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Abstract

In an array of antennas, the inter-antenna mutual coupling can greatly af-

fect the array’s overall performance in various application, such as direction-

of-arrival (DOA) estimation and beamforming. For a uniform circular ar-

ray (UCA) of identical dipoles oriented perpendicular or radial to the circle

plane, this thesis advances a simple expression of their electromagnetic mu-

tual impedance, in simple closed forms, explicitly in terms of the dipoles’

length (L), the number (M) of dipoles comprising the array, and the circular

array grid’s radius (R).

This simple model is obtained via a “behavioral” (a.k.a. “phenomeno-

logical” or “block-box”) approach, which is new to UCA inter-antenna mu-

tual coupling modeling. This “phenomenological” or “behavioral” approach

takes mutual impedance data, (generated by Method-of Moments (MoM)

electromagnetic simulations) to fit into a low-dimensional manifold. Such

an approach is commonplace in modeling wireless fading channels and the

nonlinear amplifier’s input/output relationship, though admittedly can be

used to mutual coupling modeling. Despite the conceptual simplicity of this

approach, subsequently presented results will demonstrate its success to yield

simple rule-of-thumb relationships of how the mutual impedance varies with

the wavelength-normalized dipole length (L
λ

), the number M of such dipoles

in the circular array, and the circle’s radius (R
λ

).
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Chapter 1

Introduction

1.1 Overview

The performance of a single antenna is imprudent for various application

fields, such as radar, radio astronomy, localization in communications, and

medical diagnosis where often uses several antennas in a group, i.e. as an

antenna array.

In practice there are several arrays available for example linear array,

circular array, planar array, rectangular array, and triangular array. This

thesis has investigated the uniform circular array among the above mentioned

arrays because of it’s nice properties of diversity reception and circularly

symmetrical by a 2π
M

radians rotation about the circle’s origin, where M is

the number of antenna. Figures 1.1-1.2 are some practically used examples

of uniform circular array for direction finding.

However, these antennas (in an array) electromagnetically interact with

each other, such that one antenna’s voltage affects its neighboring antennas’

voltages, this phenomenon is called mutual coupling. This mutual coupling

could greatly change the overall array’s operation. This mutual coupling
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Figure 1.1: Circular array of antenna system, company name ARTIKUL-S

direction finder. This is design by IRCOS company [1].

2



Figure 1.2: Circular array round-the-clock radio navigation, security and

unauthorized sources of radiation detection in the Republic of Armenia [2].
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depends on many factors like the antenna type, the array geometry, the

number of antennas in an array, and the inter-antenna spacings.

1.2 The Critical Effects of Mutual Coupling

in Antenna-Array Signal Processing

An antenna array can separate incident emitters and can localize them, based

on their different incident directions-of-arrival (DOAs) besides based on their

signals’ different time-frequency structures. An antenna array can also facil-

itate transmission, e.g., in massive MIMO communications / radar.

The use of antennas as sensing devices or as transmission devices is pred-

icated on their measurements (transmissions) having a known relationship

to the electromagnetic phenomenon being measured (effected), i.e., how the

antennas voltages are related to the incident (transmitted) electromagnetic

wave-field. This foundational presumption is often unmet in reality, espe-

cially for an array of close-by antennas which induce electric currents on

each other, producing inter-antenna mutual coupling. Such antenna arrays

are widely used in wireless sensing and wireless communications. Thousands

of signal-processing algorithms have been devised over the decades.

At the core of such thousands of antenna-array signal-processing algo-

rithms is a typical requirement for some prior knowledge on how the antenna

array, as a unit, would correspond to the incident electromagnetic wave-field,

as a function of the wave-field’s frequency, azimuth-elevation direction-of-

arrival, and polarization. This ”response”, termed an ”array manifold”, de-

pends not only on the inter-antenna spatial geometry, but also should depend

on the inter-antenna electromagnetic coupling, which is often overlooked or

arbitrarily oversimplified.
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However, inter-antenna mutual coupling complicates these antenna-array

signal-processing algorithms, which typically simply ”idealizes away” or over-

simplifies much of such electromagnetic realities. Why is electromagnetic

coupling ”idealized away” in the signal-processing literature? It is because

the electromagnetic effects require complicated mathematical descriptions,

typically involving nested layers of integrals and/or summations with re-

spect to several independent variables [4, 5, 18, 25, 37]. For example, one

single mutual-coupling expression occupies 6 pages in [11]. Such complicated

descriptions, obtained by analytical solutions to the Maxwell’s equations, are

too convoluted to lend themselves to ”elegant” signal-processing algorithmic

paradigms.

In antenna-array signal processing (such as beamforming, direction find-

ing, tracking, diversity transmission/reception), the signal processing algo-

rithms generally are predicated on a prior knowledge of the precise math-

ematical inter-relationship among the various antennas that comprise the

array. This inter-antenna relationship (at any particular frequency) may be

encapsulated as a vector of scalar functions. This vector, called an “array

manifold” and denoted as a(φ, θ, λ), mathematically relates the incident sig-

nal’s DOAs (φ, θ) in azimuth/elevation (see figure 1.3) and wavelength (λ)

to the array’s M constituent antennas’ data measurement, which may be

represented as a M × 1 vector X(t) at time t:

X(t) =

∫

∀λ
apresumed(φ, θ, λ) s(λ) ej2πct/λdλ, (1.1)

where s(λ) represents the incident signal’s frequency spectrum (or the spec-

trum expressed here in terms of wavelength, in order to ease the subsequent

exposition), and c symbolizes the speed of light.

If the array manifold apresumed(φ, θ, λ) presumed in a signal-processing

algorithm deviates from the actual array manifold aactual(φ, θ, λ) in physical
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Figure 1.3: Azimuth (φ) and elevation (θ) angles.

reality, model mismatch would occur and would degrade the signal-processing

algorithm’s nominal performance.

One physical actuality, often overlooked/oversimplified, is the electromag-

netic coupling across the antennas comprising the antenna-array of the wire-

less transceiver. This “mutual coupling” would require apresumed(φ, θ, λ) =

acoupling(φ, θ, λ) in equation (1.1), instead of an ideally presumed apresumed(φ, θ, λ) =

ano−coupling(φ, θ, λ). The estimates (φ̂, θ̂) to be extracted from {X(t), t = t1, t2, · · · , tN}
would obviously be very different, depending on whether the estimator signal-

processing algorithm correctly presumes apresumed(φ, θ, λ) = acoupling(φ, θ, λ)

or incorrectly presumes apresumed(φ, θ, λ) = ano−coupling(φ, θ, λ).

Take the example of direction finding using a UCA of dipoles spacing

uniformly on a circle and oriented vertically. Their actual array manifold

(accounting for mutual coupling) may be represented as a M × 1 vector

function, a
(UCA)
actual (φ, θ, λ) := C(λ) a

(UCA)
no−coupling(φ, θ, λ), where

6



a
(UCA)
no−coupling(φ, θ, λ) := α




d1,1(φ, θ, λ)

d2,1(φ, θ, λ)
...

dM,1(φ, θ, λ)




(1.2)

refers to the nominal array manifold overlooking mutual coupling between

the UCA dipoles, α refers to some electromagnetics factor independent of

(φ, θ, λ), and C(φ, θ, λ) denotes a M ×M “coupling matrix”. The perfor-

mance of the DOA estimation results show the serious degradation in their

DOA estimation accuracy if the signal-processing algorithm overlooks mu-

tual coupling by wrongly presuming apresumed(φ, θ, λ) = a
(UCA)
no−coupling(φ, θ, λ),

instead of the correct apresumed(φ, θ, λ) = a
(UCA)
actual (φ, θ, λ).

Generally speaking, why would a signal-processing algorithm not use

apresumed(φ, θ, λ) = a
(UCA)
actual (φ, θ, λ)? It is primarily because a

(UCA)
actual varies

with the incident signal’s frequency/wavelength (λ) and azimuth-elevation

direction-of-arrival (φ, θ) through nested layers of multivariate integrals/summations,

to render most signal-processing technique ineffectual.

This model-mismatch problem has long persisted in the antenna-array

signal-processing literature, posing a critical bottle-neck for further advance-

ment in this field. The above discussions have thus highlighted the need for

simple mathematical expressions of Cpresumed(λ), even if considerable approx-

imations are to be incurred.

A fresh approach is unquestionably needed to account for inter-antenna

”mutual coupling”, but with a ”signal-processing-friendly” mathematical

simplicity.

This thesis will avoid solving the Maxwell equations analytically, but will

instead take a ”behavioral” or ”phenomenological” or ”black box” approach,

as is typical in modeling a propagation channel’s fading statistics. That is,

7



much data of diverse cases of the ”array manifold” are collected and are

then numerically fit to parametric models of low degrees-of-freedom, without

requiring any deep analysis of antenna physics. What emerges can be a

refreshingly simple model, as will be demonstrated later in Sections 3.3, 4.3,

and 5.3 for a UCA of dipole antennas oriented vertically or radially.
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1.3 Intuitive Attempts in the Open Litera-

ture to Approximate Mutual Coupling (but

Unsatisfactory)

How has the literature on antenna-array signal-processing dealt with inter-

antenna “mutual coupling”, short of calibrating the antenna array adaptively

in the field?1 Not a few parametric models have been proposed to model

the coupling matrix, based on intuitive arguments on the electromagnetics

involved. Yet, those models oversimplify and perform unsatisfactorily, as

illustrated below.2

Take as example a uniform circular array of M number of antennas –

all identical, all uniformly oriented in a circle with a radius R. If these M

antennas were IMAGINED to suffer no mutual coupling among themselves,

their inter-relationship would be encapsulated in the following M × 1 array

1Even with array calibration, the present study would still be useful in supplying a

parametric model to form a more realistic initial estimate of the mutual coupling to start

off the calibration.
2Some antenna-array signal-processing algorithms do not parametrically model the cou-

pling matrix. However, that suffers a shortcoming of leaving many unknown mutual

impedance scalars to be estimated along with the direction(s)-of-arrival, for example, in

direction finding. For example, an M -antenna array has M(M+1)
2 impedance (unknown)

scalars, in addition to the 2 unknowns in azimuth-elevation direction-of-arrival. If M = 10,

this would mean 55+2 = 57 scalar unknowns instead of just 2 azimuth-elevation direction-

of-arrival scalar unknowns.
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manifold,

a
(UCA)
no−coupling(φ, θ, λ) := γ




ej
2π
λ
R sin(θ) cos(φ)

ej
2π
λ
R sin(θ) cos(φ− 2π

M )

...

ej
2π
λ
R sin(θ) cos(φ− 2π(m−1)

M )



, (1.3)

where γ represents a factor common to all antennas in the array. The

ej
2π
λ
R sin(θ) cos(φ−φm), φm = 2π(m−1)

M
, {m = 1, 2, ...,M}, factor is commonly la-

beled as the “spatial phase factor” of the incident signal, which here has a

wavelength of λ and which impinges upon the dipoles at a direction-of-arrival

of θ, and φ.

For the above UCA of identical antennas, an “intuitive” model of C(λ)

common in a considerable body of signal-processing literature [22–24,26,29,

30,43,45,46,54–56,69,70,74,96–100,100–106] is a circulant Toeplitz matrix:

3

Cintuitive(λ) :=




c0 cn−1 . . . c2 c1

c1 c0 cn−1 c2

... c1 c0
. . .

...

cn−2
. . . . . . cn−1

cn−1 cn−2 . . . c1 c0




, (1.4)

The “intuitive” justification in the literature:

{a} The electromagnetic coupling between the `th and the mth dipoles

“should” (!) intuitively depend on only (and exponentially decreases

with) the two dipoles’ separation. This presumption gives the Toeplitz

matrix structure.
3Many other mutual-coupling idealizations exist in the signal-processing literature, with

some models more sophisticated than others. The model in (1.4) serves as an illustration

here.
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Figure 1.4: RMSE versus SNR at L
λ

= 0.7, M = 10, R
λ

= 5, and (φ, θ) =

(300, 450): 180 snapshots, 100 Monte Carlo trials.

This “intuitive” model is presumed in many signal-processing algorithms

(e.g., in [96,97] for MIMO communications, in [98,99] for beamforming, and

in [23,70,76,78,100–106] for direction finding).

Is this “intuitive” model in (1.4), with all its algebraic elegance, valid?

Unfortunately, our results in figure 1.4 suggest a resounding “no”. The pink

line with ’diamond’ graph in the figure 1.4 is obtained by the blind esti-

mate the mutual coupling matrix in (1.4) which is always worse than our

phenomenological model’s curve of black solid line with ’square’. 4

Further several methods are available in literature, where the mutual

impedance is used to explain the effects of the mutual coupling. One of

the earliest methods is proposed by Gupta in [35], based on open-circuit

method. In this method each antenna’s terminal voltage is considered as an

open-circuit voltage, which is calculated and related with all the antennas’

voltages in an array and put them in an impedance matrix. This impedance

matrix which consists of the impedances are used to depict the mutual cou-

4More simulation results are in appendix D.3
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pling effects. This method is widely used because its concepts is directly

related to the circuit theory. However, this method overlooks the scatter-

ing effects due to the nearby antennas’ in an array [40]. In [40] the mutual

impedance is calculated based on the receiving characteristics and considered

the ignoring scattering effects of the Gupta’s open-circuit method. Further

modification is done in [27, 28, 49, 50] by considering all elements’ scattering

effects concurrently.

The transfer function based method of the mutual coupling effects are

available in [20,30,45,69,75,76,82], Further a modified transformation method

is also available in [50]. But these methods need an intuitive assumption of

the mutual coupling matrix.

Furthermore, the self- and mutual impedances are varied by the type

of antenna and its’ configuration on an array. Due to the induced antenna

nearby the surface current of an antenna in an array changes very much. So, it

is a real problem to calculate the current distribution on the antenna’s surface

for computing the self- and mutual impedances. There are two popular

methods, first the integral-equation moment method in [39, 42, 62, 63, 73]

, and second, the induced electromotive force (EMF) method [25, 37, 38,

44] have tried to calculate that surface current distribution. Both methods

are based on the integral forms of induced current and voltages at antenna

terminals. However, these methods are found computationally extensive with

integrals/summations problem.

The phenomenological approach for modeling the mutual coupling has

already been used in [108, 109], but which is described for a pair of skewed

dipoles.

Instead of

(i) affronting the full complexity of nested integrals/sums in each entry of

12



the M ×M coupling matrix C(λ), or

(ii) making “intuitive” but “wild” guesses on the algebraic/mathematical

structure of Cintuitive(λ) as in (1.4), or

(iii) ignoring all inter-antenna coupling altogether,

this thesis takes a different approach – a “phenomenological” or “behavioral”

approach that takes mutual impedance data to fit them to a low-degrees-of-

freedom (low-DoF) parametric manifold.

