
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 

 

PARAMETRIC AND NONPARAMETRIC BAYESIAN 

MIXTURE MODELS FOR BRIDGE CONDITION 

ASSESSMENT 

 

 

 

 

 

RAN CHEN 

PhD 

 

The Hong Kong Polytechnic University 

2020 

 

  



 

 

The Hong Kong Polytechnic University 

Department of Civil and Environmental Engineering 

 

 

Parametric and Nonparametric Bayesian Mixture Models for 

Bridge Condition Assessment 

 

 

 

Ran Chen 

 

A thesis submitted in partial fulfilment of the requirements for 

the degree of Doctor of Philosophy 

 

August 2019  



 

 

 

To my parents, wife and son 

 





-i-

CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge and 

belief, it reproduces no material previously published or written, nor material that has been 

accepted for the award of any other degree or diploma, except where due acknowledgement 

has been made in the text. 

(Signed)

Ran Chen (Name of student) 



 

-ii- 

ABSTRACT 

Long-span bridges are vital components in the public transportation network, while ensuring 

the serviceability and integrity of these assets are of great significance to a modern sustainable 

city. Bridge condition diagnosis based on the long-term structural health monitoring (SHM) 

technology has been recognised as a promising approach for achieving the condition-based 

preventive maintenance. In the real situation, in-service long-span bridges are normally subject 

to combined execution of multiple stochastic loads such as highway traffic, railway traffic, 

wind and temperature, which cause heterogeneous structural responses with multimodality. 

Conventional probabilistic assumptions for modelling the monitoring data could be quite 

restrictive and unverifiable, leading to high bias in characterisation of structural behaviours. 

More importantly, multiple sources of uncertainties are inevitably encountered in the process 

of data interpretation, including the intrinsic randomness, uncertain model parameter, uncertain 

model order, and among others. Prediction of structural performance under severe uncertainties 

remains as the most challenging task in the monitoring-based bridge condition assessment. The 

present Ph.D. thesis dedicates to develop two classes of Bayesian mixture models for condition 

assessment of long-span bridges that are able to better address the above scientific issues. The 

suspension Tsing Ma Bridge serves as the testbed for this research. 

A parametric Bayesian mixture model is first established to accommodate the multimodal 

structural responses with consideration of parametric uncertainty. Efficient Markov chain 

Monte Carlo (MCMC) simulation based Gibbs sampler is devised to pursue the joint posterior 
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of the mixture parameters. Convergence of the MCMC simulation is ensured through a 

quantitative procedure. A Bayes factor based method is employed to find the optimal model 

order of the mixture model. The parametric Bayesian mixture model is utilised to identify 

neutral axis positions of the Tsing Ma Bridge under stochastic traffic loads. A novel neutral 

axis position based damage identification method is proposed for real-time alert of abnormal 

bridge condition. Single and multiple damages of the bridge deck are confidently detected by 

the proposed damage indexes based on neutral axis change. Subsequently, a nonparametric 

Bayesian mixture model is further developed to allow the model complexity automatically 

adapts to the monitoring data with the joint consideration of the parametric and model order 

uncertainties. A collapsed Gibbs sampler is devised to pursue the nonparametric estimation of 

the mixture density samples. Convergence diagnosis of the MCMC simulation is achieved 

based on a quantitative procedure. Both the parametric and nonparametric Bayesian mixture 

models are used to characterise the live load effects of the bridge under multi-load condition. 

An updatable conditional reliability index is formulated based on the first-order reliability 

method (FORM) that is able to account for both the aleatory and epistemic uncertainties arising 

from load effect characterisation. Bayesian updating of the reliability for the bridge deck is 

carried out based on the accumulation of monitoring data. A clear vision on the safety risk can 

be learnt by bridge authorities through reporting not only the average structural reliability but 

also its associated uncertain range.  
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CHAPTER 1  

INTRODUCTION 

1.1 BACKGROUD AND MOTIVATION 

Civil infrastructures such as highways, bridges, railways, pipelines and dams are huge capital 

investment that play a significant role in functioning modern sustainable city. Any malfunction 

of these structural or mechanical systems can cause possible interruption of public transit, 

energy supply and industrial production, resulting in civic chaos. Recently, several reported 

accidents in Hong Kong have raised considerable public concern. On October 2015, an 

unexpected tugboat collision at the Kap Shui Mun Bridge caused emergency closure of all 

traffic lanes to the Hong Kong International Airport, leading to approximately ten thousand 

travellers stranded at different locations (Lau et al., 2015; Legislative Council of the HKSAR, 

2015). On March 2019, two subway trains collided at the crossover section near the Central 

station, one of the busiest stations in Hong Kong, during testing of a new signal system in the 

early morning. Train service between Central and Admiralty stations was suspended for two 

days, leading to approximately one billion financial loss (China Daily, 2019; Tsang et al., 2019). 

These accidents highlight the urgency of infrastructure maintenance. 

Long-span bridges are vital components to the infrastructure system. As time goes, in-service 

bridge structures suffer from inevitable deterioration due to material aging, harsh operational 

environment, increasing traffic demands as well as extreme events such as earthquake, typhoon 
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or collision. The continuous deterioration, if not mitigated, cumulates into damage and affects 

the structural performance to various degrees, from non-optimal operation to catastrophic 

failure, resulting in large economic loss or even casualties. According to the 2017 Infrastructure 

Report Card released by the American Society of Civil Engineers (ASCE), 9.1% of the bridges 

in the U.S. were rated structurally deficient in 2016 with a need of $123 billion USD to 

rehabilitate the nation-wide bridge condition (ASCE, 2017). While in the U.K., the Institution 

of Civil Engineers (ICE) reported that 24,000 miles of local roads are in need of essential 

maintenance, which will cost at least £5 billion GBP over 10 years to repair (ICE, 2018). 

Together with rapid urbanisation, the issue of bridge maintenance increasingly becomes a 

crucial concern among authorities, researchers and practitioners throughout the world. 

To ensure the serviceability and integrity of long-span bridges in their service periods, efficient 

and innovative maintenance strategies need to be planned and implemented in an optimal sense 

that making best use of limited budget available. Integration of long-term structural health 

monitoring (SHM) technology to bridge surveillance and assessment offers an ideal solution 

to condition-based preventive maintenance of these significant assets (Bhattacharya et al., 2005; 

Catbas et al., 2008; Frangopol et al., 2008). By embedding multiple types of permanent sensing 

devices on the bridge, a long-term SHM system is generally designed to consecutively acquire 

on-site authentic measurements of structural responses, external loadings and environmental 

effects in an automatic manner. Local and global structural behaviours under operational 

environment can be fully characterised by the great amount of monitoring data, with which 

early warning of anomalies in responses and loads can be signalled prior to any possible 
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negative consequences (Ko and Ni, 2005). Current bridge status of concern such as 

deterioration or damages can be reasonably inferred through the investigation of long-term 

structural behaviours. Monitoring-based condition assessment is expected to realise objective 

and quantitative health index of the bridge, which will further facilitate the preventive and 

condition-based life-cycle maintenance scheme. Over the past three decades, with the rapid 

development in advanced sensing, signal processing, data management and structural 

identification techniques, impressive SHM practices on large-scale bridges appear across 

different countries with typical examples such as the Great Belt Bridge (1600 m, 1998)a in 

Denmark (Andersen and Pedersen, 1994), the Tamar Bridge (335 m, 2006) in the U.K. (Koo et 

al., 2013), the Commodore Barry Bridge (501 m, 1998) in the U.S. (Barrish et al., 2000), the 

Tsing Ma Bridge (1377 m, 1997) in Hong Kong (Wong, 2004), the Runyang Bridge (1490 m, 

2005) in China (Wang et al., 2014), and the Akashi Kaikyo Bridge (1991 m, 1998) in Japan 

(Kashima et al., 2001). 

Although the merits and achievements of SHM technology have now been acknowledged by 

the bridge management authorities, there are yet challenging scientific issues that need to be 

addressed for successful monitoring-based long-span bridge condition assessment. A key task 

here is how to perceive in-service structural condition by taking full advantage of various types 

of field measurement data in order to make efficient maintenance decisions. The mapping 

 

a The numbers in the parenthesis are the main span of the bridge and the year of instrumentation of permanent 
monitoring system, respectively. 
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between structural behaviours characterised by monitoring data and the safety or reliability of 

the bridge components/system is usually difficult to establish (Catbas and Aktan, 2002). In 

recognition that the presence of multiple sources of uncertainties in the process, learning of 

monitoring data by making use of statistical models stands as an essential step. 

Long-span bridges are normally subject to multiple types of loads and environmental stressors 

such as highway traffic, railway traffic, wind effect and temperature effect during their service 

life. The stochastic nature of these live loads is time-varying with different frequencies and 

amplitudes. Structural responses under the combined effect of multi-load condition will exhibit 

considerable variation both locally and globally, resulting to heterogeneous data structure with 

multimodality (Ni et al., 2011b; Ni et al., 2011c; Ni and Chen, 2016). Standard unimodal 

distribution models, e.g. the Gaussian distribution, are often inadequate to characterise the 

multimodal structural responses, yielding bias model estimation. Furthermore, multiple levels 

of uncertainties arising from the interpretation of the response data, e.g., intrinsic variability, 

uncertain model parameters, uncertain model orders and measurement noise, have not been 

sufficiently considered in existing approaches. In order to make robust prediction of the 

structural behaviours by using the monitoring data, it is of necessity to develop advanced 

statistical tools, e.g. the Bayesian models, that can be performed in the presence of serve 

uncertainty. 

Real-time identification of damage/abnormality of the in-service long-span bridge under the 

varying operational environment is regarded as one of the most challenging topics in the SHM 
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community. Existing approaches like the vibration-based techniques may suffer substantial 

limitations for detecting damage of large-scale complex structure in real-world scenarios (Fan 

and Qiao, 2011). It is often difficult to capture minor local damage by means of change in 

dynamic measurements such as natural frequency and mode shape, which are global properties 

of a complex structure (Doebling et al., 1998). Furthermore, the environmental and operational 

variability of in-service bridge, other than real damage, could affect the dynamic characteristics 

to various degree, leading to ambiguous detection results (Farrar et al., 1994; Peeters and De 

Roeck, 2001; Sohn, 2006; Deraemaeker et al., 2008; Xia et al., 2012c). In contrast, in-situ strain 

measurement, served as structural static response, affords a more intuitional measure of the 

local stiffness and strength of a structure than the dynamic counterparts. The advancement of 

strain monitoring techniques such as the long-gauge fibre Bragg grating (FBG) sensor enable 

to achieve long-term reliable strain measurement within a large region of a complex structure 

in an economical way (Chen et al., 2019). Developing efficient damage identification methods 

based on strain monitoring data that are comparable to the widely used vibration-based methods 

has its practical significance. 

Reliability principles play a guiding role in probabilistic structural design, with which the safety, 

serviceability and durability of a new bridge in design service life can be guaranteed given its 

capacity and demand (Melchers and Beck, 2017). Reliability-based methods have recently been 

extended to the condition assessment of existing bridge in view of the ability to account for the 

inherent randomness associated with loads and material properties (Bhattacharya et al., 2005; 

Catbas et al., 2008; Frangopol et al., 2008). The reliability index or failure probability serves 
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as a quantitative measure of healthy condition for in-service bridge. As soon as the new bridge 

is opened to public, the loading scenarios or material constitution are somewhat determined, 

and the degradation begins. By means of the SHM system, the site-specific structural and 

loading information, such as strain, acceleration, displacement, wind velocity and traffic loads, 

can be incorporated into reliability-based approaches to alleviate the substantial uncertainty in 

live loads and resistance, leading to a more rational condition assessment of the existing bridge. 

Nonetheless, classic reliability theory is built upon conventional probability distribution 

models that only considers the aleatory uncertainty in capacity and demand. The modelling 

uncertainties, which are of epistemic type, have not yet been taken into consideration (Zhang 

and Mahadevan, 2000; Der Kiureghian, 2008; Der Kiureghian and Ditlevsen, 2009). Examples 

are the use of imprecise distribution models for basic random variables and the statistical 

uncertainty stemming from parameter estimation. In contrast to the fundamental randomness 

in current reliability analysis, influence of the modelling uncertainties on estimation of failure 

probability or reliability index is yet a less explored area. 

1.2 RESEARCH OBJECTIVES 

In view of the above research needs, the present Ph.D. thesis aims to develop two class of 

Bayesian mixture models for condition assessment of long-span bridge instrumented with 

SHM system, which are able to (1) accommodate heterogeneous structural responses under 

multi-load condition, and (2) deal with modelling uncertainties arising from characterisation of 

monitoring data. The suspension Tsing Ma Bridge along with its long-term monitoring data are 
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taken as the ideal testbed for this research. The proposed damage detection and reliability-based 

assessment procedure based on the Bayesian mixture models are purely data-driven methods 

with no need of physical models (e.g. bridge finite element model (FEM)). The Ph.D. study 

intends to provide some technical solutions for the current practice of monitoring-based bridge 

condition assessment. 

To achieve the research objectives described above, the thesis is focus on the following specific 

topics. 

(1) To develop a parametric Bayesian mixture model that is capable of accommodating 

multimodal structural response with consideration of parametric uncertainty. The 

conjugate priors are selected for the mixture parameters in order to derive analytical form 

of the full conditional posteriors. Approximation techniques such as the Markov chain 

Monte Carlo (MCMC) simulation methods are pursued to realise the joint posterior of the 

mixture parameters. The optimal model order (number of mixture components) is 

determined based on the Bayes factor based method. Convergence check of the Markov 

chains is carried out to ensure the efficiency of the model estimation. 

(2) To propose a damage identification method based on tracking the neutral axis (NA) 

position for detecting damage of the in-service Tsing Ma Bridge. Neutral axis position 

derived from strain measurement is deemed as a cross-sectional property related physical 

parameter that can be utilised as a promising damage indicator. A sensitivity analysis is 

conducted to first investigate the variation of neutral axis position due to moving loads on 
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multiple traffic lanes. Neutral axis positions under multi-lane stochastic traffic condition 

based on monitoring and simulated stress responses are identified using the parametric 

Bayesian mixture model respectively. Damage indexes based on change of neutral axis 

position are proposed. Detection of damage cases postulated on the bridge deck is carried 

out under stochastic traffic condition by use of the proposed damage indexes. 

(3) To develop a nonparametric Bayesian mixture model that allows the model complexity 

automatically adapts to the multimodal structural response with the capability to joint 

consideration of parametric and model order uncertainties. The nonparametric approach 

stands as an improvement over the parametric counterpart. Dirichlet process prior is 

adopted in this nonparametric mixture model. Inference on infinite-dimensional parameter 

space is pursued by using the MCMC techniques. Convergence diagnosis is needed to 

check the convergence of simulations within chains and model orders. 

(4) To conduct long-term reliability-based assessment of the in-service Tsing Ma Bridge by 

using two Bayesian mixture models respectively with consideration of parametric and 

model order uncertainties. Temperature-induced stress response is eliminated from the raw 

signal to obtain the live load effect due to vehicle, train and normal wind. Probability 

density functions (PDF) of the live load effect are established using the Bayesian mixture 

models. A conditional reliability index is formulated to not only account for aleatory 

uncertainty but also epistemic uncertainty arsing from multimodal stress response. The 

conditional reliability index can be updated with the availability of consecutive monitoring 

data. 
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1.3 THESIS LAYOUT 

A systematic and coherent research is conducted in this thesis with two important topics being 

covered, i.e. damage detection and reliability assessment, which fall within the engineering 

practice of the condition assessment of long-span bridges. Innovative Bayesian mixture models 

are developed for probabilistic modelling of multimodal structural responses under modelling 

uncertainties. Seven chapters are included in the thesis with the content layout being as follows. 

Chapter 1 serves as an introduction with research motivation and objectives being claimed. 

Chapter 2 presents a comprehensive literature review on key issues studied in this thesis. First, 

topics on structural condition assessment are widely reviewed. General concepts are introduced 

together with current technical trends. Damage detection methods, from vibration- to static-

based approaches, are critically discussed. Reliability assessment of existing structures is then 

reviewed with emphasis on making use of health monitoring data. Second, the Bayesian 

methods applied in civil engineering are briefly discussed, including model updating, damage 

identification, uncertainty quantification and reliability analysis. Lastly, theory and application 

of mixture models are reviewed ranging from non-Bayesian to Bayesian perspective. 

Chapter 3 proposes the parametric Bayesian mixture model, specifically the finite Gaussian 

mixture model, to deal with the multimodal structural response with consideration of 

parametric uncertainty. In this parametric model, the conjugate priors are adopted with the 

analytical form of full conditional posteriors being derived for the mixture parameters. A class 

of Markov chain Monte Carlo based simulation techniques, namely the Gibbs sampler, is used 
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to realise the joint posterior of the mixture parameters. A quantitative convergence diagnosis 

strategy is proposed to ensure the global convergence of the simulation. A Bayes factor based 

approach is developed to optimally determined the model order. Effectiveness of the parametric 

Bayesian mixture model is validated based on artificial mixture data sets. 

Chapter 4 presents the damage detection of the in-service Tsing Ma Bridge by using the neutral 

axis position based method. A sensitivity analysis based on FEM is conducted to first gain 

insight into the variation of neutral axis position due to moving loads on multiple traffic lanes 

in a deterministic sense. Neutral axis positions of bridge deck under multi-lane stochastic traffic 

flow are predicted based on monitoring and simulated stress responses using the parametric 

Bayesian mixture model respectively. Two damage indexes, i.e. the NA change ratio and 

cumulative NA change ratio, are proposed for online damage detection using monitoring stress 

responses. Postulated single- and multiple-damage cases on the bridge deck are studied to 

testify the feasibility of the new method. 

Chapter 5 proposes the nonparametric Bayesian mixture model, specifically the Dirichlet 

process mixture model, which allows the model complexity to automatically fit the multimodal 

structural response with the capability to joint consideration of parametric and model order 

uncertainties. In this nonparametric model, the clustering property of the Dirichlet process 

along with the mechanism of inference on infinite-dimensional parameter space are briefly 

introduced. The sampling form of the Dirichlet process mixture model is derived based on the 

stick-breaking construction. To avoid low efficiency of direct sampling from the conditional 
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posteriors, the collapsed Gibbs sampler is devised to pursue the posterior mixture density 

samples. An extended version of the quantitative convergence diagnosis strategy is proposed 

to assess the convergence of simulations within both chains and model orders. Effectiveness of 

the DPM model is verified through the demonstration on the modelling of the trimodal data set. 

A comprehensive comparison study is given to investigate the performance of two Bayesian 

models in terms of model complexity, goodness-of-fit, uncertainty characterisation and 

computational demands. 

Chapter 6 presents the long-term reliability assessment of the in-service Tsing Ma Bridge 

using two Bayesian mixture models respectively with consideration of parametric and model 

order uncertainties. Statistical analysis of the monitoring stress responses on the bridge deck is 

conducted with the live load effect being extracted after the elimination of temperature-induced 

strain. PDFs of the live load effect with multimodality are estimated by means of the mixture 

models. A new concept of conditional reliability index based on first-order reliability method 

is proposed to not only account for aleatory uncertainty but also epistemic uncertainty arsing 

from multimodal stress response. Influence of uncertain mixture parameters on the reliability 

estimate is investigated. Bayesian updating of one-year reliability of the bridge deck is carried 

out based on the accumulation of monitoring data to render a more persuasive assessment result. 

Chapter 7 summarises the key findings of the Ph.D. study and offers some views on SHM-

based condition assessment of long-span bridge. Limitations and future research directions are 

highlighted in the meantime. 





-13- 

CHAPTER 2  

LITERATURE REVIEW 

2.1 STRUCTURAL CONDITION ASSESSMENT 

2.1.1 General Concepts 

Condition assessment is a process of measuring and evaluating the healthy status of in-service 

civil infrastructure with the ultimate goal to predict the life-cycle structural performance (Aktan 

et al., 1996; Aktan et al., 1997). Through the process of condition assessment, (1) structural 

deterioration or damage signs such as cracks, corrosion, voids and de-bonding, can be collected 

to evaluate the current structural integrity in a direct manner; and (2) structural behaviours such 

as strain, displacement, acceleration and settlement, can be measured to reflect the safety 

reserve in an indirect way (Catbas and Aktan, 2002). Immediate remedial actions are triggered 

if severe damages or aging of the structure are observed. Popular and practical means engaged 

in infrastructure assessment include but not limited to (1) visual inspection; (2) non-destructive 

testing; (3) controlled load testing; and (4) instrumented long-term structural health monitoring 

(SHM) system. 

Visual inspection, standing as a simple and direct tool, is commonly accepted in national 

standards and regulations of bridge inspection and evaluation among many countries 

(AASHTO, 2011; Ministry of Transport of the People's Republic of China, 2011; FHWA, 2012; 
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The Highways Agency, 2017). Combined with predetermined ranking system, visible bridge 

components are classified into different grades of condition according to their physical 

appearance. Rating of global bridge system is conducted based on the grades of substructures. 

Obviously, the conventional visual inspection unavoidable contains subjective descriptions of 

the bridge status by individual inspectors, leading to possible difference in assessment results. 

Meanwhile, it is a time-consuming and labour-intensive work especially for network-wide 

bridges. Some invisible defects, such as voids and de-bonding embedded in the concrete, can 

hardly be found and recorded in this way. 

Non-destructive testing such as ultrasonic guided waves, infrared thermography, X-ray, and 

eddy current techniques are rapidly developed over the past several decades and have reached 

to a mature stage for commercial application (Auld and Moulder, 1999; McCann and Forde, 

2001; Drinkwater and Wilcox, 2006; Bagavathiappan et al., 2013). These techniques serve as 

efficient tools for local damage characterisation with the extent and severity of damage can be 

satisfactorily measured. However, it is required the prior knowledge of the existence and 

precise location of damage which cannot be guaranteed for most scenarios in civil structures. 

Implementation of non-destructive test is still time-consuming and expensive. 

Controlled load testing is another standard procedure for carrying-capacity evaluation. By 

assigning prescribed loadings on the structure, typically a series of trucks with known weights, 

the static and dynamic responses of a bridge can be ideally captured by field measurements. 

Loading and response information are together used to infer the bridge performance. A barrier 
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to apply this method is the requirement of temporary suspension of the traffic operation on the 

bridge during the test, which is usually unacceptable for management authorities. Take the Kap 

Shui Mun Bridge as an example, the unexpected close of the bridge for nearly two hours in 

2015 leads to chaos of transportation between the Hong Kong International Airport and city 

centre (Lau et al., 2015). Time-consuming and high cost are drawbacks of the controlled load 

test as well. 

The SHM technology has been witnessed a great progress for the past two decades with the 

advancement in sensing, signal processing, pattern recognition and machine learning 

techniques. There are a surge of research on SHM technology for civil infrastructure across 

different countries, indicating remarkable achievements of such technique (Pines and Aktan, 

2002; Yun et al., 2003; Ko and Ni, 2005; Brownjohn, 2007; Ni et al., 2009; Ou and Li, 2010; 

Fujino and Siringoringo, 2011; Li and Hao, 2016). By deploying permanent sensing devices 

on critical parts of a bridge, the long-term SHM system is capable of acquiring abundant 

amount of information about the external loadings, structural responses and environmental 

effects of the in-service bridge in an automatic manner. Local and global structural behaviours 

under operational environment are well characterised by the historical monitoring data. Early 

warning of anomalies in loads/responses and possible detection of damage/deterioration can be 

achieved through an efficient and timely way (Ko and Ni, 2005). 

Apparently, instrumentation with automatic SHM system acts as a beneficial complement to 

the bridge inspection that one does not necessary to cease transportation service. A strategy of 
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integrating long-term SHM data into condition assessment is expected to achieve objective and 

quantitative health index of the structure and facilitate preventive and condition-based life-

cycle maintenance scheme. Hence, the SHM-based condition diagnosis and prognosis are 

recognized as a promising method amongst aforementioned conventional approaches. In view 

of this, the studies described in this thesis fall within the context of SHM. 

2.1.2 Vibration-based Methods 

Structural identification using dynamic properties for the purpose of condition evaluation 

became popular since the 1990s because of the rapid development of vibration test techniques 

(Aktan et al., 1997). The fundamental principle behind vibration-based methods is that the 

damage-induced changes in the physical properties, i.e. mass, damping and stiffness, will cause 

detectable changes in modal parameters, i.e. natural frequencies, modal damping and mode 

shapes. Therefore, damage or condition of a structure can be inferred by the changes in dynamic 

properties. Well-known damage signatures derived from dynamic characteristics include 

flexibility matrix (Pandey and Biswas, 1994), modal assurance criterion (Heylen et al., 1997), 

coordinate modal assurance criterion (Heylen et al., 1997), modal strain energy (Shi et al., 

1998), and frequency response function (Maia et al., 2003). A significant amount of literature 

has been published in the scope of damage identification using vibration characteristics 

(Salawu, 1997; Doebling et al., 1998; Farrar et al., 2001; Sohn et al., 2003; Carden and Fanning, 

2004; Alvandi and Cremona, 2006; Fan and Qiao, 2011). 

Although vibration-based methods are prevailing in existing literature, damage identification 
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of a long-span bridge by means of dynamic characteristics faces substantial difficulties. First, 

natural frequencies and mode shapes are global properties of a structure, which may be 

insensitive to local minor damage or degradation. From a practitioner’s point of view, higher 

structural modes associated with local responses are often difficult to measure in field test 

(Doebling et al., 1998). Second, previous studies have acknowledged that structural dynamic 

properties can be significantly influenced by the ambient environment variability (Farrar et al., 

1994; Peeters and De Roeck, 2001; Sohn, 2006; Deraemaeker et al., 2008; Xia et al., 2012c). 

Temperature and traffic volume can give rise to 5 to 10% variation in average of bridge’s modal 

parameters (Figueiredo et al., 2014). Changes in vibration characteristics caused by the 

environmental and operational variability might mask subtle changes caused by the damage, 

leading to invalid of the vibration-based detection techniques. Figueiredo et al. (2014) points 

out that separation of damage-induced structural responses from the varying environmental 

condition is the main challenge to transfer SHM technology from research to practice. 

2.1.3 Static-based Methods 

In contrast to vibration-based approach, the static-based methods receive rare attention among 

the research community so far. In fact, it is believed that structural static responses such as 

displacement, tilt, strain and their representative derivatives offer a more intuitional measure 

on the local stiffness or strength of a structure than the dynamic counterparts. Early research 

recognised that the static test data are suitable for damage detection (Sanayei and Onipede, 

1991; Hjelmstad and Shin, 1997). However, it is costly and impractical to implement static test 
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on an existing complex structure. Some researchers suggested the damage-induced dead load 

redistribution in structural elements, which is essential static feature, can be measured to 

indicate damage location and severity (Zhao and Shenton III, 2005; Hua et al., 2009). It is often 

required to deploy strain sensors in the erection stage to capture the dead load redistribution 

and the strain measurements are also vulnerable to uncertainties arising from thermal effect. 

Recently, Li and Hao (2015) investigated the use of relative displacement measurements to 

detect damage of shear connectors by using the continuous wavelet transform and Hilbert-

Huang transform. He et al. (2017) proposed a two-stage method to quantify damages by use of 

quasi-static moving load induced displacement response. Although these studies demonstrate 

certain degree of success in damage identification in laboratory setting, further research efforts 

are still needed on damage detection of long-span bridge using static response especially under 

daily normal traffic condition. 

A unit influence line (UIL) represents the variation of a particular response at a given location 

when a unit concentrated force moves along the bridge (Zaurin and Catbas, 2009). Because the 

influence line itself is an intrinsic static characteristic of a structure, it is proposed to be a 

condition index when measured responses can be retrieved from passing vehicles if the weigh-

in-motion (WIM) device is available (Catbas and Aktan, 2002). Chen et al. (2014) proposed a 

mathematical regularization method to extract the stress influence lines (SIL) of bridge 

components based on measured train information and train-induced stress responses. They 

demonstrated the identified SILs offer a promising real-time technique for damage localization 

of in-service suspension bridge instrumented with SHM system. Later, Chen et al. (2016) 
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developed the SIL identification method by integrating the least squares solution and weighted 

moving average technique. Recently, an influence line based damage detection method using 

the long-gauge fibre Bragg grating sensor was proposed by Chen et al. (2019), in which the 

identification of damage location and extent of a bridge are achieved under stochastic traffic 

flow. Although the concept of UIL is straightforward, identification of UIL based on field 

measurements of structural responses and corresponding axle weights and axle positions is an 

ill-conditioned inverse equation that one inevitably faces numerical instability and non-unique 

solution problems. 

The neutral axis of beam-like structure passes across the geometrical centroid of the cross 

section under pure bending, leading itself to be a cross-sectional property related physical 

parameter. Questionable movement of the neutral axis position can be a sign of abnormal 

change of cross-sectional property, i.e., damage. The neutral axis position can be served as 

damage indictor for flexural behaviour dominated structural members. DeWolf and his co-

workers evaluated the composite action of a steel-concrete simply supported girder bridge by 

tracking the neutral axis position during the passage of normal truck traffic (Chakraborty and 

DeWolf, 2006; Cardini and DeWolf, 2009). Although no change of composite action was found 

in their study, they point out that monitoring of neutral axis position can provide valuable 

information to condition assessment of the bridge deck. Ni and his co-workers proposed a 

Kalman filter estimator to locate the neutral axis position using strain measurement data (Ni et 

al., 2012; Xia et al., 2012b). The capability of the Kalman filter estimator for consistently 

locating the neutral axis position was verified under varying traffic load patterns. Crack 
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detection of a scaled bridge deck model was successfully detected using the neutral axis 

position as the damage index. Sigurdardottir and Glisic (2013, 2014) investigated the uncertain 

factors other than damage that would adversely affect the estimation of neutral axis location of 

a girder. They recognise that neutral axis position can act as a damage indicator only if the 

uncertainties associated with its localization can be well quantified. Recently, the neutral axis 

position was also used to diagnose the condition of wind-turbine towers (Soman et al., 2016) 

and concrete box girder bridges (Xia et al., 2018). A state-of-the-art review on neutral axis 

position for structural health monitoring can be found in Sigurdardottir and Glisic (2015). 

2.1.4 Reliability-based Approach 

Reliability-based structural condition assessment has attracted plenty of attention during the 

past two decades due to the capability of accommodating stochastic nature in both load- and 

resistance-related parameters. Inspired by the concept of reliability principles for design, 

Ellingwood and his co-workers conducted pioneer works on implementing assessment for 

existing structures in the reliability framework (Mori and Ellingwood, 1993; Ellingwood, 1996; 

Zheng and Ellingwood, 1998). The inherent uncertainty in loading condition, structural 

strength and deterioration was highlighted, and time-dependent reliability analysis was 

proposed to determine the condition of ageing concrete structures. Almost the same time, 

Enright and Frangopol (1998, 1999b) proposed the time-variant series system reliability 

approach to investigate the reliability of reinforced concrete girder bridges subject to 

environmental attack. Several system reliability models were considered, and the 
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corresponding reliability estimates were compared. Later, Imai and Frangopol (2001) 

conducted reliability assessment of a suspension bridge in Japan with considering geometrical 

nonlinearity. Practical implementation of reliability-based assessment on European road and 

rail bridges was introduced by Enevoldsen (2011). In contrast with deterministic methods, the 

reliability approach could provide more accurate assessment with which rehabilitation cost 

could be minimized. 

2.1.5 Integration with SHM Data 

Site-specific observational data of load- and resistance-related parameters can help to improve 

the accuracy of reliability assessment since these parameters are both time- and spatial-variant. 

Measurement data acquired from SHM system, which represents the authentic measure of 

structural response and ambient factors, are ideal information for aiding reliability-based 

assessment. Bhattacharya et al. (2005) used site-specific in-service strain response data to 

reliability evaluation of bridges with the consideration of measurement noise and modelling 

uncertainty. Catbas et al. (2008) presented the reliability analysis for the main truss components 

as well as the entire structural system of a long span truss bridge in the U.S. by using monitoring 

data. A key finding was that the system reliability was significantly affected by the 

temperature-induced strain variation. Hosser et al. (2008) developed a framework for 

reliability-based system assessment using data from SHM system. A substitute structure, which 

could be deemed as large-scale model, was used to verify the proposed framework. Frangopol 

and his colleagues contributed a number of papers on the topic of monitoring-based condition 
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assessment (Frangopol et al., 2008; Liu et al., 2009a, 2009b; Messervey et al., 2011; Okasha et 

al., 2012; Saydam and Frangopol, 2013). The efficient utilization of structural monitoring data 

in reliability assessment process as well as the development of prediction models was discussed 

in Frangopol et al. (2008), and the Lehigh River Bridge was taken as the illustrative example. 

Liu et al. (2009a) developed the limited state equation associated with structural component 

strain measurements with the consideration of condition variations. Later, the approach of 

bridge component reliability analysis was extended to bridge system reliability level with a 

comprehensive sensitivity study carried out (Liu et al., 2009b). Messervey et al. (2011) applied 

extreme value distribution to enhance the assessment and performance prediction of bridges by 

using monitoring live load data. Okasha et al. (2012) evaluated lifetime reliability of ageing 

bridges with automated finite element model updating techniques. The resistance parameters 

of the structure were updated by using monitoring strain data acquired from crawl tests. 

Saydam and Frangopol (2013) investigated the error in system reliability index calculated by 

first-order second-moment method when load effect and structural resistance were not normal 

or lognormal distributions. 

Taking the Tsing Ma Bridge in Hong Kong as the testbed, Ni and his co-workers conducted 

pioneer works on reliability assessment of in-service long suspension bridge using long-term 

monitoring data (Ni et al., 2010; Ni et al., 2011b; Ni et al., 2011c; Xia et al., 2012a). Analytical 

models of stress spectrum under multi-load condition were derived by use of finite mixture 

distributions in conjunction with a hybrid mixture parameter estimation algorithm (Ni et al., 

2011c). Based on long-term strain monitoring data, the fatigue life and reliability assessment 
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at fatigue-susceptible locations were carried out by using the formulated probabilistic model of 

the hot spot stress (Ni et al., 2010). A wavelet multiresolution decomposition method is 

proposed to extract live-load effects from the raw strain measurements with the recognition 

that temperature-induced strain has been mostly released by the deck movement at the 

expansion joint (Ni et al., 2011b). Due to the multiple types of loads acting on the bridge, 

including railway traffic, highway traffic and wind, the in-service monitoring stress responses 

exhibit significant multimodality, which cannot be adequately captured by conventional 

unimodal distribution models. Xia et al. (2012a) used the Weibull mixture distribution model 

to characterize the multimodal stress, in which the expectation maximization algorithm in 

conjunction with the Akaike information criterion is designed to pursue the optimal model 

selection and mixture parameter estimation. Estimated probability density functions (PDF) are 

further utilised to derive reliability indexes of truss members of the Tsing Ma Bridge. 

2.2 BAYESIAN METHODS IN CIVIL ENGINEERING 

2.2.1 Bayesian Perspective 

In the scope of statistics, there exists two schools of thought, namely the Frequentist and the 

Bayesian perspectives. Incessant debate on these two philosophies is ongoing. The 

fundamental difference between the Frequentist and the Bayesian approaches starts from the 

definition on probability of an event. The Frequentist approach treats probability as the limit 

of frequency of an event when large number of trials are conducted. On the contrary, the 
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Bayesian approach allows to define probability of an event in which random experiment cannot 

be designed (Yuen, 2010). It extends the applicability of probability to a more general degree, 

in which people often refer to plausibility. The building block of the Bayesian statistics is the 

well-known Bayes’ Theorem 

 𝑝(𝜃|𝑦) =
𝑝(𝜃)𝑝(𝑦|𝜃)

𝑝(𝑦)
 (2.1) 

where 𝑝(𝜃|𝑦) is the posterior distribution of the unknown parameter 𝜃, 𝑝(𝜃) is the prior 

distribution of 𝜃 before any new data are observed, 𝑦 are the new observations of variable 

of interest, 𝑝(𝑦|𝜃)  is the likelihood function, and 𝑝(𝑦) = ∫𝑝(𝜃)𝑝(𝑦|𝜃) d𝜃  is the 

normalized constant which does not depend on 𝜃. The Bayesian statistical conclusion about a 

parameter 𝜃  is made in terms of probability statement, namely assigning probability 

distribution for 𝜃, and the probability statement is conditional on the observed values of 𝑦. 

