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Abstract

Heart arrhythmias or arrhythmias refer to the irregular heartbeats of patients. Not all

arrhythmias are serious or life threatening but some types (e.g., atrial fibrillation, ven-

tricular escape and ventricular fibrillation) may be a sign of heart diseases and could

cause sudden cardiac death if prompt treatments are not received. Usually medi-

cal doctors use di↵erent types of electrocardiography (ECG) (e.g., 12-lead ECG and

Holter monitors) to check for a variety of heart conditions and identify arrhythmias

through analyzing the ECG. With the growing popularity of wearable technology, a

large amount of ECG data are required to be analyzed. Therefore, automatic heart-

beat classification from ECG signals is an essential step toward arrhythmias detection

in medical practice. This thesis explores the applications of deep learning in auto-

matic heartbeat classification, especially for the detection of occasional arrhythmias

during long-term continuous cardiac monitoring.

A lot of research e↵orts have been spent on the classification of heartbeats based on

the University of California, Irvine, (UCI) cardiac arrhythmia dataset. Among them,

support vector machines (SVMs) and shallow neural networks (NNs) are the most

popular classification methods. However, most of the previous studies reported the

performance of either the SVMs or the ANNs without in-depth comparisons between

these two methods. Also, a large number of handcrafted features have been provided

by the UCI dataset, and some may be more relevant to arrhythmias than the others.

This thesis is to enhance the performance of heartbeat classification by selecting

relevant features from ECG signals, applying dimension reduction on the feature

vectors, and applying deep neural networks (DNNs) for classification. A holistic

comparison among DNNs, SVMs, and shallow NNs will be provided. Experimental

results based on the UCI dataset suggest that DNNs outperform both SVMs and

shallow NNs, provided that relevant features have been selected.



To obtain better ECG representation for heartbeat classification, this thesis pro-

poses deep learning methods with signal alignment that facilitate the end-to-end

classification of raw ECG signals into heartbeat types, i.e., normal beat or di↵er-

ent types of arrhythmias. Time-domain sample points are extracted from raw ECG

signals, and consecutive vectors are extracted from a sliding time-window covering

these sample points. Each of these vectors comprises the consecutive sample points

of a complete heartbeat cycle, which includes not only the QRS complex but also the

P and T waves. Unlike existing heartbeat classification methods in which medical

doctors extract handcrafted features from raw ECG signals, the proposed end-to-

end method leverages a DNN for both feature extraction and classification based on

aligned heartbeats. This strategy not only obviates the need to handcraft the features

but also produces optimized ECG representation for heartbeat classification. Evalu-

ations on the MIT-BIH arrhythmia database show that at the same specificity, the

proposed patient-independent classifier can detect supraventricular- and ventricular-

ectopic beats at a sensitivity that is at least 10% higher than current state-of-the-art

methods. More importantly, there is a wide range of operating points in which both

the sensitivity and specificity of the proposed classifier are higher than those achieved

by state-of-the-art classifiers. The proposed classifier can also perform comparable

to patient-specific classifiers, but at the same time enjoys the advantage of patient

independency.

To address the significant variability in waveforms and characteristics of ECG sig-

nals among di↵erent patients, termed as inter-patient variations, this thesis proposes

adapting a patient-independent DNN using the information in the patient-dependent

identity vectors (i-vectors). The adapted networks, namely i-vector adapted patient-

specific DNNs (iAP-DNNs), are tuned towards the ECG characteristics of individual

patients. For each patient, his/her ECG waveforms are compressed into an i-vector



using a factor analysis model. Then, this i-vector is concatenated to the middle hidden

layer of the patient-independent DNN. Stochastic gradient descent is then applied to

fine-tune the whole network to form a patient-specific classifier. As a result, the adap-

tation makes use of not only the raw ECG waveforms from the specific patient but

also the compact representation of his/her ECG characteristics through the i-vector.

Analysis on the hidden-layer activations show that by leveraging the information in

the i-vectors, the iAP-DNNs are more capable of discriminating normal heartbeats

against arrhythmic heartbeats than the networks that use the patient-specific ECG

only for the adaptation. Experimental results based on the MIT-BIH arrhythmia

database suggest that the iAP-DNNs perform better than existing patient-specific

classifiers in terms of various performance measures. In particular, the sensitivity

and specificity of the existing methods are all under the receiver operating character-

istic curves of iAP-DNNs.
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Chapter 1

INTRODUCTION

1.1 Heart Arrhythmias

Heart arrhythmias refer to the condition in which a patient’s heart beats irregularly.

Most types of arrhythmias have no symptoms and are not serious. However, arrhyth-

mias may cause symptoms of heart diseases, including lightheadedness, passing out,

shortness of breath and chest pain. Some types of arrhythmias such as atrial fibril-

lation, ventricular escape and ventricular fibrillation may cause strokes and cardiac

arrest that are extremely dangerous and require immediate treatment [17].

1.2 ECG Measurement

Heart arrhythmias can be detected through electrocardiography (ECG), which is a

process of recording the electrical activities of the heart. The conventional ECG uses

a 12-lead configuration in which a number of electrodes are placed on a patient’s

limbs and on the surface of the chest. The 12-lead ECG is made up of the three

standard limb leads (I, II and III), the augmented limb leads (aVR, aVL and aVF)

and the six precordial leads (V1, V2, V3, V4, V5 and V6). During measurement

of 12-lead ECG, the patient is asked to lie quietly on a bed so that high quality

12-lead ECG signals can be recorded, but this arrangement is impractical for long-

term monitoring. Unfortunately, some intermittent arrhythmias can only be detected

by long-term monitoring because they can be easily missed in ordinary recording
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(a) 12-lead ECG configuration (b) 2-lead ECG configuration

Figure 1.1: Two types of ECG configurations

sessions. To overcome this issue, a 2-lead configuration is routinely used in Holter

monitoring [18] and is widely accepted as a practical means of long-term continuous

heart monitoring. Figure 1.1 shows the two types of ECG configurations.1

1.3 ECG Waveforms and Intervals

P 

R 

T 

U 

Q S 

ST 
Segment 

PR 

Interval 

QT 

Interval 

Figure 1.2: Typical ECG in a normal sinus rhythm

1https://commons.wikimedia.org/wiki/File:Ekg NIH.jpg; https://www.promed.ie/product/custo-
med-ecg-holter-monitor
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Figure 1.2 shows a typical ECG in a sinus rhythm. A sinus rhythm (heartbeat) is a

normal regular rhythm of the heart; it is set by the sinus node which is the natural

pacemaker of the heart. As illustrated in Figure 1.2, a normal rhythm produces

a P wave, a QRS complex, a T wave, and a U wave [19]. The P wave represents

atrial depolarization, the QRS complex represents ventricular depolarization, the T

wave represents ventricular repolarization, and the U wave represents papillary muscle

repolarization. Among them, the U wave is not typically seen and its absence is

generally ignored.

A normal rhythm can be divided into di↵erent segments and intervals, such as ST

segment, PR interval and QT interval. The ST segment connects the QRS complex

and the T wave. It represents the period when the ventricles are depolarized. The

PR interval is measured from the beginning of the P wave to the beginning of the

QRS complex. It reflects the time the impulse takes to reach the ventricles from the

sinus node. The QT interval is measured from the beginning of the QRS complex

to the end of the T wave. It represents electrical depolarization and repolarization

of the ventricles. The above durations are closely related to the condition of cardiac

conduction system, and thus they are meaningful indexes for doctors to diagnose

heart arrhythmia. Therefore, being able to identify the dangerous types of heart

arrhythmia from ECG signals is an important skill of medical professionals.

1.4 Automation

In general, an ECG recording session lasts several minutes, and medical doctors ex-

amine the ECG waveforms beat-by-beat to diagnose whether heart arrhythmias exist

or not. With the increasing use of personal portable devices to acquire ECG data, a

large number of ECG recordings can be collected. However, it is impossible to read

and analyze all of these data manually by medical professionals. As a result, the

development of automatic techniques for identifying abnormal conditions from daily



4

recorded ECG data is of fundamentally importance. Moreover, timely first-aid pro-

cedures can be applied if such abnormal conditions can be detected automatically by

health monitoring equipment. In this regard, it is better to use machines to classify

heartbeats automatically so as to assist clinicians in diagnosing arrhythmias.

1.5 Thesis Organization

This thesis is organized as follows:

In Chapter 2, we introduce two popular ECG datasets and the metrics for evaluat-

ing the performance of ECG classifiers. We also give a literature review on automatic

ECG classification, including patient-independent and patient-specific ECG classifi-

cation.

In Chapter 3, we review the commonly used machine learning techniques, fo-

cussing on the feedforward fully-connected neural networks. The network structure,

backpropagation (BP) fine-tuning and restricted Boltzmann machines (RBMs) will

be discussed.

In Chapter 4, we apply feature selection and dimension reduction methods to

handcrafted features for producing better representation of heartbeats. A perfor-

mance comparison among di↵erent machine learning techniques will be provided.

In Chapter 5, we propose a patient-independent heartbeat classifier for detecting

arrhythmias types during long-term heart monitoring.

In Chapter 6, we propose a patient-specific heartbeat classifier to address the

inter-patient variation in ECG signals.

In Chapter 7, we draw the conclusions and suggest some directions for future work.
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Chapter 2

ECG DATA AND RELATED WORK

2.1 Sources of ECG Data

Usually, ECG data are available only in hospitals or specialized research centers, and

the collection and usage may cause privacy issues. Thus, collecting ECG data is

very expensive. Because of this, there are only a few public-domain ECG datasets.

To evaluate the performance of the feature pre-processing methods and classification

algorithms in ECG classification, the UCI cardiac arrhythmia dataset [20] and the

MIT-BIH arrhythmia dataset [21] were used in this work. The UCI data was collected

by using the conventional 12-lead ECG configuration. The dataset was used for

investigating which sets of feature are appropriate for which classification methods

(Chapter 3). Note that we do not need to apply feature extraction to this dataset

because handcrafted features1 have already been provided. In contrast, the MIT-BIH

dataset contains raw ECG signals. The proposed end-to-end heartbeat classification

(Chapter 5) and the i-vector adapted deep neural networks (Chapter 6) are designed

to detect some types of arrhythmias from the raw ECG waveforms during continuous

heart monitoring. Thus, we used the 2-lead ECG configuration and also used the

MIT-BIH dataset for performance evaluation because it comprises a standard set of

Holter recordings for evaluating arrhythmia detectors.

1The term “handcrafted features” is frequently used in the machine learning community to refer
to features that are handcrafted by human experts of the field based on their knowledge and past
experience.
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Table 2.1: Class distribution in the UCI cardiac arrhythmia dataset

Class Code Class Number of Instances

01 Normal 245
02 Ischemic changes 44
03 Old Anterior Myocardial Infarction 15
04 Old Inferior Myocardial Infarction 15
05 Sinus tachycardy 13
06 Sinus bradycardy 25
07 Ventricular Premature Contraction (PVC) 3
08 Supraventricular Premature Contraction 2
09 Left bundle branch block 9
10 Right bundle branch block 50
11 1. degree AtrioVentricular block 0
12 2. degree AV block 0
13 3. degree AV block 0
14 Left ventricule hypertrophy 4
15 Atrial Fibrillation or Flutter 5
16 Others 22

2.1.1 UCI Cardiac Arrhythmia Dataset

The UCI cardiac arrhythmia [20] dataset comprises 452 labelled heartbeats divided

into 16 di↵erent heartbeat types (or classes). Each heartbeat has 279 handcrafted

features, such as QRS duration, Q-T interval, P-R interval, T interval and so on.

One of the 16 classes is named “Normal”, which contains 245 normal heartbeats. The

remaining 15 classes represent di↵erent kinds of heart arrhythmia, which comprise

207 abnormal heartbeats. The class distribution is shown in Table 2.1.

Because features corresponding to the 452 heartbeats have been provided, it is not

necessary to perform heartbeat segmentation and feature extraction. However, pre-

processing of feature vectors such as z-norm is still necessary to ensure that individual

features in the feature vectors have the same range. There are only two kinds of

features in the dataset: Nominal (such as “Sex” and “Existence of ragged R wave”)



7

and Continuous (such as “QRS druation” and “Q-T interval”). All of the nominal

features have two categories (“M” and “F” for “sex”, “Yes” and “No” for “Existence

of ragged R wave”), and we used “0” and “1” to represent them. For continuous

features, z-norm was applied.

2.1.2 MIT-BIH Arrhythmia Database

The MIT-BIH arrhythmia database [21] contains 48 half-hour excerpts of two-channel

ambulatory ECG recordings. The database was obtained by the BIH Arrhythmia

Laboratory between 1975 and 1979. It involves 47 subjects (25 men aged between

32 and 89, and 22 women aged between 23 and 89). Each record contains a con-

tinuous recording of ECG signals from a single subject, except for Records 201 and

202 in which the data were obtained from the same male subject. All records were

labelled beat-by-beat by two or more cardiologists independently. The total number

of labelled heartbeats is 108,655. These heartbeats are divided into 15 di↵erent types

(see Table 2.2). Compared with the UCI arrhythmia dataset, the total number of

heartbeats in the MIT-BIH arrhythmia database is 200 times bigger. Moreover, the

records in this database contain raw ECG signals. Thus, it can also be used for testing

heartbeat segmentation and feature extraction algorithms mentioned in Section 3.4,

which are very important in ECG classification. Therefore, the MIT-BIH arrhythmia

database is one of the most popular data source for studying ECG classification.

Table 2.2 shows the 15 types of heart arrhythmia in the MIT-BIH arrhythmia

database. According to the American National Standard (ANSI/AAMI EC57:1998)

[22] prepared by the Association for the Advancement of Medical Instrumentation,

these heartbeat types can be combined into five classes as shown in Table 2.3. These

classes include normal beat (N), ventricular ectopic beat (V), supraventricular ectopic

beat (S), fusion of a normal and a ventricular ectopic beat (F) and unknown beat

type (Q).

Signals in MIT-BIH arrhythmia database were digitized at 360 samples per sec-
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Table 2.2: Heartbeat types in the MIT-BIH arrhythmia database

Class Code Class Number of Instances

N Normal 75,054
L Left bundle branch block beat 8,074
R Right bundle branch block beat 7,259
A Atrial premature beat 2,544
a Aberrated atrial premature beat 150
J Nodal (junctional) premature beat 83
S Supraventricular premature beat 2
V Premature ventricular contraction 7,129
F Fusion of ventricular and normal beat 803
e Atrial escape beat 16
j Nodal (junctional) escape beat 229
E Ventricular escape beat 106
P Paced beat 7,028
f Fusion of paced and normal beat 982
Q Unclassifiable beat 33

ond per channel with 11-bit resolution over a ±5mV range. Note that the samples

represent the real measured voltage ranging between �5mV to +5mV, which is from

0 to 2,047 inclusive, with a value of 1,024 corresponding to zero volt.