This “phenomenological” or “behavioral” method assume the coupling

matrix prior, but “empirically” gathers numerous instances of this coupling

matrix for various settings, then fits the dataset to different low-DoF models.

One cost-effective manner to collect vast datasets of the coupling matrix’s

numerical values is via computational electromagnetics simulations. For ex-

ample, for wire antennas such as dipoles, the“method of moments” (MoM),

a.k.a. the “boundary element method” (BEM), is known for its reliabil-

ity to approximately solve the Maxwell equations for the unknown current

distribution on wire antennas, thereby obtaining a dipoles array’s mutual

impedance matrix Z; and such methods are realized in commercial software,

like ”EMCoS Antenna VLab”5 among many others.

This somewhat brute-force approach of modeling might seem inelegant if

viewed to some people as a “natural philosophy”, but can be very effective

as an engineering solution. This approach is widely used in the statisti-

cal modeling of wireless fading channels, of turbulent fluid flow, and many

other phenomena of such complicated physics to be analytically intractable.

The investigated case study in this thesis will demonstrate the power of this

“phenomenological” or “behavioral” approach.

5URL: https://www.emcos.com
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1.4 The Organization of this Thesis

The subsequent chapter describes the detail research methodology with the-

oretical frameworks in Chapter 2.

The new phenomenological models of the mutual coupling for vertical

dipoles spaced uniformly on a horizontal circle with inter-dipole spacing more

than 1.0 λ are described in Chapter 3.

In Chapter 4, the phenomenological models of the mutual coupling for

vertical dipoles spaced uniformly on a horizontal circle with inter-dipole spac-

ing less than 1.0 λ is described.

In Chapter 5, the phenomenological models of the mutual coupling among

dipoles oriented radially on a horizontal circle are described.

The Chapter 6, concluded our research outcome with some observations

and ended by the future investigation.
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Chapter 2

The Phenomenological

Modeling of the Mutual

Coupling

In this thesis the”Phenomenological” modeling approach is used to model

the mutual coupling by fitting the mutual coupling data (produced by finite-

element simulations) to manually selected a model parameterized by few

degrees-of-freedom, with the model-fitting leaving aside the intractable elec-

tromagnetic that produce the finite-element simulated data.

In the experimental investigation, the dipole is used as an antenna of a

circular array, where dipoles are oriented vertically or radially and spaced

uniformly on the circle’s x− y plane.

2.1 The Practical Significance of Electric Dipoles

The dipole antenna is simple in construction and widely used. The dipole

antenna is constructed by two identical conductive elements (such as metal
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wires or rods). It is inherently a balanced antenna, because it is bilaterally

symmetrical. Figure 2.1 shows the feeding arrangement and geometry of a

finite length dipole with length L.

Figure 2.1: Feeding arrangment and geometry of a dipole.

The dipole’s electric-field (Eθ) and magnetic (Hφ) pattern for a far field

radiation (r >> λ) are of equations (4-62a) and (4-62b) in [11],

Eθ = jη
Imaxe

−jωnr

2πr

[
cos
(

1
2
ωnL cos θ

)
− cos

(
1
2
ωnL

)

sin θ

]
(2.1)

and

Hφ =
Eθ
η

(2.2)

where η is the characteristic impedance (377 ohms in free space), Imax is

the maximum current flow into the antenna, ωn(:= 2π
λ

) is the wave number

and λ in [m] is the wavelength, r is the far-field distance, the azimuth angle

φ, and elevation angle θ (here denotes the spatial angle with respect to the

dipole axis). For a short dipole with a physical length of λ
50
< L < λ

10
, the
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current along the dipole’s length is in phase but its amplitude is approxi-

mately triangular. On a non-short dipole (L > λ
10

), the current amplitude

and phase are no longer constant. For a dipole with length λ
2
, the current is

still in phase and its amplitude can be approximated by a sinusoid.

The feedpoint impedance of a dipole antenna is very sensitive to the

dipole’s electrical length (L
λ

). The infinitely thin half-wave dipole in free

space has a center feed radiation resistance of 73.1 ohms.

At a dipole length of exactly half wave, the impedance is slightly induc-

tive, but it drops rapidly to zero as the dipole length is foreshorten. At

resonance, the dipole impedance is fully resistive. Below the resonance its

impedance is capacitive. For a dipole’s of an electrical length L
λ
< λ

2
, the

radiation resistance decreases monotonically with length and is almost in-

dependent of diameter. In practice, a dipole has a finite length-to-diameter

ratio. The dipole radiation pattern and impedance are influenced by the

presence of nearby objects.

2.2 Dipole Effective Length

Suppose a signal imping on a dipole antenna of physical length L at a polar

angle θ with an electric field Eim which transform into a voltage at the feeding

point voc and vice versa, and the mathematical form is

voc = Eim · `ef , (2.3)

where `ef is the dipole’s effective length and is defined as equation (2)

of [65] and (3.2) on p. 19 of [19].
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2.3 The Practical Significance of the Uniform

Circular Array (UCA)

By placing M number of identical antennas uniformly on a circle (shown in

figure 2.2), a uniform circular array (UCA) is obtained. This UCA has the

advantage that its behavior is circularly symmetrical by a 2π
M

radians rota-

tion about the circle’s origin. Specifically [20, 24–26, 29, 30, 100] investigated

direction-of-arrival estimation using a UCA of dipoles oriented perpendicu-

larly to the circle’s plane.

In Figure 2.2 the M number of identical isotropic dipole antennas spaced

uniformly (arranged counterclockwise from the positive x-axis) on the cir-

cumference of a circle of radius R, lying on the x-y Cartesian plane, and

centered at the Cartesian origin. The plane wave incident on the origin by

the elevation angle of θ, estimated clockwise on the positive z-axis, and the

azimuth angle of φ, estimated counterclockwise on the positive x-axis.

Figure 2.2: An array of M dipoles spaced uniformly on the rim of circle of

radius R, on the x-y Cartesian plane and centered at the Cartesian origin.
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The position of the mth antenna for m=1, 2, ..., M can be represented

by (xm, ym, zm)=
(
R cos

(
2π(m−1)

M

)
, R sin

(
2π(m−1)

M

)
, 0
)

and the angular dis-

tance between any two consecutive antennas is 2πR
M

.

Let χ(t) is the center received signal at a time t. The observations at the

array of antennas can thus be represented as (see equations (2.13)-(2.15) on

page 29 of [10]),

χ(t,%m) =




χ(t− τ1)

χ(t− τ2)
...

χ(t− τM)



, (2.4)

where %m = [%1,%2, ...,%M ]T is the position vector, M is the total number

of antennas used, and

τm =
vT%m
c

, (2.5)

is the time delay for the signal to reach the mth sensor. In the above c {:= λf}
denotes the medium propagation velocity and v denotes a unit vector which

is presented as

v = −




ux(θ, φ)

uy(θ, φ)

uz(θ)


 = −




sin(θ) cos(φ),

sin(θ) sin(φ),

cos(θ)


 , (2.6)

where ux(θ, φ), uy(θ, φ), and uz(θ) are direction cosines along the three axes,

respectively. The negative sign arises due to the direction of the incident

signal.
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Then τm (of equation (2.5)) for %m = (xm, ym, zm) is given by

τm = −R sin(θ)

c

[
cos(φ) cos

(
2π(m− 1)

M

)
+ sin(φ) sin

(
2π(m− 1)

M

)]

= − R

λf
sin(θ) cos

(
φ− 2π(m− 1)

M

) (2.7)

We apply the Fourier transform of χ(t,%m) and we can get the mth element

as

Xm(ω) =

∫ ∞

−∞
e−jωtχ(t− τm)dt = X(ω)e−jωτm

= X(ω)ej
2π
λ
R sin(θ) cos(φ− 2π(m−1)

M )
(2.8)

where ω {:= 2πf} denotes the angular frequency. Hence the observations

in frequency domain can be written as

X(ω) =




X1(ω)

X2(ω)
...

XM(ω)




= X(ω)




ej
2π
λ
R sin(θ) cos(φ)

ej
2π
λ
R sin(θ) cos(φ− 2π

M )

...

ej
2π
λ
R sin(θ) cos(φ− 2π(m−1)

M )




(2.9)

The array manifold vector can be expressed as

a(θ, φ) =




ej
2π
λ
R sin(θ) cos(φ)

ej
2π
λ
R sin(θ) cos(φ− 2π

M )

...

ej
2π
λ
R sin(θ) cos(φ− 2π(m−1)

M )




(2.10)

The array manifold vector which contains essential information relating

to the received signal since X(ω) is constant across the vector and hence can

be ignored. The time difference between consecutive antennas is equivalent

to the phase shift on the frequency domain.
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2.4 Mutual Impedance

The impedance of an isolated antenna is the self-impedance [13], when the

current I2 on the antenna 2 is zero (see figure 2.3), the input impedance at

antenna 1 as

Z11 =
V1

I1

|I2=0, (2.11)

Figure 2.3: Reflected and radaited fields of an array elements.

where Z11 is the self-impedance. Further if antenna 1 is open circuit

(i.e. I1 = 0) (see figure 2.3), the mutual impedance at antenna 1 due to the

current I2 on the antenna 2 is

Z12 =
V1

I2

|I1=0, (2.12)

where Z12 is the mutual impedance.

When the current I1 on the antenna 1 is zero, then the input impedance

at antenna 2 as
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Z22 =
V2

I2

|I1=0, (2.13)

where Z11 is the self-impedance. Further if antenna 2 is open circuit

(i.e. I2 = 0) (see figure 2.3), the mutual impedance at antenna 2 due to the

current I1 on the antenna 1 is

Z21 =
V2

I1

|I2=0, (2.14)

where Z21 is the mutual impedance.

The voltage-current relations of this antenna system in figure 2.3 is

V1 = Z11I1 + Z12I2, (2.15)

V2 = Z21I1 + Z22I2. (2.16)

The impedances Z11 and Z22 are the self-impedances. The existence of

an antenna nearby modifies the self-impedance (input impedance) and this

modification influences by the type of antenna, the spacing between antennas,

and the antenna’s feeding characteristics [11].

The above equations (2.15) and (2.16) can be as

Zd1 =
V1

I1

= Z11 + Z12

(
I2

I1

)
(2.17)

Zd2 =
V1

I1

= Z22 + Z21

(
I1

I2

)
(2.18)
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The impedances Zd1 and Zd2 are the driving-point impedances of an-

tenna 1 and 2, respectively. For the antenna matching, this driving-point

impedance is needed to match properly, but this driving point impedance

depends on the mutual impedance and which is influenced by the current

ratio I1
I2

. Therefore, apparent that the mutual impedance has a significant

role on the performance of an antenna and should be analyzed. Further, this

analysis is usually quite complex and avoiding this complexity a simplified

closed form phenomenological modeling approach is used in this thesis.

In a receive array, a plane wave, induces the current on antennas. The

current induced on the antenna 2 radiates and received by the antenna 1,

adding more antennas in an array causes more waves interaction. If there

are M antennas, then there are M self-impedances and M(M − 1) mutual

impedances. The mutual impedance between two elements in an array is

found by dividing the open-circuit voltage at one antenna by the current on

the other antenna as

Zmn =
Vm
In
. (2.19)

After calculating all the self- and mutual impedances, they are placed in

the M ×M impedance matrix.

A M ×M impedance matrix is given below

Z =




Z11 Z12 . . . Z1M

Z21 Z22 . . . Z2M

...
...

. . .
...

ZM1 ZM2 . . . ZMM



, (2.20)

where the diagonal terms represent the self-impedances and the off-diagonal

terms denote the mutual impedances between the antennas.

23



2.5 Mutual Coupling

A coupling matrix is used to characterize the mutual coupling between the

antenna elements at the port level. This matrix is calculated using scattering

parameters (S-parameters) or impedance parameters (Z-parameters) and is

used to decouple the array. To calculate the coupling matrix we have used

the S-parameters matrix. The impedance matrix Z as in the equation (2.20)

has a simple relation to the scattering parameters matrix as described in

[15,17]. The mathematical form of the mutual coupling characterized by the

S−parameter is,1 2

C := S = (Z/zL + I)−1 (Z/zL − I) , (2.21)

where C is the M × M coupling matrix, Z is the M × M impedance

matrix, zL is the dipole load impedance or characteristics impedance of the

system, and I is the M ×M identity matrix.

1The equation (2.21) of mutual coupling is derived from the conversion relationship of

Z− parameters to S− parameters (please see the referecne [15] for details).
2For wave-guide fed antennas, it is more convenient to define the coupling between

antennas in terms of scattering parameters instead of mutual impedances. Whereas the

mutual impedance Zmn relates the voltages and currents at the ports, the scattering

parameters Smn relates the voltage waves incident on the ports to those reflected from the

ports [15].
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2.6 The Phenomenological Models Obtained

Phenomenological expressions are proposed based on the following three per-

spectives:

(a) (|Z|) or (∠Z), vs. {M, L
λ
} for a given R

λ
,

(b) (|Z|) or (∠Z), vs. {M, R
λ
} for a given L

λ
,

(c) (|Z|) or (∠Z), vs. {L
λ
, R
λ
} for a given M .

By carefully observing the behavior of the plots in three perspectives, several

models for each of the dependent variables

|z0| = |Z11| = |Z22|,∠z0 = ∠Z11 = ∠Z22,

|zm| = |Z12| = |Z21|, and ∠zm = ∠Z12 = ∠Z21,

are proposed.

2.6.1 Expected Electromagnetical Trends in the Self-

impedance z0

1) All dipoles’ self-impedances are equal.

2) |z0|, <{z0}, and ={z0} are each proportional to
(
L
λ

)−2
at small

(
L
λ

)
,

i.e. for
(
L
λ

)
∼ 1

4
.

3) |z0|, <{z0}, and ={z0} increases slightly as the dipoles get closer to

each other.

4) ={z0} would not change much w.r.t. M and w.r.t. R individually.

5) |z0| is minimum at
(
L
λ

)
∼ 1

2
,

at resonance the electric filed (capacitor) and magnetic field (inductor)

store same energy, leading to a purely real resistance so the magnitude

of self-impedance is minimum near half-wave length of the dipole.
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6) ={z0} goes through zero at
(
L
λ

)
∼ 1

2
.

2.6.2 Expected Electromagnetical Trends in the Mu-

tual impedance zm

a) At a small
(
L
λ

)
, and when neighboring dipoles are far apart (i.e.

