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Abstract

In daily photography, it is common that we take pictures through a semi-
reflective material (such as glass) and obtain images with a reflection of another
unwanted scene. Reflection does not only degrade the visual quality of the captured
images but also affects the subsequent applications of the images, such as
recognition. Therefore, the methods for removing the reflection in images has

attracted much attention from hobbyists to professionals in photography.

However, reflection removal is a challenging and severely ill-posed problem. It
Is because we need to solve two unknowns (background and reflection) from only
one observation (the captured image with reflection). Due to the ill-posedness of the
problem, traditional reflection removal methods often introduce different priors of
the background and reflection for constraining the problem. Since the background
and reflection images have very similar morphological properties, those priors are
only valid in some specific situations. Whenever the prior is not valid, the residues
of the reflection will appear in the resulting image and degrade the image quality.
In this thesis, we propose a novel strategy for reflection removal. Rather than
following the existing approaches in searching for a perfect prior that can accurately
distinguish the background and reflection in all situations, we believe it is more
realistic and effective to look for a remedial strategy in case the separation is
unsuccessful. The proposed background gradient regeneration strategy suggests to

firstly remove the reflection components in an aggressive manner even in the



expense of losing some of the background components. The missing background
components are then regenerated based on the remaining ones using different
estimation methods. As shown in our experiments, such a strategy can lead to fewer
reflection residues in the reconstructed background image and the resulting

algorithms are more robust in general imaging environments.

Based on this strategy, three reflection removal algorithms are proposed in this
thesis. The first algorithm is for the situation that the light field (LF) images are
available. It first estimates the depths along the image edges using the LF epipolar
plane image (EPI). Based on the edge depths, we identify the background edges in
the condition that they have a distinct depth difference from the reflection edges.
For those edges that cannot be confidently classified, they will be ignored and
iteratively regenerated using a Markov Random Field (MRF) method. The final
background image is reconstructed using another iterative optimization process

when all the background edges are regenerated.

Although this method is effective, the required iterative optimization processes
are time-consuming. For improving the computation speed, we propose the second
deep neural network (DNN) based method using multi-view images. The second
proposed algorithms have a similar framework as the first one. The major difference
is their implementation backbone. The proposed DNN-based method firstly
estimates the edge depths using a convolutional neural network (CNN). The

background edges are identified following a similar approach as the first method.



Then, a generative adversarial network (GAN) is used to regenerate the missing
background edges. Finally, the background image is reconstructed based on the
estimated background edges using another CNN. Comparing with the first approach,
the deep learning-based method can increase the speed by over 1,000 times when
running with a Graphics Processing Unit (GPU) without sacrificing the image

quality.

In practice, we often need to deal with the reflection removal problem given only
a single image of the scene. Therefore, we also propose the third method that only
requires a single input image. With a single image, it is more difficult to achieve an
accurate estimation of the edge depths. To solve the problem, we make use of a prior
that many traditional approaches have used, that is, the reflection images are often
blurry. Such prior is valid in many practical situations since background and
reflection components often reside in different depth ranges. A camera focuses on
the background is likely to have the reflection out-of-focused and leads to the blurry
reflection image. Following the background gradient regeneration strategy, we
firstly train a CNN to aggressively remove the blurry components in the image,
which are likely the reflection components. Such aggressive strategy will also
remove some background edges as well. Then, based on the resulting image, we
derive a reflection edge confidence map. We use the map to obtain the background
edges with high confidence and regenerate the missing ones using a GAN. The

background image is also reconstructed at the same time. The proposed algorithm



gives state-of-the-art performance compared with the existing single-image DNN-
based approaches. Similar to the second proposed approach, the proposed algorithm
just needs a couple of seconds to complete the task of reflection removal when
implementing with GPUs. The algorithm is particularly suitable to those images

with blurry reflection, which is not uncommon in practice.

Overall, we show in this thesis that the proposed reflection removal methods
using the background gradients regeneration strategy can achieve more robust and
better performance compared to the traditional reflection removal methods. In
particular, the proposed deep learning-based algorithms have provided real-time
performance due to their high computational efficiencies when implementing with
GPUs. We believe that the research results of this work have significantly
contributed to the field of study and will arouse great interests from the digital

Imaging industry.
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Chapter 1.

Introduction

In daily photography activities, it is common to image through a semi-reflecting
material such as glass. In this scenario, the reflection of an unwanted scene is often
found in the captured image, which degrades the image quality as well as the
subsequent image analysis. Traditionally, photographers may install a polarizer
before the camera lens for reducing the reflection. However, a polarizer can only
remove the reflection components with an incident angle equal to the Brewster angle
[1]. Real-life reflections can come from different sources and different angles, hence

cannot be totally removed by a polarizer.

Alternatively, the reflection can be removed using image processing methods.
The reflection removal problem is a typical blind image separation (BIS) problem.
The problem can be illstruated as in Fig 1.1. The scenes behind and in front of a

glass are captured by the camera as a superimposed image. The target is to sperate
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Fig. 1.1. An illustration of the formation of images with reflections. Our target is to separate
the images of object | and Il from the captured image.

the background and reflection images from the captured image. Mathematically, an
image I with a reflection scene I superimposed on the background scene I can be

modeled as
I =1Ip+Ig. (1.1)

Decomposing Iz and I from [ is a severely ill-posed problem because we need to
obtain two unknowns from only one equation. In the last two decades, some
approaches were proposed using image statistical priors or deep learning approaches
to solve this underdetermined problem. However, due to the close morphological
properties between the background and reflection, current methods still cannot
robustly achieve the task. For better solving this problem, we consider in this thesis

using a new strategy namely background gradient regeneration. That is, we first



aggressively remove the reflection components irrespective of the possibility that
some of the background components will also be removed. Then we regenerate the
lost background gradients for restoring the background image. We propose three
different algorithms based on this gradient regeneration strategy. We consider both
the cases that multi-view images and only a single image of the scene are available.
The backbones of these approaches include conventional optimization methods and

the recently popular convolutional neural networks (CNN) [2-6].

1.1. The Background Gradient Regeneration Strategy

A glass erected between a camera and the target scene acts as a semi-transparent
mirror. It reflects the scene in front of the glass while transmitting the background
scene behind it. The image thus captured will contain both the background and
reflection scenes superimposed to each other. Directly separating them is very
difficult. For this reason, current methods often impose different priors to help
constraint the problem. Since both the background and reflected scenes are natural,
only some weak assumptions on the properties of the background and reflection
images can be made when constructing these priors. For example, methods [7, 8]
assume only the background is focused and identify those defocused and blurry
components as reflection components. Other assumptions include the different
responses to motions [9-11], differences in depth ranges [12], etc. of the background

and reflection images. Even with these constraints, we can often find in the results



of the current approaches that many reflection residues still remain in the image. It
Is due to the huge variety of daily captured images that no assumption can be valid
in all situations. Rather than continuously searching for a perfect prior as in the
previous approaches, we propose using a novel gradient regeneration strategy to
remove the reflection. In this strategy, we first aggressively remove the reflection
components to ensure that no reflection residue will remain in the image. However,
it may mistakenly remove the background components. Therefore, we carry out the
second step to recover the lost background components and finally reconstruct the

background image.

The regeneration step obviously is the most difficult part of the strategy. As
shown in (1.1), the ill-posedness of the problem renders directly regenerating the
lost background pixels very difficult, even with the initially underestimated
background as a hint. However, due to the sparsity of image edges [13-16], the edges
of two uncorrelated images are seldom overlapped. It means that the background
and reflection images, which are often uncorrelated, will have their edges at
different positions. It greatly simplifies the regeneration process. Therefore, we
carry out the background component regeneration in the gradient domain instead of
the spatial domain. With the hint of the initially underestimated background edges,
we can identify the remaining background edges by utilizing their spatial and
statistical relationships. Lastly, the background image can be extracted from the

original image guided by the identified background edges.



The background gradient regeneration strategy has the merit that it can give more
robust performance even when the background and reflection images have similar
statistical distributions. In this thesis, we propose three approaches based on this
gradient regeneration strategy. The first and second ones are multiple image-based
while the third one is single-image based. The difference between the first and
second approaches is that the first one utilizes the traditional optimization methods
while the second one utilizes the deep neural networks (DNN) for all estimation
processes. In all these proposed methods, the background gradient regeneration
strategy contributes significantly to the effective and robust removal of the

reflection components in the image.

1.2. Contributions of this thesis

1.2.1. A Novel Method Using Light Field Images for Robust Reflection

Removal

Traditional multiple-image reflection removal methods can only work well under
stringent scenarios, such as restrictive environments [9], weak reflection intensities
[10] or with guided initializations [11]. Another problem of the traditional multiple-
image methods is that they need to take pictures in different views sequentially.

These methods cannot deal with dynamic scenes where the objects are moving. To



solve this problem, it was suggested in [12] using a light field (LF) camera [17, 18]
to capture the multiple images simultaneously. However, the method has some
stringent requirements on the imaging environment such as the background and
reflection must have absolutely different disparity ranges and the camera orientation
must be perpendicular to the reflecting surface. They introduce much difficulty in
actually using the algorithm. In the first part of this thesis, we propose a novel
reflection removal method based on the background gradient regeneration strategy
using light field images. This method has no requirement on the disparity ranges of
the background and reflection images or the camera orientation. To summarize, the
main contributions of this method, which will be further described in Chapter 3, are

as follows:

1. We explore the theoretical support of using LF epipolar plane images (EPI) to
estimate the disparities of different layers of an LF image with reflection. We
verify that if an LF image is formed by the superimposition of two LF image
layers of different disparities, the EPI strong gradient points of both images will
be at different positions of the combined EPI and the gradient values will be
preserved. We can use them to identify the positions of the background and

reflection strong gradients as well as their depths with no ambiguity.

2. We propose a general sandwich model to describe the depth ranges of the
background and reflection images. The model allows a shared depth range for

both images which is more realistic in practical situations. Following this model,



the proposed method does not require the background and reflection images to
have absolutely different depth ranges as in the existing approaches. An
aggressive approach is implemented to separate the background and reflection
gradients based on their depths. As a result, we obtain some background
gradients with high confidence, although the ones with less confidence will be

ignored and removed.

3. To detect and regenerate the background gradients which are removed due to the
aggressive process as mentioned above, a new algorithm is developed based on
an observation that these gradients can be found in the initial background

estimate and its residue.

1.2.2. Deep Learning Based Robust Reflection Removal Using Multiple

Images

Although the above-proposed method can show robust performance compared to
the previous approaches, the use of the traditional optimization processes on large
matrices is rather time-consuming. Also, the light field images can require a large
memory space [19]. Considering the recent successes of deep neural network in
solving inverse problems [20-24] and its fast speed owing to the parallel
feedforward structure, some recent methods [7, 25] try to remove reflection using
deep learning approaches. However, those methods can only deal with the reflection

that is blurry, which is not the case in many practical situations. For better solving



the problem, we propose a novel multiple-image reflection removal method using
DNN. It also uses the background gradient regeneration strategy and has a similar
framework as the method described in Section 1.2.1. However, this method has a
much faster speed and uses fewer input images. In addition, since DNN can
reconstruct images without handcrafted priors, it shows better performance
compared to conventional optimization methods. To summarize, the main
contributions of this method, which will be further described in Chapter 4, are as

follows:

1. We propose a novel deep learning-based framework to solve the ill-posed
reflection removal problem. Unlike the traditional DNN-based methods, this
approach has no requirement on the properties of the reflection image such as

blurry [7, 8, 25], weak intensity [10] or double-reflected [26].

2. Rather than using the LF EPI for estimating the depths of strong gradients, a
CNN is trained to achieve the task. As different from the traditional deep
learning depth estimation methods, the proposed CNN directly generates the
depths of the image edges based on their disparities using an unsupervised
training approach. It is not affected by the depth ambiguity due to the
superimposition of the background and reflection images with different depths.
In addition, it does not require the ground truth depth maps which can be difficult

to obtain in practice.



