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ABSTRACT 

 

 

In urban water supply systems, partial blockages are commonly formed in water pipes 

from various complicated physical, chemical, and biological processes (e.g., sediment 

deposition, corrosion, and biofilm accumulation); thus, their cross-sectional areas usually 

constrict randomly and non-uniformly along their lengths (termed as non-uniform 

blockages). In recent years, the transient-based method, which utilizes the physical 

information collected by transient waves, has been developed and applied for blockage 

detection in water pipes. However, the current transient-based method for blockage 

detection is largely based on blockages with idealized uniform constriction along their 

lengths (termed as uniform blockages), which are equivalent to multiple pipes with 

different diameters connected in series. As a result, inaccuracy and invalidity of the 

current transient-based method have been widely observed in the applications for non-

uniform blockage detection. This is mainly due to the incapability of the current transient-

based theory for describing the interaction between transient waves and non-uniform 

blockages. Therefore, a physical understanding of transient wave behavior in water pipes 

with non-uniform blockages is necessary to enhance the theoretical development and 

practical applications of the transient-based method for real blockage detection. 

 

In this thesis, the transient wave behavior in water pipes with non-uniform blockages is 

investigated in both the time and frequency domains by a combined methodology of 

theoretical analysis and numerical simulation. First, the transfer matrix method is adopted 

to understand and analyze the effect of properties of a non-uniform blockage in water 

pipes on the system frequency responses. Second, the physical mechanisms of the 

interaction between transient waves and non-uniform blockages are explained from an 

energy perspective. Afterwards, the frequency range of validity of the developed theory 

is investigated and quantified numerically by a full two-dimensional (2D) water hammer 



 
 

 
 

ii 
 

model. Finally, the developed theory and gained findings are validated through advanced 

numerical investigations with the aid of the computational fluid dynamics (CFD) model 

coupled with user-defined functions (UDFs). 

 

The obtained results indicate that the resonant frequency shifts induced by non-uniform 

blockages have very different patterns from that of uniform blockages presented in the 

literature. Specifically, the frequency shifts induced by non-uniform blockages become 

less evident for higher harmonics of the incident waves. This is because the impedance 

of non-uniform blockages is highly frequency dependent, which becomes smaller for 

higher frequency incident waves. That means non-uniform blockages have a less blocking 

effect on the propagation of higher frequency incident waves; thus, the frequency shifts 

induced by non-uniform blockages become less evident. This understanding and theory 

is developed based on the 1D wave equation, where the plane wave assumption is 

imposed. Therefore, to satisfy the developed theory, the incident wave frequency (i.e., the 

frequency range of validity) must be lower than the cut-off frequency of the radial mode 

1 (M1). This result has been confirmed by preliminary experiments in the literature as 

well as numerical results from the full 2D model and CFD tools. 

 

The physical understanding gained in this thesis may contribute to narrow the gap 

between transient-based theory and practical applications of non-uniform blockage 

detection, which is crucial and necessary for developing smart urban water supply 

systems. Based on the results and achievements of this thesis, essential and useful 

recommendations are also made for future work. 
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A = pipe cross-sectional area; 

a = transient wave speed;  

D = pipe diameter; 

E = Young’s modulus of elasticity of the pipe wall; 

FRF(ω) = frequency response function;  

f = Darcy-Weisbach friction factor; 

g = gravitational acceleration; 

H = piezometric pressure head; 

H0 = mean pressure head;  

h = pressure head perturbation in the frequency domain; 

h* = pressure head perturbation from the mean; 

hD
* = dimensionless pressure head (H – H0)/(au0/g); 

i = (−1)1/2; 

K = bulk modulus of elasticity of the water; 

L = total pipe length; 

ln = length of the n-th pipe; 

n = n-th pipe (subscript); 

n = upstream end of the n-th pipe (superscript); 

n+1 = downstream end of the n-th pipe (superscript); 

P = piezometric pressure;  

Q = pipe discharge; 

Q0 = mean discharge; 

q = discharge perturbation in the frequency domain; 
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q* = discharge perturbation from the mean; 

R = frictional resistance; 

Sxx(ω) = Fourier transform of the autocorrelation of the input; 

Sxy(ω) = Fourier transform of the cross-correlation between the input (x) and the output (y);  

Tth = theoretical period of the pipe system; 

t = time; 

tD
* = dimensionless time t/Tth; 

u0 = initial average axial velocity in the pipe; 

x = distance along the pipe; 

Z = characteristic impedance; 

 

Greek Symbols 

α = a nondimensional parameter that is determined by the elastic properties of the pipe and 

its external constraints; 

ρ = fluid (water) density; 

τw = pipe wall shear stress; 

τws = quasi-steady component of τw;  

τwu = unsteady component of τw; 

ω = frequency; 

ωD
* = dimensionless frequency ω/ωth; 

ωth = theoretical frequency of the pipe system 1/Tth. 

Chapter 3 

Roman Letters 

A = pipe cross-sectional area; 

a0 = transient wave speed; 

D/Dt = material derivative in cylindrical coordinates; 

fx = body force along x; 

fr = body force along r; 

fr = body force along θ; 
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g = gravitational acceleration; 

H = pressure head; 

k = bulk modulus; 

M = Mach number; 

p = pressure; 

Q = discharge; 

r = radial distance from the pipe axis;  

t = time;  

u = axial velocity; 

v = radial velocity; 

w = azimuthal velocity; 

x = axial distance along the pipe axis; 

 

Greek Symbols 

θ = azimuth;  

κ = volume viscosity of the fluid; 

μ = dynamic viscosity of the fluid; 

ρ = density of the fluid; 

ρ0 = reference density of the fluid; 

τw = wall shear stress; 

τws = quasi-steady component of τw;  

τwu = unsteady component of τw. 
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A = A(x) = pipe cross-sectional area; 

a = a(x) = wave speed; 

a0 = wave speed in intact pipelines; 

ab = ab(x) = wave speed within non-uniform blockages; 

ab = average wave speed within non-uniform blockages; 
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cm = sensitivity coefficient; 

g = gravitational acceleration; 

h = pressure head deviation in the frequency domain; 

k = k(x) = ω/a(x) = wave number; 

kb = wave number for the non-uniform blockage; 

k0 = wave number for the uniform blockage; 

L = total length of pipeline systems; 

ln = length of the n-th non-uniform blockage; 

m = peak number; 

n = pipeline number; 

P = instantaneous pressure in the time domain; 

P0 = mean pressure in the time domain; 

p* = pressure deviation from the P0; 

p = pressure in the frequency domain; 

q = discharge deviation in the frequency domain; 

R = intact pipe radius; 

RLn = pipe radius at the left boundary of the n-th non-uniform blockage; 

rn = pipe radius of the n-th non-uniform blockage; 

S = (R–RL3)/R = blockage severity; 

sn = (R–RLn)/ln = slope of the n-th non-uniform blockage; 

t = time; 

Uij = elements of transfer matrix; 

Uij
* = elements of the overall transfer matrix for the four-pipeline system; 

x = axial coordinate along the pipeline; 

 

Greek Symbols 

δω*
m = blockage induced frequency shift for the m-th resonant peak; 

δhB,m = blockage induced resonant peak amplitude change for the m-th resonant peak; 

ω = angular frequency; 

ωth = fundamental frequency of the pipeline system; 

ω* = non-dimensional frequency; 
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ω*
mb = frequency of m-th resonant peak for the blocked pipeline system; 

ω*
mi = frequency of m-th resonant peak for the intact pipeline system. 

Chapter 5 

Roman Letters 

A = A(x) = pipe cross-sectional area; 

a0 = wave speed; 

“exp” = is short for “exponential”; 

g = gravitational acceleration; 

h = pressure head deviation in the frequency domain; 

I = power intensity; 

“Im” = imaginary part; 

i = imaginary number; 

k = wave number; 

k0 = wave number in intact pipe sections; 

k = group wave number in the exponential non-uniform blockage; 

ln = length of the n-th non-uniform blockage (or pipe); 

M, N = constants; 

P = pressure in the time domain; 

P* = dimensionless pressure in the time domain; 

Pin = the incident wave pressure at the generator; 

P0 = the initial pressure in the pipeline; 

p* = pressure deviation from the mean in the time domain; 

p = pressure deviation from the mean in the frequency domain;  

q = discharge deviation in the frequency domain; 

R = radius of an intact pipe; 

“Re” = real part; 

RC = pipe radius at Junction C; 

r = r(x) = pipe radius; 

S0 = pipe cross-sectional area of intact junctions; 
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Sn = pipe cross-sectional area at Junction n; 

s = a coefficient that determines the radius changing rate of non-uniform blockages; 

TC = energy transmission coefficient; 

t = time; 

Uij = transfer matrix elements; 

Uij
* = system overall transfer matrix elements; 

Vij
* = system overall transfer matrix elements (in terms of u and p); 

u* = axial velocity deviation from the mean in the time domain; 

u = axial velocity deviation from the mean in the frequency domain; 

W = energy flow; 

x = distance along the pipeline; 

Z = impedance; 

 

Greek Symbols 

δω* = normalized resonant frequency shift induced by blockages; 

ρ0 = fluid density; 

ω = angular frequency; 

ω* = dimensionless angular frequency; 

ωc = angular central frequency of the incident wave; 

ωcut = cutoff frequency of the exponential non-uniform blockage. 
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a0 = wave speed; 

fin = valve oscillation frequency; 

fr = radial wave frequency; 

Fr = body force along r; 

Fx = body force along x; 

I = total number of spatial grids in the ξ-direction; 

i = i-th spatial step in the ξ-direction; 
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J = total number of spatial grids in the η-direction; 

j = j-th spatial step in the η-direction; 

K = μ/Rρ0a0; 

k = bulk modulus; 

krm = radial wave number of the m-th radial mode; 

L = total length of the pipe; 

M = Mach number u0/a0; 

Nr = grid number along the pipe radius; 

n = n-th time step; 

p′ = pressure; 

p = dimensionless pressure (p′ – pe′)/ρ0u0a0; 

pavg = area-averaged pressure; 

paxis = pressure at the pipe axis; 

pwall = pressure at the pipe wall; 

pe′ = pressure at x = 0; 

R = pipe radius; 

r = radial coordinate from pipe centerline; 

Re = Reynolds number; 

Tth = system theoretical period 4L/a0; 

t = time; 

u0 = the initial average axial velocity; 

u′ = axial velocity; 

u = dimensionless axial velocity u′/u0; 

Vgm = group velocity of m-th radial mode; 

v′ = radial velocity; 

v = dimensionless radial velocity v′/u0; 

x = axial coordinate along pipe centerline; 

 

Greek Symbols 

Δη = spatial step in the η-direction; 

Δξ = spatial step in the ξ-direction; 
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Δτ = size of time step; 

η = dimensionless radial coordinate r/R; 

κ = volume viscosity; 

μ = dynamic viscosity; 

ξ = dimensionless axial coordinate x/R; 

ρ = fluid density; 

ρ0 = mean density of the fluid (water); 

τ = dimensionless time a0t/R; 

τ0 = time duration of the valve oscillation; 

ω = frequency in radius per second. 
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a = transient wave speed; 

a0 = transient wave speed in intact pipes; 

ath = theoretical transient wave speed in elastic pipes; 

ab = average wave speed within the blockage section; 

D = pipe diameter; 

E = Young’s modulus of elasticity of the pipe wall; 

e = pipe wall thickness; 

Fr = body force along r; 

Fx = body force along x; 

FRF(ω) = frequency response function; 

g = gravitational acceleration; 

h = pressure head deviation in the frequency domain; 

K = bulk modulus of elasticity of water; 

K′ = modified bulk modulus of water; 

L = total length of the pipe; 

ln = pipe length of the n-th pipe; 

Min = amplitude of the incident wave in the frequency domain; 
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Mtr = amplitude of the transmitted wave in the frequency domain; 

m = m-th resonant peak in the frequency domain; 

n = n-th pipe; 

Nr = number of mesh in the radial direction; 

p = pressure; 

p* = dimensionless pressure (p − p0)/(ρa0u0); 

pin = incident wave pressure at the generator; 

q = discharge deviation in the frequency domain; 

R = inner radius of the pipe; 

RC = pipe radius at Junction C; 

Re = Reynolds number; 

r = radial coordinate from the pipe axis; 

r* = dimensionless radial coordinate r/R; 

S = pipe cross-sectional area; 

S0 = intact pipe cross-sectional area; 

Sxx(ω) = Fourier transform of the autocorrelation of the input; 

Sxy(ω) = Fourier transform of the cross-correlation between the input (x) and the output (y); 

TC = energy transmission coefficient; 

t = time; 

t* = dimensionless time t/(4L/a0); 

Uij
* = elements of the system overall transfer matrix; 

u = axial velocity; 

u0 = initial average axial velocity; 

u* = dimensionless axial velocity u/u0; 

v = radial velocity; 

Win = energy flow incident on the non-uniform blockages; 

Wtr = energy flow (i.e., power) transmitted through the non-uniform blockages; 

x = axial coordinate along the pipe axis; 

 

Greek Symbols 

α = a coefficient that determines the amplitude of the incident wave; 
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β = a coefficient that determines the frequency bandwidth of the incident wave; 

∆r = mesh size along the radial direction; 

∆t = time step; 

∆x = mesh size along the axial direction; 

∆ωm
* = dimensionless frequency shift of the m-th resonant peak; 

μ = dynamic viscosity; 

ν = Poisson ratio; 

ρ = density of water; 

ωc = central frequency of the incident wave; 

ω* = dimensionless frequency of the wave, which is normalized by the fundamental frequency 

of the non-uniform blockage; 

ωmb
* = frequency of the m-th resonant peak in the blocked pipe system; 

ωmi
* = frequency of the m-th resonant peak in the intact pipe system. 
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CHAPTER 1 INTRODUCTION1 

 

 

1.1 Research Background and Problem Statement 

1.1.1 Aging Urban Water Supply Systems 

Urban water supply systems, comprised of thousands of kilometers of underground pipes, 

are the backbone of the public health and economic welfare of modern cities. Most of 

these vast networks were accumulatively laid down and paid for by previous generations, 

especially after World War II (i.e., 1945), to meet the needs of population growth and 

urban expansion (AWWA, 2001). Due to aging without timely repairs, a substantial 

portion of these pipes are reaching or have reached the end of their service lives, which 

are riddled with anomalies (e.g., leaks, blockages, illegal branches, and corrosion in Fig. 

1.1) and inefficiencies. It was estimated that the volume of drinking water annually lost 

by water facilities worldwide is around 126 billion m3 (i.e., nearly 77 liters per capita per 

day) in 2016, mostly from unseen leaks, which costs US$ 39 billion (Liemberger & Wyatt, 

2019). As shown in Fig. 1.2, the percentage of water lost through leaks during its 

transmission varies significantly among cities around the world, from 3-5% in well 

maintained cities like Tokyo (Japan), Amsterdam (Netherlands), and Los Angeles (USA) 

to 40-60% in cities like Dublin (Ireland), Lusaka (Zambia), and Kolkata (India) (Cao & 

Ruan, 2017). The level of services to consumers has been deteriorating during the last 

couple of decades due to the continuous emergence of leaks, blockages, and other pipe 

anomalies. 

 

Over the past decades, these anomalies in pipe networks were thought to be insignificant 

and largely ignored by the younger generation (Ferrante & Brunone, 2003a) because (i) 

 
1 This chapter is an excerpt from the review paper of the author and his co-authors (Che et al., 2019a). 
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these problems happen underground, out of sight and out of mind; (ii) most of these pipes 

are inherited from, and initially paid for by, earlier generations; and (iii) the supply of tap 

water is sufficient and cheap due to the abundance of water and energy resources. For 

these reasons, the younger generation has enjoyed the honeymoon period with the 

relatively young pipe networks for several decades. 

 

 

Fig. 1.1. Different types of pipe anomalies in real urban water supply systems: (a) leak; (b) 

blockage (James & Shahzad, 2003); (c) illegal branches (Meniconi et al., 2011d); and (d) 

corrosion (internal view) (Lee et al., 2017). 

 

However, the repair, or even replacement, of these pipes is needed as they reach the end 

of their service lives. The Hong Kong Government has investigated US$ 3 billion to its 

15-year (i.e., 2000 to 2015) Replacement and Rehabilitation of Water Mains Programme. 

This program involves the replacement and rehabilitation of 3000 km of aged water mains 

(i.e., more than 50%) out of its total 5700 km water mains in 15 years to rejuvenate the 

water supply network. Despite such a comprehensive and systemic program, around 16% 

of the supplied water and energy is still lost, at an annual cost of US$ 200 million (HK-

WSD, 2019). In fact, a massive upgrade of the ageing pipe networks around the world 

exerts growing financial pressure on governments that will continually increase in the 

coming decades. For example, to maintain a reasonable level of services to consumers, 

the American Water Works Association (AWWA) estimated that the total costs needed 

nationally to restore its aged water pipes are around US$ 500 billion and US$ 1 trillion in 

the next 25 and 40 years, respectively (AWWA, 2012). Therefore, these programs result 

in huge expenses most of which will be borne by customers in the younger generation, 

mainly through higher water bills. It was estimated that these investments could triple the 
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usual water bills of a typical American family (AWWA, 2012). In addition, the worldwide 

water and energy shortages in recent years also enable water utility managers to give 

priority and allocate expenditure to pipe anomaly detection and pipe condition assessment, 

which is regarded as “a money- saving expense” (AWWA, 1979). 

 

 

Fig. 1.2. Percentage of water losses through leaks in 20 cities worldwide. 

 

These deteriorating situations and growing market demands have stimulated the 

development of various techniques for pipe anomaly detection and overall pipe condition 

assessment (Datta & Sarkar, 2016; Hamilton & Charalambous, 2013; Liu & Kleiner, 

2013). 

1.1.2 Existing Methods for Pipe Anomaly Detection 

Based on the obtained information used for pipe anomaly detection, existing methods can 

be generally classified into two categories: acoustic and non-acoustic techniques. A 

detailed review of existing methods for anomaly detection is beyond the scope of the 

present chapter; thus, only several typical acoustic and non-acoustic techniques are briefly 

summarized as follows: 
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Acoustic Techniques 

A leak induces a hissing noise (i.e., vibrate the pipe wall and the surrounding soil at high 

frequency) when the water jets out from the pipe (Lee, 2005). A listening stick with an 

earpiece is placed in contact with the ground surface to listen to the leak-induced noise. 

The leak location can be estimated by shifting the stick along the pipe until the maximum 

leak-induced noise is detected. In practical applications, the leak-induced noise can be 

further enhanced by some electronic amplified listening devices (e.g., an electronic 

acoustic microphone) (Hamilton & Charalambous, 2013; Lee, 2005). A leak noise 

correlator is a more advanced acoustic technique used as a leak locator to find leaks in 

pressurized water pipes. Usually, accelerometers or hydrophones are placed in contact 

with the outside of the pipe wall or the water inside the pipe, at two points, to measure 

the noise induced by a potential leak between these two points. The cross-correlation (see 

Section 2.3.1) between these two measured signals is used to determine the time lag 

between two sensors for receiving the same noise emitted by the leak. Based on this time 

lag, along with the known acoustic wave speed and locations of measurement points, the 

location of the leak can be determined (Hamilton & Charalambous, 2013; Lee, 2005). 

More detailed information about these acoustic techniques for leak detection can refer to 

(Hamilton & Charalambous, 2013; Lee, 2005; Li et al., 2014; Liu & Kleiner, 2013, 2014). 

 

Small leaks induce high frequency noises (while big leaks do not), but the amplitude of 

these noises is relatively small. In addition, these leak-induced noises may attenuate 

rapidly in elastic pipes within 200 m (Lee, 2005). This attenuation becomes even more 

rapid in plastic pipes because of the more significant energy absorption into the pipe wall 

and the surrounding soil (Hamilton & Charalambous, 2013). Therefore, acoustic 

techniques have evident limitations in terms of the detection range and the application 

diversity of pipes. Moreover, due to the lack of external evidence (i.e., a hissing noise), 

acoustic techniques are even more difficult to apply for the detection of other pipe 

anomalies, such as blockages.   
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Non-acoustic Techniques 

Besides hissing noises, the presence of a leak (or other pipe anomalies) also changes the 

appearance of the pipe wall and physical properties (i.e., porosity and conductivity) of 

surrounding soils, which forms the basis of non-acoustic techniques for pipe anomaly 

detection. The current commercially available non-acoustic techniques can be classified 

into two groups: (i) intrusive techniques, such as the closed-circuit television (CCTV) 

cameras and gas injection method; and (ii) non-intrusive techniques, such as the ground 

penetrating radar and thermal infrared imagers.  

 

At present, internal real-time inspection of pipe wall conditions by inserted CCTV 

cameras (or smart balls) is a common approach for pipe anomaly detection (Henry & 

Luxmoore, 1996). This technique is more appropriate for single or simple pipe systems, 

because internal inspection by CCTV cameras is a slow, tedious, and costly process, 

which needs to be operated by relatively experienced personnel. In addition, it may need 

the target pipe systems to be off-line, and the caused service interruption would disturb 

the normal life of water users. The ground penetrating radar, which is a non-intrusive 

technique, allows leaks to be detected without a device intrusion into the pipe. A radar 

pulse is injected into the ground, and the reflected signals from subsurface structures are 

collected by receivers on the surface. The general conditions (i.e., porosity and 

conductivity) of surrounding soils can be determined based on the reflected signals, which 

are indicators of potential leaks (Hamilton & Charalambous, 2013; Lee, 2005). However, 

the relatively high energy consumption of this technique limits its extensive field 

applications. Besides, considerable expertise is needed to effectively conduct the surveys 

and interpret the obtained results.  

 

The above mentioned acoustic and non-acoustic techniques (Datta & Sarkar, 2016; 

Hamilton & Charalambous, 2013; Liu & Kleiner, 2013) have played important roles in 

the pipe condition assessment of urban water supply systems. But none of them is a 

panacea that could be used in all pipe systems with different scales and configurations, 
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and the current severe situation of water and related energy losses (see Section 1.1.1) has 

evidenced the inadequacy and inefficiency of these existing techniques for improving the 

current situation. Therefore, it is practically urgent and necessary to develop a more 

comprehensive and effective method for pipe anomaly detection. 

1.1.3 Transient-based Methods for Pipe Anomaly Detection 

Ideally, a pipe anomaly detection technique should be accurate, efficient, and cheap to 

use. In addition, it should not disturb the normal operations of the pipe system (Ferrante 

et al., 2014; Taghvaei et al., 2006). The transient-based method, which detects pipe 

anomalies based on the data collected by transient waves with high propagation speeds, 

meets these requirements. 

 

As an attractive alternative to existing methods, in the past two decades, transient waves 

(also termed as transient pressure waves, hydraulic transients, or water hammer waves) 

have been widely used for the detection of various pipe anomalies and general pipe wall 

condition assessment (Brunone, 1999; Duan et al., 2012a; Gong et al., 2013b; Lee et al., 

2006a; Lee et al., 2008b; Liggett & Chen, 1994; X. J. Wang et al., 2005; X. J. Wang et 

al., 2002) (more detailed information is summarized in Chapter 2). This transient-based 

method is regarded as a promising way for diagnosis pipe anomalies since it has the 

desirable merits of high efficiency, low cost, and non-destructive applications. As shown 

in Fig. 1.3, the tenet of this transient-based method is that a transient wave, with a high 

propagation speed around 1000 m/s, is injected into the target pipe system at an accessible 

point (e.g., a fire hydrant), and the pressure response of the pipe system is measured at 

specified location(s), which is modified by, and thus contains information on, properties 

and states of the pipe system. Compared with the leak-induced acoustic signals, the 

transient waves have a high tolerance to background noise and can propagate longer 

distances with less attenuation, which are suitable for remote surveillance (X. J. Wang et 

al., 2005).  
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Fig. 1.3. Illustration of the tenet of the transient-based method for pipe anomaly detection. 

1.1.4 Problems of the Transient-based Method for Blockage Detection 

In urban water supply systems, partial and extended blockages are commonly formed in 

pipes from various complicated physical, chemical, and biological processes (e.g., 

sediment deposition, corrosion, and biofilm accumulation). These blockages reduce pipe 

diameters and increase pipe wall roughness, resulting in lower water-carrying capacity, 

additional energy loss, and deterioration of water quality. In addition, blockages may 

significantly change the maximum and minimum pressure heads during hydraulic 

transients, which may exceed the original transient design capacity; thus, potentially 

increase the failure rate of pipe systems. Unlike leaks, blockages are easily masked in the 

inaccessible buried pipe network since they lack external evidence (e.g., a hissing noise) 

needed for detection, and the lost pressure and flow across blockages can be compensated 

by other branch pipes in the network. For these reasons, detection techniques are in urgent 

need to diagnose these blockages in the early stages so as to minimize the resultant 

problems and wastage. 
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Despite the successful applications of the transient-based method for extended blockage 

detection in many numerical and laboratory tests (Duan et al., 2014; Duan et al., 2012a; 

Duan et al., 2013; Meniconi et al., 2013a), this method in these previous studies is based 

on blockages of uniform constriction along their lengths (termed as uniform blockages), 

which is equivalent to multiple pipes with different diameters connected in series as 

shown in Fig. 1.4(c). However, real world blockages are commonly formed from various 

complicated sources and processes; thus, as shown in Figs. 1.4(a) and 1.4(b), they usually 

constrict randomly and non-uniformly along their lengths (termed as non-uniform 

blockages). Inaccuracy and invalidity of the current transient-based method have been 

observed in laboratories for non-uniform blockage detection. This is mainly because the 

current transient-based theory is incapable of describing the interaction between transient 

waves and non-uniform blockages. Therefore, a physical understanding of the transient 

wave behavior in water pipes with non-uniform blockages is necessary to enhance the 

practical applications of the transient-based method for real world blockage detection, 

which is the main research motivation of this thesis. 

 

  

Fig. 1.4. (a) Random and non-uniform blockages in real water pipes (Che et al., 2018b); (b) 

sketch of a real pipe with random and non-uniform blockages; and (c) sketch of a pipe with 

simplified uniform blockages used in previous studies. 

  

(b) (a) 

(c) 
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1.2 Research Aims 

The overall aim of this thesis is to investigate transient wave behavior in water pipes with 

non-uniform blockages. It is expected that the physical understanding gained in this thesis 

would narrow the gap between transient-based theory and practical applications of non-

uniform blockage detection. The overall aim is decomposed into four specific aims, as 

follows. The relationships between these aims are illustrated in Fig. 1.5. 

 

Aim 1: To quantify the effect of properties of a non-uniform blockage in water pipes on 

the system response in the frequency domain. 

Aim 2: To understand the physical mechanism of the interaction between transient waves 

and non-uniform blockages and observe the transient wave behavior in the time domain. 

Aim 3: To determine the frequency range of validity of the developed theory (i.e., Aims 

1 & 2) and observe the behavior of radial pressure waves in water pipes. 

Aim 4: To validate the developed theory by numerical computational fluid dynamics 

(CFD) experiments under more realistic and complex conditions. 
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Fig. 1.5. Research aims and their relationships. 
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1.3 Thesis Outline 

Besides Chapter 1 Introduction, this thesis consists of seven additional chapters, which 

are organized as follows. The relationships of these chapters are illustrated in Fig. 1.6. 

 

Chapter 2 conducts an extensive literature review on the application of transient waves 

for pipe anomaly detection. This chapter first introduces the fundamentals of transient 

theory and applications (e.g., the basic properties of transient waves, the excitation and 

measurement of transient waves, and the techniques for signal processing and feature 

extraction). On these bases, the state-of-the-art review of four transient-based methods 

(i.e., ITA, TWR, TWD, and TFR) for pipe anomaly detection since 1990s is conducted, 

followed by a brief description of the transient-based method for extended blockage 

detection in water pipes. 

 

Chapter 3 presents the fundamental models and governing equations of transient pipe 

flows used in this thesis. The derivation procedure of various forms of one-dimensional 

(1D) and 2D water hammer models from the 3D Navier-Stokes equations for a 

compressible fluid is given, during which the assumptions inherent in these models are 

illuminated.  

 

Chapter 4 investigates the transient frequency responses of water pipes with a non-

uniform blockage. To understand the fundamental physics and mechanism of wave-non-

blockage interaction, the transient wave behavior in a linear non-uniform blockage is 

obtained by analytically solving the 1D wave equation under specific initial and boundary 

conditions. The obtained wave solutions are incorporated into the overall transfer matrix 

of a reservoir-pipe-valve (RPV) system with a non-uniform blockage, which is used to 

systematically quantify the effect of properties of a non-uniform blockage on the transient 

frequency responses.  

 

Chapter 5 explains the physical mechanism of the resonant frequency shift pattern 

induced by a non-uniform blockage in water pipes (observed in Chapter 4) from an energy 
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perspective. For this purpose, the energy transmission coefficient of transient waves in an 

unbounded water pipe with various blockages is analytically derived based on the system 

overall transfer matrix. Afterwards, the influence of non-uniform blockage properties on 

the energy transmission of transient waves is investigated systematically based on the 

derived result.  

 

Chapter 6 studies the frequency range of validity of the developed theory (in Chapters 4 

and 5) and observes the behavior of radial pressure waves in water pipes. The inefficiency 

of the current numerical scheme for solving the full-2D water hammer model is firstly 

addressed. The modified efficient scheme is used to study the generation mechanism and 

components of radial pressure waves induced by different valve operations. 

 

Chapter 7 validates the developed theory (in Chapters 4 and 5) by numerical CFD 

experiments under more realistic and complex conditions. The full-2D axisymmetric 

Navier-Stokes equations are solved by the Semi-Implicit Method for Pressure Linked 

Equations (SIMPLE) algorithm in a cylindrical coordinate system. Various boundary 

conditions (e.g., pipe wall elasticity and transient excitation operations) are included into 

the full-2D model by user-defined functions (UDFs).  

 

Chapter 8 summarizes major conclusions of this thesis and gives recommendations for 

potential future work.  
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Fig. 1.6. Structure of this thesis. 
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1.4 Contributions to the Field 

The main contributions of this thesis to the field are: 

 

1. This research is one of the first to investigate the interaction between transient waves 

and non-uniform blockages, which provides a general framework for the analysis of real 

pipes with non-uniform blockages.  

 

2. The quantification of properties of a non-uniform blockage on the transient frequency 

response of a pipe system is fundamental to extend the current transient-based method for 

non-uniform blockage detection in future work. 

 

3. The development of a procedure for deriving the energy transmission coefficient of 

transient waves through various non-uniform blockages in water pipes. In practical non-

uniform blockage detection, this coefficient allows to select the appropriate frequency 

and bandwidth of the incident wave to ensure that the reflected wave contains enough 

energy for pressure transducers to measure. 

 

4. The modification of a numerical scheme for solving the full-2D water hammer model 

provides a useful tool for: (i) determining the frequency range of validity of the plane 

wave assumption; and (ii) observing the behavior of radial pressure waves in water pipes. 

 

The physical understanding gained in this thesis may contribute to narrow the gap 

between transient-based theory and practical applications of non-uniform blockage 

detection, which is crucial and necessary for developing smart urban water supply 

systems. 

 

The key results and findings of this thesis research have been or are to be published in the 

top professional journals or conference proceedings in this field, which may provide 

useful information and a scientific basis for future research work. 
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CHAPTER 2 LITERATURE REVIEW2 

 

 

2.1 Fundamentals of Transient Waves in Pipes 

2.1.1 Transient Waves and Transient Wave Speeds 

Transient Waves 

Transient (or water hammer) waves are a series of positive and negative pressure waves 

(i.e., unsteady pressure fluctuations) propagating at high wave speeds around 1000 m/s 

in elastic water pipes. These pressure fluctuations are often caused by sudden flow 

changes in terminals or boundaries of the pipe system. In urban water supply systems, 

transient waves are easily and frequently introduced through some accidental or planned 

changes in operating conditions, such as opening or closing of valves, starting or stopping 

of pumps, and variations in water supply and customer consumption (Chaudhry, 2014; 

Wylie et al., 1993). 