(
R
λ

)

large and/or M small) — zm depends on {m,M,
(
R
λ

)
} only through

the inter-dipole spacing
(

∆
λ

)
.

b) |zm| ∝
(
L
λ

)2
, for small L

λ
. i.e., for L

λ
≤ 1

4
.

c) zm ∝ e−(α+jβ) ∆
λ . 3 This means that

c1) |zm| ∝ e−α
∆
λ = Ke−α

∆
λ ⇔ log |zm| = offset−α∆

λ
.

c2) ∠zm = offset–β∆
λ

, where β > 0.

In the above, α and β might vary w.r.t. L
λ

.

2.6.3 Mathematical Model based on Electromagneti-

cal Considerations

(A) For a fixed m and for a fixed M , but a variable R
λ

:

∆
λ
∝
(
R
λ

)

→ log |zm| = offset−αR
λ

.

(B) For a fixed m = 1 and for a fixed R
λ

, but a variable M :

∆
λ

= R
λ

sin
(
π
M

)

→ log |zm| = offset −αR
λ

sin
(
π
M

)
.

3The mutual impedance behaves roughly as a damped complex exponential with respect

to dipole spacing, as the waves propagate out from one dipole to another in the near-field

region.
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(C) For a fixed M and for a fixed R
λ

, but a variable m:

∆
λ

= R
λ

sin
(
m π

M

)

→ log |zm| = offset −αR
λ

sin
(
m π

M

)
.

From (A)-(C):

log |zm| = β

(
L

λ

)
− α

(
L

λ

)
R

λ
sin
(m
M
π
)
. (2.22)

and similarly,

∠zm = α

(
L

λ

)
− β

(
L

λ

)
R

λ
sin
(m
M
π
)
. (2.23)

In the above α
(
L
λ

)
means that α depends on L

λ
similarly for β

(
L
λ

)
.
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2.7 “Method of Moment” Electromagnetic Sim-

ulations of the Impedance Matrix

Consider a uniform circular array (UCA) of identical dipoles, spaced uni-

formly on a circle, but oriented perpendicular or radial to the circular plane.

Their mutual impedance is approximated by numerical simulations, via the“method

of moments” (MoM), a.k.a. the “boundary element method” (BEM), in or-

der to solve the Maxwell equations. This “method of moments” is known for

its reliability to solve for the unknown current distribution on wire antennas.4

This is critical here, because near-field mutual coupling (as in this thesis in-

vestigation) is induced by a smooth current distribution on the dipoles and by

rapid changes of the current distribution near the feed point, unlike far-zone

radiation pattern evaluation. The specific software used here is the “EMCoS

Antenna VLab”. The “EMCoS Antenna VLab” simulations were conducted

by simultaneously exciting each dipole with its own voltage source and while

connecting each dipole to its own load.

The EMCoS VLab is a full-functional “method of moments” based 3-

dimensional electromagnetic solver with CAD interface. The simulation pa-

rameters can be controlled and set through its graphical user interface (GUI)

in the Geometry mode, the Model mode, and the Mesh mode stages.

4Please see the details of the MoM technique in the reference [16]
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2.8 Research Methodology

In this section step by step phenomenological modeling method is described.

2.8.1 Geometry for the Phenomenological Modeling

This thesis has used the ”Phenomenological” or ”behavioral” method for

modeling of the electromagnetic mutual impedance among dipoles placed

uniformly on a circle as,

(A) the vertical dipoles spaced uniformly on a horizontal circle with inter-

dipole spacing (i) more or (ii) less than 1.0 λ, is shown in the figure 2.4,

Figure 2.4: The spatial geometry of a circular array of M = 5 identical

dipoles, spaced uniformly on a circle, but oriented perpendicular to the cir-

cular plane. Where ϕm

(
= 2π(m−1)

M

)
is the angular displacement of each

dipole.

(B) dipoles are oriented radially on a horizontal circle with inter-dipole

spacing less than 1.0 λ, is shown in the figure 2.5.
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Figure 2.5: The spatial geometry of a circular array of M = 5 identical

dipoles, spaced uniformly on a circle, but oriented radially to the circle’s

radius. Where φm

(
= 2π(m−1)

M

)
is the angular displacement of each dipole.

2.8.2 Perform VLab Simulation for the Mutual Impedance

Matrix

There are two stages in the VLab processing namely ”pre-processing” and

”post-processing”. Three modes such as ”Geometry Mode”, ”Model Mode”,

and ”Mesh Mode” are belonged to the ”pre-processing” stage.

In the ”Geometry Mode” the uniform circular array of dipoles is con-

structed as shown in the figure 2.6 (the VLab screen-short view).

The physical parameters such as the dipole’s structure, feed segment, size

of each segment, and operating frequency are inserted in the ”Model Mode”

stage. The dipole feed segment’s termination device is also created in this

stage. The VLab view of the ”Model Mode” is shown in the figure 2.7.

The discretization of the obtained model for calculation is done in the

”Mesh Mode” step. According to the defined (in the ”Model Mode” stage)
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Figure 2.6: Geometry view of a circular array dipoles in VLab.

Figure 2.7: Model Mode view of a circular array dipoles in VLab.
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segmentation sizes the wire segments are generated in this ”Mesh Mode”

period. For generating the output, a port is created in each dipole. The

VLab view of the ”Mesh Mode” is shown in the figure 2.8.

Figure 2.8: Mesh Mode view of a circular array dipoles in VLab.

Finally, the mutual impedance calculation is functioned in the ”post-

processing” stage and from where we can extract the data for our further

analyze of modeling.
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Parameters− for−VLab− Simulation :

This thesis has characterized the mutual coupling among M number of

identical dipoles of length L
λ
∈ {0.1, 1.0}, how the M ×M mutual impedance

matrix’s entries would vary with

1) the dipoles’ normalized length (L
λ

),

2) the number M of such dipoles in the circular array, and

3) the circle’s radius (R
λ

).

Due to the uniform circular array’s rotational symmetry, this M × M

mutual impedance matrix has only bM+1
2
c number of distinct entries.

In all VLab simulations, all electric dipoles have a core diameter of 0.02

millimeters, a feeding gap of λ
50

, a wavelength-normalized length of L
λ
∈

{0.1 ∼ 1.0}. There are 1000 segments over the length of each dipole. The

array circle radius R
λ
∈ {0.3 ∼ 20}. The number M of dipoles is M ∈ {5 ∼

10}. The student edition of ”EMCoS Antenna VLab v1.0.1 SV” would run

out of memory for a higher value for M .

From our VLab simulation output, we have got a circulant matrix of the

mutual impedance, e.g., a 6 × 6 circulant matrix Z would take the mathe-

matical form of

Z =




z0 z1 z2 z3 z4 z5

z5 z0 z1 z2 z3 z4

z4 z5 z0 z1 z2 z3

z3 z4 z5 z0 z1 z2

z2 z3 z4 z5 z0 z1

z1 z2 z3 z4 z5 z0




, (2.24)

which has only M numbers of distinct entries, and where z0 is the self-

impedance, and the mutual impedance is zm,m = 1, 2, ..., (M−1). The VLab
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simulations indicated that z1 = z5 and z2 = z4, always and exactly. These

equalities are expected on account of geometric symmetry on the unit circle.

Moreover, due to the circular array’s clockwise and counterclockwise sym-

metry, the M×M mutual impedance matrix would have only dM+1
2
e number

of distinct entries, where dxe refers to the smallest integer greater than or

equal to x.

2.8.3 Model Fitting and Select the Best Model

For the model fitting, we have chosen |z0|, |zm|,∠z0, and ∠zm, the magnitude

(|.|) and phase (∠.) of the self-and mutual impedance respectively, instead

of Re{z0}, Re{zm}, Im{z0}, and Im{zm}. This is because |z0|, |zm|, Re{zm},
and Im{zm} each takes on values over a large range. Hence to avoid over-

weighting of the large values, log|z0|, and log|zm| will be fitted versus log L
λ

.

However, Re{z0} and Re{zm} could go negative , rendering log(.) inapplica-

ble, see in figure 2.9.

0
20

2000

1

4000

ℜ
{z

0
}

15 0.8

6000

R

λ

0.6

L

λ

8000

10 0.4
0.2

5 0

(a)

-400
20

-200

1

0

ℜ
{z

m
}

15 0.8

200

R

λ

0.6

L

λ

400

10 0.4
0.2

5 0

(b)

Figure 2.9: VLab data of <{z0} and <{zm} versus L
λ

versus R
λ

for M = 6.

In the first stage of the model fitting we can define an objective function
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as

SSE =
N∑

n=1

(zn − ẑn)2, (2.25)

where the sum-of-squares error (SSE) denotes the closeness of the VLab

data (the length of N is all combination of M × R
λ
× L

λ
data length) of the

impedance (zn) and the model’s predicted impedance (ẑn) values for the N

number of observations.

Second, for finding the unknown coefficients of the predicted model we

need to optimize the SSE error function by minimization as follows

{α1, α2, ..., αp} = arg min
α

N∑

n=1

(zn − ẑn)2, (2.26)

where {α1, α2, ..., αp} are the unknown coefficients, and p represents the

number of coefficients to be optimized.

Third, we have tested our model’s the goodness-of-fit of by the number

of coefficients (a.k.a. the number of degrees-of-freedom) and the value of R2.

The R2 is computed as

R2 = 1− SSE

SST
, (2.27)

where the sum-of-squares total (SST ) denotes the closeness of the data

from the mean, symbolically,

SST =
N∑

n=1

(zn − z̄)2, (2.28)

where the mean of the VLab data (z̄) is

z̄ =
1

N

N∑

n=1

zn. (2.29)
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The range of R2 value is between 0 and 1, the value closer to 1 indicating

that a greater proportion of the variance is accounted for by the model. The

higher the R2, the better is the model fitting.

An MATLAB code is written for performing the four dimensional model

fitting, i.e. |z0|,M, R
λ
, and L

λ
, to produce the optimized coefficients and the

corresponding R2 value.

How to select the best−model− fit?

Finally, based on the highest R2 value and with fewer numbers of the

coefficients (a.k.a. degrees-of-freedom) the model has selected. The chosen

model has returned the closest value of the VLab data and considerable with

the existing electromagnetic theories and principles.
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Chapter 3

UCA of Vertical Dipoles with

Inter-dipole Spacing more than

1.0λ

A “phenomenological” or “behavioral” approach is used here to model the

electromagnetic mutual impedance among dipoles placed uniformly on a cir-

cle, with the dipole axis perpendicular to the circular plane, where the inter-

dipole spacing is 3.0λ to 20λ. This “phenomenological” or “behavioral”

approach leads to a simple closed form for the mutual impedance matrix,

explicitly in terms of the dipoles’ electric length, the number of dipoles on

the circle, and the circle’s radius.

3.1 Introduction

In this chapter, we have considered a circular array shown in the figure 3.1,

where the dipole’s axis is parallel to the z-axis and spaced uniformly on the

x− y plane. The angular location of each dipole is
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ϕm = 2π(m− 1)/M, (3.1)

where M is the number of dipoles in an array, m = 1, 2, ...,M ,

and the inter-dipole spacing is

∆ = 2R sin(π/M), (3.2)

where R is the radius of the circle.

Figure 3.1: The spatial geometry of a circular array of M = 6 identical

dipoles, spaced uniformly on a circle, but oriented perpendicular to the cir-

cular plane.

Such a uniform circular array (UCA) of dipoles oriented orthogonal to

the circular plane – it has been used in [32,33,37–39,42,51,53,60,66,68].
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3.2 Basic Consideration to Generate the Mu-

tual Impedance Matrix

To obtain mathematically simple models of the mutual impedance matrix’s

2dM+1
2
e real-value scalars, this dissertation uses a “phenomenological” or

“behavioral” approach as described in Chapter 2.

In this chapter, we have assumed for all subsequently presented results:

each dipole’s diameter is maintained at 0.02λ millimeters; each dipole’s feed-

ing gap equals λ
50

; the voltage source’s internal impedance is always matched

to a half-wavelength dipole, regardless of the actual value of L
λ

; there exist

1, 000 segments1 over the length of each dipole. The following 3 × 3 × 18

combinations of numerical settings are evaluated:

1) a radius of R ∈ {5, 10, 20}λ for the circle,

2) M ∈ {6, 8, 10} number of identical dipoles on the circle2,

3) each dipole’s electric length L
λ
∈ {0.1, 0.2, 0.3, 0.4, 0.45,0.49, 0.5,

0.51, 0.55, 0.6, 0.7, 0.8, 0.9, 0.92, 0.93, 0.95, 0.99, 1.0},

4) inter-dipole spacing is shown in the Table 3.1.

1In MoM analysis, currents of the antenna are divided by segments. The charge distri-

bution on a wire has been accomplished by approximating the unknown with some basis

functions, dividing the wire into segments, and then sequentially enforcing the unknown

current at the center of each segment to form a set of linear equations. The antenna’s

radiation characteristics and feed point impedance are derived from the current distribu-

tion. [11]
2The student edition of EMCoS Antenna VLab V 1.0.1 SV would run out of memory

for a higher value for M .
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Table 3.1: Inter-dipole spacing in a UCA of large circle’s radius

inter-dipole spacing, ∆ = 2R sin(π/M)

Radius M = 6 M = 8 M = 10

R = 5 λ 5 λ 3.83 λ 3.09 λ

R = 10 λ 10 λ 7.65 λ 6.18 λ

R = 20 λ 20 λ 15.31 λ 12.36 λ
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3.3 Phenomenological Model of the Entire Trivari-

ate Dataset

3

3.3.1 Magnitude of the Self-impedance (|z0|)

In an array all dipoles’ self-impedance are equal and vary by a dipole’s length.

At a dipole length of exactly half-wave, the impedance is slightly inductive,

but it drops rapidly to zero as the dipole length is foreshorten. At resonance,

the dipole impedance is fully resistive. Below the resonance its impedance

is capacitive. For a dipole’s of an electrical length L
λ
< λ

2
, the radiation

resistance decreases monotonically with length and is almost independent of

diameter.

The “best” model 4 for the magnitude of the self-impedance for the entire

trivariate dataset is found as

|z0| u exp





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2

∣∣∣∣∣∣



 , (3.3)

where

α1 := 8.6288,

α2 := −0.1745,

α3 := 0.0333,

α4 := 0.5184,

with R2 = 0.9678.

3“Other candidate models are presented in appendix A.
4“Best” considering the fewness of coefficients.
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Figure 3.2: Magnitude of the self-impedance (loge(|z0|)) versus L
λ
∈ [0.1, 1.0]

for M = {6, 8, 10} and R
λ

= {5, 10, 20}.

