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Abstract

Digital cameras play a vital role in recording various images in our daily life. How-

ever, the quality of captured images may not meet our requirements due to the lim-

ited dynamic range and resolution of imaging sensors. High dynamic range imaging

(HDRI) and super-resolution techniques have been developed to improve the image

quality. In this thesis, we investigate some key issues in HDRI and super-resolution.

Specifically, we study the problems of tone mapping, multi-exposure fusion (MEF),

and real-world single image super-resolution.

Generally, there are two approaches to achieving HDRI: tone mapping for high

dynamic range (HDR) data and multi-exposure fusion. For the HDR data captured

by high-bit sensor, a process called tone mapping is needed to display the image

on conventional low dynamic range display devices. We present a novel clustering

based content and colour adaptive tone mapping method. First, the radiance map

containing HDR contents is partitioned into various clusters via clustering. Then a

Principal Component Analysis (PCA) dictionary is learned for each cluster. For each

input patch, it is adaptively assigned to the closest cluster, and projected onto the

dictionary associated with this cluster. By adopting an effective compression function

to adjust the coefficients, tone mapping can be achieved while some noise and trivial

details can be suppressed. To reduce the computational cost, an off-line version of

the proposed method is built by pre-learning PCA dictionaries from natural images.

The experimental results demonstrate that the proposed tone mapping method can

produce high-quality image with well-preserved local contrast, as well as vivid colour

appearance with little artefacts.

MEF is another popular way for image dynamic range enhancement. We pro-

pose a multi-scale fast MEF approach based on the structural patch decomposition
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of images. The proposed method rephrases patch decomposition into image decom-

position and merges the weights of signal strength and structure components. As a

result, it decomposes each image into two components: one base layer and an implicit

detail layer. We indicate that the patch decomposition based aggregation is essen-

tially a process of mean filtering of weight maps, based on which the computational

complexity of patch aggregation can be largely reduced so that it is independent

of patch size. The multi-scale technique can be implemented by progressively de-

composing the base layer, which helps alleviating the hallo effect. The weights at

each scale can be designed in a scale-aware manner based on simple image statistical

information. Our approach can produce pleasing MEF results with less artefacts

and computational cost than previous state-of-the-art methods for both static and

dynamic scenes.

We also investigate the MEF methods by deep learning. In particular, we make

the first attempt to use deep features to fuse multi-exposure images via an unsuper-

vised method, while the features are extracted via a pre-trained network. We employ

the shallow features guided by the deeper semantic features in a classification net-

work to design the fusion weight maps, which are computed via local visibility and

temporal consistency. The proposed method works well in both static and dynamic

scenarios, bring pleasing fusion results with less computational cost. We then ex-

plore an end-to-end network for MEF based on two public datasets. The trained

network can effectively fuse multi-exposures images from the test dataset. However,

the generalization ability is limited because of limited number of available dynamic

multi-exposure images with ground-truth.

In addition to dynamic range, resolution is another important factor affecting

image quality. Deep convolutional neural networks (DCNN) have achieved impressive

performance in super-resolving bicubicly downsampled low-resolution (LR) images

from their high-resolution (HR) counterparts. However, the DCNN models trained

by such simulated data become less effective when applied to real-world LR images

because the practical degradation of real images is far more complicated than bicubic

downsampling. To improve the super-resolution performance of real-world images,
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we construct a novel dataset of LR and HR pairs captured by adjusting the lens focus

of digital cameras. With the new dataset, a plain regression network with simple

loss functions can generate desirable results in real-world image super-resolution.

Compared with other DCNN models driven by simulated data, our model can better

preserve the fine-scale image edges and textures.

To sum up, in this thesis we proposed a local adaptive tone mapping method, a

fast multi-scale patch decomposition MEF method, deep learning based MEF meth-

ods, and a new real-world image super-resolution method. The developed methods

demonstrated competitive performance to improve the image quality with high effi-

ciency.

Keywords: Image Enhancement, HDRI, Multi-exposure fusion, Clustering, Patch-

decomposition, Real Super-resolution, Deep Learning
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Chapter 1

Introduction

Because of the constraints of environmental conditions, imaging devices and display

devices, the captured digital images are generally not desirable in visual quality.

The dynamic range and resolution are two main factors. It is costly to overcome

these problems with a better camera sensor that has a higher resolution or bit-

depth. An alternative and more cost-effective approach is to employ techniques of

image enhancement to improve resolution or dynamic range. Image enhancement

plays a critical role in the fields of computer vision, computational photography,

and image processing. It can effectively improve the image visual quality without

adding increasing imaging hardware cost. The goal of this thesis is to improve the

image quality in terms of the dynamic range and resolution by utilizing high dynamic

range imaging (HDRI) and super-resolution techniques. In this chapter, we give a

brief introduction on HDRI and super-resolution, some baseline methods, existing

limitations, and our contributions.

1.1 High dynamic range imaging

HDRI has been an important topic in the field of computer vision and computational

photography. Dynamic range refers to the ratio of maximum to minimum irradiance

in a natural scene. The dynamic range of a natural scene is usually very high,
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Figure 1.1: High dynamic range imaging framework with multi-exposure image se-
quence.

approximately 14 orders of magnitude [98, 16]. However, due to the low dynamic

range (LDR) of current sensors, under-/over-exposure occurs frequently in everyday

photo-taking experiences, leading to unpleasing information loss.

Faithful reproduction of natural scenes with high dynamic ranges is a quite chal-

lenging task [98]. A direct way to obtain HDR content is to record the scene using

advanced imaging systems. Specialized HDR camera systems [101, 2] have been

designed to improve the capability of measuring light on single camera sensor or

split light onto multiple sensors with varying exposure. This strategy is not widely

accessible due to the complexity of manufacturing new HDR camera hardware.

Another broadly used strategy to extend the camera dynamic range is to take

a sequence of images under different exposure levels via exposure bracketing [75,

79, 120]. With this multi-exposure sequence, there are two categories as shown

in Fig. 1.1 of approaches to obtain the HDR-like images: multi-exposure image

fusion (MEF) [120] in image domain, and HDR content reconstruction in radiance

domain [10, 84, 4] and tone mapping for displaying on LDR devices.

The approach to reconstruct HDR content in radiance domain needs to recover

the camera response function (CRF) [10, 84, 26, 50, 61, 4]. When taking a nat-

2



ural scene, the luminance value is recorded by camera sensor, and then undergos

in-camera imaging process which includes a series of non-linear processing such as

photoelectric conversion, and analog-to-digital conversion, white balance, tone and

gamut mapping, as well as sharpening, etc.

Researchers establish an end-to-end relationship between irradiance and pixel

value by denoting the whole middle process as the camera response function. The

inverse camera response function can convert pixel values to irradiance, from non-

linear space to linear space. The imaging relationship can be formulated as:

Zi,j = f(Hi,j) = f(Ei,j∆tj) (1.1)

where E, Z indicate the irradiance and pixel value at the pixel (i) on a camera sensor

in the j − th exposure image with exposure time ∆tj, respectively. f is the camera

response curve.

Since f is a monotonic function, we impose inverse transform on equation 1.1 to

get:

f−1Zi,j = Ei,j∆tj (1.2)

With the logarithm transform, we have:

g(Zi,j) = lnf−1(Zi,j) = lnEi,j + ln∆tj (1.3)

where we have g = lnf−1.

The minimum least square objective function F is formulated as:

F =
N
∑

i=1

P
∑

j=1

(g(Zi,j) − lnEi,j − ln∆tj)
2 + λ

254
∑

z=1

(w(z)g
′′

(z))2 (1.4)

where N is the pixel indexes at each image. P is the number of images. g
′′

is

the discrete second-order derivative of g used to constrain the smoothness of the

recovered radiometrical response. The parameter λ controls the smoothing degree.
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Figure 1.2: Recovered camera response function of R, G, B channel via above image
sequences.

Since the pixel value around 0 and 255 is not stable, we add a weighting function as

the constraint.

w(z) =

{

z, z ≤ 128
255 − z, z > 128

(1.5)

By minimizing the objective cost, we can get the closed-form solution of g via

singular value decomposition. With the help of the g curve, we can project the pixel

value into radiance domain. Weighting the irradiance in radiance domain will result

in the final HDR data:

lnEi =

∑

j w(Zi,j)(g(Zi,j − ln∆tj))
∑

j w(Zi,j)
(1.6)

An example calculating the camera response curve is given in Fig. 1.2 by pro-

cessing a sequence of multi-exposure images with different shutter speeds using the
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Figure 1.3: Multi-exposure images with the shutter speed ranging from 1/4000 to 15
seconds.

method mentioned above. The camera response curve is plotted by each channel.

Fig. 1.3 shows the sequence of exposure images by adjusting shutter speech with

fixed ISO and aperture. The exposure value is affected by three factors: shutter

speed, ISO and aperture. During the acquisition of exposure sequences for establish-

ing camera response curve, we control exposure values by adopting different shutters

in line with equation 1.1.

There are also other methods estimating CRF. Mitsunaga et al. [84] assumed

the camera response curve as a polynomial form. The strongness of the assumption

does not rely on the specific shutter speed which is difficult to capture for previous

low-end cameras, but on the ratio of exposure between frames. The algorithm can
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Figure 1.4: An example of tone mapping.

recover camera response curve via only a few exposures, but the exposures have to

be captured in static scene. Lee et al. [61] calculated the camera response by adding

rank-1 constraint on a group of vectorized exposures. Badki et al. [4] extended

the algorithm to dynamic situation by modifying the objective function based on

Lee’s model [61]. Badki’s work can also be explained as a deghosting method taking

advantage of low-rank property.

1.2 Tone mapping

The dynamic range human visual system can perceive is much lower than that of

the scene. But with the adaptive adaption ability of human eyes, humans can feel

relatively high dynamic range at least five orders of magnitudes. With the high-bit

HDR image available, one important issue is how to display the HDR data as shown

in Fig. 1.4. The standard display devices such as LCD, CRT, projectors and printers

mostly have a low dynamic range and cannot display HDR images directly. To fill

in the gap between HDR data and LDR display, techniques have been developed to

compress the dynamic range of HDR data for effective display, which are called tone

mapping or tone reproduction [22, 15, 99, 77, 62, 57]. A good tone mapping algorithm

should faithfully preserve the image detailed features and colors while reducing the
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Figure 1.5: Multi-exposure image fusion in static scenes.

irradiance level. In the past two decades, a number of studies have been conducted

to develop effective tone mapping algorithms. Generally speaking, the tone mapping

methods fall into two primary categories: global tone mapping methods [15, 115]

and local tone mapping methods [22, 99].

1.3 Multi-exposure image fusion

Multi-exposure image fusion [82, 67] shown in Fig. 1.5 provides us with another ap-

proach to achieve high dynamic range image. It refers to the fusion in 8-bit pixel

domain. This technique has been broadly applied to consuming devices, such smart

mobile phone and digital camera. Multi-exposure fusion skill has several advantages

over HDR reconstruction and tone mapping. Firstly, there is no need to recover
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camera response function, which can reduce error caused by constructing HDR con-

tent. Secondly, storing the HDR data whether it is synthetic data or real raw data

is a big burden for limited storage in consuming devices. In a world, MEF offers a

simpler and more direct alternative by performing fusion in intensity domain, which

has been widely employed in mobile devices for HDR imaging [35].

This static scene fusion process can be expressed as follows:

X(i, j) =
K
∑

k=1

Wk(i, j)Xk(i, j) (1.7)

where the Wk(i, j) and Xk(i, j) indicate the weight and intensity values at the

pixel(i, j) in the k − th exposure image, respectively; X(i, j) represents the fused

image.

A great deal of research has explored this fusion issue. Multi-exposure fusion can

be divided into two categories: static scene fusion [25, 96, 82, 106, 105, 111, 69, 64,

65, 27, 133, 6] and dynamic scene fusion [24, 91, 38, 73, 39, 60, 47, 42, 102, 95, 90].

In the following section, we provide an overview of existing MEF algorithms with an

emphasis on how different methods compute perceptual weights for fusion, and how

they design exposure-invariant features for motion estimation.

1.3.1 MEF methods for static scenes

Static MEF methods mainly consist of weight map computation and smoothing in

a single-scale or multi-scale fashion [82], followed by post-processing such as detail-

enhancement [69]. The weight map smoothing occurs explicitly in pixel-level fusion

to keep spatial consistency. Patch-level fusion smooths the weight map implicitly via

aggregating overlapping patches [25, 76]. Multi-scale decomposition is widely used in

MEF for halo reduction [82, 53]. Post-processing is often adopted to further improve

the visual quality of fused images.
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The well-known MEF method proposed by Mertens et al. [82] computes the

weight map via contrast, color saturation, and well-exposedness measurements. Fu-

sion is accomplished in a multi-scale framework where the input images are decom-

posed into a Laplacian pyramid and the weight maps are smoothed within a Gaussian

pyramid. While computationally cheap, this method suffers from possible halo arti-

facts and detail loss. Li et al. enhanced the details of the Mertens’ results by solving

a quadratic optimization problem in single scale [69] or multi-scale [67]. Shen et

al. performed MEF in a boosting Laplacian pyramid [104]. Kou et al. [53] replaced

Gaussian smoothing in [82] with gradient domain guided smoothing to reduce halos.

Ancuti et al. [1] provided a fast single-scale approximation to [82] by Gaussian filter-

ing the weight map with a larger kernel size and adding back the details extracted

using a second-order Laplacian filter.

Li et al. [65] decomposed the input sequence into a base layer and a detail layer,

whose weight maps were computed by saliency measurements and refined by guided

filters [36] with different parameters. Raman and Chaudhuri [96] directly adopted

the detail layer as the weight map, which results in somewhat dreary appearance.

Goshtasby [25] designed the weight map based on the max-entropy principle and

smoothed it with a monotonic blending function to reduce blocking artifacts.

Optimization-based methods have also been used in MEF. Ma et al. [74] em-

ployed a gradient descent-based method to optimize MEF-SSIM [78] in the image

space. Despite visual quality improvement, their algorithm is prohibitively slow.

Prabhakar et al. [94] trained a feed-forward convolutional network by optimizing

MEF-SSIM. The method works reasonably well on extreme situations, but it is not

flexible to handle sequences of arbitrary number of exposures. Cai et al. [7] made

use of 13 existing MEF methods to generate a set of fused candidate images, and

manually picked the best ones as the ground truths to train a convolutional network

for single image contrast enhancement. Since this process requires extensive human
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interventions, the resulting number of sequences for training is quite limited, which

may hinder the generalizability of the learned network.

1.3.2 MEF methods for dynamic scenes

The fusion methods reviewed above were specially designed only for static scenes.

Once it is applied in the dynamic scene where some objects are moving or the camera

is shaking, ghosting artefact will occur as shown in Fig. 1.6. In the situation, the

head of that horse is moving across the scene during photography, leading to ghosting

appearance in the final fusion result. The reason of generating ghosting effect lies

in two aspects: the motion of the camera as well as the moving objects. In order

to eliminate the ghosting due to camera moving, one way is to put the camera on a

tripod. Another solution for addressing this kind of ghosting is to globally register

the source exposure images via registration operator such as SIFT, Harris, SURF,

MTB. In terms of whether a reference image is selected, there exist two sorts of

deghosting strategies. Selecting a reference image such as [70, 39] means that the

motion in the reference image is retained while other motions in non-reference images

are discarded. By contrast, all motions are removed without choosing a reference

image [24, 133, 73].

Dynamic scene fusion methods fall into two categories in terms of deghosting:

radiance domain based, and image domain based. In the intensity domain, Kang

first boosted the intensity values of adjacent frames in order to compensate for the

exposure changes and then ran Lucas-Kanade method to compute optical flow, which

is refined by a hierarchical homography if necessary [46]. Khan used a kernel density

estimation scheme to determine the probability that a pixel belongs to the back-

ground [47]. However, this method fails to deal with small random motion such as

ripples and tree branches in the wind. Jacobs detected pixels that may belong to

moving objects using entropy measure with the assumption that entropy is invari-
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Figure 1.6: An example of ghosting effect with multi-exposure image fusion in dy-
namic scenes.

ant under an injective function [42]. Median threshold bitmap is adopted in [91] to

detect the motion pixel and to select the best available exposure for fusion. Similar

to the method in [18], intensity information in only one exposure is used in some

local regions, which may be limited in expanding the dynamic range of those partic-

ular scene areas and may also cause local luminance inconsistency. In the radiance

domain, Eden recovered the HDR image by deliberately setting each radiance value

from one of the input images, which may cause moving object duplication or defor-

mation [18]. By exploiting the linearity between sensor radiance and exposure time,

Gallo checked the inconsistent patches from other exposures w.r.t. the chosen ref-

erence patch and blended consistent patches in the gradient domain to avoid visual

block artifacts caused by inaccurate CRF estimation [24]. Adopting a bidirectional
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Figure 1.7: An example of real image super-resolution.

similarity measure [109], Sen tackled camera and object motion together in a patch-

based energy minimization framework [102]. Lee estimated a binary ghost indication

matrix via ranking minimization with sparsity and connectivity constraints as well as

prior information on under- and over-exposed regions [60]. Oh et al. also exploited

the low rank property of the source image sequence using partial sum minimization of

singular values and extended it to matrix completion to account for complex motion,

which however requires human interactions for moving object inclusion [90].

