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Abstract

In antenna array signal-processing algorithm development, research has
focused on electrically “short” dipoles with physical lengths (L) under 1/10
of a wavelength λ. Such “short” dipoles have very small input impedances,
rendering them to be poor radiators. Practical dipoles, with an electrical
length of L

λ
∈ [0.1, 1], have notably larger input impedances, hence making

them better radiators. This thesis will first present the measurement model
(i.e. array manifold) of such practical dipoles, as a triad that is collocated
in space and orthogonal in orientation. Using such a triad to estimate inci-
dent sources’ bivariate azimuth-elevation directions-of-arrival and bivariate
polarizations, closed-form algorithms will be pioneered.

The triad’s collocation gives a point-like spatial aperture, limiting the dipole-
array’s spatial resolution. To realize a large spatial aperture, electrically
long dipoles can be positioned sparsely on a circular circumference, with
each dipole oriented radially (or tangentially), to allow a rotational in-
variance with respect to the circle’s origin. For such a circular array of
sparsely spaced and differently oriented dipoles, this thesis will also de-
velop the measurement model and will pioneer closed-form algorithms to
estimate incident sources’ bivariate azimuth-elevation directions-of-arrival
and bivariate polarizations.

For two electrically long dipoles, this thesis also pioneers signal-processing
algorithms in closed forms, to estimate the polarizations of impinging
sources. This is unlike the vast literature on crossed-dipoles polarimetry,
restricted to electrically short dipoles. In this thesis, the two long dipoles
are perpendicularly oriented, but may be collocated or may be separated
by a known displacement. Using such a pair of electrically long dipoles for
polarization estimation, this thesis proposes new closed-form formulas, and
derives the associated Cramér-Rao bounds.
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Besides electrically long dipoles, electrically “large” loops with circumfer-
ence (2πR) over 1/10 of a wavelength λ have likewise been neglected in the
literature on antenna signal processing. This thesis will formulate the array
manifold for a triad of electrically “large” loops, collocated and orthogonal.
Then for such a triad of large loops, this thesis will pioneer closed-form sig-
nal processing algorithms to estimate the incident signals azimuth-elevation
directions-of-arrival and polarizations.
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1Introduction

This thesis is composed of four research projects, undertaken during my
doctorate study. These projects describe new methods for the estimation
of Direction-of-Arrival (DoA) and/or polarization of the signals impinging
upon different configurations of electrically long dipoles or electrically large
loops.

1.1 Motivation

1.1.1 Direction-of-Arrival Estimation

Information on direction-of-arrival can be quite useful in mobile communi-
cations, radar, and localization. In mobile communication systems, there
is an increased demand of higher data rate and mobile communication
services. Frequency reuse concept as shown pictorially in Figure 1.1 was
designed to re-use the available spectrum multiple times to enhance the
capacity [1]. The total capacity C of such a cellular system is given by

C = MS (1.1)

where M denotes replication of the cluster which is combination of cells
where whole spectrum is used once and S denotes the total number of
available channels within a cluster. If the cluster size is reduced keeping
the same cell size, then the capacity would increase as more number of
clusters would be required to provide coverage. However, different types of
interference would increase as a result of reduction in cluster size. There is
a lower limit beyond which the cluster size cannot be further reduced to
simultaneously achieve optimum performance.

Spatial filtering and beamforming at the base station is presented as a
solution to reduce the lower limit of cluster size and achieve optimum
performance at the same time [2]. Spatial filtering is performed to isolate
desired signal from other interfering signals [3] and beamforming is the
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Fig. 1.1.: Graphical demonstration of frequency reuse [1].

array processing to direct independent beams toward different mobile
stations [2], [4]. Both spatial filtering and beamforming require information
on direction-of-arrival of signals received from mobile stations making
direction finding important in significantly mitigating interferences and
achieving higher capacity in mobile communication systems. In some
other applications of wireless communication, it maybe useful for both the
transmitter and receiver to share the knowledge of their respective positions
for which estimation of the arrival angles become important [5].

Direction-of-arrival estimation is a primary feature of smart antennas which
can provide increased robustness against multipath, higher signal-to-noise
ratio, and enhanced system capacity in wireless communications [6,123].
Mobile multi-hop relay systems have also received increased attention for
their better quality of service over large coverage area with higher signal-
to-noise ratio, reduced interference, and hence enhanced system capacity.
The mobile multi-hop relay system in turn requires the direction-of-arrival
estimation for beamforming [7].

Channel characterization can also be performed in mobile communication
systems using direction-of-arrival estimation. A transmitted signal normally
arrives at the receiver after getting reflected through multiple paths. Esti-
mated angle of arrival and time of arrival statistics of different multipaths
can provide useful information about multipath radio channel [8].
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Direction of arrival estimation is also very useful in telemedicine systems
[10]. In hospitals or sanitarium, body sensors can be implanted on patients
which can send the signal through mobile device in case of emergency
conditions such as high blood pressure or heart attack. The direction-of-
arrival estimation can become very useful in exactly locating the patient
to reduce the rescue time. Such wearable sensor devices can also help
constantly monitoring and localizing population group with high risks, e.g.
elderly people, who may suffer from abnormality or involuntary falls any
time.

Real-time monitoring of inventory and identification of asset are also pos-
sible with the aid of direction-of-arrival estimation [9]. Direction finding
is also quite important in defense radars. It can be used to determine the
angle of arrival of an aircraft or a missile. In radar, generally a known
signal is transmitted by an antenna which after reflection from the target
gets received by an array of antennas as shown in Figure 1.2. The received
signal is processed for direction finding to locate the target. The location

Fig. 1.2.: Signal received by an array of antennas after reflection from target.

of radar can also be determined at the target side. That is, the target can
estimate location of the radar from direction finding of the received signal
sent by radar to encounter them.
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1.1.2 Polarization Estimation

Polarization is the property of a wave which shows trace of the electric
field vector. The measurement and interpretation of polarization is called
as polarimetry. As there is an increased demand of higher data rate in
telecommunication networks where the spectrum is limited, different solu-
tions are presented to mitigate this issue. Polarization diversity is regarded
as one solution in providing higher data rate with limited available spec-
trum [11], [12]. That is, two signals at a certain frequency sent with
different polarizations can be distinguished from each other and hence can
effectively double up the available spectrum.

Polarimetry can also be utilized in post-processing of wave in radar to
provide details about structure of the target [13]. A signal when transmitted
by the radar is having a known polarization. After reflection from the target,
its polarization can be compared with that of the transmitted signal which
can reveal important features about details of the target.

Polarimetry is also performed in weather radars which can be useful in
weather forecasting. Such radars can detect rain and hail/snow by transmit-
ting a radio wave and receiving it back after reflection from water particles
present in clouds. Polarization information of transmitted and received
waves can reveal information about whether the wave got reflected from
rain, hail, or snow and also it can estimate water drop shape and size.
The time taken between one round trip of a radio wave between trans-
mission and reception can be used to measure the distance of the clouds.
Precipitation in the clouds can also be determined from the received energy.
Polarimetry is also used in other remote sensing applications like astronomy
and planetary science.

The best known parameter estimation techniques, though not exhaustive,
are categorized in [14] and discussed briefly in the following sub-sections.

Spectral-based Methods

Consider the case of direction finding, a spectral-like function is made in
these methods and the points at which the maximum peaks of the func-
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tion lie show the estimated directions-of-arrival. The location of the peaks
must be separated enough from each other in order to perform estimation
correctly. That is, there is a lower bound on the resolution that can be
achieved with the spectral-based methods which further depends on the
methodology adopted. These methods can further be categorized into two
methods. The first one is probably the oldest method used to determine the
directions-of-arrival called as beamforming techniques where as the second
one is known as subspace-based methods [14].

1 Beamforming Techniques

In beamforming techniques, the radiation pattern of an antenna array
with narrow beamwidth and hence more gain in a specific direction
is developed. Furthermore, the direction of the main beam can be
controlled and moved across the space by providing a phase difference
between the elements of the array. If the main beam is directed
towards the source, then maximum power is received and vice versa.
Therefore, the main beam can be steered across the space to look
for the maximum received power and the locations of the maximum
power are considered as the directions-of-arrival [14]. This idea is
implemented in a variety of ways where the well known methods are
Barlett Beamformer [15] and Capon’s Beamformer [16].

2 Subspace-Based Methods

Different subspace-based methods are briefly introduced as following.

a. MUSIC Algorithm

Multiple signal classification algorithm, which in short is called as
MUSIC algorithm, is a very well known eigenstructure approach
to locate signals with high resolution capability developed first
by Schmidt [17]. The drawback of MUSIC is to resolve coherent
signals.

b. Improvement to MUSIC Algorithm
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Different variants of the MUSIC algorithm have been chalked
out to improve its capabilities. Root-MUSIC [18] and Cyclic
MUSIC [19] are amongst the more popular improvements to
MUSIC algorithm.

c. ESPRIT

Estimation of Signal Parameters via Rotational Invariance Tech-
niques, ESPRIT, uses the rotational invariance which is generated
in the signal subspace by two identical arrays [20]. The two
identical arrays are made such that each element in first array
makes a pair with the corresponding element in the second array
such that there is a constant displacement in the same direc-
tion with respect to the first element for each pair. Based on
how the criteria is achieved, many versions of ESPRIT algorithm
have been developed including Least-Square-Sense-ESPRIT and
Total-Least-Square-ESPRIT [21]

Maximum Likelihood Method

Again consider direction finding, maxima of the log-likelihood function are
determined in these methods from the data collected by the antenna array
which give the estimated directions-of-arrival. The log-likelihood function is
basically the sampled data’s joint probability density function provided the
directions-of-arrival and observed as a function of the directions-of-arrival.
For estimation, directions are searched which give the maximum of the
log-likelihood function and these values signify that these directions are
most likely to be the reason to generate such sampled data [22,23].

Electrically short/small 1 dipoles and loops are quite often used for direction
finding and polarization-estimation. If such a dipole is aligned in parallel
with any Cartesian axis, it would provide value of electric-field vector
component in that direction. Similarly if a loop axis gets aligned with
any Cartesian axis, it would measure the corresponding magnetic-field

1Dipole with overall length smaller than one-tenth of a wavelength is considered as short
dipole, loop with circumference smaller than one-tenth of a wavelength is regarded as
small loop
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vector component along that direction. These concepts are reviewed in next
section.

1.2 Review of Electric and Magnetic Field
Vectors

Figure 1.3 graphically defines various spatial angles for the exposition in
following Chapters:

1. θx ∈ [0, π] is the angle measured between the propagation vector r
and the positive x-axis,

2. θy ∈ [0, π] is the angle measured between the propagation vector r
and the positive y-axis,

3. θz = θ ∈ [0, π] is the (polar) angle measured between the propagation
vector r and the positive z-axis,

4. φy ∈ [−π, π) is the angle measured between projection of the propa-
gation vector r onto the y-o-z plane and the positive y-axis,

5. φz ∈ [−π, π) is the angle measured between projection of the propa-
gation vector r on the x-o-z plane and the positive z-axis, and

6. φx = φ ∈ [−π, π) is the (azimuth) angle measured between projection
of the propagation vector r on the x-o-y plane and the positive x-axis.

1.2 Review of Electric and Magnetic Field Vectors 7



Fig. 1.3.: Different spatial angles inter-relationship.

The above angles are interrelated through the following trigonometric rela-
tionships:

sin (θx) =
√

sin2 (θz) sin2 (φx) + cos2 (θz)

cos (θx) = sin (θz) cos (φx)

sin (θy) =
√

sin2 (θz) cos2 (φx) + cos2 (θz)

cos (θy) = sin (θz) sin (φx)

sin (φy) = cos (θz)√
sin2 (θz) sin2 (φx) + cos2 (θz)

8 Chapter 1 Introduction



cos (φy) = sin (θz) sin (φx)√
sin2 (θz) sin2 (φx) + cos2 (θz)

sin (φz) = sin (θz) cos (φx)√
sin2 (θz) cos2 (φx) + cos2 (θz)

cos (φz) = cos (θz)√
sin2 (θz) cos2 (φx) + cos2 (θz)

.

Furthermore, define the unit vector (uθx, uθy , uθz , uφx, uφy , uφz) along the
(θx, θy, θz, φx, φy, φz) direction as follows:

uθx := [ − sin(θx), cos(θx) cos (φy) , cos(θx) sin (φy)]T (1.2)

uθy := [ cos (θy) sin (φz) , − sin (θy) , cos (θy) cos (φz)]T (1.3)

uθz := [ cos (θz) cos (φx) , cos (θz) sin (φx) , − sin (θz)]T (1.4)

uφx := [ − sin (φx) , cos (φx) , 0]T . (1.5)

uφy := [ 0, − sin(φy), cos(φy)]T (1.6)

uφz := [ cos(φz), 0, − sin(φz)]T (1.7)

In the above, the superscript T refers to transposition.

Keeping in mind the spatial coordinates defined in Figure 1.3, consider
a plane wave of unit power per unit area , incident upon the Cartesian ori-
gin from a polar angle (a.k.a. a zenith angle) of θz ∈ [0, π] and an azimuth
angle of φx ∈ [0, 2π), with an auxiliary polarization angle of γ ∈ [0, π/2)
and a polarization phase difference of η ∈ [−π, π). This electromagnetic
wavefield thus has

(i) a component of eφxuφx with amplitude eφx = cos(γ) along the horizon-
tal transverse axis uφx, and

(ii) a component of eθuθz with complex-value amplitude eθ = ejη sin(γ)
along the vertical transverse axis uθz .
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In Cartesian coordinates, this electric-field vector e may be represented as

e = ex

ux :=︷ ︸︸ ︷
1
0
0

+ ey

uy :=︷ ︸︸ ︷
0
1
0

+ ez

uz :=︷ ︸︸ ︷
0
0
1

 =


ex

ey

ez



= sin(γ)ejη︸ ︷︷ ︸
eθz=

uθz :=︷ ︸︸ ︷
cos(φx) cos(θz)
sin(φx) cos(θz)

− sin(θz)

+ cos(γ)︸ ︷︷ ︸
eφx=

uφx :=︷ ︸︸ ︷
− sin(φx)

cos(φx)
0



=


cos(φx) cos(θz) − sin(φx)
sin(φx) cos(θz) cos(φx)

− sin(θz) 0


 eθz
eφx

 . (1.8)

In the above, the unit vectors ux,uy and uz point along x, y, and z-axes,
respectively, of the Cartesian coordinate system. If a triad of short dipoles
orthogonally oriented and spatially collocated is placed at Cartesian origin,
then each dipole in the triad would measure component of electric-field
vector along that dipole.

Similarly a fully polarized transverse electromagnetic wave has a 3 × 1
normalized magnetic-field vector,

h =


hx

hy

hz

 =


− sin(φx) − cos(φx) cos(θz)
cos(φx) − sin(φx) cos(θz)

0 sin(θz)


 eθz
eφx

 ,

def=


− sin(φx) − cos(φx) cos(θz)
cos(φx) − sin(φx) cos(θz)

0 sin(θz)


 sin(γ) ejη

cos(γ)

, (1.9)

Likewise if a triad of small loops orthogonally oriented and spatially collo-
cated in a point-like geometry is placed, then each loop in the triad would
measure component of the magnetic-field vector along axis of that loop.

However, it should be noted that such “short" dipoles and “small” loops are
very poor radiators and receptors because of their small input impedances.
There is a need to develop estimators for “long” dipoles and “large” loops
for pragmatic use with practical dipoles and loops of effective radiation
efficiencies.
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1.3 Eigen-based Parameter Estimation

Recall that the Cramér-Rao bound lower-bounds the estimation error vari-
ance of any unbiased estimator; and the Cramér-Rao bound itself is indepen-
dent of the specific estimator employed. The maximum-likelihood estimator
can reach the Cramér-Rao lower bound. However, the maximum-likelihood
estimator

(i) would require a perfect prior knowledge of the signal-and-noise statis-
tics, and

(ii) would require the iterative optimization of a likelihood function, hence

(ii-a) would be computationally intensive, and

(ii-b) would presume the availability of a good estimate (which is often
unavailable) to direct the iteration to converge toward the global
optimum.

Hence, this thesis will develop eigen-based estimators, using non-small
dipole/loops, that are non-iterative and that need no prior knowledge of
any signal-and-noise statistics. In most eigen-based estimation algorithms,
an intermediate step determines the sources’ steering vector a multiplied
by a complex-scalar c which is unknown. In other words, the intermediate
step provides an estimate â ≈ ca [62].

Imagine a signal s(t) is received by an N elements antenna array which is
corrupted by an additive thermal noise vector n(t). The data collected by
the array at every sample time t = tm can therefore be written as

z(t) = s(t)a + n(t). (1.10)

If we consider a simple example where the random processes s(t) and
n(t) are each zero-mean complex-value Gaussian and spatio-temporally
uncorrelated over time and across antennas, while statistically independent
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from all other entities. Then it can be found that the data covariance matrix
of all M time-samples collected by the triad can be written as

Ĉ = 1
M

M∑
m=1

z(tm)[z(tm)]H (1.11)

≈ σ2
saaH + σ2

nIN . (1.12)

where σ2
s denotes the incident signal power and σ2

n refers to antenna thermal
noise power and IN denotes an identity matrix of order N × N . This
data covariance matrix Ĉ has a principal eigenvector which approximately
equates to ca and this approximation asymptotically becomes equality in
the noiseless case or as M →∞. To sum up, sample-data covariance matrix
has a principal eigenvector which is approximately equal to ca from which
closed-form estimators for estimation of direction-of-arrival and polarization
can be developed.
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2Literature Review

2.1 Dipole and Loop Triads

Direction finding and polarization estimation are of practical importance in
a variety of systems including radars, sensor networks, mobile communica-
tions, and target localization. For simultaneous eigen-based estimation of
the polarization and direction-of-arrival, at least three antennas of diverse
polarizations are required, because a minimum of three complex-value
equations (resulting from measurement of three antennas) are required
for the solution of five unknown parameters (i.e., γ, η, θz, φx, c) where γ, η
are related to polarization, θz, φx are polar-azimuth direction-of-arrival pa-
rameters, and complex-value c results from eigen-based source’s steering
vector estimation. It can be versatile and convenient to use a triad of dipoles
(a.k.a. a “tripole") or a triad of loops. The three constituent dipoles or loops
would be identical, orthogonally oriented among themselves, and spatially
co-centered. Such a triad offers notable advantages:

(i) polarization diversity – incident signals may be resolved by the receiver
on account of their distinct polarizations, in addition to their different
arrival directions;

(ii) decoupling the incident signal’s frequency dimension from the signal’s
azimuth-elevation directional dimensions, because no spatial phase
factor exists across the triad’s constituent dipoles.

Advantages (i)-(ii) mentioned above have motivated many innovative signal
processing algorithms in recent decades for direction finding and polariza-
tion estimation using either a dipole triad or a loop triad. They can classified
into closed-form and open-form estimators where the former have following
advantages over the latter:

1. Generally computationally simpler.

13



2. Avoid problem of iterations converging to a local optimum, instead of
the global optimum.

3. Avoid the need of an initial estimate to start off the iteration

A brief summary of these algorithms using such triads of “short” dipoles or
“small” loops, illustrated in detail in [62], is presented here.

1. Dipole triad has been used for both closed-form and open-form
direction-of-arrival estimation [24–34,36,37,39–41,141,144]. Among
these references, only [28,37,40] presented closed-form estimation
formulas. The tripole has also been utilized for closed-form polariza-
tion estimation in [28,37]. For the dipole triad, Cramér-Rao bound
expressions in closed-form are presented in [43]. Such a tripole is
also used experimentally in [32].