According to the R2 value of 0.9678, this model can explain 96.78% of

the variability in the VLab’s data of the magnitude of the self-impedance.

The R2 is evaluated of the equation (3.3) as

loge |z0| u





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2

∣∣∣∣∣∣



 . (3.4)

Figure 3.2 shows the results of fitting (graphical view) of VLab data

with least-squares fitted curve (Model). From the figure we can observe that

when L
λ

becomes small, the dipole works like an open circuit with maxi-

mum impedance and decreasing by increasing L
λ

up to 0.5 after that again

impedance increases before decreasing L
λ

near 1.0.

This trend is reasonable in view of electromagnetics, the magnitude of

|z0| should go through a minimum at near L
λ

= 0.5,

The partial derivation of equation (3.3) with respect to L
λ

is
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d|z0|
dL
λ

= exp



α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2



 .


d|z0|
dL
λ



α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2








= exp



α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2





.




{
α3 +

(
L
λ
− α4

)2
}{
−2α2

L
λ

}
− α2

(
1−

(
L
λ

)2
){

2(L
λ
− α4)

}

{
α3 +

(
L
λ
− α4

)2
}2


 ,

(3.5)

Now setting the derivative to zero and the above equation (3.5) becomes

{
α3 +

(
L

λ
− α4

)2
}{
−2α2

L

λ

}
− α2

{
1−

(
L

λ

)2
}{

2

(
L

λ
− α4

)}
= 0,(3.6)

{2α2α4}
(
L

λ

)2

− 2
{
α2α3 + α2(α4)2 + α2

}(L
λ

)
+ {2α2α4} = 0, (3.7)

L

λ
=
{α3 + (α4)2 + 1} ±

√
{α3 + (α4)2 + 1}2 − 4α4α4

2α4

. (3.8)

By substituting all the coefficients value into equation (3.8), we find the

|z0| is minimum at L
λ
≈ 0.4959.
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3.3.2 Phase of the Self-impedance (∠z0)

5 6

The best model for the phase of the self-impedance is

∠z0 u β1 sin

(
2π
L

λ

)
, (3.9)

where

β1 := −1.7343,

with R2 = 0.8607.

According to the R2 value of 0.8607, our model can explain 86.07% of

the VLab’s data for the phase of the self-impedance. Figure 3.3 shows the

results of fitting (graphical view) of VLab data with least-squares fitted curve

(Model). From the figure we can observe that the changing of the phase is

as like a simple ’sin’ wave, and it goes to zero near the L
λ
≈ 0.5.
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Figure 3.3: Phase of the self-impedance (∠z0) versus L
λ
∈ [0.1, 1.0] for M =

{6, 8, 10} and R
λ

= {5, 10, 20}.
5“best”in terms of fewness of parameters.
6“Other candidate models are presented in appendix A.
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According to electromagnetics, the dipole’s electric-field pattern is exactly

sin θ, where θ denotes the spatial angle with respect to the dipole axis. Again,

the dipoles go through a resonance at L
λ
≈ 1

2
, and the phase behavior changes

because the real part keeps rising while the imaginary part goes from negative

to positive, then start to track the real part.

Further, the self-impedance is independent of M and of R
λ

, as shown

in the figures 3.2 and 3.3, and this independence is reasonable in terms of

electromagnetics, because the inter-dipole spacing in here is larger even with

the large value of M . Due to this the dipoles are significantly far apart

relative to the size of their near fields. Thus, the self-impedance may no

longer be dependent on the presence of the other dipoles.
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3.3.3 Magnitude of the Mutual Impedance: |zm|, ∀m ∈
{1, 2, · · · , dM−1

2 e}

The magnitude of the mutual impedance is modeled by varying the radius
(
R
λ

)
and the number of elements (M) of the UCA for L

λ
= 0.1 ∼ 1.0.
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Figure 3.4: VLab data of the magnitude of the mutual impedance( loge(|zm|))
versus R

λ
and versus m

M
at L

λ
= 0.1.

7

The proposed ”best” phenomenological model for the magnitude of the

mutual impedance is 8 9

|zm| u
{
γ1

(
L

λ

)γ2
(
λ

R

) ∣∣∣
(

1− cos
(

2π
m

M

))γ3
}∣∣∣∣ , (3.10)

where

γ1 := 1909.24,

7The VLab data plots of L
λ = 0.1 ∼ 1.0 are shown in appendix D.1

8“Best” considering the fewness of coefficients.
9“Other candidate models are presented in appendix A.
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γ2 := 8.894,

γ3 := −0.2798,

with R2 = 0.8347.

According to the R2 value of 0.8347, our model can explain 83.47% of the

variability in the VLab’s data for the magnitude of the mutual impedance.

The R2 is evaluated of the equation (3.10) as

loge |zm| u loge γ1 + γ2 loge

(
L

λ

)
− loge

(
R

λ

)
+ γ3 loge

∣∣∣
(

1− cos
(

2π
m

M

))∣∣∣ .(3.11)

The inversely proportional relationship between the magnitude |zm| of

the mutual impedance and the radius of the circle (R
λ

) in equation (3.10)

suggests that the magnitude decreases monotonically with an increase inter-

dipole separation by R
λ

. Indeed as R
λ
≈ ∞ the model gives |zm| ≈ 0.

This trend is reasonable in terms of electromagnetics because the induced

electric fields among the neighboring dipoles are proportional and whose

magnitude is inversely proportional to the distance between the emitting

dipole and the induced dipole.

Further, the magnitude of the mutual impedance is directly proportional

to the length of the dipole. In terms of electromagnetics this is obvious,

because the emitted and the induced current depends on the surface area of

the dipole and which is increased by increasing the length of the dipole.

The absolute part of the model equation (3.10) (as shown in figure 3.5)

suggest that |zm| would increase as the number of dipoles M increase in an

array (as the VLab data plots in the figure 3.6).

This is considerable in terms of electromagnetics, because the excited

voltage and the induced voltage would increase as the number of antennas

in an array increased as well as the mutual impedance increases.
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Figure 3.5: The absolute part of the model eq.(3.10) versus m
M
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Figure 3.6: VLab data of the magnitude of the mutual impedance (a) versus

L
λ

versus R
λ

, and (b) versus R
λ

versus M .
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3.3.4 Phase of the Mutual Impedance: ∠zm, ∀m ∈ {1, 2, · · · ,
dM−1

2 e}

The phase of the mutual impedance is modeled by varying the radius
(
R
λ

)

and the number of elements (M) of the UCA for L
λ

= 0.1 ∼ 1.0.
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Figure 3.7: VLab data of the phase of the mutual impedance (∠zm) versus

R
λ

and versus m
M

, at L
λ

= 0.2, using MOD operator and ±360◦.

The proposed ”best” phenomenological model for the phase of the mutual

impedance is

10 11

∠zm u

{
δ1 − δ2

(
R

λ

)0

sin
(
δ3

(m
M

))}{1 + δ4

(
L
λ

)
+ δ5

(
L
λ

)2

δ6 + δ7

(
L
λ

)
+
(
L
λ

)2

}
,(3.12)

where

δ1 := 2.3399,

δ2 := 3.1079,

10“Best” considering the fewness of coefficients.
11“Other candidate models are presented in appendix A.

49



δ3 := 7.2066,

δ4 := −2.5483,

δ5 := 1.6364,

δ6 := 0.6377,

δ7 := −1.5876,

with R2 = 0.8230.

According to the R2 value of 0.8230, our model can explain 82.30% of the

variability in the VLab’s data for the phase of the mutual impedance.

The first part of our model equation (3.12) states that the phase of the

mutual impedance is varying sinusoid, shown in the figure 3.8, and this is

obvious in view of electromagnetics because the dipole’s electric-field pattern

is exactly sinusoid.
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Figure 3.8: The first part of eq. (3.12) versus m
M

, where M = 10, and

m = 1, 2, 3, ..., (M − 1).

The fractional inside of the last part of our model equation (3.12) states

that the phase of the mutual impedance is varying with the dipole’s length

as in the figure 3.9 (b), The trend of change of the phase with L
λ

is reasonable
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, and (b) the phase of the mutual impedance from model equation (3.12)

versus L
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.

in view of VLab data as shown in the figure 3.9 (a).
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3.4 DOA Estimation

To show the utility of the proposed phenomenological mutual coupling model,

the performance of the DOA estimation with the UCA of vertical dipoles is

analyzed in this section.

3.4.1 Measurement Model

Suppose a pure tone signal s(t) = exp[j(ωt+ψ)] impinge on a horizontal UCA

of M vertical dipoles with the direction-of-arrival (DOA) of (θ, φ), where ψ

is the initial phase, θ denotes the elevation angle measured from the positive

z-axis, and φ denotes the azimuth angle measured from the positive x-axis

as in figure 2.2. At the tth time instant the received signal model is

x(t) = a(θ, φ,C) s(t) + n(t), (3.13)

where n(t) denotes a M×1 the spatially white Gaussian thermal noise vector

with zero mean and covariance σ2IM and C is the M ×M coupling matrix

as in (2.21). Thus x(t) ∼ N (µ,Σ) where µ = a(θ, φ,C)s(t) and Σ = σ2IM .

The UCA array manifold equals to (please see (2.10) for details)

a(θ, φ,C) = C




ej
2π
λ
R sin(θ) cos(φ)

ej
2π
λ
R sin(θ) cos(φ− 2π

M )

...

ej
2π
λ
R sin(θ) cos(φ− 2π(M−1)

M )



. (3.14)

Collecting N discrete time samples of the received signal (3.13), i.e., xn =

x(tn) for n = 1, 2, . . . , N , gives the observed data matrix

X = a(θ, φ,C) s + N, (3.15)
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where X , [x1,x2, . . . ,xN ], s = [s(t1), s(t2), . . . , s(tN)], and N is the thermal

noise matrix.

3.4.2 Maximum Likelihood Estimator

From equation (3.13), the joint probability density function for the multi-

variate Gaussian vector x(t) equals to

f (xn|(θ, φ,C)) =
exp

{
−1

2
(xn − µ)H Σ−1 (xn − µ)

}

[(2π)M det(Σ)]
1
2

(3.16)

With the N independent snapshots, the likelihood function can be ex-

pressed as

f (x1,x2, ...,xN |(θ, φ,C))

=
N∏

n=1

f (xn|(θ, φ,C))

=

∏N
n=1 exp

{
−1

2
(xn − µ)H Σ−1 (xn − µ)

}

[(2π)M det(Σ)]
N
2

(3.17)

The log-likelihood function equals to

L(θ, φ,C) = ln f (x1,x2, ...,xN |(θ, φ))

= − 1

2

N∑

n=1

{
(xn − µ)H Σ−1 (xn − µ)

}
− N

2
ln
[
(2π)M det(Σ)

](3.18)

C is unknown

From (3.18), the maximum likelihood estimator (MLE) can be found as

(θ̂, φ̂, Ĉ) = arg
θ,φ,C

max L(θ, φ,C) (3.19)
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By noting that the second term in (3.18) is data independent, finding the

MLE in (3.19) is equivalent to minimize the variance of the observed data as

(θ̂, φ̂, Ĉ) = arg
θ,φ,C

min
N∑

n=1

{
(xn − µ)H Σ−1 (xn − µ)

}

= arg
θ,φ,C

min
N∑

n=1

{
(xn − µ)H (xn − µ)

}
,

(3.20)

where the second equality holds because Σ = σ2IM .

In the optimization (3.20), 4+2bM
2
c real variables (θ, φ, <{z0}, ={z0}, . . .,

<{zbM
2
c}, ={zbM

2
c}) are simultaneously searched. As a UCA with M vertical

dipoles takes 2M real measurements, (3.20) works under the condition of

2M ≥ 4 + 2bM
2
c, or equivalently M ≥ 3.

C is known or modeled

When C is priorly known or calculated using the proposed phenomenological

model of Z, the maximum likelihood estimator can be similarly found as

(θ̂, φ̂) = arg
θ,φ

min
N∑

n=1

{
(xn − µ)H (xn − µ)

}
, (3.21)

3.4.3 Monte Carlo Simulations

Three cases are shown by assuming the estimation algorithm

(i) knows the exact mutual coupling matrix in C =VLab data in (2.21);

(ii) pretends there’s no mutual coupling such that C is a scaled identity

matrix, and estimates the DOA using equation (3.21);

(iii) assumes the proposed phenomenological model of the mutual coupling

matrix, and estimates the DOA using equation (3.21);
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To have a fair comparison with the same level of SNR, in each of the above

cases the mutual coupling matrix is normalized by its Frobenius norm.

3.4.4 Monte Carlo Simulation Plots

Monte Carlo simulations using eq. (3.3), eq. (3.9), eq.(3.10), and eq. (3.12)

of |z0|, ∠z0, |zm|, and ∠zm respectively.

The DOA estimation plots in the figures 3.10 ∼ 3.21 show the estimation

root-mean-square error (RMSE)12 of φ̂ and θ̂, versus SNR in dB. Each icon

in figures represents 1000 independent Monte-Carlo trails.

These figures verify the usefulness of the proposed phenomenological

models- that these models offer estimation precisions almost as good as if

the exact impedance were known, whereas ignoring mutual coupling causes

a degradation that can be several orders of magnitude.

12Expression in appendix D.2
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Figure 3.10: RMSE versus SNR at L
λ

= 0.45, M = 6, R
λ

= 5, and (φ, θ) =

(300, 450): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 3.11: RMSE versus SNR at L
λ

= 0.5, M = 6, R
λ

= 5, and (φ, θ) =

(360, 360): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 3.12: RMSE versus SNR at L
λ

= 0.6, M = 6, R
λ

= 5, and (φ, θ) =

(300, 600): 180 sanpshots, 1000 Monte Carlo trials
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Figure 3.13: RMSE versus SNR at L
λ

= 0.7, M = 6, R
λ

= 5, and (φ, θ) =

(450, 300): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 3.14: RMSE versus SNR at L
λ

= 0.8, M = 6, R
λ

= 5, and (φ, θ) =

(450, 300): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 3.15: RMSE versus SNR at L
λ

= 0.9, M = 6, R
λ

= 5, and (φ, θ) =

(300, 300): 180 sanpshots, 1000 Monte Carlo trials
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Figure 3.16: RMSE versus SNR at L
λ

= 0.45, M = 8, R
λ

= 5, and (φ, θ) =

(300, 300): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 3.17: RMSE versus SNR at L
λ

= 0.55, M = 8, R
λ

= 10, and (φ, θ) =

(300, 450): 180 sanpshots, 1000 Monte Carlo trials
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Figure 3.18: RMSE versus SNR at L
λ

= 0.6, M = 8, R
λ

= 5, and (φ, θ) =

(450, 450): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 3.19: RMSE versus SNR at L
λ

= 0.6, M = 10, R
λ

= 10, and (φ, θ) =

(300, 300): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 3.20: RMSE versus SNR at L
λ

= 0.7, M = 10, R
λ

= 5, and (φ, θ) =

(300, 450): 180 sanpshots, 1000 Monte Carlo trials
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Figure 3.21: RMSE versus SNR at L
λ

= 0.8, M = 10, R
λ

= 5, and (φ, θ) =

(450, 600): 180 sanpshots, 1000 Monte Carlo trials.
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3.5 Summary

The proposed phenomenological models for the magnitude and the phase of

the self-and mutual impedance for the UCA of vertical dipoles with inter-

dipole spacing more than 1λ are summarized in the Table 3.2.

