

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

EDGE-SIDE RESOURCE MANAGEMENT FOR
DATA-DRIVEN APPLICATIONS

CHUANG HU

PhD

The Hong Kong Polytechnic University

2020

The Hong Kong Polytechnic University

Department of Computing

Edge-side Resource Management for Data-driven

Applications

Chuang HU

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

July 2019

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

Chuang Hu
(Name of student)

iii

Abstract

Data-driven applications exploit data mining and machine learning technologies to

dig the great potential value of the data. Edge computing is promoted to meet

increasing performance needs of data-driven applications using computational and

storage resources close to the end devices at the edge of the current network. To

achieve higher performance in this new paradigm, one has to consider how to combine

the efficiency of resource usage at all three layers of architecture: end devices, edge

devices, and the cloud. Indeed, end devices or edge devices are resource-constrained

devices, whereas the cloud has almost unlimited but far away resources. Providing

and/or managing the resource at the edge will enable the end device to spare re-

sources and speed up computations and allows using resources it does not possess.

Hence, there is a need for an efficient resource management at the edge.

In this research, we study the resource management in the edge side and make

the following original contributions in this field.

Firstly, we focus on optimizing the communication resource management for the

data-driven applications which need to transfer the data of end devices to the cloud

at the edge side. The emerging smart after-sales maintenance is one such applica-

tion. Manufacturers/vendors collect the data of their sold-products to the cloud so

that they can conduct analysis and improve their operation, maintenance, and ser-

vices of their products. Manufacturers are looking for a self-contained solution for

data transmission since their products are typically deployed in a large number of

different buildings, and it is neither feasible to negotiate with each building to use

the buildings network (e.g., WiFi) nor practical to establish its own network infras-

tructure. A dedicated channel from an ISP can be rent to act as a thing-to-cloud

v

communication (TCC) link for each end device. Since the readily available 3G/4G

is over costly for most end devices, ISPs are developing new choices. Nevertheless,

it can be expected that the choices from ISPs will not be fine-grained enough to

match hundreds or thousands of requirements on different costs and data volumes

from the end devices. To address issue, in this thesis, we propose the communication

sharing sTube+, sharing tube. Stube+ organizes a greater number of end devices,

with heterogeneous data communication and cost requirements, to efficiently share

fewer choices of communication resources, i.e. TCC links, and transmit their data

to the cloud. We take a design of centralized price optimization and distributed

network control. More specifically, we architect a layered architecture for data deliv-

ery, develop algorithms to optimize the overall monetary cost, and prototype a fully

functioning system of sTube+. We also develop a case study on smart maintenance

of chillers and pumps, using sTube+ as the underlying network architecture.

Secondly, we study computational allocation and optimization for DNN-based

data-driven applications. DNN inference imposes heavy computation burden to end

devices, but offloading inference tasks to the cloud causes transmission of a large

volume of data. Motivated by the fact that the data size of some intermediate DNN

layers is significantly smaller than that of raw input data, we design the DNN surgery,

which allows partitioned DNN processed at both the edge and cloud while limiting

the data transmission. DNN surgery considers the network bandwidth between the

end device and the cloud, as well as their processing capabilities when deciding to

handle the layer of the DNN either on the end device or in the cloud. The challenge

is twofold: (1) Network dynamics substantially influence the performance of DNN

partition, and (2) State-of-the-art DNNs are characterized by a directed acyclic graph

(DAG) rather than a chain so that partition is greatly complicated. In order to solve

the issues, we design a Dynamic Adaptive DNN Surgery (DADS) scheme, which

optimally partitions the DNN under different network condition. We conduct a

comprehensive study of the partition problem under the lightly loaded condition and

heavily loaded condition. Under the lightly loaded condition, DNN Surgery Light

(DSL) is developed, which minimizes the overall delay to process one frame. The

vi

minimization problem is equivalent to a min-cut problem so that a globally optimal

solution is derived. In the heavily loaded condition, DNN Surgery Heavy (DSH)

is developed, with the objective to maximize throughput. However, the problem is

NP-hard so that DSH resorts an approximation method to achieve an approximation

ratio of 3.

Finally, we propose a Transmission-Analytic Processing Unit (TAPU), a novel

accelerator using multi-image FPGA to provide both computation resource and com-

munication resource for edge device. A multi-image FPGA can pre-store multiple

images in the FPGA flash and fast switch between images. We can then config-

ure one image for computation, and the other images for network functions. Thus,

we can multiplex the accelerator by controlling the switch of the images. System

design of TAPU from the hardware to the software is present. In the hardware

design, we discuss the FPGA choice and abstracts a set of transparent APIs for

the developers. For the software, offline modules are designed to determine which

functions are offloaded to FPGA, and runtime modules are designed to determine

how to switch images adapting to the runtime variations. We choose to accelerate

network functions first, and use the residual computation capacity to accelerate com-

putation. We develop two schemes to estimate the residual computation capacity of

TAPU for non-preemption case and general case respectively. Then to fully use the

residual computation capacity, we design an inference task offloading algorithm for

video analytic task assignment to the FPGA. These algorithms collectively exploit

the capacity of the FGPA for DNN inference acceleration to the maximum.

In summary, we propose three methods to overcome the communication, com-

putation and resource challenges in edge/cloud computing for data-driven applica-

tions from edge-side resource management perspective. The proposed methods are

leveraged in important data-driven applications. Prototype of the systems were de-

veloped to evaluate the effectiveness of the solutions. We identify the requirements

and address the challenges therein, providing effective frameworks and solutions for

practitioners.

vii

viii

Publications

1. Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu, “Dynamic Adaptive

DNN Surgery for Inference Acceleration on the Edge”, Proceedings of the 38th

IEEE International Conference on Computer Communication (INFOCOM),

Paris, France, April 29 - May 2, 2019.

2. Chuang Hu, Wei Bao, and Dan Wang, “IoT Communication Sharing: Scenar-

ios, Algorithms and Implementation”, Proceedings of the 37th IEEE Interna-

tional Conference on Computer Communication (INFOCOM), Honolulu, HI,

October 24-28, 2018.

3. Chuang Hu, Wei Bao, Dan Wang, Yi Qian, Muqiao Zheng and Shi Wang,

“sTube+: An IoT Communication Sharing Architecture for Smart After-sales

Maintenance in Buildings”, ACM Transactions on Sensor Networks (TOSN) -

Special Issue on BuildSys’17, Volume 14, Issue 3-4, December, 2018.

4. Chuang Hu, Wei Bao, Dan Wang, Yi Qian, Muqiao Zheng and Shi Wang,

“sTube+: An IoT Communication Sharing Architecture for Smart After-sales

Maintenance in Buildings”, Proceedings of the 4th ACM International Confer-

ence on Systems for Energy-Efficient Build Environments (BuildSys), Delft,

The Netherlands, November 8-9, 2017.

5. Qiong Chen, Zimu Zheng, Chuang Hu, Dan Wang, and Fangming Liu, “Data-

driven Task Allocation for Multi-task Transfer Learning on the Edge”, Proceed-

ings of the IEEE International Conference on Distributed Computing Systems

(ICDCS), Dallas, Texas, July 7-9, 2019.

ix

6. Dan Wang, Wei Bao, Chuang Hu, Yi Qian, Muqiao Zheng and Shi Wang,

“sTube: An Architecture for IoT Communication Sharing”, IEEE Communi-

cations Magazine, Volume 56 , Issue 7, Pages 96-101, July, 2018.

7. Zimu Zheng, Chuang Hu, and Dan Wang, “Time-aware Chiller Sequencing

Control with Data-driven Chiller Performance Profiling (Poster)”, Proceedings

of the 4th ACM International Conference on Systems for Energy-Efficient Build

Environments (BuildSys), Delft, The Netherlands, November 8-9, 2017.

x

Acknowledgements

It is hard to believe that this day has finally come. I know I would not have reached

this stage if it was not for the help, support, and guidance of many great people who

I was lucky to meet.

My Ph.D. supervisor, Dr. Dan Wang, definitely make the top of the list. He was

always generous with his time providing me the guidance I needed. I am also very

grateful to him for his brilliant comments, critical judgment, scientific advice and

many insightful discussions and suggestions which motivate me to sharp my mind

and help me get out of some tough days. His endless guidance is hard to forget

throughout my life.

I also would like to thank Dr. Wei Bao who always provides useful tips and

comments to help me think differently on the problem during our collaboration. His

truly scientist intuition and invaluable guidance inspire and enrich my intellectual

maturity that I will benefit from, for a long time to come.

My special thanks to Prof. Yi Qian and Dr. Dawei Pan. for the precious support

during our collaboration. I am also pleased to say thank you to Dr. Kunfeng Lai,

Dr. Abraham Hang-Yat Lam, Dr. Liang Zhang, Mr. Zimu Zheng, Mr. Quanyu

Dai, Mr. Qiong Chen, Miss Shi Wang, Mr. Muqiao Zheng, Mr. Fengming Liu, Mr.

Kaichen Wei, Mr. Fangqiu Su for their kind help and understanding.

Last but not least, I would like to thank my parents. They gave me enough moral

support, encouragement and motivation to accomplish my personal goals. Special

thanks to my wife, Yuanyuan Li, who witnesses the joys and sorrows of my PhD

study miles away. I am really grateful for her endless love, patience, understanding

and support.

xi

xii

Table of Contents

Abstract v

Publications ix

Acknowledgements xi

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Data-driven Application with Edge/Cloud Computing 3

1.2 The Problems . 4

1.3 Research Framework . 6

1.4 Contributions . 7

1.5 Thesis Organization . 9

2 Background and Literature Review 11

2.1 Data-driven Applications . 11

2.1.1 Smart After-sales Maintenance 11

2.1.2 Video Analytics . 13

2.2 Resource Management on the Edge 14

2.2.1 Edge-side Resource Sharing 15

2.2.2 Edge-side Resource Allocation 17

2.2.3 Edge-side Resource Provisioning 19

xiii

3 sTube+: A Communication Sharing Architecture for Data-driven
After-sales Maintenance 21

3.1 Introduction . 21

3.2 The Motivation . 24

3.3 The Stube+ Architecture . 25

3.3.1 A Layered Architecture for Data Delivery 25

3.3.2 Detailed Modules for a Functioning System 29

3.3.3 Security Concerns . 30

3.4 IoT Communication Sharing Optimization 30

3.4.1 Network Topology . 31

3.4.2 Load Constraint Modeling . 31

3.4.3 The Cost of TCC Sharing . 32

3.4.4 IoT Communication Sharing Problem Formulation 33

3.4.5 Problem analysis . 33

3.4.6 The ICS Algorithm . 34

3.5 ICS in the Pay-As-You-Go Pricing Model 36

3.5.1 Problems . 36

3.5.2 Algorithms . 37

3.6 Implementation . 40

3.6.1 The Network Stack . 40

3.6.2 The Routing Choice . 41

3.6.3 Hardware Choices . 42

3.7 Performance Evaluation . 43

3.7.1 Evaluation by Experiments . 43

3.7.2 Evaluation by Trace-driven Simulations 45

3.8 A Case Study . 50

xiv

3.9 Chapter Summary . 53

4 DNN Surgery: Accelerating Inference on the Edge 55

4.1 Introduction . 55

4.2 An Edge-Cloud DNN Inference (ECDI) Model 58

4.2.1 Background . 58

4.2.2 The ECDI Model . 60

4.2.3 Parameter Estimation for ECDI 62

4.3 ECDI Partitioning Optimization . 64

4.3.1 The Impact of DNN Inference Workloads 64

4.3.2 The Light Workload Partitioning Algorithm 65

4.3.3 The Heavy Workload Partitioning Algorithms 68

4.3.4 The Dynamic Partitioning Algorithm 71

4.4 Implementation . 72

4.5 Performance Evaluation . 74

4.5.1 Setup . 74

4.5.2 Performance Comparison . 76

4.5.3 Network Variation . 79

4.6 Chapter Summary . 80

5 TAPU: a New Processing Unit for Accelerating Multi-type Func-
tions in IoT Gateways 83

5.1 Introduction . 83

5.2 System Design . 87

5.2.1 Hardware Design . 87

5.2.2 Software Design . 90

5.3 Residual Computation Capacity Estimation 95

5.3.1 Non-Preemption Estimation Scheme 96

xv

5.3.2 Trace-Driven Estimation Scheme 98

5.4 Inference Task Offloading . 99

5.4.1 Batch Execution Time Profiling 101

5.4.2 Inference Quality Profiling . 102

5.4.3 The Inference Task Offloading Algorithm 103

5.5 Implementation . 104

5.5.1 Hardware Implementation . 105

5.5.2 Network Functions Implementation 106

5.5.3 Video Analytic Implementation 108

5.6 Performance Evaluation . 108

5.6.1 Experiment Setup . 108

5.6.2 Experiment Results . 109

5.7 Chapter Summary . 112

6 Conclusions and Future Directions 113

6.1 Conclusions . 113

6.2 Future Directions . 115

Bibliography 117

xvi

List of Figures

1.1 Cloud computing and edge computing for data-driven applications.
Black box denotes where computation happens. Red line denotes the
bottleneck. 5

1.2 The unified research framework. 6

2.1 Average COP of chillers as a function of day. 12

2.2 A taxonomy of the objective of resource management at the edge. . . 15

3.1 Smart After-Sales Maintenance Services (SAMS). 23

3.2 A Layered Architecture of sharing tube plus system. 25

3.3 Illustration of nodes interaction when periodically choosing N-node. . 27

3.4 Illustration of nodes interaction when the connected N-node is failure. 27

3.5 sTube+ module design. 29

3.6 Illustration of conversion to minimum cost flow problem. 34

3.7 End-to-End Communication. 40

3.8 The S-node. 42

3.9 The N-node. 43

3.10 The network topology of the experiments. 44

3.11 The monthly cost of different algorithms. 44

3.12 Illustration of the topology of B1. 44

3.13 Illustration of the topology of B2. 44

3.14 The monthly cost at B1 under the PAYG pricing model. 45

xvii

3.15 The monthly cost at B1 under the MP pricing model. 46

3.16 The monthly cost at B2 under different pricing model. 46

3.17 The CDF of the underutilized ratio of TCC links at B1. 48

3.18 The CDF of the underutilized ratio of TCC links at B2. 48

3.19 The monthly cost of different algorithms for PAYG at B1. 48

3.20 The monthly cost of different algorithms for PAYG at B2. 48

3.21 A typical centralized HVAC system. 50

3.22 SAMS supported by the sTube+ architecture. 51

3.23 The data usage of the 4 chillers and 8 pumps. 51

4.1 The output data size of each layer of YOLOv2. 57

4.2 Latency constitution when partition at the different layers of tiny
YOLOv2. Bandwidth is 4Mbps. 57

4.3 The latency of partition at different layers of YOLOv2 as a function
of bandwidth. 58

4.4 A 7-layer DNN model classifies frames of video. 59

4.5 The inception v4 network represented in layer form. 60

4.6 Graph representation of inception v4 network. 60

4.7 The computation latency of YOLOv2’s layers on the edge (top) and
cloud (bottom) respectively. 63

4.8 Gantt charts for three stages. 64

4.9 Illustration of conversion to the minimum s-t cut problem. 64

4.10 The chain-topology DNN models. 74

4.11 The DAG-topology DNN models. 75

4.12 Latency speedup and throughput gain achieved by DADS under light
workload mode. 77

4.13 Latency speedup and throughput gain achieved by DADS under heavy
workload mode. 77

xviii

4.14 Latency and throughput speedup achieved by DADS vs. Neurosur-
geon under light and heavy workload modes. 77

4.15 Latency speedup and throughput gain achieved by DADS of different
networks under light workload mode. 77

4.16 Latency speedup and throughput gain achieved by DADS of different
networks under heavy workload mode. 78

4.17 Latency speedup and throughput gain achieved by DADS as a function
of bandwidth. 78

4.18 The impact of network variance on DADS partition decision using
Edge-Only as the baseline. 78

5.1 IoT gateways and its functions. (a) IoT gateway with a GPU for
data analytic and regular network function on CPU. (b) The current
IoT gateway with a GPU for video analytics and advanced network
functions on CPU. (c) IoT gateway with offloading both advanced
network functions and data analytic to the hardware accelerator. . . . 85

5.2 The multi-image FPGA. 85

5.3 Overview of the system design of TAPU. 87

5.4 Offline Manager . 93

5.5 Runtime Manager . 93

5.6 Inference quality profile of tiny YOLOv2 DNN model. 102

5.7 The prototype implementation. 105

5.8 Illustration of using relays to replace switches. 106

5.9 Implementation of processing network packet in MAC and PHY layer. 107

5.10 The throughput on video analytics. 110

5.11 The throughput on network processing. 110

5.12 The working Status of FPGA. (The yellow box represents that FPGA
is idle; the red box represents that FPGA is used for processing net-
work packets; the blue box represents that FPGA is used for video
analytics.) . 111

xix

xx

List of Tables

3.1 Monthly data usage of different equipment. 45

3.2 The number of equipment at B1 and B2. 45

3.3 The monthly data plans. 46

3.4 The parameters for computing COP and WTC. 52

4.1 DNN Benchmark Specifications . 75

4.2 DNN Benchmark Specifications . 75

5.1 Hardware APIs . 89

5.2 Batch execution time profile of tiny YOLOv2 DNN model on Intel
Max 10 FPGA . 101

5.3 The average utilized ratio of FPGA. 111

xxi

xxii

Chapter 1

Introduction

Data-driven applications help users search, explore and draw constructive conclusion

from data. Data has always played a key role in organizations, business, and indus-

tries. The applications providing service for these domains become data driven. For

example, the emerging self-driving car [16] in transport, the advancing recommen-

dation system [26] in business, the mature automatic face recognition [9] in security

are useful data-driven applications. The data-driven applications become booming

and successful in many domains such as industry, security, business, and health.

Data-driven applications extract value from data and transform the value to ser-

vices. The advance in data science and Internet of Things (IoT) have promoted the

booming of data-driven applications. The fast development of data science, espe-

cially in machine learning and data mining, has enabled data-driven applications to

extract more value from data. There has been tremendous growth in the number of

Internet-enabled smart devices. According to CISCO, more than 50 billion devices

are expected to be connected to the Internet by 2020 [66]. With numerous devices

installed and connected to IoT, the amount of data to be processed has been increas-

ing astronomically. Cisco Systems predicts that cloud traffic is likely to rise nearly

fourfold by 2020, increasing 3.9 ZB per year in 2015 to 14.1 ZB per year by 2020 [55].

This means that more data can be used for extracting meaningful information by

1

data-driven applications.

In the meanwhile, the development of data science and IoT also incurs lots of chal-

lenges in communication and computation for data-driven applications. The data-

driven applications are typically based on the collection, transmission and processing

of large volumes of data. The increasing volume of data imposes heavy burden on

the transmission process. The advance in data science, such as deep neural networks

(DNN), have increased the computation workload in data-driven applications. In

summary, the current data-driven applications are characterized by the large volume

of raw data and intensive computation.

The mature cloud computing and emerging edge computing are the two promis-

ing choices for data-driven applications. Cloud computing equipped with powerful

hardware can provide ample computation resources but suffer from transmitting a

large amount of data which may result in high communication cost and long la-

tency. Edge computing which put the computation at the proximity of data source

is network-free but limited by the constrained resource of the edge devices.

A single computing paradigm cannot meet the whole requirement of data-driven

applications. No matter which paradigm or the collaboration of these two paradigms

is employed, a common point is that the data is generated at the edge device. Some

work can be done at the source to address or alleviate the problems in the data-driven

application. Providing and/or managing the resource at the edge will enable the edge

device to spare resources and speed up computation, reduces the transmission costs

and data size, and allows using resources it does not possess. In this thesis, we study

resource management on the edge to tackle some issues for data-driven applications.

In the following of this chapter, we discuss the pros and cons of edge comput-

ing and cloud computing for data-driven applications. In section 1.2, we present

the problems we will solve through edge-side resource management strategies for

data-driven application in this thesis. Section 1.3 discusses the research framework.

2

Section 1.4 summarizes the contributions of this thesis. Finally, Section 1.5 gives the

outlines of the thesis.

1.1 Data-driven Application with Edge/Cloud Com-

puting

Different data-driven applications have different requirements, which should be ful-

filled by the computing platforms amalgamating edge device with their applications.

Cloud Computing has evolved and became an easy-to-use platform for data-driven

applications in general to store and process data. The cloud provides ubiquitous and

on-demand access to a virtually shared pool of configurable computing and storage

resources. Cloud computing is an excellent platform to handle the enormous data

generated from the IoT environment due to the cheaper and the larger amount of

virtual computing/processing power available at the cloud centre. However, it is not

suitable for the applications demanding low-latency, real-time operation and high

Quality of Service (QoS).

In the cloud computing paradigm, data-driven applications collect information

from the environment and share it to a cloud service for processing as shown in

Fig. 1.1(a). The computation occurs on the cloud. The bottleneck is transferring a

large amount of data of the things to the cloud through the wide-area network as

shown red line in Fig. 1.1(a), which may incur huge transmission cost and latency.

The concept of edge computing, also called fog computing, is receiving important

attention to address some of the drawbacks of cloud computing. The main goal of

edge computing is to extend cloud computing functions to the edges of the network.

Due to proximity to the end-users and geographically distributed deployment, it can

support the data-driven applications/services demanding the requirements of low

latency, location-awareness, high mobility and high QoS. However, edge computing

3

units usually do not have enough storage and computing resources in handling the

massive amount of data of such kind applications.

In edge computing paradigm, data-driven applications process data at where the

data is generated and sends the processing result to the cloud as shown in Fig. 1.1(b).

For example, AWS DeepLens camera can run deep convolutional neural networks

(CNNs) to analyze visual imagery [2] and transfers the result to the cloud for further

decision making. Only result is transferred to the cloud, which avoids the effect of the

network. The bottleneck is executing complicated data-driven applications on the

constrained resource of edge device showed in the red line in Fig. 1.1(b). Constrained

computation resources impose the main challenge for data-driven applications. Take

video analytics application as an example. Video analytics applications have a high-

performance requirement. We conducted measurement using Raspberry Pi 3 model

B to perform inference on the AlexNet model [45], a small model with moderate

accuracy. The execution time is 5 seconds using BVLC benchmark [3].

To address the transmission problems in cloud computing and computation re-

source in edge computing for data-driven applications, in this thesis, we design a

series of edge-side resource management strategies.

1.2 The Problems

Processing data-driven application with edge computing or cloud computing incurs

a series of problems, which needs a wide range of research works to solve. In this sec-

tion, we introduce the problems we will solve through edge-side resource management

strategies in this thesis.

1. The first problem is how to transmit the data from the edge device

to the cloud in an easy-to-use and cost-effective way. In some data-

driven application, such as the smart after-sales maintenance, the end device

4

Cloud

(a) Cloud Computing (b) Edge Computing

Raw Data Result

Cloud

Figure 1.1: Cloud computing and edge computing for data-driven applications.
Black box denotes where computation happens. Red line denotes the bottleneck.

(e.g. products in smart after-sales maintenance) are deployed in a wide area,

a self-contained solution for data transmission is needed. A dedicated things-

to-cloud link (e.g. CAT1, 3G, 4G) from ISPs is a feasible solution. However,

it can be expected that the choices from ISPs will not be fine-grained enough

to match hundreds or thousands of requirements on different costs and data

volumes from the edge devices.

2. The second problem is how to use the constrained computation capac-

ity of the edge device to meet the requirement of the computation-

intensive data-driven applications. Offloading data-driven application to

the remote cloud causes transmission of a large volume of data, edge computing

can avoid the effect of network and put the computing at the proximity of data

source. Nevertheless, edge devices themselves are limited by their computing

capacity.

3. The third problem is how to meet the increasing requirement on com-

putation and communication resource from the edge device while

5

Computation Management

Problem 2

DNN Surgery

Chapter 4

Edge-side Hardware Resource

CPU GPU FPGA SSD Flash DRAMNIC Battery

Computation Communication Storage Energy

SIMNPU

Memory

Management

Energy

Management

Communication Management

Problem 1

sTube+

Chapter 3

Problem 3

TAPU

Chapter 5

Edge-side Resource Management

Data-driven Applications

Smart After-sales Maintenance Video Analytics Applications...

Figure 1.2: The unified research framework.

improving the resource utilization. The increasing performance needs of

data-driven applications requires to enhance the computation and communica-

tion capability of the edge device, such as the IoT gateway. Adding dedicated

resource, such as GPU for computation, NPU for communication, leads to low

utilization. New hardware which provides both computation and communica-

tion resource is needed.

1.3 Research Framework

In this section, we present the research framework for the proposed techniques.

Fig. 1.2 illustrates the sketch of our research framework.

As shown in Fig. 1.2, edge-side resource management runs at the software layers

and controls the usage of the resource-constrained hardware resources of edge de-

vices to meet the requirement from the data-driven application in the upper layer.

Resource management on the edge device includes computation management, com-

6

munication management, memory management, and energy management. In this

thesis, we mainly focus on communication management and computation manage-

ment on the edge.

To solve the first problem, for the data-driven applications (e.g. the smart

after-sales maintenance) which collects data generated at the end device to the re-

mote cloud, we design a resource sharing strategy. We design Sharing Tube plus

(sTube+), a communication sharing architecture, which organizes the IoT devices

to transmit their data to the cloud through sharing the limited communication re-

sources (i.e. the choices of things-to-cloud communication links) in a cost-effective

and self-contained way.

To tackle the second problem, for the computation-dominant data-driven ap-

plications (e.g. the DNN-based video analytic) which have a high requirement on

performance, we propose DNN Surgery, which allows partitioned DNN processed

at both the edge and cloud by considering the wireless bandwidth and the comput-

ing resource of the edge device and the cloud. DNN surgery optimally partitions the

DNN under different network condition and workload.

To solve the third problem, for the edge device which needs to enhance both com-

putation and communication capability, such as IoT Gateway, we design Transmission-

Analytics Processing Unit (TAPU), a novel processing unit which can provide

both computation and communication resource. Communication management and

computation management strategies of TAPU are also designed to adapt to the run-

time variance from the upper application layer.