Consequently, model parameters are usually treated as random variables in Bayesian inference 

rather than fixed quantities in classical statistics. On the basis of statistical data analysis, the 

intrinsic characteristic of Bayesian methods is the explicit adoption of probability for 

quantification of uncertainty in inference (Gelman et al., 2014). It is recognised that the 

modelling and parametric uncertainties widely encountered in civil engineering can be 

explicitly quantified by using the Bayesian probability statements. 

2.2.2 Model Updating, Damage Identification and Uncertainty 

Quantification 

In the late 1990s, Beck and Katafygiotis (1998) proposed a general Bayesian statistical 
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framework for updating structural model and associated uncertainties using dynamic test data. 

In their approach, both accurate response predictions and the assessment of this accuracy were 

given within a Bayesian approach. The issue of identifiability of the model parameters was 

investigated by Katafygiotis and Beck (1998). Later, Katafygiotis et al. (1998) discussed the 

treatment of unidentifiable case and proposed an efficient approximate representation for the 

posterior PDF of the model parameters. The feasibility of applying Bayesian probabilistic 

approach to SHM was investigated in Vanik et al. (2000) with introducing a novel damage 

measure considering time variation. 

Sohn and Law (1997) proposed a Bayesian probabilistic damage detection approach to identify 

the most likely damage location and its extent by using a branch-and-bound search scheme. 

The measurement noise and modelling error between the structure and the analytical model 

were explicitly considered within the Bayesian framework. The approach was further applied 

to predict the location of plastic hinge deformation using the experimental data obtained from 

the vibration tests of a reinforced-concrete bridge column (Sohn and Law, 2000). Nichols et al. 

(2010) used the Bayesian approach to identify both linear and nonlinear parameters of a 

structural system with free-decay vibrations and later to detect the delamination of a composite 

beam. Figueiredo et al. (2014) proposed a Bayesian-based algorithm to identify structural 

condition and damage by using daily response data from a real bridge in Switzerland. 

Igusa et al. (2002) investigated the effects of aleatory and epistemic uncertainty on design and 

analysis of structure system using the Bayesian techniques. The influence of multi model 
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uncertainties was explored by the Bayesian hierarchical analysis. Goller and Schueller (2011) 

investigated the role of model uncertainties, i.e. the discrepancy between finite element model 

and real structure, within the Bayesian updating procedure. Zhang et al. (2011) presents a 

comprehensive Bayesian approach for structural model updating with consideration of errors 

from different sources including measurement noise, linearization error, and modelling errors 

due to limited predictability. 

Au (2011) developed a fast Bayesian FFT method for ambient modal identification with 

separated modes, in which the efficient computation of the posterior most probable modal 

parameters and their covariance matrix is achieved. Lam et al. (2014) proposed a step-by-step 

modification technique for the selection of a representative model class within the Bayesian 

model updating framework. Yuen and Mu (2015) proposed a Bayesian real-time system 

identification algorithm using response measurement, in which the model class selection and 

parametric identification can be simultaneously implemented. It can be seen that the studies on 

Bayesian methods in civil engineering during the past twenty years are enthusiastic, ranging 

from model updating, damage identification to uncertainty quantification. A comprehensive 

study on the Bayesian methods and applications can be referred to the book of Yuen (2010). 

2.2.3 Bayesian-based Reliability 

Incorporating Bayesian analysis with reliability-based condition assessment for uncertain 

structural and statistical models was first introduced by Der Kiureghian (1989, 1991), in which 

a new reliability index was proposed to account for model uncertainty due to formulation 
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inexactness, measurement error and insufficient data. To evaluate the new measure of structural 

safety, first-order reliability methods and their derivations were proposed to compute the 

probability distribution or variance of the safety measure. Later, the measure of reliability that 

incorporated parameter uncertainty was termed the ‘predictive reliability index’, which was a 

similar concept with the Bayesian predictive distribution (Der Kiureghian, 2008). The proposed 

Bayesian approach provided measure of the uncertainty inherent in the estimate of reliability 

index and the failure probability, which arise from parameter uncertainty. Two types of 

uncertainty, i.e. aleatory or epistemic uncertainty, in modelling and their different effects for 

risk and reliability analysis were discussed in Der Kiureghian and Ditlevsen (2009). A concept 

of robust reliability with the consideration of uncertainties from structural modelling was 

discussed in Papadimitriou et al. (2001). Assessment of the robust reliability is updated based 

on dynamic test data by the use of a Bayesian system identification methodology integrated 

with probabilistic structural analysis tools. Zhang and Mahadevan (2000) proposed a Bayesian 

procedure to assess the modelling uncertainty including the uncertainty in mechanical and 

statistical model selection and the uncertainty in distribution parameters with an application in 

fatigue reliability analysis. 

Computation of small failure probability encountered in reliability analysis of structural system 

has been widely investigated during the past decades. Based on the Markov simulation 

algorithm, Au and Beck (1999) proposed an adaptive importance sampling (IS) scheme to 

compute the multi-dimensional integrals in reliability analysis. A subset simulation (SS) 

approach was introduced by Au and Beck (2001), in which the failure probability is replaced 



Chapter 2 Literature Review 

-28- 

by larger conditional failure probabilities with the aid of introducing intermediate failure events. 

The conditional probabilities can be estimated efficiently by the Markov chain Monte Carlo 

(MCMC) simulation technique. In order to evaluate the probability centred in a small region 

with high dimension parameter space, Beck and Au (2002) utilized an adaptive MCMC 

simulation approach with a sequence of intermediate probability densities to gradually portray 

the desired high dimension probability region. 

Combination of prior knowledge or expert judgement in engineering decision are desired and 

it can be rationally realized by the Bayesian manner. Enright and Frangopol (1999a) used 

information from inspection results as the prior knowledge to better predict future bridge 

conditions through Bayesian updating. The approach allowed accounting for inspection results 

in the quantitative assessment of bridge condition and showed how to incorporate quantitative 

information into bridge system and component condition prediction. Later, the incorporation 

of historical monitoring extreme data in the reliability assessment of an existing bridge in the 

U.S. with Bayesian method was again illustrated in Strauss et al. (2008). Recently, Zhu and 

Frangopol (2013) presented an approach for reducing the uncertainty in the performance 

assessment of ship structures by updating the wave-induced load effects with the monitoring 

data. Bayesian updating was performed to estimate the parameters in the Rayleigh and Type I 

extreme value distributions which were used to model wave-induced responses. Garbatov and 

Soares (2002) adopted a Bayesian approach to update parameters of probability distribution 

governing the reliability assessment of maintained floating structures, where the information 

from inspections was used. 
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A number of researches on the Bayesian network for structural reliability analysis were 

emerged recently, where the Bayesian network is efficient in representing and evaluating 

complex probabilistic dependence broadly existed in infrastructure system. Mahadevan et al. 

(2001) applied Bayesian networks to system reliability reassessment considering multi failure 

sequences and correlations between component-level limit states. A framed structure was 

analysed to verify the proposed method. Straub and Der Kiureghian (2010a, 2010b) proposed 

the enhanced Bayesian network method combined with reliability methods to efficiently 

compute the probabilities of rare events in complex systems in which information evolved in 

time. The application included the assessment of the life-cycle reliability of a structural system, 

the optimization of a decision on performing measurements, and the risk assessment subject to 

natural hazards and deterioration. Rafiq et al. (2015) developed a condition-based time-

dependent deterioration modelling method at bridge group level using Bayesian network. 

2.3 MIXTURE MODELS 

2.3.1 Non-Bayesian Mixture Model 

Generally, the standard distribution models such as the normal, lognormal, Weibull and 

Gumbel distribution models are widely used in describing the statistical characteristics of load- 

and resistance-related parameters (Catbas et al., 2008; Frangopol et al., 2008; Liu et al., 2009a). 

These unimodal distribution models, however, may fail to depict some complicated 

distributional shapes such as multimodality, skewness, or asymmetry arising from real-world 
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SHM data. For example, Enright and OBrien (2013) reported that the gross vehicle weights 

(GVW) and wheelbase data derived from WIM system in European bridges tended to display 

two peaks, leading to bimodal distributional curves. It indicates two classes of vehicles are 

predominant in the traffic volume. Similar multimodal features are also found in the vehicle 

speed data (Park et al., 2010). In recognising that heterogeneous populations exist in 

monitoring data, it is desirable to find an analytical distribution model to characterise such 

underlying statistical nature. 

Mixture modelling technique is deemed as an ideal solution with which aforementioned 

random phenomena can be favourably captured. The PDF of a finite mixture distribution model 

can be expressed as 

 𝑝(𝑦|𝜃) =∑𝜔𝑗𝑓𝑗(𝑦|𝜃)

𝐽

𝑗=1

 (2.2) 

where 𝑦 is the random variable arising from the finite mixture distribution, 𝑓𝑗(𝑦|𝜃) is the 

𝑗th component density indexed by parameter 𝜃, 𝜔𝑗  denotes the mixing weight associated 

with the 𝑗th component (0 ≤ 𝜔𝑗 ≤ 1 and ∑ 𝜔𝑗𝑗 = 1) and 𝐽 is the number of components 

(mixture model order). Through a finite number of weighted standard component densities (e.g. 

Gaussian component), mixture distribution models can approach various irregular density 

shapes. Over the past decade, the successful applications of mixture models in statistical 

analysis of astronomy, biology, economics and sociology have proven its effectiveness 

(McLachlan and Peel, 2000; Frühwirth-Schnatter, 2006). In the context of SHM, researchers 

have made attempts to utilise the finite mixture distributions to model the real data sets with 
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heterogeneity. Nair and Kiremidjian (2006) applied the Gaussian mixture distribution to model 

the group-shaped vibration signals for damage identification of a benchmark structure. This 

work showed that the change of number of mixture groups could be regarded as an indicator 

for damage occurrence, while damage extent could be measured by the Mahalanobis Distance 

between the questionable mixture and the baseline mixture. A similar study by Qiu et al. (2014) 

showed that Gaussian mixture distribution was able to describe the dispersed Lamb wave 

feature vectors. By adding new monitoring signals, damage progress of an aircraft wing spar 

could be evaluated through the cumulative shifting trend of the mixture contours. Farhidzadeh 

et al. (2013) modelled two bunch of acoustic emission parameters by a two-component 

Gaussian mixture distribution for performing crack mode classification. The experiment 

showed that the mixture model was able to detect different stages of crack growth by observing 

the change of mixture distribution shapes. Recently, an adaptive guided-wave Gaussian mixture 

model-based damage monitoring method is proposed for health monitoring of aircraft 

structures under time-varying conditions (Qiu et al., 2017). These meaningful researches 

broaden the potential values of the finite mixture models in the data-driven SHM methodology. 

2.3.2 Parametric Bayesian Mixture Model 

Regarding to parameter estimation and model order selection, the main task of finite mixture 

modelling, the existing literature mainly relies on the frequentist statistic theory (Nair and 

Kiremidjian, 2006; Farhidzadeh et al., 2013; Qiu et al., 2014). Based on the available training 

data, the mixture parameters are inferred through the maximum likelihood path (e.g. the 
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expectation maximization algorithm) with the single optimal parameters given. Nevertheless, 

the drawback of the conventional frequentist approach is that the parametric uncertainty arising 

from limited observational data cannot be explicitly considered under such circumstances. 

The Bayesian approach for mixture modelling has some unique merits in both theoretical and 

practical aspects. As being an incomplete data problem, the heterogeneous data are usually 

allocated with different component indicators so as to specify the mixture component from 

which each particular observation is drawn, say giving an “identity” to each observation 

(Dempster et al., 1977). Thus, the mixture model becomes a conditional-probability-based 

structure which can be best tackled in a Bayesian manner (Gelman et al., 2014). An intuitive 

formulation of the parametric Bayesian mixture model consisting of 𝐽  components is as 

follows 

 

𝜔|𝛼~𝐷𝑖𝑟(𝛼/𝐽,⋯ , 𝛼/𝐽) 𝜃𝑗
∗|𝐻~𝐻 

(2.3) 
𝑧𝑖|𝜔~𝑀𝑢𝑙𝑡(𝜔) 𝑦𝑖|𝑧𝑖, 𝜃𝑗

∗~𝑓𝑗(𝜃𝑧𝑖
∗ ) 

where 𝜔 is the mixing weight, 𝛼 is the hyperparameter of the Dirichlet prior, 𝐻 is the prior 

distribtion over component parameters 𝜃𝑗∗ , 𝑧𝑖  is the component assignment indicator, and 

𝑓𝑗(𝜃) is the component density parametrised by 𝜃. Graphical illustration of the finite mixture 

model is given in Figure 2.1. 

An apperant distinction from frequentist counterpart is that the Bayesian inference views the 

unkown mixture parameters as random variables rather than fixed quantities. By selecting 

appropriate conjugate prior for the mixture parameters, the joint posterior can always be 
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approximated by the MCMC simulation techniques, with which not only the most plausible 

mixture parameters but also the associated uncertain bounds can be obtained (Lavine and West, 

1992; Diebolt and Robert, 1994; Richardson and Green, 1997). In this sense, the Bayesian 

analysis of mixture model can be routinely imitated and repeated with the aid of MCMC, 

avioding complex high-demesional intergrals. Figueiredo et al. (2014) recently proposed a 

Bayesian-based procedure making use of the Markov chain Monte Carlo algorithm to cluster 

structural responses of bridges by accounting for eventual multimodality and heterogeneity of 

SHM data distribution. As compared to the widely accepted frequentist approach, there are still 

few demonstrations of Bayesian treatment for the SHM-based mixture modelling to date. 

 
Figure 2.1 Graphical illustration of parametric Bayesian mixture model 

2.3.3 Nonparametric Bayesian Mixture Model 

When interpreting the training data via parametric models, certain assumptions have been made 

about the underlying data-generating mechanism. For example, one may raise the hypothesis 

that samples are drawn from a distribution family indexed with a set of finite-dimensional 
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parameters. These probabilistic assumptions, however, are often hard to validate based on the 

observational data such as in-situ measurements. The nonparametric (or semiparametric) 

approach has long been discussed in both theoretical and practical aspects as it offers a way 

that one can avoid arbitrary and possibly unverifiable assumptions in the parametric approach 

(Ghosal and Van der Vaart, 2017). The nonparametric approach generally interprets training 

data over an infinite-dimensional parameter space with no need of specific parametric 

assumptions. A simple demonstration of the nonparametric approach can be the Parzen window 

method to density estimation, in which Gaussian density is placed at each observation. 

Motivating by the coherent and unified framework of the Bayesian theory, the nonparametric 

Bayesian approach arose in the 1970s and it paves a way to consider nonparametric models 

under the Bayesian framework. The Bayesian approach to nonparametric problems was 

introduced in the pioneer work of Ferguson (1973) and further refined by the works including 

Antoniak (1974), Ferguson (1983) and Lo (1984). The Dirichlet process mixture (DPM) model 

is the representative amongst Bayesian nonparametric methods, which has been widely used in 

clustering. The DPM model can be written in a mixture perspective as follows 

 

𝜔|𝛼~𝐺𝐸𝑀(𝛼) 𝜃𝑗
∗|𝐻~𝐻 

(2.4) 
𝑧𝑖|𝜔~𝑀𝑢𝑙𝑡(𝜔) 𝑦𝑖|𝑧𝑖, 𝜃𝑗

∗~𝑓𝑗(𝜃𝑧𝑖
∗ ) 

where 𝐺𝐸𝑀 is the stick-breaking construction over mixing weight 𝜔. Graphical illustration 

of the DPM model is given in Figure 2.2. 

The DPM model is a Bayesian nonparametric model that defined on an infinite-dimensional 
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parameter space (infinite number of components) and uses only a finite subset of the available 

parameters (effective components) to represent the model. Hence, the model order as measured 

by the effective number of components can freely adapt to the observational data. In this way, 

the number of components in mixture model is no longer a deterministic value but a random 

variable that can be directly inferred from the data. One can bypass the model order selection 

issue, which is usually fraught with technical difficulties. More importantly, the model order 

uncertainty in the mixture model can be assessed in the meantime. Quantification of both model 

order and parametric uncertainties of multimodal data can then be pursued. These advantages 

are desirable in data-driven SHM practice where different levels of uncertainties are of great 

concerned (Der Kiureghian, 2008; Der Kiureghian and Ditlevsen, 2009; Yuen, 2010). 

In the past decade, the Bayesian nonparametric models have been successfully demonstrated 

in a variety of research fields (Orbanz and Teh, 2010). Orbanz and Buhmann (2008) proposed 

a nonparametric Bayesian model for image segmentation, in which the number of segments is 

automatically determined. In this work, the level of resolution is controlled by the Dirichlet 

process prior, which corresponds to the number of clusters in data. Huang et al. (2012) used 

the DPM model to discover the latent cluster structure in document clustering with feature 

partition. A variational inference algorithm is adopted in the DPM modelling. Mokhtarian et al. 

(2013) investigated the reliability estimation of railway system in component level by using 

the DPM model under the situation of a lack of failure data and unknown lifetime distributions. 

Liu et al. (2017) demonstrated the application of DPM model for anomaly detection based on 

numerical data as well as vibration data collected from the chemical mechanical planarization 
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testbed. Rogers et al. (2019) proposed a Bayesian nonparametric clustering based online feature 

extraction technique to learn cluster of data without a training phase. 

 
Figure 2.2 Graphical illustration of nonparametric Bayesian mixture model 
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CHAPTER 3  

PARAMETRIC BAYESIAN MIXTURE MODEL 

3.1 INTRODUCTION 

As stated in Chapter 2, in-service large-scale bridges are normally subject to multiple types of 

live loads such as highway vehicle, railway vehicle and wind loading. These multiple types of 

loads are naturally time-varying with different load frequencies and amplitudes. Structural 

responses under the combined effect of multi-load will exhibit considerable variation both 

locally and globally, resulting to heterogeneous and multimodal data characteristics (Ni et al., 

2011b; Ni et al., 2011c; Xu and Xia, 2011). The complex data structure imposes challenges for 

response interpretation and further bridge condition assessment. This chapter presents the 

parametric Bayesian mixture model to accommodate multimodal structural responses with 

considering of parametric uncertainty. 

The parametric finite mixture models are ideal to capture the multimodal data structure. 

Through a finite number of weighted standard component densities (e.g. Gaussian component), 

the mixture distribution models can approach various irregular density shapes. Parameter 

estimation and model selection are the main tasks to finite mixture modelling. Under the 

conventional frequentist framework, the mixture (model) parameters are usually inferred 

through maximum likelihood path (e.g. the Expectation Maximization algorithm) with point 

estimation given (McLachlan and Peel, 2000). Nevertheless, modelling complicated data 
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structure with only single optimal parameters could be sometimes untenable especially with 

limited amount of monitoring data. People tend to believe in phenomena that supported by 

large number of evidences. From the perspective of decision making, it is expected that the 

accuracy of mixture parameter estimation is reported as well (in terms of variability or a 

probable interval for the location of the parameter value). Thus, one of the limitations of the 

conventional frequentist approach is that the parametric uncertainty of mixture model cannot 

be explicitly treated under such circumstances. 

Recently, the Bayesian perspective for mixture modelling is found of some unique advantages 

in both theoretical and practical ways. First, as being an incomplete data problem, the 

heterogeneous observations are usually allocated with different component indicators so as to 

specify the mixture component from which each particular observation is drawn, say giving an 

“identity” to each observation (Dempster et al., 1977). Thus, the mixture modelling becomes a 

conditional-probability-based model issue which can be best tackled in the Bayesian manner 

(Gelman et al., 2014). Second, by selecting appropriate conjugate prior distributions for the 

mixture parameters, the corresponding joint posterior distributions can always be approximated 

by Markov chain Monte Carlo (MCMC) simulation methods, with which not only the most 

plausible mixture parameters but also the associated uncertain bounds can be obtained (Lavine 

and West, 1992; Diebolt and Robert, 1994; Richardson and Green, 1997). In this sense, the 

Bayesian analysis of mixture can be routinely imitated and repeated with the aid of MCMC, 

avoiding complex high-dimensional integrals. Third, an apparent distinction from frequentist 

counterpart is that the Bayesian inference views the unknown mixture parameters (e.g. 
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Gaussian component mean and variance) as random variables rather than fixed quantities. More 

importantly, the well-recognized parametric uncertainty can be explicitly quantified, and much 

richer model information can be available. These advantages are desirable in SHM data 

analysis where different levels of uncertainties are of great concerned (Diebolt and Robert, 

1994; Der Kiureghian, 2008; Der Kiureghian and Ditlevsen, 2009; Yuen, 2010). 

This chapter presents the theoretical framework of parametric Bayesian mixture model, aiming 

at providing a new perspective for uncertainty quantification of the heterogeneous data 

acquired from SHM system. The content of this chapter is organized as follows. Section 3.2 

gives the mathematical framework of the parametric Bayesian mixture model. A MCMC-based 

algorithm is proposed to progressively reach the posterior distributions of mixture parameter. 

Section 3.3 discusses the model selection issue. The optimal number of components is 

determined by comparing the Bayes factors among the candidate models. Section 3.4 

investigates the effectiveness of the proposed method through numerical studies. The statistical 

performance of Bayesian approach is verified based on artificial mixture data sets. 

3.2 MODEL FRAMEWORK 

3.2.1 Finite Mixture Model 

The general finite mixture distribution model has a parametric probability density function 

which is the form of weighted sum of 𝐽 component densities. Let 𝑝(∙) denotes the probability 

density function of a random variable and Pr(∙) denotes the probability of an event. Consider 
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an independent random variable 𝑌 arises from the finite mixture distribution, the probability 

density function can be expressed as 

 𝑝(𝑦) =∑𝜔𝑗𝑓𝑗(𝑦)

𝐽

𝑗=1

 (3.1) 

where 𝑓𝑗(𝑦)  is the 𝑗 th component density and 𝜔𝑗  denotes the mixing weight of the 𝑗 th 

component, satisfying 0 ≤ 𝜔𝑗 ≤ 1 and ∑𝜔𝑗 = 1. Specifically, Equation (3.1) implies that an 

observation comes from the 𝑗th mixture component with a probability of 𝜔𝑗. In this study, the 

Gaussian (normal) distribution is adopted as component density, hence it becomes a finite 

Gaussian mixture model which can be expressed as 

 𝑝(𝑦;𝚯) = ∑𝜔𝑗𝑁𝑗(𝑦; 𝜇𝑗 , 𝜎𝑗
2)

𝐽

𝑗=1

 (3.2) 

where 𝚯 denotes the unknown mixture parameters comprising of the vector of mixing weights 

𝛀 = {𝜔1,⋯ , 𝜔𝐽} , vector of component means 𝛍 = {𝜇1, ⋯ , 𝜇𝐽}  and vector of component 

variances 𝚺 = {𝜎1
2, ⋯ , 𝜎𝐽

2}. The elements in the vector of unknown mixture parameters 𝚯 =

{𝜇1, ⋯ , 𝜇𝐽, 𝜎1
2, ⋯ , 𝜎𝐽

2, 𝜔1,⋯ , 𝜔𝐽} are treated as independent random variables in the Bayesian 

context that needed to be estimated. 

The difficulty in estimating the mixture model is the uncertainty of allocating observations to 

each component, say the data is incomplete as mentioned above. Therefore, the component 

indicator 𝒁𝑖 = (𝑍𝑖1, ⋯ , 𝑍𝑖𝐽) is introduced for each observation 𝑦𝑖 (𝑖 = 1,⋯ ,𝑁), where 𝑍𝑖𝑗 

is defined to be one or zero depending on whether 𝑦𝑖 comes from the 𝑗th component or not 
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 𝑍𝑖𝑗 = {
1, if the 𝑖th observation belongs to the 𝑗th component
0, otherwise                                                                              

 (3.3) 

A graphical illustration of the component indicator is depicted in Figure 3.1. Thus 𝐙𝑖 follows 

a multinomial distribution 

 𝐙𝑖~𝑀𝑢𝑙𝑡(1, 𝛀) (3.4) 

and its probability mass function (PMF) can be fully expressed as 

 𝑝(𝑍𝑖1, ⋯ , 𝑍𝑖𝐽) =
1!

0! 1!
𝜔1
𝑍𝑖1 ⋯𝜔𝐽

𝑍𝑖𝐽 = 𝜔1
𝑍𝑖1 ⋯𝜔𝐽

𝑍𝑖𝐽 (3.5) 

Once 𝐙𝑖 is sampled from the multinomial distribution, the allocation of each observation can 

be determined, therefore the Gaussian parameters of each component can be estimated 

accordingly. The overall unknown parameters in the finite Gaussian mixture model are 

 𝚯 = {𝛍, 𝚺, 𝛀} = {𝜇1, ⋯ , 𝜇𝐽, 𝜎1
2, ⋯ , 𝜎𝐽

2, 𝜔1,⋯ , 𝜔𝐽} and 
(3.6) 

 𝐙 = {𝐙1, ⋯ , 𝐙𝑁} 

 

 

Figure 3.1 Allocating observations to each component 

3.2.2 Prior Selection 

The Bayes estimation for the mixture model can be well defined when the prior distributions 

1 2 𝐽

= “Identity”

𝑦𝑖

𝑍𝑖
𝜔1

𝜔2
𝜔𝐽

⋯
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are properly selected (McLachlan and Peel, 2000). In this study, the conjugate priors on the 

mixture parameters 𝛍, 𝚺 and 𝛀 are adopted. The use of conjugate priors allows the same 

distributional types for the posteriors of model parameters. Integrals in posterior inference can 

be sidestepped by modifying the parameters of prior distribution (so-called hyperparameters). 

For mixture models, the full conditional posteriors can be explicitly derived if the conjugate 

priors are used. 

Providing that component means and variances are mutually independent over the components, 

the normal-inverse-chi-squared prior can be used for 𝜇𝑗 and 𝜎𝑗2 (Diebolt and Robert, 1994; 

Gelman et al., 2014) 

 𝜎𝑗
2~𝐼𝑛𝑣𝐶(𝜈𝑗, 𝑠𝑗

2) (3.7) 

 𝜇𝑗|𝜎𝑗
2~𝑁(𝜉𝑗, 𝜎𝑗

2/𝜅𝑗) (3.8) 

where {𝜈𝑗 , 𝑠𝑗2}  and {𝜉𝑗 , 𝜅𝑗}  are hyperparameters of scaled inverse-chi-squared density and 

normal density for 𝜎𝑗2 and 𝜇𝑗, respectively. The product of Equations (3.7) and (3.8) yields 

the joint prior distribution for (𝜇𝑗, 𝜎𝑗2) 

 

𝑝(𝜇𝑗 , 𝜎𝑗
2) = 𝑝(𝜇𝑗|𝜎𝑗

2)𝑝(𝜎𝑗
2) 

∝ 𝜎𝑗
−1(𝜎𝑗

2)−(𝜈𝑗/2+1)exp (−
𝜈𝑗𝑠𝑗

2 + 𝜅𝑗(𝜇𝑗 − 𝜉𝑗)
2

2𝜎𝑗
2 ) 

(3.9) 

The mixing weights are assumed to be independent of component means and variances. Hence, 

a suitable conjugate prior for 𝛀 is the Dirichlet distribution (McLachlan and Peel, 2000) 

 𝛀~𝐷𝑖𝑟(𝛼1,⋯ , 𝛼𝐽) (3.10) 
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and can be fully expressed as 

 𝑝(𝜔1, ⋯ , 𝜔𝐽) =
Γ(𝛼1 +⋯+ 𝛼𝐽)

Γ(𝛼1)⋯Γ(𝛼𝐽)
𝜔1
𝛼1−1⋯𝜔𝐽

𝛼𝐽−1 (3.11) 

where 𝛼𝑗’s are the hyperparameters for the Dirichlet distribution and Γ(∙) denotes the gamma 

function. 

3.2.3 Posterior Simulation Using Gibbs Sampler 

3.2.3.1 Joint posterior distribution 

After the proper selection of prior distributions, the joint posterior distribution for the mixture 

parameters can be derived using the Bayes’ theorem 

 𝑝(𝛍, 𝚺, 𝛀|𝑦) =
𝑝(𝑦|𝛍, 𝚺, 𝛀)𝑝(𝛍, 𝚺, 𝛀)

∫ 𝑝(𝑦|𝛍, 𝚺, 𝛀)𝑝(𝛍, 𝚺, 𝛀)d𝛍d𝚺d𝛀
 (3.12) 

where 𝑝(𝛍, 𝚺, 𝛀) is the joint prior distribution, 𝑝(𝑦|𝛍, 𝚺, 𝛀) is the likelihood function of the 

Gaussian mixture model with the formulation of 

 𝑝(𝑦|𝛍, 𝚺, 𝛀) =∏∑𝜔𝑗𝑁𝑗(𝑦𝑖; 𝜇𝑗, 𝜎𝑗
2)

𝐽

𝑗=1

𝑁

𝑖=1

 (3.13) 

and ∫ 𝑝(𝑦|𝛍, 𝚺, 𝛀)𝑝(𝛍, 𝚺, 𝛀)d𝛍d𝚺d𝛀 is the normalizing constant which is the integral over 

all possible values of mixture parameters. 

The direct inference of the joint posterior distribution using Equation (3.12), however, is 

computationally intractable especially when component number is large. A feasible alternative 

towards the Markov chain Monte Carlo (MCMC) methods which are devised for simulation 
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and approximation of arbitrary distributions. The basic idea behind MCMC is to generate a 

series of Markov chains from approximate distributions and then corrects the samples so that 

the limiting distributions will approach the target distributions (Robert and Casella, 1999; 

Frühwirth-Schnatter, 2006; Gelman et al., 2014). 

3.2.3.2 Full conditional posterior distribution 

The Gibbs sampler is one of the frequently used MCMC algorithm based on full conditional 

sampling. Note that the introduction of 𝐙 makes the mixture model a hierarchical conditional 

probability structure, therefore, one can effectively implement the Gibbs sampler as long as the 

full conditional posteriors can be obtained. Thus, the Gibbs sampler is chosen here to 

approximate the posterior distributions for mixture parameters. The implementation of the 

Gibbs sampler contains two major steps (Gelman et al., 2014). 

⚫ Sampling from the full conditional posterior distributions of mixture parameters 𝚯 given 

current component indicators 𝐙; and 

⚫ Sampling from the full conditional posterior distribution of the component indicators 𝐙 

given current mixture parameters 𝚯. 

The full conditional posterior distributions of the unknown parameters are derived using the 

Bayes’ theorem as follows. 

Given the component indicator 𝐙, say the allocation of observations are known at the moment, 

the Gaussian mixture model reduces to 𝐽 independent Gaussian components in which each 

pair of Gaussian parameters 𝜇𝑗 and 𝜎𝑗2 can be estimated separately and straightforward. For 
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𝑗 th component, multiplying the joint prior distribution of Equation (3.9) by the normal 

likelihood function yields the joint posterior distribution for (𝜇𝑗 , 𝜎𝑗2) 

 

𝑝(𝜇𝑗 , 𝜎𝑗
2|𝑦𝑖∈𝑗, 𝐙) ∝ 𝜎𝑗

−1(𝜎𝑗
2)

−(𝜈𝑗/2+1)
exp(−

𝜈𝑗𝑠𝑗
2 + 𝜅𝑗(𝜇𝑗 − 𝜉𝑗)

2

2𝜎𝑗
2 ) 

× (𝜎𝑗
2)−𝑛𝑗/2exp(−

1

2𝜎𝑗
2 (∑(𝑦𝑖 − �̅�𝑗)

2

𝑖∈𝑗

+ 𝑛𝑗(�̅�𝑗 − 𝜇𝑗)
2)) 

(3.14) 

where 𝑦𝑖∈𝑗 represents the observations that has been assigned to the 𝑗th component, 𝑛𝑗  is 

the number of 𝑦𝑖∈𝑗 and �̅�𝑗 is the sample mean of 𝑦𝑖∈𝑗. Again Equation (3.14) is the normal-

inverse-chi-squared distribution because of the conjugacy. The conditional posterior 

distribution of 𝜇𝑗  given 𝜎𝑗2  is proportional to the joint posterior distribution with 𝜎𝑗2 

holding constant, which is the normal density 

 𝜇𝑗|𝜎𝑗
2,𝑦𝑖∈𝑗 , 𝐙~𝑁(𝜉𝑗

∗, 𝜎𝑗
2 𝜅𝑗

∗⁄ ) 

(3.15)  with 𝜉𝑗∗ =
𝜅𝑗𝜉𝑗+𝑛𝑗�̅�𝑗

𝜅𝑗+𝑛𝑗
 and 

 𝜅𝑗
∗ = 𝜅𝑗 + 𝑛𝑗 

Then the marginal posterior distribution of 𝜎𝑗2 can be derived by integrating the joint posterior 

distribution over 𝜇𝑗, which is the scaled inverse-chi-squared density 

 𝜎𝑗
2|𝑦𝑖∈𝑗 , 𝐙~𝐼𝑛𝑣𝐶(𝜈𝑗

∗, 𝑠𝑗
2∗) 

(3.16) 

 with 𝜈𝑗∗ = 𝜈𝑗 + 𝑛𝑗  and 
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 𝑠𝑗
2∗ =

1

𝜈𝑗 + 𝑛𝑗
(𝜈𝑗𝑠𝑗

2 +∑(𝑦𝑖 − �̅�𝑗)
2

𝑖∈𝑗

+
𝜅𝑗𝑛𝑗

𝜅𝑗 + 𝑛𝑗
(�̅�𝑗 − 𝜉𝑗)

2) 

The posterior distribution of mixing weights 𝛀 are derived by use of the Bayes’ theorem 

 

𝑝(𝛀|𝑦, 𝐙) ∝ 𝑝(𝑦, 𝐙|𝛀)𝑝(𝛀) 

= 𝜔1
∑𝑍𝑖1 ⋯𝜔𝐽

∑𝑍𝑖𝐽 × 𝜔1
𝛼1−1⋯𝜔𝐽

𝛼𝐽−1 

= 𝜔1
𝑛1 ⋯𝜔𝐽

𝑛𝐽 × 𝜔1
𝛼1−1⋯𝜔𝐽

𝛼𝐽−1 

=∏𝜔
𝑗

𝛼𝑗+𝑛𝑗−1

𝐽

𝑗=1

 

(3.17) 

which has exactly the form of the Dirichlet distribution. Hence, it can be expressed as 

 𝛀|𝑦, 𝐙~𝐷𝑖𝑟(𝛼1 + 𝑛1, ⋯ , 𝛼𝐽 + 𝑛𝐽) (3.18) 

Comparing the algebraic forms of the posterior distributions to the prior distributions on 𝛍, 𝚺 

and 𝛀, it is observed that the hyperparameters of posteriors contain both the information from 

priors and the observations. 

Now we focus on the posterior distribution of the component indicator 𝐙 given the mixture 

parameters 𝚯. Equation (3.4) indicates that the distribution of 𝐙𝑖 relies on the mixing weights 

which shall be updated when mixture parameters are given. Thus, posterior distribution of 𝐙𝑖 

for observation 𝑦𝑖 can be expressed as 

 𝐙𝑖~𝑀𝑢𝑙𝑡(1, 𝝉𝑖) (3.19) 

where 𝝉𝑖 = (𝜏𝑖1,⋯ , 𝜏𝑖𝐽)  is the updated mixing weight vector. The 𝑗 th element in updated 

mixing weight vector 𝜏𝑖𝑗  represents the posterior probability that 𝑦𝑖  belongs to the 𝑗 th 
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component with 𝑦𝑖 having been observed on it. By the Bayes’ theorem, 𝜏𝑖𝑗 can be calculated 

as 

 

𝜏𝑖𝑗 = Pr(𝑍𝑖𝑗 = 1|𝑦𝑖) =
Pr(𝑦𝑖|𝑍𝑖𝑗 = 1) Pr(𝑍𝑖𝑗 = 1)

∑ Pr(𝑦𝑖|𝑍𝑖𝑗 = 1)Pr(𝑍𝑖𝑗 = 1)𝐽
𝑗=1

 

=
𝑁𝑗(𝑦𝑖; 𝜇𝑗 , 𝜎𝑗

2)𝜔𝑗

∑ 𝑁𝑗(𝑦𝑖; 𝜇𝑗 , 𝜎𝑗
2)𝜔𝑗

𝐽
𝑗=1

 

(3.20) 

Note that 𝜔𝑗 is viewed as the prior probability that 𝑦𝑖 belongs to the 𝑗th component. 