Transient Wave Speeds 

The general expression of the transient wave speed is (Ghidaoui, 2004; Ghidaoui et al., 

2005) 

 
2

1 d dA

a dP A dP

 
= +  (2.1) 

where a = transient wave speed; ρ = fluid (water) density; P = piezometric pressure; A = 

pipe cross-sectional area. 

 

 
2 This chapter is an excerpt from the review paper of the author and his co-authors (Che et al., 2019a). 
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Eq. (2.1) indicates that the transient wave speed mainly depends on two factors: (i) the 

first term on the right-hand side represents the effect of water compressibility; and (ii) the 

second term represents the effect of pipe wall elasticity.  

 

By relating the right-hand side of Eq. (2.1) to the material properties of the water and to 

the material and geometrical properties of the pipe (the detailed process is reported in 

Ghidaoui et al. (2005)), Eq. (2.1) becomes (Chaudhry, 2014) 

 
( )1 /

K
a

K E 
=

+  

 (2.2) 

where K = bulk modulus of elasticity of the water (depends on temperature, pressure, and 

the quantity of entrained air); E = Young’s modulus of elasticity of the pipe wall; α = a 

nondimensional parameter that is determined by the elastic properties of the pipe 

(depends on its size, wall thickness, and wall material) as well as its external constraints 

(depends on the type of supports and longitudinal restraints). 

 

In practical urban water supply systems, the actual wave speed may be different from the 

theoretical value given by Eq. (2.2) due to many factors, such as uncertainties in the age 

and condition of most buried pipes (Covas et al., 2004; Shucksmith et al., 2012). 

2.1.2 Analysis and Simulation of Transient Waves 

Governing Equations  

The commonly used tool for transient wave simulation in the time domain is the following 

one-dimensional (1D) water hammer model (see Chapter 3), which consists of mass and 

momentum equations (Chaudhry, 2014; Ghidaoui et al., 2005; Wylie et al., 1993) 

 
2

0
gA H Q

a t x

 
+ =

 
 (2.3) 

 0w

Q H D
gA

t x






 
+ + =

 
 (2.4) 
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where H = piezometric pressure head; Q = pipe discharge; t = time; x = distance along the 

pipe; g = gravitational acceleration; D = pipe diameter; and τw = pipe wall shear stress, 

which can be divided into two parts as 

 
w ws wu  = +  (2.5) 

where τws = quasi-steady component of τw; and τwu = unsteady component of τw. 

 

The method of characteristics (MOC) is the most popular numerical scheme for this 1D 

model, because it is simple, stable, and efficient for numerical implementation (Chaudhry, 

2014; Ghidaoui et al., 2005). In addition, this 1D model can be also solved by other 

numerical schemes (e.g., finite difference and finite volume methods), which are well 

summarized in the review paper of Ghidaoui et al. (2005). 

 

Alternatively, the above 1D model can be linearized, transformed, and solved in the 

frequency domain using the transfer matrix method (Chaudhry, 2014; Wylie et al., 1993). 

The obtained transfer matrix equations are linearized frequency domain equivalents of 

the 1D mass and momentum equations in Eqs. (2.3) and (2.4), which describe the transient 

wave behavior in the frequency domain. It is assumed that the discharge and pressure 

head in the pipe during a transient event are consisted of two parts: (i) the mean value; 

and (ii) perturbation from the mean. 

 *

0Q Q q= +  (2.6) 

 *

0H H h= +   (2.7) 

where Q0 = mean discharge; q* = discharge perturbation from the mean; H0 = mean 

pressure head; h* = pressure head perturbation from the mean. 

 

Substituting Eqs. (2.6) and (2.7) into Eqs. (2.3) and (2.4) and performing a sequence of 

essential mathematical operations (the detailed process is reported in (Chaudhry, 2014; 

Wylie et al., 1993)), during which only the quasi-steady part of pipe wall shear stress (i.e., 

τws in Eq. (2.5)) is considered. Finally, the transfer matrix equation is expressed as 
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( ) ( )

( ) ( )

1 1
cosh sinh

sinh cosh

n n

n n n n

n n n n

l lq q
Z

h h
Z l l

 

 

+  
−    =       −  

 (2.8) 

where q = discharge perturbation in the frequency domain; h = pressure head perturbation 

in the frequency domain; subscript n = n-th pipe; superscript n, n+1 = upstream and 

downstream ends of the n-th pipe, respectively; ln = length of the n-th pipe; μn = (−ω2/a2 

+ igAωR/a2)1/2, in which ω = frequency, i = (−1)1/2, R = (fQ0)/(gDA2) = frictional 

resistance, f = Darcy-Weisbach friction factor; and Z = (μna
2)/(iωgA) = characteristic 

impedance. 

 

Once the magnitude of responses (i.e., discharge and pressure head) at the upstream end 

is known, the responses at the downstream end can be produced by Eq. (2.8). In other 

words, the transfer matrix in Eq. (2.8) directly relates the discharge and head perturbations 

at both ends without discretization of the pipe in space; thus, the transfer matrix method 

has the advantage of high computational efficiency compared with some time domain 

methods, such as the MOC.  

Common Boundary Conditions 

In practical urban water supply systems, pipes are commonly bounded by various 

hydraulic devices, from simple (e.g., reservoirs and valves) to complex (e.g., pumps and 

turbines). An injected transient wave can be reflected by these boundaries and their 

detailed characteristics can refer to (Chaudhry, 2014; Wylie et al., 1993). To simplify the 

problem, the theoretical development of transient-based methods in previous studies for 

pipe anomaly detection is mainly conducted in pipe systems with simple boundary 

conditions (e.g., reservoirs and valves). In this chapter, a simple reservoir-pipe-valve 

(RPV) system, as shown in Fig. 2.1, is adopted to illustrate the transient wave behavior 

in intact pipes as well as pipes with various anomalies. 
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Fig. 2.1. A reservoir-pipe-valve (RPV) system. 

 

As shown in Fig. 2.1, the pipe system consists of three pipe sections (i.e., Pipe 1-3) with 

flange connections. There is a reservoir at the upstream end of the pipe system, whose 

pressure head is assumed to remain constant during the transient events (i.e., a large 

reservoir). The downstream end of the pipe system is bounded by an inline valve (i.e., 

V1). The inline valve is initially kept open to form a steady flow in the pipe system. One 

simple way to generate transient waves is to operate (e.g., close) the inline valve to induce 

a flow change. The pressure response of the pipe system is measured by one, or multiple, 

pressure transducer(s) along the pipe with a suitable sampling frequency. 

2.1.3 Behavior of Transient Waves in Intact Pipes 

Influence Factors of Transient Wave Attenuation 

Various factors affect the attenuation of transient waves in intact pipes, such as steady 

friction, unsteady friction, and pipe wall viscoelasticity. In this section, the influence of 

these factors is investigated and demonstrated numerically by the 1D water hammer 

model (i.e., Eqs. (2.3) and (2.4)), which is made in the sequence from the simple 

frictionless case to the complicated (e.g., including steady friction, unsteady friction, or 

pipe wall viscoelasticity).  

 

As shown in Fig. 2.1, initially, the inline valve (i.e., V1) is kept fully open to form a steady 

flow in the RPV system. Transient waves are introduced into the pipe system through a 
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sudden and complete closure of the inline valve. The induced transient waves propagate 

back and forth in the pipe system between the upstream and downstream boundaries. A 

pressure transducer (i.e., M4) at just upstream of the inline valve is selected to measure 

the pressure-time history. 

 

The pressure-time histories of different tests (i.e., including different influence factors) 

measured by the pressure transducer M4 are plotted in Fig. 2.2(a). As shown in Fig. 2.2(a), 

the time in the horizontal axis is normalized by the theoretical period of the RPV system 

Tth = 4L/a, where L = total pipe length, and plotted as tD
*. The pressure head in the vertical 

axis is normalized as hD
* = (H – H0)/(au0/g), where u0 = initial average axial velocity in 

the pipe. In the test with no friction, the amplitude and sharpness of the pressure curve 

keep constant without any attenuation. The first reflected wave occurs at t* = 0.5, during 

which the initial induced transient wave originates from the downstream valve, 

propagates in the pipe, impacts on the upstream reservoir, and returns. To gain an insight 

into the components of the measured pressure curves in the frequency domain, their 

corresponding frequency response functions (FRF) (see Section 2.3.2) are calculated and 

plotted in Fig. 2.2(b). As shown in Fig. 2.2(b), the frequency is normalized by the 

theoretical frequency of the RPV system ωth = 1/Tth, and plotted as ωD
* in the horizontal 

axis. Fig. 2.2(b) indicates that hydraulic resonance, which results in an amplification of 

pressure, occurs at characteristic frequencies of the RPV system. In this frictionless test, 

the amplitude of resonant peaks can be infinite due to the continuous energy accumulation 

in each time domain cycle without any attenuation. 

 

Subsequently, the steady friction is included in the 1D water hammer model. As shown 

in Fig. 2.2(a), the presence of steady friction results in a gradual decrease in the pressure 

amplitude with time. In addition, the period and sharpness of the pressure curve almost 

keep the same with the frictionless test. Fig. 2.2(b) shows that the inclusion of steady 

friction does not change the resonant frequencies of the RPV system. Moreover, the 

steady friction induces a uniform reduction, which is frequency independent, in the 

amplitude of the FRF. This reduction of amplitude to a finite value is due to the balance 
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between the provided energy and the energy attenuated by the steady friction of the RPV 

system. 

 

 

 

Fig. 2.2. Influence of various factors on transient wave attenuation in intact pipes: (a) time 

domain; and (b) frequency domain. 

 

Afterwards, the 1D numerical simulation includes the effects of both steady and unsteady 

friction (Vardy & Brown, 1995; Zielke, 1968). According to Fig. 2.2(a), the presence of 

unsteady friction dissipates more amplitude of the pressure curve and makes its shape 

smoother. Fig. 2.2(b) indicates that the unsteady friction causes a further reduction in the 

amplitude of the FRF. This induced reduction is frequency dependent, which is more 

evident in higher harmonics. 
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The last investigated influence factor is the pipe wall viscoelasticity, which is the property 

of plastic pipes undergoing deformation. It is included in the 1D water hammer model 

and simulated by the Kelvin-Voigt model (Covas et al., 2005b). Fig. 2.2(a) indicates that 

the inclusion of pipe wall viscoelasticity induces large amplitude attenuation, significant 

shape smoothing, and evident period change of the pressure curve. Similar with the 

unsteady friction, the pipe wall viscoelasticity results in a significant reduction of the 

amplitude of the FRF, which is also frequency dependent and more evident for higher 

harmonics. Moreover, the pipe wall viscoelasticity causes the resonant peaks to shift due 

to the change of oscillation period in the time domain. 

Radial Pressure Waves 

Note that the behavior of transient waves in pipes demonstrated in this chapter is based 

on the plane wave theory (Ghidaoui, 2004; Ghidaoui et al., 2005), which means the 

pressure variation along the pipe radial direction is not considered. However, the pressure 

along the pipe radius may become curved if the incident wave frequency is higher than 

the cut-off frequency of the radial mode 1 (M1); thus, radial pressure waves may form 

and propagate in the pipe system. More detailed information about the behavior of radial 

pressure waves is reported in (Che et al., 2018a; Louati & Ghidaoui, 2017b, 2017c). This 

phenomenon is out of the scope of this chapter, because nearly all previous studies on 

transient-based methods for pipe anomaly detection are based on the plane wave theory. 

2.1.4 Behavior of Transient Waves in Pipes with Anomalies 

Common Anomalies in Pipes 

Various pipe anomalies are commonly existed in urban water supply systems, such as 

leaks, discrete blockages, extended blockages, and pipe wall corrosion. These anomalies 

are generally classified into two categories based on their relative length scales: (i) if the 

relative size of an anomaly is small compared to the total length of the pipe system and 
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can be considered as a point discontinuity, it is termed a localized pipe anomaly, such as 

a leak and a discrete blockage; and (ii) if the relative size of an anomaly is large and 

cannot be represented by a point discontinuity, it is termed an extended pipe anomaly, 

such as an extended blockage and pipe wall corrosion (Duan et al., 2012a; Lee et al., 

2013). 

 

To demonstrate the behavior of transient waves in pipes with anomalies, one localized 

(i.e., a leak) and one extended anomalies (i.e., an extended blockage) are selected to 

numerically investigate in a RPV system, as shown in Fig. 2.1. To highlight the 

interaction between transient waves and pipe anomalies, only the steady friction is 

considered in this section (i.e., Section 2.1.4).  

Pipes with a Localized Anomaly 

 As shown in Fig. 2.1, a pipe with a leak (i.e., a localized anomaly) is installed as the test 

section (i.e., Pipe 2) of the RPV system. Transient waves are introduced into the RPV 

system by a sudden and complete closure of the downstream valve to disturb the initial 

steady flow. The pressure-time history is measured by a pressure transducer located at 

just upstream of the downstream valve (i.e., M4), and plotted in Fig. 2.3(a). 

 

As shown in Fig. 2.3(a), the first partial reflection is a negative wave. The occurrence 

time of this negative wave is the time duration that the induced transient wave propagates 

along the pipe, impacts on the leak, and returns to the downstream valve. Such partial 

reflected waves divert energy away from the main waveform; thus, the pressure amplitude 

is gradually decreased (Lee et al., 2005b). The FRF of the PRV system, as shown in Fig. 

2.3(b), indicates that the resonant frequencies of a pipe with a leak are the same with the 

intact pipe. In addition, the leak causes a frequency dependent decrease in the amplitude 

of resonant peaks, which results in a sinusoidal pattern. 
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Fig. 2.3. Influence of various pipe anomalies on transient waves: (a) time domain; and (b) 

frequency domain. 

Pipes with an Extended Anomaly 

Similarly, a pipe with a smaller diameter (i.e., an extended blockage) is installed as the 
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the first partial reflection from the extended blockage is a positive wave due to the 

increased impedance of the blocked pipe section. Fig. 2.3(a) also shows that the presence 

of an extended blockage significantly changes the maximum and minimum pressure 
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pipe systems. In addition, it can be observed that the characteristic period of the transient 

wave becomes longer than the intact test. According to the FRF in Fig. 2.3(b), similar 

with the leak case, the extended blockage induces a frequency dependent reduction in the 

amplitude of the FRF. Moreover, the extended blockage results in evident frequency 

shifts of resonant peaks due to the change of characteristic period in the time domain. 
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2.2 Excitation and Measurement of Transient Waves 

2.2.1 Signal Bandwidth and Anomaly Detection Resolution 

The excitation of well controlled transient waves suitable for pipe anomaly detection is a 

key step for the development and application of this innovative technology (Lee et al., 

2015). Lee et al. (2005a) are one of the first to introduce the concept of signal bandwidth 

of the induced transient waves. The idea is that all the induced transient waves, in any 

shape or form, have their own frequency spectra. The signal bandwidth is the frequency 

range (or content), in which most of the energy (e.g., at least 50%) is distributed; thus, 

transient waves have relatively high signal-to-noise ratios within the signal bandwidth. 

For the purpose of illustration, several time domain signals and their frequency spectra 

are plotted in Fig. 2.4. It indicates that the sharper signal (caused by rapider flow changes) 

in the time domain, the larger bandwidth of this signal in the frequency domain (Lee et 

al., 2015). 

 

 

Fig. 2.4. Input transient signals with different bandwidth in the: (a) time domain; and (b) 

frequency domain (Lee et al., 2013). 

 

The influence of the signal bandwidth of induced transient waves on the spatial resolution, 

accuracy, and surveillance range of the detection method was investigated systematically 

by Lee et al. (2015). It was observed that the induced transient wave with higher 

bandwidth has a higher spatial resolution, which allows pipe anomalies to be detected 

with higher accuracy. A similar conclusion was drawn by X. Wang and Ghidaoui (2018) 

that the spatial resolution of a detection method depends on the maximum frequency (or 

minimum wavelength) of the induced transient wave, which equals to half of the 
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minimum wavelength. However, the induced transient wave with higher bandwidth 

suffers from a higher attenuation rate along the pipe, reducing the surveillance range of 

the detection method. While the induced transient wave with lower bandwidth has 

opposite features (i.e., lower attenuation, but lower spatial resolution). It was suggested 

that transient waves with both low and high bandwidth should be applied together in 

practical cases, where the transient wave with low bandwidth is first used to estimate 

roughly the potential damaged pipe section, followed by the application of the transient 

wave with high bandwidth in this pipe section to pinpoint the anomaly (Lee et al., 2015). 

2.2.2 Excitation of Transient Waves 

Excitation Techniques 

(1) Operations on the end valve 

(a) A sudden and complete closure of the end valve 

A sudden valve closure is a common and simple operation to introduce transient waves 

into the pipe system (Brunone & Ferrante, 2004; Evangelista et al., 2015). In numerical 

studies, this valve closure process is usually finished within one time step (~ 10−3 s). Due 

to this rapid operation, the wave fronts of induced transient waves are relatively narrow 

and sharp; thus, their high bandwidth would result in a high spatial resolution of pipe 

anomaly detection. However, the discharge variation (i.e., the input) during this one time 

step, which is the necessity for calculating the FRF (see Section 2.3.2) of a pipe system, 

is relatively difficult to obtain. While in laboratories, the valve closure (manual or electric) 

cannot be as fast as numerical studies because of the inertia of of these mechanical end 

valves, and it often takes 10−1 ~ 10−2 s. Therefore, the induced transient waves have 

relatively spread and smooth wave fronts, whose limited bandwidth could make the 

anomaly detection less accurate. One problem of the sudden valve closure is that the 

triggered high pressure may pose potential damage to practical pipe systems. In addition, 

transient events generated by this operation on the end valve are usually unrepeatable. 
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(b) Closure-open-closure of the end valve 

In numerical and experimental studies, the overall bandwidth properties of transient 

waves (i.e., a pulse) induced by a “closure-open-closure” operation on the end valve are 

similar the operation of a sudden closure. One additional feature of this operation is that 

the discharge variation (i.e., the input) during this valve operation is known; thus, the FRF 

(see Section 2.3.2) of the pipe system can be obtained following the procedure given by 

Lee et al. (2006a). 

 

(c) Oscillations of the end valve 

This operation is commonly used in numerical studies to obtain the frequency response 

of a pipe system by the frequency sweeping technique (Chaudhry, 2014). This technique 

needs the end valve to be oscillated in a sinusoidal pattern, at a series of frequencies, to 

form a steady oscillatory flow in the pipe system. Oscillations of the end valve may 

encounter several problems in practical applications (Lee et al., 2005a): (i) it is a complex 

and time-consuming process to form steady oscillatory flows in the pipe system for each 

input frequency; (ii) the resulted resonant condition may inflict potential damage to the 

pipe system; and (iii) a specially-made end valve is needed to generate a smooth and well-

controlled sinusoidal wave in the pipe system.  

 (2) Operations on side-discharge valves 

Various operations (e.g., sudden closure and closure-open-closure) on a side-discharge 

valve are often used in numerical and experimental studies to induce transient waves in 

pipe systems. In general, the operation time of a side-discharge valve is relatively short 

compared with that of an end valve, which results in a sharp transient wave with high 

bandwidth. In addition, the amplitude of the induced transient wave is relatively low due 

to the small initial flow through the side-discharge valve; thus, it is safe for the pipe 

system. In this way, the pipe system can be regarded as a linear system. Therefore, it is 

possible to analyze the measured pressure signal in the frequency domain. 



Chapter 2 Literature Review 

 

 
 

29 
 

(3) Custom-built transient wave generators 

(a) Portable pressure wave-maker (PPWM) 

This PPWM is an easily transported device. It was designed by Brunone et al. (2008b) 

for leak detection and pipe characterization. The PPWM consists of a steel vessel, with 

pressurized air (supplied by an air compressor) and water in it, which is connected to the 

target testing pipe system by a short pipe with an initially closed ball valve at its end. The 

pressure in the PPWM is fixed at a value that is higher than the pressure of the pipe system; 

thus, a positive transient wave propagating into the pipe system is triggered once the end 

ball valve is opened rapidly. One major advantage of this device is that the amplitude of 

generated transient waves can be controlled and limited to a safe range to the pipe system. 

In addition, this device can be applied to pipe systems where suitable maneuver valves 

are not available. More details about this device and its guidelines for application can be 

found in (Brunone et al., 2008b). 

 

(b) Pseudorandom binary sequence (PRBS) signal generator 

The PRBS is a continuous perturbation signal. It consists of a series of random spaced 

transient pulses with equal amplitude (Liou, 1998). The energy of this continuous signal 

is more widely distributed in the time domain, which allows the amplitude of each pulse 

to be small (safe to the pipe system) and the bandwidth to be wide (high spatial resolution). 

The PRBS is generated by repeatedly and rapidly opening and closing a side discharge 

valve controlled by a solenoid-spring system (Lee et al., 2008a). This device can be 

applied into any pipe system easily and inexpensively. Moreover, the PRBS has a high 

tolerance to the random background noise and provides an alternative to various valve 

operations for extracting the FRF (see Section 2.3.2). Afterwards, Gong et al. (2016) 

further designed a dual-solenoid side-discharge valve to generate PRBS signals to extract 

the FRF for leak detection within a single pipe in the laboratory. It was found that one 

type of the PRBS signal (i.e., inverse repeat signal) has a better performance in the face 

of significant nonlinearity. 
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(c) Underwater electric spark-based generator 

The spark-based method for transient wave excitation was proposed by Mazzocchi et al. 

(2016) to conduct an overall pipe wall condition assessment. The principle of this method 

is that the breakdown of water by the high voltage between two discharge electrodes 

results in high temperature and pressure locally, which is nonequilibrium with the 

surroundings; thus, the water is vaporized. The formed bubble keeps expanding until it 

collapses in an extremely short time (~ 10−6 s). This collapse induces an extreme sharp 

transient wave with wide bandwidth (i.e., short wavelength) in the pipe system; thus, it 

enhances the spatial resolution and improves the accuracy of pipe anomaly detection. One 

major challenge of this method is that the generated transient wave cannot be well 

controlled in terms of both amplitude and bandwidth. In addition, the induced transient 

wave may suffer from relatively high attenuation during propagation due to its high 

frequency components. 

 

(d) Piezoelectric wave generation system (PIPE SONAR) 

PIPE SONAR (Lee et al., 2017) uses a piezoelectric actuator consisting of a vibrating 

ceramic element to generate transient waves with small and safe amplitude (< 0.4 m) in 

pipe systems. The operational frequency range of this PIPE SONAR is 40 to 8000 Hz. 

The PIPE SONAR can generate well controlled and repeatable transient waves without 

any loss of water resources from the pipe system. In specific field conditions (e.g., heavy 

background traffic noise), customized transient waves can be created to distribute most 

of their energy out of the background noise spectrum. In addition, this PIPE SONAR 

system is compact and can be easily transported and attached to existing fire hydrants 

through flange connections by 1 or 2 people. 
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Bandwidth of Transient Waves Excited by Various Techniques 

A list of effective bandwidth of each transient excitation method in laboratory or field 

tests is provided in Table 2.1 to assist in selecting the appropriate transient excitation 

technique for a specific application (Gong et al., 2018; Gong et al., 2016; Lee et al., 2017; 

Lee et al., 2008a; Lee et al., 2007; Mazzocchi et al., 2016; Nguyen et al., 2018).  

 
Table 2.1. Effective bandwidth of various transient excitation techniques in laboratory/field 

tests. 

Excitation 

method 

Manual valve 

closure 

Solenoid side-

discharge valve 

PRBS signal 

generator 

Spark-based 

generator 

PIPE 

SONAR 

Bandwidth 

(Hz) 
< 60 < 300 45-50 < 2000 40-8000 

 

Optimal Excitation Location of Transient Waves 

In general, the optimal location for transient wave excitation largely depends on the 

boundaries and configurations of the pipe system. Lee et al. (2006a) found that the 

optimal excitation location of a single pipe system with symmetric boundaries (e.g., a 

reservoir-pipe-reservoir system) is at the center of the pipe. While this optimal location 

is at the high impedance boundary (i.e., valve) for a single pipe system with antisymmetric 

boundaries (e.g., a reservoir-pipe-valve system). In a pipe network, the optimal excitation 

location should be selected at locations where the generated transient waves are highly 

sensitive to pipe anomaly unknowns (Haghighi & Shamloo, 2011). 

2.2.3 Measurement of Transient Waves 

Measurement Parameters and Corresponding Methods 

The pressure head and discharge are two key parameters that collect useful information 

of the pipe system during transient events. Typically, the pressure head is measured and 

analyzed as the pipe system output, because the pressure head measurement in pipes is 

more accurate and less expensive than the discharge measurement (X. J. Wang et al., 
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2002). Common devices used for measuring the pressure head are pressure transducers 

with various sapling frequencies. 

 

In some transient-based methods (see Section 2.4.4) for pipe anomaly detection, the input 

(e.g., the induced discharge change or opening coefficient) to the pipe system is also 

needed. This input can be determined in two ways: (i) identify the portion of transient 

directly induced by the motion the excitation device, followed by the calculation of 

corresponding discharge (Lee et al., 2006a); and (ii) calculate the variation of the opening 

coefficient of the transient wave excitation device by measuring its movement through a 

linear voltage displacement transducer (Lee et al., 2008a; Nguyen et al., 2018).  

Optimal Measurement Location of Transient Waves 

The success of the transient-based pipe anomaly detection method greatly depends on the 

quantity and location of the collected data. Similar with the optimal location for transient 

wave excitation, the optimal location for measurement largely depends on the boundaries 

and configurations of the pipe system. 

 

It was observed by Lee et al. (2006a) that the maximum signal-to-noise ratio occurs for a 

single pipe system with symmetric boundaries (e.g., a reservoir-pipe-reservoir system), if 

both the excitation and measurement locations of transient waves are chosen at the mid-

length of the pipe. While both the excitation and measurement locations should be at the 

high impedance boundary (i.e., valve) for a single pipe system with antisymmetric 

boundaries (e.g., a reservoir-pipe-valve system). Shamloo and Haghighi (2010) suggested 

that the optimal measurement location in a pipe network should have a high accumulated 

sensitivity to unknown anomaly parameters (e.g., location and size). 

 

In addition, data measured at different locations can be used to confirm and increase the 

detection accuracy if necessary (X. J. Wang et al., 2005). 
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2.3 Signal Processing and Feature Extraction Techniques 

2.3.1 Time Domain Techniques 

Wavelet Transform 

The wavelet transform is a powerful tool for automatic identification of local singularities 

or discontinuities in the measured transient wave signal caused by reflected waves from 

pipe anomalies (due to the presence of pipe discontinuities). The wavelet transform 

improves the identification accuracy of the arriving time of these reflected waves. In this 

way, pipe anomalies can be localized more accurately (Ferrante & Brunone, 2003b; 

Meniconi et al., 2011a). In practical applications, one possible problem of the wavelet 

transform is that the transient wave front may become smeared as it travels along the pipe 

due to wave dispersion, which makes the accurate arriving time of reflected waves 

difficult to identify (Taghvaei et al., 2006).  

Cross-correlation and Autocorrelation 

In general, the time delay estimation (of one signal between two separated pressure 

transducers) is obtained as the time-lag that maximizes the cross-correlation function 

between these two measured pressure signals. The cross-correlation has a robust 

performance in comparing signals even in a relatively noisy environment (Beck et al., 

2005). 

Impulse Response Function (IRF) 

The impulse response function (IRF) is defined as the response measured at the output 

when a unit impulse is injected at the input. It depends on the physical properties (e.g., 

integrity) of the pipe system, which provides a unique relationship between the introduced 

discharge perturbation (i.e., input) and the measured pressure signal (i.e., output). All 

transient responses, in any shape or form (e.g., a PRBS signal), can be compared by their 

IRFs. This property of IRF allows pipe anomalies to be detected by a specific input 
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transient signal under a specific condition, such as a PRBS signal with certain effective 

bandwidth in a noisy environment. The IRF is used to convert the reflected transient 

waves from pipe anomalies or system components to sharp impulses with well-defined 

spikes; thus, it improves the identification accuracy of arriving time of these reflected 

waves. In addition, the IRF allows these reflected waves to be identified without an intact 

pipe benchmark (Lee et al., 2007).  

2.3.2 Frequency Domain Techniques 

Fast Fourier Transform (FFT) 

The measured pressure signals from the pipe system during transient events can be 

expressed in terms of Fourier series because the transient flow in pipe systems is a quasi-

linear problem (X. J. Wang et al., 2002). Fast Fourier transform (FFT) is an efficient 

algorithm that converts a discrete pressure signal from its original time domain to a 

representation in the frequency domain and vice versa. It decomposes discrete signals 

into their Fourier series, which give an overall and insightful description of frequency 

components of these signals in the entire time domain (Hachem & Schleiss, 2012a). 

Cepstrum Analysis 

A cepstrum is defined as the Fourier transform of the logarithm of the Fourier transform 

of a measured signal in the time domain (Shucksmith et al., 2012). The Fourier transform 

looks for the frequency components of a signal; thus, the Fourier transform of a Fourier 

transform identifies the repeatability of the frequency components of the original 

measured signal. The result of cepstrum analysis consists of a series of sharp spike with 

well-defined peaks. This means that the cepstrum is suited to identifying and locating the 

presence of discontinuities along the pipe (e.g., pipe anomalies and hydraulic 

components). In addition, the cepstrum can be applied to identify the time delay between 

the initial outgoing wave and its later reflections. One main advantage of the cepstrum is 
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that it performs well even when the induced transient wave suffers from dispersion, 

because it follows the wave using a moving window technique (Taghvaei et al., 2006).  

Frequency Response Function (FRF) 

In general, pipe systems play the role of frequency filters (Lee et al., 2005a), amplifying 

and transmitting input signals at particular frequencies (e.g., resonant frequencies) and 

attenuating and absorbing input signals at other frequencies. The FRF describes the 

degree of amplification or attenuation of the pipe system on each frequency component 

of the input signal (Lee et al., 2005b), which is defined as 

 ( )
( )

( )
xy

xx

S
FRF

S





=  (2.9) 

where FRF(ω) = frequency response function; Sxy(ω) = Fourier transform of the cross-

correlation between the input (x) and the output (y); and Sxx(ω) = Fourier transform of the 

autocorrelation of the input. 

 

The FRF is the Fourier transform of the IRF (Lee & Vitkovsky, 2008). This means that 

FRF is a unique relationship between the introduced discharge perturbation (i.e., input) 

and the measured pressure data (i.e., output), which describes the physical properties of 

the pipe system. The FRF is an efficient way to determine the response of a pipe system 

at a large number of frequencies from a single transient wave input of any shape with 

sufficient bandwidth. The correlation operation before FRF calculation removes certain 

amount of random background noise from the measured data; thus, it further enhances 

the practical applicability of the FRF (Lee et al., 2005a, 2005b). 

2.3.3 Time-frequency Domain Techniques 

Hilbert-Huang transform (HHT) is a technique to decompose and separate a measured 

signal into a series of simple oscillatory modes (in the time domain), which are termed as 

intrinsic mode functions (IMFs), and conduct an instantaneous frequency analysis of 
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different IMF combinations. The obtained IMFs represent different physical behavior of 

transient waves in the pipe system. The original measured signal can be reconstructed 

inversely by appropriate combinations of different IMFs. The noise in the original signal 

can be reduced or filtered by conducting correlation analysis between the original and 

reconstructed signals. The HHT is well suited for non-stationary and non-linear signal 

analysis (Sun et al., 2016).  

2.3.4 Optimization Techniques 

In some transient-based methods for pipe anomaly detection, the number of unknowns is 

larger than the number of equations; thus, the problem is often underdetermined and 

optimization techniques are needed (Haghighi et al., 2012). Two main criteria used to 

select an optimization algorithm are: (i) the ability to find the global optimal solution (i.e., 

computational accuracy); and (ii) the convergence speed (i.e., computational efficiency). 