1.4 Contributions

The contributions of this thesis are summarized as follows.

• We for the first time to clarify the necessity, the scope of IoT communication

7

sharing for the cloud-based IoT application. In order to bridge the gap between

the possible choices of thing-to-cloud communication link from ISPs and the

number of requirements on different costs and data volumes the heterogeneous

requirements on different costs and data volumes from the cloud-based IoT ap-

plications, we propose Sharing Tube plus (sTube+), which organizes a greater

number of IoT devices, with heterogeneous data communication requirements

to efficiently share fewer choices of TCC links, and transmit their data to the

cloud. We demonstrate the cost-efficacy of our approach in a real-world smart

after-sales maintenance case.

• For the computation-intensive data-driven application, we design the DNN

surgery, which allows partitioned DNN processed at both the edge and cloud

while limiting the data transmission. We design a Dynamic Adaptive DNN

Surgery (DADS) scheme, which optimally partitions the DNN under different

network condition. Under the lightly loaded condition, DNN Surgery Light

(DSL) is developed, which minimizes the overall delay to process one frame.

In the heavily loaded condition, DNN Surgery Heavy (DSH) is developed, with

the objective to maximize throughput.

• We propose a novel Transmission-Analytics Processing Unit (TAPU), a new

accelerator using multi-image FPGAs to accelerate data analytics and network

functions for data transmission in IoT gateway.

• We implement prototypes with the proposed techniques. We conduct experi-

ments and compare with representative schemes. Experimental results prove

the effectiveness of the proposed schemes.

8

1.5 Thesis Organization

The rest of this thesis is organized as follows.

• Chapter 2 (Background and Literature Review): This chapter provides

a basic introduction to the data-driven applications using the smart after-

sales maintenance and video analytic as the cases. We also study the existing

research works in resource management on the edge side.

• Chapter 3 (sTube+: A Communication Sharing Architecture for

Data-driven After-sales Maintenance): In this chapter, we present the

sTube+, the IoT communication architecture to organizes a greater number of

IoT devices with heterogeneous data communication requirements to efficiently

share fewer choices of things-to-cloud communication links and transmit their

data to the cloud.

• Chapter 4 (DNN Surgery: Accelerating Inference on the Edge): In

this chapter, we propose DNN surgery that can partition DNN inference be-

tween the edge device and the cloud at the granularity of neural network layers,

according to the dynamic network status and the computation capability of the

edge device and the cloud.

• Chapter 5 (TAPU: a New Processing Unit for Accelerating Multi-

type Functions in IoT Gateways): In this chapter, we discuss the need of

hardware accelerator for both computation and communication in IoT gateways

and the disadvantages of using dedicated hardware accelerator. We propose

transmission-analytic processing unit, a novel accelerator using multi-image

FPGA to provide both computation and communication resources.

• Chapter 6 (Conclusions and Future Directions): This chapter concludes

9

the thesis with a summary of our research works and discussions on future

research directions.

10

Chapter 2

Background and Literature Review

In this chapter, we first present a basic introduction to the data-driven applications.

We then study the existing research works in resource management on the edge side.

2.1 Data-driven Applications

In this section, we introduce two kinds of data-driven applications: 1) communi-

cation dominated data-driven application – smart after-sales maintenance and 2)

computation intensive data-driven application – video analytics.

2.1.1 Smart After-sales Maintenance

Smart After-sales Maintenance and Services (SAMS) is a kind of data-driven appli-

cations. In SAMS, manufacturers analyze the collected data of their sold-products to

improve the operation, maintenance and services of their products. Manufacturers

of air conditioners, pumps, elevators, etc., are now transforming their machinery into

smart machinery. When sending the data of their products to the cloud, SAMS can

operate in a trouble-preventing mode instead of troubleshooting mode.

We use the chiller maintenance as an example to illustrate how SAMS benefits.

Current chiller maintenance consists of routine maintenance and emergency repair,

and their respective costs are USD $897.12 and USD $5639.94 per time [47]. An

11

0 50 100 150 200 250 300
Day

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 C

O
P

Figure 2.1: Average COP of chillers as a function of day.

optimal maintenance plan is a balance of routine maintenance and emergency repair.

This is usually done by analyzing the degradation of chillers. Intuitively, routine

maintenance will be more frequent if a certain type of chiller degrades faster. Chiller

degradation is affected by many factors, such as its intrinsic reliability and the usage

pattern of the chiller (e.g., the Freon level depends on the intensity that the chiller

is being used). Though the chiller reliability can be extensively tested in labs, the

usage pattern of a chiller is determined by customers and is difficult to know at the

time that this chiller is being manufactured. This is one key reason that SAMS can

become superior.

The key indicator for the performance (degradation) of a chiller is Coefficient of

Performance (COP) [33]. The COP of one chiller measured in our dataset is shown in

Fig. 2.1. Maintenance is needed if the COP of a chiller is below a certain threshold.∗

To compare the current maintenance plan and SAMS, we conduct an illustrative

analysis by using four year data of ten chillers in three buildings. We calculated

the optimal plan for current maintenance with a routine maintenance interval of

3.1 months, leading to a cost of USD $4052.64 per chiller per year. For SAMS, we

∗A low COP does not mean a direct chiller failure, yet it indicates sensible human comfort down
grade and substantial energy usage inefficiency. The current threshold imposed in Country/City
Anonymity is 5.7.

12

can collect the chiller data in real time. The cost reduces to USD $2813.66, with

an average maintenance interval of 3.89 months. This leads to a 30.58% saving.

Note that this is only a baseline comparison. If we consider joint maintenance of

multiple pieces of equipment, a prediction of equipment degradation, and that current

maintenance plan has to be conservative (e.g., shorter than 3.1 months), we can

expect a much greater gain from SAMS.

The main challenge for SAMS is how to collect data from devices in an easy-

to-use and cost-effective way. We solve this problem in Chapter 3 by designing a

resource sharing architecture and strategy on the edge side.

2.1.2 Video Analytics

Video analytics is another kind of data-driven applications. Video analytics is the

core to realize a wide range of exciting applications ranging from surveillance to

self-driving cars.

The advances of deep learning and the massive data collected and labeled make

it now possible to analyze images and videos in high accuracy. In deep learning,

a neural network model is first trained to recognize objects, or to track targets,

etc. As an example, to train a CNN model for self-driving cars, one can use a back-

propagation learning algorithm to settle the CNN parameters by translating the road

images to the steering wheel angle commands. During video analytics (inference),

new data is injected into the trained CNN model. For example, in self-driving cars,

each frame of the video is injected to the CNN model using a feed-forward algorithm

to determine the steering wheel angle commands that should be performed.

Video analytics applications have a high-performance requirement. To support

user experiences, the general principle is that video analytics should match the image

recognition speed of a human. For a human being, it takes about 370 ms to recognize

a face as familiar [72]. In a ping-pong game, it takes about 250 ms for a novice player

13

to read the ball and swing, and even shorter for professional players [20]. As a result,

video analytics is expected to complete within 100ms.

There are studies trying to reduce computation workloads. The most direct way

is reducing model size and sacrifice accuracy. For example, Microsoft and Google

developed small-scale DNNs for speech recognition on mobile platforms by sacrificing

prediction accuracy [10]. MCDNN [39] proposed generating alternative DNN models

to trade-off accuracy and performance/energy. Deep models that are much smaller

than normal were proposed [86] for phones.

There are studies that leverage application-specific characteristics to reduce com-

puting workloads. For example, DeepMon [42] exploited the similarity between

consecutive frames in first-person-view videos to reduce computation workloads.

Glimpse [21] developed a suite of content-aware techniques to sample only a few

key frames for processing. The rendering operation, a computation-intensive opera-

tion commonly used in 3D game engines, was optimized in [24].

In this thesis, we accelerate video analytics through a series of edge-side resource

allocation strategies in Chapter 4 and resource provisioning in Chapter 5.

2.2 Resource Management on the Edge

In this section, we provide an overview of work related to our study of resource

management on the edge side. Resource management at the edge can be decomposed

into several areas addressing different problems, as shown in the in Fig. 2.2. First, we

describe the existing studies on edge-side resource sharing related to our first work

sTube+; second, we depict work on edge-side resource scheduling related to our

second proposed work namely DNN surgery; and third, report on resource provision

on the edge related to our proposed work namely TAPU. We carefully anticipate

some of our study to explain the relationship between our work and other discussed

14

Resource Management at the Edge

Resource

Estimation

Resource

Discovery

Resource

Allocation

Resource

Sharing

Resource

Provision

PlacementMigration Scheduling
Dynamic

Coalitions

Static

Coalitions

Stube+

Chapter 3

DNN Surgery

Chapter 4

TAPU

Chapter 5

Figure 2.2: A taxonomy of the objective of resource management at the edge.

publications.

2.2.1 Edge-side Resource Sharing

Resources on end devices are heterogeneous and most of the time scarce, and edge

devices also have limited resources compared to resources in the cloud. Sharing

resources between end devices aims at using other devices resources to get a faster

or a lower monetary cost completion of the task. Resource sharing can be classified

into dynamic coalitions and static coalitions, according to whether they include how

to form the groups of devices that will share resources or if they assume that the

formation is already done and focus on the actual sharing.

Sharing computation resources on the edge has been well-studied. Sharing com-

putation resource is typically realized by pooling computation resources in the local

vicinity of client devices. For the static coalitions, [56] exploited opportunistic con-

tacts between the devices, creating a computation sharing mechanism to minimize

the completion time of the task; [76] consider computation resources shared between

two neighbor fog colonies and achieve a 35% reduction of execution time compared

to the non-sharing strategy. Moving to the dynamic static, [11] proposed method

to create a cluster to share both computation and storage resources of vehicles and

15

achieved up to 5 times lower computation delay. Some works focused on energy shar-

ing and data sharing on the edge. [98] proposed a data sharing framework which can

be used to search for a person with the help of multiple cameras. [59] defined device

clusters which can share resource and aimed to share power resources to maximize

the network lift time, i.e. saving energy through offloading to another device.

In this thesis, we focus on sharing the communication resource of the edge devices

aiming to reduce the communication cost. We discuss the difference between existing

communication resource sharing architects and our proposed sTube+.

Smart Building Networks: Modern buildings have building automation sys-

tems (BAS) to control building equipment [36]. Traditional BAS is mostly signal-

based. An sMap architecture [27] was developed to software-define traditional BAS.

In sMap, the IoT devices are organized into a mesh network, and a gateway is used.

The target of sMap and BAS is to manage thousands of devices, from different ven-

dors, within a building. The target of sTube+ is to transmit the data of thousands

of IoT devices, of the same vendor, spread at hundreds of buildings, to the cloud.

sTube+ differs from sMap in the supporting application context. The spread of

the devices in buildings controlled by different building owners made the gateway

approach infeasible since a building-by-building based deployment or agreement is

needed.

Mobile Phones as Relays: One recent proposal to transmit IoT data to the

cloud is to use mobile phones as relays [96]. The objective is to remove the gateway,

which restricts the scalability. An opportunistic network is constructed where IoT

devices will search for nearby mobile phones to relay data. sTube+ does not rely on

opportunistic data transmissions. sTube+ differs as it is clear on who should run the

transmission function.

Cellular Network/Edge Routers: Multiplexing data flow of different devices

is not new. Cellular base stations and edge routers aggregate data flows. sTube+

16

differs from them in where to multiplex. The location of the multiplexing function

of sTube+ is on the IoT devices. Traffic flow multiplexing by base stations/edge

routers is controlled by ISPs; yet in sTube+, it is controlled by the vendors.

3G Data Sharing: Data sharing is not new. One example is the hotspot

function of mobile phones. 3G hotspot is local to a few phones, and a simple master

and slave design is enough. The requirements for sTube+, as represented by SAMS

applications, need a scalable architecture that can handle the heterogeneity of the

hardware devices, multi-path routing, an overall optimization of the cost of a vendor,

etc. The level of complexity differs greatly. Another example is represented by

family plans, where multiple sim cards are allowed. Yet family plans cannot share

different plans, and in our scenario, the vendor may register different plans for overall

optimization. In addition, it is questionable whether ISPs will provide plans where

thousands of sim cards, in particular those with a large amount of small-size flows,

can share a single plan. Intrinsically, this means that ISPs take the burden and cut

their own profits for the benefit of vendors. As such, we believe that ISPs will impose

certain limit even if plans with multiple sim cards are developed; making the vendor

side sharing still important.

2.2.2 Edge-side Resource Allocation

Resource allocation can be tackled from two different perspectives: where to allocate,

and when and how much to allocate. According to allocation approaches, resource

allocation can be classified into resource placement, resource scheduling and resource

migration.

Load distribution is a common instance of resource placement. [35] proposed an

offloading strategy between edge data centers under high loads that show the benefit

of having a larger data center as back-up for a small one. [59] proposed a power

balancing algorithm in which a device decides whether to offload and to which other

17

device depending on the energy left in the batteries of the devices. [65] formulated a

joint computation and communication resource allocation and optimization problem

in a multi-user case focusing on latency and power efficiency. [91] tackled the issue of

service placement in a system composed of edge server nodes and traditional cloud

nodes.

Resource secluding refers to when and how many resources to allocate for the

tasks. There is a huge body of researches forcing on scheduling decisions at the

edge level. [15] studied the impact of three different fog scheduling strategies (delay-

priority, concurrent and first come-first served) on application QoS. [89] proposed

elastic resource allocation for surveillance systems. [90] designed a cost-effective re-

source scheduling strategy between the mobile cloud and the cloud radio access

network.

Considering where the task should be executed, when it comes to services, tasks,

and applications, the focus could be on how they can be moved during execution if

the new location is better, i.e. on migration. Our proposed DNN surgery belongs

to resource migration. Computation offloading is an instance of resource migration.

Research efforts focusing on offloading computation from the resource-constrained

mobile to the powerful cloud will reduce inference time. Neurosurgeon [44] explored

a computation offloading method for DNNs between the mobile device and the cloud

server at layer granularity. However, Neurosurgeon is not applicable for the compu-

tation partition performed by our proposed DNN surgery for a number of reasons:

1) Neurosurgeon only handles chain-topology DNNs that are much easier to pro-

cess. 2) Neurosurgeon can only handle one inference task, without considering a

sequence of tasks. Needless to say the adaptation to network condition realized by

DNN surgery. MAUI [23] is an offloading framework that can determine where to

execute functions (edge or cloud) of a program. However, it is not designed specifi-

cally for DNN partitioning as the communication data volume between functions is

18

small. [83] proposed DDNN, a distributed deep neural network architecture that

is distributed across computing hierarchies, consisting of the cloud, the edge and

end devices. DDNN aims at reducing the communication data size among devices

for the given DNN. DNN surgery differs as it handles dynamic network condition

to reduce the inference latency (communication and computing latency) rather than

communication overhead only.

2.2.3 Edge-side Resource Provisioning

Computation Resource Provisioning. Recently, more powerful computation

resources, such as GPU, TPU and FPGA, are provisioned on the edge device to

improve the computation capacity. Vanhoucke et al. [85] used fixed point arith-

metic and SSSE3/SSE4 instructions on x86 machines to reduce the inference latency.

DeepX [48] explored the opportunities to use mobile GPUs to enable real-time deep

learning inferences. FPGA has been used for different systems and applications.

These studies usually compare the performance of CPU, GPU, FPGA, e.g., in their

energy consumption, processing power, etc, e.g., the energy consumption of an FPGA

is superior to that of a GPU and the processing power of an FPGA is superior to that

of a CPU [63, 46]. These studies then take the advantages of the FPGA to assist/re-

design network functions [54], mobile games [53], audio applications [38], sensing

apps [64]. [92] proposed an automation tool to generate FPGA-based accelerators

for DNN models.

Communication Resource Provisioning. The requirement of network secu-

rity and the need to reduce the volume of data transmission lead to the network func-

tions running on the edge devices becomes complicated. Software network function

is the common method. [28] proposed a scalable software router that parallelisms

packet processing with multiple CPU cores. However, software network functions suf-

fer lower performance, the hardware communication resource should be provisioned

19

to meet the requirement of network functions. To accelerate software packet process-

ing, some studies exploited GPUs. [87] proposed GASPP, a GPU-accelerated packet

processing framework. Recent studies implement network functions with FPGA

exploiting its programmability and the ability to customize the hardware. [52]

accelerated IPsec gateway on FPGA; [8] implemented Gzip on FPGA.

Different from the above works which use dedicated hardware to accelerate com-

putation or communication. Our proposed TAPU provide both computation and

communication resource in a single processing unit by exploiting multi-image FPGA.

The recent development of multi-image FPGA [6] made it possible to pre-stored im-

ages and fast switch among images without reconfiguration. To the best of our

knowledge, we are the first to configure and switch the multiple images of an FPGA

to provide both communication and communication resource.

20

Chapter 3

sTube+: A Communication
Sharing Architecture for

Data-driven After-sales
Maintenance

3.1 Introduction

One important value proposition of the Internet of Things (IoT) is the data generated

by the IoT devices (a.k.a, things) [62]. When sending such data to the cloud, with

state-of-the-art data mining techniques and the computational power of the cloud,

the adding value can be significant [88]. For example, it has been shown that big

building data (e.g., carbon dioxide (CO2) data from the heating, ventilation and air

conditioning (HVAC) systems) can be exploited to predict traffic status of nearby

roads [99]. Smart After-sales Maintenance and Services (SAMS), which will become

the case study of this chapter, is another example. Manufacturers of air conditioners,

pumps, elevators, etc., are now transforming their machinery into smart machinery.

When sending the data of their products to the cloud, SAMS can operate in a trouble-

preventing mode instead of trouble-shooting mode. This can substantially improve

21

the quality and reduce the cost of the product maintenance. Moreover, manufacturers

can learn the usage patterns of their customers. Thus they can recommend other

products and develop top-up services based on such knowledge [51].

To fully realize the aforementioned applications, the things should be accessible

anywhere and anytime. One key question remains to be answered: how to transmit

the data from the things to the cloud, in an easy-to-use and cost-effective way?

The vendor may develop a WiFi network for the IoT application. However,

WiFi needs additional infrastructure, e.g., a gateway that finally relays data to the

cloud. This is not suitable for SAMS. For example, a vendor would like to monitor

all its air conditioners in a region, installed in a large number of buildings. The

WiFi choice needs deployment of WiFi networks on a building-by-building basis. In

other words, the vendor is developing a separated network infrastructure. If using

existing WiFi networks in the buildings, there will be policy and security concerns.

A building can easily have products from tens of vendors. If each vendor wants its

equipment to infiltrate the WiFi network of the building, building operators need to

bear overwhelming liability. Simply-put, applications such as SAMS are looking for

an infrastructure-less solution.

The vendor may rely on the infrastructure of a service provider (ISP) and rent

a dedicated wireless communication channel for each IoT device [37] to support the

thing-to-cloud communication (TCC) links. Current choices for TCC links are very

limited. The readily available 3G/4G is over-costly for the majority of IoT devices.

The industry has realized this problem and is actively developing less costly wireless

communication channels. User Experience-Category (CAT) represents a group of

technologies with much smaller data rates and thus costs [60]. CAT1 was released

in 2016 and CAT0 is under deployment [74]. Nevertheless, we may expect tens of

choices of communication channels with different costs and data rates, yet we will face

hundreds, if not thousands, of heterogeneous requirements. In the SAMS example,

22

Cloud

CameraThermostat
Dynamotor

Fan Elevator

Chiller
Solar Panel

S-node
N-node

TCC
Local

Figure 3.1: Smart After-Sales Maintenance Services (SAMS).

the cost of CAT1 might be justifiable for a chiller, yet it may be too costly for a fan.

We see a clear gap between the possible choices of TCC links, and the number

of requirements on different costs and data rates from the IoT applications. To

address this issue, we propose Sharing Tube plus (sTube+) for IoT communication

sharing. The objective of sTube+ is to organize a greater number of IoT devices, with

heterogeneous data communication requirements to efficiently share fewer choices of

TCC links, and transmit their data to the cloud. An example SAMS application

using sTube+ is shown in Fig. 3.1.

To bring sTube+ into reality, the challenges not only lie in the TCC link sharing

optimization, but also that there is currently no architecture for IoT communication

sharing data delivery. We propose a design approach of centralized price optimization

and distributed network control. We architect a layered architecture for data delivery,

optimize TCC link sharing, and prototype a functioning sTube+ system. We evaluate

sTube+ with experiments and simulations. Finally, we present a SAMS case study.

In this case study, we collect data from chillers and pumps, two core components of

23

a centralized HVAC system, and analyze their performance in the cloud. sTube+

serves as the underlying architecture in this case study.

The rest of this chapter is organized as follows. Section 3.2 presents the moti-

vation. Section 3.3 describes the dedign details of sTube+. We formalize a set of

problems for IoT communication sharing optimization, and develop algorithms with

provable bounds in Section 3.4. We specially study IoT communication sharing un-

der the pay-as-you-go pricing model in Section 3.5. We prototype a fully functioning

system for sTube+ in Section 3.6. We comprehensively evaluate sTube+ in Section

3.7. In particular, we develop a SAMS case study, using sTube+ as the underlying

architecture in Section 3.8. We conclude this chapter in Secion 3.9.

3.2 The Motivation

The state-of-the-art wireless communication channels provide a variety of choices that

trade off communication range, data rate, and costs for different application needs.

Yet the granularity of thing-to-cloud communication choices may not be enough, in

the sense that for each IoT device with its own cost and data rate requirement, we

cannot find a well-matched thing-to-cloud communication channel.

Readily available self-contained solutions, e.g., 3G/4G [43], are provided by ISPs.

3G/4G are over powerful and expensive for most IoT applications. Alternative so-

lutions include LTE Category 1 (CAT1) released in 2016 and the to-appear LTE

Category 0 (CAT0). New choices are being developed, yet the progress can not

match the surging requirements. More importantly, there may be requirements that

will never be developed by ISPs. For example, CAT1 has a monthly cost at around

$1 for a data volume of 45 MB. Assume that an equipment has a data volume of 50

MB but it can only afford $1. ISPs will not deliberately develop such plan since it

makes CAT1 non-marketable. In a sharing environment, a close-by equipment with

24

ZigBeeZigBee
EthernetEthernet

A
p
p

N
et
w
o
rk

M
A
C

S-node N-node Cloud

BLEBLE

IEEE 802.15.4IEEE 802.15.4

ZigBeeZigBee BLEBLE

IEEE 802.15.4IEEE 802.15.4 CAT1CAT1

Chiller

Monitor
Chiller

Maintenance

er

ance

e

a

Pump

Maintenance

Pump

Monitor

CAT0CAT0

sTube+ Network Layer

Figure 3.2: A Layered Architecture of sharing tube plus system.

residual data of 5 MB per month can be shared.

There are communication channels that are free but can only form a local (LOC)

network. Short-range channels include Zigbee, Bluetooth, etc. They are good for

device-to-device communication. WiFi, LoRa and SigFox [49] can provide longer-

range wireless access. These are not self-contained since gateways are needed to

reach the cloud outside. In our design, IoT devices will form LOC networks so as to

share the TCC links. This work, however, will not emphasize on the design of the

LOC networks.

3.3 The Stube+ Architecture

3.3.1 A Layered Architecture for Data Delivery

An End-to-End Approach: In SAMS, each S-node represents an equipment. Even

though in our scenario, all equipment belongs to the same vendor, they differ greatly

in operation, maintenance and services. Each of the S-node and its associated cloud

application can be individually developed, e.g., by sub-divisions of the vendor, and

25

there may need possible future function extensions. We thus choose an end-to-

end approach and let N-nodes only be responsible for traffic forwarding. From the

application’s point of view, the S-node talks with the cloud directly, see Fig. 3.2.

Note that the end-to-end approach requires the hardware of the S-nodes to be able

to support the IP layer. We believe that this is reasonable since the accumulated

value of the collected data in long-term should outweigh such one-time hardware

overhead.

Network Topology Control: With an end-to-end design, the cloud, N-nodes

and S-nodes are all involved in the network layer. We now study how the topolo-

gy/nexthops should be managed.

For a very small scale network, the cloud can adopt a centralized design, where it

computes all connections and broadcasts the peering results. For a general network,

the cloud should not be triggered by micro-level dynamics, i.e., the peering among

N-nodes and S-nodes. We choose to let the cloud only manage and monitor the data

budgets of N-nodes, i.e., the data volume allocated to an N-node for its TCC link

in a period of time. Note that the data budgets of the N-nodes in a sub-area may

be exhausted because certain S-nodes have unexpected traffic, other N-nodes fail,

new S-node joins, etc. Nevertheless, the number of N-nodes is much smaller than

the number of equipment in the system and the frequency of budget allocation and

updates is low.

The nexthop of an N-node is the cloud directly.∗ In this work, we also do not

consider multiple wireless hops where an S-node uses other S-nodes to relay its data.

As such, the remaining issue is to settle the peering between S-nodes and N-nodes.

Our objective is to minimize the complexity. We make two choices. First, we

choose to let S-nodes take the initiative to manage the peering with the N-nodes.

∗Theoretically, an N-node can route from other N-nodes; yet this increases the complexity and
is not necessary for common cases.

26

N-nodesS-node

Broadcast residual

budget-index

Connection

established

Connection

established

rb-indeices

Connect

Request

Connect

Request

Compute connection

probability; Choose

new N-node nc
N-node nc

Figure 3.3: Illustration of nodes interaction when periodically choosing N-node.

In particular, an S-node may need to use the data budget of multiple N-nodes.

Therefore, letting S-nodes, rather than N-nodes, take the initiative has much fewer

overheads. Second, we develop an N-node peering algorithm, where each S-node

makes independent decisions, yet the joint force collectively adapts to various network

and data budget dynamics.

N-nodeS-node

Resend check message

Connection

established

Heartbeat signal

Compute connection

probability; Choose

new N-node nc

“alive”ACK

Heartbeat signal

Heartbeat signal

Heartbeat signal

N-node nc
Connect

request

Connect

ACK

Connection

established

Resend check message

Send check message
X N-node fails

Figure 3.4: Illustration of nodes interaction when the connected N-node is failure.