3.2.3.3 Gibbs sampler 

After obtaining the above full conditional posterior distributions for all unknown parameters, 

the procedures of Gibbs sampler for the Gaussian mixture model can be summarized as the 

flow chart of Figure 3.2. Repeating the process, say 𝑡 = 1,⋯ , 𝑇, the Gibbs sampler proceeds 

by generating random samples successively from the full conditional posterior distributions 

and replacing the conditioning parameters. Early draws of the Gibbs sampler, however, may 

still reflect the starting approximation rather than the target distributions. Convergence of the 

Gibbs sampler should be paid more attention, which is discussed in Section 3.2.4. 

After discarding a number of early draws, here refer to burn-in samples 𝐵, the 𝐺 = 𝑇 − 𝐵 

random samples can be regarded as the samples from the joint posterior distribution of mixture 

parameters. With the collection of posterior samples, the posterior distributions can be 

summarised and the moments, quantiles and other statistic metrics of interest can be obtained. 

In this study, the most plausible mixture parameters can be estimated by the posterior sample 
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means 

 𝚯⋆ = 𝐺−1∑𝚯(𝑔)

𝐺

𝑔=1

 (3.21) 

where 𝚯(𝑔) are the Gibbs outputs. The parametric uncertainty can then be characterized by 

standard deviations (SD) or credible intervals (CI) of the posterior samples. It should be noted 

that, to start the Gibbs sampler, crude estimates for mixture parameters and relative proportions 

of observations in each component are needed (e.g. 𝑛𝑗  , 𝐙  and 𝜔𝑗 ). Hence, the K-means 

algorithm (Bishop, 2006) for parameter initialization is adopted here with which the parameter 

guesses will be closer to target values and the Markov chains can converge faster. 

3.2.4 Quantitative Convergence Diagnosis 

The nature of MCMC implies that the convergence on the Markov chain is of first concerned. 

Once the chains are converged, the samples can then be representative of the target distributions, 

in our case, the posterior distributions of the parameters. Two practical tools are widely used 

to check the convergence issue. With the display of iteration plots of the simulated Markov 

chain, one can perform visual inspection on the chain to determine the convergence. It is 

commonly acceptable that convergence is reached when the chain fluctuates within a certain 

region. Thus, longer iterations are needed to examine the stationarity of the chain. Although 

the direct visual inspection is easy to implement, it can be sometimes unreliable as subjective 

monitoring of the convergence is still a puzzling task. Moreover, it fails to distinguish local and 

global convergence in some cases (Gelman et al., 2014). 
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Figure 3.2 Flow chart of Gibbs sampler for mixture model 

Another way to diagnose convergence is based on quantitative criteria. Based on the posterior 

sequences, the quantitative indicators tend to stabilize as the Markov chain convergence. 

Gelman et al. (2014) proposed the potential scale reduction factor 𝑅0, which is a good indicator 

for convergence diagnosis by comparing between- and within-sequence variances. It works 

START

Input data
𝒚 = {𝑦1, ⋯ , 𝑦𝑛}

Specifying hyperparameters

 , 𝜉𝑗 , 𝜅𝑗 , 𝜈𝑗 , 𝑠𝑗
2

Initial guess of 𝐽 and Pre-clustering
(e.g. k-means algorithm)

Gibbs iteration: For 𝑡 = 1 𝑇

Data re-assignment: For 𝑖 = 1 𝑛

Draw new component indicator 𝑧𝑖
(𝑡)

for data 

item 𝑦𝑖 using Equation (3.19)

Draw component variance 𝜎𝑗
2(𝑡)

using Equation (3.16)

Component estimation: For 𝑗 = 1 𝐽

Convergence 
diagnosis

Yes

Discard burn-in samples and 
summarize the posterior estimation

No

END

Draw component mean 𝜇𝑗
(𝑡)

using Equation (3.15)

Draw mixing weights 𝜔𝑗
(𝑡)

using 

Equation (3.15)
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with simultaneously running several parallel chains from dispersed starting points. Suppose the 

Gibbs outputs of mixture parameter 𝜃 are being examined with the simulations labelled as 

𝜃𝑡𝑞 (𝑡 = 1,⋯ , 𝑇; 𝑞 = 1,⋯ , 𝑄) where 𝑇 is total number of iterations and 𝑄 is the number of 

parallel chains. The potential scale reduction factor is calculated as 

 𝑅0 = √
𝑇 − 1

𝑇
+

𝑉𝑏
𝑇𝑉𝑤

 (3.22) 

where 𝑉𝑏 is the between-sequence variance 

 𝑉𝑏 =
𝑇

𝑄 − 1
∑ (�̅�𝑞 − �̅�)

2𝑄

𝑞=1
 

(3.23) 
 with �̅�𝑞 = 𝑇−1∑ 𝜃𝑡𝑞

𝑇
𝑡=1  and �̅� = 𝑄−1∑ �̅�𝑞

𝑄
𝑞=1  

and 𝑉𝑤 is the within-sequence variance 

 𝑉𝑤 = 𝑄−1∑𝑠𝑞
2

𝑄

𝑞=1

 

(3.24) 

 with 𝑠𝑞2 =
1

𝑇−1
∑ (𝜃𝑡𝑞 − �̅�𝑞)

2𝑇
𝑡=1  

After sufficient iterations, the parallel chains from dispersed starting points will properly mix 

together, indicating the convergence of chains to the same target distribution. Meanwhile, the 

factor of 𝑅0 declines to 1 as 𝑇 → ∞. In this study, the convergence monitoring is performed 

by running two chains for each mixture parameter and convergence is reached when 𝑅0 for 

all parameters drop to below 1.001. 
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3.3 MODEL SELECTION USING BAYES FACTOR 

3.3.1 Bayes Factor 

The determination of component number 𝐽 in mixture model is a model selection problem, 

which can be addressed by the various model selection criteria. In Bayesian analysis, model 

comparison can be implemented by Bayes factor (Chib, 1995; Frühwirth-Schnatter, 2006; 

Gelman et al., 2014). Suppose two competing models 𝑀1 and 𝑀2 are interested, the Bayes 

factor (BF) is defined as 

 BF(𝑀1;𝑀2) =
𝑝(𝑦|𝑀1)

𝑝(𝑦|𝑀2)
=

∫ 𝑝(𝑦|𝛉1,𝑀1)𝑝(𝛉1|𝑀1)d𝛉1

∫ 𝑝(𝑦|𝛉2,𝑀2)𝑝(𝛉2|𝑀2)d𝛉2
 (3.25) 

where 𝑝(𝑦|𝑀𝑖) = ∫ 𝑝(𝑦|𝛉𝑖,𝑀𝑖)𝑝(𝛉𝑖|𝑀𝑖)d𝛉𝑖 is the marginal likelihood (same as normalizing 

constant) of model 𝑀𝑖 (𝑖 = 1,2), 𝑝(𝑦|𝛉𝑖,𝑀𝑖) and 𝑝(𝛉𝑖|𝑀𝑖) are the likelihood function and 

prior density under model 𝑀𝑖  (𝑖 = 1,2), respectively. If the observations 𝑦 are more likely 

come from model 𝑀𝑖, then the associated marginal likelihood 𝑝(𝑦|𝑀𝑖) will be large, and vice 

versa. Thus, a Bayes factor BF(𝑀1;𝑀2) > 1 implies that model 𝑀1 is more plausible than 

𝑀2 in predicting observation data. For multiple candidate model case, e.g. the selection of 

optimal component number in mixture model, it is usually more convenient to compare the 

logarithm of the marginal likelihood ln𝑝(𝑦|𝑀𝑖) (LML) of each model, then optimal model is 

the one with maximum LML value. 

3.3.2 Marginal Likelihood Based on Chib’s Method 

The calculation of the marginal likelihood 𝑝(𝑦|𝑀𝑖)  which involves integration over high 
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dimensional parameter space and is usually analytical untraceable for complex models. Many 

numerical approximations have been developed for solving the marginal likelihood as 

introduced in Frühwirth-Schnatter (2006). In this mixture model selection problem, the 

marginal likelihood is estimated using the Chib’s method (Chib, 1995) which is based on the 

Gibbs outputs and Monte Carlo estimate. 

Recall from Equation (3.12), the marginal likelihood can be rewritten as 

 𝑝(𝑦|𝑀) =
𝑝(𝑦|𝚯)𝑝(𝚯)

𝑝(𝚯|𝑦)
 (3.26) 

where the numerator is the product of likelihood and the prior density, and the denominator is 

the posterior density under model 𝑀. Note that this identity holds for any 𝚯 and an efficient 

choice is to select the posterior mean values 𝚯⋆  to estimate marginal likelihood since the 

density functions have more accurate estimation at the high density points. Then the log 

marginal likelihood (LML) evaluated at 𝚯⋆ is given as 

 ln𝑝(𝑦|𝑀) = ln𝑝(𝑦|𝚯⋆) + ln𝑝(𝚯⋆) − ln𝑝(𝚯⋆|𝑦) (3.27) 

The first two terms on the right hand side of Equation (3.27), i.e. the log likelihood and the log 

prior density, can be readily evaluated by using Equations(3.28) and (3.29) 

 ln𝑝(𝑦|𝚯⋆) =∑(ln∑𝜔𝑗
⋆𝑁𝑗(𝑦𝑖; 𝜇𝑗

⋆, 𝜎𝑗
2⋆)

𝐽

𝑗=1

)

𝑁

𝑖=1

 (3.28) 

 

ln𝑝(𝚯⋆) = ln𝑝(𝚺⋆) + ln𝑝(𝛍⋆|𝚺⋆) + ln𝑝(𝛀⋆) 

=∑ln𝑝(𝜎𝑗
2⋆)

𝐽

𝑗=1

+∑ln𝑝(𝜇𝑗
⋆|𝜎𝑗

2⋆)

𝐽

𝑗=1

+ ln𝑝(𝜔1
⋆, ⋯ , 𝜔𝐽

⋆) 
(3.29) 
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The third term is the log posterior density which has implicit and high dimensional form, thus 

it cannot be directly calculated. As suggested by Chib (1995), the joint posterior density can be 

partitioned into the following three terms 

 
ln𝑝(𝚯⋆|𝑦) = ln𝑝(𝛍∗, 𝚺∗, 𝛀∗|𝑦) 

= ln𝑝(𝚺∗|𝑦) + ln𝑝(𝛍∗|𝑦,𝚺∗) + ln𝑝(𝛀∗|𝑦, 𝛍∗, 𝚺∗) 
(3.30) 

where each of these terms can be approximated by the Gibbs outputs. Detailed expressions and 

procedure are described as follows. Run Gibbs sampler for current mixture model 𝑀 with 𝐽 

components. The approximate Monte Carlo estimate of the first term 𝑝(𝚺⋆|𝑦) is 

 

𝑝(𝚺⋆|𝑦) ≈ 𝐺−1 ∑𝑝(𝚺⋆|𝑦,𝐙(𝑔))

𝐺

𝑔=1

 

≈ 𝐺−1 ∑(∏𝐼𝑛𝑣𝐶(𝜎𝑗
2⋆; 𝜈𝑗

∗(𝑔)
, 𝑠𝑗

2∗(𝑔)
)

𝐽

𝑗=1

)

𝐺

𝑔=1

 

(3.31) 

where 𝐙(𝑔) is the initial 𝐺 Gibbs outputs after discarding the burn-in samples. Then set 𝚺 =

𝚺⋆  and continue to run additional 𝐺  iterations of the Gibbs sampler in which the full 

conditional densities are 

 𝑝(𝛍|𝑦, 𝚺⋆, 𝐙), 𝑝(𝛀|𝑦, 𝐙) and 𝑝(𝐙|𝑦, 𝛍, 𝚺⋆, 𝛀) (3.32) 

The Gibbs output of the second stage can be used to estimate the second term 𝑝(𝛍⋆|𝑦, 𝚺⋆): 

 

𝑝(𝛍⋆|𝑦, 𝚺⋆) ≈ 𝐺−1∑𝑝(𝛍⋆|𝑦,𝚺⋆, 𝐙(𝑔))

𝐺

𝑔=1

 

≈ 𝐺−1∑(∏𝑁(𝜇𝑗
⋆; 𝜉𝑗

∗(𝑔)
, 𝜎𝑗

2⋆ 𝜅𝑗
∗(𝑔)

⁄ )

𝐽

𝑗=1

)

𝐺

𝑔=1

 

(3.33) 

Let 𝚺 = 𝚺⋆ and 𝛍 = 𝛍⋆, continue again to run additional 𝐺 iterations of the Gibbs sampler 
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with the full conditional densities 

 𝑝(𝛀|𝑦, 𝐙) and 𝑝(𝐙|𝑦, 𝛍⋆, 𝚺⋆, 𝛀) (3.34) 

The Gibbs outputs of the third stage can be used to estimate the third term 𝑝(𝛀⋆|𝑦, 𝛍⋆, 𝚺⋆): 

 

𝑝(𝛀⋆|𝑦, 𝛍⋆, 𝚺⋆) ≈ 𝐺−1 ∑𝑝(𝛀⋆|𝑦, 𝛍⋆, 𝚺⋆, 𝐙(𝑔))

𝐺

𝑔=1

 

≈ 𝐺−1 ∑𝐷(𝛀∗; 𝛼1 + 𝑛1
(𝑔)

, ⋯ , 𝛼𝐽 + 𝑛𝐽
(𝑔)

)

𝐺

𝑔=1

 

(3.35) 

Substituting the estimates of Equations (3.31), (3.33) and (3.35) into Equation (3.30) gives the 

joint posterior density evaluated at 𝚯⋆ . Together with Equations (3.28) and (3.29), the log 

marginal likelihood of model 𝑀 can be calculated by using Equation (3.27). 

3.4 NUMERICAL VERIFICATION 

3.4.1 Generation of Data Sets 

The effectiveness of the proposed Bayesian mixture modelling approach is verified through 

numerical studies. The verification is based on the artificial data sets generated from predefined 

mixture distributions with given model parameters. Two scenarios are considered in this study 

as illustrated in Table 3.1. 
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Table 3.1 Artificial mixture data sets with predefined model parameters 
Comp. Parameter 𝜇 Parameter 𝜎2 Parameter 𝜔 Sample size Scenario 

No. 1 1.000 0.200 0.600 
2000 No. 1 No. 2 5.000 2.000 0.200 

No. 3 10.000 1.000 0.200 
 Case 2-1 

1000 No. 2 

No. 1 1.000 1.500 0.500 
No. 2 1.000 1.500 0.500 

 Case 2-2 
No. 1 1.000 1.500 0.500 
No. 2 2.000 1.500 0.500 

 Case 2-3 
No. 1 1.000 1.500 0.500 
No. 2 3.000 1.500 0.500 

 Case 2-4 
No. 1 1.000 1.500 0.500 
No. 2 4.000 1.500 0.500 

 Case 2-5 
No. 1 1.000 1.500 0.500 
No. 2 5.000 1.500 0.500 

 Case 2-6 
No. 1 1.000 1.500 0.500 
No. 2 6.000 1.500 0.500 

 Case 2-7 
No. 1 1.000 1.500 0.500 
No. 2 7.000 1.500 0.500 

 Case 2-8 
No. 1 1.000 1.500 0.500 
No. 2 8.000 1.500 0.500 

 

In Scenario 1, a trimodal data set is generated and the Bayesian estimation of this mixture 

model is testified. In Scenario 2, eight sets of bimodal data with shifted second component 

mean are generated to investigate the performance of the Bayesian approach in terms of 
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estimation error. Note that the component number of the mixture model is assumed to be known 

in all numerical studies. Thus, model selection is not included in this chapter. In Chapter 6, the 

model selection procedure is demonstrated to identify component number of multimodal stress 

data. 

3.4.2 Estimation of Trimodal Data Set 

The trimodal data set with the sample size of 2000 is generated according to the PDF as follows 

 𝑝(𝑦;𝚯) = 0.6𝑁1(𝑦; 1, 0.2) + 0.2𝑁2(𝑦; 5, 2) + 0.2𝑁3(𝑦; 10, 1) (3.36) 

The diffuse prior densities are selected since no prior information is available for the unknown 

mixture parameters. Herein, the hyperparameters are set to 𝜈𝑗 = 2, 𝑠𝑗2 = 𝑣𝑎𝑟(𝑦) × 𝜈𝑗, 𝜉𝑗 =

𝑚𝑒𝑎𝑛(𝑦), 𝜅𝑗 = 1 and 𝛼𝑗 = 5 for all components. 

The Gibbs sampler is set to run for 𝑇 = 10000 iterations for each mixture parameter with two 

parallel chains. Figure 3.3 plots the Gibbs run for component means in the first 1000 iterations 

as initial stage. It is clear to see each pair of chains with dispersed starting points mix together 

quickly and reach stationary afterwards. Simulations of other parameters have similar 

behaviour. To check the convergence of simulations, the potential scale reduction factor 𝑅 is 

monitored through the Gibbs run as illustrated in Figure 3.4. Quick drops of 𝑅 for all mixture 

parameters can be observed, indicating the simulations are converged globally. Table 3.2 

reveals that convergence of component means is the fastest with about only 150 iterations 

needed, following by component variance with about 200 iterations needed, while convergence 

of mixing weights is the slowest with about 700 iterations needed. 
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Based on the convergence results, the burn-in sequence for Gibbs iterations for this trimodal 

mixture model is determined as 𝐵 = 1000 . Then the rest of 𝐺 = 𝑇 − 𝐵 = 9000  Gibbs 

outputs are deemed as samples from target distributions and can be used as posterior samples 

for parameter estimation. Note that samples from any single chain are enough for posterior 

summary and parameter estimation. Figure 3.5 plots the full Gibbs run with the initial burn-in 

samples and the remaining posterior samples. 

The posterior sample means and associated 95% credible intervals for all mixture parameters 

are summarized in Table 3.3. The ‘true’ (predefined) parameter values are also listed in the 

table as the reference values. It is first observed that all the posterior sample means are very 

close to the ‘true’ values. The estimates of component means and mixing weights have better 

accuracy than the estimates of component variances. The 95% CIs quantify the variation of the 

parameter estimations, giving the extent of uncertainty on mixture parameters. Note that the 1st 

component means and variances (blue plots) are less uncertain than that of the 2nd and 3rd 

component (green and red plots) as the 95% CIs are relatively smaller, and recall that the 1st 

component has larger mixing weights than the other two components, thus it is reasonable to 

infer that increasing sample size helps to reduce the parametric uncertainty of component 

means and variances. The mixing weights, however, are less sensitive to sample size. Besides, 

component variances have the overall larger CIs (much more fluctuating of the chain plots) 

than component means and mixing weights. 
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a) Parallel chains for 𝜇1 

 
b) Parallel chains for 𝜇2 

 
c) Parallel chains for 𝜇3 

Figure 3.3 Initial Gibbs iterations for convergence diagnosis 
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a) convergence of component means 

 
b) convergence of component variance 

 
c) convergence of component weights 

Figure 3.4 Convergence diagnosis based on potential scale reduction factor 
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a) iterations of component means 

 
b) iterations of component variance 

 
c) iterations of component weights 

Figure 3.5 Gibbs run for posterior distributions of mixture parameters 
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Table 3.2 Convergence statistics for trimodal mixture model 
Comp. Parameter 𝜇 Parameter 𝜎2 Parameter 𝜔 

 Gibbs iterations needed to reach convergence (𝑅 < 1.001) 
No. 1 128 185 382 
No. 2 42 175 641 
No. 3 59 102 486 

 

Table 3.3 Bayesian estimation of the trimodal mixture model 

Comp. 
Parameter 𝜇 Parameter 𝜎2 Parameter 𝜔 

5% Mean 95% 5% Mean 95% 5% Mean 95% 
 Bayesian estimation 

No. 1 0.982 1.007 1.033 0.243 0.262 0.282 0.569 0.588 0.606 
No. 2 4.752 4.902 5.504 1.661 2.033 2.486 0.187 0.203 0.221 
No. 3 9.774 9.880 9.986 1.073 1.244 1.436 0.193 0.209 0.225 

 Given model parameters 
No. 1 1.000 0.200 0.600 
No. 2 5.000 2.000 0.200 
No. 3 10.000 1.000 0.200 

 

 

Figure 3.6 Estimated mixture PDF and associated uncertain bounds for trimodal data set 
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The estimated trimodal mixture PDF can be constructed based on the posterior sample means 

of the mixture parameters. Using the results in Table 3.3, the estimated PDF curve has a good 

fitting with the trimodal data set as shown in Figure 3.6. The pointwise uncertain bounds for 

the mixture PDF are also provided based on the posterior samples of mixture parameters. The 

uncertain bounds characterize the variability of PDF due to parametric uncertainty. 

3.4.3 Performance of Bayesian Approach 

The bimodal data sets with each sample size of 1000 are generated according to the PDFs as 

follows 

 𝑝(𝑦;𝚯) = 0.5𝑁1(𝑦; 1, 1.5) + 0.5𝑁2(𝑦; 𝜇2, 1.5) (3.37) 

where 𝜇2 is predefined to vary from 1.0 to 8.0 with the step of 1.0. A total of eight sample sets 

are then used to investigate the performance of the Bayesian approach, where the bimodal 

distributions range from completely overlapped to completely separated with the shift of 𝜇2. 

The prior specification follows the same in Scenario number 1 and the Gibbs sampler is setting 

with 𝑇 = 10000  and 𝐵 = 1000  after checking the convergence. All eight sets of model 

parameters are uniquely identified by the Bayesian approach. The relative errors between the 

Bayesian estimates (posterior means) and the ‘true’ (predefined) parameter values are used as 

a measure of performance for the proposed Bayesian approach 

 𝜀 =
|𝜃⋆ − 𝜃|

𝜃
× 100% (3.38) 

Noted that as the sample size approaches to infinite, the Bayesian posterior mean converge to 
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the given ‘true’ parameter value based on the law of large numbers, thus the relative error 𝜀 

goes to zero. 

The relative errors of parameter estimations are calculated as shown in Figure 3.7. The relative 

errors for most cases are acceptable except for two largely overlapped cases 𝜇2 = 2.0 and 

𝜇2 = 3.0, where the errors of component means and component variances are around 30% to 

50%. Checking with the Gibbs outputs indicates that the label switching occurs in these two 

cases along with the case of 𝜇2 = 1.0 rather than others during the iterations. Label switching 

is a common issue in Bayesian mixture analysis where the labels of components can 

interchange frequently, leading to difficulties in summarizing the posterior samples. It arises 

because of the invariance of the mixture likelihood to component permutations (Gelman et al., 

2014). Note that the case of 𝜇2 = 1.0 stands as a special one with low relative errors. The 

reason is that although label switching is existed, the switching happens between two identical 

labels (𝜇1 = 𝜇2 = 1.0), leading to no adverse influence on posterior summaries. Therefore, the 

numerical study indicates that label switching can be avoided when two components are well 

separated, but tends to occur when two components largely overlap with each other. Apart from 

that, the trends of the relative errors with respect to the shift of 𝜇2 give some new insights into 

the performance of the proposed Bayesian approach. With the increase of 𝜇2 , say two 

component centroids become apart, better estimates of the component means, component 

variances and mixing weights can be obtained as the relative errors decrease gradually. Similar 

to the trimodal example, the component means and mixing weights have the overall better 

estimation accuracy than the component variances. 
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a) relative errors of component means 

 
b) relative errors of component variances 

 
c) relative errors of mixing weights 

Figure 3.7 Relative errors of the Bayesian approach 

 

Overlapped Peaks →                    Separated Peaks

Overlapped Peaks                 →                    Separated Peaks

Overlapped Peaks →                    Separated Peaks



Chapter 3 Parametric Bayesian Mixture Model 

-65- 

From the above numerical studies, it can be inferred that the proposed Bayesian approach is 

able to identify mixture parameters with good accuracy when the samples exhibit obvious 

multimodality. Besides, the parametric uncertainty can be simultaneously quantified, providing 

much richer model information. 

3.5 SUMMARY 

A parametric Bayesian mixture model is proposed in this chapter to characterise multimodal 

monitoring data with considering of parametric uncertainty. The conjugate normal-inverse-chi-

squared priors are adopted for mixture parameters and the full conditional posteriors are 

derived under the Bayesian framework. To eschew inference on high dimensional joint 

posterior, the Gibbs sampler is devised to simulate posterior samples for mixture parameter 

estimation. Convergence diagnosis based on the potential scale reduction factor is proposed to 

check the stationarity of each chain and to ensure the global convergence. A model selection 

procedure based on the Bayes factor is proposed to determine the optimal number of 

components. Numerical examples using artificial mixture data sets are designed to first verify 

the effectiveness of the Bayesian mixture model. Estimation of a trimodal mixture model is 

demonstrated, including convergence diagnosis, parameter estimation and parametric 

uncertainty quantification. The performance of the Bayesian approach is investigated through 

a sets of bimodal mixture models range from completely overlapped to completely separated. 

To further demonstrate the validity of the proposed modelling framework, the multilevel stress 

responses acquired from instrumented Tsing Ma Bridge are estimated by the parametric 
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Bayesian mixture model in Chapter 4 for identification of the neutral axis position. 
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CHAPTER 4  

NEUTRAL AXIS BASED DAMAGE  

DETECTION OF BRIDGE DECK UNDER 

STOCHASTIC TRAFFIC CONDITION 

4.1 INTRODUCTION 

As mentioned in Chapter 3, a parametric Bayesian mixture model, specifically the finite 

Gaussian mixture (FGM) model, is established to characterise the multimodal data structure in 

the presence of parametric uncertainty. This chapter demonstrates the application of parametric 

Bayesian mixture model to identify the neutral axis position of the Tsing Ma Bridge under 

multi-lane stochastic traffic condition. The neutral axis position based information is further 

used as damage sensitive feature to identify the postulated damage cases introduced to the 

bridge deck. 

In the past decades, there has been encouraging progress on damage detection methodologies 

and their demonstrations in aerospace, mechanical, and civil engineering, ranging from 

laboratory tests to real-world scenarios. An ideal damage index is expected to possess the 

following characters: (1) sensitive to damage yet insensitive to varying operational condition; 

(2) convenient to measure with high fidelity; (3) directly derived from measurement with 

minimal assumptions or computational cost; and (4) conceptual and thus open to evaluation 

(Turer et al., 1998). Among a broad categories of damage identification techniques, the 
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vibration-based approaches have been mostly highlighted and extensively studied by scholars. 

The premise behind the vibration-based methods is that the damage-induced changes in the 

physical properties of a structure (e.g., the stiffness, mass, and damping) will cause measurable 

changes in structural dynamic characteristics (e.g., natural frequencies, mode shapes, and 

modal damping). Monitoring of vibration signals thus provides an opportunity to damage 

detection of a structure. Nonetheless, diagnosis of a real-world large-scale structure by means 

of vibration-based methods suffers from several obstacles, one of which is the low sensitivity 

to local damage as the higher structural modes associated with local responses are often 

difficult to capture in field monitoring. Besides, previous studies have acknowledged that 

structural vibration characteristics can be significantly affected by the ambient condition as 

well. Changes in vibration characteristics caused by the environmental and operational 

variability might mask subtle changes caused by the damage, which fails the damage detection 

process. Pursuing practical damage identification of a large-scale complex structure, especially 

under varying operational and environmental conditions, still stands as one of the most 

challenging activities. 

Structural static responses, such as displacement and strain, reflect the local stiffness or strength 

of a structure in a more intuitional way. However, a hindrance to direct use of these static 

measurements as damage sensitive feature is that they are proportional to external loadings as 

well. Elimination or normalization of the effects generated by external loadings rather than 

damage becomes a must before the implementation of damage detection using static responses. 

Theoretically, the neutral axis of beam-like structure passes across the geometrical centroid of 
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the cross section under pure bending, leading itself to be a cross-sectional property related 

physical parameter that is immune to external loading condition. Questionable movement of 

the neutral axis position can be a sign of abnormal change of cross-sectional property, i.e., 

damage. Therefore, the neutral axis position has the potential to be the damage signature for 

flexural behaviour dominated structural members. 

DeWolf and his co-workers evaluated the composite action of a steel-concrete simply supported 

girder bridge by tracking the neutral axis position during the passage of normal truck traffic 

(Chakraborty and DeWolf, 2006; Cardini and DeWolf, 2009). Although no change of 

composite action was found in their study, they point out that monitoring of neutral axis 

position can provide valuable information to condition assessment of the bridge deck. Ni and 

his co-workers proposed a Kalman filter estimator to locate the neutral axis position of bridge 

deck using strain measurement data (Ni et al., 2012; Xia et al., 2012b). The capability of the 

Kalman filter estimator for consistently locating the neutral axis position was verified under 

varying traffic load patterns. Crack detection of a scaled bridge deck model was successfully 

detected using the neutral axis position as the damage index. Sigurdardottir and Glisic (2013, 

2014) investigated the uncertain factors other than damage that would adversely affect the 

estimation of neutral axis location of a girder. They recognise that neutral axis position can act 

as a damage indicator only if the uncertainties associated with its localization can be well 

quantified. Recently, the neutral axis position was also used to diagnose the condition of wind-

turbine towers (Soman et al., 2016) and concrete box girder bridges (Xia et al., 2018). A state-

of-the-art review on neutral axis position for structural health monitoring can be found in 
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Sigurdardottir and Glisic (2015). 

Although the neutral axis position based information has been demonstrated to achieve 

satisfactory damage detection of typical structures under convenient chosen loads, it is yet a 

less explored but attractive topic that using neutral axis position as a performance indicator to 

health monitoring long-span bridges under stochastic traffic flow. This chapter investigates the 

feasibility of utilizing neutral axis position to detect local damage of the in-service Tsing Ma 

Bridge using monitoring stress response. A key issue here is accurate tracking of neutral axis 

position of the bridge deck under in-service condition since the pure bending hypothesis is 

nearly invalid and the loading combination changes from time to time. To quantify severe 

uncertainties due to the stochastic load, the parametric Bayesian mixture model is used to 

predict neutral axis positions of the deck truss under multi-lane stochastic traffic condition. 

The layout of this chapter is organised as follows. The bridge FEM and neutral axis definition 

are first introduced in Section 4.2. A sensitivity analysis is carried out to investigate the 

variation of neutral axis position under moving point loads on multiple traffic lanes. Sections 

4.3 and 4.4 present the identification of neutral axis positions based on monitoring and 

simulated stress response respectively by use of the parametric Bayesian mixture model. Two 

neutral axis based damage indexes are developed in Section 4.5. Damage detection of the 

bridge deck is demonstrated with single- and multiple-damage cases. 
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4.2 NEUTRAL AXIS POSITION OF TSING MA BRIDGE  

This section first introduces the finite element model (FEM) of the suspension Tsing Ma Bridge. 

The definition and property of the neutral axis position is described based on a simplified beam 

model and it is further derived for the bridge deck of the Tsing Ma Bridge. A sensitivity analysis 

is carried out to investigate the variation of neutral axis position under moving vehicle loads 

on multiple traffic lanes by means of the FEM. 

4.2.1 FEM of Tsing Ma Bridge 

The Tsing Ma Bridge is a long suspension bridge located in Hong Kong with a main span of 

1377 m and an overall length of 2.2 km. By carrying both highway and railway traffic, the 

bridge connects the Hong Kong International Airport in Lantau Island with the urban area of 

Kowloon. The structural configuration of the bridge can be referred to Chapter 6. 

The Tsing Ma Bridge comprises nearly 20,000 structural members that belongs to several 

categories, including truss elements, deck plates, bracing, main cables, hangers, saddles, 

bearings, tower beams and legs, piers, and anchorages. To accurately predict the static and 

dynamic characteristics of the as-built bridge, a detailed three-dimensional global FEM with a 

total of 17,677 elements and 7,375 nodes was established by means of the commercial software 

package ABAQUS as shown in Figure 4.1(a). The modelling principles concerned for the FEM 

involve the following: (1) one critical real member is modelled by one analytical member with 

precise geometry shape; (2) the spatial arrangement of real bridge remains in the model; (3) 

the mass and stiffness contribution of each members are independently described in the model; 
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(4) the geometric stiffness of cables and hangers stemming from the large deflection is 

accurately considered in the model by a nonlinear static iteration analysis. Numerical 

convergence study was conducted to determine the proper element size, number of elements 

and mesh size so that a refined FEM can be achieved to minimize the deviance between the 

numerical model and real structure. 

The FEM of a typical 18-m suspended bridge deck module is depicted in Figure 4.1(b). It is a 

double-level truss-stiffening box-shape steel deck that consists of cross frames, longitudinal 

trusses, deck plates and railway beams. A six-lane highway is laid on the upper deck while two 

railway lines and two emergency lanes are arranged within the sheltered lower deck. In this 

FEM module, the chord members of the cross frames, longitudinal trusses as well as railway 

beams are modelled as the B31 beam element (2-node linear beam element in space with 6-

DOF in each node); and the deck plates are modelled as M3D4 membrane element (4-node 

quadrilateral membrane element in space with 3-DOF in each node). Parameters for modulus 

of elasticity, Poisson ratio, shear modulus, and density for the decking system are assigned as 

𝐸 = 200 kN/mm2, 𝜌 = 0.3, 𝐺 = 76.92 kN/mm2, and 𝛾 = 7800 kg/m3 (𝛾 = 11500 kg/

m3 for deck plate). 

A validation of the developed FEM was carried out by comparing the analytical with measured 

modal properties of the bridge after opening to public (Wang et al., 2000). As shown in Table 

4.1, the relative differences between the analytical and measured natural frequencies for the 

first four lateral, vertical, and torsional modes are quit small, indicating a satisfactory 
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agreement of the FEM with the real bridge structure. Therefore, the developed FEM is suitable 

for performing numerical studies. 

 
a) global FEM of the bridge 

 
b) FEM of a typical bridge deck module 

Figure 4.1 Three-dimensional finite element model of the Tsing Ma Bridge 
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Table 4.1 Comparison of measured and computed frequencies of Tsing Ma 
Bridge (Wang et al., 2000) 

Mode type and order Measured (Hz) Computed (Hz) Difference (%) 
Predominantly lateral mode  

1st  0.070 0.0686 -2.00 
2nd 0.170 0.1611 -5.24 
3rd 0.254 0.2546 0.24 
4th 0.301 0.2820 -6.34 

Predominantly vertical mode  
1st  0.114 0.1154 1.23 
2nd 0.133 0.1420 6.75 
3rd 0.187 0.1836 -1.82 
4th 0.249 0.2350 -5.62 

Predominantly torsional mode  
1st  0.270 0.2584 -4.30 
2nd 0.324 0.3014 -6.97 
3rd 0.486 0.4942 1.69 
4th 0.587 0.5660 -3.58 

4.2.2 Definition of Neutral Axis Position 

Based on the Euler-Bernoulli beam theory, the neutral axis within the cross section of a beam 

is a collection of points at which normal stress or strain vanishes under applied loads. Suppose 

a simply supported beam subject to vertical static point loads as shown in Figure 4.2. Segment 

CD undergoes pure bending as the bending moment applied on CD remains unchanged and no 

shear force acts there in the meantime. Given the plane cross-section assumption, the 

longitudinal strain distributed over the depth of the cross section can be determined according 

to the geometrical relationship as 

 𝜀(𝑦) = lim
∆𝑥→0

∆𝑥′ − ∆𝑥

∆𝑥
= lim

∆𝑥→0

(𝜌 + 𝑦)d𝜃 − 𝜌d𝜃

𝜌d𝜃
=
𝑦

𝜌
 (4.1) 

where 𝑦  is the distance from the neutral axis to a fibre of interest, ∆𝑥  and ∆𝑥′  are the 
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lengths of the fibre before and after deformation, 𝜌 is the curvature radius of the neutral axis, 

and d𝜃 is the rotational angle of the cross section. With the Hooke’s law, the normal stress at 

any point of the cross section is 

 𝜎(𝑦) = 𝐸𝜀 = 𝐸
𝑦

𝜌
 (4.2) 

 

 
a) CD segment under pure bending 

 
b) definition of the neutral axis 

Figure 4.2 Neutral axis position of a simply supported beam 

Equations (4.1) and (4.2) indicate the longitudinal strain as well as normal stress are linear 
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distributed along the cross section with respect to the distance from neutral axis. Thus, pure 

bending of the beam will cause zero stress at the neutral axis, maximum tensile stress at top 

surface of the beam, and maximum compressive stress at bottom surface of the beam. 