In most of the recordings in the MIT-BIH database, the upper signal is a modified

limb lead II (MLII), and the lower one is a modified lead V1.2 In our experiments,

only the upper signal was used for ECG classification because normal QRS complexes

are usually prominent in it.

2.2 Automatic ECG Classification

To assist doctors in identifying heart arrhythmia, computer scientists have applied

machine learning techniques to automatically discover patterns in ECG data that

2We adopted the terminology from MIT-BIH and used upper and lower signals to refer to the
two channels of ECG recordings.
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Table 2.3: Mapping the MIT-BIH arrhythmia types into five heartbeat classes recommended
by AAMI

AAMI Class
N S V F Q

MIT-BIH
Class Code

(see Table 2.2)

NOR,
LBBB,
RBBB,
AE, NE

AP,
aAP,
NP,
SP

PVC,
VE

fVN
P,

fPN,
U

No. of
Instances

90,042 2,779 7,007 802 15

are related to heart arrhythmias. Kohli et al. [23] used a one-versus-rest SVM as

the classifier to predict heart arrhythmia and achieved good performance on the UCI

benchmark dataset [24] (the best classification accuracy on their test data is over

70%). In [25], Khare et al. proposed a hybrid approach combining rank correlation [26]

and principal component analysis (PCA) [27] for feature extraction and SVMs for

classification. They demonstrated that the hybrid approach achieves much better

performance than the predictor proposed by Kohli et al. [23] on the same dataset.

However, the hyper-parameters of the heart arrhythmia classifiers in these works were

optimized based on the test data. As a result, the claimed accuracy in these studies

may be over-estimated. In [28], ANNs were applied to the same heart arrhythmia

dataset. The authors showed that the best performance of the ANNs is close to

that of the SVMs. Unfortunately, they did not specify the network structures and

parameter settings in their paper, causing di�culty in comparing the capability of

ANNs and SVMs in predicting heart arrhythmias.

In the recent past, there have been much e↵orts [1, 3–15] in classifying heart-

beats automatically. Many of these studies [1, 3–12] adopted a beat-by-beat analysis

strategy and used the MIT-BIH arrhythmia database [21] for performance evalu-

ation. Moreover, they followed the standard prepared by the Association for the
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Advancement of Medical Instrumentation (ANSI/AAMI EC57:1998) [22] for testing

and reporting performance.

2.2.1 Evaluation Schemes

As mentioned in [3], two evaluation schemes, namely “class-oriented” and “subject-

oriented”, are commonly used for ECG classification. Using the class-oriented evalua-

tion scheme, the performance of the classifiers in [10,11,13–15] may be overestimated

because signals in the training and test sets could belong to the same patient. The

“well trained” classifier may fail to predict the ECG signals from an unseen individ-

ual. The scheme is not applicable in practice because of the significant variation in

ECG characteristics among di↵erent subjects. Using the subject-oriented evaluation

scheme, the data in [1, 3–9, 12] were divided into the training set and the testing set

based on ECG recordings. This means that the ECG signals in the training and test

sets were definitely not from the same patient. The classifiers developed through this

scheme are more realistic.

The subject-oriented evaluation scheme leads to two types of classifiers—patient-

independent classifiers (e.g., [1, 3, 4]) and patient-specific classifiers (e.g., [5–9, 12]).

In general, patient-specific classifiers perform much better than patient-independent

classifiers because the formers are trained on a small set of annotated data from the

respective patients. In contrast, the cost of patient-independent classifiers is much

lower because no patient-specific data or expert intervention is required. Note that

the proposed end-to-end method adopts the subject-oriented evaluation scheme, and

a patient-independent classifier is built for beat-by-beat classification of ECG signals.

2.2.2 Patient-Independent ECG Classification

Chazal et al. [1] utilized morphological and dynamic features to represent heartbeats

and then classified them into five classes. The classifier is based on linear discrimi-
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nants, and its parameters are determined by maximum-likelihood estimation. In [3],

Ye et al. applied wavelet transform and independent component analysis (ICA) to

extract morphological features from segmented heartbeats. Heartbeat intervals were

also used as dynamic features. The features were applied to an SVM for classifying

heartbeats into five classes.

In [4], a new feature extraction method (sparse decomposition over a Gabor dic-

tionary) is proposed to represent various classes of heartbeats. Four kinds of features

(i.e., time delay, frequency, width parameter and square of expansion coe�cients) are

extracted from each of the significant atoms of the dictionary and concatenated to

constitute a feature vector. The feature vectors are classified into five classes using

some typical classification models. Among the di↵erent proposed methods, the per-

formance of the particle swarm optimization (PSO) optimized least-square twin SVM

model achieves the best performance.

2.2.3 Patient-Specific ECG Classification

Jiang et al. [5] proposed using Hermite transform coe�cients to approximate the QRS

complexes of heartbeats. The coe�cients and R-R intervals were used as heartbeat

features for classification by an evolvable block-based neural network (BbNN) [30].

In the training stage, both common (totally 142 beats from 20 patients) and patient-

specific data (5-minute ECG from each patient) were used for evolving the patient-

specific BbNNs. The results suggest that high accuracies can be achieved by using

personalized ECG classification. However, a large number of parameters or thresholds

needed to be set empirically in this approach.

In [6], wavelet transform and principal component analysis (PCA) were applied to

extract morphological features. The low dimensional morphological feature vectors

were combined with temporal features to form the final feature vectors. A multi-

dimensional particle swarm optimization (MD PSO) method was proposed, which

optimizes neural network based classifiers according to 245 common training beats and
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a variable number of patient-specific beats. Overall, this method achieves performance

that is comparable with the BbNN-based personalized ECG classifier in [5].

In [7], the raw data of each beat were downsampled to 64 or 128 time-points

centered on the R-peak, and FFT representations were used as the input to a patient-

specific 1-D convolutional neural network (CNN). Each CNN was trained by using

245 representative beats that are common to all patients and five minutes of patient-

specific beats. Results show that the CNNs outperform any existing arrhythmia

classifiers under the same evaluation protocol.

Ye et al. [12] utilized wavelet transform and independent component analysis (ICA)

to extract morphological features from segmented heartbeats. Unlike other patient-

specific classifiers, the classifiers in [12] can be trained on unlabeled patient-specific

data, meaning that no manual intervention is required during training. Specifically,

a general classifier was trained on the data extracted from the patients who are

similar to the target patient. Then, a patient-specific classifier was trained on a

small amount of patient-specific ECG with high-confident labels hypothesized by a

multi-view model. The final result was obtained by combining the two classifiers

probabilistically. Results shown that the customized models together with automatic

adaptation can improve classification performance.

In [8], the beats were transformed into dual-beat coupling matrices, which are used

as 2-D inputs to a CNN classifier. The matrices captured both beat morphology and

beat-to-beat correlation in ECG. A heartbeat selection procedure was also proposed to

select the most representative beats. For each patient, a classifier was trained based

on these representative beats and the patient-specific ECG. Results demonstrated

that the 2-D CNN-based classifiers were superior to several state-of-the-art detectors.

In [9], a generic convolutional neural network (GCNN) was trained based on the

ECG of a general population. The GCNN was then fine-tuned to form a tuned

dedicated CNN (TDCNN) using patient-specific ECG. Raw ECG signals were used

as the input of the CNN classifiers and the heartbeat segmentation procedure was
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the same as [7]. To explore the influence of the amount of training samples on the

performance of TDCNN, 2-, 3-, 4- and 5-minute patient-specific ECG were used to

adapt the GCNN. The results show that more training samples help the TDCNN to

achieve higher classification accuracy and the performance was comparable with the

existing patient-specific classifiers.

2.3 Performance Evaluation Metrics

The classification performance on each heartbeat class was measured by using four

standard metrics, namely, classification accuracy (Acc), sensitivity (Sen), specificity

(Spe) and positive predictive value (Ppv), which are calculated based on the number

of true positives (TP), true negatives (TN), false positives (FP) and false negatives

(FN), as follows. Accuracy is the fraction of the total number of instances that is

correctly identified, i.e.,

Acc =
TP + TN

TP + TN + FP + FN
. (2.1)

Sensitivity is the proportion of positives that are correctly identified, i.e.,

Sen =
TP

TP + FN
. (2.2)

Specificity is the proportion of negatives that are correctly identified, i.e.,

Spe =
TN

TN + FP
. (2.3)

Positive predictive value is the fraction of the positive predictions that are actually

positive, i.e.,

Ppv =
TP

TP + FP
. (2.4)

Details on how to interpret these four metrics can be found in [31–33].
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Matthews correlation coe�cient (MCC) [34] is a better measure for imbalanced

datasets (datasets with imbalanced number of classes). It returns a value between

�1 and +1. A coe�cient of “+1” represents a perfect prediction, a “0” means it is

not better than random prediction and a “�1” indicates total disagreement between

prediction and observation. According to [35], denote M 2 <
C⇥C as the confusion

matrix of the prediction result, where C is the number of classes. ThenMi,j represents

the number of instances that actually belong to class i but are predicted as class j,

where 1  i, j  C. We further denote

pc = Mc,c, qc =
CX

i=1,i 6=c

CX

j=1,j 6=c

Mi,j, rc =
CX

i=1,i 6=c

Mi,c, sc =
CX

j=1,j 6=c

Mc,j, (2.5)

where c (1  c  C) is the index of a particular class. For class c, pc is the number of

true positives, qc is the number of true negatives, rc is the number of false positives,

and sc is the number of false negatives. The Matthews correlation coe�cient of class

c (MCCc) and the overall MCC (OMCC) are defined respectively as:

MCCc =
pcqc � rcscp

(pc + sc)(pc + rc)(qc + sc)(qc + rc)
, (2.6)

OMCC =
p̂q̂ � r̂ŝp

(p̂+ ŝ)(p̂+ r̂)(q̂ + ŝ)(q̂ + r̂)
(2.7)

where p̂ =
CP
c=1

pc, q̂ =
CP
c=1

qc, r̂ =
CP
c=1

rc and ŝ =
CP
c=1

sc.

Receiver operating characteristics (ROCs) [36] were used to show the tradeo↵

between the performance measures (i.e., Sen vs. Spe) of a binary classifier when the

decision threshold varies. Because the threshold typically has a wide range, ROC

curves can provide more comprehensive information on performance.

In addition, the p-value can be used for statistical tests. It is assigned to determine

whether the results produced by two systems are statistically significant. Given the

target and non-target scores of two systems, the p-value can be calculated based on



15

McNemar’s test. However, these scores are intermediate results and usually they are

not mentioned in the papers. Thus, it is very di�cult to get such scores in existing

systems unless we fully design and implement their systems. That is why other

researchers [1, 3–9,12] also did not provide the result of p-value.
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Chapter 3

MACHINE LEARNING TECHNIQUES

3.1 Principal Component Analysis

Principal component analysis (PCA) is a linear transformation method that reduces

the dimensionality of data while retaining most of the variation in the transformed

data [27]. Using PCA, data in the input space are projected onto a subspace in

which the spread of data is maximum. Given a dataset consisting of D-dimensional

samples, the eigenvectors and their corresponding eigenvalues can be computed from

the covariance matrix (with dimension D ⇥ D) of the samples. Then, the eigenvectors

are sorted according to the descending order of the eigenvalues and theK eigenvectors

with the largest eigenvalues are selected to form a matrix W of size D ⇥ K. After

that, this matrixW is used to transform the samples onto the new subspace. Through

this operation, the dimension of the original dataset is reduced from D to K.

The number of principal components (the value of K) should be less than or

equal to the number of original variables (i.e., K  D). It can be determined by

the proportion of variance explained. Specifically, given that �1,�2, . . . ,�D are the

eigenvalues (in descending order) of the covariance matrix, the percentage of total

variance retained can be calculated by using the following equation:

⌘ =

PK
j=1 �j

PD
j=1 �j

. (3.1)

Usually, the first K eigenvectors are expected to capture at least 90% of the total

variances.
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3.2 Support Vector Machines

Support Vector Machines (SVMs) [37] are one of the popular classification methods

because of their good performance in many applications. The objective of a linear

SVM is to find a separating hyper-plane that maximizes the margin of two classes.

M = Margin Width 

1 � bwx  

0 � bwx  

1� �bwx  

Class = +1 

Class = −1 

Figure 3.1: Linear SVM (markers with a circle are support vectors)

For linearly separable problems (see Figure 3.1), the margin M is determined by

w and b, and the constrained optimization problem is:

Minimize
1

2
kwk2, subject to yi(xi ·w + b � 1), 8i = 1, . . . , N, (3.2)

where yi 2 {�1,+1}. This constraint optimization problem can be solved by writing

it as a Lagrangian function in which a set of Lagrange multipliers are introduced. For

nonlinearly separable problem, the above minimization problem becomes:

Minimize
1

2
kwk2 + C

X

i

⇠i, subject to yi(xi ·w + b � 1� ⇠i), 8i = 1, . . . , N,

(3.3)

where ⇠i represents the degree of violation of the constraint in Eq. 3.2 and C is a

user-defined penalty parameter to specify the severity of such violation.
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The hyper-plane decision function is defined as:

f(x) = w · x+ b =
NX

i=1

↵iyi(xi · x) + b, (3.4)

where ↵i � 0 is the Lagrange multipliers corresponding to the i-th support vector xi.

For nonlinear SVMs, the decision function becomes:

f(x) =
NX

i=1

↵iyi�(xi) · �(x) + b, (3.5)

where �(·) is a nonlinear map. Using the nonlinear map �(x), the original samples xi

in the input space are mapped to a higher dimensional feature space in which �(xi)

become linearly separable. Note that, the dimension of �(x) may be very high and

could be infinite in some cases, meaning that this function may not be implementable.

The dot product in Eq. 3.5 can be replaced by a kernel function:

�(xi) · �(x) = K(xi,x), (3.6)

which can be e�ciently implemented. The kernel function may be di↵erent for di↵er-

ent problems. The followings are some common kernel functions used in SVMs:

Linear kernel : K(xi,x) = xi · x, (3.7)

Polynomial kernel : K(xi,x) =
⇣
1 +

xi · x

�2

⌘d

, d > 0 (3.8)

Radial basis function (RBF) kernel : K(xi,x) = exp

✓
�
kxi � xk2

2�2

◆
, (3.9)

Sigmoid kernel : K(xi,x) =
1

1 + e
�xi·x+b

�2

, (3.10)

where d, � and b are parameters of the kernel functions. The RBF kernel usually works

well in practice and it is relatively easy to calibrate compared with other kernels.
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SVMs are e�cient for small datasets and they scale relatively well to high dimen-

sional data. However, for large datasets, the training process will be slow.

