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Abstract 

Acute intracranial hemorrhage (AIH) is a major cause of neurological disturbance or 

complication of head injury. Its presence dictates different management strategy. In 

modern medicine, detection of AIH relies on the use of brain computed tomography 

(CT). But diagnosis of AIH can become difficult when the lesion is inconspicuous or 

the reader is inexperienced. 

The objective of the current project is to develop a computer aided diagnosis (CAD) 

system that improves the diagnostic performance of AIH on CT by clinicians. 

A total of 186 cases, including all 62 continuous cases that showed AIH not more than 

1cm in size obtained during a 6 month period, and 124 randomly selected controls 

that were obtained during the same period, were retrospectively collected from the CT 

archive of Princess Margaret Hospital. The imaging diagnoses were established by 

consensus of two experienced radiologists. 

A CAD was designed and implemented. It reads and processes standard DICOM 

image files. Intracranial contents are segmented from the CT images, which are then 

subjected to denoising and adjustment for CT cupping artifacts. AIH candidates are 

extracted from the intracranial contents based on top-hat transformation and 

subtraction between two sides of the image about the mid-sagittal plane. AIH 

candidates are registered against a normalized coordinate system such that the 

candidates are rendered anatomical information. True AIH is differentiated from 

mimicking normal variants or artifacts by a knowledge based classification system 

incorporating rules that make use of quantified imaging features and anatomical 

information.  
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The CAD algorithm was manually trained using 40 positive and 80 control cases. In 

the validation test using the remaining 22 positive and 44 control cases, the system 

achieved sensitivity of 83% for small (< 1cm) AIH lesions on a per lesion basis or 

100% on a per case basis, and false positive rate 0.020 per image or 0.29 per case. 

In the observer performance study, 7 emergency physicians, 7 radiology residents and 

6 radiology specialists were recruited as readers of 60 sets of brain CT selected from 

the same 186 case collection, including 30 positive cases and 30 controls. Each reader 

read the same 60 cases twice, first without, then with the prompts produced by the 

CAD system. The clinicians rated their confidence in diagnosing each case of 

showing AIH in both reading modes. The results were analyzed using the 

multiple-reader, multiple-case receiver operating characteristic (MRMC ROC) 

paradigm, which showed significantly improved performance for emergency 

physicians, average area under the ROC curve (Az) significantly increased from 0.83 

to 0.95 without and with the support of CAD. Az for radiology residents and 

specialists also improved, from 0.94 to 0.98 and from 0.97 to 0.98 respectively.. 

In summary, a CAD system which boasted high sensitivity and low false positive rate 

has been developed. MRMC ROC study confirmed that it can improve diagnostic 

performance of clinicians, especially emergency physicians. It is anticipated that such 

a system can reduce diagnostic errors and improve patient care when it is integrated in 

the clinical environment for daily operation. 
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Chapter 1 INTRODUCTION 

1.1 CLINICAL BACKGROUND 

Definition of Acute Intracranial Hemorrhage (AIH) 

Acute intracranial hemorrhage (AIH) literally means recent bleeding inside the 

confine of the skull. This includes bleeding inside or outside the brain, which are 

termed intraaxial and extraaxial hemorrhage respectively. Intraaxial hemorrhage 

include bleeding into the brain substance, or intraparenchymal hemorrhage (IPH) and 

bleeding into the ventricular system, or intraventricular hemorrhage (IVH). 

Intraparenchymal hemorrhage can be further specified according to the exact 

anatomical location of bleeding, e.g. thalamic hemorrhage and brainstem hemorrhage. 

Extraaxial hemorrhage is classified according to the anatomical layer of meninges 

where bleeding occurs, namely extradural hemorrhage (EDH) – between the 

periosteal leaf and meningeal leaf of dura mater, subdural hemorrhage (SDH) – 

between dura mater and arachnoid matter, and subarachnoid hemorrhage (SAH) – 

between arachnoid mater and pia mater. The descriptive terms for the timing of 

intracranial hemorrhage is defined by the time elapsed since the onset: hyperacute 

hemorrhage refers to bleeding between 0-4 hours, acute: 5-72 hours, subacute: 4-21 

days, and chronic: > 22 days(Cohen and Wayman 1992). In the following sections, 
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both hyperacute and acute hemorrhage are considered as AIH. 

Causes of AIH 

The most common cause of AIH is trauma. Both blunt and penetrating head injury can 

cause all kinds of AIH, depending on the mechanism and extent of injury. EDH occurs 

when an artery supplying the dura is torn and is frequrently associated with skull 

fracture. SDH is usually result of torn veins that bridge the brain and venous sinuses. 

SAH can result from trauma to vessels in the leptomeninges or surface vessels or the 

brain surface itself. Intracerebral hematoma may occur in shear injury in both the 

acute and delayed stage. IVH results mostly from rotationally induced tearing of 

subependymal veins (Taveras 1996; Zimmerman, Gibby et al. 2000). 

In addition, major causes of AIH include hemorrhagic infarction, hypertensive 

hemorrhage, aneurysms, vascular malformations, intratumoral hemorrhage, vasculitis, 

dural sinus thrombosis, mycotic aneurysm, amyloid angiopathy, bleeding dyscrasias 

or anticoagulation therapy(Taveras 1996; Zimmerman, Gibby et al. 2000; van Gijn 

and Rinkel 2001; Panagos, Jauch et al. 2002).  

AIH can produce variable neurological symptoms, dependent on the different 

functions served by the affected regions. In general, it is not possible to differentiate 

between hemorrhage from other causes of neurolgoical disturbances, e.g. ischemia, 
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central nervous system infection, or neoplasm, based on clinical findings (Taveras 

1996; Mader and Mandel 1998; Zimmerman, Gibby et al. 2000; Panagos, Jauch et al. 

2002; Perry, Stiell et al. 2005; Mullins 2006).  

Clinical Significance of AIH 

Identification of AIH is of crucial clinical significance, because its presence 

necessitates very different management strategies. For example, patients suffering 

from ischemic type of stroke can benefit from thrombolytic therapy, anticoagulant 

and/or antiplatelet therapy. On the contrary, such treatments are contraindicated in 

patients suffering from hemorrhagic type of stroke (Beauchamp, Barker et al. 1999; 

Adams, Adams et al. 2005), whilst patients suffering from hemorrhagic stroke may 

rapidly deteriorate due to increased intracranial pressure and may require 

neurosurgical intervention (Panagos, Jauch et al. 2002). Also, victims of head injury 

and intracranial hemorrhage require close monitoring and may benefit from surgical 

evacuation of blood clots; whilst people suffering from minor head injury without 

intracranial hemorrhage evident on CT can be discharged after shorter period of 

neurological observation (Jagoda, Cantrill et al. 2002). Similarly, patient presenting 

with headache may suffer from SAH that requires hospitalization and further 

treatment, whereas patient with normal imaging findings can be followed up (Mark 

and Pines 2006). Therefore it is obvious that a reliable method that demonstrates AIH 
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is essential for evaluation and proper management of patients presenting with 

neurological symptoms or head injury.  

In addition, it is also important to predict the prognosis even for patients with known 

problems, which is also often related to the presence or absence of AIH. For example, 

presence of AIH could significantly alter the outlook of stroke patients, because the 

hemorrhagic type fare much worse that the ischemic type (Broderick, Adams et al. 

1999). Also hemorrhage complicating central nervous system infection or neoplasm 

can significantly worsen the prognosis. 

1.2 AIH ON COMPUTER TOMOGRAPHY (CT) 

Clinical Issues 

CT has been the imaging method of choice for evaluation of patients suffering from 

suspected stroke, head injury, sudden headache, and altered level of consciousness, 

with strong evidence from randomized trials (Broderick, Adams et al. 1999). This is 

because CT is widely available in most hospitals and many imaging centers, quick to 

perform, lacks contraindications, adaptable to patients requiring life support 

equipment, and sensitive to AIH (Diehl 1978; Taveras 1996; Bagley 1999; 

Zimmerman, Gibby et al. 2000).  

With virtually ubiquitous availability, the trend has been to liberally scan patients for 
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the investigation of suspected neurological emergencies or head injury. For certain 

clinical scenarios, e.g. minor head trauma and seizure, there are guidelines for 

judicious of CT based on some clinical indicators (Jagoda, Cantrill et al. 2002). 

However, it is generally accepted that low threshold for for CT is necessary to avoid 

missing clinically silent but potentially lethal pathology. It has been shown that nearly 

a third of acute abnormalities demonstrable on CT would be missed if emergency 

physicians were to select patients based on their clinical impressions. The same study 

indicated that the type of pathology as predicted from clinical information matched 

the actual abnormality in only two-thirds of the time. (Reinus and Zwemer 1994).  

It was recognized early in the inception of CT that it is extremely valuable in 

differentiating between hemorrhagic and ischemic disease (Ambrose 1973). The 

clinical utility of CT for evaluation of acute hemorrhage has been remarkable even for 

the earliest scanners. EDH mortality dropped by more than a half in one center before 

and after CT was introduced (Cordobes, Lobato et al. 1981). With increasing 

recognition that CT can safely rule out AIH and other acute abnormalities, use of CT 

is also attributed for the declining hospitalization rate of patients suffering from head 

injury (Thurman and Guerrero 1999). 

Other imaging modalities are supplementary for initial evaluation of patients suffering 
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from neurological emergencies. Skull radiograph has little role to play even for 

patients suffering from head injury, because it does not correlate well with presence of 

intracranial lesion (Jagoda, Cantrill et al. 2002). Angiography is considered for 

patients without clear cause of hemorrhage who are surgical candidates. MRI and 

MRA are helpful and may obviate the need for angiography in selected patients 

(Broderick, Adams et al. 1999). For patients with subacute or chronic symptoms, the 

choice between CT and MRI is less clear. This is because MRI is better suited for 

detection of underlying pathology of hemorrhage, whilst CT becomes less sensitive as 

blood clot resolves with time (Shah and Kelly 1999).  

Physical Principle 

In CT, thin beams of x-ray pass through the subject from multiple different 

projections. The intensity of x-ray beams is attenuated to different degrees, due to 

absorption by both photoelectric interaction and Compton scattering interactions, 

which in turn depend on the electron density of the material being irradiated. The 

intensity of the exiting x-ray is measured, the data integrated, and a digital image is 

produced.  

The digital image contains pixels which intensity is proportional the degree of 

attenuation of x-ray in the corresponding volume of tissues. The pixel values are 



 

normalized against the attenuation of water, which is assigned the number of zero, and 

magnified by a constant. When the constant is 1000, the unit of pixel value or CT 

number becomes the Hounsfield unit (HU), which is definied as 1000 x (μx - μw)/μw, 

where μx = pixel value of tissue and μw = pixel value of water. 

By this convention, water is 0 HU, air is -1000 HU, and dense cortical bone or 

calcicum can be above +2000 HU. AIH, is usually shown as regions that show higher 

attenuation relative to the lipid rich brain parenchyma, as illustrated in figure 1.  

 

Figure 1 - Change in density of intracranial hemorrhage with time 
Acute intracranial hemorrhage is typically hyperdense relative to brain parenchyma, 
due to concentration of hemoglobin in blood clot. Hyperacute hemorrhage (< 4 hours) 
may be isodense to brain occasionally. With time, density of blood clot gradually 
decreases and becomes the same as that of brain at around 1 week. Blood clot lysis 
further progresses, hence its density further decreases, until it is similar to that of CSF 
months to years afterward the initial event. 
 

 

Hyperdense 

Hypodense 

Isodense

 

D
ensity 

Time

 7



 

 8

Visualization of an acute clot on CT depends on its intrinsic physical properties 

including the density, volume, location, and relationship to surrounding structures, 

and technical factors including scanning angle, slice thickness, and windowing 

(Cohen and Wayman 1992). The attenuation value of acutely clotted blood depends 

on its density, which is primarily determined by concentration of hemoglobin (New 

and Aronow 1976; Norman, Price et al. 1977). The average attenuation value of AIH 

has been reported by different authors to be in the range of between 50-90 (Ambrose 

1974; Scott, New et al. 1974; Cohen and Wayman 1992). These values need to be 

considered with reference to those of the brain, which forms the background on which 

AIH is shown. The brain comprises white matter and gray matter, which have been 

reported to show average attenuation of between 29-30 HU and 35-38 HU 

respectively (Phelps, Hoffman et al. 1975; Weinstein, Duchesneau et al. 1977). It is 

noteworthy that these values are much lower in infants, when the brain are richer in 

lipids (Boris, Bundgaard et al. 1987). The difference in average attenuation between 

AIH and brain parenchyma is hence resolvable by all current scanners that readily 

demonstrate differences in contrast of approximately 0.4% or 4 HU ((Zimmerman, 

Gibby et al. 2000). This is why CT is sensitive for showing AIH which may be of 

barely higher attenuation than that of adjacent parenchyma. In fact, it was suggested 

that a difference of more than 4 HU to the surrounding tissue should be enough for 
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detection of hematoma that might necessitate surgery (Bergstrom, Ericson et al. 