2. Similarly both closed-form and open-form direction-of-arrival esti-
mation using loop triad can be found in [28, 37, 42, 141] where
only [28,37] presented closed-form estimation formulas. Closed-form
polarization estimation formulas are also established using loop triad
in [28, 37]. For the loop triad, Cramér-Rao bound expressions in
closed-form are presented in [43]. Such a triad is experimentally used
in [42].

Nonetheless, this open literature of signal-processing algorithm develop-
ment has focused on “short" dipoles (i.e., dipoles with physical lengths
(L) under about a tenth of a wavelength λ) and “small” loops (i.e., loops
with physical circumference (2πR) under about one tenth of a wavelength).
However, it should be noted that both “short" dipole and “small” loop have
input impedances that are very small, rendering them poor radiators.

“Long" dipoles also have had open-form or iterative algorithms designed
for their use in direction finding in [50, 51, 56], but there only as a lin-
ear array of uniformly displaced of antennas in identical orientation.1 In
contrast, this thesis offers closed-form algorithms, for a collocated triad of
orthogonal oriented “long" dipoles, to estimate the polar-azimuth bivariate
direction-of-arrival or the bivariate polarization. For such a triad of “long”

1For such a linear array of identically oriented “long" dipoles, the direction finding’s
Cramér-Rao bound is plotted in [50,51,56,61].
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dipoles, [58] discusses its steering vectors’ linear independence but offers
no estimation algorithm. On the other hand, [59] proposes an open-form
iterative algorithm for polarization estimation and not for direction finding
where closed-form are presented here for both polarization estimation and
direction finding.

For the case of “large” loop triad, this thesis is first to the best of knowl-
edge to present closed-form polarization estimation and direction finding
algorithms.

2.2 Uniform Circular Array of Dipoles

Dipole arrays have been much studied for direction finding and polarization
estimation. The antennas can either be collocated or spatially separated
where the former is limited by a point-like spatial aperture, which leads to
low spatial resolution over the azimuth-elevation dimensions.

Both the collocated and spatially separated direction finding literature is
much investigated which are briefly described here.

1. Collocated dipoles has been studied thoroughly in literature, however,
the focus has been on “electrically short" dipoles, i.e. dipoles with
a physical length (L) under a tenth of a wavelength — strangely
so, because such “short dipoles" are inefficient electromagnetic radi-
ators. For example, see [125–152]. For a practical electromagnetic
efficiency for electromagnetic reception, real-world dipoles should be
“electrically long" – i.e. with L

λ
∈
[

1
10 , 1

]
.

Electrically long dipole signal processing is for the first time investi-
gated in Chapter 3. Nonetheless, that pioneering investigation focuses
exclusively on a spatially co-centered unit of “electrically long" dipoles
in orthogonal orientation relative to each other.

2. Similarly the extended-aperture sensor-array direction-finding litera-
ture is vast, but (unlike the present investigation of uniform circular
array of electrically long dipoles in this thesis) that literature is almost
always limited to:
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(a) short dipoles, e.g., see [99–102,105–110,125], or

(b) electrically long dipoles that are all identically oriented, for ex-
ample, [103,104,111–124].

For this thesis to achieve closed-form direction finding with an extended
aperture, despite the diverse orientation of the dipoles that are electrically
long – this achievement is unprecedented in the open literature (to the best
of knowledge).

2.3 Dipole-Dipole Pair

Polarimetry measures and interprets the polarization of transverse waves
[94]. Two antennas of diverse polarizations would suffice to estimate
bivariate polarization of a fully polarized wave using eigen-based estimation
because a minimum of two complex-value equations are required for the
solution of three unknown parameters (γ, η, c) which can be obtained from
the measurement of two antennas.

Polarimetry via orthogonally oriented electric dipoles – this has been much
investigated. Please refer to [62,93,125] for surveys of this literature. A
brief description of the use of dipole-dipole pair is presented here.

1. For orthogonal dipole-dipole pair, either both the antennas would lie
horizontally or one of the antenna would be horizontal and the other
one vertical.

(a) [11-13, 18, 25, 26, 28, 31, 38, 45, 64, 66, 78, 108, 122, 125, 126,
129, 138, 142, 152, 157, 159] investigated the case of dipole-
dipole pair orthogonal to each other and lying horizontally and
used for direction finding and/or polarization estimation.

(b) Similarly [35, 54, 55, 70, 115, 130, 158] investigated the case
where one dipole is vertical and one dipole horizontal and used
for direction finding and/or polarization estimation.
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2. Likewise, other dipole-pairs with different but orthogonal orientations
are investigated in [16, 19, 22, 39, 67, 70, 92, 148, 166].

3. Dipole-pair have also been tested experimentally in [84, 90, 121, 139,
140, 149, 160].

These references, however, focus on electrically short dipoles, which are
inefficient antennas. At an electrical length of L

λ
= 1

10 , an electrically short
dipole’s radiation efficiency is only 74%, whereas an electrically long half-
wavelength dipole offers 95%.2 For a perpendicular pair of such electrically
long dipoles, this thesis is first (to the present authors’ best knowledge)
to advance any closed-form formula to estimate an incident wavefield’s
polarization.

2.4 Thesis Structure

This thesis is organized as following:

Chapter 3

In this chapter, closed-form algorithms for estimation of polar-azimuth
bivariate direction-of-arrival and the bivariate polarization are presented
using electrically “long” dipoles triad.

Chapter 4

Similar to Chapter 3, closed-form algorithms for estimation of polar-azimuth
bivariate direction-of-arrival and the bivariate polarization are presented
here but using uniform circular array of electrically “long” dipoles which
may be oriented radially or tangentially.

Chapter 5

This chapter advances closed-form algorithms for estimation of bivariate po-

2These values are computed based on the radiation resistance equations and the loss
resistance equations in [68, pp. 86, 177, 215], [95].
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larization using a pair of orthogonally oriented but not necessarily spatially
collocated electrically “long” dipoles.

Chapter 6

Similarly, closed-form algorithms for estimation of polar-azimuth bivari-
ate direction-of-arrival and the bivariate polarization are presented here
using electrically “large” loops triad.

Chapter 7

In the last, conclusions are drawn.
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3Electrically “Long" Dipoles in a
Collocated/Orthogonal Triad – for
Direction Finding and Polarization
Estimation

3.1 Introduction

For a wireless receiver to estimate an incident emitter’s azimuth-elevation
direction-of-arrival (DOA) and/or polarization, it can be versatile and con-
venient to use a triad of dipoles (a.k.a. a “tripole"). The three constituent
dipoles would be identical, orthogonally oriented among themselves, and
spatially co-centered as shown in Figure 3.1. Such a tripole offers notable
advantages:

(i) polarization diversity – incident signals may be resolved by the receiver
on account of their distinct polarizations, in addition to their different
arrival directions;

(ii) decoupling the incident signal’s frequency dimension from the signal’s
azimuth-elevation directional dimensions, because no spatial phase
factor exists across the triad’s constituent dipoles.1

Advantages (i)-(ii) have motivated many innovative signal processing algo-
rithms in recent decades for direction finding and polarization estimation,
e.g. see the survey in Section I-1) of [62].

1This frequency-versus-direction decoupling is evidently advantageous, by considering
this simply numerical example with NF discrete-Fourier-transform (DFT) frequency-
bins (i.e., DFT-frequency grid points), ND distance-bins, and NDOA azimuth-elevation
angular bins. If these frequency-azimuth-elevation dimensions were coupled, the
antenna-arrayÂŠs “array manifold" would be NF ×ND ×NDOA in size. If uncoupled,
this size shrinks to NF +ND +NDOA. For NF = ND = NDOA = 1000, this represents
a reduction of 109/103/3 = 333, 333 folds in computation.
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Fig. 3.1.: Collocated and orthogonally oriented dipole triad.

Nonetheless, this open literature of signal-processing algorithm develop-
ment has focused on “short" dipoles (i.e., dipoles with physical lengths (L)
under about a tenth of a wavelength λ). However, such a “short" dipole
has an input impedance that is very small, rendering the “short" dipole an
inefficient radiator. 2On the other hand, very long dipoles with L > λ would
have sidelobe(s), hence seldom used in practice. Rather, practical dipoles
typically have L ≤ λ, such that the radiation pattern is like the character
“8" in the polar coordinates with only one mainlobe but no sidelobe. All
the above considerations together mean that the “electrical length" (a.k.a.
“phase length") L

λ
of practical interest lies within the range of [0.1, 1], in

order to achieve radiation efficiency and to avoid sidelobes, simultaneously.
This Chapter will investigate such “long" dipoles’ use for azimuth-elevation
direction finding and for polarization estimation, when they are configured
as a triad in spatial collocation but orthogonal orientation.

“Long" dipoles have had open-form or iterative algorithms designed for their
use in direction finding in [50, 51, 56], but there only as a linear array

2 As a dipole’s physical length L
λ increases from 1

100 to 1
10 and then to 1

2 , the dipole’s
corresponding radiation efficiency would improve from 36% to 74% and then to 95%.
These numbers are calculated using the radiation resistance equations and the loss
resistance equations in [68, pp. 86, 177, 215], [95].

20 Chapter 3 Electrically “Long" Dipoles in a Collocated/Orthogonal Triad – for

Direction Finding and Polarization Estimation



of uniformly displaced of antennas in identical orientation.3 In contrast,
this present Chapter offers closed-form algorithms, for a collocated triad of
orthogonal oriented “long" dipoles, to estimate the polar-azimuth bivariate
direction-of-arrival and/or the bivariate polarization. Of such a triad: [58]
discusses its steering vectors’ linear independence but offers no estimation
algorithm; and [59] proposes an open-form iterative algorithm (not in closed-
form as in this Chapter) for polarization estimation (not also for direction
finding as in this Chapter).

Section 3.2 will review the concept of “effective length" to relate a “long"
dipole’s directional-polarizational pattern to the incident electric field. Sec-
tion 3.3 will then present the measurement model of a triad of collocated
orthogonal “long" dipoles. Sections 3.4-3.5 will advance new closed-form
algorithms to use such a triad to estimate any incident emitter’s azimuth-
elevation direction and/or polarization. Section 3.6 will conclude this
work.

3.2 The “Effective Length" of a Dipole
Antenna

Keeping in mind the spatial coordinates defined in Section 1.2 of Chapter
1, consider a plane wave of unit power per unit area 4, incident upon the
Cartesian origin from a polar angle (a.k.a. a zenith angle) of θz ∈ [0, π]
and an azimuth angle of φx ∈ [0, 2π), with an auxiliary polarization angle
of γ ∈ [0, π/2) and a polarization phase difference of η ∈ [−π, π). The
electric field for such a wave is given by equation (1.8). Suppose this
electromagnetic wave impinges upon a center-driven dipole antenna of
physical length L at a polar angle of θ with the dipole antenna’s axis. The
dipole antenna’s open-circuit voltage would equal

v = e · `(L)
θ , (3.1)

3For such a linear array of identically oriented “long" dipoles, the direction finding’s
Cramér-Rao bound is plotted in [50,51,56,61].

4The definitions here are consistent with the notion of a “unit power per unit area" in the
electromagnetic wave, if a) the units of electric field are volts per meter, b) a unit area
is one square meter, and c) the free space impedance is normalized to 1 ohm.
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where the vector `
(L)
θ denotes the antenna’s “effective length" (a.k.a the

“effective height"). Please see equation (4-20) of [46], or equation (2-93)
of [68]. Suppose the dipole has an electrical length L

λ
< 1 and not near

unity, then 5

`
(L)
θ =

`
(L)
θ

:=︷ ︸︸ ︷
−λ
π

1
sin

(
πL
λ

) cos
(
πL
λ

cos(θ)
)
− cos

(
πL
λ

)
sin(θ) uθ. (3.2)

If the dipole antenna is oriented along the x-axis, set θ = θx everywhere
in (3.2) including in the subscripts, and similarly for the y-axis and the
z-axis.

The scalar `(L)
θ varies with the dipole’s physical length L through the cosine

function; hence, the effective length varies non-monotonically with the
physical length L. This “effective length" expression, however, would break
down for any L

λ
near an integer, as the expression would stipulate a current

null at the feed point, which is not the case in actuality. In physical reality,
the current null there is relatively low, but not zero.

The “effective length" varies with θ, hence depends on the incident emitter’s
direction-of-arrival. Within the range of L

λ
∈ [10−2, 1], a peak exists at θ = π

2
and troughs exist at θ = 0, π in (3.2). Inside the trigonometric functions,
L and λ always appear together as a ratio, L

λ
, a geometric factor to shape

the “long" dipole’s radiation pattern. The leading λ factor in (3.2) scales the
“long" dipole’s overall sensitivity. Though the “effective length" has a unit of
length, the “effective length" is not a “length" per se, but a “pattern" to be
multiplied to the incident electric field to produce the antenna’s voltage.

The scalar of `(L)
θ could be positive, negative, or zero. The leading negative

sign in (3.2) may be overlooked with no change in any subsequent analysis,
because the negative sign can be a) wrapped up into the overall phase of

5This (3.2) may be obtained from equation (2-92) on p. 88 of [68] and equation (4-62a)
on p. 172 of [68]) – except a multiplicative factor of csc

(
πLλ
)
. Because the current

distribution in equation (4-56) of [68] actually has a current of I0 sin
(
πLλ
)

at the
antenna terminals, a factor of csc

(
πLλ
)

must be included for proper normalization of
the effective length to reflect an open-circuit voltage at the antenna terminals. This is
consistent with, for example, the normalization of the triangular current distribution in
equation (4-33) of [68]. Incidentally, this (3.2) has appeared as equation (6) of [44]
and as equation (2) of [50].

22 Chapter 3 Electrically “Long" Dipoles in a Collocated/Orthogonal Triad – for

Direction Finding and Polarization Estimation



the incoming/emitted signal, and/or b) negated by changing the polarity of
the voltage on the dipole’s terminals.

3.2.1 The Special Case of an Half-Wave Dipole

The half-wavelength dipole (a.k.a. the “half-wave dipole") is often used
because of these two advantages: (i) Its input impedance is around 73 + j42
ohms, with a good radiation resistance (≈ 53 ohms), thereby allowing
the half-wavelength dipole to be an efficient radiator. (ii) It has a large
beamwidth.

For the half-wavelength dipole, i.e. L = λ/2,

`
( 1

2)
θ =

`
(L)
θ

:=︷ ︸︸ ︷
−λ
π

cos
(
π
2 cos(θ)

)
sin(θ) uθ. (3.3)

The above has drawn upon the fact that sin−1
(
πL
λ

)
= 1 at L = λ

2 .

Incidentally, an half-wavelength folded dipole has an effective length that
equals twice that of an half-wavelength dipole’s. Please see page 4-24
of [46].

3.2.2 The Special Case of a “Short" Dipole (a.k.a.
“Small" Dipole)

The phrase “short dipoles" is used by [68] (in Section 4.3 and on p. 549) for
L
λ
∈
(

1
50 ,

1
10

]
, Such a dipole antenna experiences a current that is triangular

along the dipole’s length (and linear along each half of the dipole). 67

6Dipoles shorter than the half-wave dipole would admittedly be less effective as a radiator,
but are still used, especially in a portable device, for their small sizes.

7For “long" dipoles, i.e. for L
λ ∈

( 1
10 , 1

]
, the current is sinusoidal along the length of the

dipole.
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The following approximation hold: [47,126],

`
(L)
θ = −L2 sin(θ)uθ. (3.4)

See also equation (4-22) of [46]. The above (3.4) is obtained by applying
cos(β) ≈ 1− β2

2 to the first and the third cosines in (3.2) with β = πL
λ

cos (θz)
in the first cosine but with β = πL

λ
in the third cosine, then by normalizing

the current’s maximum magnitude of πL
λ

to unity. Please see equations
(4-33) and (4-56) of [68] as well as page 4-24 of [46].

The applicable range of L
λ
∈
(

1
50 ,

1
10

]
is itself approximate and debatable,

depending on the level of precision required. In any case, for dipoles this
small, cables and feed networks would likely dominate any “effective length"
approximation error.

3.2.3 The Special Case of Infinitesimal Dipoles

The phrase “infinitesimal dipoles" is applied by [68] (p. 162) for L
λ
≤ 1

50 ,
although such dipoles are rarely built because of their poor performance on
account of their tiny radiation resistance.

Nonetheless, even such an infinitesimal dipole would still be considered to
have a “pattern", i.e. an “effective length". At such an infinitesimal electrical
length, the electric current has a constant magnitude along the length of
the dipole, thereby causing the general expression in (3.2) to degenerate to
an “effective length" of −L sin(θ).

For a wider perspective: The infinitesimal dipole’s “effective length" of
−L sin(θ) applies for the asymptotic case where L

λ
→ 0, whereas the small

dipole’s “effective length" of −L
2 sin(θ) applies for L

λ
→ 0.1. In between 0

and 0.1, the multiplicative factor drops from 1 toward 0.5.

Incidentally, for the physically impractical case of L
λ
→ 0, the dipole’s

“effective length" would degenerate toward zero, with a vanishing response
to an incident electromagnetic wave.
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3.3 A Finite-Length Tripole’s Array
Manifold

Suppose the dipole antenna is oriented along the z-axis:

v(L) = e · `(L)
θz

= `
(L)
θz

e · u(L)
θz

= `
(L)
θz

e · `(short)
θz

−1
sin(θz)

2
L

= L

2 ez `
(L)
θz

−1
sin(θz)

2
L

= ez`
(L)
θz

−1
sin(θz)

. (3.5)

Similar analysis holds for a dipole antenna oriented along the x-axis or the
y-axis.

Consequentially, 8

a(L) = −


ex

ey

ez

 ◦

`

(L)
θx

`
(L)
θy

`
(L)
θz

 ◦


csc(θx)
csc(θy)
csc(θz)

 . (3.6)

where ◦ represents the Hadamard product (a.k.a. the Schur product, or the
entrywise product).

3.3.1 The Special Case of Half-Wave Dipoles

For half-wavelength dipoles, the tripole’s array manifold becomes

a(λ2 ) = −λ
π


cos(π2 cos(θx))

sin2(θx) ex
cos(π2 cos(θy))

sin2(θy) ey
cos(π2 cos(θz))

sin2(θz) ez

 = −λ
π


cos(π2 sin(θz) cos(φx))

sin2(θz) sin2(φx)+cos2(θz) ex
cos(π2 sin(θz) sin(φx))

sin2(θz) cos2(φx)+cos2(θz) ey
cos(π2 cos(θz))

sin2(θz) ez

 . (3.7)

8 The mutual coupling would be negligible among these three dipoles, if the three dipoles
are orthogonally oriented, nearly collocated, and differentially-fed at their central feed
points, on account of the symmetry in both the fields and currents/voltages involved
in the feed structure. Here, “differential feeding" refers to the signals being fed to the
dipoles’ terminals in an equal and opposite manner.
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3.3.2 The Special Case of Short Dipoles

If the dipole axis lies along the x-axis, its open-circuit voltage v would
equal

v(short)
x = e · `(short)

θx

= L

2
{

sin2(θx) cos(φx) cos(θz) sin(γ)ejη − sin2(θx) sin(φx) cos(γ)

− sin(θx) cos(θx) cos(φy) sin(φx) cos(θz) sin(γ)ejη

− sin(θx) cos(θx) cos(φy) cos(φx) cos(γ)
+ sin(θx) cos(θx) sin(φy) sin(θz) sin(γ)ejη

}
,

= {cos(θz) cos(φx) sin(γ)ejη − sin(φx) cos(γ)}︸ ︷︷ ︸
= ex

L

2 .