Levenberg–Marquardt (LM) Algorithm 

The Levenberg–Marquardt (LM) algorithm is a classical gradient-based optimization 

method used to solve non-linear least squares problems (Liggett & Chen, 1994). It has a 

fast convergence speed once the initial value is given appropriately. The main drawback 

of this algorithm is that its solution largely depends on the initial value as well as the 

shape and complexity of the search space; thus, it easily converges to only a local 

minimum, which is not necessarily the global minimum (Malekpour & She, 2018; 

Vítkovský et al., 2000). This may limit the practical applications of this algorithm. 

Genetic Algorithm (GA) 

The genetic algorithm (GA) is often applied to solve global optimization problems. It is 

inspired by the concept of Darwin’s theory of evolution, a process involving selection, 

crossover and mutation, in which a population of potential solutions of an optimization 

problem evolve toward improved solutions. Each potential solution has a set of properties 
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(e.g., chromosomes) (Vítkovský et al., 2000). Compared with LM, GA searches more 

widely in the solution space and is cable of capturing the global minimum at the expense 

of the computation speed (i.e., slow convergence) (Kapelan et al., 2004; Malekpour & 

She, 2018). A fine adjustment of a number of optimization parameters is needed to 

maximize its performance. 

Sequential Quadratic Programming (SQP) 

Like the LM algorithm, the sequential quadratic programming (SQP) is another gradient-

based method, which is fast and simple to apply, but its solutions largely depend on the 

starting value and may converge to a local minimum (Shamloo & Haghighi, 2010). 

Central Force Optimization (CFO) 

The central force optimization (CFO) algorithm is a deterministic technique based on the 

metaphor of gravitational kinematics, which tells that objects traveling in the physical 

universe can be trapped in close orbits around highly gravitating masses (Haghighi & 

Ramos, 2012). The CFO models “probes” flying in the decision space under the influence 

of a “mass”, which is the user-defined objective function to be maximized. The CFO 

performs like the hybrid GA-LM model (Kapelan et al., 2003) and has the advantages of 

both separated LM (i.e., efficiency) and GA (i.e., accuracy) models. In addition, it is much 

easier to set and implement than the hybrid GA-LM model.  

 

Other optimization algorithms are also adopted in transient-based methods for pipe 

anomaly detection, such as shuffled complex evolution (SCE) (Lee et al., 2005a), particle 

swarm optimization (PSO) (Zhang et al., 2018a; Zhang et al., 2018b), shuffled complex 

evolution-University of Arizona (SCE-UA) (Stephens et al., 2013). More details of these 

algorithms are reported in corresponding literature. 
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2.4 Transient-based Methods for Pipe Anomaly Detection 

2.4.1 Inverse Transient Analysis (ITA) Method 

Principle and Application Procedure 

The inverse transient analysis (ITA) method is generally a time domain approach. It stems 

from the pioneering work of Liggett and Chen (1994) for leak area determination and 

friction factor identification in a simple pipe network. In this ITA method, potential leaks 

were assumed to be located at junctions of the pipe network. A sophisticated transient 

model was selected to simulate the time domain transient pressure response of the pipe 

network with one or multiple leaks. The leak area of each junction and friction factor of 

each pipe were varying within a certain bound, until the difference between the simulated 

transient pressure response and the actual measured pressure response was minimized. 

This was a non-linear optimization process and an optimization algorithm (see Section 

2.3.4) was needed. 

 

The main application procedure of a standard ITA method is that (Kapelan et al., 2004; 

Sarkamaryan et al., 2018): 

 

(1) Introduce a transient wave into the pipe network by a discharge change at an accessible 

point (e.g., a fire hydrant); 

(2) The resultant transient pressure heads are measured by pressure transducers at some 

accessible points of the pipe network; 

(3) To simulate the transient pressure head at the measurement points, a 1D water hammer 

model (see Section 3.3.3) with assumed unknown parameters (e.g., anomaly locations, 

anomaly sizes, and pipe friction factors) is developed for the target pipe network; 

(4) The sum of squares of the difference between the simulated and measured transient 

pressure heads is calculated, which is an objective function of unknown parameters; 
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(5) A non-linear optimization algorithm (see Section 2.3.4) is selected and applied to 

minimize the above-mentioned objective function in Step (4), so as to determine unknown 

parameters. 

Advances of the ITA Method 

The optimization method used in the pioneering work of Liggett and Chen (1994) was 

the Levenberg-Marquardt (LM) algorithm (see Section 2.3.4), which is a gradient-based 

approach with fast computational speeds. As introduced in Section 2.3.4, this LM 

algorithm may fail to converge or converge to a local optimal solution instead of the 

global optimal solution if the starting point is not well chosen. To address this problem, 

Vítkovský et al. (2000) implemented the ITA method using a more robust and 

comprehensive genetic algorithm (GA) technique (see Section 2.3.4) as an alternative. 

Compared with the LM algorithm, the GA technique searches more widely in the solution 

space; thus, it is more effective in finding the global optimal solution at the price of 

decreased convergence speeds. Afterwards, Kapelan et al. (2003) overcame the 

convergence problem (i.e., no or slow convergence) of the ITA method in these two 

previous studies (Liggett & Chen, 1994; Vítkovský et al., 2000) by proposing a hybrid 

GA-LM method. The GA-LM is a two-staged method, where the GA is applied in the 

first stage to conduct an effective global search and generate acceptable starting points, 

based on which the LM is used in the second stage to carry out an efficient local search 

and finally get the global optimal result. It turns out that the hybrid GA-LM method is 

more stable and efficient than the LM-based (Liggett & Chen, 1994) and GA-based 

(Vítkovský et al., 2000) methods, respectively. The successful applications of the ITA 

method for single and multiple leak detection in a laboratory copper pipe system were 

firstly presented by Vítkovský et al. (2007). As an alternative to the pressure head 

optimization used in previous studies, the difference between the simulated and the 

measured discharge is adopted in the ITA method and is verified by a single copper pipe 

system in the laboratory (Al-Khomairi, 2008). The above-mentioned ITA studies are 

mainly confined to elastic pipes, but less applied to plastic pipes, which have totally 
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different influences on transient waves. Covas and Ramos (2010) and Soares et al. (2010) 

further extended the ITA method for the simultaneous creep calibration and leak detection 

in plastic pipe systems (laboratory and quasi-field), where an accurate hydraulic transient 

solver to describe transient waves in viscoelastic pipes was needed. 

 

Shamloo and Haghighi (2009) used an alternative optimization method, i.e., the 

Sequential Quadratic Programming (SQP) algorithm (see Section 2.3.4), which is an 

efficient gradient-based method (like LM), in the ITA method for leak detection in a 

single pipe system. This study also eliminates the uncertainty of valve operation 

simulation during the transient modeling by measuring the pressure-time history at the 

valve after its full closure. Afterwards, this method was further extended to a pipe network 

to find: (i) the optimal generated transient wave; and (ii) the optimal measurement 

location of transient waves (Shamloo & Haghighi, 2010). It is suggested that: (i) transient 

waves should be quickly generated to contain more useful information about the pipe 

system and consequently result in more accurate leak detection results; and (ii) pressure 

sensors should be allocated at locations which are most sensitive to ITA unknow 

parameters. This method was further verified by data of field tests in a single branch iron 

pipe system (Haghighi et al., 2012). More recently, a new optimization method, i.e., the 

Central Force Optimization (CFO) algorithm (see Section 2.3.4), was numerically 

incorporated into the ITA method for leak detection in a pipe network (Haghighi & 

Ramos, 2012). The CFO algorithm performs like the accurate and efficient hybrid GA-

LM method, but it is much easier to implement. One problem of the traditional ITA 

method is that potential leaks are assumed only at characteristic nodes. To allocate 

candidate leaks everywhere in the pipe network, Sarkamaryan et al. (2018) used a 

Gaussian function to simulate the true location of a leak, which significantly increases the 

accuracy and efficiency of the ITA method. 

 

The ITA method was also applied in the frequency domain to estimate unknown 

parameters by fitting the simulated FRF (see Section 2.3.2) with the FRF calculated from 

actual measurement (Lee et al., 2005a). Unlike the time domain ITA method, the ITA 
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method in the frequency domain does not need to discretize the pipe system; thus, 

anomalies can be assumed at any location along the pipe system and can be detected more 

accurately. In addition, the frequency domain ITA method is efficient in terms of unsteady 

friction computation (Kim, 2005; Lee et al., 2005a). Given these advantages, Kim et al. 

(2014) proposed an alternative to the direct numerical modeling in the time domain by 

the MOC, where transient responses are firstly obtained in the frequency domain by the 

impedance-based method, which are subsequently converted back into the time domain 

for ITA calibration of pipe characteristics. Capponi et al. (2017) used another frequency 

domain ITA method based on the network admittance matrix method (NAMM) (Zecchin 

et al., 2009) for leak detection in a branched high-density polyethylene (HDPE) pipe 

system. In this study, a two-stage optimization method is applied, where the GA is used 

in the first stage to generate acceptable starting points, based on which the Nelder-Mead 

algorithm is used in the second stage to obtain more accurate solutions. One possible 

disadvantage of the frequency domain ITA method is the linearized error related to the 

friction term (Duan et al., 2018). 

 

In recent years, the ITA method has been extended to the detection of other pipe 

anomalies, such as corrosion (Stephens et al., 2013; Tuck & Lee, 2013; Zhang et al., 

2018a; Zhang et al., 2018b), air pockets (Malekpour & She, 2018), dead-end side 

branches (Capponi & Ferrante, 2017), and multiple coexisting anomalies (Kim, 2016), 

such as a leak, a discrete blockage, and a dead-end side branch. 

Characteristics of the ITA Method 

One major advantage of the ITA method is that it can be applied to pipe systems with 

complex topography and configurations. 

 

The heavy computational burden may be a limiting factor of the ITA method when it is 

applied to a practical large pipe network (Duan et al., 2010a; Vítkovský et al., 2007). 

Parallel computing is one potential and effective way to speed up the overall calculation 

of the ITA method (Liggett & Chen, 1994).  
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Another disadvantage of the ITA method is that all detailed properties and boundaries of 

the pipe system should be well surveyed and defined before simulating transient events 

by a sophisticated numerical model (Vítkovský et al., 2007). This is a time consuming 

and expensive process for the real-life pipe networks especially for old ones. The occurred 

uncertainties and errors during this process may influence the reliability of the ITA 

method, which greatly depends on the quality and quantity of the measured data (Gong 

et al., 2014a; Haghighi & Ramos, 2012).  

 

One key assumption of the ITA method is that the numerical model is accurate enough to 

represent the transient wave behavior in the pipe system. However, the rigorous 

verification of the numerical model is rare in field pipes and almost none in field pipe 

networks. This knowledge gap is one of the key obstacles in the practical filed 

applications of the ITA method (Vítkovský et al., 2007). 

2.4.2 Transient Wave Reflection (TWR) Method 

Principle and Application Procedure 

The transient wave reflection (TWR) method is another time domain approach. To the 

author's knowledge, Jönsson and Larson (1992) are one of the first to use the TWR 

method to detect a leak by measuring and analyzing the transient pressure variation in 

field tests. Theoretically, an injected transient wave propagates along the pipe and 

partially reflected waves occur when it encounters any internal pipe anomaly; thus, the 

locations of these anomalies can be estimated once the arrival time of these reflected 

waves and the wave speed are determined. In addition, the amplitude of reflected waves 

is an indicator of the anomaly severity (i.e., size). In practical applications, the reflected 

waves are easily interfered by background noise, making the arrival time difficult to 

identify. Therefore, some signal processing techniques may be needed to enhance the 

arrival time identification. 
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It seems that the friction losses are not the key factors for the TWR method, because only 

the first half period of the transient wave is considered (Ferrante et al., 2009a). 

 

The main application procedure of a standard TWR method is as follows: 

 

(1) Inject a transient wave into the target pipe system; 

(2) Measure the pressure variation at one or multiple points of the pipe system; 

(3) Compare the measured pressure signal with the signal of the corresponding intact (i.e., 

anomaly-free) pipe system, which is obtained from numerical simulation or measurement 

of newly built pipes, to identify the arrival time of reflected waves; 

(4) Obtain the transient wave speed by theoretical calculations (see Section 2.1.1) or field 

measurement; 

(5) Estimate the relative location of the anomaly to the measurement point by the arrival 

time and wave speed of reflected waves. 

Advances of the TWR Method 

Silva et al. (1996) measured the pressure variation of a leaking PVC pipe by four pressure 

transducers in the laboratory. Leaks along the pipe system are simulated as side outlets 

controlled by solenoid valves. The transient wave speed is determined by the known 

distance between two transducers and the detected pulse time delay between them. It is 

observed that the reflected wave of a leak in the pipe system causes a sudden drop in the 

pressure curve (as shown in Fig. 2.3(a)), whose arrival time is used to locate the leak. 

Brunone (1999) systematically investigated the influence of a leak on the behavior of a 

transient wave and proposed a TWR method for leak detection in outfall pipes. This 

proposed method is verified in the laboratory by a single polyethylene pipe system. The 

arrival time of the reflected wave of a leak is determined by comparing the measured 

pressure curve with the pressure curve of an intact (i.e., leak-free) pipe system.  

 

To enhance the arrival time identification of reflected waves, the wavelet transform 

technique (see Section 2.3.1) is used to detect the local singularity occurs in the pressure 



Chapter 2 Literature Review 

 

 
 

44 
 

curve caused by a leak in a polyethylene pipe in the laboratory (Ferrante & Brunone, 

2003b). More detailed information about this edge detection technique (i.e., the wavelet 

transform technique) is reported in (Ferrante et al., 2007, 2009a). Afterwards, this 

proposed TWR method was further extended to complex branched systems for leak 

detection in both laboratory (i.e., HDPE pipes) and field (i.e., ductile iron pipes) tests 

(Ferrante et al., 2009b). It suggests that the number of transient measurement points 

should increase as the increase of the number of junctions of the pipe network to 

determine the true location of a leak among multiple potential locations.  

 

Beck et al. (2005) proposed an enhanced cross-correlation technique (see Section 2.3.1) 

to produce well-defined peaks representing the occurrence of reflected waves. In this 

study, this technique was applied to detect the leak and identify pipe features (e.g., bends 

and junctions) of a pipe network with T-shape junctions in the laboratory. This method 

needs a leak-free benchmark and performs well even in the face of high levels of noise. 

The cepstrum analysis (see Section 2.3.2) is another powerful tool to identify the time 

delay between the initial outgoing wave and its corresponding later reflections. The 

occurrence of a leak in the pipe system induces a new well-defined peak in the output of 

cepstrum, which is a series of sharp peaks, making the arrival time of reflected waves 

easy to identify. The cepstrum analysis was used by Taghvaei et al. (2006) to identify 

features (e.g., leaks, junctions, and pipe ends) of a simple T-shaped pipe network in the 

laboratory by their reflected waves. One major advantage of the cepstrum method in 

practical applications is that it performs well even for dispersive waves. Afterwards, this 

method was successfully applied to detect leaks and features of various practical full-

scale pipe networks, which consist of various pipe materials (e.g., PVC, ductile iron, 

asbestos-cement, and cast-iron) (Shucksmith et al., 2012). 

 

Lee et al. (2007) used the IRF (see Section 2.3.1) to convert all measured reflected waves 

into sharp pulses with well-defined peaks for more accurate arrival time estimation. 

Pulses that do not belong to the reflected waves from boundaries indicate the presence of 

leaks; thus, this method allows leaks to be detected without a leak-free benchmark. This 
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improved TWR method was validated in a single pipe system in the laboratory. Recently, 

this method was further extended by Nguyen et al. (2018) to a branched pipe network 

using a least squares deconvolution approach for IRF estimation and a specific type of 

PRBS for transient wave excitation, making it more robust to background noise.  

 

The TWR method also utilizes the frequency domain information for pipe anomaly 

detection. Specifically, the pipe system is forced by an oscillating valve to form a steady-

oscillatory flow. A leak induces a continuous periodic effect (i.e., a standing wave) on the 

measured pressure signal, which creates the resonance phenomenon. The spectral analysis 

of the measured pressure response enables the identification of the leak-induced resonant 

frequency, which is used to locate the leak (Covas et al., 2005a). One problem of this 

method is that the pipe may collapse if the frequency of the oscillating valve is the same 

with the resonant frequency of the pipe system.  

 

The influence of various pipe anomalies (e.g., leaks, illegal branches, extended blockages, 

and discrete blockages) on transient waves in the time domain was investigated by 

Meniconi et al. (2011c). The TWR method has also been applied for the detection of other 

types of pipe anomalies, such as discrete blockages (Meniconi et al., 2011a; Meniconi et 

al., 2011b), corrosion (Gong et al., 2018; Gong et al., 2013b; Gong et al., 2015; Hachem 

& Schleiss, 2012a, 2012b; Mazzocchi et al., 2016; Misiunas et al., 2007; Shi et al., 2017), 

dead ends (Meniconi et al., 2011d). 

Characteristics of the TWR Method 

The standard TWR method (Brunone, 1999) needs an intact (i.e., anomaly-free) 

benchmark to identify the arrival time of reflected waves from pipe anomalies. A 

benchmark can be obtained from: (i) the measurement of the original anomaly-free pipe 

system; and (ii) an accurate numerical simulation, where a detailed understanding of the 

pipe system is needed. One problem of this benchmark-based TWR method is that the 

induced transient wave may not be perfectly repeatable, making it difficult to determine 
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directly whether the status of a pipe system has changed or not between different tests 

(Lee et al., 2007). 

 

In practical applications, the attenuation of transient waves (see Section 2.1.3), especially 

in plastic pipes, is a key factor that should be taken into account for accurate pipe anomaly 

detection, which limits the detection range of the TWR method (Silva et al., 1996). 

Transient waves (e.g., induced and reflected waves) are also dispersive in nature, which 

means that they spread out and become less sharp as they travel in the pipe system 

(Taghvaei et al., 2006). This makes the arrival time of reflected waves difficult to be 

identified accurately (Beck et al., 2005). 

 

The real-life pipe networks contain a great number of features (e.g., pipe junctions, 

hydraulic devices, and pipe anomalies), which cause a great number of reflected waves 

(Beck et al., 2005; Wu et al., 2010). The change of the flow demand may induce new 

transient waves into the pipe system, which will be superposed with the measurement of 

reflected waves from pipe anomalies. In addition, these networks are consisted of pipes 

with various diameters and materials, which may change the wave speed along the pipe 

system (Beck et al., 2005). Therefore, an equivalent wave speed should be determined to 

locate the anomaly based on the arrival time of reflected waves. 
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2.4.3 Transient Wave Damping (TWD) Method 

Principle and Application Procedure 

As shown in Fig. 2.3(a), localized pipe anomalies (e.g., leaks and discrete blockages) 

significantly contribute to the attenuation of transient waves, which is the basis of the 

transient wave damping (TWD) method for anomaly detection. Transient pipe flows are 

weakly nonlinear (i.e., nearly linear); thus, the measured pressure-time history can be 

decomposed into separate harmonic components in the frequency domain by a Fourier 

transform. The localized anomaly-induced attenuating rate with time is different for each 

harmonic component (i.e., frequency dependent). The attenuating rate of one harmonic 

component indicates the size of a localized anomaly and the ratio of attenuating rates 

between different harmonic components is useful for finding the location of a localized 

anomaly. 

 

The main process of localized anomaly detection, location, and quantification is as 

follows (X. J. Wang et al., 2002): 

 

(1) Introduce a transient wave into the target pipe system; 

(2) Measure the transient pressure-time history at one or more accessible points along the 

pipe system; 

(3) Decompose each period of the measured pressure curve into its M separate harmonic 

components (i.e., 1…m…M) using a Fourier transform and calculate their amplitude; 

(4) Plot the variation of its amplitude with the period (normalized by L/a) for each 

harmonic component m; 

(5) Calculate the attenuating rate of each harmonic component m by an exponential fitting 

function; 

(6) Detect the size of a localized anomaly by the attenuating rate of one harmonic 

component and the location of a localized anomaly by the ratio of attenuating rates 

between different harmonic components. 
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Advances of the TWD Method 

The TWD method was firstly proposed and verified in the laboratory by X. J. Wang et al. 

(2002) for leak detection based on the leak-induced attenuating rates of different 

harmonic components, which is frequency dependent. Afterwards, the validity range of 

this TWD method was investigated by Nixon et al. (2006). Similar with leaks, discrete 

blockages also introduce different attenuation on each harmonic component of the 

measured transient pressure curve; thus, the TWD method was further extended for the 

detection of discrete blockages in a single pipe system (X. J. Wang et al., 2005). 

Characteristics of the TWD Method 

The TWD method is efficient and easy to apply, which gives a direct solution of anomaly 

parameters (e.g., locations and sizes) without any optimization procedure. 

 

To calculate the localized anomaly-induced attenuating rate, the friction-induced 

attenuating rate should be subtracted from the overall attenuating rate of an intact pipe 

system. The friction-induced attenuating rate can be estimated in two ways: (i) measured 

by an experiment, which is more suitable for newly built pipes; and (ii) obtained from an 

accurate numerical simulation, which includes both steady and unsteady friction (X. J. 

Wang et al., 2002). In old pipes, the detection error may increase with an increase of 

uncertainties in the friction-induced attenuation estimation. 

 

The TWD method is mainly limited to simple pipe systems without any internal boundary 

conditions. In practical applications, various pipe junctions and hydraulic components in 

pipe networks may also contribute to the attenuation of transient waves, which is 

relatively difficult to distinguish from the localized anomaly-induced attenuation (X. J. 

Wang et al., 2002). One possible solution is to isolate individual pipes from the rest of 

the pipe network by valves so that the analytical solution of each pipe can be determined 

(Nixon et al., 2006). 
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In addition, due to the symmetry of sine and cosine squared functions, the relationship 

between the anomaly location and the attenuating ratio of two harmonic components is 

not unique (X. J. Wang et al., 2005; X. J. Wang et al., 2002). This means that one 

attenuating ratio may correspond to two or multiple anomaly locations. To uniquely 

determine the true location of a pipe anomaly, pressure data measured at different 

locations can be used (X. J. Wang et al., 2005). 

2.4.4 Transient Frequency Response (TFR) Method 

Principle and Application Procedure 

The transient frequency response (TFR) method uses the frequency domain information 

to detect pipe anomalies. As shown in Fig. 2.3(b), the FRF (see Section 2.3.2) of an intact 

pipe system is uniformly distributed in the frequency domain. The presence of a localized 

anomaly (e.g., a leak) in the pipe system induces a sinusoidal fluctuation pattern on the 

resonant peaks of the FRF (termed as the leak-induced pattern), whose period and 

amplitude can be used to detect the location and size of the localized anomaly.  

 

The application procedure of the TFR method for anomaly detection (includes FRF 

extraction) in a pipe system is as follows (Lee et al., 2006a): 

 

(1) Extract the FRF of the target pipe system by the following sub-steps; 

(a) Place excitation and measurement devices of transient waves at the optimal 

locations in pipe systems with various boundary conditions as suggested in Sections 

2.2.2 and 2.2.3; 

(b) Introduce a transient wave with enough bandwidth into the pipe system and 

measure the transient pressure variation at the excitation point until the transient signal 

is fully attenuated, which is the system output (i.e., y in Eq. (2.9)); 

(c) Identify the portion of the transient pressure variation directly induced by the 

motion of excitation devices, which is the input signal. Calculate the discharge 

corresponding to the input signal, which is the input (i.e., x in Eq. (2.9)) to the system; 
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(d) Substitute the input and output obtained in Steps (c) and (b) into Eq. (2.9) to 

calculate the FRF. 

(2) Identify the leak-induced pattern on resonant peaks from the FRF; 

(3) Find the dominant amplitude and period of the leak-induced pattern by a least squares 

regression of the analytical result; 

(4) Apply the obtained amplitude and period of the leak-induced pattern to detect the 

location and size of the leak based on the analytical result. 

Advances of the TFR Method 

Lee et al. (2005a) observed that the presence of a leak at each specific location within a 

single pipe induces a unique pattern on resonant peaks of the FRF, based on which a 

resonant peak-sequencing method was proposed to locate the leak. In this method, the 

location of a leak is detected by comparing the obtained pattern with known patterns in a 

lookup table generated for leaks at various locations. Only the steady friction is 

considered in this study. However, in practical applications, the unsteady friction causes 

greater attenuation at higher harmonics, which distorts the patterns of resonant peaks. 

This distortion effect can be eliminated by introducing a series of scaling factors between 

numerical results with steady and unsteady friction for a leak-free case. In the same year, 

a comprehensive TFR technique based on the FRF was first proposed by Lee et al. (2005b) 

to detect the location and size of both single and multiple leaks in a single pipe system. It 

was observed that the occurrence of a leak within the pipe induces a sinusoidal pattern on 

resonant peaks of the FRF. The shape of this pattern is related to the leak location, 

whereas the amplitude of this pattern is a function of the leak size. This method allows 

leaks to be detected without a leak-free benchmark. This study also introduced an efficient 

alternative way to extract the FRF for a large number of frequencies (see Section 2.3.2). 

The idea of this alternative is to inject a single transient wave with sufficient bandwidth, 

as a combination of individual frequencies, into the pipe system and extract the FRF by 

Eq. (2.9). The correlation process in Eq. (2.9) reduces the random background noise in 

the measured pressure data, which makes the proposed method more robust. In addition, 
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the true location of a leak can be uniquely determined based on the phase of the leak-

induced sinusoidal pattern from two symmetric potential leak locations. One problem of 

this method is that two symmetric leaks may be detected as a single leak and the leak 

located at the mid-length of the pipe may not be detected. The analytical results of this 

method are based on linearized equations; thus, the induced transient wave perturbation 

should not be too large to violate this assumption. Afterwards, this FRF-based method for 

leak detection was validated in the laboratory by Lee et al. (2006a).  

 

Sattar and Chaudhry (2008) utilized the frequency sweeping technique (Chaudhry, 2014) 

to determine the frequency response of a single pipe system with a leak. It was found that, 

compared with the intact pipe system, the presence of a leak induces oscillation patterns 

with increased and decreased amplitude on even and odd harmonics, respectively. The 

frequency and amplitude of these oscillation patterns are directly related to the location 

and size of the leak. Moreover, compared with odd harmonics, the leak-induced 

oscillation pattern on even harmonics has more evident amplitude for the same leak; thus, 

the induced oscillation pattern on even harmonics was used to detect the leak within the 

pipe. One problem of this method is that the true leak location cannot be uniquely 

determined among two symmetric potential leak locations. Afterwards, this TFR method 

(Sattar & Chaudhry, 2008), which uses the leak-induced pattern on even harmonics, was 

compared with the TFR method (Lee et al., 2005b) based on the leak-induced pattern on 

odd harmonics of the FRF by Gong et al. (2014b). It was suggested that the TFR method 

(Lee et al., 2005b) based on odd harmonics is more robust.  

 

Previous studies of the TFR method for leak detection based on the FRF (Lee et al., 2006a; 

Lee et al., 2005a, 2005b; Sattar & Chaudhry, 2008) are mainly confined to a single pipe 

system made of elastic materials. However, the real-life water distribution networks are 

usually comprised of pipes in various connections (e.g., series, branched, and looped 

junctions) and materials (e.g., PVC and HDPE), which may affect the validity of the 

existing TFR method. Afterwards, the TFR method was successfully extended to pipe 

systems with series junctions to detect single and multiple leaks (Duan et al., 2011a). It 
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was observed that the series junction in pipe systems modifies the locations of resonant 

frequencies but has little influence on the leak-induced sinusoidal pattern on resonant 

peaks of the FRF. More recently, Duan (2016b) further extended the FRF-based TFR 

method for leak detection to relatively more complex pipe systems with branched and 

looped junctions. In addition, Duan et al. (2012b) also investigated the influence of pipe 

wall viscoelasticity on the FRF. It was found that viscoelastic pipes change the amplitude 

and frequency of resonant peaks, but they have a small effect on the leak-induced pattern 

on resonant peaks of the FRF; thus, the analytical expression of the FRF originally for 

elastic pipes was extended for leak detection in viscoelastic pipes.  

 

The FRF-based TFR method may be restricted in practical applications due to its two 

problems: (i) to detect the leak accurately, a number of resonant peaks are needed to 

estimate the frequency and amplitude of the leak-induced pattern, which requires the 

input transient signal with sufficient bandwidth; and (ii) frequency dependent factors (e.g., 

unsteady friction) may distort the leak-induced pattern. To address these problems, Gong 

et al. (2013a) proposed a new FRF-based TFR method that only uses the first three 

resonant peaks of the FRF to detect a leak in a single pipe system. It turns out that the 

unsteady friction has little influence on the amplitude of the first three harmonics and the 

required bandwidth for input signals is only five times that of the fundamental frequency 

of the pipe system, which is much less than that needed for traditional FRF-based TFR 

methods. This proposed method was validated in a single copper pipe in the laboratory.  

 

The implementation of the TFR method for leak detection is robust in previous literature 

because of the environments with a high signal-to-noise ratio (SNR). However, the real-

life pipe networks are exposed to various noise sources, such as traffic, turbulence, and 

some accidental or planned changes in operating conditions. X. Wang and Ghidaoui 

(2018) developed an efficient matched-field processing method (MFP) to detect the leak 

location and size separately in noisy environments. Unlike the previous FRF methods, 

which only use information at resonant peaks, this method uses all available frequencies; 
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thus, further improves the accuracy and robustness of the TFR method. The true leak 

location can be uniquely determined by two measurement points. 

 

Discrete blockages in pipes were found to have a similar influence on the resonant peaks 

to leaks (Lee et al., 2008b; Sattar et al., 2008), therefore the size and location of discrete 

blockage can be diagnosed using a similar approach (Lee & Vitkovsky, 2008; Lee et al., 

2008b; Mohapatra & Chaudhry, 2011; Mohapatra et al., 2006a; Mohapatra et al., 2006b; 

Sattar et al., 2008). In addition, the TFR method is also applied for the detection of other 

pipe anomalies, such as side branches (Duan & Lee, 2016). 

Characteristics of the TFR Method 

Compared with time domain methods (e.g., ITA and TWR methods), the FRF-based TFR 

method needs less computational time because the pressure and discharge responses are 

obtained analytically in the frequency domain by the transfer matrix method (see Section 

2.1.2) (Gong et al., 2014b). 

 

The TFR method has a high tolerance to the random background noise (Lee et al., 2013). 

Because an anomaly within the pipe system has the same effect on each period of the 

transient signal. These key periodic effects are further reinforced by the analysis in the 

frequency domain; thus, the random background noise in the measured pressure data can 

be reduced (Lee et al., 2006a). 

 

All the existing FRF-based TFR methods are developed based on the linear system theory. 

In practical applications, the nonlinearity of transient waves in pipe systems can be 

attributed to various factors (e.g., friction, pipe anomalies, and boundaries) (Gong et al., 

2016). A systematical analysis of the influence of the nonlinear friction component on the 

FRF extraction under various system and flow conditions has been conducted by Duan et 

al. (2018). 
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The current TFR method has been derived mainly for single or simple pipe systems with 

well-defined boundaries. However, the real-life water distribution systems are consisted 

of complex pipe networks with various junctions. Therefore, it is important to extend the 

current TFR method to such pipe networks. Lee et al. (2005b) suggested that the practical 

pipe networks can be subdivided into individual single pipes by isolating valves, where 

the FRF of each separated pipe can be obtained and the current TFR method can be 

applied to determine the integrity of each pipe. This relies on the availability of a 

sufficient number of valves in the pipe network.   
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2.5 Transient-based Method for Extended Blockage Detection 

As mentioned in Section 2.4.4, the presence of a discrete blockage in the pipe system, 

like a leak, induces a sinusoidal fluctuation pattern on the resonant peaks of the FRF (Lee 

et al., 2008b; Sattar et al., 2008), whose period and amplitude can be used to detect the 

location and size of the discrete blockage. Therefore, discrete blockages can be detected 

using a similar TFR approach to leaks (Lee & Vitkovsky, 2008; Lee et al., 2008b; 

Mohapatra & Chaudhry, 2011; Mohapatra et al., 2006a; Mohapatra et al., 2006b; Sattar 

et al., 2008).  