27

The N-node peering algorithm (N-peering) of the S-nodes: Each S-node main-

tains a set of neighboring N-nodes. Each N-node periodically broadcasts its residual

budget-index (rb-index) to all its neighboring S-nodes. This rb-index is designed as

an increasing function of its remaining data budget. Periodically, S-node will se-

lect to connect to one N-node based on these rb-indices sent from its neighboring

N-nodes. Specifically, let N be the set of neighboring N-nodes of an S-node and Ii

denote N-node i’s rb-index. The S-node computes connection probabilities to each

neighboring N-node as pi “
Ii

ř

jPN Ij
, and connects to one of them according to these

probabilities. As a consequence, the N-node with a greater remaining budget has a

greater probability to be selected. We show the nodes interact of the N-node peeing

process in Fig. 3.3.

Neighbor maintenance of the S-nodes: Each S-node periodically sends heartbeat

signals to check the availability/failure of its neighboring N-nodes, and updates neigh-

bor if the original neighbor fails. The process is shown in Fig. 3.4. Specifically, the

S-node periodically sends heartbeat signal to the connected N-node and waits “alive”

ACK from it. If the S-node does not receive respond from the N-node in time t, it

resends heartbeat signal to the connected N-node. If the S-node does not receive

any respond after three heart signal, the S-node regards the N-node as failure and

updates to a new neighbor. To minimize possible data loss, the S-nodes with a

higher data rates will have a shorter checking period. Let Tci be the checking period

of S-node i. Let Di be the successive data loss that can be tolerated. Let ri be the

data rate of S-node i. Let Tu be the period needed to connect to a new neighbor.

The S-node i sets Tci “
Di

ri
´ 3t ´ Tu. Due to the reliable transmission provided by

CoAP (described in Section. 3.6.1), the data loss of an S-nodes occurs only when the

connected N-nodes fails.

28

LOC Data Modudd leLOC Data Module

Sensing Modudd leSensing Module

LOC Control

Modudd le

LOC Control

Module

Forwarding

Modudd le

Forwarding

Module

LOC Control

Modudd le

LOC Control

Module

TCC Modudd leTCC ModuleN-node

S-node

Cloud

Data Delivery
Sec: 4

TCC Liinkkk SSuubbuu sscccrrriiiippppptttiiiooonnn
and Placement Mooddduudddd llee

SSeeeccc:: 55

TCC Link Subscription
and Placement Module

Sec: 5

AAAApppplliiccaattionsApplications

MAC Control Modudd leMAC Control Module

MAC Control Modudd leMAC Control Module

Data Budget

Modudd le

Data Budget

Module

Figure 3.5: sTube+ module design.

3.3.2 Detailed Modules for a Functioning System

A functioning system has modules of all layers, see Fig. 3.5.

S-nodes have four modules. The sensing module connects to the equipment

and collects sensing data. The MAC control module maintains the data link level

connection between itself and the N-nodes within its communication range. The LOC

control module maintains the network topology. The LOC data module transmits

the data to the N-node.

N-nodes have five modules. MAC control module maintains the data link level

connection between itself and the S-nodes. The forwarding module relays the data

received from its MAC layer by forwarding the packet. The TCC module maintains

the data link level connection between the N-node and the clouds. The LOC con-

trol module answers network layer queries from S-nodes. The data budget module

maintains its data usage and accepts recharging from the cloud if necessary.

The cloud runs applications. The cloud has a centralized TCC link subscription

and placement module. It computes data budgets (details in Section 5) of N-nodes.

29

3.3.3 Security Concerns

IoT systems face various security problems. Common problems and solutions can be

found in [12, 61]. A specific security concern for SAMS is that a vendor does not want

its data captured by other vendors. For example, an attacker may eavesdrop the data

transmission from an S-node, or fake the identity of an N-node to conduct a man-

in-the-middle attack. Here, the challenge in sTube+ is that S-nodes cannot connect

to the Internet directly. As such, we need to maintain the integrity of N-nodes.

We address this problem by a simple authentication design. First, since each

N-node is able to connect to the Internet, the communications between an N-node

and the cloud can be safely established by using standard Transport Layer Security

(TLS) protocols. Second, an S-node and N-node should also be able to verify each

other and establish a safe communication link. This can be achieved via exchanging

their public keys. The main issue here is that how the S-node and N-node can

verify each other’s public key when S-node is disconnected from the Internet. In our

scenario, since S-nodes and N-nodes are produced by the same manufacturer, the

manufacturer can hard code the certificate (derived from the manufacture’s private

key) when the node is produced, i.e., certificate pinning. The manufacture’s public

key is also pinned to the node. As a result, the two parties are able to verify each

other even if they are disconnected from the Internet.

3.4 IoT Communication Sharing Optimization

The IoT Communication Sharing (ICS) problem is to answer which N-node (location)

should reserve a TCC link from the ISP and how much budget they should reserve so

as to minimize the overall monetary cost. In this section, we first present the network

settings. Then we formulate the ICS problem as a cost minimization problem, analyze

the problem complexity, then we design algorithm for ICS problem.

30

3.4.1 Network Topology

The considered network includes m S-nodes and q N-nodes. Let N “ tn1, n2, ..., nqu

denote the set of N-nodes. An N-node can be either installed or vacant. Let fj denote

the indicator, i.e., fj “ 1 if installed; fj “ 0 if vacant. We define f fi pf1, f2, . . . , fqq.

f is a decision variable to be optimized.

Let S “ ts1, s2, ..., smu be the set of S-nodes. Let Sj denote the subset of S-nodes,

which can reach N-node nj. We define S fi tS1,S2, . . .Squ. Here, the term “reach”

means that it is possible for the S-node to deliver its data to the N-node through

some LOC links. We assume that
Ťq

j“1 Sj “ S, i.e., each S-node can reach at least

one N-node. One of our design aims is to install a subset of N-nodes to cover all

S-nodes, i.e.,

ď

j:fj“1

Sj “ S. (3.1)

In the network, the thing-to-cloud communication (TCC) links connect N-nodes

and the cloud, which are charged by ISPs. LOC links connect S-node and N-nodes,

which are free.

3.4.2 Load Constraint Modeling

In this subsection, we discuss how each N-node is able to accommodate the data

usage from its connected S-nodes. In each billing cycle (e.g., one month), S-node

si requires to upload a data volume of ui to the cloud. The S-node’s data volume

is split to be transferred via one or more N-nodes. We define u fi pu1, u2, . . . , umq.

Let vij be the split data volume of si transferred via nj. We define v fi pvij : @i “

1, 2, . . .m,@j “ 1, 2, . . . , qq. In this work, u is given as a priori, and v is to be

optimized. We assume that ui and vij values are integers (e.g., in kilobytes).

For the given ui for S-node si, vij are decision variables to be designed. Since si’s

31

data are transferred via its connected installed N-nodes, we have
ÿ

j:fj“1

vij “ ui, @i “ 1, 2, . . . ,m. (3.2)

The data of si cannot be uploaded via N-nodes that are vacant or out of its commu-

nication range. Therefore, we have

vij “ 0, @i, j : fj “ 0_ si R Sj. (3.3)

In each billing cycle, by paying to the ISP, each N-node could purchase a data

volume allowed to upload to the cloud via its TCC link. Let dj denote the data

volume purchased by nj. We define d fi pd1, d2, . . . , dqq. d is a decision variable. If

nj is installed, the load wj at the TCC link of nj is the accumulated data amount

uploaded by its connected S-nodes. Therefore, we have wj “
ř

i:siPSj vij. wj “ 0 if

nj is vacant. The load wj at the TCC link of node nj cannot exceed the purchased

data volume dj. Therefore, we have

ÿ

i:siPSj

vij ď dj, @j “ 1, 2, . . . , q. (3.4)

3.4.3 The Cost of TCC Sharing

For TCC links, let C “ tc1, c2, . . . , clu be the set of available plans provided by ISPs,

where k denotes the number of plans. The monetary cost for data volume x of plan

ci (i “ 1, 2, . . . , l) can be presented as a function cipxq.
†

Let c1j P C denote the plan adopted by N-node nj. We define c1 fi pc11, c
1
2, . . . , c

1
qq.

Once a plan is selected, it cannot be changed within the billing cycle. For the N-node

†For different pricing models, the form of cost functions are different. For example, the monthly
plan (MP) pricing model, ISPs provide a set of monthly data plans. For data plan mi, let ti denote
the price charged for the fixed amount of cap usage(denoted as ki). If the data usage hits this cap
then a higher price c is charged for each per data usage unit above the cap, the cost function can
be presented as

cmi
pxq “

#

ti , x ď ki

ti ` cpx´ kiq , x ą ki.

The pay-as-you-go pricing model is discussed in Section 3.5.

32

nj with purchased data volume dj, the communication cost of nj can be present as

c1jpdjq. Thus, the total communication cost for q N-node locations is given as:

Ttotal “
q
ÿ

j“1

c1j pdjq . (3.5)

3.4.4 IoT Communication Sharing Problem Formulation

The goal of the IoT Communication Sharing (ICS) problem in this work is to mini-

mize the overall monetary cost of the TCC links, given a set of available plans, the

network topology, and the possible locations for S-nodes and N-nodes. Hence, the

overall monetary cost of the TCC links is the objective function. The decision vari-

ables are the installation indicators f , the adopted cost function c1, the subscribed

data volume d and the data volume v from each S-node si uploaded from each N-

node nj. The constraints are shown in Sections 3.4.1 and 3.4.2. In summary, we

have the following optimization problem:

Problem 3.1. (ICS) Given S, N , u and C, determine f , c1, d and v, subject to

constraints (3.1), (3.2), (3.3) and (3.4), to minimize Ttotal “
řq

j“1 c
1
j pdjq .

3.4.5 Problem analysis

Theorem 3.1. Problem ICS is NP-complete.

Proof. We prove this theorem by transforming the problem into the minimum set

cover problem. Consider a special case that ui “ 1, @i “ 1, 2, . . . ,m. Let the mon-

etary cost at each N-node be a if it is installed, be 0 if vacant. Therefore, we aim

to minimize the number of installed N-nodes. As a result, Problem 3.1 is equiv-

alent to an optimal set cover problem: to select a minimum number of sets from

tS1,S2, . . . ,Squ that covers all elements in the S.

33

n1

n2

nq

s1

s2

s3

sa

sm

... ...

-u2

-u1

-u3

-umdq

d2

d1

∑ui -∑dj
i=1

m q

j=1

Figure 3.6: Illustration of conversion to minimum cost flow problem.

3.4.6 The ICS Algorithm

In this section, we solve the ICS problem. However, ICS problem is NP-complete, it

is unrealistic to find a globally optimal solution within polynomial time. We design

Minimize Communication Cost algorithm (denoted as MCC) which achieves a locally

optimal solution. The rationale to develop MCC is as follows. We need to determine

1) the purchasing strategy, i.e., c1 and d values, and 2) the data upload scheme

v. Accordingly, we develop two sub-functions: best-Plan() and best-Upload().

Given the data upload scheme v, best-Plan() will search for the minimized cost

purchasing strategy i.e., c and d. Given c and d, best-Upload() will find an even

better data upload scheme v. best-Plan() and best-Upload() are then conducted

alternatively to gradually improve the overall cost.

Given the data upload scheme v, finding the best purchasing strategy (i.e, best-Plan())

can be optimally solved. best-Plan() first computes the data usage of each N-node

according to v. Then, knowing the data usage, it can find the minimized cost pur-

chased strategy for each N-node by simply searching within all plans in C.

Given the purchasing strategy (i.e., c1 and d), finding the best data upload scheme

34

v (i.e., best-Upload()) can be converted to the minimum cost flow problem. We

illustrate the conversion in Fig. 3.6. We construct a graph which contains q N-nodes,

m S-nodes and one auxiliary S-node as the vertices. If si P Sj, then an edge is added

between si and nj. For the auxiliary S-node, we add edges between it and all N-nodes.

For N-node nj, we attach the (positive) purchased data volume dj to it. For each

S-node si, we attach the (negative) data usage ´ui to it. For the auxiliary S-node sa,

we attach the negative data usage
řm

i“1 ui ´
řq

j“1 dj to it. For the edges connected

to nj, the attached unit delivery costs are
c1jpdjq

dj
. Our problem now is equivalent to

obtaining the minimum cost flow through the network. The N-nodes are “sources”

for the flow entering the system and the S-nodes are “sinks” where flow leaves the

system. Brenner’s algorithm [19] is used in best-Upload() to solve the minimum

cost flow problem with the computational complexity of Opqplog qq2pm` 1q2q.

Algorithm 3.1: Minimize Communication Cost, MCC().

Input: S,N ,S,u, C
Output: c,d, f ,v

1 v Ð 0; f Ð 0; c1 Ð 0; d Ð 0; rv Ð 0;
2 v Ð init-Upload(S,N ,S,u);
3 repeat
4 rv Ð v;
5 rc1,ds Ð best-Plan(C,v);
6 v Ð best-Upload(S,N ,S,u, c1,d);

7 until rv ““ v;
8 f Ð compute-Indicator(d);
9 return c,d, f ,v;

The overall algorithm MCC() is an iterative algorithm shown in Algorithm 3.1.

The overall algorithm first calls init-Upload() (line 2) to initialize each vij P v to

ui and then it calls best-Plan() (line 5) to determine the purchasing strategy c and

d. Such c and d are given to best-Upload() (line 6). best-Upload() will adjust

the data upload scheme v according to the purchasing strategy. Such v is returned

to best-Plan(). The termination condition for iteration is that there is no change

35

in the data upload scheme v. Then MCC() calls compute-Indicator() to compute

the installed/vacant indicator of N-nodes (line 8) according to d (if dj ą 0, then

fj “ 1. Otherwise fj “ 0).

We now analyze the convergence of MCC(). Let dy denote the purchased data

volume d result of the best-Plan() in the y-th round iteration. The maximum value

of each entry of d is limited to dmax. According to Brenner’s algorithm, dy`1 ĺ dy

when best-Plan() is called. Since d is bounded (i.e., 0 ĺ d), dy will converge after

a finite number of iterations. In each iteration at least one entry of d is decreased

by 1. Therefore, the algorithm will converge at most in r rounds, to a local optimal,

where r “ qdmax. MCC() is a polynomial-time algorithm with the computational

complexity of Oprqplog qq2pm` 1q2 ` rqlq.

3.5 ICS in the Pay-As-You-Go Pricing Model

We now specifically consider the pay-as-you-go (PAYG) pricing model. This is be-

cause PAYG is likely to be the primary pricing model for IoT communication for this

moment when the IoT industry is still in its early stage. Looking into the history,

PAYG is always the pricing model in early stages of a new business, e.g., pay per call,

pay per megabyte of data. Monthly plan (MP) emerges when the business becomes

mature and as a mean of price reduction when facing competition [22]. As a matter

of fact, in our experiment, the CAT1’s pricing model is PAYG.

3.5.1 Problems

For the PAYG pricing model, C “ tc1u, i.e., there is only one plan for PAYG. The

cost function is represented by Eq. (3.6). This is a staircase function. Here x is the

data usage; L is an integer to denote the step size of pricing model. Let pi be the

price for the i-th step of L data volume. In practice, pi decreases as the price step

36

increases [41] and limiÑ`8 pi “ pmin, where pmin is positive.

c1pxq “

r x
Ls
ÿ

i“1

pi. (3.6)

The overall cost using PAYG is
řq

j“1 c1

´

ř

i:siPSj vij

¯

. Thus, we arrive the following

problem:

Problem 3.2 (ICS-PAYG). Given S, N , S, u and c1, determine f , d and v, subject

to constraints (3.1), (3.2), (3.3) and (3.4), to minimize Ttotal “
řq

j“1 c1

´

ř

i:siPSj vij

¯

.

In reality, we notice that many S-nodes can reach a limited number of N-nodes.

We therefore consider a case that the degree of an S-node (i.e., the number of N-nodes

an S-nodes can reach) is limited to D. We have the following problem:

Problem 3.3 (ICS-D-PAYG). Given S, N , S, u, D and c1, determine f , d and v,

subject to constraints (3.1), (3.2), (3.3) and (3.4), to minimize Ttotal “
řq

j“1 c1

´

ř

i:siPSj vij

¯

.

Theorem 3.2. Problems ICS-PAYG and ICS-D-PAYG are both NP-complete.

The proof is similar to the proof of Theorem 3.1. Intrinsically, the complexity

comes from N-nodes covering S-nodes, rather than the pricing model; thus, the

complexity of NP-completeness holds.

3.5.2 Algorithms

We develop Fast N-node Deployment (FND) algorithm for the ICS-PAYG problem,

and Layering N-node Deployment (LND) algorithm for the ICS-D-PAYG problem.

The problem ICS-PAYG and ICS-D-PAYG can be divided into three subprob-

lems: N-node placement to cover all S-nodes (i.e. to find f), the upload scheme (i.e.

to find v) and data volume subscription at each installed N-node (i.e. to find d).

37

FND and LND first solve the N-node placement to cover all S-nodes and the

upload scheme. The TCC link placement to cover all S-nodes is a set cover problem.

For the ICS-PAYG problem, FND adopts the greedy set cover algorithm in [77]. For

the ICS-D-PAYG problem, LND employs the layering set cover algorithm in [22]

which takes advantage of the degree information of S-nodes. In this way, the greedy

set cover algorithm and the layering set cover algorithm select N-node one by one.

Whenever an N-node is selected, the newly covered S-nodes will upload all their data

volume via this N-node.

After the above steps to determine f and v for both FND and LND, each installed

N-node subscribes the closest data cap that is greater than the data volume needed

to be transferred via it, so that d is determined.

Theorem 3.3. The approximation ratio of the algorithm FND for ICS-PAYG is

p1
pmin
plnm` 2q.

Proof. Let the cost of FND be rf , and the optimal cost of ICS-PAYG (denoted as

OPT) be ro. Directly proving rf
ro
ď

p1
pmin
plnm`2q is hard, we prove this by divide and

conquer. As the cost is related to the number of installed N-node and the number

of purchased data volume steps under the PAYG pricing model, we first prove the

installed N-node number of FND (denoted as kf) and OPT (denoted as ko) meets

kf
ko
ď lnm` 1, then we prove the purchased steps of FND (denoted as tf) and OPT

(denoted as to) meets tf ď to` kf . Based on these, we can prove rf
ro
ď

p1
pmin
plnm` 2q.

We first prove kf
ko
ď lnm` 1. Let kmin be minimum number of N-nodes that can

cover all S-nodes. We have kmin

ko
ď 1 and kf

kmin
ď lnm` 1 (by the approximation ratio

of greedy set cover algorithm). Then we have kf
ko
ď lnm` 1.

We then prove tf ď to`kf . Let X denote the total data usage of all S-nodes, and

x “ Lq ´ r, where q P N, 0 ď r ă L. q ď tf , q ď to (otherwise the purchased data

volume of FND and OPT is smaller than total data usage x). Let xj (j “ 1, 2, . . . , kf)

38

denote the data usage of the installed N-node j of FND, and xj “ Lej ´ rj, where

ej P N, 0 ď rj ă L. ej is the steps purchased by the installed N-node j, thus

tf “
řkf

j“1 ej, x “ qL ´ r “ L
řkf

j“1 ej ´
řkf

j“1 rj, we have tf “ q ´ r
L
`

řkf
j“1 rj

L
, as

0 ď rj ă L, we have tf ď q ` kfL
L
“ q ` kf .

At last, we prove rf
ro
ď P1

Pmin
plnm ` 2q based on the above proof. The price of

each step ranges from p1 to pmin, thus rf ď p1tf and ro ě pminto.
rf
ro
ď

p1tf
pminto

ď

p1
pmin
p to
to
`

kf
to
q, each installed N-node must purchase at least one step, thus to ď ko, so

rf
ro
ď

p1
pmin
p1` kf

ko
q ď

p1
pmin
plnm` 2q.

Theorem 3.4. The approximation ratio of the algorithm LND for ICS-D-PAYG is

p1
pmin

pD ` 1q.

The difference between ICS-PAYG and ICS-D-PAYG comes from TCC link place-

ment to cover all S-nodes which is equivalent to the minimum set cover problem.

Different with the ICS-PAYG problem, the maximum degree of S-nodes D is given

in the ICS-D-PAYG problem, thus the information about the degree of S-nodes can

be utilized to improve N-node placement. Using the degree information, the number

of installed N-nodes selected by LND is at most D times to the minimum set cover,

while this ratio is lnm` 1 in FND for ICS-PAYG problem.

FND and LND are based on greedy algorithms. Though they have bounded

performance, they may not perform well in some special cases. If that happens,

we also develop a heuristic MCC-PAYG() based on MCC(). As the pricing model is

determined, there is no need to search plans for N-nodes. Thus, line 5 of MCC() can

be replaced by computing the subscription data volume directly. The complexity of

MCC-PAYG() is Oprqplog qq2pm` 1q2q.

39

CoAP

UDP

IPv6

6LowPan

IEEE

802.15.4

MAC

IEEE

802.15.4

PHY

CoAP

UDP

IPv6

Ethernet

MAC

Ethernet

PHY

IEEE

802.15.4

PHY

IEEE

802.15.4

MAC

6LowPan

IPv6

IPv6/4 Converter

CAT1

PHY

CAT1

MAC

CAT1

IPv4

CAT1

UDP

Cellular

Network

S-node N-node Cloud

Figure 3.7: End-to-End Communication.

3.6 Implementation

We present an implementation of the sTube+ architecture. This includes the MAC

layer, network layer, and application layer. We present a case study of a SAMS in

Section 3.8, where we develop the sensing module to collect data from real equipment

and conduct data analytics in the cloud.

3.6.1 The Network Stack

MAC layer: We implement IEEE 802.15.4, ZigBee, and Bluetooth as the MAC

layer for the LOC network. We choose CAT1 as the MAC layer for the TCC link.

Network layer: We choose 6LoWPan (IPv6) as the networking layer protocol.

There are two special challenges.

The first is that our CAT1 only supports IPv4. Moreover, it only provides appli-

cation layer interfaces. Thus, we develop an IPv6-IPv4 converter. It locates in the

application layer of the N-node (see Fig. 3.7), yet it emulates the network layer. It

has two functions: packet format transformation and IPv6-IPv4 address mapping.

For packet format transformation, the packet we get from the LOC network is an

40

IPv6 packet. We remove all headers to get the application packet. Then we put such

packet to the CAT1 interface. The address mapping is done by mapping a group of

IPv6 address to an IPv4 address (the address of CAT1) and a port. Every N-node

establishes a table of the mapping. Each entry in this table is automatically inserted

when the first packet from the S-node reaches the N-node, i.e., N-node allocates each

S-node connected to it a universal port with the CAT1’s IPv4 address.

The second challenge is that in practice, an S-node should have a fixed IP address.

Yet in our implementation, each S-node gets its IPv6 address from N-node using the

uIP library from Contiki, making the IP address dynamic. Since the interaction

between an S-node and the cloud is bi-directional, the dynamic IP address can break

the interaction. To this end, in the application layer, we develop a notification

mechanism such that if the IP address of the S-node changes, the S-node will notify

the cloud.

Application layer: We use CoAP and UDP for application layer protocols.

sTube+ chooses the optional reliable transmission model of CoAP. Specifically, re-

liable transmission in CoAP is achieved by marking individual messages with the

confirmable flag. When the cloud receives a confirmable message, it responds with

an acknowledgment message to let the S-node know the message arrived. The S-node

will automatically retransmit a confirmable message if an acknowledgment message

is not received in the timeout interval.

3.6.2 The Routing Choice

In our IoT application context, data are routed from the S-nodes to the cloud. We

choose RPL [93] for routing. RPL is a gradient routing technique that organizes nodes

as a Direct Acyclic Graph (DAG) rooted at the sink. RPL has an objective function.

The goal is to minimize the cost to reach the sink from any node. This function has

to be customized. Recall that in our algorithm, we compute the amount of traffic an

41

Arduino STM32 Raspberry Pi

CC2650 CC2650 CC2650

(1) Arduino
S-node

(2) STM32

S-node
(3) Raspberry Pi

S-node

Figure 3.8: The S-node.

S-node sends to each peering N-node. In our implementation, the objective function

maintains a “volume-N-node” table. The table records the residual data volume of

the S-node can be transmitted through its peering N-node. The objective function

chooses the N-node with residual data volume in a round-robin fashion.

3.6.3 Hardware Choices

The S-nodes: We use Arduino MEGA 2560, STM32 and Raspberry Pi 3 Model B

as the S-node hardware board (Fig. 3.8) by considering the different requirements

of the capability of hardware board from the equipment and the hardware cost. For

example, for the Fan, only the speed of fan should be sensing and the cheap Arduino

board can meet its requirement; While for the chiller, the S-node gains the sensing

data from the chiller control interface and Modbus RTU protocol should be run

on hardware board, thus the more powerful and expensive raspberry pi should be

adopted. For the LOC module, we use a Texas Instruments CC2560 SimpleLinkTM

Wireless MCU for the 802.15.4 radio interface.

42

CC2650 Raspberry Pi

RS-232
CAT1

MAX3232

Figure 3.9: The N-node.

The N-nodes: We use a Raspberry Pi 3 Model B as the N-node platform (Fig.

3.9). For LOC side, we use a Texas Instruments CC 2560 SimpleLinkTM Wireless

MCU for the 802.15.4 radio interface. Then this module is connected to Raspberry

Pi using a USB-to-serial cable. For the TCC side, As the interface of Raspberry

Pi is TTL, while the interface provided by CAT1 is RS-232, we use the MAX3232

as a converter. The baud rate of the serial port is 19200 bits per second, i.e. 2400

bytes per second. The CAT1 module supports speeds of 5 Mbps upload and 10 Mbps

download. Thus, the maximum sample rate the proposed approach can adapt is 2400

bytes per second. We rent CAT1 data plans from Telecom Anonymity.

The Cloud: We rent a server in Cloud Anonymity with 8 cores of 2.5 GHz, and

a total memory of 128GB. The data in the cloud are stored in XML format.