3.3 Artificial Neural Networks

Artificial neural networks (ANNs) [38] are biologically inspired networks that consist

of processing neurons. The neurons are ordered into layers and connected with each

other and are capable of receiving and sending signals. The strength of the connections

are represented by network weights. The main contribution of ANNs is their ability

to capture hidden information from known data, and the process of establishing such

ability is called learning. ANNs have been very successful in di↵erent domains [39–41].

Note that, in this dissertation, the term ANNs refer to feed-forward networks with a

shallow architecture (i.e., one or two hidden layers). Figure 3.2 shows a fully connected

ANN that consists of an input layer, a hidden layer and an output layer.

)2(
k
o  

)1(
j

o  

)0(
i
o  

)2(W  

)1(W  

Input Layer 

Hidden Layer 

Output Layer 

Figure 3.2: A fully connected ANN with one hidden layer

3.3.1 Training by Backpropagation

Backpropagation (BP) [42], which is based on the notion of gradient descent, is the

most popular algorithm for training neural networks because of its simplicity and low
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computational complexity. The gradient descent is an iterative minimization method.

Denote byW as a set of random weights (in the form of a weight vector) and E(W) as

an error function of W. The objective is to iteratively minimize E(W) with respect

to W:

Wt+1 = Wt
� ⌘rE(Wt), (3.11)

where t is the iteration index and ⌘ is a small positive learning rate.

The BP algorithm mainly consists of two parts: forward pass and backward pass.

In the sequel, the description of the forward and backward passes are based on the

network structure shown in Figure 3.2.

1. Forward Pass: Compute the outputs o(2)k and o
(1)
j at the output layer and hidden

layer respectively by using the following equations:

o
(2)
k = f(z(2)k ) (3.12)

and

o
(1)
j = f(z(1)j ), (3.13)

where f(·) = 1
1+e�z is a sigmoid function and z

(2)
k =

P
j
W

(2)
kj o

(1)
j . In Eq. 3.13,

z
(1)
j =

P
i
W

(1)
ji o

(0)
i =

P
i
W

(1)
ji xi, where xi is the i-th element of the input vector

x.

For regression problems, the objective is to minimize the sum of the squared

error between the target output tk and the actual output yk:

E =
1

2

X

k

(yk � tk)
2
. (3.14)
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2. Backward Pass: Compute the error gradient with respect to the weights:

@E

@W
(2)
kj

=
@E

@z
(2)
k

·
@z

(2)
k

@W
(2)
kj

= �
(2)
k o

(1)
j , (3.15)

where �
(2)
k = @E

@z
(2)
k

= (o(2)k � tk)o
(2)
k (1� o

(2)
k ), and

@E

@W
(1)
ji

=
@E

@z
(1)
j

·
@z

(1)
j

@W
(1)
ji

= �
(1)
j xi, (3.16)

where �
(1)
j = @E

@z
(1)
j

=
P
k

@E

@z
(2)
k

·
@z

(2)
k

@z
(1)
j

=
P
k
�
(2)
k f

0(z(1)j ) = o
(1)
j (1� o

(1)
j )

P
k
�
(2)
k .

Thus, according to Eq. 3.11, we have the weight update equation for output-layer

weights:

W
(2)
kj  W

(2)
kj � µ

@E

@W
(2)
kj

(3.17)

and hidden-layer weights:

W
(1)
ji  W

(1)
ji � µ

@E

@W
(1)
ji

. (3.18)

3.3.2 Deep Neural Networks

Because of the architectural depth of the brain, neural network researchers have at-

tempted to train deep (multi-layer) neural networks (DNNs) for decades. They expect

DNNs are able to achieve better representations than ANNs so that they should

achieve better performance in some complicated applications. However, training

DNNs always leads to poor generalization [43] and thus, before 2006, many prac-

tical applications still used ANNs on top of handcrafted features, which require a

considerable amount of engineering skill and domain expertise. Empirically, DNNs

were generally found to be not better and sometimes even worse than ANNs.

To address the above limitations, around 2006, Hinton and Salakhutdinov [44]

developed an e↵ective strategy for training DNNs: a local unsupervised criterion to
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pre-train each layer in turn, followed by applying gradient descent on the supervised

objective. The two-step approach leads to much better solutions.

The weights of the DNNs are initialized by this unsupervised pre-training instead

of random weight initialization. In the pre-training step, each layer is considered

as a restricted Boltzmann machine and its weights are found by a method called

contrastive divergence (see the next section). It was a breakthrough and marked as

the beginning of exploding success of deep learning. Some researchers believed that

the resurgence of artificial intelligence is primarily due to the recent advances in deep

learning and DNNs [45,46].

3.4 Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) [47] is an undirected probabilistic graph

model as shown in Figure 4.1. It consists of n visible units v = (v1, . . . , vn) and

m hidden units h = (h1, . . . , hm). Assuming that both v and h are binary random

variables, we have vi 2 {0, 1} and hj 2 {0, 1}. The energy function is defined as:

E(v,h|✓) = �
nX

i=1

aivi �

mX

j=1

bjhj �

nX

i=1

mX

j=1

viWijhj, (3.19)

where ✓ = {Wij, ai, bj}, Wij is a real valued weight, ai and bj are real valued bias

terms associated with the i-th visible unit and the j-th hidden unit, respectively.
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Figure 3.3: The undirected graph of an RBM

The network assigns a probability to every possible pair of a visible and a hidden

vector via the energy function. Thus, the joint probability distribution of (v,h) is:

P (v,h|✓) =
e
�E(v,h|✓)

Z(✓)
, (3.20)

where Z(✓) =
P
v,h

e
�E(v,h|✓) is the partition function. The marginal distribution of v

is given by:

p(v|✓) =
1

Z(✓)

X

h

e
�E(v,h|✓)

. (3.21)

For most applications, it is di�cult to evaluate Z(✓) exactly because the computa-

tional complexity is very high.

Because there is no intra-layer connections in an RBM, the conditional probability

that a hidden unit is on is independent of other hidden units. Thus, the conditional

probabilities of individual units are:

P (hj = 1|v, ✓) = �(bj +
X

i

viWij), (3.22)

P (vi = 1|h, ✓) = �(ai +
X

j

Wijhj), (3.23)

where �(x) = 1
1+exp(�x) .
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The learning algorithm of RBMs is based on gradient ascent on the log-likelihood

(i.e., gradient-based maximization of the likelihood). According to Eq. 3.21, the log-

likelihood of a training vector v is:

log p(v|✓) = log
1

Z(✓)

X

h

e
�E(v,h|✓) = log

X

h

e
�E(v,h|✓)

� log
X

v,h

e
�E(v,h|✓)

, (3.24)

and the derivative (or gradient) of the likelihood is:

@

@✓
(log p(v|✓)) =

@

@✓
(log

X

h

e
�E(v,h|✓))�

@

@✓
(log

X

v,h

e
�E(v,h|✓))

= �
X

h

p(h|v)
@E(v, h)

@✓
+
X

v,h

p(v,h)
@E(v, h)

@✓
. (3.25)

The derivative of the log likelihood of a training vector with respect to the weight

Wij is given by [44]:

@ log p(v|✓)

@Wij
= hvihjidata � hvihjimodel, (3.26)

where hvihjidistribution denotes an expectation under a distribution. The stochastic

gradient descent is performed, then we have:

�Wij = ⌘(hvihjidata � hvihjimodel), (3.27)

where ⌘ is the learning rate.

In Eq. 3.27, the expectation hvihjidata can be easily obtained from training data

vi’s and hj are sampled from Eq. 3.22 given vi. However, the calculation of an unbiased

sample under the distribution defined by the model hvihjimodel is ine�cient [48, 49].

In 2002, Hinton [50] proposed the contrastive divergence (CD) algorithm to ap-

proximate hvihjimodel. Given the observation v(0), a binary vector h(0) in the hidden

layer is obtained by sampling the distribution in Eq. 3.22, i.e., h(0)
⇠ p(h|v(0)

, ✓).
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Then, using Eq. 3.23, the “reconstruction” v(1) of the visible layer is computed, i.e.,

v(1)
⇠ p(v|h(0)

, ✓). Using v(1), the binary vector in the hidden layer is then obtained

through sampling Eq. 3.22, i.e., h(1)
⇠ p(h|v(1)

, ✓). The weight update rule becomes:

�Wij = ⌘(hvihjidata � hvihjireconstruction)

= ⌘(hv(0)i h
(0)
j i � hv

(1)
i h

(1)
j i). (3.28)

With the CD algorithm, the learning of RBM is much faster. In [44], Hinton and

salakhutdinov proposed a strategy to construct a DNN by stacking layers of RBMs,

and the pre-training process of DNNs consists of learning a stack of RBMs. Figure 3.4

shows how to use the stacked RBMs to create a DNN. In Figure 3.4(a), the weight

sets (W1, W2 and W3) can be obtained after training three RBMs. In Figure 3.4(b),

the stacked RBMs are used to build a DNN with three hidden layers. W1, W2 and

W3 are used as the initial weights of the DNN, which are then fine-tuned by the

backpropagation algorithm.
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Figure 3.4: Using stacked RBMs to create a DNN
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Chapter 4

SVMS VERSUS DNNS FOR ECG CLASSIFICATION

4.1 Introduction

Previous work based on the UCI dataset either optimized the hyper-parameters of

the feature extractors and classifiers using test data (e.g., [23,25]) or provided a single

random split of the benchmark dataset into a training set and a test set (e.g., [23,25,

28]). These experimental settings make comparison of methods di�cult. In this thesis,

we perform 10-fold cross validations on the dataset and repeat the cross-validation a

number of times, each with a di↵erent random split of the dataset. Therefore, unlike

previous work, this dissertation reports not only the classification accuracy but also

its range in these repeated cross-validation runs. This thesis also investigates various

feature pre-processing methods, including Fisher discriminant ratio (FDR) [51] and

PCA, and various classification methods, including SVMs and deep neural networks

(DNNs). More importantly, we investigate which feature pre-processing methods are

appropriate for which classification methods. Performance evaluations on the UCI

benchmark dataset suggests that feature selection together with deep neural networks

achieve the best performance.

4.2 Methodology

4.2.1 Preprocessing: Missing Entries

It is not uncommon for biological data to contain missing values and heart arrhyth-

mia data derived from ECG signals are of no exception. For example, in the UCI
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benchmark dataset, there are 408 missing entries, which account for about 0.33% of

the total number of entries. In this work, we filled these missing entries with the

average value of the corresponding features.

4.2.2 Preprocessing: Feature Selection

Another characteristic of heart arrhythmia data is the high dimensionality of the

feature vectors. For example, in the UCI dataset, the dimension is 279 but the number

of feature vectors is only 452. To address this problem, we used Fisher discriminant

ratio (FDR) [51] to select relevant features and PCA to reduce the dimension of

feature vectors.

FDR is a simple and e↵ective measure of features for classification problems. For

two-class problems, FDR of the j-th feature is defined as:

FDR(j) =

h
µ
(1)
j � µ

(2)
j

i2

h
�
(1)
j

i2
+
h
�
(2)
j

i2 , (4.1)

where µ
(1)
j , µ

(2)
j , �

(1)
j and �

(2)
j represent the class-conditional means and standard

derivations of the j-th feature, respectively. In Eq. 4.1, the superscript represents

the class labels. For multi-class problems, we may estimate the average FDR values

across all class pairs.

A high FDR implies that the corresponding feature produces large separation

between di↵erent classes. Therefore, its classification capability is stronger, and it

should be selected for classification. In practice, the FDR of individual features can

be computed independently and ranked in descending order. We retained the features

with FDR scores larger than a predefined threshold (0.001 in this work). FDR can

remove all insignificant features from the data set. Performance evaluations show

that dropping some irrelevant features by FDR helps the training of SVMs and boost

the performance of DNNs.
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4.2.3 Heartbeat Classification by SVMs

To apply SVMs for K-class classification, we constructed K one-versus-rest RBF-

SVM [27,52], one for each class. Specifically, the k-th SVM is trained to discriminate

between the feature vectors of the k-th class and those of the other classes. During

recognition, given an unknown vector x, its class label is predicted according to the

maximal output:

l(x) = arg max
k2{1,...,K}

h
k(x), (4.2)

where

h
k(x) =

X

i2SV k

↵
k
i y

k
iK(x,xi) + b

k (4.3)

is the output of the k-th SVM. In Eq. 4.3, SVk is the set of support vector indexes

corresponding to the k-th SVM, yki 2 {�1,+1} are the target output of the k-th

SVM, ↵k
i ’s are the Lagrange multipliers, bk’s are bias terms, and K(·, ·) is a kernel

function. In this work, the radial basis function (RBF) kernel was used.

4.2.4 Heartbeat Classification by DNNs

To apply DNNs forK-class classification, we trained a DNN with several hidden layers

comprising sigmoid nonlinearity and a softmax output layer comprising K outputs

nodes. We applied the greedy layer-wise unsupervised training [53] to pre-train the

hidden layers. Then, we fine-tuned the whole network with backpropagation. The

pre-training step is very important for arrhythmia classification because the number of

training vectors is typically small for this task. Details of the design will be described

in Section 5.2.5. (The same network design is also used in Chapter 5.)
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4.3 Experiments and Results

4.3.1 Evaluation Protocol

The UCI cardiac arrhythmia dataset is typically used for evaluating two types of

ECG classification: binary and multi-class. For the former, the classifiers aim to

discriminate the 245 “normal” heartbeats against the 207 “abnormal” heartbeats. For

the latter, the classifiers aim to classify the 452 heart beats into six types, including

the normal. Table 4.1 shows the class labels and number of samples in each class

for multi-class classification. Section 4.4.3 and Section 4.4.4 report results on binary

classification, whereas Section 4.4.5 reports results on multi-class classification.

Table 4.1: The class labels and number of samples in each class for multi-class classification

Class Code Class Label Number of Instances

01 Normal 237

02 Ischemic changes 36

04 Old Inferior Myocardial Infarction 14

06 Sinus bradycardy 24

10 Right bundle branch block 48

16 Others 18

To rigorously estimate the accuracy of di↵erent classifiers, 10-fold cross validation

was performed on the dataset. For each configuration of feature pre-processing and

classification, the corresponding 10-fold cross-validation was repeated 10 times, each

with a random reshu✏ing of the samples in the dataset. Then, the average accuracy

and the range of accuracy were obtained from the results of the 10 repetitions.

