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Abstract 

In daily photography, it is common that we take pictures through a semi-

reflective material (such as glass) and obtain images with a reflection of another 

unwanted scene. Reflection does not only degrade the visual quality of the captured 

images but also affects the subsequent applications of the images, such as 

recognition. Therefore, the methods for removing the reflection in images has 

attracted much attention from hobbyists to professionals in photography.  

However, reflection removal is a challenging and severely ill-posed problem. It 

is because we need to solve two unknowns (background and reflection) from only 

one observation (the captured image with reflection). Due to the ill-posedness of the 

problem, traditional reflection removal methods often introduce different priors of 

the background and reflection for constraining the problem. Since the background 

and reflection images have very similar morphological properties, those priors are 

only valid in some specific situations. Whenever the prior is not valid, the residues 

of the reflection will appear in the resulting image and degrade the image quality. 

In this thesis, we propose a novel strategy for reflection removal. Rather than 

following the existing approaches in searching for a perfect prior that can accurately 

distinguish the background and reflection in all situations, we believe it is more 

realistic and effective to look for a remedial strategy in case the separation is 

unsuccessful. The proposed background gradient regeneration strategy suggests to 

firstly remove the reflection components in an aggressive manner even in the 
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expense of losing some of the background components. The missing background 

components are then regenerated based on the remaining ones using different 

estimation methods. As shown in our experiments, such a strategy can lead to fewer 

reflection residues in the reconstructed background image and the resulting 

algorithms are more robust in general imaging environments.    

Based on this strategy, three reflection removal algorithms are proposed in this 

thesis.  The first algorithm is for the situation that the light field (LF) images are 

available. It first estimates the depths along the image edges using the LF epipolar 

plane image (EPI). Based on the edge depths, we identify the background edges in 

the condition that they have a distinct depth difference from the reflection edges. 

For those edges that cannot be confidently classified, they will be ignored and 

iteratively regenerated using a Markov Random Field (MRF) method. The final 

background image is reconstructed using another iterative optimization process 

when all the background edges are regenerated. 

Although this method is effective, the required iterative optimization processes 

are time-consuming. For improving the computation speed, we propose the second 

deep neural network (DNN) based method using multi-view images. The second 

proposed algorithms have a similar framework as the first one. The major difference 

is their implementation backbone. The proposed DNN-based method firstly 

estimates the edge depths using a convolutional neural network (CNN). The 

background edges are identified following a similar approach as the first method. 
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Then, a generative adversarial network (GAN) is used to regenerate the missing 

background edges. Finally, the background image is reconstructed based on the 

estimated background edges using another CNN. Comparing with the first approach, 

the deep learning-based method can increase the speed by over 1,000 times when 

running with a Graphics Processing Unit (GPU) without sacrificing the image 

quality. 

In practice, we often need to deal with the reflection removal problem given only 

a single image of the scene. Therefore, we also propose the third method that only 

requires a single input image. With a single image, it is more difficult to achieve an 

accurate estimation of the edge depths. To solve the problem, we make use of a prior 

that many traditional approaches have used, that is, the reflection images are often 

blurry. Such prior is valid in many practical situations since background and 

reflection components often reside in different depth ranges. A camera focuses on 

the background is likely to have the reflection out-of-focused and leads to the blurry 

reflection image. Following the background gradient regeneration strategy, we 

firstly train a CNN to aggressively remove the blurry components in the image, 

which are likely the reflection components. Such aggressive strategy will also 

remove some background edges as well. Then, based on the resulting image, we 

derive a reflection edge confidence map. We use the map to obtain the background 

edges with high confidence and regenerate the missing ones using a GAN. The 

background image is also reconstructed at the same time. The proposed algorithm 
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gives state-of-the-art performance compared with the existing single-image DNN-

based approaches. Similar to the second proposed approach, the proposed algorithm 

just needs a couple of seconds to complete the task of reflection removal when 

implementing with GPUs. The algorithm is particularly suitable to those images 

with blurry reflection, which is not uncommon in practice. 

Overall, we show in this thesis that the proposed reflection removal methods 

using the background gradients regeneration strategy can achieve more robust and 

better performance compared to the traditional reflection removal methods. In 

particular, the proposed deep learning-based algorithms have provided real-time 

performance due to their high computational efficiencies when implementing with 

GPUs. We believe that the research results of this work have significantly 

contributed to the field of study and will arouse great interests from the digital 

imaging industry. 
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Chapter 1.  

Introduction 

 

In daily photography activities, it is common to image through a semi-reflecting 

material such as glass. In this scenario, the reflection of an unwanted scene is often 

found in the captured image, which degrades the image quality as well as the 

subsequent image analysis. Traditionally, photographers may install a polarizer 

before the camera lens for reducing the reflection. However, a polarizer can only 

remove the reflection components with an incident angle equal to the Brewster angle 

[1]. Real-life reflections can come from different sources and different angles, hence 

cannot be totally removed by a polarizer.  

Alternatively, the reflection can be removed using image processing methods. 

The reflection removal problem is a typical blind image separation (BIS) problem. 

The problem can be illstruated as in Fig 1.1. The scenes behind and in front of a 

glass are captured by the camera as a superimposed image. The target is to sperate 
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the background and reflection images from the captured image. Mathematically, an 

image 𝐼 with a reflection scene 𝐼𝑅 superimposed on the background scene 𝐼𝐵 can be 

modeled as  

                      𝐼 = 𝐼𝐵 + 𝐼𝑅. (1.1) 

Decomposing 𝐼𝐵 and 𝐼𝑅 from 𝐼 is a severely ill-posed problem because we need to 

obtain two unknowns from only one equation. In the last two decades, some 

approaches were proposed using image statistical priors or deep learning approaches 

to solve this underdetermined problem. However, due to the close morphological 

properties between the background and reflection, current methods still cannot 

robustly achieve the task. For better solving this problem, we consider in this thesis 

using a new strategy namely background gradient regeneration. That is, we first 

 

 

Fig. 1.1. An illustration of the formation of images with reflections. Our target is to separate 

the images of object I and II from the captured image. 
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aggressively remove the reflection components irrespective of the possibility that 

some of the background components will also be removed. Then we regenerate the 

lost background gradients for restoring the background image. We propose three 

different algorithms based on this gradient regeneration strategy. We consider both 

the cases that multi-view images and only a single image of the scene are available. 

The backbones of these approaches include conventional optimization methods and 

the recently popular convolutional neural networks (CNN) [2-6]. 

1.1. The Background Gradient Regeneration Strategy 

A glass erected between a camera and the target scene acts as a semi-transparent 

mirror. It reflects the scene in front of the glass while transmitting the background 

scene behind it. The image thus captured will contain both the background and 

reflection scenes superimposed to each other. Directly separating them is very 

difficult. For this reason, current methods often impose different priors to help 

constraint the problem. Since both the background and reflected scenes are natural, 

only some weak assumptions on the properties of the background and reflection 

images can be made when constructing these priors. For example, methods [7, 8] 

assume only the background is focused and identify those defocused and blurry 

components as reflection components. Other assumptions include the different 

responses to motions [9-11], differences in depth ranges [12], etc. of the background 

and reflection images. Even with these constraints, we can often find in the results 
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of the current approaches that many reflection residues still remain in the image. It 

is due to the huge variety of daily captured images that no assumption can be valid 

in all situations. Rather than continuously searching for a perfect prior as in the 

previous approaches, we propose using a novel gradient regeneration strategy to 

remove the reflection. In this strategy, we first aggressively remove the reflection 

components to ensure that no reflection residue will remain in the image. However, 

it may mistakenly remove the background components. Therefore, we carry out the 

second step to recover the lost background components and finally reconstruct the 

background image. 

The regeneration step obviously is the most difficult part of the strategy. As 

shown in (1.1), the ill-posedness of the problem renders directly regenerating the 

lost background pixels very difficult, even with the initially underestimated 

background as a hint. However, due to the sparsity of image edges [13-16], the edges 

of two uncorrelated images are seldom overlapped. It means that the background 

and reflection images, which are often uncorrelated, will have their edges at 

different positions. It greatly simplifies the regeneration process. Therefore, we 

carry out the background component regeneration in the gradient domain instead of 

the spatial domain. With the hint of the initially underestimated background edges, 

we can identify the remaining background edges by utilizing their spatial and 

statistical relationships. Lastly, the background image can be extracted from the 

original image guided by the identified background edges.  
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The background gradient regeneration strategy has the merit that it can give more 

robust performance even when the background and reflection images have similar 

statistical distributions. In this thesis, we propose three approaches based on this 

gradient regeneration strategy. The first and second ones are multiple image-based 

while the third one is single-image based. The difference between the first and 

second approaches is that the first one utilizes the traditional optimization methods 

while the second one utilizes the deep neural networks (DNN) for all estimation 

processes. In all these proposed methods, the background gradient regeneration 

strategy contributes significantly to the effective and robust removal of the 

reflection components in the image.  

 

1.2. Contributions of this thesis 

1.2.1. A Novel Method Using Light Field Images for Robust Reflection 

Removal 

Traditional multiple-image reflection removal methods can only work well under 

stringent scenarios, such as restrictive environments [9], weak reflection intensities 

[10] or with guided initializations [11]. Another problem of the traditional multiple-

image methods is that they need to take pictures in different views sequentially. 

These methods cannot deal with dynamic scenes where the objects are moving. To 
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solve this problem, it was suggested in [12] using a light field (LF) camera [17, 18] 

to capture the multiple images simultaneously. However, the method has some 

stringent requirements on the imaging environment such as the background and 

reflection must have absolutely different disparity ranges and the camera orientation 

must be perpendicular to the reflecting surface. They introduce much difficulty in 

actually using the algorithm. In the first part of this thesis, we propose a novel 

reflection removal method based on the background gradient regeneration strategy 

using light field images. This method has no requirement on the disparity ranges of 

the background and reflection images or the camera orientation. To summarize, the 

main contributions of this method, which will be further described in Chapter 3, are 

as follows: 

1.  We explore the theoretical support of using LF epipolar plane images (EPI) to 

estimate the disparities of different layers of an LF image with reflection. We 

verify that if an LF image is formed by the superimposition of two LF image 

layers of different disparities, the EPI strong gradient points of both images will 

be at different positions of the combined EPI and the gradient values will be 

preserved. We can use them to identify the positions of the background and 

reflection strong gradients as well as their depths with no ambiguity.  

2.  We propose a general sandwich model to describe the depth ranges of the 

background and reflection images. The model allows a shared depth range for 

both images which is more realistic in practical situations. Following this model, 
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the proposed method does not require the background and reflection images to 

have absolutely different depth ranges as in the existing approaches. An 

aggressive approach is implemented to separate the background and reflection 

gradients based on their depths. As a result, we obtain some background 

gradients with high confidence, although the ones with less confidence will be 

ignored and removed. 

3.  To detect and regenerate the background gradients which are removed due to the 

aggressive process as mentioned above, a new algorithm is developed based on 

an observation that these gradients can be found in the initial background 

estimate and its residue.  