3.7 Performance Evaluation

3.7.1 Evaluation by Experiments

1) System Setup:

43

S1 S2 S3 S4 S5

N1 N2 N3

Figure 3.10: The network topology of
the experiments.

ECO MCC-PAYG FND LND
Algorithms

0

1

2

3

4

5

C
o
s
t

p
e
r

m
o
n
th

 (
$
)

Figure 3.11: The monthly cost of
different algorithms.

B1-one

B1-two

B1-threeChillerPump

Figure 3.12: Illustration of the
topology of B1.

ChillerPump AHU Cooling Tower

Figure 3.13: Illustration of the
topology of B2.

The network topology is shown in Fig. 3.10. There are three N-nodes and five

S-nodes. The links are configured as in the figure. We set the data traffic for S1 and

S2 to be 200 bytes every three minutes, and the data traffic for S3, S4 and S5 to be

600 bytes every minute.‡We adopt the PAYG model from China TeleCom. Each 40

MB costs $1, i.e., L “ 40, p1 “ p2 . . . “ pmin “ 1 in Eq. (3.6).

We compare three IoT communication sharing algorithms MCC-PAYG, FND

and LND with the exclusive channel occupation (ECO) algorithm, i.e., each device

transmits its data directly to the cloud via its dedicated purchased TCC link.

‡Our S-nodes and N-nodes do not connect to equipment, since 1) our IoT communication sharing
is general for all types of equipment, and 2) we admit that we do not have enough Fans/Chillers
for an eight-node experiment.

44

Table 3.1: Monthly data usage of different equipment.

Chiller Pump AHU Tower
B1 6.62 MB 4.25 MB - -
B2 9.26 MB 3.65 MB 12.45 MB 3.90 MB

Equipment B1
B2

number one two three
Chiller 6 5 6 5
Pump 13 11 15 4
AHU - - - 6
Tower - - - 11

Table 3.2: The number of equipment at B1
and B2.

B1-one B1-two B1-three
Location

0

5

10

15

20

C
o
s
t

p
e
r

m
o
n
th

 (
$
) ECO ICS

Figure 3.14: The monthly cost at
B1 under the PAYG pricing model.

2) Experiment Results: The system is turned on for 6 hours and the overall

data usage is scaled to one month. We derive the overall monthly cost of different

algorithms. The results are shown in Fig. 3.11. We can observe that under the

PAYG model, MCC-PAYG, FND and LND lead to a cost saving of 20%–40% as

compared with ECO. This matches our expectation since IoT communication sharing

will bring significant cost reductions. Next, we will evaluate a variety set of network

configurations by trace-driven simulations, and we will see that the saving is more

significant when the network is larger.

3.7.2 Evaluation by Trace-driven Simulations

We now use trace-driven simulations to evaluate ICS. We first present two real-world

cases and price models employed in the evaluation. We then show the result of the

cost reduction introduced by ICS. We also show how ICS effectively makes use of

the purchased data volume of TCC link, and the performance of algorithms for the

PAYG pricing model.

1) Simulation Setup: We evaluate ICS and algorithms by simulation using two

45

Table 3.3: The monthly data plans.

Type 1 2 3 4 5
Price 2 $ 5 $ 7 $ 15 $ 25 $

Volume 30 MB 100 MB 200 MB 500 MB 1 GB

B1-one B1-two B1-three
Location

0

10

20

30

40

C
o
s
t

p
e
r

m
o
n
th

 (
$
) ECO ICS

Figure 3.15: The monthly cost at B1
under the MP pricing model.

ECO ICS
(a) PAYG

0

5

10

15

20

25

C
o
s
t

p
e
r

m
o
n
th

 (
$
)

ECO ICS
(b) MP

0

10

20

30

40

50

Figure 3.16: The monthly cost at B2
under different pricing model.

real-world cases.

Case 1: We work on a SAMS application and we collect data of building group

belong to Anonymity property Ltd (denoted as B1). It consists of three buildings

(denoted as B1-one, B1-two and B1-three). We collect the data of chillers and

pumps which belong to a same vendor Anonymity. The chillers and the pumps

of each building are located in the plant room on the top floor. The number of the

chillers and the pumps of each building of B1 is showed in Table 3.2. Each equipment

connects to an S-node and can be regarded as a possible location of N-node. The

network topology of B1 is shown in Fig. 3.12.

We collected four types of data for the chiller to compute COP, such as the

supplying/returning chilled water temperature. We collect data of the power input

and the heat transfer to circulating water for the pump to compute Water Transfer

Coefficient (WTC) §. The data of the chillers and the pumps were collected at 30

minute intervals. The monthly data volume collected from each chiller and each

§ WTC is a performance index of the pump. The pump should be maintained before the WTC
under a threshold.

46

pump are showed in Table 3.1.

Case 2: We also employ the publicly available data. We use the data of a

building (denoted as B2) located at Kuwait University [71]. The data are from

chillers, pumps, air handling units (AHU) and cooling towers of B2. The number of

each kind of equipment is showed in Table 3.2. Each equipment can be regarded as

an S-node and a possible location of N-node. The network topology of B1 is shown

in Fig. 3.13.

For the traffic of chiller, pump and cooling tower, we use the real traffic collected

in [14]. The data of chiller, pump and cooling tower were collected at one minute

intervals. The data of chillers includes 8 types of data, such as work load, supply

temperature and return temperature. For the traffic of AHU, we use the real traffic

pattern described in [95], which also collects data at one minute intervals. The data

of AHU includes 14 features including air mass flow rate, room air temperature, etc.

The monthly data volume of the four types of equipment is shown in Table 3.1.

The pricing models: We study two pricing models: 1) PAYG, the first 40 MB

costs $1, i.e., L “ 40, p1 “ 1, the prices of the following 40 MB steps are $0.8, i.e.,

p2 “ p3, . . . “ pmin “ 0.8 in Eq. (3.6); 2) MP, the monthly data plans are shown in

Table 3.3 with $0.6 charged for each 1 MB over the cap.

Evaluation Criteria: We evaluate ICS employing MCC algorithm and ECO

with the settings of in Case1 and Case2 under the two pricing models. We also run

MCC-PAYG, FND and LND algorithms for PAYG pricing model.

We evaluate the data transmission cost of ICS and ECO. We introduce underuti-

lized ratio for TCC link. The underutilized ratio of TCC link is the ratio between

the unused purchased data volume and the purchased data volume of TCC link. The

underutilized ratio can indicate how effectively the purchased data volume of TCC

link has been used. We evaluate the underutilized ratio of TCC link of ICS and

ECO. We also evaluate the data transmission cost of MCC-PAYG, FND and LND

47

0 20 40 60 80 100
 Underutilized ratio (%)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

ECO

ICS

Figure 3.17: The CDF of the
underutilized ratio of TCC links at

B1.

0 20 40 60 80 100
 Underutilized ratio (%)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

ECO

ICS

Figure 3.18: The CDF of the
underutilized ratio of TCC links at

B2.

B1-one B1-two B1-three
Location

0

2

4

6

8

10

C
o
s
t

p
e
r

m
o
n
th

 (
$
) MCC-PAYG FND LND

Figure 3.19: The monthly cost of
different algorithms for PAYG at B1.

MCC-PAYG FND LND
Algorithms

0

2

4

6

8

10

C
o
s
t

p
e
r

m
o
n
th

 (
$
)

Figure 3.20: The monthly cost of
different algorithms for PAYG at B2.

under PAYG pricing model.

2) Results:

Data Transmission Cost Reduction: We first compare ECO and ICS under

two pricing models at B1 in Figs. 3.14–3.15. We see that ICS shows a higher cost

saving compared with experimental results. This matches our expectation since the

advantage of sharing becomes more significant when there are more S-nodes to share.

For the PAYG pricing model, the cost of ECO is 4.8 times, 8 times and 4.4 times to

that of ICS at B1-one, B1-two and B1-three respectively. For the MP pricing model,

the cost of ECO is 3.2 times, 3.2 times and 2.4 times to that of ICS at B1-one, B1-two

and B1-three respectively, a slightly less than that of PAYG. This is because, in MP

pricing model, the cost gap between two adjacent plans is bigger, thus if the data

48

volume of one monthly data plan cannot meet the requirement of an N-node, the

N-node has to purchase the other one whose price is much higher so that purchased

data are underutilized, while in the PAYG model, the TCC link can purchase steps

which are cheaper one by one.

In Fig. 3.16, we also compare the cost of ECO and ICS under the PAYG and

MP pricing models at B2. We see cost savings of 78% and 71% on PAYG and MP

respectively. This further confirms that ICS significantly outperform ECO.

The underutilized ratio of TCC link: We compare the underutilized ratio of

TCC links under ECO and ICS. Please note that the higher underutilized ratio indi-

cates the customer waste more data volume which has been paid. High underutilized

data volume ratio discourages customers.

In Figs. 3.17–3.18, we show the cumulative distribution function (CDF) of TCC

links’ underutilized ratio of ECO and ICS at B1 and B2 under the PAYG pricing

model where L “ 10 MB. In Fig. 3.17, we can observe that 20% TCC link’s under-

utilized ratio of ICS at B1 is 0% which means the data volume of these TCC links

has been used up without waste. No TCC links’ purchase can be fully used under

ECO. We can also observe that the underutilized ratio of all TCC links of ICS is

under 23%. For the ECO, the underutilized ratios of TCC links could arrive 57%.

The underutilized ratio gap between ECO and ICS is even greater at B2, shown

in Fig. 3.18. We can see that 50% TCC links’ underutilized ratio is 0%, while this

value is still 0 for ECO. We can also observe that the underutilized ratio of all TCC

links of ICS is under 18%. For the ECO, the underutilized ratio of TCC links could

be as much as 61%. This illustrates that through IoT communication sharing, the

purchased data volume of TCC link can be made better use of compared with ECO.

This is also the reason why ICS can lead to a substantial cost reduction compared

with ECO.

The performance of algorithms for PAYG: We compare our MCC-PAYG

49

Tower AHU Cold waterHot water Cold airHot airFan

Pump Chiller

Pump

Figure 3.21: A typical centralized HVAC system.

algorithm with FND and LND algorithms for the PAYG pricing model.

In Figs. 3.19–3.20, we show the monthly cost of MCC-PAYG, FND and LND

at B1 and B2 respectively. We notice that MCC-PAYG, FND and LND have a

cost saving of 76%–88% compared with ECO (the costs of ECO at three building

of B1 shown in Fig. 3.14 are $19, $16 and $21 respectively, and $26 at B2 shown in

Fig. 3.16). These results illustrate that MCC-PAYG, FND and LND work effectively

compared with ECO under the PAYG pricing model.

We see that MCC-PAYG outperforms FND and LND in these two situations. We

also see that MCC-PAYG and FND outperform LND. Compared with LND, FND

has cost saving from 26% to 50%. This is because, at B1 and B2, the maximum

degree of S-nodes range from 5 to 8, and LND is suitable for the scenario where the

degree of S-nodes is small.

3.8 A Case Study

We are developing a SAMS for a centralized air-conditioning system (Fig. 3.21 is an

illustration of a centralized air-conditioning system with water tower, chillers to cool

down the water, pumps to push water circulation, air handling unit (AHU) to use

50

Chiller1Pump1

Chiller2Pump2

Pump5

Chiller3Pump3

Pump6

Chiller4Pump4

Pump7

S

N

S

S

S

S

S

SS

S

S

S
Pump8

RS-485

S

Figure 3.22: SAMS supported by the sTube+ architecture.

Anonymity

Figure 3.23: The data usage of the 4 chillers and 8 pumps.

51

Para. Description
Fr Condenser flow rate (m3{h)
Tr The returning chilled water temperature (˝C)
Ts The supplying chilled water temperature (˝C)
Wc Chiller power input (kWh)
Q Heat transfer to circulating water (kJ)
Wp Pump power input (kWh)

Table 3.4: The parameters for computing COP and WTC.

cold water to cool down the air, and fans to push air circulation. Finally, cold air

will air-condition the offices and the temperature is controlled by the amount/speed

of cold air allowed into an office).

We compute the performance of a chiller by Coefficient of Performance (COP,

COP “ 4.181ˆFrˆpTr´Tsq

Wc
) and the performance of a pump by Water Transfer Coeffi-

cient (WTC, WTC “ Q
Wp

) [57].

We develop the sensing module on Raspberry Pi to collect the raw data in Table

3.4. Chillers and pumps have standard APIs to output data from their embedded

sensors. Using chiller as an example, a chiller controller uses a ModBus RTU protocol

with an RS-485 interface. Modbus RTU protocol is a query-response protocol. We

implement an application in Raspberry Pi using the standard library libmodbus

to query the chiller through Modbus RTU protocol. The communication between

USB port of Raspberry Pi and RS-485 need a USB/RS485 Converter module as the

electrical level difference. Our hardware is shown in Fig. 3.22.

We deployed one N-node on a chiller and 12 S-nodes, four chillers and eight

pumps (Fig. 3.22). All our nodes are powered by AC and we ran our system

for 12 consecutive days. Our cloud monitored the data consumed by each S-node

(Fig. 3.23). Our system can lead to a great cost reduction. In our case, We employ

the PAYG-E pricing model provided by China TeleCom. The total data traffic of

four chillers and eight pumps in 10 days was 13.76 MB. The monthly communication

52

cost of our system is $2 . If adopting the ECO method, the cost is $12 which is six

times to our method. Note that, $2 is also the optimal cost we can get under the

real pricing model.

3.9 Chapter Summary

One core value of the Internet-of-Things is the data of the things (i.e., IoT devices).

Yet, transmitting the data to the cloud is still not pervasively achievable. The in-

dustry is actively developing various communication choices to support the diverse

requirements of IoT data transmission. We demonstrated in this chapter, that the

number of IoT communication choices may not easily catch up the requirements.

We carefully analyzed example application scenarios. We proposed a solution of

sTube+ on IoT communication sharing. The design of sTube+ includes a layered

data delivery architecture, algorithms for cost optimization, and a prototype of a

fully functioning system. We further develop a case study of chiller and pump main-

tenance, where sTube+ acts as the underlying architecture.

53

54

Chapter 4

DNN Surgery: Accelerating

Inference on the Edge

4.1 Introduction

Recent advances in deep neural networks (DNN) have substantially improve the

accuracy and speed of computer vision and video analytics, which creates new av-

enues for a new generation of smart applications. The maturity of cloud computing,

equipped with powerful hardware such as TPU and GPU, becomes a typical choice

for such kind computation intensive DNN tasks. For example, in a self-driving car

application, cameras continuously monitor and stream surrounding scene to servers,

which then conduct video analytic and feed back control signals to pedals and steer-

ing wheels. In an augmented reality application, a smart glass continuously records

its current view and streams the information to the cloud servers, while the cloud

servers perform object recognition and send back contextual augmentation labels, to

be seamlessly displayed overlaying the actual scenery.

One obstacle to realizing smart applications is the large amount of data volume

of video streaming. For example, Google’s self-driving car can generate up to 750

megabytes of sensor data per second [84], but the average uplink rate of 4G, fastest

existing solution, is only 5.85Mbps [7]. The data rate is substantially decreased when

55

the user is fast moving or the network is heavily loaded. In order to avoid the effect

of network and put the computing at the proximity of data source, edge computing

emerges. As a network-free approach, it provides anywhere and anytime available

computing resources. For example, AWS DeepLens camera can run deep convo-

lutional neural networks (CNNs) to analyze visual imagery [2]. Nevertheless, edge

computer themselves are limited by their computing capacity and energy constraints,

which cannot fully replace cloud computing.

From Fig. 4.1, we observe that, for the DNN, the amount of some intermediate

results (the output of intermediate layers) are significantly smaller than that of raw

input data. For example, the input data size of tiny YOLOv2 [73] is 0.95MB, while

the output data size of intermediate layer max5 is 0.08MB with a reduction of 93%.

This provides the opportunity for us to take the advantages of the powerful computa-

tion capacity of the cloud computing and the proximity of the edge computing. More

specifically, we can compute a part of DNN on the edge side, transfer a small number

of intermediate results to the cloud, and compute the left part on the cloud side. The

partition of DNN constitutes a tradeoff between computation and transmission. As

shown in Fig. 4.2, partition at different layers will cause different computation time

and transmission time. So, an optimal partition is desirable.

Unfortunately, the decision on how to split the DNN layers heavily depends on

the network conditions. In a LTE network, the throughput can decrease by 10.33

times during peak hours [70], and this value could reach 18.65 for a WiFi hotspot [34].

Under a high-throughput network condition, computing delay dominates and it is

more desirable to offload the DNNs as early as possible. However, if the network

condition degrades severely, we should prudently determine the DNN cut so to de-

crease the volume of data transmission. For example, Fig. 4.3 shows that when the

network capacity is as high as 18Mbps, the optimal cut is at input layer and the

overall processing delay is 0.59s. However, when the network capacity is lowered to

56

in
p
u
t

co
v
n
1

m
a
x
1

co
n
v
2

m
a
x
2

co
n
v
3

m
a
x
3

co
n
v
4

m
a
x
4

co
n
v
5

m
a
x
5

co
n
v
6

m
a
x
6

co
n
v
7

co
n
v
8

co
n
v
9

o
u
tp

u
t

Layer

0

1

2

3

4

5

O
u
tp

u
t

D
a
ta

 S
iz

e
 (

M
B

)

Figure 4.1: The output data size of
each layer of YOLOv2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Partition Layer

0

2

4

6

8

10

La
te

n
cy

 (
s)

in
p
u
t

co
n
v
1

m
a
x
1

co
n
v
2

m
a
x
2

co
n
v
3

m
a
x
3

co
n
v
4

m
a
x
4

co
n
v
5

m
a
x
5

co
n
v
6

m
a
x
6

co
n
v
7

co
n
v
8

co
n
v
9

d
e
te

ct

Edge Computation Time

Transmission Time

Cloud Computation Time

Figure 4.2: Latency constitution when
partition at the different layers of tiny

YOLOv2. Bandwidth is 4Mbps.

4Mbps, cutting at input layer is no longer valid as the communication delay increases

substantially. Under this scenario, cutting at max5 is optimal, with a delay reduction

of 62%.

Another challenge in the partition is that the recent advances of DNN show that

DNNs are no longer limited to a chain topology, DAG topologies gain popularity.

For example, GoogleNet [80] and ResNet [40], the champion of ImageNet Challenge

2014 and 2015 respectively, are DAGs. Obviously, partitioning DAG instead of chain

involves much more complicated graph theoretic analysis, which may lead to NP-

hardness in performance optimization.

To this end, in this chapter, we investigate the DNN partition problem, in order

to find the optimal DNN partitioning in an integrated edge and cloud computing

environment with dynamic network conditions. We design a Dynamic Adaptive DNN

Surgery (DADS) scheme, which optimally partitions the DNN network by continually

monitoring the network condition. The key design of DADS is as follows. DADS

keeps monitoring the network condition and determines if the system is operated in

the lightly loaded condition or heavily loaded condition. Under the lightly loaded

condition, DNN Surgery Light (DSL) is developed, which minimizes the overall delay

to process one frame. In this part, in order to solve the delay minimization problem,

57

2-1 20 21 22 23 24 25

Bandwidth (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

n
cy

 (
s)

*

*
*input

conv1

max1

conv2

max2

conv3

max3

conv4

max4

conv5

max5

max6

conv6

conv7

conv8

conv9

output

Best

Figure 4.3: The latency of partition at different layers of YOLOv2 as a
function of bandwidth.

we convert the original problem to an equivalent min-cut problem so that the globally

optimal solution can be found. In the heavily loaded condition, DNN Surgery Heavy

(DSH) is developed, which maximizes the throughput, i.e. the number of frames can

be handled per unit time. However, we prove such optimization problem is NP-hard,

which cannot be solved within polynomial computational complexity. DSH resorts

an approximation approach, which achieves an approximation ratio of 3.

Finally, we develop a real-world testbed to validate our proposed DADS scheme.

The testbed is based on the self-driving car video dataset and real traces of wireless

network. We test 5 DNN models. We observe that compared with executing entire

DNNs on the cloud and on the edge, DADS can reduce execution latency up to 6.45

times and 8.08 times respectively, and improve throughput up to 8.31 times and

14.01 times respectively.

4.2 An Edge-Cloud DNN Inference (ECDI) Model

4.2.1 Background

Video analytics is the core to realize a wide range of exciting applications ranging

from surveillance and self-driving cars, to personal digital assistants and automatic

58

“Dog”
“Tree”
“Cat”

5 9.6 23

32 6 8.2

7 5.3 5.4

12 25 69

32 6 7

30 26 55

Video
Stream

Result

DNN Model

Inference

Figure 4.4: A 7-layer DNN model classifies frames of video.

drone controls. The current state-of-the-art approach is to use a deep neural network

(DNN) where the video frames are processed by a well-trained constitutional neural

network (CNN) or recurrent neural network (RNN). Video analytics use DNNs to

extract features from input frames of the video and classify the objects in the frames

into one of the predefined classes.

DNN network consists of quite a few layers which can be organized in a directed

acyclic graph (DAG). Fig. 4.4 shows a 7-layer DNN model. Inference for video is

performed with a DNN using a feed-forward algorithm that operates on each frame

separately. The algorithm begins at the input layer and progressively moves forward

layer by layer. Each layer receives the output of prior layers as the input, performs

a series of computation on the input data to get the output, and feeds its output to

the successor layers. This process terminates once the computation of output layer

is finished.

The video is generated at the edge side and the frames of the video are fed into

the DNN as input. The computation of each layer in DNN can be performed at the

edge or at the cloud. Computing layers at edge devices does not require to transmit

data to the cloud but incurs more computation due to resource-constrained device.

59

Filter
Concat

Avg
Pooling

3*1
Conv

1*3
Conv

1*1
Conv

3*1
Conv

1*3
Conv

Filter
Concat

1*1
Conv

1*1
Conv

1*3
Conv

3*1
Conv

1*1
Conv

Figure 4.5: The inception v4 network
represented in layer form.

v1

v2

v3

v7

v8

v4

v5 v6

v10

v11

v13

v12

v9

e c

Figure 4.6: Graph representation of
inception v4 network.

Computing layers at the cloud leads to less computation but incurs transmission

latency for transmitting data from edge devices to the cloud.

4.2.2 The ECDI Model

In this subsection. We formally present the ECDI model.

1) Video Frame: A video consists of a sequence of frames (pictures) to be

processed, with a sampling rate Q frames/second. Each sampled frame is fed to

a predetermined DNN for inference. Please note that the sampling rate is not the

frame rate of the video. It indicates how many frames/pictures are processed each

unit time [97].

2) DNN as a Graph: A DNN is modeled as a directed acyclic graph (DAG).

Each vertex represents one layer of the neural network. A layer is indivisible and

must be processed on either the edge side or the cloud side. We add an virtual entry

vertex and an exit vertex to represent the starting point and the ending point of DNN

respectively. The links∗represent communication and dependency among layers.

Let G “ pV
Ť

te, cu,Lq denote the DAG of DNN, where V “ tv1, v2, ¨ ¨ ¨ , vnu is

∗Please note that to avoid misunderstanding, throughout this work, we use the term “link” to
represent “edge of a graph.” This is because “edge” in this work has already represented “edge
computing.”

60

the set of vertices representing the layers of the DNN (specially, v1 and vn represent

the input layer and output layer respectively). e and c denote virtual entry and

exit vertices (to facilitate the subsequent analysis). L is the set of links. A link

pvi, vjq P L represents that vi has to be processed before vj, and vi feeds its output

to vj. Fig. 4.6 shows the DAG of the pure inception v4 network [79] in Fig. 4.5.

Since each layer can be processed on either the edge or cloud side, its processing

time depends on where it is processed (i.e. on the edge or on the cloud). Let

tei and tci be the time needed to process vi one edge and cloud respectively. Let

di and tti denote the output data size and the transmission time of vi. We define

Dt “ td1, d2, ¨ ¨ ¨ , dnu. Let B be the network bandwidth, we have tti “
di
B

. Please

note that B can be dynamically changed and we need to adapt such changes. We

define Fe “ tt
e
1, t

e
2, ¨ ¨ ¨ , t

e
nu, Fc “ tt

c
1, t

c
2, ¨ ¨ ¨ , t

c
nu, Ft “ tt

t
1, t

t
2, ¨ ¨ ¨ , t

t
nu. They denote

the three key delays : processing delay at the edge, transmission delay, and processing

delay at the cloud of each layer.

3) DNN Partitioning: Our objective is to partition DNN into two parts so the

one part is processed at the edge and the other is processed at the cloud. Mathe-

matically, we should find a set of vertices VS as a subset of V such that removing

VS causes that the rest of G becomes two disconnected components. One component

contains e, denoted by V 1E and the other component contains c, denoted by VC . VS is

the cut so that all down-streaming layers are processed at the cloud. V 1E and VS are

processed at the edge and VC are processed at the cloud. We define VE “ V 1E
Ť

VS.

The output data of vertices in VS will be transmitted from the edge side to the cloud.

VE, including V 1E and VS will generate processing delay at the edge. VS will generate

transmission delay. VC will generate processing delay at the cloud. Our aim is to

determine best cut VS so that the overall delay is minimized.

As shown in Fig. 4.6, we cut at VS “ tv3, v5, v9, v12u so that the V 1E “ te, v1, v2, v4u,

VE “ te, v1, v2, v3, v4, v5, v9, v12u, and VC “ tv6, v7, v8, v10, v11, v13, cu. The overall de-

61

lay is the processing delay of VE on the edge and VC on the cloud plus the commu-

nication delay of the output data of layer in VS.

4) Delay Components: Once the partition is made, each frame is processed at

the edge, and then sent from the edge to the cloud, and then processed at the cloud.

Since there are multiple frames to be processed, we assume that the three stages are

conducted in pipeline. In order words, when frame 1 is being processed at the cloud,

frame 2 can be transmitted and frame 3 can be processed at the edge.