According to the force equilibrium in 𝑥-direction, we have 

 𝐹𝑁 = ∫ 𝜎d 
𝐴

= ∫ 𝐸
𝑦

𝜌
d 

𝐴

= 0 (4.3) 

Note that the elastic module 𝐸 and curvature radius 𝜌 are non-zero constants given the cross 

section, the following equality holds 

 ∫ 𝑦d 
𝐴

= 𝑆𝑧 = 0 (4.4) 

where 𝑆𝑧 is moment of area with respect to neutral axis (𝑧-axis). Theoretically, Equation (4.4) 

proves the neutral axis should strictly pass across the geometrical centroid of the cross section 

under pure bending since the moment of area with respect to neutral axis is zero. Therefore, 

the neutral axis position keeps stable as the centroid remains unchanged given the cross section. 

When the cross section is subject to both bending moment and shear force, Equation (4.4) still 

holds for beams with length-to-depth ratio 𝑙/ℎ > 5, which are common types among bridge 

structures. However, when additional axial force (such as prestressing force) is applied on the 

cross section, the bending stress will be superimposed with axially applied stress, causing a 

shift of the neutral axis from the centroid. 

Essentially, the location of neutral axis is highly correlated with the geometrical centroid of the 
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cross section. Potential damage of the cross section, i.e., cracking and corrosion, will alter the 

position of the centroid, resulting a movement of the neutral axis. Thus, the neutral axis position 

can be utilised as a damage sensitive feature for flexural behaviour dominated structural 

members. 

In general, the bridge deck of the Tsing Ma Bridge behaves like a flexural beam under railway 

and highway traffic loads. This structural behaviour has been observed by the time histories of 

monitoring stress response on the longitudinal truss as detailed in Chapter 6. Consequently, it 

is appropriate to utilise the neutral axis position of the longitudinal truss as a promising damage 

indicator for continuously monitoring of the bridge deck. As shown in Figure 4.3, with the 

sensor readings acquired from strain gauges deployed on the top and bottom chords of the 

longitudinal truss, the monitoring-based neutral axis position of the longitudinal truss is defined 

as 

 𝑦𝑂 =
𝜀𝐵

𝜀𝑇 + 𝜀𝐵
𝐻 (4.5) 

where 𝑦𝑂 is the distance from the strain gauge at bottom chord to the neutral axis, 𝜀𝑇 and 𝜀𝐵 

are absolute values of strain from top and bottom chords, respectively, and 𝐻 is the depth of 

cross section of the longitudinal truss. According to the design documents, 𝐻 = 6.125 𝑚 is 

adopted for calculating the cross section of the main span. Without loss of generality, the neutral 

axis position can be also calculated in terms of stress values 

 𝑦𝑂 =
𝜎𝐵

𝜎𝑇 + 𝜎𝐵
𝐻 (4.6) 
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where 𝜎𝑇 = 𝐸𝜀𝑇 and 𝜎𝐵 = 𝐸𝜀𝐵 are the absolute stress values from top and bottom chords, 

respectively. Equations (4.5) or (4.6) can be used interchangeably upon the format of 

measurement data. 

 
Figure 4.3 Monitoring-based neutral axis position estimation of the longitudinal truss 

Although the definition of the neutral axis position is theoretical straightforward, it comes to 

substantial difficulties when applies to damage detection of the in-service Tsing Ma Bridge 

using monitoring stress response. The flexural behaviour of the bridge deck is far more 

complicated than the case of simply supported beam, which makes some premises for locating 

the neutral axis invalid. Firstly, either the highway or railway traffic caused bridge deck to bend 

is moving load on different lanes whose location is uncertain at any point in time. Previous 

studies have pointed out that the neutral axis of a girder cross section of a bridge is dependent 

on loading position in terms of both the distance to the measurement point and the lane in use 

(Elhelbawey et al., 1999; Cardini and DeWolf, 2009; Xia et al., 2018). Secondly, the 

longitudinal truss may suffer from out-of-plane bending when heavy truck vehicles run through 

the traffic lanes a distance away from the longitudinal truss. It could generate an inclined 

neutral axis, making the location of neutral axis based on two measurement points inadequate 
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(Sigurdardottir and Glisic, 2013). Lastly, the monitoring stress response of the in-service Tsing 

Ma Bridge is a superposition of multiple load effects, including those from vehicles, trains, 

wind and temperature. Whereas the identification of neutral axis position is critically dependent 

on traffic loads which cause the deck to bend other than the wind and temperature effects. The 

aforementioned issues, other than damage, will adversely deviate the neutral axis position, 

making it an uncertain variable under operational condition. It is impossible to implement the 

bridge damage detection unless the variation of neutral axis position due to operational 

environment has been fully understood. 

To investigate the variation of neutral axis position under moving vehicle loadings, the 

sensitivity analysis with respect to change of loading distance, change of loading magnitude, 

and change of traffic lane is first carried out by means of the FEM of the Tsing Ma Bridge. 

4.2.3 Sensitivity Analysis of Neutral Axis Position 

4.2.3.1 Change of loading distance 

To simulate the vehicles and trains running pass the bridge, the directions and positions of the 

traffic lanes on the deck model are determined based on the centre line of lanes and tracks in 

real bridge as shown in Figure 4.4, where N1 to N3 are highway lanes towards Kowloon (Tsing 

Yi direction) on north side; S1 to S3 are highway lanes towards airport (Ma Wan direction) on 

south side; and NT and ST are bi-directional railway lines for operation of the airport express. 

Note that the two emergency carriageways laid on the lower deck are not considered in this 

study. The neutral axis of monitoring cross section of CH24662.50 near 3/4 of the main span 
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is investigated where strain gauges are mounted on top and bottom chords of the longitudinal 

truss. Hence, results from FEM analysis and field measurement data can be compared directly. 

To analyse the effect of loading distance to the estimation of neutral axis position, a moving 

unit vertical force (1 MN) is applied on nodes of the designated traffic lane and runs through 

the monitoring cross section. Element outputs of stress from top and bottom chords are 

calculated by FEM static analysis. The neutral axis position is evaluated based on stress output 

in each load step by using Equation (4.6). 

Figure 4.5 plots the neutral axis positions of north truss as well as the stress responses at top 

and bottom chords when the unit force moves along the rail track NT with the 𝑥-axis being the 

distance of the unit force from Ma Wan pier M1, the right 𝑦-axis being the stress values, and 

the left 𝑦-axis being the estimation of neutral axis position. It finds that stress responses reach 

the peak values when unit force acts on the nodes of NT at the cross section. A considerable 

movement of the neutral axis position is observed as it arises when the unit force approaches 

the cross section while it drops with the unit force moving far away. This coincides with the 

findings in previous studies that neutral axis position depends on the longitudinal location of 

loading. In general, the direct use of stress output of each load step, such as the continuous 

stress measurements induced by a moving vehicle, may render non-unique estimation of the 

neutral axis position. It is not a concern when the unit force is far from the cross section and 

the stress output is of vary small value. The definition of neutral axis position is invalid for this 

case. 
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Figure 4.4 Layout of traffic lanes on the bridge deck 

 

 

Figure 4.5 Neutral axis positions of north truss with respect to change of loading distance  
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4.2.3.2 Change of loading magnitude 

To investigate the effect of loading magnitude to the estimation of neutral axis position, the 

unit force is first multiplied by scale factors to generate different magnitudes of loadings. These 

scaled moving loads are then applied on nodes of the designated traffic lane and run pass the 

monitoring cross section. Figure 4.6 presents the neutral axis positions of north truss when 

moving loads with different magnitudes act on NT. Despite the deviation of neutral axis 

position due to the moving loads, the consistent estimations of neutral axis positions are 

observed under different loading magnitudes for each loading location. It indicates that the 

estimation of neutral axis position is independent of the loading magnitude. A reasonable 

inference is that either heavy or light vehicle running on the bridge would generate same neutral 

axis value for the monitoring cross section. 

Based on the discussion above, a consistent estimation of neutral axis position due to a specific 

moving vehicle that passes through the cross section can be defined as 

 𝑦𝑂 =
𝜎𝐵
𝑚𝑎𝑥

𝜎𝑇
𝑚𝑎𝑥 + 𝜎𝐵

𝑚𝑎𝑥 𝐻 (4.7) 

where 𝜎𝑇𝑚𝑎𝑥 and 𝜎𝐵𝑚𝑎𝑥 are absolute peak stress values of top and bottom chords induced by 

the moving vehicle, respectively. Take the case in Figure 4.5 as an example, the peak value of 

compressive stress for top chord is 𝜎𝑇𝑚𝑎𝑥 = 6.158 MPa at location  = 1467.0 m; while the 

peak value of tensile stress for bottom chord is 𝜎𝐵𝑚𝑎𝑥 = 6.871 MPa  at location  =

1471.5 m . The neutral axis position for the loading event is calculated as 𝑦𝑂 =

6.158

6.871+6.158
× 6.125 = 3.230 m . Table 4.2 lists the neutral axis positions of north truss 
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calculated by the peak values, where a stable estimation of neutral axis under different loading 

magnitudes is achieved. 

Recommendation of use of Equation (4.7) for monitoring-based neutral axis estimation is 

twofold: (1) the peak stress values caused by a passing vehicle can be measured with sufficient 

accuracy, which would produce more reliable estimation of neutral axis; (2) it is technically 

feasible to collect peak stress values from a continuously monitoring system, thus the long-

term trend of neutral axis can be obtained. 

 
Figure 4.6 Neutral axis positions of north truss with respect to change of loading magnitude 

 

Table 4.2 Neutral axis position under different loading magnitudes 

 
Loading magnitude (× 1 MN) 

0.6 0.8 1.0 1.2 
Neutral axis position (m) 3.235 3.232 3.230 3.228 

Note: NA positions are calculated based on peak stress values. 
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4.2.3.3 Change of traffic lane 

To analyse the effect of change of traffic lane to the estimation of neutral axis position, the 

moving unit force is applied on nodes of each traffic lane and runs through the monitoring cross 

section respectively. The neutral axis position is evaluated based on peak stress values by using 

Equation (4.7). Figure 4.7 shows the neutral axis positions of north truss as well as the peak 

stress responses at top and bottom chords with respect to unit force running on eight different 

traffic lanes. As expected, the unit force on traffic lanes further away from the truss generates 

lower level of stress responses on top and bottom chords. However, the neutral axis positions 

as calculated by the pair-wise peak stress values have a significant change with the highest 

position when S3 being loaded and the lowest position when N3 being loaded. The range of 

neutral axis values are from 2.860 m to 3.284 m as given in Table 4.3. It implies the neutral 

axis position is critically dependent on transverse location of the loading. An identical truck 

with known weight would induce change of neutral axis position when it runs on different 

traffic lanes. 

The sensitivity analysis by means of FEM model concludes that (1) the neutral axis position is 

immune to loading magnitude; (2) the inconsistent neutral axis position due to moving load 

can be sidestepped by making use of peak stress responses; and (3) the moving load on different 

traffic lanes would create different neutral axis positions. Consequently, when it applies to 

monitoring stress responses acquired from the in-service Tsing Ma Bridge, the stochastic 

highway and railway traffic loads on multiple lanes could generate varying neutral axis position 



Chapter 4 Damage Detection Under Stochastic Traffic Condition 

-85- 

for a designated cross section over a given time period. The neutral axis position can only be 

adopted as a damage sensitive feature when the associated uncertainty is properly quantified. 

In view of this, a neutral axis position identification method based on the parametric Bayesian 

mixture model is developed to address the uncertainty issue under daily operation of the Tsing 

Ma Bridge. 

 
Figure 4.7 Neutral axis positions of north truss with respect to change of traffic lane 

 

Table 4.3 Neutral axis position of longitudinal truss due to change of traffic lanes 

 
Traffic lanes 

S3 S2 S1 ST NT N1 N2 N3 
Neutral axis position (m) 3.284 3.201 3.185 3.226 3.230 3.186 2.995 2.860 

Note: NA positions are calculated based on peak stress values. 
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4.3 IDENTIFICATION OF NEUTRAL AXIS POSITION BASED 

ON MONITORING STRESS RESPONSE 

This section presents the identification of neutral axis position based on the monitoring stress 

response acquired from the instrumented Tsing Ma Bridge. Wind and thermal effects in the 

measured total strain are first eliminated because they do not contribute to the bending 

behaviour of the bridge deck. In-service multilevel stress responses due to stochastic traffic 

condition are estimated by using the parametric Bayesian mixture model. Identification of 

neutral axis positions of the longitudinal truss is carried out based on the estimation of 

component means. 

4.3.1 Estimation of Multilevel Stress Response 

The highway traffic on dual three-lane of the upper deck and railway traffic on two tracks of 

the lower deck are the main carrying loads for the in-service Tsing Ma Bridge. Daily passage 

of vehicles and trains induces the bending behaviour of the bridge deck. Identification of 

neutral axis position based on traffic-induced stress response is straightforward and it is 

expected to keep constant if no damage of the cross section has occurred. However, the wind 

load and thermal effect are another two sources acting on the bridge. The dynamic wind 

buffeting on the bridge usually causes stochastic vibration of the bridge deck. The temperature 

variation could generate thermal deformation of the steel deck, resulting in additional axial 

strain on structural members. Direct use of the total strain acquired from sensors is misleading 

because the wind- and temperature-induced responses could significantly deviate the neutral 
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axis position. In Figure 6.8, 24-hour raw strain signals of top and bottom chord on the north 

truss acquired from sensors SPTLN01 and SSTLN03 are depicted, in which a mixed multi-

component strain response is observed. Hence, the wind and temperature effects should be 

properly isolated from the total strain so that only traffic-induced stress response is employed 

to form the neutral axis position. 

The static response due to mean winds and dynamic response due to fluctuating winds are two 

major wind effects on a long suspension bridge. Note that wind effects are also coupled with 

mode shapes of a bridge in vertical or lateral direction. An apparent difference to the traffic 

load is that either static wind force or buffeting force would trigger the vibration of bridge deck 

in a three-dimensional manner rather than the plane bending behaviour. The consistency of the 

neutral axis position does not apply to such a case. Feasibility of the proposed damage detection 

method may be in question especially under strong wind condition. Application scope of the 

proposed method will be extended if successful separation of wind-induced response from the 

monitoring signals can be achieved. In the present research, to minimise the influence of wind 

effect on the estimation of neutral axis position, only the monitoring data during weak wind 

days (daily mean wind speed lower than 3 m/s) are selected. A future study on the determination 

of a threshold for maximum wind speed to the success of damage detection is needed. 

The 24-hour ambient temperature cycle due to solar radiation would considerably affect the 

deformation of the steel deck, especially along the bridge longitudinal direction. The low-

frequency strain cycle with large amplitude as shown in Figure 6.8 reveals the longitudinal 
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truss behaves expansion and compression in a daily manner. Hence, the temperature-induced 

axial deformation of the truss contributes to the axial strain on the cross section, which 

superposes with the bending strain due to traffic loads and eventually shifts the neutral axis 

position. To minimise the influence of temperature effect on the estimation of neutral axis 

position, the wavelet-based decomposition method as introduced in Chapter 6 is employed here 

to isolate the temperature-induced strain from the measured total strain (Ni et al., 2011b).  

The monitoring data acquired from the north truss from November 1 to 10, 2005 are analysed. 

Figure 4.8(a) shows the time histories of traffic-induced stress responses at top and bottom 

chords on November 1 after eliminating the temperature effect. Vehicles or trains on different 

traffic lanes create stress pulses when they run across the monitoring location consecutively. 

High-frequency stress pulses with different amplitudes are observed during the whole day. 

When the airport railway stops its service from 2:00 to 5:00 a.m., the stress response maintains 

the low amplitude since only road vehicles are running on the deck. It is clear that response 

amplitude is related to loading magnitude and the traffic lane in use. As plotted in Figure 4.8(b), 

the occurrences of pair-wise peak stresses on the top and bottom chords coincide well with 

each other, indicating the monitoring cross section is subject to an identical load event at the 

same instant. The neutral axis position under a deterministic load event such as passing of 

vehicle or train on a known traffic lane can be readily calculated by using the peak stress values 

at top and bottom chords. However, as stated in sensitivity analysis, the neutral axis position is 

highly dependent on the transverse location of the load. Identification of neutral axis position 

with respect to individual load event would exhibit considerable variation due to the fact that 
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traffic loads are of random appearance on multiple traffic lanes. The intrinsic variability of the 

neutral axis position needs to be quantified so that the abnormal movement due to damage can 

be ascertained. 

 
a) 24-hour stress responses 

 
b) a zoom view of stress responses 

Figure 4.8 Traffic-induced stress responses of top and bottom chords 

Given a long time period, the collection of peak stresses can be regarded as the combined effect 

of numerous load events on randomly selected traffic lanes. Figure 4.9 shows the peak stresses 

extracted from the daily time histories of top and bottom chords respectively. Several clusters 

of the peak stresses are found in each of the scatter plots, which correspond to different load 

events of highway and railway traffic. A multimodal data structure is observed for the 

histograms, in which the peak stresses are randomly distributed but centralised to multiple 

stress levels. The multilevel stress serves as the representative of various load events and 
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quantifies the effects due to change of traffic lanes. Hence, it is beneficial to make use of the 

multilevel stress responses for the estimation of neutral axis position. 

 
Figure 4.9 Daily peak stress responses based on monitoring 

The parametric Bayesian mixture model, specifically the FGM model as introduced in Chapter 

3, is utilised to estimate the multilevel stress responses of top and bottom chords. The optimal 

number of components is determined through the Bayes factor-based model order selection 

method. Results of model selection show that both NLMLs (negative log marginal likelihood) 

for top and bottom chords reach minimum value at 𝐽 = 4, which implies the mixture model 

with optimal model order of four is adequate to characterise the multilevel stress responses. 

The posterior samples of mixture parameters are sought by using the Gibbs sampler. A 

satisfactory convergence of the Gibbs iteration is achieved for all parameters. Table 4.4 lists 

the sample mean and 5-95 credible interval of the posterior mixture parameters estimated for 

top and bottom chords. 

Multiple stress levels are identified for the north truss: (1) the 1st and 2nd mixture components 
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with lower component means represent the first stress level (level Ⅰ) which can be interpreted 

as the load effect of highway traffic; (2) the 3rd component with greater component mean acts 

as the second stress level (level Ⅱ) that accounts for the load effect due to railway traffic; and 

(3) the 4th component with the largest component variance represents the third stress level (level 

Ⅲ) that can be interpreted as the combined effect due to highway and railway traffic. Taking 

advantage of the Bayesian approach, the multilevel stress as measured by the component means 

(parameter 𝜇 ) is uniquely identified in terms of the mean values and associated uncertain 

bounds. Estimations of component means of the FGM model are employed to determine the 

neutral axis positions. 

Table 4.4 FGM estimation of multilevel stress for north truss based on monitoring 
(November 3, 2005) 

Comp. 
Parameter 𝜇 Parameter 𝜎2 Parameter 𝜔 Stress 

level 5% Mean 95% 5% Mean 95% 5% Mean 95% 
 Top chord  

No.1 1.054 1.100 1.154 0.169 0.194 0.226 0.453 0.500 0.553 
Ⅰ 

No.2 1.902 1.999 2.105 0.439 0.515 0.603 0.259 0.310 0.356 
No.3 7.631 7.718 7.805 0.681 0.807 0.953 0.144 0.158 0.173 Ⅱ 
No.4 6.013 6.937 7.876 6.911 10.119 14.596 0.020 0.032 0.045 Ⅲ 

 Bottom chord  
No.1 1.330 1.369 1.410 0.222 0.248 0.276 0.608 0.654 0.700 

Ⅰ 
No.2 2.133 2.298 2.492 0.604 0.748 0.938 0.107 0.151 0.196 
No.3 8.717 8.811 8.908 0.913 1.069 1.249 0.157 0.172 0.187 Ⅱ 
No.4 7.149 8.499 9.907 9.253 15.538 24.077 0.013 0.022 0.033 Ⅲ 

Note: The order of components is ranked according to (1) the ascending order of 𝜇; and (2) the 4th 
component with the maximum 𝜎2. 

4.3.2 Identification of Neutral Axis Positions 

Due to the parametric uncertainty of the component means, the predictions of neutral axis 

positions are random variables in the context of Bayesian approach. The posterior samples of 
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component means from the Gibbs output play two roles here: (1) represent the time-average 

estimation of the multilevel stress; and (2) take into account the effect of multiple traffic lanes 

through the probabilistic clustering process. Consequently, the samples of neutral axis positions 

𝝋(𝑔) = {𝜑1
(𝑔)

,⋯ , 𝜑𝐽
(𝑔)

} based on component means can be determined as 

 𝜑𝑗
(𝑔)

=
𝜇𝑗
𝐵(𝑔)

𝜇𝑗
𝑇(𝑔)

+ 𝜇𝑗
𝐵(𝑔)

𝐻   (𝑗 = 1,⋯ , 𝐽; 𝑔 = 1,⋯ , 𝐺) (4.8) 

where 𝜑𝑗
(𝑔)  are samples of the 𝑗 th neutral axis position, 𝜇𝑗

𝑇(𝑔)  and 𝜇𝑗
𝐵(𝑔)  are posterior 

samples of the 𝑗th component means of top and bottom chords respectively, and 𝐺 is number 

of samples after burn-in period of the Gibbs iteration. The mean values of neutral axis positions 

�̅� = {�̅�1,⋯ , �̅�𝐽} can be obtained by averaging the samples of 𝝋(𝑔) 

 �̅�𝑗 = 𝐺−1 ∑𝜑𝑗
(𝑔)

𝐺

𝑔=1

  (𝑗 = 1,⋯ , 𝐽) (4.9) 

where �̅�𝑗 is the mean value of the 𝑗th neutral axis position. The standard deviation (SD) and 

5-95 credible interval (CI) of neutral axis positions can be calculated based on the samples of 

𝝋(𝑔) accordingly. Identification of neutral axis positions for north truss on November 3, 2005 

is demonstrated in Table 4.5, in which they are classified to three categories according to the 

stress levels. In this day, the vehicle-induced 1st neutral axis has the highest position, whereas 

the train-induced 3rd neutral axis position is the lowest among four neutral axes. Note that the 

4th neutral axis position owns overall the greatest uncertainty than the other three neutral axes. 
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Table 4.5 Identification of neutral axis positions for north truss based on monitoring 
(November 3, 2005) 

Comp. 
Neutral axis position (m) 

Mean SD 5-95 CI Category 
No.1 3.397 0.050 [3.312, 3.476] 

Highway traffic-induced 
No.2 3.274 0.086 [3.140, 3.421] 
No.3 3.265 0.014 [3.242, 3.289] Railway traffic-induced 
No.4 3.369 0.201 [3.044, 3.697] Jointly induced by highway and railway 

 

Figure 4.10 plots the identified neutral axis positions and associated uncertain ranges for the 

north truss during ten consecutive days from November 1 to 10, 2005 based on monitoring. 

The multilevel stresses of top and bottom chords as inferred by the FGM model are also given 

for reference. The trend of daily pair-wise component means have symmetric pattern, i.e. 𝜇𝑇 

and 𝜇𝐵  increase or decrease simultaneously at the same day. It finds the variation of 

component means for either top or bottom chords is rather small as well. Although the average 

neutral axis positions rise and fall slightly during the period, the change is quite small that 

beneath the tolerance level. The uncertain ranges quantify the intrinsic variation of the neutral 

axis under the normal operation of the Tsing Ma Bridge. Noted that the railway-induced 

uncertain range of the neutral axis is the narrowest. Based on the parametric Bayesian mixture 

model, the proposed neutral axis position identification method is applicable and efficient to 

track the neutral axis positions under multi-lane stochastic traffic condition. 
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a) the 1st neutral axis position induced by highway traffic 

 
b) the 2nd neutral axis position induced by highway traffic 

 
c) the 3rd neutral axis position induced by railway traffic 

 
d) the 4th neutral axis position jointly induced by highway and railway 

Figure 4.10 Daily neutral axis positions for north truss based on monitoring 
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4.4 IDENTIFICATION OF NEUTRAL AXIS POSITION BASED 

ON SIMULATED STRESS RESPONSE 

Damage scenarios of the Tsing Ma Bridge are postulated with the aid of FEM. To verify the 

feasibility of the neutral axis based damage detection method, this section presents the 

identification of neutral axis position under stochastic traffic condition using the bridge FEM. 

Traffic-induced stress time histories are constructed by means of the bridge influence line 

method in conjunction with on-site traffic load data. The parametric Bayesian mixture model 

is employed to estimate the multilevel stress responses. Neutral axis positions of the 

longitudinal truss are identified using the estimation of component means. 

4.4.1 Simulation of Traffic-Induced Stress Time History 

4.4.1.1 Establishment of stress influence line 

To derive the traffic-induced stress time history, the stress influence line method in conjunction 

with on-site traffic load data is first developed based on the bridge FEM. The influence line is 

a static property that characterise the variation of structural response such as reaction, 

deflection, and internal force of a specific member when a unit vertical force moves on the 

bridge under linear assumption. Note that the influence line method is invalid when nonlinear 

behaviour of bridge component is presented. Generally, an influence line is formulated as a 

function of the response amplitude of a given point and the location of unit force. Given the 

traffic layout of the Tsing Ma Bridge as shown in Figure 4.4, the stress influence lines of a 

designated truss member such as top chord or bottom chord induced by each traffic lane can 
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be established based on the FEM. To achieve this aim, a moving unit vertical force of 1 MN is 

applied on nodes of beam elements along each traffic lane and runs through the bridge from 

one end to another end. Element stress outputs associated with each load step (node-to-node 

distance is 4.5 m) are computed by the static FEM analysis. The computed stress values are 

referred to the stress influence coefficients. Note that there are two railway stress influence 

lines and six highway stress influence lines for a given truss member. 

Railway stress influence lines for top and bottom chords of the north truss at the monitoring 

cross section (distance of 1471.5 m) are given in Figure 4.11 with the 𝑥-axis being the distance 

of unit force from the Ma Wan pier M1, and the 𝑦-axis being the stress influence coefficient. 

Note that positive values denote the compression stress, whereas negative values denote the 

tension stress. Typical features of the railway stress influence lines are summarised as follows: 

(1) the influence lines are nearly at zero when the unit force is far away from the monitoring 

cross section, especially for the side spans; (2) the influence coefficients for top chord first 

become negative and reach to maximum values at the location where the unit force is placed at 

the node of monitoring cross section, whereas the asymmetry trends are observed for the 

influence lines of bottom chord; (3) the unit force generates greater influence coefficients on 

north track that is near to the north truss being monitored; and (4) the amplitudes of influence 

lines of bottom chord are larger than those of top chord. 

Highway stress influence lines for top and bottom chords of the north truss at the monitoring 

cross section (distance of 1471.5 m) are plotted in Figure 4.12. Shapes of highway influence 
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lines are similar to those of railway influence lines. Apparently, the maximum or minimum 

stress influence coefficient is proportional to the transverse distance between the lane and the 

north truss being monitored. However, as compared to the influence lines of north lanes, those 

of south lanes (S1 to S3) reach at maximums or minimums when the unit force is placed at the 

node of adjacent cross section rather than the exact monitoring cross section. The amplitudes 

of influence lines of bottom chord are greater than those of top chord except for N2 and N3. 

 
a) top chord 

 
b) bottom chord 

Figure 4.11 Railway stress influence lines for north truss 
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a) top chord 

 
b) bottom chord 

Figure 4.12 Highway stress influence lines for north truss 

4.4.1.2 On-site traffic load monitoring data 

Monitoring of railway and vehicle loads has been engaged in the structural health monitoring 

system of the Tsing Ma Bridge. The train load information is measured by a set of strain gauges 

attached on the inner waybeam of each pair of waybeams under the two rail tracks at CH 

24664.75. Through a proper calibration, the signals of strain gauges can be converted to bogie 

load information. Data pre-processing is first requested to delete the abnormal train data due to 

malfunction of the sensors. Notice that the event of two trains meeting from opposite directions 
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are currently unidentifiable by the strain-based conversion technique. Recorded train loads of 

such a meeting event are of large measurement error. Hence, such train records are also remove 

from the database. Table 4.6 gives a measured train sample during 10:00 to 11:00 a.m. on 

November 3, 2005, in which the time of arrival, running direction, speed, total number of 

bogies, bogie weight, and bogie spacing are provided. For example, the number 5 train is an 

eight-car train with 16 bogies, which is running on south track towards the airport at the speed 

of 35 m/s. 

Table 4.6 A train sample (November 3, 2005) 
Train number 1 2 3 4 5 

Time of arrival 10:16:53 10:17:54 10:23:35 10:26:10 10:26:25 
Bound 2 1 1 1 2 

Speed (m/s) 34 29 30 30 35 
Total number of bogies 16 16 16 14 16 

Bogie 1 weight (kg) 24570 25526 24382 25824 25918 
Bogie 1 spacing (m) 0 0 0 0 0 
Bogie 2 weight (kg) 17049 22658 22314 23113 19258 
Bogie 2 spacing (m) 14 15 16 16 14 
Bogie 3 weight (kg) 20606 21405 20762 19869 23520 
Bogie 3 spacing (m) 8 5 5 5 8 

……      

Bogie 14 weight (kg) 19258 16296 18396 24272 20950 
Bogie 14 spacing (m) 14 15 16 16 16 
Bogie 15 weight (kg) 23473 22423 22376  22204 
Bogie 15 spacing (m) 8 7 7  6 
Bogie 16 weight (kg) 24570 21311 23426  19305 
Bogie 16 spacing (m) 14 15 16  14 

Note: Bound: 1-Kowloon; 2-Airport. 
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Table 4.7 A vehicle sample (November 3, 2005) 
Vehicle number 1 2 3 4 5 
Time of arrival 10:00:17 10:02:15 10:02:46 10:03:36 10:30:24 

Bound 1 1 1 2 2 
Lane 1 3 1 1 1 

Speed (km/h) 74 91 60 76 56 
Class 7 2 7 9 9 

Total number of axles 3 2 3 3 5 
Axle 1 weight (kg) 4850 450 5850 5260 5440 

Axle 1 spacing (cm) 0 0 0 0 0 
Axle 2 weight (kg) 6550 450 6760 10460 4170 

Axle 2 spacing (cm) 584 249 557 408 335 
Axle 3 weight (kg) 4760  5450 6700 3840 

Axle 3 spacing (cm) 147  142 141 139 
Axle 4 weight (kg)     4240 

Axle 4 spacing (cm)     756 
Axle 5 weight (kg)     4670 

Axle 5 spacing (cm)     139 

Note: Bound: 1-Kowloon; 2-Airport. 
     Lane: 1-slow lane; 2-middle lane; 3-fast lane. 
     Class: eight vehicle categories. 

To monitor the road vehicle flow, a dynamic weigh-in-motion (WIM) system has been installed 

at the approach to Lantau Toll Plaza which is a distance away from bridge site. At the Plaza, a 

total of seven carriageways, including three lanes heading to airport and four lanes heading to 

Kowloon, were instrumented with the WIM sensors. The bending plate-type WIM sensor 

enables capturing of the vehicle information including the time of arrival, driven direction, lane, 

speed, class, total number of axles, axle weight, and axle spacing. The WIM data is first pre-

processed to eliminate the abnormal vehicle data due to malfunction of the sensors. The upper 

limits of the maximum axle load and gross vehicle weight for each vehicle class are adopted 

according to the Hong Kong road traffic regulations and overloaded cases. Recorded vehicle 

data with axle load or gross vehicle weight exceeding the upper limits are thus removed. Noted 
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that the vehicle data on two middle lanes heading to Kowloon are merged and assigned to the 

N2 lane on the bridge. A sample of WIM data during 10:00 to 11:00 a.m. of November 3, 2005 

is given in Table 4.7. For example, the number 4 vehicle is a rigid heavy goods vehicle (Class-

6) with four axles, which is running on N3 lane towards Kowloon at the speed of 70 km/h. 

One-month traffic load monitoring data of November 2005 are collected and pre-processed to 

serve as the database for subsequent analysis. 

4.4.1.3 Simulation of traffic-induced stress response 

Given the recorded on-site traffic information, each traffic load event is first discretised into a 

series of vertical point loads and assigned to corresponding traffic lanes. For instance, the 

number 5 train is represented by 16 vertical point loads at the locations of bogies and assigned 

to the south track; and the number 4 vehicle is represented by 3 vertical point loads at the 

locations of axles and applied to the N3 lane. With the arrival time and running speed, the 

coordinates of a vehicle or train on the bridge at any given time can be determined. First, the 

dynamic stress response due to railway traffic 𝜎𝑅 at time 𝑡 is computed based on the railway 

stress influence lines 

 𝜎𝑅(𝑡) = ∑∑Ω𝑛,𝑘
𝑙 (𝑡)𝑅𝑛,𝑘

𝐾𝑅

𝑘=1

𝑁𝑅

𝑛=1

 (4.10) 

where 𝑅𝑛,𝑘 is the vertical load associated with the 𝑘th bogie of the 𝑛th train; Ω𝑛,𝑘
𝑙 (𝑡) is the 

railway stress influence coefficient due to the 𝑘th bogie of the 𝑛th train on the 𝑙th track at 

time 𝑡 ; 𝑁𝑅  and 𝐾𝑅  are the number of trains and the number of bogies of each train 
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respectively. Similarly, the highway traffic induced dynamic stress response 𝜎𝐻 at time 𝑡 can 

be computed using the highway stress influence lines 

 𝜎𝐻(𝑡) = ∑∑Φ𝑛,𝑘
𝑙 (𝑡)𝐻𝑛,𝑘

𝐾𝐻

𝑘=1

𝑁𝐻

𝑛=1

 (4.11) 

where 𝐻𝑛,𝑘 is the vertical load associated with the 𝑘th axle of the 𝑛th vehicle; Φ𝑛,𝑘
𝑙 (𝑡) is 

the highway stress influence coefficient due to the 𝑘th axle of the 𝑛th vehicle on the 𝑙th lane 

at time 𝑡; 𝑁𝐻 and 𝐾𝐻 are the number of vehicles and the number of axles of each vehicle 

respectively. Hence, the combined effect of railway and highway traffic is obtained by the 

superposition principle 

 𝜎(𝑡) = 𝜎𝑅(𝑡) + 𝜎𝐻(𝑡) (4.12) 

where 𝜎(𝑡)  is the traffic-induced dynamic stress response at time 𝑡 . A time step of ∆𝑡 =

1

51.2
 s  is adopted in the simulation of the stress time history which matches the sampling 

frequency of the strain sensor. 

Traffic-induced stress time histories of top and bottom chords at the monitoring cross section 

from November 1 to 10, 2005 are generated by using Equations (4.10) to (4.12). As portrayed 

in Figure 4.13, the simulated stress responses have a close pattern with monitoring stress 

responses acquired from the strain gauge. Occurrences of either the vehicle- or train-induced 

peak stresses along the time axis are well coincided between two signals. Although the 

amplitudes of peak stresses of simulated time history are slightly greater than that of monitoring 

time history, the daily stress responses as constructed by the stress influence line method well 
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reflect the flexural behaviour of the bridge deck. Hence, they are of satisfactory accuracy for 

the neutral axis identification. 

 

a) Simulated stress response 

 

b) Monitoring stress response 
Figure 4.13 Comparison of simulated and monitoring stress time histories (November 3, 

2005) 

4.4.2 Identification of Neutral Axis Positions 

The traffic-induced peak stresses of top and bottom chords are extracted from the simulated 

stress time histories for the neutral axis position identification. In Figure 4.14, several stress 

clusters are observed in the extracted peak stresses, in which the histograms are of 

multimodality due to the presence of multiple types of traffic loads. The multilevel stress 

responses are inferred through the parametric Bayesian approach by use of the FGM model. 
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FGM estimations of the multilevel stress responses for top and bottom chords are given in 

Table 4.8 with the optimal number of components being inferred as four by the Bayes factor-

based model selection method. The mean values and associated uncertain bounds of the 

component means (parameter 𝜇 ) characterise the multilevel stress due to the multi-lane 

stochastic traffic condition. 