1.2.2. Deep Learning Based Robust Reflection Removal Using Multiple 

Images 

Although the above-proposed method can show robust performance compared to 

the previous approaches, the use of the traditional optimization processes on large 

matrices is rather time-consuming. Also, the light field images can require a large 

memory space [19]. Considering the recent successes of deep neural network in 

solving inverse problems [20-24] and its fast speed owing to the parallel 

feedforward structure, some recent methods [7, 25] try to remove reflection using 

deep learning approaches. However, those methods can only deal with the reflection 

that is blurry, which is not the case in many practical situations. For better solving 
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the problem, we propose a novel multiple-image reflection removal method using 

DNN. It also uses the background gradient regeneration strategy and has a similar 

framework as the method described in Section 1.2.1. However, this method has a 

much faster speed and uses fewer input images. In addition, since DNN can 

reconstruct images without handcrafted priors, it shows better performance 

compared to conventional optimization methods. To summarize, the main 

contributions of this method, which will be further described in Chapter 4, are as 

follows: 

1.  We propose a novel deep learning-based framework to solve the ill-posed 

reflection removal problem. Unlike the traditional DNN-based methods, this 

approach has no requirement on the properties of the reflection image such as 

blurry [7, 8, 25], weak intensity [10] or double-reflected [26]. 

2.  Rather than using the LF EPI for estimating the depths of strong gradients, a 

CNN is trained to achieve the task. As different from the traditional deep 

learning depth estimation methods, the proposed CNN directly generates the 

depths of the image edges based on their disparities using an unsupervised 

training approach. It is not affected by the depth ambiguity due to the 

superimposition of the background and reflection images with different depths. 

In addition, it does not require the ground truth depth maps which can be difficult 

to obtain in practice. 



9 

3.  We use a Wasserstein Generative Adversarial Network (WGAN) to regenerate 

the lost background edges due to the initial aggressive reflection removal process. 

Benefited from the jointly trained adversarial term, WGAN can regenerate the 

background edges which closely follow the distribution of the ground truth. 

4.  Instead of using the traditional optimization method, which is time-consuming, 

a CNN is trained to extract the background image from the original one guided 

by its edges. By having the three major functional blocks, edge depth estimation, 

background edge regeneration, and background image extraction, implemented 

using the deep learning approaches, the proposed algorithm can achieve more 

than 1,000 times improvement in terms of computation speed over the traditional 

optimization approaches when implementing with GPUs. 

1.2.3. Deep Learning Based Single-Image Reflection Removal Using A 

Two-Stage Background Recovery Process 

In practice, we often need to deal with the reflection removal problem given only 

a single image of the scene. Therefore, in the last part of this thesis, we propose a 

deep learning-based reflection removal method using a single input image. The 

proposed method is also based on the background gradient regeneration strategy. 

With only one image, the problem becomes far more unconstrained. Similar to other 

single-image reflection removal methods [7, 25], we also only consider the 

situations that the reflection is defocused and blurry. The proposed method has two 
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stages. At the first stage, it aggressively removes the reflection components for 

improving the reflection suppression ability. At the second stage, we regenerate 

those background gradients suppressed at the first stage. The experimental results 

show that this method can better remove the sharp reflection components compared 

to other single-image DNN-based methods. To summarize, the main contributions 

of this method, which will be further described in Chapter 5, are as follows: 

1.  We propose a novel two-stage single-image based reflection removal method 

using deep learning approaches. We investigate the perceptual feature difference 

between normal images and those with reflection. Then we propose to include a 

feature reduction term in the training of the network to aggressively remove the 

reflection components at the first stage. 

2.  We use the initially underestimated background to infer a reflection edge 

confidence map and use it to regenerate the background gradients suppressed at 

the first stage.  

3.  We propose a network trained with an adversarial term to extract the background 

image from the original one (with reflection) guided by its edges. 
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1.3. Organization of The Thesis 

This thesis consists of six chapters. After the introduction in Chapter 1, Chapter 

2 gives a literature review related to this thesis. Chapter 3 to 5 present three novel 

reflection removal algorithms based on the background gradient regeneration 

strategy as mentioned above. More specifically, Chapter 3 and Chapter 4 present 

the proposed multiple-image reflection removal algorithms based on the traditional 

optimization and deep learning approaches, respectively. Chapter 5 presents the 

proposed single-image reflection removal algorithm using a two-stage process. 

Chapter 6 draws the conclusion of this thesis and some possible future works along 

with this thesis are also presented. 
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Chapter 2.  

Literature Review 

 

 

In this chapter, we review and discuss several existing reflection removal 

methods ranging from using the traditional polarizing filters [27-29] to state-of-the-

art image processing approaches [8-12, 30, 31]. We also discuss the popular deep 

neural networks and their applications to reflection removal [7, 25]. The inputs of 

these methods are from a single image [7, 8, 25, 31] to multiple-view images [9-11] 

(including light field images [12]), or even polarized images [27-29] and flashed 

images [30].  

2.1. Polarizers for Reflection Removal 

2.1.1. Reducing Reflection Using Polarizers 

Placing a polarizing filter in front of the camera lens is the most traditional way 

to reduce reflection. The reflection exists when a light beam hits the boundary of 
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two media with different refractive indices as shown in Fig. 2.1. Some of the light 

is often reflected while the other penetrates through the boundary. When the light 

incident angle is equal to the Brewster angle [1], the reflected light will be linearly 

polarized. If a camera has a polarizer set at an angle perpendicular to the polarized 

reflected light, the light can be filtered out before reaching the sensor of the camera. 

Although many photographers make use of this approach, the resulting images often 

still contain many reflection residues. It is because in a practical situation there can 

be many light sources in a reflection scene; they can get to the camera at different 

incident angles. Thus, those not in the Brewster angle will not be polarized and 

filtered out by the polarizer.  

2.1.2. Signal Processing Approaches Using Multiple Polarized Images 

While a single polarizer often cannot totally solve the reflection problem, some 

approaches use multiple polarizers [27-29] to create constrained environments for 

 

 

Fig. 2.1. An illustration of how the reflection is generated when a light beam hits the 

boundary of two media with different refractive indices. 
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solving this problem. For instance, [27] presents an approach that can recover the 

background layer by classifying background and reflection components based on 

polarized images captured at two different angles. The classification of different 

layers is obtained by considering the weighted pixel-wise differences of these 

polarized images. An inversion process is then performed to reconstruct the final 

image. In [28], it is suggested that the contribution of reflection can be smoothly 

reduced when we gradually rotate the angle of a polarizer for planar surface 

reflection. They use a variable matte to describe this spatially varying contribution 

of reflection and use it to separate the background and reflection gradients. But for 

further improving the reflection removal performance, they still need to incorporate 

an interactive user guide to their optimization framework. On the other hand, an 

approach that only uses three polarized images is proposed in [29]. It exploits the 

physical property of polarization applied to a double-surfaced transparent medium 

and proposes a multiscale scheme to automatically separate background and 

reflection. Although [27-29] can remove reflection to some certain extents, they 

impose stringent requirements on the position and orientation of the camera when 

taking images, which is difficult to achieve in practice. Besides, the requirement of 

having a static background for completing the imaging process further limits their 

applications in practical scenarios. 
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2.2. Reflection Removal Using Flashlights 

In [30], an interesting approach which uses a flash and non-flash image pair for 

reflection removal is proposed. The approach uses a novel gradient coherence model 

to relate the gradient components in the flash and non-flash images. Based on this 

gradient coherence model, the reflection components can be removed using a 

gradient projection method. However, this method requires the hot spot and 

reflection components in both the flash and non-flash images to be located at 

different positions. It means that the flashlight must overwhelm all the reflection 

components, otherwise, some reflection components will stay at the same locations 

in both the flash and non-flash images. The hot spot in the flash image should also 

be small for avoiding overlapping with some reflection components. Such stringent 

requirements render this method not so practical.    

2.3. Single-Image Optimization Based Reflection 

Removal Methods 

In the past 20 years, much effort has been made in using image processing 

methods for reflection removal. These methods try to remove the reflection in an 

image by solving a blind image separation problem. It is well-known that the blind 

image separation problem is severely ill-posed since we need to solve two 

unknowns (background and reflection) based on one observation (the observed 
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image). For constraining this ill-posed problem, these methods usually incorporate 

various priors such as gradient sparsity, distribution and gradient independence in 

the optimization process [8, 26, 31].  

2.3.1. Gradient Independence Property 

It is well-known that strong gradients of natural images are sparse. It gives rise 

to the gradient independence property which indicates that the strong gradients of 

two natural images seldom overlap each other. Fig. 2.2 shows an example of the 

gradient independence property. We can see that, although the image in (a) is 

obtained by superimposing (d) on (b), the strong gradients of (b) and (d) are 

independent and at different positions, as shown in (c) and (e). Therefore, it provides 

us an important prior for solving the ill-posed reflection removal problem in the 

gradient domain. We can identify the background through its gradients instead of 

the other ambiguous background pixels. Combined with other priors such as the 

  

             (a)                       (b)                      (c)                        (d)                          (f)  

Fig. 2.2. One example to illustrate the gradient independence property [9]. (a) is obtained 

by superimposing (d) on (b). (c) and (f) are the strong gradients of (b) and (d) respectively.  
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known distributions of the gradients, many single-image based reflection removal 

methods [8, 26, 31] are developed.  

2.3.2. Gradient Distribution Assumptions 

[31] assumes the gradients of the background and reflection layers are sparse and 

follow a mixture of Laplacian distributions. Based on the gradient independence 

property, they manually label the gradients belonging to different layers for guiding 

the optimization process to converge. This method can reduce some reflection 

components. However, the required manually labeling process is time-consuming 

and the simple gradient distribution model is difficult to fit all natural images.  

Due to the observation that background images are often focused and reflection 

images are often defocused, [8] makes use of two different distributions to describe 

 

    Input                           background image          reflection image                   

Fig. 2.3. The histograms of the background and reflection image gradients [8]. 



18 

their gradients. Fig. 2.3 shows the histograms of the gradients of a pair of 

background and reflection images. We can see that the histogram of the focused 

background gradients is long-tailed, while the one for the blurry reflection is short-

tailed. It is because the sharp background has more large-valued gradients. 

Therefore, [8] defines a long-tailed distribution model below to describe the 

distribution of the background gradients, 

𝑃1(𝑥) =
1

𝑧
𝑚𝑎𝑥{𝑒−𝑥2/𝜎1

2
, 𝜖}, (2.1) 

where 𝑥 represents the gradient value, 𝑧 is a normalization factor and 𝜎1 is a small 

constant. A short-tailed distribution defined below is used to model the distribution 

of the reflection gradients, 

𝑃2(𝑥) =
1

2𝜋𝜎2
2 𝑒

−
𝑥2

𝜎2
2
, (2.2) 

where 𝜎1 is a small constant.  Compared to (2.2), (2.1) has a minimum boundary 𝜖 

so that 𝑃1(𝑥) will not drop so fast as 𝑃2(𝑥) in (2.2), which leads the long tail in 

𝑃1(𝑥). The different gradient distributions provide us an important hint to separate 

the background and reflection. Similar to [31], these simple distributions are 

difficult to fit the huge variety of natural scenes, but they inspire the recent single-

image deep-learning based approaches [7, 25] to distinguish the background and 

reflection components using DNN. 
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2.3.3. Reflection Ghosting Cues 

Many reflection problems are generated when imaging through a glass. In [26], 

it is observed that light rays may be partially reflected by both the inner-side and 

far-side of thick glass. It proposes a ghost cue that uses a double-impulse 

convolutional kernel to model this double-reflection effect. An example of the 

ghosting effect is shown in Fig. 2.4. We can see in the figure that a light ray of the 

reflection object is reflected twice by both the inner-side and far-side of the glass. 

