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Abstracts

This dissertation contains four related investigations:

1. A Triad of Cardioid Sensors in Orthogonal Orientation and Spatial Collocation – Its

Spatial-Matched-Filter-Type Beam-Pattern:

This work proposes a new configuration of acoustic sensors – three cardioid sensors in

perpendicular orientation and spatial collocation, in order to increase the mainlobe-to-

sidelobe height ratio (possibly to∞). This study will analyze such a proposed triad’s

“spatial matched filter” beam-pattern that is independent of the frequency/spectrum

of the incident signal. Specifically, this investigation will analytically derive (i) the

mainlobe’s pointing error in azimuth-elevation, (ii) the mainlobe’s two-dimensional

beam “width”, (iii) the necessary and sufficient conditions for any sidelobe to ex-

ist, (iv) the mainlobe-to-sidelobe height ratio, and (v) the array gain. These above

characteristics depend on the cardioids’ “cardiodicity parameter” and on the beam’s

nominal “look direction”. This work is first in the open literature to propose and to

investigate a collocated triad of orthogonally oriented cardioids. The findings show

that the proposed cardioid triad can have higher mainlobe-to-sidelobe height ratio

and can avoid sidelobes altogether. Its physical compactness makes it portable for

mobile deployment, indoor or outdoor. This work has been published in the IEEE

Transaction on Signal Processing (authors include the candidate, his chief supervisor

and another collaborator).

2. Cardioid Microphones/Hydrophones in a Collocated and Orthogonal Triad – A New

Beamformer with No Beam-Pointing Error:

Cardioid sensors offer low sidelobes/backlobes, compared to bi-directional sensors

(like velocity-sensors). Three cardioid sensors, in orthogonal orientation and in spatial

collocation, have recently been proposed in Chapter 1; and such a cardioid-triad’s

“spatial matched filter” beam-pattern has been analyzed therein. That beam-pattern,

unfortunately, suffers pointing error, i.e. the spatial beam’s actual peak direction

deviates from the nominal “look direction”. Instead, this study will propose a new

beamformer for the abovementioned cardioidic triad to avoid beam-pointing error.

Also analytically derived here is this beam-pattern’s lobes’ height ratio, beamwidth,

directivity, and array gain. This work is under review by the Journal of the Acoustical

Society of America (authors include the candidate, his chief supervisor and another

collaborator).
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3. Two Higher-Order Figure-8 Sensors in Spatial Collocation — Their “Spatial Matched

Filter” Beam-Pattern:

Higher-order figure-8 sensors have relatively high directivity and are sorted after

due to this feature. Collocating directional sensor can be advantageous due to its

spatial compactness and the frequency-independence of its array manifold. In this

work, the “spatial matched filter” (SMF) beam-pattern of such collocated pair will

be analytically studied. Due to real-world manufacturing imperfections, such pair

of collocated higher-order figure-8 sensors may not be orthogonal. This work will

also investigate how the non-orthogonal orientation affects the beam-pattern point-

ing assuming the beamformer has no knowledge of the imperfection. It is shown that

non-perpendicularity would affect both the overall shape and introduce pointing bias

in the spatial-matched-type beampattern of the two collocated higher-order figure-8

sensors. More importantly, this work relates the beamformer’s look direction, array’s

skewed angle and sensor’s order to the mis-pointing.

4. Directional Pointing Error in “Spatial Matched Filter” Beamforming at a Tri-Axial

Velocity-Sensor due to Non-Orthogonal Axes:

The “tri-axial velocity-sensor” has three axes that are nominally perpendicular, but

may be non-perpendicular in practice, due to real-world imperfections in manufactur-

ing or wear during operations. This work comprehensively investigates how such non-

perpendicularity would affect the tri-axial velocity-sensor’s azimuth-elevation beam-

pattern in terms of the beam’s pointing direction. Closed form expressions were

developed for the pointing bias which can be used in offsetting the pointing bias in-

troduced by the non-perpendicularity among the constituent velocity-sensors. This

work was presented at the 175th Meeting of the Acoustical Society of America in

Minneapolis, Minnesota on May 7, 2018.
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Chapter 1

Introduction

1.1 Overview

A sensor array samples an incident wave field at different locations in space. The data

thus obtained contain information on source’s direction of arrival, phase, and frequency.

Omnidirectional sensors can be placed in such array, which can provide azimuth-elevation

directivity, but occupies a sizeable spatial region and whose array manifold varies with

frequency. In contrast, an array of spatially collocated directional sensors can be frequency

independent hence computationally simpler.

The idea of collocating directional sensors is not new, but there has been no detailed

study on the performance of collocated cardioid sensors. Cardioid sensors are directional

sensors which offer more directivity than figure-8 sensors. This thesis will present a com-

prehensive study of the beamforming performance of collocated and orthogonal cardioid

sensors in terms of its pointing bias, half-power beamwidth, directivity, array gain, and

mainlobe-to-sidelobe height ratio. This thesis will also present analytical studies on the

beamforming performance of collocated first-order and higher-order figure-8 sensors that

are not orthogonal due to manufacturing imperfection in order to show how this imperfec-

tion affects the beam’s pointing bias.

1.2 General Assumptions

In this work, except otherwise stated, the following general simplifying assumptions have

been made on the array, on the incident wave, and on the medium of propagation in all

mathematical derivations.

Assumptions made on the array

1. Collocation: More than one sensor cannot be placed exactly at one point in space.

Rather, the collocation is approximately realized such that the inter-sensor spacings

are negligible relative to the signal wavelength to be measured. Therefore, the collo-

cated sensor array is assumed to be a point.
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2. Orthogonality: Perfect orthogonality is assumed between sensors in orthogonal orien-

tation.

Assumptions made on the source and medium of propagation

1. Homogeneity: The medium of propagation is assumed to be homogeneous, quiescent,

isotropic fluid which implies a direct propagation path.

2. Far-field source: The source is assumed to be far-field. The far field assumption

implies the distance between the source and point of measurement is far greater than

the physical dimension of the source and the array.

1.3 First-Order Cardioid Family of Microphones

The response of a cardioid microphone is given as [1][2]

a(α)(ϕ) = α + (1− α) cosϕ, (1.3.1)

where ϕ ∈ [0, 2π) is the angle between the incident sound wave and axis of the sensor, and

α ∈ (0, 1) the cardiodicity index. Cardioidicity Index α is dimensionless where α = τ/(τ + d/c)

is the ratio of the front and back delay [2] where d is the separation distance between the two

omnidirectional microphones, τ is the electrically(or physically)-added time-delay between

the outputs of the two omnidirectional microphones, and c is the sound propagation speed

in the medium. The detailed derivation of the response of a cardioid microphone is found

in (Section 5.1 [2]).

There are typical values chosen for α in commercially available cardioid microphones.

For the cardioid microphone response (1.3.1), maximum directivity occurs at α = 0.25.

This design is known as the hypercardioid pattern. Its pattern has two nulls located at

ϕ = ±110◦. The hypercardioid pattern provides the greatest rejection in a reverberant

field, relative to main-axis pickup, of reverberant sounds arriving from random directions.

This makes it the best choice for speech pickup in sound reinforcement systems.

Highest front-to-back ratio occurs at α = 1
2
(
√

3 − 1). This design is known as the

supercardioid microphone and has two nulls located at ϕ = ±126◦. This is most desired for

wide frontal angle pickup applications.

At α = 0.5, the cardioid has a front-to-back ratio of infinity as its null occurs at ϕ = 180◦.

This design is known as the standard cardioid microphone and finds application where a

complete rejection of sounds arriving from behind is unwanted such as in live performance

to cancel out crowd noise.

The subcardioid microphones are designed with α = 0.7. This design has the highest

half-power beamwidth across α and has no null. It is sometimes loosely referred to as
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“forward-oriented omni” and useful for large scale scoring work. More details on the per-

formance of unit cardioid family can be found in [1][2](Chapter 4 of [3]). Figure 1.1 shows

the response of these various types of the cardioid sensors in polar coordinates.

(a) (b)

(c) (d)

Figure 1.1: Polar plots of the far-field response of the (a) Hypercardioid α = 0.25, (b)
Supercardioid α ≈ 0.37, (c) Standard cardioid α = 0.5, and (d) Subcardioid α = 0.7
microphones showing their nulls and backlobe where they apply.

1.4 Higher-Order Figure-8 Microphones

The kth-order higher-order figure-8 microphone has gain response that corresponds to the

kth order of the gradient of the sound pressure. The response of the kth order figure-8

sensor [4]

ak = cosk(ψ), (1.4.1)
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where k ∈ Z+ a positive integer is the order of the microphone, and ψ ∈ [0, 2π) is the

angle between the incident sound wave and the axis of the sensor. Higher-order figure-8

sensors exhibit higher directionality with increasing order k which makes them desirable

for application where high directivity is desired [4].

For studies on the beam-patterns and directivity index of higher-order directional sen-

sors, refer to [5–8, 10–13]. For an application of such higher order figure-8 microphones,

[9] proposed a closed-form direction of arrival estimation algorithm using higher-order sen-

sors that are in spatial collocation and orthogonal orientation. So far, no comprehensive

study has been carried out on the spatial-matched-filter type beam-pattern of such collo-

cated higher-order sensor. Chapter 4 will analytically study the behaviour of two collocated

higher-order figure-8 sensors.

1.5 Spatial-Matched-Filter Beamformer

The spatial-matched-filter beamformer is a data-independent beamformer, whereby the

beamforming weights are directed to the look direction steering vector [14–18]. The output

of a spatial-matched-filter beamformer,

B = a(ξlook)
H a(ξ) (1.5.1)

where a(ξ) is the array manifold, a(ξlook) is a vector of the weights for the spatial-matched-

filter beamformer, ξ is the vector of parameters of the array manifold (for instance polar

angle θ, azimuth angle φ as shown in Figure 1.2), and ξlook contains the parameters of the

look direction.

The maximum response of the spatial-matched-filter typically occurs when the direc-

tion of arrival matches the beamformer’s look direction for an array of isotropic sensors.

However, pointing bias could occur for directional sensors, e.g. in Chapter 2. The spatial-

matched-filter beamformer has been applied in collocated sensor arrays such as the biaxial

velocity sensor [17, 18], triaxial velocity sensors [16, 18], triaxial velocity sensor with col-

located pressure sensor [18]. The effect of non-orthogonality of the axes for the biaxial

first-order velocity sensor on the spatial-matched-filter beamformer has been studied in

[17], which shows that the beampattern shape is unaffected by the nonorthogonality, but

the peak direction is. Chapter 4 will extend this study to higher-order figure-8 sensor while

Chapter 5 extends the study to a first-order figure-8 collocated triad.

1.6 Organization of the Thesis

This thesis consists of 5 main chapters, that is Chapters 1-5. Chapter 1 gives a brief

overview of the first-order cardioid family of microphones, the higher-order figure-8 sensors,

4



Figure 1.2: The Cartesian coordinates showing the polar angle (measured from the positive
z-axis) and azimuth angle (measured from the positive x-axis) of arrival.

and spatial-matched-filter beamforming.

Chapters 2 - 3 are studies based on the first-order cardioid family of microphones while

Chapters 4 - 5 are studies based on the first-order and higher-order figure-8 microphones.

Chapter 2 proposes the collocation of three first-order cardioid family of microphones

that are arranged in orthogonal orientation. This spatial arrangement produces an array

manifold that is independent on the incident sound wavelength. The spatial-matched-

filter type beampattern of this array is analytically studied in terms of the location of

the mainlobe, the presence of a sidelobe, the mainlobe-to-sidelobe height ratio, half-power

beamwidth and the overall array gain. This work is the first in the open literature to

propose and analytically study such array of first-order cardioid family of microphones.

Chapter 3 proposes a new beamformer to cancel the pointing bias in the spatial-matched-

filter beampattern of the cardioid triad proposed in Chapter 2. The performance of this

beamformer in terms of the location of its mainlobe and sidelobes, height ratio, beamwidth,

directivity and overall array gain is compared to that of the spatial-matched-filter studied

in Chapter 2.

Chapter 4 proposes the spatial collocation of two higher-order figure-8 sensors. The

sensors in the array may not be perfectly perpendicular due to manufacturing defects.

In this chapter, such arrangement is studied in terms of the pointing bias in the spatial-

matched-filter beampattern.

Chapter 5 analytically studies the effect of non-orthogonality defect in collocated first

order figure-8 sensors assuming the spatial-matched-filter beamformer is unaware of this

non-orthogonality between the legs of the triad. The study is extended to the a tri-axial

figure-8 sensor with a collocated pressure sensor. Closed form pointing bias due to the
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mis-orientation are derived in this work.

Finally, general conclusion based on the works presented in Chapters 2 - 5 is made in

Chapter 6.
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Chapter 2

A Triad of Cardioid Sensors in Orthogonal

Orientation and Spatial Collocation – Its

Spatial-Matched-Filter-Type Beam-Pattern

1

2.1 Overview

Microphones and hydrophones encounter acoustic signals that are often ultra-wideband:

An acoustic signal’s highest frequency is often many orders-of-magnitude above the lowest

frequency (not just multiples of difference, but many orders-of-magnitude). For example,

the human hearing range spans three orders-of-magnitude from 20Hz to 20, 000Hz. Hence,

electronic audio signals and soundscape measurements would also need to accommodate

such ultra-wide spectra. This is not to mention non-human-based acoustic sensing in mili-

tary applications, where infrasound can reach down to only a few Hz but sniper shockwaves

can reach above 40, 000Hz.

The acoustic signal’s ultra-wide spectrum greatly complicates signal processing at an

array of sensors that are spatially displaced among themselves, as the corresponding ar-

ray manifold varies nonlinearly with frequency. This frequency-dependence arises from the

physical displacements between sensors, which mathematically leads to “inter-sensor spatial

phase factors”, which are frequency-dependent. That is, an incident signal’s different sub-

bands would experience fundamentally different levels of directivity and sensitivity. Such

complicating distortions must then be mitigated with additional signal processing, which

could be computationally expensive but effective only partially.

These bothersome “spatial phase factors” could be avoided altogether, by collocating an

array of directional sensors, each oriented differently to attain azimuth-elevation directivity.

Mathematically, this would mean a frequency-independent array manifold.

Concerning this idea of collecting three orthogonally oriented directional sensors, it has

been realized in the “acoustic vector sensor” [22], also known as a “vector hydrophone

[23], or a “gradient sensor”, or a “velocity-sensor triad”, or a “tri-axial velocity-sensor”.

1A large portion of this chapter is taken from [21], which is authored by the candidate, his chief super-
visor, and one other coauthor.
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There, the three directional sensors are first-order particle-velocity sensors. Such a tri-

axial velocity-sensor has already been implemented for underwater/sea-surface acoustical

applications (as the “ Swallow float” [24, 25], as the “DIrectional Frequency Analysis and

Recording” (DIFAR) sensor [26], as the “Perforated-ball Velocity Meter” (PVM) [27], as the

“Augmented Reliable Acoustic Path” (ARAP) array [28], and in [29]), as well as for aero-

acoustical applications (as the Microflown [30, 31], and in [32, 33]). For detailed literature

surveys of the tri-axial velocity-sensor’s hardware implementations and sea/air trials, please

see [34–36]. For a literature survey of the tri-axial velocity-sensor’s directivity and beam-

pattern, please see [37]. This tri-axial velocity-sensor will be shown below to represent a

special case of the cardioid triad to be investigated in this chapter.

2.1.1 The High Directionality of a Cardioid Sensor

One major shortcoming of the abovementioned tri-axial velocity-sensor is its flat gain-

pattern [18]. Highly directive microphones are useful, especially for enhanced “random

efficiency” or “reach” (i.e., for improved suppression of background noises/interference off-

axis) and for a farther “distance factor” (i.e., the spatial reach of the microphone on-axis).

Among directional acoustical sensors, cardioid sensors are one of the most practical

microphones/hydrophones in wide scientific and professional use. While dating back to at

least the 1930s [38–40], cardioid microphones are commercially available as diverse models

from various companies, including AKG 414, C519M, SE300B; Audio-Technica 42, 2020,

4033, 4050; Behringer B-2 PRO; CAD Audio GXL1200BP; Core Sound Stealthy Cardioid;

DPA Microphones d:screet mini 4080;, Marshall Electronics MXL 770; Røde Microphones

NT4; Sennheiser Evolution 914, 935; Shure BETA 98A, SM58; and SoundField MKV

Microphone. The SoundField Microphone is a tetrahedral array of four closely spaced

subcardioid or cardioid microphones, in contrast to this study’s three collocated cardioids

of any cardioidicity index and of orthogonal orientation.

The “cardioid” sensor obtains its name from the heart-like shape of its gain response.

Mathematically, the “cardioid” gain response (see chapter 5 of [1]) equals α+(1−α) cos(β),

where β ∈ [0, π] denotes the spatial angle measured with respect to the cardioid sensor’s

axis. The “cardiodicity index” α ∈ [0, 1] controls the cardioid’s directivity:

a) At α = 1, an isotropic sensor results.

b) At α = 0.7, a “subcardioid” is obtained.

c) At α = 1
2
, it is labeled the “standard cardioid”; and this is the commonest directional

pattern used in professional acoustic studios, due to its capability to suppress sound

incident at the rear of the microphone.

d) At α =
√
3−1
2
≈ 0.366025 ≈ 0.37, From equation (2.96) on page 44 of [2], α = 1

2
(
√

3−1)

for the “supercardioid”. All subsequent supercardioid plots will use this precise value.
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However, many authors (such as [1] at equation (5.5) therein) uses an approximate

value of α = 0.37. the resulting “supercardioid” maximizes the frontal pick-up as a

fraction of the total pickup, hence a wide frontal angular sector. It also maximizes

the front-to-back ratio The front-to-back ratio is the ratio of the sensor’s sensitivity

to a sound wave approaching its front over that approaching its rear. .

e) At α = 1
4
, the resulting “hypercardioid” maximizes the random efficiency in the

forward direction among all first-order cardioids, thereby most effective in suppressing

reverberant sounds relative to the on-axis pickup.

f) At α = 0, a uni-axial velocity-sensor is obtained [22]. This has a “figure-8” gain

pattern, where the front main lobe and the back lobe are of equal height.

2.1.2 A Triad of Cardioids in Orthogonal Orientation and in

Spatial Collocation

Collocate three cardioid sensors at the origin of the Cartesian coordinates2, and orient one

each along the positive x-, y-, and z-axis.

This triad has a 3× 1 array manifold of

a(α)(θ, φ) =

 α + (1− α) sin(θ) cos(φ)

α + (1− α) sin(θ) sin(φ)

α + (1− α) cos(θ)

 , (2.1.1)

where θ ∈ [0, π] represents the polar angle of the incident acoustic wave, and φ ∈ [0, 2π)

refers to the corresponding azimuth angle. At α = 0, the above degenerates to a tri-axial

velocity-sensor.

The above array manifold is independent of frequency. That is, the spatial collocation

decouples the frequency dimension from the azimuth-elevation dimensions.

This idea of collocating diversely oriented cardioids seems to be new to the open litera-

ture, to the present authors’ best knowledge.

To ease subsequent discussion, re-express (2.1.1) in terms of the Cartesian direction

cosines of u := sin(θ) cos(φ), v := sin(θ) sin(φ), w := cos(θ), such that (2.1.1) may be

rewritten as

a(α)(u, v, w) :=

 u(α)

v(α)

w(α)

 :=

 α + (1− α)u

α + (1− α)v

α + (1− α)w

 . (2.1.2)

2 The three cardioid sensors cannot occupy the same physical space, though they would effectively be
collocated, relative to the wavelength of most acoustic signals. Nonetheless, please refer to [41] to explore
how to correct for this inexact collocation.
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Note that u2 + v2 + w2 = 1,∀θ, ∀φ; however,

(
u(α)

)2
+
(
v(α)
)2

+
(
w(α)

)2 6= 1,

in general for any α > 0.

2.1.3 The Cardioid Triad’s Beam-Pattern

One simple data-independent beamformer – the well known “spatial matched filter” beam-

former – would set the beamforming weight vector w to match the steering vector pointing

toward the nominal polar/azimuth “look direction” of (θlook, φlook), a.k.a. “steering angle”.

That is,

w = a(α) (ulook, vlook, wlook)

:=

 u
(α)
look

v
(α)
look

w
(α)
look

 = α

 1

1

1

+ (1− α)

 ulook

vlook

wlook

 , (2.1.3)

where ulook := sin(θlook) cos(φlook), vlook := sin(θlook) sin(φlook), wlook := cos(θlook), for θlook ∈
[0, π] and φlook ∈ [0, 2π).

This “spatial matched filter” beamformer would output a real-valued scalar,

B := a(α) (ulook, vlook, wlook)
T a(α)(u, v, w), (2.1.4)

= α g
(α)
look + (1− α)

(
u
(α)
looku+ v

(α)
lookv + w

(α)
lookw

)
, (2.1.5)

where superscript T denotes transposition, and

g
(α)
look := u

(α)
look + v

(α)
look + w

(α)
look. (2.1.6)

The above beam-pattern of collocated but diversely oriented cardioids has not been in-

vestigated previously in the open literature, to the present authors’ best knowledge. In

contrast, the beam-pattern of an array of spatially displaced/distributed cardioid micro-

phones/hydrophones has been much investigated, e.g., the SoundField microphone consists

of four subcardioid microphones in a tetrahedral array grid, as well as [42–49]. To avoid

confusion in terminology: this cardioid-triad beamforming here differs from the “cardioid

beamforming” (e.g., in [54, 55]), whereby an array of pressure sensors and/or particle-

velocity sensors have their measurements numerically weighted-then-added, to give a scalar

output that is cardioid in the polar coordinates. Rather, this work starts with sensors that

are already cardioidic in their gain responses, which would individually stay invariant over

time.
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2.1.4 Organization of this Chapter

The well known “spatial matched filter” beamformer of (2.1.3) turns out to have a peak

direction (θpeak, φpeak) not pointing toward (θlook, φlook), as will be proved in Section 2.2.

This mis-pointing error is analytically derived in Section 2.3.

Moreover, this beamformer may suffer from a sidelobe that may arise for certain “look

directions” (θlook, φlook), depending on the “cardiodicity index” (α). This sidelobe arises

under a set of necessary and sufficient conditions that will be derived in Section 2.2. Then,

where a sidelobe exists, the mainlobe-to-sidelobe height ratio is derived in Section 2.4.

This height ratio also depends again on both the sensors’ “cardiodicity index” and the

beamformer’s reset “look direction”.

Recall that the cardioid-triad’s mainlobe spans two-dimensionally over the azimuth/ po-

lar coordinates. To measure this two-dimensional mainlobe’s beam “width”, Section 2.5 will

define a scalar metric and will analytically evaluate it. This two-dimensional beam “width”

turns out to vary also with both the sensors’ “cardiodicity index” and the beamformer’s

preset “look direction”.

Section 2.6 derives the overall array gain of the cardioid triad. This array gain depends

on both the sensors’ “cardiodicity index” and the beamformer’s preset “look direction”.

Section 2.8 concludes this investigation.

Regarding the acoustic vector-sensor’s / vector-hydrophone’s array gain, directivity, and

mainlobe beamwidth — the literature could be confusing, because implicitly different defi-

nitions could be used on the composition of the acoustic vector-sensor / vector-hydrophone

(e.g. whether there is a pressure-sensor, whether it is a tri-axial or a bi-axial velocity-

sensor), or on the type of beamformer (not always the “spatial matched filter” beamformer

here in this chapter).

2.2 To Determine if the Beam-Pattern Has Any

Sidelobe

This section will analytically derive the necessary and sufficient conditions under which a

sidelobe exists, for the “spatial matched filter” beamformer defined in (2.1.3) for a cardioid

triad of any “cardiodicity index” α ∈ [0, 1] and of a “look direction” preset at (θlook, φlook).

This section’s analysis will proceed as follows:

i) To locate the beam-pattern’s maximum and minimum in Section 2.2.1, via the Cauchy-

Schwarz inequality.

ii) Section 2.2.2: To derive the conditions under which a sidelobe exists, and to prove

that a second sidelobe can never exist under any condition.
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If a sidelobe does exist alongside the mainlobe, Section 2.3.1 will show how to differentiate

between the two.