1.4 Real image super-resolution

In addition to the dynamic range, resolution is another important factor which has

a big impact on image quality. In this thesis, we aim to address the issue of real

single image super-resolution (SISR). Real-world super-resolution is to directly super-

resolve an image without prior downsampling as shown in Fig. 1.7. SISR aims to

recover a high-resolution (HR) image from a degraded high-resolution (LR) image,

which can effectively overcome the resolution limitation of low-cost imaging sensors
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or enhance existing images. As a classic inverse problem, it can be formulated as:

y = DHx + n (1.8)

where x is the HR image to be recovered, y is the LR image. H, D and n are the

blur kernel, down-sampling operator, and additive noise, respectively. In general,

n is assumed free or additive white Gaussian noise (AGWN), and H is an identity

matrix.

Various works have been proposed in the past decades. Early studies mainly

focused on analytical interpolation methods such as nearest, bilinear and bicubic

interpolation kernel due to limited computational resource. Despite fast implemen-

tation, these methods suffer from severe edge and detail loss in the zoomed HR image.

Recent research works can be classified into model-based optimization methods and

learning based methods. It is a severely ill-posed problem to recover x from y. In

the model-based methods, some prior information such as sparsity [123, 31] and non-

local similarity [13] need to be used to better estimate the missing pixels especially

around sharp edges. The main deficiency of this kind is the high computational cost

and complex parameter adjustment.

Recently, CNN has been successfully employed in image super-resolution [11],

obtaining state-of-the-art performance in terms of signal-to-noise ratio (PSNR) be-

cause of its powerful discriminative learning ability with the help of efficient parallel

computing. Although these finely designed modes can obtain high PSNR and visual

quality in testing images downsampled by bicubic approach, they do not work well in

practical applications, where an LR image is amplified directly without pre-bicubic

downsampling.
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1.5 Contributions and organization

In this thesis, we investigate three key issues in dynamic range and resolution en-

hancement tasks: tone mapping, multi-exposure fusion, and real-world image super-

resolution. The thesis consists of four main research works conducted during my

PH.D. study, which are described with details in the following chapters:

In Chapter 2, we propose a clustering based adaptive tone mapping method,

which uses non-local redundancy and local statistics for adaptive tone mapping. The

tone mapping is implemented on each patch which is decomposed into three com-

ponents: patch mean, color variation and color structure. The similar structure

component is grouped via clustering. The detail structure is projected on the cor-

responding dictionary constructed via PCA transform. By adjusting the coefficients

through an effective s shape curve, the dynamic range is compressed and adjusted.

Furthermore, the method can suppress the noise via a hard threshold shrinkage of

small projection coefficients. The multi-scale technique is used to reduce halo arte-

fact. The off-line version via pre-training external data is implemented for a reduced

computational cost. Experiments have been extended on a large amount of HDR

data consisting of synthetic data or HDR raw data. Qualitative and quantitative

analysis indicate the effectiveness of robustness of the proposed method.

In Chapter 3, we propose a fast multi-scale multi-exposure image fusion method,

which can work well in both static and dynamic scenes. It can be regarded as an

extension of a rephrased SPD-MEF. The relationship with classic two-layer decom-

position based methods is analysed. The images are decomposed and fused simul-

taneously at each scale. The high frequency weight is inherited from SPD-MEF,

while the low frequency weight is designed by a new well-exposedness measure. The

final result is obtained by summing up the fused base layer and various detail lay-

ers via upsampling. The multi-scale technique can generate favorable results with
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reduced halo effect, faithful color and structure preservation, and decent global con-

trast. The complexity is linear independent with filter size, which can be applicable

in consuming devices.

In Chapter 4, we use deep learning for MEF. A novel CNN feature based MEF

method is proposed. When fusing multi-exposure image fusion, we hope to select the

good-exposure pixels, and then blend them. The CNN feature can help achieve this

target by extracting exposure-aware features. The L1 norm of the feature vector can

reflect the importance of one pixel in a local region. The normalized CNN feature

can be used to handle the ghosting artefact in dynamic scene. Additionally, we

found that shallow layer feature can be more effective for deghosting than the deep

feature. Because shallow layer feature mainly includes edge, gradient or structural

information which are exposure-insensitive for the motion detection across the scene.

Besides, we use two available datasets to explore an end-to-end MEF methods, which

could present decent performance. But the lack of ground-truth in dynamic scene

results in ghosting effect.

In Chapter 5, we made the first attempt to address the issue of real-world

image super-resolution by establishing long-short focus image dataset by use of four

different camera lens. Image registrations based SIFT are employed to crop the

HR and LR pairs. The baseline networks using our dataset achieved better results

compared with state-of-the-art methods trained by simulated data. The dataset

taken by real cameras fits more degradation types than conventional single or multiple

degradation assumptions. We also design a hybrid loss to keep a balance between

detail preservation and artefact suppression. The non-reference real image super-

resolution using general images from six dataset indicate our method shows favorable

visual quality with both good edge and texture preservation.

The core works form Chapter 2 to 5 correspond to the Paper 1, 2, 4 and Patent

1.
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Chapter 2

Clustering Based Content and

Color Adaptive Tone Mapping

Retinex theory has been widely adopted for tone mapping to visualize high dynamic

range (HDR) images on low dynamic range display devices by extracting image

luminance channel and separating it into a base layer and a detail layer. Many

edge-preservation filtering techniques have been proposed to approximate the base

layer for Retinex image decomposition; however, the associated tone mapping meth-

ods are prone to halo artifacts and false colors because filtering methods are limited

in adapting the complex image local structures. We present a statistical clustering

based tone mapping method which can more faithfully adapt image local content

and colors. We decompose each color patch of the HDR image into three com-

ponents, patch mean, color variation and color structure, and cluster the patches

into a number of clusters. For each cluster, an adaptive subspace can be easily

learned by principal component analysis, via which the patches are transformed into

a more compact domain for effective tone mapping. Comparing with the popular

edge-preservation filtering methods, the proposed clustering based method can better

adapt to image local structures and colors by exploiting the image global redundancy.

Our experimental results demonstrate that it can produce high-quality image with

well-preserved local contrast and vivid color appearance. Furthermore, the proposed
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method can be extended to multi-scale for more faithful texture preservation, and

off-line subspace learning for efficient implementation.

2.1 Introduction

Given that nowadays most available display devices are 8-bits, the tone mapping

operation is needed to reproduce the HDR data on the 8-bit devices for display. In

the past two decades, a number of studies concerning tone mapping algorithm have

been conducted.

Due to the limited computational resources, early studies [15, 115, 118, 58] focus

on designing simple global tone mapping operators. Tumblin et al. [115] proposed

a non-linear tone mapping algorithm according to the brightness perception of hu-

man visual system. Ward et al. [118] compressed image contrast instead of absolute

luminance using a simple linear compression function. Larson et al. [58] applied

histogram adjustment to tone mapping by preserving the histogram distribution of

the original HDR data. The adaptive logarithmic mapping in [15] compresses the

dynamic range with different logarithmic bases. The higher irradiance is compressed

via log2, whereas the lower irradiance via log10, to achieve desirable contrast and

detail preserving. Reinhard et al. [97] proposed a simple and practical s curve for

global tone mapping in independent channels. The global operators are computa-

tionally efficient without halo artifacts. However, the local contrast and visibility of

details in the produced LDR images are not satisfactory.

Recent studies focus more on local tone mapping techniques. Fattal et al. [22]

designed a novel local tone mapping operator based on gradient attenuation. They

compressed the drastic irradiance changes by reducing the large gradients under

a multi-scale framework. Reinhard et al. [99] classified the dynamic range of dis-

play devices into 11 zones according to the different irradiance in HDR data. Li et
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al. [66] put forward a multi-resolution image decomposition method using symmet-

rical analysis-synthesis filter banks for local tone mapping. The gain map of each

subband is calculated to alleviate the halo artifacts. Shan et al. [103] developed a

globally local optimization method with a locally linear model, where the guidance

map is constructed via local statistical information. Gu et al. [29] replaced the linear

assumption [103] with the local non-linear gamma correction. Ma et al. [77] designed

a tone mapped image quality index (TMQI) and performed dynamic range compres-

sion by optimizing this index. Chen et al. [9] segmented the HDR image into different

regions via the earth mover’s distance (EMD), and applied local tone mapping oper-

ation on each component. Ferradans et al. [23] proposed a two-stage tone mapping

method: human visual system based global tone mapping, followed by optimization

based local contrast enhancement. Duan et al. [16] improved the tone mapping per-

formance of [58] by applying adaptive local histogram adjustment on non-overlapped

blocks. In general, local tone mapping methods are spatially adaptive, and can re-

produce the local details and contrast well. However, these local operators have

higher computational cost and are prone to producing halo artifacts [66] and ringing

effect [108].

In recent years, researchers have been focusing on the design of various edge-

preserving filters for tone mapping. The main principle is to decompose an HDR

image into a detail layer and a base layer, and impose different operations on the

two layers. In particular, the base layer image can be obtained by filtering the

HDR data. Tumblinand et al. [116] made the first attempt to design edge-preserving

filters by using anisotropic diffusion to replace Gaussian filtering based on the Retinex

theory [43]. Durand et al. [17] developed a fast implementation of bilateral filtering

for tone mapping, which can efficiently generate smoothed images while preserving

the edges. Based on this framework, many subsequent works [21, 32, 122, 36, 68,

72, 51] have been proposed to better remap the HDR data. In [21], a weighted least
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squares based global optimization method was proposed to smooth the HDR data,

where a larger weight is given to local details and contours, while a smaller weight

is distributed to strong edges. An iterative method was proposed in [32] to improve

the solving of weighted least squares. By minimizing the global gradient of an HDR

image, Xu et al. [122] used the l0 norm as the regularizer to smooth the HDR image.

He et al. [36] proposed a guided filtering based method for edge preservation. A

linear relationship is assumed between the guided image and the image to be filtered

to avoid large edge loss. Some works [68, 72, 51] introduce the gradient information

as the weight to balance the data term and regularizer term in a local window, which

share the similar idea to global weighted least squares.

The luminance edge-preservation filtering based tone mapping algorithms men-

tioned above can improve the visual quality of tone mapped image; however, the

nonlinear filters used by them are not flexible and adaptive enough to fit the various

edges and structures in natural images, resulting in halo artifact and false colors.

Different from those luminance filtering based methods, in this chapter we develop

a statistical clustering based tone mapping method to more effectively exploit the

image local and global redundancy. We do not separate an image into luminance

and chrominance channels to process; instead, we work on image patches, and de-

compose a color patch into three components: patch mean, color variation and color

structure. It is well-known that there exist repetitive patterns/structures in natural

images [130, 14]. Based on the color structure component, we group similar patches

into clusters, and use statistical signal processing tools such as principal component

analysis (PCA) to define a subspace of the patches in a cluster. Consequently, we can

project each patch into a more compact domain, where the tone mapping operation

can be more effectively performed. Compared with the edge-preservation filtering

based methods, our proposed statistical clustering based method is more local con-

tent and color adaptive and robust since it exploits the image global redundancy to
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Figure 2.1: (a) The traditional tone mapping framework and (b) our proposed frame-
work.

decompose local structures.

The main contributions of this chapter lie in the following aspects. 1) Instead

of using the deterministic edge-preserving filters, we leverage statistical clustering

methods to better represent the local color structures of HDR images. Each patch

will be adaptively processed based on its cluster. 2) We perform tone mapping in

the PCA transformed domain other than the intensity domain, where the coefficients

have explicit physical meanings and can be more effectively compressed. 3) Different

from previous methods which extract luminance channel and perform layer separa-

tion on it, we do not extract luminance channel but process image luminance and

chrominance information simultaneously.

The rest of this chapter is organized as follows. Section 2 presents the proposed

method in detail. Section 3 presents extensive experimental results and discussions.

Section 4 concludes the chapter.
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2.2 The proposed tone mapping framework

Most previous tone mapping methods process luminance and chrominance separately.

A typical framework of conventional tone mapping methods is shown in Fig. 2.1(a).

Given an HDR image in RGB format, the luminance channel is first extracted as

L = 0.2126 · R + 0.7152 · G + 0.0722 · B for the XYZ color space [22], or L =

0.299 ·R+ 0.587 ·G+ 0.114 ·B for the YUV color space [68]. In some literature [28],

the average of R, G, B channels L = 1/3(R + G + B) is employed as the luminance.

After dynamic range compression on luminance, the chrominance is processed based

on the compressed luminance to reproduce the tone mapped image. The widely used

color processing operation is Cout = (Cin

Lin

)s ·Lout, where C represents the chrominance

channel, Lin and Lout denote the luminance before and after HDR processing, and s

adjusts the color saturation of the tone mapped image. The empirical value of s is

between 0.5 and 0.9 [28].

In our proposed method, we do not separate image into luminance and chromi-

nance channels to process. Instead, we propose a very different approach, whose

framework is shown in Fig. 2.1(b). We partition the input RGB image into over-

lapped color patches, and decompose each patch into three nearly uncorrelated com-

ponents. The color patches are clustered into a number of clusters, and statistical

analysis is used to compress each HDR patch to an LDR one. The flowchart of

the proposed method is shown in Fig. 2.2. The main procedures of the proposed

method include: logarithmic transform, patch decomposition, clustering and PCA

transform, range adjustment, patch reconstruction, aggregation and post-processing.

The details of the proposed method are presented in the following.
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Figure 2.2: Flow chart of the proposed tone mapping method.

2.2.1 Patch decomposition

Like in many existing tone mapping methods [16, 28, 83], our method needs a simple

global tone curve for initialization. Considering the characteristics of human visual

system, the logarithmic function is used to this end:

L(i, j, c) = log(I(i, j, c) · 106 + 1) (2.1)
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where I is the input HDR image, (i, j) refers to the spatial location, and c ∈ {r, g, b}

represents the R, G, and B channels. We then apply patch decomposition to L.

We partition the HDR image L into many overlapped patches (e.g., of size 7 × 7)

with stride q (e.g., q = 2 in our implementation). Denoted by x an extracted color

patch and by xc the patch in channel R, G or B. The local mean of each channel

xc, denoted by mc, is calculated by averaging all pixels in xc. We then subtract the

mean from xc:

x̄c = xc − 1 ·mc (2.2)

where 1 is a vector with all elements being 1 and it has the same size as xc. One can

see that x̄c contains the direct current (DC) removed detail structure of xc.

The mean mc is a scalar representing the DC amount of patch x in channel c.

The variation of mc across channels can reflect the color appearance in that patch.

For example, if all the three values of mc are the same, that patch will be a gray

level patch. We can calculate the color variation across channels as:

m̄c = mc −m (2.3)

where m = (mr+mg+mb)/3 is the average of the three mc. Clearly, m is the average

of all pixels in the color patch x.

With the m, m̄c, and x̄c defined above, for each patch we can decompose it into

three components:

x =







x̄r

x̄g

x̄b






+







1 ·mr

1 ·mg

1 ·mb






+







1

1

1






·m

= x̄ + m̄ + [1;1;1] ·m

(2.4)
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We call the 1st component x̄ = [x̄r; x̄g; x̄b] the color structure since it preserved

the detailed local structural information in the three channels, the 2nd component

m̄ = [1 · mr;1 · mg;1 · mb] the color variation since it reflects the color differences

across three channels, and the 3rd component m the patch mean since it is the mean

value of all pixels in the three channels.

2.2.2 Clustering and PCA transform learning

Given an input HDR image, a large number of patches x will be extracted. For

example, we extract 185754 7 × 7 patches with stride 2 for an image of size 1000 ×

750. It has been widely accepted that there will be many patches sharing a similar

structure in an image [130, 14, 121]. After removing the DC component, some

patches with different intensity levels may also have similar structure. Therefore, we

can cluster the patches into different clusters based on the color structure component

x̄. The classical clustering methods such as K-means [130] and Gaussian Mixture

Model (GMM) [121] can be used to this end. We choose K-means because it has

much lower computational cost while leading to similar tone mapping results to

GMM based on our experiments. We stretch each x̄ to a vector, and apply K-means

clustering to the vectorized color structure components x̄ (note that x̄ contains the

detailed features from all the R, G and B channels). Suppose that K clusters are

obtained. For each cluster, we calculate the covariance matrix of the vectors x̄ within

it, denoted by Φ. Since the covariance matrix Φ is positive semidefinite, we can have

its eigenvalue decomposition as:

Φ = QΛQ−1 (2.5)

where the orthogonal matrix Q is composed of the eigenvectors of Φ. The so-called

principal component analysis (PCA) transform matrix can be easily obtained as

[130]:
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P = QT (2.6)

Since the patches in one cluster are similar in structure, the eigenvectors asso-

ciated with the first a few largest eigenvalues will be able to represent the most

important common structures in that cluster (i.e., the principal components). With

the PCA transform matrix P, for each patch x̄ within that cluster, we can transform

it into the PCA domain as:

ȳ = Px̄ (2.7)

Note that the coefficients in ȳ will be much sparser than those in x̄. The small

coefficients correspond to noise interference and trivial structures. The modest co-

efficients correspond to image fine-scale details. The large coefficients correspond

to image principle structures. Usually, only the first a few coefficients in ȳ will be

significant, while the remaining being close to zero. Therefore, compressing the dy-

namic range of ȳ will be much easier and more robust than that of x̄. This is one of

the essential reasons that why our method works for tone mapping.

2.2.3 Dynamic range adjustment and patch reconstruction

To achieve the tone mapping of patch x, we need to adjust the values of m, m̄, and

x̄. For component x̄, we transform it into the PCA domain via Eq. 2.7 and process

ȳ. The smallest coefficients in ȳ are usually produced by the trivial structures,

fluctuations and even noise in x̄, and therefore we first remove them for a more

stable tone mapping. Denote by max the maximal absolute value of all coefficients

in ȳ. Since noise mostly corresponds to the smallest PCA coefficients, a simple

empirical threshold is good enough to suppress the noise. In order to keep the details

of the original data as much as possible while removing noise, a small threshold is
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empirically selected. We set those coefficients whose absolute value is smaller than

0.1 max to 0.