3. We use a Wasserstein Generative Adversarial Network (WGAN) to regenerate
the lost background edges due to the initial aggressive reflection removal process.
Benefited from the jointly trained adversarial term, WGAN can regenerate the

background edges which closely follow the distribution of the ground truth.

4. Instead of using the traditional optimization method, which is time-consuming,
a CNN is trained to extract the background image from the original one guided
by its edges. By having the three major functional blocks, edge depth estimation,
background edge regeneration, and background image extraction, implemented
using the deep learning approaches, the proposed algorithm can achieve more
than 1,000 times improvement in terms of computation speed over the traditional

optimization approaches when implementing with GPUs.

1.2.3. Deep Learning Based Single-Image Reflection Removal Using A

Two-Stage Background Recovery Process

In practice, we often need to deal with the reflection removal problem given only
a single image of the scene. Therefore, in the last part of this thesis, we propose a
deep learning-based reflection removal method using a single input image. The
proposed method is also based on the background gradient regeneration strategy.
With only one image, the problem becomes far more unconstrained. Similar to other
single-image reflection removal methods [7, 25], we also only consider the

situations that the reflection is defocused and blurry. The proposed method has two



stages. At the first stage, it aggressively removes the reflection components for
improving the reflection suppression ability. At the second stage, we regenerate
those background gradients suppressed at the first stage. The experimental results
show that this method can better remove the sharp reflection components compared
to other single-image DNN-based methods. To summarize, the main contributions

of this method, which will be further described in Chapter 5, are as follows:

1. We propose a novel two-stage single-image based reflection removal method
using deep learning approaches. We investigate the perceptual feature difference
between normal images and those with reflection. Then we propose to include a
feature reduction term in the training of the network to aggressively remove the

reflection components at the first stage.

2. We use the initially underestimated background to infer a reflection edge
confidence map and use it to regenerate the background gradients suppressed at

the first stage.

3. We propose a network trained with an adversarial term to extract the background

image from the original one (with reflection) guided by its edges.
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1.3. Organization of The Thesis

This thesis consists of six chapters. After the introduction in Chapter 1, Chapter
2 gives a literature review related to this thesis. Chapter 3 to 5 present three novel
reflection removal algorithms based on the background gradient regeneration
strategy as mentioned above. More specifically, Chapter 3 and Chapter 4 present
the proposed multiple-image reflection removal algorithms based on the traditional
optimization and deep learning approaches, respectively. Chapter 5 presents the
proposed single-image reflection removal algorithm using a two-stage process.
Chapter 6 draws the conclusion of this thesis and some possible future works along

with this thesis are also presented.
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Chapter 2.

Literature Review

In this chapter, we review and discuss several existing reflection removal
methods ranging from using the traditional polarizing filters [27-29] to state-of-the-
art image processing approaches [8-12, 30, 31]. We also discuss the popular deep
neural networks and their applications to reflection removal [7, 25]. The inputs of
these methods are from a single image [7, 8, 25, 31] to multiple-view images [9-11]
(including light field images [12]), or even polarized images [27-29] and flashed

images [30].
2.1. Polarizers for Reflection Removal

2.1.1. Reducing Reflection Using Polarizers

Placing a polarizing filter in front of the camera lens is the most traditional way

to reduce reflection. The reflection exists when a light beam hits the boundary of
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Fig. 2.1. An illustration of how the reflection is generated when a light beam hits the
boundary of two media with different refractive indices.

two media with different refractive indices as shown in Fig. 2.1. Some of the light
is often reflected while the other penetrates through the boundary. When the light
incident angle is equal to the Brewster angle [1], the reflected light will be linearly
polarized. If a camera has a polarizer set at an angle perpendicular to the polarized
reflected light, the light can be filtered out before reaching the sensor of the camera.
Although many photographers make use of this approach, the resulting images often
still contain many reflection residues. It is because in a practical situation there can
be many light sources in a reflection scene; they can get to the camera at different
incident angles. Thus, those not in the Brewster angle will not be polarized and

filtered out by the polarizer.

2.1.2. Signal Processing Approaches Using Multiple Polarized Images

While a single polarizer often cannot totally solve the reflection problem, some

approaches use multiple polarizers [27-29] to create constrained environments for
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solving this problem. For instance, [27] presents an approach that can recover the
background layer by classifying background and reflection components based on
polarized images captured at two different angles. The classification of different
layers is obtained by considering the weighted pixel-wise differences of these
polarized images. An inversion process is then performed to reconstruct the final
image. In [28], it is suggested that the contribution of reflection can be smoothly
reduced when we gradually rotate the angle of a polarizer for planar surface
reflection. They use a variable matte to describe this spatially varying contribution
of reflection and use it to separate the background and reflection gradients. But for
further improving the reflection removal performance, they still need to incorporate
an interactive user guide to their optimization framework. On the other hand, an
approach that only uses three polarized images is proposed in [29]. It exploits the
physical property of polarization applied to a double-surfaced transparent medium
and proposes a multiscale scheme to automatically separate background and
reflection. Although [27-29] can remove reflection to some certain extents, they
impose stringent requirements on the position and orientation of the camera when
taking images, which is difficult to achieve in practice. Besides, the requirement of
having a static background for completing the imaging process further limits their

applications in practical scenarios.
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2.2. Reflection Removal Using Flashlights

In [30], an interesting approach which uses a flash and non-flash image pair for
reflection removal is proposed. The approach uses a novel gradient coherence model
to relate the gradient components in the flash and non-flash images. Based on this
gradient coherence model, the reflection components can be removed using a
gradient projection method. However, this method requires the hot spot and
reflection components in both the flash and non-flash images to be located at
different positions. It means that the flashlight must overwhelm all the reflection
components, otherwise, some reflection components will stay at the same locations
in both the flash and non-flash images. The hot spot in the flash image should also
be small for avoiding overlapping with some reflection components. Such stringent

requirements render this method not so practical.

2.3. Single-Image Optimization Based Reflection

Removal Methods

In the past 20 years, much effort has been made in using image processing
methods for reflection removal. These methods try to remove the reflection in an
image by solving a blind image separation problem. It is well-known that the blind
image separation problem is severely ill-posed since we need to solve two

unknowns (background and reflection) based on one observation (the observed
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Fig. 2.2. One example to illustrate the gradient independence property [9]. (a) is obtained
by superimposing (d) on (b). (c) and (f) are the strong gradients of (b) and (d) respectively.

image). For constraining this ill-posed problem, these methods usually incorporate
various priors such as gradient sparsity, distribution and gradient independence in

the optimization process [8, 26, 31].

2.3.1. Gradient Independence Property

It is well-known that strong gradients of natural images are sparse. It gives rise
to the gradient independence property which indicates that the strong gradients of
two natural images seldom overlap each other. Fig. 2.2 shows an example of the
gradient independence property. We can see that, although the image in (a) is
obtained by superimposing (d) on (b), the strong gradients of (b) and (d) are
independent and at different positions, as shown in (c) and (e). Therefore, it provides
us an important prior for solving the ill-posed reflection removal problem in the
gradient domain. We can identify the background through its gradients instead of

the other ambiguous background pixels. Combined with other priors such as the

16



g reatShoprieq e i Brsaama »,,‘
Reflection
Removal

Using Focus

Input background image reflection image

Fig. 2.3. The histograms of the background and reflection image gradients [8].

known distributions of the gradients, many single-image based reflection removal

methods [8, 26, 31] are developed.

2.3.2. Gradient Distribution Assumptions

[31] assumes the gradients of the background and reflection layers are sparse and
follow a mixture of Laplacian distributions. Based on the gradient independence
property, they manually label the gradients belonging to different layers for guiding
the optimization process to converge. This method can reduce some reflection
components. However, the required manually labeling process is time-consuming

and the simple gradient distribution model is difficult to fit all natural images.

Due to the observation that background images are often focused and reflection

images are often defocused, [8] makes use of two different distributions to describe
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their gradients. Fig. 2.3 shows the histograms of the gradients of a pair of
background and reflection images. We can see that the histogram of the focused
background gradients is long-tailed, while the one for the blurry reflection is short-
tailed. It is because the sharp background has more large-valued gradients.
Therefore, [8] defines a long-tailed distribution model below to describe the

distribution of the background gradients,
1 2 2
Py(x) = —max{e /%, ¢}, (2.1)

where x represents the gradient value, z is a normalization factor and o, is a small
constant. A short-tailed distribution defined below is used to model the distribution

of the reflection gradients,

x?

2

e %, (2.2)

Py(2) = 2no?
2

where o is a small constant. Compared to (2.2), (2.1) has a minimum boundary €
so that P; (x) will not drop so fast as P,(x) in (2.2), which leads the long tail in
P; (x). The different gradient distributions provide us an important hint to separate
the background and reflection. Similar to [31], these simple distributions are
difficult to fit the huge variety of natural scenes, but they inspire the recent single-
image deep-learning based approaches [7, 25] to distinguish the background and

reflection components using DNN.
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(a) (b)
Fig. 2.4. The formation of the ghosting effect [26]. (a) Light rays from the reflection object
are partially reflected both by the inner-side and far-side of the glass, which results in two
reflection R, and R,. R, is the shifted and attenuated version of R;. (b) The captured image
with the ghosting effect.

2.3.3. Reflection Ghosting Cues

Many reflection problems are generated when imaging through a glass. In [26],
it is observed that light rays may be partially reflected by both the inner-side and
far-side of thick glass. It proposes a ghost cue that uses a double-impulse
convolutional kernel to model this double-reflection effect. An example of the
ghosting effect is shown in Fig. 2.4. We can see in the figure that a light ray of the
reflection object is reflected twice by both the inner-side and far-side of the glass.
They form two reflections R, and R, respectively, where R, is the shifted and
attenuated version of R,. This ghosting effect can be mathematically obtained by a
double impulse convolution process on R;. Based on the ghosting effect of the

reflection image, [26] proposes an optimization method to separate the background
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and reflection images. However, as indicated in [26], not all glasses are so thick to
produce an obvious ghosting effect. Furthermore, when the photographer is far from

the glass, the ghost effect can be very weak and invisible.

2.4. Multiple-lmage Optimization-Based Reflection

Removal Methods

As it is very difficult to solve the severely ill-posed reflection removal problem
using only one image, researchers proposed to capture more images of the scene at
different angles or different times to provide more information for reflection
removal [9-12, 32]. These methods assume the background and reflection have

distinct properties in these images and utilize these properties for their separation.
2.4.1. Using the 2D Homography

It is often the case that the background and reflection scenes are at different
distances from the camera. If we have multiple views of the scene, we can register
the background in different views using a homography (assume the background is
planar) while the reflection will be misaligned. Based on this idea, [9] uses the
differences in 2D homographies of the background and reflection to achieve their
separation. One example is shown in Fig. 2.5. When combining the vectorized

registered images into a matrix, we can find that the background components appear
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to be smooth (since all views are similar). The misaligned reflection components
appear to have relatively large variations in pixel values across views. Then when
applying a low-rank decomposition to the matrix, the background part which is
smooth will reside in the low-rank part. The misaligned reflection components will
be separated from the background components and reside in the residual part.
However, this method is only suitable for planar backgrounds. For a non-planar
background, some background components will also be misaligned and removed
since they cannot be registered by a single homography. Another problem of this
method is that the reflection features covered on the background image can
negatively influence the estimation of the background homography. The accuracy

of the estimated background homography is always in doubt.

Fig. 2.5. A reflection misalignment example [9]. (a) A planar scene with reflection in two
views. (b) The aligned background after background planar transformation. (c) The
misaligned reflection.
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2.4.2. Using SIFT Flow

The subtle differences of the image components in different views can be also
described by the SIFT flow [33]. In [10], the SIFT flow is used to register the
dominant background components. The authors assume that the background is
dominant while the weak reflection edges may not be found in every view.
Therefore, the SIFT flow can show high registration accuracy for the background
components but low registration accuracy for the reflection components. The
pipeline of a reflection removal example [10] is shown in Fig. 2.6. We can see in
the figure that the SIFT flow can well register the strong background edges. On the
contrary, the SIFT flow fails to register the weak reflection edges. Based on this

observation, the background and reflection edges can be distinguished according to

ﬁnput images Warped images/gradients Separated edges Recovery \ Final result
r ~ N - N

R|

Fig. 2.6. The flow chart of the method in [10].
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their alignment extents. After obtaining the background edges in different views,
this method reconstructs the background images in different views by several
regularization processes. However, this method requires reflection edges to be weak
and not appear in every view. If the reflection is also strong, this method tends to

leave reflection residuals in the background result.