1977).  

It is intuitive that AIH can become difficult to identify when it is small. Yet there is no 

accepted convention for classification of the size of intracranial hematoma. The long 

axis diameter and thickness in the transverse plane represent the conventionally 

measured dimensions of intraaxial hematomas and extraaxial hematomas respectively. 

Following this practice conveniently, the current study defines a lesion as small if it is 

(a) intraaxial hemorrhage having a long axis diameter 1cm or below, or (b) extraaxial 

hemorrhage having a thickness equal or less than 1cm. All the sizes quoted in the 

following discussions refer to either the long axis diameter for intraaxial hematomas 

or the thickness of extraaxial hematomas measured in the transverse plane. 

Difficulties in Diagnosis of AIH on CT 

It is obvious that diagnosis of AIH requires correct interpretation of the demonstrable 

AIH on CT. The aforementioned figures of attenuation values of AIH and brain may 

suggest that AIH is present whenever regions that show attenuation of 40 HU or 

above are found. But the actual range of attenuation values for AIH can be much 

wider, closer to the range of 40-110 HU as written by Taveras in his standard 

reference in neuroradiology (Taveras 1996). This is confirmed by our own experience 
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of measuring a large number of acute blood clots during the course of this study, the 

attenuation varies from 35 to 105 HU. Likewise, attenuation values of gray and white 

matter also vary widely. Although no such data is available from literature, we have 

found that the range (instead of the mean) of CT no. for gray and white matter range 

from 20-40 HU and 30-55 HU. Therefore CT numbers of AIH and normal brain can 

overlap significantly. 

In addition, there are many occasions when regions that show high attenuation 

actually represent calcifications or brain substance that show higher than expected 

attenuation due to artifacts like CT cupping artifact, volume averaging with adjacent 

skull, and beam hardening artifact. Therefore, the knowledge of different patterns of 

normal variants or artifacts that may mimic AIH becomes essential when the 

judgment between genuine AIH and its mimics is required.  

For these reasons, it is expected that considerable training is required for accurate 

interpretation of brain CT with respect to detection of AIH. Yet the experts in image 

interpretation, namely radiologists, are in short supply. In most parts of the world, 

acute care physicians, including emergency physicians, internists, or neural surgeons, 

are the only ones to read the CT images, especially during odd hours, when 

radiologists’ expertise may not be immediately available (Sarkarati and Reisdorff 
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2002). However, the skill of acute care physicians regarding interpretation of brain CT 

has been shown to be imperfect. In one study, emergency physicians detected 

hemorrhage only 73% of the time (Schriger, Kalafut et al. 1998). Even in the better 

staffed institutes, radiology residents rather than specialists assume the responsibility 

of radiological diagnosis during nighttime. Another study has shown that even 

radiology residents could, albeit infrequently, overlook hemorrhage on brain CT 

(Wysoki, Nassar et al. 1998).  

1.3 CAD FOR AIH 

Concepts of Computer Aided Diagnosis 

It has long been recognized that errors in image interpretation, including erroneous 

perception or analysis, are inevitable even for the best human observers. Such errors 

may be exacerbated as results of fatigue, inexperience, or environmental factors 

(Erickson and Bartholmai 2002). CAD has been developed based on the notion that 

computers making objective or quantitative use of image-derived and clinical 

information can improve the accuracy in detection of abnormalities or to provide a list 

of probable differential diagnoses. 

Use of computer for quantitative analysis of medical images has been reported in the 

1960’s, when the ambition was to replace radiologists in detecting abnormalities. 
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Such attempts, known as automated computer diagnosis, were unsuccessful and now 

considered unrealistic. Starting in the 1980’s, a different approach that aimed to 

produce computer output that could be useful for, but not replace, radiologists have 

come into being. This approach became known as computer aided diagnosis or CAD 

(Doi 2004).  

CAD schemes are generally composed of several basic components, which include 1. 

image processing for enhancement and extraction of lesions, 2. quantification of 

image features e.g. size, contrast, shape, etc., and 3. data processing for distinction 

between normal and abnormal patterns, based on image features obtained in previous 

step. (Doi, MacMahon et al. 1999).  

CAD is best suitable for tasks that are tedious, e.g. looking for small lung nodule in 

chest CT, and tasks that require assimilation of multiple imaging features, e.g. breast 

mass on mammography. CAD is also useful when trained observers are lacking 

(Summers 2003). 

Applications of CAD 

CAD for lesions on mammogram has been the most prominent development in the 

realm of CAD. It was well known that radiologists miss a significant proportion of 

cancers on screening mammography. The current accepted paradigm for CAD in 
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mammography is to use it as second reader. Various abnormalities demonstrable on 

mammogram have been tapped in previous and continuing studies. There have been 

efforts focusing on detection of abnormal microcalcifications, mass, and architectural 

distortion. It was the first CAD device to receive the Food and Drug Administration 

(FDA) approval in 1998. With availability of commercial products, the use of CAD 

has moved from laboratory to clinical practices around the world. Since then, clinical 

studies that assess effect of CAD on radiologists’ performance and clinical outcomes 

have accumulated (Freer and Ulissey 2001; Brem, Baum et al. 2003; Sacks 2003; Gur, 

Sumkin et al. 2004; Klym, King et al. 2004). Cancer detection rate has been increased 

by 8-19% in moderate sized clinical trials.  

Another area that has seen FDA approved device is in detection of lung nodule, using 

chest radiograph or computer tomography. The products aim to find nodules that may 

represent early cancers that are amenable to treatment. Approaches based on 

measurement of change over time and evaluation of features from a single 

examination have been investigated. In one clinical study, CAD has detected 

significant lesions missed by routine clinical interpretation of chest CT in 1/3 of 

patients (Peldschus, Herzog et al. 2005).  

Polyp detection in virtual colonoscopy is another area where CAD development has 
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been active. Features based on surface distortion, attenuation, and wall thickness have 

been found to be useful. A number of early clinical trials for this application have 

shown that sensitivities range from 70%-100%, associated with false positive findings 

in 2-8 per patient (Summers, Johnson et al. 2001; Yoshida, Nappi et al. 2002).  

Assessment of bone age by hand radiography based on conventional atlas comparison 

method has been tedious and inexact task that radiologists have to live with for 

decades. Early success have been reported for automatic identification of bone age 

based on digital hand atlas (Pietka, Gertych et al. 2001). 

Application of CAD in Neuroradiology 

Applications in neuroradiology are mainly for quantitation of disease rather than for 

detection or diagnosis (Erickson and Bartholmai 2002). There was one published 

CAD system by Maldjian that aimed to detect acute middle cerebral artery (ischemic) 

stroke, making use of registration against the MNI coordinate system and comparison 

of attenuation over same anatomical region on both sides of the brain (Maldjian, 

Chalela et al. 2001). 

Recent Attempts in CAD for AIH 

It is envisaged that CAD may help to improve the accuracy in detection of AIH and 

hence decrease the risk of misdiagnosis and mismanagement. To date, there has been 
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no published work in the CAD of AIH to the best of our knowledge. Some related 

presentations on this topic do exist in recent conferences. Hodgson introduced a 

system that detects intracerebral hemorrhage based on median filtering and 

thresholding and reported sensitivity of 97% in more than 100 clinical cases showing 

hematomas of variable sizes, but their scheme essentially ignored extra-axial 

hemorrhage by discarding peripheral most portion of intracranial contents (Hodgson, 

Wilson et al. 2004). Goto et al. developed a CAD system which aimed to detect 

extra-axial hematoma by subtraction between two sides of the brain after morphing 

using thin plate spline. Their system also attempt to differentiate EDH from SDH 

based on morphology of the hematoma; however they have not reported on the actual 

sensitivity and specificity of the system (Goto, Aizawa et al. 2005). Yang et al. 

developed a CAD for AIH which took into account of clinical information provided 

by clinician, including age and blood pressure, etc., but was only capable of showing 

some large hematomas in 18 clinical cases (Yang, Lim et al. 2005). It is noteworthy 

that none of these systems have reported success in detecting small AIH, which are 

the lesions that could be difficult to diagnose by both human observers and computer 

systems. It is believed that impact in clinical practice is limited if such systems could 

only detect sizable lesions, because sizable lesions are unlikely to be missed by 

clinicians in the first place. 
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1.4 OBSERVER PERFORMANCE STUDY 

Current CAD schemes aim to assist readers in making diagnoses by providing 

quantitative analysis of radiological images. It does not have to be higher or even be 

on par with the performance level of radiologists. Instead, the potential gain is due to 

the synergistic effect obtained by the effort of both human and computer. The ultimate 

test of a CAD system is its additive value. In other words, a CAD system can only 

prove to be useful should the human observers using the system achieve better 

diagnostic accuracy than the observers would achieve on their own. It is possible that 

an apparently accurate CAD system may lead to wrong diagnosis rather than correct 

ones, e.g. when the reader takes wrong clues from the CAD and ignores correct CAD 

outputs, thus reducing the diagnostic accuracy of the human-computer diagnostic 

system. For that reason, investigations of possible human-computer interaction such 

as the receiver operating characteristic (ROC) studies are necessary (Doi 2005). The 

multiple-reader multiple-case receiver operating characteristic MRMC ROC paradigm 

has been commonly used in the evaluation of CAD systems, which is not only 

efficient in terms of resource requirement (i.e. fewer readers and cases are required for 

a specified precision), but also produces results that can generalize to the populations 

of readers and cases from which the samples were drawn (Dorfman, Berbaum et al. 

1992; Wagner, Beiden et al. 2002). 
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1.5 OBJECTIVES 

The primary objective of this research project is to develop a CAD system that 

accurately identifies small AIH to help in the management of patients suffering from 

head injury or acute neurological disturbance in an emergency setting. 

The secondary objective is to perform an observer performance study on the CAD 

system using MRMC ROC paradigm, in order to establish the usefulness of the 

system to potential users. 
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Chapter 2 MATERIALS AND METHODS 

2.1 CASE COLLECTION 

A total of 186 brain CT studies, including 62 cases showing small AIH and 124 cases 

showing no AIH, were retrieved from the CT archive of the Princess Margaret 

Hospital in Hong Kong. All were cases performed on an emergency setting for 

evaluation of head injury or acute neurological disturbance. Prior or follow-up studies 

of the same patients were also retrieved when available. But these were used only for 

establishment of diagnoses, not as separate entries into the dataset. Follow-up studies 

that show AIH which has been imaged in the same episode of hospitalization were 

excluded. In other words, only the first set of images showing AIH was included for 

each patient. This is to avoid having multiple representations of the same patient. The 

studies were subsequently anonymized, apart from the sex and age of the patients.  

All studies were acquired with a single detector CT scanner (HiSpeed CT, GE 

Medical Systems, Milwaukee, WI, USA). All images were axial images obtained 

parallel to the orbito-meatal line (OML) or cantho-meatal line, which is the line 

joining lateral canthus of the eye to the external acoustic meatus, the conventional 

plane used for acquisition of clinical brain CT images (Silverman and Brink 1998). 

They were obtained using 120kV and 80-200mA. Most (159) of the examinations 
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comprised 10mm thick sections throughout the brain, the standard protocol used in 

the local institutes for emergency studies. Nineteen of the examinations comprised 

5mm sections through posterior fossa and 10mm sections through the rest of the head, 

performed for patients with suspected lesions in the posterior fossa. Eight were 5-7 

mm sections obtained for small children. 

All emergent brain CT studies performed within a 6 month period from September 

2004 to March 2005 that showed small acute intracranial hemorrhage have been 

retrospectively collected. It is noteworthy that studies containing AIH larger than 1cm 

in addition to smaller lesions were excluded from this dataset . In total, 62 positive 

cases were collected. Of these, 40 cases were collected at the first phase of data 

collection, which constituted the training dataset of the CAD system. The remaining 

22 cases were collected at the second phase and used for validation of the system. 

The 22 cases were not included initially because they were not available in the 

temporary archive in the CT suite during the scheduled time of collection, probably 

being deleted from the workstations as routine housekeeping procedures between the 

intervals of the scheduled visits. They were subsequently retrieved from the 

permanent archive. Although the training and validation cases were not randomly 

allotted, we believe there were no plausible systemic biases involved in the process.  
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124 emergency CT cases, twice the number of positive cases, were selected randomly 

and used as controls. Final radiological diagnoses in this group included normal (93), 

chronic ischemia (18), acute ischemic stroke (10), and tumor (3). The composition of 

cases is listed in table 1.  

Table 1 – Radiological diagnosis of collected cases 

Radiological Diagnosis 
 

No. of Cases  Training Validation 

Acute intracranial hemorrhage 
 

62 40 22 

Control 
Normal 
Chronic ischemia 
Acute ischemic stroke 
Tumor 

 
93 
18 
10 
3 

 
65 
8 
6 
1 

 
28 
10 
4 
2 

 

The separation of data into a training and a validation dataset provides unbiased 

estimates of the estimates of the ability of the algorithm to classify ‘previously 

unseen’ cases. It is recognized that more sophisticated cross-validation methods with 

resampling including the leave one out method have the advantage of producing 

estimates with lower standard error and hence results of more statistical robustness. 