They form two reflections 𝑅1  and 𝑅2  respectively, where 𝑅2  is the shifted and 

attenuated version of 𝑅1. This ghosting effect can be mathematically obtained by a 

double impulse convolution process on 𝑅1 . Based on the ghosting effect of the 

reflection image, [26] proposes an optimization method to separate the background 

 

(a)                                                                    (b)  

Fig. 2.4. The formation of the ghosting effect [26]. (a) Light rays from the reflection object 

are partially reflected both by the inner-side and far-side of the glass, which results in two 

reflection 𝑅1 and 𝑅2. 𝑅2 is the shifted and attenuated version of 𝑅1. (b) The captured image 

with the ghosting effect.  
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and reflection images. However, as indicated in [26], not all glasses are so thick to 

produce an obvious ghosting effect. Furthermore, when the photographer is far from 

the glass, the ghost effect can be very weak and invisible.    

2.4. Multiple-Image Optimization-Based Reflection 

Removal Methods  

As it is very difficult to solve the severely ill-posed reflection removal problem 

using only one image, researchers proposed to capture more images of the scene at 

different angles or different times to provide more information for reflection 

removal [9-12, 32]. These methods assume the background and reflection have 

distinct properties in these images and utilize these properties for their separation.  

2.4.1. Using the 2D Homography  

It is often the case that the background and reflection scenes are at different 

distances from the camera. If we have multiple views of the scene, we can register 

the background in different views using a homography (assume the background is 

planar) while the reflection will be misaligned. Based on this idea, [9] uses the 

differences in 2D homographies of the background and reflection to achieve their 

separation. One example is shown in Fig. 2.5. When combining the vectorized 

registered images into a matrix, we can find that the background components appear 
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to be smooth (since all views are similar). The misaligned reflection components 

appear to have relatively large variations in pixel values across views. Then when 

applying a low-rank decomposition to the matrix, the background part which is 

smooth will reside in the low-rank part. The misaligned reflection components will 

be separated from the background components and reside in the residual part. 

However, this method is only suitable for planar backgrounds. For a non-planar 

background, some background components will also be misaligned and removed 

since they cannot be registered by a single homography. Another problem of this 

method is that the reflection features covered on the background image can 

negatively influence the estimation of the background homography. The accuracy 

of the estimated background homography is always in doubt.  

 
           (a)                               (b)                               (c) 

Fig. 2.5. A reflection misalignment example [9]. (a) A planar scene with reflection in two 

views. (b) The aligned background after background planar transformation. (c) The 

misaligned reflection.  
  

 



22 

2.4.2. Using SIFT Flow 

The subtle differences of the image components in different views can be also 

described by the SIFT flow [33]. In [10], the SIFT flow is used to register the 

dominant background components. The authors assume that the background is 

dominant while the weak reflection edges may not be found in every view. 

Therefore, the SIFT flow can show high registration accuracy for the background 

components but low registration accuracy for the reflection components. The 

pipeline of a reflection removal example [10] is shown in Fig. 2.6. We can see in 

the figure that the SIFT flow can well register the strong background edges. On the 

contrary, the SIFT flow fails to register the weak reflection edges. Based on this 

observation, the background and reflection edges can be distinguished according to 

 

Fig. 2.6. The flow chart of the method in [10].  
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their alignment extents. After obtaining the background edges in different views, 

this method reconstructs the background images in different views by several 

regularization processes. However, this method requires reflection edges to be weak 

and not appear in every view. If the reflection is also strong, this method tends to 

leave reflection residuals in the background result. 

2.4.3. Using Optical Flow  

 When taking an image sequence by a camera with a slight motion, the 

background and reflection components often appear different attributes in the image 

sequence which can be made use of to facilitate their separation. To register the 

changes in the background and reflection components across images, optical flows 

are adopted in [11]. However, as mentioned in [10], the measured optical flow of 

the background can have very poor accuracy due to the interference of the reflection. 

Therefore, this method requires a very good initialization to guide the optimization 

 

Fig. 2.7. The flow chart of the method in [11]. The method mainly consists of two steps: 

the initialization and iterative reconstruction.  
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process to correctly converge. Fig. 2.7 shows the pipeline of this method. In [11], 

the optical flows are initialized with the two most dominant homographies estimated 

from the image edges of different views (due to the motion of the camera). However, 

as mentioned before, a homography can only well register a planar scene. It will 

lead to huge mistakes when applying to a non-planar scene. Moreover, because there 

are many variables need to be simultaneously regularized during the optimization 

process, a wrongly initialized variable can let the estimations of other variables to 

converge to wrong local minima. 

2.4.4. Separating Background Components Using Light Field Images   

Recently, light field (LF) images are also used for reflection removal [12]. Using 

a light field camera, we can capture multiple images of the scene in a single shot. 

Therefore, this method is also suitable for dynamic scenes. The method in [12] 

assumes the background and reflection layers have distinct depth ranges. Therefore, 

a fixed threshold is used to separate the background and reflection components 

based on their depths. As the method is designed based on the Lytro Illum LF 

camera, one of the image layers must be within 1.5 meters to the camera and the 

other is not. Another strict requirement of this method is that the reflecting surface 

must be perpendicular to the camera. As the depth ranges of the background and 

reflection are different for various natural scenes, one pre-determined and fixed 

depth threshold is not possible to correctly separate the background and reflection 
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in all situations. The requirement on the camera orientation is also not practical since 

it introduces great limitation to the photography style. 

2.5. Deep Convolutional Neural Networks and Its 

Application for Reflection Removal 

2.5.1. Deep Convolutional Neural Networks 

The concept of the convolutional neural network was firstly proposed to 

recognize the handwritten ZIP codes [34] and later for classifying other various 

objects such as hand-written digits in MNIST [35]. However, at that stage, the 

performance of CNN still fell behind other classification methods such as Support 

Vector Machine (SVM) [36]. The main reasons are that the size of the training 

dataset was not large enough, and the computational power was also not sufficient 

to train a deep CNN. The situation however changed dramatically in the first decade 

of the 21st century. The availability of very large training datasets and advanced 

GPUs with powerful parallel computational ability made possible the training of 

deep CNNs. Finally, the capability of CNN was widely recognized at the ILSVRC 

2012 competition where the AlexNet [3] was proposed. The network was trained on 

the huge dataset ImageNet with 1.2 million images and won the competition. Other 

layer architectures such as ReLU [37] and training strategy Dropout [38] were also 

used for further improving the network performance. After this milestone, deep 
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CNN was adopted in many other areas, such as object detection [39-45], object 

segmentation [46-50], motion estimation [51-53], etc. 

Recently, CNN is also used in solving inverse problems such as super-resolution 

[54, 55] and denoising [20, 21]. It is because CNN has a strong ability to learn the 

mapping from the input images to the ground truth images. Furthermore, advanced 

CNN structures which are originally used for other applications, such as the skip 

connections for object classification [4] and image segmentation [48], can also be 

modified and used for solving inverse problems [20, 21].  

2.5.2. Generative Adversarial Networks 

Generative adversarial networks (GANs) recently attract much attention and are 

intensively studied by researchers, although the first GAN (DCGAN [56]) for 

producing novel image samples was only proposed in 2016. DCGAN can generate 

novel images following specific distributions. It contains a generator 𝐺  and a 

discriminator 𝐷. The generator tries to produce fake samples by minimizing a cross-

entropy loss function (2.3) as follows:  

                         𝔼𝑥~𝑃𝑟
[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑥~𝑃𝑔

[𝑙𝑜𝑔(1 − 𝐷(𝑥))]                            (2.3) 

where 𝑥 is the input, 𝑃𝑟 represents the distribution of real samples and 𝑃𝑔 represents 

the distribution of fake samples produced by the generator. The discriminator is 

jointly trained to distinguish the fake samples from the real samples by maximizing 
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the loss function (2.3). When the loss function is minimized, the generator can 

produce fake samples following the distribution of the real samples which cannot 

be distinguished by the discriminator. 

However, the training of DCGAN with the loss function (2.3) is unstable and 

sometimes even does not converge. It is because when the probability density 

functions 𝑃𝑟 and 𝑃𝑔 overlap very slightly or even do not overlap, the gradients of the 

loss function (2.3) will be close to zero. Such a situation often happens at the 

beginning of the training when the distribution of the fake samples deviates a lot 

from the real samples [57]. Therefore, [57] proposes using the Wasserstein distance 

conditioned by the infimum of the joint distribution of 𝑃𝑟  and 𝑃𝑔  in their loss 

function as follows: 

                             𝔼𝑥∈𝑃𝑟
[𝐷(𝑥)] − 𝔼𝑥∈𝑃𝑔

[𝐷(𝐺(𝑧))]                                       (2.4) 

It also requires the clip of the gradients of the discriminator for fulfilling the 

requirement of Lipschitz continuity [57] or adding a gradient regularization term 

[58]. The advantage of using the Wasserstein distance is that even when  𝑃𝑟 and 𝑃𝑔 

have no overlap region, the loss function shows smooth changes which can still 

provide valid gradients. Therefore, the network can be easier to be trained. Also for 

conquering the gradient vanishing problem of DCGAN, [59] proposes the Boundary 

Equilibrium GAN (BEGAN) which also uses the Wasserstein distance but is 

conditioned by the infimum of the joint distribution of the discriminator responses 
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of real and fake samples. It further includes an equilibrium to control the trade-off 

between the reality and variation of the generated data. In [60], the Least Square 

GAN (LSGAN) is proposed. It uses the least square function instead of the cross-

entropy loss function for avoiding the gradient saturation problem. Such 

modifications in WGAN, BEGAN and LSGAN largely improve the training speed 

and stability over the original DCGAN, which further promote the use of GAN in 

different applications. For instance, GAN is also applied for solving the inverse 

problems due to its ability to promote the perceptual quality of the inferred results 

[23, 61-63]. It is because the adversarial term of GAN can act as a trainable prior 

that enforces the results to follow the distribution of ground truth samples. The 

results can usually show sharper edges and higher perceptual quality. 

 

2.5.3. Reflection Removal Based on Deep Neural Networks 

Recently, deep neural networks are also used for solving the reflection removal 

problem [7, 25, 64]. These methods claim to be able to remove reflection using a 

single image. The basic idea of these methods is inspired by [8], which assumes the 

background is focused and the reflection is defocused. Therefore, the reflection 

becomes blurry and has a different distribution from the background image. The 
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sharp background can be identified by a CNN. The pipeline of the method in [7] is 

shown in Fig. 2.8. The method firstly uses a CNN to identify the sharp background 

edges and subsequently uses another CNN to reconstruct the background. Similar 

to [7], [25] tries to distinguish the sharp background components via minimizing the 

VGG perceptual feature [65] distance between the reconstructed background and 

sharp natural images. Because the perceptual features of sharp and blurry images 

are different, this process can drop the blurry components and only keep the sharp 

components in the image. It also includes an adversarial term inspired by GAN to 

further improve the fidelity of the results. Another attempt of reflection removal 

using DNN is reported in [64]. The approach first removes the blurry reflection 

components using a CNN, then it sends the estimated background image to another 

network for obtaining a better reflection image. Lastly, this better reflection image 

is fed to the third network to produce the final background image. However, all 

these methods are only suitable for the situations that the reflection is defocused. 

When taking pictures with a small aperture, we can find both the background and 

 

 

Fig. 2.8. The pipeline of the method [7]. This method first estimates the sharp background 

edges, then reconstructs the background images from its edges.  
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reflection are focused and show sharp edges. Thus, this blurry reflection constraint 

is not general for all the photography settings. Moreover, even the reflection is out-

of-focus, some reflection edges can still have high gradient values. Those high 

gradient edges can be mistakenly recognized as the background components and 

produce reflection residuals in the final results.   