For the task of tone mapping, the large PCA coefficients (corresponding to image

large scale structures) in ȳ should be compressed, while the smaller coefficients (cor-

responding to image fine scale textures) should be maintained or enhanced slightly.

To this end, an s-shaped curve could be employed to adjust the coefficients. The

commonly used s-shaped curves include arctan and sigmod functions. We choose the

arctan function to adjust coefficients because it exhibits stronger transition ability

in both shadows and highlights, and the adjusting function should be symmetrical

to 0 to process the negative coefficients in the PCA transform domain. With the

arctan function, we adjust the coefficients in ȳ as:

ȳa = (1.6/π) · arctan(a · ȳ) (2.8)

where a is a parameter to control the shape of the curve. Some example curves are

plotted in Fig. 2.3. One can see that the smaller the a is, the stronger compression

effect on ȳ will be.

For the color variation component m̄, we also use the arctan function but with a

different parameter to adjust it:

m̄b = (1.2/π) · arctan(b · m̄) (2.9)

where b is the shape parameter. The patch mean component m changes slowly, which

can be linearly compressed by multiplying a weight w. After range adjustment on

m, m̄ and ȳ, the tone mapped patch of x, denoted by xt, can be reconstructed as

xt = PT ȳa + m̄b + [1;1;1]w ·m (2.10)

where w is a scalar ranging from 0 to 1.
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Figure 2.3: The arctan function in Equ. 2.8 with different parameters.

2.2.4 Aggregation and post-processing

The operations described in Sections 2.3 and 2.4 are applied to each extracted patch

for the input HDR image, and aggregation of the processed patches is needed to

reconstruct the tone mapped LDR image. Each tone mapped patch is put back to

its original location, while the overlapped pixels in adjacent patches are averaged.

In the post-processing stage, the 1% pixels of lowest and highest values are clamped

to enhance the primary contrast. Finally, every patch pixel is linearly stretched to

0 − 1 to fully take advantage of the dynamic range of target display device to show

the result.
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2.2.5 Extension to multi-scales

In the proposed patch clustering based tone mapping method, each patch will have

a mean component (scalar value). The means of all patches will form a smoothed

gray level image of the original image. Fig. 2.4 shows an example. Fig. 2.4(a) is

the original image (the tone mapped image is shown here for better visibility), and

Fig. 2.4(b) is the mean image after patch decomposition. Note that the resolution

of mean image is 1/4 of that of the original image because we use a stride factor of

2 (in both horizontal and vertical directions) to extract the patches (size: 7× 7× 3).

One can see that there is still certain amount of textures in the mean image. If we

compress the mean image by a weight w as shown in Eq.(10), some detailed texture

information can be lost in the final tone mapped image. To solve this problem,

we could extend the proposed method to multi-scales. More specifically, we extract

patches from the mean image, and decompose each patch into two components: patch

mean and patch structure. The patch mean is the average of all pixels in a patch,

while the patch structure component is obtained by subtracting the mean from the

patch. Note that we do not have a color variation component here since the mean

image is gray scale. The clustering and PCA transform can then be applied to the

patch structure components. By embedding such operations into the framework in

Fig. 4.1, we could have a two-scale implementation of the proposed method, which

is illustrated in Fig. 2.5.

Our method can be easily extended to more scales by further decomposing the

mean image generated on the 2nd scale. Nonetheless, our experiments show that

a 2-scale decomposition is enough for most of our test images. In Fig. 2.6(a) and

Fig. 2.6(b), we show the single-scale and two-scale tone mapping results by our

method. One can see that some detailed structures of the cloud region are lost in the

single-scale result image, but they can be preserved in the two-scale result image. In
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Figure 2.4: (a) The original HDR image (the tone mapped image is shown here for
better visibility). (b) The mean image formed by the patch means.

addition, since the mean image is gray scale and has a lower resolution, the two-scale

decomposition scheme has similar implementation time to the single-scale scheme.

2.2.6 Offline PCA transform learning

The color structure clustering step is the most time-consuming part in our proposed

method. With the K-means clustering algorithm, it will take about 147 seconds to

process an image of size 1000 × 750 × 3 (patch size: 7 × 7 × 3) under the MATLAB
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Figure 2.5: The two-scale implementation flow chart of the proposed method.

R2014a programming environment on a PC equipped with an i7-4790K CPU, 4G

HZ and 32GB memory.

To reduce the computational cost, we can pre-calculate the clusters and their

PCA transform matrices using an external dataset, as illustrated in Fig. 2.7. We

use the Kodak database1 as the training dataset. About 300,000 patches (patch

size: 7 × 7 × 3) are extracted and their color structure components are computed

1 http://r0k.us/graphics/kodak/
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Figure 2.6: (a) and (b) are the tone mapped images by single-scale and two-scale
decompositions, respectively, and (c) and (d) are the single-scale and two-scale results
by off-line pre-learning of the PCA transforms.

for clustering. For each cluster, we have a cluster mean and its PCA transform

matrix. In the test stage, for each patch of the input HDR image, we determine its

corresponding cluster based on the minimum Euclidean distance between its color

structure component and the centroids of clusters. Then the PCA transform matrix

of that cluster is used to process that patch. Without the online clustering, the

running time of our method is significantly improved. On average, it costs about 7

seconds to process an image of size 1000 × 750 × 3, about 21 times faster than the

online version of our method. In Fig. 2.6(c) and Fig. 2.6(d), we show the single-

scale and two-scale tone mapping results by our offline method. We can see that the

offline method achieves similar tone mapping results to the online method in terms

of objective assessment (See Table 2.2 and Table 2.3).)

2.3 Experimental results and discussions

2.3.1 Implementation details

Our method is a patch based approach, and we need to fix the patch size first. Based

on our experimental experience, setting the patch size from 5×5×3 to 8×8×3 will
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Figure 2.7: Top box: the offline patch clustering and PCA transform learning by us-
ing an external dataset. Bottom box: the online cluster selection and tone mapping.

lead to similar results, and we set the patch size to 7 × 7 × 3 in all our experiments.

We extract the patches from an image with stride 2 in both horizontal and vertical

directions. For clustering, we use the K-means algorithm [130, 14] with initial cluster

number 100 for scale 1 and 50 for scale 2. Note that some small clusters will be

merged in the clustering process so that the final number of clusters will be less than

100 and 50 on the two scales. For our offline clustering method, the final numbers

of clusters are 83 (scale 1) and 13 (scale 2), respectively.

The parameter a in Eq. 2.8 controls the adjustment of local structures. For

simplicity, we set a the same for both the two scales. Fig. 2.8 shows the tone mapping
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Figure 2.8: The impact of parameter a on the reconstruction of image local structure.

Figure 2.9: The impact of parameter b on the reconstruction of local color appear-
ance.

results by letting a be 2, 6, 10, 20, respectively. We can see that a bigger a will make

the local contrast stronger, but a too big a will make local structures and colors

unnatural. We choose a = 6 in our experiment to achieve a good balance between

contrast enhancement and color/structure preservation.

The parameter b in Eq. 2.9 controls the adjustment of local color appearance.

Fig. 2.9 shows the tone mapping results by letting b be 2, 4, 8, 16, respectively. We

can see that a too big b will lead to over-saturation, while a too small b will lead to

under-saturation. We choose b = 4 in our experiments.

Finally, the parameter w ∈ [0, 1] in Eq. 2.10 is used to adjust the luminance of

the tone mapped image. Clearly, the image luminance will be lower with a smaller

w. We set w = 0.8 based on experimental experience.
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Figure 2.10: Source image scenes used in our experiment. The HDR data are repre-
sented by the tone mapped results for better visualization.

2.3.2 Test data and comparison algorithms

To verify the effectiveness of the proposed method, we collect 17 sets of widely used

HDR image data from links 2, 3, 4 and capture 3 sets of HDR image data by two digital

cameras (Sony a7 and DJI Phantom3). The scenes of the 20 sets of HDR images are

shown in Fig. 2.10. These 20 images cover both outdoor and indoor scenes, as well

as different objects such as trees, sky, sun, cloud, books, and windows.

We compare our algorithm with 7 representative tone mapping algorithms, in-

cluding “Mantiuk” [80], “Drago” [15], “Fattal” [22], “Kuang” [54], “Farbman” [21],

“Shan” [103], and “Shibata” [108]. The source codes of these comparison methods

are publicly available in the“HDR-Toolbox” [5] or provided in the authors’ home-

2 http://www.ok.ctrl.titech.ac.jp/res/IC/ProxPoisson/ProxPoisson.html

3 http://cadik.posvete.cz/tmo/

4 https://people.csail.mit.edu/sparis/publi/2011/siggraph/
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Table 2.1: Average execution time in seconds on 5 scenes of size 713 × 535 × 3

Alg Drago Fattal Kuang Frabman Shan Shibata Our
Env MATLAB MATLAB MATLAB MATLAB MATLAB MATLAB MATLAB

Time (s) 0.13 1.15 1.23 2.89 10.28 15.01 3.86

pages5,6,7. We use the default parameters of those codes which were optimized by

the authors. The running time of competing algorithms are summarized in Table 2.1,

from which we can see that our two-scale offline method is slower than “Drago” [15],

“Fattal” [22], “Kuang” [54], and “Farbman” [21], but faster than “Shan” [103], and

“Shibata” [108]. Since “Mantiuk” [80] et al’s method is implemented by HDR Lu-

minance8, we do not report it in running time comparison.

2.3.3 Objective evaluation

Since there is not a groundtruth LDR image for the HDR data, classical objective

measures such as PSNR cannot be used to evaluate the quality of tone mapped im-

ages and the performance of a tone mapping algorithm. Recently, researchers have

proposed some objective measures [3, 125, 87, 112, 55, 30] to evaluate the tone map-

ping results. The objective metrics TMQI [125] and FSITM [87] are employed in

our manuscript and they are based on structural similarity (SSIM) [117] and feature

similarity(FSIM) [132]. TMQI combines SSIM-motivated structural fidelity with sta-

tistical naturalness to assess the tone mapped images. FSITM measures local phase

similarity of the original HDR and the tone mapped LDR image. Apart from the 7

representative methods [80, 15, 22, 54, 21, 103, 108], we also list the results of the

baseline Log and Exp operators in the “HDR-toolbox” [5]. The TMQI and FSITM

results are shown in Table 2.2 and Table 2.3, respectively, where Ours1, Ours2 and

5 http://www.cse.cuhk.edu.hk/leojia/programs/optimize_tone_mapping_code.zip

6 http://www.cs.huji.ac.il/~danix/epd/

7 http://www.ok.ctrl.titech.ac.jp/res/IC/ProxPoisson/ProxPoisson.html

8 http://qtpfsgui.sourceforge.net/
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Table 2.2: The TMQI scores of the tone mapping images.

Source Log Exp [80] [15] [22] [54] [21] [103] [108] Ours1 Ours2 Ours3
1 0.550 0.866 0.889 0.907 0.701 0.823 0.918 0.843 0.866 0.934 0.939 0.940

2 0.698 0.748 0.867 0.842 0.844 0.928 0.727 0.805 0.908 0.871 0.872 0.876
3 0.576 0.886 0.936 0.896 0.818 0.855 0.974 0.973 0.850 0.933 0.939 0.938
4 0.630 0.810 0.912 0.951 0.790 0.911 0.844 0.835 0.774 0.857 0.856 0.869
5 0.709 0.922 0.699 0.960 0.808 0.817 0.844 0.905 0.781 0.944 0.934 0.932
6 0.807 0.813 0.852 0.958 0.885 0.880 0.821 0.933 0.771 0.809 0.811 0.816
7 0.759 0.910 0.916 0.921 0.758 0.843 0.844 0.936 0.822 0.959 0.954 0.952
8 0.740 0.895 0.874 0.870 0.752 0.824 0.807 0.919 0.813 0.945 0.949 0.946
9 0.639 0.856 0.896 0.948 0.769 0.832 0.807 0.921 0.755 0.909 0.898 0.906
10 0.729 0.887 0.890 0.870 0.880 0.962 0.719 0.960 0.930 0.890 0.884 0.885
11 0.706 0.882 0.923 0.952 0.854 0.952 0.882 0.804 0.838 0.943 0.933 0.916
12 0.536 0.938 0.888 0.938 0.748 0.796 0.776 0.869 0.781 0.892 0.887 0.885
13 0.534 0.854 0.915 0.944 0.786 0.790 0.928 0.950 0.839 0.952 0.954 0.953
14 0.828 0.782 0.878 0.788 0.803 0.867 0.521 0.789 0.844 0.812 0.817 0.817
15 0.773 0.913 0.908 0.901 0.903 0.986 0.741 0.886 0.890 0.909 0.899 0.898
16 0.777 0.868 0.949 0.933 0.953 0.946 0.774 0.905 0.823 0.930 0.828 0.835
17 0.667 0.879 0.883 0.906 0.912 0.979 0.718 0.957 0.908 0.953 0.947 0.945
18 0.773 0.817 0.921 0.873 0.804 0.957 0.662 0.897 0.922 0.919 0.919 0.915
19 0.800 0.862 0.960 0.881 0.936 0.939 0.728 0.909 0.851 0.846 0.845 0.845
20 0.790 0.880 0.976 0.916 0.941 0.952 0.751 0.920 0.859 0.848 0.847 0.847

Average 0.701 0.863 0.897 0.908 0.832 0.892 0.790 0.896 0.841 0.903 0.896 0.896

Ours3 represent the single-scale, two-scale, and the off-line two-scale implementa-

tions of our method respectively. For each image, the best result is highlighted in

bold face.

2.3.4 Subjective comparison

Let’s then present some visual comparisons of the competing methods. For our

method, we present the results by the offline two-scale implementation. Figs. 2.11-

2.14 show the tone mapped images of scenes 7, 9, 17, and 18 (see Fig. 2.10), respec-

tively.

The results by “Mantiuk” [80] present the loss of details especially in dark regions.

For example, in the close-up images in Fig. 2.11 and Fig. 2.14, the books and trees

cannot be seen. The adaptive global method “Drago” [15] presents better results,

but it suffers from the loss of local contrast. One can see from Fig. 2.13 that the

contrast of tree branches and cloud background is low. Fattal et al’s method [22] has
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Table 2.3: The FSITM scores of the tone mapping images.

Source Log Exp [80] [15] [22] [54] [21] [103] [108] Ours1 Ours2 Ours3
1 0.863 0.783 0.852 0.829 0.821 0.857 0.848 0.774 0.779 0.802 0.804 0.803
2 0.756 0.779 0.849 0.854 0.736 0.868 0.771 0.809 0.844 0.852 0.853 0.855

3 0.927 0.857 0.903 0.896 0.861 0.897 0.894 0.868 0.823 0.830 0.839 0.838
4 0.696 0.846 0.901 0.915 0.732 0.917 0.901 0.842 0.869 0.901 0.901 0.902
5 0.795 0.726 0.719 0.790 0.748 0.823 0.801 0.715 0.759 0.792 0.791 0.792
6 0.922 0.879 0.932 0.951 0.783 0.948 0.916 0.856 0.905 0.930 0.931 0.932
7 0.811 0.808 0.866 0.869 0.723 0.878 0.871 0.831 0.826 0.872 0.872 0.873

8 0.711 0.802 0.855 0.860 0.717 0.872 0.861 0.832 0.826 0.864 0.864 0.864
9 0.803 0.827 0.913 0.923 0.757 0.932 0.910 0.877 0.884 0.920 0.920 0.921
10 0.863 0.868 0.904 0.924 0.760 0.924 0.797 0.895 0.896 0.906 0.907 0.908
11 0.735 0.757 0.838 0.846 0.724 0.831 0.835 0.732 0.807 0.842 0.846 0.852

12 0.606 0.803 0.861 0.875 0.750 0.888 0.857 0.838 0.853 0.878 0.880 0.881
13 0.797 0.748 0.819 0.800 0.811 0.837 0.821 0.774 0.780 0.785 0.788 0.788
14 0.818 0.778 0.834 0.838 0.743 0.861 0.602 0.792 0.845 0.840 0.840 0.846
15 0.906 0.817 0.884 0.862 0.799 0.872 0.777 0.753 0.837 0.833 0.835 0.835
16 0.803 0.802 0.914 0.926 0.762 0.930 0.872 0.835 0.882 0.921 0.921 0.927
17 0.796 0.835 0.907 0.914 0.749 0.926 0.804 0.890 0.898 0.908 0.909 0.909
18 0.825 0.795 0.843 0.852 0.747 0.874 0.722 0.821 0.827 0.855 0.858 0.861

19 0.864 0.856 0.874 0.902 0.755 0.889 0.785 0.837 0.866 0.882 0.886 0.889
20 0.870 0.821 0.915 0.913 0.764 0.903 0.810 0.835 0.887 0.906 0.909 0.909

Average 0.808 0.809 0.869 0.877 0.762 0.886 0.823 0.820 0.845 0.866 0.868 0.870

Figure 2.11: The tone mapping results on image 7 (refer to Fig. 2.10) by competing
tone mapping operators. From (a) to (h): results by “Mantiuk” [80], “Drago” [15],
“Fattal” [22], “Kuang” [54], “Farbman” [21], “Shan” [103], “Shibata” [108], and ours.
From (i) to (p): the close-ups of (a)-(h).
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Figure 2.12: The tone mapping results on image 9 (refer to Fig. 2.10) by competing
tone mapping operators. From (a) to (h): results by “Mantiuk” [80], “Drago” [15],
“Fattal” [22], “Kuang” [54], “Farbman” [21], “Shan” [103], “Shibata” [108], and ours.

the problem of detail and contrast loss such as the wall in Fig. 2.11 and green tree

in Fig. 2.14. Kuang et al’s method [54] shows much distortion of color appearance,

although it preserves well local details and contrasts. For instance, it produces a

purple color of sky in Fig. 2.13, which is not natural. The tone mapped images by

multi-scale decomposition based method “Farbman” [21] suffer from information loss

in some regions, such as the sky in Fig. 2.13 and Fig. 2.14. Shan et al’s method [103]

over-smooths much the image local textures. There are neither clear contours of

the cloud in Fig. 2.13 nor fine structures of tree leaves in Fig. 2.14. Shibata et

al’s method [108] shows good local contrast but meanwhile generates much visual
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Figure 2.13: The tone mapping results on image 17 (refer to Fig. 2.10) by competing
tone mapping operators. From (a) to (h): results by “Mantiuk” [80], “Drago” [15],
“Fattal” [22], “Kuang” [54], “Farbman” [21], “Shan” [103], “Shibata” [108], and ours.

artifacts. The surfaces of the wall and desk in Fig. 2.11 and the roofs in Fig. 2.12

are over-exaggerated.