The SVMs are based on Mathwork’s Matlab library in Bioinformatics Toolbox

and the DNNs are based on G. E. Hinton’s Matlab code [54].
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Table 4.2: The top-10 features selected by FDR

Rank Feature ID FDR Score Feature Information

1 199 0.237 QRSTA from channel AVR
2 5 0.230 Average QRS (msec.)
3 167 0.204 Amplitude of T from channel DI
4 169 0.200 QRSTA from channel DI
5 197 0.183 Amplitude of T wave from channel AVR
6 277 0.173 Amplitude of T wave from channel V6
7 91 0.155 Average width of R wave from channel V1
8 279 0.139 QRSTA from channel V6
9 179 0.125 QRSTA from channel DII
10 93 0.122 Number of intrinsic deflections from channel V1

4.3.2 Selected Features

Table 4.2 shows the top-10 features selected by FDR, i.e., features with the top-10

FDR scores. These features can be divided into five types since some of them just

obtained from di↵erent channels. The five types include QRSTA, QRS duration, Am-

plitude of T, Average width of R, and the number of intrinsic deflections. These are

the features that were found important by medical professionals [55]. Therefore, our

feature selection method agrees well with the diagnostic criteria of medical doctors.

4.3.3 Performance of SVM Classifiers

For the RBF-SVMs, the hyper-parameters (RBF width � and penalty factor C) were

further optimized based on the training data in each fold. Specifically, for each fold

of the 10-fold cross-validation, we applied an inner 5-fold cross validation on the

training split to optimize the hyper-parameters of the RBF-SVMs. The optimal

RBF-SVMs were than tested on the remaining data in the test split. In other words,

we further partitioned the training split of each fold into 5 portions in the inner 5-fold

cross validation. While di↵erent folds of the cross validation have di↵erent set of
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Table 4.3: The average accuracy (across ten 10-fold cross-validations) of SVM classifiers
with di↵erent feature pre-processing methods

Feature Pre-processing Feature Dimension Classification Acc. (average)

Nil (All features) 279 77.77%
FDR 236 78.23%
PCA 89 76.97%

parameters, our experience had been that setting the RBF width and penalty factor

to values from 1/16 to 16 gives good performance.

Table 4.3 shows the performance of the SVM classifiers with di↵erent feature pre-

processing methods. For FDR, the cut-o↵ threshold for feature selection is 0.001,

which results in 236 selected features. For PCA, we kept 95% of the variance after

projection, which results in projected vectors with 89 dimensions. The results show

that FDR is the best pre-processing method for SVMs and PCA degrades the perfor-

mance. This is understandable because SVMs are known to be able to handle high

dimensional data and PCA will inevitably remove some useful information. On the

other hand, feature selection is able to keep the relevant features.

4.3.4 Performance of DNN Classifiers

Figure 4.1 show the e↵ect of applying pre-training on a DNN with three hidden layers.

For the network without pre-training, the backpropagation algorithm was applied to

a DNN whose weights were initialized with small random values. On the other hand,

5 epochs of contrastive divergence (CD-1) [47] were applied to pre-train the network

when pre-training was applied. The result clearly shows that pre-training can help

the backpropagation algorithm to find a better solution.

Figure 4.2 shows the e↵ect of increasing the number hidden nodes (in all hidden

layers) on the classification accuracy. It shows that peak performance (80.64%) is

achieved when the number of hidden nodes is 25, with the second best (80.04%)
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Figure 4.1: Classification accuracy of the DNN with or without pretraining

occurs at 20 nodes. Therefore, we used 25 hidden nodes per layer in the rest of the

experimnets on the UCI dataset.

In order to optimize the network structure, we fixed the number of hidden nodes

per layer to 25 and tried di↵erent numbers of hidden layers. According to Table

4.4, the performance becomes worse if the number of hidden layers is more than four

because of the small number of training samples in this dataset.

Table 4.5 shows the performance of DNNs with di↵erent feature pre-processing

methods. From the table, DNNs with FDR outperform DNNs with PCA and DNNs

without any feature pre-processing (i.e., using the full features). The results also show

that PCA does not work well with DNNs.

Figure 4.3 shows the range and rough distributions of the classification accura-

cies across the 10 runs of 10-fold cross-validation for di↵erent feature pre-processing

methods combined with di↵erent classification methods. In this figure, the central

mark inside each box indicates the median accuracy, and the bottom and top edges of

each box indicate the 25th and 75th percentiles, respectively. The horizontal dashes

represent the lowest and highest accuracies. The results in Figure 4.3 clearly show
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Figure 4.2: The e↵ect of increasing the hidden nodes on the DNN

that FDR can improve the performance of DNN and SVM. However, PCA degrades

their performance. Moreover, the performance of DNN is better than SVM, except

when PCA is applied.

A reason for the poor performance of PCA is that it is a linear transformation

method that reduces the dimensionality of data while retaining most of the variance.

Therefore, PCA is not suitable when the data lie on a nonlinear manifold of the feature

space. Table 4.3, Table 4.5 and Figure 4.3 suggest that PCA is not an appropriate

pre-processing method for this dataset, regardless of the classification methods used.

Intuitively, when the data dimension is high and the amount of training data is small

(the so-called small sample-size problem), PCA should be able to reduce the dimension

so that the overfitting problem can be avoided. However, our results suggest that

PCA is not necessary and that overfitting does not occur in our DNNs even for such

a small dataset. This is mainly because we pre-trained [44, 53] our DNNs before

applying backpropagation with early stopping (20 epoches). The pre-training step

provides the necessary regularization to the networks [56] and the early stopping

strategy avoids overfitting (see Figure 4.4).
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Table 4.4: Performance comparisons of DNNs with di↵erent numbers of hidden layers

Feature Pre-Processing Feature Dimension Network Structure Acc. (average)

Nil (All Features) 279

[25]
[25 25]

[25 25 25]
[25 25 25 25]

[25 25 25 25 25]

78.11%
79.00%
79.18%
79.29%
78.25%

FDR 236

[25]
[25 25]

[25 25 25]
[25 25 25 25]

[25 25 25 25 25]

78.85%
79.23%
80.64%
79.91%
79.54%

PCA 89

[25]
[25 25]

[25 25 25]
[25 25 25 25]

[25 25 25 25 25]

74.77%
74.89%
73.65%
73.50%
71.11%

4.3.5 Comparing with Other Studies

Because there is no standard protocol for this dataset, di↵erent studies used di↵erent

evaluation protocols, causing di�culty in comparing performance across studies. For

examples, in [25], 30% of the data were used for training and the remaining 70% were

used for testing, whereas in [28], various percentages of splitting were tried and the

best result was obtained from the split where 90% of the data were used for training

and the remaining 10% were used for testing. Also, these studies optimized the hyper-

parameters (such as the number of hidden nodes and parameters of RBF kernels)

of the classifiers based on the test set, which may give over-optimistic performance.

Nevertheless, we attempt to compare our classifiers with [28] and [23] whose evaluation

protocols are closest to ours.

Two-class Case: As [28] reported the best performance of its ANN, for fair com-

parisons, we compare its accuracy with the highest achievable accuracy of our DNNs.
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Table 4.5: The average accuracy (across ten 10-fold cross-validations) of DNN classifiers
with di↵erent feature pre-processing methods

Feature Pre-processing Feature Dimension Classification Acc. (average)

Nil (All features) 279 79.18%
FDR 236 80.64%
PCA 89 73.65%

Table 4.6: The best accuracy (across ten 10-fold cross-validations) achieved by the DNN
classifiers with di↵erent feature pre-processing methods

Feature Pre-Processing
with ANNs/DNNs

Feature
Dimension

Classification
Acc. (best)

ANNs only [28] 279 82.22%
DNNs only 279 81.42%

FDR with DNNs 236 82.96%
PCA with DNNs 89 75.22%

The results are shown in Table 4.6, which show that the performance of DNNs is

comparable with that of the ANN in [28]. When relevant features have been selected,

the DNN slightly outperforms the ANN in [28].

Multi-class Case: we have also compared the performance of our heart arrhythmia

classifiers with those in [16] under the multi-class scenarios. We generally followed

the evaluation protocol and data preparation procedures in [16] to make performance

comparisons meaningful. Specifically, we followed [16] to remove the features whose

values are all zeros across all samples and to remove the samples that contain missing

values. After this data preparation step, 377 samples remain. These samples are

distributed into 6 classes as shown in Table 4.1. By dropping Classes 04, 06 and 16,

which contain a small number of samples only, the number of the classes is reduced

from six to three. Similar to [16], we selected half of the samples for training and

remaining half for testing. However, unlike [16], we repeated the division of data 100
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Figure 4.3: The distribution of classification accuracy of di↵erent algorithms

times, each with di↵erent training and test sets, to obtain the average accuracy.

In [16], PCA was applied to reduce the dimension of feature vectors. In this work,

we not only applied PCA to reduce dimension but also used FDR to select relevant

features. Although FDR is originally designed for binary classification problems, it

can be easily adopted to the multi-class scenarios by noting that each SVM in the

one-versus-rest SVM classifier is a binary classifier. Therefore, for a K-class problem,

there will be K sets of FDR-selected features, one set for each SVM. While this

strategy works very well for one-versus-rest SVM classifiers, it is not applicable to the

DNN classifiers. Therefore, we did not use DNNs for comparison.

Table 4.7 shows the performance of the SVM classifiers and the best arrhythmia

classifier in [16] under the 6-class and 3-class scenarios. Note that in Table 4.1, Classes

04, 06 and 16 contain a small number of samples only. By dropping these classes,
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we reduce the 6-class problem to a 3-class one. Two conclusions can be drawn from

Table 4.7. First, FDR not only reduces the feature dimension but also helps the SVM

classifier to achieve better performance. Second, our classifier outperforms the best

classifier in [16].
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Table 4.7: Performance of the best SVM classifier in [16] and the SVM classifiers in this
study

Feature Pre-processing Feature Dimension Classification Acc. (best)

Nil [16] 166 75.0%
Nil 245 77.77%
FDR 236 78.23%
PCA 80 76.97%

(a) 6-class Case

Feature Pre-processing Feature Dimension Classification Acc. (best)

Nil [16] 166 78.13%
PCA [16] 70 83.71%

Nil 245 86.15%
FDR 236 86.26%
PCA 77 85.04%

(b) 3-class Case
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Chapter 5

END-TO-END ECG CLASSIFICATION

5.1 Introduction

We propose an end-to-end method with a deep neural network (DNN) for both fea-

ture extraction and classification based on aligned heartbeats. This method obviates

the need to handcraft the features and produces optimized ECG representation for

heartbeat classification. Through the performance investigation using the MIT-BIH

arrhythmia database, the proposed method performs better than current state-of-the-

art methods.

5.2 Methodology

In this section, we first explain the motivation to build an end-to-end ECG classifier,

and then provide a system overview of the classifier. Next, we describe the deep

neural network inside the classifier, and then explain the heartbeat segmentation and

alignment procedures in the classifier. Finally, we summarize the advantages of the

proposed method.

5.2.1 Motivation

In most previous works [1, 3, 6, 7, 10–12], handcrafted feature vectors were extracted

from the QRS complex of heartbeats because this region is thought to contain most

ECG pulse information. However, previous studies [57–59] have shown that the P and

T waves also contain important information relevant to heart arrhythmias. In light

of this observation, we proposed to use raw ECG waveforms as the input of a deep
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neural network (DNN) classifier, which we refer to as end-to-end ECG classification.

The advantage of using raw ECG waveforms is that the QRS complex and P and T

waves can be included in the extracted heartbeats so that better representations can

be obtained for classification.

While both of our proposed DNNs and the CNNs in [7, 13–15] use raw ECG

signals as input, our raw signal extraction method has two advantages over them.

First, instead of simply cropping equal numbers of time points from the left and

right of an R-peak as in [15], we align the heartbeats to ensure that the input to

the DNN contains the QRS complex, the P wave and the T wave. Second, to fix

the input dimension, the method in [7, 13, 14] upsamples or downsamples the raw

ECG signals to certain time-points per beat, which may cause information loss. In

contrast, our alignment method allows the DNN to fully utilize the information in the

ECG signals by keeping more time-points (417 in this work, which will be described

in Section 5.2.3) per beat.

5.2.2 System Overview

This work proposes an end-to-end ECG classification system shown in Figure 5.1.

The system receives raw ECG signals at one end and produces beat-by-beat classi-

fication decisions at the other end. In the figure, preprocessing refers to the process

of extracting heartbeats from continuous ECG signals, which involves heartbeat seg-

mentation and alignment. The DNN in Figure 5.1 is used for both feature extraction

and classification, which are achieved by the lower part and the upper part of the

network, respectively. The design of the DNN is discussed in the Section 5.2.5.

To extract fixed-length feature vectors from raw ECG signals, two steps must be

performed: (1) heartbeat segmentation and (2) heartbeat alignment. These two steps

will be described in the next subsections.
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Figure 5.1: End-to-End heartbeat classification system.

5.2.3 Preprocessing: Heartbeat Segmentation

The bottom of Figure 5.1 shows a continuous ECG signal in the MIT-BIH arrhythmia

database. To extract a complete heartbeat from the ECG signal, we need to define

what a complete heartbeat is and then perform heartbeat segmentation. Since the

R peak usually occurs around the middle of a heartbeat, we can use it as an anchor

point for locating a complete heartbeat. The positions of R peaks can be accurately

determined (over 99%) by using the Pan-Tompkins algorithm [60]. We assume that
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Figure 5.2: Hypothetical example illustrating the heartbeat segmentation and alignment
processes. In (c), bac means the integer (floor) of a.

the R peak is located at the center of its corresponding heartbeat, and thus the

boundary of a complete heartbeat is assumed to lie on the middle of two successive R

peaks. Based on this assumption, a complete heartbeat comprises the sample points

between the two middle points of three consecutive R peaks. Figure 5.2(a) shows an

example of a complete heartbeat and its relationship with its preceding and succeeding

heartbeats. In Figure 5.2(a), t indexes the sample points of an ECG signal, v(t) is

the voltage (in mV) of the ECG signal at time index t, Rj is the j-th R peak, and

TRj is the time index of Rj.
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After heartbeat segmentation, we obtain the j-th complete heartbeat Hj, which is

an integer set containing sample points between
⌅
1
2(TRj�1 + TRj)

⇧
and

⌅
1
2(TRj + TRj+1)

⇧
,

where bac means the integer (floor) of a. As illustrated in Figure 5.2(b), the elements

in Hj are indexed by n = 0, . . . , Hj � 1, where Hj is the number of sample points in

the complete heartbeat. More precisely, we have

Hj =

�
1

2
(TRj + TRj+1)

⌫
�

�
1

2
(TRj�1 + TRj)

⌫
+ 1. (5.1)

We may use a vector uj to represent Hj as follows:

uj = [uj(0), . . . , uj(n
⇤), . . . , uj(Hj � 1)]T , (5.2)

where n⇤ = TRj �
⌅
1
2(TRj�1 + TRj)

⇧
is the time index corresponding to the peak in uj.