2.4.3. Using Optical Flow

When taking an image sequence by a camera with a slight motion, the
background and reflection components often appear different attributes in the image
sequence which can be made use of to facilitate their separation. To register the
changes in the background and reflection components across images, optical flows
are adopted in [11]. However, as mentioned in [10], the measured optical flow of
the background can have very poor accuracy due to the interference of the reflection.

Therefore, this method requires a very good initialization to guide the optimization

Input image sequence e Flow Sparse motion fields
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Fig. 2.7. The flow chart of the method in [11]. The method mainly consists of two steps:
the initialization and iterative reconstruction.
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process to correctly converge. Fig. 2.7 shows the pipeline of this method. In [11],
the optical flows are initialized with the two most dominant homographies estimated
from the image edges of different views (due to the motion of the camera). However,
as mentioned before, a homography can only well register a planar scene. It will
lead to huge mistakes when applying to a non-planar scene. Moreover, because there
are many variables need to be simultaneously regularized during the optimization
process, a wrongly initialized variable can let the estimations of other variables to

converge to wrong local minima.

2.4.4. Separating Background Components Using Light Field Images

Recently, light field (LF) images are also used for reflection removal [12]. Using
a light field camera, we can capture multiple images of the scene in a single shot.
Therefore, this method is also suitable for dynamic scenes. The method in [12]
assumes the background and reflection layers have distinct depth ranges. Therefore,
a fixed threshold is used to separate the background and reflection components
based on their depths. As the method is designed based on the Lytro Illum LF
camera, one of the image layers must be within 1.5 meters to the camera and the
other is not. Another strict requirement of this method is that the reflecting surface
must be perpendicular to the camera. As the depth ranges of the background and
reflection are different for various natural scenes, one pre-determined and fixed

depth threshold is not possible to correctly separate the background and reflection
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in all situations. The requirement on the camera orientation is also not practical since

it introduces great limitation to the photography style.

2.5. Deep Convolutional Neural Networks and Its

Application for Reflection Removal

2.5.1. Deep Convolutional Neural Networks

The concept of the convolutional neural network was firstly proposed to
recognize the handwritten ZIP codes [34] and later for classifying other various
objects such as hand-written digits in MNIST [35]. However, at that stage, the
performance of CNN still fell behind other classification methods such as Support
Vector Machine (SVM) [36]. The main reasons are that the size of the training
dataset was not large enough, and the computational power was also not sufficient
to train a deep CNN. The situation however changed dramatically in the first decade
of the 21st century. The availability of very large training datasets and advanced
GPUs with powerful parallel computational ability made possible the training of
deep CNNs. Finally, the capability of CNN was widely recognized at the ILSVRC
2012 competition where the AlexNet [3] was proposed. The network was trained on
the huge dataset ImageNet with 1.2 million images and won the competition. Other
layer architectures such as ReLLU [37] and training strategy Dropout [38] were also

used for further improving the network performance. After this milestone, deep
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CNN was adopted in many other areas, such as object detection [39-45], object

segmentation [46-50], motion estimation [51-53], etc.

Recently, CNN is also used in solving inverse problems such as super-resolution
[54, 55] and denoising [20, 21]. It is because CNN has a strong ability to learn the
mapping from the input images to the ground truth images. Furthermore, advanced
CNN structures which are originally used for other applications, such as the skip
connections for object classification [4] and image segmentation [48], can also be

modified and used for solving inverse problems [20, 21].

2.5.2. Generative Adversarial Networks

Generative adversarial networks (GANS) recently attract much attention and are
intensively studied by researchers, although the first GAN (DCGAN [56]) for
producing novel image samples was only proposed in 2016. DCGAN can generate
novel images following specific distributions. It contains a generator G and a
discriminator D. The generator tries to produce fake samples by minimizing a cross-

entropy loss function (2.3) as follows:
Eyp.[logD(x)] + [Ex~Pg [log(l = D(x))] (2.3)

where x is the input, P. represents the distribution of real samples and F; represents

the distribution of fake samples produced by the generator. The discriminator is

jointly trained to distinguish the fake samples from the real samples by maximizing
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the loss function (2.3). When the loss function is minimized, the generator can
produce fake samples following the distribution of the real samples which cannot

be distinguished by the discriminator.

However, the training of DCGAN with the loss function (2.3) is unstable and
sometimes even does not converge. It is because when the probability density
functions P and F,; overlap very slightly or even do not overlap, the gradients of the
loss function (2.3) will be close to zero. Such a situation often happens at the
beginning of the training when the distribution of the fake samples deviates a lot
from the real samples [57]. Therefore, [57] proposes using the Wasserstein distance
conditioned by the infimum of the joint distribution of P. and F; in their loss

function as follows:
Exep, [D(X)] = Exep, [D(G(2))] (2.4)

It also requires the clip of the gradients of the discriminator for fulfilling the
requirement of Lipschitz continuity [57] or adding a gradient regularization term
[58]. The advantage of using the Wasserstein distance is that even when B, and F;
have no overlap region, the loss function shows smooth changes which can still
provide valid gradients. Therefore, the network can be easier to be trained. Also for
conquering the gradient vanishing problem of DCGAN, [59] proposes the Boundary
Equilibrium GAN (BEGAN) which also uses the Wasserstein distance but is

conditioned by the infimum of the joint distribution of the discriminator responses
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of real and fake samples. It further includes an equilibrium to control the trade-off
between the reality and variation of the generated data. In [60], the Least Square
GAN (LSGAN) is proposed. It uses the least square function instead of the cross-
entropy loss function for avoiding the gradient saturation problem. Such
modifications in WGAN, BEGAN and LSGAN largely improve the training speed
and stability over the original DCGAN, which further promote the use of GAN in
different applications. For instance, GAN is also applied for solving the inverse
problems due to its ability to promote the perceptual quality of the inferred results
[23, 61-63]. It is because the adversarial term of GAN can act as a trainable prior
that enforces the results to follow the distribution of ground truth samples. The

results can usually show sharper edges and higher perceptual quality.

2.5.3. Reflection Removal Based on Deep Neural Networks

Recently, deep neural networks are also used for solving the reflection removal
problem [7, 25, 64]. These methods claim to be able to remove reflection using a
single image. The basic idea of these methods is inspired by [8], which assumes the
background is focused and the reflection is defocused. Therefore, the reflection

becomes blurry and has a different distribution from the background image. The
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Fig. 2.8. The pipeline of the method [7]. This method first estimates the sharp background
edges, then reconstructs the background images from its edges.

sharp background can be identified by a CNN. The pipeline of the method in [7] is
shown in Fig. 2.8. The method firstly uses a CNN to identify the sharp background
edges and subsequently uses another CNN to reconstruct the background. Similar
to [7], [25] tries to distinguish the sharp background components via minimizing the
VGG perceptual feature [65] distance between the reconstructed background and
sharp natural images. Because the perceptual features of sharp and blurry images
are different, this process can drop the blurry components and only keep the sharp
components in the image. It also includes an adversarial term inspired by GAN to
further improve the fidelity of the results. Another attempt of reflection removal
using DNN is reported in [64]. The approach first removes the blurry reflection
components using a CNN, then it sends the estimated background image to another
network for obtaining a better reflection image. Lastly, this better reflection image
is fed to the third network to produce the final background image. However, all
these methods are only suitable for the situations that the reflection is defocused.

When taking pictures with a small aperture, we can find both the background and
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reflection are focused and show sharp edges. Thus, this blurry reflection constraint
is not general for all the photography settings. Moreover, even the reflection is out-
of-focus, some reflection edges can still have high gradient values. Those high
gradient edges can be mistakenly recognized as the background components and

produce reflection residuals in the final results.

2.5.4. Training Dataset Synthesization

To train and test the DNN-based algorithms, it is required to have a large set of
images with reflections and their background ground truths. Although it is possible
to obtain such images and labels using some optical approaches (such as imaging
with and without a glass) [25, 66] , it is difficult to obtain many image pairs since
the imaging process is very labor-intensive and the scenes have to be static.
Therefore, current methods use synthesized images to train their networks [7, 25,
64]. Their synthetization approaches are very similar. In general, they firstly
randomly pick two images from a clean image dataset as background and reflection
images, and add them together to synthesize an image with reflection. Before the
addition, the reflection image is blurred by a Gaussian kernel for simulating the
defocused effect and then its intensity will be attenuated by reducing its mean value.
Finally, the pixel values which are above the image range after the addition will be
clipped. Using such a synthetization process, researchers can produce sufficient data

to train their deep neural networks.
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2.6. Summary

In this chapter, we reviewed and discussed the principles as well as the
shortcomings of the traditional approaches using the polarizing filter and state-of-
the-art image processing methods for reflection removal. We also reviewed some
basic features of CNN and GAN, which are used in our proposed DNN-based

reflection removal methods in Chapter 4 and 5.

The main shortcomings of the methods using polarizing filters are they have
some stringent requirements on the camera position, orientation and the background
environment, which are difficult to achieve in practice. For those single-image
optimization-based image processing methods, they remove the reflection using
handcrafted priors, such as gradient sparsity, gradient independence, and gradient
distributions. Although they may work in some specific situations such as when the
reflection is defocused or the glass is thick, their results can be erroneous in other
situations. It is because the handcrafted features cannot well fit the huge variety of
natural images and photography situations. For the multiple-image optimization-
based methods, they exploit the differences between the background and reflection
in homographies and motion which can be obtained when multiple images of the
scene are available. However, the models adopted usually can only work in some

specific scenarios. They can be erroneous due to the ambiguity introduced by the
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superimposition of the background and reflection. They are also not suitable for
dynamic scenes since the multiple images are often captured sequentially. For
solving this problem, LF based method was recently proposed since multiple views
of the scene can be captured in one shot. However, the existing LF approach requires
the background and reflection to be in specific depth ranges which limits its
application. As to the DNN based reflection removal methods, the current
approaches can only work for the images with a focused background and a
defocused reflection. In fact, even the reflection is defocused, some reflection edges
can still have high gradient values. They will be mistakenly recognized as the

background components and kept in the final results.

For better solving the reflection removal problem, we propose three novel

algorithms which will be described in detail in the following chapters.
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Chapter 3.
Robust Reflection Removal Based on

Light Field Imaging

(This chapter is extracted from my paper [67]: Tingtian Li, Daniel P.K. Lun, Yuk-
Hee Chan, and Budianto, “Robust reflection removal based on light field imaging”,

IEEE Transactions on Image processing, vol. 28, pp. 1798-1812, 2019.)

In this chapter, we propose a novel reflection removal method based on the
background gradient regeneration strategy using light field (LF) images. For the
proposed algorithm, we first identify the depth of the strong gradient points of the
background and reflection using the epipolar plane image (EPI) extracted from the
input LF image. Following the background gradient regeneration strategy, only
those strong gradient points with distinct depth values will be kept and those of
which the depth values are difficult to classify will be removed. They are then
regenerated using an iterative estimation process based on their relationship with
those strong gradient points that have been classified. The initial estimated

background image is then refined using the estimated background gradients.
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Experimental results show that the proposed reflection removal algorithm achieves
superior performance over the traditional approaches both qualitatively and
quantitatively. They verify the robustness of the proposed algorithm when working

with images captured from real-life scenes.