Compared with the above methods, our method demonstrates competitive visual

quality with good local structure preservation and color reproduction. For instance,

in Fig. 2.11 the local details and contrast labelled in the red box can be seen clearly

with decent overall visual effect. Furthermore, the colors of trees, cloud and grass look

natural and saturated. This is mainly because our method clusters image patches

based on their local colors and structures and it processes each patch adaptively

based on the color and structure statistical information in that cluster.
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Figure 2.14: The tone mapping results on image 18 (refer to Fig. 2.10) by competing
tone mapping operators. From (a) to (h): results by “Mantiuk” [80], “Drago” [15],
“Fattal” [22], “Kuang” [54], “Farbman” [21], “Shan” [103], “Shibata” [108], and ours.
From (i) to (p): the close-ups of (a)-(h).

2.3.5 Subjective Study

A formal subjective study is conducted to further evaluate the proposed tone mapper

and compared methods. The subjective testing was operated in an indoor environ-

ment with stable illumination as shown in Fig. 2.15. We adopted the strategy in [79]

in our subjective testing. The tone mapped images of 20 scenes by 8 representative

algorithms are shown on a PA328 Display, 32-inch (7680*4320), controlled by a Mac

Pro with Intel Core i5 2.9GHz CPU. A total number of 17 volunteer subjects, in-

cluding 8 females and 9 males, were asked to give an integer score ranging from 1-10

to each image shown on the display, where 1 means the worst visual quality and 10

means the best visual quality.

The mean and std of mean opinion score (MOS) values are shown in Fig. 2.16.

It can be seen that our method and Shibata et al’s method have much better per-

formance than other competing methods. The MOS of our method is 7.50 with std
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Figure 2.15: The environment and 17 subjects participated in the subjective exper-
iments.
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Figure 2.16: Mean and std of subjective rankings of the 8 competing tone mapping
algorithms.
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Figure 2.17: The number of highest subjective scores obtained by different methods.
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Figure 2.18: The number of lowest subjective scores obtained by different methods.
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0.56, while that of Shibata et al’s method is 7.42 with std 0.71. In the subjective ex-

periments, our method obtains 118 highest subjective scores and 0 lowest subjective

score among 340 highest and lowest scores. The distributions of numbers of highest

and lowest scores by different methods are shown in Fig. 2.17 and Fig. 2.18. Overall,

our method demonstrates highly competitive and stable tone mapping performance.

It should be pointed out that the subjective testing results are not well consis-

tent with the objective metrics used in this chapter. Existing objective metrics for

tone mapping operators are primarily focused on structural similarity [125], feature

similarity [87], visibility [3, 112, 55], contrast [112, 55], naturalness [125, 87], and

chrominance [112]. These quality measures are derived from general image quality

assessment methods and they may not be suitable for the tone mapping problem. It

is still a challenging issue to design a faithful perceptual quality measure to assess

tone mapping operators. In addition, we found that the naturalness index should

not be over-emphasized for evaluating tone mapping methods via our subjective ex-

periments, and that the color information plays an important role in assessing tone

mapped images.

2.4 Conclusion

In this chapter, we presented a clustering based content and color adaptive tone

mapping method. Different from previous methods which are mostly filtering based,

our method works on image patches, and it decomposes each patch into three com-

ponents: patch mean, color variation and color structure. Based on the color struc-

ture component, we clustered image patches into clusters, and calculated the PCA

transform matrix for each cluster. The patches were then transformed into its PCA

domain, and the s-shaped arctan function was used to adjust their PCA coefficients.

We further extended our method to two scales and proposed an offline clustering
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implementation to improve its fine-texture preservation and efficiency. Experiments

on 20 sets of HDR data demonstrated the superior performance of our method to

representative tone mapping methods.
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Chapter 3

Multi-Scale Fast Structural Patch

Decomposition for Multi-Exposure

Image Fusion

Exposure bracketing is crucial to high dynamic range imaging, but it is prone to ha-

los for static scenes and ghosting artifacts for dynamic scenes. The recently proposed

structural patch decomposition for multi-exposure fusion (SPD-MEF) has achieved

superior performance in deghosting. However, it is computationally expensive and

suffers from visible halo artifacts, while its relationship to other MEF methods is

unclear. Here we show that an unnormalized version of SPD-MEF is closely related

to standard pixel-level MEF methods as well as the classical two-layer decomposition

method for MEF. Moreover, it avoids explicitly performing structural patch decom-

position, which achieves an order of 30× speed-up. We further develop a multi-scale

fast SPD-MEF method, which effectively reduces the halo artifacts. Experimental

results demonstrate the effectiveness of our multi-scale fast SPD-MEF in terms of

speed and quality.
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Figure 3.1: Left column: Mertens09 [82]. Middle column: SPD-MEF [75]. Right
column: Our method. One can see that our method can suppress ghost artifacts and
halo artifacts better than Mertens09 and SPD-MEF.

3.1 Introduction

Recently, Ma et al. proposed the structural patch decomposition for MEF (SPD-

MEF) [75] that demonstrates reliable deghosting performance over a wide range of

dynamic scenes. The consistent improvement of SPD-MEF in visual quality has been

verified by MEF-SSIM [78], a widely used objective quality metric for MEF, and in

two independent subjective experiments [7, 20]. Although faster than many HDR

deghosting algorithms, SPD-MEF still takes seconds (even minutes) to fuse high-

resolution sequences, and therefore is not suitable for real-time mobile applications.

In addition, it produces visible halo artifacts for some natural scenes, where the

difference in dynamic range between the foreground and the background is large (see

Fig. 3.1).

A predominant problem of MEF is the introduction of the ghosting artifacts

when dealing with dynamic scenes that contain moving objects (see Fig 3.1). While
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many MEF algorithms (also referred to as HDR degosting methods) are able to

produce ghost-free images, they come with their own disadvantages such as sub-

stantial computational complexity due to the need of solving a global optimization

problem [39, 60, 90], or suboptimal visual quality due to excessive reliance on the

reference exposure for inconsistent motion rejection [102, 70, 95]. Recently, Ma et

al. described the structural patch decomposition for MEF (SPD-MEF) [75] that

demonstrates reliable deghosting performance over a wide range of dynamic scenes.

The consistent improvement of SPD-MEF in visual quality has been verified by

MEF-SSIM [78], a widely used objective quality metric for MEF, and in two inde-

pendent subjective experiments [7, 20]. Although faster than most HDR deghosting

algorithms, SPD-MEF still takes seconds (even minutes) to fuse high-resolution se-

quences, and therefore is not suitable for real-time mobile applications. In addition,

it produces visible halo artifacts for some natural scenes, where the difference in

dynamic range between the foreground and the background is large (see Fig. 3.1).

In this chapter, we study SPD-MEF [75] to gain a better understanding of its be-

havior. Our empirical analysis shows that we can skip the normalization step when

fusing signal structures without introducing noticeable differences to the original

scheme. By further incorporating the signal strength into the weight, we avoid ex-

plicitly performing structural patch decomposition, leading to an acceleration scheme

that runs about 30 times faster. We rewrite patch aggregation as mean filtering of

the weight map at each exposure, and arrive at a formulation that is closely related

to standard pixel-level MEF methods [82, 106, 69, 27, 89, 53, 1] and the two-layer

decomposition for MEF [96, 65]. The main difference lies in how their weights are

designed and computed. Finally, we propose the multi-scale fast SPD-MEF approach

by progressively downsamping and processing the mean intensity images, which effec-

tively reduces the halo artifacts with little additional computation. Experiments on

a wide range of static and dynamic scenes show that our multi-scale fast SPD-MEF
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algorithm consistently produces HDR images with little ghosting and halo artifacts

while being the fastest among state-of-the-arts.

In this section, we first revisit the algorithm flow of SPD-MEF [75], and then

show that an unnormalized approximation permits a neat acceleration scheme, whose

relationship to other approaches is also much clearer. We then develop a multi-scale

fast SPD-MEF approach with reduced halo artifacts.

3.2 SPD-MEF

Let’s briefly describe how SPD-MEF [75] computes the fused image. The core idea

of SPD-MEF for static scenes is to decompose an image patch of dimension N into

three conceptually independent components: mean intensity, signal strength, and

signal structure

x = l · 1 + ‖x− l‖ ·
x− l

‖x− l‖

= l · 1 + ‖x̄‖ ·
x̄

‖x̄‖

= l · 1 + c · s, (3.1)

where 1 is an N -dimensional vector of all ones and ‖x̄‖ denotes the l2-norm of

the mean-removed patch x̄. l and c are two scalars representing mean intensity

and signal strength, respectively. s is a unit-length vector, whose direction encodes

signal structure. The desired patch of the output fused image can be obtained

by determining the three components separately and inverting the decomposition.

Specifically, assuming the input sequence has K exposures, the desired local mean

intensity is computed by

l̂ =
K
∑

k=1

αklk, (3.2)
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where the weight αk ≥ 0 depends on the local and global mean intensities of the

k-th exposure, and
∑

k αk = 1. The desired local signal strength is computed as the

largest one across exposures

ĉ = max
1≤k≤K

‖x̄k‖ = max
1≤k≤K

ck. (3.3)

The desired local signal structure is determined by

ŝ =
s̄

‖s̄‖
, where s̄ =

K
∑

k=1

βksk. (3.4)

The weight βk is proportional to ‖x̄k‖, and
∑

k βk = 1. After this, we are able to

compute the desired local patch

x̂ = l̂ · 1 + ĉ · ŝ. (3.5)

SPD-MEF performs patch aggregation by simply averaging all overlapping pixel

values to obtain the final fused image [75].

3.3 Fast SPD-MEF

Most computational cost of SPD-MEF comes from the structural patch decomposi-

tion in Eq. (3.1), which has a complexity of O(NMK), where N is the patch size,

M is the number of pixels in each exposure, and K is the number of multi-exposure

images. In this section, we will show that the complexity can be reduced to O(MK).

We first analyze s̄, which is a convex combination of K unit length vectors. The

norm of s̄ satisfies

‖s̄‖ =

∥

∥

∥

∥

∥

∥

K
∑

k=1

βksk

∥

∥

∥

∥

∥

∥

≤

K
∑

k=1

βk‖sk‖ = 1, (3.6)

which can be easily proved by induction using triangular inequality and absolute

homogeneity of the norm. The equality holds for arbitrarily chosen {βk} when all
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Figure 3.2: The histogram of ‖s̄‖ computed from six static scenes.

signal structures are identical. If some sk points to a different direction, we may

still achieve the equality by assigning the corresponding βk to zero. Empirically,

we find that ‖s̄‖ computed by SPD-MEF is close to one for all co-located patches

from different sequences (see the histogram in Fig. 3.2). This is expected because

as long as the set of {xk} are not under-/over-exposed, the corresponding exposure-

invariant {sk} have the same structure, leading to ‖s̄‖ ≈ 1. For under-exposed

regions, sk mainly contains amplified noise structure; for over-exposed regions, sk

is nearly flat, i.e., 1√
N
1. In either case, sk points to a different direction from the

true signal structure. Fortunately, the corresponding βk computed by SPD-MEF is

close to zero, giving rise to ‖s̄‖ ≈ 1. This implies that normalizing the desired signal

structure has little impact to the overall computation, and SPD-MEF without the

normalization step would deliver essentially the same visual results (see Fig. 3.3).
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(a)

(b) (c)

Figure 3.3: SPD-MEF with and without normalization. (a) Image sequence “Land-
scape” (courtesy of HDRsoft). (b) With normalization. (c) Without normalization.
The visual similarity between the two images is verified by an SSIM [117] value of
0.999.

We proceed by substituting (3.2), (3.4) into (3.5)

x̂ ≈
K
∑

k=1

(αklk · 1 + ĉβk · sk)

=
K
∑

k=1

(

αklk · 1 +
ĉβk

‖x̄k‖
· x̄k

)

=
K
∑

k=1

(

αklk · 1 + γk · (xk − lk)
)

, (3.7)

where γk = ĉβk

‖x̄k‖ . Note that by approximating ŝ with s̄ and incorporating ‖x̄k‖ into

γk, we avoid explicitly performing structural patch decomposition. The final image
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X̂ can then be computed by

X̂ =
K
∑

k=1

(

f (αk ⊙ Lk) + f(γk) ⊙Xk − f (γk ⊙ Lk)
)

, (3.8)

where f(·) is a mean filter of dimension N and ⊙ denotes Hadamard product. That

is, instead of averaging all overlapping patch values, we equivalently smooth the

weight maps with f . The mean filtering process can be implemented in linear time

via box filter [36]. Consequentially, the computational complexity of SPD-MEF is

reduced from O(NMK) to O(MK), independent of patch size N .

We now take a closer look at Eq. (3.8). Choosing αk = γk yields the classic form

of pixel-level MEF, with a smoothed weight map f(γk). If each pixel computes a

separate mean intensity from the patch centered at it, Eq. (3.8) becomes

X̂ =
K
∑

k=1

(

f(αk) ⊙ f (Xk) + f(γk) ⊙
(

Xk − f (Xk)
)

)

, (3.9)

which is essentially the two-layer decomposition of images for MEF. The weight

maps for the base layer and the detail layer are f(αk) and f(γk), respectively. In

the original development of SPD-MEF [75], the authors speed up the algorithm by

sampling patches with a stride larger than one, which can also be incorporated into

Eq. (3.8)

X̂ =
K
∑

k=1

(

f (αk ⊙Mk ⊙ Lk) + f(γk ⊙Mk) ⊙Xk

− f (γk ⊙Mk ⊙ Lk)
)

, (3.10)

where Mk is a binary mask with ones indicating patches that have been sampled.

3.4 Multi-scale fast SPD-MEF

The kernel size of the mean filter f , or equivalently the patch size, has a significant

impact on the fusion performance. A small kernel usually recovers more details, but
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Figure 3.4: Comparison of different well-exposedness weight functions.

tends to produce noisy weight maps, resulting in spatial inconsistency of the fused

image. A large kernel effectively resolves this problem at the cost of halo artifacts

near strong edges due to unwanted smoothing [36].

Here we describe a multi-scale fast SPD-MEF approach to reduce halos while

preserving the details at different scales. We index the original sequence as Scale 1.

In Eq. (3.8), we notice that a desired detail layer that contains rich high-frequency

information is computed as

D̂(1) =
K
∑

k=1

(

f
(

γ
(1)
k

)

⊙X
(1)
k − f

(

γ
(1)
k ⊙ L

(1)
k

)

)

. (3.11)

To make SPD-MEF multi-scale, we do not fuse {L
(1)
k }, but to downsample them by

a factor of two, from which D̂(2) that contains the fine details at Scale 2 is computed.

The process is then applied recursively to the downsampled {L
(j)
k } until the coarsest
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(a) (b)

Figure 3.5: Visual demonstration of the proposed multi-scale SPD-MEF approach
on the image sequence “Arno” (courtesy of Bartlomiej Okonek). (a) Desired base
layer and desired detail layers at four scales. (b) Final fused image.

scale

J = ⌊log2 min(H,W )⌋ − 3 (3.12)

is reached, where H and W represent the height and width of the sequence, respec-

tively. The constant three is subtracted to ensure that the resolution at the coarsest

scale is not too small.

We obtain the desired base layer L̂(J) at the coarsest scale by fusing {L
(J)
k } ac-

cording to their well-exposedness. Instead of adopting Gaussian curves [82, 75], we

propose a modified arctan(·) function as the well-exposedness measure

α
(J)
k =

arctan

(

0.5λ−
∣

∣

∣
0.5 − L

(J)
k

∣

∣

∣
λ

)

∑K

k=1 arctan

(

0.5λ−
∣

∣

∣
0.5 − L

(J)
k

∣

∣

∣
λ

) , (3.13)

where λ is a fixed parameter. To see the difference, we compare four well-exposedness

weight functions in Fig. 3.4, where we observe that our measure gives less penalty

to slightly under-/over-exposed intensities. This gives us an opportunity to better

preserve global brightness. The weight maps {γ(j)} for {D̂(j)} are the same as

the original SPD-MEF [75], but they are computed at their respective scales. In

generating D̂(1), we compute the statistics on the RGB images by stacking the three

channels together. In other words, D̂(1) contains not only the finest details but also
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rich color information of the sequence, which is beneficial for creating a vivid color

appearance of the fused image [75]. D̂(j) is computed from grayscale {L
(j)
k } and is

responsible for recovering monochromatic high-frequency information at Scale j.