But such cross-validation methods are difficult to perform because the classifiers used 

in the current scheme are not based on algorithms like artificial neural networks 

(ANNs) or discriminant functions (DFs) that can be trained and then erased 

automatically.  
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Before the aforementioned dataset was collected, 46 brain CT studies, including 25 

cases that show AIH and 21 cases showing no AIH have been arbitrarily chosen and 

retrieved from the CT archive of the Princess Margaret Hospital in Hong Kong. These 

cases include hematomas that show variable sizes and types, including SAH of 1mm 

thick and IPH of 5.6cm long. These cases were used only during the early algorithm 

establishment but were not included in the subsequent training or validation processes, 

and should hence be ignored in the subsequent sections. 

Approval has been obtained from the institute review board , Kowloon West Cluster 

Research Ethics Committee of Hospital Authority, Hong Kong, for retrospective 

collection of clinical and imaging data and their use in this project. 

Establishment of Radiological Diagnoses 

The radiological diagnoses in all the cases were established by consensus of two 

radiologists, who had 7 years and 11 years of experience in reading brain CT 

respectively. These radiologists did not participate in the subsequent observer 

performance study. In majority of the cases, the diagnoses were considered 

unequivocal by the radiologists. In a minority of cases, consensus was only 

established after reviewing prior or follow-up CT or MR images of the brain. These 

included 4 of the subsequently proven positive cases and 3 controls. In addition, 
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dimensions, locations, and type of individual AIH volumes were measured and 

recorded by radiologists for each study. One blood clot that spanned across several 

axial sections was counted as one volume in this study, rather than considered as 

several separate lesions. Altogether there were 123 contiguous volumes of small AIH, 

77 in the training cases and 46 in the validation dataset, with well represented samples 

of each different type of AIH and different sizes. 

2.2 CAD SYSTEM 

All the anonymized DICOM CT images were transferred from the CT archive to a 

Pentium based PC running the Windows XP operating system. The CAD has been 

developed using MATLAB (The MathWorks, Inc., Natick, MA, USA). The system 

was programmed to read and process DICOM images in their indigenous format and 

file structure. DICOM is the acronym for Digital Imaging and COmmunication in 

Medicine. It is the de facto industry standard for file structure and communication 

protocol in various medical imaging equipment (http://medical.nema.org). The user 

selects the folder containing the series of images in question, all DICOM images in 

that particular folder are automatically loaded into the system. The images are 

subsequently sorted according to the table position where individual image is obtained. 

They are also scaled, and adjusted to the desirable contrast according to information 
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residing in DICOM headers of individual images. 

Overview of the CAD Scheme 

The flow chart of the CAD algorithm is illustrated in figure 2. The image processing 

and analysis methods used in the scheme are listed in table 2. To begin, intracranial 

contents are segmented by global thresholding and morphological operations, 

followed by image analysis methods. Noise reduction using median filtering and 

adjustment for CT cupping artifacts are performed. The intracranial contents are 

realigned into the conventional orientation after automatic localization of mid sagittal 

plane and boundaries of the series of images. Then, high attenuation components are 

segmented as candidate AIH from each of the axial sections, based on top-hat 

transformation and left-right subtraction. Image features of the candidates are 

quantified. The candidate AIH are given anatomical context by registration against a 

normalized coordinate system purposely developed for this project. The features and 

coordinates are then used in the rule based classification system to reduce false 

positives due to normal variants and artifacts. 



 

Figure 2 – Flow chart of the CAD scheme 
Individual components and intermediary outputs after successive steps of the 
algorithm are illustrated. Basic components of a usual CAD, including image 
preprocessing, image segmentation, image analysis, and classification are all utilized. 
1. intracranial contents segmented using thresholding and morphological operations; 2.  
preprocessing steps that reduce noise and CT cupping artifacts; 3. intracranial 
contents aligned by locating mid-sagittal plane and boundaries of the brain; 4. AIH 
candidates extracted using combined method of tophat transform and left-right 
comparison; 5. AIH candidates rendered anatomical meaning by registration against a 
purposely developed coordinate system; 6. genuine AIH distinguished from 
mimicking variants or artifacts by the rule based classification system, using both 
image features and and anatomical information. The ICH in right basal ganglia is 
correctly identified as genuine AIH and outlined in red, whilst the mimics are outlined 
in blue.  
Details of individual steps are outlined in Table 2. 

 

1. Segmentation and  

2. Preprocessing of  

intracranial contents

3. Automatic realignment of 

intracranial contents 

4. Extraction of  

candidate AIH 

5. Localization of  

candidate AIH 

6. Knowledge based 

classification of candidate AIH 
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Table 2 – Details of image processing and analysis steps used in the CAD 
Details of individual image processing and analysis steps of in the CAD algorithm as 
outlined in Figure 2. The numerals corresponds to those shown in figure 2. 
  

Steps Methods Purposes 
1. Segmentation of 
intracranial 
contents 

Global thresholding and 
morphological operations 
 
Remove structures not contiguous 
with the main central bulk of 
intracranial contents 
 

Remove bones of skull and 
face 
 
Remove scalp, orbits, and 
other head and neck soft 
tissues 

2. Preprocessing of 
intracranial 
contents 

Median filtering 
 
Adjustment of intensity according 
to distance from the skull 
 

Denoising 
 
Correction for CT cupping 
artifacts 

3. Automatic 
realignment of 
images 

Automatic localization of limits of 
brain, ventricles, floor of anterior 
intracranial fossa, mid-sagittal 
plane 
 

Align the brain into the 
normal position 
 
 

4. Extraction of 
candidate AIH 

Top hat transformation 
 
 
Subtraction between the two sides 
 

Highlight local high density 
regions 
 
Extract asymmetrically high 
density region 

5. Localization of 
candidate AIH 

Registration of the brain in 
question against a normalized 
coordinate system 
 

Render the candidate AIH 
anatomical information 

6. Knowledge based 
classification of AIH 

Rule based system with inputs of 
image features and anatomical 
coordinates of the extracted 
candidates 
 

Distinguish genuine AIH 
from false positives resulting 
from noises, artifacts, and 
normal variants 
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Segmentation of Intracranial Contents 

Skull, by virtue of its exceptionally high attenuation values that range from 80 to > 

2000 typical of bones, is first removed using global thresholding with a threshold 

value of 100. Lower thresholds that can more completely remove skull should not be 

used because this would remove significant proportion of AIH. Morphological 

opening using a relatively large structural element is performed to remove scalp or 

other small external structures. Finally, small remaining bits of bone around the 

perimeter of intracranial content are removed using morphological erosion using a 

small structural element. The process is illustrated in figure 3. 

Note that extracranial structures may not be entirely removed if they are larger than 

the structural element used in the morphogical opening. These include unusually thick 

scalp thissues, e.g. resulting from swelling resulting from head injury, structures in the 

orbits and paranasal sinuses, and other extrinsic structures e.g. head rest. Such large 

extracranial structures can be distinguished from intracranial content by the fact that 

they are separated from the centrally located intracranial contents by regions of void 

that represent removed bones. The intracranial contents, including the brain and 

cerebral spinal fluid (CSF) containing spaces can subsequently be segmented by 

selectively removing elements which are not contiguous with the central component.  



 

Figure 3 – Segmentation of intracranial contents 
The segmentation of intracranial content is illustrated for the original image as shown 
in a, which contains a small acute left extradural hematoma marked by yellow arrow. 
Note the high density band representing the head rest on the left of the image. First, 
global thresholding was used to remove the majority of the skull as shown in b. Then, 
the scalp and external structures are removed by morphological opening using a 
relatively large structural elememt, resulting in c. Finally, the small residual rim of 
skull around the perimeter of the intracranial content is removed using morphological 
erosion, producing the segmented intracranial content as shown in d. 
 

   
    a        b 
 

   

    c        d 
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In the levels below the level of petrous temporal bone, the temporal lobes may 

become separated from the central component of intracranial content just like the 

orbits, but they are different in that the temporal lobes in the middle cranial fossa 

would be contiguous with the rest of the brain one section above, not so for the orbits 

or other extracranial structures. The process is illustrated in figure 4. 

Realignment of Images 

CT studies obtained in an emergency setting as in this study tend not to be perfectly 

positioned. This may occur when the patients are confused or in distress. But the 

images need to be properly realigned such that subsequent anatomical labeling 

process can proceed. To do this, location and orientation of the brain need to be 

determined. 

Boundaries of the Brain 

The superior, anterior, posterior, and both lateral limits are easily located by finding 

the margins of the segmented brain. 

The landmark for the inferior limit of the cerebral hemisphere is at the lowest level of 

temporal lobes; however, during the development of the system, it was found that the 

floor of the anterior cranial fossa correlates more consistently with the location of  



 

Figure 4 – Segmentation in lower portion of cranial cavity 
The segmentation of intracranial content in sections below the level of petrous 
temporal bone is slightly more complicated. A such section of the same patient as 
shown in figure 3a is shown in e. Bone is removed using thresholding, producing f. 
The segmentation process as described also segments the orbits and scalp tissues over 
temporal fossa, as in g , which are removed based on their lack of continuity with the 
intracranial content in superior sections, providing the final result h. 
 

   
    e        f 
 

   

    g        h 

most of the internal structures that are relevant for localization of AIH. Because the 

floor of the anterior cranial fossa approximately parallels the axial plane on brain CT, 
 29



 

 30

the area of the brain decreases significantly below the floor as the frontal lobe 

disappears from the section. Therefore the section where a significant drop in cross 

sectional area of the segmented brain, on comparison with the section above, marks 

the level of the floor of anterior cranial fossa. In addition, at the level of the anterior 

floor of cranial fossa, the shape of the cross section of the brain becomes irregular and 

less elliptical, because it is where the irregular bony floor of orbits come into the 

picture. In other words, the level of the anterior cranial fossa can be accurately 

identified as the plane where there is significant 1. decrease in cross sectional area of 

the segmented intracranial contents; and 2. decrease in relative area of the segmented 

intracranial content to its convex hull, going from superior to inferior axial sections. 

Location of Mid Sagittal Plane by Symmetry 

There were several reports of midline location based on symmetry of brain 

parenchyma (Junck, Moen et al. 1990; Minoshima, Berger et al. 1992; Ardekani, 

Kershaw et al. 1997), but the proposed approaches were not suitable for brains 

containing pathologies which alter the symmetry such as AIH. Our system locates the 

mid sagittal plane (MSP) based on the assumption of symmetry of CSF spaces, 

predominantly the ventricular system. It was observed that the ventricles are not 

significantly distorted when the AIH is small and there is no sizable IVH. 
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The image of the brain that contains the main bulk of the lateral ventricles is selected 

by locating the section that contains the highest ratio of CSF containing space to solid 

brain substance. This particular plane is chosen because the bulk of the lateral 

ventricles are large structures usually situated symmetrically about the midline, thus 

allowing the comparison of both sides for locating the midline. This section is then 

binarized with a threshold such that CSF containing regions take on the value of zero 

whilst the brain parenchyma takes on the value of one. The binarized image is then 

rotated about its centroid to a range of angles. The absolute differences between the 

rotated image and its mirror image are obtained. The angle of the MSP is the one that 

produces the least difference between the two halves of the rotated brain thus obtained. 

This process is illustrated in figure 5. 

Manual Readjustment 

Automatic localization of the mid sagittal plane may seldom be inaccurate due to 

exaggerated asymmetry in some normal subjects or distortion of anatomy due to 

pathological conditions such that the basic assumption of symmetry about the midline 

used by the algorithm is violated. Therefore, human intervention, although 

infrequently, may be required such that subsequent analysis can proceed. The system 

provides for this by incorporating an intermediary step when the observer can check 



 

and adjust the computer deduced MSP. 

 

 

Figure 5 – Automatic localization of mid-sagittal plane 
The angle of the mid-sagittal plane is obtained by finding the line of symmetry of the 
body of lateral ventricles. The section containing the body of lateral ventricles a is 
automatically selected as described in text. The central portion of the image is 
binarized with threshold at CSF attenuation. It is rotated over a range of angles. The 
differences between the rotated image b and its mirror image c are obtained d. The 
angle which gives the least difference e is the angle of the mid sagittal plane f. 
 

 
   a       b      c 
 

 
d       e      f 

 

 32



 

 33

After the midline and level of upper boundary of anterior cranial fossa are obtained, 

both are displayed for the user to decide if the localization is satisfactory. If not, an 

interactive tool is available for the user to manually align the images. 

We believe identification of basic anatomical structures is a task that emergency 

physicians can comfortably perform. In fact, during development of the system, 7 

emergency physicians had taken part in an informal trial of the manual adjustment 

tool. All were able to accurately localize the mid-sagittal plane and lowest section of 

anterior cranial fossa in randomly selected image datasets. 

Preprocessing of Intracranial Contents 

Median Filtering 

To reduce noise, median filtering using a 3-by-3 square kernel was applied. Median 

filter was chosen because it is less sensitive to extreme values and capable of 

removing outliers without reducing sharpness of the image. 