The delays of the three stages are characterized as follows. In the edge-computing

stage

Te “
ÿ

viPVE

tei . (4.1)

In the cloud-computing stage

Tc “
ÿ

viPVC

tci . (4.2)

In the communication stage

Tt “
ÿ

viPVS

tti. (4.3)

For each frame, Te, Tc, and Tt are spent for each stage. Frames are processed in

pipeline every 1
Q

. As a consequence, the Gantt chart (scheduling chart) of frames

can be shown in Fig. 4.8. Te, Tc, and Tl cannot exceed 1
Q

. Otherwise, the incoming

rate is greater than the completion rate, leading to system congestion. Our aim is

to smartly partition the DNN so that the overall delay to process frames

is minimized and the system is not congested.

4.2.3 Parameter Estimation for ECDI

In this subsection, we discuss how to derive the input parameters. The first class

of parameters is called DNN profile, including DNN topology G, processing delays

62

In
p
u
t

co
v
n
1

m
a
x
1

co
n
v
2

m
a
x
2

co
n
v
3

m
a
x
3

co
n
v
4

m
a
x
4

co
n
v
5

m
a
x
5

co
n
v
6

m
a
x
6

co
n
v
7

co
n
v
8

co
n
v
9

O
u
tp

u
t0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

C
o
m

p
u
ta

ti
o
n

 T
im

e
 (

s)

In
p
u
t

co
v
n
1

m
a
x
1

co
n
v
2

m
a
x
2

co
n
v
3

m
a
x
3

co
n
v
4

m
a
x
4

co
n
v
5

m
a
x
5

co
n
v
6

m
a
x
6

co
n
v
7

co
n
v
8

co
n
v
9

O
u
tp

u
t0.00

0.01
0.02
0.03
0.04
0.05
0.06

C
o
m

p
u
ta

ti
o
n

 T
im

e
 (

s)

Figure 4.7: The computation latency of YOLOv2’s layers on the edge (top)
and cloud (bottom) respectively.

of each layer at the edge and the cloud Fe, Fc, data size of each layer Dt. These

parameters can be well derived in advance. G and Dt can be directly derived given

the DNN definition. Fe and Fc can be measured beforehand. For example, we derive

Dt of tiny YOLOv2 model and measure Fe of tiny YOLOv2 model processed on

Raspberry Pi 3 model B and Ali Cloud respectively. We show the results in Fig. 4.1

and Fig. 4.7 respectively.

The value B is dynamic and should be measured during the process of DNN

inference. This can be realized by a method similar to HTTP DASH [78]. We use

the tool “ping” at edge to send two different size data consecutively to the cloud,

and measure the response times. The bandwidth equals to the ratio between the

difference of data size and the difference of response times.

The value Q is user-specific. The user lets the system know Q when the inference

starts. The system does nothing unless Q is too large for the system to handle (See

Section 4.3.4).

63

Cloud

Edge

Transmission

Cloud

Edge

Transmission

P
ar

ti
ti

o
n
 m

ax
5

P
ar

ti
ti

o
n
 m

ax
4

0.9 1.8

Time (s)

Frame1 Frame2 Frame3 Frame4

0

0 1.80.9

Frame Arrive

Figure 4.8: Gantt charts for three stages.

v'1 v4

v3

v2

v1

c

e

cut t1
e

t1t
t3

t2 t4
cc

c

v4

v3

v2

v1

(a)

(b)

Figure 4.9: Illustration of conversion to the minimum s-t cut problem.

4.3 ECDI Partitioning Optimization

4.3.1 The Impact of DNN Inference Workloads

Our first objective is to minimize the overall delay to process each frame. This is

true under the light workload : for each stage, the current frame is completed before

the next frame arrives. Mathematically maxtTe, Tt, Tcu ă
1
Q

so that the Gantt chart

is shown as the bottom one of Fig. 4.8. In this case, we just need to complete every

frame as soon as possible, i.e., minimize Tc ` Tt ` Te.

64

However, if the system is heavily loaded, minimizing Te ` Tt ` Tc may lead to

system congestion as maxtTe, Tt, Tcu ě
1
Q

. For example, in Fig. 4.8 (top), Te ą
1
Q

so that the next frame arrives before the current frame is completed at the edge.

Therefore, under this situation, we need to maximize the throughput of the system,

i.e. how many frames at most the system can handle per unit time. Our objective is

to minimize maxtTe, Tt, Tcu as the system throughput is 1
maxtTe,Tt,Tcu

. For presentation

convenience, maxtTe, Tt, Tcu is referred to as the max stage time.

Please note that in Section 4.3.4, we will further discuss how to judge if the

system is lightly loaded or heavily loaded. There, we also need to consider that if

the sampling rate is greater than 1
minmaxtTe,Tt,Tcu

so that the system will be congested

eventually. The system has to force the sender/user to reduce sampling rate.

4.3.2 The Light Workload Partitioning Algorithm

In this subsection, we study Edge Cloud DNN Inference for Light Workload

(ECDI-L) problem. Our goal is to minimize the overall delay of one frame, under

a given the network condition B. In summary, we have the following optimization

problem:

Problem 4.1. (ECDI-L) Given G, rFe,Fc,Dts, and B, determine VE, VS and VC,

to minimize Tinf “ Te ` Tt ` Tc.

Proposition 4.1. Problem ECDI-L can be solved in polynomial time.

One challenge to solve ECDI-L problem directly is that each vertex in G contains

three delay values tei , t
c
i , t

t
i “

di
B

. The delay that contributes to the overall delay

depends on where the vertex is processed. To this end, we construct a new graph

G 1 so that each edge only captures a single delay value. By doing so, we convert

ECDI-L problem to the minimum weighted s-t cut problem of G 1.

We first illustrate how to construct G 1 based on G.

65

Cloud Computing Delay Based on G, we add links between e and each vertex

v P V , referred to as “red links,” to capture the cloud-computing delay of v.

Edge Computing Delay Similarly, we add links between vertex v P V and c,

referred to as “blue links,” to capture the edge-computing delay of v.

Communication Delay All the other links correspond to communication delays.

A link from v to u should capture the communication delay of v. However, this is

insufficient as one vertex may have multiple successors and its communication delay

is counted multiple times. For example, v1 in Fig. 4.6 has 4 outgoing links but the

communication delay of v1 has to be counted at most once. To this end, we introduce

axillary vertices into graph G 1. That is, for any vertex vk P V whose outdegree is

greater than one, we add an auxiliary vertex v1k and link pvk, v
1
kq. The links from

vk to successors of vk are now re-placed from v1k to successors of vk. For example, a

4-layer DNN is shown in Fig. 4.9(a). The outdegree of vertex v1 is greater than one,

we thus add an auxiliary vertex v11 and link pv1, v
1
1q shown in Fig. 4.9(b). The links

pv1, v2q and pv1, v3q are re-placed by links pv11, v2q and pv11, v3q respectively. We define

VD to be the set of axillary vertices.

Now, without considering e and c, if a vertex v has one successor, the link starting

from v corresponds to its communication delay, which is referred to as “black link.” If

v has multiple successors, then all the links starting from v are referred to as “dashed

links” and should not be considered since the communication delay has already been

considered from v to v1.

Links are assigned costs. The costs assigned to red, blue, black links are cloud-

computing, edge-computing, and communication delays. Dashed links are assigned

66

infinity.

cpvi, vjq “

$

’

’

’

&

’

’

’

%

tei , if vi P V , vj “ c.

tti, if vi P V , vj P V
Ť

VD.
tci , if vi “ e, vj P V .
`8, others.

(4.4)

At this stage, we can convert ECDI-L problem to the minimum weighted s–t cut

problem of G 1.

A cut is a partition of the vertices of a DAG into two disjoint subsets. The s–t

cut of G 1 is a cut that requires source s and sink t to be in different subsets, and its

cut-set only consists of links going from the source’s side to sink’s side. The value of

a cut is defined as the sum of the cost of each link in the cut-set. Problem ECDI-L is

equivalent to the minimum e–c cut of G 1. If cutting on link from e to vi P V (red link

shown in Fig. 4.9(b)), then vi will be processed on the cloud, i.e vi P VC . If cutting

on link from vj P V to c (blue link show in Fig. 4.9(b)), then vj will be processed

on the edge, i.e. vj P VE. If cutting on link from vi P V to vj P V
Ť

VD (black

link show in Fig. 4.9(b)), then the data of vi will be transmitted to the cloud, i.e

vi P VS. It is impossible to cut on link from vi P VD to vj P V (dashed links), because

otherwise it will lead to infinite cost (but finite cost exists). The total cost of cut on

red links equals to cloud computation time Tc. The total cost of cut on blue links

equals to edge computation time Te. The total cost of cut on black links equals to

transmission time without network latency Tt. If the e–c cut of G 1 is minimum, then

the inference latency on a single frame is minimum. For example, in Fig 4.9(b), the

cut is at pe, v2q, pe, v3q, pe, v4q, pv1, v
1
1q and pv1, cq. v1 is processed at the edge so that

te1 is counted in the blue link. v2, v3 and v4 are processed at the cloud so that tc2 t
c
3

and tc4 are counted in the red links. The communication delay tt1 is counted in the

black link.

We develop DNN Surgery Light (denoted as DSL) algorithm for ECDI-L prob-

67

lem. The overall algorithm DSL() is shown in Algorithm 4.1. The algorithm first

calls compute-net() to compute Ft. Then it calls graph-construct() (line 2) to

construct G 1 based on G with the computation complexity of Opn `mq, where n is

the number of layers |V |, m is the number of links |L|, and then it calls min-cut()

(line 3) to find minimum e–c cut of G 1 which outputs the partition strategy (i.e.

VE,VS and VC). Boykov’s algorithm [18] is used in min-cut() to solve the minimum

e–c cut problem with the computational complexity of Oppm ` nqn2q. DSL() is a

polynomial-time algorithm with the computational complexity of Oppm` nqn2q.

Algorithm 4.1: DSL Algorithm DSL().

Input: G,Fe,FcDt, B
Output: VE,VS,VC , Te, Tt, Tc

1 Ft Ðcompute-net(Dt, B);
2 G 1 Ðgraph-construct(G,Fe,Fc,Ft);
3 rVE,VS,VC , Te, Tt, Tcs Ð min-cut(G 1);
4 return VE,VS,VC , Te, Tt, Tc;

4.3.3 The Heavy Workload Partitioning Algorithms

As discussed in Section 4.3.1, we formulate the Edge Cloud DNN Inference for

Heavy Workload (ECDI-H) problem, to minimize maxtTe, Tt, Tcu. The deci-

sion variables are VE, VS and VC . In summary, we have the following optimization

problem:

Problem 4.2. (ECDI-H) Given G, rFe,Fc,Dts, and B, determine VE, VS and VC,

to minimize maxtTe, Tt, Tcu (i.e. maximize throughput).

ECDI-H Problem is NP-hard. We provide the sketch of the proof. We prove it

by reducing from the smallest component of the most balanced minimum st-vertex

cut problem (MBMVC-SC), which is known to be NP-complete [17]. We consider

the following MBMVC-SC problem on GA “ pVA
Ť

ts, tu,LAq, the goal is to find a

68

vertex cut set VC to partition the graph into two disjoint components pV1,V2q, for

which s P V1, t P V2 and the largest components among tV1,V2,VCu is minimum.

Any instance of the above problem is equivalent to an instance in ECDI-H problem.

Due to page limitation, detailed explanations are omitted.

ECDI-H is NP-hard. It is unrealistic to find a globally optimal solution within

polynomial time. We design DNN Surgery Heavy (denoted as DSH) algorithm which

achieves a locally optimal solution. In addition, its approximation ratio is 3.

The rationale to develop DSH is as follows. We modify G 1 by changing the costs

of links as follow:

cpvi, vjq “

$

’

’

’

&

’

’

’

%

αtei , if vi P V , vj “ c.

βtti, if vi P V , vj P V
Ť

VD.
γtci , if vi “ e, vj P V .
`8, others.

(4.5)

Here α, β and γ are non-negative variables. The approach is to run DSL() with

several different α, β and γ values. By this way, a solution is generated to optimize

ECDI-L with a specific α, β, γ tuple. Then we test if this solution is also good enough

for ECDI-H. If it is better than all existing solutions, it is regarded as a new solution

to ECDI-H. We repeat the above procedure for a wide range of α, β, γ tuples.

Here, the result of DSL() is determined by the ratio of the three parameters,

instead of their absolute values. Therefore, we can fix one of the three, for example,

β “ 1 , and only vary the other two. Thus, we have a two-dimensional search space

for α and γ. We first search in the two-dimensional plane with a coarse granularity

to find the best solution. Then we use a finer granularity search in the neighborhood

of the best solution for further improvement. We repeat the steps until the improved

performance is smaller than a threshold ε.

The overall algorithm DSH() is shown in Algorithm 4.2. A function search()

(line 11–19) is designed to search for the best solution in a given space S fi rαl, γl, αh, γhs,

69

meaning that αl ď α ď αh, γl ď γ ď γh, and a granularity δ (line 13–14), i.e. the

step size of changing α and γ is δ each time. For each α and γ, search() calls DSL()

to compute the vertex cut and calls max-time() to compute the maxrTc, Te, Tts.

Lines 17–18 guarantee maxrTc, Te, Tts derived is non-increasing.

The overall algorithm first initializes the search granularity δ to be 1 (line 2) and

the search space large enough (line 3–4). It calls search() (line 8) to search on the

given space S with a granularity δ, and returns the best α and γ found currently.

Then DSH() narrows down the search space S (line 8) to the neighborhood of the best

α and γ for the current iteration, and adjusts δ to a finer granularity (line 9). Such

space S and granularity δ is returned to search(). The termination condition for the

loop is that the improved performance is smaller than a threshold ε (line 5). Finally,

it returns the vertex cut with the best-found performance (line 10). Obviously, we

can achieve a local optimal result with respect to the neighborhood of the final α

and γ.

Theorem 4.2. The approximation ratio of the algorithm DSH for ECDI-H is 3.

Proof. Let the max stage time of DHL be tDSH . Let the optimal max stage time of

ECDI-H be t˚. We prove tDSH

t˚
ď 3. Let T ˚ denote the minimum inference latency

for one frame. Let To denote the inference latency of a single frame when achieving

the optimal max stage time. We have T ˚ ď To. Because there are three stages, we

have To ď 3t˚, thus T ˚ ď 3to.

As shown in Algorithm 4.2, when δ “ 1, Search() will calls DSL() using α “ 1

and γ “ 1 as the parameter. When α “ 1 and γ “ 1, DSL() achieves the minimum

inference time T ˚ for one frame. Let t1, t2 and t3 be the edge computation time,

the transmission time and the cloud computation time respectively when achieving

the minimum inference time. We have T ˚ “ t1 ` t2 ` t3. DSH() guarantees the

searched max stage time is non-increasing, thus tm ď maxtt1, t2, t3u, combined with

70

Algorithm 4.2: DSH Algorithm DSH().

Input: G,Fe,Fc,Dt, B, ε,K
Output: VE,VS,VC , Tmax

1 Ft Ðcompute-net(Dt, B);
2 Tmax Ð `8; T 1max Ð 0; δ Ð 1;

3 αl Ð 0; γl Ð 0; αu Ð
ř

pFeq

minpFtq
; γu Ð

ř

pFcq

minpFtq
;

4 S Ð rαl, γl, αu, γus;
5 while |T 1max ´ Tmax| ě ε do
6 T 1max Ð Tmax;
7 rα, γ,VE,VS,VC , Tmaxs ÐSearch(S, δ, Tmax);
8 αl Ð α ´ δ; αu Ð α ` δ;γl Ð γ ´ δ; γu Ð γ ` δ;
9 δ Ð δ{K;

10 return VE,VS,VC , Tmax;
11 function Search(rαl, γl, αu, γus, δ, T

˚
max)

12 Tmax Ð `8;
13 for αÐ αl;α ď αu;αÐ α ` δ do
14 for γ Ð γl; γ ď γu; γ Ð γ ` δ do
15 rVE,VS,VC , Te, Tt, Tcs ÐDSL(G, αFe, γFc,Dt, B)
16 Tmax Ðmax-time(Te, Tt, Tc);
17 if Tmax ď T ˚max then
18 α˚ Ð α; γ˚ Ð γ; T ˚max Ð Tmax;

19 return α˚, γ˚,VE,VS,VC , T ˚max;

T ˚ “ t1 ` t2 ` t3, we have tm ď Tmin. As tm ď T ˚ and T ˚ ď 3t˚, we prove

tDSH

t˚
ď 3.

4.3.4 The Dynamic Partitioning Algorithm

We now consider network dynamics. In practice, the network status B varies.

This will affect the workload mode selection and the partition decision dynamically.

We design Dynamic Adaptive DNN Surgery (DADS) scheme to adapt network dy-

namics.

It is shown in Algorithm 4.3. monitor-task() monitors whether the video is

active (line 2). This can be realized by tool “iperf.” Detailed implementation can be

71

found in Section 4.4. The real-time network bandwidth is derived by monitor-net()

(line 3). Then DSL() is called to compute the partition strategy (line 4). In this case,

if it satisfies the sampling rate 1
Q

, i.e.maxtTe, Tt, Tcq ă
1
Q

, we can confirm that the

system is in the light workload mode and the partition by DSL is accepted.

Otherwise, the system is in the heavy workload mode and calls DSH() to adjust

the partition strategy to minimize the max delay (line 6). However, if the completing

rate is still smaller than the sampling rate, it means that the sampling rate if too

large so that even DSH() still cannot satisfy the sampling rate. The system will be

congested. It calls the user to decreases the sampling rate (line 7–8).

Algorithm 4.3: DADS Algorithm DADS()

1 while true do
2 if monitor-task()==true then
3 B Ð monitor-net();
4 rVE,VS,VC , Te, Tt, Tcs Ð DSL(G,Fe,Fc,Dt, B);
5 if maxtTe, Tt, Tcu ą

1
Q

then

6 rVE,VS,VC , Tmaxs Ð DSH(G,Fe,Fc,Dt, B, ε,K);
7 if Tmax ą

1
Q

then

8 inform-decrease();

9 execute(VE,VS,VC);

4.4 Implementation

We implement a DADS prototype system. We use the Raspberry Pi 3 model B as

the edge device, integrated with a Logitech BRIO camera. We rent a server in Cloud

Ali with 8 cores of 2.5 GHz and a total memory of 128 GB. We employ WiFi as the

communication link between the edge device and the cloud. The wired link from

the edge router and the cloud is sufficiently large. We implement our client-server

interface using GRPC, an open source flexible remote procedure call (RPC) interface

for inter-process communication.

72

The edge device. The duty of the edge device is to 1) extract video from the

camera and to sample frames from video, 2) make partition decision, 3) process the

layers allocated to the edge device, and 4) inform the cloud the partition decision

and transfer the intermediate results to the cloud.

For video extraction, we extract videos from camera logitech BRIO using the pro-

vided API video capture(). The camera transfers the captured video to Raspberry

Pi through the USB-to-serial cable.

For partition decision making, we implement a process that monitors the gener-

ated frame by the camera, and runs DADS scheme. DADS requires to estimate the

real-time network bandwidth. We use the command “iperf” provided by the oper-

ation system Raspbian on Raspberry Pi. This command feeds back the real-time

network bandwidth between the Raspberry Pi and the cloud.

For processing allocated layers on the edge, we install a modified instance of Caffe

and store a full DNN model on the edge device. The challenge is to control Caffe

to stop execution at partitioned layers (e.g., VS). In Caffe, there is a “prototxt” file

recording the DNN structure. Layers are processed according to this file. To solve

the challenge, we modify the model structure file “prototxt” by inserting a “stop

layer” after each partitioned layer. The instance of Caffe will stop processing at the

desired places.

For the intermediate results and partition decision transmission, the edge device

calls the RPC function receiveRPC() provided by the cloud to transmit the data to

the cloud.

The cloud. The duty of the cloud is to execute the DNN layers allocated to the

cloud. There are two jobs: 1) to receive the partition decision and the intermediate

results from the edge device, and 2) to execute the layers allocated to the cloud.

For the first job, we expose an API receiveRPC() to the edge device. After

completing processing layers allocated to the edge, the edge device calls this RPC

73

Tiny YOLOv2

VGG16

NiN

Input Output Conv Max FC SoftMax

Figure 4.10: The chain-topology DNN models.

function to transmit the intermediate results packed with the partition decision to

the cloud.

For the second job, we implement a modified instance of Caffe and store a full

DNN model. The challenge is to execute only the layers allocated to the cloud. To

this end, after receiving the partition decision and intermediate results, the layers

allocated to the edge are deleted before the marked place in “prototxt,” and the

intermediate results are forwarded to the corresponding layers as input. By this way,

only layers allocated to the cloud will be executed.

4.5 Performance Evaluation

We evaluate the DADS prototype (Section 4.4) using real-trace driven simulations.

4.5.1 Setup

Video Datasets. We employ the publicly available BDD100K self-driving dataset.

The videos of this dataset are obtained from the camera on the self-driving car. Each

video is about 40 seconds long and is viewed in 720p at 30 FPS.

Workload Setting. We divide the inference task into low workload mode and

74

ResNet-18

AlexNet

Input Output Conv Max FC

Figure 4.11: The DAG-topology DNN models.

Table 4.1: DNN Benchmark Specifications

CAT1 3G 4G WiFi
Uplink rate (Mpbs) 0.13 1.1 5.85 18.88

heavy workload mode. Accordingly, We transform the video into different sampling

rates to produce different workload. We set a low sampling rate to 0.1 frame per

second when evaluating light workload mode, and 20 frames per second for heavy

workload mode. The default resolution is 224p. Each inference task consists of

processing 100 frames using the given DNN benchmarks.

Communication Network Parameters. To model the communication be-

tween edge and cloud, we used the average uplink rate of mobile Internet for different

wireless networks, i.e. CAT1, 3G, 4G and WiFi as shown in Table 4.1.

DNN Benchmarks. DADS can make partition not only on chain topology

DNN but also on the DAG topology. We evaluate the performance of DADS for

Table 4.2: DNN Benchmark Specifications

Type Chain DAG

Model NiN YOLOv2 VGG16 Alexnet ResNet18

Layers 9 17 24 23 20

75

both topologies. For the chain topology, NiN, tiny YOlOv2 and VGG16, are well-

known models used as benchmarks in this evaluation shown in Fig. 4.10. For the DAG

topology, we employ AlexNet and ResNet-18 as the benchmarks shown in Fig. 4.11.

Evaluation Criteria: We compare DADS against Edge-Only (i.e. executing

the entire DNN on the edge), Cloud-Only (i.e. executing the entire DNN on the

cloud), and a variant Neurosurgeon which is a partition strategy for chain-topology

DNN. To evaluation Neurosurgeon’s performance for DAG, we consider a variant

Neurosurgeon, which first employs topological sorting method to transform the DAG

topology to the chain topology, and then uses the original partition method. We use

the Edge-Only method as the baseline, i.e. the performance is normalized to Edge-

Only method.

We evaluate the latency and throughput of DADS compared with Edge-Only,

Cloud-Only and Neurosurgeon in Section 4.5.2. We also evaluate the impact of

different types of wireless network to DADS, and the impact of bandwidth on the

selection of workload mode in Section 4.5.3.

4.5.2 Performance Comparison

We first compare our DADS with Edge-Only, Cloud-Only and Neurosurgeon under

light workload mode and heavy workload mode across the 5 DNN benchmarks in

Fig. 4.12–4.14. The results are normalized to Edge-Only method. We see that

DADS achieves a higher latency speedup and throughput gain compared with other

methods.

Comparing DADS with Edge-Only and Cloud-Only: DADS has a latency

speedup of 1.91–6.45 times, 1.35–8.08 times compared with Edge-Only and Cloud-

Only methods respectively under the light workload mode shown in the bottom graph

of Fig. 4.12. DADS has a throughput gain of 3.45–8.31 times, 1.46–11.13 times

compared with Edge-Only and Cloud-Only methods respectively under the light

76

NiN YOLOv2 VGG16 Alexnet ResNet18
0
1
2
3
4
5
6
7

La
te

n
cy

 S

p
e
e
d
u
p Edge-Only DADS Cloud-only

NiN YOLOv2 VGG16 Alexnet ResNet18
0
1
2
3
4
5
6
7
8
9

T
h
ro

u
g
h
p
u
t

 I
m

p
ro

v
e
m

e
n
t

Edge-Only DADS Cloud-Only

Figure 4.12: Latency speedup and
throughput gain achieved by DADS

under light workload mode.

NiN YOLOv2 VGG16 Alexnet ResNet18
0

1

2

3

4

5

6

La
te

n
cy

 S

p
e
e
d
u
p Edge-Only DADS Cloud-only

NiN YOLOv2 VGG16 Alexnet ResNet18
0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t

 I
m

p
ro

v
e
m

e
n
t

Edge-Only DADS Cloud-Only

Figure 4.13: Latency speedup and
throughput gain achieved by DADS

under heavy workload mode.

NiN YOLOv2 VGG16 AlexNet ResNet18
0
1
2
3
4
5
6
7

La
te

n
cy

 S

p
e
e
d
u
p

Neurosurgeon DSL DSH

NiN YOLOv2 VGG16 AlexNet ResNet18
0
1
2
3
4
5
6
7

T
h
ro

u
g
h
p
u
t

 I
m

p
ro

v
e
m

e
n
t

Neurosurgeon DSL DSH

Figure 4.14: Latency and throughput
speedup achieved by DADS vs.

Neurosurgeon under light and heavy
workload modes.

CAT1 3G 4G WIFi
0

2

4

6

8

10

La
te

n
cy

 S

p
e
e
d
u
p Edge-Only

DADS

Cloud-Only

CAT1 3G 4G WIFi
0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t

 I
m

p
ro

v
e
m

e
n
t

Edge-Only

DADS

Cloud-Only

Figure 4.15: Latency speedup and
throughput gain achieved by DADS

of different networks under light
workload mode.

workload mode shown in the upper graph of Fig. 4.12. This is because, Edge-Only

method executes the entire DNN on the edge side, it avoids data transmission and

ignores the weak computation capacity of edge side. Cloud-Only method ignores the

effect of the transmission time. DADS considers both computation and transmission,

and it makes a good tradeoff between them.