 
Figure 4.14 Daily peak stress responses based on simulation 

Given the posterior samples of component means from the Gibbs iteration, the neutral axis 

positions 𝝋 are identified by using the Equation (4.8). The mean values, SD, and 5-95 CI of 

neutral axis positions can be obtained accordingly based on the samples of 𝝋. Identification 

of neutral axis positions for north truss of November 3, 2005 is shown in Table 4.9, in which 

they are classified into three categories according to the stress levels. On this day, the vehicle-

induced 2nd neutral axis position is the highest, whereas the 4th neutral axis jointly induced by 

highway and railway has the lowest position among four neutral axes. Note that the 4th neutral 

axis position owns overall the greatest uncertainty than the other three neutral axes. 
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Table 4.8 FGM estimation of multilevel stress for north truss based on simulation 
(November 3, 2005) 

Comp. 
Parameter 𝜇 Parameter 𝜎2 Parameter 𝜔 Stress 

level 5% Mean 95% 5% Mean 95% 5% Mean 95% 
 Top chord  

No.1 1.366 1.426 1.486 0.365 0.412 0.463 0.555 0.614 0.671 
Ⅰ 

No.2 2.306 2.495 2.704 0.839 1.010 1.208 0.152 0.207 0.265 
No.3 9.338 9.461 9.585 1.316 1.547 1.795 0.145 0.160 0.174 Ⅱ 
No.4 9.418 11.518 13.862 14.878 25.486 41.219 0.011 0.019 0.029 Ⅲ 

 Bottom chord  
No.1 1.277 1.328 1.378 0.304 0.341 0.379 0.577 0.632 0.686 

Ⅰ 
No.2 2.196 2.365 2.561 0.721 0.866 1.029 0.152 0.203 0.257 
No.3 8.694 8.803 8.914 1.076 1.259 1.458 0.133 0.147 0.161 Ⅱ 
No.4 8.306 10.210 12.383 12.731 21.764 35.299 0.010 0.017 0.027 Ⅲ 

Note: The order of components is ranked according to (1) the ascending order of 𝜇; and (2) the 4th 
component with the maximum 𝜎2. 

 

Table 4.9 Identification of neutral axis positions for north truss based on 
simulation (November 3, 2005) 

Comp. 
Neutral axis position (m) 

Mean SD 5-95 CI Category 
No.1 2.954 0.052 [2.871, 3.043] 

Highway-induced 
No.2 2.980 0.102 [2.816, 3.151] 
No.3 2.952 0.017 [2.925, 2.980] Railway-induced 
No.4 2.879 0.263 [2.444, 3.307] Jointly induced by highway and railway 

Figure 4.15 plots the identified neutral axis positions and associated uncertain ranges for the 

north truss during ten consecutive days from November 1 to 10, 2005 based on simulation. The 

multilevel stresses of top and bottom chords as inferred through the FGM model are given for 

reference. It is observed that the trend of daily pair-wise component means have symmetric 

pattern, i.e. 𝜇𝑇 and 𝜇𝐵 increase or decrease at the same day. The neutral axis positions keep 

relatively stable within the period. Notice that the simulation-based neutral axis positions are 

of high similarity to the results based on monitoring in terms of the trend and uncertain range. 
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a) the 1st neutral axis position induced by highway traffic 

 
b) the 2nd neutral axis position induced by highway traffic 

 
c) the 3rd neutral axis position induced by railway traffic 

 
d) the 4th neutral axis position jointly induced by highway and railway 

Figure 4.15 Daily neutral axis positions for north truss based on simulation 
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4.5 DAMAGE DETECTION OF BRIDGE DECK USING 

NEUTRAL AXIS BASED INDEXES 

This section demonstrates the neutral axis based damage detection of bridge deck under 

stochastic traffic condition. Two damage indexes, i.e. the neutral axis change ratio and the 

cumulative neutral axis change ratio, are developed. Single-damage and multiple-damage cases 

are investigated to verify the effectiveness of the proposed method. 

4.5.1 NA Change Ratio and Cumulative NA Change Ratio 

For healthy condition of the Tsing Ma Bridge, the neutral axis of a monitoring cross section is 

expected to remain steady with limited intrinsic variation under stochastic traffic flow. As soon 

as the damage occurs at the nearby component, the neutral axis as a cross-sectional property 

will have apparent shift from the original position. Thereby, the relative difference between the 

initial neutral axis position corresponding to healthy condition and the new neutral axis position 

corresponding to damaged condition can be formulated as a damage index to indicate the 

presence of damage. Hence, the initial neutral axis position of the intact structure, which is now 

refer to the baseline neutral axis position, should be first determined. 

The identified neutral axis positions based on the Bayesian FGM approach are themselves 

uncertain variables due to the presence of parametric uncertainty. With consecutive estimations 

of the neutral axis positions from the heathy bridge condition, the neutral axis positions can be 

updated in a Bayesian manner to seek for the baseline model. It is practical to presume that the 

𝑗 th neutral axis position obeys the Gaussian distribution 𝜑𝑗~𝑁(𝜇𝜑𝑗
, 𝜎𝜑𝑗

2 ) . The Bayesian 
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updating of the 𝑗th neutral axis position can be implemented as 

 𝑝(𝜑𝑗,pred|𝜑𝑗) = ∬𝑝(𝜑𝑗,pred |𝜇𝜑𝑗
, 𝜎𝜑𝑗

2 , 𝜑𝑗) 𝑝(𝜇𝜑𝑗
, 𝜎𝜑𝑗

2 |𝜑𝑗)d𝜇𝜑𝑗
d𝜎𝜑𝑗

2  (4.13) 

where 𝜑𝑗,pred is called the predictive distribution of the neutral axis position based on the 

previous observations of 𝜑𝑗 , and 𝑝(𝜇𝜑𝑗
, 𝜎𝜑𝑗

2 |𝜑𝑗)  is the joint posterior distribution of the 

Gaussian parameters which has the form of 

 𝑝 (𝜇𝜑𝑗
, 𝜎𝜑𝑗

2 |𝜑𝑗) ∝ 𝑝(𝜑𝑗 |𝜇𝜑𝑗
, 𝜎𝜑𝑗

2 )𝑝(𝜇𝜑𝑗
, 𝜎𝜑𝑗

2 ) (4.14) 

Once the conjugate normal-inverse-chi-squared prior is employed for the joint prior of 𝜇𝜑𝑗
 

and 𝜎𝜑𝑗

2 , the Bayesian updating based on Equations (4.13) and (4.14) can be manipulated in 

an explicit way. As illustrated in Table 4.10, the neutral axis positions during ten consecutive 

days from November 1 to 10, 2005 are utilised to construct the baseline model. The neutral 

axis positions 𝝋 are updated in a daily basis. The baseline neutral axis positions are listed in 

Table 4.11. In the Bayesian paradigm, the up-to-date baseline neutral axis positions can be 

available as long as new monitoring data are continuously fed in. 

Table 4.10 Datasets for verification of neutral axis based damage detection method 
Date 1 2 3 4 5 6 7 8 9 10 

Condition Baseline 
Date 13 14 15 16 17 18 19 20 21 22 

Condition Intact  

Date 23 24 25 26 27 28 29 30   

Condition Single damage Multiple damages   

Note: Dates are on November 2005. 

A comparison between the baseline neutral axis positions and the neutral axis positions with 

respect to unknown structural condition can be made to indicate the damage occurrence. The 
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neutral axis (NA) change ratio 𝜹 = {𝛿1, ⋯ , 𝛿𝐽} is formulated as 

 𝛿𝑗 = 𝐺−1∑
𝜑𝑗
(𝑔)

− �̅�𝑗,Baseline

�̅�𝑗,Baseline

𝐺

𝑔=1

  (𝑗 = 1,⋯ , 𝐽; 𝑔 = 1,⋯ , 𝐺) (4.15) 

where 𝛿𝑗 is the averaged change ratio of the 𝑗th neutral axis position; 𝜑𝑗
(𝑔) is the samples of 

the 𝑗th neutral axis position evaluated by Equation (4.8); and �̅�𝑗,Baseline is the mean value of 

the 𝑗th baseline neutral axis position as given in Table 4.11. Note that the NA change ratio 𝛿𝑗 

has either positive or negative values: the positive change ratio indicates the upward movement 

of the neutral axis; whereas the negative represents the downward movement of the neutral 

axis. 

Table 4.11 Baseline neutral axis positions for north truss 

Comp. 
Neutral axis position (m) 

Mean SD Category 
No.1 2.954 0.072 

Highway-induced 
No.2 2.930 0.123 
No.3 2.952 0.018 Railway-induced 
No.4 2.857 0.250 Jointly induced by highway and railway 

The identified neutral axis positions would exhibit intrinsic variability due to the multi-lane 

stochastic traffic under normal bridge operation. The directions of traffic-induced shifting of 

the neutral axis position are highly uncertain. However, the damage-induced moving direction 

of all the identified neutral axes is exclusive with either being upward or downward that 

depends on the change of cross-sectional property with respect to the damaged component. 

Hence, the neutral axis positions should have identical moving direction given the same 

damage scenario. Based on the proposed NA change ratio, the cumulative NA change ratio 𝜂 

can be further formulated as 
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 𝜂 =∑𝛿𝑗

𝐽

𝑗=1

  (𝑗 = 1,⋯ , 𝐽) (4.16) 

where 𝛿𝑗 is the 𝑗th change ratio of the neutral axis position. The cumulative NA change ratio 

is the linear summation over all the neutral axis change ratios, which results in greater index 

value when each of 𝛿𝑗 has identical positive or negative sign. 

To validate the sensitivity of the proposed damage indexes, different damage extent at the 

diagonal strut adjacent to the monitoring cross section as depicted in Figure 4.16 are simulated 

by reducing the element stiffness to 75%, 50%, 25%, 1% of the original value, respectively. 

Figure 4.17 gives the calculated damage indexes for each damage extent and healthy condition. 

It is undetectable for 25% and 50% damage extent since no evident change of damage indexes 

has been found. For the 75% damage extent, noticeable downward shifts of the 1st, 2nd and 

4th neutral axes are found with the cumulative NA change ratio of -2.3%. However, it is still 

questionable to raise a damage alert. For the 99% damage extent, the NA change ratio has 

synchronous negative values for all neutral axes and the cumulative NA change ratio reaches 

about -10%. In this regard, the presence of damage near the monitoring section can be 

confirmed with a good confidence level. Based on the above studies, the proposed method can 

confidently identify a damage with extent greater than 90% for a structural component. Similar 

detection accuracy for the Tsing Ma Bridge was also obtained by Chen et al. (2014), where an 

influence line based damage detection method was applied. 
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Figure 4.16 Damage scenarios on the bridge deck 

 

 
Figure 4.17 Calculated damage indexes for different structural condition 

4.5.2 Case Study: Single Damage 

The proposed neutral axis based damage detection method is further validated through 

numerical studies by considering single and multiple damages. As shown in Table 4.10, it is 
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first assumed that the bridge deck is under the healthy status from November 13 to 20. For the 

single-damage case, the diagonal strut adjacent to the monitoring cross section as depicted in 

Figure 4.16 is assumed to be damaged by reducing its cross-sectional area to 1% of the original 

value, and it is presumed to occur since the date of November 21. 

It finds that there exists both positive and negative values of the daily NA change ratio for most 

of the days under healthy status of the bridge as shown in Figure 4.18(a). As expected, the 

cumulative NA change ratio fluctuates around the zero value within these days, implying the 

intrinsic variation of the neutral axis under in-service traffic operation. Though tracking the 

change of the neutral axis positions, it signals a high possibility that the bridge deck is under 

heathy condition from November 13 to 20. 

Negative values of the daily NA change ratio become predominant since the date of November 

21 when single damage of the diagonal strut is introduced as shown in Figure 4.18(b). The 

highway-induced 1st and 2nd neutral axes have continuous significant downward movements 

during those days. The railway-induced 3rd neutral axis shifts downwards as well but with much 

shorter distance. The 4th neutral axis jointly induced by railway and highway, however, has 

both upward and downward movements in those days. Reasons for this phenomenon are two 

folds: (1) the railway-induced neutral axis position change is less sensitive to the damage of 

diagonal strut; and (2) the identified 4th neutral axis position is of the greatest uncertainty as 

revealed in Figure 4.10 and Figure 4.15. Consequently, it is observed the cumulative NA change 

ratio has negative values at -11.0% on average during these days. A damage occurrence alert 
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can be issued based on the evident shifts of the neutral axis. 

 
a) damage indexes under healthy condition 

 
b) damage indexes under two damage cases 

Figure 4.18 Detection of damage using neutral axis based indexes 

4.5.3 Case Study: Multiple Damages 

For the multiple-damage case, both the diagonal strut and the bottom chord adjacent to the 

monitoring cross section are assumed to be severely damaged. The cross-sectional areas of both 

elements are reduced to 1% of the original values. This damage scenario is presumed to occur 

since the date of November 26. 
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As plotted in Figure 4.18(b), the NA change ratio continuously holds large negative values 

since November 26, implying the synchronous downward movements of the neutral axis 

positions as multiple damages are introduced. Table 4.12 lists the maximum and minimum 

values of the two types of damage indexes under different structural conditions. The railway-

induced 3rd neutral axis significantly moves downwards with nearly six times greater than the 

single-damage induced shift. It seems the railway-induced neutral axis position change is more 

sensitive to the damage of bottom chord. Negative change ratios of the 2nd and 4th neutral axes 

are noticeably greater than that of single-damage case as well. The upward movement of the 

4th neutral axis is not observed under multiple damages. Nevertheless, the highway-induced 1st 

neutral axis has similar change ratio in either the single- or multiple-damage cases. The 

synchronous downward movements of the neutral axis positions raise alert that damages are 

existed. As the damage accumulates, the cumulative NA change ratio is almost two times 

greater than that of single-damage case. It further indicates the cumulative NA change ratio has 

the potential to be a damage severity indicator. However, possible false negative error of 

damage detection may occur when neutral axis change is offset, for example, if the neutral axis 

shift induced by structural member A is upward while the shift induced by structural member 

B is downward. More damage locations and components should be considered in order to 

develop a classification table for all nearby structural members according to different damage-

induced NA shift directions. 
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Table 4.12 Maximum and minimum values of damage indexes 
for different structural condition 

Structural 
condition 

 
NA change ratio 

Cumulative NA 
change ratio 

𝛿1 𝛿2 𝛿3 𝛿4 𝜂 

Intact 
Max 0.9% 2.9% 0.2% 1.9% 5.6% 
Min -0.9% -0.7% -0.5% -3.9% -4.5% 

Single 
damage 

Max -5.2% -3.4% -0.1% 1.2% -9.7% 
Min -7.0% -6.0% -0.7% -3.5% -13.8% 

Multiple 
damages 

Max -4.1% -4.8% -6.1% -3.4% -20.2% 
Min -7.0% -6.7% -6.6% -4.8% -24.0% 

The cumulative NA change ratio 𝜂 under healthy condition provides the information about 

the intrinsic variability of the neutral axis position. Through the Bayesian updating of daily 

samples of 𝜂, the underlying distribution of 𝜂 with respect to the healthy condition can be 

obtained as shown in Figure 4.19. It is of high possibility that 𝜂 falls within the interval [𝜇 −

2𝜎 , 𝜇 + 2𝜎 ] for the healthy condition. A fairly large deviance of 𝜂 from the mean value can 

indicate the occurrence of damage. As such, positive and negative thresholds of 𝜂  for 

detecting damage can be formulated as 𝜂𝐻− = 𝜇 − 2𝜎 and 𝜂𝐻+ = 𝜇 + 2𝜎, respectively. Note 

that 𝜇 and 𝜎 are updated mean and standard deviation for 𝜂, respectively. The probability 

of damage 𝑃𝐷 can be calculated as 

 𝑃𝐷 = 1 − 𝑃(𝜂𝐻
− < 𝜂𝑢 < 𝜂𝐻

+) (4.17) 

where 𝜂𝑢 is the cumulative NA change ratio for an unknown state. By using Equation (4.17), 

the probabilities of damage with respect to healthy condition, single-damage condition and 

multiple-damage condition are 2.4%, 37.6% and 51.7%, respectively. 
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Figure 4.19 Determination of structural condition based on cumulative NA change ratio 

4.6 SUMMARY 

An ultimate goal of structural health monitoring is the timely detection of possible aging or 

damage signs in an in-service structure by using the measurement data. This chapter develops 

a neutral axis based damage detection method for the Tsing Ma Bridge under operational traffic 

condition. Sensitivity analysis based on bridge FEM is first carried out to investigate the 

variation of neutral axis position under deterministic moving loads on multiple traffic lanes. 

In-service multilevel stress responses are utilised to identify the neutral axis positions under 

stochastic traffic loads by means of the parametric Bayesian mixture model. Two damage 

indexes, i.e. the NA change ratio and cumulative NA change ratio, are proposed to indicate the 

presence of damage. Case studies with single and multiple damages are investigated to verify 

the effectiveness of the new method. Several important findings are summarised as follows. 

(1) Traffic-induced neutral axis position is insensitive to the change of loading magnitudes 
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but heavily depends on the traffic lane in use. Stochastic highway and railway traffic on 

multiple lanes generate varying neutral axis position for a designated cross section over a 

given time period. Neutral axis position can only be adopted as a damage sensitive feature 

with the associated uncertainty being properly quantified. 

(2) The proposed neutral axis position identification method based on the parametric Bayesian 

mixture model is able to accurately predict the mean values and associated uncertain 

ranges of each neutral axis. The identified neutral axis positions of healthy bridge 

condition keep relative stable under stochastic traffic loads. 

(3) The influence line tool in conjunction with on-site traffic load data are able to construct 

the time history of stress responses for the Tsing Ma Bridge with adequate precision. 

Simulation-based neutral axis positions are of high similarity to the results based on 

monitoring in terms of the trend and uncertain range. 

(4) Results of case studies show that damage of local component could be confidently detected 

by synchronous shifts of neutral axes of the neighbouring cross section. The cumulative 

NA change ratio triggers more convincible detection alerts when damage happens under 

operational traffic condition. It has the potential to be a damage severity indicator. 
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CHAPTER 5  

NONPARAMETRIC BAYESIAN MIXTURE MODEL 

5.1 INTRODUCTION 

In Chapter 3, the parametric Bayesian mixture model along with Markov chain Monte Carlo-

based posterior simulation technique is proposed to handle the multimodal structural responses 

with consideration of parametric uncertainty. The parametric model directly interprets the 

unknown data via inference on the relevant model parameters (e.g. component means, 

variances, and mixing weights). One of the limitations inherent in this process is that the 

number of mixture components of the parametric model is assumed to be a predefined 

deterministic value, which is equivalent to pose restrictive constraints on the model complexity. 

Although the Bayes factor-based model order selection procedure is preliminary proposed in 

Chapter 3 to address this critical issue, it is still impractical to compare all possible candidate 

models and the corresponding computation demand is prohibitive (Neal, 2000; Teh, 2011). This 

chapter presents a class of more flexible mixture models based on the nonparametric Bayesian 

approach, in which the number of mixture components can be directly estimated and 

automatically adapts to the unknown data structure. It further allows one to simultaneously 

incorporate both model order and parametric uncertainties inherent in the modelling process. 

The proposed nonparametric Bayesian mixture model stands as an improvement over the 

parametric counterpart. 
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When applying traditional parametric models to observed data, one potentially has made 

certain assumptions about the data-generating mechanism. For instance, assuming samples are 

drawn from a distribution family indexed with a set of finite-dimensional parameters. These 

probabilistic assumptions, if not be properly testified, could be unrealistic for the observed data 

such as structural health monitoring data, causing possible bias in model interpretation. The 

nonparametric (or semiparametric) approach has attracted long-term attention in both 

theoretical and practical aspects as it provides a framework that one can avoid arbitrary and 

possibly unverifiable assumptions inherent in parametric approach (Ghosal and Van der Vaart, 

2017). Typically, the nonparametric approach abandons some specific parametric assumptions 

through building models over an infinite-dimensional parameter space. Thus, the dimension of 

model parameters is allowed to change with data size, avoiding possible over- or under-fitting. 

A simple example of the nonparametric approach would be the Parzen window method to 

density estimation, which centres a Gaussian density at each observation (i.e. one mean 

parameter per observation). 

Motivating by the coherent and unified framework of the Bayesian theory, the nonparametric 

Bayesian approach arose in the 1970s and it paves a way to consider nonparametric models 

under the Bayesian framework. The Bayesian approach to nonparametric problems was 

introduced in the pioneer work of Ferguson (1973) and further refined by the works including 

Antoniak (1974), Ferguson (1983) and Lo (1984). The Dirichlet process mixture (DPM) model 

is one of the most widely discussed model in Bayesian nonparametrics. Differ from 

conventional parametric model, the DPM model is such a nonparametric Bayesian model that 



Chapter 5 Nonparametric Bayesian Mixture Model 

-120- 

defined on an infinite-dimensional parameter space (infinite number of components) and uses 

only a finite subset of the available parameters (effective components) to represent the model. 

Hence, the model order as measured by the effective number of components can freely adapt 

to the unknown data structure. In this way, the number of components in mixture model is no 

longer a deterministic value but a random variable that can be directly inferred from the data. 

One can bypass the mixture model order selection issue, which is usually fraught with technical 

difficulties. More importantly, the model order uncertainty in the mixture model can be 

assessed in the meantime. Quantification of both model order and parametric uncertainties of 

multimodal structural responses can then be pursued. In the past two decades, the DPM model 

has been successfully applied to a variety of fields such as machine learning (Orbanz and Teh, 

2010), image segmentation (Orbanz and Buhmann, 2008), document clustering (Huang et al., 

2012), chemical mechanical planarization (Liu et al., 2017), reliability analysis (Mokhtarian et 

al., 2013) and SHM (Rogers et al., 2019). 

The theoretical framework of the nonparametric Bayesian mixture model is presented in this 

chapter. A comprehensive comparison on the performance of the parametric and nonparametric 

approaches is further discussed. The layout of this chapter is organized as follows. Section 5.2 

introduces the model framework of the nonparametric Bayesian approach, in particular, the 

Dirichlet process mixture model. The collapsed Gibbs sampler is devised to pursue the 

posterior mixture density samples. A quantitative diagnosis strategy is proposed to assess the 

convergence of the simulation. Section 5.3 demonstrates a numerical example, where the 

nonparametric Bayesian approach is tested through modelling on a trimodal data set. A 
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comparison study on the performance of the parametric and nonparametric Bayesian 

approaches is presented in Section 5.4, where several key issues, including model complexity, 

goodness-of-fit, uncertainty characterization and computational demands, are carefully 

investigated. 

5.2 MODEL FRAMEWORK 

5.2.1 Dirichlet Process Prior 

Thinking of the nonparametric models in the Bayesian manner, one first need to assign prior 

distributions for all model parameters, which now are on the infinite-dimensional parameter 

space. Unlike putting conventional prior distributions on individual parameters of a parametric 

model as shown in Chapter 3, infinite dimensional parameters usually constitute functions or 

measures, requiring workable prior distributions for functions or measures rather than random 

variables. The Dirichlet process (DP) first introduced in Ferguson (1973) is arguably the most 

widely adopted nonparametric prior and later it became the building block in Bayesian 

nonparametrics. In this section, we begin with the definition and key properties of the Dirichlet 

process, which are essential to derive the DPM model. 

5.2.1.1 Dirichlet process 

The Dirichlet process is a stochastic process whose sample paths are probability measures with 

probability one (Teh, 2011). Samples from DP can be regarded as random distributions with 

certain Dirichlet properties, thus one can loosely view DP as a distribution over distributions. 
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Formally, a random distribution 𝐺 is distributed according to DP with the following formation 

 𝐺~𝐷𝑃(𝛼, 𝐺0) (5.1) 

where DP is parameterized by a positive concentration parameter 𝛼 and a base measure 𝐺0. 

The role of these two parameters playing in DP is analogous to the mean and variance in 

Gaussian distribution: the base measure 𝐺0  is the expectation of 𝐺 , i.e. 𝐺0(∙) = 𝐸[𝐺(∙)] , 

while the concentration parameter 𝛼 reflects the diffusion of 𝐺 about 𝐺0. A key feature of 

DP is that a distribution drawn from DP is always discrete with probability one, regardless of 

whether the base measure 𝐺0  is continuous or discrete. The Dirichlet properties of DP 

indicates that for any finite measurable partition  1, ⋯ ,  𝑟 of the probability space Θ, the 

vector (𝐺( 1),⋯ , 𝐺( 𝑟)) is random and obey to the Dirichlet distribution 

 (𝐺( 1),⋯ , 𝐺( 𝑟))~𝐷𝑖𝑟(𝛼𝐺0( 1),⋯ , 𝛼𝐺0( 𝑟)) (5.2) 

Recall that the Dirichlet distribution is used as prior for mixing weights in finite Gaussian 

mixture (FGM) model, the DP extends the Dirichlet properties to infinite-dimensional setting. 

Because 𝐺 is a distribution, we can also draw samples from 𝐺 itself and later we shall see 

the Gaussian kernel parameters 𝜃  (mean and variance) are exactly drawn from 𝐺  in our 

nonparametric DPM model. Suppose 𝜃1, ⋯ , 𝜃𝑛 be a sequence of independent samples from 

𝐺 and for any finite measurable partition  1, ⋯ ,  𝑟, the posterior distribution of the vector 

(𝐺( 1),⋯ , 𝐺( 𝑟)) is still Dirichlet distributed 

 
(𝐺( 1),⋯ , 𝐺( 𝑟))|𝜃1, ⋯ , 𝜃𝑛~𝐷𝑖𝑟(𝛼𝐺0( 1) + 𝑛1, ⋯ , 𝛼𝐺0( 𝑟)

+ 𝑛𝑟) 
(5.3) 

where 𝑛𝑘 is the number of observed 𝜃𝑖’s in the partition of  𝑘  (𝑘 = 1,⋯ , 𝑟). The posterior 
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distribution of 𝐺  conditional on 𝜃1, ⋯ , 𝜃𝑛  is again a DP with updated concentration 

parameter and base measure 

 𝐺|𝜃1, ⋯ , 𝜃𝑛~𝐷𝑃(𝛼 + 𝑛,
𝛼

𝑛 + 𝛼
𝐺0 +

𝑛

𝑛 + 𝛼

∑ 𝛿𝜃𝑖
𝑛
𝑖=1

𝑛
) (5.4) 

where 𝛿𝜃𝑖 is the Dirac measure (a degenerate distribution with point masses) located at atom 

𝜃𝑖. Note that the posterior (updated) base measure has a form of weighted average over the 

prior base measure 𝐺0 and the empirical distribution 
∑ 𝛿𝜃𝑖
𝑛
𝑖=1

𝑛
 of 𝜃, indicating that there is a 

probability proportional to 𝑛  that the posterior 𝐺  is affected by the observations, while it 

holds the probability proportional to 𝛼  that the posterior 𝐺  remains in 𝐺0 . Thus, the 

concentration parameter 𝛼 again describes the probability mass associated with the prior: as 

𝛼 → ∞, we have 𝐺 → 𝐺0 pointwise since 𝐺 is always discrete. 

The posterior base measure is also the predictive distribution of 𝜃𝑛+1 given 𝜃1, ⋯ , 𝜃𝑛, hence 

we have the Blackwell-MacQueen urn scheme 

 𝜃𝑛+1|𝜃1, ⋯ , 𝜃𝑛~
1

𝑛 + 𝛼
(𝛼𝐺0 +∑ 𝛿𝜃𝑖

𝑛

𝑖=1
) (5.5) 

where the random 𝐺 has been marginalized out. The clustering property of the DP is directly 

revealed by Equation (5.5): it allows positive probability to next sample 𝜃𝑛+1 that can be re-

located to previous samples 𝜃1, ⋯ , 𝜃𝑛 . In other words, if we have a sequence of draws 

𝜃1, 𝜃2, ⋯~𝐺 and 𝐺~𝐷𝑃(𝛼, 𝐺0), then there would exist repeated values of 𝜃𝑖’s, leading to 

groups (clusters) of 𝜃𝑖’s that take on the same values. 

Because of the exchangeability of the sequence 𝜃1, ⋯ , 𝜃𝑛, any arbitrary 𝜃𝑖  (𝑖 = 1,⋯ , 𝑛) can 
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be regarded as the last observation in the sequence. Let 𝜃1∗, ⋯ , 𝜃𝐽
∗ (𝐽 ≪ 𝑛)  be the unique 

values among 𝜃1, ⋯ , 𝜃𝑛 , then a set of 𝜃𝑖 ’s with identical values 𝜃𝑗∗ (𝑗 = 1,⋯ , 𝐽)  can be 

regarded as a group. The clustering property of DP can be rewritten as 

 𝜃𝑖|𝜽−𝑖~
1

𝑛 − 1 + 𝛼
(𝛼𝐺0 +∑ 𝑛−𝑖,𝑗𝛿𝜃𝑗

∗

𝐽

𝑗=1
) (5.6) 

where 𝜽−𝑖  is the subset of {𝜃1, ⋯ , 𝜃𝑛}  without taking account of 𝜃𝑖 , and 𝑛−𝑖,𝑗  is the 

number of 𝜃ℎ ’s (ℎ ≠ 𝑖)  in the cluster associated with 𝜃𝑗∗ . As implied by Equation (5.6), 

accumulation of samples tends to occur in ‘big’ cluster associated with larger number of 

samples since the probability of drawing 𝜃𝑖 conditional on any other sequence is proportional 

to the cluster size 𝑛−𝑖,𝑗. This is a rich-get-richer phenomenon, where ‘big’ clusters grow bigger 

faster (Teh, 2011). 

5.2.1.2 Chinese restaurant process 

As the sequence 𝜃1, ⋯ , 𝜃𝑛  is random in nature, the clustering property of DP leads to an 

infinite random partition of the index set {1,⋯ , 𝑛} of 𝜃, within which 𝜃𝑖’s have identical 

values. The distribution over the infinite random partitions is called the Chinese restaurant 

process (CRP) due to a delicate metaphor. Consider a restaurant with infinitely many tables 

and a sequence of customers waiting outside. The first customer enters and sits on the first table, 

followed by the second customer sits in the first table with probability of 1

1+𝛼
 or choose a new 

table with probability of 𝛼

1+𝛼
. The customers continue to join the restaurant with the following 

generalization: the 𝑖 th customer either chooses an occupied table 𝑗  with probability 

proportional to the number of customers already sitting there, or sits on a new unoccupied table 
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with probability proportional to 𝛼. Customers sitting in the same table share one dish together. 

At any time point of this process, the allocation of customers to tables defines a random 

partition. A graphical illustration of the CRP is given in Figure 5.1. Given the observations, the 

CRP is a useful representation for the DPM model where customers represent the indexes 

associated with observations, tables represent the components, and dishes represent the 

component parameters. This will be further detailed in the following discussion. 

 
Figure 5.1 The Chinese restaurant process (Gershman and Blei, 2012) 

Formally, we have the following conditional probability governing the CRP. Let 𝑧𝑖 = 𝑗 be the 

allocation to 𝑗th table of the 𝑖th customer. The samples from CRP can be sequentially drawn 

from 

 Pr(𝑧𝑖 = 𝑗|𝒛−𝑖) =

{
 
 

 
 

𝑛−𝑖,𝑗

𝑛 − 1 + 𝛼
, 𝑖𝑓 𝑗 𝑖𝑠 𝑎𝑛 𝑜𝑐𝑐𝑢𝑝𝑖𝑒  𝑡𝑎𝑏𝑙𝑒

𝛼

𝑛 − 1 + 𝛼
, 𝑖𝑓 𝑗 𝑖𝑠 𝑎 𝑛𝑒𝑤 𝑡𝑎𝑏𝑙𝑒            

 (5.7) 

where 𝒛−𝑖 is the allocations of 𝑛 − 1 customers excluding the 𝑖th customer. The parameter 
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𝛼 here implies that the larger value 𝛼 has, the more likely the next customer will choose a 

new table, while the more tables will be occupied by customers during the process. 

5.2.1.3 Stick-breaking construction 

As revealed by Equation (5.5), samples drawn from a DP are composed of a weighted sum of 

point masses. The explicit realization of DP is achieved through the so-called stick-breaking 

construction 

 

𝐺 =∑ 𝜔𝑗𝛿𝜃𝑗
∗

∞

𝑗=1
 

(5.8) 

𝜔𝑗 = 𝛽𝑗∏ (1 − 𝛽𝑙)
𝑗−1

𝑙=1
 

𝛽𝑗~𝐵𝑒𝑡𝑎(1, 𝛼) 

𝜃𝑗
∗~𝐺0 

where 𝜔𝑗 is the probability mass (weight) at atom 𝜃𝑗∗ satisfying ∑ 𝜔𝑗
∞
𝑗=1 = 1. The procedure 

of stick-breaking is illustrated in Figure 5.2. Suppose we have a stick of unit length, which 

represent the total probability to be assigned to all the atoms. The stick is first randomly cut off 

with a length of 𝛽1~𝐵𝑒𝑡𝑎(1, 𝛼), and we assign this 𝜔1 = 𝛽1 probability mass to the first 

randomly generated atom 𝜃1∗~𝐺0. Then the remaining (1 − 𝛽1) length of the stick is again 

cut off with the portion of 𝛽2~𝐵𝑒𝑡𝑎(1, 𝛼) , and we assign the probability mass of 𝜔2 =

𝛽2(1 − 𝛽1) to the next atom 𝜃2∗~𝐺0. The process continues so that the stick is divided into 

infinite number of segments with each segment length representing weighted point mass. The 

infinite sum of weighted point masses constitutes the discrete random measure 𝐺, which is 

indeed DP-distributed. The stick-breaking construction over 𝜔  is conveniently written as 
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𝜔~𝐺𝐸𝑀(𝛼)  (Sethuraman, 1994). As plotted in Figure 5.2, the parameter 𝛼  controls the 

distributional shape of the beta distribution, where the larger value of 𝛼 the smaller value of 

𝛽~𝐵𝑒𝑡𝑎(1, 𝛼)  will be generated, hence the stick will be eventually divided into more 

segments. The parameter 𝛼 contained in the stick-breaking construction here is functionally 

the same as in CRP. 

 
Figure 5.2 Stick-breaking construction and the beta distribution 

5.2.2 Dirichlet Process Mixture Model 

The direct implement of DP as a prior distribution is often infeasible since the random 

distributions drawn from DP are of discreteness which do not have density functions. From the 

perspective of nonparametric density estimation, one can solve the awkward discreteness by 

means of kernel technique: smooth over the DP draws with a continuous parametric density 

function. In general, the Bayesian nonparametric density estimation of a random variable 𝑌 

𝜔1 = 𝛽1

𝜔2 = 𝛽2(1 − 𝛽1)

𝜔3 = 𝛽3(1− 𝛽2)(1 − 𝛽1)

⋯
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can be defined as (Gelman et al., 2014) 

 𝑝(𝑦) = ∫𝐾(𝑦|𝜃)d𝐺(𝜃) (5.9) 

where 𝐾(𝑦|𝜃)  is a kernel density indexed by 𝜃  and 𝐺~𝐷𝑃(𝛼, 𝐺0) . Due to the cluster 

property of DP, the nonparametric density defined in this way is equivalent to a mixture model 

with infinite number of components 

 𝑝(𝑦) = ∑ 𝜔𝑗𝐾(𝑦|𝜃𝑗
∗)

∞

𝑗=1
 (5.10) 

where 𝜔~𝐺𝐸𝑀(𝛼) is generated from the DP stick-breaking construction. This nonparametric 

Bayesian mixture model is also referred to the Dirichlet process mixture (DPM) model. 