The second equality draws upon (1.2) and (1.8). The last equality has used
some trigonometric identities in Section 1.2.

Similarly, for the dipole axis lies along the y-axis, its open-circuit voltage v
would equal

v(short)
y = e · `(short)

θy

= {cos(θz) sin(φx) sin(γ)ejη + cos(φx) cos(γ)}︸ ︷︷ ︸
= ey

L

2 .

Likewise, for the “short" dipole lying along the z-axis, its open-circuit voltage
v would equal

v(short)
z = e · `(short)

θz

= − sin(θz) sin(γ)ejη︸ ︷︷ ︸
= ez

L

2 .

Therefore, for a triad of three short dipoles in spatial collocation and
orthogonal orientation, its array manifold would equal

a(short) = L

2


ex

ey

ez

 . (3.8)
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The above equals the “short dipole" array manifold’s given in the first
elements of the vector equation (6) in [47].

3.3.3 The Special Case of Infinitesimal Dipoles

For infinitesimal dipoles, the tripole’s array manifold equals

a(infinitesimal) = L


ex

ey

ez

 . (3.9)

3.4 Estimation of an Incident Source’s
Azimuth-Elevation Direction-of-Arrival
or Polarization

Suppose M > 1 snapshots of data is collected by the triad, giving an 3×M
space-time data-sample matrix of Z. Form the 3 × 3 spatial correlation
matrix of ZZH , where the superscript H denotes the Hermitian operator.
If there exists only one source9, the 3× 1 principal eigenvector es of ZZH

would span the data’s signal subspace, and would converge toward ca as the
signal-to-noise power ratio (SNR) approaches infinity, with some unknown
complex-value scalar c. Therefore, eigen-based parameter estimation 10has
thus estimated the impinging emitter’s 3× 1 steering vector, but accurate

9If more than one source exists, please see the methods in [28,49,52–55], among other
references.

10The maximum-likelihood estimator can reach the Cramér-Rao lower bound (which will
be derived in a later section). However, the maximum-likelihood estimator

(i) would require a perfect prior knowledge of the signal-and-noise statistics, and

((ii) would require the iterative optimization of a likelihood function, hence

(ii-a) would be computationally intensive, and

(ii-b) would presume the availability of a good estimate (which is often unavailable)
to direct the iteration to converge toward the global optimum.

Hence, this section will advance an eigen-based estimator that is non-iterative and that
needs no prior knowledge of any signal-and-noise statistics.
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only to within a complex-value scalar c, which is unknown to the algorithm.
In other words, the algorithm has available (for each incident emitter) a
3× 1 estimate:

â(L) ≈ ca(L). (3.10)

The above approximation would become a equality, if noises were absent or
if an infinite number of snapshots were available.

Toward deriving the estimation formulas for the incident source’s azimuth-
elevation direction-of-arrival and polarization, eliminate the complex phase
from the third entry in (3.10), to give

ā := â(L) e−j∠[â(L)]3

≈ |c|


−`(L)

θx
/ sin(θx)

−`(L)
θy
/ sin(θy)

−`(L)
θz
/ sin(θz)



◦


sin(γ) cos (θz) cos (φx)− cos(γ) sin (φx) cos(η)
sin(γ) cos (θz) sin (φx) + cos(γ) cos (φx) cos(η)
− sin(γ) sin (θz)



+j |c|


−`(L)

θx
/ sin(θx)

−`(L)
θy
/ sin(θy)

−`(L)
θz
/ sin(θz)

 ◦


cos(γ) sin (φx) sin(η)
− cos(γ) cos (φx) sin(η)

0

 .(3.11)

Here, (3.11) offers 5 real-value constraints, with the 4 real-value unknowns

of |c|, −`
(L)
θx

sin(θx) ,
−`(L)

θy

sin(θy) , and
−`(L)

θz

sin(θz) as nuisance parameters, which may be re-
moved subsequently by taking the ratio between real-value part and the
imaginary part of [ā]`, for ` = 1, 2.

Section 3.4.1 below will derive and will simulate new bivariate direction-
finding formulas in close form, based on a prior knowledge of the polar-
ization. Section 3.4.2 will do the same for the polarization estimation,
assuming prior knowledge of the direction-of-arrival. 11

11Simultaneous estimation of the polar-azimuth bivariate direction-of-arrival
and the bivariate polarization is infeasible here under the above eigen-
based pre-processing, because there would be 7 unknown real-value scalars,(

namely,γ, η, φx, θz, |c|`
(L)
x

sin(θx) ,
|c|`(L)

y

sin(θy) ,
|c|`(L)

z

sin(θz)

)
but only 5 constraints (3.11), leading to

an under-determined situation. A non-eigen-based estimator simultaneously for all
four parameters will be presented in Section 3.5.
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3.4.1 Estimation of the Incident Source’s
Azimuth-Polar Direction-of-Arrival, (φx, θz)

Assume that the incident emitter’s polarization (γ, η) is prior known. The

only unknowns would then be θz, φx,
−`(L)

θx
|c|

sin(θx) ,
−`(L)

θy
|c|

sin(θy) , and
−`(L)

θz
|c|

sin(θz) . 12

To yield the direction-of-arrival estimates, θ̂z and φ̂x, form the following
ratios: Using the first row of the vector-equation in (3.11), define

αx := <{[ā]1} sin(η) + ={[ā]1} cos(η)
={[ā]1}

= tan(γ) cot (φx) cos (θz) , (3.12)

where <{·} and ={·} respectively symbolize the real-value part and the
imaginary part of the entity inside the curly brackets. Also, based on the
second row of the vector-equation in (3.11), define

αy := <{[ā]2} sin(η) + ={[ā]2} cos(η)
={[ā]2}

= − tan γ tan (φx) cos (θz) . (3.13)

From (3.12) and (3.13), the incident source’s azimuth-polar direction-of-
arrival may be estimated as

φ̂x :=



−π + arctan
∣∣∣αy
αx

∣∣∣1/2 , if φx ∈ [−π,−π
2 ),

arctan
(
−
∣∣∣αy
αx

∣∣∣1/2) , if φx ∈ [−π
2 , 0),

arctan
∣∣∣αy
αx

∣∣∣1/2 , if φx ∈ [0, π2 ),

π + arctan
(
−
∣∣∣αy
αx

∣∣∣1/2) , if φx ∈ [π2 , π);

(3.14)

θ̂z := arccos
sgn

αx tan φ̂x
tan γ

 |αxαy|1/2
|tan γ|

 . (3.15)

12 One sample scenario whereby the polarization is prior known and only the DOA needs to
be estimated is as follows. In certain types of sensor-network geolocation applications
and in some RFID networks, the to-be-geolocated or the to-be-tracked mobile uses
antennas at a polarization that is prior known to the sensors. E.g., a linearly polarization
antenna is vertically/horizontally affixed on a mobile vehicle, or a circular polarized
antenna is used by the mobile vehicle. The sensor network and the RFID sensors would
thus have a prior knowledge of the mobile vehicle’s signal polarization.
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These estimators requires no prior knowledge of L, λ, nor the digital fre-
quency. The estimator φ̂x has a support-range of [−π,−π

2 ) or [−π
2 , 0) or

[0, π2 ) or [π2 , π). The estimator θ̂z has a support-range of [0, π].

The new estimators proposed above in (3.14) and (3.15) have their efficacy
verified below by Monte Carlo simulations, which are shown in Figures
3.2a-3.2b.

To focus on the influence of the electrical length L
λ
, a simple data model

will be used below: A zero-mean complex-value Gaussian noise signal s(m),
impinges upon the triad. At the mth time-instant, the triad collects the 3× 1
data-vector,

z(m) = a(L)s(m) + n(m). (3.16)

Moreover, the additive noise n(m) denotes a 3 × 1 vector of zero-mean
complex-value Gaussian additive noise, spatio-temporally uncorrelated
over time and across the dipoles, while statistically independent from
all other entities, hence with a deterministic covariance matrix of Γ0 =
diag (σ2

n, σ
2
n, σ

2
n), where σ2

n representing the noise variance at each dipole.
With M number of time-samples, the 3M × 1 collected data-set equals

ζ =
[
(z(1))T , · · · , (z(M))T

]T
. (3.17)

The corresponding Cramér-Rao bounds (CRB) are derived in Appendix
A. (Recall that the Cramér-Rao bound lower-bounds the estimation error
variance of any unbiased estimator; and the Cramér-Rao bound itself is
independent of the specific estimator employed.)

In this Chapter’s all subsequent numerical examples, M = 90, φx = 45o,
θz = 80o, γ = 80o, and η = 75o. Each icon on every graph represents 1, 000
independent Monte Carlo experiments. These figures show L

λ
only up to

0.8, because the “effective length" expression of (3.2) is invalid when the
physical length is near integer- multiples of the wavelength. As explained
earlier, the electric current is actually not a null at the feed point, but only
relatively small there.

Figures 3.2a-3.2b verify the proposed estimators’ efficacy as well as the
estimators’ closeness to the Cramér-Rao bounds. These figures further
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suggest that the shorter the dipole, the less accurate the estimates would
be, and the higher the SNR would be for the estimators to begin to break
down. 13

(a) RMSE and
√

CRB for θ̂z, versus L
λ ,

at SNR = 10, 30dB.
(b) RMSE and

√
CRB for φ̂x, versus L

λ , at
SNR = 10, 30dB.

Fig. 3.2.: RMSE and
√

CRB for θ̂z and φ̂x versus L
λ using dipole triad.

3.4.2 Estimation of the Incident Source’s
Polarization, (γ, η)

Assume that the incident emitter’s direction-of-arrival (φx, θz) is prior known.14

The only unknowns would then be γ, η,
−|c|`(L)

θx

sin(θx) ,
−|c|`(L)

θy

sin(θy) , and
−|c|`(L)

θz

sin(θz) . 15

The last three unknowns are common to the real-value part and the imagi-
nary part of the vector-equation in (3.11). Thus, these unknowns may be
13Recall that the “effective length" affects the dipole’s gain, nonlinearly and non-

monotonically in (3.2), through sinusoidal functions.
14The open-form polarization-estimation algorithm in [59] also requires the prior knowl-

edge of the direction-of-arrival.
15 One sample scenario whereby the incident signal’s direction-of-arrival is prior known

and only the incident signal’s polarization needs to be estimated is as follows: After a
high-resolution radar (HRR) system is in “locked-on" mode with regard to a target, the
direction-of-arrival is already known (roughly) to the radar receiver. In that “locked-on"
mode, the radar returns’ polarization signature would facilitate the radar system (i) to
classify the target into specific types (e.g. an F-16 jet versus an MiG jet versus others)
based on a priori polarimetric “template" profiles, or (ii) to estimate the target’s shape
or materials construction.
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removed by forming the ratio between the real-value part and the imaginary-
value part of each element in (3.11), giving

<{[ā]1}
= {[ā]1}

= tan(γ)
tan(φx)

cos(θz)
sin(η) −

1
tan(η) , (3.18)

<{[ā]2}
= {[ā]2}

= − tan(γ) tan(φx)
cos(θz)
sin(η) −

1
tan(η) . (3.19)

The third element’s imaginary-value part equals zero; hence, the ratio
<{[ā]3}
={[ā]3} would not be useful. Nonetheless, the two constraints in (3.18)-

(3.19) will be shown below to suffice to estimate the two unknowns of η
and γ.

To estimate η from (3.18)-(3.19):

<{[ā]1}
= {[ā]1}

tan (φx) + <{[ā]2}
= {[ā]2}

cot (φx) = −1
tan(η)(tan(φx) + cot(φx)),

(3.20)

which contains only one unknown, η. Hence,

η̂ := arctan


− tan (φx)− cot (φx)

<{[ā]1}
={[ā]1} tan (φx) + <{[ā]2}

={[ā]2} cot (φx)

 . (3.21)

To estimate γ, subtract (3.19) from (3.18), giving

<{[ā]1}
= {[ā]1}

− <{[ā]2}
= {[ā]2}

= tan(γ)
tan(φx)

cos(θz)
sin(η) + tan(γ) tan(φx)

cos(θz)
sin(η) .

(3.22)

Multiply both sides of (3.22) by sin(η̂). Assuming that η̂ ≈ η,

sin(η̂)
(
<{[ā]1}
= {[ā]1}

− <{[ā]2}
= {[ā]2}

)
≈ tan(γ) (cot(φx) cos(θz) + tan(φx) cos(θz)) .

(3.23)
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Therefore,

γ̂ := arctan


sin(η̂)
cos(θz)

<{[ā]1}
={[ā]1} −

<{[ā]2}
={[ā]2}

cot(φx) + tan(φx)

 . (3.24)

These estimation formulas proposed here in Section 3.4.2 do not require
any prior knowledge of L, λ, or the digital frequency.

To verify the efficacy of the eigen-based estimators proposed above in (3.21)
and (3.24), Monte Carlo simulations are conducted below using the same
measurement model and the same numerical settings as in Section 3.4.1.
These simulation results are shown in Figures 3.3a-3.3b, along with the
corresponding Cramér-Rao bounds, which have been derived in Appendix
B.

Figures 3.3a-3.3b verify the proposed estimators’ efficacy and their closeness
to the Cramér-Rao bounds. These figures further suggest that the shorter
the dipole, the less accurate the estimates would be, and the higher the SNR
would be for the estimators to begin to break down.

(a) RMSE and
√

CRB for γ̂, versus L
λ ,

at SNR = 10, 30dB.
(b) RMSE and

√
CRB for η̂, versus L

λ , at
SNR = 10, 30dB.

Fig. 3.3.: RMSE and
√

CRB for γ̂ and η̂ versus L
λ using dipole triad.
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3.5 Simultaneous Estimation of the
Direction-of-Arrival and Polarization

Suppose the incident signal is a pure tone, s(m) = ej2πfdm, with a prior
known digital frequency of fd. 16At the mth time-instant, the triad collects
the 3× 1 data-vector,

z(m) = a(L)s(m) + n(m). (3.25)

3.5.1 To Estimate the Polarization
Phase-difference, η

Define

ã(L) := 1
M

M∑
m=1

z(m)e−j2πfdm

≈ a(L). (3.26)

Hence,
[
ã(L)

]
3
≈
[
a(L)

]
3

= sin(γ)`(L)
θz
ejη. Recalling that `(L)

θz
is real-value,

η̂ := ∠
[
ã(L)

]
3
. (3.27)

The estimation above needs no prior knowledge of L nor λ.

3.5.2 To Estimate the Azimuth Angle, φx

The following ratios are judiciously chosen to yield the direction-of-arrival
estimate, φ̂x. Using the first row of the vector-equation

b := ã(L)e−j∠[ã(L)]3 , (3.28)

16Alternatively, if the incident signal is not pure-tone: Apply a sliding time-window short-
time digital Fourier transformation (ST-DFT) to the data sequence. This sliding-window
ST-DFT will output {s(m)} at the dth frequency-bin at a digital frequency of fd.
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define

χx := <{[b]1} sin(η̂) + ={[b]1} cos(η̂)
={[b]1}

≈ tan(γ) cot (φx) cos (θz) . (3.29)

Based on the second row of the vector-equation in (3.28), define

χy := <{[b]2} sin(η̂) + ={[b]2} cos(η̂)
={[b]2}

≈ − tan(γ) tan (φx) cos (θz) , (3.30)

where <{·} and ={·} respectively symbolize the real-value part and the
imaginary part of the entity inside the curly brackets.

After computing (3.29) and (3.30), the emitter’s azimuth direction-of-arrival
may be estimated as

φ̂x :=



−π + arctan
(∣∣∣χy

χx

∣∣∣1/2) , if φx ∈ [−π,−π
2 ),

arctan
(
−
∣∣∣χy
χx

∣∣∣1/2) , if φx ∈ [−π
2 , 0),

arctan
(∣∣∣χy

χx

∣∣∣1/2) , if φx ∈ [0, π2 ),

π + arctan
(
−
∣∣∣χy
χx

∣∣∣1/2) , if φx ∈ [π2 , π).

(3.31)

This estimator has a support-range of [−π,−π
2 ), or [−π

2 , 0), or [0, π2 ), or
[π2 , π).
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3.5.3 To Estimate the Polar Angle, θz

With φx ≈ φ̂x, re-write (3.29) as

tan(γ) = χx tan(φ̂x)
cos(θz)

. (3.32)

With η ≈ η̂, define

αz := <{[b]3} sin(φ̂x) sin(η̂)
={[b]1}

≈ −
`

(L)
θz

`
(L)
θx

tan(γ) sin(θx)︸ ︷︷ ︸
:=αh

.

Using (3.32) in αh gives

αh =
−χx`(L)

θz
tan φ̂x sin(θx)

`
(L)
θx

cos(θz)
. (3.33)

Recall that θx above depends on only φx and θz.

With a prior knowledge of L
λ
, the only unknown in (3.33) is θz. Hence,

θ̂z = arg
θz

min |αz − αh|. (3.34)
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3.5.4 To Estimate the Auxiliary Polarization Angle,
γ

From (3.28),

<{[b]1}
= {[b]1}

= tan(γ)
tan(φx)

cos(θz)
sin(η) −

1
tan(η) , (3.35)

<{[b]2}
= {[b]2}

= − tan(γ) tan(φx)
cos(θz)
sin(η) −

1
tan(η) . (3.36)

As ={[b]3} = 0, the ratio
<{[b]3}
={[b]3} would not be useful.

Subtract (3.36) from (3.35) to give

<{[b]1}
= {[b]1}

− <{[b]2}
= {[b]2}

= tan(γ)
tan(φx)

cos(θz)
sin(η) + tan(γ) tan(φx)

cos(θz)
sin(η) .(3.37)

Multiply both sides of (3.37) by sin(η̂). With η̂ ≈ η, φx ≈ φ̂x, θz ≈ θ̂z,

sin(η̂)
(
<{[b]1}
= {[b]1}

− <{[b]2}
= {[b]2}

)
≈ tan(γ)

(
cot(φ̂x) cos(θ̂z) + tan(φ̂x) cos(θ̂z)

)
.

(3.38)

Therefore,

γ̂ := arctan


sin(η̂)
cos(θ̂z)

<{[b]1}
={[b]1} −

<{[b]2}
={[b]2}

cot(φ̂x) + tan(φ̂x)

 . (3.39)
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3.5.5 Monte Carlo Simulations

Monte Carlo simulations in Figures 3.4a-3.4d verify the efficacy of the
estimators proposed in Sections 3.5.1-3.5.4 above. The additive noise
{n(m), ∀m} is modeled as in Section 3.4.1; and the numerical settings are
also same as in Section 3.4.1.

Moreover, Figures 3.4a-3.4d also show the proposed estimators to be close
to the Cramér-Rao bounds derived in Appendix C.
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Fig. 3.4.: RMSE and
√

CRB for (θ̂z, φ̂x, γ̂, η̂) versus L
λ using dipole triad.
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3.6 Conclusion

For a triad of collocated and perpendicular “long" dipoles, this investigation
is first in the open literature to propose closed-form algorithms to estimate
an impinging signal’s the incident azimuth-elevation direction and/or the
incident bivariate polarization. The proposed estimators – in (3.14), (3.15),
(3.21), and (3.24) – can closely approach the Cramér-Rao bounds, as shown
in the presented Monte Carlo simulations. These proposed estimators
(developed for a collocated/perpendicular triad of “long" dipoles) may be
substituted right into the dozens of schemes mentioned in Section I-1)
of [62] for “short" dipole triads, thereby generalizing those established
schemes for pragmatic use with practical dipoles of an effective radiation
efficiency.
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4Electrically Long Dipoles –
Positioned Sparsely on an Extended
Circumference and Oriented
Radially or Tangentially – for DoA
and Polarization Estimation

4.1 Introduction

Electrically long dipole signal processing is for the first time investigated in
Chapter 3. Nonetheless, that pioneering investigation focuses exclusively
on a spatially co-centered unit of “electrically long" dipoles in orthogonal
orientation relative to each other.