However, uj still cannot be directly used for training a DNN because the number

of sample points is not a constant (the duration of each complete heartbeat is not the

same). A fixed number of samples (D) needs to be set for each heartbeat. Thus, we

measured the durations of all segmented heartbeats and found a value that is larger

than 95% of all durations. In our experiments, D was found to be 417 and this value

was applied to all of the completed heartbeats.

5.2.4 Preprocessing: Heartbeat Alignment

Because we use the R peak as the anchor point of a heartbeat in the heartbeat

segmentation process, it is necessary to align it to the midpoint of the D consecutive

time points of each heartbeat. Figure 5.2(b) and Figure 5.2(c) show the alignment

process. We extract samples from uj in Eq. 5.2 to produce a feature vector

xj = [xj(0), . . . , xj(D � 1)]T (5.3)
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such that the
⌅
D
2

⇧
-th element in xj is aligned to n

⇤-th element in Eq. 5.2. Note

that this procedure requires zero padding and sample truncation for most heartbeats.

Specifically, when Hj > D, we may need to truncate some of the samples in the head

or tail or both the head and tail of uj. However, when Hj < D, we may need to pad

zeros to the head or tail or both the head and tail of uj. In some rare cases, both

zero padding and sample truncation need to be performed. Figure 5.3 shows some

examples of the alignment process. Given Eq. 5.2 and Eq. 5.3, the alignment process

can be implemented as follows:

xj(m) =

8
>>>>><

>>>>>:

0, if m <
⌅
D
2

⇧
� n

⇤

or m >
⌅
D
2

⇧
+ (Hj � n

⇤)

uj(m�
⌅
D
2

⇧
+ n

⇤), otherwise

(5.4)

where m = 0, 1, . . . , D � 1.

After heartbeat segmentation and alignment, the set of feature vectors in a dataset

is denoted as

X = {x1, . . . ,xj, . . . ,xN}, (5.5)
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where x1 and xN correspond to the second and the second last beats in a record, and

N is the number of complete heartbeats.1

The process of heartbeat alignment is vital to the high performance of the end-

to-end DNN (see results in Section 5.6). Because the DNN receives time-domain

ECG signals as input, its internal structure represents not only the pulse shapes of

heartbeats but also their relative positions along the time axis. Without the R-peak

alignment, the R peak in Figure 5.2(c) could be in many possible locations, causing

high variability in the feature vectors. By aligning the R peak to the mid-point of

xj(m) in Figure 5.2(c), we essentially make the DNN invariant to the phase shift of

the ECG signals.

5.2.5 Design of Deep Neural Networks

To apply DNNs for K-class classification, we can construct a DNN with L� 1 hidden

layers and a softmax output layer with K output nodes. Specifically, denote a
(L)
k

as the activation of the k-th neuron in the softmax layer, where k = 1, . . . , K, the

softmax function gives the outputs:

yk =
exp

n
a
(L)
k

o

PK
j=1 exp

n
a
(L)
j

o , k = 1, . . . , K. (5.6)

With the softmax function, the outputs can be considered as the posterior proba-

bilities of individual classes given an input vector x, i.e., yk = P (Class = k|x). The

activation a
(L)
k is the linear weighted sum of the hidden nodes’ output at the (L�1)-th

hidden layer.

The weights in the hidden layers can be pre-trained by a greedy layer-wise unsu-

pervised training process [53] in which each hidden layer is considered as a restricted

1A GitHub page (https://github.com/seanssx) has been created for other researchers to download
the implementation the procedure.
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Figure 5.4: DNN with stacked RBMs.

Boltzmann machine (RBM) [44, 46] whose weights are optimized by the contrastive

divergence algorithm [48]. Alternatively, the weights can be initialized by the Xavier

initializer [61]. Then, the backpropagation algorithm is used to fine-tune the whole

network by minimizing the cross-entropy error between the target outputs and the

actual outputs:

Ece = �
X

n

KX

k=1

tn,k log yn,k, (5.7)

where yn,k is the actual output of node k, n indexes the training vectors in a mini-

batch, and tn,k 2 {0, 1} are the target outputs which follow the one-hot encoding

scheme.

In this work, we used a DNN with stacked RBMs as shown in Figure 5.4. The

RBM at the bottom layer has Gaussian visible nodes and Bernoulli hidden nodes.

The remaining RBMs have Bernoulli distributions in both visible and hidden layers.
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During fine-tuning, the pre-trained weights (W1, W2 and W3) were used as the initial

weights and the weights between the upper two layers (W4) were initialized with small

random numbers. In addition, 30% of the training set was used for computing the

accuracy of the network after every epoch, so that early stopping can be applied to

prevent overfitting. Note that the pre-training step can provide necessary regulariza-

tion to the network [56] and the early stopping strategy provides guidance on how

many iterations should be run before the model begins to over-fit the training data.

We found that without the pre-training (i.e,. BP with random weights initialization),

the classification accuracy dropped 20%. Moreover, the DNN failed to converge to a

solution when the number of hidden layers was increased to five.

5.3 Experimental Setting

In this section, we first introduce some issues concerning our implementation (i.e.,

evaluation protocol). Then, since DNN performance is greatly a↵ected by its network

structure, we describe how we find the optimized network structure of the DNN used

in the classifier.

5.3.1 Evaluation Protocol

In compliance with the AAMI recommended practice, four recordings containing

paced beats were removed from the dataset. The remaining 44 records were split into

two datasets (DS1 and DS2),2 with each dataset containing approximately 50,000

beats from 22 recordings. Note that this way of splitting the data had also been used

in [1], [3] and [4]. Following their evaluation protocols (the subject-oriented evaluation

scheme), we applied 22-fold cross validation on DS1 in one experiment (Exp. 1) and

2DS1 contains data from ECG recordings 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,
124, 201, 203, 205, 207, 208, 209, 215, 220, 223 and 230; DS2 contains data from ECG recordings
100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232,
233 and 234.
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used DS1 as the training set and DS2 as the test set in another experiment (Exp. 2).

Note that in Exp. 1, each record was used as test data in sequence and the other 21

records were used as training data. Such process was repeated 22 times so that each

record had been used once as the test data. As a result, we may compare our results

with previous studies.

As suggested by the ANSI/AAMI EC57 standard [22], we focused on evaluating

the classification performance of the two majority arrhythmia classes (Classes S and

V). Among the performance indicators for medical diagnoses, sensitivity (Sen) and

specificity (Spe) are two important measures of the diagnostic accuracy of a test

because a highly sensitive test can be useful for ruling out a disease if a person has

a negative result, whereas a highly specific test can be useful for ruling in patients

who have a certain disease. Some medical publications [31, 32] recommend clinicians

to choose the most sensitive diagnostic test to rule out disease and the most specific

diagnostic test to rule in disease. Therefore, in this work, the diagnostic performance

on Class S and Class V was measured using Sen and Spe. Besides, because the overall

accuracy measures the overall system performance over all classes, it was also used in

this work.

In this work, we evaluated the performance of the proposed method on the MIT-

BIH arrhythmia database and followed the ANSI/AAMI EC57 standard to compare

with those in [1,3,4,6,7,11,12]. Since the classifiers in [1,3,6] are patient-independent,

the proposed method can be compared directly. We have also compared the perfor-

mance of the proposed method with those in [4, 7, 12] though their classifiers are

patient-dependent. Study [11] was chosen for performance comparison because it

uses DNNs as classifiers.

5.3.2 Network Structure

Figure 5.5(a) shows the e↵ect of increasing the number of hidden layers on the net-

work’s ability to classify heartbeats. 22-fold cross validation was applied to DS1 and
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Figure 5.5: Network structure optimization

the total number of heartbeats used for evaluation was 50,977. The results show that

the performance was the best when the number of hidden layer was 3. To further

optimize the network structure, we fixed the number of hidden layers to 3 and varied

the numbers of hidden nodes (e.g., 50, 100, 150 and 200) per layer. According to

Figure 5.5(b), the best performance was obtained when the number of hidden nodes

equaled to 100. Therefore, in subsequent experiments, the DNN classifier contained

3 hidden layers and each layer had 100 nodes.
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5.4 Performance Investigation

This section first presents the feature extraction capability of our proposed method,

then it describes and compares our method’s performance with current start-of-the-

art methods. Next, we compare our proposed method with other DNN classifiers

including comparing our proposed method with patient-specific classifiers. Finally,

we summarize our findings.

5.4.1 Hidden Node Representation

The t-distributed stochastic neighbor embedding (t-SNE) [62] is a nonlinear dimension

reduction method for visualizing high-dimensional data on a two or three-dimensional

space. Using the 417-dimensional vectors as input, we extracted the outputs from the

first, second and third hidden layers of the DNN. We applied t-SNE on the 417-

dimensional vectors and di↵erent hidden layers. The results are shown in Figure 5.6

for Classes N, S, V, F and Q. To allow a good visualization, the number of samples

of Class N is reduced in the figures. No obvious clusters can be observed in the

feature vectors (Figure 5.6(a)). When we progressively move up the hidden layers

(Figs. 5.6(b)–(c)), the clustering property becomes apparent. However, in the first

two hidden layers, each class still has multiple clusters, meaning that further nonlinear

operations are required. In the third hidden layer (Figure 5.6(d)), the clusters are

very obvious, and more importantly each class has fewer clusters and the clusters of

di↵erent classes become more separated. This means that from the bottom to the

top layers, the representation becomes more and more discriminative. From another

perspective, the hidden layers progressively disentangle the class information from the

ECG signals, making the representation of the final layer very discriminative. Unlike

the conventional handcrafted features, the feature extraction process in the DNN is

purely data-driven, without any expert knowledge.
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Figure 5.6: t-SNE plots of input feature vectors and hidden-layer outputs

5.4.2 Performance of End-to-End ECG Classification

We applied the aligned feature vectors xi’s as described in Section 5.2.4 to train a

DNN. We set D = 417 for all vectors, i.e., the DNN has 417 inputs and 5 output

nodes, each output node corresponds to one class in Table 2.3. We used sigmoid

nonlinearity in the hidden layers. Stochastic mini-batch (batch size of 128) gradient

descent was used in the backpropagation fine-tuning. The learning rate, momentum

and maximum number of iterations were set to 0.001, 0.5 and 50, respectively. The

DNN has three hidden layers with a structure 417–100–100–100–5. Four experiments

were conducted to evaluate the end-to-end approach.
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Table 5.1: Performance of the classifiers in [1] and our end-to-end classifier (Exp. 1)

Chazal et al. [1] Proposed method

Overall accuracy 84.5% 93.1%
Class S

(S vs. non-S)
Sen 53.3% 69.7%
Spe 86.7% 86.7%

Class V
(V vs. non-V)

Sen 67.7% 88.8%
Spe 86.7% 86.7%

22-Fold Cross Validation

In the first experiment, 22-fold cross validation was applied to DS1. Table 5.1 com-

pares the performance of [1] with that of the end-to-end DNN classifier. Note that

the proportion of Classes F and Q in the dataset is very small (less than 1%). Thus,

the classification performance on these two classes has insignificant contribution to

the overall performance. On the other hand, the proportion of Classes S and V is

much higher (about 10%) and these two classes contain the majority of arrhythmias.

Therefore, we focused on these two classes. To improve the classification performance

of Classes S and V, Chazal et al. [1] investigated di↵erent combinations of feature

sets. For simplicity, their best results are shown in Table 5.1. As can be seen, the

overall accuracy of the end-to-end DNN is much higher than that of [1]. In particular,

at the same specificity, our DNN achieves a much higher sensitivity for both Class S

and Class V.

The MCC of Classes N, S, V, F and Q achieved by the end-to-end classifier are 0.67,

0.26, 0.67, 0.01 and 0, respectively. To obtain a more balanced MCC performance of

the end-to-end classifier, a constant (�) was added to the output nodes corresponding

to Classes S and F so that the classifier has a higher chance of correctly classifying

the instances of Classes S and F. Through cross validation on DS1, we found that

� = 0.997 can increase the MCC of Class F from 0.01 to 0.20 without significantly

sacrificing the performance of the other classes. More precisely, when � = 0.997 was
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added to the outputs of Classes S and F, the MCC of Classes N, S, V, F and Q

become 0.59, 0.34, 0.51, 0.20 and 0, respectively.
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Figure 5.7: ROC curves (Sen vs. Spe) of the end-to-end classifier in Exp. 1. Red markers
correspond to the best performance in [1]. AUC: Area under the ROC curve [2].
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Note that this work does not aim to optimize the solution to solve the data-

imbalance problem [63], which is a branch of machine learning research. Therefore,

we propose the above simple solution to handle this issue so that the classifier has a

greater chance of correctly classifying the instances of the minority classes. The goal

is to obtain more balanced MCC values for performance comparison across the five

classes. Through the performance investigation, we find that the MCC performance

changed to become acceptable. Thus, the above simple solution is su�cient in this

work. Actually, we had oversampled the minority classes to deal with this data-

imbalance issue. Specifically, we randomly duplicated samples in the minority classes

to ensure that the number of instances of each class was balanced in each mini-batch.

However, the results were poorer than our current approach.

Figure 5.7 shows the ROC curves of the end-to-end classifier for Class S and

Class V. Also shown are the operating points (the red ⇥) of the best performing

classifier in [1]. Figure 6.8 clearly shows that the sensitivity-specificity points in [1] are

below the ROC curves of our DNN, suggesting that with a certain range of decision

thresholds our DNN achieves better performance (in term of both sensitivity and

specificity) than the classifier in [1].

In this experiment, the accuracy of Record 203 was very low (55.9%, the worst

case). This record is special in MIT-BIH in that it has the following note [21]:

“The PVCs are multiform. There are QRS morphology changes in the

upper channel due to axis shifts. There is considerable noise in both

channels, including muscle artefact and baseline shifts. This is a very

di�cult record, even for humans.”