Table 3.2: The best phenomenological models for a UCA of vertical dipoles

Inter-dipole spacing of vertically oriented dipoles, more than 1λ.

Impedance Models

|z0| |z0| u exp

{∣∣∣∣α1 +
α2

(
1−(Lλ )

2
)

α3+(Lλ−α4)
2

∣∣∣∣
}
,

where α1 := 8.6288, α2 := −0.1745, α3 := 0.0333, α4 :=

0.5184.

∠z0 ∠z0 u β1 sin
(
2πL

λ

)
,

where β1 := −1.7343.

|zm| |zm| u
{
γ1

(
L
λ

)γ2
(
λ
R

) (
1− cos

(
2π m

M

))γ3
}
,

where γ1 := 1909.24, γ2 := 8.894, γ3 := −0.2798.

∠zm ∠zm u
{
δ1 − δ2

(
R
λ

)0
sin
(
δ3

(
m
M

))}{1+δ4(Lλ )+δ5(Lλ )
2

δ6+δ7(Lλ )+(Lλ )
2

}
,

where δ1 := 2.3399, δ2 := 3.1079, δ3 := 7.2066, δ4 :=

−2.5483, δ5 := 1.6364, δ6 := 0.6377, δ7 := −1.5876.
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Chapter 4

UCA of Vertical Dipoles with

Inter-dipole Spacing less than

1.0λ

A “phenomenological” or “behavioral” approach is used here to model the

electromagnetic mutual impedance among dipoles placed uniformly on a cir-

cle, with the dipole axis perpendicular to the circular plane, where the inter-

dipoles spacing vary from 0.2 λ to 1.0 λ.

4.1 Introduction

In this chapter, we have considered a circular array shown in the figure 4.1,

where the dipole’s axis is parallel to the z-axis and spaced uniformly on the

x− y plane. The angular location of each dipole is

ϕm = 2π(m− 1)/M, (4.1)

61



where M is the number of dipoles in an array, m = 1, 2, ...,M ,

and the inter-dipole spacing is

∆ = 2R sin(π/M), (4.2)

where R is the radius of the circle.

Figure 4.1: The spatial geometry of a circular array of M = 5 identical

dipoles, spaced uniformly on a circle, but oriented perpendicular to the cir-

cular plane.

Such a uniform circular array (UCA) of dipoles oriented orthogonal to

the circular plane – it has been used in [32,33,37–39,42,51,53,60,66,68].

4.2 Basic Consideration to Generate the Mu-

tual Impedance Matrix

To obtain mathematically simple models of the mutual impedance matrix’s

2dM+1
2
e real-value scalars, this dissertation uses a “phenomenological” or
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“behavioral” approach as described in the chapter 2.

In this chapter, we have assumed for all subsequently presented results:

each dipole’s diameter is maintained at 0.02λ millimeters; each dipole’s feed-

ing gap equals λ
50

; the voltage source’s internal impedance is always matched

to a half-wavelength dipole, regardless of the actual value of L
λ

; there exist

1, 000 segments over the length of each dipole. The following 3 × 3 × 12

combinations of numerical settings will be evaluated:

1) a radius of R ∈ {0.3, 0.6, 1.0}λ for the circle,

2) M ∈ {5, 7, 9} number of identical dipoles on the circle1,

3) each dipole’s electric length L
λ
∈ {0.1, 0.2, 0.3, 0.4, 0.45,

0.5, 0.55, 0.6, 0.7,0.8, 0.9, 1.0},

4) inter-dipole spacing is shown in the Table 4.1.

Table 4.1: Inter-dipole spacing in a UCA of vertically oriented dipoles

inter-dipole spacing, ∆ = 2R sin(π/M)

Radius M = 5 M = 7 M = 9

R = 0.3 λ 0.35 λ 0.26 λ 0.2 λ

R = 0.6 λ 0.7 λ 0.52 λ 0.41 λ

R = 1.0 λ 1.17 λ 0.86 λ 0.68 λ

1The student edition of EMCoS Antenna VLab V 1.0.1 SV would run out of memory

for a higher value for M .
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4.3 Phenomenological Model of the Entire Trivari-

ate Dataset

2

4.3.1 Magnitude of the Self-impedance (|z0|)

The “best” model 3 for the magnitude of the self-impedance for the entire

trivariate dataset is found as

|z0| u exp





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2

∣∣∣∣∣∣



 , (4.3)

at

α1 := 8.3302,

α2 := −0.1375,

α3 := 0.0294,

α4 := 0.5173,

with R2 = 0.9232.

According to the R2 value of 0.9232, our model can explain 92.32% of the

VLab’s data variability for the magnitude of the self-impedance.

The R2 is evaluated of the equation (4.3) as

loge |z0| u





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2

∣∣∣∣∣∣



 . (4.4)

2“Other candidate models are presented in appendix B.
3“Best” considering the fewness of coefficients.
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Figure 4.2: Magnitude of the self-impedance (loge(|z0|)) versus L
λ
∈ [0.1, 1.0]

for M = {5, 7, 9} and R
λ

= {0.3, 0.6, 1.0}.

Figure 4.2 shows the results of fitting (graphical view) of VLab data

with least-squares fitted curve (Model). From the figure we can observe that

when L
λ

becomes small, the dipole works like an open circuit with maximum

impedance and decreases by increasing L
λ

up to 0.5 after that the impedance

increases before decreasing L
λ

near 1.0.

This trend is reasonable in view of electromagnetics, the magnitude of

|z0| should go through a minimum at near L
λ

= 0.5.

The partial derivation of equation (4.3) with respect to L
λ

is
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d|z0|
dL
λ

= exp



α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2



 .


d|z0|
dL
λ



α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2








= exp



α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2





.




{
α3 +

(
L
λ
− α4

)2
}{
−2α2

L
λ

}
− α2

(
1−

(
L
λ

)2
){

2(L
λ
− α4)

}

{
α3 +

(
L
λ
− α4

)2
}2


 ,

(4.5)

now setting the derivative to zero and the above equation (4.5) becomes

{
α3 +

(
L

λ
− α4

)2
}{
−2α2

L

λ

}
− α2

{
1−

(
L

λ

)2
}{

2

(
L

λ
− α4

)}
= 0,(4.6)

{2α2α4}
(
L

λ

)2

− 2
{
α2α3 + α2(α4)2 + α2

}(L
λ

)
+ {2α2α4} = 0, (4.7)

L

λ
=
{α3 + (α4)2 + 1} ±

√
{α3 + (α4)2 + 1}2 − 4α4α4

2α4

. (4.8)

By substituting all the coefficients value into the equation (4.8), we find

the |z0| is minimum at L
λ
≈ 0.4988.
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4.3.2 Phase of the Self-impedance (∠z0)

4 5

The ”best” model for the phase of the self-impedance is

∠z0 u β1 sin

(
2π
L

λ

)
, (4.9)

where

β1 := −1.7678,

with R2 = 0.8589 .

According to the R2 value of 0.8589, our model can explain 85.89% of

the VLab’s data variability for the phase of the self-impedance. Figure 4.3

shows the results of fitting (graphical view) of VLab data with least-squares

fitted curve (Model). From the figure we can observe that the changing of the

phase is as like a simple sinusoid wave, and it goes to zero near the L
λ
≈ 0.5.
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Figure 4.3: Phase of the self-impedance (∠z0) versus L
λ
∈ [0.1, 1.0] for M =

{5, 7, 9} and R
λ

= {0.3, 0.6, 1.0}.
4“Best”in terms of fewness of parameters and R2.
5“Other candidate models are presented in appendix B.
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According to electromagnetics, the dipole’s electric-field pattern is exactly

sin θ, where θ denotes the spatial angle with respect to the dipole axis. Again,

the dipoles go through a resonance at L
λ
≈ 1

2
, and the phase behavior changes

because the real part keeps rising while the imaginary part goes from negative

to positive, then starting to track the real part.

Further, the model is independent of M and of R
λ

, for L
λ
< 0.4, even with

the largest M and smallest R
λ

, this is because the dipoles are significantly

far apart relative to the ”size” of their near fields. Thus, the self-impedance

may no longer be dependent on the presence of the other dipoles. When the

dipoles are larger
(
L
λ
> 0.4

)
, they have started to resonate more strongly, and

are more efficiently radiating into each other. Therefore,the self-impedance of

the magnitude of the figure 4.2, and the phase of the figure 4.3 have changed

with larger the dipole length
(
L
λ
> 0.4

)
for uniform circular array (UCA) of

radius less than 1λ.
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4.3.3 Magnitude of the Mutual Impedance: |zm|, ∀m ∈
{1, 2, · · · , dM−1

2 e}

The magnitude of the mutual impedance is modeled by varying the radius
(
R
λ

)
and the number of elements (M) of the UCA for L

λ
= 0.1 ∼ 1.0.
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Figure 4.4: VLab data of the magnitude of the mutual impedance(log10(|zm|))
versus R

λ
and versus m

M
at L

λ
= 0.2.

The proposed ”best” phenomenological model for the magnitude of the

mutual impedance is 6 7

|zm| u

{
10γ1

(
R

λ

)−γ2
(
L

λ

)γ3 ∣∣∣
(

1− cos
(

2π
m

M

))γ4
∣∣∣
}
, (4.10)

where

γ1 := 2.4097,

γ2 := 0.8806,

6“Best” considering the fewness of coefficients.
7“Other candidate models are presented in appendix B.
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γ3 := 3.2165,

γ4 := −0.3482,

with R2 = 0.8400.

According to the R2 value of 0.8400, our model can explain 84.00% of the

VLab’s data variability for the magnitude of the mutual impedance.

The R2 is evaluated of the equation (4.10) as

log10 |zm| u γ1 − γ2 log10

(
R

λ

)
+ γ3 log10

(
L

λ

)

+γ4 log10

∣∣∣
(

1− cos
(

2π
m

M

))∣∣∣ .
(4.11)

The inversely proportional relationship between the magnitude |zm| of

the mutual impedance and the radius of the circle (R
λ

) in equation (4.10)

suggests that the magnitude decreases monotonically with an increase inter-

dipole separation by R
λ

. Indeed as R
λ
≈ ∞ the model gives |zm| ≈ 0.

This trend is reasonable in terms of electromagnetics because the induced

electric fields among the neighboring dipoles are proportional and whose

magnitude is inversely proportional to the distance between the emitting

dipole and the induced dipole.

Further, the magnitude of the mutual impedance is directly proportional

to the length of the dipole. In terms of electromagnetics this is obvious,

because the emitted and the induced current depends on the surface area of

the dipole and which is increased by increasing the length of the dipole.

The absolute part of the model equation (4.10) suggest that |zm| increases

as the number of dipoles (M) increases in an array. The figure 4.5 shows that

the |zm| is the highest when the number of the dipoles (M = 9) is maximum

and decreasing as |M | decreases.
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Figure 4.5: The absolute part of the model eq.(4.10) versus m
M

, where M =

{5, 7, 9}, and m = 1, 2, 3, 4.

This is reasonable in terms of electromagnetics because the electric field

interaction from the excited dipoles towards the induced dipoles will increase

as the number of dipoles are increased in an array.
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4.3.4 Phase of the Mutual Impedance: ∠zm, ∀m ∈ {1, 2, · · · ,
dM−1

2 e}

The phase of the mutual impedance is modeled varying the radius
(
R
λ

)
and

the number of elements (M) of the UCA for L
λ

= 0.1 ∼ 1.0.
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Figure 4.6: VLab data of the phase of the mutual impedance (∠zm) versus

R
λ

and versus m
M

, at L
λ

= 0.1.

The proposed ”best” phenomenological model for the phase of the mutual

impedance is

8 9

∠zm u
{
δ1 − δ2 sin

(
π
(m
M

))}{1 + δ3

(
L
λ

)
+ δ4

(
L
λ

)2

δ5 + δ6

(
L
λ

)
+
(
L
λ

)2

}
, (4.12)

where

δ1 := 0.8439,

δ2 := 0.1039,

8“Best” considering the fewness of coefficients.
9“Other candidate models are presented in appendix B.
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δ3 := −3.3494,

δ4 := 2.7360,

δ5 := 0.6126,

δ6 := −1.5517,

with R2 = 0.8209.

According to the R2 value of 0.8209, our model can explain 82.09% of the

VLab’s data variability for the phase of the mutual impedance.

The first part of our model equation (4.12) states that the phase of the

mutual impedance is varying sinusoid, shown in the figure 4.7, and this is

obvious in view of electromagnetics because the dipole’s electric-field pattern

is exactly sinusoid.
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Figure 4.7: The first part of the model eq. (4.12) versus m
M

.

The fractional inside of the last part of our model equation (4.12) states

that the phase of the mutual impedance is varying with the dipole’s length

as in the figure 4.8.
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4.4 DOA Estimation

To show the utility of the proposed phenomenological mutual coupling model,

the performance of the DOA estimation with the UCA of vertical dipoles

is analyzed in this section. The details measurement model is same as in

the sub-section 3.4.1, here we have used the maximum-likelihood estimator

(MLE) for estimating the DOA elevation angle θ̂ and the azimuth angle φ̂ as

in the sub-section 3.4.2.

4.4.1 Monte Carlo Simulation Plots

We have considered three scenarios for Monte Carlo simulations as (i) the

mutual coupling is exactly known from the VLab simulation data, (ii) the

mutual coupling is approximately known from our proposed phenomenolog-

ical models, and (iii) pretends there’s no mutual coupling such that scaled a

identity coupling matrix. Monte Carlo simulations uses eq. (4.3), eq. (4.9),

eq.(4.10), and eq. (4.12) of |z0|, ∠z0, |zm|, and ∠zm respectively.