 

Brunone et al. (2008a) observed that extended blockages, which is a common scenario in 

aging water pipes, have a totally different influence on transient responses from discrete 

blockages; thus, the TFR method used for discrete blockage detection may not be 

applicable to extended blockages.  

 

It was found by Duan et al. (2012a) and Tuck et al. (2013) that the occurrence of an 

extended blockage in water pipe systems not only changes the amplitude of resonant 

peaks, but also induces evident frequency shifts on resonant peaks (termed as blockage-

induced frequency shifts), which contain physical information about the location and size 

of the extended blockage. Based on the derived wave-blockage dispersion relationship in 

(Duan et al., 2012a), a genetic algorithm (GA) inverse optimization procedure was 

proposed to determine the physical properties (such as lengths, sizes and locations) of 

potential extended blockages. Afterwards, the derived dispersion relationship was further 

simplified to identify the key parameters governing the blockage-induced frequency shifts, 

which was first verified by laboratory experiments (Duan et al., 2013). This frequency 

domain method was further coupled with a time domain method (Meniconi et al., 2011a; 

Meniconi et al., 2011c) by Meniconi et al. (2013b) to further improve its computational 

accuracy and efficiency for blockage detection. 

 

Although the physical properties of an extended blockage have be diagnosed based on 

the blockage-induced frequency shifts on resonant peaks, the physical mechanism of the 
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frequency shift is unclear. A series of theoretical, numerical, and experimental studies 

were conducted to investigate the physical mechanism of the frequency shift induced by 

blockages in water pipes (Louati & Ghidaoui, 2017a, 2018; Louati et al., 2018; Louati et 

al., 2017). The underlying physics of the frequency shift is clarified.  

 

Although the transient-based method has demonstrated its potential for extended 

blockage detection, this method is developed based on blockages of uniform constriction 

along their lengths (termed as uniform blockages), which is equivalent to multiple 

pipelines with different diameters connected in series. Extended blockages in real urban 

water supply systems are usually formed from various complicated physical, chemical, 

and biological processes; thus, as shown in Figs. 1.4(a) and 1.4(b), these blockages 

usually constrict randomly and non-uniformly along their lengths (termed as non-uniform 

blockages). Inaccuracy and invalidity of the current transient-based method have been 

observed in laboratories for non-uniform blockage detection (Duan et al., 2017). This is 

because the current transient-based theory is unable to describe the interaction between 

transient waves and non-uniform blockages. Therefore, an understanding of the transient 

wave behavior in water pipes with non-uniform blockages is necessary to enhance the 

practical applications of the transient-based method for extended blockage detection. 
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CHAPTER 3 MODELS AND GOVERNING EQUATIONS 

 

 

3.1 Introduction 

This chapter presents the general derivation procedure of various forms of one-

dimensional (1D) and 2D water hammer models, which are used in this thesis, from the 

3D Navier-Stokes equations for a compressible fluid. In addition, the assumptions 

inherent in these models are illuminated. 

3.2 Navier-Stokes Equations 

3.2.1 3D Navier-Stokes Equations 

The 3D Navier-Stokes equations for a compressible fluid, which are derived based on the 

conservation principles of mass and momentum, in cylindrical coordinates are (Ghidaoui, 

2004)  
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where x = axial distance along the pipe axis; r = radial distance from the pipe axis; θ = 

azimuth; t = time; fx, fr, and fθ = body force along x, r, and θ, respectively; u, v, and w = 

axial, radial, and azimuthal velocity components along x, r, and θ, respectively; μ = 

dynamic viscosity of the fluid; κ = volume viscosity of the fluid; ρ = density of the fluid; 

p = pressure; g = gravitational acceleration; D/Dt = material derivative in cylindrical 

coordinates; and ∇2 = Laplace operator in cylindrical coordinates. 

3.2.2 2D Navier-Stokes Equations 

Assuming that the flow field remains axisymmetric during transients (Ghidaoui, 2004), 

the 3D Navier-Stokes equations in Eq. (3.1) are simplified into 
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3.3 Water Hammer Models 

3.3.1 Full-2D Water Hammer Model 

The derivation of the full-2D water hammer model from the 2D Navier-Stokes equations 

Eq. (3.2) are based on three assumptions as follows.  

 

(1) The compressibility of the fluid is only considered in the continuity equation (Mitra 

& Rouleau, 1985). Because the fluid is slightly compressible and the pipe wall is elastic 

(i.e., relatively rigid), the variation of fluid density ρ in radial and axial momentum 
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equations due to the variation of internal pressure can be neglected. However, the small 

variation of fluid density ρ in the continuity equation should be indirectly taken into 

account, since the value of the transient wave speed a0 is finite. Otherwise the transient 

wave speed a0 would be infinite. The equation of state for a slightly compressible fluid is 

 2

0

dp k
a

d 
= =  (3.3) 

where a0 = transient wave speed; and k = bulk modulus. 

 

(2) The volume viscosity of the fluid in axial and radial momentum equations Eqs. (3.2b) 

and (3.2c) is negligible, because the compressibility of the fluid is not considered in these 

two equations. 

 

(3) The body forces in radial and axial momentum equations are neglected due to the 

relatively small scales of pipe size and pipe gradient in urban water supply systems 

focused in this thesis. 

 

According to these three assumptions, the following full-2D water hammer model in Eq. 

(3.4) can be obtained (Mitra & Rouleau, 1985). 
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 (3.4c) 

where ρ0 = reference density of the fluid.  

3.3.2 Quasi-2D Water Hammer Model 

The derivation of the quasi-2D water hammer model from the full-2D model in Eq. (3.4) 

are based on three assumptions as follows. 
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(1) Plane wave assumption: the radial variation of pressure is neglected (i.e., ∂p/∂r = 0), 

and the radial velocity v as well as its derivatives in axial and radial momentum equations 

Eqs. (3.4b) and (3.4c) are neglected because of the small compressibility of the fluid 

(Ghidaoui et al., 2005; Pezzinga, 1999).  

 

(2) The nonlinear convective terms in continuity and momentum equations are neglected 

since, for the low Mach number flow (i.e., Mach number M << 1), the axial velocity u 

and the radial velocity v of the fluid are much smaller than the wave speed a0 (Ghidaoui, 

2004; Ghidaoui et al., 2005; Pezzinga, 1999). 

 

(3) Integrating the continuity equation Eq. (3.4a) across the pipe cross section, the radial 

velocity v related term would be eliminated. Because the boundary conditions of radial 

velocity v at the pipe axis and the pipe wall are both equal to zero (e.g., v0 = 0 and vR = 0) 

(Ghidaoui et al., 2005).  

 

These assumptions result in the following quasi-2D water hammer model 

 
2

0
H a Q

t gA x

 
+ =

 
 (3.5a) 

 
0

u H u
g r

t x r r r





    
+ =  

    
 (3.5b) 

 ( ),
A

Q x t udA=   (3.5c) 

where H = pressure head; Q = discharge; and A = pipe cross-sectional area. Note that the 

pressure p in Eq. (3.4) is transformed into the pressure head H in Eq. (3.5), which is a 

common practice in hydraulic engineering. 

3.3.3 1D Water Hammer Model 

The 1D water hammer model has the same assumptions with the quasi-2D water hammer 

model in Eq. (3.5). It can be obtained by integrating the momentum equation Eq. (3.5b) 

across the pipe cross section and only considering the wall shear stress.  
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2

0
H a Q

t gA x
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 
 (3.6a) 
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




 
+ + =

 
 (3.6b) 

 
w ws wu  = +  (3.6c) 

where τw = wall shear stress; τws = quasi-steady component of τw; and τwu = unsteady 

component of τw, which is commonly simulated by different unsteady friction models 

(Vardy & Hwang, 1991; Zielke, 1968).  
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CHAPTER 4 TRANSIENT FREQUENCY RESPONSES OF 

WATER PIPES WITH NON-UNIFORM BLOCKAGES3 

 

 

4.1 Introduction 

Despite the successful application of the transient-based method for extended blockage 

detection in many numerical and laboratory tests, as described in Chapter 2, blockages 

used for analysis in these previous studies are idealized and simplified to uniform shapes 

(Duan et al., 2014; Duan et al., 2012a; Lee et al., 2013; Louati et al., 2017; Meniconi et 

al., 2013b; Rubio Scola et al., 2017; Tuck et al., 2013), which are equivalent to multiple 

pipe sections with different diameters connected in series (see Fig. 1.4(c)). However, real 

world blockages, formed from complex sources and processes, are usually in highly 

random and non-uniform shapes as illustrated in Figs. 4.1(a) and 4.1(b). Recently, Duan 

et al. (2017) experimentally investigated the influence of non-uniform blockages on 

transient wave behavior and validity of current transient-based method for non-uniform 

blockage detection. It was observed that the blockage non-uniformity may have a great 

impact on both the amplitude and the phase shift of transient frequency responses, which 

makes the current transient-based method become inaccurate or even invalid when it is 

used to detect these non-uniform blockages. Therefore, a further and in-depth 

understanding of the transient frequency responses of water pipes with non-uniform 

blockages is the basis of extending the current transient-based method for non-uniform 

blockage detection in practical urban water supply systems. 

 

In a previous study, to investigate the modification effect of non-uniform blockages on 

the system frequency response, Chaudhry (2014) replaced the actual non-uniform 

 
3 This chapter is adapted from the research paper of the author and his co-authors (Che et al., 2018b). 
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blockage (i.e., pipes with gradually varying diameters) by a number of substitute uniform 

blockages in series. This treatment discretized the non-uniform blockage into many 

pricewise constant elements. Individual matrixes for each element are multiplied in the 

order of their locations to produce the approximated overall transfer matrix for the whole 

non-uniform blockage. This approximation method only gives satisfactory predictions for 

the first few harmonics. It is computationally expensive to get relatively accurate results 

for higher harmonics. As a result, this approximation treatment may induce potential 

errors in transient modeling and utilization, such as blockage detection, especially for 

pipes with multiple blockages. Therefore, it is worthwhile to develop more reliable (i.e., 

accurate and efficient) methods to describe the transient frequency responses of water 

pipes with non-uniform blockages. 

 

 

Fig. 4.1. (a) Random and non-uniform blockages in practical water pipes (adapted from 

James and Shahzad (2003)); (b) sketch of real pipe with non-uniform blockages; (c) sketch 

of pipe with linear non-uniform blockages used for analytical analysis. 

 

As a preliminary study, to understand the fundamental physics and mechanism of the 

interaction between transient waves and non-uniform blockages, it is preferable and 

feasible to examine the realistic non-uniform blockages by starting with simple cases, 

such as blockages with linearly varying diameters (termed as non-uniform blockages) as 

shown in Fig. 4.1(c). Specifically, the transient wave behavior in various non-uniform 

blockages is obtained by analytically solving the one-dimensional (1D) wave equation 

under specific initial and boundary conditions. The obtained wave solutions are 

incorporated into the 1D overall transfer matrix of a reservoir-pipe-valve (RPV) system 

with non-uniform blockages. The derived overall transfer matrix is fully validated by the 
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traditional method of characteristics (MOC), which is used to systematically investigate 

the influences of non-uniform blockage shape, severity, and length on transient frequency 

responses. Finally, the findings and practical implications of this study are discussed. 
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4.2 Transfer Matrix of a Water Pipe with Non-uniform Blockages 

4.2.1 Wave Equation for a Single Non-uniform Blockage 

The 1D wave equation for non-uniform blockages with varying cross-sectional areas was 

derived as (Duan, 2017; Duan et al., 2011b) (more detailed procedures can be found in 

Appendix A1) 

 















=





x

P
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x
a

t

P
A 2

2

2

 (4.1) 

where t = time; x = axial coordinate along the pipe; A = A(x) = pipe cross-sectional area; 

P = instantaneous pressure in the time domain; a = a(x) = acoustic wave speed, which 

represents the characteristics of pipe-wall deformation and properties of internal fluid 

(e.g., water). 

 

Note that a frictionless pipe system with an elastic pipe wall is firstly considered in the 

analytical derivation to highlight the wave-blockage interaction (Duan et al., 2014). Pipe 

systems with linearized steady friction will be further discussed in Section 4.4. 

 

Alternatively, Eq. (4.1) can be rewritten as 

 
x

P

A

A
a

x

P
a

t

P




=




−



 '
2

2

2
2

2

2

 (4.2) 

where A = the derivative dA/dx. For transient pipe flows, the instantaneous pressure P 

can be expressed as (Chaudhry, 2014) 

 *

0 pPP +=  (4.3) 

where P0 = mean pressure; p* = pressure deviation from the mean. Because the pipe 

system is frictionless, P0 is constant in terms of both x and t, then Eq. (4.2) becomes 
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 (4.4) 



Chapter 4 Transient Frequency Responses of Water Pipes with Non-uniform Blockages 

 

 
 

67 
 

which is a linear partial differential equation (PDE) and can be solved analytically under 

specific boundary and initial conditions.  

4.2.2 Transient Wave Behavior in a Single Non-uniform Blockage 

In above wave equation, it is assumed that the solution p* has the following form 

(Chaudhry, 2014) 

 ( ) ( ) tiexptxp =,*  (4.5) 

where p = pressure in the frequency domain; ω = angular frequency; i = imaginary part. 

 

Substituting Eq. (4.5) back into Eq. (4.4), the PDE becomes the following linear ordinary 

differential equation (ODE) 

 02
'

2

2

=++ pk
dx

dp

A

A

dx

pd  (4.6) 

where k = k(x) = ω/a(x) = wave number. In fact, Eq. (4.6) is in the same form with the 

Webster's horn equation in acoustics (Webster, 1919). The variation of the wave speed 

within a shallow non-uniform blockage along the axial direction is relatively small 

compared with the wave speed a0 in intact pipe sections. For example, the field tests by 

Lee et al. (2017) showed that the average percentage of wave speed variation in 

deteriorated field water pipes is around 8.25%. Thus, the wave speed ab(x) within the non-

uniform blockage is represented by the average value (i.e.,ab) throughout the blockage 

section, which is different from the original value of intact pipes (i.e., a0) because of the 

blockage-induced changes in pipe properties (e.g., diameters, thicknesses and materials). 

As a result, the wave number k within the non-uniform blockage in Eq. (4.6) becomes kb 

= ω/ab. Sensitivity analysis will be conducted in Section 4.4.4 to examine the validity 

range (limitation) of this assumption (i.e., using the average wave speed within the 

blockage section). 

 

Applying Eq. (4.6) in the n-th non-uniform blockage, as shown in Fig. 4.1(c), provides 
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 02
'

2

2

=++ nb
n

n

nn pk
dx

dp

A

A

dx

pd
 (4.7) 

For analytical analysis, the pipe radius of the n-th non-uniform blockage in Fig. 4.1(c) is 

defined as 

 ( ) Lnnn Rxsxr +=  (4.8) 

where rn = pipe radius of the n-th non-uniform blockage; RLn = pipe radius at the left 

boundary of the n-th non-uniform blockage; sn = (R–RLn)/ln = slope of the n-th non-

uniform blockage, in which R = intact pipe radius and ln = length of the n-th non-uniform 

blockage in Fig. 4.1(c). 

 

Based on the expression of rn in Eq. (4.8), the pipe cross-sectional area An and its 

derivative An
 can be calculated, thus 
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 (4.9) 

Substituting Eq. (4.9) into Eq. (4.7), it becomes 

 0
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=+
+
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 (4.10) 

It is assumed that the solution for the wave equation Eq. (4.10) is a plane wave solution 

in the following form (Munjal, 2014) 

 
( ) Lnn

x
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n
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e
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e
p

+
==
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 (4.11) 

where α = coefficient that remains to be determined; note that the denominator is the pipe 

radius of the n-th non-uniform blockage in Eq. (4.8). Furthermore, substituting Eq. (4.11) 

into Eq. (4.10) results in the following characteristic equation for α 

 022 =+ bk  (4.12) 

As a result, α has two solutions 

 
bik=1 ; 

bik−=2  (4.13) 
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Substituting above two solutions into Eq. (4.11), two special solutions for wave equation 

Eq. (4.10) can be obtained 

 ( )
Lnn

xik

n
Rxs

e
p

b

+
=

1
; ( )

Lnn

xik

n
Rxs

e
p

b

+
=

−

2
 (4.14) 

In fact, these two plane wave solutions (pn)1 and (pn)2 are the incident and reflected waves 

propagating towards opposite directions. It can be observed from the numerator of Eq. 

(4.14) that transient waves distribute sinusoidally in space with a constant wave number 

kb. In addition, the amplitude of these two waves is modified by the denominator, which 

is the pipe radius of the n-th non-uniform blockage. It means that the wave amplitude is 

inversely proportional to the radius of the n-th non-uniform blockage. 

 

Because the wave equation Eq. (4.10) is a linear ODE, based on the superposition 

principle, the general solution for wave equation can be obtained 

 
Lnn

xikxik

n
Rxs

eCeC
p

bb

+

+
=

−

21  (4.15) 

where C1 and C2 are two constants. 

 

To have an intuitive sense of transient wave behavior in a single non-uniform blockage, 

the plane wave solutions in Eq. (4.14) are visualized in both uniform and non-uniform 

blockages. A localized incident wave is created at the right boundary of these two blocked 

pipes, and detailed parameters of these two systems are listed in Table 4.1. Note that these 

two pipes have the same blocked volume, which means that the average pipe diameters 

of these two blockages are the same. The left ends of these two pipes are reflection-free 

boundary conditions. The obtained results are plotted in Fig. 4.2, showing how the 

localized incident wave evolves as it propagates in the pipe from right to left. The spatial 

coordinate x is normalized by the intact pipe radius R and is expressed as xD in the 

horizontal axis. The pressure is normalized by the pressure in the intact pipe section and 

is expressed as dimensionless pressure pD. 

 



Chapter 4 Transient Frequency Responses of Water Pipes with Non-uniform Blockages 

 

 
 

70 
 

Table 4.1. Parameter settings for illustrative systems with uniform and non-uniform 

blockages. 

Type ln sn RLn kb 

Uniform blockage 100R 0 0.9R π/5 

Non-uniform blockage 100R 2e–3 0.8R π/5 

 

 

 

Fig. 4.2. Transient wave behavior in uniform and non-uniform blockages. 

 

It can be observed from Fig. 4.2 that the wave amplitude in the uniform blockage keeps 

constant, while the wave amplitude in the non-uniform blockage gradually increases as 

the wave propagates to the left. This is consistent with the wave solution in Eq. (4.14), 

because the denominator of Eq. (4.14) for the non-uniform blockage gradually decreases 

from right to left. In fact, this result is consistent with the former study by the authors 

with regard to energy analysis of wave scattering in pipes with disordered diameters 

(Duan et al., 2011b). That is, the non-uniform blockages in pipe systems may cause 

energy re-distribution of pressure waves in both temporal and spatial domains. 
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4.2.3 Overall Transfer Matrix of Pipe Systems with a Single Non-uniform 

Blockage 

To study the transient frequency responses of pipe systems with a single non-uniform 

blockage, the obtained wave solution in Eq. (4.15) is used to derive the transfer matrix. 

The transfer matrix is the linearized counterpart of mass and momentum equations in the 

frequency domain. It describes the wave behavior and connects state vectors at two 

boundaries of the pipe system without discretization of the pipe in space. Thus, it has the 

advantage of computational efficiency compared with some time domain methods, such 

as the MOC. 

 

The derivation procedure of the transfer matrix of a single uniform blockage (i.e., a pipe) 

was provided in (Chaudhry, 2014). A similar procedure is adopted herein to derive the 

transfer matrix of a single non-uniform blockage, based on the wave solution in Eq. (4.15). 

Note that the pressure deviation p in Eq. (4.15) is transformed into the pressure head 

deviation h in this section, which is a common practice in hydraulic engineering. 

 

The derived transfer matrix for a single non-uniform blockage (i.e., the n-th non-uniform 

blockage in Fig. 4.1(c)) is 
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 (4.16) 

where q = discharge deviation in the frequency domain; h = pressure head deviation in 

the frequency domain; subscript n and n+1 are upstream and downstream boundaries of 

the n-th non-uniform blockage, respectively; Uij = elements of transfer matrix, with the 

following forms: 
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Note that the uniform blockage is a special case of the non-uniform blockage when the 

slope sn equals to zero (sn = 0). As a result, Eq. (4.16) becomes 
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where k0 = wave number for the uniform blockage; Mn = a/Ang. This result is consistent 

with the transfer matrix of a uniform blockage in (Chaudhry, 2014). 

 

To investigate the transient frequency responses, the derived transfer matrix is applied to 

an RPV system as shown in Fig. 4.3. The transfer matrix with external head and discharge 

perturbations should be expanded to a 3 × 3 matrix in the following form (Chaudhry, 

2014; Duan et al., 2012a; Lee et al., 2008b) 
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where subscripts A and B are the upstream and downstream boundaries of the pipe system. 

Variables qB and hB at the downstream valve can be expressed as 

 
131211 UhUqUq AAB ++=  (4.19) 

 
232221 UhUqUh AAB ++=  (4.20) 

For the RPV system in Fig. 4.3, it has the boundary conditions hA = qB = 0. Eqs. (4.19) 

and (4.20) result in 

 
13

11

1321 U
U

UU
hB +−=  (4.21) 

As a result, for a leak-free pipe system, Eq. (4.21) becomes (Lee et al., 2006b) 
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11

21

U

U
hB −=  (4.22) 

The resonant frequency of head responses for RPV systems with a single non-uniform 

blockage can be obtained when the denominator of Eq. (4.22) (i.e., U11) equals to zero. 

 

 

Fig. 4.3. Illustrative reservoir-pipe-valve (RPV) systems with a: (a) single uniform 

blockage; (b) single non-uniform blockage. 

 

For RPV systems with a single uniform blockage, (n = 1 and s1 = 0), the resonant 

frequency is 

 U11 = cos(k0l1) = 0 (4.23) 

which shows that the resonant peaks are uniformly distributed in the frequency domain. 

 

Similarly, for RPV systems with a single non-uniform blockage, (n = 1 and s1 ≠ 0), let 

U11 = 0, resulting in the resonant frequency of this RPV system 

 ( ) ( ) ( ) 0sincos 111111 =−+ lkslkRlsk bbLb
 (4.24) 

Unlike the resonant frequency of the uniform blockage, Eq. (4.24) has an extra term 

sin(kbl1), which may result in resonant frequency shifts. If the slope of this non-uniform 

blockage equals to 0 (i.e., s1 = 0), the non-uniform blockage becomes a uniform blockage 

and Eq. (4.24) becomes cos(kbl1) = 0. This result indicates that resonant peaks of a 

uniform blockage are uniformly distributed regardless of the radius size, which is 

consistent with Eq. (4.23). 
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The transient frequency responses of an RPV system are studied for both uniform and 

non-uniform blockages. Note that the friction is neglected herein for highlighting the 

effect of blockage non-uniformity. As shown in Fig. 4.3, there is a single blockage 

(uniform or non-uniform) between the upstream reservoir and the downstream valve. 

Transients are caused by a fast and full closure of the downstream valve. 

 

The frequency responses for both cases are plotted in Fig. 4.4. The frequency is 

normalized by the fundamental frequency of the pipe system ωth =ab/4l1, and is 

expressed as non-dimensional frequency ω*. Theoretically, the amplitude of transient 

frequency responses should go to infinity because friction is not included in the transfer 

matrix.  

 

 

Fig. 4.4. Transient frequency responses for RPV systems with single uniform and non-

uniform blockages (without friction effect). 

 

It is shown in Fig. 4.4 that the resonant peaks of the uniform blockage are uniformly 

distributed, while that of the non-uniform blockage have evident frequency shifts, 

especially for the first resonant peak. Moreover, as the frequency increases, the induced 

frequency shift by the non-uniform blockage becomes less evident. This can be explained 

by the analytical resonant frequency in Eq. (4.24): as the frequency increases, the wave 

number kb also increases, then the first term cos(kbl1) in Eq. (4.24) will become dominant. 
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Therefore, the frequency shift induced by the non-uniform blockage becomes less evident 

for higher harmonics. 

4.2.4 Extended Transfer Matrix of Pipe Systems with Multiple Non-uniform 

Blockages 

So far, the transfer matrixes of single uniform and non-uniform blockages have been 

obtained. For illustration and simplification, only the case of two joint non-uniform 

blockages, as shown in Fig. 4.5(b), is considered and investigated in this study, while 

similar analysis procedure presented herein can be applied to more complex cases. It is 

assumed there are no pressure head loss at pipe junctions (Duan et al., 2012a). The overall 

transfer matrix of this pipe system (made up of four pipe sections), which relates the state 

vectors at two boundaries A and B, can be obtained by multiplying individual matrixes 

for each pipe element in the order of their locations starting from the downstream end. 
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For clarity, Eq. (4.25) can be further derived and written as  

 
AB

h

q

UU

UU

h

q

















=









*

22

*

21

*

12

*

11  (4.26) 

where Uij
* = elements of the overall transfer matrix for the four-pipe system. 

 

Similar with Eqs. (4.23) and (4.24), the resonant frequency of the four-pipe system can 

be obtained by letting 

 0*

11 =U  (4.27) 
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Fig. 4.5. Illustrative RPV systems with: (a) uniform blockages; (b) non-uniform blockages. 

 

Note that the analytical result in Eq. (4.27) for resonant frequency of a four-pipe system 

becomes complicated in its mathematical expression, which can be obtained by solving 

the former Eqs. (4.16) and (4.25). Compared with the intact PRV system, the resonant 

frequency shift of Eq. (4.27) can be attributed to two sources: (i) the blockage non-

uniformity A(x); and (ii) the wave speed non-uniformity a(x) along the axial direction of 

the PRV system. To highlight the influence of blockage non-uniformity (or to eliminate 

the influence of wave speed non-uniformity) on resonant frequency shifts and simplify 

the analytical derivation in Eq. (4.27), it is first assumed herein that: (i) the wave speed 

in the whole pipe system is constant; and (ii) the absolute values of non-uniform blockage 

slope |s2| (constriction section) and |s3| (expansion section) in Fig. 4.5(b) are equal (|s2| = 

|s3| = s). Then, Eq. (4.27) becomes 

 ( )  ( ) ( )  0sin,cos4 43213

33

4321

3

3

2 =++++ −− llllkRRFsallllkRR bL

ffff

bL   (4.28) 

where the second term on the left-hand side contains a series of trigonometric terms; F() 

= a linear function of R and RL3; f = an integer ranges from 1 to 3. Three special cases are 

firstly verified as follows: 

 

(1) s = 0 (i.e., blockage-free case): the pipe radius on the left boundary of second pipe in 

Fig. 4.5(b) RL2 is the same with the intact pipe radius R, s = 0 means that there is no 

blockage in the four-pipe system. All terms containing s equal zero, and only one term 

4R2RL3ω
3cos[kb(l1 + l2 + l3 + l4)] = 0 does not contain s. Under this condition, Eq. (4.28) 

is simplified into  
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cos[kb(l1 + l2 + l3 + l4)] = 0 

which implies that the resonant peaks of the intact four-pipe system in Fig. 4.5(b) are 

uniformly distributed in the frequency domain, which is consistent with previous studies 

(Chaudhry, 2014; Lee et al., 2013). 

 

(2) s ~ ∞ ((l2 + l3)/(l1 + l2 + l3 + l4) ~ 0, i.e., discrete blockage case): if the slope of the non-

uniform blockage tends to infinity, it means that the length of the non-uniform blockage 

is negligibly small compared with the total length of the pipe (l2 + l3)/(l1 + l2 + l3 + l4) ~ 0, 

and the non-uniform blockage can be regarded as a discrete blockage. Terms with s to the 

high order will become dominant, but the summation of all terms containing s3 equals to 

zero. Therefore, all terms containing s2 are further summed, and it turns out to be 

cos[kb(l1 + l4)] = 0 

Since the blockage length l2 + l3 is negligibly small compared with the total length of the 

pipe l1 + l2 + l3 + l4, the above equation can be approximated by cos[kb(l1 + l2 + l3 + l4)] = 

0. This is equivalent to the former results for blockage-free case (s = 0), and indicates that 

discrete blockages do not induce frequency shifts, which is well verified by the known 

results from previous studies (Lee et al., 2013; Lee et al., 2008b). 

 

(3) High frequency harmonic waves: the terms in the equation with the highest order of 

ω will play dominant roles. Only the term 4R2RL3ω
3cos[kb(l1 + l2 + l3 + l4)] = 0 contains 

ω3, therefore Eq. (4.28) is simplified into  

cos[kb(l1 + l2 + l3 + l4)] = 0 

which is the same with the blockage-free case (s = 0). It means that the frequency shift 

induced by the blockage non-uniformity becomes less evident as the frequency increases. 

It is a reminder that this result and analysis here is obtained under the condition of 

constant wave speed in the whole pipe system, and the influence of wave speed variation 

from the blockage section is inspected in the following section. 
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4.3 Numerical Validation 

To validate the analytical resonant frequency in Eq. (4.27), the classical frictionless 1D 

water hammer model coupling with the MOC is adopted herein for comparison. The RPV 

system with two joint non-uniform blockages is used for the numerical validation. In this 

study, non-uniform blockages are represented by stainless-steel pipes with linearly 

varying diameters as shown in Fig. 4.5(b). The original intact stainless-steel pipe (R = 

0.25 m, L = 1000 m) is blocked by non-uniform blockages with minimum radius RL3 = 

0.15 m and l2 = l3 = 105 m (detailed parameters can refer to Table 4.2). Wave speeds for 

intact and blocked pipe sections are calculated based on the wave speed formula given in 

Wylie et al. (1993) and Chaudhry (2014) as a0 = 1206 m/s andab = 1249 m/s. For 

simplicity of numerical calculation, a0 andab are taken to be 1000 m/s and 1050 m/s, 

respectively. In the numerical simulation, the non-uniform blockage is approximated by 

stepwise discretized grids, and the 1000-meter-long pipe is divided into 3,960 relatively 

small reaches (i.e., spatial grid size Δx ~ 0.25 m) to decrease the frequency shift caused 

by numerical errors. Transients are generated by a sudden and full closure of the 

downstream valve and the pressure head trace is measured at the upstream face of the 

valve. The measured pressure head trace is transformed into the frequency domain by a 

fast Fourier transform (FFT) algorithm. 

 

The analytical and numerical transient frequency responses with the first 10 resonant 

peaks are plotted in Fig. 4.6(a). In addition, the resonant frequency difference between 

analytical and numerical results for the first 100 resonant peaks are extracted and plotted 

in Fig. 4.6(b). Fig. 4.6(a) shows that the resonant peaks of the non-uniform blockage 

system are not uniformly distributed, and this means the presence of the non-uniform 

blockages has changed the resonant frequencies of the original intact system. Moreover, 

both figures indicate good agreement between the analytical and numerical results in 

terms of resonant frequencies, which confirms the validity of the analytical result in Eq. 

(4.27). 
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Fig. 4.6. Comparison of analytical and numerical results without friction effect: (a) transient 

frequency responses; (b) resonant frequency difference between analytical and numerical 

MOC results. 

 
Table 4.2. Parameter settings for numerical validation. 

Blockage 

type 
l1 (m) l2 (m) l3 (m) l4 (m) R (m) s RL3 (m) a0 (m/s)  ab (m/s) 

non-uniform 295 105 105 495 0.25 0.1/105 0.15 1000 1050 
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4.4 Further Applications and Result Analysis 

Based on the validated overall transfer matrix, the transient frequency responses for RPV 

systems with non-uniform blockages, as shown in Fig. 4.5(b), are investigated in this 

section. Duan et al. (2012a) demonstrated that friction effects (both steady and unsteady 

friction) induce decreases in the magnitude of resonant peaks but have little impact on the 

location of resonant peaks. The main purpose of this study is to investigate the influence 

of blockage non-uniformity on resonant frequency shifts; thus, only the linearized steady 

friction is included in the following numerical applications. The non-linear steady friction 

and unsteady friction (Meniconi et al., 2014) can be also included using a similar method 

as the one presented in Duan et al. (2018). 