2.2.1 To Find the Beam-Pattern’s Maximum/Minimum

From the beam pattern defined in (2.1.5),

B = αg
(α)
look + (1− α)B̃, (2.2.1)

where

B̃ :=
[
a(α) (ulook, vlook, wlook)

]T
[u, v, w]T (2.2.2)

represents an inner product between a(α) (ulook, vlook, wlook) and the steering vector [u, v, w]T ,

subject to the previously stated constraint of u2 + v2 + w2 = 1.

Recall that α, θlook, and φlook are preset constants. The maximum of B̃ in (2.2.2) (thus

the maximum of B in (2.2.1)) is occurs when [u, v, w]T and a(α) (ulook, vlook, wlook) both point

toward the same direction – this is true by the Cauchy-Schwarz inequality. Hence,

(uc1 , vc1 , wc1) =

(
u
(α)
look, v

(α)
look, w

(α)
look

)
√(

u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2 . (2.2.3)

Likewise, the minimum of B̃ in (2.2.2) (thus the minimum of B in (2.2.1)) is obtained when

[u, v, w]T and a(α) (ulook, vlook, wlook) point toward diametrically opposite directions. Hence,

(uc2 , vc2 , wc2) =
−
(
u
(α)
look, v

(α)
look, w

(α)
look

)
√(

u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2 , (2.2.4)

The above (2.2.3) and (2.2.4) hold for all α ∈ [0, 1) and for all “look directions”.

However, neither of these two vectors would generally correspond to the nominal “look

direction” of (θlook, φlook). Hence, the “spatial matched filter” beamformer would generally

suffer a pointing bias, which will be analytically derived in Section 2.3.

Inserting (2.2.3) and (2.2.4) into (2.2.1), the maximum and minimum of B respectively

equals

B|(u,v,w)=(uc1 ,vc1 ,wc1)
= αg

(α)
look + (1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2
, (2.2.5)
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B|(u,v,w)=(uc2 ,vc2 ,wc2)
= αg

(α)
look − (1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2
, (2.2.6)

with g
(α)
look is already defined in (2.1.6).

The maximum point of the beampattern B|(u,v,w)=(uc1 ,vc1 ,wc1 )
is always non-negative.

That is writing B|(u,v,w)=(uc1 ,vc1 ,wc1 )
in terms of α and glook,

B|(u,v,w)=(uc1 ,vc1 ,wc1 )
(α, glook) ≥ B|(u,v,w)=(uc1 ,vc1 ,wc1 )

(α,−
√

3) (2.2.7)

because B|(u,v,w)=(uc1 ,vc1 ,wc1 )
(α, glook) is monotonically increasing in terms of glook, where

glook := ulook + vlook + wlook. (2.2.8)

Hence,

B|(u,v,w)=(uc1 ,vc1 ,wc1 )
(α,−

√
3) = 3α2 −

√
3α + (1− α)|

√
3α− (1− α)| (2.2.9)

The right hand side of (2.2.9) can be written as

3α2 −
√

3α + (1− α)|
√

3α− (1− α)|

=


2α2 + 2α− 1 if α ≥ 1

2
(
√

3− 1)

[
(
√

3 + 1)α− 1
]2

if α < 1
2
(
√

3− 1)

(2.2.10)

noting that both cases of the above are always greater than zero. Therefore,

B|(u,v,w)=(uc1 ,vc1 ,wc1 )
≥ 0, ∀α, ∀θlook, and ∀φlook. This fact will be used in Section 2.2.2.

2.2.2 To Derive the Conditions for a Sidelobe to Exist

A sidelobe would exist if and only if the beam-pattern B has more than one peak, obviously.

In other words, if and only if the two critical points of (2.2.3)-(2.2.4) would give B values

at opposite signs, i.e.,

B|(u,v,w)=(uc1 ,vc1 ,wc1)
B|(u,v,w)=(uc2 ,vc2 ,wc2)

< 0, (2.2.11)

which is equivalent to

B|(u,v,w)=(uc2 ,vc2 ,wc2)
< 0, (2.2.12)

because B|(u,v,w)=(uc1 ,vc1 ,wc1 )
≥ 0 as shown in (2.2.7) - (2.2.10) ∀α ∈ (0, 1) and ∀glook ∈

[−
√

3,
√

3]
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Constraint (2.2.11) may be simplified to

(glook − r1)(glook − r2) = α2
(
g
(α)
look

)2
− (1− α)2

[(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2]
=

[
α2(1− α)2

]
g2look +

[
6α3(1− α)− 2α(1− α)3

]
glook

+
[
9α4 − 3α2(1− α)2 − (1− α)4

]
< 0, (2.2.13)

where the two roots equal

r1, r2 = −2α∓ (1− α)
√
−α2 − 4α + 2 + 2α2 − 1

α(1− α)
, (2.2.14)

for all α ∈ (0, 1).

The subsequent Section 2.2.2.1 will derive the necessary condition for (2.2.12) to hold;

and Section 2.2.2.2 will derive the corresponding sufficient condition. That necessary and

sufficient condition will be shown to be

(i) α <
√

6− 2 ≈ 0.45, and

(ii) glook ∈ (r1, r2), where r1 and r2 are expressed in (2.2.14), each as a function of α only.

An implication of the above condition (i): The cardioid-triad can be sidelobe-free over

the wider range of ∀α ∈ (
√

6−2, 1] ≈ (0.45, 1], thereby including the particular cases of the

standard cardioid and the subcardioid. The above α ∈ (
√

6− 2, 1] range is more inclusive

than the (0.5, 1] range wherein an individual cardioid would have no sidelobe.

Intuitively speaking: If α increases, each individual cardioid would become less direc-

tivity but would tend toward isotropy. The reduced directivity would lessen any sidelobe

in the cardioid-triad. For the special case of the tri-axial velocity-sensor (i.e., where the

“cardioidicity index” α = 0),

1) (2.2.5)-(2.2.6) degenerate to

B|(u,v,w)=(uc1 ,vc1 ,wc1)
= 1 = −B|(u,v,w)=(uc2 ,vc2 ,wc2)

,

thereby satisfying equation (2.2.12) above. That is, a tri-axial velocity-sensor always

has a second lobe of equal height (sidelobe), regardless of the nominal “look direction”

(θlook, φlook), which introduces π-ambiguity. Please also see [18] (p. 630).

2) (2.2.3) and (2.2.4) degenerate to give (uc1 , vc1 , wc1) = − (uc2 , vc2 , wc2). That is,

the mainlobe and the sidelobe point in diametrically opposite directions, for any

(θlook, φlook). This agrees with [18].
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2.2.2.1 A necessary condition

Section 2.2.2 has shown that the left side of (2.2.11) may be expressed as (glook−r1)(glook−
r2), with r1 and r2 already derived in (2.2.14). As this expression is quadratic in glook, it

can be verified that the turning point of (glook−r1)(glook−r2) is a local minimum, by taking

the “second partial derivative test” as

∂2 [(glook − r1)(glook − r2)]
∂g2look

= 2α2(1− α)2 > 0. (2.2.15)

To satisfy constraint (2.2.13), (2.2.15) indicates a necessary condition is that r1 and r2

have to be real-valued, i.e., the entry inside the square root of (2.2.13) must be non-negative.

Hence, a necessary condition for the existence of a sidelobe is

−α2 − 4α + 2 > 0,

⇒ −
√

6− 2 < α <
√

6− 2, (2.2.16)

which is equivalent to α ∈ (0,
√

6− 2), as α cannot be negative.

2.2.2.2 A sufficient condition

The inequality (2.2.13) holds for glook ∈ (r1, r2), because (glook − r1)(glook − r2) has been

shown to have a local minimum and because it is quadratic in mathematical form.

Hence α <
√

6− 2 and glook ∈ (r1, r2) together is a necessary and sufficient condition of

the existence of a sidelobe.

2.3 The Beam-Pattern’s Directional Pointing Offset

The cardioid triad’s “spatial matched filter” beam-pattern will be analytically proved here

in this section to have a peak direction of (θpeak, φpeak) that generally is unequal to the

preset nominal “look direction” of (θlook, φlook). These two directions will be analytically

interrelated in this section.

2.3.1 To Differentiate the Mainlobe from the Sidelobe

Section 2.2 has determined the conditions under which a sidelobe would exist, but has not

yet differentiated between the mainlobe and the sidelobe. This Section 2.3.1 would achieve

this.

The peak direction would be (uc1 , vc1 , wc1), if and only if∣∣∣B|(u,v,w)=(uc1 ,vc1 ,wc1)

∣∣∣ ≥ ∣∣∣B|(u,v,w)=(uc2 ,vc2 ,wc2)

∣∣∣ , (2.3.1)
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which is equivalent to

glook ≥
3α

α− 1
. (2.3.2)

Recall that the above glook has been defined in (2.2.8).

This (2.3.2) constitutes the necessary and sufficient condition for (uc1 , vc1 , wc1) to corre-

spond to the mainlobe. If (2.3.2) does not hold, i.e, if glook <
3α
α−1 , it would be (uc2 , vc2 , wc2)

that gives the mainlobe direction.

From the above and from (2.2.3)-(2.2.4), the mainlobe’s peak direction

(upeak, vpeak, wpeak) =
±
(
u
(α)
look, v

(α)
look, w

(α)
look

)
√(

u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2 , (2.3.3)

where the ‘+’ sign applies when glook ≥ 3α
α−1 else the ‘−’ sign applies.

Toward analytically relating between the nominal “look direction” (φlook, θlook) and the

actual peak direction (φpeak, θpeak): First, convert the peak direction’s Cartesian coordinates

(upeak, vpeak, wpeak) to the spherical coordinates,

cos(θpeak) = wpeak, (2.3.4)

cos(φpeak) =
upeak√

u2peak + v2peak

. (2.3.5)

Next, substitute (2.2.3) and (2.2.4) into (2.3.4) and (2.3.5). Then, solve for θpeak and φpeak,

to give (2.3.6) to (2.3.10). These are plotted versus the nominal ‘look direction” in Figs.

2.1-2.4 at several common values of α.

For glook ≥
3α

α− 1
:

θpeak = arccos

 α + (1− α) cos(θlook)√
3α2 + (1− α)2 + 2α(1− α)

{[sin(φlook) + cos(φlook)] sin(θlook) + cos(θlook)}

 . (2.3.6)

φpeak = arccos

 α + (1− α) cos(φlook) sin(θlook)√
[α + (1− α) cos(φlook) sin(θlook)]

2+

[α + (1− α) sin(φlook) sin(θlook)]2

 (2.3.7)

= arccos

[1 +

(
α + (1− α) sin(φlook) sin(θlook)

α + (1− α) cos(φlook) sin(θlook)

)2
]− 1

2

 . (2.3.8)
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For glook <
3α

α− 1
:

θpeak = π − arccos

 α + (1− α) cos(θlook)√
3α2 + (1− α)2 + 2α(1− α)

{[sin(φlook) + cos(φlook)] sin(θlook) + cos(θlook)}

 . (2.3.9)

φpeak = π + arccos

[1 +

(
α + (1− α) sin(φlook) sin(θlook)

α + (1− α) cos(φlook) sin(θlook)

)2
]− 1

2

 . (2.3.10)

(a) (b)

Figure 2.1: (a) θpeak of (2.3.6) and (2.3.9), and (b) φpeak of (2.3.7) and (2.3.10) versus the
nominal “look direction” of (θlook, φlook), for a triad of “hypercardioids” at a “cardioidicity
index” of α = 1

4
.

2.3.2 Geometric Interpretation of the Pointing Offset

Why is the actual peak direction (θpeak, φpeak) generally unequal to the nominal “look

direction” (θlook, φlook) ? Below is a geometric explanation.

From (2.1.3), a(α) (ulook, vlook, wlook) represents a vector sum of two 3×1 vectors: [1, 1, 1]T

and the unit vector [ulook, vlook, wlook]
T The latter represents the nominal “look direction”.

That is, the sum a(α) (ulook, vlook, wlook) would point toward the nominal “look direction”

only if the nominal “look direction” coincides with [1, 1, 1]T . This coincidence occurs only

at (θlook, φlook) ≈ (54.7◦, 45◦), ∀α. If the nominal “look direction” points elsewhere, there

would be a pointing offset, which would increase as α increases.

As α increases, [1, 1, 1]T can divert (1−α)[ulook, vlook, wlook]
T further from the nominal

“look direction”.
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(a) (b)

Figure 2.2: (a) θpeak of (2.3.6), and (b) φpeak of (2.3.7) versus the nominal “look direction”

of (θlook, φlook), for a triad of “supercardioids” at a “cardioidicity index” of α =
√
3−1
2
≈

0.366025 ≈ 0.37.

2.3.3 Abrupt Jump in the Pointing Offset Across (φlook, θlook)

The pointing offset undergoes an abrupt jump in Figs. 2.1-2.2 as (φlook, θlook) varies, but

not in Figs. 2.3-2.4.

Abrupt jumps occur in Figs. 2.1a and 2.1b which have α = 1
4

(i.e., the “hypercardioid”),

and in Figs. 2.2a and 2.2b which have α =
√
3−1
2
≈ 0.366025 ≈ 0.37 (i.e., the “supercar-

dioid”). Abrupt jumps occur at these values of α because there exist some (φlook, θlook)

such that α ≥ αswitch and there exists other (φlook, θlook) such that α < αswitch, where

αswitch := glook
glook−3

.

However, no abrupt jump occurs anywhere in Figs. 2.3a and 2.3b which have α = 1
2

(i.e.,

the “standard cardioid”), nor anywhere in Figs. 2.4a and 2.4b which have α = 0.7 (i.e., the

“subcardioid”). This is because all possible (φlook, θlook) will always give αswitch ≥ α.

2.3.4 A Closer Look at φpeak of (2.3.8)

Figs.2.3b and 2.4b have shapes that reflect the mathematical form of (2.3.8):

{1} φpeak − π
4

is anti-symmetric, along φlook ∈
[
π
4
, 9π

4

]
, with respect to 5π

4
, ∀φlook ∈ [0, π],

∀θlook, ∀α > 1
2
.

{2} At φlook = π
4
, 5π

4
, the fraction in (2.3.8) equals 1, hence φpeak would be constant over

all θlook.

{3} As α increases, moving from Fig. 2.3b across into 2.4b, the fraction in (2.3.8) would

be less influenced by φlook, hence φpeak would have a narrower dynamic range with a

smaller maximum φpeak but a larger minimum φpeak.
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(a) (b)

Figure 2.3: (a) θpeak of (2.3.6), and (b) φpeak of (2.3.7) versus the nominal “look direction”
of (θlook, φlook), for a triad of “standard cardioids” at a “cardioidicity index” of α = 1

2
.

(a) (b)

Figure 2.4: (a) θpeak of (2.3.6), and (b) φpeak of (2.3.7) versus the nominal “look direction”
of (θlook, φlook), for a triad of “subcardioids” at a “cardioidicity index” of α = 0.7.

The minimum point of (2.3.7), along the φlook axis, equals

arg min
∀φlook

φpeak = sin−1
(
α− 1

α

1√
2

sin(θlook)

)
− π

4
. (2.3.11)

To analyze the implication of the above: As α increases from 0 toward 1, 1−α
α

decreases

and α−1
α

becomes less negative. Recall that sin(θlook) ≥ 0, ∀θlook. Hence, α−1
α

1√
2

sin(θlook)

gets less negative in amplitude, as (2.3.11) goes toward 0◦ = 360◦. This trend is exactly

what occurs in Figs.2.3b-2.4b.

As α increases from 0.5 to 0.7, the null in Figs.2.3b-2.4b becomes shallower. This is

because as α increases, (1 − α) decreases therefore, the component of (2.3.8) that varies

with (θlook, φlook) has less effect on φpeak.
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The maximum point of (2.3.8) occurs at (θlook, φlook) =
(
π
2
, 3π

4
− sin−1

(
α−1√
2α

))
. As α

increases,
∣∣∣α−1√

2α

∣∣∣ decreases, hence decreasing sin−1
(
α−1√
2α

)
shifts the maximum point towards

(θlook, φlook) =
(
π
2
, 3π

4

)
, (90◦, 135◦). This effect is noticed in Figs.2.3b and 2.4b, as α increases

from 0.5 to 0.7.

2.3.5 The Special Case of α = 0, i.e., a Tri-Axial Velocity-Sensor

For the special case of the tri-axial velocity-sensor (i.e., where the “cardioidicity index”

α = 0), (2.3.6 ) and (2.3.7) degenerate to give θpeak = θlook and φpeak = φlook, ∀ (θlook, φlook).

This means no pointing offset for a tri-axial velocity-sensor, in agreement with [50] (p. 327),

and [51] (p. 10).

2.4 Mainlobe-to-Sidelobe Height Ratio

The mainlobe-to-sidelobe height ratio (also referred to as front-to-back ratio) as the name

implies, measures the ratio of the mainlobe’s height to the sidelobe’s height. This metric

gives an idea of how much the array amplifies signal coming from its mainlobe relative to

its sidelobe.

Given (2.3.1) - (2.3.2), the mainlobe and sidelobe heights, respectively, equal to the

absolute magnitude of (2.2.5) and (2.2.6). That is,

hpeak, hside = ± α
∣∣∣g(α)look

∣∣∣+ (1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2
. (2.4.1)

with + for hpeak and − for hside.

The mainlobe-to-sidelobe height ratio (if a sidelobe exists) thus equals

HR :=
hpeak
hside

,

=
α
∣∣∣g(α)look

∣∣∣+ (1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2
−α
∣∣∣g(α)look

∣∣∣+ (1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2 . (2.4.2)

This mainlobe-to-sidelobe height ratio is plotted versus all possible “look directions”

in Fig. 2.5a, at α = 1
4

(i.e. a triad comprises of hypercardioids). To aid subsequent

understanding of his graph’s features, Fig. 2.5b plots the mainlobe height whereas Fig.

2.5c does the same for the sidelobe height. Please recall that these are not beam-patterns,

but only how the height ratio / the mainlobe height / sidelobe height vary with the nominal

“look direction”.
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(a) (b)

(c)

Figure 2.5: (a) The mainlobe-to-sidelobe height ratio (HR), (b) hpeak, and (c) hside versus the
nominal “look direction” of (θlook, φlook), for a triad of “hypercardioid” at a “cardioidicity
index” of α = 0.25.

The counterpart graphs for α =
√
3−1
2
≈ 0.366025 ≈ 0.37 (i.e. a triad comprises of

supercardioids). are Figs.2.6a, 2.6b, and 2.6c.

The standard-cardioid case (with α = 0.5) and the subcardioid case (with α = 0.7) are

not plotted, because they have no sidelobe and hence no height ratio.

For the special case of the tri-axial velocity-sensor (i.e., where the “cardioidicity index”

α = 0), (3.3.3) degenerates to HR = 1, ∀ (θlook, φlook). This agrees with [2] (p. 42).

Qualitative observations on the height ratio plotted in Fig. 2.5a for the triad of hyper-

cardioids (i.e. α = 1
4
):

HR-1 A prominent spike appears at (θlook, φlook) = (125.4◦, 225◦). This height-ratio spike

arises due to the sidelobe’s very near-zero height there (i.e. hside ≈ 0), even as the
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mainlobe height hpeak varies relatively little there – as shown in Fig. 2.5c.

HR-2 At φlook < 126◦, a long ridge extends over all θlook. This height-ratio ridge arises due

to a similar topology in the mainlobe in Fig. 2.5b) and due to the sidelobe’s relative

flatness there in Fig. 2.5c.

HR-3 Fig. 2.5b consists of a flat region and a curvy/hilly region. The former corresponds

to substituting the (u, v, w) of the glook <
3α
α−1 case in (2.3.3) into (2.1.5) to obtain

the hpeak in (2.4.1), whereas the latter corresponds to substituting the subregion

{(u, v, w)|glook ≥ 3α
α−1} for the case in (2.3.3) into (2.1.5), to obtain the hpeak in

(2.4.1).

HR-4 Fig. 2.5c consists of a deep dip and a relatively flat region. The former corresponds

to substituting the subregion {(u, v, w)|glook ≥ 3α
α−1} for the case in (2.3.3) into (2.1.5)

to obtain the hside in (2.4.1), whereas the latter corresponds to substituting the other

subregion {(u, v, w)|glook ≥ 3α
α−1} for the case in (2.3.3) into (2.1.5) to obtain the hside

in (2.4.1).

Qualitative observations on the height ratio plotted in Fig. 2.6a for the triad of hyper-

cardioids (i.e. α =
√
3−1
2
≈ 0.366025 ≈ 0.37):

HR-5 A prominent spike appears at (θlook, φlook) = (54.73◦, 45◦). This height-ratio spike

arises due to the sidelobe’s near-zero height there (i.e. hside ≈ 0), as shown in Fig.

2.6c.

HR-6 The height ratio becomes very large at around θlook ∈ (33◦, 76◦) and φlook ∈ (18◦, 72◦),

because the sidelobe height is very low there about, as may be observed in Fig. 2.6c.

HR-7 There exists no spike corresponding to that in Fig. 2.5a for α = 1
4
, because both hpeak

and hside have a deep dip around (θlook, φlook) = (125.4◦, 225◦).

In conclusion, the proposed cardioid triad can increase the height ratio, from the unity

value of the triaxial velocity sensor, possibly to ∞ (i.e. no sidelobe).

2.5 The Triad’s Mainlobe Beam’s Azimuth-

Elevation “Width”

The beamwidth (3dB-beamwidth or half-power beamwidth) of the beampattern is the an-

gular distance from the mainlobe within which the power pattern is equal to or greater

than half its maximum value (i.e square of the height of the mainlobe). This section will

analytically derive this “width” at 3dB below the mainlobe height.

This analysis is not straight-forward:
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(a) (b)

(c)

Figure 2.6: (a) The mainlobe-to-sidelobe height ratio (HR), (b) hpeak, and (c) hside versus
the nominal “look direction” of (θlook, φlook), for a triad of “supercardioid” at a “cardioidicity

index” of α =
√
3−1
2
≈ 0.366025 ≈ 0.37.

∗ As the cardioid triad’s directivity is bivariate over the spherical coordinates of (θ, φ),

the cardioid triad’s mainlobe “width” is actually a two-dimensional partial surface on

the unit sphere, rather than a one-dimensional width, a scalar. Nonetheless, to ease

human comprehension, Section 2.5.3 will define a scalar “width” metric to measure

the cardioid triad’s mainlobe surface.

∗ However, the mainlobe height does not drop below the peak’s half-power height, at

some combination of “look direction” (θlook, φlook) and the “cardioidicity index” α –

the exact conditions will be analytically derived in Section 2.5.1. Where the 3dB

beamwidth exists, Sections 2.5.2-2.5.3 will define and will derive the 3dB beamwidth.
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2.5.1 The Necessary & Sufficient Condition for the Half- Power

Beamwidth to Exist

The proposed beamwidth equation is valid if the value of the minimum point on the nor-

malized beampattern is equal to or less than 1√
2
B|(u,v,w)=(uc1 ,vc1 ,wc1 )

. That is,

B|(u,v,w)=(uc2 ,vc2 ,wc2 )
≤ 1√

2
B|(u,v,w)=(uc1 ,vc1 ,wc1 )

(2.5.1)

This implies that a certain point on the beampattern will be less than the half-power value

so the beamwidth can be equated to the surface area of a spherical cap.

Therefore,

B|(u,v,w)=(uc1 ,vc1 ,wc1 )
≥
√

2 B|(u,v,w)=(uc2 ,vc2 ,wc2 )
, (2.5.2)

that is

αg
(α)
look + (1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2
≥

√
2αg

(α)
look −

√
2(1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2
.