Adjustment for Cupping Artifacts 

CT cupping artifacts apparently increase attenuation over regions subjacent to skull, 

which degree is about inversely proportional to distance from the soft tissue-bone 

interface (Barrett and Keat 2004). This artifact stems from directional dependent 
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variation in the amount of beam-hardening near the soft tissue-bone interface. 

Although most scanners attempt to correct for these errors, the correction is typically 

incomplete. CT cupping artifact has been a recognized problem for intensity based 

thresholding of intracranial structures (Ruttimann, Joyce et al. 1993). 

In the current application, these artifacts are particularly troublesome because 

immediately subjacent to skull are the locations where thin extraaxial hemorrhage are 

found, hence the peripheral regions cannot simply be discarded. Instead, regions 

closer to skull are identified as abnormal only if they show intensity significantly 

higher than those at a similar distance from the skull. To perform this adjustment, the 

average intensity as a function of distance from skull is obtained as a reference against 

which abnormal regions are compared. A series of successive morphological erosions 

is first performed on the binarized image of the intracranial contents. The difference 

between the image after the nth erosion and the n+1th erosion yields the ring like mask 

at a distance proportional to n from the skull. Then average intensity of this ring can 

be obtained by correlation of this mask with the original image and divided by 

number of pixels in the mask. This essentially builds a map of average density for 

regions equidistant from the soft tissue-bone interface. The process is illustrated in 

figure 6. When the original image subtracts the map, the cupping artifacts is reduced. 

The median filtered image with reduced cupping artifacts I(x,y) is then ready for  



 

Figure 6 – CT cupping artifacts and its adjustment 
Image a represents the original image. Yellow arrow marks the subarachnoid 
hemorrhage. Image b is the map of concentric rings, which represent regions 
equidistant from the skull. The brightness of each ring reflects the average intensity 
level of corresponding regions in image a. The rings are obtained by successive 
morphological erosion of a mask of the original image. Image c is the plot of average 
intensity level as a function of distance from skull calculated for image a. 
 

   
    a        b 

       

 c
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subsequent segmentation processes. The effect of the aforementioned preprocessing 

steps is illustrated in figure 7. 

Figure 7 – Effects on images after preprocessing steps 
The original image with artifactual increase in signal intensity towards the brain skull 
interface is shown in a. The horizontal line indicates the position from where the 
intensity profile b is obtained. The image after correction of cupping artifacts is 
shown in c. The intensity profile along the same horizontal line is shown in d. It can 
be appreciated by comparison of b and d that the peak intensity at the pixel position of 
around 140 due to AIH is more prominent after correction of cupping artifacts. 

  

   a         b 

 

    c         d 
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Segmentation of Candidate AIH 

AIH is distinguished by its increased attenuation relative to normal intracranial 

structures. As mentioned in the introduction, we have found that the range (instead of 

the mean) of CT no. for AIH, gray and white matter to be 35-105, 30-55 and 20-40 

respectively. It was therefore self-evident that simple thresholding of attenuation 

value would not work because the wide range of attenuation of AIH overlaps those of 

normal parenchyma. An illustration of the inadequacy of global thresholding for the 

segmentation of AIH is shown in figure 8. The problem is especially important for 

small AIH because the smaller lesions are more affected by partial volume averaging, 

which reduces the contrast and blurs the edge between the lesion and its adjacent 

parenchyma. Therefore global thresholding is especially difficult for detection of 

small AIH. In this system, two further considerations in addition to actual intensity 

value of the preprocessed image I(x,y) are obtained: 1. the intensity of a pixel above 

that of its immediate surroundings, obtained using image top-hat transformation; 2. its 

intensity difference above that of its contralateral anatomical region, obtained by 

subtraction of the flipped image from the original image. 



 

Figure 8 – Problems with global thresholding 
Image a shows acute subarachnoid hemorrhage in left ambient cistern as marked by 
yellow arrow. Image b is the tresholded image of a using lower and upper threshold of 
50 and 70 respectively. The hematoma, as well as portions of the brain that show high 
attenuation due to artifacts are extracted. Image c is a plot of the number of pixels 
against the attenuation value shown on each pixel for the intracranial contents of a. 
 

   
    a        b 
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Top-hat Transformation 

Top-hat by opening or white top-hat transformation is the difference between the 

original image and its morphological opening (Gonzalez and Woods 2002; Soille 

2003). Morphological opening, (denoted by ο) of a image f by a structuring element b 

is the erosion (denoted by ○–) of f by b, followed by the dilation (denoted by ⊕) of 

the result by b.  

f ο b = (f ○– b) ⊕ b 

The gray-scale dilation of f by b is defined as 

(f ⊕ b)(x,y) = max{f(x-x’,y-y’)+b(x’,y’)| (x’,y’)∈Db} 

where Db is the domiain of b and f(x,y) is assumed to -∞ outside the domain of f. This 

can be thought of rotating the structuring element about its origin and translating it to 

all locations in the image. At each translated location, the rotated structuring element 

values are added to the image pixel values and the maximum is computed. In practice, 

gray-scale dilation is usually performed using flat structuring elements, meaning that 

the value of b is 0 at all coordinates over which Db is defined. Hence the gray-scale 

dilation is simplified as 

(f ⊕ b)(x,y) = max{f(x-x’,y-y’) | (x’,y’)∈Db} 
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And the gray-scale dilation becomes a local maximum operator, where the maximum 

is taken over a set of pixel neighbors determined by the shape of Db. 

The gray-scale erosion of f by b is defined as 

(f ○– b)(x,y) = min{f(x+x’,y+y’)+b(x’,y’)| (x’,y’)∈Db} 

where Db is the domiain of b and f(x,y) is assumed to +∞ outside the domain of f. 

Similar as discussed above, gray-scale erosion using flat structuring elements can 

become a local minimum operator and be simplified as 

(f ○– b)(x,y) = min{f(x+x’,y+y’) | (x’,y’)∈Db} 

 

Top-hat transformation is used to extract signal peaks on background of variable 

intensity levels, which are not entirely covered by the structuring element used for 

morphological opening. For the current application, as visualization of AIH depends 

primarily on the difference of attenuation between the lesion and its surrounding brain 

parenchyma that are of variable attenuation values, top-hat transform using a 

relatively large disk shaped structuring element is performed. A pixel value in the 

top-hat transformation image represents the difference of a signal peak above that of 

its surrounding in the original image, I(x,y). Hence the difference in attenuation rather 
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than the absolute value is highlighted. This generate the first transformation for the 

segmentation F(x,y). 

    F(x,y) = top-hat transformation of I(x,y)…………....Equation 1 

The effect of top-hat transformation is illustrated in figure 9. 

Extraction of Asymmetrical High Intensity Region 

In addition, regions which are brighter than their presumably normal contralateral 

anatomical regions are more likely to be abnormal. It is especially important for small 

extraaxial hematomas, which are only of marginally increased signal intensity than 

the adjacent gray matter, but are much brighter than the contralateral CSF containing 

space. Subtraction between the two sides is therefore performed to locate the regions 

that show higher attenuation than their contralateral counterparts. First, the brain is 

inverted along the mid sagittal plane. Minor asymmetry between the two sides of the 

brain is adjusted by elastic transformation of the flipped image. The control points for 

the transformation are obtained by intersections of 1. diagonals crossing the centroid 

of the mid sagittal plane and 2. the perimeter of the brain. This produces elastically 

transformed mirror image J(x,y). Then the difference between the original image 

I(x,y) and the morphological closing transformation of J(x,y) is obtained for 



 

Figure 9 – Effect of top-hat transformation 
The section in a shows a case of subarachnoid hemorrhage, in which the AIH is 
outlined in yellow. The intracranial content after preprocessing is shown in b. The 
contribution of top-hat transformation can be appreciated from the comparison 
between c, which is obtained after global thresholding of b, and d, which is obtained 
after top-hat transformation of b. While both c and d show the AIH in left Sylvian 
fissure, d , although not exactly like the outlined AIH in a is much cleaner than c. 
 

   
    a        b 
 

   
    c        d 
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individual pixels to produce the image G(x,y). This step is illustrated in figure 10. 

    G(x,y) = I(x,y) – closing of J(x,y)……………….…….Equation 2 

With these, a pixel, p(x,y) of an axial image is segmented as candidate AIH if the sum 

of the weighted averages of F(x,y) and G(x,y) of the pixel values in the 

aforementioned transformation images, exceeds a predefined threshold T (figure 11), 

T being determined through the use of the training set. 

  p(x,y) is a candidate AIH if w1F(x,y) + w2G(x,y) > T……….…..Equation 3 

where w1 and w2 are the weightings of F and G respectively 

 

After thresholding with threshold value obtained by training, the AIH regions that are 

smaller than a predefined size are removed, to reduce artifacts due to noise that tend 

to be isolated peaks of small size instead of confluent hyperdense regions. The lower 

limit of size for AIH to be recruited for subsequent processing is variable depending 

on the level of the section and whether the region is at the periphery or central of the 

axial image, being higher towards the superior and inferior sectons and higher at the 

periphery or than the central portion of images. It is to reduce effect of noise and limit 

the number of AIH candidates for subsequent analysis. Then the margins of candidate  



 

Figure 10 – Subtraction between sides of the image 
The procedure of highlighting asymmetrical high density region is illustrated by the 
intermediary outputs of the CAD scheme. The original is shown in a. The flipped 
image b is elastically transformed to reduce the normal structural asymmetry between 
the two sides of the brain c. The difference between a and the morphological closing 
transformation of c highlights AIH within the right Sylvian fissure is of higher signal 
than CSF in the left contralateral Sylvian fissure d. 
 

  
    a       b – flipped a 
 

  
 c – elastic transformation of b    d – a subtracts closing of c 
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Figure 11 – Effect of combined steps on extraction of AIH 
Comparison of global thresholding of original image after removal of skull and 
extracranial tissues a, and thresholding of the combined processing steps including 
correction of cupping artifacts, image top hat transformation, and left-right 
comparison b as discussed in the text. It is evident that the result of b is much cleaner 
and manageable for subsequent processing. 
 

  

    a         b 

 

AIH can be better approximated using an iterative intensity based region growing 

method. At each turn, pixels bordering the perimeter are checked if they show 

attenuation of less than 4 HU below that of its adjacent pixel on the AIH perimeter. 

Those pixels that fit the criteria are included as part of the new perimeter pixels and 

the process is repeated until no more pixel could be added to the AIH according to the 

criteria. Subsequently, various descriptors, including intensity, size, long axis length, 

short axis length, eccentricity, orientation of the lesion in terms of the angle between 
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the long axis length and the mid sagittal plane are extracted from individual candidate 

AIH region. These parameters, as well as some secondary parameters derived from 

them, e.g. average intensity (intensity/area), form the basis of subsequent knowledge 

based analysis. 

Localization of Candidate AIH 

In order to render the candidate AIH anatomical positional information such that 

subsequent classification can be performed in light of anatomical context, the brain 

need to be registered against a coordinate system in which anatomical information of 

a normalized brain model is embedded. Construction of the coordinate system is 

outlined in the following paragraph. The control points for registration are sizable 

structures which can be automatically obtained. After registration by local weighted 

mean transformation, candidate AIH can be checked against the positions where AIH 

or mimics frequently appear. 

Development of the Coordinate System 

Since the current project is designed for images representing relatively thick axial 

sections as prescribed in clinical protocols, anatomical labeling based on existing 

coordinate systems, e.g. Talairach atlas (Talairach and Tournoux 1988), is unreliable. 

This is because the registration against the Talairach atlas requires localization of the 
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anterior commisure and posterior commisure, which are tiny structures of no more 

that 5mm across. They can be defined on 3D images. But such small structures are 

usually not well shown on the thick section images, let alone accurate localization. 

Therefore a coordinate system that is applicable for clinical brain CT images has been 

purposely developed. 

It was observed from a large number of images that the anatomical structures relevant 

for the current application can be adequately localized with reference to some 

anatomical landmarks that can be automatically extracted from thick axial sections, 

including the mid sagittal plane, the boundaries of the brain, the level of anterior 

cranial fossa, and the boundaries of the lateral ventricles. 

Based on these landmarks, the brain can be represented by a 3D coordinate system 

composed of a 15 x 20 x number of axial section (left-right x anterior-posterior x 

superior-inferior) matrix. The size of the matrix in each axial section is chosen such 

that the size of each coordinate position is fine enough to locate the anatomical 

structures without confusion with adjacent structures, yet not so small that 

normalization becomes difficult. The mid-sagittal plane is put into the central column 

of the coordinate. The cross-correlation between a coordinate position and the actual 

anatomical label is obtained by normalization using 65 of the training cases which 
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show normal findings. The normalization process involved registration of the 

coordinate system to the training cases based on the automatically extracted control 

points from individual case. Control points include the centroid of the mid sagittal 

plane, bounding box of the largest axial section, and bounding box of the lateral 

ventricle. The matrix was displayed as grids overlaid onto the original images, we 

then recorded the coordinates of the relevant structures after visual inspection of the 

composite images. After normalization process, relative frequency of occurrence of 

particular structure at each coordinate was transferred to the coordinate system. 