The DOA estimation plots in the figures 4.9 ∼ 4.20 show the estimation

root-mean-square error (RMSE)10 of φ̂ and θ̂, versus SNR in dB. Each icon

in figures represents 1000 independent Monte-Carlo trails.

These figures verify the usefulness of the proposed phenomenological mod-

els that these models offer estimation precisions almost as good as if the exact

impedance were known, whereas ignoring mutual coupling causes a degrada-

tion that can be several orders of magnitude.

10Expression in appendix D.2
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Figure 4.9: RMSE versus SNR at L
λ

= 0.45, M = 5, R
λ

= 0.6, and (φ, θ) =

(450, 600): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 4.10: RMSE versus SNR at L
λ

= 0.5, M = 5, R
λ

= 1.0, and (φ, θ) =

(300, 300): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 4.11: RMSE versus SNR at L
λ

= 0.55, M = 7, R
λ

= 1.0, and (φ, θ) =

(300, 300): 180 sanpshots, 1000 Monte Carlo trials
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Figure 4.12: RMSE versus SNR at L
λ

= 0.6, M = 7, R
λ

= 1.0, and (φ, θ) =

(300, 600): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 4.13: RMSE versus SNR at L
λ

= 0.7, M = 5, R
λ

= 0.6, and (φ, θ) =

(300, 600): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 4.14: RMSE versus SNR at L
λ

= 0.7, M = 7, R
λ

= 1.0, and (φ, θ) =

(300, 450): 180 sanpshots, 1000 Monte Carlo trials
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Figure 4.15: RMSE versus SNR at L
λ

= 0.7, M = 9, R
λ

= 1.0, and (φ, θ) =

(300, 300): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 4.16: RMSE versus SNR at L
λ

= 0.8, M = 9, R
λ

= 0.6, and (φ, θ) =

(300, 600): 180 sanpshots, 1000 Monte Carlo trials
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Figure 4.17: RMSE versus SNR at L
λ

= 0.8, M = 7, R
λ

= 0.6, and (φ, θ) =

(300, 600): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 4.18: RMSE versus SNR at L
λ

= 0.8, M = 5, R
λ

= 0.3, and (φ, θ) =

(300, 450): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 4.19: RMSE versus SNR at L
λ

= 0.9, M = 5, R
λ

= 0.6, and (φ, θ) =

(300, 450): 180 sanpshots, 1000 Monte Carlo trials
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Figure 4.20: RMSE versus SNR at L
λ

= 0.9, M = 9, R
λ

= 1.0, and (φ, θ) =

(300, 600): 180 sanpshots, 1000 Monte Carlo trials.
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4.5 Summary

The proposed phenomenological models for the magnitude and the phase of

the self-and mutual impedance for the UCA vertical dipoles with inter-dipole

spacing less than 1λ are summarized in the Table 4.2.

Table 4.2: The best phenomenological models for a UCA of vertical dipoles

of small circle’s radius

Inter-dipole spacing of vertically oriented dipoles, less than 1λ.

Impedance Models

|z0| |z0| u exp

{∣∣∣∣α1 +
α2

(
1−(Lλ )

2
)

α3+(Lλ−α4)
2

∣∣∣∣
}
,

where α1 := 8.3302, α2 := −0.1375, α3 := 0.0294, α4 :=

0.5173.

∠z0 ∠z0 u β1 sin
(
2πL

λ

)
,

where β1 := −1.7678.

|zm| |zm| u
{

10γ1
(
R
λ

)−γ2
(
L
λ

)γ3
∣∣(1− cos

(
2π m

M

))γ4
∣∣
}
,

where γ1 := 2.4097, γ2 := 0.8806, γ3 := 3.2165, γ4 :=

−0.3482.

∠zm ∠zm u
{
δ1 − δ2 sin

(
π
(
m
M

))}{1+δ3(Lλ )+δ4(Lλ )
2

δ5+δ6(Lλ )+(Lλ )
2

}
,

where δ1 := 0.8439, δ2 := 0.1039, δ3 := −3.3494, δ4 :=

2.7360, δ5 := 0.6126, δ6 := −1.5517.
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Chapter 5

UCA of Radially Oriented

Dipoles with Inter-dipole

Spacing less than 1.0λ

A “phenomenological” or “behavioral” approach is used here to model the

electromagnetic mutual impedance among dipoles placed uniformly on a cir-

cle, with the dipole axis radially oriented to the circular plane, where the

inter-dipoles spacing vary from 0.2 λ to 1.0 λ.

5.1 Introduction

In this chapter, we have considered a circular array shown in the figure 5.1,

where the dipoles are oriented radially and spaced uniformly on the x − y

plane. The angular location of each dipole is

φm = 2π(m− 1)/M, (5.1)
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where M is the number of dipoles in an array, m = 1, 2, ...,M ,

and the inter-dipole spacing is

∆ = 2R sin(π/M), (5.2)

where R is the radius of the circle.

Figure 5.1: The spatial geometry of a circular array of M = 5 identical

dipoles, spaced uniformly on a circle, but oriented radially to the circle’s

radius.

Such a uniform circular array (UCA) of dipoles oriented radially to the

circle’s radius – it has been used in [71,72].
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5.2 Basic Consideration to Generate the Mu-

tual Impedance Matrix

In this chapter, we have assumed for all subsequently presented results: each

dipole’s diameter is maintained at 0.02λ millimeters; each dipole’s feeding

gap equals λ
50

; the voltage source’s internal impedance is always matched to

a half-wavelength dipole, regardless of the actual value of L
λ

; there exist 1, 000

segments The following 3× 3× 12 combinations of numerical settings will be

evaluated:

1) a radius of R ∈ {0.5, 0.75, 1.0}λ for the circle,

2) M ∈ {5, 7, 9} number of identical dipoles on the circle1,

3) each dipole’s electric length L
λ
∈ {0.1, 0.2, 0.3, 0.4, 0.45,

0.5, 0.55, 0.6, 0.7,0.8, 0.9, 1.0},

4) inter-dipole spacing is shown in the Table 5.1.

Table 5.1: Inter-dipole spacing in a UCA of radially oriented dipoles

inter-dipole spacing, ∆ = 2R sin(π/M)

Radius M = 5 M = 7 M = 9

R = 0.5 λ 0.58 λ 0.43 λ 0.34 λ

R = 0.75 λ 0.88 λ 0.65 λ 0.51 λ

R = 1.0 λ 1.17 λ 0.86 λ 0.68 λ

1The student edition of EMCoS Antenna VLab V 1.0.1 SV would run out of memory

for a higher value for M .
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5.3 Phenomenological Model of the Entire Trivari-

ate Dataset

2

5.3.1 Magnitude of the Self-impedance (|z0|)

The “best” model 3 for the magnitude of the self-impedance for the entire

trivariate dataset is found as

|z0| u exp





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2

∣∣∣∣∣∣



 , (5.3)

at

α1 := 8.4156,

α2 := −0.1450,

α3 := 0.0303,

α4 := 0.5161,

with R2 := 0.9503.

According to the R2 value of 0.9503, our model can explain 95.03% of the

VLab’s data variability for the magnitude of the self-impedance.

The R2 is evaluated of the equation (5.3) as

loge |z0| u





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2

∣∣∣∣∣∣



 . (5.4)

Figure 5.2 shows the results of fitting (graphical view) of VLab data

with least-squares fitted curve (Model). From the figure we can observe that

2“Other candidate models are presented in appendix C.
3“Best” considering the fewness of coefficients.
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Figure 5.2: Magnitude of the self-impedance (loge(|z0|)) versus L
λ
∈ [0.1, 1.0]

for M = {5, 7, 9} and R
λ

= {0.5, 0.75, 1.0}.

when L
λ

becomes small, the dipole works like an open circuit with maximum

impedance and decreases by increasing L
λ

up to 0.5 after that the impedance

increases before decreasing L
λ

near 1.0.

This trend is reasonable in view of electromagnetics, the magnitude of

|z0| should go through a minimum at near L
λ

= 0.5,

The partial derivation of equation (5.3) with respect to L
λ

is

d|z0|
dL
λ

= exp



α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2



 .


d|z0|
dL
λ



α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2








= exp



α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2





.




{
α3 +

(
L
λ
− α4

)2
}{
−2α2

L
λ

}
− α2

(
1−

(
L
λ

)2
){

2(L
λ
− α4)

}

{
α3 +

(
L
λ
− α4

)2
}2


 ,

(5.5)

now setting the derivative to zero and the above equation (5.5) becomes

85



{
α3 +

(
L

λ
− α4

)2
}{
−2α2

L

λ

}
− α2

{
1−

(
L

λ

)2
}{

2

(
L

λ
− α4

)}
= 0,(5.6)

{2α2α4}
(
L

λ

)2

− 2
{
α2α3 + α2(α4)2 + α2

}(L
λ

)
+ {2α2α4} = 0, (5.7)

L

λ
=
{α3 + (α4)2 + 1} ±

√
{α3 + (α4)2 + 1}2 − 4α4α4

2α4

. (5.8)

By substituting all the coefficients value into equation (5.8), we find the

|z0| is minimum at L
λ
≈ 0.4984.
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5.3.2 Phase of the Self-impedance (∠z0)

4 5

The ”best” model for the phase of the self-impedance is

∠z0 u β1 sin

(
2π
L

λ

)
, (5.9)

where

β1 := −1.7454,

with R2 = 0.8803.

According to the R2 value of 0.8803, our model can explain 88.03% of

the VLab’s data variability for the phase of the self-impedance. Figure 5.3

shows the results of fitting (graphical view) of VLab data with least-squares

fitted curve (Model). From the figure we can observe that the changing of

phase is as like a simple sinusoid wave, and it goes to zero near the L
λ
≈ 0.5.
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Figure 5.3: Phase of the self-impedance (∠z0) versus L
λ
∈ [0.1, 1.0] for M =

{5, 7, 9} and R
λ

= {0.5, 0.75, 1.0}.
4“Best”in terms of fewness of parameters and R2.
5“Other candidate models are presented in appendix C.
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According to electromagnetics, the dipole’s electric-field pattern is exactly

sin θ, where θ denotes the spatial angle with respect to the dipole axis. Again,

the dipoles go through a resonance at L
λ
≈ 1

2
, and the phase behavior changes

because the real part keeps rising while the imaginary part goes from negative

to positive, then start to track the real part.

Further, the magnitude and the phase of the self-impedance is indepen-

dent of M and of R
λ

, as shown in the figure 5.2, and 5.3, and this independence

is reasonable in terms of electromagnetics, because of the rotational symme-

try of a UCA about its origin. The re-radiated signal from the induced

antenna to the excited antenna cancels each other and which is independent

on the number of antennas (M) and the radius (R
λ

) of a UCA.
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5.3.3 Magnitude of the Mutual Impedance: |zm|, ∀m ∈
{1, 2, · · · , dM−1

2 e}

The magnitude of the mutual impedance is modeled by varying the radius
(
R
λ

)
and the number of elements (M) of the UCA for L

λ
= 0.1 ∼ 1.0.
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0
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Figure 5.4: Magnitude of the mutual impedance of VLab data ( log10(|zm|))
versus R

λ
and versus m

M
at L

λ
= 0.1.

The proposed best phenomenological model for the magnitude of the

mutual impedance is 6 7

|zm| u

{
10γ1

(
R

λ

)−γ2
(
L

λ

)γ3 ∣∣∣
(

1− cos
(

2π
m

M

))γ4
∣∣∣
}
, (5.10)

where

γ1 := 1.6695,

γ2 := 1.5394,

6“Best” considering the fewness of coefficients.
7“Other candidate models are presented in appendix C.
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γ3 := 2.8833,

γ4 := −1.3020,

with R2 = 0.8488.

According to the R2 value of 0.8488, our model can explain 84.88% of the

VLab’s data variability for the magnitude of the mutual impedance.

The R2 is evaluated of the equation (5.10) as

log10 |zm| u γ1 − γ2 log10

(
R

λ

)
+ γ3 log10

(
L

λ

)

+γ4 log10

∣∣∣
(

1− cos
(

2π
m

M

))∣∣∣ .
(5.11)

The inversely proportional relationship between the magnitude |zm| of

the mutual impedance and the radius of the circle (R
λ

) in equation (5.10)

suggests that the magnitude decreases monotonically with an increase inter-

dipole separation by R
λ

. Indeed as R
λ
≈ ∞ the model gives |zm| ≈ 0.

This trend is reasonable in terms of electromagnetics because the induced

electric fields among the neighboring dipoles are proportional and whose

magnitude is inversely proportional to the distance between the emitting

dipole and the induced dipole.

Further, the magnitude of the mutual impedance is directly proportional

to the length of the dipole. In terms of electromagnetics this is obvious,

because the emitted and the induced current depends on the surface area of

the dipole and which is increased by increasing the length of the dipole.

The absolute part of the model equation (5.10) (as shown in figure 5.5)

suggest that |zm| is increased as the number of dipoles (M) increase in an

array.

This is considerable in terms of electromagnetics, because the excited

voltage and the induced voltage are increased as the number of antennas in
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Figure 5.5: The absolute part of the model eq.(5.10) versus m
M

, where M =

{5, 7, 9}, and m = 1, 2, 3, 4.

an array increased as well as the mutual impedance increases.
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5.3.4 Phase of the Mutual Impedance: ∠zm, ∀m ∈ {1, 2, · · · ,
dM−1

2 e}

The phase of the mutual impedance is modeled by varying the radius
(
R
λ

)

and the number of elements (M) of the UCA for L
λ

= 0.1 ∼ 1.0.
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Figure 5.6: Phase of the mutual impedance of VLab data (∠zm) versus R
λ

and versus m
M

, at L
λ

= 0.1.

The proposed best phenomenological model for the phase of the mutual

impedance is

8 9

∠zm u δ1 + δ2
L

λ
+ δ3

R

λ
+ δ4

m

M
, (5.12)

where

δ1 := 12.0839,

δ2 := 1.0268,

8“Best” considering the fewness of coefficients.
9“Other candidate models are presented in appendix C.
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δ3 := −16.4643,

δ4 := 1.8900,

with R2 = 0.8134.

According to the R2 value of 0.8134, our model can explain 81.34% of the

VLab’s data variability for the phase of the mutual impedance.

The phenomenological model of the phase in equation (5.12) suggests that

the phase of the mutual impedance varies linearly with the dipole’s length

L
λ

. In terms of electromagnetics this is considerable because the radiation is

emitted from driving dipole along that dipole’s entire length and is received

by the induced dipole along the induced dipole’s entire length. The average

of such distances increases linearly with the two dipoles’ length. Hence, the

phase would change linearly with L
λ

.