(2.5.3)

Re-arranging the terms,

(
√

2− 1)αg
(α)
look − (

√
2 + 1)(1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2
≤ 0

(
√

2− 1)(3α2 + α(1− α)glook)−
(
√

2 + 1)(1− α)
√

3α2 + (1− α)2 + 2α(1− α)glook
≤ 0. (2.5.4)

Solving (2.5.4) in terms of glook gives a conjugate pair,

gr1 , gr2 =
(
√

2 + 1)2(1− α)2 − 3α2 (
√

2− 1)2

α (
√

2− 1)2 (1− α)

± (
√

2 + 1)

√
(6
√

2− 3)α2 − 12α + 6

α (
√

2− 1)2
(2.5.5)

As gr1 and gr2 must be real-valued, the discriminant of the square root in (2.5.5) must

be non-negative. That is,

(6
√

2− 3)α2 − 12α + 6 ≥ 0. (2.5.6)

The inequality (2.5.6) would be satisfied mathematically ∀α /∈ (0.7735, 1.4142), i.e. ∀α ≤
0.7735 in the present engineering analysis. This value of α = 0.7735 approximates the
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exact value of α =
(2−

√
6− 4

√
2)(1 + 2

√
2)

7
, which is a basis for the subcardioid to give

the highest beamwidth. The further approximated value of α = 0.7 is used in [2] (the last

paragraph on p. 40) for a single subcardioid sensor.

glook ∈ [−
√

3,
√

3], =⇒ glook ∈ (max [gr1 ],min [gr2 ]) ∀α ≤ 0.7735. Hence α ≤ 0.7735

is necessary and sufficient condition for the derived beamwidth expression to hold. For

α > 0.7735, all the points on the beampattern is greater than its half-power value; the

beamwidth becomes constant for every look direction and is set to the area of a sphere of

radius 1√
2
hpeak.

The necessary condition has thus been established above.

As for the sufficient condition: The condition that satisfies the inequality (2.5.4) is

gr1 ≤ glook ≤ gr2 . And this together with the necessary condition, constitutes the sufficient

condition.

2.5.2 Proof of the Beam-Pattern’s Rotational Symmetry About

Peak Direction (φpeak, θpeak)

The cardioid-triad’s spatial-matched-filter beam-pattern, defined mathematically in (2.1.4)

and (2.1.5), will be analytically shown here to be rotationally symmetric with respect to the

peak direction (φpeak, θpeak). This characteristic will aid the next subsection to analytically

derive the beamwidth.

Consider the set of all directions-of-arrival at which the beampattern B has a height of

h. That is, {(uh, vh, wh) : B|(u,v,w)=(uh,vh,wh) = h}. It holds, by definition, that

h = α g
(α)
look + (1− α)

(
u
(α)
lookuh + v

(α)
lookvh + w

(α)
lookwh

)
.

Further define

cos(γh) := ± u
(α)
lookuh + v

(α)
lookvh + w

(α)
lookwh√(

u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2 , (2.5.7)

where the numerator equals the inner product between the vector [uh, vh, wh] and the main-

lobe direction (which equals [uc1 , vc1 , wc1 ] if glook ≥ 3α
α−1 . or [uc2 , vc2 , wc2 ] if glook <

3α
α−1

)
.

Re-write (2.5.7) as

cos(γh) = ± h− α g
(α)
look

(1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2 , (2.5.8)

which depends only on the nominal “look direction” and on the “cardioidicity index” α, but

not on the particular value of (uh, vh, wh). This implies that the beam-pattern’s isohypse
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(a.k.a. isoheight) contour is a circle (in the spherical coordinates) centered at the “peak

direction”, for any specific α.

2.5.3 Half-Power Beam-Width - Analytically Derived in a

Closed Form

As the cardioid triad’s mainlobe is bivariate over the spherical coordinates of (θ, φ), the

mainlobe “width” is actually a two-dimensional partial surface of the unit sphere, rather

than a one-dimensional width. Nonetheless, to ease human comprehension, consider the

surface sub-area A of the unit sphere corresponding to a beam height h ≥ h3dB. That

surface sub-area (being a scalar) is defined here as the cardioid triad’s mainlobe “width”.

Due to the rotational symmetry of the beam-pattern under consideration (as proved in

the preceding Section 2.5.2), this subregion would be a “spherical cap”.3 This “spherical

cap” has a base enclosed by the circular contour where B = hpeak/
√

2, where hpeak is the

maximum value of the beam-pattern.

Apply the rotational symmetry discovered in Section 2.5.2 to h at half power:

h3dB :=
hpeak√

2

=
1√
2

[
αg

(α)
look ± (1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2]
. (2.5.9)

Substitute the above into (2.5.8), giving

cos(γ3dB) = ±
hpeak√

2
− α g

(α)
look

(1− α)

√(
u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2
=

1√
2
± α

1− α
1−
√

2√
2

g
(α)
look√(

u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2 . (2.5.10)

For a tri-axial velocity sensor whose α = 0, (2.5.10) above degenerates to 1√
2
.

The aforementioned “spherical cap” has a surface area equal to

A = 2π
hpeak√

2

(
hpeak√

2
− hpeak√

2
cos γ3dB

)

=

√
2− 1√

2
πh2peak

1± α

1− α
g
(α)
look√(

u
(α)
look

)2
+
(
v
(α)
look

)2
+
(
w

(α)
look

)2
 , (2.5.11)

3The “spherical cap” is also known as the “spherical dome”. It is defined (pp. 69 of [56]) as the “portion
of a sphere cut off by a plane”.
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(a) α = 1
4 , hypercardioids. (b) α =

√
3−1
2 , supercardioids.

(c) α = 1
2 , standard cardioids. (d) α = 0.7, subcardioids.

Figure 2.7: The beamwidth (BW) versus the nominal “look direction” (θlook, φlook) for
various typical values of the “cardioidicity index”.

where the “+” sign applies if glook ≥ −3α
1−α (when the mainlobe points toward (uc1 , vc1 , wc1 , ))

and the “−” sign applies (when the mainlobe points toward (uc2 , vc2 , wc2 , )). The third

equality above is due to (2.5.10). This (2.5.11) describes the mainlobe’s beam-width as a

closed-form analytical expression.

The half-power beam “width” (BW) is thus given as

BW :=
A

h2peak

=

√
2− 1√

2
π

[
1± 3α2 + α(1− α)glook

(1− α)
√

3α2 + (1− α)2 + 2α(1− α)glook

]
, (2.5.12)

where glook has been defined in (2.2.8) to equal sin(θlook) cos(φlook) + sin(θlook) sin(φlook) +

cos(θlook).
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Figs.2.7a-2.7d show how the above-derived beamwidth varies over common values of

α. The beam “width” (BW) is largely determined by α, with only minor variation over

(θlook, φlook)).

In Fig. 2.7a (for α = 1
4
) and Fig. 2.7b (for α =

√
3−1
2
≈ 0.366025 ≈ 0.37) – in

fact for any α ≤
√
3−1
2

– the beam “width” is minimum at the “look direction” where

glook = ulook + vlook + wlook = 3α
α−1 . This value of glook is exactly those “look directions”

where the mainlobe and the sidelobe are equal in height. Generally, those “look directions”

giving a taller hside corresponds to a narrower BW.

In (2.5.12), the fraction’s numerator and denominator both depend on the “look di-

rection” (θlook, φlook) only via glook, which is maximum at (θlook, φlook) =
(
cos−1

(
3−1/2

)
, π
4

)
≈ (54.7◦, 45◦) but minimum at (θlook, φlook) =

(
π − cos−1

(
3−1/2

)
, 5
4
π
)
≈ (125.3◦, 225◦), re-

gardless of α. Therefore, the local maximum and minimum of the fraction term is the same

as that of the numerator and denominator. This implies that the beamwidth attains its

maximum (minimum) where glook is maximized (minimized) in terms of θlook and φlook.

Intuitively speaking, a larger α would shift each cardioid toward isotropy, hence a

broader beam for the triad as a whole, leading to a higher value as one progresses from Fig.

2.7a at α = 1
4

through Fig. 2.7b at α =
√
3−1
2
≈ 0.366025 ≈ 0.37 and Fig. 2.7c at α = 1

2
to

Fig. 2.7d at α = 0.7.

2.6 The Cardioid Triad’s Array Gain

A beamformer’s “array gain”, G (θlook, φlook) is defined as the signal-to-noise ratio (SNR) at

the beamformer’s output relative to that at the input – while assuming that the beamformer

“looks” toward the incident source’s impinging direction, and while subject to additive noise

that is spatially uncorrelated but spatially uniform in power. The beamformer output’s SNR

thus equals

SNRout (θlook, φlook) :=

[
wTa(α) (θlook, φlook)

]2
Ps

‖w‖2Pn
, (2.6.1)

where w refers to the beamformer’s weight vector. The beamformer input’s SNR simply

equals Ps/Pn, where Ps denotes the incident signal’s power, and Pn represents the noise

power.

For the “spatial matched filter” beamformer under consideration, it has w := a(α) (θlook, φlook),
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which is defined in (2.1.3). Hence, the “array gain” equals

G(α) (θlook, φlook) =

[
a(α)(θlook, φlook)

Ta(α)(θlook, φlook)
]2

‖a(α)(θlook, φlook)‖2

=
∥∥a(α)(θlook, φlook)

∥∥2
=

[
3α2 + (1− α)2

]
+ 2α(1− α)glook. (2.6.2)

Figs.2.9a-2.9d plot G(α) (θlook, φlook), for α = 1
4
,
√
3−1
2
≈ 0.366025 ≈ 0.37, 1

2
, 0.7, respec-

tively.

Figure 2.8: G(α)(θlook, φlook) plotted versus the “cardioidicity index” α and versus glook.

Qualitative observations on the “array gain” G(α) (θlook, φlook) of (2.6.2) and its corre-

sponding Figs.2.9a-2.9d:

a) G(α) (θlook, φlook) depends on the “look direction” (θlook, φlook) only through glook, which

is defined in (2.2.8). This G(α) (θlook, φlook) monotonically increases with glook, at any

preset cardiodicity index α, in agreement with Fig. 2.8.

b) Concerning the general shape of G(α) (θlook, φlook) with respect to (θlook, φlook) in

Figs.2.9a-2.9d – This shape changes little with the cardiodicity index α, except

b-1) a vertical displacement that varies with α through the leading term of 3α2 +(1−
α)2 in (2.6.2). This quadratic polynomial is concave upwards, with its minimum

at α =
√
3−1
2
≈ 0.366025 ≈ 0.37. Hence, the “supercardioid” triad’s Fig. 2.9b

has the least vertical displacement among Figs.2.9a-2.9d.

b-2) the height variability (i.e. the difference between the maximum and the min-

imum of
{
G(α) (θlook, φlook) ,∀ (θlook, φlook)

}
) changes with α only through the
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(a) α = 1
4 , hypercardioids. (b) α =

√
3−1
2 , supercardioids.

(c) α = 1
2 , standard cardioids. (d) α = 0.7, subcardioids.

Figure 2.9: The array gain (G) versus the nominal “look direction” of (θlook, φlook) for
various typical values of the “cardioidicity index”.

second term’s multiplicative factor of 2α(1− α), which is maximum at α = 0.5,

corresponding to the “standard cardioid” triad. This agrees with Fig. 2.9c

showing the most height variability among Figs. 2.9a-2.9d.

c) At any preset “cardiodicity index” α, G(α) (θlook, φlook) (which is non-negative by

definition) reaches its minimum of zero at

glook,min = −3α2 + (1− α)2

2α(1− α)
. (2.6.3)

The right-hand side above is negative ∀α ∈ (0, 1), but has a maximum of −
√

3.

Hence, glook,min = −
√

3, in agreement with Fig. 2.8. Recalling that glook spans

over the entire range of [−
√

3,
√

3] regardless of α, glook,min corresponds to [ulook,min,
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vlook,min, wlook,min]T = −
√
3
3

[1, 1, 1]T , hence (θlook,min, φlook,min) = (125.26◦, 225◦), which

represents the “look direction” that minimizes G(α) (θlook, φlook) for any “cardiodicity

index” α.

d) At any preset “cardiodicity index” α, G(α) (θlook, φlook) is found by straightforward

calculus to maximze at a “look direction” of (θlook, φlook) = (54.73◦, 45◦), to a maxi-

mum value of 2[2−
√

3]α2 + 2[
√

3− 1]α+ 1. Hence, glook,max =
√

3, in agreement with

Fig. 2.8.

e) Intuitively speaking: If α increases, each individual cardioid’s directive part of (1 −
α) cos(φ) would be lessen. Hence, the entire cardioid-triad’s array gain would increase.

f) At a different preset “look directions” of (θlook, φlook), the “array gain” is minimum

at possibly a different “cardiodicity index” α. This α value is found by zeroing
∂

∂α
G(α)(θlook, φlook), to equal glook−1

2glook−4
.

In the special case of the tri-axial velocity-sensor (i.e., where the “cardioidicity index”

α = 0), (2.6.2) degenerates to G(0) (θlook, φlook) = 1, ∀(θlook, φlook).

2.7 The Cardioid Triad’s

Signal-To-Noise-Plus-Interference Ratio Gain

The beamformer’s white noise gain which is the ratio of output and input SNR of the

beamformer has been studied in Section 2.6. However, in most applications, aside from the

signal of interest and the isotropic internal/thermal noise, other sources may be incident

on the array from other specific directions. Therefore, the received signal is modelled as

y(t) = a(α)(θs, φs)s(t) +
M∑
m=1

a(α)(θm, φm)vm(t) + n(t)

where s(t) is the signal-of-interest and vm(t) is the mth interference signal. (θs, φs) is the

direction of arrival of the signal of interest, (θm, φm) is the direction of arrival the mth

interference.

For this analysis, it is assumed that the signal of interest, interference signals, and noise

are uncorrelated. And the noise is additive white Gaussian noise with mean of zero and

variance Pn. At the beamformer’s input:

SNIR :=
Ps

Pv + Pn

=
SNR

INR + 1
(2.7.1)
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where SNR := Ps/Pn is the signal-to-noise ratio, INR := Pv/Pn is the interference-to-

noise ratio, Ps = E {s(t)2} is the power of the signal of interest, Pv =
∑M

m=1 Pv,m =∑M
m=1 E {vm(t)2} is the sum of the power of the interference signals, and Pn = E {n(t)2} is

the variance of the additive noise.

The beamformer outputs

B = wT y(t, φ)

= wTa(α)(θs, φs)s(t) + wT

N∑
m=1

a(α)(θm, φm)vm(t) + wTn(t)

where w = a(α)(θlook, φlook) is the beamforming weight vector and other variables are as

previously defined.

At the output of the beamformer, the signal-to-noise-plus-interference ratio

SNIRo =
wTa(α)(θs, φs)a

(α)(θs, φs)
Tw Ps

wT
(∑M

m=1 a(α)(θm, φm)a(α)(θm, φm)TPv,m

)
w + ‖w‖2 Pn

=

(
wTa(α)(θs, φs)

)2
SNR

1
Pn

∑M
m=1 (wTa(α)(θm, φm))

2
Pv,m + ‖w‖2

(2.7.2)

By dividing (2.7.2) by (2.7.1), the beamformer’s SNIR gain

GSNIR =
SNIRo

SNIR

=

(
wTa(α)(θs, φs)

)2
[1 + INR]

1
Pn

∑M
m=1 (wTa(α)(θm, φm))

2
Pv,m + ‖w‖2

(2.7.3)

Due to non-coincidence of the spatial-matched-filter beampattern (i.e true peak direction

not equal to the look direction) as shown in Section 2.3, any interference arriving from the

true peak direction (θpeak, φpeak) will be amplified over the desired signal of interest arriving

from the nominal look direction (θlook, φlook). In that case, GSNIR < 1. However, with a

perfect knowledge of the pointing bias, the look direction of the beamformer is chosen such

that the desired signal arrives from the peak direction instead of the nominal look direction

(i.e. (θs, φs) = (θpeak, φpeak)), (2.7.3) becomes

GSNIR =

(
a(α)(θlook, φlook)

Ta(α)(θpeak, φpeak)
)2

[1 + INR]
1
Pn

∑M
m=1 (a(α)(θlook, φlook)Ta(α)(θm, φm))

2
Pv,m + ‖a(α)(θlook, φlook)‖2

=

(
αg

(α)
look ± (1− α)

∥∥a(α)(θlook, φlook)
∥∥)2 [1 + INR]

1
Pn

∑M
m=1 (a(α)(θlook, φlook)Ta(α)(θm, φm))

2
Pv,m + ‖a(α)(θlook, φlook)‖2

(2.7.4)

where g
(α)
look is as defined in (2.1.6). It has been shown in Section 2.3.1 that for α ∈ (0, 1),
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θ ∈ [0, π], and φ ∈ [0, 2π), |a(α)(θlook, φlook)
Ta(α)(θpeak, φpeak)| > |a(α)(θlook, φlook)

Ta(α)(θ, φ)|.
Therefore, as INR increases, the numerator of (2.7.4) is greater than its denominator, hence

GSNIR > 1. For a case of single interference (M = 1), the SNIR gain (2.7.4) reduces to

GSNIR =

(
αg

(α)
look ± (1− α)

∥∥a(α)(θlook, φlook)
∥∥)2 [1 + INR]

INR (a(α)(θlook, φlook)Ta(α)(θm, φm))
2

+ ‖a(α)(θlook, φlook)‖2
, (2.7.5)

where g
(α)
look is as previously defined.

(a) INR = −3.0103dB, (δθ, δφ) = (5◦, 5◦). (b) INR = −3.0103dB, (δθ, δφ) = (20◦, 30◦).

(c) INR = 10dB, (δθ, δφ) = (5◦, 5◦). (d) INR = 10dB, (δθ, δφ) = (20◦, 30◦).

Figure 2.10: Array’s signal-to-noise-plus-interference ratio gain (GSNIR) versus the nominal
“look direction” (θlook, φlook) for α = 1

4
(hypercardioid) and (δθ, δφ) - the interference’s offset

from true peak direction (θpeak, φpeak).

The plots of (2.7.5) versus look direction (θlook, φlook) are shown in Figures 2.10 - 2.13

for various values of INR and interference’s offset from the true peak direction (δθ, δφ) :=

(θpeak, φpeak)− (θm, φm).
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(a) INR = −3.0103dB, (δθ, δφ) = (5◦, 5◦). (b) INR = −3.0103dB, (δθ, δφ) = (20◦, 30◦).

(c) INR = 10dB, (δθ, δφ) = (5◦, 5◦). (d) INR = 10dB, (δθ, δφ) = (20◦, 30◦).

Figure 2.11: Array’s signal-to-noise-plus-interference ratio gain (GSNIR) versus the nominal

“look direction” (θlook, φlook) for α =
√
3−1
2

(supercardioid) and (δθ, δφ) - the interference’s
offset from true peak direction (θpeak, φpeak).

The array’s SNIR gain increases as the angular separation of the signal of interest and

interference widens. This is noticed going across (a) to (b), and (c) to (d) of Figures 2.10

- 2.13.

Generally, the SNIR gain depends on the angular separation of the source and the

interference, and also the ratio of the power of the interference to the power of the thermal

noise. For INR > 1, the closer the interference to the signal of interest, the lesser the SNIR

gain.
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(a) INR = −3.0103dB, (δθ, δφ) = (5◦, 5◦). (b) INR = −3.0103dB, (δθ, δφ) = (20◦, 30◦).

(c) INR = 10dB, (δθ, δφ) = (5◦, 5◦). (d) INR = 10dB, (δθ, δφ) = (20◦, 30◦).

Figure 2.12: Array’s signal-to-noise-plus-interference ratio gain (GSNIR) versus the nominal
“look direction” (θlook, φlook) for α = 1

2
(standard cardioid) and (δθ, δφ) - the interference’s

offset from true peak direction (θpeak, φpeak).

2.8 Summary

This work generalizes the customary tri-axial velocity-sensor to a cardioid triad, in that the

former represents a special case of the latter when the “cardioidicity index” (α) degenerates

to zero. This work is first in the open literature (to the present authors’ best knowledge)

to propose and to investigate a collocated triad of orthogonally oriented cardioids.

This cardioid triad’s “spatial matched filter” beam-pattern can have a higher mainlobe

-to-sidelobe height ratio, or can avoid sidelobes altogether if α ≥ 1
2
. The cardioid triad’s

array gain can also be significantly higher. A pointing offset, however, exists between

the nominal “look direction” and the “spatial matched filter” beam-pattern’s actual peak

direction. Nonetheless, this nominal pointing error can be readily mitigated by the closed-
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(a) INR = −3.0103dB, (δθ, δφ) = (5◦, 5◦). (b) INR = −3.0103dB, (δθ, δφ) = (20◦, 30◦).

(c) INR = 10dB, (δθ, δφ) = (5◦, 5◦). (d) INR = 10dB, (δθ, δφ) = (20◦, 30◦).

Figure 2.13: Array’s signal-to-noise-plus-interference ratio gain (GSNIR) versus the nominal
“look direction” (θlook, φlook) for α = 0.7 (subcardioid) and (δθ, δφ) - the interference’s offset
from true peak direction (θpeak, φpeak).

form formula derived in this chapter to pre-correct the nominal “look direction”.

This study seems to be first to propose, for beamforming, the use of such a triad

of orthogonal and collocated cardioidic sensors. Compared to the better known tri-axial

velocity-sensor, this cardioidic triad could sharpen the mainlobe and could raise the peak-to-

sidelobe height ratio and the array gain. Such a cardioidic triad is also physically compact,

hence portable for mobile deployment, indoor or outdoor (including on the battlefield).
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Chapter 3

Cardioid Microphones/Hydrophones in a

Collocated and Orthogonal Triad – A New

Beamformer with No Beam-Pointing Error

3.1 Overview

3.1.1 Cardioid Sensors

Cardioid sensors has a directionality shaped like a heart, hence their name. Cardioid sen-

sors’ directionality emphasizes the front side of the sensor, without the front/back direc-

tional ambiguity of “figure-8” sensors. Mathematically, the cardioid sensor’s gain pattern

equals α+ (1−α) cos(ψ), where ψ refers to the incident signal’s direction-of-arrival relative

to the cardioid sensor’s axis. In the above, α denotes the “cardioidicity index”: α = 1

gives an isotropic sensor (e.g. a pressure sensor); α = 0.7 gives a “subcardioid”; α = 0.5

gives a “standard cardioid”; α =
√
3−1
2
≈ 0.366 gives a “supercardioid”; α = 1

4
gives a

“hypercardioid”; α = 0 gives a uni-axial velocity-sensor.

Cardioid sensors have been in practical use for nearly a century, and have numerous

commercial models in present-day use. For a brief introduction to cardioid sensors, please

refer to Chapter 1.

3.1.2 A Triad of Cardioid Sensors in Orthogonal Orientation

and in Spatial Collocation

Consider three cardioid sensors, all of the same cardioidicity index α ∈ (0, 1), all collocating

at the Cartesian origin, but each oriented along a distinct Cartesian axis. Such a triad’s

array manifold (2.1.1) is independent of the incident signal’s frequency:

a(α)(θ, φ) :=

 α + (1− α) sin(θ) cos(φ)

α + (1− α) sin(θ) sin(φ)

α + (1− α) cos(θ)

 , (3.1.1)

where θ ∈ [0, π] represents the impinging acoustic wave’s incident polar angle measured

from the positive z-axis, and φ ∈ [0, 2π) symbolizes the incident azimuth angle measured

37



from the positive x-axis.

To ease the ensuing analysis, define the Cartesian direction cosines along x-, y-, and

z-axes :

u := sin(θ) cos(φ),

v := sin(θ) sin(φ),

w := cos(θ),

which give this alternative expression to the array manifold in (3.1.1):

a(α)(u, v, w) :=

 u(α)

v(α)

w(α)

 :=

 α + (1− α)u

α + (1− α)v

α + (1− α)w

 . (3.1.2)

If α = 0, the special case of a tri-axial vector-sensor results. If α = 1, the special case of

an isotropic sensor is obtained.

The frequency independence of the cardioid triad’s array manifold means a decoupling

of the azimuth-elevation spatial dimensions from the frequency dimension, thereby greatly

simplifying space-time signal processing.