From Fig. 4.16, we can see that, for the heavy workload mode, DADS outper-

forms Edge-Only and Cloud-Only 1.66–5.19 times and 1.07–6.92 times respectively

in latency reduction, and DADS outperforms Edge-Only and Cloud-Only 4.34–9.14

times and 1.46–14.10 times respectively in throughput gain. This further confirms

that DADS significantly outperforms Edge-Only and Cloud-Only methods.

77

CAT1 3G 4G WIFi
0

2

4

6

8

10

La
te

n
cy

 S

p
e
e
d
u
p

Edge-Only

DADS

Cloud-Only

CAT1 3G 4G WIFi
0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t

 I
m

p
ro

v
e
m

e
n
t

Edge-Only

DADS

Cloud-Only

Figure 4.16: Latency speedup and
throughput gain achieved by DADS
of different networks under heavy

workload mode.

0 2 4 6 8 10
Bandwidth (Mbps)

0
1
2
3
4
5
6
7
8
9

La
te

n
cy

 S

p
e
e
d
u
p

H
e
a
v
y

W
o
rk

lo
a
d Light Workload

Edge-Only

Cloud-Only

DSH

DSL

0 2 4 6 8 10
0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t

 I
m

p
ro

v
e
m

e
n
t

Edge-Only

Cloud-Only

DADS

Figure 4.17: Latency speedup and
throughput gain achieved by DADS

as a function of bandwidth.

0 5 10 15 20
0.0
0.5
1.0
1.5
2.0
2.5
3.0

B
a
n
d
w

id
th

(M

b
p
s)

0 5 10 15 20
Time

0
1
2
3
4
5
6
7

La
te

n
cy

 S

p
e
e
d
u
p

DADS

conv2

conv3

conv7

Edge-Only

Figure 4.18: The impact of network
variance on DADS partition decision

using Edge-Only as the baseline.

Comparing DADS with Neurosurgeon: Neurosurgeon can automatically

partition DNN between the edge device and cloud at granularity of neural network

layers, but it is only effective for chain topology.

From Fig. 4.14, we can see that, for the chain topology models, DADS and

Neurosurgeon have the similar performance in latency and throughput for the light

workload. While for the heavy workload, Neurosurgeon has a latency reduction

of 16.28% and 13.64% than that of DADS for YOLOv2 and VGG16, however the

throughput gain of DADS is 1.26 times and 1.27 times than that of Neurosurgeon

under these two DNN models. This is because, for the heavy workload, the higher

throughput is prior for DADS. We also can see that, for the heavy workload and

78

NiN model, the latency and the throughput of Neurosurgeon and DADS are both

the same. This is because for NiN model, DADS achieves the minimum max stage

time when the latency is minimum.

For the DAG topology, we can observe that DADS outperforms Neurosurgeon

significantly. For DAG topology models, DADS has a latency speedup 66%–86%

and throughput gain of 76%–87% compared with Neurosurgeon. This observation

validates the usefulness of DADS for DAG topology.

4.5.3 Network Variation

In this section, we evaluate how transmission network affects the performance of

DADS using ResNet18 model. The sampling rate is 1 frame per second.

The Impact of Transmission Network Type: We first evaluate the perfor-

mance of DADS, Edge-Only and Cloud-Only for ResNet18 model when using Cat1,

3G, 4G and WiFi as the communication network.

In Figs. 4.15–4.16, we show the latency speedup and the throughput gain achieved

by DADS and Cloud-Only normalized to Edge-Only when using Cat1, 3G, 4G and

WiFi for light and heavy workload respectively.

Shown in Fig. 4.15, when the workload is light and the edge device communicates

with the cloud through Cat1, DADS achieves 1.46 times latency reduction and 2.03

times throughput gain compared with Edge-Only. When the network changes to 3G,

4G and 5G the latency reduction and the throughput gain becomes more significant:

4.14 times and 8.3 times for 3G, 7.23 times and 9.78 times for 4G, 8.32 times and 9.31

times for WiFi respectively. When the communication link provides more bandwidth,

DADS pushes larger portions of layers to the cloud to achieve better performance.

We can also see that, compared with Cloud-Only, DADS achieves latency reduction

of 64% for CAT1, 26% for 3G and 7% for 4G receptively, and throughput gain of

73% for CAT1, 45% for 3G and 4% for 4G. For WiFi, the performance of Cloud-Only

79

is good enough, it has the same performance with DADS.

Edge-Only is only good for low data rate. Cloud-Only is only good for high data

rate, DADS can be adaptive to a wide range of network setting.

The Impact of Bandwidth on Workload Mode Selection: In Fig. 4.17, we

show the workload mode switch of DADS under different network bandwidth. We

can see that when the available bandwidth is smaller than 1.51Mbps, DADS works

at heavy workload mode, and the achieved latency speedup and throughput gain

increase compared with Edge-Only. When the bandwidth is greater than 1.51Mbps,

DADS works at light workload mode.

We also evaluate DADS’s resilience to real-world measured wireless network vari-

ations. In Fig. 4.18, the top graph shows measured wireless bandwidth over a period

of time. The bottom graph shows the latency speedup of DADS normalized to Edge-

Only for ResNet18 model. We can see that DADS adjusts the partition strategy

according to the bandwidth variance successfully. For example, when the bandwidth

drops from 3.41Mbps to 2.15Mbps, DADS changes the partition from conv2 layer

to conv3 layer. DADS changes the partition from conv3 layer to conv7 layer when

bandwidth is smaller than 1.72Mbps.

4.6 Chapter Summary

In this chapter, we study DNN inference acceleration through collaborative edge-

cloud computation. We propose Dynamic Adaptive DNN surgery (DADS) scheme

that can partition DNN inference between the edge device and the cloud at the

granularity of neural network layers, according to the dynamic network status. We

present a comprehensive study of the partition problem under the lightly loaded

condition and the heavily loaded condition. We also develop an optimal solution

to the lightly loaded condition by converting it to min-cut problem, and design a

80

3-approximation ratio algorithm under the heavily loaded condition as the problem

is NP-hard. We then implement a fully functioning system. Evaluations show that

DADS can effectively improve latency and throughput in an order compared with

executing the entire DNN on the edge or on the cloud.

81

82

Chapter 5

TAPU: a New Processing Unit for

Accelerating Multi-type Functions

in IoT Gateways

5.1 Introduction

Internet of Things (IoT) Gateway is emerging as a key element of bringing legacy and

next-gen devices to the IoT. Nearly every IoT system needs some way to connect

devices to the cloud so that data can be sent back-and-forth between them. IoT

gateways can be essential in making this connection possible because gateways act

as bridges between devices and the cloud. They integrate protocols for networking,

help manage storage and edge analytic on the data, and facilitate data flow securely

between edge devices and the cloud.

With the exponential growth in the number of connected devices (an installed

base of 15.4 billion devices in 2015 to 30.7 billion in 2020 [94]), the booming of data

and the increasing requirement on data security, the functions an IoT gateway need

to support keeps increasing nowadays. The first example is to handle network lea

protocols for secure transmissions of critical data. The second example is to support

video analytics. For example, in-situ cameras have been installed at smart home to

detect and prevent the elderly from falling [30]. The video data is aggregated to the

83

IoT gateway. The IoT gateway can relay all videos to the cloud, yet this leads to

huge cellular costs, transmission latency and privacy problem. As such, there is a

need to execute video analytic within the IoT gateway.

As the functions of the IoT gateway increase, the current generation of IoT gate-

way face the pressure to upgrade their hardware. A CPU can handle the functionality

of the first generation IoT gateways which are designed to facilitate communication

protocol compatibility and device management functions. For the second generation

IoT gateways which support regular network functions and video analytic, perform-

ing software network functions (i.e. processing on CPU) and adding a GPU as an

accelerated for video analytic can meet the requirement on computation as shown in

Fig. 5.1(a). For example, Dell Edge Gateways for IoT [4] and ADLINK IoT gateway

products [1] provide the configuration choices of GPU. When comes to the current

generation of IoT gateway with the advanced network functions (e.g. data encryp-

tion and decryption, data compression), such method results in CPU overloading

and low utilization of GPU as shown in Fig. 5.1(b). More specifically, performing

the advanced software network functions consumes the most of CPU resources so

that few or none CPU resources for data pre-processing of video analytics, which

further leads to low utilization of GPU.

To overcome the above limitations, a feasible solution is offloading both video

analytic and the advanced network functions to the hardware accelerator as shown

in Fig. 5.1(c). Video analytics need accelerator with parallel processing power such

as GPU, while network functions need specialized hardware accelerator with pro-

grammability and the ability to customize the hardware. Customizing a dedicated

hardware accelerator for each function leads to low utilization, as the accelerator

only operates when the function is called and is idle at the other time. It also

leads to expensive cost and bloated size, while the IoT gateway usually has strin-

gent constraints in cost and size. In a short summary, IoT gateways are seeking

84

Advanced

Network

Functions

DNN-based

Video

AnalyticsRegular

Network

Functions

DNN-based

Video

Analytics

Data
Preprocessing

Data
Preprocessing

IoT Gataway CPU GPU FPGA Resource

 Utilization
Low High

Regular

Network

Functions

Data
Preprocessing

Advanced

Network

Functions

DNN-based

Video

Analytics

(a) (b) (C)

Figure 5.1: IoT gateways and its functions. (a) IoT gateway with a GPU for data
analytic and regular network function on CPU. (b) The current IoT gateway with a
GPU for video analytics and advanced network functions on CPU. (c) IoT gateway
with offloading both advanced network functions and data analytic to the hardware
accelerator.

for a multiplex-enable accelerator for video analytic and transmission (i.e. network

functions) with the programmability and the ability to customize.

In this chapter, we propose a novel Transmission-Analytics Processing Unit (TAPU),

a new accelerator using multi-image FPGAs to accelerate data analytic and network

functions for data transmission in IoT gateway. The architecture of the multi-image

FPGA is shown in Fig. 5.2. A multi-image FPGA can pre-store multiple images in

 Logic

Units

Multi-image FPGA

Image Flash 2

User Flash

Image Flash 1

Flash Area

Image Flash n

..
.

Figure 5.2: The multi-image FPGA.

85

the FPGA image flash and fast switch between images; an example of such FPGA is

the newly developed off-the-shelf Intel Max10, a dual-image FPGA. We can then pre-

configure one image for analytic and the other images for network functions. Thus,

we can multiplex the accelerator for both analytic and network functions by switch-

ing images. FPGA naturally has the programmability and the ability to customize

the hardware.

To bring TAPU into reality, we face two challenges: as the very first study, it is

not clear what modules should be added or modified when incorporating TAPU into

IoT gateway and how to offload the floating workload of video analytic and network

processing to TAPU so that the computation capacity can be maximally exploited.

In this chapter, we first present the system design of TAPU from the hardware

to the software. For the hardware design, we discuss the FPGA choice and abstract

the accelerator modules as hardware functions that the developers can call just like

calling a software function. For the software of TAPU, we provide offline manager

that determining how to pre-configure the two images of the FPGA and runtime

manager that determining how to switch images adapting to runtime variations. We

choose to use TAPU process network packet first and use the residual computation

capacity to accelerate analytic in terms of the needed executing time. To maximally

exploit the computation capacity of TAPU, we first develop two schemes to estimate

the residual computation capacity of TAPU for non-preemption case and general

case respectively. We then develop an inference task offloading algorithm to offload

and run in parallel the inference tasks in the FPGA, with the bojective to minimize

the video analytics job.

We develop a fully functioning system, using Raspberry Pi as the IoT gateway,

connected with a Logitech BRIO camera, and a TAPU using off-the-shelf Max 10,

a dual-image FPGA. Currently, Max10 cannot auto-switch between images. We

redesign the hardware switch of Max10.

86

Finally, we evaluate TAPU through trace-driven experiments. We show that

TAPU can improve the performance of data analytic and transmission for 1.49 times

and 2.33 times respectively compared with the current approach and the utilization

of TAPU can reach up to 92.51%.

5.2 System Design

Here we present the system design of TAPU as shown in Fig. 5.3. To make TAPU as

an efficient and easy-use accelerator for transmission and video analytics, we consider

design from both the hardware and the software.

Offline ManagerOffline Manager Runtime ManagerRuntime Manager

Multi-image FPGAMulti-image FPGA

Hardware FunctionHardware Function

Software

Hardware

Figure 5.3: Overview of the system design of TAPU.

5.2.1 Hardware Design

Owning to its performance and programmability, FPGA is employed as the hardware

by TAPU. Currently, there are many types of FPGA. TAPU employs the multi-image

FPGA. In this subsection, we illustrate the reason for this FPGA choice, and design

hardware functions to easily use the multi-image FPGA.

FPGA Choice. One term in FPGA is image which is an FPGA bitstream

that contains the programming information for an FPGA. An FPGA device must be

programmed using an image in order for it to implement the specified functionalities.

For the traditional single-image FPGA, it usually takes minutes to program FPGA

87

according to a new image. Recently emerging multi-image FPGA can pre-store

multiple images in the FPGA flash and fast switch between images, e.g., the newly

developed off-the-shelf Max10, a dual-image FPGA. TAPU chooses the multi-image

FPGA considering from the sharing pattern aspect.

TAPU accelerates both network functions and video analytics. This means net-

work functions and video analytic share the limited FPGA resource. There are two

ways to share FPGA: 1) sharing on space dimension, i.e. a part of the programmable

logic units of FPGA is configured to implement network functions, the other is con-

figured to implement video analytics; 2) sharing on time dimension, i.e. one image

is configured for network functions, one image is configured for video analytic, and

configuring one of these two images to logic units at a time.

TAPU chooses to share on time dimension for the following reasons. First, the

programmable logic units (look-up tables, registers, and block RAMs) of an FPGA

are limited. Even designed carefully, it is hard to put everything into FPGA simulta-

neously as each function consumes dedicated logic units. For example, implementing

medium DNN model GoogLenet [69] on Intel Max10 FPGA consumes almost 90%

logic units. This makes it unpractical to share FPGA on the space dimension. In-

deed, we can use a more advanced FPGA which contains more resources, but the

price of high-end FPGA is very high. Second, sharing on time is more flexible com-

pared to sharing on space in terms of resource allocation. For sharing on space

dimension, the resource occupying rate of each function is fixed. If the system wants

to change the resource allocation for a function, modifying the image and repro-

gramming FPGA is needed, which usually takes hours. However, sharing on time

can adapt the FPGA resource allocation by simply increasing or decreasing the time

slots for each function.

Sharing on time dimension requires to fast switch between images, which can be

fulfilled by the multi-image FPGA. For example, it cost near-zero time (less than 9

88

Table 5.1: Hardware APIs

Functions Description
Img load() load the user specified image to the user specified configu-

ration flash area.
Img program() program the image which has been pre-loaded in the spec-

ified configuration flash area into the logic units.
Img search() query the desired image pre-loaded in which area
Img programmed() query which image has been programmed into the logic

units.
Task process() get the raw data to FPGA as input, and run the image

which has been programmed to the logic units.

ms) for Intel Max10 dual-image FPGA to switch between two images. Thus TAPU

chooses the multi-image FPGA as the hardware rather than traditional single-image

FPGA.

Listing 5.1: Code of offloading a video analytics task to FPGA
using hardware function calls

1 // program the desired image into logic units

2 If (Desired_Image != Image_programmed ()) {

3 image_area=Image_search(Desired_Image);

4 Image_program(image_area);

5 }

6
7 // Process the video analytic task

8 result=Task_process(frame);

Hardware Function Abstractions. TAPU offloads the workload of multi-

type functions to multi-image FPGA and allocates FPGA resource to functions by

controlling the time for the images. However, it is difficult and time-consuming for

the upper layer to write code that covers specifics of FPGA offloading and carefully

handles vendor-specific details. To this end, we design hardware function abstractions

to enable upper layer using the multi-image FPGA in the form of a function call.

The hardware function abstractions provide the upper layer a programming model

that fully encapsulates the low-level specifics of the multi-image FPGA. The APIs for

89

the upper layer to interact with FPGA are shown in Table 5.1. Using the hardware

APIs, we can use multi-image FPGA easily in a way of a function call, without

knowledge about the low-leave specifics. In the following, we explain the process of

using the hardware APIs to offload a video analytic task to the multi-image FPGA

shown in Listing 5.1.

From Listing 5.1, we can see that function Image programmed() is first called

to check whether the programmed image in the logic units is the desired image

used to process the video. If not, function Image search() is called to find which

configuration area stores the desired image, and program the image into logic units

by calling function Image program(). Finally, function Task process() is called to

use the frame of the video as input, and run the image to get the analytic result.

5.2.2 Software Design

To ease application development and maximally utilize the FPGA resource, we design

a series of software. As shown in Fig. 5.3, the software of TAPU includes two

components: 1) TAPU offline, to determine what functions should be offloaded to

FPGA and how to pre-configure the images of FPGA; and 2) TAPU runtime, to

determine how to switch images in runtime. Runtime switching adapts to runtime

variations, and maximally utilized the TAPU resource. We develop Offline Manager

and Runtime Manager respectively.

Offline Manager. The gist of the offline manager is to decouple the developers

from the time-consuming FPGA programming and the complicated decision on im-

ages of FPGA. To achieve the former goal, offline manager design a database called

Image Lib to store the pre-configured images. For the later one, the offline manager

designs a Network Functions (NF) Image Decision module to determine what net-

work functions are offloaded to FPGA and a Video Analytics (VA) Image Decision

module to determine what DNN model Image is used for video analytic. Fig. 5.4

90

illustrates the modules in the offline manager.

Image Lib: Developing and programming FPGA is time-consuming. It usually

takes hours to synthesize and implement HDL (Hardware Description Language)

source code to the final image. Developing after demand presents a significant barrier

to fast development. To solve this, TAPU implements image library (Image Lib)

which consists of a network function library (called NFLib in short) and a video

analytic models library (called VALib in short). Image Lib provides images in a

“ready for using” way.

NFLib contains images that implement commonly used network functions, e.g.

IPsec (a secure network protocol suite that can encrypt and authenticate data pack-

ets), Gzip (a function used for file compression/decompression.). VALib contains

images that implement commonly used video analytic models, e.g. the light-weight

DNN model with moderate predict accuracy Yolo V2, the complex DNN model with

high predict accuracy VGG.

Clearly, Image Lib cannot contain all network functions and video vision models in

advance. TAPU designs an API for developers to add own images into the respective

image library.

NF Image Decision: In the IoT Gateway, there are tens of network functions,

while the number of FPGA images is limited. We can see a clear gap between the

number of FPGA images and the number of network functions. It is impossible to

offload all network functions to FPGA. The problem we face here is that determining

which network functions to offload to FPGA. NF image decision module makes the

choice based on the the performance of processing the network functions on different

hardware, and the “stability” of these network functions.

The first consideration is the performance of processing the network functions on

hardware. Operating Network function on FPGA is not always perfect, and operating

network function on CPU is not always that bad. There are two types of processing in

91

data plane: shallow packet processing, i.e. executing operations based on the packet

header, e.g. NAT, firewall; deep packet processing, i.e. executing operations on the

whole packet data, such as IPsec gateway, flow compression, etc. For shallow packet

processing, as the packet headers follow the unified protocol specification, it usually

does not need too much computation efforts. It is fairly fast for CPU to perform

shallow packet processing. In terms of deep packet processing, it usually needs much

more compute resources since data of higher layers has no regular patterns take more

CPU cycles to complete the processing [54]. Thus, NF image decision module gives

priority to offload deep packet processing type of network function to FPGA, and if

there are available image left, it offloads shallow packet processing type of network

function.

The second is the stability of network functions. Since debugging and modifying

the design of network functions on FPGA is time-consuming, NF image decision

module perfects to offload the stable network functions to FPGA. It is easy to count

the changing frequency of a network function based on the development log. NF

image decision module uses the changing frequency as the parameter of stability.

In short summary, NF image decision module makes the decision based on the

types (shallow/deep packet processing) and then the stability of network functions.

VA Image Decision: For the video analytic in the IoT gateway, unlike network

functions, only one DNN model is needed. However, different video analytic models

result in varied computation workload and inference quality.

The problem we face here is given the requirements on inference quality, select

the DNN model that can meet the requirements and minimize the video analytics

execution time. To solve this, we first profiles the relationships among the DNN

model,inference quality, and video analytics execution time. These parameters can be

well derived in advance. and then we select the model which meets the requirements

of video analytic while the execution time is minimum.

92

VA Image

Decision

VA Image

Decision
NF Image

Decision

NF Image

Decision

Requirement

On VA

Requirement

On VA
Requirement

On NF

Requirement

On NF

Img_load()

Offline Manager

Hardware API

NFLib

VaLib

Image Lib

Figure 5.4: Offline Manager

Video Analytic

Workload Allocator

Video Analytic

Workload Allocator

Image

Scheduler

Image

Scheduler

VideoVideoNetwork DataNetwork Data

Img_program()

Runtime Manager

Hardware API

Network Data

Process Manager

Network Data

Process Manager

Task_process()Task_process()

Figure 5.5: Runtime Manager

Runtime Manager. Runtime manager handles the FPGA resource allocation.

More specifically, the runtime manager controls the switch of the FPGA images to

allocate FPGA resource to network functions and video analytics. The objective

of the runtime manager is to maximize the FPGA resource utilization. Runtime

manager consists of the following modules shown in Fig. 5.5.

Image Scheduler is the core module of runtime manage and is design to allocate

FPGA resource to network functions and video analytic by controlling the switch of

93

FPGA image.

Image scheduler first allocate resource for network functions, and then use the

residual computation capacity to accelerate video analytics. Image scheduler give

priority to network function when allocating FPGA resource. This is because that

small packet size that an Ethernet packet varies from 64 bytes to 1500 bytes, and

FPGA-based accelerating solutions for network functions processing such small size

data only requires ultra-low microsecond-level latency, while the data size of video

varies from tens to hundreds of megabytes with millisecond-level latency require-

ment. The processing latency of network function is much smaller than that of video

analytics.

Image scheduler estimates the network traffic, and based on the estimation re-

sult allocates enough FPGA resource for network functions (i.e. switch to network

function image with enough time in this work) and residual FPGA resource to video

analytics. The network traffic estimation and the computation of residual resource

are described in Sec. 5.3 Image scheduler sends the allocation result to network data

process manager and video analytics workload allocator (described in below), and

calls hardware API Img program() to switch corresponding image when resource is

allocated to that function.

Network Data Process Manager is designed to schedule the network packet pro-

cessing when receives the resource allocation result from image scheduler. When

the resource is allocated to network functions, this module calls hardware API

Task process() to operate network functions on all the unprocessed network pack-

ets.

When TAPU employs trace-driven estimation scheme when estimating the net-

work traffic (see Sec. 5.3.2), this module has another function. It sends a preemption

signal to image scheduler module when existing network packets will validate the de-

lay tolerance. When image scheduler module receives preemption signal, it switches

94

FPGA to network function image immediately.

Video Analytic Workload Allocator schedules the processing of the video analytics

tasks when FPGA resource is allocated for video analytics. A video analytics task is

processing a frame of video using the given DNN model.

The video analytic tasks can be executed on the local CPU of or the FPGA

of TAPU. We design a Video analytic workload allocator to determine where the

inference tasks are executed. It allocates the inference task to CPU one by one due

to the limited computation power of CPU. As the performance of executing video

analytic tasks on TAPU is affected by the batch size, the resolution of the input

frames, tt also computes the resoluion of input frames and the number of inference

tasks in a bathc allocated to FPGA when receiving the residual computation capacity

from the residual capacity estimation module. Video analytic workload allocator

runs the inference task offloading optimization algorithm (described in Sec. 5.4) to

minimize the overall delay to process video analytic tasks using the allocated FPGA

resource.

5.3 Residual Computation Capacity Estimation

We now study residual computation capacity estimation. As the FPGA is shared

in the time dimension, we use the amount of time that can be allocated for video

analytic as the metric to represent the residual computation capacity. We divide

time into periods. Let Tp be the time length for a period. Each Tp consists of a

sub-period Tn for the network functions, and a sub-period Tr for video analytics.

The length of the sub-period of network functions images is determined by the

traffic load from the application. Estimating application traffic load heavily depends

on whether the system is developed for single applications or general purposes. Sin-

gle application examples include the traffic surveillance camera which transmits the

95

video of traffic to the remote control center and recognizes car license appearing in

the video, the Google Xbox which relays the game data between the players. A

general-purpose engine is to accelerate video analytic for a set of upper layer appli-

cations, e.g., the mobile phone with functions such as speech recognition, fingerprint

authentication and face recognition. Our framework can be used for both.

Clearly, if the system is developed for a single application, we can develop an

in-depth traffic load model that captures the application characteristics. There are

many existing studies. For example, [81] use a Markov modulated gamma process

to model 3D video traffic, [67] proposes a probability density function to model

the network traffic for games. For general application traffic estimation, there are

mainly three methods to model traffic. The first one assumes sources continually

send data at a constant rate to the network [29]. The second method employs

probabilistic functions to model traffic behavior [50]. This method always observes

the application traffic follows a specific distribution and adjust the parameter of the

distribution to model the network traffic. The third method employs traffic traces

to evaluate network performance [32].

The uniqueness of our case is on preemption, i.e., network packet processing is

the first priority and video analytic acceleration can be preempted when necessary.

We first study an extreme that application traffic estimation should not incur any

preemption, we call it as non-preemption estimation scheme (NPES). We then study

a general case where preemption is allowed and we estimate application traffic using

the traffic load of previous periods, we call it as trace-driven estimation scheme

(TDES).This is a simple scheme which can be most widely applied.

5.3.1 Non-Preemption Estimation Scheme

In this section, we design a non-preemption estimation scheme (NPES) to estimate

the residual computation capacity and guarantee no preemption. The objective of

96

NPES is to guarantee no preemption and to maximize the residual computation

capacity Tr in each period.