 

2.5.4. Training Dataset Synthesization 

To train and test the DNN-based algorithms, it is required to have a large set of 

images with reflections and their background ground truths. Although it is possible 

to obtain such images and labels using some optical approaches (such as imaging 

with and without a glass) [25, 66] , it is difficult to obtain many image pairs since 

the imaging process is very labor-intensive and the scenes have to be static. 

Therefore, current methods use synthesized images to train their networks [7, 25, 

64]. Their synthetization approaches are very similar. In general, they firstly 

randomly pick two images from a clean image dataset as background and reflection 

images, and add them together to synthesize an image with reflection. Before the 

addition, the reflection image is blurred by a Gaussian kernel for simulating the 

defocused effect and then its intensity will be attenuated by reducing its mean value. 

Finally, the pixel values which are above the image range after the addition will be 

clipped. Using such a synthetization process, researchers can produce sufficient data 

to train their deep neural networks. 
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2.6. Summary 

In this chapter, we reviewed and discussed the principles as well as the 

shortcomings of the traditional approaches using the polarizing filter and state-of-

the-art image processing methods for reflection removal. We also reviewed some 

basic features of CNN and GAN, which are used in our proposed DNN-based 

reflection removal methods in Chapter 4 and 5.  

The main shortcomings of the methods using polarizing filters are they have 

some stringent requirements on the camera position, orientation and the background 

environment, which are difficult to achieve in practice. For those single-image 

optimization-based image processing methods, they remove the reflection using 

handcrafted priors, such as gradient sparsity, gradient independence, and gradient 

distributions. Although they may work in some specific situations such as when the 

reflection is defocused or the glass is thick, their results can be erroneous in other 

situations. It is because the handcrafted features cannot well fit the huge variety of 

natural images and photography situations. For the multiple-image optimization-

based methods, they exploit the differences between the background and reflection 

in homographies and motion which can be obtained when multiple images of the 

scene are available. However, the models adopted usually can only work in some 

specific scenarios. They can be erroneous due to the ambiguity introduced by the 
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superimposition of the background and reflection. They are also not suitable for 

dynamic scenes since the multiple images are often captured sequentially. For 

solving this problem, LF based method was recently proposed since multiple views 

of the scene can be captured in one shot. However, the existing LF approach requires 

the background and reflection to be in specific depth ranges which limits its 

application. As to the DNN based reflection removal methods, the current 

approaches can only work for the images with a focused background and a 

defocused reflection. In fact, even the reflection is defocused, some reflection edges 

can still have high gradient values. They will be mistakenly recognized as the 

background components and kept in the final results.     

For better solving the reflection removal problem, we propose three novel 

algorithms which will be described in detail in the following chapters. 
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Chapter 3.  

Robust Reflection Removal Based on 

Light Field Imaging 

(This chapter is extracted from my paper [67]: Tingtian Li, Daniel P.K. Lun, Yuk-

Hee Chan, and Budianto, “Robust reflection removal based on light field imaging”, 

IEEE Transactions on Image processing, vol. 28, pp. 1798-1812, 2019.) 

 

 

In this chapter, we propose a novel reflection removal method based on the 

background gradient regeneration strategy using light field (LF) images. For the 

proposed algorithm, we first identify the depth of the strong gradient points of the 

background and reflection using the epipolar plane image (EPI) extracted from the 

input LF image. Following the background gradient regeneration strategy, only 

those strong gradient points with distinct depth values will be kept and those of 

which the depth values are difficult to classify will be removed. They are then 

regenerated using an iterative estimation process based on their relationship with 

those strong gradient points that have been classified. The initial estimated 

background image is then refined using the estimated background gradients. 
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Experimental results show that the proposed reflection removal algorithm achieves 

superior performance over the traditional approaches both qualitatively and 

quantitatively. They verify the robustness of the proposed algorithm when working 

with images captured from real-life scenes.  

 

3.1. Introduction 

It is important to remove the unwanted reflection of an image since it does not 

only affect the visibility of the background but also introduces ambiguity that 

perturbs the subsequent analysis on the image. As mentioned before, many 

optimization-based approaches have been developed and various priors are adopted 

for solving this unconstrained problem. Most priors that the previous methods 

adopted are gradient based, such as gradient sparsity and gradient independence [9-

11, 31]. The former one is a well-known property of natural images and the latter 

one is based on the observation that the strong gradients of the background image 

𝐼𝐵 and reflection image 𝐼𝑅 are normally non-overlapped. However, the effect of just 

adding these priors in the optimization is limited due to the huge variety of natural 

images. Researchers tend to utilize multiple images of the scene to acquire more 

information for removing the reflections. The multiple-image based methods, in 

general, have better performance than the single-image ones. However, these 

multiple-image methods all have strong assumptions on the property of the 
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reflection image and/or the imaging environment as discussed in Chapter 2. Besides, 

all of them require multiple shots of the target scene hence are not suitable for 

dynamic applications where either the background or reflection objects are moving.  

Different from traditional cameras, LF cameras can capture multiple views of a 

scene in one exposure. Hence, they can be used in dynamic applications. Thanks to 

the commercialization efforts of Lytro and Raytrix, nowadays people can easily 

acquire an LF camera with a reasonable cost. Four-dimensional (4D) LF imaging 

[17] has demonstrated its power in solving various problems like refocusing [18, 68, 

69], depth estimation [70-73] and super-resolution imaging [73, 74] in the computer 

vision area. Quite recently, LF cameras are also used to solve the reflection removal 

problem [12]. By assuming the background and reflection are at two absolutely 

different distances from the camera, the method in [12] applies a fixed threshold to 

separate the background and reflection pixels with respect to their depths. Such 

assumption, however, is not valid in many practical situations, since the background 

and reflection can share the same depth range. In this chapter, we first explore the 

LF EPI [73, 75] and show that its strong gradient points will be preserved after 

adding to the EPI of another LF image. Such property lets us easily identify the 

strong gradient points of the background and reflection images, and we can further 

use them to give a rough estimation of each image layer by a sparse regularization 

process. To solve the problem that the background and reflection edges can share 

the same depth range, we propose a sandwich layer model that allows the 
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background and reflection images to have components sharing the same depth range. 

Since the strong gradient points in this depth range are difficult to be classified as 

belonging to the background or reflection, they are removed such that the initial 

estimates of the background and reflection will have some components missing. We 

then propose a method which gradually refines the initial background estimate by 

detecting and recovering the gradients in the shared depth range. It is achieved based 

on an observation that the initial background estimate and its residue can provide 

information on the positions of the missing gradients. It gives us the clue to recover 

these gradients for refining the initial background estimate.  

 

3.2. Using EPI Gradient in Separating Background and 

Reflection 

In this section, we first make a brief review of LF EPI and explain how its 

gradients can be used in the estimation of the disparity map for the problem of 

reflection removal.  
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3.2.1. Layer Classification Based on The EPI Strong Gradient Points 

Although there are several approaches to represent the light field, the 4D one 

which uses two planes to represent the viewpoints and image plane, as shown in Fig. 

3.1, is the most popular [17]. In the figure, the planes Π and Ω are the viewpoint 

plane and image plane respectively. Here we use the coordinate systems (𝑠, 𝑡) for 

Π and (𝑥, 𝑦) for Ω. Therefore, we can describe each light ray by a 4D coordinate 

system (𝑠, 𝑡, 𝑥, 𝑦). If we fix 𝑡 and 𝑦 as 𝑡∗ and 𝑦∗, and let s and x vary, we will get 

the so-called EPI slice Σy∗,𝑡∗ . The slope reciprocal 𝛥𝑥/𝛥𝑠  at Σy∗,𝑡∗(𝑥, 𝑠)  can 

represent the disparity at point (𝑥, 𝑦∗) for the view (𝑠, 𝑡∗) [73, 76]. Hence the EPI 

slope is often used to evaluate the disparity, and in turn, the depth of the scene. The 

slope directions can be obtained using the structure tensor [73, 77, 78], which 

 

Fig. 3.1. The 4D LF model. A light ray can be described using the 4D coordinates (𝑠, 𝑡, 𝑥, 𝑦). 

 



38 

determines the gradient direction by finding the eigenvectors where the direction 

the magnitude changes most rapidly or most slowly. The structure tensor for EPI 

Σy∗,𝑡∗ can be described as 

𝐽Σy∗,𝑡∗ (𝑥, 𝑠) = [
𝐺𝜎 ∗ (𝜕(𝑥)𝜕(𝑥)) 𝐺𝜎 ∗ (𝜕(𝑥)𝜕(𝑠))

𝐺𝜎 ∗ (𝜕(𝑥)𝜕(𝑠)) 𝐺𝜎 ∗ (𝜕(𝑠)𝜕(𝑠))
] = [

𝐽𝑥𝑥 𝐽𝑥𝑠

𝐽𝑥𝑠 𝐽𝑠𝑠
], (3.1) 

where  𝜕(𝑥)  and 𝜕(𝑠)  represent the gradient components in x and s directions 

respectively at point (𝑥, 𝑠) in EPI Σy∗,𝑡∗ . 𝐺𝜎  is a Gaussian kernel with variance 𝜎 

and the operation symbol ‘∗’ denotes convolution. The disparity values for all 𝑥 can 

be generated by [77], 

𝑃Σy∗,𝑡∗ (𝑥) =
Δ𝑥

Δ𝑠
= tan 𝜃, (3.2) 

where 

𝜃 =
1

2
arctan (

𝐽𝑠𝑠−𝐽𝑥𝑥

2𝐽𝑥𝑠
). (3.3) 

A reliability measure can also be generated as follows: 

𝑟Σy∗,𝑡∗ (𝑥) =
(𝐽𝑠𝑠−𝐽𝑥𝑥)2+4(𝐽𝑠𝑥)2

(𝐽𝑠𝑠+𝐽𝑥𝑥)2
. (3.4) 

A disparity map 𝑃Σ𝑦,𝑡∗ (𝑥) and reliability map 𝑟Σy,𝑡∗ (𝑥) based on the EPIs in the 

horizontal direction can then be obtained by repeating the above for all y. We can 
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also obtain a disparity map 𝑃Σ𝑥,𝑠∗ (𝑦) and reliability map 𝑟Σ𝑥,𝑠∗ (𝑦) based on the EPIs 

in the vertical direction using a similar approach. Then the final disparity map is 

generated by selecting the disparity value with higher reliability. That is, 

𝑃(𝑥, 𝑦) = {
𝑃Σ𝑦,𝑡∗ (𝑥) 𝑖𝑓 𝑟Σy,𝑡∗ (𝑥) > 𝑟Σx,𝑠∗ (𝑦)

𝑃Σ𝑥,𝑠∗ (𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (3.5) 

In practice, if the reliability value is too small, 𝑃(𝑥, 𝑦) can be inaccurate and will 

  

                               (a)                                                                 (d) 

  

                              (b)                                                                  (e) 

  

                              (c)                                                                   (g) 

Fig. 3.2. An illustration of the relationship of the strong gradient points in the original and 

combined EPIs. (a) An EPI of an LF image. Two strong gradient points P and Q are noted. (b) 

An EPI of another LF image. Two strong gradient points R and S are noted. (c) The combined 

EPI. The numbers represent the pixel magnitudes after combination. It can be seen that all 

strong gradient points in (a) and (b) locate at different positions with the same values as before. 

(d), (e) and (g)  are real cases for (a), (b) and (g) respectively. 
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simply be set as invalid. One of the situations that it will happen is when the pixel 

(𝑥, 𝑦) has no or very weak gradient. Hence, 𝑃(𝑥, 𝑦) can also be considered as the 

disparity map at the strong gradient points.  