Despite u2 + v2 + w2 = 1, ∀θ, ∀φ, the following inequality:

(
u(α)

)2
+
(
v(α)
)2

+
(
w(α)

)2 6= 1,

would generally hold ∀α > 0.1

3.1.3 The Proposed Beamformer

This chapter will propose a new data-independent beamformer, as an alternative to the

well known spatial-matched-filter (SMF) beamformer, which almost always suffers beam-

pointing error as shown in Section 2.3 when applied to a cardioidic triad, the resulting SMF

beam-pattern [21].

Instead, this chapter will propose a new beamformer, matched spatially not to the car-

dioidic triad’s array manifold a(α) (θlook, φlook) as in Chapter 1, but matched to the Cartesian

direction cosines of the “look direction” (θlook, φlook).
2 Here, θlook ∈ [0, π] symbolizes the

look direction’s polar angle and φlook ∈ [0, 2π) denotes the look direction’s azimuth angle.

1This becomes a equality only at u+ v + w = (1− 2α)/(1− α) for α ∈ (0,
√

3− 1].
2If and only if the cardioid sensors have α = 0 (i.e. the cardioid triad becoming a tri-axial velocity-sensor

[35,37]), this beamforming weight vector would be matched to the triad’s array manifold.
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That is, the proposed beamforming weight vector is defined as

w :=

 ulook

vlook

wlook

 :=

 cos(φlook) sin(θlook)

sin(φlook) sin(θlook)

cos(θlook)

 , (3.1.3)

This proposed beamformer would output a scalar:

B = wT a(α)(u, v, w),

= α

glook :=︷ ︸︸ ︷
(ulook + vlook + wlook) + (1− α)

B̃ :=︷ ︸︸ ︷
(ulooku+ vlookv + wlookw), (3.1.4)

where T represents transpose operation. The amplitude pattern in (3.1.4) can take on

negative values. The most negative amplitude in B may correspond to a local peak in the

magnitude pattern |B|.
The first term, αglook, is independent of (θ, φ), but constitutes an amplitude offset.

Hence, αglook cannot affect the beamformer’s pointing accuracy.

The second term, B̃, has been shown to produce no beam-pointing bias. For details,

please refer to Section 2.2.1 . This second term, in fact, equals the spatial-matched-filter

beampattern of a tri-axial velocity-sensor.

Given the above two paragraphs, the proposed new beamformer’s weights would lead

to no beam-pointing bias in (3.1.4).

3.1.4 Organization of this Chapter

The rest of this chapter is organized as follows: Section 3.2 will analytically derive the

location(s) of the lobe(s) of the proposed beamformer output pattern. The condition where

only one lobe exists will also be analytically derived. Section 3.3 will analytically derive

each lobe‘s height. Section 3.4 will analytically derive the main lobe‘s “width”. Section 3.5

will analytically derive the directivity. Section 3.6 will analytically derive the array gain.

Section 3.8 will compare this newly proposed beamformer with the established spatial-

matched-filter beamformer in terms of mainlobes height, second lobes height, height-ratio,

beamwidth, and array gain. Section 3.9 will conclude this entire investigation.

3.2 Existence/Non-Existence of a Second Lobe

This section will analytically prove that a lobe always exists in the magnitude pattern |B|
along the nominal “look direction” if either

(i) α ∈
[
0,
√
3−1
2

)
, or
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(ii) the “look direction” is limited to the hemisphere ulook + vlook + wlook ≥ 0.

Toward this end, Section 3.2.1 will analytically derive the location(s) the amplitude pat-

tern’s (B) critical point(s) in the Cartesian spatial coordinates (u, v, w).

Then, the necessary and sufficient conditions, by which the magnitude pattern |B| would

have a second lobe, will then be derived in Section 3.2.3.

3.2.1 To Locate the Amplitude Pattern’s Critical Points

This Section 3.2.1 will analytically prove that the amplitude pattern B

(i) always has a local maximum at (u, v, w) = (ulook, vlook, wlook), or equivalently (θ, φ) =

(θlook, φlook), and

(ii) always has a local minimum at (u, v, w) = (uother, vother, wother) = (−ulook, −vlook,
−wlook), or equivalently (θother, φother) = (π − θlook, [π + φlook] mod 2π),

(iii) can never have any third critical point under any circumstance.

The beampattern of (3.1.4) depends on the impinging source’s incident direction (u, v, w),

only through

B̃ := [u, v, w] [a (ulook, vlook, wlook)] , (3.2.1)

which embodies an inner product between the vector [u, v, w]T and a (ulook, vlook, wlook).

This B̃, hence B of (3.1.4), is maximized if both [u, v, w]T and a (ulook, vlook, wlook) point

toward the same direction, as stipulated by the Cauchy-Schwarz inequality.

Hence, one critical point of B lies at (u, v, w) =

(uc1 , vc1 , wc1) = (ulook, vlook, wlook) . (3.2.2)

On the other hand, if [u, v, w]T and a (ulook, vlook, wlook) are diametrically opposite in

direction, B̃ (and thus B) would be minimized. Hence, a second critical point lies at

(u, v, w) =

(uc2 , vc2 , wc2) = − (ulook, vlook, wlook), (3.2.3)

The above (3.2.2) and (3.2.3) hold for all cardioidicity index α ∈ [0, 1) and for all “look

directions” (ulook, vlook, wlook).

Appendix A will show, via the method of Lagrange multipliers, that no third critical

point can possibly exist.
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(a) α = 1
4 , hypercardioids (b) α = 1

2 (
√

3− 1), supercardioids.

(c) α = 1
2 , standard cardioids. (d) α = 0.7, subcardioids.

Figure 3.1: A map showing region in bivariate (θlook, φlook) space for which (3.2.4) holds,
i.e when |B| has a local peak in the look direction (red), and region where (3.2.4) does not
hold (blue) for various typical values of the “cardioidicity index”.

3.2.2 The Magnitude Pattern at the First Critical Point

This Section 3.2.2 shows that for α ∈ [0,
√
3−1
2

), a peak always exists in |B| at (θ, φ) =

(θlook, φlook) for all (θlook, φlook).

The “look direction” does not always have a local peak in magnitude pattern |B|. This

section will identify the circumstances under which this occurs.

For the magnitude pattern |B| to have a local peak at the “look direction”,

B|(θ,φ)=(θlook,φlook)
= αglook + (1− α) > 0

⇔ glook > (α− 1)/α. (3.2.4)

As the minimum value of the left side of (3.2.4) equals −
√

3, the inequality (3.2.4) will
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always be true for all glook (∀(ulook, vlook, wlook)) given α that makes the right side of (3.2.4)

always less than −
√

3, i.e.

α <

√
3− 1

2
≈ 0.366. (3.2.5)

For α ∈ [0, 1
2
(
√

3− 1)) (3.2.4) always holds, but for α ∈ [1
2
(
√

3− 1), 1] (3.2.4) does not

always hold. The region on the bivariate (θlook, φlook) plane for which (3.2.4) holds is filled

red in Figure 3.1.

3.2.3 The Condition for a Lobe to Exist at Other than the

“Look Direction”

If a lobe exists in the magnitude pattern |B| outside the “look direction”, that must exists

at (u, v, w) = (uc2 , vc2 , wc2), which would give a local peak only if the amplitude

B|(u,v,w)=(uc2 ,vc2 ,wc2 )
< 0. (3.2.6)

Otherwise, (u, v, w) = (uc2 , vc2 , wc2) would provide a null, not a peak in the magnitude |B|.
The above (3.2.6) is equivalent to

B|(u,v,w)=(−ulook,−vlook,−wlook)
= α glook − (1− α) < 0,

⇔ glook <
(1− α)

α
, (3.2.7)

which represents the necessary and the sufficient condition for a lobe to exist at (u, v, w) =

(−ulook,−vlook,−wlook). As the maximum value of the left side of (3.2.7) equals
√

3, the

inequality (3.2.7) will always be true for all glook (∀(ulook, vlook, wlook)) given α that makes

the right side of (3.2.7) always greater than
√

3, i.e.

α <

√
3− 1

2
≈ 0.366. (3.2.8)

3.2.4 Condition for two lobes to exists simultaneously

The condition for a lobe to exist in |B| in the look direction has been derived in Section

3.2.2, while the condition for a lobe to exist in |B| in the other direction has been derived

in Section 3.2.3. The condition for the two lobes to exist simultaneously in |B| is derived

in this section.

Two lobes can only exist simultaneously in |B| (i.e. in the look direction and other

direction) if and only if the signs of the beampattern at the two critical points are mutually
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different, i.e.

B|(u,v,w)=(ulook,vlook,wlook)
B|(u,v,w)=(uother,vother,wother)

< 0

[αglook + (1− α)] [αglook − (1− α)] < 0

=⇒ g2look <
(1− α)2

α2
(3.2.9)

(1−α) > 0 and α > 0, while glook ∈ [−
√

3,
√

3] hence (3.2.9) implies that |glook| < (1−α)
α

,

i.e.

−(1− α)

α
< glook <

(1− α)

α
(3.2.10)

which are both always satisfied for α ∈ [0, 1
2
(
√

3 − 1)). For α ∈ [1
2
(
√

3 − 1), 1) condition

(3.2.9) must be satisfied for two lobes to exists simultaneously in |B|.
The region defined in (3.2.9) is shown in Figure 3.2.

Figure 3.2: Map of g2look <
(1−α)2
α2 versus α and glook. The red region depicts where g2look <

(1−α)2
α2 is true.

On account of (3.2.5) and (3.2.8) (which are equivalent to (3.2.9)), regardless of the “look

direction”, a two lobes must exist simultaneously for a triad composed of hypercardioids

(which has α = 1
4
) and indeed for any cardioids with α ∈

(
0,
√
3−1
2

)
.

For a triad comprising “supercardioids” (i.e. with α =
√
3−1
2

), or “standard cardioids”

(i.e. with α = 1
2
), or “subcardioids” (i.e. with α = 0.7) — only one lobe would exist for

those “look directions” that violate (3.2.9). 3

3For a triad of “supercardioids” (i.e. with α =
√
3−1
2 ), only those “look directions” corresponding to

glook = ±
√

3 would not have sidelobes.
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Over all possible “look directions” {∀(θ, φ)}, small subregions exist where no second lobe

exists (hence the height-ratio would be undefined there), because (3.2.9) is violated. For

the special case of super-cardioids (i.e. α = 1
2
(
√

3 − 1)), no second lobe would exist only

at glook = ±
√

3, meaning (θlook, φlook) = (54.74◦, 45◦) and (θlook, φlook) = (125.26◦, 225◦).

These correspond to where the two spikes appear in the subsequent Figure 3.5c.

3.3 The Lobes’ Height Ratio

The lobes’ height ratio (HR) is defined here as the ratio of the “look direction” peak’s height

relative to the other lobe’s height. This section’s analysis will assume that this second lobe

exists, having satisfied the condition derived in 3.2.3.

3.3.1 The Mainlobe’s Height

The mainlobe’s height may be found by substituting (3.2.2) into (3.1.4):

hlook = αglook + (1− α). (3.3.1)

This hlook is plotted in Figures 3.4a, 3.5a, 3.6a, and 3.7a. The following observations

may be made:

(i) Over all possible “look directions”, hlook would be highest at glook =
√

3, attaining a

maximum height of (
√

3− 1)α + 1.

Figure 3.16b shows that hlook → 0 when both glook → 0 and α → 1. Figure 3.16b also

shows that hlook = 0 for glook = 1−α
α

3.3.2 The Second Lobe’s Height

The second lobe (if it exists) must point diametrically opposite the “look direction”, on

account of (3.2.2) and (3.2.3), Therefore, this second lobe’s height equals

hother = |αglook − (1− α)|. (3.3.2)

This hother is plotted in Figures 3.4b, 3.5b, 3.6b, and 3.7b. The following observations

may be noted:

(ii) hother,max = hother(glook = −
√

3) = (
√

3− 1)α + 1, similarly obtained in (i) above.

(iii) Figure 3.17b shows that hother(α = 1, glook = 0) = 0, and hother(α, glook = 1−α
α

) = 0.
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3.3.3 The Height Ratio

The height ratio (if a second lobe exists) equals

HR(α)(glook) :=
hlook
hother

=
|αglook + (1− α)|
|αglook − (1− α)|

, (3.3.3)

which depends on only glook and the cardiodicity index α.

The following observations may be made on (3.3.3):

(iv) Over all possible “look directions”, the height ratio is minimum at glook = −
√

3,

resulting in a ratio of exactly (
√
3+1)α−1

(
√
3−1)α+1

for α ∈ (0,
√
3−1
2

).

(v) B|(u,v,w)=(ulook,vlook,wlook)
− B|(u,v,w)=(−ulook,−vlook,−wlook)

= 2(1 − α), regardless of the

particular “look direction”. This equality implies that the “look direction” (out of all

possible “look directions”) that gives the highest hlook also gives the smallest hother

– the same “look direction” for the largest height ratio. Over all possible “look

directions”, the height ratio is maximum at glook =
√

3, offering a ratio of (
√
3−1)α+1

(
√
3+1)α−1 .

This is the inverse of the height-ratio minimum in (iv) above.

(vi) The height ratio equals unity, if and only if |glook| = 0, corresponding to the blue/yellow

boundary in Figure 3.3.

Figure 3.4c shows how the height ratio varies with the “look directions”, for hypercar-

dioids, which have α = 0.25. Figure 3.5c does the same for supercardioids, which have

α = 1
2
(
√

3− 1), Figure 3.6c does same for the standard cardioids, which have α = 0.5, and

finally Figure 3.7c does same for the subcardioids which have α = 0.7.

Figure 3.3: Map of glook versus θlook and φlook. Yellow region depicts where glook > 0, and
the blue region depicts where glook < 0. The boundary of the two regions is glook = 0.
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(a) (b)

(c)

Figure 3.4: A plot of (a) hlook, (b) hother, and (c) H(α)(θlook, φlook) versus (θlook, φlook) for
α = 1

4
, hypercardioids.

3.4 Half-Power Beam “Width”

The half-power beamwidth has been introduced in Section 2.5. In this section, the beamwidth

is derived for the proposed beamformer.

3.4.1 Rotational Symmetry of the Beampattern

The beampattern is bivariate in terms of the spherical coordinates of θ and φ; hence, the

mainlobe “width” is a two-dimensional spherical cap, rather than a one-dimensional width.

This Section 3.4.1 will analytically prove that the beam-pattern is rotationally symmetric

with respect to the “look direction”.

Let (uh, vh, wh) denote any set of Cartesian direction-cosines giving a beampattern
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(a) (b)

(c)

Figure 3.5: A plot of (a) hpeak, (b) hother, and (c) H(α)(θlook, φlook) versus (θlook, φlook) for
α = 1

2
(
√

3− 1), supercardioids.

height of

h := B|(u,v,w)=(uh,vh,wh)

= α glook + (1− α) (ulookuh + vlookvh + wlookwh). (3.4.1)

Further define

cos γh := ulookuh + vlookvh + wlookwh, (3.4.2)

which equals an inner product between the vectors of [uh, vh, wh] and [ulook, vlook, wlook].

From (3.4.1)-(3.4.2):

cos (γh) =
h− α glook

(1− α)
∈ [−1, 1], (3.4.3)
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(a) (b)

(c)

Figure 3.6: A plot of (a) hpeak, (b) hother, and (c) H(α)(θlook, φlook) versus (θlook, φlook) for
α = 1

2
, standard cardioids.

which is satisfied by all (uh, vh, wh) and only by (uh, vh, wh). Therefore, for the locus of

all sets of Cartesian direction cosines giving a particular beam height – that locus forms

a perfect circle around the directional vector of the “look direction”. Therefore, iso-height

points on the beampattern forms a circular contour centered around the line from the origin

O to the beampatterns peak (i.e. a line towards the peaks direction, (θlook, φlook)).

The expression (3.4.3) is valid if its RHS is between -1 and 1 for h = hlook/
√

2. This

implies that glook ∈
[
(α−1)
α

, (
√
2+1)

(
√
2−1)

(1−α)
α

]
. The implication of the above condition is that

B|(u,v,w)=(uh,vh,wh)
≥ 0.
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(a) (b)

(c)

Figure 3.7: A plot of (a) hpeak, (b) hother, and (c) H(α)(θlook, φlook) versus (θlook, φlook) for
α = 0.7, subcardioids.

3.4.2 The Condition Under which the Beampattern is not

Always Above its Half-Power Height

For the two-dimensional beam-pattern under investigation, its half-power “beamwidth” is

here defined as the concerned spherical cap’s surface area at a radius of 1√
2
hlook. The

beampattern could possibly be always taller than 1√
2
hlook, whereby the triad could be

considered as omni-directional. The beampattern could possibly be always taller than
1√
2
hlook, whereby the triad could be considered as omni-directional. The condition under

which this occurs is derived in this Section 3.4.2.

The condition for a lobe to exist in the look direction for a given look direction and α,

has been derived as glook >
−(1−α)

α
in (3.2.4). Given that (3.2.4) is obeyed, there exists at

least one point on the beampattern whose height is not greater than the half-power height
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if the lowest point on the beam-pattern Bmin is not greater than Bmax/
√

2. That is

Bmin ≤
1√
2
Bmax

=⇒ glook ≤
√

2 + 1√
2− 1

(1− α)

α
(3.4.4)

Therefore, combining conditions (3.2.4) and (3.4.4)

glook ∈
(

(α− 1)

α
,

(
√

2 + 1)

(
√

2− 1)

(1− α)

α

]
(3.4.5)

represents the necessary and sufficient condition that Bmax ≥ 0 and the beampattern is

not entire above its half-power magnitude. Condition (3.4.5) is always satisfied for α ∈
[0, 1

2
(
√

3−1)] ∀glook. This includes the hyper-cardioids and super-cardioids. The Condition

(3.4.5) is not generally true for α /∈ [0, 1
2
(
√

3− 1)]. This explains the blank areas in Figures

3.8c - 3.8d. Incidentally, condition (3.4.5) is mathematically equivalent to condition (3.4.3).

3.4.3 Half-Power Beamwidth Analytically Derived in Closed

Form

In the subsequent discussion, the two-dimensional beamwidth is defined here as the spherical

cap’s area at a radius of h3dB = hlook/
√

2 = B|(u,v,w)=(ulook,vlook,wlook)
/
√

2. The spherical cap’s

boundary is the circular contour (3.4.3) as defined in Section 3.4.1.

From (3.4.3), the half-power height makes an angle γ3dB with the peak direction’s di-

rectional vector, such that

cos γ3dB =

hlook√
2
− α glook

(1− α)
. (3.4.6)

The beamwidth (which is spherical cap’s surface area) equals

BW(α)(θlook, φlook)

:= 2π
hlook√

2

(
hlook√

2
− hlook√

2
cos γ3dB

)
= π h2look (1− cos γ3dB) . (3.4.7)

Then substitute (3.3.1) and (3.4.6) into the (3.4.7),

BW(α)(θlook, φlook) =
(2−

√
2)π

2

h3look
(1− α)

. (3.4.8)

which implies that the beamwidth is directly proportional to cube of the mainlobe’s height.
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As α increases, (1−α) decreases which implies an increase in the beamwidth for a given

look direction. hlook = αglook + (1− α) would vary less across the look directions for small

values of α. This trend can be noticed as the surface plots of the beamwidth becomes less

flatter as α increases from Figure 3.8a (α = 1
4
) to Figure 3.8d (α = 0.7).

(a) α = 1
4 , hypercardioids (b) α = 1

2 (
√

3− 1), supercardioids

(c) α = 1
2 , standard cardioids (d) α = 0.7, subcardioids

Figure 3.8: A plot of BW(α)(θlook, φlook) against (θlook, φlook) for various typical values of
the “cardioidicity index”.

3.5 Directivity

The directivity of a microphone array measures the gain of the array in a noise field against

the gain of an omnidirectional microphone [2]. The noise field is usually isotropic but can,

in some special cases, be modeled as cylindrical. Therefore, directivity can be defined as

the ratio of the power received by the microphone in a given direction (its main response

axis) to the noise power at the array due to isotropic noise. Thus an array’s directivity is
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defined in [20] as

D(θ, φ) =
|B|2|(θ,φ)=(θlook,φlook)

1

4π

∫
π

0
dθ

∫
2π

0
dφ sin(θ)|B|2

, (3.5.1)

where |B|2 is the power pattern of the array and other variables as previously defined. The

numerator of (3.5.1) represents the power gain of the array in the direction of maximum

response (the look direction), and the denominator of (3.5.1) represents the power of noise

at the array’s output due to isotropic noise field.

The power pattern

|B|2 = |α glook + (1− α)(ulooku+ vlookv + wlookw)|2

= α2g2look + (1− α)2(ulooku+ vlookv + wlookw)2

+ 2α(1− α)glook(ulooku+ vlookv + wlookw), (3.5.2)

and it holds that

|B|2
∣∣
(θ,φ)=(θlook,φlook)

= α2g2look + 2α(1− α)glook + (1− α)2. (3.5.3)

Substitute u, v, w from Section 3.1.2 into (3.5.2), and then further substitute (3.5.2) and

(3.5.3) into (3.5.1). Thereafter, integration with respect to (θ, φ):

D(α)(θlook, φlook) =
α2g2look + 2α(1− α) glook + (1− α)2

α2 g2look + 1
3
(1− α)2

= 1 + 2(1− α)
3α glook + (1− α)

3α2 g2look + (1− α)2
, (3.5.4)

recalling that glook represents a bivariate function of (θlook, φlook).

At α = 1, the cardioidic triad degenerates to an isotropic sensor, giving D(α)(θlook, φlook)

= 1. For α = 0 (i.e. the triad of cardoiids degenerating to a tri-axial velocity sensor):

D(α)(θlook, φlook) = 3.

3.5.1 Condition Under Which D(α)(glook) > 3 (i.e. Greater than a

Tri-Axial Velocity-Sensor’s Directivity)

From (3.5.4),

D(α)(θlook, φlook) = 1 + 2(1− α)

(
(1− α) + 3α glook

3α2 g2look + (1− α)2

)
> 3, (3.5.5)

which is equivalent to glook ∈
(
0, 1−α

α

)
.
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3.5.2 To Identify the “Look Direction” that Maximizes

Directivity

At any preset cardioidicity index α, the “look direction” that gives the maximum directivity

may be identified as follows:

max
glook∈[−

√
3,
√
3]
D(α)(glook) ≡ max

glook∈[−
√
3,
√
3]
D̃(α)(glook), (3.5.6)

where

D̃ =
(1− α) + 3α glook

3α2 g2look + (1− α)2
. (3.5.7)

Next,

∂D̃

∂ glook
=

g2look + 3
(
1−α
α

)2 − 2 glook
(
1−α
α

+ glook
)[

g2look + 3
(
1−α
α

)2]2 = 0

implies that glook = (1−α)
3α

and − (1−α)
α

. At the two critical points of (3.5.7):

D(α)(glook) =

0, for glook = − (1−α)
α

4, for glook = (1−α)
3α

(3.5.8)

Therefore, the second critical point at glook = (1−α)
3α

maximizes the directivity. Hence,

max
glook∈[−

√
3,
√
3]
D(α)(glook) = 4. This can also be seen in the directivity plots of Figures 3.9.

The maximum directivity occurs when (ulook, vlook, wlook) lies on the Cartesian plane

defined by

glook := ulook + vlook + wlook =
(1− α)

3α
.

3.6 Array Gain

A beamformer’s “array gain”, G(θlook, φlook) is defined as the signal-to-noise ratio (SNR) at

the beamformer’s output relative to that at the input, while assuming that the beamformer

“looks” toward the incident source’s impinging direction, and while subject to additive

noise that has equal intensity and statistical independence across the various sensors. 4 A

higher array gain in a given direction (> 1) basically means that the using more than one

microphone improves the signal-to-noise ratio compared to using just one microphone in

4Please see equation (2.34) on p. 25 of [52], equation (2.185) on p. 65 of [20], and (2.22) equation p. 24
of [53].
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(a) α = 1
4 , hypercardioids (b) α = 1

2 (
√

3− 1), supercardioids

(c) α = 1
2 , standard cardioids (d) α = 0.7, subcardioids

Figure 3.9: A plot of D(α)(θlook, φlook) against (θlook, φlook) for various typical values of the
“cardioidicity index”.

that given direction. The direction of choice is in the maximum-response axis direction.