The residual computation capacity in a period depends on: 1) the length of a

period, 2) the number of packets processed in a period, and 3)the network packet pro-

cessing throughput of FPGA. In order to compute the exactly residual computation

capacity of each period, We should have the knowledge of the number of packets pro-

cessed in the period. Thus for period i, NPES chooses to buffer all network packets

and process these packets at the beginning of next time period i` 1.

The first objective of NPES is to guarantee no preemption. As said, for each

packet, there is a delay tolerance d, which is determined by the application. The

packet should be processed before validating the tolerated delay, otherwise, a pre-

emption will be incurred. We make the following assumption that the network packet

processing throughput w of FPGA is bigger than the maximum generation speed of

the network packets vmax, i.e. s ą vmax.

Theorem 5.1. If the network packet processing throughput w of FPGA is bigger

than the maximum generation speed of network packets vmax, and the period Tp ď
d
2
,

no preemption will be incurred in NPES.

Proof. No preemption means all packets can be processed before the tolerance delay

d. Thus we prove that if s ą vmax and Tp ď
d
2
, all packets can be processed before

validating the tolerated delay. Let Tw denote the time a packet pj needed to wait for

being processed, we prove that Tw ď d.

Tw includes two parts: 1) the time in which the packet is buffered in its generation

period i, denoted as Tb, and 2) the time needed to wait for NIC to process the

unprocessed packets generated before pj in the period i ` 1, denoted as Tc. It is

obvious that Tb ď Tp. Let N denote the number of unprocessed packets generated

before pj, we have Tc “
N
s

. As the maximum generation speed of the network packets

97

is vmax, thus N ď Tpvmax, combined with Tc “
N
s

and vmax ď s, we have Tc ď Tp.

Therefore, Tw “ Tb ` Tc ď 2Tp. If Tp ď
d
2
, we have Tw ď d.

As the network packet processing throughput of FPGA is faster than the gen-

eration speed of network packets, thus the longer period will lead to more residual

computation capacity. Therefore, the length of the period is set to be d
2
, i.e. Tp “

d
2
.

Let v be the number of packets generated in the previous period. Let s be the

network packet processing throughput of FPGA. We can compute Tr “
d
2
´ v

s
. Note

that, v is the number of packets generated in the previous period, it is a known value

when we compute the residual computation capacity.

5.3.2 Trace-Driven Estimation Scheme

We develop a trace-driven estimation Scheme TDES for a general case which allows

preemption to estimate the residual computation capacity. The objective of TDES

is to maximize the residual computation capacity Tr in each period. Our idea is to

predict the number of the packet that will be generated in the period. Obviously,

if we can exactly predict the number of packets denoted as vp, we can compute the

residual computation capacity Tr “ Tp´
vp
s

, where s is the network packet processing

throughput of FPGA.

We choose to use network traffic traces to estimate application traffic rather

than using a constant injection rate and probabilistic function. This is because, in

general, the prediction accuracy of the trace-based method is superior to that of

constant injection rate and probabilistic function [82]. We employ auto-regressive

(AR) predictor [75] to predict the traffic load in the next period based on the traffic

load of previous periods.

Let K denote the number of periods whose network information is used to es-

98

timate the network traffic of the next period Pp. Let Pi denote the i-th period

before Pp, where i “ 1, 2, ¨ ¨ ¨ , K. Let wi and vi denote the actual and predicted

number of network packets generated in period Pi respectively. Let vp denote the

number of network packets generated in period Pp. The AR model can be present

as vp “ η1w1 ` η2w2 ` ¨ ¨ ¨ ` ηKwK ` α, where α is the white noise, ηi p1 ď i ď Kq is

the smoothing value which reflect the periodic characteristics of the network packet.

We adopt the following equation to compute the mean square error (MSE) between

the actual packet quantity wi and the periodic network packets qi:

MSE “
1

K

K
ÿ

i“1

pwi ´ viq
2. (5.1)

The smaller MSE can better reflect the periodic characteristics, thus we carefully

choose K and ηi p1 ď i ď Kq to make MSE smallest.

Now we consider the length of Tp which also affects the residual computation

capacity. As each packet has a delay tolerance d, thus it can be buffered at a most

d time, otherwise, a preemption is incurred. As it is hard to predict the exactly

generation time of packets, we consider the worse case that a packet is generated at

the beginning of the period. Thus, we set the length of the period to be d, i.e. Tp “ d.

Combined with the predicted number of packets generated in the next period vp and

the packet processing throughput s, we can compute the residual computation power

Tr “ d´ vp
s

.

5.4 Inference Task Offloading

The objective of this section is to study how to assign inference tasks to minimize

the execution time of video analytic job. A video inference task is to make an inference

on a frame of video using the given DNN model. A video analytic job consists of

99

multiple inference tasks. In our system, the inference tasks can be executed on the

CPU or on the TAPU. The CPU on the edge deivce is always available for executing

inference task while the TAPU can be used for executing inference task only when it

has residual computation capacity, thus our objective is equivalent to maximize the

number of inference tasks completed in FPGA in the limited residual computation

capacity.

In FPGA processing, to maximally exploit the FPGA capability, inference tasks

should be processed in parallel. In other words, we can group inference tasks into a

batch. Let B “ tb1, b2, ¨ ¨ ¨ , bnu denote the set of possible batch size. The execution

time of batch depends on the resolution of the input frame and the batch size. We

define execution time function tpbi, rq to present the execution time of batch with

batch size bi when the resolution of the input frames is r. Note that the residual

computation capacity is Tr. In this time slot, multiple batches can be executed.

Let q denote the number of batches assigned to FPGA. Let P “ tp1, p2, ¨ ¨ ¨ , pqu be

the set of the batch size of batches, where pi P B. Let R denote the resolution of

input frames. The total execution time of such q batches cannot exceed the residual

computation capacity Ta, thus we have
řq

i“1 tppi, Rq ď Tr.

On the application side, the application has requirement on inference quality. The

inference quality is an indicator of the prediction accuracy. Higher inference quality

indicates higher prediction accuracy. F1 score [97] is employed as the criterion for

inference quality (details in Section 5.4.2). F1 score depends on the resolution of

input frames. We define the inference quality function fprq to represent the F1 score

when the resolution of input frame is r. Let F denote the F1 score required by the

application. The inference quality should meet the application’s requirement, thus

we have fpRq ě F .

The inference task offloading (ITO) problem is given the inference quality

requirement F , the residual computation capacity Ta, determine the resolution of

100

Resolution
240p 360p 480p 576p 720p 1080p

Batch
1 117.18 126.05 219.15 263.09 476.18 894.51
2 168.07 168.07 338.29 463.09 907.80 1713.43

Size
4 231.12 188.98 475.61 632.60 1178.25 2024.32
8 434.24 329.47 - - - -

Table 5.2: Batch execution time profile of tiny YOLOv2 DNN model
on Intel Max 10 FPGA

video injected R, the number of batches q, and the appropriate batch size P , so

that the execution time FPGA needs to process the total batches does not exceed

the computation capacity, i.e.
řq

i“1 tppi, Rq ď Tr, and meet the inference quality

requirement, i.e. fpRq ě F , to maximize the number of inference tasks completed

on FPGA, i.e.
řq

i“1 pi.

There are three challenges to solve ITO Problem: 1) Batch execution time pro-

filing: the execution time needed to process inference tasks in batch on FPGA is

affected by the resolution of the input frames and the batch size. Therefore we need

to estimate execution time needed to inference tasks in different batch sizes and

resolutions, i.e. computing the execution time function tpbi, rq; 2) inference qual-

ity profiling: the inference quality depends on the resolution of the input frames.

Therefore we need to estimate the inference quality under different resolutions, i.e.

computing the inference quality function fprq; and 3) to determine the number of

batches q, the appropriate batch size set P and the resolution R. In the following of

this section, we give the solutions to the above three challenges.

5.4.1 Batch Execution Time Profiling

The execution time needed to process inference tasks in batch on FPGA is affected

by the resolution of input frames and the batch size.

We estimate the latency of inference tasks executed in batching through mea-

101

240p 360p 480p 576p 720p 1080p 1440p
Resolution

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
n
ce

 Q
u
a
lit

y

Figure 5.6: Inference quality profile of tiny YOLOv2 DNN model.

surement. More specifically, we run the inference tasks on all combination of the two

parameters (i.e. the resolution of input frames, and the batch size), and record the

execution latency. We admit that profiling through measurement is expensive, but it

can achieve high accuracy compared with other profiling methods such as statistical

modeling [31], analytical modeling [68].

We show the batch execute time profile in Tab. 5.2 when the platform is Max 10

FPGA, the DNN model is tiny YOLOv2 . It shows that higher resolution leads to

higher execution latency. It also shows that a bigger batch size leads to higher total

execution time but lower average processing time for each inference task.

5.4.2 Inference Quality Profiling

Inference quality is defined as the F1 score. The F1 score is the harmonic average

of the precision and recall, where an F1 score reaches its best value at 1 (perfect

precision and recall) and worst at 0.

The inference quality depends on the employed DNN model and the resolution of

the video. Using datasets where these data are labeled, we can empirically measure

precision and recall of the inference result different resolutions of input frames. Using

the precision and recall, we can compute the F1 score, i.e the inference quality. We

102

show the inference quality profiles in Fig. 5.6 when the DNN model is tiny YOLOv2.

We can see that, higher resolution leads higher inference quality.

5.4.3 The Inference Task Offloading Algorithm

In this section, we first analyze the complexity of inference task offloading problem,

and then design an algorithm to solve the inference task offloading problem.

Theorem 5.2. Problem ITO is NP-complete.

Proof. We prove this theorem by transforming the problem into the unbounded knap-

sack problem. The unbounded knapsack problem is given a set of items, each with a

weight and a value, determine the number of each item to jinclude in a collection so

that the total weight is less than or equal to a given limit and the total value is as

large as possible. For the problem ITO, the batch can be regarded as the item, the

latency of inference tasks in each batch and the batch size can be regarded as the

weight and the value respectively. The given limit weight is the available inference

time. As a result, Problem ITO is equivalent to an optimal unbounded knapsack

problem.

Problem ITO is NP-complete, it is unrealistic to find a globally optimal solution

within polynomial time. We develop Maximize Inference Task Offloading (denoted

as MITO) approximation algorithm to solve ITO problem.

The problem ITO can be divided into two subproblems: resolution selection to

meet the inference quality requirement (i.e. to find R) and batch selection (i.e. to

find q and P).

MITO first solve the resolution selection to meet the inference quality require-

ment. Higher resolution leads to higher inference quality and higher latency for

inference tasks given the DNN model, the execution platform and batch size. Thus

103

we aim to select the resolution just to satisfy the quality requirement in order to

reduce latency. This can be optimally solved by binary search the quality profile.

After the above step to determine r, the task assignment can be converted to the

unbounded knapsack problem. The batch can be regarded as the item, the latency

of inference tasks in each batch is the weight, the batch size is the value, the residual

computation capacity is the capacity of the knapsack. MITO employs the greedy

unbounded knapsack algorithm in [25]. The greedy unbounded knapsack algorithm

selects the batch size of each batch one by one. Whenever a batch size is selected,

such number of inference tasks will be assigned to FPGA and be executed as a batch.

In this way, q and B are determined.

Theorem 5.3. The approximation ratio of algorithm MITO for ITO problem is 2.

The MIT problem is equivalent to the unbounded knapsack problem. The ap-

proximation ratio of 2 comes from the greedy unbounded knapsack algorithm we

employ in MITO. Due to space limitation, detailed proofs are omitted.

5.5 Implementation

We implement a prototype of TAPU and integrate it into IoT gateway, see Fig. 5.7.

Here we use a Raspberry Pi to simulate IoT gateway, integrated with a Logitech

BRIO camera capturing video. We establish a cloud as the data receiving end to

communicate with the Raspberry Pi, and use a laptop computer to display the cloud

end. Two deep packet processing network functions the data encryption standard

(DES) algorithm and the high-speed data compression (Gzip), and video analytics

are offloaded to TAPU for accelerating. In the following subsection, we present the

implementation details.

104

Camera

TAPU

Display

device

Raspberry

Pi

Figure 5.7: The prototype implementation.

5.5.1 Hardware Implementation

We choose Intel Max10 [5], a dual-image FPGA as the hardware board for TAPU.

Integration of TAPU and Raspberry Pi. We connect Max10 to the Rasp-

berry Pi. Max 10 has a USB Blaster that can be used to connect the USB port of

the Raspberry Pi using a USB-to-serial cable. We implement the communication be-

tween TAPU and Raspberry Pi using Thrift, an open source flexible RPC interface.

The RPC message is transferred through the USB-to-serial cable. We also offload

the workload of processing network packet in MAC and PHY layer to Max10, i.e.

TAPU also serves as a network interface card (NIC), so that aft processing, network

packets can be directly transferred to cloud without wasting time for returning pro-

cessing result to NIC. We block the other NIC on the Raspberry Pi by editing the

file “ifcfg-eth0” in Linux.∗

FPGA Image Switch Control. TAPU provides the API Img program() which

is used to switch programmed images in logic units. One special challenge here is that

∗Intuitively, Raspberry Pi has two NICs and we only use the Max 10 NIC.

105

Altera Dual

Configuration

NF Image

VA Image

CONFIG_SEL

RU_nCONFIG

Relay0

Relay1

C

P

U

I/O
 In

terface

Max10

Altera Dual

Configuration

CONFIG_SEL

RU_nCONFIG

SW1
NF Image

VA Image

SW2

(a)

Max10

(b)

Figure 5.8: Illustration of using relays to replace switches.

the switching between images of FPGA should be done automatically by instructions.

However, off-the-shelf Max10 only provides manual switching on the switch SW1

and the switch SW2 shown in Fig 5.8(a). One switch is used to select the image

by CONFIG SEL pin, and the other switch is used to trigger reconfiguration by

RU nCONFIG pin. We conduct a hardware redesign to replace the hand switch

SW1 and SW2 by relays shown in Fig 5.8(a). We remove the switch SW1 and SW2,

and solider a relay at the original place of SW1 and SW2 respectively. We show

the code of API Img program() in Listing 5.2. We can see that when switch to the

image stored in flash area one, TAPU switches CONFIG SEL pin by Relay0, then

triggers the reconfiguration by pulling the RU nCONFIG pins down by Relay1,

and vice versa.

5.5.2 Network Functions Implementation

We implement network functions DES and Gzip in a single image. This is because

only one image can be used for network functions in Max10 (the left one is allocated

106

MAC RJ45

TXC

TX_CTL

TD[3:0]

RXC

RX_CTL

RD[3:0]

GTX_C

LKTX_E

NTXD[3:0]

RX_CL

KRX_D

V
RXD[3:0]

FPGA Marvell
88E1111

Max 10

RGMII

Interface

PHY

Figure 5.9: Implementation of processing network packet in
MAC and PHY layer.

Listing 5.2: Code of API Img program(Desired area)

1 if (Desired_area == Configuration_Area_1){

2 Relay0 = 1;

3 else if (Desired_area == Configuration_Area_2)

4 Relay0 = 0;

5 Relay1 = 1;

for video analytic), and the logic units of Max10 FPGA is large enough for imple-

menting these two functions together. We adopt the Partial Reconfiguration (PR)

technology to implement the two functions in one image. The kernel architecture is

based on a Verilog implementation by IBM presented in [58].

We also process network packet in MAC layer and PHY layer. The MAC layer

constructs Ethernet frames, which includes realigning the payload, modifying the

source address, calculating and appending the CRC-32 field, and inserting inter

packet gap bytes. The PHY converts digital signal to analog signal. The challenges

are that processing packet in MAC layer needs certain computation capability, and

processing packet in PHY layer requires a PHY chip. Thus we implement the MAC

layer in the FPGA area of Ma10 which has enough computation capacity and im-

107

plement the PHY layer in Marvell 88E111 chips of the Max 10 development board

which includes a PHY chip shown in Fig. 5.9 MAC communicates with PHY using

RGMII interfaces. PHY connects the Ethernet cable through the modular connector

RJ45 to send the packets.

5.5.3 Video Analytic Implementation

We choose to implement the video analytic image through PipeCNN, an efficient

OpenCL-based CNN accelerator on FPGAs, which provides faster hardware devel-

opment cycle and software-friendly program interfaces. Using PipeCNN, we conduct

design space exploration to find the optimal design that maximizes the throughput

or minimizes the execution time. This reduces the development cycle significantly.

We implement Yolov2 as the DNN model for video analytics.

5.6 Performance Evaluation

We use experiment based on real-world data to evaluate the implemented prototype.

5.6.1 Experiment Setup

Network Traffic Datasets: For the data transferred from IoT gateway (i.e. Rasp-

berry Pi in our prototype) to the cloud, we use a real-world smart grid dataset

released in [13], which contains several types of sensing data with timestamps. All

types of data are transferred to the cloud periodically. For example, the value of

real-time voltage whose sensing rate is 1 time per second is transferred to the cloud

in a period of 20 seconds.

Video Analytic Setting: We configure the camera to capture 15 images per

second, i.e. the frame rate is 15 FPS. The resolution of the captured image is 720 p.

We employ YOLOv2 to detect animations in the video.

108

Evaluation Criteria: The network traffic of IoT gateway is regular, thus TAPU-

based IoT gateway uses non-preemption estimation scheme by default.

We compare TAPU with the following two approaches. The first approach is

offloading only video analytics to Intel Max10 FPGA and implementing all net-

work function is software, .i.e processing network packets only in CPU. We call this

approach as Only-VA-FPGA in short. The second approach is offloading video

analytic and network function to two dedicated Intel Max10 FPGA without sharing.

We call this approach as Dedicated-FPGA.

We first evaluate the throughput on video analytic and packet processing of

TAPU, Only-VA-FPGA and Dedicated-FPGA. Then, we introduce utilized ratio

of FPGA. THe utilized ration of FPGA is the ratio between the actually used FPGA

resource and the total amount of FPGA resource. The utilized ratio of FPGA can in-

dicate how effectively the resource of FPGA has been used. We evaluate the utilized

ratio of the above three approaches.

5.6.2 Experiment Results

Throughput on video analytic. We compare the throughput on video analytic of

TAPU, Only-VA-FPGA and Dedicated-FPGA in Fig. 5.10. We see that our TAPU

and Dedicated-FPGA outperform Only-VA-FPGA significantly. The video analytic

throughput of TAPU and Dedicated-FPGA are 1.49 times and 1.52 time to that

of Only-VA-FPGA respectively. This is because that advanced network functions

occupant most of CPU resource, and only a little of CPU resource is allocated for

pre-processing of video analytic. Even though a dedicated FPGA can be used for

accelerating video analytic in Only-VA-FPGA, the pre-processing of video analytic

on CPU becomes the bottleneck. While for TAPU and Dedicated-FPGA, advanced

network functions are processed on FPGA, thus enough CPU resource can be used

for pre-processing.

109

T
h

ro
u

g
h

p
u

t
o

n

V
id

eo
 A

n
al

y
ti

c
(F

P
S

)

Only-VA-FPGA TAPU Dedicated-FPGA
0

4

8

12

16

Figure 5.10: The throughput on
video analytics.

T
h

ro
u

g
h

p
u

t
o

n

N
et

w
o

rk
 P

ro
ce

ss
in

g
 (

M
b

p
s)

Only-VA-FPGA TAPU Dedicated-FPGA
0

5

10

15

20

Figure 5.11: The throughput on
network processing.

We also observe that the throughput of TAPU (14.71 FPS) is a little smaller than

that of Dedicated-FPGA (15 FPS), however, this gap is small. In TAPU, FPGA is

shared by video analytic and network functions, which leads such a small gap.

Throughput on network processing. We also show the network processing

throughput of TAPU, Only-VA-FPGA and Dedicated-FPGA in Fig. 5.11. Similar to

the result of throughput on video analytic, TAPU and Dedicated-FPGA outperform

Only-VA-FPGA significantly in terms of throughput on network processing. TAPU

and Dedicated-FPGA can process network packet at the speed of 16.8 Mbps which

is 2.33 times to that of Only-VA-FPGA. Though most CPU resources are allocated

for network functions, the speed of software-based processing cannot catch up that

of hardware acceleration.

Different to the result of throughput on video analytic, even through network

function and video share the FPGA resource, the throughput on network processing

of TAPU is the same as that of Dedicated-FPGA. This is because the priority of

network processing is higher than that of video analytic in TAPU. More specifically,

FPGA resource is allocated for accelerating video analytic only when existing residual

computation capacity after processing network packets.

The utilized ratio of FPGA. We also compare the FPGA utilization of TAPU,

Only-VA-FPGA and Dedicated-FPGA. We show the Gantt chart of FPGA working

110

Network Functions Video Analytic

(a) Only-VA-FPGA

(b)TAPU (c) Dedicated-FPGA

Idle

Figure 5.12: The working Status of FPGA. (The yellow box represents that FPGA
is idle; the red box represents that FPGA is used for processing network packets; the
blue box represents that FPGA is used for video analytics.)

Table 5.3: The average utilized ratio of FPGA.

Approach Utilized Ratio
Only-VA-FPGA 37.29%

TAPU 92.51%
Dedicated-FPGA 36.32%

status of these three approaches in Fig. 5.12. We ignore the image switch time as

it is too small (around 9 ms). From Fig. 5.12(a) and Fig. 5.12(c), we can see that

in Only-VA-FPGA and Dedicated-FPGA, yellow box occupant a high ratio, which

represents the FPGA is idle at the most of the time. Most of FPGA resource wastes

in Only-VA-FPGA and Dedicated-FPGA. While for TAPU, from Fig. 5.12(c), We

can see that the idle time (yellow box) of FPGA in TAPU is significantly less than

that of Only-VA-FPGA and Dedicated FPGA. For TAPU, most of the resources

are used to accelerate video analytic and network processing. This illustrates that

TAPU can fully utilize FPGA resource.

We also show the utilized ratio of FPGA in Tab. 5.3. The FPGA utilized ratio

in TAPU can reach up to 92.51%. It is 2.48 times compared to Only-VA-FPGA.

When compared to Dedicated-FPGA, the gap becomes more significant, which is

2.55 times. Though Dedicated-FPGA has the best performance in throughput which

gains from over provisioning, it has the lowest utilized ratio. TAPU has almost the

111

same performance in throughput with Dedicated-FPGA and much higher utilization

without over-provisioning.

5.7 Chapter Summary

In this chapter, we first review the current status of exacting video analytic and

network functions in the IoT gateway. Both the computation-intensive video analytic

and the increasingly advanced network functions need the hardware accelerators to

meet the performance requirement. The dedicated accelerator for each function

results in low utilization and the IoT gateways usually have stringent constraints in

size and cost. To this end, we propose TAPU, a new accelerator using multi-image

FPGA to accelerate both video analtyics and network functions. As a very first

study, we design from hardware to software which clarifies the necessary modules.

To maximally exploit the computation capacity of TAPU with minimal influence of

the network processing, we developed algorithms for residual computation capacity

estimation and efficient algorithms for the video analytic task offloading to TAPU.

We implement a fully functioning system. Our evaluation demonstrated that the

average utilization of TAPU can reach up to 92%, and TAPU can achieve throughput

on video analytic and network functions up to 1.49 times and 2.33 times.

112

Chapter 6

Conclusions and Future Directions

This chapter concludes this thesis by summarizing our original contributions in Sec-

tion 6.1 and by pointing towards the possible future directions of furthering our

research in Section 6.2.

6.1 Conclusions

The past decade has created tremendous expectations on IoT changing the landscape

of data-driven services with benefits for multiple societal sectors. Many researchers

have contributed to the development of technologies and addressed challenges that

come with resource scarcity in the end devices. Other researchers with a background

in cloud computing have looked at how to carry the data generated by the mas-

sive IoT deployments and how to efficiently use the cloud resources. The area of

edge computing brings these two ends of the same service together in an emerging

ecosystem and creates a means to discuss resource adequacy from an end-to-end

perspective. In this thesis, we have tried to study resource management, not from a

cloud perspective or an IoT device perspective, but with a focus on edge-side resource

management.

In this thesis, we study three schemes of resource management on the edge from

the perspective of communication resource sharing, the combination of computation

113

and communication resource optimization, and computation and communication re-

source provision respectively:

First, we carefully analyze the emerging IoT applications such as smart after-sales

maintenance and services. We show that a separate IoT network is needed to serve

their requirement of sending the data to the cloud. A core obstacle is the high costs

of communication choices. We propose a solution of sTube+ on IoT communication

sharing. The design of sTube+ includes a layered data delivery architecture, algo-

rithms for cost optimization and incremental development of devices, and a prototype

of a fully functioning system. Our evaluation results show that sTube+ can lead to a

cost reduction of five times and eight times respectively for the two real-world cases.

We further develop a case study of chiller and pump maintenance, where sTube+

acts as the underlying architecture.

Second, we study DNN inference acceleration through collaborative edge-cloud

computation. We propose Dynamic Adaptive DNN surgery (DADS) scheme that can

partition DNN inference between the edge device and the cloud at the granularity of

neural network layers, according to the dynamic network status and the computation

capacities of the edge device and the cloud. We present a comprehensive study of

the partition problem under the lightly loaded condition and the heavily loaded

condition. We also develop an optimal solution to the lightly loaded condition by

converting it to a min-cut problem, and design a 3-approximation ratio algorithm

under the heavily loaded condition as the problem is NP-hard. Real-world prototype

based on self-driving car video dataset is implemented, showing that compared with

executing entire the DNN on the edge and cloud, DADS can improve latency up to

6.45 and 8.08 times respectively, and improve throughput up to 8.31 and 14.01 times

respectively.

Third, we review the current status of existing data-driven applications and net-

work functions in the IoT gateway. Both the computation-intensive data-driven

114

applications and the increasingly advanced network functions need the hardware

resources to meet the performance requirement. We propose a novel transmission-

analytics processing unit, a new accelerator using multi-image FPGAs to provide

both computation and communication resource for data-driven applications in IoT

gateway. We evaluate TAPU through real trace-driven experiment. We see that the

utilization of TAPU can reach up to 92%, and brings significantly higher throughput

on video analytic and network processing over the current approach.