Knowledge Based Classification 

The main aim of the classification is to reduce false positives produced by the 

segmentation program. In fact, this is a common strategy used by different CAD 

systems to rely on classification system to reduce false positives produced by earlier 

steps. The approach used in the current classification is novel in that anatomical 

context in addition to various imaging features is incorporated. There are several 

common causes of mimickers of AIH that the system needs to deal with: calcifications, 

normal variants that show high attenuation, and partial volume averaging of bones. 

Calcifications mimicking AIH 

Calcification is one of the most frequent mimicker of AIH (Reisdorff and Schwartz 
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2000). Calcium deposits in previous insults, tumors, and vascular malformations. It is 

shown as regions of high attenuation, usually >120, but may range anywhere from 50 

to >1000 HU on axial CT. The actual value depends on the relative concentration of 

calcium within each voxel and technical factors including volume averaging. When 

the attenuation is on the high side, e.g. above 120, it can be confidently distinguished 

from AIH. The differentiation becomes difficult in the range where the attenuation of 

calcium and AIH overlaps, i.e. in the range of 50-105. It is when the area of the 

abnormality needs to be considered. For example, if a very small AIH produces a 

hyperdense region, it tends to produce attenuation much lower than the usual density 

of 60-70 HU due to partial volume averaging; hence hyperdense regions showing 

moderately high attenuation, e.g. 65, are more likely due to AIH rather than calcium if 

its area or volume is larger, and vice versa. Therefore a region more likely represents 

calcium rather than AIH if its attenuation divided by area is higher than a 

predetermined threshold.  

The probability of being calcification also increases if the AIH candidate is located in 

structures that are known to produce calcifications as normal variants. The most 

important examples are basal ganglia, choroids plexus in ventricles, and falx cerebri. 

This is when the inputs of anatomical context come into play. When an AIH candidate 

is localized over these anatomical regions, a different set of rules are invoked to 
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evaluate the candidates. For example, at the basal ganglia, lower attenuation, larger 

area, and lower attenuation/area ratio are required for the AIH candidate to be 

classified as calcification (not genuine AIH), as compared against postulated 

calcifications in other regions of the brain. The criteria are even looser if there appears 

to be similar candidate on the contralateral side. This rule was laid down in 

recognition of the tendency of normal calcification to occur symmetrically on both 

sides of the brain. The effect produced by these rules are illustrated in the examples as 

shown in figure 12 .  

Normally high attenuation regions mimicking AIH 

Besides calcifications, regions may show higher than normal attenuation due to 

stagnant flow, e.g. in the venous sinuses. Most frequently confused anatomical 

structures are the great vein of Galen, superior sagittal sinus, straight sinus, and 

transverse sinuses. These anatomical structures can be defined by their relative 

position in the brain, i.e. anatomy, and their shape, e.g. triangular for superior sagittal 

sinus, and oblong for straight sinus. 

Artifacts mimicking AIH 

In addition to genuine structures, artifacts may also produce regions of elevated  



 

Figure 12 – Calcifications identifiable by the classification system 
Images a and b show that the calcifications in basal ganglia, choroids plexus, and 
pineal gland calcifications, marked by yellow, orange, and green arrows respectively, 
are correctly classified as mimics of AIH. AIH candidates subsequently discared as 
mimics rather than genuine AIH are outlined in blue by the system. They show 
relatively high attenuations relative to their sizes (image features) and are located at 
the areas susceptible to calcification deposition (anatomical information). 
Images c and d show that the calcifications or ossification of falx cerebri, pink arrow, 
is also correctly classified, based on their linear configuration, vertical orientation 
(image features) and central location (anatomical information). 
 

   
    a        b 
 

   
    c        d 
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attenuation values. Beam hardening artifacts produce alternating bright and dark 

straight bands. These are most commonly shown in posterior fossa, where the bones 

are relatively thick and irregular and attenuation across one particular orientation may 

be significantly higher due to bones along their path.  

Partial volume averaging may produce an apparent AIH, especially at the floor of the 

anterior cranial fossa, where the bone is irregular. The voxels just above the floor can 

include portions of the underlying bone, hence its attenuation is increased by bits of 

bones. These voxels may produce regions with attenuation in the range of the AIH 

and hence extracted as AIH candidates. The important features of these partial volume 

averaging lies not in their imaging features, but their anatomical location in regions 

known to produce these artifacts, namely immediately above orbital floor and petrous 

temporal bone. An example is shown in figure 13. 

In summary, there are known constellations of imaging features and anatomical 

positions for different confounding normal variants, e.g. basal ganglia calcifications 

and venous sinuses, rules that lower probability of calling those suspected AIH as 

genuine are invoked when the criteria are met. For example, unusually high density 

regions smaller than a predetermined area and located symmetrically at the expected 

anatomical positions of bilateral basal ganglia would be rated a low probability for 



 

AIH, because they very much satisfy the rule for excluding basal ganglia calcification. 

Likewise, there are artifacts with some specific combinations of imaging and 

 
 
Figure 13 – Partial volume and beam hardening indentifiable by the system 
Images a and b are the original image and CAD output of an image just superior to 
the floor of anterior cranial fossa that show partial volume average at the right frontal 
region. Images c and d are the original image and CAD output of an image through 
temporal lobes and posterior fossa that show beam hardening artifact. The artifacts in 
both cases, yellow arrows, were extracted as AIH candidates, but subsequently 
discarded by the knowledge base classification, outlined in blue.  

   
    a        b 

   
    c        d  
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anatomical features, e.g. straight linear beam hardening artifacts between bones in 

posterior fossa, which are taken into account by another set of rules. In addition, 

correlation between different image planes have also been built in, e.g. partial volume 

artifacts are considered when a high density region lies immediate above bones, 

especially over petrous temporal bone and anterior cranial fossa. 

Genuine AIH can also be positively identified from the candidates of suspected AIH, 

again based on both imaging features and anatomical location. Despite the fact that 

AIH can take on myriads of different size and shape, there are certain definable 

patterns that certain type of AIH may follow. For example, subarachnoid hemorrhage 

produces blood clots that match the configuration of subarachnoid spaces, which are 

located at the basal cisterns, Sylvian fissures, and sulcal spaces; epidural hemorrhage 

produce blood clots with elliptical configurations which long axis parallels that of the 

overlying skull. Therefore if a candidate AIH volume matches these descriptions, e.g. 

a AIH volume with high eccentricity and vertically oriented (image features) and is 

located at the coordinate that corresponds to either Sylvian fissure (anatomical 

context), it would be rated a higher probability of being a genuine lesion by the 

rule-based classification system. 

Generally the rules that incorporate both imaging features and anatomical information 
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take the following form: 

    P → Q……………………………………….……….…Equation 4 

    Q → alters probability of AIH……………………..…..Equation 5 

Where P are the set of rules which check for the anatomical locations of the candidate 

AIH and Q are the corresponding rules which subsequently evaluate the imaging 

features of the candidate appropriate for the particular anatomical positions. When the 

imaging features satisfy some defined pattern, probability of AIH is increased or 

decreased for the candidate. Some sample rules are listed in table 2. 

The knowledge based classification provides a combined rating of probability derived 

from every invoked rule for each AIH candidate, which is then determined to be 

genuine AIH if the probability is higher than the predetermined threshold or a 

mimicker if the probability is lower. 

 
Table 3 – Sample rules used in the classification 
Sample rules used in the knowledge base classification system. P are the set of rules 
which check for the anatomical locations and Q are the rules which evaluate the 
imaging features appropriate for some particular anatomical positions. A candidate 
AIH is first checked for the anatomical position. If the position is one that satisfies a 
particular P, the corresponding Q will be invoked to evaluate the image features of the 
candidate AIH. If an appropriate pair of P and Q is satisfied, the probability of AIH 
for the candidate is adjusted accordingly. The magnitude of change being determined 
by the training process. 
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Anatomy rules (P) Imaging feature rules (Q) Interpretation Probability of AIH 
Rules that lower probability of AIH for candidates that conform to calcifications or normal high 
density structures 
mid sagittal plane, 
supracranial fossa 

vertically aligned, 
↑attenuation, ↑eccentricity,  
↑ long axis length 
↓short axis length 

falx calcification ↓ 

mid sagittal plane, 
supracranial fossa 
periphery 

intermediate attenuation, 
intermediate eccentricity, 
↓convex hull 

superior sagittal 
sinus 

↓ 

medial portion of 
basal ganglia 

↑attenuation (↑ if area ↑),  
↓area (↑ if symmetrical), 
symmetrical 

basal ganglia 
calcification 

↓ 

central portion of 
cerebellum 

↑attenuation (↑ if area ↑),  
↓area (↑ if symmetrical), 
symmetrical 

dentate nuclei 
calcification 

↓ 

Rules that lower probability of AIH for candidates that conform to artifacts 
posterior cranial 
fossa 

↑ eccentricity, 
↑ long axis length 
↓ short axis length 

beam hardening 
artifact 

↓ 

above anterior 
cranial fossa 
above temporal bone 
periphery near 
vertex 

↑ attenuation 
↓ area beyond adjacent bone in 
contiguous section 

partial volume 
averaging 

↓ 

Rules that increase probability of AIH for candidates that conform to particular type of AIH 
sylvian fissure vertically aligned, 

intermediate attenuation, 
↑ eccentricity, 
intermediate long axis length 
↓ short axis length 

sylvian fissure 
subarachnoid 
hemorrhage 

↑ 

periphery perpendicular to perimeter of 
brain 
↓ long axis length 
↓ short axis length 

sulcal space 
subarachnoid 
hemorrhage 

↑ 

anterior portion of 
posterior cranial 
fossa 

horizontally alighed, 
intermediate attenuation, 
↓ area 

basal cistern 
subarachnoid 
hemorrhage 

↑ 
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Display of Output for Perusal 

The outlines of the genuine AIH as classified by the CAD are colored in red whilst the 

mimickers are colored in blue. The outlines are overlaid onto the original images. The 

original images without and with color coded outlines of AIH are displayed side by 

side, such that the user can compare the output of the system with the original images 

to better appreciate the results and make the clinical decision of whether to call the 

lesion a genuine AIH and act upon it. A screen capture of the graphical interface is 

shown in figure 14. 

 

Storage of Output 

The CAD output of images annotated with the detected AIH, as well as the textual 

data of locations and image features, e.g. area of AIH can be saved at the click of a 

button. This allows integration of the CAD outputs into structured reports in DICOM. 

Such integration allows transfer and display using standard DICOM compliant 

devices. The storage of textual data also allows comparison of studies, e.g. monitoring 

size of AIH as prognostic factor of further deterioration/improvement, and future data 

mining in the picture arching and communiation system (PACS) environment (Huang 

2004). 



 

Figure 14 - Screen capture of the CAD system graphical user interface 
The original images are displayed on the left window, whilst the output images with 
overlay of the outlines of AIH are displayed on the right. The original and output 
images are displayed in stripe mode and linked such that they can be scrolled in 
synchrony for review of the whole series. 
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2.3 OBSERVER PERFORMANCE STUDY 

Readers 

Seven emergency physicians, with 5 to 9 years (average 6.4 years) of experience of 

working in the ER and the same number of years of experience in emergent brain CT 

interpretation, 7 radiology residents of experience from 1 to 4 years (average 2.3 

years), and 6 board certified radiology specialists of experience from 7 years to 30 

years (average 17.8 years), were invited to participate in the evaluation of the CAD 

system. All the participants regularly interpret CT obtained on emergency basis. 

Cases 

Sixty sets of images were randomly selected from the 186 case database for the 

observer performance study. These include 30 cases that showed AIH and 30 cases 

that were either normal or showed pathology but no hemorrhage. In 26 of the positive 

cases, presence of AIH was considered unambiguous by the radiologists. In the other 

4, the diagnoses were concluded with follow-up CT/MRI. AIH of different types as 

dicussed in Chapter 1 have been included. 

All intraparenchymal hematomas included in this study were smaller than 1cm in long 

axis diameter, while all extraaxial hematomas were thinner than 1cm. The other 30 

cases revealed either normal findings or pathology other than hemorrhage, which 
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included acute and chronic infarct, ischemia, and tumor. 

Receiver Operating Characteristic 

The readers were asked to read the original images using a graphical user interface 

(GUI) specifically implemented for this study, as shown on figure 15.  

One axial section was displayed at one time. The readers could scroll through the 

images of a particular case back and forth. The experiment was conducted in a 

radiologist’s reporting room, where ambient light was low. The window level and 

width was set at the usual level for viewing brain CT, i.e. widow level of 40 and 

window width of 100. They could adjust the brightness of the screen to suit their 

individual needs, but image windowing has not been provided because this on its own 

could be considered one form of diagnostic aide. In particular, increasing the window 

level and widening the window width increase conspicuity of extraaxial hematomas 

(Lev, Farkas et al. 1999). The readers were instructed to record their confidence in 

detecting AIH on a scale of 1 (absolute absence of AIH) to 10 (absolute presence of 

AIH). Readers were also instructed to interpret the score of 5 and 6 as indeterminate, 

with 5 erring on the side of absent AIH and 6 otherwise. Immediately after they have 

finished rating all sixty cases, they would re-read the images, now with the CAD 

output images displayed side by side with the corresponding original images. 