Define the beamformer input’s signal-to-noise ratio as

SNRin :=
Ps
Pn
,

where Ps and Pn denote the signal power and noise power, respectively. The beamformer

output’s signal-to-noise ratio equals

SNRout =

[
wT a(α)(θlook, φlook)

]2
Ps

‖w‖2Pn
. (3.6.1)

At the beamformer’s weighting vector w := a(θlook, φlook), as defined in (3.1.3), the array
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gain equals

G(α)(θlook, φlook) =
SNRout

SNRin

=
[
a(φlook, θlook)

T a(α)(φlook, θlook)
]2

= (α glook − α + 1)2

= α2g2look + 2α(1− α)glook + (1− α)2. (3.6.2)

The array gain G(α)(θlook, φlook) is plotted against the “look direction” (θlook, φlook) at various

values of α in Figures 3.11a-3.11d.

To determine, at any given α, the maximum array gain among all possible “look direc-

tion”, apply the Lagrangian method: The two stationary points of (3.6.2) are then obtained

as

(uL1 , vL1 , wL1) =

(√
3

3
,

√
3

3
,

√
3

3

)
, (3.6.3)

(uL2 , vL2 , wL2) =

(
−
√

3

3
, −
√

3

3
, −
√

3

3

)
. (3.6.4)

These respectively imply (θlook, φlook) = (54.73◦, 45◦) and (θlook, φlook) = (125.26◦, 225◦),

and glook =
√

3 and −
√

3. As G(α)(glook =
√

3) > G(α)(glook = −
√

3), (3.6.3) corresponds

to the “look direction” of the maximum array gain.

Hence, the “look direction” that maximizes the array gain (among all “look directions”)

is independent of α, though that maximum array gain itself depends on α as follows:

G(α)(glook =
√

3) = (α
√

3 + (1− α))2

= 3α2 + 2
√

3α(1− α) + (1− α)2

= [4− 2
√

3]α2 + [2
√

3− 2]α + 1. (3.6.5)

G(α)(glook =
√

3) (3.6.5) shows that the maximum array gain is quadratic with regard to α,

the maximum array gain actually increases monotonically within the range of α ∈ (0, 1).

Please see Figure 3.10.

3.7 Signal-To-Noise-Plus-Interference Ratio Gain

The signal-to-noise-plus-interference ratio gain has been developed in Section 2.7 for the

spatial-matched-filter beamformer. This section will extend analysis to the beamformer

proposed in this chapter.
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Figure 3.10: Plot of the G(α)(glook =
√

3) against α.

From (2.7.3) in Section 2.7

GSNIR =

(
wTa(α)(θs, φs)

)2
[1 + INR]

1
Pn

∑M
m=1 (wTa(α)(θm, φm))

2
Pv,m + ‖w‖2

(3.7.1)

For the proposed beamformer, w = a(θlook, φlook), therefore, (3.7.1) becomes

GSNIR =

(
a(θlook, φlook)

Ta(α)(θlook, φlook)
)2

[1 + INR]
1
Pn

∑M
m=1 (a(θlook, φlook)Ta(α)(θm, φm))

2
Pv,m + ‖a(θlook, φlook)‖2

=
(αglook + (1− α))2 [1 + INR]

1
Pn

∑M
m=1 (αglook + a(θlook, φlook)Ta(θm, φm))2 Pv,m + 1

(3.7.2)

where glook is as defined in (3.1.4). It has been shown in Section 3.2.1 that for α ∈ (0, 1),

θ ∈ [0, π], and φ ∈ [0, 2π), |a(θlook, φlook)
Ta(α)(θlook, φlook)| > |a(θlook, φlook)

Ta(α)(θ, φ)|.
Therefore, as INR increases, the numerator of (3.7.2) is greater than its denominator,

hence GSNIR > 1. For a case of single interference (M = 1), the SNIR gain reduces to

GSNIR =
(αglook + (1− α))2 [1 + INR]

INR (αglook + a(θlook, φlook)Ta(θm, φm))2 + 1
, (3.7.3)

where glook is as previously defined.

The plots of (3.7.3) versus look direction (θlook, φlook) are shown in Figures 3.12 -

3.15 for various values of INR and interference’s offset from the look direction (δθ, δφ) :=

(θlook, φlook)− (θm, φm).

The array’s SNIR gain increases for a given INR as the angular separation of the signal

of interest and interference widens. This is noticed going across (a) to (b), and (c) to (d)
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(d) α = 0.7, subcardioids

Figure 3.11: A plot of G(α)(θlook, φlook) against (θlook, φlook) for various typical values of the
“cardioidicity index”.

of Figures 3.12 - 3.15. Generally, the SNIR gain depends on the angular separation of the

source and the interference, and also the ratio of the power of the interference to the power

of the thermal noise. For INR > 1, the closer the interference to the signal of interest, the

lesser the SNIR gain. But when compared to that of the spatial-matched-filter proposed

in Chapter 2, it becomes evident that generally, the beamformer proposed in this chapter

experiences more SNIR attenuation.

3.8 Comparing this Unbiased Beam-Pattern with the

Earlier Spatial-Matched-Filter Beam- Pattern

3.8.1 Beam-Pointing Error

In the present beamformer’s magnitude pattern, there is no pointing error (in that a peak

always exists at the look direction (θlook, φlook)) if
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(a) INR = −3.0103dB, (δθ, δφ) = (5◦, 5◦). (b) INR = −3.0103dB, (δθ, δφ) = (20◦, 30◦).

(c) INR = 10dB, (δθ, δφ) = (5◦, 5◦). (d) INR = 10dB, (δθ, δφ) = (20◦, 30◦).

Figure 3.12: Array’s signal-to-noise-plus-interference ratio gain (GSNIR) versus the nominal
“look direction” (θlook, φlook) for α = 1

4
(hypercardioid) and (δθ, δφ) - the interference’s offset

from true peak direction (θpeak, φpeak).

(i) if α ∈
[
0,
√
3−1
2

)
– e.g. hypercardioids – for any “look direction” anywhere on the

entire sphere, or

(ii) if α ∈ [0, 1) and the “look direction” is limited to an hemisphere defined by ulook +

vlook + wlook ≥ 0.

In contrast, the spatial-matched-filter beampattern in Chapter 1 (refer to Section 2.2.2)

would generally have a pointing bias.5 That pointing bias, furthermore, varies with α and

with the particular look direction.6

5More precisely, the spatial-matched-filter beampattern would always have a pointing bias except for
the degenerate case of α = 0 (that renders each cardioid a uni-axial velocity-sensor), and except the one
“look direction” of (θlook, φlook) = (54.7◦, 45◦), ∀α > 0.

6Please refer to equations (2.3.6) - (2.3.10).
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(a) INR = −3.0103dB, (δθ, δφ) = (5◦, 5◦). (b) INR = −3.0103dB, (δθ, δφ) = (20◦, 30◦).

(c) INR = 10dB, (δθ, δφ) = (5◦, 5◦). (d) INR = 10dB, (δθ, δφ) = (20◦, 30◦).

Figure 3.13: Array’s signal-to-noise-plus-interference ratio gain (ASNIR) versus the nominal

“look direction” (θlook, φlook) for α =
√
3−1
2

(supercardioid) and (δθ, δφ) - the interference’s
offset from true peak direction (θpeak, φpeak).

3.8.2 Existence of a Second Lobe

The present magnitude pattern would have a second lobe under the sufficient and necessary

condition in (3.2.9), which holds ∀α ∈
(

0,
√
3−1
2

]
and ∀(θlook, φlook).

In contrast, the spatial-matched-filter beam-pattern would have a sidelobe only for the

wider range of α ∈
(
0,
√

6− 2
)

and only if glook therein satisfies further conditions. For full

details, please refer to equation (18) of [21].

From another perspective: Both a triad of hyper-cardioids
(
α = 1

4

)
and a triad of super-

cardioids
(
α = 1

2

(√
3− 1

))
must necessarily have two lobes in both beam-patterns for all

“look directions”.
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(a) INR = −3.0103dB, (δθ, δφ) = (5◦, 5◦). (b) INR = −3.0103dB, (δθ, δφ) = (20◦, 30◦).

(c) INR = 10dB, (δθ, δφ) = (5◦, 5◦). (d) INR = 10dB, (δθ, δφ) = (20◦, 30◦).

Figure 3.14: Array’s signal-to-noise-plus-interference ratio gain (ASNIR) versus the nominal
“look direction” (θlook, φlook) for α = 1

2
(standard cardioid) and (δθ, δφ) - the interference’s

offset from true peak direction (θpeak, φpeak).

3.8.3 Lobes’ Height Ratio

Over those values of (α, glook) where the height ratio is defined for both the present magni-

tude pattern and the spatial-matched-filter beam-pattern, both beam-patterns share these

similarities:

(i) For each beam-pattern individually, the “look direction” that gives the tallest main-

lobe is also the “look direction” that gives the shortest second lobe.

(ii) The height ratio is undefined if either glook = ±
√

3 or α =
√
3−1
2

.

As α increases while glook is kept constant, hlook(α, glook) in/decreases monotonically

according to Figure 3.16b, hother(α, glook) in/decreases monotonically according to Figure

60



(a) INR = −3.0103dB, (δθ, δφ) = (5◦, 5◦). (b) INR = −3.0103dB, (δθ, δφ) = (20◦, 30◦).

(c) INR = 10dB, (δθ, δφ) = (5◦, 5◦). (d) INR = 10dB, (δθ, δφ) = (20◦, 30◦).

Figure 3.15: Array’s signal-to-noise-plus-interference ratio gain (GSNIR) versus the nominal
“look direction” (θlook, φlook) for α = 0.7 (subcardioid) and (δθ, δφ) - the interference’s offset
from true peak direction (θpeak, φpeak).

3.17b, HR(α)(glook) in/decreases monotonically according to Figure 3.18b. Whether in-

creases or decreases – that depends on the particular value of glook. This monotonic variation

in HR(α, glook) with α, however, does not occur in the spatial-matched-filter beam-pattern

as seen in Figure 3.16a.

3.8.4 Mainlobe’s Half-Power Beamwidth

Figure 3.19 show that both beam-patterns vary little with glook at small α. As α increases,

the spatial-matched-filter beamwidth increases until α ≈ 0.77, at which the entire beam-

pattern is taller than the half-power height, rendering the beamwidth to become undefined.

Please see Figure 3.19a. In contrast, the present magnitude pattern’s beamwidth exists ∀α
for at least some glook.
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(a) (b)

Figure 3.16: Beam-pattern’s mainlobe’s height hlook(α, glook) against “cardioidicity index”
α and glook for (a) the spatial-matched-filter beam-pattern, and (b) the current magnitude
pattern.

(a) (b)

Figure 3.17: Beam-pattern’s second lobe’s height hother(α, glook) against “cardioidicity in-
dex” α and glook for (a) the spatial-matched-filter beam-pattern, and (b) the current mag-
nitude pattern.

The spatial-matched-filter beam-pattern is all zero if α = 1
2
(
√

3 − 1) and glook = −
√

3

simultaneously hold

3.8.5 Array Gain

Both beam-patterns’ maximum array gains equal 3, in {∀α, ∀glook}. The spatial-matched-

filter beam-pattern’s array gain equals zero only if both α = 1
2
(
√

3 − 1) and glook = −
√

3

6Chapter 1 uses the symbol BW which has already been normalized by h2peak.
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(a) (b)

Figure 3.18: Main-to-second lobe height ratio HR(α, glook) against “cardioidicity index” α
and glook for (a) the spatial-matched-filter beam-pattern, and (b) the current magnitude
pattern.

(a) (b)

Figure 3.19: Mainlobe’s half-power beamwidth BW(α, glook) against “cardioidicity index”
α and glook for (a) the spatial-matched-filter beam-pattern, and (b) the current magnitude
pattern. 7

are simultaneously true. Please refer to Figure 3.20a.

The current magnitude pattern’s array gain G(α) (θlook, φlook) would equal zero for more

combinations of α and glook. That is, whenever glook = α−1
α

, which graphically represented

as an arc in Figure 3.20b.
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(a) (b)

Figure 3.20: Array gain G(α, glook) against “cardioidicity index” α and glook for (a) the
spatial-matched-filter beam-pattern, and (b) the current magnitude pattern.

3.9 Summary

Cardioid hydrophones/microphones provide low backlobes/sidelobes, relative to figure-8

bi-directional sensors (such as velocity-sensors). Collocating three perpendicularly oriented

cardioids would render the triad’s array manifold independent of the incident signal’s fre-

quency and spectrum, thereby decoupling the azimuth-elevation dimensions from the fre-

quency dimension, leading to great simplification in any real-time signal processing. This

study proposes the first data-independent beamformer without pointing bias. This new

beamformer’s height ratio, beamwidth, directivity, and array gain are also analytically

derived in this chapter.
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Chapter 4

Two Higher-Order Figure-8 Sensors in

Spatial Collocation — Their “Spatial

Matched Filter” Beam-Pattern

4.1 Overview

4.1.1 Differential Sensors

Highly directive microphones/hydrophones could enhance “random efficiency” (i.e., could

better suppress background noises/interference off-axis) and could increase the “distance

factor” (i.e., the microphone’s/hydrophone’s spatial reach on-axis). One type of directional

microphones/hydrophones is the differential sensor.

A first-order differential sensor (a.k.a. a “pressure gradient” sensor) often implemented

by measuring the pressure difference across a diaphragm’s two sides. This first-order spatial

finite difference is proportional to the acoustical particle velocity; therefore the first-order

differential sensor is also called a uni-axial “velocity sensor” or a “velocity hydrophone”.

This first-order differential sensor would have a dipole-like directional response of cos(φ),

where φ ∈ [0, 2π) denotes the incident source’s incident angle measured with respect to the

sensor axis. This is labeled “figure-8”, because the cos(φ) gain response resembles the digit

“8”. This response is bidirectional in nature, sensitive equally to incident energy from the

front as well as from the back, but little sideway pickup.

The above-mentioned first-order differential sensor could be generalized to the a kth

order, by (chapter 8.5 of [39], chapter 2.2 of [2]) measuring pressure field at k + 1 closely

spaced points along a straight line, then by computing the kth-order finite difference among

them in order to approximate a measurement of the kth-order partial derivative of the

pressure field [64,65]). A kth-order differential sensor has a directional gain response equal

to the kth-order spatial derivative of the pressure field. More mathematically, a k-order

differential sensor would have a directional response of cosk(φ).

The frequency response of these higher-order sensors limits their applications. The

kth order sensor depends on ωk which makes them more sensitive to high frequency sounds

hence attenuating lower frequency sounds along with noise [1]. This limits their applications

to high-frequency sound sensing such as in some musical instruments or measuring engine
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noises. Also hearing aids benefits from higher-order figure-8 microphones due to their

abilities to be pick up close sound sources while attenuating distant source sources in

a noisy or reverberant environments. Miniaturized higher-order microphones also finds

applications as microphones for telephones, computers, portable digital devices, camcorders,

and surveillance systems [75].

Some higher-order figure-8 sensors have been realized dating as far back as 1942 to

2008. The second-order bi-directional sensors have been realized in [7, 74, 75, 77–83]. The

third-order has been designed and realized in (Section 5.3 in [2]), [74–76], while the Fifth-

order has been implemented in [73]. Choice of the best kth-order depends on availability,

frequency of the source, and the proximity of the source relative to the sensor.

4.1.2 A Bi-Axial Pair of Differential Sensors in Spatial

Collocation and Perpendicular Orientation

First-order differential sensors have been used for decades as a collocated pair in perpen-

dicular orientation, giving an array manifold of

a1(φ) =

[
cos(φ)

sin(φ)

]
. (4.1.1)

The above array manifold has a key advantage of independence from the frequency/ spec-

trum/ bandwidth of the incident signal, thereby decoupling the frequency coordinate from

the direction-of-arrival coordinate. Such a pair is sometimes called a “u-u probe”. It has

been implemented in hardware [59,60,67], while its directivity and beampattern have been

studied in [68,70]. Direction-finding formulas have been advanced for it in [9]. Please refer

to [66] for a literature review. Incidentally, first-order differential sensors have been used in a

collocated and perpendicular triad, called a “tri-axial velocity-sensor”, or a “velocity-sensor

triad”, or a “vector sensor”, or a “vector hydrophone”. The effect of non-perpendicularity

in such tri-axial velocity sensors is studied in Chapter 5. For comprehensive reviews of the

“tri-axial velocity-sensor” literature, please consult [34, 36,71].

Similarly, for a bi-axial pair of k-th order differential sensors in spatial collocation and

perpendicular orientation, the pair’s array manifold is equal to

ak(φ) =

[
cosk(φ)

sink(φ)

]
. (4.1.2)

This array manifold retains the frequency-decoupling advantage of (4.1.1).
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4.1.3 A Bi-Axial Pair of Differential Sensors in Spatial

Collocation but Arbitrary Orientation

Perfectly perpendicular axes are, however, an idealization unachievable in practice. If the

x-axis rotates on the x-y plane counter-clockwise by an angle of φ̃ (see Figure 4.1), the

corresponding rotation matrix is

R(φ̃) =

[
cos(φ̃) − sin(φ̃)

0 1

]
. (4.1.3)

The non-perpendicular but collocated pair of differential sensors would then have an array

manifold of

ãk(φ, φ̃) = R(φ̃) ak(φ)

=

[
cos(φ̃) − sin(φ̃)

0 1

] cosk(φ)

sink(φ)



=

 cos(φ̃) cosk(φ)− sin(φ̃) sink(φ)

sink(φ)

 . (4.1.4)

Figure 4.1: A bi-axial pair of high-order differential sensors with the horizontal axis rotated
counterclockwise through φ̃.
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4.1.4 “Spatial Matched Filter” Beamforming on a Bi-Axial Pair

of Collocated Differential Sensors

“Spatial matched filter” (SMF) beamforming is common in data-independent beamforming.

It weights-and-sums the individual channels’ measurements, by matching the beamforming

weights to the array’s spatial steering vector weights for the pre-set/fixed “look direction”.

If the interference and the additive noise together are statistically 1) zero-mean, 2) spatially

uncorrelated, and 3) uncorrelated with the desired signal incident from the pre-set “look

direction” – then this “spatial matched filter” beamformer would maximize its output

signal-to-noise ratio (SNR) [57].

If the “spatial matched filter” beamformer has no prior knowledge of any non-orthogonality

between the two axes but presumes them to be orthogonal, the beampattern would then

equal

B
(2+0)
k (φ, φL, φ̃) =

ak(φL)T R(φ̃) ak(φ)

max
φ

∣∣∣ak(φL)T R(φ̃) ak(φ)
∣∣∣ . (4.1.5)

The “spatial match filter” beampattern – for the special but important biaxial case at

k = 1 (i.e., the u-u probe) and with non-perpendicular axes – has already been analyzed

in [17]. There, it is analytically proved that a directional pointing error would be incurred,

but the overall beam pattern would otherwise stay the same as in the perpendicular case.

Incidentally, for a triad of first-order differential sensors that are collocated in space and

perpendicular in orientation, the “spatial matched filter” beam-pattern has been analyzed

in [18]. This work will generalize the analysis in [17] on a bi-axial pair of differential sensors

to any arbitrary order k.

4.1.5 Organization of This Chapter

Section 4.2 will derive the location of the beampattern’s peak and analytically derive the

pointing bias in terms of the axes’ skew angle φ̃, the pre-set “look direction” φL, and

the differential sensor order k of the two collocated higher-order non-perpendicular figure-

8 sensors. Section 4.3 will re-express the skewed pair’s array manifold in (4.1.4) to an

alternative mathematical form more conductive for subsequent analysis and also will analyze

the different sub-functions realized by the simplification of the beampattern in and how

each of these functions affects the beampattern. Section 4.4 reduces the beampattern to 3

degree-of-freedom to facilitate the study of the effect of non-perpendicularity. Section 4.5

finally concludes the investigation.
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4.2 To Derive the Beampattern’s Pointing Bias

The location of the beampattern’s peak is derived in Section 4.2.1. The pointing error is

then analytically studied in terms of the look direction φL, mis-orientation angle φ̃, and the

sensor order k in Sections 4.2.2 and 4.2.3. Section 4.2.2 will study the pointing error for

first-order collocated figure-8 bi-axial sensor, i.e k = 1. The pointing error for k > 1 will

be defined in Section 4.2.3 and analyzed subsequently.

4.2.1 To Derive the Beampattern’s Peak

The peak of the beampattern (4.1.5) is located at –noting that its denominator is function-

ally independent on φ

φpeak = arg max
φ∈[0,2π)]

ak(φL)T R(φ̃)︸ ︷︷ ︸
:=uk(φL,φ̃)T

ak(φ)


= arg max

φ∈[0,2π)]

{
uk(φL, φ̃)T ak(φ)

}

= arg max
φ∈[0,2π)]

u1 cosk(φ) + u2 sink(φ)︸ ︷︷ ︸
:=B̂k


= arg max

φ∈[0,2π)]
B̂k, (4.2.1)

where

uk(φL, φ̃) =

[
u1

u2

]
=

[
cosk(φL) cos(φ̃)

sink(φL)− cosk(φL) sin(φ̃)

]
. (4.2.2)

Applying the first derivative test to the maximization problem (4.2.1) to find the critical

points of B̂, ∂B̂k
∂φ

is set to zero and the following sets of solutions are obtained

φc1 = n
π

2
, n = 0, 1, 2, 3 (4.2.3)

φc2 = tan−1

([
u1
u2

] 1
k−2

)
, (4.2.4)

as the critical points of B̂.
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For k = 1, the maximum occurs at φ = φc2 since φc1 ⊂ φc2, i.e

φk=1
peak = tan−1

(
u2
u1

)
= tan−1

(
sink(φL)− cosk(φL) sin(φ̃)

cosk(φL) cos(φ̃)

)
(4.2.5)

For k > 1, note that ak(φ) is 2 × 1 in size and is plotted in Figure 4.2 for k = 3 and

k = 4. As k increases, ‖ak(φ)‖2 becomes more concave. For all k > 1, ‖ak(φ)‖2 is largest

at φ = 0◦, 90◦, 180◦, 270◦, therefore,

φk>1
peak = φc1

= {0◦, 90◦, 180◦, 270◦} (4.2.6)

Now that the peak locations have been obtained, we consider the denominator of (4.1.5)

as
∣∣∣B̂∣∣∣

max
. To ease subsequent exposition, make the definition indicated below

∣∣∣B̂k

∣∣∣
max

:= max
φ

∣∣∣B̂k

∣∣∣ ,
= max

φ∈[0,2π)]

∣∣u1 cosk(φ) + u2 sink(φ)
∣∣ (4.2.7)

For k = 1, substitute (4.2.5) into (4.2.7) and∣∣∣B̂k=1

∣∣∣
max

= ‖u(φL, φ̃)‖2. (4.2.8)

The analysis differs for k > 1. Inside the | · | of (4.2.7), the 2×1 potential steering vector

of ak(φ) is projected onto the 2 × 1 skewed pair’s look direction vector of uk(φL, φ̃). This

vector projection gives a nonnegative scalar
∣∣∣B̂k

∣∣∣ which indicates the measured strength of

the impinging signal. The incident angle φ that maximizes
∣∣∣B̂k

∣∣∣, as shown in Figure 4.2a,

must be the apexes of the ak(φ) closest to uk(φL, φ̃). Here,
∣∣∣B̂k

∣∣∣
max

is the maximum of all

possible projections ∀φ, for a preset φL and a preset φ̃ (for even k, ak(φ) only exists in the

first quadrant as shown in Figure 4.2b). Therefore,∣∣∣B̂k>1

∣∣∣
max

= max
φ=0◦,90◦,180◦,270◦

∣∣u1 cosk(φ) + u2 sink(φ)
∣∣ . (4.2.9)

Note that cos(0) = − cos(180◦) = 1 and sin(0) = sin(180◦) = 0. Also cos(90◦) =

cos(270◦) = 0 and sin(90◦) = − sin(270◦) = 1. Therefore,∣∣∣B̂k>1

∣∣∣
max

= max{|u1|, |u2|}

= ‖uk(φL, φ̃)‖∞ (4.2.10)
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(a) (b)

Figure 4.2: A diagrammatic proof of maximum projection of ak(φ) on uk(φL, φ̃) for (a)
k = 3 , and (b) k = 4 which can be generalized to all odd k > 1 and all even k > 1,
respectively.