6.2 Future Directions

We close this thesis with our comments and suggestions on the ways in which the

current research can be advanced.

First, with our proposed sTube+ data delivery architecture, there is a large space

for research in price optimization for according to different pricing models and appli-

cation scenarios. We plan to develop a comprehensive SAMS for the energy systems

of buildings. The proposed sTube+ organizes a greater number of IoT devices be-

longing to the same vendor, with heterogeneous data communication requirements,

to share fewer choices of TCC links and transmit their data to the cloud, where the

IoT devices belong to the same vendor. The results of our evaluation show that the

larger scale sharing can lead to greater communication cost reduction. If the devices

belonging to different vendors share the communication resource, it will lead to a

larger-scale sharing thus more monetary cost will be reduced. Privacy and a fair

price for the data trade between different vendors are the challenges for this large

scale sharing. Sharing the communication resource in multi-vendors can be a future

direction for us to explore.

Second, when we design DNN surgery, we assume that the computation resource

of the edge device and the cloud are always available for the data-driven application.

115

In some scenarios, the computation resources are shared by multiple applications.

We will explore how to partition the DNN inference under the limited computation

resources of the edge devices and the cloud. The proposed DNN surgery focuses

on optimizing deep learning inference. We will explore whether it is beneficial to

partition the deep learning training and how to partition the training process.

Finally, as the first exploration of hardware providing both computation and

communication resource, the resource allocation of TAPU for computation and com-

munication is straightforward. In the future, we will extend the resource management

of the proposed TAPU to make it more efficient.

From the edge-side resource management prospective, we noted that the resource

objectives allocation and optimization were well studied. Moreover, computation and

communication resources are the most commonly addressed, typically being station-

ary and located within a single level. Therefore, research is less prevalent on data,

storage, and energy as a resource and less extensive towards the estimation, discov-

ery, and sharing objectives. Furthermore, new works should consider mobility and

multilevel locality on the supply side. Elaborating on mobility, the new phenomenon

at the edge is that the supply side can also be mobile and not only the demand side

as it was the case in classic clouds. Indeed, edge systems will have to deal with a

greater variety of mobility with end devices that are often mobile. It is not obvious

that the mobility patterns of all those devices. More work is needed on collecting

mobility traces from the different edge applications to see if present patterns can in

a generic way be used to create pertinent edge mobility models. will be similar

116

Bibliography

[1] Adlink iot gateway. https://www.adlinktech.com/en/Industrial_IoT_and_
Cloud_solutions_IoT_Gateway.aspx. Accessed May, 2019.

[2] AWS DeepLens. https://aws.amazon.com/deeplens. Accessed June, 2018.

[3] Berkeley vision and learning center. https://github.com/BVLC/caffe. Ac-
cessed Oct., 2018.

[4] Dell edge gateways for iot. https://www.dell.com/en-us/work/shop/cty/

sf/edge-gateway. Accessed May, 2019.

[5] Intel max 10 fpga development kit. https://www.altera.com/products/

boards_and_kits/dev-kits/altera/max-10-fpga-development-kit.html.
Accessed Jun., 2018.

[6] Revolutionizing non-volatile integration. https://www.altera.com.cn/

products/fpga/max-series/max-10. Accessed May, 2018.

[7] State of Mobile Networks: USA. https://opensignal.com/reports/2017/

08/usa/state-of-the-mobile-network. Accessed June, 2018.

[8] Mohamed S Abdelfattah, Andrei Hagiescu, and Deshanand Singh. Gzip on a
chip: High performance lossless data compression on fpgas using opencl. In
Proc. ACM IWOCL’14, Bristol, UK, May 2014.

[9] Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. Face description with
local binary patterns: Application to face recognition. IEEE Transactions on
Pattern Analysis & Machine Intelligence, (12):2037–2041, 2006.

[10] Petar Aleksic, Mohammadreza Ghodsi, Assaf Michaely, Cyril Allauzen, Brian
Hall, David Rybach, and Pedro Moreno. Bringing contextual information to
google speech recognition. In Proc. INTERSPEECH’15, Dresden, Germany,
Sep. 2015.

117

https://www.adlinktech.com/en/Industrial_IoT_and_Cloud_solutions_IoT_Gateway.aspx
https://www.adlinktech.com/en/Industrial_IoT_and_Cloud_solutions_IoT_Gateway.aspx
https://aws.amazon.com/deeplens
https://github.com/BVLC/caffe
https://www.dell.com/en-us/work/shop/cty/sf/edge-gateway
https://www.dell.com/en-us/work/shop/cty/sf/edge-gateway
https://www.altera.com/products/boards_and_kits/dev-kits/altera/max-10-fpga-development-kit.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/max-10-fpga-development-kit.html
https://www.altera.com.cn/products/fpga/max-series/max-10
https://www.altera.com.cn/products/fpga/max-series/max-10
https://opensignal.com/ reports/2017/08/usa/state-of-the-mobile-network
https://opensignal.com/ reports/2017/08/usa/state-of-the-mobile-network

[11] Hamid Reza Arkian, Reza Ebrahimi Atani, Abolfazl Diyanat, and Atefe
Pourkhalili. A cluster-based vehicular cloud architecture with learning-based
resource management. The Journal of Supercomputing, 71(4):1401–1426, 2015.

[12] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Computer networks, 54(15):2787–2805, 2010.

[13] Sean Barker, Aditya Mishra, David Irwin, Emmanuel Cecchet, Prashant Shenoy,
and Jeannie Albrecht. Smart*: An open data set and tools for enabling research
in sustainable homes. SustKDD, August, 111(112):108, 2012.

[14] Abdlmonem H Beitelmal, Chandrakant Patel, et al. A steady-state model for the
design and optimization of a centralized cooling system. International journal
of energy research, 34(14):1239–1248, 2010.

[15] Luiz F Bittencourt, Javier Diaz-Montes, Rajkumar Buyya, Omer F Rana, and
Manish Parashar. Mobility-aware application scheduling in fog computing.
IEEE Cloud Computing, 4(2):26–35, 2017.

[16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[17] Paul Bonsma. Most balanced minimum cuts. Discrete Applied Mathematics,
158(4):261–276, 2010.

[18] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-
cut/max- flow algorithms for energy minimization in vision. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(9):1124–1137, 2004.

[19] Ulrich Brenner. A faster polynomial algorithm for the unbalanced hitchcock
transportation problem. Operations Research Letters, 36(4):408–413, 2008.

[20] Sema Can, Bülent Kilit, Erşan Arslan, and Salih Suveren. The comparison of
reaction time of male tennis players, table tennis players and the ones who don’t
exercise at all in 10 to 12 age groups. Journal of Physical Education & Sports
Science/Beden Egitimi ve Spor Bilimleri Dergisi, 8(2), 2014.

[21] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and
Hari Balakrishnan. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, pages 155–168. ACM, 2015.

118

[22] Costas Courcoubetis and Richard Weber. Pricing communication networks:
economics, technology and modelling. John Wiley & Sons, 2003.

[23] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last
longer with code offload. In Proc. ACM MobiSys’10, San Francisco, CA, Jun.
2010.

[24] Eduardo Cuervo, Alec Wolman, Landon P Cox, Kiron Lebeck, Ali Razeen,
Stefan Saroiu, and Madanlal Musuvathi. Kahawai: High-quality mobile gaming
using gpu offload. In Proc. ACM MobiSys’15, Florence, Italy, May 2015.

[25] George B Dantzig. Discrete-variable extremum problems. Operations research,
5(2):266–288, 1957.

[26] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor
Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston,
et al. The youtube video recommendation system. In Proceedings of the fourth
ACM conference on Recommender systems, pages 293–296. ACM, 2010.

[27] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David
Culler. sMAP: a simple measurement and actuation profile for physical infor-
mation. In Proc. ACM SenSys’10, Zurich, Switzerland, Nov. 2010.

[28] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
Routebricks: exploiting parallelism to scale software routers. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, pages
15–28. ACM, 2009.

[29] Masoumeh Ebrahimi and Masoud Daneshtalab. EbDa: A new theory on design
and verification of deadlock-free interconnection networks. ACM SIGARCH
Computer Architecture News, 45(2):703–715, 2017.

[30] Nashwa El-Bendary, Qing Tan, Frédérique C Pivot, and Anthony Lam. Fall
detection and prevention for the elderly: A review of trends and challenges.
International Journal on Smart Sensing & Intelligent Systems, 6(3), 2013.

[31] Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud Pedram.
JointDNN: an efficient training and inference engine for intelligent mobile cloud
computing services. arXiv preprint arXiv:1801.08618, 2018.

119

[32] WeiDong Feng, Yong Sun, Zheng Zhou, Qiang Rao, Di Chen, Linhui Yang, and
Yawei Wang. Study on multi-network traffic modeling in distribution communi-
cation network access service. In Proc. IEEE ICACT’18, Mumbai, India, Feb.
2018.

[33] Nofirman Firdaus and Bambang Teguh Prasetyo. Chiller: Performance deteri-
oration and maintenance. Energy Engineering, 113(4):55–80, 2016.

[34] Mirko Franceschinis, Marco Mellia, Michela Meo, and Maurizio Munafo. Mea-
suring TCP over WiFi: A real case. In 1st workshop on Wireless Network
Measurements, Riva Del Garda, Italy, Sep. 2005.

[35] Christine Fricker, Fabrice Guillemin, Philippe Robert, and Guilherme Thomp-
son. Analysis of an offloading scheme for data centers in the framework of fog
computing. ACM Transactions on Modeling and Performance Evaluation of
Computing Systems (TOMPECS), 1(4):16, 2016.

[36] Jingkun Gao, Joern Ploennigs, and Mario Berges. A data-driven meta-data in-
ference framework for building automation systems. In Proc. ACM Buildsys’15,
Seoul, South Korea, Nov. 2015.

[37] Cesar A Garc, Pedro Merino, et al. 3GPP standards to deliver LTE connectivity
for IoT. In Proc. IEEE IoTDI’16, Berlin, Germany, Apr. 2016.

[38] Gopal S Gawande and KB Khanchandani. Efficient Design and FPGA Imple-
mentation of Digital Filter for Audio Application. In Proc. IEEE ICCUBEA’15,
Pune, India, Feb. 2015.

[39] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wol-
man, and Arvind Krishnamurthy. MCDNN: An approximation-based execution
framework for deep stream processing under resource constraints. In Proc. ACM
MobiSys’16, Singapore, Jun. 2016.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proc. IEEE CVPR’16, Las Vegas, Nevada, Jul.
2016.

[41] Jianwei Huang and Lin Gao. Wireless network pricing. Synthesis Lectures on
Communication Networks, 6(2):1–176, 2013.

[42] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile
gpu-based deep learning framework for continuous vision applications. In Proc.
ACM mobisys’17, Niagara Falls, NY, Jun. 2017.

120

[43] Jing Jiang and Yi Qian. Distributed communication architecture for smart grid
applications. IEEE Communications Magazine, 54(12):60–67, 2016.

[44] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Ja-
son Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. In Proc. ACM ASPLOS’17, Xi’an, China, Apr. 2017.

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[46] Amey Kulkarni and Tinoosh Mohsenin. Accelerating compressive sensing recon-
struction OMP algorithm with CPU, GPU, FPGA and domain specific many-
core. In Proc. IEEE ISCAS’15, Lisbon, Portugal, May 2015.

[47] Joseph HK Lai, Francis WH Yik, and Aggie KP Chan. Maintenance cost of
chiller plants in hong kong. Building Services Engineering Research and Tech-
nology, 30(1):65–78, 2009.

[48] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei
Jiao, Lorena Qendro, and Fahim Kawsar. DeepX: A software accelerator for
low-power deep learning inference on mobile devices. In Proc. IEEE IPSN’16,
Vienna, Austria, Apr. 2016.

[49] Steven Latre, Philip Leroux, Tanguy Coenen, Bart Braem, Pieter Ballon, and
Piet Demeester. City of things: An integrated and multi-technology testbed for
IoT smart city experiments. In Proc. IEEE ISC2’16, Trento, Italy, Sep. 2016.

[50] Dongheon Lee, Sheng Zhou, Xiaofeng Zhong, Zhisheng Niu, Xuan Zhou, and
Honggang Zhang. Spatial modeling of the traffic density in cellular networks.
IEEE Wireless Communications, 21(1):80–88, 2014.

[51] Jay Lee, Chao Jin, and Zongchang Liu. Predictive big data analytics and cyber
physical systems for TES systems. In Advances in Through-life Engineering
Services, pages 97–112. Springer, 2017.

[52] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. Clicknp: Highly flexible and
high performance network processing with reconfigurable hardware. In Proc.
ACM SIGCOMM’16, Brazil, Aug. 2016.

[53] Chengzhe Li, Lai Yoong Yee, Hiroshi Maruyama, and Yoshiki Yamaguchi.
FPGA-based volleyball player tracker. ACM Transactions on SIGARCH Com-
puter Architecture News, 44(4):80–86, 2017.

121

[54] Xiaoyao Li, Xiuxiu Wang, Fangming Liu, and Hong Xu. DHL: Enabling Flexible
Software Network Functions with FPGA Acceleration. Jul. 2018.

[55] David Linthicum. Make sense of edge computing vs. cloud
computing. https://www.infoworld.com/article/3197555/

make-sense-of-edge-computing-vs-cloud-computing.html. Accessed
May, 2017.

[56] Wei Liu, Ryoichi Shinkuma, and Tatsuro Takahashi. Opportunistic resource
sharing in mobile cloud computing: The single-copy case. In Proc. IEEE AP-
NOMS’14, Hsinchu, Taiwan, Sep. 2014.

[57] Mehdi Mahdavikhah and Hamid Niazmand. Effects of plate finned heat ex-
changer parameters on the adsorption chiller performance. Applied Thermal
Engineering, 50(1):939–949, 2013.

[58] Andrew Martin, Damir Jamsek, and K Agarawal. Fpga-based application ac-
celeration: Case study with gzip compression/decompression streaming engine.
ICCAD Special Session C, 7:2013, 2013.

[59] Abderrahmen Mtibaa, Afnan Fahim, Khaled A Harras, and Mostafa H Ammar.
Towards resource sharing in mobile device clouds: Power balancing across mobile
devices. In ACM SIGCOMM Computer Communication Review, volume 43,
pages 51–56. ACM, 2013.

[60] Ghasem Naddafzadeh-Shirazi, Lutz Lampe, and Gustav Vos. Coverage enhance-
ment techniques for machine-to-machine communications over LTE. IEEE Com-
munications Magazine, 53(7):192–200, 2015.

[61] Antonio L Maia Neto, Artur LF Souza, Italo Cunha, et al. Aot: Authentication
and access control for the entire iot device life-cycle. In Proc. ACM Senys’16,
CA, USA, Nov. 2016.

[62] Dusit Niyato, Xiao Lu, Ping Wang, Dong In Kim, and Zhu Han. Economics of
Internet of Things: an information market approach. IEEE Wireless Commu-
nications, 23(4):136–145, 2016.

[63] Eriko Nurvitadhi, Jaewoong Sim, David Sheffield, et al. Accelerating recurrent
neural networks in analytics servers: Comparison of FPGA, CPU, GPU, and
ASIC. In Proc. IEEE FPL’16, Lausanne, Switzerland, Aug. 2016.

[64] Alberto Oliveri, Luca Cassottana, Antonino Laudani, et al. Two FPGA-oriented
high-speed irradiance virtual sensors for photovoltaic plants. IEEE Transactions
on Industrial Informatics, 13(1):157–165, 2017.

122

https://www.infoworld.com/article/3197555/make-sense-of-edge-computing-vs-cloud-computing.html
https://www.infoworld.com/article/3197555/make-sense-of-edge-computing-vs-cloud-computing.html

[65] Jessica Oueis. Joint communication and computation resources allocation for
cloud-empowered future wireless networks. PhD thesis, 2016.

[66] Maire ONeill et al. Insecurity by design: Todays iot device security problem.
Engineering, 2(1):48–49, 2016.

[67] HyoJoo Park, TaeYong Kim, and SaJoong Kim. Network traffic analysis and
modeling for games. In Proc. Springer WINE’05, Hong Kong, China, Dec. 2005.

[68] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo: A performance model
for deep neural networks. In Proc. ICLR’17, Toulon, France, Apr. 2016.

[69] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng
Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper with embedded
fpga platform for convolutional neural network. In Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 26–35. ACM, 2016.

[70] Darijo Raca, Jason J Quinlan, Ahmed H Zahran, and Cormac J Sreenan. Beyond
throughput: a 4G LTE dataset with channel and context metrics. In Proc. ACM
MMSys’18, Amsterdam, The Netherlands, Jun. 2018.

[71] Abdelrahim Ramadan. District cooling designing for life power
& cost saving. https://www.slideshare.net/AbdoRamadan1/

district-cooling-design-case-study. Accessed Jul, 2015.

[72] Meike Ramon, Stephanie Caharel, and Bruno Rossion. The speed of recognition
of personally familiar faces. Perception, 40(4):437–449, 2011.

[73] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. arXiv
preprint arXiv:1612.08242, 2016.

[74] JS Roessler. LTE-advanced (3GPP rel. 12) technology introduction. Apr. 2015.

[75] Aimin Sang and San-qi Li. A predictability analysis of network traffic. Computer
networks, 39(4):329–345, 2002.

[76] Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar. Towards
qos-aware fog service placement. In Proc. IEEE ICFEC’17), Madrid, Spain, May
2017.

[77] Petr Slav́ık. A tight analysis of the greedy algorithm for set cover. In Proc.
ACM STOC’96, May. 1996.

123

https://www.slideshare.net/AbdoRamadan1/district-cooling-design-case-study
https://www.slideshare.net/AbdoRamadan1/district-cooling-design-case-study

[78] Thomas Stockhammer. Dynamic adaptive streaming over HTTP: standards and
design principles. In Proc. ACM MMSYS ’11, Santa Clara, CA, Feb. 2011.

[79] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learn-
ing. In Proc. AAAI’17, San Francisco, CA, Feb. 2017.

[80] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proc. IEEE CVPR’15, Boston,
MA, Jun. 2015.

[81] Savera Tanwir, Debanjana Nayak, and Harry Perros. Modeling 3D video traffic
using a Markov modulated gamma process. In Proc. IEEE ICNC’16, Kauai,
Hawaii, Feb 2016.

[82] Leonel Tedesco, Aline Mello, Leonardo Giacomet, Ney Calazans, and Fernando
Moraes. Application driven traffic modeling for NoCs. In Proc. ACM SBCCI’06,
New York, NY, Sep. 2006.

[83] Surat Teerapittayanon, Bradley McDanel, and HT Kung. Distributed deep neu-
ral networks over the cloud, the edge and end devices. In Proc. IEEE ICDCS’17,
Atlanta, GA, Jun. 2017.

[84] Vutha Va, Takayuki Shimizu, Gaurav Bansal, Robert W Heath Jr, et al. Mil-
limeter wave vehicular communications: A survey. in Now Publishers Journal
on Foundations and Trends in Networking, 10(1):1–113, 2016.

[85] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of
neural networks on cpus. In Proc. NIPS’11, Granada, Spain, Jan. 2011.

[86] Ehsan Variani, Xin Lei, Erik McDermott, Ignacio Lopez Moreno, and Javier
Gonzalez-Dominguez. Deep neural networks for small footprint text-dependent
speaker verification. In Proc. IEEE ICASSP’14, Florence, Italy, May 2014.

[87] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and Sotiris Ioan-
nidis. tGASPPu: A gpu-accelerated stateful packet processing framework. In
Proc. USENIX ATC’14, Philadelphia, PA, Jun. 2014.

[88] Anna Maria Vegni, Valeria Loscr, Alessandro Neri, and Marco Leo. A Bayesian
packet sharing approach for noisy IoT scenarios. In Proc. IEEE IoTDI’16,
Berlin, Germany, Apr. 2016.

124

[89] Jianyu Wang, Jianli Pan, and Flavio Esposito. Elastic urban video surveillance
system using edge computing. In Proceedings of the Workshop on Smart Internet
of Things, page 7. ACM, 2017.

[90] Kezhi Wang, Kun Yang, Xinhou Wang, and Chathura Sarathchandra Magu-
rawalage. Cost-effective resource allocation in c-ran with mobile cloud. In 2016
IEEE International Conference on Communications (ICC), pages 1–6. IEEE,
2016.

[91] Shiqiang Wang, Rahul Urgaonkar, Ting He, Kevin Chan, Murtaza Zafer, and
Kin K Leung. Dynamic service placement for mobile micro-clouds with pre-
dicted future costs. IEEE Transactions on Parallel and Distributed Systems,
28(4):1002–1016, 2016.

[92] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei Li. Deepburning:
automatic generation of fpga-based learning accelerators for the neural network
family. In Proc. ACM DAC’16, Austin, TX, Jun. 2016.

[93] Thomas Watteyne, Kris Pister, Dominique Barthel, Mischa Dohler, and Isabelle
Auge-Blum. Implementation of gradient routing in wireless sensor networks. In
Proc. IEEE GLOBECOM’09, Dec. 2009.

[94] Business Wire. Finding success in the new iot ecosystem: Mar-
ket to reach $3.04 trillion and 30 billion connected “things” in 2020,
idc says. https://www.businesswire.com/news/home/20141107005028/en/

Finding-Success-IoTEcosystem-Market-Reach-3.04. Accessed May, 2019.

[95] Harunori Yoshida and Sanjay Kumar. ARX and AFMM model-based on-line
real-time data base diagnosis of sudden fault in AHU of VAV system. Energy
Conversion and Management, 40(11):1191–1206, 1999.

[96] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal
Jackson, and Prabal Dutta. The Internet of Things has a gateway problem. In
Proc. ACM HotMobile’15, Santa Fe, New Mexico, Feb. 2015.

[97] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. Live Video Analytics at Scale with
Approximation and Delay-Tolerance. In Proc. USENIX NSDI’17, Boston, MA,
Mar. 2017.

[98] Quan Zhang, Xiaohong Zhang, Qingyang Zhang, Weisong Shi, and Hong Zhong.
Firework: Big data sharing and processing in collaborative edge environment. In

125

https://www.businesswire.com/news/home/20141107005028/en/Finding-Success-IoTEcosystem-Market-Reach-3.04
https://www.businesswire.com/news/home/20141107005028/en/Finding-Success-IoTEcosystem-Market-Reach-3.04

2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies
(HotWeb), pages 20–25. IEEE, 2016.

[99] Zimu Zheng, Dan Wang, Jian Pei, Yi Yuan, Cheng Fan, and Fu Xiao. Urban
traffic prediction through the second use of inexpensive big data from buildings.
In Proc. ACM CIKM’16, Indianapolis, IN, Oct. 2016.

126

	Coverpage
	Declaration
	Abstract
	Abstract
	Publications
	Publications
	Acknowledgement
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Data-driven Application with Edge/Cloud Computing
	1.2 The Problems
	1.3 Research Framework
	1.4 Contributions
	1.5 Thesis Organization

	2 Background and Literature Review
	2.1 Data-driven Applications
	2.1.1 Smart After-sales Maintenance
	2.1.2 Video Analytics

	2.2 Resource Management on the Edge
	2.2.1 Edge-side Resource Sharing
	2.2.2 Edge-side Resource Allocation
	2.2.3 Edge-side Resource Provisioning

	3 sTube+: A Communication Sharing Architecture for Data-driven After-sales Maintenance
	3.1 Introduction
	3.2 The Motivation
	3.3 The Stube+ Architecture
	3.3.1 A Layered Architecture for Data Delivery
	3.3.2 Detailed Modules for a Functioning System
	3.3.3 Security Concerns

	3.4 IoT Communication Sharing Optimization
	3.4.1 Network Topology
	3.4.2 Load Constraint Modeling
	3.4.3 The Cost of TCC Sharing
	3.4.4 IoT Communication Sharing Problem Formulation
	3.4.5 Problem analysis
	3.4.6 The ICS Algorithm

	3.5 ICS in the Pay-As-You-Go Pricing Model
	3.5.1 Problems
	3.5.2 Algorithms

	3.6 Implementation
	3.6.1 The Network Stack
	3.6.2 The Routing Choice
	3.6.3 Hardware Choices

	3.7 Performance Evaluation
	3.7.1 Evaluation by Experiments
	3.7.2 Evaluation by Trace-driven Simulations

	3.8 A Case Study
	3.9 Chapter Summary

	4 DNN Surgery: Accelerating Inference on the Edge
	4.1 Introduction
	4.2 An Edge-Cloud DNN Inference (ECDI) Model
	4.2.1 Background
	4.2.2 The ECDI Model
	4.2.3 Parameter Estimation for ECDI

	4.3 ECDI Partitioning Optimization
	4.3.1 The Impact of DNN Inference Workloads
	4.3.2 The Light Workload Partitioning Algorithm
	4.3.3 The Heavy Workload Partitioning Algorithms
	4.3.4 The Dynamic Partitioning Algorithm

	4.4 Implementation
	4.5 Performance Evaluation
	4.5.1 Setup
	4.5.2 Performance Comparison
	4.5.3 Network Variation

	4.6 Chapter Summary

	5 TAPU: a New Processing Unit for Accelerating Multi-type Functions in IoT Gateways
	5.1 Introduction
	5.2 System Design
	5.2.1 Hardware Design
	5.2.2 Software Design

	5.3 Residual Computation Capacity Estimation
	5.3.1 Non-Preemption Estimation Scheme
	5.3.2 Trace-Driven Estimation Scheme

	5.4 Inference Task Offloading
	5.4.1 Batch Execution Time Profiling
	5.4.2 Inference Quality Profiling
	5.4.3 The Inference Task Offloading Algorithm

	5.5 Implementation
	5.5.1 Hardware Implementation
	5.5.2 Network Functions Implementation
	5.5.3 Video Analytic Implementation

	5.6 Performance Evaluation
	5.6.1 Experiment Setup
	5.6.2 Experiment Results

	5.7 Chapter Summary

	6 Conclusions and Future Directions
	6.1 Conclusions
	6.2 Future Directions

	Bibliography