3.1. Introduction

It is important to remove the unwanted reflection of an image since it does not
only affect the visibility of the background but also introduces ambiguity that
perturbs the subsequent analysis on the image. As mentioned before, many
optimization-based approaches have been developed and various priors are adopted
for solving this unconstrained problem. Most priors that the previous methods
adopted are gradient based, such as gradient sparsity and gradient independence [9-
11, 31]. The former one is a well-known property of natural images and the latter
one is based on the observation that the strong gradients of the background image
Iz and reflection image I are normally non-overlapped. However, the effect of just
adding these priors in the optimization is limited due to the huge variety of natural
images. Researchers tend to utilize multiple images of the scene to acquire more
information for removing the reflections. The multiple-image based methods, in
general, have better performance than the single-image ones. However, these

multiple-image methods all have strong assumptions on the property of the
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reflection image and/or the imaging environment as discussed in Chapter 2. Besides,
all of them require multiple shots of the target scene hence are not suitable for

dynamic applications where either the background or reflection objects are moving.

Different from traditional cameras, LF cameras can capture multiple views of a
scene in one exposure. Hence, they can be used in dynamic applications. Thanks to
the commercialization efforts of Lytro and Raytrix, nowadays people can easily
acquire an LF camera with a reasonable cost. Four-dimensional (4D) LF imaging
[17] has demonstrated its power in solving various problems like refocusing [18, 68,
69], depth estimation [70-73] and super-resolution imaging [73, 74] in the computer
vision area. Quite recently, LF cameras are also used to solve the reflection removal
problem [12]. By assuming the background and reflection are at two absolutely
different distances from the camera, the method in [12] applies a fixed threshold to
separate the background and reflection pixels with respect to their depths. Such
assumption, however, is not valid in many practical situations, since the background
and reflection can share the same depth range. In this chapter, we first explore the
LF EPI [73, 75] and show that its strong gradient points will be preserved after
adding to the EPI of another LF image. Such property lets us easily identify the
strong gradient points of the background and reflection images, and we can further
use them to give a rough estimation of each image layer by a sparse regularization
process. To solve the problem that the background and reflection edges can share

the same depth range, we propose a sandwich layer model that allows the
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background and reflection images to have components sharing the same depth range.
Since the strong gradient points in this depth range are difficult to be classified as
belonging to the background or reflection, they are removed such that the initial
estimates of the background and reflection will have some components missing. We
then propose a method which gradually refines the initial background estimate by
detecting and recovering the gradients in the shared depth range. It is achieved based
on an observation that the initial background estimate and its residue can provide
information on the positions of the missing gradients. It gives us the clue to recover

these gradients for refining the initial background estimate.

3.2. Using EPI Gradient in Separating Background and

Reflection

In this section, we first make a brief review of LF EPI and explain how its
gradients can be used in the estimation of the disparity map for the problem of

reflection removal.
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3.2.1. Layer Classification Based on The EPI Strong Gradient Points

Although there are several approaches to represent the light field, the 4D one
which uses two planes to represent the viewpoints and image plane, as shown in Fig.
3.1, is the most popular [17]. In the figure, the planes IT and Q are the viewpoint
plane and image plane respectively. Here we use the coordinate systems (s, t) for
IT and (x, y) for Q. Therefore, we can describe each light ray by a 4D coordinate
system (s, t,x,y). If we fix t and y as t* and y*, and let s and x vary, we will get
the so-called EPI slice ... The slope reciprocal Ax/As at Zy-.+(x,s) can
represent the disparity at point (x, y*) for the view (s, t*) [73, 76]. Hence the EPI
slope is often used to evaluate the disparity, and in turn, the depth of the scene. The

slope directions can be obtained using the structure tensor [73, 77, 78], which

QX D

Fig. 3.1. The 4D LF model. A light ray can be described using the 4D coordinates (s, t, x,y).
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determines the gradient direction by finding the eigenvectors where the direction
the magnitude changes most rapidly or most slowly. The structure tensor for EPI

.+ ¢+ can be described as

N o R

Js g o (x,s) = Gy * (0(X)(s)) G, * (3(s)a(s))

XS ]SS

where d(x) and d(s) represent the gradient components in x and s directions

respectively at point (x, s) in EPI X+ ,+. G, is a Gaussian kernel with variance o

and the operation symbol ‘*’ denotes convolution. The disparity values for all x can

be generated by [77],

sz*’t* (x) = 2% _ tan 6, (3.2

X
As
where

0 = %arctan (M) (3.3)

XS

A reliability measure can also be generated as follows:

(X) — (]ss‘]xx)2+4(]sx)2. (34)

r * *
Zy it Uss+Jxx)?

A disparity map szt*(x) and reliability map T2, (x) based on the EPIs in the

horizontal direction can then be obtained by repeating the above for all y. We can
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also obtain a disparity map Ps__, () and reliability map rz__, () based on the EPIs

in the vertical direction using a similar approach. Then the final disparity map is

generated by selecting the disparity value with higher reliability. That is,

, P, . x) if T2, ) >ry () -
() = Ps_.() otherwise ' (3.5)

In practice, if the reliability value is too small, P(x, y) can be inaccurate and will

|
sl N

(9)

Fig. 3.2. An illustration of the relationship of the strong gradient points in the original and
combined EPIs. (a) An EPI of an LF image. Two strong gradient points P and Q are noted. (b)
An EPI of another LF image. Two strong gradient points R and S are noted. (c) The combined
EPI. The numbers represent the pixel magnitudes after combination. It can be seen that all
strong gradient points in (a) and (b) locate at different positions with the same values as before.

(d), (e) and (g) are real cases for (a), (b) and (g) respectively.

(©)
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simply be set as invalid. One of the situations that it will happen is when the pixel
(x,v) has no or very weak gradient. Hence, P(x, y) can also be considered as the

disparity map at the strong gradient points.

For the problem of reflection removal, a reflection image is superimposed on the
background image. When the scene is captured by an LF camera, the resulting EPIs
will also be a superimposition of the EPIs of both images. Since these images can
have different depths, we can find the resulting EPI also has slopes of different
angles, and they cross each other randomly in the EPI. Particularly in the regions
where they cross each other, it is difficult to determine the slope of the EPI pixels
and further classify them into the background or reflection layer. To deal with the
problem, we consider again the gradient of the EPIs, of which the disparity map is
derived in (3.1) to (3.5). In particular, we investigate the behavior of the strong and

weak gradient points of the background and reflection as follows:

Case 1: Strong gradient points of both layers

This case is illustrated in Fig. 3.2(a) to (c). In the figure, both EPIs have two
strong gradient points. When the EPIs are added up, the strong gradient points do
not overlap each other and preserve the same values as shown in Fig. 3.2(c). Such a
phenomenon is not coincident. It is known that the strong gradient points of an EPI
correspond to the strong gradient points of the image. Due to the gradient

independence assumption [9, 31], it is rare to have strong gradient points of two
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uncorrelated images overlapped each other. Consequently, we can also assume that
the EPI strong gradient points of two uncorrelated images will be at different
positions in the combined EPI. Besides, as shown in Fig. 3.2(c), the gradient value
will remain the same wherever a strong gradient point locates in the combined EPI.
A real such case is also illustrated in Fig. 3.2(e) to (g). We can find the edge
directions are barely changed when two EPI are overlapped. Consequently, we can
easily estimate the disparities at these strong EPI gradient points. An example is
shown in Fig. 3.3. In the example, two LF images are added together with the

weightings of 0.6 and 0.4 respectively. The central view of the resulting LF image

(b)

(d)

Fig. 3.3. An example of a disparity map generated from the strong gradient points in the
combined EPI. (a) An LF image with all views overlapped. (b) Another LF image with all
views overlapped. The extent of blurring represents the amount of disparity. We can see
the disparity of (b) is larger than (a). (c) The central view of an LF image generated by
combining (a) and (b) with the weightings of 0.6 and 0.4 respectively. (d) The estimated
disparity map based on the strong gradient points of the EPI of (c). The red and blue color
means large and small disparities respectively. Since in most cases they are not overlapped,
they can be easily identified.
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is shown in Fig. 3.3(c). The EPIs of the resulting LF image is then generated. Based
on the EPIs, we first estimate the disparity map of the image in Fig. 3.3(c) using the
structure tensor method in (3.1) to (3.5) and keep only those at the strong gradient
points. It can be seen in Fig. 3.3(d) that the disparities of the two layers at the strong

gradient points can be easily identified as they are at different positions.

Case 2: Weak gradient points of both layers

For the weak EPI gradient points of both layers, they may or may not overlap
with the EPI gradient points of the other layer. For those that do not overlap with
another EPI gradient point, the disparity at those points can still be estimated as
usual. In case they overlap with another EPI gradient point, their correct gradient
value can no longer be recovered. The estimated disparity value will appear as

noises in the disparity map and will be regulated in the later optimization process.

To summarize, as the first step of our proposed algorithm, we make use of the
structure tensor method in (3.1) to (3.5) to generate a disparity map in the EPI
domain. Since the gradient points in the EPI domain have a close relationship with
the gradient points in the spatial domain, the resulting disparity map will contain

accurate disparity values at the strong gradient points of both the background and
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Fig. 3.4. The new sandwich model. In this model. Component group 1 only belongs to layer
1 and component group Il only belongs to layer 2 (layer 1 is assumed to be relatively
closer to the camera). Both layers share component group 1.

reflection images and at the weak gradient points in case they do not overlap with
other gradient points. We also expect that there will be noises caused by the

overlapped weak gradient points of both images.

3.2.2. The Sandwich Model and Initial Image Reconstruction

If the background and reflection have absolutely different depth ranges, the
disparity map generated in Section 3.2.1 should be sufficient to classify most of the
strong gradient points; and we can use these gradients to reconstruct the background
and reflection images. Unfortunately, it is not uncommon in many practical
situations that some components of the background and reflection share a common

depth range. It means that their disparities can be very similar. For this reason, we
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propose a new sandwich model, as shown in Fig. 3.4, to take care of such situation.
As shown in the figure, the model has one shared depth range for both layers.
Assume that we can find two thresholds, K; and K,, which are at the boundaries of
component groups | and 11, as well as groups 11 and 111, respectively. Then, all strong
gradient points with disparities smaller than K; will belong to layer 1, and those
greater than K, will belong to layer 2. For those that are greater than K; but smaller
than K, it is difficult to classify them by only their disparities due to the reasons
mentioned above. We will discuss in the next section how these components can be

classified by exploring their relationships with the components in groups | and I1I.

To find the thresholds K; and K, we apply the K-means clustering method [79]
(where K=2 in this case) on the estimated disparity values at all edges. We denote
the centers of the two clusters as C; and C, (C; < C,). Then, we set the two

thresholds as

K, =C +o-(C,—Cy);
(3.6)
K, =C2_U'(CZ_C1),

where ¢ is a parameter to control the purity of the classification result. In our
experiment, we set o = 0.2, which is a conservative choice to ensure that the

classification has a high true positive rate. Then, we only need to take care of those
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@
Fig. 3.5(i). An example of EJ and E2. We can see that EJ and EQ can roughly separate the

(@) (e)
Fig. 3.5(ii). The initial separation results. All the results are normalized by (3.10) for the
ease of visualization. (a) The original image I. (b) The initial estimate of the background
of the background layer I3 . (c) The residue of the initial background estimate Ig =1-1.
(d) The initial estimate of the reflection layer I3. (e) The residue of initial reflection
estimate IE? =1 —1I3. We can see that the components of I almost only belong to the

background layer and its residue Ig does not only contain the reflection components but

also the missing background components. And similarly, 12 loses some reflection
components which can be found in its residue Ig.

misclassified gradients. Based on K; and K,, two initial gradient masks are

obtained as follows:

Ep ={P(x,y) > K, ,Vx,Vy };
(3.7)
EI(?) = {P(x!y) < Kl ;Vx;vy},

where P(x,y) is defined in (3.5). EJ, EQ € {0,1} are the two initial gradient masks
for the background and reflection layers, respectively. Without loss of generality,
we assume that the background layer is the closer layer (otherwise, only a change
of symbols is required). Fig. 3.5(i) shows an example of the initial gradient masks.