Sampling from the DPM model can be conducted through the following hierarchical structure 

 

𝑦𝑖~𝐾(∙ |𝜃𝑖) 

(5.11) 𝜃𝑖~𝐺 

𝐺~𝐷𝑃(𝛼, 𝐺0) 

where 𝑦𝑖’s are the observations of 𝑌 and 𝜃𝑖’s are the corresponding latent parameters (𝑖 =

1,⋯ , 𝑛) drawn from 𝐺. In this study, the Gaussian kernel is adopted in nonparametric density 

estimation, hence we have 𝜃𝑖 = (𝜇𝑖, 𝜎𝑖
2). The base measure 𝐺0 is chosen to be the normal-

inverse-chi-squared distribution which is conjugate to the Gaussian kernel. This conjugacy has 

been introduced in Chapter 3 and will not be detailed here. The conjugate setting is commonly 

used in DPM model and it allows direct sampling from the conditional distributions which 

brings computation convenience for the posterior inference of the DPM model. 
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With the stick-breaking construction, the DPM model can be rewritten using a similar form as 

the finite mixture model, in which the number of components is unbounded now. Together with 

Equations (5.8) and (5.11), we have the equivalent expression for DPM model 

 

𝜔|𝛼~𝐺𝐸𝑀(𝛼) 𝜃𝑗
∗~𝑁𝐼𝐶(𝜉𝑗, 𝜅𝑗 , 𝜈𝑗 , 𝑠𝑗

2) 

(5.12) 
𝑧𝑖~𝑀𝑢𝑙𝑡(𝜔) 𝑦𝑖|𝑧𝑖, 𝜃𝑗

∗~𝑁(𝜃𝑧𝑖
∗ ) 

where 𝜔  is the mixing weight, 𝑧𝑖  is the component indicator, 𝜃𝑗∗ = (𝜇𝑗
∗, 𝜎𝑗

2∗)  is the 

parameter of Gaussian component 𝑁(𝜃𝑗∗), and 𝑁𝐼𝐶 is the normal-inverse-chi-squared prior 

over component parameters with hyperparameters {𝜉𝑗, 𝜅𝑗 , 𝜈𝑗 , 𝑠𝑗
2} . The stick-breaking 

representation reveals that the mixing weight 𝜔 decreases exponentially quickly, thus only a 

limited number of components are used in DPM model a priori. Generally, the DPM model is 

a mixture model with varying number of components - the model complexity can automatically 

adapt to the observation data. This is an essential difference with the FGM model where the 

number of components is a predetermined fixed value. 

Direct evaluation of the posterior DPM model is computationally prohibitive because of the 

unbounded parameter dimension and the inherent complexity of the posterior (Escobar and 

West, 1995). In practice, it is common to perform approximate inference using Markov chain 

Monte Carlo methods to tackle this issue. Specifically, the Gibbs sampler is well suited for the 

posterior computation since the DP’s Blackwell-MacQueen urn scheme of Equation (5.5) 

provides a well-defined full conditional posterior distribution for the model parameter 𝜃 . 

Combining with the Gaussian likelihood, the conditional posterior of 𝜃𝑖|𝜽−𝑖  of the DPM 
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model with single observation 𝑦𝑖 can be derived as 

 

𝜃𝑖|𝜽−𝑖, 𝑦𝑖~𝑏𝛼𝑞0𝐻(𝜃𝑖|𝑦𝑖) + 𝑏∑𝑞𝑗𝛿𝜃𝑗
∗

𝑗≠𝑖

 

(5.13) 

with 𝐻(𝜃𝑖|𝑦𝑖) ∝ 𝐺0(𝜃𝑖)𝑁(𝑦𝑖|𝜃𝑖), 

𝑞0 = ∫𝐺0(𝜃)𝑁(𝑦𝑖|𝜃)d𝜃, 

𝑞𝑗 = 𝑁(𝑦𝑖|𝜃𝑗
∗), and 

𝑏 = (𝛼𝑞0 +∑ 𝑁(𝑦𝑖|𝜃𝑗
∗)

𝑗≠𝑖
)

−1

 

where 𝐻 is the posterior of 𝜃𝑖 with prior of 𝐺0, 𝑞0 is the marginal likelihood of 𝑦𝑖, 𝑞𝑗 is 

the Gaussian likelihood evaluated at 𝑦𝑖 , and 𝑏  is the normalizing constant that makes the 

above probability sum to one. Similarly, this conditional probability states that a new sample 

of 𝜃𝑖 is either identical to any other values of 𝜃𝑗 , (𝑗 ≠ 𝑖) with probability proportional to 𝑞𝑗 

or is drawn from 𝐻 with probability proportional to 𝛼𝑞0. With the conjugacy of prior 𝐺0 

and Gaussian kernel 𝑁(∙ |𝜃) , all terms are analytically tractable such that the conditional 

posterior of 𝜃𝑖|𝜃−𝑖, 𝑦𝑖 can be directly sampled through Equation (5.13). 

Although the implementation of Gibbs sampler based on the Blackwell-MacQueen urn scheme 

is straightforward, it tends to poor mixing and low efficacy as one may need to change 

parameter value 𝜃 for each observation 𝑦 during every Gibbs run. To avoid the inefficiency 

of direct sampling of parameter 𝜃, the collapsed Gibbs sampler (also known as marginal Gibbs 

sampler) as introduced in Neal (2000) is adopted for posterior inference of the DPM model in 

this study. 
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5.2.3 Posterior Simulation Using Collapsed Gibbs Sampler 

The collapsed Gibbs sampler is devised in a back-to-front way that one may temporarily waive 

the sampling of the component parameter 𝜃 while drawing component indicator 𝑧 for each 

observation 𝑦  first. It is a feasible way since the conjugate setting allows the 𝜃  to be 

integrated out and the conditional probability of 𝑧  is analytically available. Due to the 

clustering property of DP, in every Gibbs run, the 𝑦𝑖’s that have same component indicator 𝑧𝑖 

are probabilistically grouped together as a cluster, in which they share the identical component 

parameter together. Obviously, sampling component parameter for observations that belong to 

the same cluster is more efficient than sampling individual parameters for each observation. 

5.2.3.1 Conditional posterior of 𝒛 

To begin with, we derive the conditional posterior probability of 𝑧  by using the Bayes’ 

theorem. The CRP representation of the random allocation of observations now plays a role as 

the prior for 𝑧 in defining the conditional posterior distribution, since we do not have any 

observation (not yet combining the likelihood of 𝑦 ) so that 𝑧  follows the CPR random 

partition. The posterior of 𝑧  conditional on all other parameters and observations can be 

derived as 

 

𝑃(𝑧𝑖 = 𝑗|𝒛−𝑖, 𝒚) 

∝ 𝑃(𝑧𝑖 = 𝑗|𝒛−𝑖) 𝑝(𝒚|𝑧𝑖 = 𝑗, 𝒛−𝑖) 

= 𝑃(𝑧𝑖 = 𝑗|𝒛−𝑖) 𝑝(𝑦𝑖|𝒚−𝑖, 𝑧𝑖 = 𝑗, 𝒛−𝑖) 𝑝(𝒚−𝑖|𝑧𝑖 = 𝑗, 𝒛−𝑖) 

∝ 𝑃(𝑧𝑖 = 𝑗|𝒛−𝑖) 𝑝(𝑦𝑖|𝒚−𝑖,𝑗) 

(5.14) 

where 𝒚−𝑖 is the subset of {𝑦1, ⋯ , 𝑦𝑛} without taking account of 𝑦𝑖, and 𝒚−𝑖,𝑗 is the set of 
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observations that belong to the 𝑗 th component but excluding 𝑦𝑖 . Note that the term 

𝑝(𝒚−𝑖|𝑧𝑖 = 𝑗, 𝒛−𝑖) = 𝑝(𝒚−𝑖|𝒛−𝑖) is the normalized constant that can be neglected. The first 

term of Equation (5.14) is the prior of 𝑧𝑖 which is readily obtained by CRP representation of 

Equation (5.7). The second term is the predictive distribution of 𝑦𝑖 given other observations 

which is exactly the Student’s T distribution with updated hyperparameters {𝜉𝑗∗, 𝜅𝑗∗, 𝜈𝑗∗, 𝑠𝑗2∗} 

 

𝑝(𝑦𝑖|𝒚−𝑖,𝑗) = ∫𝑝(𝑦𝑖|𝜃𝑗
∗)𝑝(𝜃𝑗

∗|𝒚−𝑖,𝑗)d𝜃 

= 𝑇𝜈𝑗
∗(𝑦𝑖|𝜉𝑗

∗, (1 + 𝜅𝑗
∗)𝑠𝑗

2∗ 𝜅𝑗
∗⁄ ) 

(5.15) 

with 𝜈𝑗∗ = 𝜈𝑗 + 𝑛−𝑖,𝑗, 

𝜅𝑗
∗ = 𝜅𝑗 + 𝑛−𝑖,𝑗, 

𝜉𝑗
∗ =

𝜅𝑗𝜉𝑗+𝑛−𝑖,𝑗�̅�−𝑖,𝑗

𝜅𝑗+𝑛−𝑖,𝑗
, and 

𝑠𝑗
2∗ =

1

𝜈𝑗 + 𝑛−𝑖,𝑗
(𝜈𝑗𝑠𝑗

2 + ∑ (𝑦ℎ − �̅�−𝑖,𝑗)
2

ℎ∈𝑗,ℎ≠𝑖

+
𝜅𝑗𝑛−𝑖,𝑗

𝜅𝑗 + 𝑛−𝑖,𝑗
(�̅�−𝑖,𝑗 − 𝜉𝑗)

2) 

where 𝑛−𝑖,𝑗  and �̅�−𝑖,𝑗  are the number of samples and sample mean of the set 𝒚−𝑖,𝑗 , 

respectively. Substituting of Equations (5.7) and (5.15) into Equation (5.14), we have the 

conditional posterior probabilities of 𝑧𝑖 for collapsed Gibbs sampler with model parameter 𝜃 

integrated out 

 

𝑃(𝑧𝑖 = 𝑗|𝒛−𝑖, 𝒚)

=

{
 
 

 
 

𝑛−𝑖,𝑗

𝑛 − 1 + 𝛼
𝑇𝜈𝑗

∗(𝑦𝑖|𝜉𝑗
∗, (1 + 𝜅𝑗

∗)𝑠𝑗
2∗ 𝜅𝑗

∗⁄ ), 𝑓𝑜𝑟 𝑗 ≤ 𝐽

𝛼

𝑛 − 1 + 𝛼
𝑇𝜈𝑗(𝑦𝑖|𝜉𝑗 , (1 + 𝜅𝑗)𝑠𝑗

2 𝜅𝑗⁄ ), 𝑖𝑓 𝑗 = 𝐽 + 1

 
(5.16) 
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Note that the predictive distribution of 𝑦𝑖 now has two different expressions: 

⚫ Posterior predictive distribution: for 𝑧𝑖 = 𝑗 (𝑗 ≤ 𝐽) is an existing component with 𝒚−𝑖,𝑗 

being the observations, the predictive distribution is the Student’s T distribution with 

updated hyperparameters and then evaluated at 𝑦𝑖; 

⚫ Prior predictive distribution: if 𝑧𝑖 = 𝐽 + 1 is a new component given no observations (i.e. 

𝒚−𝑖,𝑗 = ∅), the predictive distribution is again the Student’s T distribution but with prior 

hyperparameters and then evaluated at 𝑦𝑖. 

Therefore, the DPM model can be interpreted as a mixture model consisting of 𝐽  existing 

components 𝑁(∙ |𝜃𝑗∗) and an 𝐽 + 1 empty component for creation of new clusters. 

Recall the FGM model in Chapter 3, the model order in terms of number of components 𝐽 

needs to be predetermined before estimating the parameters. Changing model order thus 

requires repeating estimation on many more finite mixture models with different value of 𝐽. 

By contrast, the flexibility characteristic of the DPM model is that a new component will be 

created and is allowed to either grow up or fade away during the Gibbs iterations. The effective 

number of components varies to a certain degree and thus it is a probabilistic value rather than 

a constant. The effective number of components can eventually be estimated from the data. 

Note that the DPM model may be regarded as a full Bayesian approach that all the unknown 

parameters contained in the model are treated as random variables and they are automatically 

inferred from the data. 
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5.2.3.2 Conditional posterior of 𝜽 

Sampling for the component parameter of 𝜃𝑗∗ can be implemented when given the allocation 

of observations. The conditional posterior distribution of 𝜃𝑗∗ is derived by the Bayes’ theorem 

 𝑝(𝜃𝑗
∗|𝒚𝑗, 𝒛) ∝ 𝐺0(𝜃𝑗

∗)∏𝑁(𝑦ℎ|𝜃𝑗
∗)

ℎ∈𝑗

 (5.17) 

where 𝒚𝑗 is the observations that belongs to the 𝑗th component. The conditional posterior 

distribution is indeed the normal-inverse-chi-squared distribution due to the conjugate setting. 

The marginal distributions of 𝜇𝑗 and 𝜎𝑗2 have explicit sampling form 

 

𝜎𝑗
2|𝒚𝑗, 𝐳~𝐼𝑛𝑣𝐶(𝜈𝑗

∗, 𝑠𝑗
2∗) 

(5.18) 
with 𝜈𝑗∗ = 𝜈𝑗 + 𝑛𝑗  and 

𝑠𝑗
2∗ =

1

𝜈𝑗 + 𝑛𝑗
(𝜈𝑗𝑠𝑗

2 +∑(𝑦ℎ − �̅�𝑗)
2

ℎ∈𝑗

+
𝜅𝑗𝑛𝑗

𝜅𝑗 + 𝑛𝑗
(�̅�𝑗 − 𝜉𝑗)

2) 

and 

 

𝜇𝑗|𝜎𝑗
2,𝒚𝑗, 𝐳~𝑁(𝜉𝑗

∗, 𝜎𝑗
2 𝜅𝑗

∗⁄ ) 

(5.19) with 𝜉𝑗∗ =
𝜅𝑗𝜉𝑗+𝑛𝑗�̅�𝑗

𝜅𝑗+𝑛𝑗
 and 

𝜅𝑗
∗ = 𝜅𝑗 + 𝑛𝑗  

where 𝑛𝑗  and �̅�𝑗 are the number of samples and sample mean of the set 𝒚𝑗, respectively. 

Note that the marginal sampling distributions of component parameters of Equations (5.18) 

and (5.19) are closely resemble to that of FGM model since both of them adopts the conjugate 
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setting. 

5.2.3.3 Posterior mixture density samples 

Repeating the sampling process for 𝑇 times, the collapsed Gibbs sampler generates a series 

sequences of model parameters which includes the component parameters 𝜃 and the number 

of components 𝐽. After discarding the early samples, here refer to burn-in samples 𝐵, the rest 

of 𝐺 = 𝑇 − 𝐵 samples can be used to approximate the true model parameters. However, a 

technical difficulty will be soon encountered in summarizing the posterior model parameters: 

since the number of component 𝐽 can vary to a degree during Gibbs run, the dimension of 

model parameters is not fixed now. It makes the posterior summarizing almost unattainable 

because the component parameters are not well-defined along the simulated sequences. To 

summarize the Bayesian estimation of the DPM model, instead, we evaluate the mixture 

densities 𝑝(𝑡)(𝑦)  and provide posterior statistic metrics based on these simulated mixture 

density samples. For 𝑡 = (𝐺 + 1) 𝑇, the mixture density samples of the DPM model can be 

formulated as (Gelman et al., 2014) 

 𝑝(𝑡)(𝑦) = ∑(
𝑛𝑗
(𝑡)

𝑛 + 𝛼
)𝑁(𝑦|𝜃𝑗

∗(𝑡)
)

𝐽(𝑡)

𝑗=1

+ (
𝛼

𝑛 + 𝛼
)∫𝑁(𝑦|𝜃)𝐺0(𝜃)d𝜃 (5.20) 

where the term ∫𝑁(𝑦|𝜃)𝐺0(𝜃)d𝜃  representing a new component that can be computed 

according to Equation (5.15) with 𝒚−𝑖,𝑗 = ∅. Note that the mixing weights in mixture density 

are not simulated but evaluated as follows: 𝜔𝑗 =
𝑛𝑗

𝑛+𝛼
 (𝑗 ≤ 𝐽) for existing components while 

𝜔𝐽+1 =
𝛼

𝑛+𝛼
 for new component. Technically, a tolerance value 𝜔𝐽+1 < 0.001 is set for the 
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collapsed Gibbs sampler to stop the random partition process. The nonparametric Bayesian 

approach is implemented in a way that directly draws posterior mixture density samples with 

varying number of components, rather than to draw individual mixture parameters in each 

Gibbs runs. 

5.2.4 Quantitative Convergence Diagnosis 

As mentioned in Chapter 3, simulation-based inference such as MCMC techniques requires 

monitoring of convergence of the Markov chains to the target distribution. Through 

simultaneously running several parallel chains from dispersed starting points, the mixing and 

stationarity of the chains can be assessed by analysis of between-chain variance and within-

chain variance of the random variable being monitored (e.g., model parameters). The potential 

scale reduction factor (PSRF) can be evaluated and treated as a quantitative convergence 

criterion. This is the diagnosis strategy proposed by Gelman and Rubin (1992) which is used 

in Chapter 3 for the FGM model. For the convergence assessment of collapsed Gibbs sampler 

for DPM model, we adopted the diagnosis strategy proposed by Brooks and Giudici (2000), an 

extended version of the method of Gelman and Rubin (1992), to assess the convergence of 

chains with consideration of the variation not only between chains but also between models. 

The phenomenon of trans-dimensional parameter space in Gibbs runs again brings challenge 

to convergence diagnosis. Note that direct monitoring of convergence of the natural model 

parameters is no longer a feasible way since in each Gibbs run the parameters are not well-

defined. Based on the simulated posterior mixture density samples, Brooks and Giudici (2000) 
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suggests to monitor the model deviance which retains a coherent interpretation throughout the 

simulation. The model deviance 𝜙 is defined as 

 𝜙 = −2ln(𝑝(𝑦)) (5.21) 

where 𝑝(𝑦) is the mixture density sample evaluated by Equation (5.20). Hereafter, we track 

the deviance 𝜙 instead of the model parameters through Gibbs run to assess the convergence. 

Moreover, since the mixture density samples switch among different model orders along the 

simulation, we now need to also monitor the within-model variance and the between-model 

variance to ensure the chains are well mixed within models and between models. Note that 

within-model analysis means we focus on the density samples with the same model order, while 

between-model analysis represents the analysis of density samples with varying model order. 

Suppose we separately run 𝐿 chains for inference of DPM model and we then have 𝐿 chains 

of 𝜙𝑙 . Let 𝜙𝑙
(𝑡)  denotes the value in chain 𝑙  at iteration 𝑡 , the total variance of 𝜙  under 

target distribution can be estimated by 

 𝑉 =
1

𝐿𝑇 − 1
∑∑(𝜙𝑙

(𝑡) − �̅�)2
𝑇

𝑡=1

𝐿

𝑙=1

 (5.22) 

Suppose 𝑀  possible models are visited in all the chains during the iteration, and define a 

counting function 

 𝐼𝑙(𝑡,𝑚) = {
1   𝑖𝑓 𝑐ℎ𝑎𝑖𝑛 𝑙 𝑖𝑠 𝑖𝑛 𝑚𝑜 𝑒𝑙 𝑚 𝑎𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 
0   𝑒𝑙𝑠𝑒                                                                   

 (5.23) 

where 𝑙 = 1,⋯ , 𝐿 , 𝑡 = 1,⋯ , 𝑇  and 𝑚 = 1,⋯ ,𝑀 . Let 𝐾𝑙𝑚  denotes the number of times 

that model 𝑚 is visited in chain 𝑙, that is 



Chapter 5 Nonparametric Bayesian Mixture Model 

-138- 

 𝐾𝑙𝑚 =∑𝐼𝑙(𝑡,𝑚)

𝑇

𝑡=1

 (5.24) 

Correspondingly, let 𝜙𝑙𝑚
(𝑘) represents the 𝑘th observation of 𝜙𝑙

(𝑡) that belongs to model 𝑚 

within chain 𝑙 , and 𝑘 = 1,⋯ , 𝐾𝑙𝑚.  Then we can have the following different types of 

variance estimates of 𝜙 

 𝑊𝑐 =
1

𝐿
∑ ∑ ∑

(𝜙𝑙𝑚
(𝑘)

− �̅�𝑙)
2

𝑀𝐾𝑙 − 1

𝐾𝑙𝑚

𝑘=1

𝑀

𝑚=1

𝐿

𝑙=1

 (5.25) 

 𝑊𝑚 =
1

𝑀
∑ ∑ ∑

(𝜙𝑙𝑚
(𝑘) − �̅�𝑚)

2

𝐿𝐾𝑚 − 1

𝐾𝑙𝑚

𝑘=1

𝑀

𝑚=1

𝐿

𝑙=1

 (5.26) 

 𝑊𝑚𝑊𝑐 =
1

𝐿𝑀
∑ ∑ ∑

(𝜙𝑙𝑚
(𝑘) − �̅�𝑙𝑚)

2

𝐾𝑙𝑚 − 1

𝐾𝑙𝑚

𝑘=1

𝑀

𝑚=1

𝐿

𝑙=1

 (5.27) 

 𝐵𝑚 = ∑
(�̅�𝑚 − �̅�)2

𝑀 − 1

𝑀

𝑚=1

 (5.28) 

 𝐵𝑚𝑊𝑐 =∑ ∑
(�̅�𝑙𝑚 − �̅�𝑙)

2

𝐿(𝑀 − 1)

𝑀

𝑚=1

𝐿

𝑙=1

 (5.29) 

where 

 𝐾𝑙 = ∑ 𝐾𝑙𝑚
𝑀
𝑚=1  and 𝐾𝑚 = ∑ 𝐾𝑙𝑚

𝐿
𝑙=1   

and the sequence means are taken as 

 �̅�𝑚 =
1

𝐾𝑚
∑∑𝜙𝑙𝑚

(𝑘)

𝐾𝑙𝑚

𝑘=1

𝐿

𝑙=1

  

 �̅�𝑙 =
1

𝐾𝑙
∑ ∑𝜙𝑙𝑚

(𝑘)

𝐾𝑙𝑚

𝑘=1

𝑀

𝑚=1

  

 �̅�𝑙𝑚 =
1

𝐾𝑙𝑚
∑𝜙𝑙𝑚

(𝑘)

𝐾𝑙𝑚

𝑘=1
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 �̅� =
1

𝐿𝑇
∑ ∑ ∑𝜙𝑙𝑚

(𝑘)

𝐾𝑙𝑚

𝑘=1

𝑀

𝑚=1

𝐿

𝑙=1

  

For sufficient iteration 𝑇, if all chains are converged to the same target distribution, then both 

𝑉  and 𝑊𝑐  should well approximate the total variance of 𝜙 , and both 𝑊𝑚  and 𝑊𝑚𝑊𝑐 

should well approximate the within-model variance of 𝜙, and both 𝐵𝑚 and 𝐵𝑚𝑊𝑐 should 

well approximate the between-model variance of 𝜙. Each pairs of these variance estimates 

would be close to each other as the iteration continues. To quantitatively assess the convergence, 

we propose to monitor the potential scale reduction factors (PSRF) 𝑅 of total variance, within-

model variance and between-model variance 

 𝑅𝑡𝑜𝑡 = √
𝑇 − 1

𝑇
+

𝑉

𝑇𝑊𝑐
 (5.30) 

 𝑅𝑊 = √
𝑇 − 1

𝑇
+

𝑊𝑚

𝑇𝑊𝑚𝑊𝑐
 (5.31) 

 𝑅𝐵 = √
𝑇 − 1

𝑇
+

𝐵𝑚
𝑇𝐵𝑚𝑊𝑐

 (5.32) 

Note that all PSRFs should approach to 1 after sufficient iterations, indicating the chains are 

stationary and well mixed between and within models. In this study, the convergence 

monitoring is performed by simulating two parallel chains (i.e. 𝐿 = 2 ) for 𝜙  and the 

convergence is reached when all PSFRs satisfy |𝑅 − 1| ≤ 10−4. By monitoring the PSRFs, a 

quantitative convergence assessment can be achieved with which the burn-in period and the 

total iteration times can be further determined. 
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Figure 5.3 The nonparametric Bayesian approach based on DPM model 
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5.2.5 Predictive Mixture Density 

Through the collapsed Gibbs sampler and the quantitative convergence diagnosis strategy, a 

sequence of posterior mixture density samples can be readily obtained after the burn-in period. 

Recall that in Chapter 3, the Bayesian estimation of the FGM model is provided in terms of the 

posterior model parameters. Now, we summarize the nonparametric Bayesian estimation of the 

DPM model via manipulating the posterior mixture density samples. The predictive mixture 

density of the DPM model is estimated as the mean function of posterior mixture density 

samples 

 𝑝(�̃�|𝒚) = 𝐺−1 ∑ 𝑝(𝑡)(𝑦)

𝑇

𝑡=𝐺+1

 (5.33) 

This is a continuous nonparametric density function that averaging over the trans-dimensional 

parameter space, which represents the most plausible mixture density estimation given the 

observational data. Note that in FGM model, the predictive mixture density has a parametric 

form of weighed sum, and its function is constructed based on the posterior sample means of 

the model parameters. 

Intuitively, the variability of the posterior mixture density samples reveals the uncertainty about 

the estimation of DPM model. Two levels of uncertainty, the model order and parametric 

uncertainties, contribute to the total variability of the posterior samples. Quantification of both 

model order and parametric uncertainties can then be achieved through characterizing the total 

variability of the posterior mixture density samples. This can be done by evaluating, for 
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example, the upper and lower credible bounds of the pointwise density. Suppose we evaluate 

the pointwise density at 𝑦∗, and let 𝑃 denotes the sequence of density values evaluated based 

on posterior mixture density samples 𝑃 = {𝑝(𝐺+1)(𝑦∗),⋯ , 𝑝(𝑇)(𝑦∗)}, then the 5-95 credible 

interval of the pointwise density is 

 [𝑃0.05, 𝑃0. 5] (5.34) 

The Bayesian estimation on the DPM model can be summarized in terms of the predictive 

mixture density and the associated credible interval of pointwise density. The flowchart of 

nonparametric Bayesian approach is summarized in Figure 5.3. 

5.3 NUMERICAL VERIFICATION 

5.3.1 Estimation of Trimodal Data Set 

To verify the effectiveness for modelling the heterogeneous data, the proposed nonparametric 

Bayesian approach is first verified through the estimation of the trimodal data set. Diffuse 

priors are selected for mixture parameters with hyperparameters setting to 𝜈𝑗 = 2 , 𝑠𝑗2 =

𝑣𝑎𝑟(𝑦) × 𝜈𝑗  , 𝜉𝑗 = 𝑚𝑒𝑎𝑛(𝑦)  and 𝜅𝑗 = 1  for all components. The DP concentration 

parameter is set to 𝛼 = 1 for a common choice. 

In the absence of any experience of iteration times needed for convergence of the Markov 

chains, we suggest running the collapsed Gibbs sampler as long as possible so that the chains 

can reach stationary and mix properly. In this study, we choose to set to 𝑇 = 10000 iterations 

with 𝐿 = 2 parallel chains. Figure 5.4 provides typical Gibbs runs in terms of mixture density 
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samples from the initial stage to final stage of the simulation. At the initial stage, some outliers 

of the mixture density samples with quite different distributional shapes are found, which are 

the early draws of the simulation. This is reasonable since the model parameters drawn at the 

beginning of simulation are too far from the target distributions. After some iterations, as in 

middle stage, the mixture density samples quickly become similar distributional shapes with 

each other. No outliers of mixture density samples are found afterwards. At the final stage, the 

mixture density samples vibrate within a constant range, indicating that the variability of the 

model parameters is under a low level. 

The quantitative convergence diagnosis strategy is further applied to check the convergence of 

the simulation and help to determine the burn-in period. We first evaluate the monitoring 

variable 𝜙 using Equation (5.21). The trace plots of 𝜙 in Figure 5.5 show that the values of 

𝜙 fluctuate within a limited range after the early iterations. A similar pattern is also found in 

FGM model, but the monitoring variables are the natural model parameters themselves. With 

the collection of 𝜙, the PSRFs of total variance, within-model variance and between-model 

variance of 𝜙 can be checked. 
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a) Initial stage of the simulation 

 
b) Middle stage of the simulation 

 
c) Final stage of the simulation 

Figure 5.4 Evolution of the mixture density samples during the Gibbs iterations 
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Figure 5.5 Trace plots of model deviance 𝜙 

 

 
a) an overall view 

 
b) a zoom view of initial iterations 

Figure 5.6 Quantitative convergence diagnosis based on potential scale reduction factor 𝑅 
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As shown in Figure 5.6, the curves of PSRF are all quickly approach to 1 through a few of 

iterations. The values of PSRF then remain steady around 1, which indicates that the chains of 

𝜙 are stationary and well mixed. With the plots of PSRF, the convergence of the simulation 

can be confirmed. Table 5.1 gives the convergence metric based on PSRF. For the total variance 

and within-model variance, it takes about 3000 times of iterations to reach the convergence, 

while for the between-model variance, a fewer number of 858 steps are needed. Therefore, we 

determine the burn-in period 𝐵 = 4000 for the subsequent analysis as a conservative choice. 

The rest of 𝐺 = 𝑇 − 𝐵 = 6000 posterior mixture density samples are used to summarize the 

nonparametric Bayesian estimation. 

Table 5.1 Convergence diagnosis metric for trimodal data set 
Total variance of 𝜙 Within-model variance of 𝜙 Between-model variance of 𝜙 

Gibbs iterations needed to reach convergence |𝑅 − 1| ≤ 10−4 
2617 2999 858 

Based on the posterior mixture density samples, the predictive mixture density is estimated as 

the mean function of the samples using Equation (5.33), and the credible intervals of pointwise 

density are evaluated by using Equation (5.34). The estimated predictive mixture density and 

the associated 5-95 credible intervals are plotted in Figure 5.7. A good fitting of the predictive 

PDF with the empirical density is achieved through the nonparametric Bayesian approach. It 

is evident that the DPM model is capable of modelling multimodal data structure with 

satisfactory accuracy. The upper and lower uncertain bounds of pointwise density are both 

smooth curves, laying symmetrically in the two sides of the predictive PDF curve. Through the 

nonparametric approach, the variability of the estimated PDF due to both model order and 
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parametric uncertainties is fully characterized by the uncertain bounds. 

 
Figure 5.7 Estimated predictive mixture density and associated uncertain bounds for 

trimodal data set 

5.3.2 Estimation of Benchmark Data Set 

A benchmark data set as introduced in Celeux et al. (2006) and McGrory and Titterington (2007) 

is selected to further verify the effectiveness of the proposed parametric and nonparametric 

approaches. The underlying distribution model of the benchmark data set is a four-component 

Gaussian mixture 

 
0.26𝒩(−1.5, 0.52) + 0.288𝒩(0, 0.22) + 0.171𝒩(2.2, 3.42)

+ 0.281𝒩(3.3, 0.52) 
(5.35) 

As described in Celeux et al. (2006) and McGrory and Titterington (2007), posterior inferences 

have been evaluated by the Markov chain Monte Carlo (MCMC) approximation method and 

the variational approximation method, respectively. Parametric and nonparametric Bayesian 

approaches are used to estimate the mixture models. Posterior means given in the references 
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and estimated by the parametric approach are listed in Table 5.2 for comparison. It is shown 

that the results of the parametric approach are close to the results given in the two references, 

indicating a good agreement among different algorithms. A comparison with the true values 

shows that the estimations by McGrory and Titterington (2007) and the parametric approach 

have better accuracy than that by Celeux et al. (2006). The PDFs of the estimated mixture 

models are shown in Figure 5.8, where all the fittings are able to well characterize the 

benchmark data set. It is found that the nonparametric approach has the best goodness-of-fit to 

the data histogram. 

Table 5.2 Comparison on posterior estimations of benchmark data set 
Comp. Parameter 𝜇 Parameter 𝜎2 Parameter 𝜔 

 True 
No. 1 -1.500 0.250 0.260 
No. 2 0.000 0.040 0.288 
No. 3 2.200 11.560 0.171 
No. 4 3.300 0.250 0.281 

 Parametric approach 
No. 1 -1.536 0.302 0.242 
No. 2 -0.027 0.106 0.313 
No. 3 2.126 14.237 0.109 
No. 4 3.268 0.381 0.336 

 Celeux et al. (2006) 
No. 1 -1.350 0.130 0.210 
No. 2 -0.080 0.110 0.340 
No. 3 3.120 7.040 0.140 
No. 4 3.460 0.380 0.310 

 McGrory and Titterington (2007) 
No. 1 -1.490 0.194 0.206 
No. 2 0.005 0.022 0.251 
No. 3 1.360 10.890 0.296 
No. 4 3.380 0.292 0.247 
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Figure 5.8 Comparison on PDF fittings of benchmark data set 

5.4 COMPARISON ON PEFORMANCE OF PARAMETRIC 

AND NONPARAMETRIC APPROACHES 

The nonparametric Bayesian approach based on DPM model has been exemplified by using 

the trimodal data set, proving the effectiveness in modelling heterogeneous data structure. The 

DPM model stands as an improvement in terms of automatic model complexity adaptation over 

the FGM model as introduced in Chapter 3. In this section, we compare the overall performance 

of the parametric and nonparametric Bayesian approach in terms of some key aspects: model 

complexity, goodness-of-fit, uncertainty characterization and computational demands. Note 

that the comparison is demonstrated based on the results of the trimodal data set. 

5.4.1 Model Complexity 

The number of components for the FGM model is a fixed value during the simulation. The 



Chapter 5 Nonparametric Bayesian Mixture Model 

-150- 

optimal model order is determined by comparing several candidate models using the Bayes 

factor. In Chapter 3, the results of Bayes factor support that the optimal number of components 

is 𝐽 = 3 for trimodal data set. This is identical to the true value of number of components of 

the test data set. The DPM model, however, allows the value of number of components to be 

random variable, which varies through the simulation. Figure 5.9 gives the plots of effective 

number of components through the iteration for the DPM model. After the burn-in period, the 

effective number of components has a relatively large variation, with the value ranging from 

𝐽 = 4  to 𝐽 = 14 . The histogram on the right panel summarizes the samples of 𝐽  after the 

burn-in period, which has an approximate symmetric distribution with the most frequent 

occurrence of component number being 𝐽 = 6. Apart from that, model order of 𝐽 = 5 and 

𝐽 = 7  are also frequently encountered. Surprisingly, the true number of components 𝐽 = 3 

never emerges through the iteration. 

 
Figure 5.9 Effective number of components during the MCMC simulation 
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Although direct comparison between the optimal model order of the FGM model and the most 

frequent occurrence model order of the DPM model is somewhat inappropriate, it provides 

insight into the constitution of the estimated predictive density. Note that the predictive mixture 

density of the DPM model is a mean density function, averaging the posterior mixture density 

samples with orders of 𝐽 = 4 to 𝐽 = 14. In the case of trimodal data, the above analysis imply 

that the nonparametric approach tends to fit the data with larger number of components, while 

the parametric approach happens to find the true model order using the Bayes factor strategy. 

5.4.2 Goodness-of-Fit 

The predictive mixture density estimated by parametric and nonparametric approach have 

already been visually compared to the empirical data density. Both two estimated curves have 

good fitting with the empirical one as shown in Figure 5.10. A fairly large difference is found 

at the first mode of the mixture densities, where the DPM model reaches a higher density value 

at that mode. To make quantitative comparison on the goodness-of-fit of the predictive mixture 

density of two approaches, we perform the Kolmogorov-Smirnov test (K-S test) for two 

estimated models. The log-likelihood values are evaluated as well for reference. 
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a) Predictive PDFs and associated uncertain bounds 

 
b) CDFs 

Figure 5.10 Comparison on the PDFs and CDFs for the parametric and nonparametric 
approaches 

5.4.2.1 Kolmogorov-Smirnov test 

The K-S test serves as a statistical tool to determine the goodness-of-fit of the test sample with 

a reference theoretical probability distribution (Massey Jr, 1951). The K-S statistic 𝐷𝑛 

measures the maximum distance between the empirical cumulative distribution function 𝑆𝑛(𝑥) 
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and the theoretical cumulative distribution function 𝐹(𝑥) of the test sample 

 𝐷𝑛 = 𝑠𝑢𝑝𝑥|𝑆𝑛(𝑥) − 𝐹(𝑥)| (5.36) 

where 𝑠𝑢𝑝  is the supremum of the set of distances. If the test sample comes from the 

theoretical distribution, i.e. 𝑆𝑛(𝑥) is close enough to 𝐹(𝑥), then 𝐷𝑛 converges to 0 almost 

surely with the sample size 𝑛 → ∞. The cumulative distributions for FGM model and DPM 

model are plotted together with a comparison to the empirical cumulative distribution of the 

trimodal data set in Figure 5.10. Two estimated CDFs are closely attached to the empirical CDF 

with an overall view. However, a detailed view shows that the nonparametric CDF performs 

better than then parametric one. 