Generally, from (4.2.8) and (4.2.10),∣∣∣B̂k

∣∣∣
max

= ||uk(φL, φ̃)||p, (4.2.11)

where || · ||p is the p-norm, and

p :=

2, for k = 1 ;

∞, for k > 1
. (4.2.12)

The simplified denominator (4.2.11)-(4.2.12) will be used in Section 4.3.2 to further simplify

the beampattern.

4.2.2 Pointing Bias for First-Order (k = 1) Case

The beampattern’s peak points in the look direction φL for a perfectly perpendicular case.

This section will extend the work done in [17] – when the two figure-8 sensors are not

perpendicular. Towards that we define the pointing bias as

φbias := φL − φk=1
peak

= φL − tan−1

(
sink(φL)− cosk(φL) sin(φ̃)

cosk(φL) cos(φ̃)

)
= φL − tan−1

(
tan(φL) sec(φ̃)− tan(φ̃)

)
(4.2.13)
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Figure 4.3: Plot of φbias versus look direction φL and mis-orientation angle φ̃ for k = 1.

Qualitative observations on the pointing bias φbias versus φL and φ̃ – see Figure 4.3:

{1.} The pointing bias is π-periodic with respect to φL.

{2.} φbias = 0 when φL = 90◦ and 270◦. This is because in this analysis, the vertical axis

is assumed to remain perpendicular to the true horizontal axis.

{3.} For φL = 0◦ or 180◦, the pointing bias is equal to the mis-orientation angle φ̃.

{4.} The pointing bias is zero for φL and φ̃ that obey

φL = tan−1

(
sin φ̃

1− cos φ̃

)

4.2.3 Pointing Bias for Higher-Order (k > 1) Case

It is proved in Section 4.2.1 that the mainlobe of two collocated higher-order figure-8 sensor

array can only point in either of 0◦, 90◦, 180◦, and 270◦ for odd values of k, or combinations

of {0◦ and 180◦}, or {90◦ and 270◦} for even values of k – even for a perfectly perpendicular

case. Due to this phenomenon, the pointing bias introduced due to non-perpendicularity

of the two sensors is defined differently from the first-order case.

How do the look direction φL, axes’ skew angle φ̃ and sensor order k affect the point-

ing bias? By the definition of the infinity norm, ‖uk(φ, φ̃)‖∞ must equal the absolute

magnitude of either entry in the 2 × 1 vector uk(φ, φ̃). More precisely, ‖uk(φ, φ̃)‖∞ =

max
{∣∣∣[uk(φL, φ̃)

]
1

∣∣∣ , ∣∣∣[uk(φL, φ̃)
]
2

∣∣∣}. Here we analyze what entry of uk(φ, φ̃) is larger in

magnitude at what values of {φL, φ̃, k}.∣∣∣[uk(φL, φ̃)
]
1

∣∣∣ ≥ ∣∣∣[uk(φL, φ̃)
]
2

∣∣∣ ,
⇔ cos(2φ̃) + 2 sin(φ̃) tank(φL)− tan2k(φL) ≥ 0, (4.2.14)
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which is quadratic in tank(φL). Hence, (4.2.14) is equivalent to[
tank φL −

√
2 sin(φ̃+ 45◦)

] [
tank φL +

√
2 cos(φ̃+ 45◦)

]
≤ 0, (4.2.15)

⇔ tank φL ∈
[
−
√

2 cos(φ̃+ 45◦),
√

2 sin(φ̃+ 45◦)
]
. (4.2.16)

Therefore, it holds ∀k > 1 that for

tank(φL) ∈
[
−
√

2 cos(φ̃+ 45◦),
√

2 sin(φ̃+ 45◦)
]
, (4.2.17)

∥∥∥uk (φ, φ̃)∥∥∥
∞

=
∣∣∣[uk (φL, φ̃)]

1

∣∣∣ ,
which directly implies that the mainlobe of the beampattern points in 0◦ or 180◦.

Alternatively, the beampattern will point in 90◦ and 270◦ if and only if

tank(φL) /∈
[
−
√

2 cos(φ̃+ 45◦),
√

2 sin(φ̃+ 45◦)
]
, (4.2.18)

i.e. ∥∥∥uk (φ, φ̃)∥∥∥
∞

=
∣∣∣[uk (φL, φ̃)]

2

∣∣∣ .
In perfectly perpendicularity, the beampattern will point in

φpeak =





0◦ if φL ∈ [−45◦, 45◦]

90◦ if φL ∈ [45◦, 135◦]

180◦ if φL ∈ [135◦, 225◦]

270◦ if φL ∈ [225◦, 315◦]

, for odd k

0◦, 180◦ if φL ∈ [−45◦, 45◦] ∪ [135◦, 225◦]

90◦, 270◦ if φL ∈ [45◦, 135◦] ∪ [225◦, 315◦]
, for even k

. (4.2.19)

Under perfect conditions, given, say φL = 30◦ and any even k > 1, the beampattern

will point to 0◦ and 180◦, according to (4.2.19). But according to (4.2.17), given k = 2

and φ̃ = −35◦, the region described in (4.2.17) becomes [−1.393, 0.246]. Then tan2(30◦) =

0.333 /∈ [−1.393, 0.246], and according to (4.2.18) implies the beampattern points in 90◦

and 270◦ instead, hence a pointing error. Plots of the relationship between φL, φ̃, k, and

pointing bias are shown in Figure 4.4 for k = 2, ..., 5.

Observations made on Figure 4.4:

{1.} The mainlobe points mainly in the vertical direction, i.e. 90◦ and 270◦ as there are
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more blue areas than yellow. Mainly due to the same reason given in item {2.} of

Section 4.2.2.

{2.} For φL ∈ [45, 90] and [225, 315], the beampattern points only in the vertical direction

irrespective of the value of the misorientation angle φL. Similar to point {2.} in

Section 4.2.2.

{3.} The pointing error reduces as k increases. This can be observed between Figures 4.4a

and 4.4c where the shape of the yellow areas curves less as k increases from 2 to 4.

Similar trend can be noticed for odd values of k, i.e from Figure 4.4b and 4.4d.

(a) k = 2 (b) k = 3

(c) k = 4 (d) k = 5

Figure 4.4: A map depicting the regions in (φL, φ̃) where the mainlobe points in {0◦, 180◦}
in yellow, and {90◦, 270◦} in blue for different values of k > 1.
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4.3 Further Analyzing the Beampattern

The location of the peak of the beampattern, hence the pointing bias have been derived and

analyzed in Section 4.2. In this section, the beampattern is further analyzed by expressing it

in form of magnitude and phase sub-functions to facilitate analogy between the higher-order

and first-order figure-8 sensors’ beampatterns.

4.3.1 To Mathematically Relate the Higher-Order ak(φ) to the

First-Order a1(φ)

To facilitate subsequent analysis, the kth-order array manifold ak(φ) in (4.1.2) is re-

expressed here in a mathematically more convenient form, in terms of the first-order array

manifold a1(φ), as follows:

ak(φ) = βk(φ) a1(ξk(φ))

= βk(φ)

[
cos(ξk(φ))

sin(ξk(φ))

]
, ∀φ ∈ [0, 2π), (4.3.1)

where

βk(φ) :=

√
sin2k(φ) + cos2k(φ), (4.3.2)

ξk(φ) := tan−1(sink(φ)/ cosk(φ)). (4.3.3)

This transformation is based upon the preservation of the ratio of the horizontal and

vertical components of a vector defined in 2-D Cartesian Coordinates. Any vector in the

2-D Cartesian Coordinates is be defined by a magnitude function and a phase function.

The validity of (4.3.1)-(4.3.3) is analytically proved in Appendix B. This insight is new

to the open literature. That (4.1.2) may be alternatively expressed as (4.3.1)-(4.3.3) is

unsurprising: (4.1.2) may be interpreted to define a vector in a two-dimensional Cartesian

space. Such a vector can be fully described by its magnitude (βk(φ)) and its phase (ξk(φ)).

This (4.3.1) maintains the ratio of [ak(φ)]2
[ak(φ)]1

= [a(ξk(φ))]2
[a(ξk(φ))]1

, where [·]1 and [·]2 denotes the 1st

and 2nd entries of the enclosed vector, respectively.

4.3.2 To Re-Express the Beampattern in Sub-Functions

The beampattern of (4.1.5) has a denominator that is functionally independent of the

source’s incident direction (φ). This denominator thus affects the beampattern as a magnitude-

scaling factor, which does vary with the axes’ skew angle (φ̃) and the beampattern’s “look

direction” (φL).
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Figure 4.5: The geometric relationship between φ and ξk(φ).

Denoting this denominator has been shown in (4.2.11) in Section 4.2.1 to be

∣∣∣B̂k

∣∣∣
max

=


‖R(φ̃)Tak(φL)‖2, if k = 1

‖R(φ̃)Tak(φL)‖∞, if k > 1.

(4.3.4)

Substitute (4.3.4) into (4.1.5),

B
(2+0)
k (φ, φL, φ̃) =

uk(φL, φ̃)T ak(φ)

||uk(φL, φ̃)||p
. (4.3.5)

where

p =

2, k = 1

∞, k > 1
(4.3.6)

Multiplying both numerator and denominator of (4.3.5) by ‖uk(φL, φ̃)‖2

B
(2+0)
k (φ, φL, φ̃) =

‖uk(φL, φ̃)‖2
‖uk(φL, φ̃)‖p

uk(φL, φ̃)T

‖uk(φL, φ̃)‖2
ak(φ). (4.3.7)

The first fraction above is functionally independent of φ for all k and equals unity for

k = 1 and any other constant with respect to φ when k > 1.

The second fraction is also functionally independent of φ for all k. Moreover, it is a unit

vector in two-dimensional Cartesian space; and any such a unit vector may be represented
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as

[
cos(·)
sin(·)

]
with same phase angle inside both trigonometric functions. Hence, write

uk(φL, φ̃)

‖uk(φL, φ̃)‖2
=

[
cos(χk(φL, φ̃))

sin(χk(φL, φ̃))

]
(4.3.8)

= a(χk(φL, φ̃)), (4.3.9)

where

χk(φL, φ̃) := tan−1

(
[uk(φL, φ̃)]2

[uk(φL, φ̃)]1

)
∈ [−π, π]. (4.3.10)

Substituting (4.3.1)-(4.3.3) and (4.3.8) all into (4.3.7),

B
(2+0)
k (φ, φL, φ̃) =

‖uk(φL, φ̃)‖2
||uk(φL, φ̃)||p

βk(φ) a(χk(φL, φ̃))Ta(ξk(φ))

=

υk(φL,φ̃):=︷ ︸︸ ︷
‖uk(φL, φ̃)‖2
||uk(φL, φ̃)||p

βk(φ) cos(ξk(φ)− χk(φL, φ̃))

= υk(φL, φ̃) βk(φ) cos(ξk(φ)− χk(φL, φ̃)), (4.3.11)

where βk(φ), ξk(φ), and χk(φL, φ̃) are defined respectively in (4.3.2), (4.3.3), and (4.3.10).

The beampattern is thus decomposed into a nonnegative magnitude factor of υk(φL, φ̃)

βk(φ) and the cosine of a phase difference of ξk(φ) − χk(φL, φ̃). Though the magnitude

factor of υk(φL, φ̃)βk(φ) is quadri-variate, υk(φL, φ̃) is only trivariate and is independent of

φ, whereas βk(φ) is only bivariate. Likewise, though the phase ξk(φ)− χk(φL, φ̃) is quadri-

variate, ξk(φ) is only bivariate and χk(φL, φ̃) is only trivariate and is independent of φ.

Each of these factors or terms will be analyzed in the subsequent sections.

4.3.3 Analysis of Magnitude-Scaling Factor of βk(φ)

The nonnegative multiplicative factor of βk(φ) is independent of the axial skew angle of φ̃

and independent of the pointing direction φL. The variation of βk(φ) with φ is shown in

Figure 4.6 for various sensor-orders k. Four lobes exist for all k > 1, with heights equal

to 1 and centered around φ = 0◦, 90◦, 180◦, 270◦, with nulls of heights equal to
√

21−k at

φ = 45◦, 135◦, 225◦, 315◦. Please refer to Appendix C.1 for proof of the null location and

height.

The lobes sharpens in width as the sensor order k increases, i.e. βk(φ) ≥ βk+1(φ), ∀φ,

∀k ≥ 1. The analytical proof is given in Appendix C.2.

Recall that the beam-pattern’s magnitude-scaling multiplicative factor of υk(φL, φ̃)βk(φ)
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varies with the incident source’s direction-of-arrival φ only through βk(φ). This implies that

the directivity of a pair of k > 1 figure-8 sensors (whether orthogonally oriented or not) is

limited to four sector around φ = 0◦, 90◦, 180◦, 270◦.

Figure 4.6: How βk(φ) varies with an incident emitter’s azimuth direction-of-arrival φ, at
various figure-8 sensor order k.

4.3.4 Analysis of Magnitude-Scaling Factor of υk(φL, φ̃)

The magnitude-scaling factor of υk(φL, φ̃) is independent of the source’s azimuth direction-

of-arrival φ; hence, υk(φL, φ̃) does not affect the beamformer’s azimuth-pattern shape but

only magnitude-scales the entire pattern.

For k = 1, υk(φL, φ̃) = 1 for all φL and all φ̃. For k > 1, by the definition of infinity

norm, when ∥∥∥uk (φ, φ̃)∥∥∥
∞

=
∣∣∣[uk (φL, φ̃)]

1

∣∣∣ , (4.3.12)

υk(φL, φ̃) =

√√√√1 +

(
[uk(φL, φ̃)]2

[uk(φL, φ̃)]1

)2

=

√
1 + tan2(χk(φL, φ̃)),

= | sec(χk(φL, φ̃))| (4.3.13)
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Alternatively, when ∥∥∥uk (φ, φ̃)∥∥∥
∞

=
∣∣∣[uk (φL, φ̃)]

2

∣∣∣ , (4.3.14)

υk(φL, φ̃) =

√√√√1 +

(
[uk(φL, φ̃)]2

[uk(φL, φ̃)]1

)2

=

√
1 + cot2(χk(φL, φ̃)),

= | csc(χk(φL, φ̃))| (4.3.15)

υk(φL, φ̃) is functionally dependent on k, φL, and φ̃, therefore, how do k, φL, and φ̃

influence (4.3.12) and (4.3.14)? This is answered in Section 4.2.3.

Plots of υk(φL, φ̃) versus (φL, φ̃) are shown in Figure 4.7 for various values of k. As

absolute value secant or co-secant functions, the minimum values of υk(φL, φ̃) = 1 as can

be seen in Figure 4.7. This implies that υk(φL, φ̃) does not downscale the beampattern. The

maximum value of υk(φL, φ̃) =
√

2 which occurs when | sec(χk(φL, φ̃))| = | csc(χk(φL, φ̃))|.
The transitions between secant and cosecant υk(φL, φ̃) is more rapid at lower values

of k as can be observed across Figures 4.7b - 4.7f. This translates to less changes in the

beampattern with increasing k as φL and φ̃ are varied.

4.3.5 Analysis of the Phase Term ξk(φ)

Figure 4.8 shows how ξk(φ) varies with the incident emitter’s direction-of-arrival φ, at

various figure-8 sensor orders of k = 1, 2, · · · , 6.

For even values of k: ξk(φ) ranges over [0, π
2
],∀φ ∈ [0, 2π), but ξk(φ) mostly clusters

around the values of 0◦ and 90◦. Appendix D.1 analytically proves that this clustering

becomes tighter around these two values, as k increases.

For odd values of k: ξk(φ) spans over the entire [0, 2π), but mostly clusters around the

values of 0◦, 90◦, 180◦, and 270◦. Appendix D.2 analytically proves that this clustering

becomes tighter around these four values, as k increases.

The above properties of ξk(φ) will be shown in Section 4.3.7 to steer the beam toward

one of the four direction-of-arrival sectors identified in Section 4.3.3.

4.3.6 Analyzing the Phase Term χk(φL, φ̃)

χk(φL, φ̃) for a given k and |φ̃| close to zero, varies with φL similarly as ξk(φ) varies with

φ. This is shown by expressing χk(φL, φ̃) in terms of ξk(·) as

χk(φL, φ̃) = tan−1
(

tan(ξk(φL)) sec(φ̃)− tan(φ̃))
)
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

(e) k = 5 (f) k = 6

Figure 4.7: υk(φL, φ̃) versus φL and φ̃ for various values of order k.

As φ̃→ 0, tan(φ)→ 0 and sec(φ̃)→ 1, hence χk(φL, φ̃)→ ξk(φL).

Observations on Figure 4.9: As odd k increases, the shape become more rectangular,

more staircase-like. As even k increases, the shape become more rectangular, more square-

wave-like. This staircase-like or square-wave-like trend implies that there will be no change

in the shape of the beampattern within the flat surface even while varying the look-direction

φL within the flat region.
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Figure 4.8: How ξk(φ) varies with the incident emitter’s direction-of-arrival φ, at various
figure-8 sensor order k.

4.3.7 Analyzing cos
(
ξk(φ)− χk(φL, φ̃

)
The phase terms of ξk(φ) and χk

(
φL, φ̃

)
together affect the beam-pattern through cos (ξk(φ)

−χk(φL, φ̃)
)

.

For even k: Section 4.3.5 has shown that ξk(φ) mostly clusters around 0◦ and 90◦.

Hence, by selecting φL suitably (for any given φ̃ and any given k), it is possible to render

cos
(
ξk(φ)− χk(φL, φ̃)

)
= 1 for all φ. Pick out either φ ≈ 0◦, 180◦ versus φ ≈ 90◦, 270◦.

For odd k: Section 4.3.5 has shown that ξk(φ) mostly clusters around 0◦, 90◦, 180◦, and

270◦. Hence, by selecting φL suitably (for any given φ̃ and any given k), it is possible to

render cos
(
ξk(φ)− χk(φL, φ̃)

)
= 1 for all φ. Pick out either φ ≈ 0◦ versus φ ≈ 90◦ versus

φ ≈ 180◦ versus φ ≈ 270◦.

4.4 Reducing the Beampattern to 3 Degree-of-

Freedom for k > 1

Up to this point, the beampattern is expressed in terms of 4 independent variables, k, φ,

φ̃, and φL. In this section, the simplification of υk(φL, φ̃) in Section 4.3.4 for k > 1 will be

applied to group φ̃ and φL as one independent variable, thereby reducing the beampattern

to 3 degree-of-freedom.

Substituting (4.3.12) into (4.3.11), the beampattern is written as

B
(2+0)
k,1 (φ, χ) = | sec(χ)|βk(φ) cos(ξk(φ)− χ). (4.4.1)
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 4.9: Plot of χk(φL, φ̃) versus φL and φ̃ for various values of sensor order k.

Alternatively, substituting (4.3.14) into (4.3.11), the beampattern is written as

B
(2+0)
k,2 (φ, χ) = | csc(χ)|βk(φ) cos(ξk(φ)− χ). (4.4.2)

Note that χk(φL, φ̃) is written as χ in (4.4.1) and (4.4.2) eliminating its functional de-

pendence on φL and φ̃ since the two do not occur anywhere in (4.4.1) outside χk(φL, φ̃),

thereby reducing the degrees-of-freedom from 4 to 3. However, it is important to note

that the beampattern’s can be equal to either (4.4.1) and (4.4.2), depending on φL and φ̃.

Please refer to Section 4.2.3 for the condition, which depends φL, φ̃, and k, for which the

beampattern can either be (4.4.1) or (4.4.2).

Notwithstanding the challenges presented by the dependence of χ on φL and φ̃, the

two different beampatterns can be studied independently to have a general knowledge

of the variation of the beampattern with respect to φ and the combined effects of non-
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perpendicularity (φ̃) and look direction (φL).

(a) (b)

Figure 4.10: Plot of (a) |B(2+0)
k,1 (φ, χ)| and (b) |B(2+0)

k,2 (φ, χ)| versus φ and χ for k = 2, with
logarithmic vertical axis.

(a) (b)

Figure 4.11: Plot of (a) |B(2+0)
k,1 (φ, χ)| and (b) |B(2+0)

k,2 (φ, χ)| versus φ and χ for k = 3, with
logarithmic vertical axis.

Qualitative observations on |B(2+0)
k,1 (φ, χ)| of Figure 4.10a, 4.11a, 4.12a, and 4.13a:

(i.) The width of the mainlobes remains unchanged for most part of the surfaces away

from χ = ±90◦. This is the region where the beampattern switches from |B(2+0)
k,1 (φ, χ)|

to |B(2+0)
k,2 (φ, χ)|.

(ii.) As k increases, the switching region described in (i.) becomes less prominent. This

implies less rapid switching in the direction of the mainlobe increases as k increases.
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(a) (b)

Figure 4.12: Plot of (a) |B(2+0)
k,1 (φ, χ)| and (b) |B(2+0)

k,2 (φ, χ)| versus φ and χ for k = 4, with
logarithmic vertical axis.

(a) (b)

Figure 4.13: Plot of (a) |B(2+0)
k,1 (φ, χ)| and (b) |B(2+0)

k,2 (φ, χ)| versus φ and χ for k = 5, with
logarithmic vertical axis.

(iii.) The lobes, in terms of direction of arrival φ, becomes narrower for a given χ as k

increases. This is expected as the directivity of the figure-8 sensor increases with

sensor order k.

Qualitative observations on |B(2+0)
k,2 (φ, χ)| of Figure 4.10b, 4.11b, 4.12b, and 4.13b:

(iv.) A sidelobe is introduced next to the mainlobe for odd values of k. Please see Figures

4.11b and 4.13b.

(v.) The depth of the null between the sidelobe described in (iv.) deepens as odd values

of k increases. Please see Figures 4.11b and 4.13b.

84



(vi.) The sidelobe described in (iv.) becomes more prominent as χ deviates from 0 for a

given odd k.

(vii.) The mainlobe lobe of |B(2+0)
k,2 (φ, χ)| becomes narrower as k increases. This is due to

the reason mentioned in (iii.).

4.5 Summary

This work has shown that for an array of two collocated higher-order figure-8 sensors

which are/are not in orthogonal orientation (with the beamformer unaware of the non-

perpendicularity), its spatial-matched-filter-type beampattern will only point in horizontal

or vertical directions. More importantly, this work relates the look direction, array’s skewed

angle and sensor order to the mis-pointing of the array’s beampattern.

More interestingly, this work pioneers the expression of the higher-order figure-8 sensors

in form of first-order figure-8 sensors, which provides a way of mathematically relating the

behaviors of the two categories of figure-8 sensors.

If the two higher-order figure-8 sensors are collocated with an isotropic sensor (like a

pressure sensor), that triad’s beam pointing bias would remain the same as analyzed above.

This is on account of the analysis available in Section 2.2 of [17], by simply changing a(2+0)(·)
there in [17] by the ak(·) here in this work.
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Chapter 5

Directional Pointing Error in “Spatial

Matched Filter” Beamforming at a Tri-Axial

Velocity-Sensor due to Non-Orthogonal Axes

5.1 Overview

5.1.1 A Tri-Axial Velocity-Sensor

A “tri-axial velocity sensor” (also called a “velocity-sensor triad”, a “pressure gradient sen-

sor”, an “acoustic vector-sensor”, or a “vector hydrophone”) measures an incident acoustic

field by its underlying 3× 1 particle-velocity vector. Such a “tri-axial velocity-sensor” has

an array manifold of [22, 69,72]

a(3+0)(φ, θ) =

 cosφ sin θ

sinφ sin θ

cos θ

 , (5.1.1)

where θ ∈ [0, π] denotes the polar arrival direction (also known as the zenith angle) defined

with respect to the positive z-axis, and φ ∈ [0, 2π) symbolizes the azimuth arrival direction

defined with respect to the positive x-axis. The above array manifold offers azimuth-

elevation bivariate spatial directivity, plus independence from the frequency/ spectrum/

bandwidth of the incident signal. This allows any associate signal processing to decouple

the time/frequency coordinates from the direction-of-arrival coordinates. Furthermore, the

spatial collocation of all three constituent sensors (i.e., the three uni-axial velocity-sensors)

leads to a physical compactness that facilitates deployment and mobility.