It can be seen in Fig. 3.5(i)(b) that the locations of some of the background gradients
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are correctly indicated in E2. However, we can also find that some background
gradients are missed out in EJ. Based on the masks, we can reconstruct the

background and reflection images in the gradient domain as follows:

1§ = argmin] = D« I3ll; + D« |, +A|ER - D« Ig| + Al|Eg - D+ 13| ;
’ (3.8)
st.lg=1-13; Eg=1—Ejp,

I3 = argrrll(i)n] =|ID * I3y + || D = 1g||1 +AIIEY - D * IRll, + A||Eg - D 1,2||1;
R
(3.9)
st.Ig=1-13; Ex=1—Ep,

where 1 refers to an all ‘1’ matrix, and A is a constant. In (3.8) and (3.9), the initial
estimates of the background and reflection image, i.e., I3 and I, are obtained by
minimizing the sum of a few sparsity priors in the gradient domain. This approach
is based on the gradient sparsity assumption that the total gradient of the background
(or reflection) should be sparser than that of the original image, which contains the
sum of the background and reflection. Thus, when the estimate I3 (or Ip)
approaches the true background (or reflection), its total gradient should approach
the minimum. The same is applied to their residues Iz = I — I and Iz = I — I3. In
addition, based on the gradient independence assumption [9, 31], the total gradient
of the background after multiplying with the gradient mask of the reflection should

be small since their strong gradient points will not overlap. Thus, when the estimate
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12 (or IQ) approaches the true background (or reflection), its total gradient after
multiplying with the mask of its residue, which approaches the true reflection (or
background), should approach the minimum. In (3.8) and (3.9), D = D;—; 5
represents a set of derivative filter kernels such that D, = DI = [1, —1] are the first-
order derivative filters in the horizontal and vertical directions, respectively; D; =
DI =[1,-2,1] and Ds = D, = D, are the second-order derivative filters in the
horizontal, vertical and diagonal directions, respectively. The use of the second-
order filters is for rectifying the discontinuities in the gradient domain due to the
rare situations in which the strong gradient points overlap each other. Here, (3.8)
and (3.9) can be solved by the iteratively reweighted least squares (IRSL) method.
Fig. 3.5(ii) shows an example of the initial separation results. For the ease of
visualization, the biases of the resulting images are adjusted to the original biases as

follows:

Idisplay = lresuit — mean(]result) + mean(I) (3.10)

As shown in Fig. 3.5(ii), almost all components of the initial background estimate
belong to the background layer. However, many components are missing and can
be found in its residue. The same is applied to the initial reflection estimate. To
enhance the separation results, we develop a new method to detect and recover the

missing components from the residues, which will be described in the next section.
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3.3. Detect and Regenerate the Missing Background

Gradients

As mentioned above, there can be components of both the background and
reflection layers sharing the same disparity range (i.e. component group Il in Fig.
3.4). These components are supposed to be removed from I3 and I3 since they
cannot be accurately classified as belonging to the background or reflection. It can
be seen in the initial estimation result (Fig. 3.5(ii)(b) and (d)) that large parts of I3
and IQ are darkened. They are the parts which have been removed. To retrieve back
these missing components, we have another observation about the gradients in the
initial estimation. By comparing between I and its residue Ig (such as Fig. 3.5(ii)(b)
and (c)), we observe that although the background components in the shared depth
range are supposed to be removed due to the conservative thresholds used in (3.7),
the strong gradient points of the missing background components can still be
visualized in I (circled in Fig. 3.5(ii)(b)). It is due to the first two terms in (3.8)
which promote the sparsity in the image. However, their magnitudes are rather small
such that directly detecting them based on their magnitude can be erroneous. Note

that both 19 and Ig contain the strong gradients of the background’s missing
components, although the ones in Ig are much clear. On the other hand, the strong

gradients of the reflection image are less visualized in I3. It is because the magnitude

of the reflection is often much lower than the background as most semi-reflective
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materials such as glass can only partially reflect the light projected onto it. So, for a
particular spatial position (x, y), if the gradients I3(x,y) and Ig(x, y) are the same,
they likely belong to the background. Based on the same argument, if the gradients
I2(x,y) and Ig(x, y) are the same, they likely belong to the reflection. We will

make use of this property to detect and recover the missing components in 1.

As mentioned above, directly detecting the gradients of the missing components
in 12 based on their weak magnitudes can be erroneous. Therefore, we suggest
considering also the gradient directions. While there are several ways to detect the
directions of gradients, we suggest considering the Histogram of Oriented Gradients
(HOG) method [80]. HOG is a feature descriptor for object detection. It contains the
weighted (according to the magnitude) distribution (histograms) of directions of
gradients (oriented gradients) of an image cell normalized with the nearby cells
within a block. It is suitable in this problem because HOG is invariant to the local
illumination of the image and can measure the direction of gradients of small
magnitude. The procedure is as follows. First, to avoid the disturbance from the very
weak gradients whose orientations are very unstable, we only consider the strong
gradients at some spatial position set @ = {(x,y)||05(x,y)| > €} , where
|05 (x, )| is the magnitude of the gradient of I;(x, y) at iteration t; and € is a very
small constant. Then, we compute the HOG feature vectors HS, H; and HS at each
spatial positon in the set p‘of 1%, Iz = I — I and I3, respectively. For keeping the

spatial resolution, we use a relatively small cell size of 3x3, and the block size is
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2x2 as usual. Here, we use the UoCTTI variant [81, 82] of HOG of which the feature
vector length for every pixel is 31. So, the size of every feature vectoris h x w x 31,
where h and w are the height and width of the image. Then we measure the

Euclidean distances of Hj and Hg as well as HJ and H as follows:
Up(x,y) = ”HE(X:Y) - Hé(x; Y)HZ ; (3.11)
Ur(x,y) = |[HR(x,y) — Hy(x, »)|.,

for all (x,y) € . UL measures the similarity between the HOG in I and its
residue I5. If U5 (x, y) is small, the gradient at (x, y) of 1§ and IS should belong to
the background as discussed above. U} (x,y) measures the similarity between the
gradients in I and I%. Due to the conservative thresholds used in (3.6), I3 contains
mainly the components of the reflection layer. And I also has the components of
the reflection layer. So, if U5 (x,y) is small, it indicates that the gradient at (x, y) of
I% should belong to the reflection. Then, U§ at the same point (x, y) should be large,
since I} should not have reflection components. Thus, U} can be used to validate

U} in the classification process.

To perform the classification, we borrow the ideas of the Markov Random Field
(MRF) [83] and the K-nearest neighbors (KNN) matting [84] to formulate the

following optimization function:
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L* = argmin F(L) = Z Uy(L,) +2 Z Vou(Lp, Ly) |, (3.12)

pept qeSKNN(p)
Up(Ly) = UE()(1 - L,) + UE(P)Ly, (3.13)
Voa(Lp)Lq) = (1 — N (llas @) - aE(q)lll)) L, # Ly, (3.14)

where A is a constant and the function N{x} normalizes x to between 0 to 1. The
proposed energy function F in (3.12) is defined so that its minimum corresponds to
a good classification of the gradients in I%. L represents the label set. L,, denotes the
label of the gradient at position p in set ¢t. It is set to 1 for the background gradient
and 0 for the reflection gradient. The data term U, (L,) penalizes the cost function
if a wrong classification of L,, is made. More specifically, if the gradient of ILatp
belongs to the background but is incorrectly classified as a reflection (i.e. L, is set
to 0), U, (Lp) will have a large value since UL (p) is large in this case. On the other
hand, if the gradient of I% at p belongs to the reflection but is incorrectly classified
as background (i.e. L, is set to 1), U, (Lp) will also have a large value since U} (p)

is large in this case.

Similar to MRF, the data term U, is supplemented with a smoothness term 1/, ,

in (3.12), which measures the smoothness of the gradients in I5. It is observed that

strong gradients, such as the edges of an object, are smooth in some orientation.
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Adjacent gradients with similar orientation likely belong to the same object in the
same layer. Thus, the smoothness term in (3.12) is designed such that it will be large
and penalizes the cost function F if neighboring gradients in IS with similar
orientations are assigned with different labels. In (3.14), the function [L, # L,| =
1if L, # Lg; and O otherwise. Thus, the term V, . of two pixels p and g in I will
be zero if they have the same label. Otherwise, V,, , is evaluated based on the 1-norm
difference of the gradients d; . Note that F(L) in (3.12) is evaluated by
accumulating V,, , for all pixel pairs {p, q} within the similarity-based KNN (SKNN)
set of p, which is defined as the set of K nearest neighboring pixels (where K is
chosen as 7) of p measured by the similarity in gradient value and distance.
Normally, all pixels within the SKNN set should have the same label due to the
smoothness of object gradients. If a pixel g within the set is wrongly classified, the
classification of p will still follow the majority in the set since 1, , is small. In the
situation that p is wrongly classified such that it is different from most others in the

set, a large sum of V, , will be generated. It penalizes the cost function and forces

the label of p to change.

The optimization problem in (3.12) can be solved by the max-flow/min-cut

method [85]. Finally, a mask based on L is generated as follows:

St = p{If = 1}, (3.15)
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where p{x} represents a morphological dilation operator with size 2x2 within the
set @f. It is used since we assume the neighboring gradients around the classified
labels also likely belong to the same layer. Note that S¢ can be considered as a mask
of the gradients that appear at the same positions of both IS and its residue. It thus
has included the gradients of the missing background components based on the
argument discussed earlier. So, using S¢, we update the initial gradient masks as

follows:
Ef = E5 U St UEJ N (~EY); (3.16)
Et=E5'n(~SHN(~ED VES,

fort > 0. EL is defined in (3.8). Recall that E9 is estimated with a conservatively
selected disparity threshold. Most of the gradient points it covers belong to the
background, although a lot of the background’s gradient points can be missing. To
enhance EJ , we firstly exclude those also covered by the reflection gradient mask
EQ. Then we add back those covered by St to E5! in each iteration as shown in
(3.16). With the improved estimation of I} in each iteration, the estimation of St
will also improve and in turn enhance the estimation of E5. The design of Ef
follows a similar philosophy. The new gradient masks now include the information
of the missing components. They can be used to refine the background estimate as

follows:
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Ig = argn}tin] = |ID = Iglly + D * Iglly + A, 1E5 - D * IR|l; +
? (3.17)
MNEE D=1l stIf=15=1—1 fort >0,

Note that unlike the existing approach which requires the optimization of a number
of parameters simultaneously, there is only one optimization parameter I in (3.17)
(we can find I5 by If = 15 =1 —1I5 fort > 0). It reduces the possibility that the
optimization process falls into the wrong local minimum. Similar to (3.8), we use
IRSL to minimize (3.17). We iteratively update the background layer until
converged (e.g. the change of the recovered 15 becomes very small). An illustration

Toa(Lp L) = (1= N (1050) ~ 35@l,)) - [2p = Lo]

Strong gradient

Background residue
smooth

p=1-1§

HOG
difference
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b |

Initial background I8

Regenerated background gradients
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3=1-18 HOG
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Ut y) = [H5Cey) — BRG],
Initial reflection I3

Fig. 3.6. An illustration of the whole process of background gradient regeneration.
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of the proposed background gradient regeneration method is shown in Fig. 3.6. The

whole algorithm is summarized below:

Algorithm:
Generate the disparity map using (3.1) to (3.5).
Obtain the initial estimates E2, EQ, 19 and I3 using (3.6) to (3.9).
Sett=0.
While not converge
t=t+1;
Compute St using (3.11) to (3.15);
Compute E§, E using (3.16);
Obtain 1§, If using (18);

End

Fig. 3.7 shows an example of the proposed algorithm at different stages of
operations. It can be seen in Fig. 3.7(g) that the initially estimated background image
has many components missing. It is because the initial gradient mask £ misses out
many strong gradients as shown in Fig. 3.7(b). With the help of S'as shown in Fig.
3.7(e), the updated gradient mask E2 (Fig. 3.7(c)) starts to restore some of the
missing components. It, in turn, improves the estimation of S (Fig. 3.7(f)) and then
EZ (Fig. 3.7(d)), as can be seen in the circled regions. Note that while more and

more missing background components are recovered in S? (see the upper two
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Fig. 3.7. The intermediate results. (a) The original image I. (b) The estimated initial
gradient mask E2. (c) The improved gradient mask E3. (d) The improved gradient mask
E2. See the improved estimation (circled). (e) Mask St. (f) Mask S2. (g) The estimated
initial background layer I3. (h) The resulting background layer Iy. (i) The resulting
reflection layer I.

circles in Fig. 3.7(f)), we also notice the mask covers less background gradient
points (such as the ones in the lower circle in Fig. 3.7(f)). It is because with the
improved estimation of I3, there are less common gradient points with the residue
of I}, which means that they have been correctly recovered in I3 thus S2 does not
need to include them. The final background image generated by the proposed
algorithm is shown in Fig. 3.7(h). It shows a significant improvement over the initial

guess. The resulting reflection image is also shown in Fig. 3.7(i).