Though the extended-aperture sensor-array direction-finding literature is
vast, but that literature is almost always limited to short dipoles [99–102,
105–110, 125] or limited to long dipoles that are all identically oriented
[103, 104, 111–124]. Arbitrary directional sensors array with extended
aperture is considered for direction finding in [153–169] and it is indicated
that higher directivity can improve the performance [123]. However, for
electrically long dipoles that are positioned over a spatial aperture with
diverse orientation, for the purpose of estimating impinging electromagnetic
signals’ arrival directions and polarizations – this chapter pioneers the open
literature’s first signal-processing algorithm in closed form. The dipoles here
may be electrically long, not electrically short as typically required in the
dipole-array signal processing literature. The inter-dipole separation here
may exceed half a wavelength, to realize an extended aperture to enhance
the array’s spatial resolution of incident sources. This proposed algorithm is
verified via Monte Carlo simulations, to be efficacious and to approach the
Cramer-Rao bound.
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For this chapter to achieve closed-form direction finding with an extended
aperture, despite the diverse orientation of the dipoles that are electrically
long – this achievement is unprecedented in the open literature (to the best
of knowledge).

4.1.1 A circular array of differently oriented
dipoles

The electrically long dipole’s voltage equals the incident electric-field vec-
tor multiplied (via an inner product) into the dipole’s “effective length"
vector. The “effective length" (a misnomer) is not a “length" per se, but
a multivariate pattern. This pattern depends on the impinging source’s
direction-of-arrival relative to the dipole’s axis. Hence, the dipole’s “effec-
tive length" is not a univariate function of that dipole’s electrical length
L
λ
.

This chapter considers a circular array of radially oriented dipoles, each
dipole would have a different orientation and thus a different “effective
length". The same holds for tangentially oriented dipoles positioned on a
circle. In contrast, if the array’s every dipole is oriented identically (e.g.
if all vertically oriented), all dipoles’ “effective lengths" (for an incident
plane wave) would be all identical. Then, these “effective lengths" may be
factored out into a factor common to all entries in the array manifold.

Each electrically long dipole’s directional gain pattern varies nonlinearly
with the incident source’s unknown direction-of-arrival (θz, φx), unknown
polarization (γ, η), and wavelength (λ). This penta-variate dependence
is highly complicated, and differs for different dipoles (i.e. for different
values of `). Hence, the array manifold’s every entry is a differently compli-
cated nonlinear function of the concerned dipole’s

{
L
λ
, θ̃i
}

and the incident
source’s {θk, φk, γk, ηk} Nonetheless, Section 4.4 will develop a closed-form
estimator of the bivariate direction-of-arrival and the bivariate polariza-
tion.
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Fig. 4.1.: Uniform circular array of radially oriented dipoles.

Fig. 4.2.: Uniform circular array of tangentially oriented dipoles.

Fig. 4.3.: Uniform circular array of vertically oriented dipoles.
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4.1.2 Aperture extension by sparsely spacing
sensors on a circle

The circular array configurations mentioned above can realize an extended
aperture (i.e. with an inter-sensor spacing exceeding half a wavelength),
without incurring ambiguous direction-of-arrival estimates. This chapter
will advance new estimation algorithms in closed forms, for use with a
circular array of any even number (≥ 4) of “electrically long" dipoles, to form
a two-dimensional circular spatial aperture to span many wavelengths.

This chapter will focus on two orientational configurations:

1) All dipoles are radially oriented with regard to the polar coordinates’
origin.

2) All dipoles are tangentially oriented with regard to the circumference.

Not to be investigated in this chapter is the case of all dipoles being vertically
oriented, because all dipoles’ “effective lengths" can then be factored out as a
multiplicative factor common to all entries of the array manifold, which then
equals that of a circular array of isotropic sensors. Each incident source’s
azimuth-elevation arrival direction and polarization will be simultaneously
estimated.
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4.2 Derivation of the Array Manifold

Toward formulating the overall dipole-array’s mathematical array manifold
in Section 4.2.2 for radially oriented dipoles and in Section 4.2.3 for tangen-
tially oriented dipoles, the next Section 4.2.1 will first develop each dipole’s
effective length as a function of that dipole’s orientation.

4.2.1 Basics of Electrically Long Dipoles at
Various Orientations

Consider an electromagnetic plane wave of unit power per unit area and
of wavelength λ. Suppose this wave impinges from the far field upon
the Cartesian origin, at an incident polar angle (a.k.a. a zenith angle) of
θz ∈ [0, π], an azimuth angle of φx ∈ [−π, π), an auxiliary polarization angle
of γ ∈ [0, π/2), and a polarization phase difference of η ∈ [−π, π). This
wave’s electric-field vector may be expressed in the Cartesian coordinates as

e =


ex

ey

ez

 =


cos(φx) cos(θz) − sin(φx)
sin(φx) cos(θz) cos(φx)

− sin(θz) 0


 sin(γ)ejη

cos(γ)

 . (4.1)

Suppose the above-described incident wave impinges upon an electrically
long dipole, of physical length L (i.e., with an electrical length of L

λ
), and

aligned along the x-axis. This would produce a voltage of ex`
(L)
θx

csc(θx) [97],
where

`
(L)
θx

= λ

π sin(πL
λ

)
cos

(
πL
λ

cos (θx)
)
− cos

(
πL
λ

)
sin (θx)

. (4.2)

is labelled the “effective length" of the electrically long dipole. In the above,
θx represents the spatial angle between the x-axis and the negative of the
incident direction as in Figure 1.3; and
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sin (θx) =
√

sin2 (θz) sin2 (φx) + cos2 (θz)

cos (θx) = sin (θz) cos (φx) .

On the other hand, if this same long dipole is aligned along the y-axis, its
measured voltage [97] would instead equal ey`

(L)
θy

csc(θy), where

`
(L)
θy

= λ

π sin(πL
λ

)
cos

(
πL
λ

cos (θy)
)
− cos

(
πL
λ

)
sin (θy)

, (4.3)

symbolizes the effective length. Here, θy denotes the spatial angle between
the y-axis and the negative of the incident direction as in Figure 1.3; and

sin (θy) =
√

sin2 (θz) cos2 (φx) + cos2 (θz)

cos (θy) = sin (θz) sin (φx) .

Lastly, if this long dipole is aligned at an azimuth angle of

θ̃i := (i− 1)2π
I

(4.4)

counter-clockwise from the positive x-axis, its measured voltage would
instead equal

vi = ei`θi csc(θi), (4.5)

where θi represents the spatial angle between the ith dipole’s axis and the
negative of the incident direction; and
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cos (θi) = cos
(
θ̃i
)

cos (θx) + sin
(
θ̃i
)

cos (θy) ,

sin (θi) =

√√√√√ cos2(θz) + cos2 (θx) sin2(θ̃i)+cos2 (θy)
cos2(θ̃i)−2 cos (θx) cos (θy) cos(θ̃i) sin(θ̃i)

.

Please note that θ̃i and θi are two different symbols. Moreover,

i) ei = ex cos
(
θ̃i
)

+ ey sin
(
θ̃i
)

represents the incident electric-field vec-
tor’s projection onto the ith dipole’s axis.

ii) `θi = λ
π

1
sin(πL

λ
)

cos(πL
λ

cos(θi))−cos(πL
λ

)
sin(θi) refers to the ith electrically long

dipole’s “effective length.

4.2.2 To Derive Radially Oriented Dipoles’ Array
Manifold

Suppose that I number of such electrically long dipoles are spaced evenly
on a circle, which has a radius of R, lies on the x-y horizontal plane, and
is centered at the Cartesian origin. Suppose further that these electrically
long dipoles are each oriented radially with respect to the circle’s origin, as
shown in Figure 4.1.

For this entire circular array of I radially oriented and equally spaced dipoles
of electrical length L

λ
, the I × 1 array manifold may be represented as

ar =


e1`θ1 csc(θ1)ej2πRλ cos(θ1)

e2`θ2 csc(θ2)ej2πRλ cos(θ2)

...
eI`θI csc(θI)ej2π

R
λ

cos(θI)

 . (4.6)

This array manifold expression is new to the open literature, to the best
knowledge.
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4.2.3 To Derive Tangentially Oriented Dipoles’
Array Manifold

Suppose the circular array’s electrically long dipoles are oriented tangentially
with respect to the circumference, as shown in Figure 4.2.

The ith such dipole’s voltage would equal

vi = ei`βi csc(βi)ej2π
R
λ

cos(θi), (4.7)

where βi denotes the spatial angle between the ith dipole axis and the
incident source’s direction of arrival. Moreover,

ei = ey cos
(
θ̃i
)
− ex sin

(
θ̃i
)
, (4.8)

represents the incident electric-field component along the ith dipole’s axis,

`βi = λ

π

1
sin(πL

λ
)

cos(πL
λ

cos(βi))− cos(πL
λ

)
sin(βi)

, (4.9)

symbolizes the ith electrically long dipole’s effective length, and

cos(βi)= cos
(
θ̃i
)

cos(θy)− sin
(
θ̃i
)

cos(θx), (4.10)

sin(βi)=

√√√√√ cos2(θz) + cos2(θy) sin2(θ̃i) + cos2(θx)
cos2(θ̃i) + 2 cos(θx) cos(θy) cos(θ̃i) sin(θ̃i)

. (4.11)

For the entire circular array of I tangentially oriented and equally spaced
dipoles of electrical length L

λ
, the array manifold may be represented as
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atn =


e1`β1 csc(β1)ej2πRλ cos(θ1)

e2`β2 csc(β2)ej2πRλ cos(θ2)

...
eI`βI csc(βI)ej2π

R
λ

cos(θI)

 . (4.12)

This array manifold expression is also new to open literature, to the best
knowledge.

4.3 The Data’s Statistical Model

A point-size source emits a narrowband s(t) from the far field. This signal is
modeled as complex-value Gaussian, zero-mean with a power of σ2

s , and
statistically uncorrelated over time.

At the mth time instant, the array collects a I × 1 data-vector,

z(m) = as(m) + n(m) (4.13)

where n(m) denotes a zero-mean complex-value Gaussian noise vector
which is uncorrelated over time and across different dipoles, as well as
statistically independent from {s(m),∀m}. The noise variance at each
dipole is represented by σ2

n. Thus, this noise process has a covariance matrix
of Γ0 = σ2

nII , where II represents an I × I identity matrix. Suppose M
number of time samples are collected by the UCA giving a I×M data matrix
of Z.

The principal eigenvector of the I × I data correlation matrix, ZZH , equals
â ≈ ca where c is an unknown complex-value scalar. In the above, the
superscript H symbolizes the hermitian operator. This vector â would be
used in the following subsection for direction finding and polarization
estimation.
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4.4 The proposed algorithm – if the
diameter 2R ≤ λ

2

4.4.1 To estimate the incident source’s
direction-of-arrival

This section will develop a closed-form estimator of the bivariate direction-
of-arrival and the bivariate polarization. The new algorithm developed
below is predicated on these following new insights on the array manifolds
in (4.6) and (4.12):

(i) For the two collinear dipoles hypothetically lying on the x-axis: their
orientations are the same; hence, their noiseless data would be identi-
cal except for a complex phase of ±2πR

λ
sin(θz) cos(φx), which arises

due to these dipoles’ different locations. This aforementioned complex
phase depends on the incident source’s Cartesian direction cosine of
u = cos(θ1) = sin(θz) cos(φx) along the x-axis.

(ii) Similarly for the two collinear dipoles hypothetically lying on the y-
axis: Those two long dipoles’ noiseless data would be identical except
for a complex phase of ±2πR

λ
sin(θz) sin(φx), containing the Cartesian

direction cosine of v = sin(θz) sin(φx) along the y-axis.

(iii) More generally for the two collinear dipoles lying on the radial axis
at an angle of θ̃i radians with the positive x-axis: Those two long
dipoles’ noiseless data would be identical except for a complex phase
of ±2πR

λ

[
u cos

(
θ̃i
)

+ v sin
(
θ̃i
)]

, which is a function of x-axis and y-
axis Cartesian direction cosines and θ̃i has been defined in (4.4).

Predicated on the above insights in (i)-(iii): For the entire circular array
consisting of I long dipoles, their data can afford the estimation of the
values of the I

2 number of different bivariate functions,

{[
u cos

(
θ̃i
)

+ v sin
(
θ̃i
)]
, ∀i = 1, 2, · · · , I2

}
.
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More precisely, the data can be eigen-processed to yield an estimate âk,
of the kth incident source’s I × 1 steering vector ak. From âk, define the
following I

2 × 1 vector:

b̂k :=



∠ −[âk]1
[âk] I

2 +1
...

∠ −[âk]i
[âk] I

2 +i
...

∠
−[âk] I

2
[âk]I


, (4.14)

In the above, ∠ takes the complex phase of the ensuring entity, and [·]τ
denotes the τ th element of the vector inside the square brackets. For UCA
of radially oriented dipoles

[ak]i = ei,k`θi,k csc(θi,k)ej2π
R
λ

cos(θi,k) (4.15)

[ak] I
2 +i = e I

2 +i,k`θ I
2 +i,k

csc(θ I
2 +i,k)e

j2πR
λ

cos
(
θ I

2 +i,k

)
= −ei,k`θi,k csc(θi,k)e−j2π

R
λ

cos(θi,k) (4.16)

The above equality in (4.16) is obtained by using the definition of ei,
`θi csc(θi), and cos(θi). Using equations (4.15) and (4.16) in (4.14) gives

b̂k ≈ 4πR
λ



cos(θ1,k)
...

cos(θi,k)
...

cos(θ I
2 ,k

)


= 4πR

λ



uk

uk cos
(
θ̃2
)

+ vk sin
(
θ̃2
)

...
uk cos

(
θ̃i
)

+ vk sin
(
θ̃i
)

...
uk cos

(
θ̃ I

2

)
+ vk sin

(
θ̃ I

2

)


.(4.17)

The above approximation becomes exact, if noises are absent or if the
snapshots are infinite in number. Same result in equation (4.17) would also
be obtained for UCA of tangentially oriented dipoles.
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From (4.14), the x-axis Cartesian direction cosine can be estimated as

ûk := 1
4π

λ

R
[b̂k]1, (4.18)

assuming that R
λ

is prior known.

Then, using ûk and the values from the last I
2−1 entries of (4.14), the y-axis

Cartesian direction cosine can be estimated as

v̂k := 2
I − 2

I/2∑
i=2

1
4π

λ
R

[b̂k]i − ûk cos
(
θ̃i
)

sin
(
θ̃i
) (4.19)

The direction-of-arrival can be estimated using (4.18) and (4.19) as

θ̂z,k :=

arcsin
(√

û2
k + v̂2

k

)
, if θz,k ∈ [0, π2 ),

π −arcsin
(√

û2
k+ v̂2

k

)
, if θz,k ∈ [π/2, π];

(4.20)

φ̂x,k :=



arctan
(
|v̂k|
|ûk|

)
, if g > 0 & h > 0,

π − arctan
(
|v̂k|
|ûk|

)
, if g ≤ 0 & h > 0,

π + arctan
(
|v̂k|
|ûk|

)
, if g ≤ 0 & h ≤ 0,

2π − arctan
(
|v̂k|
|ûk|

)
, if g > 0 & h ≤ 0.

(4.21)

where g := sgn(ûk) and h := sgn(v̂k).

The steps above have not required any prior knowledge of L
λ
.
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4.4.2 To estimate the incident source’s
polarization

As the dipoles’ gain and spatial phase responses are independent of incident
signal’s polarization, they can be side-stepped for polarization estimation as
follows. Define an I × 1 vector

d̂k := âk ◦



e−j2π
R
λ

cos(θ̂1,k)

...
e−j2π

R
λ

cos(θ̂i,k)

...
e−j2π

R
λ

cos(θ̂I,k)


(4.22)

where

cos(θ̂i,k) = cos
(
θ̃i
)

sin(θ̂z,k) cos(φ̂x,k) + sin
(
θ̃i
)

sin(θ̂z,k) sin(φ̂x,k),
(4.23)

and ◦ denotes an element-wise multiplication.

The algorithms in Section 4.4.2 and 4.4.2 will require a prior knowledge of
only L

λ
and R

λ
.

For a = ar

Using the estimated θ̂i,k,

ˆ̀
θi,k =

cos
(
πL
λ

cos(θ̂i,k)
)
− cos(πL

λ
)

sin(θ̂i,k)
, (4.24)

where

sin
(
θ̂i,k

)
=

√√√√√√√√
cos2(θ̂z,k) + (sin(θ̂z,k) cos(φ̂x,k))2 sin2(θ̃i)

+(sin(θ̂z,k) sin(φ̂x,k) cos(θ̃i))2

−2 sin2(θ̂z,k) sin(φ̂x,k) cos(φ̂x,k) cos(θ̃i) sin(θ̃i)
. (4.25)
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The following algorithmic steps aim to bypass the dipoles’ gain responses,
in order to estimate the incident source’s polarization:

ĝrk := d̂k ◦



sin(θ̂1,k)/ˆ̀
θ1,k

...
sin(θ̂i,k)/ˆ̀

θi,k
...

sin(θ̂I,k)/ˆ̀
θI,k


≈ c̄



ex

ex cos
(
θ̃2
)

+ ey sin
(
θ̃2
)

...
ex cos

(
θ̃i
)

+ ey sin
(
θ̃i
)

...
ex cos

(
θ̃I
)

+ ey sin
(
θ̃I
)


,(4.26)

where

c̄ := λ

π

c

sin(πL
λ

)
. (4.27)

From (4.26), define

α1 := [ĝrk ]1
≈ c̄ex (4.28)

and

α2 := 1
I − 1

I∑
i=2

(
[ĝrk ]i − [ĝrk ]1 cos

(
θ̃i
))

sin
(
θ̃i
)

≈ c̄ey. (4.29)

The polarization can be estimated by using (4.28) and (4.29) in [125]

γ̂k = arctan {|κ|} , (4.30)

η̂k = ∠κ. (4.31)

where

κ := 1
cos(θ̂z,k)

α1 cos(φ̂x,k) + α2 sin(φ̂x,k)
α2 cos(φ̂x,k)− α1 sin(φ̂x,k)

(4.32)
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For a = atn

Using the estimated β̂i,k,

ˆ̀
βi,k =

cos(πL
λ

cos(β̂i,k))− cos(πL
λ

)
sin(β̂i,k)

, (4.33)

where

cos(β̂i,k) = cos
(
θ̃i
)

sin(θ̂z,k) sin(φ̂x,k)− sin
(
θ̃i
)

sin(θ̂z,k) cos(φ̂x,k),(4.34)

sin(β̂i,k) =

√√√√√√√√
cos2(θ̂z,k) + (sin(θ̂z,k) cos(φ̂x,k))2 cos2(θ̃i)

+(sin(θ̂z,k) sin(φ̂x,k) sin(θ̃i))2

+2 sin2(θ̂z,k) sin(φ̂x,k) cos(φ̂x,k) cos(θ̃i) sin(θ̃i)
. (4.35)

The following algorithmic steps aim to bypass the dipoles’ gain responses,
in order to estimate the incident source’s polarization:

ĝtnk = d̂k ◦



sin(β̂1,k)/ˆ̀
β1,k

...
sin(β̂i,k)/ˆ̀

βi,k
...

sin(β̂I,k)/ˆ̀
βI,k


= c̄



ey

ey cos
(
θ̃2
)
− ex sin

(
θ̃2
)

...
ey cos

(
θ̃i
)
− ex sin

(
θ̃i
)

...
ey cos

(
θ̃I
)
− ex sin

(
θ̃I
)


.(4.36)

From (4.36),

α2 := [ĝtnk ]1 ≈ c̄ey (4.37)

and

α1 := − 1
I − 1

I∑
i=2

(
[ĝtnk ]i − [ĝtnk ]1 cos

(
θ̃i
))

sin
(
θ̃i
)

≈ c̄ex. (4.38)

The polarization can similarly be estimated by using (4.37) and (4.38) in
(4.30) and (4.31) [125].
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4.5 The proposed algorithm – the
extended-aperture case of the
diameter 2R > λ

2

Consider an ith collinear pair, consisting of the ith dipole and the
(
i+ I

2

)
th

dipole. Their measurements (in response to kth signal incident from the
Cartesian direction cosines of (uk, vk) and if without noise) are inter-related
by a complex phase difference, which is given by the ith entry of (4.14).
Under noiseless condition, the complex phase difference would become 1

[b̂k]i = 4πR
λ

cos(θi,k) (4.39)

which is dependent only on R
λ

and cos(θi,k). As cos(θi,k) would be constant
for the signal arriving through a circle around dipole axis (because all these
points on circle would have same angle of θi,k between dipole axis and
direction-of-arrival), therefore, the complex phase difference would remain
same for signal arriving through any point on this circle for a specific value
of R

λ
. Therefore, the set of all pairs of Cartesian direction cosines {(uk, vk)}

giving the same complex phase difference: That set would form a circle
perpendicular to the two dipoles’ collinear axis.