Finally, the fused image is obtained by progressively upsampling and adding back

the desired detail layers to the base layer. Fig. 3.5 shows the intermediate results of

our method at four scales along with the final output. As can be seen, our method

produces natural appearance with faithful detail and color reproduction.

3.5 Handling dynamic scenes

When dealing with dynamic scenes that contains noticeable object motion, SPD-

MEF relies on a pre-selected exposure as reference to detect inconsistent motion by

computing structural consistency between the reference patch sr and a co-located

patch sk from the k-th exposure

ρk = sTr sk ≈
x̄T
r x̄k + ǫ

‖x̄r‖ ‖x̄k‖ + ǫ
, (3.14)

where ǫ is a small positive constant to ensure the robustness of the computation to

sensor noise. We also use box filter [36] to calculate the structural similarity for the

O(MK) implementation. Based on Eq. (3.14), K binary maps can be computed to

identify static and dynamic regions with a pre-defined threshold T

Bk(i) =

{

1 if ρk(i) ≥ T

0 if ρk(i) < T,
(3.15)

where i denotes the spatial index. Bk is further refined with the help of the intensity

mapping function (IMF) [75]. For our multi-scale fast SPD-MEF approach, it is

straightforward to make the structural consistency measurements and generate the

corresponding binary maps at each scale. For simplicity, we perform object motion

detection at the original scale only. Finally, the dynamic regions are corrected by

IMF [75] for multi-scale fusion.

55



Algorithm 1 Proposed multi-scale fast SPD-MEF method

Input: Registered source image sequence {Xk}

Output: Fused image X̂
1: Select a reference image, detect motions via structural consistency and compen-

sate the moving regions using IMF
2: for each Scale j ∈ [1, J ] do

3: Compute L
(j)
k , γ

(j)
k and get the fused detail layer D̂(j)

4: Downsample L
(j)
k

5: if j == J then

6: Compute α
(J)
k , γ

(J)
k and L

(J)
k and get the fused base layer and detail layer

7: end if
8: end for
9: Obtain the fused image X̂ by progressive upsampling and summing up

3.6 Experiments

In this section, we first present the implementation details of the proposed multi-

scale fast SPD-MEF approach. Then we provide qualitative and quantitative results

of our method against the state-of-the-arts along with ablation experiments for self-

comparison. Last, we conduct theoretical and empirical computational complexity

analysis. We summarize the proposed multi-scale fast SPD-MEF approach in Algo-

rithm 1. Our method does not introduce any new parameter; the default parameters

are inherited from previous publications [76, 62, 75], including the patch/mean filter

dimension N = 9×9×3 from [76], λ = 20 that determines the arctan curve from [62],

and ǫ = 0.032 in Eq. (3.14) and T = 0.8 in Eq. (3.15) from [75].

3.6.1 Static scene comparison

We compare our method with nine MEF algorithms on 21 static scenes, including

Mertens09 [82], Shen11 [106], Gu12 [27], Li13 [65], Shen14 [104], SPD-MEF [75],

Nejati17 [89], GGIF [53], and Ancuti17 [1]. The fused images of all algorithms are

either from the original authors or generated by the publicly available implementa-

tions with default settings.

Fig. 3.6 visually compares our method with existing MEF algorithms on the
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(a)

(b) (c) (d)
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(h) (i) (j)

Figure 3.6: Visual comparison of our method with static MEF algorithms. (a) Image
sequence “Chinese garden” (courtesy of Bartlomiej Okonek). (b) Mertens09 [82]. (c)
Shen11 [106]. (d) Gu12 [27]. (e) Li13 [65]. (f) Shen14 [104]. (g) SPD-MEF [75]. (h)
Nejati17 [89]. (i) Ancuti17 [1]. (j) Ours. The corresponding MEF-SSIM scores can
be found in Table 3.1.
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(a)

(b) (c) (d)

Figure 3.7: Example of halo artifacts. (a) Image sequence “Laurenziana” (courtesy
of Bartlomiej Okonek). (b) Ancuti17 [1]. (c) SPD-MEF [75]. (d) Ours.

image sequence “Chinese garden”. Although built upon Mertens09 [82], Shen14 [104]

generates an unnatural appearance with annoying color and structure distortions

due to nonlinearly enhancing the detail layer by a simple sigmoid function. Relying

on the gradient information only, Gu12 [27] makes little use of color information,

and over-shoots the details by solving the Poisson equation in gradient domain [22].
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Figure 3.8: Pixel intensity analysis of the zoom-in patches in Fig. 3.7 along the hori-
zontal direction. The patch from the under-exposure is used as reference since it has
the best local quality. The halos generated by SPD-MEF [75] and Ancuti17 [1] are
clearly seen as unwanted smoothing near the boundaries. Our method closely ap-
proximates the boundaries of the reference patch with an overall brighter appearance
as expected.

The color appearance produced by Shen11 [106] is slightly better, but the overall

contrast is somewhat reduced. In addition, ringing artifacts appear near strong

edges because of excessive nonlinear manipulation of subbands. The above three

methods equate detail enhancement with visual quality improvement, which is not

always true, especially in the case of over-enhancement. Li13 [65], SPD-MEF [75],

Nejati17 [89], and Ancuti17 [1] exhibit different degrees of halo artifacts in the sky

regions, which are zoomed in for improved visibility. Compared to Li13, Nejati17

reduces the halos by replacing Gaussian filtering with guided filtering [36] in the

two-layer decomposition. Severe halos are unavoidable for single-scale methods like

SPD-MEF and Ancuti17 when they strike a balance between spatial consistency and
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detail preservation. Mertens09 [82] and our method produce similar results on this

sequence with little artifacts.

To better understand the emergence of halo artifacts in MEF, we show another

visual example in Fig. 3.7, where we compare our method with SPD-MEF [75] and

Ancuti17 [1] on the image sequence “Laurenziana”. The boundaries (e.g., zoom-

in patches) between the foreground and the background with large dynamic range

differences are the main sources of halo artifacts. To faithfully reproduce fine de-

tails across exposures, single-scale methods such as SPD-MEF and Ancuti17 cannot

choose a kernel size that is too small (spatial inconsistency) or too large (detail loss)

to compute local statistics for weighted fusion. This inevitably leads to unwanted

smoothing of boundaries (see Fig. 3.8), which is visually perceived as “halos”. The

proposed multi-scale SPD-MEF approach resolves this issue by using a medium ker-

nel to preserve details at each scale. The equivalent kernel size at the original scale is

large enough to distribute such blurring more globally, which effectively suppresses

the halos and makes the background brighter, as shown in Fig. 3.8.

We objectively evaluate the quality of fused images generated by different MEF

algorithms using MEF-SSIM [78], which has been verified by comparing to human

data [126] and through perceptual optimization [74]. MEF-SSIM [78] summarizes

local structure preservation and global luminance consistency into an overall score

between 0 and 1, with a higher value indicating better perceptual quality. The

results are listed in Table 3.1, where we observe that our method achieves the best

performance on average. Specifically, it outperforms the competing algorithms on 13

out of 21 natural scenes.

3.6.2 Dynamic scene comparison

On dynamic sequences, we compare our method with eight state-of-the-art HDR

deghosting algorithms that cover a wide range of design philosophies, including low
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(h) (i) (j)

Figure 3.9: Visual comparison of our method with dynamic MEF algorithms. (a)
Image sequence “Girl” (courtesy of Zhengguo Li). (b) Sen12 [102]. (c) Hu13 [39].
(d) Lee14 [60]. (e) Li14 [70]. (f) Liu15 [73]. (g) Qin15 [95]. (h) Oh15 [90]. (i)
SPD-MEF [75]. (j) Ours.
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Table 3.1: Quantitative comparison of our method with existing MEF algorithms
using MEF-SSIM [78]. The score ranges from 0 to 1 with a higher value indicating
better performance. The best results are highlighted in bold

Image sequence
Mertens09 Shen11 Gu12 Li13 Shen14 SPD-MEF Nejati17 GGIF Ancuti17

Ours
[82] [106] [27] [65] [104] [75] [89] [53] [1]

Arno 0.991 0.955 0.890 0.969 0.846 0.984 0.985 0.970 0.915 0.990
Balloons 0.969 0.940 0.913 0.948 0.776 0.969 0.971 0.951 0.929 0.963
Belgium house 0.971 0.935 0.896 0.964 0.709 0.973 0.972 0.968 0.938 0.977

Cave 0.975 0.946 0.934 0.978 0.788 0.985 0.979 0.979 0.958 0.984
Chinese garden 0.989 0.964 0.927 0.984 0.767 0.991 0.991 0.983 0.974 0.994

Church 0.989 0.959 0.866 0.992 0.878 0.993 0.991 0.992 0.980 0.991
Farmhouse 0.981 0.966 0.932 0.985 0.944 0.984 0.983 0.982 0.976 0.986

House 0.964 0.925 0.876 0.957 0.396 0.960 0.949 0.961 0.893 0.973

Lamp 0.969 0.917 0.875 0.929 0.539 0.956 0.960 0.945 0.877 0.967
Landscape 0.976 0.955 0.941 0.942 0.880 0.993 0.992 0.947 0.939 0.989
Laurenziana 0.988 0.956 0.873 0.987 0.881 0.987 0.986 0.985 0.957 0.989

Madison capitol 0.977 0.940 0.864 0.968 0.542 0.983 0.978 0.969 0.907 0.990

Mask 0.987 0.964 0.879 0.979 0.827 0.988 0.988 0.977 0.948 0.991

Office 0.985 0.958 0.900 0.967 0.756 0.990 0.988 0.984 0.957 0.989
Ostrow 0.974 0.950 0.877 0.967 0.786 0.978 0.978 0.977 0.925 0.979

Room 0.974 0.945 0.853 0.986 0.729 0.978 0.976 0.983 0.958 0.980
Set 0.986 0.974 0.911 0.960 0.873 0.988 0.988 0.966 0.905 0.992

Tower 0.986 0.946 0.932 0.986 0.779 0.986 0.986 0.986 0.962 0.988

Venice 0.966 0.930 0.889 0.954 0.765 0.984 0.976 0.952 0.932 0.984

Window 0.982 0.959 0.876 0.971 0.879 0.982 0.981 0.972 0.936 0.982

Yellow hall 0.995 0.983 0.869 0.990 0.866 0.995 0.996 0.987 0.966 0.997

Average 0.980 0.951 0.894 0.970 0.772 0.982 0.981 0.972 0.940 0.985

rank-based methods Lee14 [60] and Oh15 [90], energy-based methods Sen12 [102],

Hu13 [39] and Qin15 [95], and feature-based methods Li14 [70], Liu15 [73] and SPD-

MEF [75]. For HDR reconstruction algorithms (i.e., fusion in radiance domain), the

Debevec and Malik’s method [10] is used to estimate the camera response function.

In order to generate LDR images for visual comparison, Lee14 makes use of the

MATLAB function tonemap(), and Sen12 and Hu13 fuse aligned LDR sequences

using Photomatix [92] and Mertens09, respectively.

Fig. 3.9 shows the fusion results on the image sequence “Girl”. Sen12 [102]

produces an over-enhanced image that looks unnatural. This is largely attributed to

the exaggerated settings of Photomatix [92] to enhance HDR details. In general, it is

delicate for HDR reconstruction algorithms to select proper tone mapping operators

to compress the dynamic range. Lee14 [60] and Oh15 [90] suffer from ghosting

artifacts, which is expected because small and overlapping motion does not satisfy
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Table 3.2: Computational complexity comparison of our method against state-of-
the-art deghosting schemes

Algorithm Complexity
Sen12 [102] O(IiNMK2)
Hu13 [39] O(IiN(M logM)K)
Lee14 [60] O(IoIiMK2)
Li14 [70] O(MK)
Qin15 [95] O(IiNM2K)
Oh15 [90] O(IoIiMK2)
SPD-MEF [75] O(NMK)
Ours O(MK)

Table 3.3: Average running time comparison on 12 dynamic scenes of approximately
the same size (683 × 1024 × 3 × 3)

Alg Sen12 [102] Hu13 [39] Lee14 [60] Qin15 [95] Oh15 [90] SPD-MEF [75] Ours
Env MATLAB+Mex MATLAB+Mex MATLAB+Mex MATLAB+Mex MATLAB MATLAB MATLAB

Time (s) 75.28 ± 20.48 114.96 ± 45.29 36.91 ± 11.55 465.06 ± 298.87 40.93 ± 9.93 57.48 ± 3.21 1.92 ± 0.20

the low rank assumption. In addition, solving such an optimization with only a

limited number of exposures is relatively unstable, and may result in other forms

of distortions. Liu15 [73] relies on dense SIFT features, which however may not be

robust to exposure, making deghosting unsuccessful. Some halos around the girl’s leg

are visible in the fused image generated by SPD-MEF [75]. Hu13 [39] and Qin15 [95]

may generate shifted colors and deformed structures due to inaccurate patch match

during energy minimization. The results produced by Li14 [70] and our method are

visually similar on this sequence.

3.6.3 Computational complexity comparison

We conduct a brief computational complexity analysis of HDR deghosting schemes

in terms of the number of floating-point operations and refer the interested readers

to [60, 75] for a more-detailed treatment. Assume the input sequence has K expo-

sures, each of which contains M pixels (K ≪ M); for patch-wise methods, the patch
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(a)

(b) (c) (d)

Figure 3.10: The number of scales in our method plays an important role in the visual
quality of fused images. (a) Image sequence “Balloons” (courtesy of Erik Reinhard).
(b) Single-scale result with an MEF-SSIM of 0.851. (c) Three-scale result with an
MEF-SSIM of 0.926. (d) Five-scale result with an MEF-SSIM of 0.963, whose scale
is computed adaptively using Eq. (3.12).

dimension is assumed to be N ; for iterative algorithms, the iteration numbers used

in the inner and outer loops are Ii and Io, respectively. The analysis results are

listed in Table 3.2, where we find that the proposed method and Li14 [70] enjoy the

lowest computational complexity, which is linear with the number of pixels in the

sequence. The average running time of different algorithms on 12 natural scenes of

approximately the same size is also listed in Table 3.3. The experiment is conducted

on a computer with 4G Hz CPU and 32G RAM. The make a fair comparison, the

stride of SPD-MEF is set to one instead of the default two. Our MATLAB code

runs the fastest among the competing algorithms that demonstrate satisfactory per-

formance in deghosting, and accelerates the original SPD-MEF more than 30 times.

When compared to Mertens09 [82] that is widely adopted in mobile devices as a core

module to capture HDR-like pictures (i.e., the HDR mode) [35], our method shares

the same computational complexity, and therefore has great potentials in enabling
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(a)

(b) (c)

(d) (e)

Figure 3.11: Visual comparison of different intensity weight functions. (a) Image
sequence “Set” (courtesy of Jianbing Shen). (b) Fused image by the hat-shaped
curve with an MEF-SSIM of 0.985. (c) Fused image by the Gaussian curve with
an MEF-SSIM of 0.983. (d) Fused image by the Bell-shaped curve with an MEF-
SSIM of 0.980. (e) Fused image by the proposed intensity weight function with an
MEF-SSIM 0.992.
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real-time mobile applications for challenging dynamic scenes.

3.6.4 Ablation experiments

Impact of the number of scales

We analyze how the number of scales J affects the fusion performance by using the

image sequence “Balloons”. When the number of scales increases, our method grad-

ually spreads the halos around the two balloons over the background, making the sky

brighter and perceptually more appealing (see Fig. 3.10). The spatial inconsistency

is also effectively reduced at the price of some detail loss (e.g., around the sun). Our

adaptive strategy of selecting the highest scale J according to Eq. (3.12) keeps a

good balance among spatial consistency, detail preservation, and halo suppression.

Impact of the intensity weight function

The desired base layer corresponds to the primary dynamic range, and it is blended

based on well-exposedness measures. Here we visually compare four such measures

(see Fig. 3.4), among which the Gaussian curve and its variants [82, 75] have been

widely used to construct weights in MEF. From Fig. 3.11, we find that the hat-shaped

and Gaussian curves generate visually close results and MEF-SSIM values because

both of them weight intensities in a similar fashion. Compared to the bell-shaped

curve, the proposed weight function is more friendly to less well-exposed intensities,

resulting in a slightly brighter overall appearance with a higher MEF-SSIM value.

3.7 Conclusion

In this chapter, we studied structural patch decomposition (SPD) for MEF and

showed that an unnormalized approximation of SPD-MEF is closely related to pre-

vious MEF schemes. The relationship with pixel level fusion and two layer de-

composition are analysed in detail. This insight allows us to avoid performing SPD
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explicitly, which speeds up SPD-MEF more than 30 times. We then made SPD-MEF

multi-scale, which effectively reduces halo artifacts near strong edges. The impact

of intensity weight function and decomposition level are illustrated. Extended ex-

periments indicate the effectiveness of the method in both static and dynamic scene.

The proposed multi-scale fast SPD-MEF approach provides a practical solution for

mobile applications with high resolution input images.
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Chapter 4

Deep Multi-exposure Image Fusion

MEF is a widely used approach to high dynamic range imaging. In this chapter,

we investigate the effectiveness of convolutional neural network for MEF. First, we

exploit MEF using CCN features extracted via a trained network given that the

selection of features for fusion weight calculation is important to the performance

of MEF. Both the selection of network and the selection of convolution layer are

studied. With the extracted CNN feature map, we compute the local visibility and

consistency maps to determine the weight map for MEF. The proposed method

works well for both static and dynamic scenes. It exhibits competitive quantitative

measures, and presents perceptually pleasing MEF outputs with little halo effects.