For the problem of reflection removal, a reflection image is superimposed on the 

background image. When the scene is captured by an LF camera, the resulting EPIs 

will also be a superimposition of the EPIs of both images. Since these images can 

have different depths, we can find the resulting EPI also has slopes of different 

angles, and they cross each other randomly in the EPI. Particularly in the regions 

where they cross each other, it is difficult to determine the slope of the EPI pixels 

and further classify them into the background or reflection layer. To deal with the 

problem, we consider again the gradient of the EPIs, of which the disparity map is 

derived in (3.1) to (3.5). In particular, we investigate the behavior of the strong and 

weak gradient points of the background and reflection as follows:  

Case 1: Strong gradient points of both layers 

This case is illustrated in Fig. 3.2(a) to (c). In the figure, both EPIs have two 

strong gradient points. When the EPIs are added up, the strong gradient points do 

not overlap each other and preserve the same values as shown in Fig. 3.2(c). Such a 

phenomenon is not coincident. It is known that the strong gradient points of an EPI 

correspond to the strong gradient points of the image. Due to the gradient 

independence assumption [9, 31], it is rare to have strong gradient points of two 
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uncorrelated images overlapped each other. Consequently, we can also assume that 

the EPI strong gradient points of two uncorrelated images will be at different 

positions in the combined EPI. Besides, as shown in Fig. 3.2(c), the gradient value 

will remain the same wherever a strong gradient point locates in the combined EPI. 

A real such case is also illustrated in Fig. 3.2(e) to (g). We can find the edge 

directions are barely changed when two EPI are overlapped. Consequently, we can 

easily estimate the disparities at these strong EPI gradient points. An example is 

shown in Fig. 3.3. In the example, two LF images are added together with the 

weightings of 0.6 and 0.4 respectively. The central view of the resulting LF image 

      

                            (a)                                     (b) 

       

                             (c)                                     (d) 

Fig. 3.3. An example of a disparity map generated from the strong gradient points in the 

combined EPI. (a) An LF image with all views overlapped. (b) Another LF image with all 

views overlapped. The extent of blurring represents the amount of disparity. We can see 

the disparity of (b) is larger than (a). (c) The central view of an LF image generated by 

combining (a) and (b) with the weightings of 0.6 and 0.4 respectively. (d) The estimated 

disparity map based on the strong gradient points of the EPI of (c). The red and blue color 

means large and small disparities respectively. Since in most cases they are not overlapped, 

they can be easily identified. 
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is shown in Fig. 3.3(c). The EPIs of the resulting LF image is then generated. Based 

on the EPIs, we first estimate the disparity map of the image in Fig. 3.3(c) using the 

structure tensor method in (3.1) to (3.5) and keep only those at the strong gradient 

points. It can be seen in Fig. 3.3(d) that the disparities of the two layers at the strong 

gradient points can be easily identified as they are at different positions.  

Case 2: Weak gradient points of both layers 

For the weak EPI gradient points of both layers, they may or may not overlap 

with the EPI gradient points of the other layer. For those that do not overlap with 

another EPI gradient point, the disparity at those points can still be estimated as 

usual. In case they overlap with another EPI gradient point, their correct gradient 

value can no longer be recovered. The estimated disparity value will appear as 

noises in the disparity map and will be regulated in the later optimization process.  

To summarize, as the first step of our proposed algorithm, we make use of the 

structure tensor method in (3.1) to (3.5) to generate a disparity map in the EPI 

domain. Since the gradient points in the EPI domain have a close relationship with 

the gradient points in the spatial domain, the resulting disparity map will contain 

accurate disparity values at the strong gradient points of both the background and 
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reflection images and at the weak gradient points in case they do not overlap with 

other gradient points. We also expect that there will be noises caused by the 

overlapped weak gradient points of both images. 

3.2.2. The Sandwich Model and Initial Image Reconstruction  

If the background and reflection have absolutely different depth ranges, the 

disparity map generated in Section 3.2.1 should be sufficient to classify most of the 

strong gradient points; and we can use these gradients to reconstruct the background 

and reflection images. Unfortunately, it is not uncommon in many practical 

situations that some components of the background and reflection share a common 

depth range. It means that their disparities can be very similar. For this reason, we 

 

Fig. 3.4. The new sandwich model. In this model. Component group I only belongs to layer 

1 and component group III only belongs to layer 2 (layer 1 is assumed to be relatively 

closer to the camera). Both layers share component group II.    
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propose a new sandwich model, as shown in Fig. 3.4, to take care of such situation. 

As shown in the figure, the model has one shared depth range for both layers. 

Assume that we can find two thresholds, 𝐾1 and 𝐾2, which are at the boundaries of 

component groups I and II, as well as groups II and III, respectively. Then, all strong 

gradient points with disparities smaller than 𝐾1 will belong to layer 1, and those 

greater than 𝐾2 will belong to layer 2. For those that are greater than 𝐾1 but smaller 

than 𝐾2, it is difficult to classify them by only their disparities due to the reasons 

mentioned above. We will discuss in the next section how these components can be 

classified by exploring their relationships with the components in groups I and III.  

To find the thresholds 𝐾1 and 𝐾2, we apply the K-means clustering method [79] 

(where K=2 in this case) on the estimated disparity values at all edges. We denote 

the centers of the two clusters as  𝐶1  and 𝐶2  (𝐶1 < 𝐶2 ). Then, we set the two 

thresholds as 

  𝐾1 = 𝐶1 + 𝜎 ∙ (𝐶2 − 𝐶1);  

(3.6) 

𝐾2 = 𝐶2 − 𝜎 ∙ (𝐶2 − 𝐶1), 

where 𝜎  is a parameter to control the purity of the classification result. In our 

experiment, we set 𝜎 = 0.2 , which is a conservative choice to ensure that the 

classification has a high true positive rate. Then, we only need to take care of those 
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misclassified gradients. Based on 𝐾1  and 𝐾2 ,  two initial gradient masks are 

obtained as follows: 

𝐸𝐵
0 = {𝑃(𝑥, 𝑦) > 𝐾2 , ∀𝑥, ∀𝑦 };  

(3.7) 

𝐸𝑅
0 = {𝑃(𝑥, 𝑦) < 𝐾1 , ∀𝑥, ∀𝑦 }, 

where 𝑃(𝑥, 𝑦) is defined in (3.5). 𝐸𝐵
0, 𝐸𝑅

0 ∈ {0,1}  are the two initial gradient masks 

for the background and reflection layers, respectively. Without loss of generality, 

we assume that the background layer is the closer layer (otherwise, only a change 

of symbols is required). Fig. 3.5(i) shows an example of the initial gradient masks. 

It can be seen in Fig. 3.5(i)(b) that the locations of some of the background gradients 

 

Fig. 3.5(i). An example of 𝐸𝐵
0 and 𝐸𝑅

0. We can see that 𝐸𝐵
0 and 𝐸𝑅

0 can roughly separate the 

background and reflection gradient components. 

 

Fig. 3.5(ii). The initial separation results. All the results are normalized by (3.10) for the 

ease of visualization. (a) The original image 𝐼. (b) The initial estimate of the background 

of the background layer 𝐼𝐵
0

 . (c) The residue of the initial background estimate 𝐼
𝐵
0 = 𝐼 − 𝐼𝐵

0. 

(d) The initial estimate of the reflection layer 𝐼𝑅
0 . (e) The residue of initial reflection 

estimate 𝐼
𝑅
0 = 𝐼 − 𝐼𝑅

0 . We can see that the components of 𝐼𝐵
0  almost only belong to the 

background layer and its residue 𝐼
𝐵
0 does not only contain the reflection components but 

also the missing background components. And similarly, 𝐼𝑅
0  loses some reflection 

components which can be found in its residue 𝐼
𝑅
0. 
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are correctly indicated in 𝐸𝐵
0 . However, we can also find that some background 

gradients are missed out in 𝐸𝐵
0 . Based on the masks, we can reconstruct the 

background and reflection images in the gradient domain as follows:  

𝐼𝐵
0 = arg min

𝐼𝐵
0

𝐽 = ‖𝐷 ∗ 𝐼𝐵
0‖1 + ‖𝐷 ∗ 𝐼

𝐵
0‖

1
+ 𝜆‖𝐸𝐵

0 ∙ 𝐷 ∗ 𝐼
𝐵
0‖

1
+ 𝜆‖𝐸

𝐵
0 ∙ 𝐷 ∗ 𝐼𝐵

0‖
1
;                 

s.t. 𝐼
𝐵
0 = 𝐼 − 𝐼𝐵

0；𝐸
𝐵
0 = 𝟏 − 𝐸𝐵

0, 

(3.8) 

𝐼𝑅
0 = arg min

𝐼𝑅
0

𝐽 = ‖𝐷 ∗ 𝐼𝑅
0‖1 + ‖𝐷 ∗ 𝐼

𝑅
0‖

1
+ 𝜆‖𝐸𝑅

0 ∙ 𝐷 ∗ 𝐼𝑅
0‖1 + 𝜆‖𝐸

𝑅
0 ∙ 𝐷 ∗ 𝐼𝑅

0‖
1
; 

s.t. 𝐼
𝑅
0 = 𝐼 − 𝐼𝑅

0；𝐸
𝑅
0 = 𝟏 − 𝐸𝑅

0, 

(3.9) 

where 𝟏 refers to an all ‘1’ matrix, and 𝜆 is a constant. In (3.8) and (3.9), the initial 

estimates of the background and reflection image, i.e., 𝐼𝐵
0 and 𝐼𝑅

0, are obtained by 

minimizing the sum of a few sparsity priors in the gradient domain. This approach 

is based on the gradient sparsity assumption that the total gradient of the background 

(or reflection) should be sparser than that of the original image, which contains the 

sum of the background and reflection. Thus, when the estimate 𝐼𝐵
0  (or 𝐼𝑅

0 ) 

approaches the true background (or reflection), its total gradient should approach 

the minimum. The same is applied to their residues 𝐼
𝐵
0 = 𝐼 − 𝐼𝐵

0 and 𝐼
𝑅
0 = 𝐼 − 𝐼𝑅

0. In 

addition, based on the gradient independence assumption [9, 31], the total gradient 

of the background after multiplying with the gradient mask of the reflection should 

be small since their strong gradient points will not overlap. Thus, when the estimate 
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𝐼𝐵
0  (or 𝐼𝑅

0) approaches the true background (or reflection), its total gradient after 

multiplying with the mask of its residue, which approaches the true reflection (or 

background), should approach the minimum. In (3.8) and (3.9), 𝐷 ≡ 𝐷𝑖=1,…,5 

represents a set of derivative filter kernels such that 𝐷1 = 𝐷2
𝑇 = [1, −1] are the first-

order derivative filters in the horizontal and vertical directions, respectively; 𝐷3 =

𝐷4
𝑇 = [1, −2,1]  and 𝐷5 = 𝐷2 ∗ 𝐷1  are the second-order derivative filters in the 

horizontal, vertical and diagonal directions, respectively. The use of the second-

order filters is for rectifying the discontinuities in the gradient domain due to the 

rare situations in which the strong gradient points overlap each other. Here, (3.8) 

and (3.9) can be solved by the iteratively reweighted least squares (IRSL) method. 