Now, please refer to Figure 4.4. As the complex phase difference changes
in value, the circle’s origin would move along that collinear axis. If 2R ≤
λ
2 , each of these circles would correspond to a different complex phase
difference. However, as cos(θi,k) ∈ [−1, 1], if 2R > λ

2 , then [b̂k]i > |π| which
would lead to cyclic ambiguity. Therefore, under sparse spacing where
2R > λ

2 , two or more circles may give the same complex phase difference as
shown in Figure 4.4.

The cyclic ambiguous candidates can be written as

1θi,k = arccos
(
u cos

(
θ̃i
)

+ v sin
(
θ̃i
))

, which (by definition) equals the spatial angle
between the source’s direction-of-arrival and the ith dipole pair axis.
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[b̂k]i ± 2πp = 4πR
λ

cos(θi,k) (4.40)

where p is a whole integer such that | 1
4π

λ
R

([
b̂k
]
i
± 2πp

)
| ≤ 1.

Fig. 4.4.: UCA of M = 6 radially oriented electrically long dipoles with small
circles shown for only first dipole pair along x-axis. Here, R/λ = 0.75.
The signal coming through any point on any of these three small circles
would give the same complex phase difference for dipole pair along
x-axis.

Once the circles centered at each collinear dipole pair are drawn, then
the point of intersection of these small circles would be the arrival direc-
tion that would satisfy the complex phase difference of all dipole pairs
simultaneously.

As an example, consider a UCA of six electrically long dipoles as shown
in Figure 4.5. The complex phase difference of first dipole pair would be
obtained for signal coming through any point on any of the two small circles
centered at x-axis as shown in Figure 4.5. Similarly, the complex phase
difference of second dipole pair would be obtained for signal impinging
through any point on any of the two small circles centered at axis of second
dipole pair. Similar trend is followed for third dipole pair as well. The
actual direction-of-arrival can be determined from the point of intersection
of all dipole pairs’ small circles where the complex phase difference of all
the dipole pairs are satisfied simultaneously.
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Fig. 4.5.: UCA of M = 6 radially oriented electrically long dipoles with small
circles shown for each collinear dipole pair. Intersection point of the all
the dipole pairs’ circles corresponds to the actual direction of arrival.

For estimating the direction-of-arrival as mentioned above, consider the
ambiguous values obtained using equation (4.40) for first entry of equa-
tion (4.14) where each value correspond to a different small circle, the
corresponding Cartesian direction cosine along x-axis are obtained as

u
(p)
k := 1

4π
λ

R

([
b̂k
]

1
± 2πp

)
. (4.41)

Then using u
(p)
k and ambiguous values from the second entry of (4.14),

determine

v
(p,q)
k :=

1
4π

λ
R

([b̂k]2 ± 2πq)− u(p)
k cos(θ̃2)

sin(θ̃2)
(4.42)

where q is an integer such that | 1
4π

λ
R

(
[
b̂k
]

2
± 2πq)| ≤ 1.

The PQ entries in
{(
u

(p)
k , v

(p,q)
k

)}
constitute all candidates giving the com-

plex phase difference of first two collinear dipole pair and these candidates
correspond to the points of intersection of the small circles centered at
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x-axis and radial line at an angle of 2π
I

counterclockwise with respect to
positive x-axis.

It can be seen from (4.17) that

b̂k(3 : I2) ≈ ∠



ej4π
R
λ (uk cos(θ̃3)+vk sin(θ̃3))

...

ej4π
R
λ (uk cos(θ̃i)+vk sin(θ̃i))

...

e
j4πR

λ

(
uk cos

(
θ̃ I

2

)
+vk sin

(
θ̃ I

2

))



= 4πR
λ



uk cos
(
θ̃3
)

+ vk sin
(
θ̃3
)

...
uk cos

(
θ̃i
)

+ vk sin
(
θ̃i
)

...
uk cos

(
θ̃ I

2

)
+ vk sin

(
θ̃ I

2

)


. (4.43)

where (3 : I
2) denotes 3rd to I

2 th entries of the vector b̂k. In order to see if
u

(p)
k and v(p,q)

k satisfy the above equation (4.43), define

w(p,q) := ∠



e
j4πR

λ

(
u

(p)
k

cos(θ̃3)+v(p,q)
k

sin(θ̃3)
)

...

e
j4πR

λ

(
u

(p)
k

cos(θ̃i)+v(p,q)
k

sin(θ̃i)
)

...

e
j4πR

λ

(
u

(p)
k

cos
(
θ̃ I

2

)
+v(p,q)

k
sin
(
θ̃ I

2

))


(4.44)

If the two vectors b̂(3 : I
2) and w(p,q) are parallel at the value of u(p)

k and
v

(p,q)
k , then the direction cosines u(p)

k and v
(p,q)
k satisfy the complex phase

difference of all the I
2 dipole pairs which can be established mathematically
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using

(
û

(p)
k , v̂

(p,q)
k

)
:= arg

(u(p),v(p,q))
max

 |b̂k(3 : I
2) ·w(p,q)|∥∥∥b̂k(3 : I

2)
∥∥∥ · ‖w(p,q)‖

 (4.45)

where ‖ · ‖ denotes the Frobenius norm of the vector inside.

The set of Cartesian direction cosine pairs obtained from (4.45) can be used
to determine the ambiguous directions-of-arrival as

θ̂
(p,q)
z,k :=


arcsin

(√(
û

(p)
k

)2
+
(
v̂

(p,q)
k

)2
)
, if θz,k ∈ [0, π2 ),

π −arcsin
(√(

û
(p)
k

)2
+
(
v̂

(p,q)
k

)2
)
, if θz,k ∈ [π/2, π];

(4.46)

φ̂
(p,q)
x,k :=



arctan
(
|v̂(p,q)
k
|

|û(p)
k
|

)
, if g > 0 & h > 0,

π − arctan
(
|v̂(p,q)
k
|

|û(p)
k
|

)
, if g ≤ 0 & h > 0,

π + arctan
(
|v̂(p,q)
k
|

|û(p)
k
|

)
, if g ≤ 0 & h ≤ 0,

2π − arctan
(
|v̂(p,q)
k
|

|û(p)
k
|

)
, if g > 0 & h ≤ 0.

(4.47)

where g := sgn(û(p)
k ) and h := sgn(v̂(p,q)

k ).

The dipoles’ gain/phase responses contain no information on the incident
signal’s polarization; hence, they may be side-stepped in the subsequent
estimators of the incident source’s polarization. In order to get rid of the
dipoles’ gain/phase responses, define cos(θ̂(p,q)

i,k ) similar to (4.23) and form
an I × 1 vector of

d̂k := âk ◦



e−j2π
R
λ

cos(θ̂(p,q)
1,k )

...

e−j2π
R
λ

cos(θ̂(p,q)
i,k

)

...

e−j2π
R
λ

cos(θ̂(p,q)
I,k

)


. (4.48)
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For a = ar

Define ˆ̀(p,q)
θi,k

similar to (4.24).

In order to algorithmically bypass the dipoles’ gain responses, define

ĝrk := d̂k ◦



sin(θ̂(p,q)
1,k )/ˆ̀(p,q)

θ1,k
...

sin(θ̂(p,q)
i,k )/ˆ̀(p,q)

θi,k
...

sin(θ̂(p,q)
I,k )/ˆ̀(p,q)

θI,k


≈ c̄



ex

ex cos
(
θ̃2
)

+ ey sin
(
θ̃2
)

...
ex cos

(
θ̃i
)

+ ey sin
(
θ̃i
)

...
ex cos

(
θ̃I
)

+ ey sin
(
θ̃I
)


. (4.49)

From (4.49), define

α1 := [ĝrk ]1 ≈ c̄ex (4.50)

and

α2 := 1
I − 1

I∑
i=2

[ĝrk ]i − [ĝrk ]1 cos
(
θ̃i
)

sin
(
θ̃i
) ≈ c̄ey. (4.51)

The polarization can be estimated by substituting (4.50) and (4.51) in [125]

γ̂
(p,q)
k = arctan {|κ|} , (4.52)

η̂
(p,q)
k = ∠ {κ} . (4.53)
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where

κ = 1
cos(θ(p,q)

z,k )
α1 cos(φ(p,q)

x,k ) + α2 sin(φ(p,q)
x,k )

α2 cos(φ(p,q)
x,k )− α1 sin(φ(p,q)

x,k )
(4.54)

To disambiguate among the quadruplets in
{(
θ̂

(p,q)
z,k , φ̂

(p,q)
x,k , γ̂

(p,q)
k , η̂

(p,q)
k

)
, ∀p, q

}
,

define

(p◦, q◦) = arg
(p,q)

max
(
|âk · ā(p,q)|
‖âk‖ · ‖ā(p,q)‖

)
(4.55)

(θ̂z, φ̂x, γ̂, η̂) = (θ̂(p◦,q◦)
z,k , φ̂

(p◦,q◦)
x,k , γ̂

(p◦,q◦)
k , η̂

(p◦,q◦)
k ) (4.56)

where ā(p,q) is the ambiguous array manifold at values of (θz,k, φx,k, γk, ηk) =
(θ̂(p,q)
z,k , φ̂

(p,q)
x,k , γ̂

(p,q)
k , η̂

(p,q)
k ) obtained from (4.6) for UCA of radially outward

directed dipoles. The entity inside brackets in (4.55) would be maximized
if the two vectors âk and ā are parallel.

For a = atn

Define ˆ̀(p,q)
βi,k

similar to (4.33). To cancel the effect of dipoles’ gain response

ĝtnk = d̂k ◦



sin(β̂(p,q)
1,k )/ˆ̀(p,q)

β1,k
...

sin(β̂(p,q)
i,k )/ˆ̀(p,q)

βi,k
...

sin(β̂(p,q)
I,k )/ˆ̀(p,q)

βI,k


= c̄



ey

ey cos
(
θ̃2
)
− ex sin

(
θ̃2
)

...
ey cos

(
θ̃i
)
− ex sin

(
θ̃i
)

...
ey cos

(
θ̃I
)
− ex sin

(
θ̃I
)


(4.57)
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From (4.57),

α2 := [ĝtnk ]1 ≈ c̄ey (4.58)

and

α1 := − 1
I − 1

I∑
i=2

(
[ĝtnk ]i − [ĝtnk ]1 cos

(
θ̃i
))

sin
(
θ̃i
)

≈ c̄ex. (4.59)

The polarization can similarly be estimated by using (4.58) and (4.59) in
(4.52) and (4.53).

To disambiguate among the quadruplets in
{(
θ

(p,q)
z,k , φ

(p,q)
x,k , γ

(p,q)
k , η

(p,q)
k

)
,∀p, q

}
,

define

(p◦, q◦) = arg
(p,q)

max
(
|âk · ā(p,q)|
‖âk‖ · ‖ā(p,q)‖

)
(4.60)

(θ̂z,k, φ̂x,k, γ̂k, η̂k) = (θ̂(p◦,q◦)
z,k , φ̂

(p◦,q◦)
x,k , γ̂

(p◦,q◦)
k , η̂

(p◦,q◦)
k ) (4.61)

where ā(p,q) is the ambiguous array manifold at values of (θz,k, φx,k, γk, ηk) =
(θ̂(p,q)
z,k , φ̂

(p,q)
x,k , γ̂

(p,q)
k , η̂

(p,q)
k ) obtained from (4.12) for UCA of tangential hori-

zontally oriented dipoles. The entity inside brackets in (4.60) would be
maximized if the two vectors âk and ā are parallel.
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4.6 Monte Carlo Simulations, with the
Dipoles Oriented Radially

Monte Carlo experiments are conducted here for case of the electrically
long dipoles oriented radially, in order to verify efficacy of the estimators in
Section 4.4.

The results are shown in Figures 4.6-4.7 and compared against the Cramér-
Rao bound (CRB), which has been derived in Appendix D.

These experiments show influences of electrical length L
λ

and the circular
aperture R

λ
on the performance of estimators. In these numerical examples,

θz = 30◦, φx = 40◦, γ = 80◦, η = 75◦, I = 8, M = 90, and SNR= 20dB. Each
icon on every graph represents 1, 000 independent Monte Carlo experiments.
It can be seen that the performance improves by increasing the dipoles’
electrical length L

λ
and/or the circular aperture 2R

λ
.
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10-4
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Fig. 4.6.: The proposed estimator’s RMSE and
√

CRB, versus L
λ , at R

λ = 10.
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Fig. 4.7.: The proposed estimator’s RMSE and
√

CRB, versus R
λ , at L

λ = 1
2 .

4.7 Monte Carlo Simulations for Direction
Finding using Tangentially Oriented
UCA

Monte Carlo experiments are performed using tangentially oriented UCA of
electrically long dipoles to verify efficacy of estimators proposed in Section
4.4. The results are shown in Figures 4.8-4.9 and compared against the
Cramér-Rao Bounds (CRB) as derived in Appendix D.

These experiments show influences of electrical length L
λ

and UCA aperture
R
λ

on the performance of estimators. In these numerical examples, θz = 30◦,
φx = 60◦, γ = 45◦, η = 50◦, I = 8, M = 90, and SNR= 20dB. Each icon
on every graph represents 1, 000 independent Monte Carlo experiments. It
can be seen that the performance improves by increasing dipoles’ electrical
length and/or UCA aperture.
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Fig. 4.8.: The proposed estimator’s RMSE and
√

CRB, versus L
λ , at R

λ = 10.
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Fig. 4.9.: The proposed estimator’s RMSE and
√

CRB, versus R
λ , at L

λ = 1
2 .
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4.8 Conclusion

For a uniform circular array of electrically “long" dipoles that can realize
an extended aperture to enhance the array’s spatial resolution of inci-
dent sources, this investigation is first in the open literature to propose
closed-form algorithms to estimate an impinging signal’s azimuth-elevation
direction and the incident bivariate polarization despite the diverse orien-
tation of the dipoles. The proposed estimators in this chapter can closely
approach the Cramér-Rao bounds, as shown in the presented Monte Carlo
simulations.
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5Electrically Long Dipoles in a
Crossed Pair for Closed-Form
Estimation of an Incident Source’s
Polarization

5.1 Introduction

Polarimetry measures and interprets the polarization of transverse waves
[94]. The polarization of an impinging wave may reveal the emitter’s in-
trinsic attributes. Polarization is bivariate; therefore, at least two differently
polarized antennas are required for polarimetry of any wavefield that is
fully polarized.

Polarimetry via orthogonally oriented electric dipoles – this has been much
investigated. Please refer to [62, 93, 125] for surveys of this literature.
These references, however, focus on electrically short dipoles, which are
inefficient antennas. At an electrical length of L

λ
= 1

10 , an electrically short
dipole’s radiation efficiency is only 74%, whereas an electrically long half-
wavelength dipole offers 95%.1 For a perpendicular pair of such electrically
long dipoles, this Chapter is first to advance any closed-form formula to
estimate an incident wavefield’s polarization.

Section 5.3 will provide closed-form formulas for polarization estimation.
Section 5.4 will derive and will compare the corresponding Cramér-Rao
lower bounds in polarization-estimation for these three dipole-orientations.

1These values are computed based on the radiation resistance equations and the loss
resistance equations in [68, pp. 86, 177, 215], [95].
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5.2 The Two Electrically Long Dipoles’
Array Manifold

Consider a fully polarized electromagnetic wave. Its electric-field vector
may be characterized (equations (2.5)-(2.8) and (2.11)-(2.12) in [96]) in
the Cartesian coordinates as

e =


ex

ey

ez



=


cos(φx) cos(θz) − sin(φx)
sin(φx) cos(θz) cos(φx)
− sin(θz) 0


︸ ︷︷ ︸

def= Θ

 sin(γ) ejη

cos(γ)


︸ ︷︷ ︸

def= p

, (5.1)

where θz ∈ [0, π] denotes the transmitter’s polar angle measured from the
positive z-axis, φx ∈ [0, 2π) signifies the azimuth angle measured from the
positive x-axis, η ∈ [−π, π) refers to the polarization phase difference, and
γ ∈ [0, π/2) symbolizes the auxiliary polarization angle. Note that the vector
p depends only on the polarization state of incident source, whereas the
matrix Θ depends only on the direction-of-arrival of incident source.

Consider an electrically long dipole of physical length L but an “electrical
length" of L

λ
> 1

10 , If this dipole is aligned along the z-axis, its measurement
would not be ez, but ez`(L)

z csc(θz). Here, the scalar `(L)
z symbolizes the

amplitude of “effective length" (a.k.a. the “effective height") and is given
in [68] (equation (2-92) on p. 88, and equation (4-62a) on p. 153):

`(L)
z = λ

π

cos
(
πL
λ

cos (θz)
)
− cos

(
πL
λ

)
sin (θz) sin(πL

λ
)

. (5.2)

Likewise, the x-oriented long dipole’s measured voltage equals ex`(L)
x csc(θx),

where the scalar

`(L)
x = λ

π

cos
(
πL
λ

cos (θx)
)
− cos

(
πL
λ

)
sin (θx) sin(πL

λ
)

, (5.3)
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with θx ∈ [0, π] denoting the angle measured between the positive x-axis
and negative of the impinging wave’s propagation direction.

Similarly for a y-oriented long dipole, its voltage equals ey`(L)
y csc(θy), with

the scalar

`(L)
y = λ

π

cos
(
πL
λ

cos (θy)
)
− cos

(
πL
λ

)
sin (θy) sin(πL

λ
)

, (5.4)

where θy ∈ [0, π] denotes the angle measured between the positive y-axis
and negative of the incident wave’s propagation direction.

The above-defined spatial angles are shown in Figure 1.3. The trigonometric
relationships among the spatial angles are given in Section 1.2.