3.4. Comparisons and Evaluation

To evaluate the performance of the proposed algorithm, we make a comparison
with four other multiple-image reflection removal methods both qualitatively and

quantitatively. These methods include superimposed image decomposition (SID)
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[9], layer separation using SIFT flow (LS-SIFTF) [10], layer separation using
motion flow (LS-MF) [11] and layer separation using disparity signs (LS-DS) [12].
All these approaches make use of the depth information of the scene to separate the
background and reflection. Since [9, 11] and [10] capture the multiple views of a
scene using a sequential approach, they can only be used in static scenes. [12] makes
use of the LF camera to capture the multiple views of a scene in one shot. Hence it
can be applied to dynamic scenes as the proposed method. However, it has a
stringent requirement about the depth of the background and reflection layers, as
well as the orientation of the camera. We will show in the later comparisons how

these restrictions affect the separation performance.

3.4.1. Qualitative Evaluation

For qualitative evaluations, we compare visually the quality of the background
and reflection images separated by different approaches. For testing the proposed
algorithm and the method in [12], we make use of the Lytro Illum LF camera to
obtain the LF images of a number real-life scenes in which the background is
superimposed by reflection. For the same set of real-life scenes, we use the same LF
camera to capture the scenes from 5 different angles. And then the central view of
each LF image is collected to form the multiple-view images required by the

methods [9, 11] and [10]. We show a few sets of comparison results in Fig. 3.8 and
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Fig. 3.8. Comparison results of scene 1 to 3. For the ease of visualization, the images are
normalized by (3.10). So for some images, the background plus reflection may not be equal
to the original images. We can see that the proposed method shows robust and better results
compared to other methods.

Fig. 3.9. Since they are all real-life scenes, there is no ground truth in all cases. But

from the contents in the separated background and reflection images, we can easily
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Fig. 3.9. Comparison results of scene 4 to 6. For the ease of visualization, the images are
normalized by (3.10). So for some images, the background plus reflection may not be equal
to the original images. We can see that the proposed method shows robust and better results
compared to other methods.

identify which approach performs the best.

As described above, traditional methods all have their own limitations to the input
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images, it is difficult to ensure that they perform well for all images, particularly
those taken from real-life scenes since it is difficult to control the scene environment.
As shown in Fig. 3.8 and Fig. 3.9, the recovered backgrounds tend to retain some
residual reflection components, and their reflection images also often contain
background components. For method LS-SIFTF, it is noticed that it cannot separate
those reflections with strong gradients. It is because SIFT flow will also register
those reflection gradients as background. We can see many regions with strong
reflection gradients are wrongly separated. For LS-MS, the optimization process
can easily fall into the wrong local minimum. We can find that the reconstructed
background layers, which are constructed by the combination of all views, may be
blurred due to the inaccurate motion flows. For SID method, it shows poor
performance for scenes with non-planar background since it uses 2D homography
to register images. Moreover, the results of SID tend to be over-smooth because of
the use of low-rank decomposition with inaccurate registrations. For LS-DS, it has
a stringent requirement about the distance of the background or reflection layer. In
many real-life scenes, such requirement cannot be fully fulfilled. Besides, it requires
the normal axis of the LF camera to be aligned perpendicular to the scene. As shown
in the images in Fig. 3.8 and Fig. 3.9, we often take pictures with an angle to the
scene. It is about the style of photography that is hard to put restriction to. Since the
scenes in Fig. 3.8 and Fig. 3.9 do not fully fulfill the requirements, the performance
of LS-DS is only marginally satisfactory in most cases. Without the

abovementioned limitations, the proposed algorithm can well reconstruct each layer
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Fig. 3.10. A dynamic scene case: a television behind a glass window. Since the content
of the television display is changing in time, other methods that require multiple shots of
the scene cannot work in this case. Therefore, only the results of LS-DS and the proposed
method are shown. It can be seen that the proposed method gives much better
performance than LS-DS.

and show the best performance in all cases. We also show a case with a dynamic
background in Fig. 3.10, where a television is showing a video behind a glass
window. Since the TV display content is changing, the methods that require multiple
shots of the scene from different angles cannot capture the same background thus

cannot be used in this case. So, we only test LS-DS and our method for this scene.
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Method First layer Second layer
Synthetic input 13.0249 12.6774
LS-SIFTF 18.4999 18.9543
SID 15.2370 19.3243
LS-MF 16.5286 16.2398
LS-DS 18.6339 18.6433
Proposed 21.9918 21.8188

Table 3.1. The average PSNR values of the synthetic input images and the results of different
methods.

Since the normal axis of the camera is not perpendicular with the scene, we can see
that LS-DS leaves a large number of reflection residues in the estimated background
image, while the proposed algorithm can give much better performance than LS-

DS.

3.4.2. Quantitative Evaluation

For the quantitative evaluation of LS-DS and the proposed algorithm, we first
use an LF camera to capture 20 LF images. Ten of them are selected as background
while the other ten are selected as reflection. They are manually added together to
simulate the images we needed for the evaluation. Since the background is known,
we can always measure the PSNR of the separated background with the true one.
To generate the images required for the evaluation of the multiple-image methods,
we need to have background and reflection images of different viewing angles for

each scene. To do so, we do not only take one LF image for each scene as mentioned
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above. We put the light field camera on a tripod and shift the camera at five fixed
vertical heights to capture five LF images for every scene. Then we use only the
central view of each LF image such that for every scene, there are 5 images taken
from 5 fixed vertical positions. And since all views of different scenes are taken at
5 fixed vertical heights, we can superimpose any two scenes together to simulate a
background image with reflection taken from 5 different viewing angles. These
images are then used in the evaluation of the multiple-image methods. Since all
separated images may contain biases, we adjust the bias of each separated image to
achieve the maximum PSNR as compared with the ground truths. Then we compare
the average maximum PSNR of the separated background and reflection images for
all 10 scenes generated by all methods. The final results are shown in Table 3.1. We
can see that the proposed method outperforms all compared methods. The results

are in line with the qualitative evaluation results.

3.5. Summary

In this chapter, we proposed a novel algorithm for solving the reflection removal
problem based on light field imaging and the background gradient regeneration
strategy. One major improvement of the new algorithm is in its robustness, since it
does not have the various restrictions on the scene or the camera orientation as in

the existing approaches. In this chapter, we first explored the behavior of the strong
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gradient points in the EPI of LF images when they are superimposed with reflection
images. It provides the theoretical support for using the light field imaging to
estimate the disparities of different layers of such kind of images. We also proposed
a general sandwich model to describe the disparity ranges of the components of the
background and reflection layers. It is the major part of how the proposed algorithm
can be more versatile than the existing methods. Based on this model, we proposed
a two-step strategy (initial aggressive separation and background gradient
regeneration) to well reconstruct the background layer in an iterative enhancement
process. In the evaluation part, we showed the proposed algorithm has better and
more robust performance compared to the state-of-the-art reflection removal

methods.
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Chapter 4.
Improved Multiple-lmage Reflection
Removal Algorithm Using Deep Neural

Networks

(This chapter is extracted from my paper [86]: Tingtian Li, Yuk-Hee Chan, and
Daniel P.K. Lun, “Improved multiple-image based reflection removal algorithm
using deep neural networks,” IEEE Transactions on Image processing, 2019. (under

review))

In Chapter 3, we introduced a multiple-image reflection removal algorithm using
different optimization methods. While the algorithm is effective, the time-
consuming optimization processes introduce much difficulty when applying it to
some real-time applications. It has been a trend in recent years to use deep learning
approaches in solving image processing problems. In these approaches, huge
datasets are used to train different deep neural network (DNN) models for solving
the problems with good performance and efficiency. It is because due to the massive
parallel structures of these network models, they can be easily implemented using

GPUs to dramatically reduce the computation time. Following the trend, we present
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in this chapter a novel DNN-based approach for solving the reflection removal
problem following the background gradient regeneration strategy. In fact, it is not
totally new for using DNN in reflection removal. However, existing DNN-based
methods [7, 25] require that the reflection must be blurry. It affects the generality of
their application. In this chapter, we propose a novel DNN-based framework for
solving the reflection removal problem using multiple images. The algorithm
exploits the depth information of the scene provided by the multiple input images
to help separate the background and reflection. It does not require that the reflection
must be blurry hence it is more general and robust. Experimental results show that
the proposed algorithm achieves superior performance similar to the method we

proposed in Chapter 3, but it has a much faster speed when implementing with GPUs.

4.1. Introduction

Owing to the direct feedforward process and efficient use of GPU, DNN-based
methods have shown superior performance and much faster speed compared to the
traditional optimization-based methods in many image processing applications. As
a branch of DNN, GAN [87] has also drawn dramatic attention from researchers. A
GAN contains a generator that produces new samples. It also has a jointly trained
discriminator that tries to distinguish the sample produced by the generator if they

are the same as the real samples in the target dataset. When the discriminator cannot

66



distinguish the generated samples from the real samples, it means the generator has
been successfully trained to synthesize new samples following the distribution of
the target set. However, because of the min-max training process, the training is
difficult to stably converge. For conquering this problem, [57] proposes the WGAN
that applies the Wasserstein distance to the loss function for training the GAN. It
shows much faster and more stable convergence than the original GAN. Besides
data synthetization, GAN or WGAN also shows its potential in solving various
inverse problems, like super-resolution [88], inpainting [61] and denoising [89].
However, the reason why GAN or WGAN, which is designed originally for data
synthesizing, can be used for inverse problems is still not clearly explained. In this
chapter, we propose a novel DNN-based reflection removal method. It is different
from the existing methods [7, 25] that we assume multiple input images are
available for obtaining the depth information of the scene. It also follows the
background gradient regeneration strategy as we have mentioned in Chapter 3. They
allow a much robust performance as compared with the existing DNN-based
reflection removal approaches. For the proposed algorithm, we firstly use a
convolutional neural network (CNN) to estimate the disparity values along the
image edges. Following the background gradient regeneration strategy, only the
image edges with distinct disparity values will be used to obtain two partial edge
maps based on the disparity model shown in Fig. 4.1. After that, a WGAN is used
to regenerate the missing background edges from these two partial edge maps. The

WGAN contains an auto-encoder and two discriminators. The auto-encoder
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Fig. 4.1. The disparity sandwich model. In this model, the first layer is closer than the
second layer to the camera and some of their components may share the same disparity
range in the middle. The components in the disparity ranges A and C only belong to the
first and second layers respectively. Some of the components of these two layers are mixed
in the disparity range B.

regenerates the missing background edges and tries to fool the two jointly trained
discriminators to believe they are the real background edges. Finally, all background
edges are fed to another CNN for reconstructing the background image. Besides
proposing the algorithm, we also try to explain why WGAN combined with a
distance function can be used for solving the inverse problems. The flowchart of the

entire framework is shown in Fig. 4.2.
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Fig. 4.2. The flowchart of the entire framework.
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The rest of the chapter is organized as follows: After the introduction in Section
4.1, we briefly introduce the edge disparity network in Section 4.2 for generating
edge disparity map of the input images. In Section 4.3, we present why a WGAN
constrained with a distance function can be used for the inverse problems. We then
explain how to use it to regenerate the background edges in the shared disparity
range. In Section 4.4, we introduce the CNN we have used for extracting the
background image from the original image guided by the edge maps. In Section 4.5,
we show the experimental and comparison results. Finally, we summarize this

chapter in Section 4.6.