4.4.1 Uniform and Non-uniform Blockages with the Same Blocked Volume 

To study the influence of blockage non-uniformity (e.g., blockage severity, length and 

slope) on transient frequency responses, seven test cases (Tests T1 ~ T7) with different 

parameters listed in Table 4.3 are investigated by the analytical results obtained in this 

study. In this section, the first three tests in Table 4.3 (i.e., T1 ~ T3) are used for 

comparison of the impacts of pipe blockage and its non-uniformity on transient frequency 

responses. Specifically, Tests T2 and T3 are the cases of uniform and non-uniform 

blockages with same blocked volume in the pipe, and Test T1 is the intact pipe system. 

 
Table 4.3. Parameter settings for numerical test systems. 

Test 

no. 

Blockage 

type 

l1 

(m) 

l2 

(m) 

l3 

(m) 

l4 

(m) 

R 

(m) 
s 

RL3 

(m) 

a0 

(m/s) 
ab 

(m/s) 

T1 
blockage-

free 
300 100 100 500 0.25 0 0.25 1206 1206 

T2 uniform 300 100 100 500 0.25 0 0.20 1206 1249 

T3 non-uniform 300 100 100 500 0.25 1e-3 0.15 1206 1249 

T4 non-uniform 300 100 100 500 0.25 7.5e-4 0.175 1206 1238 

T5 non-uniform 300 100 100 500 0.25 5e-4 0.20 1206 1227 

T6 non-uniform 390 10 10 590 0.25 1e-2 0.15 1206 1249 

T7 non-uniform 399 1 1 599 0.25 1e-1 0.15 1206 1249 
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The transient frequency responses of these three tests are plotted in Fig. 4.7. Fig. 4.7(a) 

is shown for the relatively low frequency domain, in which the dimensionless frequency 

ω* ranges from 0 to 20.  

 

 

 

Fig. 4.7. Comparison of transient frequency responses of different pipe blockage situations 

with linearized steady friction effect: (a) low frequency harmonics; (b) higher frequency 

harmonics. 

 

As shown in Fig. 4.7(a), the resonant peaks of the intact pipe system are uniformly 

distributed in the frequency domain, while the presence of uniform and non-uniform 

blockages within the pipe results in evident resonant frequency shifts and peak amplitude 

changes. Moreover, the resonant frequency shift and the peak amplitude change induced 
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by uniform and non-uniform blockages have significant differences, although the same 

blockage volume has been imposed for the two blockage situations. Fig. 4.7(b) is plotted 

for the relatively higher frequency domain, with the dimensionless frequency ω* from 

180 to 200. Similar with low frequency harmonics, both the resonant frequency shift and 

peak amplitude change caused by the non-uniform blockage are very different from that 

caused by the uniform blockage. Moreover, the resonant frequency of the non-uniform 

blockage system almost coincides with that of the blockage-free system. This can be 

explained by the Special Case (3) of Eq. (4.28): the frequency shift induced by non-

uniform blockages becomes less evident for higher harmonics. 

 

To gain an insight into the blockage induced frequency shift and amplitude change, the 

first 100 resonant peaks of the uniform and non-uniform blockage systems are further 

extracted and analyzed. The frequency shifts of uniform and non-uniform blockages are 

plotted in Fig. 4.8(a). Note that the blockage induced frequency shift for the m-th resonant 

peak is defined as δω*
m = ω*

mb – ω*
mi, where ω*

mb = frequency of m-th resonant peak for 

the blocked pipe system; and ω*
mi = frequency of m-th resonant peak for the intact pipe 

system.  

 

It can be observed from Fig. 4.8(a) that both the uniform and non-uniform blockages 

induced resonant frequency shifts that fluctuate with the peak number (equivalent to 

frequency). Specifically, the frequency shift fluctuation induced by the uniform blockage 

almost keeps the same order of magnitude as the peak number increases, while that 

induced by the non-uniform blockage is highly frequency dependent. In the results of 

non-uniform blockage, the frequency shift fluctuation becomes less evident (tends to zero) 

as frequency increases. Similarly, the blockage induced resonant peak amplitude change 

for the m-th resonant peak is defined as δhB,m = hB,mb – hB,mi, where hB,mb = amplitude of 

m-th resonant peak for the blocked pipe system; and hB,mi = amplitude of m-th resonant 

peak for the intact pipe system. The resonant peak amplitude changes for uniform and 

non-uniform blockages are plotted in Fig. 4.8(b) for convenient comparison. Similar with 

frequency shift fluctuation, the resonant peak amplitude change fluctuation induced by 
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the uniform blockage almost keeps the same order of magnitude, while that induced by 

the non-uniform blockage gradually decreases with frequency. 

 

 

 

Fig. 4.8. Influence of uniform and non-uniform blockages on transient frequency responses: 

(a) relative resonant frequency shift; (b) relative resonant peak amplitude change. 
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4.4.2 Influence of Non-uniform Blockage Severity 

In this section, the influence of non-uniform blockage severity on transient frequency 

responses is investigated. As shown in Fig. 4.5(b), the length of the non-uniform blockage 

(l2 and l3) is fixed. The blockage severity is defined as S = (R –RL3)/R, and it is proportional 

to the slope s of the non-uniform blockage S ~ s = (R–RL3)/l3. For Tests T3 ~ T5 as shown 

in Table 4.3, RL3 gradually increases from 0.15 to 0.2 m, which means that the non-

uniform blockage becomes less severe. The resonant frequency shift and peak amplitude 

change induced by non-uniform blockages are plotted in Fig. 4.9.  

 

 

 

Fig. 4.9. Influence of non-uniform blockage with different blockage severities on transient 

frequency responses: (a) relative resonant frequency shift; (b) relative resonant peak 

amplitude change. 
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It is observed in Fig. 4.9(a) that the overall trend of frequency shift fluctuation for these 

cases is similar with Test T3 except for the extent of fluctuation. Specifically, the 

frequency shift fluctuation becomes less evident as the non-uniform blockage becomes 

less severe. Similarly, Fig. 4.9(b) indicates that the extent of amplitude change fluctuation 

decreases as the non-uniform blockage becomes less severe. These results are reasonable 

as severer non-uniform blockage should have more influences on the frequency and 

amplitude of transient frequency responses for original intact pipe system. In addition, 

the overall patterns (or trends) for frequency shift and amplitude change of these three 

cases are similar. This may indicate that the patterns of frequency shift and amplitude 

change are independent of the non-uniform blockage severity. 

4.4.3 Influence of Non-uniform Blockage Lengths 

The influence of non-uniform blockage length on transient frequency responses is 

examined herein by fixing other parameters. As is shown in Fig. 4.5(b), the location of 

non-uniform blockage center (l1 + l2) and the pipe radius at the left boundary of Pipe 3 

(RL3) are fixed. The non-uniform blockage length (l2 and l3) gradually decrease from 100 

m to 1 m for Tests T3, T6 and T7 in Table 4.3. It is found that the frequency shift and 

amplitude change are in certain pattern, and the period of this pattern is inversely 

proportional to the length of the non-uniform blockage. For convenient observation, the 

peak number m is divided by the normalized parameter L/l2 and is expressed as m* in Fig. 

4.10.  

 

Fig. 4.10(a) shows that the frequency shift patterns for three cases are periodic and 

roughly the same, meanwhile the period of this induced pattern is in unit length of m*. 

The overall extent of the frequency shift periodically decreases in terms of m*. This 

frequency shift pattern can be explained by the former Special Case (3) of Eq. (4.28). As 

the m*, which is proportional to ω, increases, the term 4R2RL3ω
3cos[kb(l1 + l2 + l3 + l4)] 

containing ω3 gradually becomes dominant and the frequency shift becomes less evident; 
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thus, the overall extent of periodic pattern gradually decreases. In addition, the periodic 

pattern can be attributed to the remaining trigonometric terms of Eq. (4.28). Similar 

behavior can be observed in Fig. 4.10(b) for the amplitude change induced by the non-

uniform blockage. Besides, a longer non-uniform blockage causes more amplitude 

attenuation. 

 

 

 

Fig. 4.10. Influence of non-uniform blockage with different blockage lengths on transient 

frequency responses: (a) relative resonant frequency shift; (b) relative resonant peak 

amplitude change. 
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4.4.4 Sensitivity Analysis of Resonant Frequency Shifts to the Transient Wave 

Speed 

In realistic pipes as shown in Figs. 4.1(a) and 4.1(b), the wave speed ab(x) within the non-

uniform blockage section would change along the axial direction due to the variation of 

pipe properties. In the above analytical derivations, the ab(x) is represented approximately 

by the average wave speedab under the same blocked volume condition. As a result, the 

observed resonant frequency shifts in Tests T3 ~ T7 are obtained based on this average 

wave speedab. Therefore, it is necessary to examine the influence and validity range of 

this assumption for all tests in this study. For this purpose, the first-order second-moment 

(FOSM) method (Duan, 2016a) is adopted to theoretically investigate the sensitivity of 

the obtained resonant frequency shift patterns by the developed method in this study to 

the varying wave speed with average value ofab in the non-uniform blockage section. 

Eq. (4.27) describes the relationship between the resonant frequency (ωm) and system 

properties (e.g., average wave speed in the blocked sectionab, wave speed in the intact 

section a0, and slope of the non-uniform blockage s), which can be expressed as the 

following function 

 ( ) ( )jLbm XXXXGlRRsaaG ,...,,,,...,,,,, 321230 ==  (4.29) 

where G() = function; X1 – Xj = uncertainty factors; j = number of uncertainty factors. 

The detailed procedures of FOSM for the sensitivity analysis may refer to the previous 

study of Duan (2016a). 

 

For quantitative analysis, the sensitivity coefficient of resonant frequency shifts to the 

average wave speedab for the m-th resonant peak is defined as the variation (or variation 

percentage) of the transient response frequency shift to the variation (or variation 

percentage) of the wave speed 

 ( ) ( )
( )bb

thm

b

m
m

aad

d

da

d
c

/

/
*

* 
==  (4.30) 
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Eq. (4.30) is evaluated at (μ1, μ2, μ3, …, μj), in which μ1 – μj are mean values of variables 

X1 – Xj. 

 

 

 

Fig. 4.11. (a) Sensitivity coefficients of resonant frequency shifts to the average wave speed 

within the blocked section; (b) errors of resonant frequency shifts for Tests T3, T4, and T5. 
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observed in Fig. 4.11(a) that the first 20 resonant peaks (i.e., relatively low frequency 
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maximum value of sensitivity coefficient (i.e., 0.55) for the first 20 resonant peaks occurs 

at m = 3 for Test T5. Then, the sensitivity coefficients for two severer blockage cases (i.e., 

Tests T3 and T4) gradually increase with frequency. The maximum value of sensitivity 

coefficient (i.e., 1.01) occurs at m = 97 for Test T3, which means that the maximum error 

(or uncertainty) of resonant frequency shifts induced by the varying wave speed is in the 

same order as the variation of wave speed parameter. While the sensitivity coefficients 

for the shallow blockage case (i.e., Test T5) almost keep the same order of magnitude in 

the frequency domain, which is much less than 1.0. As a result, the percentage errors of 

frequency shifts Δδω*
m induced by the varying wave speed in the blockage section for 

Tests T3, T4, and T5 are calculated as Δδω*
m = cm((a0 –ab)/ab)×100% and plotted in 

Fig. 4.11(b). The result clearly shows that the maximum frequency shift errors for Tests 

T3, T4, and T5 are within 3.5%, 2.2%, and 1.0%, respectively, which are acceptable for 

applications of blockage detection.  
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4.5 Discussion and Implications 

The above results and analysis suggest that, unlike the uniform blockage, the frequency 

shift δω*
m induced by the non-uniform blockage is frequency dependent, δω*

m ~ 1/ω*
m. 

As the frequency ω*
m increases, the induced frequency shift δω*

m becomes less evident. 

This finding is useful to explain the inaccuracy of the current frequency domain transient-

based method, which is based on the blockage induced frequency shift, for non-uniform 

blockage detection in Duan et al. (2017). Therefore, further improvement of such 

transient-based method is necessary for the non-uniform blockage detection. 

 

The results comparison has also shown that, with fixed blockage length, the blockage 

induced frequency shift gets more evident as the non-uniform becomes severer (i.e., δω*
m 

~ s). Besides, the overall extent of frequency shifts for different blockage severities is 

decreased as frequency increases (i.e., δω*
m ~ 1/ω*

m). Therefore, for non-uniform 

blockages with a fixed length, the blockage induced frequency shift δω*
m is proportional 

to the slope of the non-uniform blockage (s), and is inversely related to the frequency ω*
m, 

that is δω*
m ~ s/ω*

m. In addition, for non-uniform blockages with fixed severity, the 

frequency shift pattern for various blockage lengths is the same, and the period of this 

pattern Tpattern is inversely proportional to the length of the blockage Tpattern ~ 1/l2. This 

period may offer us a method to detect the length of the non-uniform blockage. Based on 

m/(L/l2) = T(m*), where T = 1 is the period of the frequency shift pattern in terms of m*, 

the blockage length l2 can be determined. 

 

The obtained dependence relationship between transient wave behavior and blockage 

non-uniformity may provide useful implications to the transient analysis and blockage 

detection in real world pipe systems. Specifically, the current transient-based method can 

be further extended to more general and realistic situations of pipe blockages. That is, it 

is necessary to include the characteristic parameters, i.e., the slope (s), severity (RL3) and 

location (l4) of non-uniform blockages, in the transient-based method, which can be 

inversely determined based on the derived results in Eq. (4.27) of this chapter. 
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Consequently, it is expected that, based on the results and findings of this chapter, the 

accuracy of current transient-based method can be improved and extended for realistic 

pipe diagnosis, which will be investigated through further theoretical analysis and 

experimental tests in future work. 
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4.6 Summary 

This chapter investigates the transient frequency responses of pressurized water pipes 

with non-uniform blockages. The transient wave behavior is obtained by analytically 

solving the 1D wave equation for a single blockage with a linearly varying diameter. The 

wave solution is used to derive the overall transfer matrix of a pressurized water pipe 

system with non-uniform blockages, which is numerically validated by the traditional 

MOC.  

 

With validated analytical results, the influences of the blockage shape (slope), severity 

and length on transient frequency responses are studied systematically for different cases. 

The results indicate the non-uniform blockage may induce very different modification 

patterns on the frequency shift and amplitude change of transient waves from the uniform 

blockage situation. Specifically, the resonant frequency shifts induced by non-uniform 

blockages become less evident for higher harmonics.  

 

Although only the linear non-uniform blockages have been considered, this chapter may 

provide a framework for exploring the transient frequency responses of realistic pipes 

with non-uniform blockages. It is also noted that the physical mechanism of the non-

uniform blockage induced frequency shift pattern is still unclear, which needs further 

investigations in the next chapter.
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CHAPTER 5 ENERGY ANALYSIS OF THE RESONANT 

FREQUENCY SHIFT PATTERN INDUCED BY NON-

UNIFORM BLOCKAGES IN WATER PIPES4 

 

 

5.1 Introduction 

In Chapter 4, the author studied the influence of linear non-uniform blockages, whose 

diameters vary linearly along their lengths (see Fig. 4.1(c)), on transient frequency 

responses (Che et al., 2018b). It was found that linear non-uniform blockages give rise to 

significantly different resonant frequency shift patterns from uniform blockages. 

Specifically, the resonant frequency shifts induced by linear non-uniform blockages 

become less evident for higher harmonics (termed as the non-uniform blockage induced 

resonant frequency shift pattern), but the physical mechanism of this pattern from 

analytical and numerical results is still unclear.  

 

 

Fig. 5.1. (a) Random and non-uniform blockages in real water pipes (reprinted from (Che et 

al., 2018b), © ASCE); (b) sketch of a real pipe with random and non-uniform blockages; (c) 

sketch of a simplified pipe with exponential non-uniform blockages used for analytical 

analysis. 

 

 
4 This chapter is adapted from the research paper of the author and his co-authors (Che et al., 2019c). 
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As a continuation of the previous chapter on linear non-uniform blockages (Che et al., 

2018b), this chapter intends to: (i) investigate the resonant frequency shift pattern induced 

by other non-linear non-uniform blockages, as shown in Fig. 5.1(c), whose diameters vary 

exponentially along their lengths (termed as exponential non-uniform blockages), to 

generalize further the conclusions drawn in the previous chapter (Che et al., 2018b); and 

(ii) qualitatively explain the physical mechanism of the non-uniform blockage induced 

frequency shift pattern from an energy perspective. To this end, the overall transfer 

matrixes of pipe systems with exponential non-uniform blockages are derived to realize 

Aim (i). To achieve Aim (ii), the energy transmission coefficients of blocked pipe systems 

are analytically derived based on the system overall transfer matrixes obtained in Aim (i). 

The results and findings of this study are expected to provide scientific basis for method 

development of blockage detection in urban water supply systems. 
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5.2 Energy Transmission Coefficient of an Unbounded Water Pipe with 

Blockages 

5.2.1 Overall Transfer Matrix of a Pipe System with Exponential Non-uniform 

Blockages 

To facilitate the analytical analysis, the real blockages in Figs. 5.1(a) and 5.1(b) are 

simplified into a series of exponential non-uniform blockages, as shown in Fig. 5.1(c), 

whose radiuses change exponentially along the axial direction. The one-dimensional (1D) 

wave equation in the frequency domain for the n-th exponential non-uniform blockage in 

Fig. 5.1(c) is (Che et al., 2017; Che et al., 2018b) 

 
2

2

02
0n n n

n

n

d p A dp
k p

dx A dx


+ + =  (5.1) 

where p = pressure deviation from the mean in the frequency domain; x = distance along 

the pipe; A = A(x) = pipe cross-sectional area; A = derivative of A; k0 = ω/a0 = wave 

number in intact pipe sections, in which ω = angular frequency, a0 = wave speed; 

subscript n = the n-th exponential non-uniform blockage in Fig. 5.1(c). 

 

Note that a frictionless pipe system with an elastic pipe wall is firstly considered in the 

analytical analysis to highlight the interaction between transient waves and non-uniform 

blockages (Che et al., 2018b; Duan et al., 2014). The influence of friction on the derived 

analytical result will be further discussed in Section 5.4. In addition, it was found by the 

author in Chapter 4 (Che et al., 2018b) that the wave speed ab within blockages has a 

limited influence on the overall resonant frequency shift pattern induced by non-uniform 

blockages. Therefore, to simplify the problem, the transient wave speed is assumed to be 

constant throughout the pipe (i.e., a(x) = a0). 

 

As shown in Fig. 5.1(c), the pipe radius of the n-th exponential non-uniform blockage is 

defined as 

 ( ) ns x

n Lnr x R e=  (5.2) 
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where rn = pipe radius of the n-th exponential non-uniform blockage; RLn = pipe radius at 

the left boundary of the n-th exponential non-uniform blockage; sn = a coefficient that 

determines the radius changing rate of the n-th exponential non-uniform blockage, which 

is defined as sn = ln(RRn/RLn)/ln, where RRn = pipe radius at the right boundary of the n-th 

exponential non-uniform blockage, ln = length of the n-th exponential non-uniform 

blockage.  

 

Then, the cross-sectional area of the n-th exponential non-uniform blockage An and its 

derivative An in Eq. (5.1) can be determined. Substituting An and An′ into Eq. (5.1), the 

1D wave equation for the n-th exponential non-uniform blockage becomes 

 
2

2

02
2 0n n

n n

d p dp
s k p

dx dx
+ + =  (5.3) 

Using the plane wave solution pn = e−ikx as a trial solution of Eq. (5.3), results in the 

following dispersion relation 

 
2 2

02 0nk is k k+ − =  (5.4) 

where i = imaginary number; k = wave number. The solutions of Eq. (5.4) are (Che et al., 

2017) 

 2 2

0 n nk k s is=  − −  (5.5) 

Thus, the following general solutions for the n-th exponential non-uniform blockage can 

be obtained 

 1 2

n

ik x ik x

n s x

Ln

C e C e
p

R e

 −+
=  (5.6) 

where k = (k0
2 – sn

2)1/2 = the group wave number of transient waves in the exponential 

non-uniform blockage; C1 and C2 are two constants. 

 

The general solutions in Eq. (5.6) are a linear superposition of the incident and reflected 

waves propagating towards opposite directions. Moreover, in the case of exponential non-
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uniform blockages, |sn| represents the cutoff wave number. At wave numbers lower than 

|sn| (i.e., k0 < |sn|), k is imaginary. The general solutions in Eq. (5.6) become evanescent 

waves, which decay along the pipe and do not propagate as true transient pressure waves 

(Blackstock, 2000). 

 

Based on the general solutions in Eq. (5.6), the transfer matrix of the n-th exponential 

non-uniform blockage in Eq. (5.7) connecting two state vectors at two boundaries is 

obtained (Che et al., 2017; Che et al., 2018b). Note that the pressure deviation p is 

transformed into the pressure head deviation h, which is a common practice in hydraulic 

engineering. 

 11 12

21 221n n

U Uq q

U Uh h
+

    
=     

    

 (5.7) 

where subscripts n and n+1 are the upstream and downstream boundaries of the n-th 

exponential non-uniform blockage, respectively; q = discharge deviation in the frequency 

domain; h = pressure head deviation in the frequency domain; Uij = transfer matrix 

elements, which are as follows: 
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where g = gravitational acceleration; Sn and Sn+1 = pipe cross-sectional areas at the 

upstream and downstream boundaries of the n-th exponential non-uniform blockage, 

respectively. 
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Note that the uniform pipe is one special case of the exponential non-uniform blockage. 

Let sn = 0, which is equivalent to a single uniform pipe, Eq. (5.7) becomes 

 
( ) ( )

( ) ( )

1
0 0

0

01
0 0
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sin cos
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S g
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+

 
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    =   
    − 
 

 (5.8) 

which is consistent with previous studies on transfer matrixes of uniform pipes (Chaudhry, 

2014; Wylie et al., 1993). The overall transfer matrix of a blocked pipe system, as shown 

in Fig. 5.1(c), can be produced by multiplying individual matrixes of each pipe 

component in the order of their locations (Chaudhry, 2014; Duan et al., 2012a; Lee et al., 

2006b; Wylie et al., 1993). 
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 (5.9) 

where subscripts “1” and “N+1” are locations of upstream and downstream boundaries of 

a blocked pipe system, as shown in Fig. 5.1(c), respectively.  

 

Rewrite Eq. (5.9) in the following simplified form 

 
* *

11 12

* *

21 221 +1N

q qU U

h hU U

    
=     

    

 (5.10) 

where Uij
* = elements of the system overall transfer matrix. 

5.2.2 Energy Transmission Coefficient of an Unbounded Blocked Pipe System 

Based on the above overall transfer matrix in Eq. (5.10), the energy transmission 

coefficient of an unbounded blocked pipe system is derived in this section. To simplify 

the problem, a pipe system with two symmetrical exponential non-uniform blockages (i.e., 
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l2 = l3), as shown in Fig. 5.2, is selected for investigation. Note that the derived energy 

transmission coefficient can be also applied to pipe systems with multiple non-uniform 

blockages (see Fig. 5.1(c)) as long as the system overall transfer matrixes are determined. 

 

 

Fig. 5.2. An unbounded pipe system containing two symmetrical exponential non-uniform 

blockages (with a wave generator and a wave receiver). 

 

In physics, a transient wave is a pressure disturbance that travels through fluids, 

accompanied by a transfer of energy. The energy transmission coefficient of a blocked 

pipe system with anechoic boundaries (i.e., located at A and E), as shown in Fig. 5.2, is 

defined as the ratio between the energy flow (i.e., power) transmitted through the non-

uniform blockages (Wtr) and that incident on the non-uniform blockages (Win). 

 tr
C

in

W
T

W
=  (5.11) 

where TC = energy transmission coefficient. 

 

By applying the above-defined energy transmission coefficient TC in Eq. (5.11) to the 

classical water hammer theory (note that the detailed derivation procedure is provided in 

Appendix A2), finally the TC can be represented by the overall transfer matrix elements 

Uij
* in Eq. (5.10).  

 

2
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* *0 21 0 12
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 (5.12) 

where S0 = cross-sectional areas at two boundaries A and E in Fig. 5.2.  
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5.3 Energy Transmission Coefficient Pattern and Its Physical Mechanisms 

5.3.1 Energy Transmission Coefficient Patterns of Pipe Systems with Various 

Blockages 

Based on the derived energy transmission coefficient TC in Eq. (5.12), the TC patterns of 

pipe systems with various blockages are visualized in this section. Because the following 

results involve the Bragg’s law, there is a need to review related fundamental theory 

herein. The Bragg’s law was firstly proposed by Bragg and Bragg (1913) in the process 

of investigating the composition of X-rays. It relates the wavelength of the X-ray and the 

distance between crystal atomic sheets to the angles at which an impinging X-ray beam 

would be reflected. Recently, the Bragg resonance phenomena of transient waves in a 

pressurized water pipe containing a single uniform blockage were studied by Louati et al. 

(2018). As shown in Fig. 5.3(a), an incident wave with a certain wavelength (λ) impinges 

on the uniform blockage from the right end (i.e., Location E). From Location E to 

Location A, this incident wave first encounters a sudden constriction at Junction D and 

then a sudden expansion at Junction B. The incident wave is partially reflected at these 

junctions. According to the Joukowsky’s equation (Joukowsky, 1898), the sign of the 

reflected wave from Junction D keeps the same with the incident wave. In contrast, the 

reflected wave from Junction B is opposite in sign to the incident wave. In addition, the 

reflected wave from Junction B travels a distance 2(l2 + l3) more than the wave reflected 

by Junction D. Because these two reflected waves from Junctions B and D are opposite 

in sign, they experience destructive interference at Junction D when jλ = 2(l2 + l3), where 

j = 1, 2, 3…. On this occasion, the incident wave has the maximum transmission. 

Conversely, these two reflected waves experience constructive interference at Junction D 

when (2j + 1)λ/2 = 2(l2 + l3), then the incident wave has the minimum transmission. 

 

Whereas the Bragg resonance condition of non-uniform blockages in this thesis is 

different from that of uniform blockages investigated in the previous study of Louati et 

al. (2018). As shown in Figs. 5.3(b) and 5.3(c), from Location E to Location A, the 
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incident wave first encounters a continuous constriction between Junctions C and D and 

then a continuous expansion between Junctions B and C. On average, the waves reflected 

by the continuous expansion only travel a distance 2l3 (note that l2 = l3 in this study) more 

than the reflected waves from the continuous constriction. Therefore, these two regional 

waves reflected by the continuous constriction and expansion have destructive 

interference when jλ = 2l3 and constructive interference when (2j + 1)λ/2 = 2l3. 

 

 

Fig. 5.3. Unbounded pipe systems with (a) uniform blockages; (b) exponential non-uniform 

blockages; and (c) linear non-uniform blockages. 

 

Table 5.1. Detailed pipe system parameters for energy transmission coefficient TC 

calculations. 

Blockage type l1 (m) l2 (m) l3 (m) l4 (m) R (m) |s| RC (m) 

intact 300 100 100 500 0.25 0 0.25 

uniform 300 100 100 500 0.25 0 0.2 

exp non-uniform 300 100 100 500 0.25 4.64E-03 0.1572 

linear non-uniform 300 100 100 500 0.25 1.00E-03 0.15 

 

 

The derived energy transmission coefficients TC in Eq. (5.12) of unbounded pipe systems 

containing uniform or non-uniform (including linear and exponential) blockages are 

visualized in Fig. 5.4. Note that these blockages have the same blocked volume. The TC 

curve of an intact pipe system is also plotted in Fig. 5.4 for convenient comparison. The 

detailed parameters of these 4 cases are listed in Table 5.1, in which R = radius of an 
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intact pipe; RC = pipe radius at Junction C in Fig. 5.3; |s| = the radius changing rate of 

non-uniform blockages; “exp” = is short for “exponential”. 

 

As shown in Fig. 5.4, the incident wave frequency is normalized by the minimum 

destructive interference frequency of the blockages, which is 2π(a0/(2(l2 + l3))) for 

uniform blockages and 2π(a0/(2l3)) for non-uniform blockages, and is expressed as ω*. 

According to Fig. 5.4, the energy transmission coefficient TC of the intact pipe system 

keeps the constant value of 1, which is physically reasonable since the incident wave 

should be entirely transmitted through an intact pipe without any reflection. However, the 

TC curves of three blocked pipe systems are highly frequency dependent. Specifically, the 

TC curve of the uniform blocked pipe system fluctuates periodically with constant extent. 

This is consistent with previous studies on uniform blockages (Duan et al., 2014; Louati 

et al., 2018). Although the TC curves of these two pipe systems with non-uniform 

blockages also fluctuate periodically, their extent gradually becomes less evident for 

higher frequency incident waves. This means that the higher the incident wave frequency, 

the more energy is transmitted through these two non-uniform blockages. The physical 

mechanisms that govern these TC patterns in Fig. 5.4 will be further explained in the 

following section (note that the following discussion mainly focuses on exponential non-

uniform blockages, and more detailed information about the energy analysis of linear 

non-uniform blockages can be found in the conference paper (Che et al., 2018c)). 

 

 

Fig. 5.4. Energy transmission coefficients TC of intact and blocked pipe systems. 
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5.3.2 Physical Mechanisms of Energy Transmission Coefficient Patterns 

Based on Eq. (A.9) in Appendix A2 and the frictionless 1D water hammer model, the 

impedance of a blocked pipe system can be written as 

 sp 0
Zp

Z
q A kA

 
= = =  (5.13) 

where Z = impedance; Zsp = specific impedance; ρ0 = fluid density. Substituting the 

forward propagating wave in Eq. (5.5) (i.e., keep the “+” sign) into Eq. (5.13), gives 
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 (5.14) 

where ωcut = sna0 is the cutoff frequency of the n-th exponential non-uniform blockage. 

 

Two physical mechanisms that govern the overall patterns of TC in Fig. 5.4 are: (1) the 

Bragg’s law; and (2) the impedance mismatch between the intact and blocked pipe 

sections: 

 

(1) Specifically, the fluctuation of energy transmission coefficient TC curves in Fig. 5.4 

is due to the Bragg’s law. Take the uniform blockage in Fig. 5.3(a) for instance, the 

reflected waves (from Junctions B and D) of the incident wave at most frequencies would 

not experience constructive interference at Junction D, because these reflected waves 

would be out of phase (i.e., phase shift ranges from 0 to π), cancelling part of the reflected 

energy out. However, when the incident wave frequency is an integral multiple of the 

minimum destructive interference frequency of the blockage (i.e., ω* = 1, 2, 3, 4, 5 in Fig. 

5.4) the reflected waves (from Junctions B and D) would be completely out of phase (i.e., 

phase shift is π), cancelling each other out. In such situations, the incident wave has the 

maximum transmission. Therefore, the fluctuation period of TC curves in Fig. 5.4 is one 

unit of the minimum destructive interference frequency of the blockages. 
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(2) The fluctuating extent of energy transmission coefficient TC curves in Fig. 5.4 is 

governed by the impedance mismatch (ΔZ) at Junction D between the intact (e.g., Pipe 4 

in Fig. 5.3) and blocked (e.g., Pipe 3 in Fig. 5.3) pipe sections. For the pipe with uniform 

blockages in Fig. 5.3(a), the impedance mismatch at Junction D is ΔZ = ρ0a0(1/A3 – 1/A4), 

which is constant for the incident wave of various frequencies, therefore its TC curve 

would fluctuate with constant extent. While for the pipe system with exponential non-

uniform blockages in Fig. 5.3(b), the impedance of the blocked pipe section (i.e., Eq. 