If a pair of orthogonally crossed dipoles are oriented along any two of the

three Cartesian coordinates, there would exist

 3
2

 = 3 possible spatial

configurations: an x-y biaxial pair, an x-z biaxial pair, or an y-z biaxial
pair. Their spatial geometries are shown in Figure 5.1. A proper choice
of orientation could critically determine the effectiveness of polarimetry.
These 3 configurations will be analytically compared in this Chapter.

Within each pair of dipoles: Suppose that the first dipole is located at
the Cartesian origin (without loss of generality). Suppose also that the
other dipole is placed at a known location of (∆x,∆y,∆z). Then, a spatial
phase-factor of ejχ would exist between these two antennas, where χ :=
2π
[

∆x

λ
sin(θz) sin(φx) + ∆y

λ
sin(θz) cos(φx) + ∆z

λ
cos(θz)

]
. Spatial collocation

occurs if (∆x,∆y,∆z) = (0, 0, 0), obviously. 2

2If the location of two dipoles are switched, ejχ need to be replaced by e−jχ in the array
manifold; and the estimators may be modified accordingly. However, the Cramér-Rao
bounds would remain unaffected.
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(a) The x-y dipole pair. (b) The x-z dipole pair.

(c) The y-z dipole pair.

Fig. 5.1.: RMSE and
√

CRB for θ̂z and φ̂x versus L
λ using dipole triad.

Each aforementioned configuration would have its own 2×1 array manifold,
but all three array manifolds may be expressed compactly through this one
equation [97]:

a =

D :=︷ ︸︸ ︷ 1 0
0 ejχ

S

a(L) :=︷ ︸︸ ︷
e ◦


`(L)
x

`(L)
y

`(L)
z

 ◦


csc(θx)
csc(θy)
csc(θz)

 . (5.5)

where S represents a 2 × 3 selection-matrix which has a “1" on each row
but zeroes elsewhere, and ◦ denotes element-by-element multiplication.

A relationship exists between the x-z and the y-z configuration:

ay,z(θz, φx, γ, η) = ax,z
(
θz, φx −

π

2 , γ, η
)
. (5.6)
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5.3 The Polarization-Estimation Formulas
for All 3 Orientation Configurations

The following presents one sample scenario where the incident source’s
direction-of-arrival is already known but only its polarization needs to be
estimated. A high-resolution radar (HRR) system is in a “locked on” mode
onto a target. Hence, the direction-of-arrival is approximately known to the
radar receiver. The radar returns’ polarization would aid (i) the classification
of the target into specific categories (an F-16 jet versus an MiG jet versus
others) based on prior polarimetric templates, or (ii) the estimation of the
target’s shape or material construction.

Eigen-based parameter-estimation algorithms typically involve an interme-
diate step, that estimates steering vector of each incident source, correct to
within a complex-value scalar c which is unknown to the algorithm. That is,
for each incident source3, the estimate of â ≈ ca is available, from which
bivariate polarization (γ, η) is to be estimated. (Under noiseless or asymp-
totic cases, this approximation approaches equality.) Hence, there exist two
scalar equations and two unknowns. The estimation formulas of γ̂ and η̂

can be obtained from algebraic manipulation of the two scalar equations.
For example, consider the x-y crossed-dipole pair (i.e. configuration 1 of
Table 5.1). The two scalar equations are the two rows of

â = c

 1 0
0 ej2π( ∆x

λ
sin θz sinφx+ ∆y

λ
sin θz cosφx+ ∆z

λ
cos θz)

  1 0 0
0 1 0

 a(L).

(5.7)

The two scalar unknowns are γ and η, but with ∆x

λ
, ∆y

λ
, ∆z

λ
, L
λ
, θz, and φx

already known.

Tables 5.1 and 5.2 lists the γ̂ and η̂ estimation formulas, respectively, for
each of the 3 antenna configurations/orientations of Figure 5.1. These
estimation-formulas, to the best knowledge, are new to the open literature.
These formulas degenerate to those for the short dipoles in [125].

3This does NOT assume that only one source is incident upon the receiver. There could be
many sources and these multiple incident sources could be broadband, cross-correlated,
and/or time-varying.
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Table 5.1.: Polarization (γ) Estimators of the 3 Dipole-Pair Configurations

Dipole Pair γ̂ =

x-y tan−1
∣∣∣∣ 1

cos(θz)
[[â]1`

(L)
y csc(θy) cos(φx)+[â]2`

(L)
x csc(θx) sin(φx)e−jχ][

[â]2`
(L)
x csc(θx) cos(φx)e−jχ−[â1]`(L)

y csc(θy) sin(φx)
] ∣∣∣∣

x-z tan−1
∣∣∣ [â]2`

(L)
x csc(θx) sin(φx)e−jχ

[â]1`
(L)
z csc(θz) sin(θz)+[â2]`(L)

x csc(θx) cos(φx) cos(θz)e−jχ

∣∣∣

y-z tan−1
∣∣∣∣ −[â]2`

L
y csc(θy) cos(φx)e−jχ

[â]1`
(L)
z csc(θz) sin(θz)+[â]2`Ly csc(θy) sin(φx) cos(θz)e−jχ

∣∣∣∣

These estimators are applicable for the entire validity-region of γ ∈ [0, π2 )
and η ∈ [−π, π), i.e. over the entire Poincare sphere. These estimators
are also valid for θ ∈ [0, π] and φ ∈ [0, 2π] except θz = 90◦ for the x-y pair,
except φx = {0◦, 180◦} for the x-z pair, and except φx = {90◦, 270◦} for the
y-z pair. These discrete values of the direction-of-arrival are excluded due
to the underlying electromagnetics, not due to these algorithms themselves
– if the emitter and the dipoles’ axes are all coplanar, the two dipoles can
only receive one component of the incident electric field, hence inviable to
estimate this electric field’s bivariate polarization. These validity regions
also degenerate to those for the short dipoles in [125].

5.4 Cramér-Rao Bounds, CRB(γ) and
CRB(η), for All 3 Antenna/Orientation
Configurations of Section 5.3

To avoid unnecessary distraction from the present investigation on how
a long electrical length would influence the cross-dipoles’ polarization
estimation performance, a simple statistical data model will be employed
here for Cramér-Rao bound derivation. More complicated signal-and-noise
scenarios can follow the approach here.
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Table 5.2.: Polarization (η) Estimators of the 3 Dipole-Pair Configurations

Dipole Pair η̂ =

x-y ∠


[â]1`(L)

y csc(θy) cos(φx) cos(χ) + [â]2`(L)
x csc(θx) sin(φx)

+j[â]1`(L)
y csc(θy) cos(φx) sin(χ)

cos(θz)

(
[â]2`(L)

x csc(θx) cos(φx)− [â]1`(L)
y csc(θy) sin(φx) cos(χ)

−j[â]1`(L)
y csc(θy) sin(φx) sin(χ)

)


x-z ∠


[â]2`

(L)
x csc(θx) sin(φx)

[â]1`(L)
z csc(θz) sin(θz) cos(χ) + [â]2`(L)

x csc(θx) cos(φx) cos(θz)
+j[â]1`(L)

z csc(θz) sin(θz) sin(χ)



y-z ∠


−[â]2`

L
y csc(θy) cos(φx)

[â]1`(L)
z csc(θz) sin(θz) cos(χ) + [â]2`Ly csc(θy) sin(φx) cos(θz)

+j[â]1`(L)
z csc(θz) sin(θz) sin(χ)



Here, the received signal s(t) = σse
j(2πfot) is a pure tone with a known

amplitude of σs and a known frequency of fo. At the mth time-instant of
t = mTs, the 2× 1 collected data-vector by the dipole-pair is given by:

z(mTs) = as(mTs) + n(mTs), (5.8)

where Ts denotes the time-sampling period, n(t) symbolizes a 2× 1 vector
of spatio-temporally uncorrelated zero-mean Gaussian additive noise, with
a deterministic covariance-matrix of Γ0 = diag (σ2

n, σ
2
n), where σ2

n represents
the prior known noise-variance at each dipole.

With M number of time-samples, the 2M × 1 collected data-set equals

ζ =
[
(z(Ts))T , · · · , (z(MTs))T

]T

=
µ:=︷ ︸︸ ︷

s⊗ a +

ν:=︷ ︸︸ ︷[
(n(Ts))T , · · · , (n(MTs))T

]T
, (5.9)

where s := σs
[
ejTsω, ej2Tsω, · · · , ejMTsω

]T
, ⊗ symbolizes the Kronecker prod-

uct, ν represents a 2M × 1 noise vector with a spatio-temporal covariance
matrix of Γ = IM⊗Γ0, and IM denotes an M×M identity matrix. Therefore,
ζ ∼ N (µ,Γ), i.e. a Gaussian vector with mean µ and covariance Γ.
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The to-be-estimated γ and η are modeled as deterministic. Collect them
into a 2 × 1 vector of ψ = [γ, η]T . The resulting 2 × 2 Fisher information
matrix (FIM),

J =
 Jγ,γ Jγ,η

Jη,γ Jη,η

 , (5.10)

has its (p, q)th entry equal to (please see equation (8.34) in [66]):

[J]p,q = 2Re
( ∂µ

∂[ψ]p

)H
Γ−1

(
∂µ

∂[ψ]q

)
+Tr

[
Γ−1 ∂Γ

∂[ψ]p
Γ−1 ∂Γ

∂[ψ]q

]
, (5.11)

where Re[.] denotes the real-value part of the entity inside [.], Tr[.] repre-
sents the trace operator, and

∂µ

∂γ
= ∂a

∂γ
⊗ s, (5.12)

∂µ

∂η
= ∂a

∂η
⊗ s, (5.13)

∂a
∂γ

= DS

Θ

 cos γejη

− sin γ

 ◦

`(L)
x

`(L)
y

`(L)
z

 ◦


csc(θx)
csc(θy)
csc(θz)

 , (5.14)

∂a
∂η

= DS

Θ

 j sin γejη

0

 ◦

`(L)
x

`(L)
y

`(L)
z

 ◦


csc(θx)
csc(θy)
csc(θz)

 . (5.15)

The elements of the Fisher information matrix equal

Jγ,γ = 2Mσ2
s

σ2
n

{[(
[SΘ]1,1`

(L)
i csc(θi)

)2
+
(

[SΘ]2,1`
(L)
j csc(θj)

)2]
cos2(γ)

+
[(

[SΘ]1,2`
(L)
i csc(θi)

)2
+
(

[SΘ]2,2`
(L)
j csc(θj)

)2]
sin2(γ)

−
[
[SΘ]1,1[SΘ]1,2

(
`

(L)
i csc(θi)

)2
+ [SΘ]2,1[SΘ]2,2

(
`

(L)
j csc(θj)

)2]
sin(2γ) cos(η)

}
= 2Mσ2

s

σ2
n

[
c1 cos2(γ) + c2 sin2(γ)− c3 sin(2γ) cos(η)

]
, (5.16)
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Jη,η = 2Mσ2
s

σ2
n

[(
[SΘ]1,1`

(L)
i csc(θi)

)2
+
(

[SΘ]2,1`
(L)
j csc(θj)

)2]
sin2(γ)

= 2Mσ2
s

σ2
n

c1 sin2(γ), (5.17)

Jγ,η = Jη,γ

= 2Mσ2
s

σ2
n

[
[SΘ]1,1[SΘ]1,2

(
`

(L)
i csc(θi)

)2

+[SΘ]2,1[SΘ]2,2
(
`

(L)
j csc(θj)

)2]
sin2(γ) sin(η)

= 2Mσ2
s

σ2
n

c3 sin2(γ) sin(η), (5.18)

where

c1 =
(

[SΘ]1,1`
(L)
i csc(θi)

)2
+
(

[SΘ]2,1`
(L)
j csc(θj)

)2
,

c2 =
(

[SΘ]1,2`
(L)
i csc(θi)

)2
+
(

[SΘ]2,2`
(L)
j csc(θj)

)2
,

c3 = [SΘ]1,1[SΘ]1,2
(
`

(L)
i csc(θi)

)2
+ [SΘ]2,1[SΘ]2,2

(
`

(L)
j csc(θj)

)2

with [·]p,q symbolizing the (p, q)th entry of the matrix in [·] and i and j denote
subscripts of the electric-field components in (6.16) captured by the dipole
pair. For example, the x-y configuration has i = x and j = y, and likewise
for the other two configurations.

The polarization-estimation Cramér-Rao bounds equal

CRB(γ) =
[
J−1

]
1,1

= Jη,η
Jγ,γJη,η − (Jγ,η)2

= σ2
n

σ2
s

1
2M

c1
c2

1 cos2(γ) + c1c2 sin2(γ)
−c1c3 sin(2γ) cos(η)
−c2

3 sin2(γ) sin2(η)


, (5.19)
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CRB(η) =
[
J−1

]
2,2

= Jγ,γ
Jγ,γJη,η − (Jγ,η)2

= σ2
n

σ2
s

1
2M

csc2(γ)

 c1 cos2(γ) + c2 sin2(γ)
−c3 sin(2γ) cos(η)


c2

1 cos2(γ) + c1c2 sin2(γ)
−c3c1 sin(2γ) cos(η)
−c2

3 sin2(γ) sin2(η)


. (5.20)

Tables 5.3 lists the new closed-form CRB(γ) and CRB(η), expressed explicitly
in terms of the data-model parameters.

Some qualitative observations on the Cramér-Rao bounds derived above:

(A) These Cramér-Rao bounds would have the same numerical value
regardless of the (prior known) spatial separation between the two
dipoles. This spatial separation would affect χ, which is nonetheless
canceled out in the derivation of the Fisher information matrix. How-
ever, the incident source’s frequency does effect the effective lengths
of the antennas; hence, the Cramér-Rao bounds would be changed by
changing the frequency.

(B) Recall that any fully polarized signal may be decomposed as a sum
of a vertically polarized component and an horizontally polarized
component. Hence, only these two linear polarizations are shown in
these figures.

(C) At γ → 0, CRB(η) → ∞, for all three configurations. The reason is
as following: At γ = 0, the electric-field vector in (6.16) becomes
functionally independent of η. Regardless of the value of η, (γ = 0, η)
would refer to one same point on the Poincare sphere (i.e. one same
polarization). The circularly polarized cases’ CRB(η) graphs would
then look similar to that of the vertically polarized case.

For the x-y dipole-pair (i.e. configuration 1 in Table 5.1), Figure 5.2
plots 2M

(
σs
σn

)2
CRB(γ) and 2M

(
σs
σn

)2
CRB(η) versus the direction-of-arrival

(θz, φx). Figure 5.3 plots these same Cramér-Rao bounds versus the bivariate
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polarization (γ, η). Below are qualitative observations specifically on the
x-y dipole-pair’s Cramér-Rao bounds:

(D) A four-fold symmetry exists along the φx-coordinates, in all x-y dipole-
pair Cramér-Rao bounds. This is due to this dipole-pair’s 90◦ rotational
symmetry in φx on the x-y plane.

(E) A symmetry exists along the θz-coordinates, with respect to θ = 90◦

(i.e. at horizontal incidence) in all x-y dipole-pair Cramér-Rao bounds.
This is due to this dipole-pairs symmetry between the upper versus
the lower hemispheres.

(F) At vertical polarization (i.e. γ = 90◦ and η = 0◦), that part of the
incident source’s energy in ez cannot be measured by either the x-
dipole nor the y-dipole. This polarization mismatch explains why the
graphs peak at θz = 90◦.

(G) At horizontal polarization (i.e. γ = 0◦ and η = 0◦), all incident energy
is embedded in ex and ey, which are fully measured by the x-dipole
and/or the y-dipole. Hence, the Cramér-Rao bounds vary with the
two dipoles’ radiation pattern over (θz, φx).

(H) At vertical incidence (i.e. θz = 0◦, 180◦), the source always lie simulta-
neously in both main lobes of the x-dipole nor the y-oriented dipole;
hence, CRB(γ) is small. At horizontal incidence (i.e. θz = 90◦), the
source cannot lie simultaneously in both main lobes of the x-dipole
nor the y-oriented dipole; hence, CRB(γ) is large.

For the x-z dipole-pair (i.e. configuration 2 in Table 5.1), Figure 5.4
plots 2M

(
σs
σn

)2
CRB(γ) and 2M

(
σs
σn

)2
CRB(η) versus the direction-of-arrival

(θz, φx). Figure 5.5 plots these same Cramér-Rao bounds versus the bivariate
polarization (γ, η). Below are the qualitative observations specifically on
the x-z dipole-pair’s Cramér-Rao bounds:

(I) A two-fold symmetry exists along the φx-coordinates, in all x-z dipole-
pair Cramér-Rao bounds. This is due to this dipole-pair’s 180◦ rota-
tional symmetry in φx on the x-y plane.
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(J) A symmetry exists along the θz-coordinates, with respect to θz = 90◦

(i.e. at horizontal incidence) in all x-z dipole-pair Cramér-Rao bounds.
This is due to this dipole pair’s symmetry between the left versus the
right hemispheres.

(K) At vertical polarization (i.e. γ = 90◦ and η = 0◦) and φx = 0◦, 180◦

: eθz lies perpendicular to the x-axis; the x-dipole consequentially
cannot capture any incident energy; hence, the ridges appear.

(L) At vertical polarization (i.e. γ = 90◦ and η = 0◦) and at near-vertical
incidence (i.e. θz ≈ 0◦, 180◦): the source lies in the z-dipole’s null
4regardless of the source’s φx, but in the x-dipole’s null 5only for
φx ≈ 90◦, 270◦; hence, CRB(γ) is large. This explains the spikes in
Figure 5.4(a).

(M) Only z-dipole responds to eθz if θz = 90◦. eθz can only be detected by
the x-dipole if θz = 0◦, 180◦.

A relationship exists between the x-z dipole-pair (i.e. configuration 2 in
Table 5.1), the y-z dipole-pair (i.e. configuration 3 in Table 5.1). The latter’s
Cramér-Rao bounds are obtainable by substituting φx − π

2 for φx in the
former’s. Hence, the former’s plots will not shown/discussed separately.

5.5 Monte Carlo Simulations

To verify the efficacy of the eigen-based estimators newly proposed in
Section 5.3, Monte Carlo simulations are conducted in this section. The
simulation results are presented in Figures 5.6-5.7, along with the corre-
sponding deterministic Cramér-Rao bounds for comparison. Because the
estimators in Table 5.1 need no prior information about σs and σn; the
Cramér-Rao bounds plotted here will correspondingly allow σs and σn as
nuisance parameters.

4Here, the electric field lies entirely on the x-y plane. Hence, the z-dipole receives no
incident energy.

5Here, eφx lies perpendicularly to the x-axis. Therefore, the x-dipole receives no incident
energy.
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(a) The source impinges with a vertical polarization. i.e. γ = 90◦, η = 0◦.

(b) The source impinges with a horizontal polarization. i.e. γ = 0◦, η = 0◦.

Fig. 5.2.: The x-y pair of λ
2 electrically long dipoles.

(a) 2M
(
σs
σn

)2
CRB(γ) on Poincare sphere. (b) 2M

(
σs
σn

)2
CRB(η) on Poincare sphere.

Fig. 5.3.: The x-y pair of λ2 electrically long dipoles, with a source impinging from
a DOA of θz = 45◦, φx = 45◦.
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(a) The source impinges with a vertical polarization. i.e. γ = 90◦, η = 0◦.

(b) The source impinges with a horizontal polarization. i.e. γ = 0◦, η = 0◦.

Fig. 5.4.: The x-z pair of λ
2 electrically long dipoles.