4.2. Edge Disparity Network

Disparity estimation has been extensively studied for many decades. The main
strategy is to match the corresponding patches in stereo pair or multiple rectified
images taken at slightly different viewpoints [32, 90, 91]. However, for images with
reflection, the pixels of the background and reflection images are overlapped. It is
far more difficult to find patch pairs for estimating the disparities. Fig. 4.3 shows an
example when the background image pair is superimposed by another image pair.
It can be seen that the matching error of the background patches becomes much
larger. It is because the second image pair has different disparity; the pixel shifts of

the second image pair are different from the background image pair. However,
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MSE=0.0144 7 MSE=0.0285

(@) Original image pair (b) Image pair with reflection
Fig. 4.3. The image pair before and after superimposed by another image pair. (a) is an
image pair. (b) is an image pair after (a) is superimposed by another image pair. Since the
disparity of the second pair of images is different from the original image pair, the pixel

shifts of this second pair of images are different. Therefore, the matching error increases
as shown in the figure.

according to the edge independence property, the strong edges are seldom
overlapped. Therefore, instead of matching image patches for every pixel, we
propose to estimate the disparities only along the edges. In fact, we have
demonstrated in Chapter 3 that we can estimate the edge disparities of light field
images by using a sparse regularization process. To improve the computational
efficiency, here we train a CNN to achieve the task. In addition, we limit the number
of input images to only 5 so that the algorithm can also be used in some array camera
systems, which are popular in nowadays mobile devices. The network architecture

is shown in Fig. 4.4. The network contains eight layers with 256 channels at the
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Fig. 4.4. The edge disparity network architecture.

beginning, 128 channels in the middle six layers and one channel at the last layer
for outputting the edge disparity map. The kernel size is five. There is also a batch
normalization layer and ReLU following every convolutional layer except the last
one. We train the network by minimizing the following loss function,

2
’

(4.3)

Ly = Zn,x An(X) . In(X) - An(x) I (x + Bn,C ' d(X))”

where d is the disparity; X is the pixel coordinate; n is the index of the input images
which are supposed to have been aligned following the orientation of the reference
image; c is the index of the reference image which is just one of the input images;
A represents the gradient magnitude which lets the loss function focus on the edges;
B, . is the baseline between the reference image and the nth image. Note that in this

loss function, we do not need any ground truth disparity map. This unsupervised
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training strategy can avoid using the ground truth disparity map, which is always
difficult to obtain [92-94]. In Fig. 4.5, we compare our approach with another CNN
based method for disparity estimation [95]. In the figure, the disparity values of
which the pixel gradient values are below a threshold are discarded. We can see the
result of [95] has many errors. For instance, it suggests the top right-hand corner
and bottom left-hand corner have similar disparities which are obviously not the
case. The errors are caused by the aforementioned problem that [95] estimates the
disparities based on the traditional pixel patch matching method, which will have
large errors for images with reflection. In contrast, the proposed approach

emphasizing on the image edges shows higher accuracy and resolution.

Fig. 4.5. The edge disparity results. (a) The input image with reflection. (b) The edge
disparity map estimated using method [94]. (c) Edge disparity map estimated using the
proposed network. In (b) and (c), the red and blue colors represent the large and small
disparity values.
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4.3. Edges Regeneration Using WGAN

The proposed approach in this chapter also follows the background gradient
regeneration strategy. Rather than using a sparse regularization method as in
Chapter 3 for edge regeneration, we train a WGAN to achieve the task. We show in
this section that a WGAN combined with a distance function is suitable for the

inverse problems such as background edge regeneration.
4.3.1. Wasserstein Generative Adversarial Networks

The objective of GAN is to train a generator that synthesizes novel samples which
cannot be distinguished from real samples by its discriminator. The training process

of GAN can be described as the following min-max game,
mGin max IExeX[log(D(x))] +E,cy [log (1 — D(G(z)))], (4.4)

where G and D represent the generator and discriminator respectively. G is trained
to minimize the loss function for mapping the input z, which follows a distribution
Z, to the target x, which follows another distribution . A discriminator D is also
jointly trained to distinguish the generated G(z) from the real sample x by
maximizing the loss function. The goal is to train a generator G which can generate
fake samples that the discriminator D cannot distinguish. Therefore, G (z) will have

a distribution very close to that of the real sample x. However, such minimax
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training is unstable and difficult to converge. As mentioned above, we adopt WGAN
in the background edge regeneration. WGAN inherits the ability of GAN but
exhibits more stable and fast convergence by using the Wasserstein distance in the

loss function. The training process of WGAN can be described as follows:
min max Exe, [D(x)] - Eez[D(G(2))] (4.5)

To fully implement WGAN, it also requires to remove the sigmoid activation in the
last discriminator layer and clip the weight range of the discriminator to force it to
be 1-Lipschitz [57]. With such modifications, we can efficiently train a WGAN to

regenerate the background edges.
4.3.2. Bridge from Inverse Problems to WGAN

Originally, GAN is used for synthesizing novel samples but recently, we can also
find many applications of GAN or WGAN in solving the inverse problems like
super-resolution [88], inpainting [61] and denoising [89]. The reason why GAN or
WGAN can work well for recovering images is still not clearly explained. Here, we
investigate the reason and build a bridge between the inverse problems and GAN
by linking it to the traditional regularization theory. Traditionally, for solving the
inverse problems in image processing, we can train an estimator f with the
parameters 8 by minimizing a 2-norm distance between the estimation output image

and the ground truth image as follows:
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L=1f(z6)—xl3 (4.6)

where z is the input and x is the ground truth. However, such simple pixel-wise
distance minimization often renders the output image blurry and gives low
perceptual quality output. In traditional prior regularization theory, it is known that
we can produce a better result by adding the prior knowledge of x to the objective

function as follows:
min||f (z; 6) — x[I3 + p(f (z; 0)). (4.7)

The prior function p should give low response if f(z;8) follows the prior
knowledge of x and vice versa. For instance, if the distribution of x is known, we
can use it as prior knowledge. Then p should give low response if f(z; 8) follows
the distribution of x. If we consider the generator G of a WGAN is also an estimator,

we can rewrite (4.7) as follows:
min|G(2) — x|1 - p(6(@)- (4.8)

Note that the discriminator D of a WGAN is trained to distinguish the generated
sample G (z) from the real sample x. It gives high response if it finds G(z) is the
same as the real sample and low response if it is fake. Therefore, D(G(z)) can be

used as a prior function as follows:
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min[|6(2) - xl13 = D(6(2)). (4.9)

To allow the discriminator to give high response to real samples and low response

to fake samples, it needs to be jointly trained using the following cost function:
min D(G(z)) — D(x). (4.10)

It can be seen from the above discussion that a WGAN combined with a distance
function can be a special form of the traditional prior regularization method for
solving the inverse problems. It, however, can give much better performance than
the general prior regularization methods since usually a huge image dataset will be

used for training the generator and discriminator.
4.3.3. Partial Edge Maps as Hints

In the last sub-section, we have explained why a WGAN combined with a
distance function can be used for solving the inverse problems. In this section, we
show how we can use WGAN to regenerate the background edges, which is a typical
inverse problem. As it is discussed in Chapter 3, we can easily separate the
background and reflection edges if they have distinct depth ranges. However, if they
have close depth values, or even share the same depth range, it will be very difficult
or even impossible to separate them just from their depths. Any errors in the

separation will either remove the background components or include the reflection
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residues in the resulting background image.

Following the background gradient regeneration strategy, we first classify the
edges that have distinct depth values. They are extracted to form two partial edge
sets. The edges of which the depth values cannot be used for their classification will
be ignored. Then we make use of a WGAN and the two partial edge sets to
regenerate the missing background edges to form the complete background edge set.
More specifically, as described by the sandwich model in Fig. 4.1, we only extract
the edge components in disparity ranges A and C with very large and small disparity
values (i.e. small and large depth values respectively). Here, we use E; and E, to
denote the extracted edge components supposed to belong to the first and second
image layers respectively (one of them is the background, the other is the reflection).
To determine the thresholds for defining the boundaries of ranges A and C of the
sandwich model shown in Fig. 4.1, we apply the K-means method [79] to the edge
disparity values similar to that in Section 3.3.2. Two clusters with two centers are
then obtained. The values around these two centers are selected as the two
thresholds. The edge components with disparity values above and below the large
and small thresholds respectively will be extracted as E, and E,. With the hints of
E, and E,, we can use a WGAN to regenerate the missing background edges and

form the complete background edge set.
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4.3.4. Edge Map Reconstruction Using WGAN

Indeed, the reason why a WGAN can regenerate the missing background edges
is due to the different distributions between the edges of normal images and those
with reflection. Let us use an experiment to illustrate this argument. In the
experiment, we use 100 real-life images (each with reflection) from the benchmark
dataset SIR2 [66]. Since the ground truth background images are also provided in
SIR2, we can compute the histograms of the images with and without reflection.
The results are shown in Fig. 4.6. We can see that the edges of the images with

reflection have a different bias and skewness compared with the images without
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Fig. 4.6. The distributions of the edges for images without reflection (green), and with
reflection (blue) in the red, green and blue channels, respectively.
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reflection. It is because of the additive light arisen from the superimposition of the
uncorrelated background and reflection images. A WGAN can be trained to
generate edges following the distribution of the background edges with reflection.
The architectures of the generator and discriminator of the proposed WGAN are
shown in Fig. 4.7. The generator is an auto-encoder and concatenations are added
to connect the down-sampling and up-sampling sides for increasing the resolutions
of the up-sampling side features [48]. Two discriminators are built to distinguish the
generated background and reflection edges. These two discriminators have the same
structure with six down-sampling blocks. We stack the original image edges E, and
the two partial edge sets E;and E, as the input signal z and feed to the proposed

WGAN. We expect the partial edge sets E;and E, can be the hints for the network

The auto-encoder:

512 1024

192
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64

L. 4x4 conv (stride 2)+BN+ReLU+3x35 conv.(stride IHBN+ReLU+5x5 conv (stride 1)+BN+ReLU
The discriminator network:

) 44 conv (stride 4)tBN+ReLU
) 4 x4 up-conv (stride 4)+BN+LeakyReLU

4x4 up-conv.(stride 2)*BN+ReLU+5x35 conv.(stride 1)+BN+ReLU+5x5 conv.(stnide 1)+BN+ReLU
4x4 conv.(stride 2)+ BN+LeakyReLU
Input @ @ Response 5x5 conv.(stride 1)
512 512 ——+ concatenation

512 4x4 conv (stride 2)+LeakyReLU
= 434 conv.(stride 1)

Fig. 4.7. The network architectures of the generator (auto-encoder) and the discriminator.
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to regenerate the missing background edges and form the complete background edge

set.

For training the networks, we first define an L2 norm loss function as the first
term in (4.8) for forcing the regenerated edges to be similar to the ground truth as

follows:

Liec = IG*(2) — E4ll3, (4.11)

where GE is the generator that regenerates the missing background edges and gives
the complete background edge set, E; is the ground truth background edges. Then
we use two adversarial loss functions for forcing the output of GE to follow the

distribution of background edges as follows:

L w1 = —DE(GE(2)); (4.12)

LE,,, = —DE(E — GE(2)). (4.13)

DE and D¥ are the two image edge discriminators. They act as the prior functions
in the regularization process as discussed before. If GE(z) and (E — GE(2)) are
close to the background and reflection edges, LE,,; and Lﬁde will give a low

response. The overall loss function for the generator G is as follows:

LF =15, + A4 (L5y,, + L5y, (4.14)
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(a) (b) (©) (d) (€) (f)

Fig. 4.8. The intermediate results of the proposed algorithm. (a) The input image with
reflection. (b) The entire edge map M. (c) The initial partial background edge map M .
(d) The estimated complete background edge map using the proposed WGAN. (e) The
reconstructed background using the edge map shown in (d). (f) The reflection obtained by
deducting the background image from the input image. The mean value of (f) is adjusted
to the input images for clear visualization.