We suspect that the special characteristics of the heartbeats in this record are not

well represented by the training data (in the other 21 records). To further investigate

this issue, we randomly selected 10% of the instances (299 instances) in each class of

Record 203, and then added them to the training set. Note that the original number of
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Table 5.2: Performance of the classifiers in [1, 3, 4] and our end-to-end classifier (Exp. 2)

[1] [3] [4] Proposed

Overall ACC 85.9% 86.4% 89.9% 94.7%
Class S

(S vs. non-S)
Sen 75.9% 60.8% 80.8% 77.3%
Spe 95.4% 97.7% 96.7% 97.7%

Class V
(V vs. non-V)

Sen 77.7% 81.5% 82.2% 93.7%
Spe 98.8% 96.4% 99.0% 98.8%

training instances was 47,999, which is much larger than 299. We did the experiment

again, and the classification accuracy increased from 55.9% to 89.3%.

Test on 22 ECG recordings

In the second experiment, DS1 and DS2 were used as the training set and test set,

respectively. Table 5.2 shows the performance of the end-to-end classifier and the

best results in [1], [3] and [4]. Similar to the results in Exp. 1, the overall accuracy

of our approach is much higher than that of [1], [3] and [4]. The end-to-end DNN

not only achieves a much higher overall accuracy than that of [1], [3] and [4], it also

yields a higher sensitivity and specificity for Class S and Class V. Figure 5.8 shows

the ROC curves of the end-to-end classifier in this experiment. It shows that the best

performance in [1], [3] and [4] are below the ROCs of our DNN, which suggests that

the end-to-end approach is very promising.
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Figure 5.8: ROC curves (Sen vs. Spe) of the end-to-end classifier in Exp. 2. Red crosses
correspond to the best performance in [1, 3, 4].

Table 5.3 shows the MCC performance of the classifiers in [1, 3, 4] and our end-

to-end classifier. OMCC in the table refers to overall MCC of the five classes. For
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Table 5.3: MCC performance of the classifiers in [1,3,4] and our end-to-end classifier (Exp. 2)

Method
Class

OMCC
N S V F Q

Chazal et al. [1] 0.61 0.52 0.78 0.26 0 0.82
Ye et al. [3] 0.57 0.54 0.68 0.05 0 0.83
Raj et al. [4] 0.69 0.61 0.82 0.33 0 0.87
Proposed 0.69 0.67 0.91 0.22 0 0.88

Table 5.4: Performance of the classifiers in [11] and our end-to-end classifier

Jun et al. [11] Proposed method

Overall accuracy 99.41% 99.70%
Sen of class PVC 96.08% 97.68%
Spe of class PVC Did not specify 99.89%

the end-to-end classifier, the MCC values were obtained by adding the constant (� =

0.997) found in Exp. 1 to the outputs of Classes S and F. More precisely, we applied

cross validation on the training set (DS1) to find an appropriate value for boosting

the outputs of Classes S and F to balance the MCC across the five classes. The results

show that the MCC performance of the end-to-end classifier is much better than that

in [1] and [3]. Good performance is not only found in Classes N, S, and V, but also in

the overall. Compared with [4], our MCC performance is still better except for Class

F.

Binary Classification

Jun et al. [11] proposed using a 6-hidden-layer DNN for PVC beat detection based

on the MIT-BIH arrhythmia database. This is a two-class problem in which normal

and PVC (NOR and PVC in Table 2.2) heartbeats were extracted for evaluation. In

contrast to our raw signal extraction, six handcrafted features were used to repre-

sent a heartbeat including R-peak amplitude, RR interval, QRS duration, ventricular
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activation time, Q-peak amplitude and S-peak amplitude. K-fold cross validation

was used to evaluate performance and the performance is optimal when K equals

8. Note that, although 8-fold cross validation was applied in [11], the heartbeats

in the cross validation training set and test set could belong to the same patient.

However, our previous experiment (Exp. 1) is based on leave-one-subject/patient-out

cross validation.

In our experiment, 81, 379 heartbeats were retrieved from the dataset, including

74, 478 normal heartbeats and 6, 901 PVC heartbeats. To make a fair comparison,

we also performed 8-fold cross validations. The DNN has the same structure (417–

100–100–100–2) as before except for the number of output nodes. Table 5.4 shows

the best performance of the classifier in [11] and our end-to-end DNNs. Although the

overall accuracy in [11] is high (99.41%), ours (99.70%) is 0.29% higher. Moreover, at

very high specificity (99.89%), the sensitivity of the proposed method for Class PVC

is still higher than in [11]. Compared with the five-class classification in the previous

subsection, this two-class problem is much easier. Not only is the overall accuracy

close to 100%, but good performance of detecting PVC beats can also be obtained.

Patient-Independent vs. Patient-Specific ECG Classification Systems

Table 5.5 shows how the patient-specific ECG classification systems in [6,7,12] and our

patient-independent end-to-end ECG classification system performed. We followed

the experimental protocols in [6], [7] and [12]. For the patient-specific classifiers

with expert intervention [6, 7] (Mode 1), to be as fair as possible, we used the first

5 minutes of ECG records (Record No.: 200–234) of 24 patients for training our

patient-independent classifier. To evaluate the performance of the classifiers on “seen”

patients, we used the remaining 25 minutes of ECG signals of these 24 patients for

testing. Note that we used 5 minutes of ECG signals of 24 patients to train a patient-

independent classifier. For the patient-specific classifiers without expert intervention

[12] (Mode 2), to evaluate the performance of the classifiers on “unseen” patients, we
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Table 5.5: Performance comparisons between the patient-specific classification systems in
[6, 7, 12] and our patient-independent classification system on seen patients and unseen
patients.

Test on the remaining 25 min.
ECG of 24 seen patients

Test on 22 unseen patients

Patient-specific classifiers
with expert intervention

(Mode 1)
Proposed
method

Patient-specific classifiers
without expert intervention

(Mode 2)
Proposed
method

[6] [7] [12]

Class S
Sen 62.1% 64.6% 66.2% 61.4% 61.4%
Spe 98.5% 98.6% 98.6% 99.8% 98.3%

Class V
Sen 83.4% 95.0% 90.5% 91.8% 91.8%
Spe 98.1% 98.1% 98.1% 99.9% 99.5%

trained a patient-independent classifier based on the ECG records of 22 patients in

DS1, and tested the classifier on the other 22 patients in DS2. Table 5.5 shows that

despite patient independency, our patient-independent classifiers achieve comparable

performance with the patient-specific classifiers in [6,7,12], as evident in the fifth and

seventh columns in the table. Bear in mind that any patient-specific classifier requires

some patient-specific data or an expensive annotation process for each new patient,

therefore our patient-independent classifier definitely has advantages.

5.5 Advantages and Limitations of End-to-End ECG Classification

The following are advantages of the proposed end-to-end ECG classification method:

1. By using raw-signal extraction and DNNs, the classification performance of

our end-to-end system was found to be much better than existing patient-

independent systems in terms of sensitivity-vs-specificity ROC and Mathews

correlation coe�cients; besides that, without expert intervention, its perfor-

mance is still comparable to patient-specific systems.

2. The end-to-end DNN can perform feature extraction and classification at the
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same time. Traditional feature extraction methods are limited by the profes-

sional knowledge of medical doctors. The end-to-end DNN can overcome such

limitation by using aligned raw ECG waveforms as input so that better repre-

sentations can be obtained for classification.

Note that the classification performance of the proposed method may not be much

better than patient-specific classifiers because patient-specific classifiers have patient-

specific data, which may be helpful in machine learning. However, the proposed

algorithm is a patient-independent classifier which is universal, and it does not need

patient-specific data and expert intervention for new patients.
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Chapter 6

I-VECTOR ADAPTED PATIENT-SPECIFIC DNNS

6.1 Introduction

To address the patient-dependent variability in the ECG signals, we have developed

a deep neural network (DNN) based heartbeat classifier [64] that is adaptive to the

ECG characteristics of individual patients. The adaptation is achieved by using the

i-vector representation [65] of patient-specific ECG as auxiliary information to adjust

the weights in the DNN. This chapter is an extension of our earlier work in [64]. It

provides additional analyses to explain why the i-vectors can help adapt the patient-

independent DNN. In particular, new experiments have been performed to investigate

the best layer for injecting the i-vectors. Visualizations of the network activities during

the course of adaptation are provided to demonstrate the e↵ectiveness of i-vector

adaptation. Through these investigations, we are able to explain why this i-vector

adaptation can lead to patient-specific classifiers that outperform other state-of-the-

art patient-specific classifiers.

In general, the amount of ECG data from the general population is much larger

than that from individual patients for adapting the classifiers. Therefore, the adapted

patient-specific classifiers may be biased towards the patterns in the general popula-

tion. To overcome this issue, in [5–8], the patient-specific classifiers were trained based

on common and patient-specific beats. Specifically, the common heartbeats were ran-

domly sampled from the corresponding classes of the general population in [5–7] while

an automatic selection method was proposed to select the most representative beats

in di↵erent classes in [8]. After all, the number of selected common beats was limited
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to a few hundred only. In [9,12], instead of using the ECG of the entire population, a

subset was selected for training the general classifier. However, reducing the amount

of data from the general population is not a desirable way to address the issue because

it throws away lots of useful information in the ECG data. Also, the common train-

ing data are useful when the patient-specific beats contain a few arrhythmia patterns

only [21].

In our adaptation method, all of the ECG data from the general population are

used for training a patient-independent DNN as shown in Figure 6.1(a). Then, for

each patient, an i-vector is extracted from his/her 5-minute ECG data. As shown

in Figure 6.1(b), to form a patient-specific classifier, the i-vector is used as another

input to the middle layer of the patient-independent DNN and the whole network is

fine-tuned by backpropagation. The patient-independent and patient-specific DNNs

represent general population knowledge and specific personal knowledge, respectively

[12]. The advantage of the method is that it can leverage all of the ECG data in the

general population but still be able to adapt to the ECG characteristics of individual

patients through the patient-specific ECG and the patients’ i-vectors.

6.2 Methodology

This section first explain why i-vectors can be used for representing patient-specific in-

formation and outline the i-vector extraction process. Then, we present the proposed

iAP-DNNs, specifically, showing the architecture of a patient-independent DNN and

describing how to migrate it to a patient-specific DNN. In the patient-specific DNN,

we not only make use of patient-specific data but also i-vectors of the patient for

patient adaption. Thus, we also introduce the procedure to extract an i-vector from a

particular patient and describe how to embed the i-vector into the adaption. Finally,

we discuss the advantages and limitations of the iAP-DNNs.
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Figure 6.1: I-vector adapted patient-specific DNNs (iAP-DNNs). (a) General classier. (b)
Patient-specific classifier.

6.2.1 Motivation: I-vector an ECG Representation

Figure 6.2 demonstrates why i-vectors are good for representing patient-dependent

information, which makes them ideal for adapting ECG classifiers. In the figure,

each marker corresponds to one patient and each point of the same marker corre-

sponds to an i-vector extracted from an ECG record of that patient. Totally, there

are five patients, each has five ECG records. For ease of visualization, the i-vectors

were projected onto an embedding space created by the t-SNE (t-distributed stochas-

tic neighbor embedding) software [62]. T-SNE is a nonlinear dimension reduction

method for visualizing high-dimensional data on a two- or three-dimensional space.

Apparently, the i-vectors of the same patient are close to each other, i.e., forming

patient-specific clusters in the t-SNE space. This clustering phenomenon suggests

that the i-vectors can capture patient-specific information, which is very useful for

adapting ECG classifiers.
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Figure 6.2: The i-vectors of five patients projected onto a 2-D t-SNE embedded space.
Each patient is represented by one marker and each point represents an i-vector. Patient-
dependent clusters are apparent.

Note that it is possible to learn an alternative representation instead of the i-

vectors to capture patient-specific information. Recently, DNN embeddings have been

widely used to learn low-dimensional representations in speaker recognition [66, 67].

It is also found that the DNN embeddings can make better use of large-scale training

data than the i-vectors. However, the available ECG data are quite limited compared

with the speech data. The overfitting problem may easily occur during the training

of the DNN embeddings, resulting in poor performance of ECG classification.

6.2.2 I-vector Extraction

The idea of i-vectors is based on the factor analysis method that compresses speaker

and channel information into a low-dimensional subspace [68]. Inspired by the success

of i-vectors in representing speaker information, we applied i-vectors to represent

patient-specific information in ECG signals.
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Figure 6.3: Training of i-vector extractor and i-vector extraction process.

Figure 6.3 illustrates the procedure of training an i-vector extractor given a set

of ECG data from a general population; it also shows the process of extracting an i-

vector from an ECG record. First, PCA whitening is applied to reduce the correlation

among the time-points in the ECG vectors [69]. Then, the whitened ECG vectors

from the general population are used to train a Gaussian mixture model, which we

referred to as the universal background model (UBM). The ECG data are then aligned

with the UBM to compute the 0th- and 1st-order su�cient statistics (Baum-Welch

statistics), from which a total variability matrix (T-matrix) is trained. To extract an

i-vector, the same processing pipeline is applied (see the lower branch of Figure 6.3)

to an ECG record to compute the su�cient statistics. Given the T-matrix and the

su�cient statistics, an i-vector representing the whole ECG record can be obtained. In

the sequel, we outline the formulae for training an i-vector extractor and the i-vector

extraction process. For detailed derivations, readers may refer to [70].
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Given the i-th ECG record from a general population, we extract theD-dimensional

heartbeat vectors Xi = {xi1, . . . ,xiTi} from the record, where Ti is the number of com-

plete heartbeats in the record.1 We assume that the ECG vectors from this record

are generated by a C-mixture GMM with parameters ⇤i = {⇡c,µic,⌃c}
C
c=1, i.e.,

p(xit) =
CX

c=1

⇡
(b)
c N (xit|µic,⌃

(b)
c ), t = 1, . . . , Ti. (6.1)

In Eq. 6.1, we assume that ⇡(b)
c and ⌃(b)

c are tied across all ECG records and are equal

to the mixture weights and covariance matrices of the UBM, respectively.

In the i-vector framework [65], the mean vectors {µic}
C
c=1 are stacked to form a

GMM-supervector [68] µi = [µT
i1 . . . µT

iC ]
T, which is assumed to be generated by

the following factor analysis model [71]:

µi = µ(b) + Twi, (6.2)

where µ(b) is obtained by stacking the mean vectors of the UBM, T is a CD ⇥ R

low-rank total variability matrix modeling all sort of variability in the ECG vectors,

and wi 2 <
R comprises the latent (total) factors. Eq. 6.2 suggests that the generated

supervectors µi’s have mean µ(b) and covariance matrix TT T. Eq. 6.2 can also be

written in a component-wise form:

µic = µ(b)
c + Tcwi, c = 1, . . . , C (6.3)

where µic 2 <
D is the c-th sub-vector of µi (similarly for µ(b)

c ) and Tc is a D ⇥ R

sub-matrix of T .

