 

planning model considering uncertainties in the transmission networks. 

This planning model is formulated to a two-stage model where the first 

stage determines the TCSC location-allocation decisions and the second 

stage is to minimize the expected system operation cost under different 
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wind-load scenarios. The proposed TCSC planning model is originally 

formulated a mixed integer nonlinear programming (MINLP), then a 

linearization technique and an approximation method are utilized to 

transform this MINLP into a mixed integer linear programming (MILP). 

Numerical results demonstrate that the performance of the proposed 

stochastic scheme is better than that of the traditional deterministic scheme. 

3) The PV hosting capacity is innovatively modeled as a decision variable in 

the optimization text. Empirically, PV hosting capacity is difficult to be 

evaluated and it is generally assessed by using simulation-based 

approaches. In this thesis, the PV hosting capacity is incorporated into the 

objective function of optimal SVC planning problem by using sum 

weighted method. Therefore, the tradeoff between the PV hosting capacity 

and the SVC planning cost can be obtained, which is enforceable for 

practical application. 

4) VR has the potential to improve the hourly PVAC of distribution networks 

since it can handle the overvoltage issue caused by PV energy integration 

through its continuous voltage regulation, which is not well studied in the 

existing works. To fill this research gap, a novel two-stage framework is 

proposed to investigate the extent of the potential benefits from optimal 

VR placement as an option to improve the PVAC. The hourly PVAC is 

modeled as a continuous variable which is formulated in the objective 

function. Two criterions are introduced to maintain the safety and 

reliability of the distribution network operation, i.e., voltage variation and 

distribution line capacity. Moreover, a stochastic programming based 

feasibility checking model is established to ensure that the distribution 



105 
 

network always remains secure operation under different uncertainty 

scenarios. Considering the widespread application of VR in power systems, 

this thesis has practical significance. 

5) Time-coupling constraints across the time periods and numerous 

uncertainty scenarios result in an intractable two-stage stochastic planning 

problem. To reduce the computation burden, an efficient solution approach 

based on Benders decomposition is developed to solve this two-stage 

problem. Specifically, the two-stage problem can be decomposed into a 

master problem and multiple subproblems corresponding to all time 

periods in all scenarios. Furthermore, stochastic Benders cuts are built to 

link the master problem with the subproblems. To the best knowledge, this 

is the first study to employ the Benders decomposition algorithm to solve 

the two-stage planning problem for PV hosting capacity improvement by 

far. 

 

5.2 Future Works  

In this thesis, several advanced methods have been proposed for both 

transmission systems and distribution systems with the high integration level 

of renewable generations. In order to reduce the complexity arising from the 

complicated realistic issues, some assumptions have been made. In the future, 

the following aspects need to be considered for making the proposed 

approaches to be more practical. 

1) Line flow based equation model is used to describe power flows of 

transmission networks without consideration of voltage angle and Distflow 

model is adopted to describe power flows of distribution networks. 
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However, in fact, the model of real transmission and distribution systems 

presents considerable complexity, resulting in complicated issues in power 

system planning problems. In this regard, the research efforts should be paid 

to the improvement of the existing models and development of models with 

high accuracy, like multi-phase OPF model, which enables us to deal with 

planning problems in power systems in a more realistic manner. 

2) In this thesis, the stochastic programming is used as the optimization 

methodology, which has its inherent disadvantages. The main difficulty of 

the stochastic programming is that the probability distribution functions 

associated with uncertain parameters should be provided. Therefore, a huge 

burden may arise from this requirement since related information is 

unavailable to acquire in many realistic situations. In most cases, when 

dealing with input uncertainty, stochastic programming assumes that some 

uncertain parameters can represent all possible operating conditions of the 

power systems and ensures that the obtained solution is able to be robust 

against all considered scenarios. Therefore, all underlying stochastic 

parameters should be selected to build uncertainty scenarios and thus the 

obtained solution is itself random, which seems inapplicable for practical 

implementation. In this thesis, decisionmakers are allowed to manage the 

degree of robustness of the solution by using a backward-reduction 

algorithm to obtain representative uncertainty scenarios. With the 

consideration of realistic implementation, the way to control the robustness 

of the solution should be carefully estimated. Moreover, the stochastic 

programming based algorithms generally have two stages and make all 

decisions before the uncertainty realizations. Thus, multi-period 
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optimization is suggested to address uncertainties and manage the 

robustness of the solution since it makes a series of decisions in different 

time occurs. 
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