Second, we use explore the end-to-end training for MEF. The network can produce

pleasing fused results in static scene. Due to the lack of dynamic scene data, we

the network can introduce some ghosting effect. How to establish a dynamic MEF

dataset with ground-truth is a meaningful topic worth further investigation.

4.1 Introduction

Natural scenes usually span a high dynamic range, which is challenging for digital

single-lens reflex cameras to capture. High dynamic range imaging aims to extend

the dynamic range of digital cameras by capturing an image sequence with multiple
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exposures. There are two categories of methods to generate an HDR-like image:

multi-exposure fusion [82, 76, 75] in image domain, and HDR content reconstruc-

tion via camera response function estimation and tone mapping [77, 62]. Due to

the complexity of recovering CRF and designing tone mapper [62], MEF is more

preferably used in most consumer grade devices such as camera phones and digital

cameras for its simpler implementation.

Many works on MEF have been reported in past decades. In [25], the source im-

ages are segmented into non-overlapped patches and fused based on the rule of max-

entropy. The blocking artifact is avoided by blending neighboring patches. In [76], an

image patch is decomposed into three components: strength, structure and intensity,

and the fusion is performed on each component. This scheme is extended [76, 75] to

fuse dynamic scenes via calculating the structural similarity between corresponding

spatial patches. The MEF method [82] computes the weight map via three image

quality measures (contrast, color saturation and well-exposedness) and fuses the im-

ages in an efficient multi-resolution framework. However, this method only works for

static scenes. Zhang et al. [133] proposed a gradient based MEF method for both

static and dynamic scenes. The gradient magnitude is used for setting the fusion

weight and the gradient direction is used to detect the moving objects across the

sequence. Similarly, Gu et al. [27] utilized the structure tensor in gradient domain

to compute the weight. In [73], Liu et al. proposed a SIFT descriptor based MEF

method, which exhibits superior performance to [133] due to its more effective fea-

ture representation. In single-scale fashion, the edge-preserving filters [96, 65, 64, 52]

are used for smoothing weight maps to alleviate artifacts.

CNN has achieved state-of-the art results in high-level vision problems [124],

such as classification, segmentation and object detection, owing to its powerful dis-

criminative feature learning ability. Recently, CNN has also been successfully used

in many low-level vision problems such as super-resolution, denoising, and enhance-
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Figure 4.1: Flowchart of the proposed CNN feature based multi-exposure fusion
method.

ment [127, 48, 41, 7], leading to impressive outcomes. Guided by the labeled training

samples, deep CNNs can extract more effective features than conventional hand-

crafted features.

However, few works have been reported to apply CNN for MEF. This is mainly

because of the lack of ground-truth output for a given multiple exposure sequence

so that the end-to-end learning of CNN cannot be adopted. In our work, we exploit

the features of pre-trained CNNs to compute weight maps for simple yet effective

MEF, which works for both static and dynamic scenes. Besides, we explore to train

a CNN to generate the MEF output by use of two similar datasets.

4.2 Multi-exposure fusion with CNN features

Considering the fact that there are no strict ground-truth images in MEF to train

an end-to-end CNN, we adopt the pre-trained networks in other tasks to extract the
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feature. In this section, we exploit the possibility of utilizing convolutional neural

network (CNN) [110, 127, 48] features for MEF, which is the first of its kind to the

best of our knowledge. We found that shallow-layer CNN features can be leveraged

for both static and dynamic MEF, achieving state-of-the-art MEF performance. This

section presents the proposed CNN feature based MEF method. The flowchart of our

method is shown in Fig. 4.1, which contains four major components: CNN feature

extraction, pixel visibility measurement, temporal consistency check, and exposure

mask calculation.

4.2.1 Related works

Feature extraction plays a pivotal role in determining the weight map for MEF. Most

MEF methods [82, 27, 133] implicitly or explicitly incorporate the feature extraction

in the design of fusion weights. For example, the second order Laplacian filter,

one-order gradient operator and SIFT descriptor are used as the feature extractors

in [82, 133, 73], respectively. All the features used in current MEF methods are

hand-crafted features.

4.2.2 Feature extraction and visibility measurement

In general, there are two types of deep CNNs available for feature extraction: regres-

sion network (usually for low-level vision problems) and classification network (usu-

ally for low-level vision problems). In our application, dense features are required

because we need to compute a weight at each pixel. For regression networks such as

the denoising network [127] and super-resolution network [48], usually dense features

can be obtained at each layer. For classification networks such as the VGG-Net [110],

the dense features can only be obtained at shallow layers, which are however guided

by the deeper layer sparse features with certain high level semantic information (e.g.,

discriminative parts, class labels). The selection of network and layer will be dis-
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cussed on Section 4.2.5.

Let Ii, i = 1, 2, 3, ..., K, be a sequence of K multi-exposure images. The feature

map of each source image is extracted as

Fi(x, y) = CNN(Ii)(x, y), (4.1)

where CNN(·) is a pre-trained deep network at some layer. For one pixel (x, y), we

can obtain a feature vector whose dimension is the number of filters used in that

convolutional layer. The response of a pixel to CNN filters can indicate whether this

pixel is important or informative for image representation. Therefore, the strength

of feature vector Vi(x, y) can be used to determine the visibility of pixel Ii(x, y). We

measure the visibility of pixel Ii(x, y) as the L1 norm of Vi(x, y):

Vi(x, y) = ‖Fi(x, y)‖1. (4.2)

Compared with L2 norm, the L1 norm is selected due to its simpler calculation. The

degree of visibility will affect value of weight to be assigned to this pixel. The pixels

that have good local contrast are usually given bigger weights.

4.2.3 Temporal consistency

When the source images are taken in dynamic scenes, motion detection is needed

to avoid the ghosting effect. In our framework, the motion detection can be easily

implemented via calculating the Euclidean distance of two normalized feature vectors.

Denote by F̄ = F
‖F‖ the L2 normalized feature of F(x, y) to remove the impact of

exposure difference. The distance of two feature vectors at a pixel of two images is

computed as:

sij(x, y)2 = ‖F̄i(x, y) − F̄j(x, y)‖22, (4.3)

s(x, y)2 measures the similarity of two vectors. A smaller s(x, y)2 represents stronger

temporal consistency. When there is motion, the consistency will be destroyed,
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resulting in a smaller similarity value. We use a Gaussian kernel to map the similarity

between F̄i(x,y) and F̄j(x,y) into the range of [0, 1]:

Si(x, y) =
K
∑

j=1

exp
−sij(x, y)2

2σ2
, (4.4)

where σ is a constant and is set as 0.05 here. A larger weight should be given to the

pixels which are temporally consistent.

4.2.4 Fusion

With the visibility and similarity weight maps V and S, we can get the final weight

map Wi(x, y) as follows:

Wi(x, y) =
Vi(x, y) × Si(x, y) ×Mi(x, y)

∑K

j=1 Vi(x, y) × Si(x, y) ×Mi(x, y) + α
, (4.5)

where Mi(x, y) is the exposure mask which is computed on the pixel intensity. To

avoid division by zero, we add a small coefficient α with value 10−10. The widely

used mask is the hat function defined as follow:

Mi(x, y) =

{

1, β < Ii(x, y) < 1 − β,
0, else,

(4.6)

where β∈ [0, 1] is a parameter controlling the exposure quality when the input images

are normalized. It can effectively remove the poor exposure pixels. We choose β as

0.2 in our implementation. In practice, the weight map W can be smoothed by the

edge-aware recursive filter [64] to further reduce the halo effect. Finally, we fuse the

images as follows to produce the MEF output If :

If (x, y) =
K
∑

i=1

Ii(x, y) ×Wi(x, y). (4.7)
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Table 4.1: The MEF-SSIM scores by different networks at different layers on static
scene dataset [76]

Network Type

MEF-SSIM Feature Layer
1 3 10 18

Denoising [127] 0.869 0.970 0.969 0.965
Super-resolution [48] 0.867 0.957 0.846 0.930
Classification [110] 0.969 0.620 0.610 0.560

4.2.5 Experimental results

In this section, we discuss the selection of CNN networks and the associated layers

for feature extraction. Then we compare the performance of CNN features with

traditional hand-crafted features. Finally, we compare our method with state-of-the-

art MEF methods. In all our experiments, we adopt the metric MEF-SSIM proposed

in [79] as a quantitative measure to evaluate the performance of MEF methods on

static scenes.

The selection of network and layer

We adopt two regression networks, denoising network DnCNN [127] and super-

resolution network VDSR [48], and one classification network VGG19 [110], in the

experiments. By using the features at different layers to compute the weight map W ,

the MEF image can be computed and the MEF-SSIM scores of different networks on

the static scene dataset [76] are listed in Table 4.1. Note that for the VGG19 net-

work, the features at deeper layers become sparser due to pooling, and we interpolate

the feature maps to calculate the weight for each pixel.

We can have the following observations from Table 4.1. First, the regression

networks DnCNN and VDSR achieve their best MEF-SSIM indices at shallow layers

(more specifically layer 3) but not the first layer. The deeper layers become more

task specific for denoising and super-resolution, but cannot bring benefit for MEF.
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Table 4.2: The MEF-SSIM scores of CNN and traditional features on the static scene
dataset [76]

Feature type CNN SIFT Gabor
MEF-SSIM 0.969 0.952 0.900

Second, the classification network VGG19 achieves its best MEF-SSIM index at the

first layer. With the increase of layers, the performance decreases rapidly. This is

because the feature maps are getting sparser and sparser due to the spatial pooling in

VGG19 network so that the weight map becomes less accurate. On the other hand,

though the layer 1 features are very shallow features, they are guided by the deeper

high level semantic features in training, which can still capture information of image

structures. This is one advantage of classification networks over regression networks.

Third, layer 3 DnCNN features, layer 3 VDSR features and layer 1 VGG19 features

achieve very similar MEF-SSIM indices (the visual quality of their fused images is

also similar). Considering that layer 1 features need much less computational cost

and storage space, we select layer 1 VGG19 features as our feature extractor.

Comparison between CNN and traditional features

We then compare the effectiveness of layer 1 VGG19 features with traditional Gabor

features and SIFT features. The objective MEF-SSIM indices by the three types

of features are shown in Table 4.2. It can be seen that CNN features bring much

better MEF performance than the hand-crafted features. Due to the limit of space,

we do not show the visual comparison here, while CNN features indeed bring better

perceptual quality of MEF images.

Comparison with state-of-the-art methods

We then compare our method with state-of-the-art MEF algorithms. On static

sequences, we compare it with “Ma” [75], “Mertens” [82], “Gu” [27], “Shutao” [65],
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Figure 4.2: The MEF results by competing methods on a static scene. From (a) to
(f): results by “Ma” [75], “Mertens” [82], “Gu” [27], “Shutao” [65], “Shen” [104],
and “Ours”.
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Figure 4.3: The MEF results by competing methods on a dynamic scene. From (a)
to (f): results by “Gallo” [24], “Li” [71], “Ma” [75], “Photomatix”, “Sen” [102], and
“Ours”.
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Table 4.3: The average MEF-SSIM scores of different methods on the static scene
dataset [76]

Methods [27] [69] [65] [96] [64] [104] [82] [75] Ours
MEF-SSIM 0.910 0.944 0.965 0.852 0.960 0.753 0.975 0.977 0.969

“Shen” [104], “Raman” [96] and “Li” [69]. Since some methods cannot be applied to

dynamic sequences with motion, we compare our method with “Gallo” [24], “Li” [71],

“Ma” [75], “Photomatix”, and “Sen” [102] on dynamic data. The codes of competing

methods “Ma” [75], “Mertens” [82] and “Sen” [102] are from the original authors and

we use their default settings. Other MEF results are copied from [76] or from the

original papers. The “Photomatix” is commercial software from the website 1. The

MEF-SSIM indices by competing methods on the static scene dataset [76] are listed in

Table 4.3. Fig. 4.2 and Fig. 4.3 compare the MEF results by representative methods

on a static scene and a dynamic scene, respectively. Please note that by far there is

not a reliable objective quality measure for MEF results on dynamic scenes yet.

From Table 4.3, one can see that our method produces very competitive MEF-

SSIM measures. Its average MEF-SSIM index is only lower than methods [82]

and [75]. It should be noted that how to design a faithful objective quality mea-

sure for MEF is still a challenging issue. We found that some images with high

MEF-SSIM scores exhibit obvious unpleasing artifacts. The average run-time of our

method is 0.90s, comparable with [82] (0.87s), but much faster than [75] (2.33s) on

a computer with 4G Hz CPU and 32G RAM. The run-time of other methods is not

available due to the lack of source codes.

Fig. 4.2 compares the MEF results on a static scene. The methods “Ma” [75],

“Mertens” [82] suffer from the detail loss in bright regions, as well as the low con-

trast in dark regions. Method “Shen” [104] and “Gu” [27] shows obvious over-

enhancement. Though method “Shutao” [65] shows overall good visual quality on

1 https://www.hdrsoft.com//
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this image, it exhibits slightly lower contrast compared with our method. For the

dynamic scene in Fig. 4.3, method “Gallo” [24] suffers from obvious color artifacts;

methods “Li” [71] and “Ma” [75] lose some details in the roof of the arch. Method

“Photomatix” exhibits severe over-exposure problem. The result by the tone map-

ping method “Sen” [102] is not natural with over-artistic effect. Our method provides

a good balance between deghosting and detail preserving, proving the effectiveness

of CNN feature on motion detection in multi-exposure sequence.

4.3 End-to-end learning for multi-exposure fusion

Although the CNN features extracted via a pre-trained network as described above

can produce decent fusion results, these pre-trained networks are not specially trained

for MEF tasks. In this section, we explore an end-to-end MEF algorithm by pre-

processing two datasets. The original datasets are specially collected for low-light

image enhancement and HDRI in radiance domain. In this section, we try to use

them for static and dynamic MEF, respectively.

4.3.1 Related works

Recently, Prabhakar et al. [94] proposed two ways for CNN based MEF. One is

to select the results produced by two representative MEF methods as the “ground-

truth”. The other is to learn the CNN by optimizing a no-reference image quality

metric defined in [79]. Although the authors claimed an un-supervised learning via

the quality metric [74], they actually used the optimized result in [74] as “ground-

truth” for supervision. Besides, this method is not applicable to dynamic scenes.

Cai et al. [7] built a extensive multi-exposure image dataset with ground truth by a

subject study for low-light enhancement. Despite the improved detail enhancement

in dark area, the result suffers serious noise. Regarding HDRI in radiance domain,

Kalantari et al. [45] established a raw format multi-exposure image dataset for HDRI.
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The ground-truth is defined by a static scene fusion in radiance domain. With the

static scene as a reference frame, the under-exposure and over-exposure inputs are

captured with human mobility. The limited scenes places restrictions on general

scene HDRI including complex object motions.

4.3.2 Dataset

With the lack of MEF dataset with ground-truth, few works are reported for direct

end-to-end MEF. The difficulty lies in the definition of ground-truth for MEF. We

try to use the Cai’s dataset for an end-to-end training for static MEF. The dataset

contains large number multi-exposure sequences; however, the images in many se-

quences are not registered. Camera shake and moving objects exist in many scenes.

The problems do not have a big influence on single image enhancement [7], which

is one-one task. But for many-one task like MEF, non-registration and motion can

bring strong distortion and blur. The dataset cannot be directly used to address

our issue. To make it applicable, we delete the sequences with visible motion and

non-registration. We screen 80 image sets for training and 20 for testing.

In terms of MEF in dynamic scene, there exists no direct available MEF dataset

with ground truth. We use the similar dataset [45] as our training data through pre-

processing. The collected input data is camera raw data with high bit, and label data

is HDR data. We compress the inputs via Photoshop to 8-bit images. The output

data is tone mapped by several typical tone mapping operators from Photomatix.

We select the result with best performance as output via a coarse screening. The

dataset contains both object motions and camera motions. It is difficult for a single

network to learn to handle these two types of motions. We align the input using the

method in [75] to reduce the burden of learning. After deleting some undesirable

image sets suffering from severe noise in the processing of transforming to 8-bit

images, we obtain 80 image sets. The collated dataset is divided into 70 training sets
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Figure 4.4: Flowchart of the proposed end-to-end multi-exposure fusion method.

and 10 testing sets.

4.3.3 Network architecture and training

We use U-Net architecture as our network as shown in Fig. 4.4, which is a typical

encoder and decoder architecture. This framework has obtained great success in

many high-level issues [100]. It can reduce the parameters and ensure large receptive

field without a very deep network layer. With skip connections, the local and global

information are fully intergraded, which can overcome the barriers of limited samples

in MEF issue. We do not add the layer of explicit feature maps weighting [94,

63], while we implicitly do the merging by setting the number of filters. Different

exposures share the same encoding stage for reduced parameters and speed-up. The

input image number is set as three for simplicity in our implementation, since most

HDR applications use three images as input. Larger number of input images can be

easily extendable.

The most used loss function is MSE loss. However, we found MSE loss can

lead to detail and contrast loss through our experiment. We use L1 loss as our

loss function, which can generate more edge sharped results. Given a training set
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Table 4.4: The average MEF-SSIM scores by different methods on the static
dataset [76]

Methods [27] [69] [65] [96] [64] [104] [82] [75] Ours
MEF-SSIM 0.910 0.944 0.965 0.852 0.960 0.753 0.975 0.977 0.973

{I iInput, I
i
Reference}

N
i=1 , the pixel-wise L1 loss can be calculated as:

Ll1(Θ) =
1

N

N
∑

i=1

‖F (I iInput) − I iReference‖1 (4.8)

Where Θ stands for network parameters. Compared with MSE loss, L1 loss can

produce more edge-sharped results at the controllable cost of over-enhancement and

artefacts.