In the i-vector framework, every ECG record is assumed to be obtained from a

di↵erent patient. As a result, the ECG vectors of Record i aligning to mixture c

1See Section 5.2.3 for the definition of complete heartbeats.
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have mean µic and covariance matrix ⌃(b)
c . This matrix measures the deviation of the

ECG vectors associated with the c-th mixture from µic. In practice, µ(b)
c and ⌃(b)

c are

the mean vectors and covariance matrices of the UBM. As a result, we only need to

estimate the T-matrix T from a set of training ECG vectors.

Assume that there are P ECG recordings from the general population. The T-

matrix can be estimated according to the expectation-maximization (EM) algorithm

as follows [70]:

• E-step:

hwi|Xii = L�1
i

CX

c=1

T T
c (⌃

(b)
c )�1f̃ic, (6.4)

hwiw
T
i |Xii = L�1

i + hwi|Xiihwi|Xii
T
, (6.5)

Li = I +
CX

c=1

NicT
T
c (⌃

(b)
c )�1Tc; (6.6)

• M-step:

Tc =
hX

i
f̃ichwi|Xii

T
i hX

i
Nichwiw

T
i |Xii

i�1

, (6.7)

where i = 1, . . . , P , h·|·i is the conditional expectation and Tc is the c-th partition

of T . The 0th-order and the 1st-order Baum-Welch statistics in Eq. 6.4, Eq. 6.6 and

Eq. 6.7 can be computed as follows:

Nic =
X

t
�c(xit),

f̃ic =
X

t
�c(xit)(xit � µ(b)

c ),
(6.8)

where �c(xit) is the posterior probability of mixture c.

The i-vector ii ⌘ hwi|Xii representing the i-th ECG recording can be computed

according to Eq. 6.4. Figure 6.4 details the procedure of extracting the i-vector ii

from the i-th ECG recording.
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we can obtain the Baum-Welch statistics. With the trained T matrix, the i-vector can be
calculated.

6.2.3 Patient-Independent DNN (General Classifier)

Figure 6.1(a) shows the architecture a patient-independent ECG classifier. It is es-

sentially a DNN with fixed-length ECG waveforms as the input and heartbeat types

as the output. The fixed-length waveforms can be obtained by the segmentation and

alignment process described in Section 5.2.3, Section 5.2.4 and [69].

To apply DNNs for M -class classification, we can construct a DNN with L � 1

hidden layers and a softmax output layer with M output nodes. Specifically, denote

a
(L)
m as the activation of the m-th neuron in the softmax layer, where m = 1, . . . ,M ,

the softmax function gives the outputs:

ym =
exp

n
a
(L)
m

o

PM
j=1 exp

n
a
(L)
j

o , m = 1, . . . ,M. (6.9)

With the softmax function, the outputs can be considered as the posterior probabil-

ities of individual classes given an input vector x, i.e., ym ⌘ P (Class = m|x). The

activation a
(L)
m is the linear weighted sum of the hidden nodes’ output at the (L�1)-th

hidden layer.
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The patient-independent DNN is trained by the backpropagation algorithm using

the ECG data of a number of patients in the general population.

6.2.4 Patient-Specific DNN

To create a patient-specific classifier, the weights in the lower part of the general

classifier in Figure 6.1(a) are retained and the weights in the upper part are random-

ized. Then, for each patient, five minutes of his/her ECG data are presented to the

input and an i-vector extracted from these 5-minute ECG data is injected into the

middle layer of the patient-independent DNN, as shown in Figure 6.1(b). The whole

network is then fine-tuned by backpropagation. The backpropagation algorithm will

encourage the upper layers to represent patient-dependent ECG information at a

more abstract level. This results in the output layer being tuned to the characteris-

tics of the corresponding patient. The i-vector extracted from the training ECG of

a patient is applied to adapt the patient-independent DNN to a patient-dependent

DNN. The same i-vector will also be used as an auxiliary input to the adapted DNN

(Figure 6.1(b)) during testing. This means that the identity of the patient is assumed

to be known during testing. But this assumption is reasonable in clinical settings.

The i-vector is presented to the second hidden layer instead of the first hidden layer

because it is well known that the feature representation becomes increasingly abstract

when moving up the network [72]. For example, in DNN-based speech recognition,

the bottom layers can capture low-level acoustic features that vary significantly across

di↵erent speakers and the upper layers can capture high-level features that are less

speaker dependent [73]. This suggests that the upper layer can implicitly normalize

the features across speakers. By the same token, the upper layers of the DNN in

Figure 6.1(a) will produce patient-invariant features, which is not good for patient-

specific classification. This explains why it is necessary to use the patient-dependent

i-vector to adapt the network. To check the correctness of the above justification,

the patient’s i-vector was injected into di↵erent hidden layers of the network and the
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results will be shown in Section 6.4.1.

Each patient has a number of heartbeat vectors. Specifically, for the r-th patient,

his/her heartbeat vectors are denoted as Xr = {xr1, . . . ,xrTr}, where Tr is the number

of heartbeats from this patient. On the other hand, each patient has one i-vector only,

which is extracted from Xr using Eq. 6.4, i.e., ir = hwr|Xri. The backpropagation

algorithm, however, requires one input vector for every output vector. To overcome

this imbalance in the number of input vectors, we repeated the same i-vector for each

ECG vector, as shown in Figure 6.5.

Once the DNN has been adapted, it can be used for classifying the ECG of the

corresponding patient in a beat-by-beat basis. Specifically, given a test ECG waveform

of the patient, its heartbeats are segmented and aligned to form 417-dimensional

heartbeat vectors [69]. The heartbeat vectors are presented to the input of the DNN.

Meanwhile, the i-vector of this patient is retrieved from the i-vector repository (see

Figure 6.1(b)). For each heartbeat vector, the i-vector is replicated and presented

to the middle layer of the DNN. The outputs of the DNN are then averaged over all
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of the heartbeat vectors to obtain the posterior probability of individual heartbeat

classes.

6.3 Experimental Setting

This section first introduces the evaluation protocol in our experiments. Then, we

describe some issues concerning the implementation (i.e., DNN structure and DNN

training).

6.3.1 Evaluation Protocol

As suggested by the ANSI/AAMI EC57 standard [22], we focused on evaluating the

classification performance of two majority arrhythmia classes (Class S and Class V).

Besides, four ECG recordings (Record IDs 102, 104, 107 and 217), which contain paced

beats, were excluded. As a result, a total of 44 recordings were used for performance

evaluation.

We have conducted two experiments (Exp. 1 and Exp. 2) to compare the perfor-

mance of the iAP-DNNs with six state-of-the-art patient-specific classifiers [5–9, 12].

For fair comparisons, we followed the experimental protocols described in these stud-

ies. The purposes of the data used in these two experiments are detailed as follows:

• Exp. 1: The first experiment aims to evaluate the performance of iAP-DNNs

for classifying both Class S and Class V at the same time. To this end, we

used 20 recordings (Record ID starting with Digit 1) for training the patient-

independent DNN and another 24 recordings (Record ID starting with Digit 2)

for adaptation and testing. This means that we have 24 test patients and 24

patient-specific DNNs, each was adapted (either fine-tuning only or fine-tuning

plus i-vector adaptation) by using the initial 5 minutes of his/her ECG record-

ing. The remaining 25 minutes in the 24 recordings were used for performance

evaluation.
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• Exp. 2: The second experiment aims to evaluate the performance of iAP-DNNs

in detecting S beats and V beats separately. To this end, we used 14 recordings

(Record IDs 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233 and

234) for adaptation and testing of S-beat detection and 11 recordings (Record

IDs 200, 202, 210, 213, 214, 219, 221, 228, 231, 233 and 234) for adaptation

and testing of V-beat detection. As for the training, we used the remaining 30

recordings. Similar to Exp. 1, only the initial 5 minutes of these recordings were

used for adaptation and the remaining were used for performance evaluation.

6.3.2 DNN Structure and DNN Training

The general classifier has three hidden layers with a structure 417–100–100–100–5.

The Glorot uniform initializer [61] was used to initialize the weights of the patient-

independent DNN and the upper layers of the patient-specific DNNs. We used the

rectified linear unit (ReLU) in the hidden layers. The Adam optimizer [74] with

default parameters was used for stochastic mini-batch (batch size of 128) gradient

descent. Batch normalization and dropout were employed to train the DNNs. A

dropout layer was added between the input and the first hidden layer, and the dropout

rate was set to 20%. In addition, 30% of the training set was reserved for validating the

performance of the network after every epoch, so that early stopping can be applied

to prevent overfitting. The early stopping strategy provides guidance on how many

iterations should be run before the model begins to overfit the training data. The

maximum number of epochs used for both patient-independent training and patient-

specific training was set to 50. To train the i-vector extractor, we investigated di↵erent

numbers of mixture components in the UBM (e.g., 16 and 20) and di↵erent i-vector

dimensions (e.g., 32, 64 and 128), and the optimal combination was found to be 20

and 64 for the number of mixtures and i-vector dimension, respectively. We used
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Table 6.1: Performance of iAP-DNNs, with the i-vector being injected into di↵erent hidden
layers of the network (Figure 6.1(b)). “Correctly Classified” represents the number of
correctly classified beats.

AAMI class Bottom H Middle H Top H

N
Correctly classified 1178 1165 1109

Ground truth 1193

S
Correctly classified 25 41 37

Ground truth 126

V
Correctly classified 0 167 0

Ground truth 198

F
Correctly classified 0 0 0

Ground truth 2

Q
Correctly classified 0 0 0

Ground truth 0
Accuracy(%) 79.2 90.4 75.4

Keras2 on top of Tensorflow3 to train, adapt and test the DNNs.

6.4 Performance Investigation

This section first investigates the best layer for injecting the i-vectors. Next, we

demonstrate the e↵ectiveness of i-vector adaptation. Finally, we compare the classi-

fication performance of iAP-DNNs with that of existing patient-specific classifiers.

6.4.1 Injecting I-vector into Di↵erent Hidden Layers

Table 6.1 provides the classification accuracies of the iAP-DNNs. The results show

that the performance was the best when the i-vector was injected into the middle

hidden layer. Therefore, our justification in Section 6.2.4 is supported and this settings

was applied to subsequent experiments.

2https://keras.io/

3https://www.tensorflow.org/
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Figure 6.6: t-SNE plot of 417-dimensional feature vectors. Squares (in blue) and crosses (in
red) refer to normal heartbeats (N) and arrhythmias (A) of a patient, respectively.

6.4.2 E↵ect of I-vector Adaptation

To show the e↵ect of i-vector adaptation, we created a patient-specific DNN by ap-

plying backpropagation fine-tuning on the patient-independent DNN (Figure 6.1(a))

using 5 minutes of heartbeat vectors from a patient (e.g., Record ID 221). We also

created a patient-specific iAP-DNN by applying backpropagation fine-tuning on the

DNN in Figure 6.1(b), not only using the 5 minutes of heartbeat vectors but also an

i-vector extracted from the 5-minute heartbeats. Then, we presented ten minutes of

ECG, including the normal and arrhythmic heartbeats of this patient, to both DNNs.

Note that the five minutes of ECG recordings comprise a majority of (but not nec-

essarily all) ECG types of that patient. As di↵erent patients have di↵erent health

conditions, the numbers of heartbeats for individual classes are also di↵erent.

The t-SNE plot of 417-dimensional feature vectors is shown in Figure 6.6, where

⇤ and ⇥ represent the normal (N) and arrhythmic (A) heartbeats, respectively. We
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can see that there is no obvious clusters in Figure 6.6. We progressively moved up the

hidden layers and projected the activations (before the ReLU) at the first, second and

third hidden layers onto two-dimensional t-SNE spaces. The projected activations are

shown in Figure 6.7. Obviously, without i-vector adaptation Figures. 6.7(a), (c) and

(e), the projected vectors of both heartbeat types scatter in di↵erent regions of the

t-SNE space and form multiple clusters, which makes classification more di�cult.

On the other hand, with i-vector adaptation (Figures. 6.7(b), (d) and (f)), the two

heartbeat types are well separated, which makes classification by the softmax layer

easy. Moreover, from Figures. 6.7(b), (d) and (f), we can see that each class has

fewer clusters and the clusters of the two classes become more separate. This means

that from the bottom to the top layers, the representation becomes more and more

discriminative.
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(a) 1st hidden-layer (no i-vector)
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(c) 2nd hidden-layer (no i-vector)
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(d) 2nd hidden-layer (with i-vector)
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(e) 3rd hidden-layer (no i-vector)
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(f) 3rd hidden-layer (with i-vector)

Figure 6.7: t-SNE plots of the neuron activations at di↵erent hidden layers: (a),(c) and
(e) with patient’s 5-minute ECG adaptation; (b), (d) and (f) with patient’s 5-minute ECG
and i-vector adaptation. It is clear that with i-vector adaptation, the number of clusters is
smaller and the A and N classes are well separated in (b), (d) and (f).
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Table 6.2: Confusion matrix of iAP-DNNs in Exp. 1. The values in parentheses correspond
to fine-tuning the DNN without i-vector injection.

N S V F Q

N
41600
(41630)

78
(77)

92
(56)

47
(29)

4
(29)

S
439
(523)

1829
(1749)

63
(50)

4
(12)

2
(3)

V
225
(305)

69
(349)

4473
(4097)

39
(47)

1
(9)

F
64
(86)

2
(1)

49
(43)

496
(481)

0
(0)

Q
5
(5)

0
(1)

2
(1)

1
(1)

0
(0)

6.4.3 Performance of iAP-DNNs

Experiment 1 (Exp. 1)

The first experiment was conducted to evaluate the proposed method based on 24

ECG recordings. Table 6.2 shows the confusion matrix of iAP-DNNs. We can see that

the performance is better if patients’ i-vectors were used for adaptation. Specifically,

the numbers of true positives for Class S and Class V have been increased. Besides,

the performance of the iAP-DNNs and that of [5–9] are shown in Table 6.3. Except

for the Ppv of Class S and the Sen of Class V in [9], the overall performance of the

proposed method for Class S and Class V is significantly better than that in [5–9] for

all evaluation measures.