This “tri-axial velocity-sensor” has been implemented in hardware, sometimes with

a collocating pressure-sensor. The “tri-axial velocity-sensor” is available commercially,

as the“Uniaxial P-U Probe from AcousTech Inc. (Fort Wayne, Indiana, U.S.A.) for the

underwater propagation medium, and as the “ Ultimate Sound Probe” from Microflown

Technologies (Arnhem, The Netherlands) and as “Vector Intensity Probe” from G.R.A.S.

Sound and Vibration A/S (Holte, Denmark) for the air acoustics. The “tri-axial velocity-
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sensor” has been used in sea trials or aeroacoustic field tests, and has many signal-processing

algorithms tailored for it — please see [34,36,71] for comprehensive reviews of the research

literature.

5.1.2 “Spatial Matched Filter” Beamforming on a Tri-Axial

Velocity-Sensors

Spatial-matched-filter beamforming has been introduced and discussed in Section 1.5, and

further in Section 4.1.4. The tri-axial velocity-sensor’s “spatial matched filter” beam-

pattern has been analyzed in [16,18], under the assumption of perfect orthogonality among

the three axes.

For non-perpendicular axes, which may arise due to manufacturing / fabrication / de-

ployment imperfections: the “spatial match filter” beampattern has been analyzed in the

open literature only for a bi-axial velocity-sensor (i.e., the u-u probe) under univariate ax-

ial non-orthogonality [17], but not yet for the tri-axial velocity-sensor. There in [17], the

bi-axial velocity-sensor is analytically proved to incur a directional pointing error, but the

overall beam pattern would otherwise be same as in the perpendicular case.

This chapter will generalize the analysis in [17] to a tri-axial velocity-sensor, with or

without the collocating pressure-sensor, under tetravariate axial non-orthogonality.

5.1.3 A Tri-Axial Velocity-Sensor with Non-Orthogonal

Orientation

Perfect orthogonality is an idealization that is unattainable in practical systems. Without

loss of generality: among the tri-axial velocity-axis’ three axes, only two may be taken to

have mis-oriented, with the remaining axis serving as a “reference” coordinate.

5.1.4 Organization of This Chapter

Section 5.2 develops the rotation matrix to capture the non-perpendicularity among the

sensors. The preliminary analysis in Section 5.2 is common to all three cases in Sections

5.2.3, 5.2.2, and 5.2.4. Section 5.3 will analytically derive the pointing error in closed

form, explicitly in terms of the tri-axial velocity-sensor’s axial mis-orientation angles of

(φx, θx, φy, θy, φz, θz) and in terms of the beamformer’s pre-set “look direction” (φL, θL).

Section 5.7 will do the same for a tri-axial velocity-sensor that is collocated with pressure-

sensor as a four-component sensing system. Finally, Section 5.8 will conclude this investi-

gation.
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5.2 The Geometry of Axial Mis-Orientation

5.2.1 Capturing Rotations of Each Axis

This section contains the rotations that would take x-, y-, z- axes to x̃-, ỹ-, z̃- directions

respectively. The rotation of a vector through an angle ψ about the x-, y-, and z-axis are

captured in the basic rotation matrix

Tx(ψ) =

1 0 0

0 cosψ − sinψ

0 sinψ cosψ

 , (5.2.1)

Ty(ψ) =

 cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ

 , (5.2.2)

and

Tz(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (5.2.3)

respectively.

The x-axis is directed to a new x̃-direction (please see Figure 5.1) by Tyz(θx, φx) obtained

by a rotation of

(i.) θx about the nominal y-axis captured in Ty(θx) and,

(ii.) φx about the nominal z-axis captured in Tz(φx),

therefore,

Tyz(θx, φx) = Tz(φx) Ty(θx)

=

cosφx cos θx − sinφx cosφx sin θx

cos θx sinφx cosφx sinφx sin θx

− sin θx 0 cos θx

 (5.2.4)

To take y-axis to ỹ-direction, which points in a direction φy and θy away from y-axis

(see Figure 5.1) the resultant rotation matrix Txz(θy, φy) is obtained by a rotation of

(i.) θy about the nominal x-axis captured in Tx(θy) and,
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(ii.) φy about the nominal z-axis captured in Tz(φy),

therefore,

Txz(θy, φy) = Tz(φy)Tx(θy)

=

cosφy − sinφy cos θy sinφy sin θy

sinφy cosφy cos θy − cosφy sin θy

0 sin θy cos θy


(5.2.5)

Finally, the z-axis is directed to a new z̃-direction by Tyz(θz, φz) obtained by a rotation

of

(i.) θz about the nominal y-axis captured in Ty(θz) and,

(ii.) φz about the nominal z-axis captured in Tz(φz),

therefore,

Tyz(θz, φz) = Tz(φz) Ty(θz)

=

cosφz cos θz − sinφz cosφz sin θz

cos θz sinφz cosφz sinφz sin θz

− sin θz 0 cos θz

 (5.2.6)

5.2.2 Geometry with the x-Axis Being the Reference Axis

In this section, the x-axis is adopted as the reference axis (see Figure 5.2) hence only the

y-axis and z-axis are mis-oriented.

The y-axis is rotated by (5.2.5), and the z-axis is rotated by (5.2.6). Therefore, the

overall rotation effect is modeled as

Rx(φy, θy, φz, θz) =

 [I3]1,i

[Txz(θy, φy)
T ]2,i

[Tyz(θz, φz)
T ]3,i

 (5.2.7)

i = 1, 2, 3, where I3 is a 3× 3 identity matrix which represents no transformation was done

on the x-axis (reference axis), [·]i,j is the entry on the i-th row and j-th column of matrix,

and T represents matrix transposition.

Rx(φy, θy, φz, θz) =

 1 0 0

− sinφy cos θy cosφy cos θy sin θy

cosφz sin θz sinφz sin θz cos θz

 , (5.2.8)
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Figure 5.1: The tri-axial velocity-sensor, with mis-orientation in its x-axis, y-axis, and z-
axis. The six mis-orientation angles are (φx, θx) to parameterize the mis-orientation of the
x-axis to the x̃-axis, (φy, θy) to parameterize the mis-orientation of the y-axis to the ỹ-axis,
and (φz, θz) to parameterize the mis-orientation of the z-axis to the z̃-axis

where φy, and θy are the azimuth and elevation angle of the ỹ-axis with respect to the

y-axis, and φz and θz are the azimuth and elevation angle of the z̃-axis relative to the

x-y-z-coordinates.

A non-orthogonal tri-axial velocity-sensor whose x-axis is taken as reference axis would

have this array manifold:

ã(3+0)
x (φ, θ, φy, θy, φz, θz) = Rx(φy, θy, φz, θz) a(3+0)(φ, θ). (5.2.9)

5.2.3 Geometry with the y-Axis Being the Reference Axis

If the y-axis is adopted as the reference axis, and x- and z-axes are taken to non-orthogonal

to y-axis as shown in Figure 5.3, the overall rotation effect is captured as

Ry(φx, θx, φz, θz) =

 [Tyz(θx, φx)
T ]1,i

[I3]2,i

[Tyz(θz, φz)
T ]3,i

 (5.2.10)
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Figure 5.2: The tri-axial velocity-sensor, with tetravariate mis-orientation in its y-axis and
z-axis. The four mis-orientation angles are (φy, θy) to parameterize the mis-orientation of
the y-axis to the ỹ-axis, and (φz, θz) to parameterize the mis-orientation of the z-axis to
the z̃-axis.

i = 1, 2, 3, and other variables as previously defined.

Ry(φx, θx, φz, θz) =

cosφx cos θx sinφx cos θx − sin θx

0 1 0

cosφz sin θz sinφz sin θz cos θz

 , (5.2.11)

where φx, and θx are the azimuth and elevation angle of the x̃-axis, and φz and θz are

the azimuth and elevation angle of the z̃-axis, relative to the x-y-z-coordinates, that is the

mis-orientation angles.

A non-orthogonal tri-axial velocity-sensor whose y-axis is adopted as reference axis

would have this array manifold:

ã(3+0)
y (φ, θ, φx, θx, φz, θz) = Ry(φx, θx, φz, θz) a(3+0)(φ, θ). (5.2.12)

5.2.4 Geometry with the z-Axis Being the Reference Axis

Here, the z-axis is taken as the reference axis while the x-axis is mis-oriented by φx (az-

imuthally from the nominal x-axis) and θx(downwards from the normal x-y plane); and

y-axis is mis-oriented by φy (azimuthally from the nominal y-axis) and θy (above the nor-

mal x-y plane) as shown in Figure 5.4.
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Figure 5.3: The tri-axial velocity-sensor, with tetravariate mis-orientation in its x-axis and
z-axis. The four mis-orientation angles are (φx, θx) to parameterize the mis-orientation of
the x-axis to the x̃-axis, and (φz, θz) to parameterize the mis-orientation of the z-axis to
the z̃-axis.

The overall rotation effect is modeled as

Rz(φx, θx, φy, θy) =

 [Tx(θx, φx)
T ]1,i

[Ty(θy, φy)
T ]2,i

[I3]3,i

 (5.2.13)

i = 1, 2, 3, and other variables as previously defined. Hence,

Rz(φx, θx, φy, θy) =

 cosφx cos θx sinφx cos θx − sin θx

− sinφy cos θy cosφy cos θy sin θy

0 0 1

 , (5.2.14)

where φx, and θx are the azimuth and elevation angle of the x̃-axis, and φy and θy are

the azimuth and elevation angle of the ỹ-axis, relative to the x-y-z-coordinates, that is the

mis-orientation angles.

A non-orthogonal tri-axial velocity-sensor whose z-axis is adopted as reference axis

would have this array manifold:

ã(3+0)
z (φ, θ, φx, θx, φy, θy) = Rz(φx, θx, φy, θy) a(3+0)(φ, θ). (5.2.15)
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Figure 5.4: The tri-axial velocity-sensor, with tetravariate mis-orientation in its x-axis and
y-axis. The four mis-orientation angles are (φx, θx) to parameterize the mis-orientation of
the x-axis to the x̃-axis, and (φy, θy) to parameterize the mis-orientation of the y-axis to
the ỹ-axis.

5.3 Toward an Analytical Derivation of the

Beamformer’s Pointing Error

Suppose that “spatial matched filter” beamforming is performed on a non-orthogonal tri-

axial velocity-sensor corresponding to any of the three cases in Sections 5.2.3, 5.2.2, and

5.2.4, but without any awareness of that non-orthogonality. That is, the beamforming

weight vector is spatially matched to (5.1.1), instead of to (5.2.9), (5.2.12), or (5.2.15).

Therefore, the beampattern equals

B(3+0)(φ, θ, φξ′1 , θξ′1 , φξ′2 , θξ′2) =
a(3+0)(φL, θL)T ã

(3+0)
ξ (φ, θ)

max
φ,θ

[
a(3+0)(φL, θL)T ã

(3+0)
ξ (φ, θ)

] ,
=

a(3+0)(φL, θL)T Rξ(φξ′1 , θξ′1 , φξ′2 , θξ′2) a(3+0)(φ, θ)

max
φ,θ

[
a(3+0)(φL, θL)T Rξ(φξ′1 , θξ′1 , φξ′2 , θξ′2) a(3+0)(φ, θ)

] ,
(5.3.1)

where ξ is any of {x, y, z}, and ξ′ is the other two of {x, y, z} that is not ξ (i.e. if ξ = y, ξ′1 = x

and ξ′2 = z), φL ∈ [0, 2π) and θL ∈ [0, π] denote the beamformer’s look azimuth angle and

the look polar angle, respectively. Applying the equality condition of the Cauchy-Schwarz

inequality, the denominator in (5.3.1) may be re-written as
∥∥Rξ(φξ′ , θξ′)

T a(3+0)(φL, θL)
∥∥.
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Consequentially,

B(3+0)(φ, θ, φL, θL, φξ′1 , θξ′1 , φξ′2 , θξ′2)

=

(
Rξ(φξ′1 , θξ′1 , φξ′2 , θξ′2)

T a(3+0)(φL, θL)
)T∥∥Rξ(φξ′1 , θξ′1 , φξ′2 , θξ′2)

T a(3+0)(φL, θL)
∥∥ a(3+0)(φ, θ). (5.3.2)

The fraction in (5.3.2) is a unit-vector, but any unit-vector may be mathematically

represented as a point on a unit-radius sphere centered upon the Cartesian origin. Any

such a particular unit-vector can be uniquely identified by two angles, say (φB,ξ, θB,ξ), in

the spherical coordinates; and this (φB,ξ, θB,ξ) may be defined with reference to any point

on the unit-sphere, say with reference to (φL, θL), the beamformer’s “look direction”. In

other words, the fraction in (5.3.2) may be expressed as the 3× 1 vector,

uξ :=

 cos(φL − φB,ξ) sin(θL − θB,ξ)
sin(φL − φB,ξ) sin(θL − θB,ξ)
cos(θL − θB,ξ)

 , (5.3.3)

≡
Rξ(φξ′1 , θξ′1 , φξ′2 , θξ′2)

T a(3+0)(φL, θL)∥∥Rξ(φξ′1 , θξ′1 , φξ′2 , θξ′2)
T a(3+0)(φL, θL)

∥∥ (5.3.4)

which may be expressed as

uξ = a(3+0)(φL − φB,ξ, θL − θB,ξ). (5.3.5)

All these imply that

B(3+0)(φ, θ, φL, θL, φB,ξ, θB,ξ) = a(3+0)(φL − φB,ξ, θL − θB,ξ)T a(3+0)(φ, θ), (5.3.6)

where (φB,ξ, θB,ξ) represent the directional bias with ξ as reference axis due to the mis-

orientation φξ′1 , θξ′1 , φξ′2 , θξ′2 .

Next, express (φB,ξ, θB,ξ) in terms of the mis-orientation angles of φξ′1 , θξ′1 , φξ′2 , θξ′2 .
1

From (5.3.3) the followings are be obtained:

tan(φL − φB,ξ) =
[uξ]2
[uξ]1

, (5.3.7)

cos(θL − θB,ξ) = [uξ]3, (5.3.8)

it holds that

φB,ξ = φL − tan−1
(

[uξ]2
[uξ]1

)
(5.3.9)

θB,ξ = θL − cos−1[uξ]3, (5.3.10)

1For perfect orthogonal triad, φξ′1 = θξ′1 = φξ′2 = θξ′2 = 0, it holds that pointing biases φB,ξ = θB,ξ = 0.
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where [uξ]1, [uξ]2, and [uξ]3 are respectively the first, second, and third entries of vector

uξ, which is obtained from the expansion of (5.3.4).

The new form of expressing the beampattern (5.3.6) implies that in a mutually collocated

non-orthogonal velocity sensor triad whose spatial-matched-filter beamformer is unaware of

the non-perpendicularity between the legs of sensor, the shape of the beampattern remains

unchanged but the effective look direction will mis-point by an offset (φB,ξ, θB,ξ) which

depends on the look direction (φL, θL) and angle of deviation of the legs from the nominal

Cartesian axes. The pointing error defined in (5.3.9) and (5.3.10) will be used subsequently

to develop the pointing biases with each axis as the reference axis in subsequent sections.

5.4 Beamformer’s Pointing Error – If the x-Axis is

the Reference-Axis

In this section, the x-axis is taken as the reference axis, hence ξ = x, then ξ′1 = y, and

ξ′2 = z. Thus expanding (5.3.4),

ux =

 cosφL sin θL + cosφz cos θL sin θz − cos θy sinφL sinφy sin θL

cos θL sinφz sin θz + cosφy cos θy sinφL sin θL

cos θL cos θz + sinφL sin θL sin θy


√√√√√√ 1− cos θy sin(2φL) sinφy sin2 θL + cosφL cosφz sin(2θL) sin θz

+ cos θy sinφL sin(φz − φy) sin(2θL) sin θz

+ sinφL cos θz sin(2θL) sin θy

. (5.4.1)

Defining

γx :=
∥∥Rx(φy, θy, φz, θz)

T a(3+0)(φL, θL)
∥∥

=

√√√√√√ 1− cos θy sin(2φL) sinφy sin2 θL + cosφL cosφz sin(2θL) sin θz

+ cos θy sinφL sin(φz − φy) sin(2θL) sin θz

+ sinφL cos θz sin(2θL) sin θy

, (5.4.2)

as the denominator of (5.4.1). Then (5.4.1) is expressed as

ux =
1

γx

 cosφL sin θL + cosφz cos θL sin θz − cos θy sinφL sinφy sin θL

cos θL sinφz sin θz + cosφy cos θy sinφL sin θL

cos θL cos θz + sinφL sin θL sin θy

 . (5.4.3)

From (5.3.9), (5.3.10), and (5.4.3), the azimuthal and elevation pointing biases with
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x-axis as the reference axis are given as

φB,x = φL − tan−1

cos θL sinφz sin θz + cosφy cos θy sinφL sin θL
cosφL sin θL + cosφz cos θL sin θz

− cos θy sinφL sinφy sin θL

 (5.4.4)

and

θB,x = θL − cos−1
(

cos θL cos θz + sinφL sin θL sin θy
γx

)
, (5.4.5)

respectively.

5.4.1 The Special Case of Only the z-Axis Leg is Mis-Oriented

Considering a case where φy = θy = 0 (only the z-axis is mis-oriented), (5.4.4) and (5.4.5)

degenerate to

φB,x,y = φL − tan−1
(

sinφL sin θL + sinφz sin θz cos θL
cosφL sin θL + cosφz sin θz cos θL

)
(5.4.6)

and

θB,x,y = θL − cos−1

 cos θL cos θz√
1 + sin θz cos(φL − φz) sin(2θL)

 , (5.4.7)

respectively. 2

Given a mis-orientation of the z-axis (θz, φz), which look direction gives no azimuthal

pointing bias (i.e. φB,x,y = 0)?

1. For θL = π
2

and φL ∈ [0, 2π), (5.4.6) equals to zero. That is, for signal impinging

horizontally from any azimuth, the azimuthal pointing is zero.

2. For φL = φz and θL < tan−1(− sin θz), the azimuthal pointing bias is zero. This is

shown as the contour line below the green circle in Figure 5.5.

3. For φL = φz + π and θL > tan−1(sin θz), the azimuthal pointing bias is zero. This is

shown as the contour line above the red circle in Figure 5.5.

Alternatively, given a mis-orientation of the z-axis (θz, φz), which look direction gives

the highest azimuthal pointing bias?

1. For φL = φz and θL > tan−1(− sin θz), the azimuthal pointing bias is maximum. This

is shown as the contour line above the green circle in Figure 5.5.

2 The subscript notation, φB,x,y means the azimuthal bias when x-axis and y-axis has no mis-orientation.
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(a) (b)

Figure 5.5: Contour plots of φB,x,y i.e (5.4.6) versus look direction (θL, φL) for (a) (θz, φz) =
(10◦, 35◦), and (b) (θz, φz) = (30◦, 135◦).

2. For φL = φz + π and θL < tan−1(sin θz), the azimuthal pointing bias is maximum.

This is shown as the contour line below the red circle in Figure 5.5.

5.4.1.1 One Angle θz is Mis-Oriented, i.e. φz = 0

Here by setting φz = 0 in (5.4.6) and (5.4.7), the z̃-axis lies on the xOz plane, then

φB,x,y,φz = φL − tan−1
(

sinφL sin θL
cosφL sin θL + sin θz cos θL

)
(5.4.8)

θB,x,y,φz = θL − cos−1

 cos θL cos θz√
1 + sin θz cosφL sin(2θL)

 (5.4.9)

5.4.1.2 One Angle φz is Mis-Oriented, i.e. θz = 0

Here by setting θz = 0 in (5.4.6) and (5.4.7),

φB,x,y,θz = 0 (5.4.10)

θB,x,y,θz = 0 (5.4.11)

There is no mis-orientation for this case due to the way the mis-orientation is modeled

on the Cartesian coordinate –i.e. existence of φz is dependent on θz.
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5.4.2 The Special Case of Only the y-Axis Leg is Mis-Oriented

In this degenerate case, only the y-axis is mis-oriented, hence by setting φz = θz = 0, (5.4.4)

and (5.4.5) reduce to

φB,x,z = φL − tan−1
(

cosφy cos θy
cotφL − sinφy cos θy

)
(5.4.12)

θB,x,z = θL − cos−1

 cos θL + sin θy sinφL sin θL√
1− cos θy sin(2φL) sinφy sin2 θL + sinφL sin(2θL) sin θy


(5.4.13)

Note that φB,x,z (5.4.12) is independent of θL, similar to φB,y,z (5.5.6).

5.4.2.1 One Angle θy is Mis-Oriented, i.e. φy = 0

Here by setting φy = 0 in (5.4.12) and (5.4.13), the ỹ-axis lies on the yOz plane

φB,x,z,φy = φL − tan−1 (cos θy tanφL) (5.4.14)

θB,x,z,φy = θL − cos−1

 cos θL + sin θy sinφL sin θL√
1 + sinφL sin(2θL) sin θy

 (5.4.15)

5.4.2.2 One Angle φy is Mis-Oriented, i.e. θy = 0

Here by setting θy = 0 in (5.4.12) and (5.4.13), the ỹ-axis lies on the xOy plane

φB,x,z,θy = φL − tan−1
(

cosφy
cotφL − sinφy

)
(5.4.16)

θB,x,z,θy = θL − cos−1

 cos θL√
1− sin(2φL) sinφy sin2 θL

 (5.4.17)
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5.5 Beamformer’s Pointing Error – If the y-Axis is

the Reference-Axis

In this section, the y-axis is taken as the reference axis, hence ξ = y then ξ′1 = x, and

ξ′2 = z. Thus expanding (5.3.4),

uy =

 cosφx cos θx cosφL sin θL + cosφz sin θz cos θL

sinφL sin θL + sinφz sin θz cos θL + sinφx cos θx cosφL sin θL

cos θz cos θL − sin θx cosφL sin θL


√√√√√√ 1 + cos θx sin(2φL) sinφx sin2 θL + sinφL sinφz sin(2θL) sin θz

+ cos θx cosφL cos(φx − φz) sin(2θL) sin θz

− cosφL cos θz sin(2θL) sin θx

. (5.5.1)

Defining

γy :=
∥∥Ry(φx, θx, φz, θz)

T a(3+0)(φL, θL)
∥∥

=

√√√√√√ 1 + cos θx sin(2φL) sinφx sin2 θL + sinφL sinφz sin(2θL) sin θz

+ cos θx cosφL cos(φx − φz) sin(2θL) sin θz

− cosφL cos θz sin(2θL) sin θx

, (5.5.2)

as the denominator of (5.5.1). Then (5.5.1) is expressed as

uy =
1

γy

 cosφx cos θx cosφL sin θL + cosφz sin θz cos θL

sinφL sin θL + sinφz sin θz cos θL + sinφx cos θx cosφL sin θL

cos θz cos θL − sin θx cosφL sin θL

 . (5.5.3)

From (5.3.9), (5.3.10), and (5.5.3),

φB,y = φL − tan−1


sinφL sin θL + sinφz sin θz cos θL+

sinφx cos θx cosφL sin θL
cosφx cos θx cosφL sin θL + cosφz sin θz cos θL

 (5.5.4)

θB,y = θL − cos−1
(

cos θz cos θL − sin θx cosφL sin θL
γy

)
(5.5.5)
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5.5.1 The Special Case of Only the z-Axis Leg is Mis-Oriented

Considering a case of θx = φx = 0 (only z-axis is mis-oriented), (5.5.4) and (5.5.5) degen-

erate to (5.4.6) and (5.4.7) respectively as given in Section 5.4.1.