The K-S test at significance level of 0.05 is independently performed for two theoretical models 

with the null hypotheses being that the test sample is drawn from the theoretical distributions. 

As presented in Table 5.3, both the K-S test results support (fail to reject) the null hypotheses. 

That is to say the trimodal data set can be regarded as samples drawn from either the parametric 

or nonparametric distribution. The P-value of the K-S test is further evaluated as an indicator 

of how strong we may reject the null hypothesis. Note that the lower P-value is, the stronger 

we may reject the null hypothesis. Thus, the P-value can serve as a criterion for assessing the 

goodness-of-fit of the model. It finds that the P-value of DPM model is noticeable higher than 

that of FGM model, indicating a superior fitting quality is achieved by the nonparametric 

approach. 
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Table 5.3 Comparison on the overall performance for the parametric and nonparametric 
approaches 

 Parametric approach Nonparametric approach 
Model complexity 

Number of components 3 6 
Type Optimal Most frequent occurrence 

Method Bayes factor DPM 
Goodness-of-fit 

K-S test Fail to reject null hypothesis Fail to reject null hypothesis 
P-value of K-S test 0.2141 0.9053 

Log-likelihood -3.8843e+03 -3.8673e+03 
Uncertainty characterization 

KL 
divergence 

Maximum 0.7969 1.0015 
Minimum 0.0129 0.0153 
Mean (SD) 0.1861 (0.0929) 0.2547 (0.1105) 

Computational demands 

Simulation 
time 

(hour) 

MCMC 0.16 1.66 
Model order 

selection 
4.47 - 

Total 4.63 1.66 

5.4.2.2 Log-likelihood value 

The likelihood value is a function of model parameters given the observational data. 

Maximizing the likelihood function yields the best estimation of model parameters in 

frequentist approach. In fact, the evaluation of likelihood is also the popular mean to determine 

the goodness-of-fit of the model, in which higher likelihood favors better fitting. Computing 

the log-likelihood value for the FGM model with observed data is straightforward since we 

have the Bayesian estimation of model parameters. In DPM model, we calculate the average 

log-likelihood value as 

 ln𝑝(𝒚|𝚯) = 𝐺−1 ∑ ∑ln𝑝(𝑡)(𝑦𝑖)

𝑁

𝑖=1

𝑇

𝑡=𝐺+1

 (5.37) 
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where 𝚯 denotes the model parameters, and 𝑝(𝑡)(∙) is the posterior mixture density sample 

of Equation (5.20). Table 5.3 presents the log-likelihood values for two approaches given the 

trimodal data set. It shows the DPM model obtains a higher log-likelihood value than the FGM 

model, which means the nonparametric PDF owns a better fitting. This is a consistent result 

with the K-S test. Evidences of K-S test and log-likelihood evaluation support that the 

nonparametric Bayesian approach has a better performance than the parametric counterpart in 

terms of model goodness-of-fit. 

5.4.3 Uncertainty Characterization 

The Bayesian paradigm provides a dedicated framework for statistical modelling of unknown 

data, in particular, the ability of characterizing different levels of uncertainty in model 

interpretation. The Bayesian analysis produces the most plausible estimation as well as an 

assessment on its accuracy. In practice, the modelling uncertainty is commonly expressed as 

the variability or probable interval for the location of the parameter value. The broader the 

probable interval, the higher level of uncertainty will be made about the parameter value. For 

the parametric approach, we obtain the most plausible mixture parameters and the associated 

credible intervals by summarizing the posterior parameter samples. Since the model order is 

assumed to be fixed, the variability of the posterior parameter values only conveys the 

parametric uncertainty. 

A critical advantage of nonparametric Bayesian approach compared to the parametric 

counterpart is the capability to simultaneously incorporate uncertainty at two levels: parametric 
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and model order uncertainties. The model order is treated as an unknown random variable in 

the DPM model, which automatically adapts the observation data. Then the variability of the 

posterior mixture density samples carries the information of both parametric and model order 

uncertainties. Data interpretation through the nonparametric Bayesian methods eventually 

brings more robust estimation, since the inference is performed under the consideration of both 

parametric and model order uncertainties. 

Intuitively, we may have an initial guess that the ‘degree of uncertainty’ of the DPM estimation 

should be larger than that of the FGM estimation. To further prove this, we propose to use the 

relative entropy as a measure of uncertainty to compare the uncertainty characterization 

capability between the two approaches. The concept of relative entropy, also known as 

Kullback-Leibler (KL) divergence, is popular in information theory, where it serves as a 

measure of the average additional amount of information needed to transmit when an 

alternative distribution 𝑄 is used to approximate the true distribution 𝑃 (Bishop, 2006) 

 𝐷𝐾𝐿(𝑃‖𝑄) = ∫𝑃(𝑥)ln (
𝑃(𝑥)

𝑄(𝑥)
) d𝑥 (5.38) 

Note that the KL divergence satisfies 𝐷𝐾𝐿(𝑃‖𝑄) ≥ 0 with equality if and only if 𝑃 = 𝑄, and 

it is not a symmetrical quantity, i.e. 𝐷𝐾𝐿(𝑃‖𝑄) ≠ 𝐷𝐾𝐿(𝑄‖𝑃). In fact, the KL divergence can 

be also interpreted as a dissimilarity measure between the two distributions 𝑃 and 𝑄, hence 

it is a proper measure to quantify the variability of the posterior mixture density samples. The 

KL divergence between the predictive mixture density 𝑝 and the posterior mixture density 

sample 𝑝(𝑡) is evaluated by 
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𝐷𝐾𝐿(𝑝‖𝑝
(𝑡)) = ∫𝑝(𝑦)ln (

𝑝(𝑦)

𝑝(𝑡)(𝑦)
)d𝑦 

≈∑𝑝(𝑦)ln (
𝑝(𝑦)

𝑝(𝑡)(𝑦)
)∆𝑦

𝑦

 
(5.39) 

where the integral can be approximated by summing up the integrand evaluated at equally 

spacing grid ∆𝑦. Evaluation of the KL divergence for each posterior mixture density samples, 

say 𝑡 = 𝐺 + 1 𝑇, we obtain a collection of values of 𝐷𝐾𝐿(𝑝‖𝑝
(𝑡)). 

 
Figure 5.11 Comparison on the relative entropy for parametric and nonparametric 

approaches 

The KL divergence are evaluated for two approaches as shown in Figure 5.11. It is not surprised 

to see the values of KL divergence are random distributed (approximate log-normal type), since 

they are calculated based on 𝑝 and 𝑝(𝑡) which are stochastic functions in nature. The KL 

divergence of DPM model has the larger mean and standard deviation values than that of FGM 

model, implying that an overall larger dissimilarity is found between 𝑝  and 𝑝(𝑡)  of DPM 

model. In other words, a broader class of mixture density estimation is obtained using the 

nonparametric approach with the consideration of both parametric and model order 
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uncertainties. Characterizing by the KL divergence, the degree of uncertainty of DPM 

estimation is larger than that of FGM model, which verifies our initial guess. 

5.4.4 Computational Demands 

A larger amount of computational time is usually required for Bayesian analysis, especially 

using the MCMC-based simulation for posterior inference. Lowering the computational 

demands and developing efficient algorithms are of great importance to the analysts. The time 

consumption of performing the parametric and nonparametric modelling is listed in Table 5.3 

for comparison. Note that the simulation is implemented by MATLAB on a workstation with 

Intel Xeon CPU E5-1620 v3, 16 GB (RAM). It took about 4.63 hours to fully complete the 

inference on the FGM model, in which 0.16 hours (3%) was needed for MCMC simulation and 

4.47 hours (97%) for model order selection. A large proportion of the computational demands 

are mainly due to the step of model order selection for the parametric approach. However, this 

model selection step is completely avoided for the nonparametric approach. A relative shorter 

computational time is achieved by the DPM model with a total of 1.66 hours required. 

Therefore, by automatically inferring the model order, the nonparametric approach has a more 

efficient computational performance than the parametric counterpart when dealing with the 

multimodal data. 

5.5 SUMMARY 

This chapter presents the Dirichlet process mixture model based on the nonparametric Bayesian 
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approach for heterogeneous monitoring data, aiming to jointly consider the parametric and 

model order uncertainties. Through inferring on the infinite-dimensional parameter space, the 

nonparametric Bayesian approach allows the model complexity to automatically adapts to the 

observed data, leading to a full Bayesian analysis on the mixture model. Inference on the DPM 

thus provides both estimation on model parameters and model order, resulting to a robust model 

estimation. The effectiveness of the nonparametric approach is verified through the 

demonstration on modelling the trimodal data set and the benchmark data set. The comparison 

study gives insight into the performance of two approaches. The DPM model stands as an 

improvement over the FGM model in terms of better goodness-of-fit with lower computational 

demands. Quantification of the parametric and model order uncertainties are simultaneously 

achieved through the nonparametric modelling process. In Chapter 6, the proposed new 

approach is applied to characterize the multimodal structural responses acquired from the Tsing 

Ma Bridge for reliability-based assessment. 
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CHAPTER 6  

RELIABILITY-BASED ASSESSMENT OF BRIDGE 

DECK CONSIDERING MODELLING 

UNCERTAINTIES 

6.1 INTRODUCTION 

Two classes of Bayesian probabilistic model, namely the parametric and nonparametric 

Bayesian mixture models, are proposed in Chapters 3 and 5 respectively, which are capable of 

(1) accommodating heterogeneous data structure with multiple sub-populations, and (2) 

characterizing the parametric and model order uncertainties arising from interpreting the 

observational data. Markov chain Monte Carlo-based algorithms are employed for the posterior 

inference of the mixture models. This chapter demonstrates the application of Bayesian mixture 

models to reliability assessment of the bridge deck of the suspension Tsing Ma Bridge (TMB) 

under multi-load condition with consideration of the impacts from modelling uncertainties. 

Many uncertainty sources are invariably around the concerns of bridge condition assessment. 

Two broad categories of uncertainty are commonly accepted in terms of their intrinsic nature: 

aleatory uncertainty and epistemic uncertainty (Der Kiureghian, 1989; Zhang and Mahadevan, 

2000; Igusa et al., 2002; Der Kiureghian, 2008; Der Kiureghian and Ditlevsen, 2009; 

Ellingwood and Kinali, 2009). The randomness of physical variables associated with structural 

resistance or external loadings, which is usually irreducible, is regarded as the type of aleatory 
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uncertainty. Probability distributions are often employed to depict the aleatory uncertainty. 

While the type of epistemic uncertainty, which is potentially reducible, includes but not limited 

to imperfect model formulation, statistical uncertainty and measurement error. The emergence 

of epistemic uncertainty is mainly due to insufficient of real-world observed data or inability 

of precisely acquiring information. The classification of uncertainty sources with their 

examples in the field of bridge condition evaluation are listed in Figure 6.1. 

 
Figure 6.1 Uncertainty sources in bridge condition assessment 

The classical reliability theory provides a rational mean to account for the inherent randomness, 

i.e. the aleatory uncertainty, associated with capacities and demands of the structure. When 

site-specific measurement data collected by structural health monitoring (SHM) system are fed 

in, the authentic resistance and loadings of the in-service bridge can be available with their 

intrinsic randomness being largely quantified. A probabilistic evaluation of the current 

serviceability or safety of the bridge system or its sub-component (often in terms of failure 

probability or reliability index) can be achieved using reliability principles. Research on 

integrating monitoring data with reliability analysis for condition assessment of in-service 
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structures has been an active field in the past decades (Bhattacharya et al., 2005; Catbas et al., 

2008; Hosser et al., 2008; Liu et al., 2009b; Ni et al., 2010; Li et al., 2012a; Li et al., 2012b; 

Xia et al., 2012a). However, most of the aforementioned studies only focus on how to address 

the inherent variability of the basic random variables based on field measurement data acquired 

from SHM system. 

The epistemic uncertainty, another significant uncertain factor as stated previously, has been 

merely considered in the process of reliability-based bridge condition assessment so far. For 

example, the use of imprecise distribution models for the basic random variables and the 

statistical uncertainty arising from parameter estimation. In the case of reliability assessment 

of the TMB using field measurement data, there are two major kinds of epistemic uncertainty: 

(1) model order uncertainty, i.e. the determination of number of mixture components for 

modelling the multimodal response, and (2) parametric uncertainty, i.e. the variability in 

mixture parameter estimation due to the limited volume of monitoring data. To simplify the 

terminology, hereafter we use ‘modelling uncertainties’ to involve these two types of epistemic 

uncertainty since they stem from identifying proper probability distribution model for 

modelling the structural response. In contrast to fundamental randomness of the loadings and 

resistance, influence of the modelling uncertainties on estimation of failure probability or 

reliability index is yet a less explored area. 

The proposed Bayesian mixture modelling approaches offer a novel solution to take account 

for the modelling uncertainties by means of reliability principles. The layout of this chapter is 
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organized as follows. The structural health monitoring system instrumented on the TMB is first 

introduced in Section 5.2. Statistical analysis of the monitoring stress response on the 

longitudinal truss is given in Section 5.3. Multimodal peak stresses are extracted from the live 

load-induced stress response after eliminating the temperature effect. Section 5.4 provides the 

estimation of multimodal load effect by using the Bayesian mixture models. In Section 5.5, a 

conditional reliability index is proposed based on the first-order reliability method. Influence 

of uncertain mixture parameters on the reliability estimate is investigated. Reliability-based 

assessment of the bridge deck under modelling uncertainties is demonstrated. 

6.2 INSTRUMENTED TSING MA BRIDGE 

A case study on reliability assessment of the bridge deck of the Tsing Ma Bridge under 

modelling uncertainties by making use of long-term monitoring data is carried out in this 

chapter. The structural features of this suspension bridge and the long-term structural health 

monitoring system instrumented on the bridge are first introduced in this section. 

6.2.1 Bridge Configuration 

The Tsing Ma Bridge is a long suspension bridge with a main span of 1377 m and an overall 

length of 2.2 km, which connects the Hong Kong International Airport in Lantau Island with 

the urban area of Kowloon (refer to Figure 6.2). The main span crosses the strait between the 

Tsing Yi Island and the Ma Wan Island with two H-portal-type reinforce concrete towers, i.e. 

the Tsing Yi tower and the Ma Wan tower, founded on shallow water near these two islands. 
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The bridge has a double-level truss-stiffening box-shape steel deck - a hybrid structural 

configuration that mainly consists of Vierendeel cross frames, longitudinal trusses, orthotropic 

deck plates, and plane bracing system (refer to Figure 6.3). The upper level of the bridge deck 

has a dual three-lane highway while two airport railway lines and two emergency carriageways 

are laid on the lower level within the bridge deck. The streamline bridge deck runs through the 

longitudinal direction, connecting the Ma Wan abutment and Tsing Yi abutment. Fixed hinge 

bearings are used to support the bridge deck at Ma Wan abutment with only allowance of 

rotation other than the displacement of the deck; whereas an expansion joint is placed at Tsing 

Yi abutment to release the longitudinal displacement of the deck under temperature variation. 

The two main suspension cables, which are composed of parallel galvanized steel wires, are 

accommodated by the four saddles located at the top of the towers. The suspenders, each of 

which is assembled by two pairs of wire ropes, are arranged with an 18 m-interval layout along 

the longitudinal direction, lifting the long-span steel bridge deck. Two gravity-type main 

anchorages are respectively placed at the Tsing Yi side and Ma Wan side to fix the main cables. 

Since the opening to public in 1997, the bridge carries the busiest diurnal highway and railway 

traffic volume in between the airport and city centre and serves as one of the most essential 

links in the transportation network of Hong Kong. 
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Figure 6.2 Layout of the Tsing Ma Bridge (unit: m) 

 

 
a) Typical bridge deck module (Xu and Xia, 2011) 

 
b) Typical deck cross section 

Figure 6.3 Configuration of the bridge deck at main span (unit: m) 
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6.2.2 SHM System of Tsing Ma Bridge 

With the awareness of the significance of the Tsing Ma Bridge, a state-of-the-art long-term 

structural health monitoring system was deployed and managed by the Highways Department 

of the Hong Kong SAR Government to monitor and evaluate the serviceability and safety of 

the entire structure (Wong, 2004). The sensory system forms the key module of the architecture 

of the SHM system, which measures a comprehensive group of physical quantities ranging 

from the environmental/traffic loadings to local/global structural responses. As shown in Figure 

6.4, a total of 282 sensors were deployed at the critical locations on the bridge, including 

anemometers, servo-type accelerometers, temperature sensors, dynamic strain gauges, global 

positioning systems, displacement transducers, level sensing stations, dynamic weigh-in-

motion stations (Ni et al., 2011a). 

As structural strain is a local deformation phenomenon associated with loading and material 

strength, monitoring of strain reflects the structural behaviour of the critical bridge component 

under applying loads. Sudden variation of strain pattern could be related to possible 

abnormalities of the bridge structure. Due to the maturity and relatively low cost of the strain 

sensing techniques, in-service monitoring of strain response has been most widely involved in 

SHM practices. As to heath monitoring of the TMB, a total of 110 weldable foil-type strain 

gauges were installed at three deck cross sections, i.e. CH23488.00 (chainage) near the middle 

of Ma Wan side span, CH23623.00 at the Ma Wan tower, and CH24662.50 near the 3/4 of main 

span, as shown in Figure 6.5. 
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Figure 6.4 Sensor placement of structural health monitoring system for the Tsing Ma 
Bridge (Ni et al., 2011a) 

 

 
Figure 6.5 Strain monitoring of the Tsing Ma Bridge (unit: m) 
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a) main cross frame 

 
b) longitudinal truss 

Figure 6.6 Critical elements of the bridge deck with strain monitoring at the main span  

 

 
a) elevation view 

 
b) cross-sectional view 

Figure 6.7 Deployment of strain gauges on the longitudinal trusses 
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The strain monitoring deck section at main span (CH24662.50) is given with details Figure 6.6. 

To fully understand the structural behaviour under varying loads, three types of strain gauges, 

i.e. single, pair and rosette sensors, were deployed on the critical elements of (1) the main cross 

frame (top chords, bottom chords and edge frames), (2) the north and south longitudinal trusses 

(top chords, diagonal struts and bottom chords), (3) the railway tracks, and (4) the plane bracing 

system. Sampling rate of sensors should be properly selected to allow accurate reproduction 

and processing of original waveforms of the measurands, especially for high frequency 

components. Suppose the running speed of vehicles and trains on the bridge are 120 km/h and 

100 km/h, respectively, and the length of a typical monitoring bridge deck is 4.5 m. The 

estimated frequency of vehicle- and train-induced peak responses are 7.4 Hz and 6.2 Hz, 

respectively. The Nyquist criterion requires that the sampling rate should be more than twice 

the highest frequency component of the original signals. Hence, a sampling rate of 51.2 Hz is 

set to 51.2 Hz for all sensors. 

Load-carrying components are of high importance to long-span bridges. As for the TMB, the 

longitudinal trusses provide the major vertical bending stiffness of the bridge deck for 

accommodating both highway and railway loads. According to the bridge rating system based 

on criticality and vulnerability analysis, a priority should be given to regular inspection of the 

members of longitudinal trusses (Wong, 2006). In viewing this, long-term performance of the 

longitudinal trusses is the main focus of this study. A group of strain gauges, tagged as 

SPTLN01, SSTLN01, SPTLN02, SPTLN05 and SSTLN03 at north side, and SPTLS01, 

SSTLS01, SPTLS02, SPTLS12 and SSTLS09 at south side, have been attached on the top 
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chord, diagonal strut, and bottom chord of the longitudinal trusses as depicted in Figure 6.7. 

One-year consecutive dynamic strain measurement data under routine operation of the bridge 

are collected from these sensors for subsequent reliability analysis. 

6.3 STATISTICAL ANALYSIS OF STRESS RESPONSE UNDER 

MULTI-LOAD CONDITION 

Monitoring stress responses of the longitudinal truss under the normal operation of the TMB 

are analysed in this section. Temperature-induced strain is firstly separated from the raw signal 

since most of it is released by the movement of expansion joint and contributes little to the 

stress due to live loads. Peak stresses are then extracted from the stress time histories to 

formulate the representative live load effect. Histograms of peak stress show the unique feature 

of multimodal load effect under routine operation of the bridge. 

6.3.1 Raw Strain Signal of the Tsing Ma Bridge 

Structural performance under extreme loads such as impact, gust, earthquake is no doubt a 

critical aspect for safety evaluation of a bridge. For the TMB, it has been reported that the 

safety reserve of bridge deck under typhoon condition has noticeable decrease as compared to 

normal operational condition (Xia et al., 2012a). Monitoring-based approach is able to reveal 

the actual condition of a bridge under extreme loads. The focus of this study is the long-term 

structural performance as well as the effects of modelling uncertainties on reliability 

assessment. Hence, the extreme loadings are not specifically investigated. 
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During the normal operation of the TMB, road vehicles run through the highway lanes on the 

upper deck while railway vehicles are operated on the tracks inside the lower deck. In addition, 

the TMB is subject to wind loads such as monsoon as the bridge site is in a wind-prone area of 

Hong Kong. Consequently, the monitored in-service strain responses of the longitudinal trusses 

are the combined effect of multiple loads, including highway traffic, railway traffic, wind and 

temperature. Figure 6.8 gives 24-hour raw strain signals of top chord, diagonal strut and bottom 

chord on the north (longitudinal) truss acquired from sensors SPTLN01, SPTLN02 and 

SSTLN03. The positive strain denotes compression, whereas the negative strain denotes 

tension. Noted that initial strain caused by dead load cannot be measured since the strain gauges 

were installed on the monitoring sections after completion of the bridge construction. 

As shown in Figure 6.8, there are coexistence of low- and high-frequency strain components 

in the raw signals. A low-frequency strain component with cyclical amplitude over 24-hour 

time period is first observed. It reveals the longitudinal truss undergoes a process of expansion 

and compression along the longitudinal direction in a daily manner. By using a wavelet-based 

decomposition method, the low-frequency strain is first extracted from the total strain, which 

is demonstrated to be the temperature-induced strain. 

Generally, the expansion joint placed at Tsing Yi abutment is expected to release the movement 

of the deck due to temperature variation. Displacement time history at the expansion joint 

should well represent the daily thermal effect on the bridge deck. A uniform ambient 

temperature field with overall temperature rising and dropping is assumed in this study. It is 



Chapter 6 Reliability-Based Assessment Considering Modelling Uncertainties 

-172- 

found that there is a consistent pattern between the extracted low-frequency strain and the 

displacement-derived strain at the expansion joint over 24-hour time period, therefore, it 

reasonably infers that the low-frequency strain component corresponds to the thermal effect on 

longitudinal truss due to daily ambient temperature variation (Ni et al., 2011b). 

 
a) top chord 

 
b) diagonal strut 

 
c) bottom chord 

Figure 6.8 Raw strain signals of north truss (January 2, 2006) 
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High-frequency components in the strain signals are expected to be the results due to live load 

effects from road vehicles, railway trains and wind. According to the schedule of airport railway 

lines, the railway trains normally ceases to service during 2:00 to 5:00 a.m. everyday. As a 

result, lower magnitude of the monitoring strain responses is observed for all truss members 

around the specific period. Consequently, a mixed multi-component stochastic signal is 

observed for the raw strain measurements, indicating the combined effect of multiple loads 

experienced by the truss. 

It is noteworthy that events of two trains meeting from opposite direction near the monitoring 

cross section can be considered as unfavourable loading events for the bridge. According to the 

traffic monitoring data, approximately two meeting events occur within each hour. Apart from 

generating greater bending moment for the bridge deck, there may be cases of large twisting 

moments during the passaging of two trains, which have impacts on serviceability of the bridge. 

However, existing strain sensors deployed on the monitoring cross section, which are normally 

used to measure the deformation along the longitudinal direction, may not be able to capture 

such a twisting moment. Additionally, train loads during a meeting event cannot be accurately 

identified by using the current strain-based conversion technique. These issues pose a barrier 

to precisely consider the twisting moment within the developed framework. 
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6.3.2 Elimination of Temperature-Induced Strain 

Physical mechanisms of the temperature and the live loads (i.e. vehicle, train, and wind) acting 

on a bridge are fundamentally different. However, they are captured simultaneously in the 

monitoring signal. It is necessary to eliminate the temperature effect from the raw signal 

because live load effects may be distorted or contaminated by the temperature effect at any 

instance. More importantly, although the amplitude of the cyclical variation is somewhat large, 

the temperature-induced strain contributes little to the stress because most of it is released by 

the movement of the bridge deck at the expansion joint. Hence, the temperature-induced strain 

as absorbed by the expansion joint is excluded from the total strain for the live load 

characterization. Effects of highway, railway and normal wind are jointly considered in the 

mixture model for subsequent reliability analysis. 

In order to eliminate the temperature effect from the raw mixed signals, a wavelet-based multi-

component decomposition method is adopted here to obtain the live load effect arising from 

highway traffic, railway traffic and wind (Ni et al., 2011b). Wavelet multiresolution analysis 

enables the decomposition of the signal into multiple layers with different resolution scales in 

a perfect reconstruction sense. Figure 6.9 demonstrates the decomposition of the total strain on 

the top chord of the north truss, where the live load-induced strain is successfully extracted 

from the mixed signal after separating the trend ingredient of temperature effect. 
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a) temperature trend in measured total strain 

 
b) live load-induced strain after elimination of temperature effect 

 
c) measured total strain 

Figure 6.9 Decomposition of strain signal using wavelet multiresolution analysis 

6.3.3 Multimodal Stress Response 

Without loss of generality, strain measurements are hereafter converted to stress values by 

multiplying the elastic modulus E of steel with the fact that structural members are in elastic 
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stage under normal bridge operation. Figure 6.10 provides a detailed plot of the stress time 

histories acquired from top chord, diagonal strut, and bottom chord of the north truss due to 

live loads in a 30-min temporal scale format. It can be observed that stress responses fluctuate 

rapidly with peaks and valleys in a short time period. Specifically, the stress responses at top 

and bottom chords evolve in time with almost the same amplitude but opposite directions, 

indicating flexural bending behaviour of the longitudinal truss under traffic loadings. Whereas, 

the diagonal strut mainly experiences axial tensile and compressive stress with identical 

amplitude under traffic loadings. 

Peak locations (also valley locations) of the stress responses among the three time history plots 

are almost coincided with each other, indicating the truss members are subject to identical load 

events at the same moments. A comparison between the traffic arrival time and the occurrence 

of stress peaks shows that most of the peak values with larger amplitude are due to the trains 

running through the monitoring section, while the peak values with smaller amplitude are 

mainly caused by the passage of highway traffic. Peak response captures the actual stress level 

experienced by the deck truss under the normal operation of the bridge, thus it serves as a good 

measure for the safety reserve of truss members. As illustrated in Figure 6.10, the peak stress 

values are then extracted from the stress time histories by using an automatic peak counting 

method to construct the representative live load effects. Two principles are considered in the 

peak counting method. Firstly, the algorithm automatically searches the highest peak by 

ignoring other peaks within a prespecified distance, and the procedure is repeated for the 

highest remaining peak and iterates until it runs out of peak to consider. A minimum peak-to-
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peak distance is specified as 1000 data points in this study. Secondly, the peak values below 

the resolution of the strain gauge are filtered out. The resolution for a given sensor is estimated 

as peak-to-valley amplitude of the stress response when traffic loading is far from the 

monitoring section. For example, the resolution of sensor SPTLN01 is estimated as 0.4 MPa 

according to the stress signal so that peak values under 0.4 MPa are discarded. The automatic 

peak counting strategy performs well in processing the large amount of traffic-induced stress 

data with most of the peak stresses, rather than the spikes due to measurement noise, that needs 

to be taken into consideration are effectively identified. 

To reduce the influence of daily traffic variation on the estimation of live load effect, the peak 

stresses acquired from deck trusses are processed in a monthly manner in this study. Figure 

6.11 gives scatter plots of one-month peak stress responses from the top chord, diagonal strut 

and bottom chord of the north truss. Two subgroups of the peak stresses are clearly observed 

in each plot, which mainly corresponds to the two loading conditions of highway traffic and 

railway traffic. Note that the wind load acting on the bridge is a non-stationary process, the 

wind-induced effect may cause the in-between values among the peak stresses. Figure 6.12 

further provides the histograms of one-month peak stress responses. Through checking the 

monthly stress responses of top chord, diagonal strut and bottom chord, it is found that the data 

acquired in the year of 2006 are of satisfactory quality as shown in Appendix since data missing 

and shifting are rarely seen and the stress histograms have consistent patterns over the year. 

They are used as the main database in this study. 
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a) top chord 

 
b) diagonal strut 

 
c) bottom chord 

Figure 6.10 Stress responses and identified peak stresses in 30-min temporal scale (January 
15, 2006) 
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a) top chord 

 
b) diagonal strut 

 
c) bottom chord 

Figure 6.11 Extracted peak stresses (January 2006) 
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a) top chord 

 
b) diagonal strut 

 
c) bottom chord 

Figure 6.12 Histograms of peak stress (January 2006) 
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Due to the combined effect of highway traffic, railway traffic, and wind loads, the peak stresses 

are randomly distributed but mostly centralised to several stress levels, exhibiting the 

multimodal response feature. Estimation of the distribution model for multimodal load effect 

inevitably introduces additional modelling uncertainties such as the parametric and model order 

uncertainties. The proposed Bayesian mixture models are employed in the following section to 

address the estimation of multimodal stress response as well as quantifying the modelling 

uncertainties. 

6.4 ESTIMATION OF MULTIMODAL LOAD EFFECT USING 

BAYESIAN MIXTURE MODELS 

Estimation of the distribution model for the multimodal stress response is carried out in this 

section using the two proposed Bayesian mixture modelling approaches respectively. The 

model order uncertainty and parametric uncertainty are explicitly addressed under the Bayesian 

framework. Both parametric and nonparametric mixture PDFs of the multimodal load effect 

are estimated for the subsequent reliability analysis. 

6.4.1 Parametric Estimation 

With the consideration of parametric uncertainty, the parametric Bayesian mixture model, 

specifically the finite Gaussian mixture (FGM) model as proposed in Chapter 3, is first 

employed to estimate the multimodal load effect. 
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6.4.1.1 Selection of optimal model order  

Multiple peaks are clearly displayed in the stress histograms as shown in Figure 6.12, but the 

exact number of peaks remains unknown. For FGM model, it is improper to specify the model 

order (i.e. number of components) by subjective visual inspection as it could lead to inadequate 

model estimation. The Bayes factor-based model order selection method as introduced in 

Chapter 3 is used here to find the optimal number of components of the FGM model for 

accommodating the multimodal load effect. 

A group of FGM models with number of components ranging from one to ten, i.e. 𝐽 = 1 to 

10 , are proposed as the candidate models. The log marginal likelihood (LML) as given in 

Equation (3.27) is evaluated for each candidate model. Note that comparison with LML values 

of each candidate model is equivalent to the comparison of pair-wised Bayes factor of the 

candidate models. 

Another two commonly used model selection criteria, i.e. the Akaike Information Criterion 

(AIC) and the Bayesian information Criterion (BIC), are evaluated for each candidate model 

as well to compare with the results obtained from Bayes factor approach. These two criteria 

award goodness-of-fit of the model while penalise high model complexity. The optimal model 

order is selected by minimizing the AIC or BIC value as follows 

  𝐼𝐶 = −2ln𝑝(𝑦|𝚯) + 2𝑃 (6.1) 
   
 𝐵𝐼𝐶 = −2ln𝑝(𝑦|𝚯) + 𝑃ln𝑁 (6.2) 

where 𝑦  are observations, 𝚯  are the mixture parameters, ln𝑝(𝑦|𝚯)  is the log likelihood 
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function of the mixture model, 𝑃 = 3 × 𝐽 is the number of mixture parameters, and 𝑁 is the 

number of observations. To make the LML comparable with AIC and BIC, negative log 

marginal likelihood (NLML) is defined by simply transforming Equation (3.27) to its negative 

expression 

 𝑁𝐿𝑀𝐿 = −ln𝑝(𝑦|𝚯⋆) − ln𝑝(𝚯⋆) + ln𝑝(𝚯⋆|𝑦) (6.3) 

where 𝚯⋆ are the posterior mean values of the mixture parameters. Consistently, minimizing 

NLML gives the optimal number of components. 

The optimal model orders for the multimodal stress response at top chord, diagonal strut and 

bottom chord of the deck truss are identified using the three model selection criteria. Figure 

6.13 gives the results of ten candidate models evaluated for the top chord, in which NLML has 

the overall minimum value at 𝐽 = 4, indicating the optimal model order is uniquely identified 

as four by the Bayes factor approach. In contrast, both AIC and BIC criteria reach the minimum 

values at 𝐽 = 5, suggesting a different model selection result. Table 6.1 summarizes the results 

of optimal model order identified by the three different criteria. The AIC and BIC criteria advise 

to use higher order complex mixture models for the multimodal stress response, whereas the 

Bayes factor approach prefers mixture model with less components. However, the model order 

identified for the diagonal strut is the same when using three different criteria. With respect to 

each truss element, all the three criteria suggest that higher order complex mixture models are 

needed for accommodating the multimodal stress responses of top and bottom chords than that 

of diagonal strut. It indicates the mixture pattern of live load effect, even under the identical 

multi-load condition, could vary significantly among different truss elements. The optimal 
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model orders as identified by the Bayes factor approach are adopted for the subsequent mixture 

parameter estimation. 

 
Figure 6.13 Determination of optimal model orders for FGM model of top chord using 

three different criteria 

 

Table 6.1 Identified optimal model orders for FGM model using 
three different criteria 

Locations 
Optimal model order 

Bayes factor AIC BIC 
Top chord 4 5 5 

Diagonal strut 3 3 3 
Bottom chord 4 5 4 

6.4.1.2 Estimation of parameters and predictive mixture PDF 

Given the optimal model order, posterior samples of mixture parameters are obtained by using 

the Gibbs sampler as introduced in Chapter 3. A quick convergence of the Gibbs iteration is 

reached for all the simulations. The sample mean of the posterior mixture parameter is served 

as the estimation of multimodal stress response, which reflects the average load effect 
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experienced by the truss. The 5-95 credible interval (CI) of the posterior mixture parameter is 

used to represent the parametric uncertainty arising from statistical inference of the multimodal 

data. Table 6.2 provides the posterior estimation of the multimodal stress response of the top 

chord, diagonal strut and bottom chord of the truss. 

Table 6.2 FGM estimation of the multimodal stress response of north truss (January 2006) 

Comp. 
Parameter 𝜇 Parameter 𝜎2 Parameter 𝜔 Stress 

level 5% Mean 95% 5% Mean 95% 5% Mean 95% 
 Top chord  

No. 1 0.952 0.972 0.992 0.110 0.119 0.128 0.449 0.474 0.499 
Ⅰ 

No. 2 1.784 1.832 1.882 0.357 0.387 0.419 0.299 0.323 0.347 
No. 3 7.775 7.820 7.865 0.602 0.663 0.728 0.161 0.170 0.178 Ⅱ 
No. 4 7.285 7.896 8.519 12.730 15.595 19.016 0.027 0.034 0.041 Ⅲ 

 Diagonal strut  
No. 1 1.145 1.174 1.204 0.097 0.108 0.120 0.319 0.350 0.382 

Ⅰ 
No. 2 1.971 2.014 2.060 0.300 0.324 0.348 0.427 0.460 0.490 
No. 3 5.661 5.771 5.877 2.393 2.631 2.894 0.182 0.191 0.199 Ⅱ 

 Bottom chord  
No. 1 1.493 1.539 1.585 0.246 0.272 0.301 0.476 0.523 0.570 

Ⅰ 
No. 2 2.399 2.492 2.596 0.588 0.651 0.720 0.234 0.280 0.326 
No. 3 10.424 10.480 10.537 0.886 0.981 1.083 0.149 0.157 0.166 Ⅱ 
No. 4 9.757 10.396 11.058 19.872 24.008 28.773 0.033 0.039 0.046 Ⅲ 

Note: The order of components is ranked according to (1) the ascending order of 𝜇; and (2) the last 
component with the maximum 𝜎2. 