The discriminators DE and DE can be trained with the following loss functions,

L5, = DE(GE(2)) — DE(Ey; (4.15)

L, = D5 (E — G*(2)) - D5 (Ey), (4.16)

where E, is the ground truth edges of the second layer (reflection). We jointly train
GE, DE and D until they converge. We define the regenerated edges given by the
generator as £, = G (z). The final background binary edge map M, is obtained by
thresholding £, with the value 0.05. Fig. 4.8 shows an example of M, obtained
from the proposed algorithm. We denote the binary edge maps for E and E; as My
and Mg, respectively. It can be seen that My contains both the background and

reflection edges and the initial partial edge map Mg, only contains a portion of the

81



background edges. From Fig. 4.8(d), we can see that the proposed WGAN

successfully estimates the background edges and ignores the reflection edges.

4.4. Background Image Extraction Based on Edges

As we have demonstrated in Chapter 3, we can use different optimization
techniques [10, 31] to extract the background image from the original one guided
by its edge map. However, the involved iterative optimization processes with huge
matrices are very time-consuming. Considering the fast speed of DNN over the
traditional optimization processes, here we also use a DNN to generate the

background image guided by its edges.

To the best of our knowledge, there are very few DNN approaches for extracting
the background images based on their edges. The only one we are aware of is the |-
CNN in the method CEILNet [7]. However, the performance of I-CNN is rather
unstable that the resulting image can lose many background details while keeping
the reflection residual. It is because I-CNN works based on the assumption that the
reflection is blurry. When the image contains reflection with strong edges, it is
difficult for I-CNN to totally remove them. To solve the problem, we develop a new
Background Image Extraction Network, which has an auto-encoder structure the
same as that used for edge map estimation in Fig. 4.7 (upper). To remove the strong
edges of the reflection remained in the resulting image, we pre-process the input

image by removing the reflection edges. To do so, we first compute from the
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estimated background edges M, = My — M,, which mainly indicates the positions
of the reflection edges. Then we obtain an image I, = (I. — I, - M,), which is the
original reference image without the reflection edges. We stack I,,, = (I - M) and
I, as the input signal z and fed to the proposed Background Image Extraction

Network. For training the network, we first use the following L2-norm loss function
to confine the resulting image to follow the ground truth background at the pixel

level,
Lree = I1G"(2) = L5, (4.17)

where 1, is the ground truth background image and G’ (z) is the network output give
the input z. In addition, we add the following perceptual loss function which can

ensure the resulting image to follow the human perception,
2
Lp = [V(6¢'@) - v, (4.18)

where V represents the feature maps of the 14th layer of the pre-trained VGG-16
network. Using the intermediate responses of high-level features is an effective way
to measure the perceptual similarity [65]. Thus, the following overall loss function

is used to train the proposed Background Image Extraction Network:

U'=1,. +AL, (4.19)
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Fig. 4.8(e) and (f) show an example of the background image and its residual
(reflection layer) generated using the estimated background edge map shown in Fig.
4.8(d). We can see that the network successfully extracts the background image
from the original image guided by its edge map. To show the effectiveness of the
proposed network, Fig. 4.9 (i) shows a simulation case using the I-CNN and the
proposed Background Image Extraction Network respectively. To isolate the
performance in background image extraction, both the proposed Background Image
Extraction Network and I-CNN use the estimated background edge map generated
by the Edge Regeneration Network. Since the reflection is not particularly blurred
in the synthesized image, we can see that the strong edges of the reflection remain
in the result of I-CNN. We also notice that many background details are missing.
The proposed Background Image Extraction Network can well recover the
background components while removing the reflection since there is no assumption
about the blurriness of the reflection and we also incorporate the human perception

in the training process. More detailed comparisons can be found in the next section.
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Fig. 4.9 (i). The background images generated by using I-CNN and the proposed background
image extraction network. (a) and (b) are the generated background image and its residual
respectively using the Edge Disparity Network + Edge Regeneration Network + I-CNN. (c) and
(d) are the generated background image and its residual respectively using the Edge Disparity
Network + Edge Regeneration Network + the background image extraction network.

CEILNet PLNet Proposed

Fig. 4.9 (ii). The background images obtained from using different approaches.
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4.5. Experiments and Evaluation

For evaluating the performance of the proposed algorithm, we compare it with
the state-of-the-art methods both quantitatively and qualitatively. Before showing
the comparison results, let us clearly explain the details of training the networks and

how the comparisons are carried out.
4.5.1. Training Details

We assume that five images of slightly different viewing angles are available as
the input of the proposed Edge Depth Estimation Network. For convenience, we
obtain the required images for the training of the network by using a light field (LF)
camera, which can directly capture array images of the target scene in a single shot.
We extract five of the captured images and input them to the network after alignment
to the same viewing angle. For quantitative evaluation, we synthesize the required
training images with reflections by randomly adding two sets of LF images together
with different weights. More specifically, we capture 318 sets of LF images and
resize them to 256>256 pixels. They are randomly added together and finally,
112,225 images with reflection are synthesized as the training samples. To further
increase the training samples, we augment the data by cropping the images into
many 128x128 patches at every interval of 16 pixels, then randomly flipping and

rotating them at every 90 degrees. The Edge Disparity Estimation Network is trained
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using the ADAM solver [96] with learning rate 2 x 107>, g; = 0.9 and 3, = 0.999.
For training the Edge Regeneration Network and the Background image Extraction
Network, we only use the flipped and rotated images to augment the dataset. It is
because a cropped patch may not have sua fficient amount of edges for training, as
edges are sparse in nature. Similar to [57], we use RMSprop solver [97] to train the
generator and the discriminators of the Edge Regeneration Network with learning
rates 2 x 10~* and 2 x 1075 respectively. For the Background Image Extraction
Network, we also use the RMSprop solver [97] with learning rate 2 x 10~* for its
training. The parameters A, and A, are setas 2.5 x 1073 and 1.25 respectively. The
training and testing are both performed on a desktop computer with Core i7 7820X

CPU using a GTX 1080 Ti.

4.5.2. Quantitative Evaluation

A gquantitative comparison is made between the proposed algorithm and a few
recent methods, including the traditional optimization based approaches such as
SIFT flow (LS-SIFTF) [10], superimposed image decomposition using low rank
(SID) [9], image layer separation based on the disparity signs (LS-DS) [12]; as well
as two other CNN-based methods CEILNet [7] and PLNet [25]. Except for LS-DS
which is implemented by us according to their paper, other methods are
implemented by the source codes published in their websites. Because LS-SIFTF

and SID require relatively large disparities between images, the images we captured
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using the LF camera with small baselines cannot be directly used to test these two
approaches. To solve the problem, we put the LF camera on a tripod and shift the
camera up and down to five preset heights. For each height, we capture one set of
LF image for each scene. Using only the central view of each LF image, we can
obtain, for each scene, five images of relatively large disparities. We capture 20
groups of such images of different scenes and create ten groups of images with
reflections by adding ten of them to the other ten with the weights 0.6 and 0.4. These
Images are used to test the LS-SIFTF and SID methods. On the other hand, the
method LS-DS requires LF images as input. For each group of LF image captured,
this time we just use one of them for each scene. We extract the central 5 x 5 images
of each LF image so that we have twenty sets of 5 X 5 images. They are mixed with
a similar method as mentioned above to form ten testing images (with reflection)
for LS-DS. CEILNet and PLNet are single-image reflection removal methods, thus
we directly input the central view of each LF image to test these networks. Because
LS-SIFTF, SID, LS-DS can only perform well with relatively higher resolution
images, we feed images with resolution 625 x 434 to those methods and resize
their results to 256 x 256 pixels for comparison. CEILNet and PLNet are directly
fed with images with size 256 x 256 pixels. Fig. 4.9 (ii) shows one of the
comparison results based on the testing images mentioned above. It can be seen that
the proposed algorithm gives the best result compared to other methods. The
average PSNRs of all the testing algorithms are shown in Table 4.1. Because the

results of LS-SIFTF and SID can have large biases in the mean value which can
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give very low PSNRs, we normalize the mean values of all the results to be the same
as the ground truths. As shown in Table 4.1, the proposed method significantly
outperforms the other competing methods. It is because all other methods have
different assumptions about the input images. For instance, LS-SIFTF requires the
gradients of the background to be much larger than the reflection; SID requires the
background to be planar; LS-DS requires the background and reflection to be at
different sides of the focal plane and the normal line of the camera must be
perpendicular to the scene; CEILNet and PLNet have a stringent assumption that
the reflection must be blurry. They all introduce the errors to the reflection removal
process in case the input images do not follow exactly the respective assumptions.
We also evaluate the influence of the input terms I, , I;7, for the Background Image
Extraction Network. The PSNR values of the generated background images are
shown in Table 4.1. Since I,,, emphasizes useful edges and I, hides useless
reflection edges, the Background Image Extraction Network can achieve the best

performance when both of them are input to the network.
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Method PSNR of the recovered background (dB)
Synthetic input 13.094
LS-SIFTF [10] 18.912
SID [9] 15.488
LS-DS [12] 18.855
CEILNet [7] 17.714
PLNet [25] 19.092
Proposed w/o Edge Regeneration 22.774
Proposed w/o discriminators 23.224
Proposed w/o I, 23.340
Proposed w/o I, 23.220
Proposed 24.031

Table 4.1 The average PSNR in dB of the resulting background images generated by
different methods with respect to their ground truths.

4.5.3. Effectiveness of The WGAN for Background Edge Estimation

We also evaluate the effectiveness of the WGAN contributing to the estimation
of the background edge map M,. We compare the proposed WGAN (the auto-
encoder jointly trained with the discriminators using the loss function (4.14)) and
the same auto-encoder without the discriminators trained only using the loss
function (4.11) to estimate M,. We investigate the regenerated edge distributions of
the proposed WGAN and only the auto-encoder trained without the adversarial
terms. Fig. 4.10 shows the comparison results. In the figure, the histograms and the
fitted distributions of the regenerated background edge components E; are shown.

We can see that the E; estimated by the proposed WGAN has the distributions very
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close to the ground truths. It is because the proposed WGAN tends to constrain the

generated samples to follow the distributions of the ground truths, such that the

discriminators cannot distinguish them from the real ones. Without the

discriminators, the network can only minimize the mean square difference between

the generated result and ground truth. The distributions may deviate from the ground

truth. Table 4.1 also shows the PSNR of the final background images generated with

the Edge Regeneration Network but without using the discriminators. It can be seen

that without the discriminators, the PSNR decreases by about 1.3 dB.
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Fig. 4.10. The histograms and fitted distributions of the estimated background edges £
given by the proposed WGAN and only the auto-encoder at different color channels. The
first column shows the histograms of the ground truth edges; the second column shows the
histograms of the edges generated from the proposed WGAN; the third column shows the
histograms of the edges generated by the auto-encoder trained without the discriminators;
the last column is their fitted distributions. Different rows represent different color channels.
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4.5.4. Qualitative Evaluation

For qualitative evaluation, we compare the visual quality of the extracted
background and reflection images using different methods. In this evaluation, the
testing images are directly captured in a real-life environment, such as in front of a
glass, etc., so that a reflection of an unwanted scene is added to the image. Since we
do not have the ground truth background of these images, we can only evaluate the
performance by visual inspection. The comparison results are shown in Fig. 4.11.
For LS-SIFTF, it cannot correctly separate the reflections from the backgrounds
when both of them have strong gradients. Its performance is acceptable only for the
fourth scene where the reflection is relatively weak. However, there are still many
residuals remained in the regions with strong reflections. For SID, it assumes the
background layer is planar and uses the homography to register the background
while blurring the reflection. Thus, it can only deal with planar background scenes.
In fact, even the background is planar, the features of the reflection can affect the
homography estimation. Therefore, we can see that the resulting images are blurry
due to inaccurate registration. For LS-DS, it requires the background and reflection
to have absolutely different depth ranges and it also requires the camera to be
perpendicular to the target scene. Such stringent requirements to the pose and
photography environment introduce much difficulty to remove the reflection in
practice. For CEILNet and PLNet, they assume the reflection is much smoother than

the background. They fail to remove the strong and sharp reflection components in
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Fig. 4.11. The qualitative comparison results of different methods.

the images. Without the abovementioned limitations, the proposed method



Method Average Time
LS-SIFTF 130.59 