 

Figure 15 - Screen capture of the graphical user interface 
GUI used in the observer performance study. The original images were displayed in 
the left window in stack mode. In the second reading, the output images of CAD were 
displayed in the right window. An output image contained the segmented and 
realigned intracranial contents, and AIH was outlined. The original and CAD output 
images were scrolled in synchrony. 
 

 

 

 

Both the original and the CAD output images would scroll together in synchrony. 

They again recorded their confidence level in the same way. 

The readers were explicitly informed that the CAD had produced sensitivity of 

80-85% on a per lesion basis and a false positive rate of less than 1 in 3 cases in 

earlier tests, but performance for individual case may depend on size and contrast 
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difference of lesion(s) it contains. They were also reminded that the actual accuracy of 

the CAD output in the sample cases that they were going to read might be better or 

poorer than the quoted figures, reflecting difference in case selection. 

The recorded data were subject to MRMC ROC analyses using the public domain 

software LABMRMC developed by the University of Chicago The program was 

based on the Dorfman-Berhaum-Metz method (Dorfman, Berbaum et al. 1992) that 

uses analysis of variance so that results are generalizable to the population of readers 

and cases. The ROC curve was obtained by maximum likelihood estimation of the 

binormal distributions that best fit the rating data of the readers. 

Conventional Indicators 

Since it was believed by many, including most of the participants in the test, that the 

diagnosis of AIH is an all or none question, it is also desirable to present the results in 

some conventional indicators that are more familiar to clinicians and are based on a 

yes/no type of response. The scores were placed into two categories of 1-5 and 6-10, 

which dichotomize the results in to absence/presence of AIH. The sensitivity/ 

specificity pair and positive/negative predictive values are calculated accordingly. 

Number of Change in Diagnosis 

In addition, the frequency when the use of CAD resulted in actual change of diagnosis 
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during the experiment, as opposed to mere change in confidence of one particular 

diagnosis or another, was examined. The diagnosis of absence/presence of AIH for 

individual case was determined based on the aforementioned method of 

dichotomizing the score ratings. Frequency of the change in diagnosis and the 

correctness of such changes were recorded. This information can reflect the impact 

that use of CAD may have in actual clinical practice, with altered diagnostic decisions 

that affect management options. 
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Chapter 3 RESULTS 

3.1 PERFORMANCE OF THE CAD 

Anatomical Localization 

This method correctly located the level of the floor of middle cranial fossa in 97.5% 

(117/120) and 95.3% (61/64) of the training and validation cases respectively. All the 

other cases were off by one axial section only. 

The mid sagittal planes (MSP) were accurately localized in 69.1% (83/120) and 

65.6% (42/64) of the training and validation dataset respectively, which are defined as 

system output that is within 1mm of displacement and 1 degree of rotation from the 

genuine MSP. In 22.5% (27/120) and 25% (16/64) of the cases, the MSP were 

satisfactorily localized, off by within 3mm of displacement and 3 degrees of rotation, 

such that subsequent analysis was not adversely affected. 

Altogether the system was successful in automatically putting the brain into the 

reference frame in 90.8% (109/120) and 85.9% (55/64) of the training and validation 

cases respectively, such that subsequent anatomical labeling was satisfactory. For the 

rest of the cases, the brain can be readily realigned by the user through the interactive 

interface such that subsequent analysis can be performed satisfactorily, which took no 
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more than a few seconds. Summary of the aforementioned results in anatomical 

localization is listed in table 4. 

Table 4 – Accuracy of anatomical localization 
Summary of success rate in identification of middle cranial fossa, mid sagittal plane, 
and putting the brain into the reference frame for anatomical localization. Manual 
intervention is required when the system fails to automatically put the brain into the 
reference frame. 
 
 Training Validation 
Middle cranial fossa 97.5% 95.3% 
Mid sagittal plane 91.6% 90.6% 
Reference frame 90.8% 85.9% 

 

Performance in Diagnosis of AIH 

The performance of the system was described by sensitivity and specificity pairs on 

both per lesion and per case bases. The per lesion basis descriptors are more 

informative when number or size of lesions need to be quantified, or when the 

performance of detecting some particular type of lesion, e.g. SAH between 2.5mm 

and 5mm, is of interest. On the other hand, the performance on per patient or per case 

basis is of more clinical relevance than the performance on a per lesion basis for the 

diagnosis of AIH. It is because the management options depend on the presence or 

absence of lesions rather than the quantity of lesions. An example of the difference 

between sensitivity on per lesion and per case basis is shown in figure 16. It is  



 

Figure 16 – Sesitivity per case vs per lesion basis 
This case illustrates the difference between sensitivity on per case/patient basis and 
per lesion basis. There are two AIH lesions in the original image a, as denoted by the 
yellow arrows. In the CAD output b, only the frontal region subdural hemorrhage was 
detected, outlined in red. The subarachnoid hemorrhage in left Sylvian fissure is 
missed, pink arrow. For this case, it would still be classified as a true positive, but the 
sensitivity on a per lesion basis on this image is only 1/2. 
 

   
    a        b 
   

recognized that the per patient measurement can be affected by the different number 

of lesion present in each case, e.g. a case showing multiple lesions of different size 

and type would be more likely to be correctly diagnosed as showing AIH than another 

case showing one single lesion. 

In the following section, a CAD output is counted as true positive if it intersects the 

genuine blood clot as determined by radiologists. It is counted as false positive if it 

does not overlap any of the genuine blood clots. The sensitivity and specificity on a 

per lesion basis are calculated accordingly. 
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Since classification of the results on a per patient/case basis may not be immediately 

apparent, its definition as used in the current study are elaborated in the following 

section. If any one of the CAD outputs for a particular patient is a true positive, then 

the case is counted as true positive, disregarding whether the other outputs are true or 

false positives. If there are one or more CAD output(s), but none of which is a true 

positive, then the patient is considered false positive. On the contrary, if there is no 

CAD output for a particular patient, but there is a genuine blood clot, the case is 

considered a false negative. If there is no CAD output for a patient in whom no blood 

clot existed, the case is counted as a true negative. 

For the training cases, there were 77 contiguous AIH volumes in the 40 patients. The 

overall sensitivity was 84.4% (65/77). This increased significantly with increase in 

size of the lesion. The system correctly identified all AIH lesions larger than 5mm 

(28/28). Sensitivity dropped to 90% (27/30) for lesions between 2.5mm and 5mm, and 

52.6% (10/19) for lesions smaller than 2.5mm (Table 5).  

Forty-six contiguous AIH volumes were present in the 22 positive validation cases, 

averaging more than 2 lesions per case. The sensitivity on a per lesion bases was 

82.6%(38/46). This increased significantly with increase in size of the lesion (Table 6). 

The sensitivity were 57.1% (4/7) for lesions 2.5mm or smaller, 84.2% (16/19) for  
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lesions between 2.5mm and 5mm, 91.7% (10/11) for lesions between 5mm and 

7.5mm, and 87.5% (7/8) for lesions 10mm or smaller. 

There were altogether 23 false positive lesions detected in all the training cases, which 

were present in both positives and controls. False positive rate was 0.19 (23/120) per 

case. For the validation cases, the false positive rate was 0.29 (19/66) per case. On a 

per patient basis, the sensitivity and specificity were 95% (38/40) and 88.8% (71/80) 

respectively for the training cases (Table 7).  

Table 7 - Summary of CAD results on a per patient basis for training cases 
 
 Validation Positive Validation Negative 
AIH present 38 2 
AIH absent 9 71 
Sensitivity =     95.0% Specificity =    88.9% 
Positive Predictive Value =  80.8% Negative Predictive Value =  97.3% 
Accuracy =    90.8% 
 

The system achieved sensitivity of 100% (22/22) and specificity of 84.1% (37/44) for 

the diagnosis of AIH for the validation cases (Table 8). 

Table 8 - Summary of CAD results on a per patient basis for validation cases 
 
 Validation Positive Validation Negative 
AIH present 22 0 
AIH absent 7 37 
Sensitivity =     100.0% Specificity =    84.1% 
Positive Predictive Value =  75.9% Negative Predictive Value =  100.0% 
Accuracy =    89.3% 
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The current system, although not optimized in terms of speed, takes an average of 

approximately 15 seconds per image to produce the output. Actual time varies 

substantially for each case, depending on number of image and number of candidate 

AIH produced to be evaluated by the classification system. 

3.2 OBSERVER PERFORMANCE STUDY 

MRMC ROC 

Significantly improved performance is observed in emergency physicians, average 

area under the ROC curve (Az) increased from 0.8288 to 0.9484 (p<0.05) when they 

make the diagnosis without and with the support of CAD. Az for radiology residents 

increased from 0.9478 to 0.9831. Az for radiology specialists increased from 0.9657 

to 0.9776, but was statistically insignificant. The results are shown in figure 17.  

The Az values scored by individuals before and after CAD are presented in figure 18. 

Only 1 of the 20 subjects scores marginally lower Az after CAD. The other 19 people 

all attained a variable degree of increment after use of CAD. 

It was observed that performance of emergency physicians with support of CAD 

approached that of the radiology residents without CAD, whilst performance of the 

radiology residents with CAD approached that of the radiology specialists without 

CAD. This signifies that the CAD can improve reader performance as well as reduce 



 

variability amongst readers of different expertise levels. 

The data from all 20 readers were analyzed together using the public domain software 

DBM MRMC based on PROPROC area analysis, assuming random readers and cases. 

All the clinicians as a whole group show statistically significant of increase in Az 

from 0.9150 to 0.9630 (p = 0.0015). 

Figure 17 – MRMC ROC Curve 
ROC of detection of AIH amongst different groups of clinicians. EP – emergency 
physicians. RR – radiology residents, RS – radiology specialists, UA – unaided 
reading mode, CAD – CAD reading mode. 
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Figure 18 - Bar chart showing the Az before and after use of CAD 
The marginal increase shows greatest increase in emergency physicians, less for the 
radiology residents, and least for the radiology specialists. Subjects 1-6 (green) are 
radiology specialists, 7-13 (red) are radiology residents, and 14-20 (blue) are 
emergency physicians.  
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Conventional Indicators 

The sensitivity, specificity, positive and negative predictive values were calculated for 

each reader both before and after use of CAD (Table 9). It was demonstrated that both 

sensitivity and specificity improved for each group. The improvement is most 

remarkable for emergency physicians, in whom the average sensitivity/specificity rose 

from 73.3%/81.4% to 80.5/90.5%; for the radiology residents: from 86.2%/88.1% to 

93.8%/92.9%; and for the radiology specialists: from 92.2%/93.3% to 95%/94.4%. 
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After use of CAD, the positive predictive values improved from 80.1% to 89.5% for 

ER, from 88.4% to 93.0% for radiology residents, and from 93.3% to 94.5% for 

radiology specialists respectively. The negative predictive values also improved from 

75.7% to 82.5% for ER, from 86.7% to 93.8% for radiology residents, and from 

92.6% to 95.1% for radiology specialists. 

Again, it was observed that these conventional indicators of diagnostic accuracy of 

emergency physicians with support of CAD approached that of the radiology 

residents without CAD, and the results of the residents with CAD approached those of 

the specialists without CAD. 

 
Table 9 – Performance indicators of clinicians using CAD 
Average performance indicators including sensitivity, specificity, positive predictive 
value, and negative predictive value for different clinician groups with and without 
CAD support. All indicators in all clinician groups are improved after use of CAD. 
 

Emergency 

Physician 

Radiology 

Residents 

Radiology 

Specialists 

 

% 
Unaided CAD Unaided CAD Unaided CAD 

Sensitivity 73.3 80.4 86.2 93.8 92.2 95.0 

Specificity 81.4 90.5 88.1 92.9 93.3 94.4 

Positive Predictive Value 80.0 89.5 88.4 93.0 93.3 94.5 

Negative Predictive Value 75.7 82.5 86.7 93.8 92.6 95.1 
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Number of Change in Diagnosis 

When diagnostic decision for each individual case was considered, it was found that 

use of CAD corrected the diagnosis far more frequently than misled the readers to a 

wrong diagnosis. For the emergency physicians, use of CAD led to 46 correct changes 

(beneficial effect) in diagnosis and 12 wrong changes (detrimental effect) out of the 

maximum number of possible change of 420 (7 readers x 60 cases). For the radiology 

residents, the figures were 29 versus 3 out of 420. For the radiology specialists, the 

figures were 7 and 0 out of 360. Thus use of CAD is associated with change in 

diagnosis in decreasing order of relative frequency from emergency physicians 

(13.8%), to radiology residents (7.0%) to radiology specialists (1.9%). On the other 

hand, the relative frequency of correct change vs. incorrect change show increasing 

trend from 79.3%:20.7% for emergency physicians, to 90.6%:19.4% for radiology 

residents, to 100%:0% for radiology specialists (Table 10). Hence although 

emergency physicians tend to benefit more frequently from the use of CAD, they also 

seem less capable of avoiding detrimental effect from its application.  
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Table 10 – Frequency of change in diagnosis after CAD 
Number of cases in which clinicians change their diagnostic decision after CAD. The 
proportion of correct change relative to incorrect change increased from emergency 
physicians to radiology residents to radiology specialists. The total and relative 
number of change decreased from emergency physicians to radiology residents to 
radiology specialists. 
 