Fig. 3.5(ii) shows an example of the initial separation results. For the ease of 

visualization, the biases of the resulting images are adjusted to the original biases as 

follows: 

𝐼𝑑𝑖𝑠𝑝𝑙𝑎𝑦 = 𝐼𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑚𝑒𝑎𝑛(𝐼𝑟𝑒𝑠𝑢𝑙𝑡) + 𝑚𝑒𝑎𝑛(𝐼) (3.10) 

As shown in Fig. 3.5(ii), almost all components of the initial background estimate 

belong to the background layer. However, many components are missing and can 

be found in its residue. The same is applied to the initial reflection estimate. To 

enhance the separation results, we develop a new method to detect and recover the 

missing components from the residues, which will be described in the next section. 
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3.3. Detect and Regenerate the Missing Background 

Gradients 

As mentioned above, there can be components of both the background and 

reflection layers sharing the same disparity range (i.e. component group II in Fig. 

3.4). These components are supposed to be removed from 𝐼𝐵
0  and 𝐼𝑅

0  since they 

cannot be accurately classified as belonging to the background or reflection. It can 

be seen in the initial estimation result (Fig. 3.5(ii)(b) and (d)) that large parts of 𝐼𝐵
0 

and 𝐼𝑅
0 are darkened. They are the parts which have been removed. To retrieve back 

these missing components, we have another observation about the gradients in the 

initial estimation. By comparing between 𝐼𝐵
0 and its residue 𝐼

𝐵
0 (such as Fig. 3.5(ii)(b) 

and (c)), we observe that although the background components in the shared depth 

range are supposed to be removed due to the conservative thresholds used in (3.7), 

the strong gradient points of the missing background components can still be 

visualized in 𝐼𝐵
0 (circled in Fig. 3.5(ii)(b)). It is due to the first two terms in (3.8) 

which promote the sparsity in the image. However, their magnitudes are rather small 

such that directly detecting them based on their magnitude can be erroneous. Note 

that both 𝐼𝐵
0  and 𝐼

𝐵
0  contain the strong gradients of the background’s missing 

components, although the ones in 𝐼
𝐵
0 are much clear. On the other hand, the strong 

gradients of the reflection image are less visualized in 𝐼𝐵
0. It is because the magnitude 

of the reflection is often much lower than the background as most semi-reflective 
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materials such as glass can only partially reflect the light projected onto it. So, for a 

particular spatial position (𝑥, 𝑦), if the gradients 𝐼𝐵
0(𝑥, 𝑦) and 𝐼

𝐵
0(𝑥, 𝑦) are the same, 

they likely belong to the background. Based on the same argument, if the gradients 

𝐼𝑅
0(𝑥, 𝑦) and 𝐼

𝐵
0(𝑥, 𝑦) are the same, they likely belong to the reflection. We will 

make use of this property to detect and recover the missing components in 𝐼𝐵
0. 

As mentioned above, directly detecting the gradients of the missing components 

in 𝐼𝐵
0  based on their weak magnitudes can be erroneous. Therefore, we suggest 

considering also the gradient directions. While there are several ways to detect the 

directions of gradients, we suggest considering the Histogram of Oriented Gradients 

(HOG) method [80]. HOG is a feature descriptor for object detection. It contains the 

weighted (according to the magnitude) distribution (histograms) of directions of 

gradients (oriented gradients) of an image cell normalized with the nearby cells 

within a block. It is suitable in this problem because HOG is invariant to the local 

illumination of the image and can measure the direction of gradients of small 

magnitude. The procedure is as follows. First, to avoid the disturbance from the very 

weak gradients whose orientations are very unstable, we only consider the strong 

gradients at some spatial position set 𝜑𝑡 = {(𝑥, 𝑦)||𝜕𝐵
𝑡 (𝑥, 𝑦)| > 𝜖} , where 

|𝜕𝐵
𝑡 (𝑥, 𝑦)| is the magnitude of the gradient of 𝐼𝐵

𝑡 (𝑥, 𝑦) at iteration t; and 𝜖 is a very 

small constant. Then, we compute the HOG feature vectors 𝐻𝐵
𝑡 , 𝐻�̅�

𝑡  and 𝐻𝑅
0 at each 

spatial positon in the set 𝜑𝑡of 𝐼𝐵
𝑡 , 𝐼�̅�

𝑡 = 𝐼 − 𝐼𝐵
𝑡  and 𝐼𝑅

0, respectively. For keeping the 

spatial resolution, we use a relatively small cell size of 3x3, and the block size is 
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2x2 as usual. Here, we use the UoCTTI variant [81, 82] of HOG of which the feature 

vector length for every pixel is 31. So, the size of every feature vector is ℎ × 𝑤 × 31, 

where ℎ  and 𝑤  are the height and width of the image. Then we measure the 

Euclidean distances of  𝐻𝐵
𝑡  and 𝐻�̅�

𝑡  as well as 𝐻𝑅
0 and 𝐻�̅�

𝑡  as follows: 

𝑈𝐵
𝑡 (𝑥, 𝑦) = ‖𝐻𝐵

𝑡 (𝑥, 𝑦) − 𝐻�̅�
𝑡 (𝑥, 𝑦)‖

2
 ; 

(3.11) 

 𝑈𝑅
𝑡 (𝑥, 𝑦) =  ‖𝐻𝑅

0(𝑥, 𝑦) − 𝐻�̅�
𝑡 (𝑥, 𝑦)‖

2
 , 

for all (𝑥, 𝑦) ∈ 𝜑𝑡 . 𝑈𝐵
𝑡  measures the similarity between the HOG in 𝐼𝐵

𝑡  and its 

residue 𝐼�̅�
𝑡 . If 𝑈𝐵

𝑡 (𝑥, 𝑦) is small, the gradient at (𝑥, 𝑦) of 𝐼𝐵
𝑡  and 𝐼�̅�

𝑡  should belong to 

the background as discussed above. 𝑈𝑅
𝑡 (𝑥, 𝑦) measures the similarity between the 

gradients in 𝐼𝑅
0 and 𝐼�̅�

𝑡 . Due to the conservative thresholds used in (3.6), 𝐼𝑅
0 contains 

mainly the components of the reflection layer. And 𝐼�̅�
𝑡  also has the components of 

the reflection layer. So, if 𝑈𝑅
𝑡 (𝑥, 𝑦) is small, it indicates that the gradient at (𝑥, 𝑦) of 

𝐼�̅�
𝑡  should belong to the reflection. Then, 𝑈𝐵

𝑡  at the same point (𝑥, 𝑦) should be large, 

since 𝐼𝐵
𝑡  should not have reflection components. Thus, 𝑈𝑅

𝑡  can be used to validate 

𝑈𝐵
𝑡  in the classification process. 

 To perform the classification, we borrow the ideas of the Markov Random Field 

(MRF) [83] and the K-nearest neighbors (KNN) matting [84] to formulate the 

following optimization function: 
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𝐿𝑡 = arg min
𝐿

 𝐹(𝐿) = ∑ (𝑈𝑝(𝐿𝑝) + 𝜆 ∑ 𝑉𝑝,𝑞(𝐿𝑝, 𝐿𝑞)

𝑞𝜖𝑆𝐾𝑁𝑁(𝑝)

) ,

𝑝𝜖𝜑𝑡

 (3.12) 

𝑈𝑝(𝐿𝑝) = 𝑈𝑅
𝑡 (𝑝)(1 − 𝐿𝑝) + 𝑈𝐵

𝑡 (𝑝)𝐿𝑝, (3.13) 

𝑉𝑝,𝑞(𝐿𝑝, 𝐿𝑞) = (1 − 𝑁 (‖𝜕�̅�
𝑡 (𝑝) − 𝜕�̅�

𝑡 (𝑞)‖
1

)) ∙ [𝐿𝑝 ≠ 𝐿𝑞], (3.14) 

where 𝜆 is a constant and the function 𝑁{𝑥} normalizes 𝑥 to between 0 to 1. The 

proposed energy function 𝐹 in (3.12) is defined so that its minimum corresponds to 

a good classification of the gradients in 𝐼�̅�
𝑡 . L represents the label set. 𝐿𝑝 denotes the 

label of the gradient at position 𝑝 in set 𝜑𝑡. It is set to 1 for the background gradient 

and 0 for the reflection gradient. The data term 𝑈𝑝(𝐿𝑝) penalizes the cost function 

if a wrong classification of 𝐿𝑝 is made. More specifically, if the gradient of 𝐼�̅�
𝑡  at 𝑝 

belongs to the background but is incorrectly classified as a reflection (i.e. 𝐿𝑝 is set 

to 0), 𝑈𝑝(𝐿𝑝) will have a large value since 𝑈𝑅
𝑡 (𝑝) is large in this case. On the other 

hand, if the gradient of 𝐼�̅�
𝑡  at 𝑝 belongs to the reflection but is incorrectly classified 

as background (i.e. 𝐿𝑝 is set to 1), 𝑈𝑝(𝐿𝑝) will also have a large value since 𝑈𝐵
𝑡 (𝑝) 

is large in this case.  

Similar to MRF, the data term 𝑈𝑝 is supplemented with a smoothness term 𝑉𝑝,𝑞 

in (3.12), which measures the smoothness of the gradients in 𝐼�̅�
𝑡 . It is observed that 

strong gradients, such as the edges of an object, are smooth in some orientation. 
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Adjacent gradients with similar orientation likely belong to the same object in the 

same layer. Thus, the smoothness term in (3.12) is designed such that it will be large 

and penalizes the cost function 𝐹 if neighboring gradients in 𝐼�̅�
𝑡 with similar 

orientations are assigned with different labels. In (3.14), the function [𝐿𝑝 ≠ 𝐿𝑞] =

1 if 𝐿𝑝 ≠ 𝐿𝑞; and 0 otherwise. Thus, the term 𝑉𝑝,𝑞  of two pixels 𝑝 and 𝑞 in 𝐼�̅�
𝑡  will 

be zero if they have the same label. Otherwise, 𝑉𝑝,𝑞 is evaluated based on the 1-norm 

difference of the gradients 𝜕�̅�
𝑡 . Note that 𝐹(𝐿)  in (3.12) is evaluated by 

accumulating 𝑉𝑝,𝑞 for all pixel pairs {𝑝, 𝑞} within the similarity-based KNN (SKNN) 

set of 𝑝, which is defined as the set of K nearest neighboring pixels (where K is 

chosen as 7) of 𝑝  measured by the similarity in gradient value and distance. 

Normally, all pixels within the SKNN set should have the same label due to the 

smoothness of object gradients. If a pixel 𝑞 within the set is wrongly classified, the 

classification of 𝑝 will still follow the majority in the set since 𝑉𝑝,𝑞 is small. In the 

situation that 𝑝 is wrongly classified such that it is different from most others in the 

set, a large sum of 𝑉𝑝,𝑞 will be generated. It penalizes the cost function and forces 

the label of 𝑝 to change.   