A case of one angle θz mis-oriented, i.e. φz = 0 has been derived in Section 5.4.1.1. And

the case of angle φz mis-oriented, i.e. θz = 0 has been derived in Section 5.4.1.2.

5.5.2 The special case of only the x-axis Leg is mis-oriented

Considering a case of θz = φz = 0 (only x-axis is mis-oriented), (5.5.4) and (5.5.5) degen-

erate to

φB,y,z = φL − tan−1
(

tanφx +
tanφL

cosφx cos θx

)
(5.5.6)

and

θB,y,z = θL − cos−1

 cos θL − sin θx cosφL sin θL√
sin(2φL) sin2 θL cos θx sinφx + 1− sin(2θL) sin θx cosφL

 ,

(5.5.7)

respectively.

Note that (5.5.6) is not dependent on θL, which incidentally occurs in (5.4.12) as well.

Therefore, as long as the z-axis is perfectly perpendicular, the pointing bias in the azimuth

angle will be independent of the look direction’s polar angle θL.

5.5.2.1 One Angle θx is Mis-Oriented, i.e. φx = 0

Here by setting φx = 0 in (5.5.6) and (5.5.7), the x̃-axis lies on the xOz plane,

φB,y,z,φx = φL − tan−1
(

tanφL
cos θx

)
. (5.5.8)

θB,y,z,φx = θL − cos−1

 cos θL − sin θx cosφL sin θL√
1− sin(2θL) sin θx cosφL

 . (5.5.9)

5.5.2.2 One Angle φx is Mis-Osriented, i.e. θx = 0

Here by setting θx = 0 in (5.5.6) and (5.5.7), the z̃-axis lies on the xOy plane,

φB,y,z,θx = φL − tan−1
(

tanφx +
tanφL
cosφx

)
. (5.5.10)
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θB,y,z,θx = θL − cos−1

 cos θL√
1 + sin(2φL) sin2 θL sinφx

 . (5.5.11)

Note that (5.5.10) is similar to the case of a bi-axial first-order sensor analyzed in Chapter

4 since there is no elevation mis-orientation.

5.6 Beamformer’s Pointing Error – If the z-Axis is

the Reference-Axis

If the z-axis is taken as the reference axis, then we set ξ = z, and then ξ′1 = x, and ξ′2 = y.

Thus expanding (5.3.4),

uz =

 cosφx cos θx cosφL sin θL − sinφy cos θy sinφL sin θL

cosφy cos θy sinφL sin θL + sinφx cos θx cosφL sin θL

cos θL − cosφL sin θx sin θL + sin θy sinφL sin θL


√√√√ 1− sin(2φL) sin2 θL[sin θx sin θy + cos θx cos θy sin(φy − φx)]+

sin(2θL)(sin θy sinφL − sin θx cosφL)

. (5.6.1)

Defining the denominator of (5.6.1) as

γz :=

√√√√ 1− sin(2φL) sin2 θL[sin θx sin θy + cos θx cos θy sin(φy − φx)]+
sin(2θL)(sin θy sinφL − sin θx cosφL)

(5.6.2)

then

uz =
1

γz

 cosφx cos θx cosφL sin θL − sinφy cos θy sinφL sin θL

cosφy cos θy sinφL sin θL + sinφx cos θx cosφL sin θL

cos θL − cosφL sin θx sin θL + sin θy sinφL sin θL

 . (5.6.3)

From (5.3.9), (5.3.10), and (5.6.3), φB,z and θB,z are explicitly expressed as

φB,z = φL − tan−1
(

cosφy cos θy sinφL sin θL + sinφx cos θx cosφL sin θL
cosφx cos θx cosφL sin θL − sinφy cos θy sinφL sin θL

)
, (5.6.4)

θB,z = θL − cos−1
(

cos θL − cosφL sin θx sin θL + sin θy sinφL sin θL
γz

)
. (5.6.5)
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5.6.1 A Special Case of φx = φy and θx = θy = 0

This leads to a perfectly orthogonal tri-axial sensor. This is so because φx = φy with

θx = θy = 0 means equal azimuthal mis-orientation in the same direction, hence the or-

thogonality between the x-axis and the y-axis is retained, i.e. x̃-axis is orthogonal with

ỹ-axis. Therefore, substituting φy = φx and θy = θy = 0 in (5.6.4), and (5.6.5)

φB,z = −φx = − φy, (5.6.6)

and

θB,z = 0, (5.6.7)

respectively. This implies there is no elevation angle error while azimuthal error is the value

of the rotation along the azimuth.

The special case of only y-axis is mis-oriented i.e. φx = θx = 0 been derived in Section

5.4.2. The degenerate case of one-angle θy mis-oriented, i.e. φy = 0 has been derived in

Section 5.4.2.1. The degenerate case of one-angle φy mis-oriented, i.e. θy = 0 has been

derived in Section 5.4.2.2.

The special case of only x-axis is mis-oriented i.e. φy = θy = 0 has been derived in

Section 5.5.2. For degenerate cases of one-angle mis-orientation: θx 6= 0 (but φx = 0) has

been in Section 5.5.2.1, while φx 6= 0 (but θx = 0) has been derived in Section 5.5.2.2.

5.7 Pointing Error for the Tri-Axial Figure-8 Sensors

Collocated with a Pressure-Sensor

The “tri-axial velocity-sensor” is often used with a pressure-sensor, collocated with the

triad. Such a quad system would have the following 4 × 1 array manifold for a source

impinging from the far field: [22, 69,72]

a(3+1)(φ, θ) =


cosφ sin θ

sinφ sin θ

cos θ

κ

 , (5.7.1)

where κ > 0 represents the gain of the pressure-sensor relative to that of the “tri-axial

velocity-sensor”. The superscript (3+1) indicates the “3” triaxial velocity-sensors and “1”

pressure-sensor. As the pressure-sensor and “tri-axial velocity-sensor” are implemented

often with different transducer technologies, these channels’ voltages need normalization.

The value of κ depends on this normalization.

103



Now, consider the case of the three axes being non-orthogonal. The rotation matrix

becomes 4× 4:

R2(φξ′1 , θξ′1 , φξ′2 , θξ′2) =

[
Rξ 03×1

0T3×1 1

]
. (5.7.2)

where 03×1 is a three-entries column vector of zeros, and Rξ is as previously defined and

described in Section 5.3.

The “spatial matched beamforming” weight vector, while mistakenly assuming axial

orthogonality, equals

a(3+1)(φL, θL) =


cosφL sin θL

sinφL sin θL

cos θL

κ

 . (5.7.3)

The beamformer output equals

B(3+1)(φ, θ, φL, θL, φξ′1 , θξ′1 , φξ′2 , θξ′2)

:=
a(3+1)(φL, θL)T R2(φξ′1 , θξ′1 , φξ′2 , θξ′2) a(3+1)(φ, θ)

max
φ,θ

[
a(3+1)(φL, θL)T R2(φξ′1 , θξ′1 , φξ′2 , θξ′2) a(3+1)(φ, θ)

] . (5.7.4)

The denominator and numerator of the above are rewritten in such a way that the portion

of the expressions from the triaxial velocity sensors and the pressure sensor are separated.

Therefore,

B(3+1)(φ, θ, φL, θL, φξ′1 , θξ′1 , φξ′2 , θξ′2)

=
κ2 + a(3+0)(φL, θL)T R(φξ′1 , θξ′1 , φξ′2 , θξ′2) a(3+0)(φ, θ)

κ2 + max
φ,θ

[
a(3+0)(φL, θL)T R(φξ′1 , θξ′1 , φξ′2 , θξ′2) a(3+0)(φ, θ)

] . (5.7.5)

Similar to the operation in Section 5.3, applying Cauchy-Schwarz inequality to the second

104



term of the denominator of (5.7.5), the beampattern is expressed as

B(3+1)(φ, θ, φL, θL, φξ′1 , θξ′1 , φξ′2 , θξ′2)

=
κ2 +

[
a(3+0)(φL, θL)

]T
R(φξ′1 , θξ′1 , φξ′2 , θξ′2) a(3+0)(φ, θ)

κ2 +
∥∥R(φx, θx, φz, θz)

T a(3+0)(φL, θL)
∥∥︸ ︷︷ ︸

γξ

,

=
κ2 +

[
a(3+0)(φL, θL)

]T
R(φξ′1 , θξ′1 , φξ′2 , θξ′2) a(3+0)(φ, θ)

κ2 + γξ
,

=

κ2 + γξ

[
a(3+0)(φL, θL)

]T
R(φξ′1 , θξ′1 , φξ′2 , θξ′2)

γξ
a(3+0)(φ, θ)

κ2 + γξ
.

Replace the fraction in the numerator with u (which has already been defined in (5.3.3)).

Then,

B(3+1)(φ, θ, φL, θL, φB,ξ, θB,ξ)

=
κ2 + γξ uTξ a(3+0)(φ, θ)

κ2 + γξ
,

=
κ2 + γξ

[
a(3+0)(φL − φB,ξ, θL − θB,ξ)

]T
a(3+0)(φ, θ)

κ2 + γξ
,

=
κ2

κ2 + γξ
+

γξ
κ2 + γξ

[
a(3+0)(φL − φB,ξ, θL − θB,ξ)

]T
a(3+0)(φ, θ),

=
κ2

κ2 + γξ
+

γξ
κ2 + γξ

B(3+0)(φ, θ, φL, θL, φB,ξ, θB,ξ),

(5.7.6)

where φB,ξ and θB,ξ are previously defined in (5.3.9) and (5.3.10), respectively. These γξ,

φB,ξ and θB,ξ are all independent of the direction-of-arrival (φ, θ).

If κ equals zero, B(3+1)(φ, θ, φL, θL, φB,ξ, θB,ξ) above becomes the earlier (5.3.6) in Section

5.3. Incidentally, B(3+1)(φ, θ, φL, θL, φB,ξ, θB,ξ) maximizes to 1 and minimizes to
κ2 − γξ
κ2 + γξ

,

because maximum of B(3+0)(φ, θ, φL, θL, φB,ξ, θB,ξ) is equal to one and its minimum equals

to −1.

Equation (5.7.6) implies that the beam-patterns, with and without the pressure-sensor,

differ only by a scaling factor of
γ

κ2 + γξ
and an offset of

κ2

κ2 + γξ
. This scaling factor

and offset each depends on the tri-axial velocity-sensor’s axial mis-orientations and on

the beamformer’s look direction, therefore the mis-orientation changes the shape of the

beampattern while mis-pointing the lobe. However, this scaling factor and this offset do

not affect the beam-patterns’ pointing error, with or without the pressure-sensor. This

invariance may be intuitively expected, as the pressure-sensor itself is isotropic, with no

directivity.
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5.8 Summary

This work has analyzed the beampattern of collocated triaxial velocity sensors whose legs

are not orthogonal and its spatial-matched-filter is unaware of the non-perpendicularity.

The non-perpendicularity does not affect the effective shape of the beampattern but only

offsets it lobe by an amount that is dependent on the degree of mis-orientations of the axes.

This effect is not the case when the triaxial velocity sensor is collocated with a pressure

sensor as the shape of the beampattern changes depending on the degree of mis-orientation.

Closed-form expressions have been derived for the pointing biases which are useful for

offsetting pointing bias in non-perpendicular vector sensor.
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Chapter 6

Conclusion

This thesis has presented four studies:

1. A Triad of Cardioid Sensors in Orthogonal Orientation and Spatial Collocation – Its

Spatial-Matched-Filter-Type Beam-Pattern

2. Cardioid Microphones/Hydrophones in a Collocated and Orthogonal Triad – A New

Beamformer with No Beam-Pointing Error

3. Two Higher-Order Figure-8 Sensors in Spatial Collocation — Their “Spatial Matched

Filter” Beam-Pattern

4. Directional Pointing Error in “Spatial Matched Filter” Beamforming at a Tri-Axial

Velocity-Sensor due to Non-Orthogonal Axes

The first two studies in Chapters 2 - 3 are based on the first-order cardioid family

of microphones while the last two studies presented in Chapters 4 - 5 are based on the

first-order and higher-order figure-8 microphones.

Chapter 2 proposes the collocation of first-order cardioid family of microphones that

are placed in orthogonal orientation. This spatial arrangement produces an array manifold

that is independent on the incident sound wavelength. The spatial-matched-filter type

beampattern of this array is analytically studied in terms of the location of the mainlobe,

the presence of a sidelobe, the mainlobe-to-sidelobe height ratio, half-power beamwidth

and the overall array gain. This work is the first in the open literature to propose and

analytically study such array of first-order cardioid family of microphones. The findings

show that the proposed cardioid triad can have higher mainlobe-to-sidelobe height ratio

and can avoid sidelobes altogether. Its physical compactness makes it portable for mobile

deployment, indoor or outdoor.

Chapter 3 proposes a new beamformer to cancel the pointing bias in the spatial-matched-

filter beampattern of the cardioid triad proposed in Chapter 2. The performance of this

beamformer in terms of the location of its mainlobe and sidelobes, height ratio, beamwidth,

directivity and overall array gain is compared to that of the spatial-matched-filter studied

in Chapter 2. This new beamformer gave close performance to the spatial-matched-filter

type beamformer studied in Chapter 2 while offering a bias-free beam pointing.

Chapter 4 proposes the spatial collocation of two higher-order figure-8 sensors. The sen-

sors in the array may not be perfectly perpendicular due to manufacturing defects. In this
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work, such arrangement is studied in terms of the pointing bias in the spatial-matched-filter

beampattern. It was found that higher-order collocated pair of figure-8 sensors will point

in discrete direction whether perpendicular or non-perpendicular. More importantly, this

study relates the look direction, array’s skewed angle and sensor order to the mis-pointing

of the array’s beampattern. This study also pioneered a way of mathematically relating

the array manifold of the collocated higher-order figure-8 dyad to that of the collocated

first-order figure-8 dyad. This paved way for critical study of this array configuration.

Lastly, Chapter 5 analytically studies the effect of non-orthogonality in collocated first

order figure-8 sensors assuming the spatial-matched-filter beamformer is unaware of this

non-orthogonality between the legs of the triad. This non-orthogonality can be as a result

of imperfection in manufacturing or wear during used, for instance in towed arrays. The

study is extended to the a tri-axial figure-8 sensor with a collocated pressure sensor. Closed

form pointing biases due to the mis-orientation are derived in this work.

Future works can study how the non-orthogonality between the axes of the collocated

and supposedly orthogonal Figure-8 sensors would affect signal detection and parameter

estimation performances. This can be done for a case of a unit triad and can be extended

to arrays of the triad. Further work can also develop a direction of arrival estimation

algorithm based on the proposed cardioid triad - single unit or in phased array.
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Appendix A

To Show There Can Only be Two Peaks in

the Beampattern (3.1.4)

A peak is a critical point in the beampattern with respect to (θ, φ). To obtain the number

of such critical points that exists in the beampattern, consider the beam pattern defined in

(3.1.4). Its critical point (uc, vc, wc) satisfies arg max
−1≤u,v,w≤1

B

= arg max
−1≤u,v,w≤1

αglook + (1− α)(

B̃:=︷ ︸︸ ︷
ulooku+ vlookv + wlookw) (A.0.1)

subject to u2 + v2 + w2 = 1. The equality in (A.0.1) holds true because α, ulook, vlook, and

wlook are preset constants in this optimization.

The Lagrangian is formulated as

L(u, v, w, λ) := ulooku+ vlookv + wlookw + λ(u2 + v2 + w2 − 1), (A.0.2)

of which

∂
∂u
L(u, v, w, λ) = ulook + 2λu; ∂

∂v
L(u, v, w, λ) = vlook + 2λv,

∂
∂w
L(u, v, w, λ) = wlook + 2λw; ∂

∂λ
L(u, v, w, λ) = u2 + v2 + w2 − 1.

Setting the above partial derivatives to zero, the critical points of B̃ exist at (u, v, w) =

(uc, vc, wc). From setting the first three partial derivatives to zero

(uc, vc, wc) = − 1

2λ
(ulook, vlook, wlook). (A.0.3)

Substituting uc, vc and wc into u2c + v2c + w2
c = 1, one obtains

1

2λ
= ± 1. (A.0.4)

Hence there exist exactly two critical points:

(uc1 , vc1 , wc1) = (ulook, vlook, wlook), (A.0.5)

(uc2 , vc2 , wc2) = −(ulook, vlook, wlook). (A.0.6)
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Appendix B

Analytical Proof of Array Manifold’s Trig

Order Conversion

The validity of (4.3.1)-(4.3.3) is verified below: the unit vector in the direction of ak(φ)

âk(φ) :=
1

βk(φ)
ak(φ), (B.0.1)

where ak(φ) :=
[
cosk(φ), sink(φ)

]T
(as defined in (4.1.2)), βk(φ) := ‖ak(φ)‖2 =√

cos2k(φ) + sin2k(φ), k ∈ Z+ and φ ∈ [0, 2π).

The unit vector âk(φ) can be transformed into a unit vector of phase-shifted first-order

cosine and sine entries, while preserving the ratio of the entries in the transform pair. That

is,

âk(φ) =
1

β(φ)
ak(φ) = a(ξk(φ)), (B.0.2)

where

a(ξk(φ)) :=

[
cos(ξk(φ))

sin(ξk(φ))

]
. (B.0.3)

Because the ratio of entries is preserved in the transformation of (B.0.2),[
a
(β)
k (φ)

]
2[

a
(β)
k (φ)

]
1

=
[a(φ)]2
[a(φ)]1

, =⇒ tank(φ) = tan(ξk(φ)). (B.0.4)

From (B.0.2)

1

βk(φ)
ak(φ) = a(ξk(φ))

ak(φ) = βk(φ) a(ξk(φ)),

ak(φ) =

[
cosk(φ)

sink(φ)

]
= βk(φ)

[
cos(ξk(φ))

sin(ξk(φ))

]
, (B.0.5)

where βk(φ) :=
√

cos2k(φ) + sin2k(φ) and ξk(φ) = tan−1(sink(φ)/ cosk(φ)).
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Appendix C

On the Magnitude Scaling βk(φ)

C.1 Lower Limit of βk(φ) ∀φ for a Given k

To find the lower limit a βk(φ) ∀φ, the first-order derivative test is used to obtain the critical

points of βk(φ) w.r.t φ. The second-derivative test is then used to ascertain the nature of

these critical points (i.e local max/min points).

For k = 1, 2, 3, ..., sin2k φ+ cos2k φ > 0, ∀φ, therefore,

arg min
φ∈[0,360◦)

βk(φ) ≡ arg min
φ∈[0,360◦)

β2
k(φ) (C.1.1)

Applying the first derivative test,

∂β2
k(φ)

∂φ
= 2k sinφ cosφ

[
sin2k−2(φ)− cos2k−2(φ)

]
(C.1.2)

For k = 1, (C.1.2) is equal to zero which implies that βk(φ) is constant with respect to

φ for k = 1.

For k ≥ 2, equating (C.1.2) to zero and solving for φ gives to two sets of critical points

φc1 = (2n+ 1)
π

4
(C.1.3)

φc2 = n
π

2
(C.1.4)

where n = 0, 1, 2, 3. That is φc1 = {45◦, 135◦, 225◦, 315◦} and φc2 = {0◦, 90◦, 180◦, 270◦}.
According to the second derivative test

∂2β2
k(φ)

∂φ2
= 2k

[
(2k − 1) sin2 φ cos2 φ

(
sin2k−4(φ) + cos2k−4(φ)

)
−
(
sin2k(φ) + cos2k(φ)

)]
. (C.1.5)

Substituting φc1 (C.1.3) in (C.1.5)

∂2β2
k(φ)

∂φ2

∣∣∣∣
φ=φc1

=
8k(k − 1)

2k
=⇒ > 0 (C.1.6)

implies that φc1 is a local minimum point.
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Similarly, substituting φc2 (C.1.4) in (C.1.5)

∂2β2
k(φ)

∂φ2

∣∣∣∣
φ=φc1

= −2k =⇒ < 0 (C.1.7)

implies that φc2 is a local maximum point.

Finally, the lower limit of βk(φ) for φ ∈ [0, 2π) for a given k

βk(φ = φc1) =

√
sin2k

(
(2n+ 1)

π

4

)
+ cos2k

(
(2n+ 1)

π

4

)
=
√

21−k. (C.1.8)

Therefore, the lower limit of βk(φ) occurs at φ = {45◦, 135◦, 225◦, 315◦} and its value at

these location equal to
√

21−k. When k = 1, (C.1.8) is equal to 1.

C.2 Analytical Proof that βk(φ) ≥ βk+1(φ), ∀φ, k ≥ 1

For all values of k, 2k is even integer, hence cos2k(φ) + sin2k(φ) > 0,∀φ. The square value

of βk(φ) thus exists without absolute magnitude. Hence, to show that βk(φ) ≥ βk+1(φ), is

equivalent to showing that βk(φ)2 ≥ β2
k+1(φ).

Therefore,

βk(φ)2 ≥ β2
k+1(φ),

⇔ βk(φ)2 − β2
k+1(φ) ≥ 0. (C.2.1)

The left hand side of (C.2.1) is equivalent to

βk(φ)2 − β2
k+1(φ) = cos2k(φ) + sin2k(φ)− cos2(k+1)(φ)− sin2(k+1)(φ)

= cos2k(φ) sin2(φ) + sin2k(φ) cos2(φ)

= sin2(φ) cos2(φ)
(
cos2k−2(φ) + sin2k−2(φ)

)
=

1

4
sin2(2φ) β2

k−1(φ). (C.2.2)

The first term of (C.2.2) sin2(2φ) is always greater than zero, likewise the second term

of (C.2.2) β2
k−1(φ), which implies that (C.2.2) is always greater than zero. Which in turn

implies that βk(φ)2 ≥ β2
k+1(φ), which also implies that βk(φ) ≥ βk+1(φ) for all k.
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Appendix D

Analysis of How ξk(φ) Varies with the

Figure-8 Sensor’s Order k

D.1 For even values of k

For even k = kn = 2n, the following analytically proves that ξkn+1(φ) ≥ ξkn(φ), ∀kn =

2n, n = 1, 2, ... for φ ∈
[
π
4
, 3π

4
,
]
∪
[
5π
4
, 7π

4
,
]
.

ξkn+1(φ) ≥ ξkn(φ)

⇔ ξkn+1(φ)− ξkn(φ) ≥ 0 (D.1.1)

The inequality (D.1.1) is equivalent to

cos(2φ) ≤ 0 (D.1.2)

⇔ φ ∈
[
π

4
,
3π

4

]
, π periodic. (D.1.3)

ξkn+1(φ) ≥ ξkn(φ).

For even k = kn = 2n, the above proof also shows that ξkn+1(φ) ≤ ξkn(φ),∀kn = 2n, n =

1, 2, ... for φ /∈
[
π
4
, 3π

4
,
]
∪
[
5π
4
, 7π

4
,
]
.

D.2 For odd values of k

For odd k = km = 2m+ 1, m = 1, 2, ..., the following analytically proves that ξkm+1(φ) ≥
ξkm(φ) for φ ∈

[
π
4
, π
2

]
, π
2
periodic.

ξk2m+3(φ) ≥ ξk2m+1(φ)

⇔ ξk2m+3(φ)− ξk2m+1(φ) ≥ 0 (D.2.1)
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The inequality (D.2.1) is equivalent to

sin(4φ) ≤ 0 (D.2.2)

⇔ φ ∈
[π

4
,
π

2

]
,
π

2
periodic. (D.2.3)

ξk(φ) ∈ [0, 90◦] for even values of k. Also for even k, χk(φL, φ̃) ∈ [−45◦, 90◦], this limits

the resultant argument of the cosine function ξk(φ)− χk(φ) ∈ [−45◦, 180◦].

For odd values of k, ξk(φ) ∈ [0, 360◦), and same for χk(φL, φ̃) ∈ [0, 360◦)
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