 Emergency 

Physicians 
Radiology 
Residents 

Radiology 
Specialists 

Correct change  
(% of actual no. of change) 

46 (79.3%) 29 (90.6%) 7 (100%) 

Incorrect change  
(% of actual no. of change) 

12 (20.7%) 3 (9.4%) 0 (0%) 

Frequency of change in 
decision  

58 32 7 

% Change in decision/total 
possible change  

13.8% (58/420) 7.6% (32/420) 1.9% (7/360) 
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Chapter 4 DISCUSSION 

4.1 DIFFERENCES FROM EXISTING CAD SCHEMES 

The target for detection in the current system is small AIH. It differs from existing 

CAD products, e.g. malignancy detection in mammography and nodule detection in 

chest radiograph or CT, in that the system is intended to be used by clinicians other 

than radiologists and that the system rates the authenticity of candidate lesions in 

different portions of the image dataset differently, depending on their anatomical 

positions and imaging features.  

As noted before, in emergent settings, expert radiologists may not be readily available 

to provide the often crucial image interpretation. Therefore the duty is shifted to 

clinicians who may not be best equipped for the task. It is therefore believed that 

CAD may become useful in these situations, in addition to its proven value for 

screening examinations. Special considerations need to be made because observers of 

less expertise may not be confident or knowledgeable enough to judge the correctness 

of CAD outputs. Therefore CAD systems targeted for non-radiologists need to 

minimize the false positive rates. 

During the development stage of the system, it was found that the myriad 
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combinations of imaging features of AIH in different parts of the brain could not be 

adequately described without reference to the anatomical positions where the lesions 

are found. But when the candidate lesions are divided up based on their anatomical 

positions, classification between genuine AIH and mimicking variants or artifacts 

becomes feasible. It is because specific combination of imaging features and 

anatomical information produce patterns which can be used for classification. This 

contrasts against target lesions of many CAD systems which are well-described with 

relatively little variation in their configurations, which are hence less dependent on 

the anatomical information as opposed to the local imaging features. 

4.2 ISSUES REGARDING CHOICE OF SMALL LESIONS 

Clinical Relevance 

The CAD system itself and the observer performance study have focused on detection 

of small AIH, because it is conceivable that the small ones are those that cause 

diagnostic difficulty. In fact, during the developmental stage of the CAD, pilot study 

comprising 25 AIH cases of a wide range of sizes confirmed the intuition that 

sensitivity for cases including large (> 1cm) AIH reached 100% for both CAD and 

emergency physicians. Therefore detection of large AIH by the CAD may not be 

clinically useful as such lesions pose no diagnostic challenge to clinicians. 
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In an internal audit conducted at the author’s institute, a total of 3341 emergent brain 

CT were performed for initial evaluation of head injury or neurological disturbance 

over a 6 month period. Of these, 279 cases were reported to show AIH, making the 

prevalence of AIH amongst emergent brain CT 8.35% (279/3341). Furthermore, 62 of 

the 279 cases showed only blood clots defined as small by the criteria mentioned 

earlier; hence prevalence of small AIH was 1.86% (62/3341). These figures illustrate 

that negative cases usually predominate in real clinical settings. It can be expected 

that the relatively infrequent detrimental effect of wrongly label AIH as a result of 

false positive output of the CAD system may magnify with the much higher 

proportion of normal cases in clinical practice versus the 50% normal cases in the 

current MRMC ROC protocol. Hence false positives produced by the CAD may cause 

more mistaken diagnosis. We have provided for this possible detrimental effect by 

keeping the false positive rate to a remarkable 0.29 per set of brain CT, which is much 

lower than that reported for many CAD systems. Also, since both sensitivity and 

specificity were improved, it is expected that the system can improve the performance 

even when the proportion of cases showing only small AIH in clinical setting is much 

lower than that in the current experiment. 

It may be assumed that small AIH would pose less immediate danger to the patient. 

But missing the small AIH at an early stage may do harm to the patient by leading to 
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wrong management, especially when thrombolytic therapy or antiplatelet medication 

is prescribed. Also, patient may not be given appropriate level of care and monitoring 

and suffer when AIH subsequently grow or rebleeding occurs. 

Size Measurement 

There has been no reported objective method of classifying AIH according to its size. 

The target size of detecting AIH smaller than 10mm is arbitrarily chosen. The width 

rather than the length is chosen for extraaxial hemorrhage because it is the dimension 

which is clinically relevant and customarily reported. Although it does imply that 

10mm extraaxial AIH would be larger in area/volume than a 10mm intraaxial AIH as 

defined in this study, because in the former the measured thickness is usually 

equivalent to the short axis, whilst in the later the long axis is measured. Nonetheless, 

it is believed that convention used in the current study better reflect the radiologists’ 

assessment and reporting standard. It is understood that measurement of area/volume 

may be more robust scientifically speaking, and they can easily be calculated by the 

computer. But area and volume are simply not the figures that clinicians or 

radiologists use for describing lesions during their daily practice, for the pragmatic 

reason that such measurements cannot be easily obtainable. 

Small AIH often shows ill-defined boundaries, variable configurations, and little 
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contrast difference with adjacent structures, mainly as a result of partial volume 

averaging and relative important contribution by noise and artifacts. These features 

present challenges to the development of CAD based on low level processing alone. 

Yet for a system to be clinically useful, it must be able to detect small lesions. The 

approach adopted in the current system is to be oversensitive in locating candidate 

AIH volumes using image processing techniques such that the vast majority of 

abnormal foci are extracted; however, this inevitably generates too many false 

positives. The average number of false positives generated by this CAD system based 

on the aforementioned processes alone was 62.1 per set of images or 4.2 per image in 

the training set. It is especially important for a CAD system intended for use by 

non-radiologists, who may not be highly competent in telling the difference between 

genuine lesion and false positives, to be highly specific. It was found that genuine 

AIH may not be all that different from false positives considering simple image 

features. But with the input of anatomical information, classification becomes feasible. 

It is because the candidates with similar image features may mean AIH at one 

particular location, or artifact if situated at another. With the knowledge based 

classification system in place, the false positive per case was dramatically reduced to 

0.19 in the training dataset. 
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Effect on Observer Performance Study 

The choice of small AIH also facilitates comparison between unaided and CAD 

assisted reading. By employing more difficult cases, statistical power of the 

experiment would be increased (Metz 1989). The downside is that such a ‘stress test’ 

contains non-representative samples with disproportionate number of difficult cases, 

which affects the generalizability of the results to the general population. Strictly 

speaking, the results as obtained from the ROC studies may not be readily 

generalizable to the population of cases containing AIH of various and predominantly 

larger size lesions. 

4.3 USAGE OF ANATOMICAL INFORMATION 

Rationale 

There are different sets of rules for different parts of the brain because the probability 

of having a particular type of AIH or certain variant and artifact depends on 

anatomical position. For example subdural hemorrhage can be present over the 

convexity of the brain, along the falx cerebri or tentorium, but not within the brain or 

ventricular system. Also, the configuration of the same type of hematoma may depend 

on the anatomical location, e.g. SAH fills and takes on the configuration of the CSF 

space where bleeding occurs. Therefore rules for identifying typical image feature of 
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SDH can only be applied at the appropriate regions. Likewise, calcifications are 

usually present in basal ganglia, pineal gland, and dentate nuclei and tend to be 

symmetrical. Accordingly rules for identifying normal calcifications are applied over 

the said regions with additional criteria of symmetry. With these rules in place, the 

false positive rate has been kept at low level.  

Coordinate System for Thick Section Images 

There are several established methods to map digital images to standard brains. The 

most well known are the Talairach atlas and the Montreal Neurological Institute (MNI) 

brains. Software packages are available for mapping to these brains (MEDIC, SPM 5). 

However, these available systems cannot be effectively utilized in this project because 

the thick (5-10mm) sections used in clinical protocols preclude the accurate 

localization of landmark structures, especially the anterior commisure (AC) and 

posterior commisure (PC) required to define the AC-PC plane, which is the 

prerequisite for registration. In addition, the images are acquired along the orbital 

canthal – meatal plane (OM) conventionally used for clinical brain CT imaging, 

which lies at a variable angle of around 9 degrees from the AC-PC plane (Weiss, Pan 

et al. 2003). The thick axial sections thus obtained cannot be consistently converted to 

the AC-PC plane. 
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The current system maps the individual images to a coordinate system specifically 

developed based on axial sections that parallel the OM plane, which is readily 

applicable to images obtained using standard clinical protocols for brain CT imaging. 

Although it lacks definition of the AC and PC, such that anterior-posterior 

relationship of some internal structures may be less accurate, the system does contain 

additional control points that modify the registration process according to the 

configuration of the lateral ventricles. It was observed that this significantly reduces 

the variability of coordinate positions for some relevant internal structures, especially 

the choroids plexus and basal ganglia. It is postulated that inclusion of control points 

based on the lateral ventricle positional information more accurately reflects the 

change in relative position of internal structure resulting from age-related brain 

atrophy. On the other hand, a more accurate age corrected coordinate system may be 

developed using the aforementioned scheme, with collection of a large sample 

containing enough number of sample for each age group. It is also hoped that 

inclusion of more anatomical labels in addition to the ones which have been obtained 

in this development may make the coordinate system valuable for other applications. 

It is recognized that the accuracy of the anatomical labeling process in the current 

project is limited by the relatively large size represented by each coordinate position, 

which is about 1cm3 for a normal sized adult brain. In addition, tilt and yaw in the 
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coronal and sagittal plane cannot be effectively corrected because the axial sections 

are thick. However, it must be understood that pinpoint accuracy in brain mapping is a 

daunting task on its own, and is impractical for images obtained using present day 

clinical protocols. Adding to the problem is that the current CAD deals with abnormal 

brain, which makes accurate mapping to a normalized atlas even more difficult. It is 

believed that the simple coordinate system generating relatively rough estimate of 

anatomical position is more efficient and reliable for the current application. 

4.4 UNEXPECTED RESULTS 

The results in the training cases show lower sensitivity than those of the validation 

cases on per patient basis, 95% versus 100%. This was probably a chance occurrence 

because all the missed lesions in the validation cases are present in cases where at 

least one other lesion was picked up by the system. The very similar overall 

sensitivity on per lesion basis of 84.4% and 82.6% for the two groups might be 

affected by the different distribution of size of lesions in individual patients. 

It is admitted that the allocation of training and validation cases were not randomized 

in the strict sense. But we believe the collection process was not systemically biased, 

as the allocation into each group was essentially decided by the independent schedule 

between data collection by the investigator and housekeeping clearance of the 
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temporary CT archive. However, there does seem to be difference in the composition 

of the lesions in the two datasets regarding the size of lesions, the training cases 

contain a lower proportion of larger (>5mm) lesions, 36.4% (28/77), as compared 

against the validation cases, 43.5% (20/46). This might have inflated the apparent 

overall sensitivity on per lesion basis for the validation cases. Therefore, we believe 

the results of sensitivity by size best represent the performance of the system. A 

similar trend of increase from 50-60% for lesions 2.5mm or smaller to 90-100% for 

lesions larger than 5mm was observed for both the validation cases and training cases. 

4.5 CHALLENGING CASES 

Successful Examples 

It was shown that the system can detect lesions that can be difficult for acute care 

physicians or even radiology residents. Some such lesions that are missed by most of 

the emergency physicians in the observer performance study are shown in figure 19. 

Lesions may be missed simply because they are too small as in figure 19-a. Or else 

they may become inconspicuous because they show low attenuation approaching that 

of surrounding normal brain, figure 19-b or high attenuation approaching that of 

adjacent skull, as in figure 19-c. In other cases the lesion may be misinterpreted by 

some to be some kind of artifact or normal variant mimicking AIH as in figure 19-d. 



 

Figure 19 – Difficult AIH successfully diagnosed with CAD 
AIH can be difficult to detect if they are small, of similar attenuation to adjacent 
structures, or confused with normal variant and artifact. Examples of some difficult 
cases (the left column) with their CAD results (the middle column) and magnified 
views (the right column) are shown. The system outlines AIH with red perimeters. 
High density regions which are segmented but subsequently classified as unlikely to 
be AIH are outlined with blue perimeters. 
 

a    

b    

c    

d    
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Unsuccessful Examples 

There are 16 false positive cases and 2 false negative cases in all the 186 cases that 

include both the training and validation dataset. The false positive cases are most 

frequently due to calcifications at falx (6) being idenfied as AIH because they are too 

thick or lying at an angle to the vertical mid sagittal plane. Other causes include 

hyperdense peripheral gray matter (4), mistaken AIH in choroids plexus (4), partial 

volume averaging due to bone (2), beam hardening artifact (2), hyperdense transverse 

sinus (1), and abnormal calcium deposition in old infarct (1).  The false negatives 

occur in two cases, showing very thin subarachnoid hemorrhage in the falx and small 

intraventricular hemorrhage respectively.  