Multiple stress levels are clearly identified for the north truss. Taking the results for top chord 

as an example, it is shown that approximately 80% of the total peak stresses are allocated to 

the 1st and 2nd components with relatively small component means, say around 1.0 to 1.8 MPa. 

These two components represent the first level (level Ⅰ) stress which can be interpreted as the 

load effect of superposition of highway traffic and wind load. The 3rd component occupies 

approximately 17% of the total peak stresses with larger component means about 7.8 MPa and 

relatively small component variance. It is the second level (level Ⅱ) stress which can be 
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regarded as the combined effect of railway traffic and wind load. The 4th component takes only 

about 3% of the total peak stresses with the greatest component variance. It is the third level 

(level Ⅲ) stress that can be the representative of the superposition effect of highway traffic, 

railway traffic and wind load. 

Within a certain long period, say one month, the wind speed and direction near the TMB can 

be quite different. Wind effect on the bridge, as compared with traffic-induced effect, is far 

more undetermined, causing sparse and dispersed peak stress values. Mixture models equipped 

with sufficient number of components are able to characterize the wind-induced peak stresses. 

The estimated FGM models with optimal model order facilitate the interpretation of multi-load 

effect. Similar findings of stress levels are also existed in the estimated FGM models for 

diagonal strut and bottom chord. 

Given the posterior FGM estimation, the predictive PDFs and associated 5-95 uncertain bounds 

of the multimodal load effect for top chord, diagonal strut and bottom chord are constructed as 

depicted in Figure 6.16. The predictive PDFs fit well with the histograms of multimodal stress 

response for all three truss members. The upper and lower uncertain bounds are both 

continuous curves, laying symmetrically on the two sides of the predictive PDF curve. The 

uncertain bounds unveil the variability in PDF estimation of the FGM model due to parametric 

uncertainty. 

6.4.2 Nonparametric Estimation 

With the consideration of both model order and parametric uncertainties, the nonparametric 
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Bayesian mixture model, specifically the Dirichlet process mixture (DPM) model as introduced 

in Chapter 5, is utilised to estimate the multimodal load effect. 

6.4.2.1 Varying model order 

The model order in the DPM model is a random variable that is allowed to vary throughout the 

iteration of the collapsed Gibbs sampler. In other words, multiple model orders could appear 

along with the iteration. Figure 6.14 gives the variation of number of components during the 

collapsed Gibbs iteration for modelling the multimodal load effect of the top chord. It is 

observed that the model order has a relatively large variation, ranging from 𝐽 = 2 to 𝐽 = 14, 

throughout the iteration. Early samples of model order with rather small number of components 

are unable to represent the multimodality in the data, which tells that the iteration is not yet 

converged. The right panel provides the histogram of samples of 𝐽 after the burn-in stage. 

Four predominant model orders, namely 𝐽 = 7  to 𝐽 = 10 , are found from the histogram 

which take over 90% of occurrence times during the iteration. In particular, the model order of 

𝐽 = 8 is recognised as the most frequently occurring order (mode of model order) that used 

for DPM modelling. 

Estimations of model order for the three truss members are summarised in Figure 6.15, in which 

𝐽 = 8, 𝐽 = 7, and 𝐽 = 8 are identified as the most frequently occurring model orders of top 

chord, diagonal strut and bottom chord, respectively. Note that the observed most frequently 

occurring model orders have overall larger values than the optimal model order identified in 

parametric approach as shown in Table 6.3. It is found that, in contrast to the FGM model, the 
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DPM model tends to fit the multimodal stress response with larger number of components, 

which is coincident with the results of comparison study given in Chapter 5. In addition, the 

most frequently occurring model order observed for diagonal strut is lower than that of top and 

bottom chords, which is again consistent with the results of FGM model. Inference through 

both FGM and DPM models indicates that the mixture pattern of live load effect could vary 

significantly among different structural elements even under the identical multi-load condition. 

From an engineering point of view, the high model order is needed if the stress responses are 

widely spread due to heavy vehicular and train loads. 

 
Figure 6.14 Varying model orders during the collapsed Gibbs iteration 
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Table 6.3 Identified model orders using parametric and nonparametric approaches 

Locations 
Model order 

FGM 
(Optimal) 

DPM  
(Most frequently occurring) 

Top chord 4 8 
Diagonal strut 3 7 
Bottom chord 4 8 

 

 
Figure 6.15 Occurrence frequency of model orders for DPM model  

6.4.2.2 Estimation of predictive mixture PDF 

Using the quantitative convergence diagnosis strategy proposed in Chapter 4, the convergence 

of the collapsed Gibbs iteration is checked for all simulations. A satisfactory convergence speed 

is achieved for most of the cases. The posterior mixture density samples are obtained after 

discarding the burn-in samples. As depicted in Figure 6.16, the predictive PDFs and associated 
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5-95 uncertain bounds of the multimodal load effect for top chord, diagonal strut and bottom 

chord are constructed by using the posterior mixture density samples. A good fitting is observed 

for the histograms of multimodal stress response with the predictive PDFs for all three truss 

members. The upper and lower uncertain bounds are both continuous curves, laying 

symmetrically on the two sides of the predictive PDF curve. The uncertain bounds unveil the 

variability in PDF estimation of the DPM model due to model order and parametric 

uncertainties. 

As shown in Figure 6.16, both parametric and nonparametric PDFs and associated uncertain 

bounds are plotted together to make a direct comparison. More complicated mixture 

distributional shapes are observed for the DPM models for accommodating the multimodal 

stress response of three truss members. The K-S test and log-likelihood value are further 

evaluated to quantitatively compare the goodness-of-fit of the parametric and nonparametric 

PDFs. As given in Table 6.4, higher values of the P-value and log-likelihood of the DPM 

models are achieved for all truss members, which strongly favours that the nonparametric 

approach owns a better performance than the parametric counterpart with respect to PDF fitting. 

Note that the same remark is made for better nonparametric PDF fitting with the artificial data 

set in Chapter 5. 

One-year parametric and nonparametric mixture PDFs and associated uncertain bounds of the 

multimodal load effect are estimated respectively and they are used for the subsequent 

reliability analysis. 
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a) top chord 

 
b) diagonal strut 

 
c) bottom chord 

Figure 6.16 Estimated parametric and nonparametric PDFs with uncertain bounds for 
multimodal stress response of north truss (January 2006) 
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Table 6.4 Goodness-of-fit of parametric and nonparametric approaches 

Locations 
FGM DPM 

P-value of K-S test 
Top chord 1.050e-06 7.730e-02 

Diagonal strut 1.500e-03 1.488e-01 
Bottom chord 5.974e-04 6.933e-01 

 Log-likelihood 
Top chord -9.963e+03 -9.777e+03 

Diagonal strut -1.152e+04 -1.135e+04 
Bottom chord -1.195e+04 -1.176e+04 

Note: Higher values of P-value and log-likelihood favour better fitting. 

6.5 RELIABILITY ASSESSMENT OF BRIDGE DECK UNDER 

MODELLING UNCERTAINTIES 

Reliability assessment of the deck truss using the estimated Bayesian mixture models is carried 

out in this section. Based on the first-order reliability method (FORM), a conditional reliability 

index is formulated to take into account the variability of PDF estimation due to model order 

and parametric uncertainties. Sensitivity analysis is conducted to investigate the influence of 

uncertain mixture parameters on the reliability estimate. A demonstration of mitigating the 

uncertain reliability estimate is given by increasing the sample size of peak stress. The 

conditional reliability estimate is updated in a month-by-month manner to render a more 

accurate assessment result of the deck truss during the monitoring period. 

6.5.1 FORM and Conditional Reliability Index 

For reliability assessment based on monitoring data, it is convenient to compare the structural 
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resistance 𝑅  and the monitored load effect 𝑆  to measure the structural safety. The 

performance function can be formulated as (Frangopol et al., 2008; Melchers and Beck, 2017) 

 𝑔(𝐗,𝚯) = 𝑅 − 𝑆 (6.4) 

where 𝐗 = {𝑅, 𝑆}  is the resistance and load effect vector and 𝑔(𝐗,𝚯) < 0  represents the 

failure state. To consider the modelling uncertainties, the model parameter vector 𝚯 =

{𝛉𝑅 , 𝛉𝑆} associated with 𝑅 and 𝑆 is incorporated in the performance function. The failure 

probability 𝑃𝑓(𝚯) under modelling uncertainties can be defined as 

 𝑃𝑓(𝚯) = Pr(𝑔(𝐗, 𝚯) < 0) = ∫ 𝑝𝑅(𝑟; 𝛉𝑅)𝑝𝑆(𝑠; 𝛉𝑆)d𝑟d𝑠
𝑔<0

 (6.5) 

where 𝑝𝑅  and 𝑝𝑆  are the probability distribution for 𝑅  and 𝑆 , respectively. Now, the 

monitored multi-load effect is represented by mixture PDF, the failure probability can be 

further derived as 

 

𝑃𝑓(𝚯) = ∫ 𝑝𝑅(𝑟; 𝛉𝑅) (∑𝜔𝑆𝑗
𝑝𝑆𝑗 (𝑠; 𝛉𝑆𝑗)

𝐽

𝑗=1

)d𝑟d𝑠
𝑔<0

 

= ∑(𝜔𝑆𝑗
∫ 𝑝𝑅(𝑟; 𝛉𝑅)𝑝𝑆𝑗(𝑠; 𝛉𝑆𝑗)d𝑟d𝑠
𝑔𝑗<0

)

𝐽

𝑗=1

 

(6.6) 

where 𝑝𝑆 = ∑𝜔𝑆𝑗
𝑝𝑆𝑗   is the mixture PDF with 𝑝𝑆𝑗   being the 𝑗 th component density, and 

⋃ 𝑔𝑗
𝐽
𝑗=1 = 𝑔 is the failure domain. Providing that 𝑝𝑅 and 𝑝𝑆𝑗  are normally distributed, the 

failure probability can be estimated by the first-order reliability method (FORM) as 

 𝑃𝑓(𝚯) ≈ ∑ 𝜔𝑆𝑗
Φ(−𝛽𝑗(𝛉𝑅 , 𝛉𝑆𝑗))

𝐽

𝑗=1
 (6.7) 
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where 𝛽𝑗(𝛉𝑅 , 𝛉𝑆𝑗) = (𝜇𝑅 − 𝜇𝑆𝑗) (𝜎𝑅
2 + 𝜎𝑆𝑗

2 )
1/2

⁄  is the reliability estimate associated with the 

𝑗th mixture component, 𝛉𝑅 = {𝜇𝑅 , 𝜎𝑅
2} is mean and variance of 𝑅, and 𝛉𝑆𝑗 = {𝜇𝑆𝑗 , 𝜎𝑆𝑗

2 } is 

the 𝑗th component mean and component variance of 𝑆. Thus, the reliability index with the 

consideration of modelling uncertainties, which termed as conditional reliability index 𝛽(𝚯), 

can be defined as 

 𝛽(𝚯) = −Φ−1(𝑃𝑓(𝚯)) (6.8) 

where Φ−1  is the inverse cumulative probability density of standard normal distribution. 

Equation (6.8) unveils that the conditional reliability index is a function of model parameter 

𝚯 , which implies the estimate of reliability index can be itself random variable due to the 

uncertain nature of 𝚯 . In other words, not only the aleatory uncertainty (i.e. the intrinsic 

variability of resistance or load effect) but also the epistemic uncertainty (i.e. the inaccuracy 

inherent in model order selection and parameter estimation) has the impact on estimation of 

the structural reliability (Der Kiureghian, 2008; Der Kiureghian and Ditlevsen, 2009). 

According to the design documents of the TMB, the maximum allowable stress for truss 

member under live loads in serviceability limit state was specified as 60 MPa (Wong, 2007). A 

coefficient of variation 𝛾 = 0.075 is adopted for this study (Chatterjee, 2008; Frangopol et 

al., 2008). These statistics are served as the probability descriptors of resistance 𝑅, which yield 

a mean value 𝜇𝑅 = 60 MPa and a standard deviation 𝜎𝑅 = 𝛾𝜇𝑅 = 4.5 MPa for assessment. 

Given the estimated mixture models of the multi-load effect, random samples of the conditional 

reliability index can be obtained as 
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 𝛽(𝑔) = −Φ−1

(

 ∑𝜔𝑆𝑗

(𝑔)
Φ

(

 −
𝜇𝑅 − 𝜇𝑆𝑗

(𝑔)

√𝜎𝑅
2 + 𝜎𝑆𝑗

2(𝑔)

)

 

𝐽

𝑗=1
)

  (6.9) 

where 𝜔𝑆𝑗

(𝑔), 𝜇𝑆𝑗
(𝑔) and 𝜎𝑆𝑗

2(𝑔) (𝑔 = 1,⋯ , 𝐺) are posterior samples of mixture parameters from 

the Gibbs iteration. Note that model order 𝐽 shall be drawn from the iteration for evaluating 

the conditional reliability index when load effect is represented by the DPM model. Equation 

(6.9) provides a general expression to calculate the conditional reliability index by either using 

the FGM model or the DPM model. 

 
a) conditonal reliability index under parametric uncertainty 

 
b) conditional reliability index under model order and parametric uncertainties 

Figure 6.17 Conditional reliability index under modelling uncertainties for deck truss 
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Reliability assessment of the truss members under modelling uncertainties is demonstrated in 

Figure 6.17. As expected, the samples of conditional reliability index 𝛽(𝑔)  for each truss 

member are randomly distributed with different locations but similar scales (except for FGM-

based reliability samples of diagonal strut). Sample mean and sample standard deviation of 

𝛽(𝑔) are evaluated for each truss member. The mean value of 𝛽(𝑔) represents the average 

safety level for each truss member, while the standard deviation of 𝛽(𝑔) measures the variation 

associated with this safety level due to modelling uncertainties. Table 6.5 lists the mean values 

and standard deviations of the conditional reliability index for each truss member in the year 

of 2006. 

It is observed that the diagonal strut has an overall highest mean value, followed by the top 

chord, while the bottom chord owns the lowest mean value of the conditional reliability index. 

These findings agree well with the fact that the diagonal strut experiences overall smaller live 

load effect than the top and bottom chords as revealed from the estimated mixture PDFs. Note 

that assessment results by using either FGM or DPM model are not contradictory with each 

other. With respect to individual truss member, however, the calculated mean values by using 

each model are slightly different. It finds that the FGM-based analysis yields relative lower 

reliability for top and bottom chords, while it provides higher reliability for diagonal strut as 

compared to the DPM-based analysis. 
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Table 6.5 Estimation of conditional reliability index for deck truss 

Position Month 
FGM-based  

reliability estimate 
DPM-based  

reliability estimate 
Mean SD Mean  SD 

Top chord 

Jan 9.089 0.218 9.954 0.236 
Feb 8.667 0.370 9.926 0.272 
Mar 8.483 0.573 9.797 0.375 
Apr 9.173 0.308 9.942 0.314 
May 9.371 0.266 9.818 0.343 
Jun 9.200 0.241 10.061 0.262 
Jul 9.176 0.245 9.861 0.301 

Aug 8.730 0.299 9.853 0.271 
Sep 8.925 0.275 10.161 0.163 
Oct 9.268 0.234 10.191 0.181 
Nov 9.337 0.211 9.679 0.348 
Dec 9.039 0.254 9.931 0.220 

Diagonal 
strut 

Jan 11.482 0.032 11.079 0.270 
Feb 11.425 0.045 11.065 0.276 
Mar 11.509 0.071 11.636 0.153 
Apr 11.562 0.036 11.137 0.319 
May 11.447 0.044 11.072 0.264 
Jun 11.446 0.041 10.857 0.357 
Jul 11.371 0.038 10.642 0.382 

Aug 11.461 0.035 11.150 0.318 
Sep 11.470 0.036 11.016 0.297 
Oct 11.435 0.038 10.799 0.321 
Nov 11.434 0.038 10.848 0.282 
Dec 11.457 0.035 11.394 0.190 

Bottom 
chord 

Jan 7.882 0.207 8.620 0.304 
Feb 7.289 0.419 8.631 0.322 
Mar 6.621 0.678 7.854 0.608 
Apr 8.201 0.344 8.882 0.330 
May 7.865 0.324 8.808 0.341 
Jun 7.596 0.319 8.980 0.232 
Jul 7.629 0.323 8.554 0.398 

Aug 7.560 0.269 8.333 0.357 
Sep 7.292 0.259 8.889 0.166 
Oct 8.027 0.252 8.877 0.302 
Nov 7.627 0.233 8.028 0.353 
Dec 7.543 0.299 8.120 0.433 
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6.5.2 Sensitivity Analysis of Uncertain Parameters 

Uncertainty associated with the reliability estimate as measured by the standard deviation is of 

significance to the assessment. As shown in Table 6.5, it finds out the DPM-based analysis 

yields a similar degree of uncertainty of reliability estimates for the top chord, diagonal strut 

and bottom chord since the standard deviations are within a certain level. Nevertheless, the 

FGM-based analysis gives a relative lower degree of uncertainty of reliability estimate for the 

diagonal strut with much smaller values of standard deviation as compared to that of top and 

bottom chords. To figure out this, the investigation with respect to the influence of uncertain 

mixture parameters on the reliability estimate is carried out. 

To analyse the sensitivity of a specific type of uncertain mixture parameter, we fix the other 

parameters by substituting their mean values in Equation (6.9) and compute the conditional 

reliability index accordingly. Three cases are considered here: (1) uncertain component means 

𝜇; (2) uncertain component variances 𝜎2; and (3) uncertain mixing weight 𝜔. These three 

cases are compared with the case that all mixture parameters are uncertain in the reliability 

estimate which is exactly the results given in Figure 6.17. Influence of different types of 

uncertain mixture parameter on the reliability estimate is showed in Figure 6.18 with the 

boxplot being the range of reliability estimate under each case. In contrast to parameters 𝜇 

and 𝜔, the uncertain 𝜎2 leads to the greatest variation of the reliability estimate, which is 

almost the same level as the case that all mixture parameters are uncertain. It can be inferred 

that the uncertainty associated with reliability estimate is primarily affected by the variation of 
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component variance 𝜎2. 

 
Figure 6.18 Influence of uncertain mixture parameters on reliability estimate: (a) uncertain 

𝜇; (b) uncertain 𝜎2; (c) uncertain 𝜔; and (d) all uncertain 

To further study the influence of individual uncertain component variance on the reliability 

estimate, another four cases are considered: (1) uncertain 𝜎12; (2) uncertain 𝜎22; (3) uncertain 

𝜎3
2; and (4) uncertain 𝜎42 (for top and bottom chords). These four cases are compared with the 

case that all component variances are uncertain. As shown in Figure 6.19, it is observed that 

the uncertainty of reliability estimate is mainly due to the specific component variance that 

owns largest variation. In fact, as for top or bottom chord, it is found that there exists a small 

portion of peak stresses assigned to the 4th (or the 3rd) component, causing larger variation in 

the corresponding parameter estimation (larger 95% CIs of parameters). It consequently leads 

to a greater level of uncertainty (larger standard deviation) on the reliability estimate for top 
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and bottom chords. However, this phenomenon is not evident for the estimated mixture model 

of diagonal strut. 

 
Figure 6.19 Influence of uncertain component variance on reliability estimate: (a) uncertain 

σ1
2; (b) uncertain σ22; (c) uncertain σ32; (d) uncertain σ42; and (e) all uncertain 

6.5.3 Uncertainty Mitigation 

Does the extent of uncertainty associated with the reliability estimate can be narrowed down? 

It has been reported that the epistemic uncertainty in reliability analysis can be possibly reduced 

by collecting additional observational data (Der Kiureghian, 2008). In the assessment of deck 

truss, we give illustrative examples to verify the statement. 

Figure 6.20 shows the relationship between sample size of peak stress responses and the 

estimated reliability bounds. Through adjusting the peak counting strategy, i.e. increasing the 

sample size of the monthly representative peak stresses, an evident mitigation of the uncertainty 
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of conditional reliability index is realized for both FGM-based and DPM-based analysis. 

Besides, the mean value has a slightly upward trend with the increase of sample size. It is seen 

that if monitoring data are insufficient, for example, when the sample size is less than 4000 as 

shown in Figure 6.20, the reliability estimates fluctuate with large uncertain bounds, yielding 

a misleading assessment to the structural performance. From the management authority’s point 

of view, if the estimated uncertainty of reliability is unacceptable for decision-making, cost-

effective actions should be taken to collect additional information to assist the bridge 

assessment. A compromise should be made between the cost of collecting additional data and 

the acceptability of uncertain level for the assessment. 

 
Figure 6.20 Relationship between sample size of peak stress and uncertainty of reliability 

estimate 

Note that the DPM-based analysis is less sensitive to the change of sample size as against the 

FGM-based analysis as shown in Figure 6.20. The DPM-based reliability estimate retains 

relatively stable even when the monitoring data are insufficient. It attributes to the fact that the 
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DPM model with varying model order can avoid possible over- or under-fitting when there is 

lack of samples. However, the FGM model may suffer from this issue. 

6.5.4 Continuous Reliability Updating 

With continuous monitoring data, the conditional reliability index 𝛽(𝚯)  can be regularly 

updated to refine a more convincible assessment result for a given reference period. Assuming 

the samples of reliability estimate conform to the normal distribution  𝛽~𝑁(𝜇𝛽 , 𝜎𝛽2), a month-

by-month reliability updating can be implemented by using the Bayesian theory 

 𝑝(𝛽pred|𝛽) = ∬𝑝(𝛽pred|𝜇𝛽 , 𝜎𝛽
2, 𝛽)𝑝(𝜇𝛽 , 𝜎𝛽

2|𝛽) d𝜇𝛽d𝜎𝛽
2 (6.10) 

where 𝛽pred is defined as the predictive reliability index after obtaining monthly samples of 

conditional reliability index 𝛽(𝚯), and 𝑝(𝜇𝛽 , 𝜎𝛽2|𝛽) is the posterior distribution of parameter 

which has the form of 

 𝑝(𝜇𝛽 , 𝜎𝛽
2|𝛽) ∝ 𝑝(𝛽|𝜇𝛽 , 𝜎𝛽

2)𝑝(𝜇𝛽 , 𝜎𝛽
2) (6.11) 

Assuming the normal-inverse-chi-squared prior for 𝜇𝛽  and 𝜎𝛽2 , the Bayesian updating for 

conditional reliability index can be implemented in an explicit way (Gelman et al., 2014). 

Figure 6.21 gives an example of the one-month reliability updating for the top chord. The 

predictive reliability index 𝛽pred  of February is obtained through updating the 𝛽pred  of 

January with newly obtained conditional reliability samples of February using Equations (6.10) 

and (6.11). Consequently, the assessment result based on the predictive reliability index is more 

convincible since it already incorporates both the information from January and February. 
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Following the same manner, month-by-month updating is implemented to pursue the 

assessment for a period of one-year for the top chord as illustrated in Figure 6.22. Note that 

there was a possible suspension of strain monitoring from February to March this year, which 

causes an insufficient number of peak stresses during this period as shown Figure 6.23. As 

recalled from the discussion about the relationship between sample size and reliability estimate, 

it is not surprising to see the lack of monitoring peak stress has noticeable impacts on the 

reliability updating as the mean values of 𝛽pred drop and the standard deviations increase. In 

particular, this unexpected event has a great influence on the FGM-based analysis. 

 
a) FGM-based reliability updating 

 
b) DPM-based reliability updating 

Figure 6.21 One-month reliability updating for top chord 
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a) FGM-based reliability updating 

 
b) DPM-based reliability updating 

Figure 6.22 One-year reliability updating for top chord 

 

 
Figure 6.23 Sample size of peak stress used for reliability updating 
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One-year predictive reliability profiles of the deck truss are portrayed in Figure 6.24. According 

to the curves of mean value of the reliability estimate, the diagonal strut has the highest safety 

reserve, followed by the top chord, whereas the bottom chord owns the lowest safety reserve 

under the routine operation of the TMB. For the past one year, the predictive reliability profiles 

evolve over time with no sudden changes, indicating the deck truss is of satisfactory 

performance under the multi-load condition. Note that regular inspection is recommended for 

the bottom chord. 

Uncertain bounds associated with the predictive reliability index give additional meaningful 

information for further decision making. For instance, the enlarged reliability bounds on 

February and March give a hint that additional manual inspection information might be needed 

to determine the structural behaviour during that specific period. From a practical point of view, 

bridge owners and engineers would first concern with the mean value of the reliability estimate 

to guarantee the good status of the structure; what follows is that an acceptable uncertain range 

on the reliability estimate would be preferred as it provides an extra confidence level to the 

assessment. 
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a) predictive reliability profile under parametric uncertainty 

 
b) predictive reliability profile under model order and parametric uncertainties 

Figure 6.24 Predictive reliability profiles under modelling uncertainties for deck truss 

6.6 SUMMARY 

Quantifying multi-level uncertainties in bridge condition assessment is of great desire. This 

chapter presents the application of Bayesian mixture models to reliability assessment of the 
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long-span suspension bridge with consideration of the impacts from modelling uncertainties. 

A new conditional reliability index based on the FORM is formulated to account for modelling 

uncertainties arising from interpretation of the multimodal load effect. With consecutive 

monitoring data, the conditional reliability index is updated in a month-by-month manner to 

realise a more convincible assessment result. The key findings are summarised as follows. 

(1) Through statistical analysis of the monitoring stress response, it is found that the peak 

stress of deck truss under multi-load condition has typical multimodal data characteristics, 

which are adequately captured by the Bayesian mixture models. Multiple stress levels, 

which stems from combined effect of highway traffic, railway traffic, and wind loads, are 

well discriminated and quantitatively identified by the mixture models. 

(2) With the consideration of modelling uncertainties, the estimate of conditional reliability 

index is no longer a fixed value but a random variable that affected by the uncertain model 

parameters. Sensitivity analysis shows that variation of the estimated component variance 

has the dominated effect on the uncertainty of FGM-based reliability estimate. It further 

finds out that the reliability bounds can be mitigated by increasing the sample size of peak 

stress. There should be a balance between the cost of collecting additional monitoring data 

and the acceptability of uncertainty level of the assessment. 

(3) Assessment results of the truss members from either FGM-based or DPM-based reliability 

analysis are consistent with each other, indicating both approaches are suitable for bridge 

reliability analysis under multi-load condition. Nevertheless, the DPM-based analysis 

outperforms the FGM-based counterpart in terms of less sensitive to the variation of 
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parameter estimation and sample size of the peak stress. 

(4) Predictive reliability profiles over the monitoring period indicate that the deck truss is of 

satisfactory performance under the routine operation of the TMB. Regular inspection is 

recommended for the bottom chord. A clearer vision on the safety risk can be learnt by the 

management authorities through reporting not only the average structural reliability but 

also the extra associated uncertain level. 
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CHAPTER 7  

CONCLUSIONS AND RECOMMENDATIONS 

7.1 CONCLUSIONS 

In-service long-span bridges are normally subject to multiple types of loadings such as highway 

traffic, railway traffic, wind and their combinations, resulting in heterogeneous and multimodal 

data characteristics. SHM-based methodology to assessment of the long-span bridge enables 

the quantification of substantial uncertainties in modelling the load effects, leading to a robust 

and predictive health measure of the structural condition. The thesis develops two classes of 

Bayesian mixture models for condition evaluation of the suspension Tsing Ma Bridge by 

making use of its long-term monitoring data with the capability to (1) accommodate 

multimodal structural responses due to multi-load, and (2) explicitly quantify the modelling 

uncertainties inherent in the monitoring data. 

The thesis first develops the parametric Bayesian mixture model, i.e. the finite Gaussian 

mixture (FGM) model, to deal with the multimodal data with consideration of parametric 

uncertainty. The Gibbs sampler is devised to approximate the joint posterior of the mixture 

parameters with a quantitative convergence diagnosis strategy being used. Optimal model order 

is determined by a Bayes factor based approach. Numerical studies based on artificial data sets 

exemplify that the FGM model can adequately characterise the multimodal data in terms of 

fairly small model errors with promising convergence speed. Given the posterior samples 
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obtained from the Gibbs simulation, the most plausible mixture parameters are conveniently 

obtained with associated uncertain bounds being explicitly quantified under the Bayesian 

framework. Damage detection of the Tsing Ma Bridge by making use of neutral axis position 

information is the goal pursued in this thesis. The sensitivities of changing loading distances, 

loading magnitudes, and traffic lanes on locating the neutral axis positions of a designated cross 

section are verified through a numerical study based on bridge FEM. Neutral axis positions 

under multi-lane stochastic traffic loads are identified using parametric Bayesian mixture 

model based on monitoring and simulated stress responses respectively. Postulated single- and 

multiple-damage cases on the bridge deck are effectively detected by the proposed two damage 

indexes based on neutral axis change. The nonparametric Bayesian mixture model, i.e. the 

Dirichlet process mixture (DPM) model, is subsequently developed to allow the model 

complexity automatically adapts to the observational data with the capability to jointly consider 

the parametric and model order uncertainties. To avoid low efficiency of direct sampling from 

the conditional posteriors, the collapsed Gibbs sampler is devised to pursue the posterior 

mixture density samples. An extended version of the quantitative convergence diagnosis 

strategy is proposed to assess the convergence of simulations. Given the posterior mixture 

density samples, quantification of both parametric and model order uncertainties is 

satisfactorily achieved through the nonparametric approach. With two Bayesian models at hand, 

the long-term reliability assessment of the Tsing Ma Bridge under modelling uncertainties is 

performed in this research. After the statistical analysis of raw signals, it finds out that stress 

responses under the combined effect of multi-load have typical multimodal data characteristics, 
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which are adequately captured by either two Bayesian mixture models. Multiple stress levels, 

which stems from multiple loadings of highway traffic, railway traffic, wind and their 

combinations, are well discriminated and quantitatively identified by the mixture models. A 

new conditional reliability index is formulated based on first-order reliability method to 

account for the aleatory and epistemic uncertainties from multimodal stress responses. A 

sensitivity analysis of uncertain mixture parameters on reliability estimate is given. With 

consecutive monitoring data, the reliability index is updated in a month-by-month manner to 

refine a more convincible assessment result. 

The important results and significant findings throughout the thesis are summarised as follows. 

(1) Two classes of Bayesian mixture models along with the Markov chain Monte Carlo based 

inference tools developed in the thesis are well suited to characterise heterogeneous 

monitoring data with multimodality in viewing of accurate model fittings and fast 

convergence speed. Numerical studies suggest that the nonparametric model outperforms 

the parametric model in terms of better goodness-of-fit with lower computational demands. 

More importantly, the nonparametric approach stands as an improvement over the 

parametric counterpart that joint consideration of parametric and model order uncertainties 

can be achieved. 

(2) Through statistical analysis of the monitoring raw signals, it is found that the peak stresses 

of the deck truss under multi-load have typical multimodal data characteristics, which are 

adequately captured by the Bayesian mixture models. Multiple stress levels, which stems 
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from combined effect of highway traffic, railway traffic, and wind loads, are well 

discriminated and quantitatively identified by the mixture models. 

(3) Traffic-induced neutral axis position is insensitive to the change of loading magnitudes 

but heavily depends on the traffic lane in use. Stochastic highway and railway traffic on 

multiple lanes usually generate varying neutral axis position for a designated cross section 

over a given time period. Neutral axis position can only be adopted as a damage sensitive 

feature with its associated uncertainty being properly quantified. The proposed neutral axis 

position identification method based on the parametric Bayesian mixture model is able to 

accurately predict the mean values and associated uncertain ranges of the neutral axis 

position due to different traffic types. The identified neutral axis positions of the Tsing Ma 

Bridge based on monitoring stress responses keep relative stable under stochastic traffic 

loads. 

(4) Simulation-based neutral axis positions over a time period are of high similarity to the 

results based on monitoring in terms of the daily trend of mean values and uncertain ranges. 

Results of case studies show that damage of local component could be detected by 

synchronous shifts of neutral axis (NA) change ratio of the neighbouring cross section. 

The cumulative NA change ratio triggers more convincible detection alerts under 

operational traffic condition when multiple damages occurred on the bridge deck. It has 

the potential to be a damage severity indicator. 

(5) In the presence of modelling uncertainties, the estimate of conditional reliability index is 

no longer a fixed value but a random variable that affected by the uncertain mixture 
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parameters of the load effects. Sensitivity analysis shows that variability of the component 

variance has the dominated effect on the uncertainty range of FGM-based reliability 

estimate. It further finds out that the reliability bounds can be mitigated by increasing the 

sample size of peak stress. There should be a balance between the cost of collecting 

additional monitoring data and the acceptability of uncertainty level of the assessment. 

(6) One-year reliability indexes of the truss members computed by either FGM-based or 

DPM-based analysis are consistent with each other, indicating both approaches are 

suitable for bridge reliability analysis under multi-load condition. Nevertheless, the DPM-

based analysis outperforms the FGM-based counterpart in terms of less sensitive to the 

variation of parameter estimation and sample size of the peak stress. This is a desired 

property in SHM practice where monitoring data are sometimes unavailable due to 

malfunction of the system. 

(7) Predictive reliability profiles over the one-year monitoring period indicate that the 

longitudinal truss is of satisfactory performance under the routine operation of the Tsing 

Ma Bridge. Regular inspection is recommended for the bottom chord where the reliability 

is lower. A clear vision on the safety risk can be learnt by management authorities through 

reporting not only the average structural reliability but also the extra associated uncertain 

level. 

7.2 RECOMMENDATIONS 

The present thesis covers two key topics, i.e. damage detection and reliability analysis, for 
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current practice of monitoring-based condition assessment of long-span bridges under 

modelling uncertainties. Although some progress has been achieved in the finished studies, it 

is beneficial to discuss some remaining important issues that merit further research. 

(1) Gaussian component/kernel density is employed in the Bayesian mixture models to realise 

analytical forms of full conditional posteriors for efficient MCMC simulations using 

Gibbs/collapsed Gibbs samplers. It is desired to develop other workable kernels such as 

lognormal, Weibull, Gumbel for mixture models in order to achieve more generalised 

settings. The Metropolis-Hastings sampler or variational Bayesian algorithms can be 

devised to pursue the mixture parameter estimation. 

(2) The proposed damage detection method based on neutral axis position is able to detect 

local damage of the bridge deck under stochastic highway and railway traffic. However, 

wind load is a significant factor for normal operation of long-span bridge located in coastal 

region. Wind effect on bridges, which causes three-dimensional vibration of the bridge 

deck, will pose difficulties for accurate prediction of the neutral axis position. It is 

preferable to verify the feasibility of neutral axis based damage detection method under 

windy condition. Determination of a threshold of maximum wind speed to the success of 

damage detection is needed. 

(3) Application scope of the proposed damage detection method will be extended if successful 

separation of wind-induced stress response from the monitoring signals can be achieved. 

A predictive model of the wind-induced stress response can be established by using the 

measured wind speed and direction on the bridge. 
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(4) More damage scenarios and different damage location should be properly considered. It 

is preferable to give a classification table for nearby structural members according to 

different damage-induced neutral axis shift directions. Sensitivity and reliability of the 

damage detection results should be evaluated in a quantitative way. 

(5) Deterioration models of structural resistance and the associated uncertainties have not 

been fully considered in the present monitoring-based reliability assessment scheme. It is 

beneficial to conduct experimental study on long-term performance of steel or concrete 

structural members in order to learn the deterioration behaviours. Time-dependent 

reliability analysis can be realised by integrating the deterioration information in a 

coherent Bayesian framework. 
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APPENDIX 
Peak stress histograms of 2006: top chord 
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Peak stress histograms of 2006: diagonal strut 
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Peak stress histograms of 2006: bottom chord 
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