(5.14)) is frequency dependent. In particular, the impedance of exponential non-uniform 

blockages gradually decreases as the increase of the incident wave frequency. This means 

the higher the incident wave frequency, the smaller is the impedance mismatch at Junction 

D (i.e., ΔZ tends to 0). On this occasion, higher frequency incident waves would feel a 

less blocking effect from the exponential non-uniform blockages; thus, more energy is 

transmitted through the non-uniform blockages, and the fluctuation of the TC curve 

becomes less evident.  
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5.4 Numerical Validation 

5.4.1 Energy Transmission Coefficient of a Frictionless Unbounded Pipe System 

To validate the derived analytical result in Eq. (5.12), the classical frictionless 1D water 

hammer model is solved by the method of characteristics (MOC) (Chaudhry, 2014; Wylie 

et al., 1993). As shown in Fig. 5.2, an unbounded pipe system with two anechoic 

boundaries (i.e., upstream and downstream) is used for the numerical validation. The 

original intact pipe is blocked by exponential non-uniform blockages. The detailed 

parameters of this pipe system are listed in Table 5.2. In the numerical experiment, 

exponential non-uniform blockages are approximated by stepwise discretized grids. The 

1000-m-long pipe is divided into 10000 small computational reaches (i.e., spatial grid 

size Δx ~ 0.1 m) to reduce the reflection caused by numerical errors. The incident wave 

generated at the downstream generator is given by the formula in Eq. (5.15) (i.e., a 

Gaussian-modulated sinusoidal pulse) (Louati et al., 2018), and the pressure trace is 

measured by the wave receiver located at the upstream end. 

 ( )
22

0 0 exp 4 log 10 sinc
in c

c c

P P P t t
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  = + − − −                 

 (5.15) 

where Pin = the incident wave pressure at the generator; P0 = the initial pressure in the 

pipe; ωc = the angular central frequency of the incident wave; β = a coefficient that 

determines the frequency bandwidth of the incident wave; t = time; 0 < t ≤ β/ωc. 

 
Table 5.2. Detailed system parameters for numerical validation. 

Blockage type l1 (m) l2 (m) l3 (m) l4 (m) R (m) |s| RC (m) a0 (m/s) 

exp non-uniform 300 100 100 500 0.25 4.64E-03 0.1572 1000 
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Two features of the Gaussian-modulated sinusoidal pulse in Eq. (5.15) are that: (i) most 

of the energy is distributed at its central frequency ωc; and (ii) the frequency bandwidth 

of this pulse can be determined by appropriately adjusting the value of β. 

 

 

 

 

Fig. 5.5. (a) Measured pressure signals in the time domain (ωc
* = 1); (b) corresponding 

pressure signals in the frequency domain (ωc
* = 1). 

 

The incident wave generated by the downstream generator and the transmitted wave 

measured by the upstream receiver are plotted in Fig. 5.5(a). The pressure P is normalized 

according to (P – P0)/P0 and plotted as P*. Fig. 5.5(a) indicates that the amplitude of the 

transmitted wave is almost identical to that of the incident wave. To explain this 
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phenomenon, these time domain signals in Fig. 5.5(a) are transformed into the frequency 

domain in Fig. 5.5(b). It turns out that the central frequency of the incident wave is ωc
* = 

1.0, as shown in Fig. 5.7, at which the energy transmission coefficient TC has a local 

maximum value 1.00. This means reflected waves from the non-uniform blockages 

experience destructive interference (i.e., condition of minimum reflection or maximum 

transmission). On this condition, all the energy carried by this incident wave should be 

transmitted through the non-uniform blockages. 

 

As shown in Fig. 5.7, three more points on the energy transmission coefficient TC curve 

(i.e., at ωc
* = 0.5, 1.5, and 2.5) are further validated and discussed in detail herein. In Figs. 

5.6(a) and 5.6(b), the amplitude of the transmitted wave is significantly less than that of 

the incident wave because of the low TC value at the central frequency of the incident 

wave ωc
* = 0.5 (at which point TC = 0.71, this means only 71 percent of the energy carried 

by the incident wave is transmitted through the non-uniform blockages). Although ωc
* = 

1.5 and 2.5 are two local minimum points on the TC curve in Fig. 5.7, compared with the 

ωc
* = 0.5 case, the amplitude of these transmitted waves gradually increases as the 

increase of the incident wave frequency. This is because the exponential non-uniform 

blockages have a less blocking effect on the propagation of higher frequency waves. 

According to Eq. (A.17) in the Appendix A2 and the normalized amplitudes in Figs. 

5.6(b), 5.6(d), and 5.6(f), the TC values of these three points are calculated as 0.71, 0.96, 

and 0.99, respectively, which agree well with the analytical TC values 0.71, 0.96, and 0.99 

in Fig. 5.7. 
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Fig. 5.6. (Part 1) Measured pressure signals in the time domain (a) ωc
* = 0.5, (c) ωc

* = 1.5, 

(e) ωc
* = 2.5; corresponding pressure signals in the frequency domain (b) ωc

* = 0.5, (d) ωc
* 

= 1.5, (f) ωc
* = 2.5. 
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Fig. 5.6. (Part 2) Measured pressure signals in the time domain (a) ωc
* = 0.5, (c) ωc

* = 1.5, 

(e) ωc
* = 2.5; corresponding pressure signals in the frequency domain (b) ωc

* = 0.5, (d) ωc
* 

= 1.5, (f) ωc
* = 2.5. 
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In addition, more points on the energy transmission coefficient TC curve are numerically 

obtained and plotted in Fig. 5.7. It shows good agreement between the numerical and 

analytical results, which confirms the validity of the derived result in Eq. (5.12) as well 

as the analytical method in this study. 

 

 

Fig. 5.7. Numerical validation of the derived energy transmission coefficient TC. 

5.4.2 Influence of a Frictional Bounded Pipe System on the Derived Energy 

Transmission Coefficient 

The analytical result derived in Eq. (5.12) is based on an unbounded pipe system without 

any friction. However, in real urban water supply systems, the pipe systems are 

commonly bounded by various of boundaries (e.g., reservoirs and valves). In addition, 

the friction would change the amplitude of a transient wave propagating along an intact 

pipe section. Therefore, it is necessary to further investigate the influences of system 

boundaries and friction on the analytical result in Eq. (5.12). As shown in Fig. 5.8, a pipe 

system with an upstream reservoir and a downstream valve is adopted. Both steady and 

unsteady friction (Vardy & Brown, 1995) are considered in this bounded system. Detailed 

system parameters of bounded and unbounded pipe systems are listed in Table 5.3, where 

f = friction factor.  
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Table 5.3. Detailed pipe system parameters. 

Pipe system l1 (m) l2 (m) l3 (m) l4 (m) R (m) RC (m) |s| f 

bounded 399 1 1 599 0.25 0.15 5.11E-01 0.02 

unbounded 399 1 1 599 0.25 0.15 5.11E-01 0 

 

 

Fig. 5.8. A bounded reservoir-pipe-valve (RPV) system. 

 

First, as shown in Fig. 5.9, the transient frequency responses of the bounded pipe system 

with friction are numerically obtained based on the transfer matrix method (Che et al., 

2018b). The energy transmission coefficients TC of the bounded pipe system are estimated 

by (Kinsler et al., 1999) 

 
( )

22

2 2
1 1

mb mim
C

mi mi

h hh
T

h h

 −
= − = −  (5.16) 

where δhm = the blockage induced amplitude change for the m-th resonant peak; hmi = 

amplitude of the m-th resonant peak for the intact pipe system; hmb = amplitude of the m-

th resonant peak for the pipe system with non-uniform blockages. 

 

 

Fig. 5.9. Transient frequency responses of bounded pipe systems with both steady and 

unsteady friction. 

δh 

δω* 
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The energy transmission coefficient TC curves of bounded (based on Eq. (5.16)) and 

unbounded (based on Eq. (5.12)) pipe systems are plotted in Fig. 5.10. According to Fig. 

5.10, the overall phase and fluctuation trend of these two curves for two systems show 

good agreement. This means that the overall pattern of TC curve for the bounded pipe 

system with friction is also governed by two physical mechanisms: (1) the Bragg’s law; 

(2) the impedance mismatch between the intact and blocked pipe sections. In addition, 

Fig. 5.10 indicates that the analytical result in Eq. (5.12) may underestimate the amount 

of energy transmitted through non-uniform blockages in a frictional bounded pipe system, 

especially for relative low frequency incident waves (e.g., ω* < 1). One reason for this is 

that the energy transmission coefficient of the frictional bounded system is calculated 

based on the amplitude of resonant peaks, as shown in Eq. (5.16), which could be further 

reinforced by system boundaries. 

 

 

Fig. 5.10. Energy transmission coefficients TC of bounded and unbounded pipe systems. 
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5.5 Further Applications and Result Analysis 

5.5.1 Energy Explanation of the Non-uniform Blockage Induced Resonant 

Frequency Shift Pattern 

Based on the validated analytical result in Eq. (5.12), the influences of non-uniform 

blockage properties (i.e., length and severity) on the energy transmission coefficient TC 

of unbounded pipe systems are systematically investigated in this section. Detailed 

system parameters can refer to Table 5.4. At the same time, to explain the non-uniform 

blockage induced resonant frequency shift patterns from an energy perspective, the 

transient frequency responses of bounded pipe systems (like Fig. 5.9), with the same 

system parameters (i.e., Table 5.4) as the unbounded systems, are also obtained.  

 

First, the influence of non-uniform blockage severity on the energy transmission 

coefficient TC of unbounded pipe systems is studied. According to Table 5.4, the blockage 

lengths (i.e., l2 and l3) of Tests T1, T2, and T3 are fixed. From Test T1 to T3, the minimum 

radius RC of the blockage gradually increase from 0.15 m to 0.20 m, which means the 

blockage becomes less severe. The TC curves of these three tests are plotted in Fig. 5.11(a). 

It shows that the overall trend of these three curves is the same except for the TC values 

at a specific frequency. Specifically, for a fixed incident wave frequency, more energy is 

transmitted through the non-uniform blockages as the blockages become less severe. This 

is obvious since less severe blockages should have a less blocking effect on the 

propagation of transient waves. 

 
Table 5.4. Detailed pipe system parameters of bounded and unbounded pipe systems. 

Test no. l1 (m) l2 (m) l3 (m) l4 (m) R (m) RC (m) |s| 

T1 300 100 100 500 0.25 0.15 5.11E-03 

T2 300 100 100 500 0.25 0.175 3.57E-03 

T3 300 100 100 500 0.25 0.20 2.23E-03 

T4 390 10 10 590 0.25 0.15 5.11E-02 

T5 399 1 1 599 0.25 0.15 5.11E-01 

 



Chapter 5 Energy Analysis of the Frequency Shift Pattern Induced by Non-uniform Blockages 

 

 
 

114 
 

  

 

Fig. 5.11. (a) Energy transmission coefficients TC of unbounded non-uniform blocked pipe 

systems; (b) resonant frequency shifts of bounded systems induced by non-uniform 

blockages. 

 

The resonant frequency shift patterns of bounded pipe systems, with the same system 

parameters as Tests T1, T2, and T3, adapted from Chapter 4 (Che et al., 2018b) are plotted 

in Fig. 5.11(b). The normalized resonant frequency shift of the m-th resonant peak is 

defined as δωm
* = ωmb

* − ωmi
* (like Fig. 5.9), where ωmi

* = the m-th normalized resonant 

frequency of the intact pipe system; ωmb
* = the m-th normalized resonant frequency of 

the pipe system with non-uniform blockages. As shown in Fig. 5.11(b), the fluctuation of 

resonant frequency shift patterns induced by non-uniform blockages becomes less evident 
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as the incident wave frequency increases. A reasonable explanation for this is that non-

uniform blockages, as shown in Fig. 5.11(a), have a less blocking effect on the 

propagation of higher frequency waves, thus the resonant frequency shifts in Fig. 5.11(b) 

induced by non-uniform blockages become less evident. 

 

  

 

Fig. 5.12. (a) Energy transmission coefficients TC of unbounded non-uniform blocked pipe 

systems; (b) resonant frequency shifts of bounded systems induced by non-uniform 

blockages. 

 

The influence of non-uniform blockage length on the energy transmission coefficient TC 

of unbounded pipe systems is also investigated. As shown in Table 5.4, the minimum 

radius RC (i.e., severity) of the blockages in Tests T1, T4, and T5 is fixed. The length of 
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the non-uniform blockages gradually decreases from 100 m to 1 m. As shown in Figs. 

5.12(a) and 5.12(b), the obtained TC curves (for unbounded system) and resonant 

frequency shift patterns (for bounded system) are similar with previous tests. Moreover, 

both TC curves and resonant frequency shift patterns of these three tests almost coincide 

with each other. This means that the non-uniform blockage length has a limited influence 

on the amount of energy transmitted through non-uniform blockages. Thus, these three 

tests with various blockage lengths have the same blocking effect on the propagation of 

transient waves. 

5.5.2 Preliminary Applications to Interpreting Laboratory Data 

As shown in Fig. 5.13, two types of irregular blockages, made of aggregate or coir, have 

been investigated in the laboratory by the author and his co-investigators for their 

influences on transient wave behavior (Duan et al., 2017). But the influence of 

exponential non-uniform blockages has not yet well verified due to the difficulty of 

constructing perfectly exponential non-uniform blockages in laboratories. Therefore, as 

a preliminary application, the irregular blockage made of coir (with a mean roughness 

height of 3 mm) used in Duan et al. (2017) is selected and approximated by uniform and 

exponential non-uniform blockages (see Fig. 5.13). Then, the validity of two blockage 

approximation methods for transmission coefficient estimations is studied and discussed. 

Note that these two approximated uniform and non-uniform blockages have the same 

blocked volume. The experiment system consists of an upstream reservoir, a pipe with 

irregular blockages (like A to E in Fig. 5.8), and a downstream discharge tank. Detailed 

system parameters are listed in Table 5.5, where lb,Rb, andab are the length, average 

radius, and average wave speed of the blocked section, respectively. More detailed 

experimental settings and operations are reported in Duan et al. (2017).  
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Fig. 5.13. Sketches of the irregular blockage and its uniform and exponential non-uniform 

approximations. 

 
Table 5.5. Settings of the experimental test system (Duan et al., 2017). 

Blockage type l1 (m) lb = l2 + l3 (m) l4 (m) R (mm) a0 (m/s) Rb (mm) ab (m/s) 

rough coir 15.58 5.54 20.41 36.6 1180 29.8 1010 

 

 

Because the experimental data in the frequency domain become relatively noisy for 

higher harmonics, only the first ten peaks are selected to calculate the energy transmission 

coefficient TC based on Eq. (5.16). The TC curves of the bounded pipe system with 

irregular blockages (Eq. (5.16)) as well as corresponding unbounded pipe systems with 

two approximated blockages (Eq. (5.12)) are plotted in Fig. 5.14. As shown in Fig. 5.14(a), 

when the irregular blockage is simplified into a uniform blockage, the periods (i.e., 1.00 

and 1.16) of two TC curves agrees well, but the energy transmission estimation is quite 

inaccurate. In contrast, according to Fig. 5.14(b), the approximation in exponential non-

uniform blockages has a relatively good estimation of energy transmission, but the period 

agreement is relatively poor (i.e., 0.58 and 1.00). This can be attributed to the simplicity 

of current approximations, and detailed physical mechanisms of the interaction between 

transient waves and irregular blockages cannot be wholly represented by these two 

simplified blockages. 
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Fig. 5.14. The irregular blockage is approximated as (a) uniform blockage; (b) exponential 

non-uniform blockages. 
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5.6 Implications and Recommendations 

In previous studies (Duan et al., 2014; Louati et al., 2018), the amplitude (equivalent to 

energy) of transmitted and reflected waves of a uniform blockage in an unbounded pipe 

system, as shown in Fig. 5.3(a), was obtained by applying the mass and momentum 

conservation at pipe junctions (i.e., Junctions B and D in Fig. 5.3(a)). However, the cross 

area of a pipe system with non-uniform blockages, as shown in Figs. 5.3(b) and 5.3(c), 

changes continuously along its axial direction. This means that the cross areas of intact 

and blocked pipe sections are the same at pipe junctions. Therefore, the previous method 

(Duan et al., 2014; Louati et al., 2018) cannot be used for calculating the energy 

transmission coefficients TC of a pipe system containing non-uniform blockages. Based 

on the overall transfer matrix in Eq. (5.10), this paper proposes a new approach that is 

suitable for calculating the energy transmitted through non-uniform blockages in an 

unbounded pipe system. In addition, the derived result in Eq. (5.12) can be also applied 

to unbounded pipe systems with multiple blockages, which are more practical, once the 

system overall transfer matrixes are determined. 

 

The results and findings above demonstrate that two physical mechanisms govern the 

overall pattern of energy transmission coefficient TC in Fig. 5.4: (i) the Bragg’s law; and 

(ii) the impedance mismatch between intact and blocked pipe sections. The fluctuation of 

these TC curves is due to the Bragg’s law, and the fluctuation extent is determined by the 

impedance mismatch between intact and blocked pipe sections. The impedance of 

exponential non-uniform blockages is frequency dependent, which becomes smaller for 

higher frequency waves. This means that the higher the incident wave frequency, the 

smaller the impedance mismatch between intact and blocked pipe sections. On this 

occasion, higher frequency waves would feel a less blocking effect from exponential non-

uniform blockages. Therefore, more energy of higher frequency waves is transmitted 

through the non-uniform blockages, and the induced resonant frequency shifts become 

less evident. 
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In practical applications of non-uniform blockage detection, it is a preferable and labour-

saving way to place the transient wave receiver at the same accessible point with the 

generator. Understanding the energy transmission coefficient TC curve of incident waves 

with various frequencies provide valuable insights into the blocking effect of non-uniform 

blockages on transient waves. It is useful for the selection of appropriate incident wave 

frequency and bandwidth to ensure that the reflected waves contain enough energy for 

the pressure transducer (i.e., receiver) to measure. Otherwise, the reflected waves, which 

have limited energy, may be buried by the background noises. In this case, the useful 

resonant frequency shifts of this measured signal may be less evident that cannot be used 

to detect non-uniform blockages accurately. 

 

The preliminary application of the derived result in the laboratory indicates that 

approximations of the irregular blockage into a single uniform or exponential non-

uniform blockage only have a reasonable estimation in either the phase or the amplitude 

of the real energy transmission coefficients. This is due to the relatively simple geometry 

of two approximated blockages, which is unable to capture the complex interaction 

between transient waves and irregular blockages. Therefore, it is necessary to further 

investigate the transient wave behavior in a series of jointed non-uniform blockages (i.e., 

irregular blockage) and its influence on energy transmission coefficients. In this regard, 

the derived transmission coefficient in Eq. (5.12) is also applicable to an appropriate 

combination of multiple and different non-uniform blockages, which may form as a more 

realistic irregular blockage (like Fig. 5.1(c)), once the overall transfer matrix of this 

combination is determined.  
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5.7 Summary 

This chapter explains the resonant frequency shift pattern induced by non-uniform 

blockages in pressurised water pipes from an energy perspective. First, the overall transfer 

matrix of a pipe system containing exponential non-uniform blockages is analytically 

derived based on the 1D plane wave solutions. The overall transfer matrix is then used to 

derive the energy transmission coefficient of the unbounded pipe system, which is 

numerically validated by the MOC. Finally, the resonant frequency shift pattern of 

bounded pipe systems with non-uniform blockages is explained by energy transmission 

curves of unbounded pipe systems. 

 

The results indicate that the exponential non-uniform blockages have a less blocking 

effect on the propagation of higher frequency waves. This is because the impedance of 

non-uniform blockages is frequency dependent, which becomes smaller for higher 

frequency incident waves. Therefore, the non-uniform blockage induced resonant 

frequency shifts become less evident for higher harmonics. In practical applications of 

non-uniform blockage detection, the frequency and bandwidth of the incident wave 

should be selected carefully according to the energy transmission coefficient TC curve to 

ensure that the reflected wave contains enough energy for pressure transducers to measure. 

 

The preliminary applications to interpreting laboratory data indicates that further 

experimental and numerical verification of the derived result, as well as further 

investigation on the influence of irregular blockages on transient wave behavior are 

needed in the future work.  

 

It is also noted that the results and physical interpretations in Chapters 4 and 5 are based 

on the 1D water hammer model, where the plane wave assumption is imposed. However, 

as the increase of the incident wave frequency, radial pressure waves will be generated; 

thus, the plane wave assumption in the current 1D model may be violated. Therefore, the 

validity range of the developed theory needs further investigations in the next chapter.
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CHAPTER 6 RANGE OF VALIDITY OF THE DEVELOPED 

THEORY AND RADIAL PRESSURE WAVE BEHAVIOR IN 

WATER PIPES5 

 

 

6.1 Introduction 

The traditional application of transient analysis is mainly for the prediction of pressure 

history in pipe systems to assist the design and evaluation of pipe strength and the 

installation of transient control devices (Chaudhry, 2014; Duan et al., 2010b; Wylie et al., 

1993). For many years, one-dimensional (1D) and quasi-2D water hammer models are 

commonly adopted for predicting such pressure history. In these models, radial inertia 

and viscous terms are neglected (see Chapter 3) due to the slight compressibility of the 

water and the small expansion of the pipe wall (termed as the plane wave assumption) 

(Ghidaoui, 2004). Many applications have demonstrated that both 1D and quasi-2D 

models, based on the plane wave assumption, give satisfactory results in the prediction of 

pressure history for the design purpose (Pezzinga, 1999; Vardy & Hwang, 1991; Zielke, 

1968). 

 

It is worth noting that the 1D wave equation (see Appendix A1), used in Chapters 4 and 

5, is derived from the classic 1D water hammer model, where the plane wave assumption 

has been imposed (Chaudhry, 2014). However, as the incident wavelength approaches 

the pipe diameter (i.e., relatively high frequency waves), the radial pressure stats to distort 

and radial pressure waves are generated, which may violate the plane wave assumption 

in the current 1D wave equation. As a result, the validity frequency range of the obtained 

 
5 This chapter is adapted from the research paper of the author and his co-authors (Che et al., 2018a). 
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results and physical interpretations in Chapters 4 and 5 should be governed by the plane 

wave theory. 

 

The full-2D water hammer model, including all terms neglected in 1D and quasi-2D 

models, is a potential tool for: (i) investigating the range of validity of the developed 

theory in Chapters 4 and 5; and (ii) observing the radial pressure wave behavior in water 

pipes. The full-2D model was proposed by Mitra and Rouleau (1985) to observe the radial 

and axial variations of transient pressure waves caused by valve closures. The full-2D 

model is solved numerically by an implicit matrix factorization method; in this way, the 

2D problem is decomposed into two 1D problems, saving significant computational effort. 

Despite this improvement, the numerical method in (Mitra & Rouleau, 1985) still contains 

inefficiencies due to: (i) the complexity of coefficient matrixes; and (ii) the application of 

uniform grids in the radial direction, because very fine grids are needed to capture the 

detailed physical phenomena in the boundary layer near the pipe wall. Recently, a high-

order finite volume scheme for the full-2D model was developed (Louati & Ghidaoui, 

2017b, 2017c) to investigate the properties of high frequency waves in a pressurized water 

pipe. However, this previous study is limited to relatively idealized flow situations (i.e., 

inviscid and initially stagnant flows); thus, their results mainly provides a basic 

understanding of acoustic wave propagation in a water-filled pipe. 

 

In urban water supply systems, the flows always have non-uniform (i.e., non-plane) 

velocity profiles due to the existence of viscosity; and transients are commonly generated 

by a change in flowrate due to hydraulic device operations (e.g., valves and pumps). Such 

practical flow situations may have an influence on the generation and propagation of 

radial pressure waves. For example, radial pressure waves were observed by Mitra and 

Rouleau (1985) after stopping a laminar flow by valve closures. Therefore, it is important 

to: (i) investigate the validity range of the developed theory in Chapters 4 and 5; and (ii) 

observe the radial pressure wave behavior in viscous and initially non-static flows under 

various valve operations, which is the main scope of this chapter. 

 



Chapter 6 Range of Validity of the Developed Theory and Radial Wave Behavior in Water Pipes 

 

 
 

125 
 

This chapter first addresses the inefficiency problem of the original Mitra-Rouleau 

scheme by: (i) transforming the original scheme into tridiagonal systems; and (ii) 

implementing non-uniform computational grids along the radial direction. The modified 

efficient scheme is extended into a typical reservoir-pipe-valve (RPV) system to simulate 

a water hammer event. The efficient model is validated by numerical data from the 

Zielke’s 1D analytical model, which has been extensively confirmed by lab experiments 

(Adamkowski & Lewandowski, 2006; Bergant et al., 2001; Zielke, 1968). Afterwards, 

the modified and validated numerical scheme is used to investigate systematically: (i) the 

validity frequency range of the plane wave assumption; and (ii) the radial pressure wave 

behavior in transient laminar pipe flows under different flow perturbations. Particularly, 

the generation mechanism and detailed components of radial pressure waves are studied 

and examined in this chapter. Finally, the findings and practical implications are 

discussed. 
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6.2 Original and Modified Mitra-Rouleau Schemes 

6.2.1 Derivation of the Full-2D Water Hammer Model 

The 2D non-conservative form Navier-Stokes equations for a compressible Newtonian 

fluid in an axis symmetric flow field, written in a cylindrical coordinate system (Ghidaoui, 

2004), are as follows 
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 (6.1c) 

where t = time; x = axial coordinate along pipe axis; r = radial coordinate from pipe axis; 

ρ = fluid density; u′ = axial velocity; v′ = radial velocity; p′ = pressure; μ = dynamic 

viscosity; κ = volume viscosity; Fx = body force along x; and Fr = body force along r. 

 

To derive the full-2D water hammer model from Eqs. (6.1), two assumptions are made 

here: 

 

(1) In classic water hammer problems, the compressibility of the fluid (i.e., water) is only 

considered in the continuity equation Eq. (6.1a). Since water is slightly compressible and 

the pipe wall is elastic (i.e., relatively rigid) in this study, the spatial variation of fluid 

density ρ in radial and axial momentum equations due to the spatial variation of internal 

pressure can be neglected. Meanwhile, the volume viscosity can be also neglected due to 

the slight compressibility of the fluid in this investigation. However, the small spatial 

variation of fluid density ρ in the continuity equation should be included since the wave 
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speed a0 is finite. The equation of state for a slightly compressible fluid is (Mitra & 

Rouleau, 1985) 
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 (6.2) 

where a0 = wave speed; and k = bulk modulus. 

 

(2) The body forces Fx and Fr are negligible due to the relatively small scales of pipe size 

and pipe gradient in urban water supply systems focused in this study (Chaudhry, 2014; 

Ghidaoui, 2004; Ghidaoui et al., 2005; Mitra & Rouleau, 1985). 

 

These two assumptions reduce Eqs. (6.1) to 
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where ρ0 = mean density of the fluid. 

 

In this chapter, the above full-2D model is further expressed in the dimensionless form 

so as to inspect the principle and physics behind the problem with more general results. 

The chosen dimensionless variables are as follows (Mitra & Rouleau, 1985): u = u′/u0, 

where u0 is the initial average axial velocity; v = v′/u0; p = (p′ – pe′)/ρ0u0a0, where pe′ = 

pressure at x = 0; τ = a0t/R, where R = pipe radius; and ξ = x/R; η = r/R. This results in the 

following dimensionless full-2D model 
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where M = u0/a0 is the Mach number; and K = μ/Rρ0a0. 

6.2.2 Original Mitra-Rouleau Scheme 

Mitra and Rouleau (1985) numerically solved the full-2D model in Eqs. (6.4) by an 

implicit matrix factorization method. In water hammer applications, the values of factors 

M and K on the right-hand side of Eqs. (6.4) are negligibly small compared with one unit 

(i.e., M << 1 and K << 1); thus, terms on the right-hand side of Eqs. (6.4) are handled 

explicitly and terms on the left-hand side are handled implicitly. The time derivatives on 

the left-hand side of Eqs. (6.4) are discretized by the three-point backward difference 

given by (∂Z/∂τ)n+1 = (3Zn+1 – 4Zn + Zn–1)/2Δτ, where Z = p, u or v; Δτ = size of the time 

step; n = n-th time step; and Z(τ, ξ, η) = Z(nΔτ, ξ, η) = Zn(ξ, η). By expressing the right-

hand side of Eqs. (6.4) as R1, R2 and R3, Eqs. (6.4) are written in a matrix form ax = b as 
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 (6.5) 

where a = coefficient matrix; x = unknown vector consisting of variables at time step n+1; 

and b = known vector consisting of variables at time steps n and n–1. Then the coefficient 

matrix a in Eq. (6.5) is approximately split into two individual coefficient matrixes 

 aaa   (6.6) 

where aξ = coefficient matrix in the ξ-direction; aη = coefficient matrix in the η-direction. 

aξ and aη are in the following forms (Mitra & Rouleau, 1985) 
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Substituting Eq. (6.6) into Eq. (6.5), it becomes 

 bxaa =  (6.7) 

A two-step algorithm is used to determine the unknown variables pn+1, un+1 and vn+1 in the 

vector x. Firstly, they swept in the ξ-direction and solved Eq. (6.8) to get x*. 

 bxa
* =  (6.8) 

where x* = (p* n+1, u* n+1, v* n+1)T is an intermediate vector, in which p* n+1, u* n+1 and v* n+1 

are intermediate variables. Secondly, they swept in the η-direction and solved Eq. (6.9) 

to get the unknown vector x = (pn+1, un+1, vn+1)T. 

 *
xxa =  (6.9) 

In this way, the 2D problem is decomposed into two 1D problems, which reduces the 

computational burden. The spatial derivatives in aξ and aη of Eqs. (6.8) and (6.9) are 

approximated by the upwind scheme. 

 

The whole flow field is spatially discretized into I and J uniform sections in the ξ- and η- 

directions, respectively. Donating the known vector b on the right-hand side of Eq. (6.5) 

as b = (T1
n, T2

n, T3
n)T, for an arbitrary cross in the flow field (ξ, η) = (iΔξ, jΔη), Eq. (6.8) 

could be expressed as 
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where Δξ = spatial step in the ξ-direction; Δη = spatial step in the η-direction; i = i-th 

spatial step in the ξ-direction; and j = j-th spatial step in the η-direction. 

 

Similarly, for the cross located at (iΔξ, jΔη), Eq. (6.9) could be written as 
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Therefore, the governing equations at fixed (j, n+1) for all inner points along the ξ-

direction (i.e., i ranges from 2 to I–1) could be written in matrix form as AξX
*= B, where 

X* = [(u*n+1)1,j, (p
*n+1)1,j, …, (u*n+1)i,j, (p

*n+1)i,j, …, (u*n+1)I,j, (p
*n+1)I,j]

T = unknown vector; 

B = [(T1
n)2,j, (T2

n)2,j, …, (T1
n)i,j, (T2

n)i,j, …, (T1
n)I-1,j, (T2

n)I-1,j]
T = known vector; and Aξ is 

a coefficient matrix in the following form 
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 (6.12) 

where E = 2/3(Δτ/Δξ); and F = 1 + 2/3(Δτ/Δξ). 

 

Similarly, the governing equations at fixed (i, n+1) for all inner points along the η-

direction (i.e., j ranges from 2 to J–1) could be written in matrix form as AηX = X*, where 

X = [(vn+1)i,1, (p
n+1)i,1, …, (vn+1)i,j, (p

n+1)i,j, …, (vn+1)i,J, (p
n+1)i,J]

T = unknown vector; Aη is 

a coefficient matrix in the following form 
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 (6.13) 

where Z = 2/3(Δτ/Δη); Y = 1 + 2/3(Δτ/Δη); and Vj = 2/3(Δτ/(j–1)Δη). 

 

Although the 2D problem has been decomposed into two 1D problems, the original Mitra-

Rouleau scheme is still computationally intensive due to the complexity of the two 

coefficient matrixes in Eqs. (6.12) and (6.13). Moreover, it is not convenient and practical 

to capture detailed physics in the boundary layer near the pipe wall by uniform grids along 

the radial direction (i.e., from the pipe axis to the pipe wall) implemented in the original 

Mitra-Rouleau scheme. 