There are cases when the same errors could be committed by many experienced 

radiologists, like the examples as shown in figure 20. These cases show abnormalities 

that are difficult to diagnose even for human experts, and are hence considered 

reasonable, albeit wrong, conclusions. However, whether such errors may contribute 

to false reassurance is debatable.  



 

Figure 20 – Examples of wrong diagnosis by the CAD 
Image a and b are the original and CAD outputs of a case that shows calcification 
rather than AIH. This case is classified as a false positive because the highlighted 
lesion (in red) is not a genuine AIH. 
Image c and d are the original and CAD outputs of a case that shows genuine 
brainstem hemorrhage. This case is classified as a false negative because the genuine 
lesion (in blue) is not highlighted. 
It is noteworthy that both of these cases have their diagnoses confirmed after review 
of prior and follow-up images respectively, and the majority of radiology specialists 
participated in this study made wrong diagnosis on one or both of the cases. 
 

   
    a        b 
 

   
    a        b 
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4.6 CAD FOR CLINICIANS OTHER THAN RADIOLOGISTS 

Many CAD schemes have focused on high volume screening examinations, where 

detection of abnormality is rare and tedious but crucial. We envisage that CAD can 

also help in emergency situations, when expert human observers, in our case 

neuroradiologists, may not be readily available. This is when observers of less 

expertise need to promptly make the crucial decisions, and hence second opinions in 

the form of a CAD output may mean the difference between life and death.  

When the contexts and users are different, the performance requirement of the CAD 

can be different and need to be adjusted so as to produce the most accurate 

human-computer diagnostic system. 

It has been pointed out that CAD may achantaoctually degrade human interpretation 

under certain conditions (Alberdi, Povykalo et al. 2004), which design and assessment 

should therefore take this into account. The target users of the current CAD system 

are emergency physicians and other acute care physicians, and probably radiology 

residents as well. It is different from other existing CAD targeted for expert 

radiologists. This can potentially raise the stake of a wrong suggestion provided by 

CAD, as the less skilled reader are probably less capable of judging whether the 

output is correct or not. Indeed, results from the current study supported that 
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observers less skillful in image interpretation are more prone to be affected by the 

wrong outputs of a CAD. This was reflected by difference in the number of correct 

change in diagnosis versus the number of wrong change for the three groups of 

clinicians studied. As such, the potential of detrimental effect attributable to CAD 

may require more careful consideration. Fortunately, the number of mistakes were 

outweighed by the correct changes attributable to use of CAD. 

Effective use of CAD requires training and experience with the system. For the cases 

used in this ROC study, the CAD system on its own achieved sensitivity of 

90%(27/30) and specificity of 90%(27/30) on a per case basis. It was noteworthy that 

emergency physicians can improve their performance in terms of both sensitivity and 

specificity with CAD, just like the radiology residents and radiology specialists, but 

the sensitivity of emergency physicians with CAD is still lower than that of CAD 

alone. It has also been pointed out that they were more prone to accept some of the 

wrong outputs. It is therefore inferred that more education about AIH and the CAD 

system is more important for users of less expertise in image interpretation and is 

necessary before the CAD system can be effectively used. 
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4.7 LIMITATIONS OF THE OBSERVER PERFORMANCE STUDY 

Independent Mode vs. Sequential Mode 

The experimental procedure required that readers read all the cases without CAD 

support first, before they reread the same cases with CAD support after minimal delay. 

This design is more closely related to the sequential than the independent reading 

mode as described by Kobayashi(Kobayashi, Xu et al. 1996). The independent mode 

is the conventional method for conducting observer studies, when reading of images 

without and with CAD support are separated by a period so long that readers should 

have no recollection of the cases. For evaluation of CAD or other forms of adjuncts, 

the sequential mode, in which readers read each case first without, then with CAD 

support immediately afterwards, is the favored mode. It is because it mimics the way 

the CAD is supposed to be used, hence the potential benefit of the first reading to the 

second reading is a realistic experimental design rather than a bias. In addition, the 

sequential mode is more efficient in terms of reader time. We have modified the 

method by having the readers complete the readings in unaided mode first because we 

suspect that readers may change their level of suspicion or vigilance during the 

experiment should they become affected by feedback available from the CAD in a 

similar previous case. In other words, we hoped to avoid the training effect during the 

course of the study. The bottom line is that reader variance and measured results are 
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virtually the same for both reading modes (Beiden, Wagner et al. 2002). 

Lesion Localization 

It is recognized that the current study did not measure the performance in terms of 

lesion localization. The major flaw is that a ‘true positive’ response may be result of 

detection of noise or other mimicking artifacts rather than the genuine lesion. To 

provide this information, a location specific ROC (LROC) or free response ROC 

(FROC) study is required (Wagner, Beiden et al. 2002). This type of study would be 

more demanding due to the requirement of establishing the lesion database and the 

additional investment in readers’ reading time. In many instances the AIH may span 

several sections and hence the exact definition of correction localization can be 

elusive. After all, the presence or absence of AIH is more important than the quantity 

and precise localization of lesion. Therefore we believe a patient level ROC 

evaluation is sufficient to decide if the CAD can be beneficial for clinical 

management under the current local environment. 

Actual Impact in Clinical Environment 

It is widely accepted that MRMC ROC is very efficient for evaluation of diagnostic 

systems including CAD. However, even when the results are generalizable to the 

reader and case population under the study condition, whether or not the gain in 
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performance can realize its beneficial impact in the clinical environment is a matter of 

debate (Gur 2003). 

4.8 FUTURE DEVELOPMENT 

Application on Thin Section Images 

The CAD system has been designed to work on conventional axial sections obtained 

from an old machine. The authors are currently working on adapting the system to 

images obtained from multidetector row CT machine. Initial results were promising. 

The impression was that more accurate results could be achieved because the images 

are less prone to artifacts (Jones, Kaplan et al. 2001) and contrast between AIH and 

normal parenchyma is higher, mainly because thinner sections make volume 

averaging less of a problem even for small lesions.  

As a result. correction of CT cupping artifact can be less aggressive, so that sensitivity 

for very thin (< 2mm thick) extra-axial hemorrhage is increased. Also, a lower 

threshold of attenuation difference can be used such that smaller candidate lesions 

with lower attenuation can be detected. A successful case is shown in figure 21 . 

In addition to the techniques already implemented in the current project, AIH can 

often be better characterized by 3 dimensional morphology or interrelation. For 

example, disc like lesions that span different sections would make extra-axial  



 

Figure 21 – Successful conversion for MDCT images 
An example of very thin subarachnoid hemorrhage, yellow arrow, in an original 
image a obtained from a 64 slice MDCT, being correctly detected by the system in b, 
outlined in red. 
 

   
    a        b 

 

hemorrhage far more likely than linear beam hardening artifacts that tend to be 

different even in contiguous plane. Such differentiation can be difficult on axial 

sections alone because both would appear as peripherally located linear hyperdensity. 

Application on thin section images may benefit from more accurate classification 

system due to more exact anatomical localization based on some more developed 

brain atlases that are applicable to 3D images. 

Possible Extension of Techniques to Other Applications 

The concept of diagnosis based on anatomical information is well-recognized by 
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clinicians. The component of anatomical labeling developed in the current project can 

be used for systems aiming to detect other types of intracranial lesions that show 

different frequency of occurrence in different anatomical reigon. A very useful 

application that may also complement the current system would be CAD of acute 

infarct. Of course, the target lesion would be ill-defined low density regions rather 

than high density foci, Even tumor diagnosis can utilize the concept, because different 

kinds of tumors tend to affect different anatomical regions. 

Improvement in Localization of Mid Sagittal Plane 

The system requires human intervention in localization of MSP in less than 10% of 

the time. Emergency physicians participating in the ROC have been invited to use the 

manual alignment tool. It was observed that all of them localize the MSP accurately 

and efficiently. 

Besides locating the MSP by finding the plane about which some parameters, e.g. 

intensity levels or some other features, are symmetrical, the MSP can be located by 

finding the interhemispheric fissure direct (Prima, Ourselin et al. 2002). The former 

method is the most commonly used and is used in the current CAD scheme. Its major 

limitation is that the brain is not necessarily symmetrical, in both normal and diseased 

individuals alike. Contrary to detection of symmetry, the latter method is insensitive 

to normal or abnormal asymmetry. However, the fissure often show some degrees of 

curvature, which may produce some meaningless planes. Also such methods are not 

readily adaptable to different imaging modalities. Yet another new method was 
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presented in RSNA 2004, which locate the MSP by finding the bony attachments of 

falx, which is essentially a modification of locating the interhemispheric fissure. 

Since both approaches are imperfect due to different kinds of limitations, it is 

anticipated some combinations of both methods may produce more accurate 

localization of the MSP, which remains to be determined. 

Development of More Versatile CAD 

It has been noted that CAD research and development have been fragmented, in the 

sense that researchers concentrate on development of applications focusing on some 

unrelated tasks of narrow scopes (Summers 2003; Partain, Chan et al. 2005). It is 

expected that development of more versatile CAD systems or combinations of CAD 

schemes can provide comprehensive evaluation of the same images. For the current 

project, possible extension may include integration with CAD of infarct when the 

obvious alternate cause of stroke is ischemia or infarct, and CAD of aneurysm, as the 

cause of AIH. Such useful combinations can provide comprehensive evaluation of 

patients and better answer some important clinical questions of particular relevance to 

stroke management. 

Integration with PACS 

Another issue that needs to be considered before such system can be put into clinical 

practice is integration into the workflow of acute care physician or the emergency 
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room. It is important for the acceptance of CAD into clinical practice that it involves 

minimal additional cost of training. Doctors can become apprehensive when they have 

to relearn each and every type of CAD and even reluctant to use the CAD. In addition, 

Also, the current system is different from most of the current CAD systems designed 

for screening or routine reporting purpose, for which speed is of less concern. For 

applications to be useful for immediate management, immediate availability without 

significant additional cost of time is of utmost importance.  

It is desirable that CAD is packaged with the PACS, which allows users to perform 

the interpretive task on their usual platform. It has been defined in the DICOM 

standard two structured report (SR) templates for mammography and chest CAD 

results. The Integrating the Healthcare Enterprise (IHE) has also published a 

post-processing workflow profile for integrating CAD applications with clinical 

PACS workflow (http://www.ihe.net). The outputs of the current CAD include 

pictures of the images together with overlay of the AIH, as well as textual data that 

indicates position and size of lesions. The pictures and data can be converted to screen 

capture and structured report data format supported by the DICOM standard and 

subsequently stored as a new series under the same study of the same patient from 

where the original images were obtained. These data can be integrated into the PACS 

using integration software. In fact, the current system has been one of the CAD 
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schemes being used for the testing of a recently developed CAD-PACS intergration 

toolkit (Zhou 2006; Zhou, Liu et al. 2007).  

Implemetation for Daily Clinical Practice 

We envisage that the CAD system can be implemented into daily clinical practice 

especially in the emergency room. It is believed that the system can be used as a 

triage tool for patients suffering from minor neurological disturbance or head injury. 

After CT is performed, clinicians can read the images with help from the system. If 

AIH has been excluded, the patients may be safely observed for a shorter period of 

time before discharge. Also, patients may be admitted to neurosurgical units or other 

units based on the presence of absence of AIH. 

Parameters and hence performance of the CAD system may require adjustment 

according to the way the system is used. For example, supposing the CAD is intended 

to be used in ER for triaging patients suffering from head injury, who may be 

admitted if AIH is demonstrated, or undergo a short period of observation otherwise, 

high sensitivity is more important than low false positive rate. The system can also be 

adjusted to suit the users’ characteristics, e.g. when the CAD is to be used by 

radiologist as a ‘second reader’, it can also afford to be more sensitive than specific, 

as suggested by our results that radiologists tend to be less affected by wrong outputs. 
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Chapter 5 CONCLUSION 

A CAD system capable of identifying small intracranial hemorrhage has been 

developed. It extracts AIH candidates based on correction of its high intensity relative 

to its surrounding brain and contralateral anatomical structures. The system then 

classifies genuine AIH from mimicking normal variants or artifacts based on both 

image features and anatomical information, which is made possible by construction of 

a coordinate system that incorporates positional information of normal brain 

structures.  

Results from observer performance study confirmed that clinicians, especially 

emergency physicians, improved their performance in detection of small AIH when 

they read brain CT with CAD. 

It is expected that this system can benefit patient care especially in emergency 

situations when timely management decision need to be made by acute care 

physicians.  
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