The optimization problem in (3.12) can be solved by the max-flow/min-cut 

method [85]. Finally, a mask based on 𝐿 is generated as follows: 

𝑆𝑡+1 = 𝜌{𝐿𝑡 = 1},   (3.15) 
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where 𝜌{𝑥} represents a morphological dilation operator with size 2x2 within the 

set 𝜑𝑡. It is used since we assume the neighboring gradients around the classified 

labels also likely belong to the same layer. Note that 𝑆𝑡 can be considered as a mask 

of the gradients that appear at the same positions of both 𝐼𝐵
𝑡  and its residue. It thus 

has included the gradients of the missing background components based on the 

argument discussed earlier. So, using 𝑆𝑡, we update the initial gradient masks as 

follows: 

𝐸𝐵
𝑡 = 𝐸𝐵

𝑡−1 ∪ 𝑆𝑡 ∪ 𝐸𝐵
0 ∩ (~𝐸𝑅

0);  (3.16) 

 𝐸𝑅
𝑡 = 𝐸�̅�

𝑡−1 ∩ (~𝑆𝑡) ∩ (~𝐸𝐵
0) ∪ 𝐸𝑅

0 , 

for 𝑡 > 0. 𝐸�̅�
𝑡  is defined in (3.8). Recall that 𝐸𝐵

0 is estimated with a conservatively 

selected disparity threshold. Most of the gradient points it covers belong to the 

background, although a lot of the background’s gradient points can be missing. To 

enhance 𝐸𝐵
0 , we firstly exclude those also covered by the reflection gradient mask 

𝐸𝑅
0. Then we add back those covered by 𝑆𝑡 to 𝐸𝐵

𝑡−1 in each iteration as shown in 

(3.16). With the improved estimation of 𝐼𝐵
𝑡  in each iteration, the estimation of 𝑆𝑡 

will also improve and in turn enhance the estimation of 𝐸𝐵
𝑡 . The design of 𝐸𝑅

𝑡  

follows a similar philosophy. The new gradient masks now include the information 

of the missing components. They can be used to refine the background estimate as 

follows:  
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𝐼𝐵
𝑡 = arg min

𝐼𝐵
𝑡

𝐽 = ‖𝐷 ∗ 𝐼𝐵
𝑡 ‖1 + ‖𝐷 ∗ 𝐼𝑅

𝑡 ‖1 + 𝜆1‖𝐸𝐵
𝑡 ∙ 𝐷 ∗ 𝐼𝑅

𝑡 ‖1 +

                            𝜆1‖𝐸𝑅
𝑡 ∙ 𝐷 ∗ 𝐼𝐵

𝑡 ‖1;     s.t. 𝐼𝑅
𝑡 = 𝐼�̅�

𝑡 = 𝐼 − 𝐼𝐵
𝑡 ; for 𝑡 > 0. 

(3.17) 

Note that unlike the existing approach which requires the optimization of a number 

of parameters simultaneously, there is only one optimization parameter 𝐼𝐵
𝑡  in (3.17) 

(we can find 𝐼𝑅
𝑡  by 𝐼𝑅

𝑡 = 𝐼�̅�
𝑡 = 𝐼 − 𝐼𝐵

𝑡  for 𝑡 > 0 ). It reduces the possibility that the 

optimization process falls into the wrong local minimum. Similar to (3.8), we use 

IRSL to minimize (3.17). We iteratively update the background layer until 

converged (e.g. the change of the recovered 𝐼𝐵
𝑡  becomes very small). An illustration 

 

Fig. 3.6. An illustration of the whole process of background gradient regeneration. 
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of the proposed background gradient regeneration method is shown in Fig. 3.6. The 

whole algorithm is summarized below:  

Fig. 3.7 shows an example of the proposed algorithm at different stages of 

operations. It can be seen in Fig. 3.7(g) that the initially estimated background image 

has many components missing. It is because the initial gradient mask 𝐸𝐵
0 misses out 

many strong gradients as shown in Fig. 3.7(b). With the help of 𝑆1as shown in Fig. 

3.7(e), the updated gradient mask 𝐸𝐵
1  (Fig. 3.7(c)) starts to restore some of the 

missing components. It, in turn, improves the estimation of 𝑆2 (Fig. 3.7(f)) and then 

𝐸𝐵
2 (Fig. 3.7(d)), as can be seen in the circled regions. Note that while more and 

more missing background components are recovered in 𝑆2  (see the upper two 

Algorithm: 

Generate the disparity map using (3.1) to (3.5). 

Obtain the initial estimates 𝐸𝐵
0, 𝐸𝑅

0, 𝐼𝐵
0 and 𝐼𝑅

0 using (3.6) to (3.9). 

Set t = 0. 

While not converge  

t = t + 1; 

Compute 𝑆𝑡 using (3.11) to (3.15);  

Compute 𝐸𝐵
𝑡 , 𝐸𝑅

𝑡  using (3.16); 

Obtain 𝐼𝐵
𝑡 , 𝐼𝑅

𝑡  using (18); 

End 

Output 𝐼𝐵 = 𝐼𝐵
𝑡 , 𝐼𝑅 = 𝐼𝑅

𝑡  

 

 

 

Algorithm: 

Generate the disparity map using (3.1) to (3.5). 

Obtain the initial estimates 𝐸𝐵
0, 𝐸𝑅

0, 𝐼𝐵
0 and 𝐼𝑅

0 using (3.6) to (3.9). 

Set t = 0. 

While not converge  

t = t + 1; 
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circles in Fig. 3.7(f)), we also notice the mask covers less background gradient 

points (such as the ones in the lower circle in Fig. 3.7(f)). It is because with the 

improved estimation of 𝐼𝐵
1, there are less common gradient points with the residue 

of 𝐼𝐵
1, which means that they have been correctly recovered in 𝐼𝐵

1 thus 𝑆2 does not 

need to include them. The final background image generated by the proposed 

algorithm is shown in Fig. 3.7(h). It shows a significant improvement over the initial 

guess. The resulting reflection image is also shown in Fig. 3.7(i).   

3.4. Comparisons and Evaluation 

To evaluate the performance of the proposed algorithm, we make a comparison 

with four other multiple-image reflection removal methods both qualitatively and 

quantitatively. These methods include superimposed image decomposition (SID) 

 

Fig. 3.7. The intermediate results. (a) The original image I. (b) The estimated initial 

gradient mask 𝐸𝐵
0. (c) The improved gradient mask 𝐸𝐵

1. (d) The improved gradient mask 

𝐸𝐵
2. See the improved estimation (circled). (e) Mask 𝑆1. (f) Mask 𝑆2. (g) The estimated 

initial background layer 𝐼𝐵
0 . (h) The resulting background layer 𝐼𝐵 . (i) The resulting 

reflection layer 𝐼𝑅. 



57 

[9], layer separation using SIFT flow (LS-SIFTF) [10], layer separation using 

motion flow (LS-MF) [11] and layer separation using disparity signs (LS-DS) [12]. 

All these approaches make use of the depth information of the scene to separate the 

background and reflection. Since [9, 11] and [10] capture the multiple views of a 

scene using a sequential approach, they can only be used in static scenes. [12] makes 

use of the LF camera to capture the multiple views of a scene in one shot. Hence it 

can be applied to dynamic scenes as the proposed method. However, it has a 

stringent requirement about the depth of the background and reflection layers, as 

well as the orientation of the camera. We will show in the later comparisons how 

these restrictions affect the separation performance.   

 

3.4.1. Qualitative Evaluation  

For qualitative evaluations, we compare visually the quality of the background 

and reflection images separated by different approaches. For testing the proposed 

algorithm and the method in [12], we make use of the Lytro Illum LF camera to 

obtain the LF images of a number real-life scenes in which the background is 

superimposed by reflection. For the same set of real-life scenes, we use the same LF 

camera to capture the scenes from 5 different angles. And then the central view of 

each LF image is collected to form the multiple-view images required by the 

methods [9, 11] and [10]. We show a few sets of comparison results in Fig. 3.8 and 
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Fig. 3.9. Since they are all real-life scenes, there is no ground truth in all cases. But 

from the contents in the separated background and reflection images, we can easily 

 

Fig. 3.8. Comparison results of scene 1 to 3. For the ease of visualization, the images are 

normalized by (3.10). So for some images, the background plus reflection may not be equal 

to the original images. We can see that the proposed method shows robust and better results 

compared to other methods. 
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identify which approach performs the best.  

As described above, traditional methods all have their own limitations to the input 

 

Fig. 3.9. Comparison results of scene 4 to 6. For the ease of visualization, the images are 

normalized by (3.10). So for some images, the background plus reflection may not be equal 

to the original images. We can see that the proposed method shows robust and better results 

compared to other methods. 
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images, it is difficult to ensure that they perform well for all images, particularly 

those taken from real-life scenes since it is difficult to control the scene environment. 

As shown in Fig. 3.8 and Fig. 3.9, the recovered backgrounds tend to retain some 

residual reflection components, and their reflection images also often contain 

background components. For method LS-SIFTF, it is noticed that it cannot separate 

those reflections with strong gradients. It is because SIFT flow will also register 

those reflection gradients as background. We can see many regions with strong 

reflection gradients are wrongly separated. For LS-MS, the optimization process 

can easily fall into the wrong local minimum. We can find that the reconstructed 

background layers, which are constructed by the combination of all views, may be 

blurred due to the inaccurate motion flows. For SID method, it shows poor 

performance for scenes with non-planar background since it uses 2D homography 

to register images. Moreover, the results of SID tend to be over-smooth because of 

the use of low-rank decomposition with inaccurate registrations. For LS-DS, it has 

a stringent requirement about the distance of the background or reflection layer. In 

many real-life scenes, such requirement cannot be fully fulfilled. Besides, it requires 

the normal axis of the LF camera to be aligned perpendicular to the scene. As shown 

in the images in Fig. 3.8 and Fig. 3.9, we often take pictures with an angle to the 

scene. It is about the style of photography that is hard to put restriction to. Since the 

scenes in Fig. 3.8 and Fig. 3.9 do not fully fulfill the requirements, the performance 

of LS-DS is only marginally satisfactory in most cases. Without the 

abovementioned limitations, the proposed algorithm can well reconstruct each layer 
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and show the best performance in all cases. We also show a case with a dynamic 

background in Fig. 3.10, where a television is showing a video behind a glass 

window. Since the TV display content is changing, the methods that require multiple 

shots of the scene from different angles cannot capture the same background thus 

cannot be used in this case. So, we only test LS-DS and our method for this scene. 

            

                                   Original scene                 The scene in another moment                                 

                

                                Our background                           Our reflection 

                

                               LS-DS background                      LS-DS reflection 

Fig. 3.10. A dynamic scene case: a television behind a glass window. Since the content 

of the television display is changing in time, other methods that require multiple shots of 

the scene cannot work in this case. Therefore, only the results of LS-DS and the proposed 

method are shown. It can be seen that the proposed method gives much better 

performance than LS-DS. 
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Since the normal axis of the camera is not perpendicular with the scene, we can see 

that LS-DS leaves a large number of reflection residues in the estimated background 

image, while the proposed algorithm can give much better performance than LS-

DS. 

3.4.2. Quantitative Evaluation  

For the quantitative evaluation of LS-DS and the proposed algorithm, we first 

use an LF camera to capture 20 LF images. Ten of them are selected as background 

while the other ten are selected as reflection. They are manually added together to 

simulate the images we needed for the evaluation. Since the background is known, 

we can always measure the PSNR of the separated background with the true one. 

To generate the images required for the evaluation of the multiple-image methods, 

we need to have background and reflection images of different viewing angles for 

each scene. To do so, we do not only take one LF image for each scene as mentioned 

Method  First layer  Second layer 

Synthetic input 13.0249 12.6774 

LS-SIFTF 18.4999 18.9543 

SID 15.2370 19.3243 

LS-MF 16.5286 16.2398 

LS-DS 18.6339 18.6433 

Proposed  21.9918 21.8188 

 
Table 3.1. The average PSNR values of the synthetic input images and the results of different 

methods.  