Using the confusion matrix in Table 6.2, the MCC performance of Classes N, S, V,

F and Q can be calculated. Table 6.4 shows the performance comparison between the

proposed iAP-DNNs and the existing patient-specific classifiers in [5–9]. Note that

OMCC refers to overall MCC of the five classes. We can see that the MCC of the

iAP-DNNs is much higher than the other three classifiers. The promising performance

is not only found in the individual class, but also in the overall.
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Table 6.3: Performance of the patient-specific classifiers in [5–9] and the proposed iAP-
DNNs (Exp. 1)

Method [5] [6] [7] [8] [9] iAP-DNNs

Class
S

Acc 96.6 96.1 96.4 97.5 98.3 98.7
Sen 50.6 62.1 64.6 76.8 68.7 78.3
Spe 98.8 98.5 98.6 98.7 99.8 99.8
Ppv 67.9 56.7 62.1 74.0 94.7 92.5

Class
V

Acc 98.1 97.6 98.6 98.6 98.8 98.9
Sen 86.6 83.4 95.0 93.8 95.5 93.1
Spe 99.3 98.1 98.1 99.2 99.1 99.5
Ppv 93.3 87.4 89.5 92.4 92.2 95.6

Table 6.4: Performance comparison in terms of MCC (Exp. 1)

Method [5] [6] [7] [8] [9] iAP-DNNs

Class

N 0.83 0.81 0.84 0.88 0.90 0.93
S 0.57 0.57 0.62 0.74 0.80 0.84
V 0.87 0.83 0.91 0.92 0.93 0.94
F 0.55 0.67 0.78 0.70 0.78 0.83
Q 0.00 0.00 0.00 0.00 0.00 0.00

OMCC 0.93 0.92 0.94 0.95 0.96 0.97

Figure 6.8 shows the ROC curves of the proposed method for Class S and Class

V. In the ROC curves, perfect classification (Spe = 1.0 and Sen = 1.0) corresponds

to the upper right corner of the graph. A sensitivity-specificity operating point is

good if it is close to the upper-right corner. In Figure 6.8, the operating points of

the best performing classifiers in [5–9] are also shown by the markers +, ⇥, �, ⇤,

and •, respectively. The figures clearly show that the sensitivity-specificity points

in [5–9] are below the red curve. This means that, within a certain range of decision

thresholds, the iAP-DNN achieves better performance in term of both sensitivity and

specificity than the classifiers in [5–9].
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Figure 6.8: ROC curves (Sen vs. Spe) of iAP-DNNs in Exp. 1. Black markers correspond
to the best performance in [5–9]. AUC: Area under the ROC curve [2].
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Table 6.5: Performance of the patient-specific classifiers in [5,6,8,9,12] and our iAP-DNNs
(Exp. 2)

Method [5] [6] [12] Method I [12] Method II [8] [9] iAP-DNNs

Class
S

Acc 97.5 96.1 99.1 98.3 97.3 98.6 99.1
Sen 74.9 81.8 76.5 61.4 85.3 77.2 78.4
Spe 98.8 98.5 99.9 99.8 98.0 99.8 99.9
Ppv 78.8 63.4 99.1 90.7 71.8 96.6 98.7

Class
V

Acc 98.8 97.9 99.7 99.4 99.1 98.7 99.7
Sen 94.3 90.3 97.1 91.8 96.4 97.2 97.4
Spe 99.4 98.8 99.9 99.9 99.5 98.9 99.9
Ppv 95.8 92.2 98.5 98.0 96.4 92.1 97.8

Experiment 2 (Exp. 2)

In the second experiment, for Class S and Class V, the evaluations were based on 14

and 11 test recordings, respectively. Table 6.5 shows the Acc, Sen, Spe and Ppv of

the iAP-DNNs and that of [5,6,8,9,12]. Note that in Method I of [12], five minutes of

labeled ECG signals of a patient was used to adapt the patient-specific classifier. In

Method II, the hypothesized labels were used instead of the manual labeling process.

In Table 6.5, for Class V, the Sen of the iAP-DNNs is the highest among all methods

and a high Spe (99.9%) is achieved. For Class S, although the Sen of the iAP-DNNs

is lower than that in [8], its Spe and Ppv are higher.

The performance of iAP-DNNs is similar to that of Method I in [12]. In [12], a

subset was selected for training the general classifier based on the similarity among pa-

tients. The similarity is determined by calculating the dynamic time warping (DTW)

distance, and the value of DTW threshold needs to be optimized by trial and error.

However, in the proposed method, the ECG data of the general population can be

used directly to train a general classifier before patient adaptation. Therefore, there

is no need to throw away any ECG data from the general population nor do we need

to optimize additional parameters. That is definitely an advantage.
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6.5 Advantages and Limitations of iAP-DNNs

To deal with inter-patient variability in ECG signals, existing methods typically use

three approaches: (1) pooling the patient-specific and patient-independent data to-

gether to train a patient-specific classifier [5–8], (2) combining the predictions made

by a patient-independent classifier and a patient-specific classifier [12], and (3) fine-

tuning a patient-independent classifier using patient-specific data [9]. The major

problem of these approaches is that they fail to take advantage of the vast amount of

ECG data from the general population. In particular, to prevent the limited amount

of patient-dependent data from being overshadowed by the patient-independent data,

only a small fraction of the patient-independent data will be used in the first and sec-

ond approaches. While fine-tuning is a reasonable approach, the information learned

from the general population could be easily lost or forgotten if the degree of fine-tuning

is substantial.

The iAP-DNNs are designed to overcome the problems in the three approaches

mentioned above. The key ideas are (1) to leverage the ECG data of a general

population to create a patient-independent DNN and (2) to focus the adaptation on

the upper layers of the DNN using patient-specific information to make it patient-

dependent. To avoid being overshadowed by the data in the general population,

the weights in the upper layers are re-initialized before adaptation begins. To avoid

forgetting the learned information from the general population, the bottom layers

of the network will only be adapted by a small amount of patient-specific data, i.e.,

the extent of adaptation in the lower layers will not be substantial. These strategies

are superior to the data pooling approach in that it is not necessary to ensure a

good balance between the patient-independent and patient-specific data. To gear

the adaptation of the upper layers to specific patient, the i-vector that characterizes

an individual patient is injected into the middle layer of the network. Results in

Section 6.4.3 and Figure 6.6 suggest that this step has great impact on the DNN to
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classify the ECG of individual patients.

Some recent studies [7, 9, 13, 15] applied convolutional neural networks (CNNs)

to classify raw ECG signals into di↵erent arrhythmia types, primarily because of the

intrinsic capability of CNNs in dealing with phase shift variability. In fact, it has been

found in speech recognition research that applying max-pooling in time could produce

representations that are less sensitive to phase shifts [75]. Our proposed method uses

heartbeat segmentation and heartbeat alignment [69] to minimize the phase shift

variation, which enables us to use DNN instead of CNN to classify the heartbeats. The

question is “Which is a better way to deal with phase shifts: max-pooling or heartbeat

alignment?”. The answer lies in whether we can detect the R peaks accurately. If

we can, heartbeat alignment is a better choice. On the other hand, if aligning the

heartbeats is di�cult, CNN is a better choice. For the MIT-BIH arrhythmia dataset,

heartbeat alignment is a better choice because the R peaks in this dataset can be

predicted at an accuracy of over 99% by using the Pan-Tompkins algorithm [60]. In

fact, the results in Section 6.4.3 also suggest that heartbeat alignment together with

the proposed DNN adaptation outperform state-of-the-art CNNs in this dataset.

Another advantage of heartbeat alignment is that DNNs are more amenable to

adaptation by i-vectors than CNNs. This is because for ECG classification, the con-

volutional layers and max-pooling layers of a CNN have the concept of time, which

are not compatible with the static information encoded in the i-vectors. Because the

hidden layers in a DNN are static, injecting an i-vector into its hidden layers can be

considered as shifting the activations of the hidden layers, where the shift accounts

for the patient-specific information.

A limitation of iAP-DNNs is that the method requires some patient-specific ECG

data that have been manually labelled by medical doctors to adapt the patient-

independent DNN. As long as the amount of adaptation data is small, this requirement

will not pose a serious burden on the medical doctors nor the patients. However, for

those patients without the access to medical services, the method is not applicable or
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they will need to fall back to using the patient-independent classifier.
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Chapter 7

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

In Chapter 4, we demonstrated how to identify heart arrhythmias by using hand-

craft features from ECG signals. SVMs and DNNs were applied to classify heart

arrhythmia based on the UCI cardiac arrhythmia dataset. Feature pre-processing

methods, such as FDR and PCA were investigated. Performance evaluations show

that for classifying normal heartbeats against heart arrhythmias, the best combination

of feature pre-processing and classification is FDR with DNNs. For multi-class clas-

sification, FDR can be easily adopted to one-vs-rest SVMs but not to the DNNs. We

also demonstrated that pre-training of stacked RBMs is an essential step for training

DNN classifiers, especially when the number of training samples is very limited.

In Chapter 5, we presented an end-to-end ECG classification system. One end of

the system receives raw ECG signals and the other end gives beat-by-beat classifica-

tion decisions. A new preprocessing method, which involves heartbeat segmentation

and heartbeat alignment, was proposed to facilitate a deep neural network to form

optimal representation of ECG signals and for the classification of heartbeat types.

Four experiments based on the MIT-BIH arrhythmia database were conducted. In

the first experiment, 22-fold cross validations on a dataset comprising 50,977 heart-

beats and five arrhythmia classes suggest that at the same specificity, the sensitivities

of the end-to-end method for Class S and Class V are 16.4% and 21.1% higher (ab-

solute) than those achieved by a conventional method. For all of the five classes, the

proposed method achieves higher MCC and its ROC curves are above the operating
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points reported in the literature. In the second experiment, the proposed end-to-end

DNN was trained on 50,977 heartbeats from 22 patients and tested on 49,668 heart-

beats from another 22 patients. Results demonstrate that this end-to-end DNN can

capture useful information from the raw ECG signals, enabling it to outperform state-

of-the-art arrhythmia classifiers (using either SVM or DNN) that rely on handcrafted

ECG features. The third experiment shows the excellent performance (AUC = 0.999)

of the proposed method in dealing with the binary ECG classification.

The fourth experiment compared our patient-independent end-to-end ECG classi-

fication system with patient-specific ECG classification systems. The results demon-

strate that the patient-independent DNN-based classifier generalizes very well to

new/unseen patients. The e↵ect of the proposed raw signal extraction method (in-

cluding segmentation and alignment of complete heartbeats) is remarkable. Thus, the

end-to-end ECG classification approach not only outperforms the existing patient-

independent classification system, but also performs as well as the patient-specific

classification systems.

After using more data to train the patient-independent classifier and testing with

more patients, the proposed end-to-end (input: raw ECG signals; output: beat-by-

beat classification decisions) ECG classification system can be introduced as a tool

to assist clinicians in diagnosing arrhythmias.

In Chapter 6, we proposed an adaptive patient-specific heartbeat classification

model (i.e., iAP-DNNs) for diagnosing heart arrhythmias, which leverages the DNNs

for both feature extraction and classification based on the raw ECG signals. A general

classifier was first trained on the general population. Then, the weights in the lower

part of the general classifier were retained and the weights in the upper part were

randomized. To create a patient-specific classifier, not only patient-specific ECG but

also patient-dependent i-vectors are used for adaptation. Two experiments based

on the MIT-BIH arrthymia database have been conducted. The results show that

the proposed iAP-DNNs achieve better performance than existing patient-specific
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Figure 7.1: An unsupervised patient-adaptable DNN based on i-vector.

heartbeat classification systems.

To the best of our knowledge, this is the first study that uses i-vectors to char-

acterize the ECG of individual patients and applies the i-vectors to adapt a DNN

for patient-specific ECG classification. The key contribution is that by injecting the

i-vectors into a middle layer of the DNN during backpropagation fine-tuning, we can

make the upper layers of the DNN more patient-dependent. Without the i-vectors

as an auxiliary input to the middle layer, it is much harder to ensure such patient

dependence.
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7.2 Future Work

The patient-independent classifier (e.g., the proposed end-to-end ECG classifier) is

universal. When applying it to new/unseen patients, no patient-specific data is re-

quired. However, because of the inter-patient variations, such fixed classifier may not

perform well. Patient-specific classifiers (e.g., the proposed iAP-DNNs) are proposed

to address the issues of inter-patient variations. Most of the patient-specific ECG

classification approaches rely on manual intervention to achieve good classification

performance. However, manual intervention requires medical doctors to provide the

ground truth labels of the patient-specific training data, i.e., beat-by-beat annotations

on patient-dependent ECG signals. This labeling process may be costly.

To relax the limitations of the patient-independent and patient-specific classifiers,

we can use an unsupervised patient adaptation approach as follows. An i-vector of a

patient is injected to the middle layer of a DNN. Specifically, for each hidden node of

the DNN receiving the injection, it adds up the values of all elements of the i-vector.

In that case, the i-vector act as an additional bias term and the amount of bias is not

trainable. The main input receives the labelled heartbeat vectors from the general

population, and the auxiliary input receives the i-vector of the patient. The DNN

is adapted/fine-tuned by backpropagation to form a patient-specific network. Since

the i-vector contains the information of this patient, the upper layers of the DNN are

expected to be patient-dependent.

Another issue is data-imbalance problem. In the MIT-BIH arrhythmia database,

the numbers of samples in Classes S, V, F and Q are extremely small compared with

the normal heartbeats (Class N). This data-imbalance issue will cause the trained

DNN classifier to bias towards the majority class, leading to poor classification per-

formance on the minority classes. The DNN may even predict all of the test data as

Class N (the majority class). In the case of imbalanced training data, oversampling is

a standard technique to avoid the classifier to bias towards the majority class. How-
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ever, our preliminary experiments suggested that oversampling does not work well.

Therefore, instead of duplicating the samples from the minority classes, adversarial

data augmentation network (ADAN) can be used to enlarge the training data of the

minority classes by generating fake samples, which is an elegant solution based on the

idea of generative adversarial network (GAN) [76]. Figure 7.1 shows an unsupervised

patient-adaptable ECG classifier based on i-vectors. It is referred as an automatic

adaptation model because no manual labels are required during patient adaptation.

While the MIT-BIH arrhythmia dataset has been popular among the research

community, it is also important to validate the accuracy using a larger dataset, e.g.,

the European ST-T Database [77]. This dataset consists of ninety two-hour ECG

recordings with beats, rhythms, and signal quality annotation. We believe that the

large amount of ECG data in this dataset is beneficial to the proposed method because

it can leverage the data to train a better patient-independent classifier, which could

lead to better patient-specific classifiers after i-vector adaptation.
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