6.2.3 Modified Mitra-Rouleau Scheme 

Inspired by the previous work of Zhao and Ghidaoui (2003), the efficiency of the existing 

scheme for the full-2D model can be enhanced by transforming the original matrixes in 

Eqs. (6.12) and (6.13) to two tridiagonal matrixes in Eqs. (6.14) and (6.15), which can be 

solved by the lower-upper (LU) factorization method efficiently. Meanwhile, the non-

uniform computational grid (the grid size expressed as Δηj) is also implemented along the 

radial direction to enhance the efficiency and reliability of the numerical scheme. In 

general, the application cases in this chapter demonstrate that, for the same expected 

accuracy and computer environment, compared with the original scheme, only about 1/6 

of the CPU time and 1/2 of the computer memory are needed for the modified scheme.  
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 (6.15) 

where Wj = 2/3(Δτ/ηj) – 1 – 2/3(Δτ/Δηj); and Xj = 1 + 2/3(Δτ/Δηj) + 2/3(Δτ/ηj). 

6.2.4 Initial and Boundary Conditions 

Then the modified Mitra-Rouleau scheme is extended into a RPV experimental system 

(Fig. 6.1), with following initial and boundary conditions: 

 

 

Fig. 6.1. A reservoir-pipe-valve (RPV) experimental system. 

Initial Conditions 

The initial flow (τ = 0) in the pipe is a Poiseuille laminar flow. The initial values for the 

axial velocity u, radial velocity v and pressure p are given below 
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 ( )  K8;0;12 2 ==−= pvu  (6.16) 

The initial axial velocity profile along the pipe radius and the area-averaged velocity is 

plotted in Fig. 6.2. 

 

 

Fig. 6.2. The initial velocity profile (solid line) and area-averaged velocity (dashed line) for 

laminar pipe flows. 

Boundary Conditions 

The no-slip condition at the pipe wall (η = 1) is 

 
3;0;0 R

p
vu =




==


 (6.17) 

The symmetry condition at the pipe axis (η = 0) is 

 0;0;0 =



==







p
v

u  (6.18) 

The upstream reservoir (ξ = IΔξ) with constant pressure 
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Different Operations on the Downstream Valve 

To generate transients, the downstream valve is mainly operated in the following two 

patterns: 

 

(1) Sudden valve closure 

 ( )12 2 −= u  when τ = 0; 0=u  when τ > 0; 
2R

up
+




−=






 (6.20) 

(2) Valve oscillation with frequency fin 

 ( )  ( ) 12cos125.0 2 +−=  infu  when τ < τ0; 0=u  when τ > τ0; 
2R

up
+




−=






 (6.21) 

where τ0 = time duration of the valve oscillation. 
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6.3 Numerical Validation 

The validity of the present code is firstly examined by numerical data from Mitra and 

Rouleau (1985). Detailed system parameters of this numerical experiment are listed in 

Table 6.1. Note that the reflection-free condition is applied to the upstream boundary. An 

initial Poiseuille laminar flow in the pipe is stopped by a downstream valve (located at ξ 

= 0) closure with closing time τ0 = 0.4. The pressure history at the valve for three different 

radial points is plotted in Fig. 6.3. A good agreement can be observed between numerical 

data from the present code and Mitra and Rouleau (1985).  

 
Table 6.1. System parameters of the numerical experiment conducted by Mitra and Rouleau 

(1985). 

a0 (m/s) R (m) μ/ρ0 (m2/s) Re τ0 Δτ = Δξ = Δη 

1325 1.25e-02 3.97e-05 100 0.4 0.05 

 

 

The modified scheme is further extended into a classical RPV water hammer 

experimental system (Fig. 6.1). Initially, keeping the downstream valve fully open, a 

steady laminar flow with average axial velocity u0 is formed in the pipe. As mentioned, 

transients are caused by various operations on the downstream valve. 

 

 

Fig. 6.3. Pressure time-history at the downstream valve for three different radial points. 
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6.3.1 Grid Independence Tests 

In the modified Mitra-Rouleau scheme, uniform and non-uniform spatial grids are 

adopted in the ξ- and η- directions, respectively. In transient pipe flows, the high-

resolution grid is essential for the finite difference scheme to accurately calculate 

hydraulic variables. For this purpose, three different grid sizes, as shown in Table 6.2, are 

tested to verify the modified full-2D model, in which Nr is the number of non-uniform 

grid along the radial direction. The upstream boundary is a reservoir with constant 

pressure (i.e., Eq. (6.19)). 

 
Table 6.2. System parameters of numerical experiments for grid independent tests (Re = 

100). 

a0 (m/s) R (m) L (m) μ/ρ0 (m2/s) τ0 Nr 

1325 0.2 10 3.97e-05 0 50 

1325 0.2 10 3.97e-05 0 80 

1325 0.2 10 3.97e-05 0 100 

 

 

As shown in Fig. 6.1, transients are caused by a typical operation of sudden downstream 

valve closure. Pressure along the pipe radius (termed as radial pressure) is measured at 

the valve and the mid-length of the pipe. The area-averaged pressure traces are calculated 

and plotted in Fig. 6.4. As shown in Fig. 6.4, the pressure is normalized by the steady 

state pressure head at the downstream valve and the time is normalized by the system 

theoretical period Tth = 4L/a0. The pressure gets convergence as the mesh becomes finer. 

The result of Nr = 80 demonstrates sufficient accuracy; thus, it will be chosen as the 

computational grid in the numerical validation. 
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Fig. 6.4. Pressure time-history for various grid density at (a) the downstream valve; (b) the 

mid-length of the pipe. 

6.3.2 Numerical Validation 

The Zielke’s 1D analytical and quasi-2D models for transient laminar flows have been 

widely validated by experimental tests in the literature, for their capability of capturing 

area-averaged pressure head traces (Pezzinga, 1999; Vardy & Hwang, 1991; Zielke, 

1968). But the two-dimensionality of transient pipe flows has not yet well verified due to 

the difficulty of measuring two-dimensional data in experimental tests. Therefore, the 

modified full-2D model of this chapter is validated herein by the Zielke’s 1D model for 
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waves in transient laminar pipe flows are analyzed based on the validated full-2D model 

in the numerical applications. 

 

Transients are caused by a sudden and complete downstream valve closure. Radial 

pressure is measured at the valve and the mid-length of the pipe to calculate the area-

averaged pressure. The area-averaged pressure trace of the full-2D model is plotted in Fig. 

6.5. Good agreement between the full-2D model and the Zielke's 1D model in both 

pressure amplitude and pressure phase can be observed in Fig. 6.5. This demonstrates the 

validity of the present full-2D model for modeling transient laminar pipe flows. 

 

 

  

Fig. 6.5. Pressure time-history at (a) the downstream valve; (b) the mid-length of the pipe. 
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6.4 Generation Mechanism and Components of Radial Pressure Waves 

The validated full-2D model is applied to an RPV system (Fig. 6.1) to investigate the 

generation mechanism and components of radial pressure waves. Three tests are 

conducted, in which transients are caused by different operations on the downstream 

valve (specifically, sudden closure for Test 1, low frequency perturbation for Test 2, and 

high frequency perturbation for Test 3). The definitions of low frequency flow 

perturbation and high frequency flow perturbation are system dependent, which will be 

clarified later in the case study. For the study of urban water supply systems, the fluid 

used is water and the wave speed a0 is assumed to be 1485 m/s for relatively rigid pipes 

(Chaudhry, 2014). The initial condition in the pipe is a Poiseuille flow with Re = 100 (Eq. 

(6.16) and Fig. 6.2). 

 

However, as the increase of the incident wave frequency, the transient wavelength would 

be in the same order with (or even smaller than) the pipe radius. Therefore, the transient 

wave may propagate along the pipe radius, which means radial pressure profile becomes 

curved and radial pressure waves are generated.  

 

Because the following results involve high radial modes, there is a need to review related 

fundamental theory herein. Louati and Ghidaoui (2017b) showed that the radial wave 

number krm for a water-filled pipe can be determined by the no-flux boundary condition 

at the pipe wall J1(αrm) = 0, where αrm = krmR; J1 is the Bessel function of first kind of 

order 1. J1(αrm) = 0 gives αrm = 0, 3.83171, 7.01559, 10.17347, …, etc, then the radial 

wave number krm (krm = αrm/R) and cut-off frequency fm (fm = a0krm/2π) of the m-th radial 

mode can be calculated accordingly. The group velocity Vgm of m-th radial mode is given 

by Eq. (6.22) and the result for the test system in Table 6.3 is plotted in Fig. 6.6 (Louati 

& Ghidaoui, 2017b). For simplicity of illustration, these high radial modes are defined as 

mode 1 (M1), mode 2 (M2), etc., in the following study. 

 
( )

a

kaa
V rm

gm
/

/ 22



 −
=  (6.22) 
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Table 6.3. System parameters of three numerical applications (Re = 100). 

Test No. L/R a0 (m/s) μ/ρ0 (m2/s) τ0 Valve operation 

1 50 1485 1e-6 0 Sudden closure 

2 50 1485 1e-6 0.125Tth oscillation fin1 = 0.2fr 

3 50 1485 1e-6 0.125Tth oscillation fin2 = 1.0fr 

 

 

Fig. 6.6. Cut-off frequency (dashed line) and group velocity for each mode. 

6.4.1 Flow Perturbation by a Sudden Valve Closure 

For Test 1 in Table 6.3, transients are caused by a sudden and complete downstream valve 

(at ξ = 0) closure at time 0. The temporal variations of pressure at the valve for two radial 

locations, at the pipe axis paxis (at η = 0) and pipe wall pwall (at η = 1), are plotted in Fig. 

6.7. Note that the area-averaged pressure pavg at the valve is plotted for convenient 

comparison. To intuitively observe the spatial variation of pressure in the radial direction 

(validity of the plane wave assumption), the pressure difference Δp between the pipe axis 

and the pipe wall (Eq. (6.23)) is also plotted in Fig. 6.7. 

 wallaxis ppp −=  (6.23) 

Fig. 6.7 shows that the worst-case moment for the plane wave assumption (i.e., largest 

value of radial pressure difference Δp) is observed at time 0 when the valve is suddenly 

closed. The pressure at the pipe wall pwall remains 0.0 and the pressure at the pipe axis 

paxis leaps to its peak value of 2.0, which is twice the area-averaged pressure pavg. This is 
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due to the velocity profile of the initial Poiseuille laminar flow. As shown in Fig. 6.2, 

velocities at the pipe axis and the pipe wall as well as area-averaged velocity are 2, 0 and 

1, respectively. When the valve is closed at time 0, all the three velocities are reduced to 

0. Based on the normalized Joukowsky’s equation (Joukowsky, 1898), Δp = –Δu/u0, the 

paxis, pwall and pavg should become 2, 0 and 1, respectively. Because of the existence of the 

relatively large pressure variation within the pipe cross section, the radial flux (or radial 

velocity) is formed, so is the radial pressure waves. Afterwards, both pressure curves (paxis 

and pwall) fluctuate with decreasing amplitude due to the existence of the viscosity.  

 

 

Fig. 6.7. The temporal variations of pressure at the downstream valve. 

 

It is also noticed that no matter how the radial pressure changes at the valve, the area-

averaged pressure (black curve in Fig. 6.7) maintains the constant value of 1.0, which is 

exactly the equivalent pressure information that 1D and quasi-2D models can only obtain. 

The radial pressure profiles at nine time points (i.e., denoted as t1 ~ t9) within one period 

of the pressure fluctuation, as shown in the enlarged view of Fig. 6.7, are selected and 

plotted in Fig. 6.8(a). Fig. 6.8(a) shows that there are two pressure antinodes, where the 

radial pressure fluctuation has the maximum amplitude, locating at the pipe axis (at η = 

0.0) and pipe wall (at η = 1.0). Moreover, a pressure node is observed at η = 0.625, which 

agrees well with the theoretical result of the node location η ≈ 0.627 of M1 for this studied 

case (Louati & Ghidaoui, 2017b, 2017c).  
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Fig. 6.8. (a) Radial pressure profiles at nine time points within one period of the pressure 

fluctuation; (b) the pressure signal after valve closure in the frequency domain. 

 

To gain an insight into the components of radial pressure waves caused by a sudden valve 

closure, the time domain signal in Fig. 6.7 is transformed into the frequency domain by a 

fast Fourier transform (FFT) algorithm shown in Fig. 6.8(b). For clarity, the amplitude in 
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(i.e., 4528, 8291, 12022 and 15745 by Eq. (6.22)) (Louati & Ghidaoui, 2017b, 2017c). 
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the superposition of several radial standing waves. According to Fig. 6.8(b), most of the 

energy is distributed in the frequency mode of 4454 (i.e., M1), which also results in the 

pressure node location at η = 0.625. 

 

 

Fig. 6.9. The temporal variations of pressure at mid-length of the pipe. 
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and no localized high radial modes are excited. As shown in Fig. 6.9, this plane wave is 
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Fig. 6.10. The change of velocity profile (before and after the wave front) at mid-length of 

the pipe. 

6.4.2 Low Frequency Flow Perturbation by Valve Oscillations 

For Test 2 in Table 6.3, transients are generated by periodically oscillating the downstream 

valve (at ξ = 0). During this valve oscillation process, the axial velocity profile at the 
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induced flow perturbation (i.e., valve oscillation) frequency. The ratio of fin1 to fr is 0.2, 

i.e., fin1/fr = 0.2 < 1, which is defined as low frequency flow perturbation in this study. The 

duration of this perturbation process is 0.125Tth. 
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of Fig. 6.11, is plotted in Fig. 6.12(a). As is shown in Fig. 6.12(a), the pressure variation 

along the radial direction is quite evident. The pressure signal during the valve oscillation 

is transformed into the frequency domain in Fig. 6.12(b) by an FFT algorithm. The largest 
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M2 and M3 are also excited, but the energy carried by these high radial modes is relatively 

limited. 

 
Fig. 6.11. The temporal variations of pressure at the downstream valve. 

 

 

 

Fig. 6.12. (a) Radial pressure profiles at nine time points within one period of the valve 

oscillation; (b) the pressure signal during the valve oscillation in the frequency domain. 
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Similar to Test 1, according to Fig. 6.11, the plane wave assumption experiences the 

worst-case moment at time 0.125Tth when the valve is completely closed. The pressure at 

the pipe axis paxis reaches its maximum value of 2.0, which is twice the area-averaged 

pressure pavg. Afterwards, both local pressure curves (i.e., paxis and pwall) fluctuate 

periodically with amplitude damping. The pressure profiles for nine time points (i.e., t1 ~ 

t9) within one general fluctuation, as shown in the right enlarged view of Fig. 6.11, are 

selected and plotted in Fig. 6.13(a). It can be seen from Fig. 6.13(a) that the pressure node 

locates approximatively at η = 0.625. As is shown in Fig. 6.13(b), the pressure signal after 

the valve closure is also transformed into the frequency domain. Several high radial 

modes (i.e., M1, M2, M3 and M4) are motivated, but most of the energy is trapped in the 

M1, which can explain the location of the pressure node at η = 0.625 in Fig. 6.13(a). 

 

 
Fig. 6.13. (a) Radial pressure profiles at nine time points within one period of the pressure 

fluctuation after the valve closure; (b) the pressure signal after the valve closure in the 

frequency domain. 

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

(a)

Pressure (gh/a
0
u

0
)


 (

r/
R

)

 

 

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

1

10
2

10
3

(b)

Frequency (Hz)

A
m

p
li

tu
d

e

4590 (M1)

8370 (M2)

12150 (M3)

15800 (M4)

η = 0.625 



Chapter 6 Range of Validity of the Developed Theory and Radial Wave Behavior in Water Pipes 

 

 
 

147 
 

 

Fig. 6.14 shows the temporal variations of pressure at the mid-length (i.e., ξ = 25) of the 

pipe. Similar with Test 1, no localized high radial modes are excited because the passage 

of the wave front uniformly changes the velocity profile along the pipe radius (like Fig. 

6.10). According to Fig. 6.14, the signal, ranging from 0.125Tth to 0.25Tth, corresponding 

to valve-induced flow perturbation becomes a plane wave. This could be attributed to the 

relatively limited energy carried by the high radial modes, with an order of 100 in 

comparison with the case of valve oscillation with an order of 103 (see Fig. 6.12(b)). 

 

 

Fig. 6.14. The temporal variations of pressure at mid-length of the pipe. 

6.4.3 High Frequency Flow Perturbation by Valve Oscillations 

For Test 3 in Table 6.3, the generation mechanism of transients is the same as Test 2 (i.e., 

periodic oscillation of the downstream valve), but with a relatively high frequency. The 

axial velocity profile at the valve is given by u2 = 0.5·[2(η2–1)]·[cos(2πfin2τ)+1], where 

fin2 is the valve oscillation frequency. In Test 3, fin2 equals to the radial wave frequency fr, 

i.e., fin1/fr = 1, which is defined as high frequency flow perturbation in this study. The time 

duration of the valve operation is 0.125Tth. 
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Fig. 6.15. The temporal variations of pressure at the downstream valve. 

 

The variations of pressure with time at the valve are plotted in Fig. 6.15. According to 

Fig. 6.15, the pressure difference (Δp) between the pipe axis and the pipe wall is much 

larger than that of Test 2. One reason for this is that the valve oscillation frequency (fin2) 

is comparable to the radial wave frequency (fr). Within one period of valve oscillation, 

there is no enough time for the radial wave to influence the whole pressure profile across 

the pipe cross section. Again, the radial pressure profiles for nine time points (i.e., t1 ~ t9), 

within one general period of valve oscillation, as shown in Fig. 6.15, are plotted in Fig. 

6.16(a). This result shows that the pressure node and antinode locate at the pipe wall (η = 

1.0) and pipe axis (η = 0.0), respectively. This can also be attributed to the relative high 

frequency of valve oscillation compared with the radial wave frequency (fr). The pressure 

signal during the valve oscillation is transformed into the frequency domain (Fig. 6.16(b)) 

by an FFT algorithm. It is shown in Fig. 6.16(b) that most of the energy is distributed in 

the frequency of valve oscillation (i.e., 7425 Hz). Although the energy trapped in high 

frequency modes is still relatively limited, the value is now much larger than that of the 

Test 2. 
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Fig. 6.16. (a) Radial pressure profiles at nine time points within one period of the valve 

oscillation; (b) the pressure signal during the valve oscillation in the frequency domain. 

 

In this test case, the valve is completely closed at time 0.125Tth. Unlike Test 1 and Test 2, 

both pressure curves (paixs and pwall) fluctuate disorderly after the complete valve closure 

as shown in Fig. 6.15. The pressure profiles for nine time points within one general period, 

as shown in the enlarged view of Fig. 6.15, after the valve closure are plotted in Fig. 

6.17(a). According to Fig. 6.17(a), it indicates that two pressure nodes (i.e., around η = 

0.35 and 0.80) exist along the radial direction, which are close to the theoretical pressure 

node locations of M2 (i.e., η ≈ 0.343 and 0.787) (Louati & Ghidaoui, 2017b). To explore 

the components of radial pressure waves in Fig. 6.17(a), the pressure signal after the valve 

closure is transformed into the frequency domain and plotted in Fig. 6.17(b). The obtained 
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result reveals that several high radial modes (i.e., M1, M2, M3 and M4) are excited. 

Moreover, the amplitude of M2 is comparable to the amplitude of M1. In other words, 

the energy almost trapped equally in M1 and M2. Therefore, both M1 and M2 are 

dominant among high radial modes. This can explain the disorder of both pressure curves 

(paxis and pwall) in Fig. 6.15 after the complete valve closure under the condition of high 

frequency valve oscillation. 

 

 

 

Fig. 6.17. (a) Radial pressure profiles at nine time points within one period of the pressure 

fluctuation after valve closure; (b) the pressure signal after the valve closure in the 

frequency domain. 

 

The temporal variations of pressure at mid-length of the pipe (i.e., at ξ = 25) are plotted 

in Fig. 6.18. Similar with Test 1 and Test 2, no localized high radial modes are excited. 
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However, the amplitude of the radial pressure waves, coming from the downstream valve, 

is larger than that of the Test 1 and Test 2. This is because more energy is distributed into 

the high radial modes, which are now in an order of 101 or 102 for Test 3 in Fig. 6.16(b), 

during the valve oscillation. 

 

 

Fig. 6.18. The temporal variations of pressure at mid-length of the pipe. 
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6.5 Discussion and Implications 

The results and findings above demonstrate that radial pressure waves can be excited by 

different operations on the downstream valve. A recent research conducted by Louati and 

Ghidaoui (2017b) has observed that radial pressure waves cannot be excited if the wave 

generator has the same size with the pipe diameter. This is due to the inviscid and initially 

stagnant flows considered in (Louati & Ghidaoui, 2017b). Under such idealized flow 

conditions, if the transient source size equals to the pipe diameter, the generated transient 

pressure will be independent of the pipe radius and propagate as a plane wave (M0). 

However, another generating mechanism of radial pressure waves has been identified for 

viscous and initially non-static flows in the present chapter, even though the downstream 

valve, having the same size with the pipe diameter, is used as the transient generator. That 

is, the non-uniform change in the initial velocity profile forms pressure gradients along 

the radial direction, which thereafter becomes the driving force of the formation of radial 

flux and radial pressure waves during a transient flow process. In practical urban water 

supply systems, flows usually distribute with certain axial velocity profiles along the 

radial direction; thus, radial pressure waves caused by the non-uniform change in initial 

velocity profiles could occur and should also be considered in applications. 

 

Furthermore, it has also shown that radial pressure waves may have different behavior 

under different transient generation conditions (i.e., valve operations). Specifically, for 

Test 1 with the typical operation of a sudden and complete valve closure, high radial 

modes can be excited and most of the energy is carried by M1. As a result, a pressure 

node exists at η = 0.625 along the radial direction, which is useful to the better selection 

of pressure measurement locations during practical transient applications. For Test 2, 

during the relatively low frequency flow perturbation, the dominant energy is carried 

exactly by the valve oscillation (flow perturbation) frequency. After the complete valve 

closure at time 0.125Tth, the amplitude of each excited high radial mode stays almost the 

same with Test 1. This implies that the valve oscillation with a low frequency of fin1 (e.g., 

fin1 = 0.2fr in this chapter) has a limited influence on the energy distribution among high 
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radial modes. In Test 3, which is used for investigating the relatively high frequency flow 

perturbation, most of the energy is carried by the perturbation frequency during the valve 

oscillation. This is similar with Test 2. However, after the complete valve closure at time 

0.125Tth, the amplitude of M2 is almost identical to the M1 (see Fig. 6.17(b)), which 

indicates that the valve oscillation with the frequency of fin2 (i.e., fin2 = 1.0fr) redistributes 

the energy among different high radial modes. Moreover, the pressure amplitude 

measured at the mid-length of the pipe is larger than that of Test 1 and Test 2. 

 

The obtained results have also demonstrated that the maximum pressure (especially the 

local pressure at the pipe axis), caused by the fast valve closure or high frequency valve 

oscillation, can be much larger than the maximum pressure predicted by the 1D and quasi-

2D models where a plane wave assumption is imposed. For viscous laminar pipe flows, 

the axial velocity is distributed parabolically along the radial direction (i.e., Fig. 6.2) 

because of the no-slip boundary condition. The maximum velocity occurs at the pipe axis 

and it is twice the area-averaged velocity. The present full-2D model can give the true 

localized pressure variation along the radial direction. However, the pressure in the 1D 

and quasi-2D models can only be obtained from a perspective of the area-averaged 

quantity. Therefore, the traditional 1D and quasi-2D models might underestimate the 

destructive effects of the water hammer due to neglecting the influence of radial pressure 

waves during the complex transient process. 

 

Consequently, the development and results of the efficient full-2D model in this chapter 

are useful to: (i) investigate the validity frequency range of the plane wave assumption; 

(ii) observe the radial pressure wave behavior in water pipes; and (iii) design qualified 

pipes and related accessories for pipe system safety with regard to the pressure prediction. 
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6.6 Summary 

This chapter investigates systematically: (i) the validity frequency range of the plane 

wave assumption; and (ii) the radial pressure wave behavior in transient laminar flows 

under different flow perturbations. First, the inefficiency problem of the current full-2D 

model has been addressed by proposing a more efficient numerical scheme. The modified 

efficient full-2D model is extended into an RPV system to simulate a whole water hammer 

process, which is validated by the Zielke’s 1D analytical model. With the efficient full-

2D model, the generation mechanism and components of radial pressure waves excited 

by different valve operations are investigated systematically. 

 

The obtained results demonstrate that the plane wave assumption is valid if the incident 

wave frequency is lower than the cut-off frequency of M1 (i.e., radial mode 1). Radial 

pressure waves can be induced from the non-uniform change in the initial velocity profile 

under valve operations, which forms pressure gradients along the radial direction. After 

transient generation, the existence of radial pressure gradients becomes the driving force 

of the formation of radial flux and radial pressure waves. This formation mechanism and 

results should be considered and included in the practical transient analysis, since the 

flows in practical water piping systems are usually viscous and non-static. The results 

analysis also reveals that the generated radial pressure waves are composed of different 

high radial modes. Moreover, the valve-induced flow perturbations (with different 

frequencies) may influence the energy distribution among different high radial modes. 

Specifically, the results of this chapter indicate that most of the energy is carried by M1 

for cases of flow perturbations by sudden valve closure and low frequency valve 

oscillation, while for high frequency flow perturbation, the energy is almost entrapped 

equally in M1 and M2. 

 

From the results and findings of this chapter, it is demonstrated that the developed 

efficient full-2D model has made it possible to understand: (i) the validity range of the 

plane wave assumption; and (ii) the radial pressure wave behavior in transient laminar 
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pipe flows. It is also noted that only initial laminar flows and valve-based transient 

excitation techniques are considered in this chapter; thus, further investigations will be 

required for turbulent flows and other complex transients in future work.
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CHAPTER 7 CFD VALIDATION OF THE DEVELOPED 

THEORY6 

 

 

7.1 Introduction 

In previous chapters (Che et al., 2018b; Che et al., 2019c), the author investigated the 

influence of various non-uniform blockages in water pipes on transient frequency 

responses. It was found that the resonant frequency shifts induced by non-uniform 

blockages have totally different patterns from that of uniform blockages. Specifically, the 

frequency shifts induced by non-uniform blockages become less evident for higher 

harmonics. Afterwards, the physical mechanism of this pattern is interpreted from an 

energy perspective (Che et al., 2019c). It turns out that the impedance of non-uniform 

blockages is frequency dependent, which becomes smaller for higher frequency incident 

waves. This means non-uniform blockages have a less blocking effect on the propagation 

of high frequency waves; thus, the frequency shifts induced by non-uniform blockages 

become less evident. 

 

However, these studies are only numerically validated by the one-dimensional (1D) water 

hammer model, which is mainly solved by the fixed-grid method of characteristics (MOC) 

(Chaudhry, 2014; Wylie et al., 1993). As discussed in Chapter 3, several assumptions are 

inherent in the 1D water hammer model. In addition, the pipe radius of the non-uniform 

blockage section varies along the axial direction, so does the transient wave speed 

(Chaudhry, 2014; Ghidaoui et al., 2005). In previous chapters (Che et al., 2018b; Che et 

al., 2019c), to use the fixed-grid MOC, the varying wave speed is assumed to be the 

average wave speed within the non-uniform blockage section. These assumptions may 

 
6 This chapter is adapted from the research paper of the author and his co-authors (Che et al., 2019b). 
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deviate the numerical results from the real situations. The sole criterion of the validity of 

the developed theory in previous chapters (Che et al., 2018b; Che et al., 2019c) is the 

experiment. But the developed theory has not yet well verified experimentally due to the 

difficulty of constructing perfectly exponential (or linear) non-uniform blockages in 

laboratories. As an alternative, the computational fluid dynamics (CFD) model coupled 

with user-defined functions (UDFs) relaxes these assumptions and makes it possible to 

validate the developed theory under more realistic and complex conditions. 

 

This chapter aims to further validate the theory developed in previous chapters (Che et 

al., 2018b; Che et al., 2019c) by the CFD model coupled with UDFs. The 2D 

axisymmetric Navier-Stokes equations are first applied into a reservoir-pipe-valve (RPV) 

system (i.e., a bounded system) to simulate the whole process of a water hammer event, 

which is validated by the well-established Zielke’s 1D analytical model (Zielke, 1968). 

Afterwards, the 2D CFD model is applied to different pipe systems with non-uniform 

blockages to validate: (i) the theoretical resonant frequency shifts induced by non-

uniform blockages in bounded pipe systems; and (ii) the theoretical energy transmission 

coefficient through non-uniform blockages in unbounded pipe systems. Transients are 

introduced into different pipe systems by different transient excitation techniques at the 

downstream boundary. 
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7.2 CFD Setup and Numerical Procedure 

7.2.1 Governing Equations 

2D Navier-Stokes Equations 

In ANSYS Fluent, the governing equations for all flows are derived from the fundamental 

conservation principles of mass, momentum, and energy. The temperature variation 

during transients is assumed to be negligible due to the high specific heat capacity of 

water (Saemi et al., 2018). Therefore, the 2D conservative form Navier-Stokes equations 

for a Newtonian fluid (e.g., water) in an axisymmetric non-rotating flow field, expressed 

in a cylindrical coordinate system, are 
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where Eqs. (7.1a), (7.1b), and (7.1c) are the conservation equations of mass, axial 

momentum, and radial momentum, respectively; t = time; x = axial coordinate along the 

pipe axis; r = radial coordinate from the pipe axis; ρ = density of water; u = axial velocity; 

v = radial velocity; p = pressure; μ = dynamic viscosity; Fx = body force along x; Fr = 

body force along r; and ∇·u = ∂u/∂x + ∂v/∂r + v/r. 
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Modification of Water Bulk Modulus 

In pressurized elastic water pipes, the general expression of the transient wave speed is 

(Ghidaoui, 2004; Ghidaoui et al., 2005) 

 
2

1 d dS

a dp A dp

 
= +  (7.2) 

where a = transient wave speed; and S = pipe cross-sectional area. 

 

It is observed in Eq. (7.2) that two main factors contribute to the transient wave speed: (i) 

the first term on the right-hand side represents the water compressibility; and (ii) the 

second term represents the effect of pipe wall deformability. By relating these two terms 

on the right-hand side of Eq. (7.2) to the material properties of water and to the material 

and geometrical properties of pipes, which are anchored against longitudinal movement 

throughout their lengths, Eq. (7.2) becomes (Chaudhry, 2014; Ghidaoui et al., 2005) 

 
( )( ) ( )21 / / 1

K
a

K E D e 
=

 + −
 

 (7.3) 

where K = bulk modulus of elasticity of water; E = Young’s modulus of elasticity of the 

pipe wall; D = pipe diameter, which depends on x (i.e., D(x)) for pipes with non-uniform 

blockages; e = pipe wall thickness; and ν = Poisson ratio.  

 

In ANSYS Fluent, the 2D model in Eq. (7.1) considers the water compressibility as K = 

dp/(dρ/ρ). However, it does not take account of the effect of material (e.g., pipe wall 

deformability along r) and geometrical (e.g., pipe diameter variation along x) properties 

of pipes on the transient wave speed, which means the pipe wall is considered as a rigid 

boundary (i.e., E = ∞) (Martins et al., 2016). Therefore, the transient wave speed in Eq. 

(7.3) is simplified into a = (K/ρ)1/2. 

 

To include the effect of pipe wall elasticity and pipe diameter variation on the transient 

wave speed, the bulk modulus of water is artificially modified in UDFs of density and 

wave speed, as shown in Eq. (7.4) (Saemi et al., 2018, 2019).  
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where K′ = modified bulk modulus of water; and ath = theoretical transient wave speed in 

elastic pipes. 

 

In this way, the obtained modified transient wave speed in Eq. (7.5) is equivalent to the 

one considering physical properties of both water and pipe walls. 

 
K

a



=  (7.5) 

7.2.2 Numerical Settings 

As shown in Fig. 7.1, the simulation of transient pipe flows using ANSYS Fluent is an 

interactive step-by-step process, which includes three main stages: (i) pre-processing; (ii) 

simulation; and (iii) post-processing (Martins et al., 2014). By taking the example of an 

intact RPV system, as shown in Fig. 7.2, the main procedures in the pre-processing stage 

are described in this section (i.e., Section 7.2.2). 