The negative value of the coefficient δ3 in equation (5.12) suggests that

the phase of the mutual impedance decreases linearly with the inter-dipole

spacing by varying R
λ

. In terms of electromagnetics this is reasonable because

the radiation propagation outward from the excited dipole, its phase would

change linearly with the distance transverse.

Also, the phase of the mutual impedance varies linearly with m
M

. This is

reasonable in terms of electromagnetics, because when the number of anten-

nas in an array increases, the interaction of the phase of the radiation and

the induced wave will change accordingly.
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5.4 DOA Estimation

To show the utility of the proposed phenomenological mutual coupling model,

the performance of the DOA estimation with the UCA of radially oriented

dipoles is analyzed in this section.

For an array of vertically oriented dipoles, the effective length of a dipole

can be factor out as a multiplicative factor common to all entries of the

array manifold. But to express the array manifold of radially oriented dipoles

where each dipole’s effective length as a function of that dipole’s orientation is

considered. The derivation of the array manifold for radially oriented dipoles

is used here as same as the equation (4.6) on p.42 of [19].

The maximum-likelihood estimator (MLE) is used here to estimate the

elevation angle θ̂ and the azimuth angle φ̂ as described in the sub-section

3.4.2.

5.4.1 Monte Carlo Simulation Plots

Three cases are shown by assuming the estimation algorithm

(i) knows the exact mutual coupling matrix in C = VLab data;

(ii) pretends there’s no mutual coupling such that C is a scaled identity

matrix;

(iii) assumes the proposed phenomenological model of the mutual coupling

matrix such that C is computed from our model equations;

To have a fair comparison with the same level of SNR, in each of the

above cases the mutual coupling matrix is normalized by its Frobenius norm.

Monte Carlo simulations using eq. (5.3), eq. (5.9), eq.(5.10), and eq.

(5.12) of |z0|, ∠z0, |zm|, and ∠zm respectively.
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The DOA estimation plots in the figures 5.7 ∼ 5.12 show the estimation

root-mean-square error (RMSE)10 of φ̂ and θ̂, versus SNR in dB. Each icon

in figures represents 1000 independent Monte-Carlo trails. 11

These figures verify the usefulness of the proposed phenomenological mod-

els that these models offer estimation precisions almost as good as if the exact

impedance were known, whereas ignoring mutual coupling causes a degrada-

tion that can be several orders of magnitude.

10Expression in appendix D.2
11The (γ, η) in the DOA plots figure caption is the polarization angle and the polariza-

tion phase diff. respectivley as in the p. 40 of ref. [19]
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Figure 5.7: RMSE versus SNR at L
λ

= 0.45, M = 5, R
λ

= 0.5, (φ, θ) =

(450, 300), and (γ, η) = (450, 300): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 5.8: RMSE versus SNR at L
λ

= 0.5, M = 5, R
λ

= 0.5, (φ, θ) =

(300, 150), and (γ, η) = (450, 300): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 5.9: RMSE versus SNR at L
λ

= 0.55, M = 7, R
λ

= 0.5, (φ, θ) =

(450, 300), and (γ, η) = (450, 300): 180 sanpshots, 1000 Monte Carlo trials

96



-20 -15 -10 -5 0 5 10 15 20

SNR, in dB

10-1

100

101

102

R
M
S
E
φ
,
in

d
eg
re
es

pretends no mutual coupling
modeled mutual coupling
known mutual coupling

-20 -15 -10 -5 0 5 10 15 20

SNR, in dB

10-1

100

101

102

R
M
S
E
θ
,
in

d
eg
re
es

pretends no mutual coupling
modeled mutual coupling
known mutual coupling

Figure 5.10: RMSE versus SNR at L
λ

= 0.6, M = 5, R
λ

= 0.75, (φ, θ) =

(300, 600), and (γ, η) = (450, 300): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 5.11: RMSE versus SNR at L
λ

= 0.6, M = 5, R
λ

= 0.5, (φ, θ) =

(450, 450), and (γ, η) = (450, 600): 180 sanpshots, 1000 Monte Carlo trials.
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Figure 5.12: RMSE versus SNR at L
λ

= 0.7, M = 5, R
λ

= 0.75, (φ, θ) =

(450, 300), and (γ, η) = (450, 300): 180 sanpshots, 1000 Monte Carlo trials
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5.5 Summary

The proposed phenomenological models for the magnitude and the phase of

the self-and mutual impedance for the UCA radial dipoles with inter-dipole

spacing less than 1λ are summarized in the Table 5.2.

Table 5.2: The best phenomenological models for a UCA of radial dipoles

Inter-dipole spacing of radially oriented dipoles, less than 1λ.

Impedance Models

|z0| |z0| u exp

{∣∣∣∣α1 +
α2

(
1−(Lλ )

2
)

α3+(Lλ−α4)
2

∣∣∣∣
}
,

where α1 := 8.4156, α2 := −0.1450, α3 := 0.0303, α4 :=

0.5161.

∠z0 ∠z0 u β1 sin
(
2πL

λ

)
,

where β1 := −1.7454.

|zm| |zm| u
{

10γ1
(
R
λ

)−γ2
(
L
λ

)γ3
∣∣(1− cos

(
2π m

M

))γ4
∣∣
}
,

where γ1 := 1.6695, γ2 := 1.5394, γ3 := 2.8833, γ4 :=

−1.3020.

∠zm ∠zm u δ1 + δ2
L
λ

+ δ3
R
λ

+ δ4
m
M
,

where δ1 := 12.0839, δ2 := 1.0268, δ3 := −16.4643, δ4 :=

1.8900.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The phenomenological study of the mutual coupling is a new approach for

modeling the mutual coupling of a UCA. In this thesis, we have obtained

the phenomenological models of the mutual coupling in a simple closed form

comparing to existing expression of ”Induced EMF method” or ”Integration

method” of the full complexity of nested integrals/sums in each entry of the

coupling matrix. We have used the EMCoS antenna VLab computer simula-

tion software to calculate the mutual coupling among an array. The EMCoS

uses the well-known method-of-moments (MoM) approach to calculate the

mutual coupling effects in an array.

We have proposed several phenomenological models with unknown co-

efficients based on the expected electromagnetic trends and the graphical

behavior of the VLab data plots of various scenarios. The unknown coef-

ficients are optimized by least-squares fitting. Then, based on the fitting

parameter R2, the low degrees-of-freedom, and considerable electromagnet-

ics explanation we have selected the best phenomenological models of the
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mutual coupling.

Chapter 3 presents the phenomenological models of the mutual coupling

among the vertical dipoles placed uniformly on a horizontal circle, where the

inter-dipole spacing is between 3 λ to 20 λ. We have explained our models in

terms of electromagnetic theories and principles. The demonstration of the

usefulness of these obtained models for direction-of-arrival (DOA) estimation

shows that our proposed models, estimation precisions as well as the mutual

coupling were exactly known.

Further, in Chapter 4, we have studied the phenomenological modeling

of the mutual coupling for the vertical dipoles on a horizontal circle where

the inter-dipole spacing between the dipoles’ varying from 0.3 λ to 1.0 λ.

These obtained models are considerable with the existing electromagnetic.

We have found that our proposed phenomenological models of the mutual

coupling provide the estimation precision for the DOA application as like the

mutual coupling were known perfectly.

Chapter 5 describes the phenomenological study of the mutual coupling

among dipoles oriented radially to the circle’s radius. The proposed phe-

nomenological models are reasonable in views of the existing electromagnetic.

Also, our obtained phenomenological models are found useful in direction

finding, despite these models’ few degrees of freedom. The DOA estimation

plots of RMSE versus SNR show that the phenomenological model estima-

tion accuracy is almost same as the mutual coupling were precisely computed.

Whereas overlooking the mutual coupling reasons a degradation up to a sev-

eral orders of magnitude.

The contribution of this research will be helpful in carrying out researches

for other antenna array configurations in the future. This dissertation serves

as an important reference for similar studies in modeling the mutual coupling
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or any other phenomena in antenna arrays.

6.2 Future Work

For the future work, the phenomenological study of the mutual coupling

among tangential dipoles spaced uniformly on a horizontal circle will inves-

tigate.

The geometry of the dipole antennas is shown in figure 6.1,

Figure 6.1: The spatial geometry of a circular array of M = 6 identical

dipoles, spaced uniformly on a circle, but oriented tangentially to the circular

plane.

where φm = 2π(m−1)
M

, (m = 1, 2, ...,M) is the angular displacement of each

dipole on the horizontal x− y plane, R denotes the radius of the circle, and

L is the length of each dipole antenna.

To use the EMCoS antenna VLab computer simulation software we will

produce the mutual coupling data by varying (i)the number of antennas (M)

in an array, (ii) the cirlce’s radius (R), and (iii) the length (L ) of each an-

tenna. Then several phenomenological models with unknown coefficients are
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proposed based on the data variation of the above trivariates, the unknown

coefficients will be optimized by least-squares fitting. Then the best models

will select based on the fewness of degrees-of-freedom.
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Appendix A

Candidate Models for a UCA

of Vertical Dioples in Chapter 3

A.1 Candidate Models of the Magnitude of

the Self-impedance (|z0|)

No further models have investigated for the magnitude of the self-impedance,

because our obtained phenomenological model is explained almost all our

VLab data by high R2 value. The proposed model is also reasonable in

terms of electromagnetic.
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A.2 Candidate Models of the Phase of the

Self-impedance (∠z0)

A.2.1 2-DoF Model

1

with R2 = 0.8920

∠z0 u β1 cos

(
2π
L

λ
+ β2

)
(A.1)

where

β1 = 1.7950,

β2 = 1.6976.

This model is not selected as the best model because of the higher number

of coefficients.

A.2.2 4-DoF Model

with R2 = 0.8966

∠z0 u β1 cos

(
β2
L

λ
+ β3

)
+ β4 (A.2)

where

β1 = 1.7959,

β2 = 6.1478,

1DoF is the ”Degrees-of-freedom”
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β3 = 1.7897,

β4 = −0.0920.

This model is not selected as the best model because of the higher number

of coefficients.

A.2.3 6-DoF Model

with R2 = 0.9596

∠z0 u




β1

(
L
λ

)β2 + β3, for 0.1≤ L
λ
<0.6

β4

(
L
λ

)β5 + β6, for 0.6≤ L
λ
≤1.0

(A.3)

where

β1 = 88.7448,

β2 = 5.5809,

β3 = −1.6783,

β4 = −1.6970,

β5 = 14.6934,

β6 = 1.2691.

Though the goodness of the fit R2 high, but this model is not selected as the

best model because of the higher number of coefficients and as well as not

explainable with existing electromagnetic.
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A.3 Candidate Models of the Mgnitude of

the Mutual Impedance (|zm|)

A.3.1 4-DoF Model

with R2 = 0.83547

|zm| u
{
γ1

(
L

λ

)γ2
(
λ

R

)γ3 (
1− cos

(
2π

m

M

))γ4
}

(A.4)

where

γ1 = 1710.45,

γ2 = 8.80049,

γ3 = 0.9392,

γ4 = −0.27891.

This model is not selected as the best model because of the higher number

of coefficients.

A.3.2 5-DoF Model-1

with R2 = 0.8597

|zm| u exp

{
γ1 − γ2 loge

(
R

λ

)
+ γ3 loge

(
L

λ

)
+ γ3 loge

∣∣∣sin
(
γ4

(m
M

)
π + γ5

)∣∣∣
}
(A.5)

where

γ1 = 15.9938,

γ2 = 0.9998,
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γ3 = 3.8457,

γ4 = −0.0183,

γ5 = 0.0978.

This model is not selected as the best model because of the higher number

of coefficients.

A.3.3 5-DoF Model-2

with R2 = 0.9737

|zm| u exp

{
γ1 + γ2

(
L

λ

)
−
(
R

λ

)γ3 ∣∣∣sin
(
γ4

(m
M

)
π + γ5

)∣∣∣
}

(A.6)

where

γ1 = −1.5817,

γ2 = 8.9804,

γ3 = 0.4132,

γ4 = 0.4455,

γ5 = 0.6905.

This model is not selected as the best model because of the higher number

of coefficients and not explainable with existing electromagnetic.
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A.4 Candidate Models of the Phase of the

Mutual Impedance (∠zm)

A.4.1 8-DoF Model -1

with R2 = 0.7510

∠zm u

{
δ1 − δ2

(
R

λ

)δ3
sin
(
δ4

(m
M

))}{1 + δ5

(
L
λ

)
+ δ6

(
L
λ

)2

δ7 + δ8

(
L
λ

)
+
(
L
λ

)2

}
(A.7)

where

δ1 = 2.3057,

δ2 = 3.0170,

δ3 = −0.0087,

δ4 = 7.2345,

δ5 = −2.5818,

δ6 = 1.6862,

δ7 = 0.6175,

δ8 = −1.5571.

This model is not selected as the best model because of the higher number

of coefficients and the goodness of fit R2 is not good enough.

A.4.2 8-DoF Model -2

with R2 = 0.7510

∠zm u

{
δ1 − δ2

(
R

λ

)0

sin
(
δ3

(m
M

))}{δ4 + δ5

(
L
λ

)
+ δ6

(
L
λ

)2

δ7 + δ8

(
L
λ

)
+
(
L
λ

)2

}
(A.8)
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where

δ1 = 2.1843,

δ2 = 2.8018,

δ3 = 7.2344,

δ4 = 1.0549,

δ5 = −2.7244,

δ6 = 1.7799,

δ7 = 0.6171,

δ8 = −1.5566.

This model is not selected as the best model because of the higher number

of coefficients and the goodness of fit R2 is not good enough.

A.4.3 9-DoF Model

with R2 = 0.7511

∠zm u

{
δ1 − δ2

(
R

λ

)δ3
sin
(
δ4

(m
M

))}{δ5 + δ6

(
L
λ

)
+ δ7

(
L
λ

)2

δ8 + δ9

(
L
λ

)
+
(
L
λ

)2

}
. (A.9)

where

δ1 = 2.184,

δ2 = 2.8580,

δ3 = −0.0086,

δ4 = 7.2344,

δ5 = 1.0555,

δ6 = −2.7250,

δ7 = 1.7797,
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δ8 = 0.6175,

δ9 = −1.5572.