(a) 2M
(
σs
σn

)2
CRB(γ) on Poincare sphere. (b) 2M

(
σs
σn

)2
CRB(η) on Poincare sphere.

Fig. 5.5.: The x-z pair of λ2 electrically long dipoles, with a source impinging from
a DOA of θz = 45◦, φx = 45◦.
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Fig. 5.6.: An x-y pair of electrically long dipoles – their
√

CRB and the RMSE for
γ̂ and η̂.
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Fig. 5.7.: An x-z pair of electrically long dipoles – their
√

CRB and the RMSE for
γ̂ and η̂.

All graphs here use these numerical settings: M = 100, φx = 30o, θz = 45o,
γ = 30o, η = 60o, and a digital frequency fo = 0.3. Each icon on every
graph represents 1000 independent Monte Carlo experiments. These figures
show L

λ
only up to 0.8, because the “effective length" expressions of (5.2)-

(5.4) are invalid when the physical length is near integer-multiples of the
wavelength.

Figures 5.6-5.7 indicate that the proposed estimators perform close to the
Cramér-Rao bounds. Recall that the “effective length" affects the dipole’s
gain, nonlinearly and non-monotonically in (5.2)-(5.4), through sinusoidal
functions. Figures 5.6-5.7 verify that the shorter the dipole, the less accurate
the estimates would be.
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5.6 Conclusion

For the first time in the open literature, electrically long dipole pair are
investigated for polarization estimation. Newly proposed here are closed-
form polarization-estimation formulas and the corresponding deterministic
Cramér-Rao bounds. These new estimators offer error variances close to
the Cramér-Rao lower bounds, according to Monte Carlo simulations.
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6Large Circular Loops in the
Estimation of an Incident Emitter’s
Direction-of-Arrival or Polarization

6.1 Introduction

Please consider three magnetic loops: Spatially collocate them; and orient
them perpendicularly among themselves as shown in Figure 6.1.

These loops’ spatial collocation results in a physically compact array easy
for transportation and deployment, whereas the three loops’ orthogonal
orientation facilitates the measurement of the incident magnetic-field vector
by its three distinct Cartesian components.

For small loops, such a triad has already been considered in the open
literature for estimating incident sources’ azimuth-elevation directions-of-
estimation and polarizations, for example in [28,37,62,141]. Among these
references, [28, 37, 62] offer closed-form algorithms. For such estimates’
error variance, Cramér-Rao bounds and other lower bounds have been
derived in closed forms in [72, 73]. Nonetheless, all aforementioned ref-
erences implicitly presume the loops to be magnetically small, such that
the loop-triad’s 3× 1 array manifold would simply equal the magnetic-field
vector expressed in Cartesian coordinates. This simplifying assumption
would indeed be approximately valid for circular loops with a radius of
R < λ

20π .

Such a small loop is ineffective as a radiator and is barely effective as a
receiver, due to the small ratio of radiation-to-loss resistance [68, p. 231]1.
To be a practical antenna, the loop radius R should substantially exceeds λ

20π .

1Based on equations (2-90b), (5-24), and (5-64a) in [68], the radiation efficiency is only
4.5% for a loop with a circumference of 2πR = λ

10 , 42% if 2πR = λ
4 , 63% if 2πR = λ

3 ,
but 97% if 2πR = λ.
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Fig. 6.1.: Collocated and orthogonally oriented loop triad.

Such magnetically large loops have been entirely overlooked by the signal-
processing literature on direction finding or polarization estimation.

On the other hand, for any circular loop-antenna with a circumference
of 2πR ≥ 3.8317λ (3.8317 equals the smallest positive zero of the Bessel
function of the first kind and order 1), the loop-antenna’s beam-pattern
would suffer from sidelobes [68, p. 249]. Indeed, for 2πR

λ
near any zero of

the Bessel function (like 2πR
λ
∼ 3.8317), a loop antenna would give a very

small voltage, (i.e., would become electromagnetically inefficient), hence
should be avoided.

Given the two preceding paragraphs’ considerations on R
λ

, real-world loop-
antennas often have a wavelength-normalized circumference of 2πR

λ
within

the range of (0.1, 3.8317).2 For such magnetically “large" circular-loop
antennas, this Chapter (i) will formulate a new array manifold for three

2A circular loop with circumference equal to one wavelength is commonly known as a
resonant loop and is considered as fundamental as the half-wavelength dipole (pp.
249-250, Section 5.3.2 of [68]). Such a loop is classified as end-fire antenna, as the
maximum radiation occur along the axis of loop, therefore making it useful in the
design of directional antenna arrays, for example in Yagi-Uda arrays. The resonant loop
is significant also because it’s radiation resistance approximately equals 100Ω, which
can be matched easily to a 50Ω or a 75Ω transmission line.
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magnetically large circular loops that are arranged in collocation and orthog-
onal orientation, (ii) will pioneer closed-form signal-processing algorithms
for the abovementioned triad to estimate the incident signal’s azimuth-
elevation direction-of-arrival and polarization, and (iii) will show that these
newly proposed estimators can offer an error variance approaching the
corresponding Cramér-Rao lower bounds.

The rest of this chapter is organized as follows: Section 6.2 will derive a
magnetically large circular-loop antenna’s “effective length", and will then
formulate the loop-triad’s array manifold. Section 6.3 will propose new
eigen-based estimates of an incident source’s arrival direction or polarization
without any prior knowledge of the loops’ radius or of the incident signal’s
wavelength. Section 6.4 will present Monte Carlo simulations to verify these
new estimators’ efficacy and statistical closeness to the Cramér-Rao lower
bounds. Section 6.5 will conclude the entire Chapter.

6.2 The Newly Formulated Array Manifold
of a Triad of Magnetically Large
Loops

Consider a fully polarized plane-wave of unit power per unit area , with an
auxiliary polarization angle of γ ∈

[
0, π2

]
and a polarization phase difference

of η ∈ [−π, π). Suppose this electromagnetic wave impinges upon collocated
and orthogonally oriented loop triad located at the Cartesian origin from a
polar angle of θz ∈ [0, π] and an azimuth angle of φx ∈ [−π, π) as shown in
Figure 6.2. The electric field for such a wave is given by equation (1.8) and
the corresponding magnetic field is given by equation (1.9). The definition
of spatial angles in Figure 6.2 and their trigonometric relationship are given
in Section 1.2.
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Fig. 6.2.: Different spatial angles inter-relationship.

6.2.1 The z-oriented loop-antenna’s voltage

Consider a circular loop-antenna of radius R, lying on the x-y Cartesian
plane, symmetrically about the Cartesian origin. This loop’s normal vector
points along the z-axis, thus labeled as the z-oriented loop. Onto this loop,
suppose an electromagnetic wave impinges from the far field at a polar
angle of θz and an azimuth angle of φx.

This loop-antenna’s open-circuit voltage equals (see equation (4-20) of [64],
or equation (2-93) of [68])

vz = e · `(Rλ )
z (θz, φx), (6.1)

where the vector `
(Rλ )
z (θz, φx) denotes the loop-antenna’s “effective length"

(a.k.a. the “effective height").
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This “effective length", despite its name, is a 3 × 1 vector that varies non-
monotonically with the loop’s physical size (R). This “effective length", also
despite its name, varies with the incident signal’s direction-of-arrival (θz, φx);
hence, the “effective length" is a property not only of the loop-antenna itself,
but also depends on the incident source. Therefore, though the “effective
length" has a unit in length, it is not a “length" per se and not a constant
scalar, but a “pattern" to be multiplied in to the incident electric-field vector
(as in (6.1)) to give the antenna’s voltage. The “effective length" for the
loop could indeed be negative, which can be considered as a change of
voltage polarity at the terminals.

If a uniform current3 is achieved along a z-oriented circular loop, the
“effective length" of (6.1) may be found by comparing (2-92) [68, p. 88]
and (5-54b) in [68, p. 248], to give the vector,

`
(Rλ )
z (θz, φx) = j2πRJ1

(
2πR
λ

sin(θz)
)

uφx , (6.2)

where J1(.) represents the Bessel function of the first kind and order 1.

The “effective length" vector in (6.2) has these properties:

• The “effective length" is proportional to J1
(
2πR

λ
sin(θz)

)
, whereas

J1(κ◦) = 0 at κ◦ ∈ {3.8317, 7.0156, 10.1735, 13.3237, 16.4706, ...} [81,
Section 2.7.2, p. 71]. Each κ◦ has its corresponding values of

(
R
λ
, θz
)
.

• The “effective length" becomes zero along the loop axis (i.e., the axis
perpendicular to the plane on which the loop lies), irrespective of the
loop radius R. This is because θz = 0 implies that (6.2) degenerates
to j2πRJ1(0) = j2πR× 0 = 0.

3“Uniform" here means that the current’s magnitude and phase are constant along the
length of the loop at any time instant. However, that magnitude and that phase may
vary over time. Please refer to [74], [75], [76], [77], [78], [79], [80]. A uniform
current can be achieved over the loop’s entire circumference, by subdividing the loop
into sections/arcs and using different feed lines (fed from common feed source) to feed
each section separately [68, p. 249].
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Returning to the voltage vz: (1.8), (6.1), and (6.2) together give

vz = j2πR J1

(
2πR
λ

sin(θz)
)

cos(γ)

= `
(Rλ )
z (θz, φx) hz, (6.3)

with the scalar,

`
(Rλ )
z (θz, φx) := j2πR

J1
(
2πR

λ
sin(θz)

)
sin(θz)

. (6.4)

6.2.2 The x-oriented loop-antenna’s voltage

Consider a circular loop lying on the y-z plane, i.e. with a normal vector
pointing along the x-axis. This loop’s effective length vector equals

`
(Rλ )
x (θz, φx) = j2πRJ1

(
2πR
λ

sin(θx)
)

uφy , (6.5)

where

uφy := [0,− sin(φy), cos(φy)]T . (6.6)

This loop’s corresponding voltage is

vx = e · `(Rλ )
x (θz, φx) = `

(Rλ )
x (θz, φx) hx, (6.7)

with the scalar,

`
(Rλ )
x (θz, φx) := j2πR

J1

(
2πR

λ

√
sin2(θz) sin2(φx) + cos2(θz)

)
√

sin2(θz) sin2(φx) + cos2(θz)
. (6.8)
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6.2.3 The y-oriented loop-antenna’s voltage

Consider a circular loop lying on the x-z plane, i.e. with a normal vector
pointing along the y-axis. This loop’s effective length vector is

`
(Rλ )
y (θz, φx) = j2πRJ1

(
2πR
λ

sin(θy)
)

uφz , (6.9)

where

uφz := [cos(φz), 0,− sin(φz)]T . (6.10)

This loop’s corresponding voltage is

vy = e · `(Rλ )
y (θz, φx) = `

(Rλ )
y (θz, φx) hy, (6.11)

with the scalar,

`
(Rλ )
y (θz, φx) := j2πR

J1

(
2πR

λ

√
sin2(θz) cos2(φx) + cos2(θz)

)
√

sin2(θz) cos2(φx) + cos2(θz)
.(6.12)

6.2.4 The loop-triad’s new 3× 1 array manifold

Sections 6.2.1 to 6.2.3 have derived the voltage of a magnetically large loop
at various Cartesian orientations.

Now, consider a triad of such large loops, all with a radius R, co-centered,
but orthogonally oriented relative to each other as in Figure 6.2. Such a
triad has a 3× 1 array manifold of

a(Rλ ) (θz, φx, γ, η) :=


`
(Rλ )
x (θz, φx)

`
(Rλ )
y (θz, φx)

`
(Rλ )
z (θz, φx)

 ◦ h (θz, φx, γ, η) , (6.13)

where ◦ denotes element-by-element multiplication.
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6.2.5 The Special Case of Magnetically “Small"
Loops

The label “small loops" is applied to circular loops with a wavelength-
normalized circumference of 2πR

λ
< 1

10 . (Please see [68], Section 5.1 and p.
231)4

For such magnetically “small" loops: (6.3), (6.7), and (6.11) can be simpli-
fied as follows: The argument inside J1(·) becomes

2πR
λ

sin(θ) <
1
10 sin(θ) ≤ 1

10 �
√

2,∀θ ∈ [0, π].

However, for any positive κ �
√

2 ( [98, p. 360]), J ′0(κ) = J1(κ) ≈ κ
2 .

Hence,

`
(Rλ< 1

20π )
x (θz, φx) ≈ j

2π2R2

λ
sin(θx) uφy ,

`
(Rλ< 1

20π )
z (θz, φx) ≈ j

2π2R2

λ
sin(θz) uφx ,

`
(Rλ< 1

20π )
y (θz, φx) ≈ j

2π2R2

λ
sin(θy) uφz .

Using the above results for R ≤ λ
20π ,

a(Rλ≤ 1
20π )(θ, φ, γ, η) = j

2π2R2

λ


hx

hy

hz

 , (6.14)

with an “effective length" of [1, 1, 1]T .

This (6.14) agrees with [47, 62]. This (6.14) has been used in most
signal-processing references for direction finding or polarization estimation,
thereby assuming (sometimes only implicitly) that the loops are magneti-
cally “small", despite being electrically inefficient. In contrast, the earlier
Sections 6.2.1 to 6.2.4 address magnetically large loops that are electrically
efficient.

4Such a magnetically small loop’s radiation pattern is independent of the loop’s shape.
Hence, the “effective length" would remain the same for any non-circular shape (like
square, elliptical) and would depend only on the loop’s enclosed area [68, p. 231].
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6.3 New Closed-Form Estimates of an
Incident Source’s Azimuth-Elevation
Direction-of-Arrival or Polarization

Eigen-based direction-finding algorithms characteristically involve an in-
termediate step, that estimates each incident source’s steering vector, but
correct only to within a complex-value scalar c, which is unknown to the
algorithm. That is, available is the 3× 1 estimate

â ≈ ca(Rλ )(θz, φx, γ, η), (6.15)

from which the direction-of-arrival or the polarization of the impinging
electromagnetic wave are to be estimated. (This approximation becomes
equality in noiseless or asymptotic cases.)

The unknown complex phase (∠c), can be eliminated from the third entry
of â as follows:

ā := âe−j∠[â]3

≈ |c|




|`(

R
λ )

x (θz, φx)|

|`(
R
λ )

y (θz, φx)|

|`(
R
λ )

z (θz, φx)|



�


− sin(φx) sin(γ) cos(η)− cos(φx) cos(θz) cos(γ)
cos(φx) sin(γ) cos(η)− sin(φx) cos(θz) cos(γ)

sin(θz) cos(γ)




+j|c|




|`(

R
λ )

x (θz, φx)|

|`(
R
λ )

y (θz, φx)|

|`(
R
λ )

z (θz, φx)|

 �

− sin(φx) sin(γ) sin(η)
cos(φx) sin(γ) sin(η)

0


 . (6.16)

Here, (6.16) provides 5 real-value constraints from which the bivariate
direction-of-arrival or the bivariate polarization can be estimated. There are
5 real-value constraints, because there exist three non-zero components in
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the real-value part of (6.16) and there exist two non-zero components in
the imaginary-value part of (6.16).

6.3.1 Estimation of the Incident Source’s
Azimuth-Elevation Direction-of-Arrival,
(θz, φx)

The following new algorithm estimates an incident source’s direction-of-
arrival (θz, φx), assuming that the incident source’s polarization is prior
known.

From (6.16), define

αx := ={[ā]1}
<{[ā]1} sin(η)−={[ā]1} cos(η) (6.17)

= tan(φx) tan(γ)
cos(θz)

, (6.18)

αy := ={[ā]2}
={[ā]2} cos(η)−<{[ā]2} sin(η) (6.19)

= cot(φx) tan(γ)
cos(θz)

, (6.20)

where <{.} refers to the real-value part and ={.} symbolizes the imaginary-
value part of the entity inside the curly bracket.

The incident source’s bivariate direction-of-arrival may then be estimated
as

φ̂x =



arctan
(∣∣∣αx

αy

∣∣∣1/2) , if φx ∈ [0, π2 ),

π + arctan
(
−
∣∣∣αx
αy

∣∣∣1/2) , if φx ∈ [π2 , π),

π + arctan
∣∣∣αx
αy

∣∣∣1/2 , if φx ∈ [π, 3π
2 ),

2π + arctan
(
−
∣∣∣αx
αy

∣∣∣1/2) , if φx ∈ [3π
2 , 2π);

(6.21)

θ̂z = arccos
tan(γ) tan(φ̂x)

αx

 . (6.22)
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No prior knowledge is needed of the radius R or λ in these new estimation
formulas.

6.3.2 Estimation of the Incident Source’s
Polarization, (γ, η)

The new algorithm below estimates an impinging source’s bivariate polariza-
tion (γ, η), presuming that the incident source’s direction-of-arrival (θz, φx)
is prior known.

Taking the ratio of the real and imaginary parts of the first entry of (6.16)
gives

<{[ā]1}
={[ā]1}

= cos(θz)
tan(φx) tan(γ) sin(η) + 1

tan(η) . (6.23)

Taking the ratio of the real and imaginary parts of the second entry of (6.16)
gives

<{[ā]2}
={[ā]2}

= −tan(φx) cos(θz)
tan(γ) sin(η) + 1

tan(η) . (6.24)

Next, relate (6.23) and (6.24) as follows, in order to retain only the one
unknown of η,

<{[ā]1}
={[ā]1}

tan(φx) + <{[ā]2}
={[ā]2}

cot(φx) = 1
tan(η)(tan(φx) + cot(φx)). (6.25)

As the direction-of-arrival angle φx has been assumed as prior known, η
may be estimated from (6.25) as

η̂ = arctan

 tan(φx) + cot(φx)
<{[ā]1}
={[ā]1} tan(φx) + <{[ā]2}

={[ā]2} cot(φx)

 . (6.26)

From the ratios of the real and imaginary parts of the first and second
entries of (6.16), one additional constraint can be obtained:

<{[ā]1}
={[ā]1}

− <{[ā]2}
={[ā]2}

= cos(θz)
tan(γ) sin(η)(cot(φx) + tan(φx)). (6.27)
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As η is already estimated, multiply sin(η̂) to both sides of (6.27), in order to
obtain

sin(η̂)
(
<{[ā]1}
={[ā]1}

− <{[ā]2}
={[ā]2}

)
= cos(θz)

tan(γ) [cot(φx) + tan(φx)]. (6.28)

With θz and φx presumed known, γ can be estimated from (6.28) as

γ̂ = arctan

 [cot(φx) + tan(φx)] cos(θz)
sin(η̂)

[
<{[ā]1}
={[ā]1} −

<{[ā]2}
={[ā]2}

]
 . (6.29)

No prior knowledge of R nor λ is needed by these estimators.

6.4 Monte Carlo Simulations

To verify the efficacy of the eigen-based estimators proposed in Section 6.3,
Monte Carlo simulations are conducted in this section.

To focus on the influence of the loop-antenna’s physical radius R, a simple
data model will be used below: A zero-mean complex-value Gaussian noise
signal s(m), impinges upon a triad of large loops, which have been described
earlier. At the mth time-instant, the triad collects the 3× 1 data-vector,

z(m) = a(Rλ )(θz, φx, γ, η)s(m) + n(m). (6.30)

Moreover, the additive noise n(m) denotes a 3 × 1 vector of zero-mean
complex-value Gaussian noise of a prior known variance of σ2

n, circu-
larly symmetric in distribution on the complex plane, spatio-temporally
uncorrelated over time and across the loops, while statistically indepen-
dent from all other entities, hence with a deterministic covariance matrix
of Γ0 = diag (σ2

n, σ
2
n, σ

2
n), where σ2

n represents the noise variance at each
loop.