 

 

Fig. 7.1. An interactive step-by-step process for simulating transient pipe flows. 
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Fig. 7.2. An intact reservoir-pipe-valve (RPV) system. 

Geometry Creation and Mesh Generation 

Detailed parameters of the intact RPV system in Fig. 7.2 are listed in Table 7.1, where a0 

= transient wave speed in intact pipes; Re = Reynolds number. ANSYS Design Modeler 

is used to draw a 2D axisymmetric pipe with a total length L = 42 m and an inner radius 

R = 0.0362 m. To solve the governing equations (i.e., Eq. (7.1)), which are a set of partial 

differential equations (PDEs), the interior geometric domain of the 2D pipe needs to be 

spatially discretized into a number of small simple shapes, resulting in meshes. These 

meshes are generated by ANSYS Fluent Meshing. As shown in Fig. 7.3, to capture more 

detailed physical phenomena near the pipe wall (e.g., wall shear stress), non-uniform 

meshes are adopted in the radial direction. The growth rate of the mesh size ∆r along the 

radial direction ranges from 1.05 to 1.10 for different tests in the intact pipe system. In 

addition, meshes are uniformly distributed along the axial direction with different mesh 

size ∆x in different tests. The propagation of transient wave in the radial direction can be 

neglected due to the plane wave assumption. Therefore, the time step ∆t in the simulation 

of transient pipe flows can be determined by the Courant-Friedrichs-Lewy (CFL) 

condition, which mainly depends on the axial grid size ∆x and the maximum transient 

wave speed amax. Therefore, the original form PDEs are transformed into their discretized 

form in the space-time field with certain grid and time steps, respectively. 

 
Table 7.1. System parameters of the intact reservoir-pipe-valve (RPV) system. 

a0 (m/s) R (m) L (m) μ/ρ (m2/s) Re 

1218.86 0.0362 42 1e-6 1670 
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Fig. 7.3. Uniform and non-uniform meshes along the axial and radial directions. 

Initial and Boundary Conditions 

For each mesh point in 2D transient pipe flows, three unknowns (e.g., p, u, and v) need 

to be solved. To close the discretized form PDEs in the whole space-time field, 

appropriate initial and boundaries conditions should be specified. As shown in Fig. 7.2, a 

classical RPV water hammer experimental systems is adopted in this study to simulate 

transient pipe flows. The pipe used in this RPV system is made of stainless steel. The 

boundary condition at the wall is described by the “no-slip condition” and the flow field 

in the pipe is assumed to be axisymmetric. A reservoir, whose pressure head remains 

constant during transient events, is installed at the upstream end of the pipe. The 

downstream end of the pipe is bounded by an inline valve, which can be appropriately 

adjusted to form an initial steady flow (i.e., Poiseuille laminar flow) in the RPV system.  

 

To induce transients into the RPV system, various operations on the downstream valve 

can be taken, such as: (i) a sudden and complete closure of the downstream valve (Al-

Khomairi, 2008; Ferrante et al., 2009a; Kim, 2005; Meniconi et al., 2011c); (ii) a 

“closure-open-closure” operation on the downstream valve (Duan et al., 2011a, 2012a); 

and (iii) a specific oscillation pattern of the downstream valve (e.g., a Gaussian-

modulated sinusoidal pulse) (Che et al., 2019c; Louati & Ghidaoui, 2017b). More detailed 

information about these operations will be discussed in the following sections. 

  

Pipe wall 

Pipe axis x 
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Numerical Scheme 

The discretization method used in ANSYS Fluent is the finite volume method (FVM), 

which solves the governing equations in a conservative form and guarantees the 

conservation of fluxes through a specific control volume. Due to the relative low Mach 

number of transient flows in the RPV system, the pressure field is determined by the 

Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm, which is a 

pressure-based segregated algorithm (Ferziger & Peric, 2001; Patankar, 1980). The non-

linear governing equations Eq. (7.1) are solved iteratively and the convergence criterion 

(i.e., the residual error) is chosen as 10−6. 
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7.3 Model Validation 

7.3.1 Steady State Velocity Profile 

As shown in Fig. 7.2, initially, the downstream valve is kept fully open to form a steady 

laminar pipe flow in the RPV system. In the fully developed region of the laminar pipe 

flow, the axial velocity profile u(r) keeps the same along the flow direction (i.e., the axial 

direction). The theoretical velocity profile of this fully developed laminar flow is given 

in Eq. (7.6) (Çengel & Cimbala, 2006), which is a parabolic profile (i.e., Hagen-Poiseuille 

flow), with the maximum velocity (i.e., 2u0) at the pipe axis and minimum velocity (i.e., 

0) at the pipe wall. 

 ( )
2

0 2
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u r u
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= − 
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where u0 = initial average axial velocity. 

 

Velocity profiles from both full-2D numerical simulation and the exact solution in Eq. 

(7.6) are compared and plotted in Fig. 7.4. The axial velocity u is normalized by u0 and 

plotted as u* in the x-axis. The distance from the pipe axis r is normalized by R and plotted 

as r* in the y-axis. A good agreement between the numerical and analytical results can be 

observed in Fig. 7.4, which confirms the validity of the obtained numerical results and 

related CFD settings. 

 

 

Fig. 7.4. Comparison between the simulated and the exact velocity profiles. 
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7.3.2 Mesh Independence Tests 

In the numerical simulation, as shown in Fig. 7.3, uniform and non-uniform meshes are 

adopted in the x- and r-directions, respectively. In transient pipe flows, the accuracy of 

the calculated hydraulic variables greatly depends on the mesh density within the fluid 

domain. Fine meshes generally result in more accurate results but need more 

computational resources (i.e., low efficiency) (Martins et al., 2016); thus, there should be 

a trade-off between computational accuracy and efficiency. For this purpose, three tests 

with different mesh density, as shown in Table 7.2, are conducted to select the relatively 

optimal mesh density, which is used to conduct further numerical experiments. Table 7.2 

indicates that the numbers of spatial mesh node of the coarse, medium, and fine tests are 

0.21e5, 0.67e5, and 2.1e5, respectively. 

 
Table 7.2. Various mesh density used in mesh independence tests. 

 Nr ∆x (m) ∆t (s) 

Coarse mesh 50 0.10 6.70e-5 

Medium mesh 80 0.05 3.35e-5 

Fine mesh 100 0.02 1.34e-5 

 

 

As shown in Fig. 7.2, transients are caused by a sudden and complete closure of the 

downstream valve. Two pressure transducers are installed at the valve and the mid-length 

of the pipe to measure the pressure near the pipe wall (i.e., at r = R). The obtained 

pressure-time histories are plotted in Fig. 7.5. The time t is normalized by the fundamental 

period of the RPV system (i.e., 4L/a0) and plotted as t* in the x-axis. The pressure p is 

normalized according to (p − p0)/(ρa0u0), where p0 = initial pressure in the pipe, and 

plotted as p* in the y-axis. It is observed in Fig. 7.5 that the result gradually converges as 

the increase of the mesh density. In addition, there is no visible difference between the 

pressure-time histories calculated by medium and fine meshes; thus, the medium mesh is 

chosen in the numerical validation. 
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Fig. 7.5. Pressure time histories of various mesh density at (a) the downstream valve; and 

(b) the mid-length of the pipe. 

7.3.3 1D Numerical Validation 

The present full-2D model is validated by the well-established Zielke’s 1D analytical 

model, which has been widely validated by experimental tests in the literature (Zielke, 

1968). As shown in Fig. 7.2, transients are caused by a sudden downstream valve closure. 

The pressure is measured at both the valve and mid-length of the pipe, which is plotted 

in Fig. 7.6. Fig. 7.6 indicates good agreement between the present full-2D model and the 

Zielke’s 1D analytical model in terms of both pressure amplitude and phase. This 
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confirms the validity of the full-2D model and numerical settings for modeling transient 

pipe flows. 

 

 

 

Fig. 7.6. Validation of pressure time histories at (a) the downstream valve; and (b) the mid-

length of the pipe. 
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7.4 Validation of the Developed Theory by Numerical CFD Experiments 

7.4.1 Energy Transmission Coefficients of Transient Waves through Non-uniform 

Blockages 

To validate the energy transmission coefficient of transient waves through non-uniform 

blockages in Eq. (7.7), which is derived in Chapter 5 (Che et al., 2019c), the CFD model 

in Section 7.3 is applied to an unbounded pipe system with non-uniform blockages. As 

shown in Fig. 7.7, the unbounded pipe system has two anechoic boundaries (i.e., the 

upstream and downstream boundaries) and is blocked by non-uniform blockages. The 

incident wave is generated by the downstream generator and the transmitted wave through 

non-uniform blockages is measured by the wave receiver located at the upstream end. 

The transient wave speed varies along the axial direction of the pipe due to the change of 

the pipe diameter, which is calculated by Eq. (7.5) and plotted in Fig. 7.8. More detailed 

parameters of the pipe system are listed in Table 7.3, where RC = pipe radius at Junction 

C; andab = average wave speed within the blockage section.  

 

2

* *
* *0 21 0 12
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2tr
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= =
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 (7.7) 

where TC = energy transmission coefficient; Wtr = energy flow (i.e., power) transmitted 

through the non-uniform blockages; Win = energy flow incident on the non-uniform 

blockages; g = gravitational acceleration; S0 = cross-sectional areas at two boundaries A 

and E in Fig. 7.7; and Uij
* = elements of the system overall transfer matrix in Eq. (7.8). 

The transfer matrix is the linearized counterpart of the 1D water hammer model in the 

frequency domain. It describes the wave behavior and connects state vectors at two 

boundaries of the pipe system without discretization of the pipe in space (Che et al., 

2018b).  
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where subscripts A and E = locations of the upstream and downstream boundaries; q = 

discharge deviation in the frequency domain; and h = pressure head deviation in the 

frequency domain. 

 

 

Fig. 7.7. An unbounded pipe system containing a symmetrical linear non-uniform blockage 

(with a wave generator and a wave receiver). 

 

  

Fig. 7.8. Distribution of the transient wave speed along the axial direction of the pipe. 

 
Table 7.3. Parameters of the unbounded pipe system. 

Blockage type l1 (m) l2 (m) l3 (m) l4 (m) R (m) RC (m) a0 (m/s) ab (m/s) 

linear non-uniform 21.9 1.05 1.05 21 0.0362 0.02172 1218.86 1262.95 

 

 

The incident wave generated at the downstream end is a Gaussian-modulated sinusoidal 

pulse (UDFs) governed by Eq. (7.9). Fig. 7.9 illustrates the input pulse in both time and 

frequency domains. As introduced in Chapter 5 (Che et al., 2019c), this pulse has two 

main features: (i) most energy of this pulse is distributed at its central frequency ωc; and 

(ii) the frequency bandwidth of the incident wave can be easily determined by adjusting 

the value of β. 
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 (7.9) 

where pin = incident wave pressure at the generator; ωc = angular central frequency of the 

incident wave; α = a coefficient that determines the amplitude of the incident wave; and 

β = a coefficient that determines the frequency bandwidth of the incident wave. 

 

 

 

Fig. 7.9. Input pulse in the (a) time domain; and (b) frequency domain. 

 

The incident wave generated at the downstream end and the transmitted wave measured 

by the upstream wave receiver are plotted in Fig. 7.10. The pressure p is normalized 

according to (p－p0)/αp0 and plotted as p* in the y-axis.  
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As shown in Fig. 7.10(a), a considerable portion of the energy carried by the incident 

wave cannot be transmitted to the upstream wave receiver. The energy losses can be 

attributed to two main sources: (i) the friction occur in the pipe; and (ii) the reflection 

from the non-uniform blockage. The time domain signals in Fig. 7.10(a) are further 

transformed into the frequency domain in Fig. 7.10(b). The frequency is normalized by 

the fundamental frequency of the non-uniform blockage ( )32 / 2ba l  (Che et al., 2019c) 

and plotted as ω*. Fig. 7.10(b) indicates that the normalized central frequency ωc
* of the 

incident wave is 0.5. According to the theoretical energy transmission coefficient TC 

curve (i.e., the solid curve) in Fig. 7.11, at ω* = 0.5, the percentage of the energy 

transmitted through the non-uniform blockage is relatively low. This is one reason for the 

considerable portion of energy losses observed in the time domain. Based on Eq. 7.10 

(Che et al., 2019c), the transmission coefficient of the numerical CFD results equals to 

0.60, which means only 60% of the energy carried by the incident wave is transmitted to 

the upstream receiver.  

 

2

tr
C

in

M
T

M
=  (7.10) 

where Mtr = amplitude of the transmitted wave in the frequency domain; and Min = 

amplitude of the incident wave in the frequency domain. 

 

As shown in Fig. 7.11, two more points (i.e., at ωc
* = 0.8, and 1.0) on the energy 

transmission coefficient TC curve are further illustrated and analyzed in detail. Fig. 7.10 

indicates that as the central frequency of the incident wave ωc
* grows from 0.5 to 1.0, the 

amplitude of the transmitted wave gradually increases, which means more energy carried 

by the incident wave is transmitted through the non-uniform blockages. This growing 

trend can be explained by Bragg’s law in Chapter 5 (Che et al., 2019c). As shown in Fig. 

7.7, at most incident frequencies, the reflected waves from the continuous constriction 

(i.e., between Junctions C and D) and the continuous expansion (i.e., between Junctions 

B and C) would not experience constructive interference, because these reflected waves 
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would be out of phase, cancelling part of the energy out. However, when the incident 

wave frequency equals to the minimum destructive interference frequency of the non-

uniform blockages (i.e., at ωc
* = 1.0), the reflected waves would be completely out of 

phase, cancelling each other out (i.e., minimum reflection). In this situation, the incident 

wave has the maximum transmission. Theoretically, at ωc
* = 1, all the energy carried by 

the incident wave should be transmitted to the wave receiver, but the calculated energy 

transmission coefficient TC from the numerical CFD results is 0.91. This is because of the 

frictionless pipe system adopted in the derivation of the theoretical energy transmission 

coefficient in Eq. (7.7). 

 

In addition, more points on the theoretical energy transmission coefficient TC curve are 

tested by the CFD model and the calculated TC is plotted in Fig. 7.11. It is observed in 

Fig. 7.11, the TC at ωc
* = 1.5 is apparently higher than that at ωc

* = 0.5. This is because 

the impedance of non-uniform blockages is frequency dependent, which becomes smaller 

for higher frequency incident waves. This means non-uniform blockages have a less 

blocking effect on the propagation of high frequency incident waves (Che et al., 2019c). 

Fig. 7.11 also indicates that the theoretical TC may overestimate the energy transmitted 

through the non-uniform blockages. These discrepancies between the theoretical and 

numerical TC can be attributed to the energy dissipation caused by friction as the wave 

travels in the pipe system. However, the overall pattern of the numerical TC agrees well 

with the theoretical TC, which confirms the validity of the physical interpretations of the 

non-uniform blockage induced resonant frequency shift pattern in Chapter 5 (Che et al., 

2019c).  
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Fig. 7.10. (Part 1) Measured pressure signals in the time domain at (a) ωc
* = 0.5, (c) ωc

* = 

0.8, (e) ωc
* = 1.0; and corresponding pressure signals in the frequency domain at (b) ωc

* = 

0.5, (d) ωc
* = 0.8, (f) ωc

* = 1.0. 
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Fig. 7.10. (Part 2) Measured pressure signals in the time domain at (a) ωc
* = 0.5, (c) ωc

* = 

0.8, (e) ωc
* = 1.0; and corresponding pressure signals in the frequency domain at (b) ωc

* = 

0.5, (d) ωc
* = 0.8, (f) ωc

* = 1.0. 
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Fig. 7.11. Numerical validation of the theoretical energy transmission coefficient TC. 

7.4.2 Resonant Frequency Shift Pattern Induced by Non-uniform Blockages in 

Bounded Pipe Systems 

To validate the derived resonant frequency shift induced by non-uniform blockages in a 

bounded pipe system, as shown in Fig. 7.12, the full-2D CFD model is applied into an 

RPV system. Non-uniform blockages in the RPV system is represented by stainless steel 

pipe sections with linearly varying diameters. More detailed parameters of the RPV pipe 

system are listed in Table 7.4.  

 

 

Fig. 7.12. Reservoir-pipe-valve (RPV) system with non-uniform blockages. 

 
Table. 7.4. Parameters of the reservoir-pipe-valve (RPV) system. 

Pipe system l1 (m) l2 (m) l3 (m) l4 (m) R (m) RC (m) a0 (m/s) ab (m/s) 

bounded 12.6 4.2 4.2 21 0.0362 0.02172 1218.86 1262.95 

 

Initially, the downstream valve is kept fully closed to form a static flow in the pipe. 

Transients are introduced into the pipe system by a “closure-open-closure” operation 
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(UDFs) on the downstream valve (i.e., a discharge pulse) as illustrated in Fig. 7.13. The 

time domain pressure response is measured at the downstream valve and plotted in Fig. 

7.14. 

 

 

Fig. 7.13. Discharge variation given at the downstream valve. 

 

 

Fig. 7.14. Pressure time history measured at the downstream valve. 

 

Based on the measured discharge (i.e., input) and pressure (i.e., output) variations at the 

downstream valve, the frequency response function (FRF) (see Section 2.3.2) of the pipe 

system is calculated according to Eq. (7.11) (Lee et al., 2006b) and plotted in Fig. 7.15. 
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where FRF(ω) = frequency response function; Sxy(ω) = Fourier transform of the cross-

correlation between the input (x) and the output (y); and Sxx(ω) = Fourier transform of the 

autocorrelation of the input. 

 

 

Fig. 7.15. Frequency response function of the blocked pipe system. 

 

As shown in Fig. 7.15, the presence of non-uniform blockages induces evident frequency 

shifts on the resonant peaks of the FRF. To confirm the validity of the derived resonant 

frequency shift induced by non-uniform blockages in Chapter 4 (Che et al., 2018b), the 

frequency shifts ∆ωm
* (see Eq. (7.12)) of the first 20 resonant peaks from both analytical 

and numerical CFD results are extracted and plotted in Fig. 7.16. The theoretical 

frequency shifts are obtained by the transfer matrix method (Che et al., 2018b), in which 

the transient wave speed used in the non-uniform blockage equals to its average wave 

speedab.  

 * * *

m mb mi   = −  (7.12) 

where ∆ωm
* = frequency shift of the m-th resonant peak; ωmb

* = frequency of the m-th 

resonant peak in the blocked pipe system; and ωmi
* = frequency of the m-th resonant peak 

in the intact pipe system. 
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It is observed in Fig. 7.16 that the frequency shift induced by non-uniform blockages in 

water pipes becomes less evident for higher harmonics. This is because the impedance of 

the non-uniform blockage is frequency dependent, which becomes smaller for higher 

frequency incident waves (Che et al., 2019c). That means non-uniform blockages have a 

less blocking effect on the propagation of higher frequency incident waves; thus, the 

frequency shifts induced by non-uniform blockages become less evident. In addition, the 

resonant frequency shifts from both analytical and numerical CFD results show good 

agreement. This confirms the validity of the theoretical resonant frequency shifts induced 

by non-uniform blockages in bounded pipe systems in Chapter 4 (Che et al., 2018b).  

 

 

Fig. 7.16. Frequency shifts of analytical and numerical CFD results. 

  

0 2 4 6 8 10 12 14 16 18 20
-0.5

-0.25

0

0.25

0.5

m




*

 

 

Analytical

Numerical CFD



Chapter 7 CFD Validation of the Developed Theory 

 

 
 

180 
 

7.5 Summary 

This chapter validates the theory developed in Chapters 4 and 5 by a 2D CFD model. 

First, transients are introduced into the bounded pipe system (i.e., an RPV system) by 

suddenly and completely closing the downstream valve to stop the initial steady flow. 

The pressure responses are measured at both the downstream valve and the mid-length of 

the pipe, which are used to validate the CFD model by comparing with the results 

obtained from the well-established Zielke’s 1D analytical model. Afterwards, the 2D 

CFD model is applied to bounded and unbounded pipe systems to confirm the validity of 

the theory developed in Chapters 4 and 5, where various transient excitation techniques 

are adopted, such as a square pulse in the bounded pipe system and a Gaussian-modulated 

sinusoidal pulse in the unbounded pipe system. 

 

The obtained results indicate that (i) the agreement of the frequency shifts induced by 

non-uniform blockages in bounded pipe systems between theoretical and numerical CFD 

results is good; and (ii) although discrepancies in the energy transmission coefficient TC 

exist between theoretical and numerical results because of friction, the overall pattern of 

the TC calculated from the numerical CFD results agrees well with the theoretical TC 

pattern, which confirms of the validity of two physical mechanisms govern the overall 

pattern of TC curve. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE WORK 

 

 

8.1 Conclusions 

The major aim of this thesis is to deepen an understanding of transient wave behavior in 

water pipes with non-uniform blockages, which is necessary to enhance the practical 

applications of the transient-based method for real blockage detection. The transient wave 

behavior in water pipes with non-uniform blockages is investigated in both the time and 

frequency domains by the combined methodology of theoretical analysis and numerical 

simulation.  

 

First, to understand the fundamental physics and mechanism of the interaction between 

transient waves and non-uniform blockages, the transient wave behavior in various (e.g., 

linear and exponential) non-uniform blockages is obtained by analytically solving the 

one-dimensional (1D) wave equation under specific initial and boundary conditions. The 

obtained wave solutions are incorporated into the 1D overall transfer matrix of a 

reservoir-pipe-valve (RPV) system (i.e., a bounded pipe system) with non-uniform 

blockages, which is used to systematically investigate the influences of non-uniform 

blockage shape, severity, and length on transient frequency responses. It is found that the 

resonant frequency shifts induced by non-uniform blockages have very different patterns 

from that of uniform blockages. Specifically, the resonant frequency shifts induced by 

non-uniform blockages become less evident for higher harmonics (termed as the non-

uniform blockage induced frequency shift pattern).  

 

Second, the physical mechanism of this observed non-uniform blockage induced 

frequency shift pattern is clarified from an energy perspective. For this purpose, the 
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energy transmission coefficient through various blockages in an unbounded pipe system 

is analytically derived based on the overall transfer matrix of the pipe system. With this 

derived result, the influences of non-uniform blockage properties on the energy 

transmission are investigated systematically. The results indicate that the impedance of 

non-uniform blockages is highly frequency dependent, which becomes smaller for higher 

frequency incident waves. This means non-uniform blockages have a less blocking effect 

on the propagation of higher frequency incident waves; thus, the frequency shifts induced 

by non-uniform blockages become less evident.  

 

Afterwards, the frequency range of validity of the developed theory in previous chapters 

is investigated numerically by the full-2D water hammer model. The inefficiency of the 

current numerical scheme for the full-2D model is first addressed. The modified efficient 

scheme is used to study the generation mechanism and components of the radial pressure 

waves, caused by different valve operations, in transient laminar pipe flows. The results 

indicate that the existence of radial pressure gradients is the driving force of the formation 

of radial flux and radial pressure waves. In addition, to satisfy the developed theory in 

previous chapters, the incident wave frequency must be lower than the cut-off frequency 

of the radial mode 1 (M1).  

 

Finally, a 2D computational fluid dynamics (CFD) model is used to numerically validate 

the theory developed in previous chapters under more realistic and complex conditions. 

The 2D axisymmetric Navier-Stokes equations in a cylindrical coordinate system are 

solved by the semi-implicit method for pressure linked equations (SIMPLE) algorithm. 

Various boundary conditions (e.g., pipe wall elasticity and different transient excitation 

operations) are included into the CFD model by user-defined functions (UDFs). The CFD 

results confirm: (i) the theoretical resonant frequency shifts induced by non-uniform 

blockages in bounded pipe systems; and (ii) the theoretical energy transmission 

coefficient through non-uniform blockages in unbounded pipe systems and the physical 

mechanisms behind it.  
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The physical understanding gained in this thesis may contribute to narrow the gap 

between transient-based theory and practical applications of non-uniform blockage 

detection, which is crucial and necessary for developing smart urban water supply 

systems. 

8.2 Recommendations for Future Work 

Several potential research directions recommended for future work are listed as follows. 

 

1. This thesis mainly focuses on the transient wave behavior in water pipes with a single 

non-uniform blockage, but multiple non-uniform blockages may exist in real water pipes. 

Therefore, further studies of the transient wave behavior in water pipes with multiple non-

uniform blockages are needed. 

 

2. Due to the difficulty of constructing perfectly linear/exponential non-uniform 

blockages in laboratories, the validation of the theory developed in this thesis is mainly 

based on numerical experiments. In future work, laboratory experiments are needed to 

further confirm the validity of the developed theory. 

 

3. Currently, nearly all of transient-based techniques for pipe anomaly detection are based 

on the plane wave theory. In this thesis, the behavior of radial pressure waves is only 

investigated in the intact section of water pipes. The behavior of radial pressure waves in 

non-uniform blockages needs further research. 

 

4. The 1D/2D numerical simulation in this thesis only considers inviscid or viscous but 

laminar pipe flows. But turbulent flows often exist in real water pipes, where the influence 

of turbulence on the transient wave behavior need to be investigated. 

 

5. Although this thesis takes a step towards understanding the transient wave behavior in 

water pipes with real blockages, the shape of the investigated blockages is relatively 

simple and regular (i.e., symmetric in both the radial and axial directions). The influence 
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of more complicated and irregular blockages (e.g., asymmetric blockages in both the axial 

and radial directions) on the transient wave behavior should be further investigated. 

 

6. Based on the physical understanding gained in this thesis, it is important and necessary 

to extend the current transient-based method for non-uniform blockage detection in future 

work. 
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APPENDICES 

 

 

Appendix A1 - Detailed Derivation Procedure of the Wave Equation for a 

Pipe with a Slowly Varying Cross-sectional Area 

The classical one-dimensional (1D) water hammer model for a pipe with slowly varying 

cross-sectional area excluding frictional and viscoelastic effects  

 ( ) ( )
0=




+





x

UA

t

A   (A.1) 

 ( )
0=




+





x

P
A

t

UA  (A.2) 

where ρ = density of water; U = average velocity; P = pressure; A = varying pipe cross-

sectional area; x = distance along axial direction; and t = time. 

 

The equation of state 

 ( )
dP

Ad

Aa

11
2
=  (A.3) 

where a = wave speed. 

 

Substitute Eq. (A.3) into Eq. (A.1), then Eqs. (A.1) and (A.2) become (note that the 

compressibility of water and pipe wall has been put into the wave speed a, thus density ρ 

can be written as ρ0) 

 002
=
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+
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x

Q

t
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a

A
  (A.4) 

 00 =



+





x

P
A

t

Q
  (A.5) 

where ρ0 = average density of water; and Q = flowrate.  
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Differentiate Eq. (A.4) by t and Eq. (A.5) by x, and add them together, resulting the wave 

equation for a pipe with slowly varying cross-sectional area 

 















=





x

P
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x
a

t

P
A 2

2

2

 (A.6) 

 

Appendix A2 - Detailed Derivation Procedure of the Energy Transmission 

Coefficient 

As shown in Fig. 5.2, at the upstream and downstream boundaries of the pipe system (i.e., 

locations A and E), the energy flow (i.e., power) passing through a unit cross-sectional 

area (termed as power intensity) is defined as (Blackstock, 2000) 

 * *

0

1 T

I p u dt
T

=   (A.7) 

where I = power intensity; T = 2π/ω for time-harmonic waves; p* = pressure deviation 

from the mean in the time domain; u* = axial velocity deviation from the mean in the time 

domain; and t = time. 

 

In classical acoustics, including water hammer problems focused on herein, it is often 

assumed that p* and u* are time-harmonic waves (Chaudhry, 2014; Che et al., 2018b) 

 * i tp pe = , * i tu ue =  (A.8) 

where p and u are complex amplitude. Specifically, let u = |u|eiθ, where |u| = amplitude; 

and θ = phase. 

 

In the transient pipe flow analysis, the specific impedance is usually used for describing 

the transient wave propagation characteristics in specified pipes, which is defined as 

 ( ) ( )
*

sp sp sp sp*
Re Im ip p

Z Z i Z Z e
u u

= = = + =  (A.9) 



Appendices 

 

 
 

187 
 

where Zsp = specific impedance; “Re” = real part; “Im” = imaginary part; Re(Zsp) = 

resistance; Im(Zsp) = reactance; and ϕ = phase angle between p* and u*. Substituting Eq. 

(A.9) into Eq. (A.7), it becomes 
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As shown in Fig. 5.2, for the upstream (i.e., location A) and downstream (i.e., location E) 

boundaries with a cross-sectional area S0, the energy flow passing through this area is 

 ( )
2

0 sp 0

1
Re

2
W IS u Z S= =  (A.11) 

where W = energy flow; and S0 = the pipe cross-sectional area of intact junctions. 

 

The energy transmission coefficient TC of a blocked pipe system with anechoic 

boundaries (i.e., located at A and E), as shown in Fig. 5.2, is defined as the ratio between 

the energy flow transmitted through the non-uniform blockage (Wtr) and that incident on 

the blockage (Win). 

 tr
C

in

W
T

W
=  (A.12) 

The general solutions of p for the one-dimensional (1D) wave equation in intact Pipe 1 

and Pipe 4, as shown in Fig. 5.2, are (Duan et al., 2014) 

 0 0ik x ik x
p Me Ne

−
= +  (A.13) 

where M and N are amplitude of the incident and reflected waves, respectively. 

 

Substituting Eq. (A.13) into the frictionless 1D water hammer model, the following 

general solutions of u can be obtained 
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 ( )0 0

0 0

1 ik x ik x
u Me Ne

a

−
= −  (A.14) 

where ρ0 = fluid density. The energy flow generated at the downstream boundary (i.e., 

located at E) is 

 ( )
2

2 E

E sp 0 0

0 0

1
Re

2 2
in

M
W M Z S S

a
= =  (A.15) 

where ME = amplitude of the incident wave generated at the downstream boundary (i.e., 

located at E). 

 

Similarly, the energy flow transmitted through the non-uniform blockages (i.e., measured 

at A) is 

 ( )
2

2 A

A sp 0 0

0 0

1
Re

2 2
tr

M
W M Z S S

a
= =  (A.16) 

where MA = amplitude of the transmitted wave received at the upstream boundary (i.e., 

located at A). 

 

Therefore, the energy transmission coefficient TC of the unbounded blocked system in 

Fig. 5.2 is 

 

2

A

E

=tr
C

in

W M
T

W M
=  (A.17) 

The amplitude of a progressive wave keeps constant as it travels along a uniform pipe 

section (Munjal, 2014). Therefore, as shown in Fig. 5.2, MA and ME can be measured at 

any point along Pipe 1 and Pipe 4, respectively. To simplify the calculation, pipe lengths 

l1 and l4 can be taken as zero if necessary. 

 

The overall transfer matrix (in terms of u and p) of a blocked pipe system, as shown in 

Fig. 5.2, is 
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11 12
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where Vij
* = elements of the overall transfer matrix (in terms of u and p). 

 

Based on the general solutions in Eqs. (A.13) and (A.14), the p and u at two locations A 

and D can be expressed as (note that NA = 0) 

 
A A A Ap M N M= + =  (A.19a) 
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From Eqs. (A.19a) to (A.19d) 
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The ratio between MA and ME is 

 A
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Therefore, the energy transmission coefficient TC can be represented by the overall 

transfer matrix elements Vij
* (in terms of u and p) 
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In terms of discharge q and pressure head h, the overall transfer matrix of the unbounded 

pipe system in Fig. 5.2 is 
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Writing Eq. (A.23) in the equation form 

 * * A
D D 11 A A 12

0

p
S u U S u U
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= +  (A.24a) 

 * *D A
21 A A 22

0 0

p p
U S u U

g g 
= +  (A.24b) 

where SA and SD are the pipe cross-sectional areas at two boundaries A and D in Fig. 5.2, 

respectively. 

 

Rewrite Eqs. (A.24) as 
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in which SA = SD = S0. Therefore, the energy transmission coefficient TC can be 

represented by overall transfer matrix elements Uij
* (in terms of q and h) 
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