This model is not selected as the best model because of the higher number

of coefficients and the goodness of fit R2 is not good enough.
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Appendix B

Candidate Models for a UCA

of Vertical Dioples in Chapter 4

B.1 Candidate Models of the Magnitude of

the Self-impedance (|z0|)

B.1.1 3-DoF Model

1

with R2 = 0.5743

|z0| u exp





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

0 +
(
L
λ
− α4

)2

∣∣∣∣∣∣



 , (B.1)

where

α1 = 9.4652,

1DoF is the ”Degrees-of-freedom”
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α2 = −7.8442,

α3 = 1.8081.

This model is not selected as the best model because of the higher number

of coefficients and the goodness of fit R2 is not good enough.

B.1.2 5-DoF Model-1

with R2 = 0.9239

|z0| u exp





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2

∣∣∣∣∣∣
+ α5

R

λ



 , (B.2)

where

α1 = 8.2580,

α2 = −0.1375,

α3 = 0.0294,

α4 = 0.5173,

α5 = 0.1139.

This model is not selected as the best model because of the higher number

of coefficients.

B.1.3 5-DoF Model-2

with R2 = 0.9241

|z0| u exp





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2

∣∣∣∣∣∣
+ α5M



 , (B.3)
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where

α1 = 8.4943,

α2 = −0.1375,

α3 = 0.0294,

α4 = 0.5173,

α5 = −0.0235.

This model is not selected as the best model because of the higher number

of coefficients and not explainable with existing electromagnetic.

B.1.4 6-DoF Model-1

with R2 = 0.9248

|z0| u exp





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2

∣∣∣∣∣∣
+ α5M + α6

(
R

λ

)
 , (B.4)

where

α1 = 8.4222,

α2 = −0.1375,

α3 = 0.0294,

α4 = 0.5173,

α5 = −0.0234,

α6 = 0.1139.

This model is not selected as the best model because of the higher number

of coefficients and not easy to explain by existing electromagnetic.
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B.1.5 6-DoF Model-2

with R2 = 0.9249

|z0| u exp





∣∣∣∣∣∣
α1 +

α2

(
1−

(
L
λ

)2
)

α3 +
(
L
λ
− α4

)2

∣∣∣∣∣∣



 (M)α5

(
R

λ

)α6

, (B.5)

where

α1 = 8.6765,

α2 = −0.1375,

α3 = 0.0294,

α4 = 0.5173,

α5 = −0.1593,

α6 = 0.0714.

This model is not selected as the best model because of the higher number

of coefficients and not explainable with existing electromagnetic.
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B.2 Candidate Models of the Phase of the

Self-impedance (∠z0)

B.2.1 2-DoF Model

with R2 = 0.8591

∠z0 u −β1 sin

(
2π
L

λ

)
e(−β2

R
λ ), (B.6)

where

β1 = 1.8314,

β2 = 0.0561.

This model is not selected as the best model because of the higher number

of coefficients and not explainable with existing electromagnetic.

B.2.2 3-DoF Model-1

with R2 = 0.8648

∠z0 u β1 + β2 sin

(
2π
L

λ

)
e(−β3

R
λ ), (B.7)

where

β1 = −0.0943,

β2 = −1.8315,

β3 = 0.0561.

This model is not selected as the best model because of the higher number

of coefficients and not explainable with existing electromagnetic.
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B.2.3 3-DoF Model-2

with R2 = 0.8646

∠z0 u β1M + β2 sin

(
2π
L

λ

)
e(−β3

R
λ ), (B.8)

where

β1 = −0.0128,

β2 = −1.8315,

β3 = 0.0561.

This model is not selected as the best model because of the higher number

of coefficients and not explainable with existing electromagnetic.

B.2.4 3-DoF Model-3

with R2 = 0.8662

∠z0 u β1M + β2
R

λ
+ β3 sin

(
2π
L

λ

)
, (B.9)

where

β1 = 0.0013,

β2 = −0.1644,

β3 = −1.7678.

This model is not selected as the best model because of the higher number

of coefficients and not explainable with existing electromagnetic.
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B.3 Candidate Models of the Magnitude of

the Mutual Impedance (|zm|)

B.3.1 3-DoF Model-1

with R2 = 0.6431

|zm| u
{
γ1

(
L

λ

)γ2
(
λ

R

)(
1− cos

(
2π

m

M

))γ3
}
, (B.10)

where

γ1 = 1284.38,

γ2 = 10.32,

γ3 = 0.213.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.3.2 3-DoF Model-2

with R2 = 0.8159

|zm| u

{
10γ1

(
R

λ

)−γ2
(
L

λ

)γ3 ∣∣∣
(

sin
(

2π
m

M

))∣∣∣
}
, (B.11)

where

γ1 = 2.5778,

γ2 = 0.8806,

γ3 = 3.2165.
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This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.3.3 4-DoF Model-1

with R2 = 0.8159

|zm| u

{
10γ1

(
R

λ

)−γ2
(
L

λ

)γ3 ∣∣∣
(

sin
(

2π
m

M
+ γ4

))∣∣∣
}
, (B.12)

where

γ1 = 2.5778,

γ2 = 0.8805,

γ3 = 3.2165,

γ4 = 3.1415.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.3.4 4-DoF Model-2

with R2 = 0.7917

|zm| u

{
10γ1

(
R

λ

)−γ2
(
L

λ

)γ3 ∣∣∣
(

sin
(
π
m

M
+ γ4

))∣∣∣
}
, (B.13)

where

γ1 = 2.5105,

γ2 = 0.8806,
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γ3 = 3.2165,

γ4 = 3.3791.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.3.5 4-DoF Model-3

with R2 = 0.6527

|zm| u
{
γ1

(
L

λ

)γ2
(
L

λ

)γ3 (
1− cos

(
2π

m

M

))γ4
}
, (B.14)

where

γ1 = 1713.98,

γ2 = 10.376,

γ3 = 0.7135,

γ4 = 0.1595.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.3.6 4-DoF Model-4

with R2 = 0.8305

|zm| u

{
10γ1

(
R

λ

)−γ2
(
L

λ

)γ3 ∣∣∣
(

sin
(

2π
m

M

))γ4
∣∣∣
}
, (B.15)

where
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γ1 = 2.4413,

γ2 = 0.8806,

γ3 = 3.2165,

γ4 = 0.2106.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.4 Candidate Models of the Phase of the

Mutual Impedance (∠zm)

B.4.1 4-DoF Model

with R2 = 0.4348

∠zm u δ1

(
L

λ

)δ2 ( λ
R

)δ3 (
1− cos

(
2π

m

M

))δ4
(B.16)

where

δ1 = 4.8312,

δ2 = 1.7099,

δ3 = −0.0097,

δ4 = 0.1994.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.4.2 5-DoF Model-1

with R2 = 0.3640
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∠zm u δ1 + δ2
L

λ
+ δ3

(
R

λ

)δ4
sin
(
δ5
m

M

)
, (B.17)

where

δ1 = 4.6712,

δ2 = −3.7136,

δ3 = −3.0852,

δ4 = 0.0008,

δ5 = 3.4861.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.4.3 5-DoF Model-2

with R2 = 0.3640

∠zm u δ1 + δ2
L

λ
+ δ3 sin

(
δ4
m

M

)
e−δ5(

R
λ ), (B.18)

where

δ1 = 4.6712,

δ2 = −3.7137,

δ3 = 3.0822,

δ4 = −3.4861,

δ5 = −0.0008.

This model is not selected as the best model because of the goodness of the

fit R2 is low.
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B.4.4 6-DoF Model-1

with R2 = 0.3771

∠zm u δ1 + δ2 sin

(
δ3
L

λ

)
+ δ4

(
R

λ

)δ5
sin
(
δ6
m

M

)
, (B.19)

where

δ1 = 2.4093,

δ2 = −1.4120,

δ3 = −4.9843,

δ4 = 3.0852,

δ5 = 0.0008,

δ6 = −3.4861.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.4.5 6-DoF Model-2

with R2 = 0.3641

∠zm u

{
δ1 − δ2

(
R

λ

)δ3
sin
(
δ4
m

M
+ δ5

)}
+ δ6

(
L

λ

)
, (B.20)

where

δ1 = 3.2455,

δ2 = 1.6872,

δ3 = 0.0031,

δ4 = −5.0679,
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δ5 = 79.2323,

δ6 = −3.7136.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.4.6 6-DoF Model-3

with R2 = 0.4914

∠zm u

{
δ1 − δ2

(
R

λ

)δ3
sin
(
π
(m
M

))}{1 + δ4

(
L
λ

)
+ δ5

(
L
λ

)2

δ6 + δ7

(
L
λ

)
+
(
L
λ

)2

}
,(B.21)

where

δ1 = 0.3629,

δ2 = −0.3022,

δ3 = 0.0203,

δ4 = 1.1417,

δ5 = −2.4799,

δ6 = 1.3267,

δ7 = −2.3719.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

B.4.7 6-DoF Model-4

with R2 = 0.3698

∠zm u δ1 + δ2 sin

(
δ3
L

λ
+ δ4

)
+ δ5

(
R

λ

)δ6
sin
(
π
m

M

)
, (B.22)
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where

δ1 = 2.2255,

δ2 = 1.5262,

δ3 = −3.7769,

δ4 = 2.4828,

δ5 = −3.0255,

δ6 = 0.0007.

This model is not selected as the best model because of the goodness of the

fit R2 is low.
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Appendix C

Candidate Models for a UCA

of Radial Dioples in Chapter 5

C.1 Candidate Models of the Magnitude of

the Self-impedance (|z0|)

No further models have investigated for the magnitude of the self-impedance,

because our obtained phenomenological model is explained almost all our

VLab data by high R2 value. The proposed model is also reasonable in

terms of electromagnetic.
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C.2 Candidate Models of the Phase of the

Self-impedance (∠z0)

C.2.1 2-DoF Model

1

with R2 = 0.8950

∠z0 u β1 sin

(
2π
L

λ
+ β2

)
, (C.1)

where

β1 = −1.7563,

β2 = 0.1116.This model is not selected as the best model because of the

higher number of coefficients

C.2.2 3-DoF Model

with R2 = 0.8968

∠z0 u β1 sin

(
β2
L

λ
+ β3

)
, (C.2)

where

β1 = −1.7563,

β2 = 6.4316,

β3 = 0.0283.

This model is not selected as the best model because of the higher number

of coefficients

1DoF is the ”Degrees-of-freedom”

127



C.3 Candidate Models of the Magnitude of

the Mutual Impedance (|zm|)

C.3.1 3-DoF Model-1

with R2 = 0.7470

|zm| u
{

10γ1

(
L

λ

)γ2
(
R

λ

)(
1− cos

(
2π

m

M

))γ3
}
, (C.3)

where

γ1 = 2.0301,

γ2 = 2.833,

γ3 = −1.3020.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

C.3.2 3-DoF Model-2

with R2 = 0.7447

|zm| u

{
10γ1

(
R

λ

)−γ2
(
L

λ

)γ3 ∣∣∣
(

sin
(

2π
m

M

))∣∣∣
}
, (C.4)

where

γ1 = 1.8246,

γ2 = 1.5394,

γ3 = 2.8833.
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This model is not selected as the best model because of the goodness of the

fit R2 is low.

C.3.3 4-DoF Model

with R2 = 0.7508

|zm| u

{
10γ1

(
R

λ

)−γ2
(
L

λ

)γ3 ∣∣∣
(

sin
(

2π
m

M

))γ4
∣∣∣
}
, (C.5)

where

γ1 = 1.9112,

γ2 = 1.5394,

γ3 = 2.8834,

γ4 = 1.5012.

This model is not selected as the best model because of the goodness of the

fit R2 is low.
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C.4 Candidate Models of the Phase of the

Mutual Impedance (∠zm)

C.4.1 2-DoF Model

with R2 = 0.3762

∠zm u δ1
L

λ
+ δ2

R

λ
+ 2π sin

(m
M

)
(C.6)

where

δ1 = 3.9685,

δ2 = −5.9662.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

C.4.2 3-DoF Model-1

with R2 = 0.6507

∠zm u δ1
L

λ
+ δ2

R

λ
+ 2π sin

(m
M

+ δ3

)
, (C.7)

where

δ1 = 2.3875,

δ2 = −9.6182,

δ3 = 7.3032.

This model is not selected as the best model because of the goodness of the

fit R2 is low.
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C.4.3 3-DoF Model-2

with R2 = 0.3793

∠zm u δ1
L

λ
+ δ2

R

λ
+ δ3 sin

(m
M

)
, (C.8)

where δ1 = 4.0957, δ2 = −5.6722, δ3 = 5.4376.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

C.4.4 4-DoF Model-1

with R2 = 0.6836

∠zm u δ1
L

λ
+ δ2

R

λ
+ δ3 sin

(m
M

+ δ4

)
, (C.9)

where

δ1 = 1.4388,

δ2 = −11.8098,

δ3 = 8.6944,

δ4 = 0.9887.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

C.4.5 4-DoF Model-2

with R2 = 0.6842
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∠zm u δ1 + δ2
L

λ
+ δ3

R

λ
+ 2π sin

(m
M

+ δ4

)
, (C.10)

where

δ1 = 2.4303,

δ2 = 1.4260,

δ3 = −11.8392,

δ4 = 7.2130.

This model is not selected as the best model because of the goodness of the

fit R2 is low.

C.4.6 4-DoF Model-3

with R2 = 0.6814

∠zm u δ1 + δ2
L

λ
+ δ3

R

λ
+ δ4

(
1− cos(

m

M
)
)
, (C.11)

where

δ1 = 8.1466,

δ2 = 1.4261,

δ3 = −11.8392,

δ4 = 2.6439.

This model is not selected as the best model because of the goodness of the

fit R2 is low.
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C.4.7 5-DoF Model

with R2 = 0.6843

∠zm u δ1 + δ2
L

λ
+ δ3

R

λ
+ δ4 sin

(m
M

+ δ5

)
, (C.12)

where

δ1 = 3.5718,

δ2 = 1.4261,

δ3 = −11.8392,

δ4 = 5.1475,

δ5 = 0.8835.

This model is not selected as the best model because of the higher number

of coefficients and the goodness of the fit R2 is low.
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Appendix D

D.1 Graphical view of the magnitude of the

Mutual impedance (|zm|) in Chapter 3
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D.2 RMSE

According to our DOA estimation the expression of root mean square error

(RMSE) is

RMSE(θ) =

√√√√
∑L

l=1

∑K
i=1

(
θ̂il − θi

)2

KL
(D.1)

Where θ̂il is the estimate of θi in the Lth Monte Carlo experiment. K

is the number of imping signal on the array and L is the number of Monte

Carlo run.

D.3 More simulation results of ”intuitive” model

in (1.4)
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