With M number of time-samples, the 3M × 1 collected data-set equals

ζ =
[
(z(1))T , · · · , (z(M))T

]T
. (6.31)
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In all subsequent numerical examples: M = 100, φx = 45o, θz = 60o, γ =
45o, and η = 60o. Each icon on every graph represents 1, 000 independent
Monte Carlo experiments.

6.4.1 Estimation of the Incident Source’s
Azimuth-Elevation Direction-of-Arrival,
(φx, θz)

Using the new algorithm proposed earlier in Section 6.3.1 for direction
finding, Monte Carlo simulation results are presented in Figures 6.3a- 6.3b,
along with the corresponding Cramér-Rao bounds (CRB) for comparison.
These Cramér-Rao bounds have been derived in Appendix A. (Recall that
the Cramér-Rao bound lower-bounds the estimation error variance of any
unbiased estimator; and the Cramér-Rao bound itself is independent of the
specific estimator employed.) Figures 6.3a-6.3b indicate that the estima-
tion method proposed in Section 6.3.1 performs close to the Cramér-Rao
bounds.

Recall that the “effective length" affects the loop’s gain, nonlinearly and
non-monotonically in (6.2-6.9), through Bessel functions. Figures 6.3a-6.3b
further suggest that the larger the loop, the more accurate the estimates
would be.
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Fig. 6.3.: RMSE and
√

CRB for θ̂z and φ̂x versus R
λ using loop triad.
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6.4.2 Estimation of the Incident Source’s
Polarization, (γ, η)

Using the new algorithms proposed earlier in Section 6.3.2 for polariza-
tion estimation, Monte Carlo simulation results are presented in Figures
6.4a-6.4b, along with the corresponding Cramér-Rao bounds (CRB) for
comparison. These Cramér-Rao bounds have been derived in Appendix B.

Figures 6.4a-6.4b indicate that the estimation method proposed in Section
6.3.2 is close to the Cramér-Rao bounds. These figures also reinforce the
point that the larger the loop, the more accurate the estimates would be.
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(b) RMSE and
√

CRB for η̂, at SNR =
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Fig. 6.4.: RMSE and
√

CRB for γ̂ and η̂ versus R
λ using loop triad.

6.5 Conclusion

Magnetically large loops are considered for the first time in the open litera-
ture (to the present authors’ best knowledge) to develop signal-processing
algorithms to estimate incident emitters’ direction-of-arrival or polarization
without any prior knowledge of the loop’s radius or of the incident signal’s
wavelength. Despite that the magnetically large loops’ gain pattern involves
the Bessel function, closed-form estimation algorithms are developed here,
not requiring any iterative search. These proposed algorithms can approach
the Cramér-Rao lower bound.
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7Conclusion

Electrically “short” dipoles have very small input impedances, rendering
them to be poor radiators. Practical dipoles, with an physical length of
L ∈ [0.1, 1]λ, have notably larger input impedances, hence making them
better radiators. Similarly electrically “small” loops have very small input
impedances, whereas practical loops with circumference of 2πR ∈ [0.1, 1]λ
have larger input impedances making them relatively much better radia-
tors. Despite that the electrically “long” dipoles and “large” loops have
better radiation efficiencies, the focus of research in antenna array signal-
processing algorithm development has been on electrically “short” dipoles
and “small” loops. This study was an attempt to investigate the estimation
of bivariate polar-azimuth direction-of-arrival and bivariate polarization
using electrically “long” dipoles and “large” loops.

The concept of “effective length” was used here to relate an electrically
“long” dipole’s directional-polarizational pattern to the incident electric field
to establish the measurement model (i.e. array manifold) of such practical
dipoles, as a triad that is collocated in space and orthogonal in orientation.
Closed-form algorithms were developed using a triad of electrically “long”
dipoles to estimate incident sources’ bivariate azimuth-elevation directions-
of-arrival and bivariate polarizations.

The triad’s collocation gives a point-like spatial aperture, limiting the dipole-
array’s spatial resolution. To realize a large spatial aperture, electrically long
dipoles can be positioned sparsely on a circular circumference, with each
dipole oriented radially (or tangentially), to allow a rotational invariance
with respect to the circle’s origin. For such a circular array of sparsely
spaced and differently oriented dipoles, this thesis also developed the
measurement model using the concept of “effective length” and pioneered
closed-form algorithms to estimate incident sources’ bivariate azimuth-
elevation directions-of-arrival and bivariate polarizations.

For two electrically long dipoles, this thesis also pioneered signal-processing
algorithms in closed forms, to estimate the polarizations of impinging
sources. This is unlike the vast literature on crossed-dipoles polarimetry,
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restricted to electrically short dipoles. In this thesis, the two long dipoles
are perpendicularly oriented, but may be collocated or may be separated
by a known displacement. Using such a pair of electrically long dipoles for
polarization estimation, this thesis proposed new closed-form formulas, and
derived the associated Cramér-Rao bounds.

This thesis also established a similar array manifold’s generalization of a
triad of large loops, collocated and orthogonal in orientation. Then for such
a triad of large loops, this thesis pioneered closed-form signal processing
algorithms to estimate the incident signals azimuth-elevation directions-of-
arrival and polarizations.

Monte Carlo experiments show that the estimation performed using dipoles
have significantly better performance at a longer electrical length and a
larger signal-to-noise ratio. A similar trend is observed when estimation
is performed using loop antennas. It is also observed that the proposed
estimators can closely approach the Cramér-Rao bounds.
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AThe Cramér-Rao Bound for
Direction Finding

Define a to be the array manifold of the triad (a := a(R
λ

) for loop triad
and a := a(L) for dipole triad). A zero-mean complex-value Gaussian noise
signal s(m), impinges upon the triad. At mth time-instant, the triad collects
the 3× 1 data-vector,

z(m) = as(m) + n(m). (A.1)

Moreover, the additive noise n(m) denotes a 3 × 1 vector of zero-mean
complex-value Gaussian additive noise, spatio-temporally uncorrelated
over time and across the antennas, while statistically independent from
all other entities, hence with a deterministic covariance matrix of Γ0 =
diag (σ2

n, σ
2
n, σ

2
n), where σ2

n representing the noise variance at each an-
tenna.

With M number of time-samples, the 3M × 1 collected data-set equals

ζ = s⊗ a +
[
(n(M))T , · · · , (n(M))T

]T
︸ ︷︷ ︸

=ν

, (A.2)

where s is an M × 1 vector with entries that are complex-value zero-mean
Gaussian, with a covariance matrix of Γs = σ2

sIM , and statistically indepen-
dent of each other. Here, IM denotes an M ×M identity matrix, and ⊗
represents the Kronecker product. Moreover, ν symbolizes a 3M × 1 noise
vector having a spatio-temporal covariance matrix of Γn = IM ⊗ Γ0.

Recall that both the direction-finding formulas in Section 3.4.1 for the
dipole case and Section 6.3.1 for the loop case require no prior information
on electrical length κ, and σ2

n. κ := L
λ

for dipole case and κ := L
λ

for loop
case. To match these statistical models of the data, the Fisher information
matrix (FIM) is 4× 4 in size:

J =


Jθz ,θz Jθz ,φx Jθz ,κ Jθz ,σ2

n

Jφx,θz Jφx,φx Jφx,κ Jφx,σ2
n

Jκ,θz Jκ,φx Jκ,κ Jκ,σ2
n

Jσ2
n,θz

Jσ2
n,φx

Jσ2
n,κ

Jσ2
n,σ

2
n

 , (A.3)
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whose (i, j)th entry can be derived using (see equation (8.34) of [66]):

[J]i,j = Tr
(

Γ−1 ∂Γ
∂[ψ]i

Γ−1 ∂Γ
∂[ψ]j

)
, (A.4)

where Tr(·) represents the trace operator and [ψ]i and [ψ]j represent cor-
responding subscripts. That equation (8.34) may be used, because the
collected data vector, ζ, has entries here that are Gaussian, zero-mean, and
with a covariance matrix of Γ = IM ⊗ σ2

saaH + IM ⊗ Γ0.

The inverse of the above Fisher information matrix gives

CRB =
 Jθz ,θz Jθz ,φx

Jφx,θz Jφx,φx

−
 Jθz ,κ Jθz ,σ2

n

Jφx,κ Jφx,σ2
n


 Jκ,κ Jκ,σ2

n

Jσ2
n,κ

Jσ2
n,σ

2
n

−1  Jκ,θz Jκ,φx
Jσ2

n,θz
Jσ2

n,φx



−1

, (A.5)

where

Jθz ,θz = MTr
([

M−1
1 M 2

]2)
,

Jθz ,φx = J∗φx,θz
= MTr

(
M−1

1 M 2M
−1
1 M 3

)
,

Jθz ,κ = J∗κ,θz
= MTr

(
M−1

1 M 2M
−1
1 M 4

)
,

Jθz ,σ2
n

= J∗σ2
n,θz

= MTr
(
M−1

1 M 2M
−1
1

)
Jφx,φx = MTr

([
M−1

1 M 3
]2)

,

Jφx,κ = J∗κ,φx
= MTr

(
M−1

1 M 3M
−1
1 M 4

)
,

Jφx,σ2
n

= J∗σ2
n,φx

= MTr
(
M−1

1 M 3M
−1
1

)
,

Jκ,κ = MTr
([

M−1
1 M 4

]2)
,

Jκ,σ2
n

= J∗σ2
n,κ

= MTr
(
M−1

1 M 4M
−1
1

)
,

Jσ2
n,σ

2
n

= MTr
(
M−2

1

)
.

(A.6)
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In the above, the superscript ∗ denotes complex conjugation and

M1 := Γ0 + σ2
saaH ,

M2 := ∂
∂θz

(
σ2
saaH

)
,

M3 := ∂
∂φx

(
σ2
saaH

)
,

M4 := ∂
∂κ

(
σ2
saaH

)
.

(A.7)
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B
The Cramér-Rao Bound for
Polarization Estimation

Equation (A.2) in Appendix A remains valid here. FIM here is also 4× 4 in
size to match the estimation formulas in Section 3.4.2 for dipole triad and
Section 6.3.2 for loop triad as no prior information on κ, σ2

n is required:

J =


Jγ,γ Jγ,η Jγ,κ Jγ,σ2

n

Jη,γ Jη,η Jη,κ Jη,σ2
n

Jκ,γ Jκ,η Jκ,κ Jκ,σ2
n

Jσ2
n,γ

Jσ2
n,η

Jσ2
n,κ

Jσ2
n,σ

2
n

 , (B.1)

has its (i, j)th entry as given by (A.4). Therefore,

CRB =
 Jγ,γ Jγ,η

Jη,γ Jη,η

−
 Jγ,κ Jγ,σ2

n

Jη,κ Jη,σ2
n


 Jκ,κ Jκ,σ2

n

Jσ2
n,κ

Jσ2
n,σ

2
n

−1  Jκ,γ Jκ,η

Jσ2
n,γ

Jσ2
n,η



−1

, (B.2)

where

Jγ,γ = MTr
([

M−1
1 M 5

]2)
,

Jγ,η = J∗η,γ
= MTr

(
M−1

1 M 5M
−1
1 M 6

)
,

Jγ,κ = J∗κ,γ
= MTr

(
M−1

1 M 5M
−1
1 M 4

)
,

Jγ,σ2
n

= J∗σ2
n,γ

= MTr
(
M−1

1 M 5M
−1
1

)
,

Jη,η = MTr
([

M−1
1 M 6

]2)
,

Jη,κ = J∗κ,η
= MTr

(
M−1

1 M 6M
−1
1 M 4

)
,

Jη,σ2
n

= J∗σ2
nη

= MTr
(
M−1

1 M 6M
−1
1

)
,

(B.3)
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the expression for M 1 is given by (A.7), and

M 5 := ∂
∂γ

(
σ2
saaH

)
,

M 6 := ∂
∂η

(
σ2
saaH

)
.

(B.4)
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C
The Deterministic Cramér-Rao
Bound for Simultaneous DoA and
Polarization Estimation

For the simultaneous direction finding and polarization estimation using
dipole triad, consider the data model to be the same as in Appendix A but
now s = σs

[
ejfd , ej2fd , · · · , ejMfd

]T
. Here, the 3M × 1 dataset may still be

represented by equation (A.2) but now ζ ∼ N (µ,Γ), i.e. a 3M ×1 Gaussian
vector with a 3M × 1 mean of µ and a 3M × 3M covariance of Γ.

Collect all deterministic unknown entities into a 4 × 1 vector of ψ =
[θz, φx, γ, η]T to match the statistical data model in Section 3.5. The re-
sulting 4× 4 Fisher information matrix equals

J =


Jθz ,θz Jθz ,φx Jθz ,γ Jθz ,η

Jφx,θz Jφx,φx Jφx,γ Jφx,η

Jγ,θz Jγ,φx Jγ,γ Jγ,η

Jη,θz Jη,φx Jη,γ Jη,η

 , (C.1)

whose (i, j)th entry equals (see equation (8.34) of [66]):

[J]i,j = 2<


(
∂µ

∂[ψ]i

)H
Γ−1

(
∂µ

∂[ψ]j

)
+Tr

[
Γ−1 ∂Γ

∂[ψ]i
Γ−1 ∂Γ

∂[ψ]j

]
, (C.2)

where
∂µ

∂θz
= ∂a(L)

∂θz
⊗ s, (C.3)

∂µ

∂φx
= ∂a(L)

∂φx
⊗ s, (C.4)

∂µ

∂γ
= ∂a(L)

∂γ
⊗ s, (C.5)

(C.6)
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∂µ

∂η
= ∂a(L)

∂η
⊗ s, (C.7)

∂Γ
∂[ψ]i

= 0, ∀i = {1, 2, 3, 4}. (C.8)

Further mathematical manipulations would give

[J]i,j = 2M
(
σs
σn

)2
<


[
∂a(L)

∂[ψ]i

]H
∂a(L)

∂[ψ]j

 . (C.9)

Hence, J ∝ M
(
σs
σn

)2
for ∀L

λ
, θz, φx, γ, η. Consequentially, CRB is inversely

proportional to the number (M) of snapshots and to the signal-to-noise
power ratio (SNR) of

(
σs
σn

)2
.
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D
Cramér-Rao Bounds of Unbiased
Estimation of a Source’s DoA and
Polarization

Consider a uniform circular array of I number of electrically long dipoles
with array manifold given by a. A zero-mean complex-value Gaussian noise
signal s(m), impinges upon the UCA. At mth time-instant, the UCA collects
the I × 1 data-vector,

z(m) = as(m) + n(m). (D.1)

Moreover, the additive noise n(m) denotes an I × 1 vector of zero-mean
complex-value Gaussian additive noise, spatio-temporally uncorrelated over
time and across the dipoles, while statistically independent from all other
entities, hence with a deterministic covariance matrix of Γ0 = σ2

nII , where
σ2
n representing the noise variance at each dipole and II is an I × I identity

matrix.

With M number of time-samples, the I ×M space-time data matrix repre-
sented by Z in Section 4.3 can be arranged as an IM × 1 vector

ζ =
[
(z(1))T , · · · , (z(M))T

]T
(D.2)

or

ζ = s⊗ a +
[
(n(1))T , · · · , (n(M))T

]T
︸ ︷︷ ︸

=ν

(D.3)

where s is an M × 1 vector with entries that are complex-value zero-mean
Gaussian, statistically independent of each other and with a covariance
matrix of Γs = σ2

sIM . Here, IM denotes an M × M identity matrix, ⊗
symbolizes the Kronecker product, and superscript T denotes the transpose
operator. Moreover, ν represents an IM × 1 noise vector with a spatio-
temporal covariance matrix of Γn = σ2

nIM ⊗ II . Lastly, a := ar for the array
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configuration in Figure 4.1 and a := atn for the array configuration of Figure
4.2.

Define a 6 × 1 vector of ψ = [θz, φx, γ, η, σ2
n, σ

2
s ]T . Since the simultaneous

direction finding and polarization estimation in Section 4.4 do not require
prior knowledge of σ2

n and σ2
s , the Fisher information matrix (FIM) is to be

6× 6 in size:

J =



Jθz ,θz Jθz ,φx Jθz ,γ Jθz ,η Jθz ,σ2
n

Jθz ,σ2
s

Jφx,θz Jφx,φx Jφx,γ Jφx,η Jφx,σ2
n

Jφx,σ2
s

Jγ,θz Jγ,φx Jγ,γ Jγ,η Jγ,σ2
n

Jγ,σ2
s

Jη,θz Jη,φx Jη,γ Jη,η Jη,σ2
n

Jη,σ2
s

Jσ2
n,θz

Jσ2
n,φx

Jσ2
n,γ

Jσ2
n,η

Jσ2
n,σ

2
n

Jσ2
n,σ

2
s

Jσ2
s ,θz

Jσ2
s ,φx

Jσ2
s ,γ

Jσ2
s ,η

Jσ2
s ,σ

2
n

Jσ2
s ,σ

2
s


(D.4)

whose (i, j)th entry equals (see equation (8.34) of [66])1

[J]i,j = Tr
(

Γ−1 ∂Γ
∂[ψ]i

Γ−1 ∂Γ
∂[ψ]j

)
, (D.5)

where Tr(·) represents the trace operator. Using simple mathematical
manipulations,

[J]i,j = J[ψ]i,[ψ]j

=
(
σs
σn

)4
MTr

([
M−1M[ψ]iM−1M[ψ]j

])
(D.6)

and

M := II +
(
σs
σn

)2
aaH ,

Mθz := ∂
∂θz

(
aaH

)
,

Mφx := ∂
∂φx

(
aaH

)
,

Mγ := ∂
∂γ

(
aaH

)
,

Mη := ∂
∂η

(
aaH

)
,

Mσ2
n

:= 1
σ2
s
II ,

Mσ2
s

:= 1
σ2
s
aaH .

1That equation (8.34) may be used, because the collected data vector, ζ, has entries here
that are Gaussian, zero-mean, and with a covariance matrix of Γ = IM⊗

(
Γ0 + σ2

saaH
)
.

109



From (D.4),


CRB(θz) ∗ ∗ ∗
∗ CRB(φx) ∗ ∗
∗ ∗ CRB(γ) ∗
∗ ∗ ∗ CRB(η)



=




Jθz ,θz Jθz ,φx Jθz ,γ Jθz ,η

Jφx,θz Jφx,φx Jφx,γ Jφx,η

Jγ,θz Jγ,φx Jγ,γ Jγ,η

Jη,θz Jη,φx Jη,γ Jη,η

 −

Jθz ,σ2

n
Jθz ,σ2

s

Jφx,σ2
n

Jφx,σ2
s

Jγ,σ2
n

Jγ,σ2
s

Jη,σ2
n

Jη,σ2
s


 Jσ2

n,σ
2
n

Jσ2
n,σ

2
s

Jσ2
s ,σ

2
n

Jσ2
s ,σ

2
s



×

 Jσ2
n,θz

Jσ2
n,φx

Jσ2
n,γ

Jσ2
n,η

Jσ2
s ,θz

Jσ2
s ,φx

Jσ2
s ,γ

Jσ2
s ,η

−1

.(D.7)

In the above, the ∗ entries are not of interest to the present investigation.
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[19] S. V. Schell, R. A. Calabretta, W. A. Gardner, and B. G. Agee, “Cyclic
MUSIC algorithms for signal-selective direction estimation,” in , 1989
International Conference on Acoustics, Speech, and Signal Processing,
1989. ICASSP-89, 1989, pp. 2278âĂŞ2281 vol.4.
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