Instead of training the whole images, we crop the image by patch size of 256 ×

256 with stride of 64. The flipping and rotation operation are conducted for data

augmentation. We use about 180,000 patches for training static MEF and 140,000

for dynamic MEF tasks, respectively. The learning rate is initialized as 0.1 and

then decreases by a factor of 10. The batch size is 8 and we run 1000 epochs. The

kernel size is 5 × 5. The stride is 2 and 1/2 in the encoding and decoding stage,

respectively. The channel numbers are shown in Fig. 4.4. Each layer contains a 5×5

Convolution (Conv) and Rectified Linear Units (ReLU), except for the last layer. We

train different networks for static and dynamic scene using the dataset mentioned

above. To reduce the effect of color shift, we only train the luminance information.

The color information is weighted via the method in [94].

4.3.4 Experimental results

A number of experiments have been made to indicate the effectiveness the trained

end-to-end network. To objectively evaluate the quality of fused images and the per-

formance of fusion algorithms, we employ MEF-SSIM [78] inherited from SSIM [117].
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Figure 4.5: Visual comparison of our method with static MEF algorithms on a
general static scene. (a)-(c): Exposure sequence. (d) Mertens09 [82]. (e) Li13 [65].
(f) SPD-MEF [75]. (h) Nejati17 [89]. (i) GGIF [53]. (g) Ours.

It can measure local structure preservation and global luminance consistency. A big-

ger value of MEF-SSIM score ranging from 0 to 1 indicates better quality. The

MEF-SSIM scores by competing methods on the static scene dataset [78] are listed

in Table 4.4. From Table 4.4, it can be observed that our method can gain quite

competitive MEF-SSIM scores. The average MEF-SSIM score is comparable with

the representative method [82].

A static example is given in Fig. 4.5, where we compare our method with 5 state-

of-the-art MEF algorithms on 21 static scenes, including Mertens09 [82], Li13 [65],

SPD-MEF [75], Nejati17 [89], and GGIF [53]. The fused images of all algorithms are
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Figure 4.6: The testing result on a dynamic test scene. (a)-(c) Exposure sequence.
(d) The ground-truth (c) Our test result.

either from the original authors or generated by the publicly available implementa-

tions with default settings. From Fig. 4.5, we can see that the result by the proposed

end-to-end network are visually competitive with state-of-the-art traditional meth-

ods. Deep network can be applied to MEF, but the result is not evidently better

than traditional methods.

A dynamic result in test set is given in Fig. 4.5. The result appears obvious

ghosting artefact as shown in the labelled red box. The limited number of dynamic

images and small proportion of moving background can not well detect the object

motion, leading to ghosting appearance. Besides, the dynamic dataset only includes

two exposure internals, which impedes the generalization ability on general dynamic

scene fusion. It should be noted that some works [119, 45] based on the same

dynamic dataset reported better deghosting performance. It is mainly because that

they use decoded raw data are nearly linear with exposure time, which conducive to
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mooting detecting.

4.4 Conclusion

This chapter made the first attempt to exploit the CNN features for weight design

in MEF. Pre-trained CNN networks on other tasks were used to extract the features

of each image. With these CNN features, the visibility and temporal consistency of

each pixel in each image were defined, based on which the weights can be computed

for MEF. We investigated the performance of regression networks and classification

networks, and found that the very shallow layers of classification network can lead

to desirable MEF outputs with low cost. Overall, the proposed method is simple

and efficient to implement, and presents competitive results with state-of-the-arts

on both static and dynamic scenes. Besides, we explore an end-to-end method for

EMF. The obtained results are satisfactory in static scene, but suffer from ghosting

effect in dynamic scene. How to build a trainable dataset for dynamic scene is a

challenging issue.

85



Chapter 5

Real-world Image Super-resolution

Convolutional neural networks have been dominantly used in the field of single image

super-resolution. However, most of the existing CNN models assume that the low-

resolution images are produced by a simple degradation, more specifically, bicubic

downsampling, from their HR counterpart. Unfortunately, the practical degradation

of LR images can be far more complicated. The CNN models trained by simulated

data become much less effective in real-world image super-resolution, despite the

enormous efforts made in the design of network architectures and loss functions.

To improve the performance of CNN in real-world SISR, we develop a novel dataset

where the paired images on the same scene are captured by adjusting the lens focus of

the digital camera. Image registration operations are conducted to crop the registered

training pairs from the collected data. A plain regression network with simple loss

functions are used to train a CNN model, which however generates exceptional SISR

results on images either from our dataset or outside our dataset. Compared with

those models trained by simulated data, our model can more effectively enhance the

sharp edges and fine textures, and has better generalization capability.

86



Figure 5.1: Real-word image super-resolution by different methods with scale factor
5; The image is cropped from camera resolution chart. The results are produced by:
(a) Bicubic; (b) NCSR; (c) VDSR; (d) SRGAN; (e) SRMD; (f) Ours, respectively.

5.1 Introduction

Single image super-resolution (SISR) which aims to recover a high-resolution (HR)

image from its degraded low-resolution (LR) image, has been receiving much atten-

tion. It can effectively overcome the resolution limitation of low-cost imaging sensors

or enhance existing images. In general, a degraded LR image y can be formulated

as:

y = (k⊗ x) ↓s +ns (5.1)

where k ⊗ x denotes a convolution between a blur kernel k and a latent HR image

x, and the script ↓s is a subsequent downsampling operation with scale factor s, and

ns is additive white Gaussian noise (AWGN).

Since the SISR is a severely ill-posed inverse problem, prior knowledge is re-

quired to provide extra information for the esimation of HR image. Three cate-
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gories of approaches have been proposed in the past decades, i.e., interpolation-

based, optimization-based, and learning-based methods. The interpolation methods

(e.g., nearest, bilinear and bicubic interpolations) construct new data points within

the range of a discrete set of known data points. Interpolation methods are simple

and efficient but suffer from severe edge and detail loss in the zoomed HR image.

The optimization-based approaches explicitly model prior knowledge to estimate the

HR image. They are flexible in incorporating versatile priors (e.g., sparsity [123, 31]

and non-local similarity [13]) tailored for SISR. However, these optimization-based

methods often suffer from the high computational cost and complex parameter ad-

justment. Benefiting from joint optimization and end-to-end training, CNN has

achieved unprecedented success in SISR. The learning-based approaches implicitly

use prior knowledge by learning a direct mapping from external training data.

Although these finely designed modes can obtain high signal-to-noise ratio (PSNR)

and visual quality in testing images downsampled by bicubic approach, they do not

work well in practical applications, where an LR image is amplified directly with-

out pre-bicubic downsampling as shown in Fig. 5.1. These compared methods used

in Fig. 5.1 are quite representative. Bicubic is a classic baseline super-resolution

method and NCSR [13] fully exploits the non-local self-similarity and sparse prop-

erty of naturals images. VDSR [48] was the first to use the residual network, making

great progress in the field of SISR. SRGAN aims to produce naturally looking images

by introducing adversative learning. SRMD [129] considers the factor of blur kernel

and noise level are considered in the construction of SRMD dataset. However, the

results whether by solving sparse model or training simulated data suffer from detail

and texture loss, and large edge blur in real-world super-resolution.

It is important to preserve edge and texture due to the high resolution of images

captured by current digital or mobile devices, which is a big challenge for real-world

image super-resolution. The key issue of SISR is how to establish the relationship
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between the LR and HR image pair to be used for CNN training. An LR image

is broadly considered as the degraded result by bicubic downsampling of an HR

image in most deep learning based methods. The downsampling was manipulated

on the HR image blurred by a Gaussian filter [107] instead of the original HR image.

Multiple degradation was managed with via a dimensionality stretching strategy in

[129]. However, single and multiple degradation cannot reflect the real degradation.

To better model the real degradation process, we establish a new dataset captured by

real cameras for discriminate learning without any assumption of blur kernel, noise

and downsample operator.

The main contributions of this chapter are listed in the following: 1) A novel

long-short focus dataset via digital cameras with zoom lens is developed to address

the issue of real-world image super-resolution. 2) The effectiveness of this dataset

is demonstrated by a plain CNN network, which exhibits evident advantage over

simulated data. 3) According to the characteristics of the dataset, we employ a

hybrid loss and a reversible downsampled operation in training.

5.2 Related work

Two key factors concerning image super-resolution are: dataset and network. Inten-

sive work has been done to design complex network architecture and efficient loss

functions, while few work has been reported about building new datasets. The pio-

neer work using CNN for SISR was proposed by Dong et al. [11] to learn a simple

three-layer CNN (SRCNN). They extended their work in [12] by adding a deconvo-

lutional layer and adopting smaller kernels in a deep layer network (FSRCNN). To

overcome the vanishing-gradient problem in training deep CNN, residual learning

and skip connection are commonly employed tricks in SISR. Kim et al. [48] utilised

the residual learning strategy [37] to overcome the difficulty of training deep net-
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Figure 5.2: Illustration of rationality of database construction for real-image super-
resolution.

works (VDSR). Residual deep learning brings positive effect on SISR as LR and HR

images share similar low-frequency information. They got similar experimental out-

comes by adding a recursive layer in [49] (DRCN). Tai et al. [113] achieved a very

deep (52 convolutional layer) model, named DRRN, by combining global and local

residual learning with recursive learning. Lai et al. [56] also utilised residual learn-

ing in a Laplacian pyramid framework (LapSRN) with a Charbonnier loss function.

Dense convolutional network (Densenet) [40] was also applied to SISR in [114] (SR-

DenseNet). The results generated by these methods can obtain high objective scores,

but the results are not perceptually pleasing. To preserve more high-frequency in-

formation in HR images, generative adversarial network (GAN) was adopted in [59]

(SRGAN) with both perceptual and adversarial loss. MSE loss measure was formu-

lated on the feature extracted by VGG in [44]. Channel attention [134] was proposed

to better rescale channel-wise features.

Some efforts have been made to improve the performance of image restoration

or enhancement in the real scenario by building new datasets driven by physical

imaging mechanism. For example, novel datasets have been built with regard to

90



denoising [93], deblur [88], and low-light image enhancement [8], obtaining better

performance in the practical application. They all look into the traditional problems

in a real-world manner. In denoising [93], the authors established the high and low

ISO image pair for real photographs denoising. The images captured by low and high

ISO were regarded as reference image and noise image, respectively. The noise image

captured by high ISO can better reflect realistic noise, resulting in better denoising

outcomes in real-world image denosing. By contrast, previous works emulate the

input noise data by adding AWGN [127]. In deblur [88], they captured high-frame

rate video using GOPRO4 HERO black camera, and got the blur image by averaging

adjacent frames whose middle frame was referred to as the “ground-truth”. Chen

et al. [8] simultaneously denoised and enhanced the low exposure image using long

exposure image as reference. Similarly, the authors in [41] built a dataset via mobile

phones and high-end cameras for photo quality enhancement to enhance the images

taken by mobile phones. However, few works has been reported to establish a dataset

for the real-world image super-resolution.

In this chapter, we present a novel approach to obtain a new dataset by adjusting

the lens focus of digital cameras, given that data plays a crucial role in data-driven

approaches based on deep learning for SISR.

5.3 Dataset

For a scene as shown in Fig. 5.2, we can capture it with different filed of view (FOV)

by adjusting lens focus. For one pixel y in the short-focus image, the long focus

image with small FOV corresponds to a region X. In the super-resolution, the aim

is to solve xi ∈ X from y, which is severely ill-posed. CNN based methods aim to

learn the relationship between y and xi by training large amounts of data. In the

conventional data construction, it is widely implemented by bicubic operator. It is
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difficult to model the process by training inverse single degradation. Therefore, we

propose to establish real dataset to model more potential degradation types.

We use three representative digital cameras to build the dataset of over 300 long-

short focus image pairs including Canon 600D (len range: 18mm-135mm) 190 pairs

at resolution 3000× 3000; Sony α7 (len range: 28mm-70mm) 204 pairs at resolution

500×500 ; Nikon D7000 (len range: 17mm-50mm) 214 pairs at resolution 500×500.

The scale factor is within a range rather than an accurate value. Empirically, the

scale factor is: Canon (×4−×6), Sony (×2−×3) and Nikon (×2−×3). The process

of dataset construction consists of two steps: long-short focus image capture, and

HR-LR image pair crop and registration.

Long-short focus image capture: We capture the long-short focus image as

shown in Fig. 5.3 (a) and (b), where the short focus image and long focus image are

taken by turning the focal length of lens down and up, respectively. The images are

taken mostly in outdoor scene, since the illumination fluctuation caused by incandes-

cent lights may change drastically and largely in indoor scene. The indoor capture

suffers from obvious luminance and color change between long and short image, as

well as stripe effect when the shutter is faster than the flicker frequency of incan-

descent lights. The white balance is locked to “Daylight” or “Cloudy” to reduce the

color variation according to the weather and conditions. The continuous auto-focus

and partial metering are adopted during each shot. The tripod is used to avoid large

pixel inconsistency. The aperture, ISO and shutter are adjusted manually during

each shot to ensure that the scene center is exposed adequately. The principle is

that ISO cannot be too large to avoid noise. The shutter speed should be rapid to

avoid blur. Preferably, we choose a large aperture to capture a closer shot. Eventu-

ally, we delete some undesirable images such as over-exposure and under-exposure,

and out of focus images.

HR-LR image crop and registration: After acquiring images of long and
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Figure 5.3: One example of image crop and registration, respectively; (a) is the
short focus image (Canon 18mm); (b) is long focus image (Canon 135mm); (c) is the
extracted LR image; (d) is extracted HR image.

short focus, the image crop and registration need to be done to get corresponding

LR and HR image pair. To get a clear image without being affected by lens distortion,

we only use pixels of center region of each image. First, we crop a central region

X form the long-focus image, then we try to find the corresponding low-resolution

patch Y from the short-focus image via exhaustive search. The distance or similarity
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metrics can be expressed as:

Distance(Υ(Y ↑ s) −X) (5.2)

where s means the bicubic upscale. s is varying pair by pair due to unavoidable

geometric distortion of imaging, but it was found empirically it is within a certain

range. The magnification power (upscale) is initialized empirically and fine-tuned via

exhaustive search. Υ is a translation transform with horizontal and vertical offset.

Distance is the judging criteria. Due to inevitable luminance change in short-long

image pair, we employ FSIM [132] which is luminance-invariant as the similarity

measure instated of mean squared error (MSE).

One example is given in Fig. 5.3, where we crop a central region with size of

150 × 150 in long-focus image as shown in Fig. 5.3 (c). The upscale is initialized as

5.6 by referring to size of the tree bark in an interactive interface displaying short-

long focus image pair. We narrow the upscale range into 5.5-5.9, and search the

similar region in a local neighbourhood of short-focus image as shown in Fig. 5.3

(a). The step of s is 0.1. After the fine-tuning process, the horizontal and vertical

offset is determined as 88 and 210 deviated from the central point and the upscale is

set as 5.8. Although we can obtain decent HR-LR image pairs via above search, we

only contain the simple translation and scale factors in Equ. 5.2. Considering more

complex non-rigid factors, the image registration is made to attain the eventual LR

and HR image pair. Here, we use corrected scale-invariant feature transform (SIFT)

descriptor [75] as the registration technique in view of the registration speed and

robustness. The final extracted HR-LR pair can be seen in Fig. 5.3 (b) and (d).

To more conveniently compare with other super-resolution methods, we also pro-

vide dataset with stable upscale by stabilising s. We have got ×2, ×2.5, ×3, and

×2 −×3, ×4 −×6 dataset. The scale augmentation is not suitable for our dataset,

so we train each scale separately. The scale provided by our dataset is limited due
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Figure 5.4: The architecture of the proposed network for real-world image super-
resolution

to the difficulty in building database, but we can also obtain super-resolution results

of other scales with the help of bicubic. If we want to have a ×8 sup-resolution, we

can input the LR image into the ×5 network, and then interpolate the ×5 result to

the ×8 HR image.

5.4 The proposed network

In this section, we validate the effectiveness of our datatset via deep learning which

has been widely investigated in SISR. We train an end-to-end CNN to model the

mapping relationship F between the HR and LR image pairs. The architecture of

our designed network is depicted in Fig. 5.4.

5.4.1 Network overview

To show the effectiveness of the new built dataset, we resort to a simple CNN without

complex network structure, where four types of operations are adopted: downsam-

pling, Convolution (Conv) and Rectified Linear Units (ReLU), and reverse downsam-

pling. The specific combination can be found in Fig. 5.4. The first layer is a reversible

sub-pixel operator[107, 128] which divides an LR image with size W×H×C into four

downsampled sub-images with size W
2
× H

2
×C. C is the channel of the input image.

Similarly, the last layer is the reverse operation to reshape the processed sub-images
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into the final HR image. The convolution part of the network has D layers. The size

of filter is f1 × f1 × c × n. f1 × f1 is the kernel size, and c and n is the number

of channel and filter, respectively. Batch normalization (BN) is not used because we

found empirically that it cannot bring evident gain in super-resolution.

It is indispensable to perform upscaling to enlarge the resolution of the LR image

into HR space at some point. Upscaling can be done by prior bicubic upsampling or

learnt within CNN. Learning upscaling via a deconvolution layer helps reduce GPU

memory cost and improve the reconstruction accuracy. However, we have to handle

the bicubic upscaling before the LR image is fed to the network owing to the unfixed

scale of our dataset. To reduce the computational complexity resulting from the fea-

ture extraction via nonlinear convolutions in HR space, we divide the interpolated

LR image into several sub-images via a reversible downsampling operator. Further-

more, downsampling operation also expands receptive field without increasing the

network depth which in turn lead to moderate number of parameters. Our dataset

suffers from slight pixel inconsistency although registration has been done in the pre-

processing of dataset. It is hard to address this issue by devising loss functions, as

most loss functions are pixel sensitive. Some distribution consistency metrics could

be considered, but these metrics are usually not convex or differentiable. We handle

the pixel inconsistency by adopting a bigger receptive field. We found through exper-

iments that a bigger receptive field is less sensitive to slight non-registration, leading

to more robust performance. Another strategy to obtain large receptive field is to

use dilated filter convolution. However, dilated filter is prone to result in artifacts

around sharp edges.

5.4.2 Loss functions

We exploit the performance of our dataset under several representative loss functions

and design two hybrid loss functions. First, different loss functions are tried including

96



MSE loss, L1 norm loss and perceptual loss (SSIM, multi-scale SSIM). Given a

training set {I iLR, I
i
HR}

N
i=1 , the pixel-wise MSE loss can be formulated as:

Ll2(Θ) =
1

N

N
∑

i=1

‖F (I iLR) − I iHR‖
2
F (5.3)

where Θ denotes the parameter of the CNN network. Due to the fast convergence

properties, MSE measure has been widely utilized in regression problems. But it

is not consistent with human visual system (HSV), which is easy to lead to over-

smoothing results. We consider other loss functions in our training. The L1 loss can

be calculated as:

Ll1(Θ) =
1

N

N
∑

i=1

‖F (I iLR) − I iHR‖1 (5.4)

Compared with MSE, L1 loss can generate more visually friendly results, but some

artefact also appeared. The perceptual SSIM loss can be calculated as:

LSSIM(Θ) =
1

N

N
∑

i=1

(1 − ssim(F (I iLR) − I iHR)) (5.5)

SSIM loss can well reflect the local structure information. The multi-scale SSIM

(MSSIM) was also used. Besides, we combine MSE and L1 loss, MSE and SSIM loss

to take advantage of different loss properties. The results by different loss functions

can be found in Fig. 5.5 (a-f).

5.5 Experimental results

In this section, we evaluate the performance of our method on our test dataset and

general non-reference image super-resolution.
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5.5.1 Implementation detail

The initiation of learning rate is set to 0.1 and then decreases by a factor of 10 when

the training error stops decreasing for 10 epochs. The batch size is set to 128. The

dilation is set to 1 with zero-padding of 1. The layer depth D is 15 and filter size f1

is 3. We use 64 and 128 filters of the size 3 × 3 for shallow and deep weight layers,

respectively. The filter number n is 1 in the last layer for image reconstruction.

Data augmentation with geometric transformations techniques (horizontal flip and

rotation with 3 directions) is implemented to prevent our network from overfitting.

The images in the training set are split into 41 by 41 or 96 by 96 patches with the

stride of 41 or 96 and mini-batch size is set 64 for stochastic gradient descent (SGD).

In the training phase, we use patches of 41×41×279360 and 96×96×207616 for scale

2-3 and scale 4.5-6, respectively. C is set to 1 to reduce the impact of chrominance

variation. We only use the luminance data in YCbCr color space instead of RGB

channels in training. The LR input is interpolated by bicubic into the same resolution

with HR image. We record both the RAW and JPEG images. For simplicity, we

only use the JPEG images to avoid the complex camera pipeline. We implement our

model with Matcovnet and Pytorch libraries. All the experiments were performed

in a desktop with i7-4790K CPU and NVIDIA 1080 GPU.

5.5.2 Results with different loss functions

In this section, we self-evaluate our dataset via different loss functions on our bench-

mark datasets as shown in Fig. 5.5. One can see that the MSE can produce good

results, but the results are a little bit over-smoothing. The l1 norm loss brought

sharper edge, but some artifacts also occurred. Compared with SSIM, the results by

MSSIM preserve more local structures. The results produced by mixed loss function

0.95× l1 + 0.05× MSE have weighted performance of l1 norm and MSE. 0.95× MSE
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Figure 5.5: The results by different loss functions on our dataset (upscale=2); (a)
MSE; (b) l1 norm; (c) SSIM; (d) MSSIM; (e) l1 norm + MSE; (f) MSE+SSIM

+ 0.05× SSIM have weighted performance of MSE and SSIM. The result by the

combined l1 and MSE loss shows less artifacts than l1 and SSIM, and better edge

preservation than MSE. We adopt this loss scheme in the subsequent comparison.

5.5.3 Experiments on our test dataset

In this section, first we give the experimental results on our test dataset as shown in

Fig. 5.6 with scale 2 and Fig. 5.7 with scale 5. In Fig. 5.6, we compare our method

with 6 the-state-of-art methods. Our method exhibits best visual quality and least

artifacts comparable with ground-truth. The results by compared methods expect

SRMD present similar performance of serve edge and detail loss. It indicates that

models trained by bicubic down-sampled dataset cannot super-resolve real-world im-

ages without prior degradation. SRMD adds blur kernel and noise level in creating

training dataset, obtaining better visual quality than other models. But it is still

not applicable for the real super-resolution, since estimating blur kernel in real im-

age super-resolution is difficult as shown in Fig. 5.6 where inaccurate kernel width
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Figure 5.6: The results by different methods in one test image (upscale=2); (a)
SRCNN; (b) VDSR; (c) DRNN; (d) LapSRN; (e) SRGAN; (f) Waifu2x; (g) SRMD
(h) Ours

Figure 5.7: Test results by different methods in one test image (upscale=5); (a), (b),
(c), (d) and (e) are the results by ground-truth, bicubic, VDSR, SRMD and ours,
respectively.

100



Table 5.1: The PSNR scores by different methods on our test dataset (upscale=2)

Methods SRCNN VDSR DRNN LapSR SRGAN SRMD Waifu2x MSE L1 SSIM L1+MSE
Metrics PSNR
Image1 24.55 24.87 24.74 24.97 24.00 17.47 24.76 26.57 25.92 26.70 25.25
Image2 27.08 27.15 27.17 27.57 26.82 14.24 27.33 28.27 26.85 27.25 27.43
Image3 25.36 25.58 25.56 27.93 25.10 17.26 25.47 26.63 25.93 26.68 26.27
Image4 23.85 23.77 23.64 24.03 23.29 17.37 24.29 26.90 24.38 25.73 24.72
Image5 25.01 25.21 25.22 25.76 24.96 14.53 25.18 25.54 25.02 25.53 25.09
Image6 17.66 18.02 18.02 17.05 16.97 11.63 16.81 19.07 18.66 19.05 19.07
Image7 20.90 21.48 21.48 20.14 19.95 14.26 19.76 24.54 22.53 23.98 24.17
Image8 24.68 25.22 25.18 24.20 23.56 19.14 23.52 26.11 25.67 26.15 25.74
Average 23.64 23.91 23.87 23.96 23.08 15.74 23.39 25.45 24.37 25.13 24.72

induced severe visual artifact.

In Fig. 5.7, we use less comparing methods, since scale 5 is not available in

the released pre-trained models. We have to re-train the network to obtain scale 5

models. For saving time, we only train two representative VDSR and SRMD with

the default parameters which were optimized by the authors. It is enough because

from Fig. 5.6, we can know that the results by other methods are similar with VDSR

in real super-resolution. Our results can better recover shaper edge information than

the compared methods. For instance, the branch and letter labelled in red square

box of our method have clearer edges than compared methods.

Furthermore, we use PSNR and structural similarity (SSIM) [117] indexes to

evaluate the methods quantitatively as shown in Table. 5.1 and Table. 5.2. It is

difficult to make quantitative comparisons with other methods, since the scale of our

dataset is unfixed. To make fair comparison, we only make the objective experiments

on the ×2 dataset. It also should be noted that the ground-truth of our dataset has

the problem of local focal de-focus owning to the change of depth of field. But small

numbers of negative samples are acceptable. Our implementations with different loss

functions all have higher PSNR and SSIM values than the compared methods.
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Table 5.2: The SSIM scores by different methods on our test dataset (upscale=2)

Methods SRCNN VDSR DRNN LapSR SRGAN SRMD Waifu2x MSE L1 SSIM L1+MSE
Metrics SSIM
Image1 0.86 0.87 0.86 0.87 0.84 0.54 0.88 0.92 0.91 0.94 0.91
Image2 0.81 0.81 0.81 0.83 0.79 0.35 0.82 0.84 0.80 0.84 0.82
Image3 0.77 0.77 0.77 0.83 0.73 0.58 0.78 0.83 0.82 0.84 0.82
Image4 0.87 0.87 0.87 0.89 0.83 0.70 0.89 0.92 0.90 0.92 0.91
Image5 0.79 0.79 0.79 0.81 0.77 0.45 0.80 0.79 0.78 0.80 0.78
Image6 0.63 0.64 0.64 0.54 0.53 0.37 0.53 0.64 0.62 0.68 0.60
Image7 0.77 0.77 0.77 0.67 0.66 0.39 0.67 0.79 0.76 0.79 0.78
Image8 0.86 0.87 0.87 0.87 0.84 0.77 0.85 0.88 0.88 0.88 0.87
Average 0.80 0.80 0.80 0.79 0.75 0.52 0.78 0.83 0.81 0.84 0.81

5.5.4 Experiments on general real-world images

To evaluate the generalization ability of our model, we test referenceless image

datasets including Set291, Set5, BSD [81], McM [131], Super-chart, and cellphone

images. Set291, Set5, BSD, McM are collected from internet. Super-chart is captured

by Sony RX100, which is different from the camera we use in the dataset construction.

Cellphone images are taken by ourselves with three mobile phones (Huawei Mate8,

Google Pixel 1, Iphone 6). Some visual results can be found in Fig. 5.8. VDSR

presents similar performance in real non-reference image super-resolution with bicu-

bic upsampling. The results suffer from obvious texture and edge loss. SRMD and

our method provide better visual qualities, effectively enhancing edges and provid-

ing more details. The results by SRMD are unreal with over-enhanced edge and

over-smoothing details which can be seen from the stipe, mushroom roof and plant

leaf labelled in red boxes. Compared with SRMD, our results appear more natu-

ral with faithful structure and texture preservation. The models trained by bicubic

degradation fail to work in real situation. SRMD with multiple degradation faces

the problem of parameter choice of kernel-width, although it can bring obvious gains

than other models. We use the kernel-width of 1.7 and 3 for scale 2 and scale 5,

respectively. Our method is free of parameter adjustment in the test stage.

Some non-reference metrics including Niqe [86] and Brisque [85] are used to eval-
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Figure 5.8: Test results in general image super-resolution (upscale=5); (a), (b), (c)
and (d) are the results by bicubic, VDSR, SRMD and ours, respectively.

Table 5.3: The non-reference objective scores of different methods on general real-
world image super-resolution (upscale=5)

Models Bicubic VDSR SRMD Ours
Dataset [86] [85] [86] [85] [86] [85] [86] [85]
Set291 9.66 65.92 8.67 60.68 8.74 79.25 8.28 54.15

BSD 9.09 67.93 8.10 62.89 7.20 61.14 7.55 56.92

Cellphone 10.36 69.41 9.38 64.44 9.82 77.32 9.01 60.48

Sup-chart 11.09 73.32 10.14 70.98 11.80 84.16 8.70 57.76

McM 9.34 67.53 8.25 64.43 7.03 66.26 7.60 56.37

Set5 9.55 69.63 8.45 62.18 7.73 65.23 7.36 54.08

Average 9.85 68.96 8.83 64.27 8.72 72.23 8.08 56.63
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uate the results without ground truth in Table 5.3. The non-reference scores are

consistent with visual qualities. Niqe and Brisque enphasize the naturalness and

spatial quality. The smaller values reflect better perceptual quality. The results by

our method have highest mean Brisque and Niqe values among the four representa-

tive methods, reflecting that the results by our method are visually plausible in terms

of naturalness and spatial quality. Bicubic and VDSR suffer from large edge blur

and the loss of details, leading to low Brisque and Niqe values. SRMD preserves suf-

ficient sharp information at the cost of destroyed spatial textures in terms of lowest

Brisque values. In summary, our method strikes good balance among spatial quality,

naturalness, edge and texture preservation.

5.6 Conclusion

In this chapter, we made the first attempt to address the issue of real-world image

super-resolution by establishing a long-short focus image dataset, which contains real

image pairs of low and high resolutions. Such a dataset taken by real cameras can

describe better the real degradation of low resolution images than the simple bicu-

bic kernel, which are commonly used to simulate data for super-resolution network

training. A fast plain network with hybrid L1 norm and MSE loss was deployed on

our dataset. We adopted the reversible downsampling scheme to use bigger receptive

field to address the non-perfect registration issue in the training stage. The experi-

ments on our dataset and other real images from six datasets demonstrated that the

super-resolution network trained our dataset achieves remarkable results compared

with previous state-of-the-art methods trained on simulated data. It shows much

better visual qualities with good edge and texture preservation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions:

In this thesis, we focus on the key techniques about HDRI and super-resolution. We

propose new methods for tone mapping, multi-exposure image fusion, and real image

super-resolution. The contributions by the thesis can be summarized as:

(1) We propose a clustering based locally adaptive tone mapping operator. Each

patch is decomposed into three components. The low frequency is compressed

and high frequency is enhanced. The structure component is adaptively pro-

jected on a dictionary containing similar structures which can sufficiently ex-

press the local structure. The tone mapping process is implemented on the

projection coefficients instead of the original intensity, which is easier to adjust

the details. We simultaneously process the luminance and color information so

as to preserve more color information. The multi-scale version is presented via

progressively decomposing the patch images, which can effectively decrease the

halo effect. An off-line version is implemented via pre-training PCA transforms

from natural images to reduce the computational cost. Experimental results

on extensive synthetic and camera raw data demonstrate the effectiveness of

the proposed method qualitatively and quantitatively.
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(2) A multi-scale fast patch-decomposition multi-exposure method is developed.

We revise the structure patch decomposition by deleting the normalization of

fused structure component. The patch decomposition and aggregation with

any size of stride step can be denoted as mean filtering, which largely reduce

the computational cost. The multi-scale SPD-MEF is realized by progressively

decomposing the mean image formed by the means of all patches to reduce the

halo effect. Different weight function is compared in fusing the low frequency.

Extensive experimental results indicate that it can produce pleasing fusion

results with less artifacts and reduced computational cost in both static and

dynamic scenes.

(3) We explore the application of deep learning in MEF. Given that the feature is

important for determining the weight for fusion. First, we use the features ex-

tracted via a pre-trained convolutional network. For each pixel, we can obtain

a dense feature vector whose dimension is the number of feature maps. Dif-

ferent sorts of networks are compared for feature extraction. With the feature

map extracted from convolutional layer, we compute the local contrast and

consistency map for the weight map. The local contrast is defined by the L1

norm of the feature vector. The consistency map is computed by the Euclidean

metric of corresponding feature vectors for motion detection in dynamic sit-

uation. The proposed method can work for both static and dynamic scenes.

Moreover, we explore the implementation of end-to-end MEF network.

(4) We address the real image super-resolution by capturing real camera lens data.

We establish a novel long-short focus dataset by adjusting digital cameras with

zoom lens. The LR and HR image pairs are cropped via image registration. A

plain CNN network a reversible downsampled operation in training is employed

considering the unfixed scales. The trained network with the built dataset
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can bring more fine details compared with traditional simulated data driven

network especially in real-world image super-resolution.

6.2 Future Work:

(1) The current approach assumes the input sequence is perfectly aligned. To

make it more practical, it would be interesting to investigate how the struc-

tural consistency measurement in Eq. (3.14) can be used for robust camera

motion alignment [19]. Like most existing deghosting schemes, our method

may fail in certain extreme cases. For example, if under-/over-exposed regions

contain moving objects, the binary maps for region segmentation would be less

accurate, and visible ghosting artifacts may appear in the final image. There-

fore, it is desirable to make better use of the binary maps at different scales,

i.e., set proper scale-dependent thresholds in Eq. (3.15) and integrate these

maps for improved object motion detection.

(2) Another interesting direction to explore is how exposure bracketing is prac-

ticed to capture an optimal set of input images for a given MEF algorithm

in either radiance or intensity domain. Hasinoff et al. [34] defined the opti-

mality in terms of worse case signal-to-noise ratio, and they found that much

higher and variable ISO settings lead to better noise reduction in darkest re-

gions. Gupta et al. [33] defined the optimality in terms of image registration,

and found that a Fibonacci bracketing strategy, where each exposure time is

the sum of the previous exposures, better serves the purpose. Later, Hasinoff

et al. [35] gave up exposure bracketing and deliberately captured images of

constant under-exposes, which essentially transfers HDR imaging to a burst

denoising problem. All the three strategies target at different points along the

HDR image pipeline. A more desirable solution to exposure bracketing would
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be optimized for the perceptual quality of fused images, which will ultimately

be consumed by our visual systems. Although we have observed substantial

progress of developing MEF algorithms, computational models that can au-

tomatically assess the perceptual quality of fused images are largely lacking,

especially in the case of dynamic scenes. Since objective quality models form a

cornerstone in image processing and computational photography, such a model

for MEF of dynamic scenes would immediately lead to fair algorithm compar-

ison and better algorithm design.

(3) We separately study two image enhancement tasks: HDRI and super-resolution.

An interesting future work is to combine HDRI and super-resolution. It is re-

ally practical to simultaneously enhance the dynamic range and resolution of

an image. A direct idea is to generate pseudo a multi-exposure sequence via

the gamma transform of LR image. To this end, a deep network can be trained

to enhance both the dynamic range and resolution.
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