63 

above. We put the light field camera on a tripod and shift the camera at five fixed 

vertical heights to capture five LF images for every scene. Then we use only the 

central view of each LF image such that for every scene, there are 5 images taken 

from 5 fixed vertical positions. And since all views of different scenes are taken at 

5 fixed vertical heights, we can superimpose any two scenes together to simulate a 

background image with reflection taken from 5 different viewing angles. These 

images are then used in the evaluation of the multiple-image methods. Since all 

separated images may contain biases, we adjust the bias of each separated image to 

achieve the maximum PSNR as compared with the ground truths. Then we compare 

the average maximum PSNR of the separated background and reflection images for 

all 10 scenes generated by all methods. The final results are shown in Table 3.1. We 

can see that the proposed method outperforms all compared methods.  The results 

are in line with the qualitative evaluation results. 

 

3.5. Summary 

In this chapter, we proposed a novel algorithm for solving the reflection removal 

problem based on light field imaging and the background gradient regeneration 

strategy. One major improvement of the new algorithm is in its robustness, since it 

does not have the various restrictions on the scene or the camera orientation as in 

the existing approaches. In this chapter, we first explored the behavior of the strong 
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gradient points in the EPI of LF images when they are superimposed with reflection 

images. It provides the theoretical support for using the light field imaging to 

estimate the disparities of different layers of such kind of images. We also proposed 

a general sandwich model to describe the disparity ranges of the components of the 

background and reflection layers. It is the major part of how the proposed algorithm 

can be more versatile than the existing methods. Based on this model, we proposed 

a two-step strategy (initial aggressive separation and background gradient 

regeneration) to well reconstruct the background layer in an iterative enhancement 

process. In the evaluation part, we showed the proposed algorithm has better and 

more robust performance compared to the state-of-the-art reflection removal 

methods. 
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Chapter 4.  

Improved Multiple-Image Reflection 

Removal Algorithm Using Deep Neural 

Networks 

(This chapter is extracted from my paper [86]: Tingtian Li, Yuk-Hee Chan, and 

Daniel P.K. Lun, “Improved multiple-image based reflection removal algorithm 

using deep neural networks,” IEEE Transactions on Image processing, 2019. (under 

review)) 

 

In Chapter 3, we introduced a multiple-image reflection removal algorithm using 

different optimization methods. While the algorithm is effective, the time-

consuming optimization processes introduce much difficulty when applying it to 

some real-time applications. It has been a trend in recent years to use deep learning 

approaches in solving image processing problems. In these approaches, huge 

datasets are used to train different deep neural network (DNN) models for solving 

the problems with good performance and efficiency. It is because due to the massive 

parallel structures of these network models, they can be easily implemented using 

GPUs to dramatically reduce the computation time. Following the trend, we present 
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in this chapter a novel DNN-based approach for solving the reflection removal 

problem following the background gradient regeneration strategy. In fact, it is not 

totally new for using DNN in reflection removal. However, existing DNN-based 

methods [7, 25] require that the reflection must be blurry. It affects the generality of 

their application. In this chapter, we propose a novel DNN-based framework for 

solving the reflection removal problem using multiple images. The algorithm 

exploits the depth information of the scene provided by the multiple input images 

to help separate the background and reflection. It does not require that the reflection 

must be blurry hence it is more general and robust. Experimental results show that 

the proposed algorithm achieves superior performance similar to the method we 

proposed in Chapter 3, but it has a much faster speed when implementing with GPUs.  

 

4.1. Introduction 

Owing to the direct feedforward process and efficient use of GPU, DNN-based 

methods have shown superior performance and much faster speed compared to the 

traditional optimization-based methods in many image processing applications. As 

a branch of DNN, GAN [87] has also drawn dramatic attention from researchers. A 

GAN contains a generator that produces new samples. It also has a jointly trained 

discriminator that tries to distinguish the sample produced by the generator if they 

are the same as the real samples in the target dataset. When the discriminator cannot 
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distinguish the generated samples from the real samples, it means the generator has 

been successfully trained to synthesize new samples following the distribution of 

the target set. However, because of the min-max training process, the training is 

difficult to stably converge. For conquering this problem, [57] proposes the WGAN 

that applies the Wasserstein distance to the loss function for training the GAN. It 

shows much faster and more stable convergence than the original GAN. Besides 

data synthetization, GAN or WGAN also shows its potential in solving various 

inverse problems, like super-resolution [88], inpainting [61] and denoising [89]. 

However, the reason why GAN or WGAN, which is designed originally for data 

synthesizing, can be used for inverse problems is still not clearly explained. In this 

chapter, we propose a novel DNN-based reflection removal method. It is different 

from the existing methods [7, 25] that we assume multiple input images are 

available for obtaining the depth information of the scene. It also follows the 

background gradient regeneration strategy as we have mentioned in Chapter 3. They 

allow a much robust performance as compared with the existing DNN-based 

reflection removal approaches. For the proposed algorithm, we firstly use a 

convolutional neural network (CNN) to estimate the disparity values along the 

image edges. Following the background gradient regeneration strategy, only the 

image edges with distinct disparity values will be used to obtain two partial edge 

maps based on the disparity model shown in Fig. 4.1. After that, a WGAN is used 

to regenerate the missing background edges from these two partial edge maps. The 

WGAN contains an auto-encoder and two discriminators. The auto-encoder 
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regenerates the missing background edges and tries to fool the two jointly trained 

discriminators to believe they are the real background edges. Finally, all background 

edges are fed to another CNN for reconstructing the background image. Besides 

proposing the algorithm, we also try to explain why WGAN combined with a 

distance function can be used for solving the inverse problems. The flowchart of the 

entire framework is shown in Fig. 4.2. 

 

 

               Fig. 4.2. The flowchart of the entire framework. 

 

 

Fig. 4.1. The disparity sandwich model. In this model, the first layer is closer than the 

second layer to the camera and some of their components may share the same disparity 

range in the middle. The components in the disparity ranges A and C only belong to the 

first and second layers respectively. Some of the components of these two layers are mixed 

in the disparity range B.  
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The rest of the chapter is organized as follows: After the introduction in Section 

4.1, we briefly introduce the edge disparity network in Section 4.2 for generating 

edge disparity map of the input images. In Section 4.3, we present why a WGAN 

constrained with a distance function can be used for the inverse problems. We then 

explain how to use it to regenerate the background edges in the shared disparity 

range. In Section 4.4, we introduce the CNN we have used for extracting the 

background image from the original image guided by the edge maps. In Section 4.5, 

we show the experimental and comparison results. Finally, we summarize this 

chapter in Section 4.6. 

 

4.2. Edge Disparity Network 

 Disparity estimation has been extensively studied for many decades. The main 

strategy is to match the corresponding patches in stereo pair or multiple rectified 

images taken at slightly different viewpoints [32, 90, 91]. However, for images with 

reflection, the pixels of the background and reflection images are overlapped. It is 

far more difficult to find patch pairs for estimating the disparities. Fig. 4.3 shows an 

example when the background image pair is superimposed by another image pair. 

It can be seen that the matching error of the background patches becomes much 

larger. It is because the second image pair has different disparity; the pixel shifts of 

the second image pair are different from the background image pair. However, 
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according to the edge independence property, the strong edges are seldom 

overlapped. Therefore, instead of matching image patches for every pixel, we 

propose to estimate the disparities only along the edges. In fact, we have 

demonstrated in Chapter 3 that we can estimate the edge disparities of light field 

images by using a sparse regularization process. To improve the computational 

efficiency, here we train a CNN to achieve the task. In addition, we limit the number 

of input images to only 5 so that the algorithm can also be used in some array camera 

systems, which are popular in nowadays mobile devices. The network architecture 

is shown in Fig. 4.4. The network contains eight layers with 256 channels at the 

 

                        (a) Original image pair          (b) Image pair with reflection 

Fig. 4.3. The image pair before and after superimposed by another image pair. (a) is an 

image pair. (b) is an image pair after (a) is superimposed by another image pair. Since the 

disparity of the second pair of images is different from the original image pair, the pixel 

shifts of this second pair of images are different. Therefore, the matching error increases 

as shown in the figure.  
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beginning, 128 channels in the middle six layers and one channel at the last layer 

for outputting the edge disparity map. The kernel size is five. There is also a batch 

normalization layer and ReLU following every convolutional layer except the last 

one. We train the network by minimizing the following loss function, 

𝐿𝑑 = ∑ ‖𝐴𝑛(𝑥) ∙ 𝐼𝑛(𝑥) − 𝐴𝑛(𝑥) ∙ 𝐼𝑐 (𝑥 + 𝐵𝑛,𝑐  ∙ 𝑑(𝑥))‖
2

𝑛,𝑥 , (4.3) 

where d is the disparity; x is the pixel coordinate; n is the index of the input images 

which are supposed to have been aligned following the orientation of the reference 

image; c is the index of the reference image which is just one of the input images; 

𝐴 represents the gradient magnitude which lets the loss function focus on the edges; 

𝐵𝑛,𝑐 is the baseline between the reference image and the nth image. Note that in this 

loss function, we do not need any ground truth disparity map. This unsupervised 

 

Fig. 4.4. The edge disparity network architecture.   
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training strategy can avoid using the ground truth disparity map, which is always 

difficult to obtain [92-94]. In Fig. 4.5, we compare our approach with another CNN 

based method for disparity estimation [95]. In the figure, the disparity values of 

which the pixel gradient values are below a threshold are discarded. We can see the 

result of [95] has many errors. For instance, it suggests the top right-hand corner 

and bottom left-hand corner have similar disparities which are obviously not the 

case. The errors are caused by the aforementioned problem that [95] estimates the 

disparities based on the traditional pixel patch matching method, which will have 

large errors for images with reflection. In contrast, the proposed approach 

emphasizing on the image edges shows higher accuracy and resolution. 

     

                     (a)                              (b)                                 (c) 

 

Fig. 4.5. The edge disparity results. (a) The input image with reflection. (b) The edge 

disparity map estimated using method [94]. (c) Edge disparity map estimated using the 

proposed network. In (b) and (c), the red and blue colors represent the large and small 

disparity values.    
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4.3. Edges Regeneration Using WGAN 

The proposed approach in this chapter also follows the background gradient 

regeneration strategy. Rather than using a sparse regularization method as in 

Chapter 3 for edge regeneration, we train a WGAN to achieve the task. We show in 

this section that a WGAN combined with a distance function is suitable for the 

inverse problems such as background edge regeneration.  

4.3.1. Wasserstein Generative Adversarial Networks 

The objective of GAN is to train a generator that synthesizes novel samples which 

cannot be distinguished from real samples by its discriminator. The training process 

of GAN can be described as the following min-max game, 

min
𝐺

max
𝐷

𝔼𝑥∈𝜒[log(𝐷(𝑥))] + 𝔼𝑧∈𝒵 [log (1 − 𝐷(𝐺(𝑧)))], (4.4) 

where G and D represent the generator and discriminator respectively. G is trained 

to minimize the loss function for mapping the input 𝑧, which follows a distribution 

𝒵, to the target x, which follows another distribution χ. A discriminator D is also 

jointly trained to distinguish the generated 𝐺(𝑧)  from the real sample x by 

maximizing the loss function. The goal is to train a generator G which can generate 

fake samples that the discriminator D cannot distinguish. Therefore, 𝐺(𝑧) will have 

a distribution very close to that of the real sample x. However, such minimax 
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training is unstable and difficult to converge. As mentioned above, we adopt WGAN 

in the background edge regeneration. WGAN inherits the ability of GAN but 

exhibits more stable and fast convergence by using the Wasserstein distance in the 

loss function. The training process of WGAN can be described as follows: 

min
𝐺

max
𝐷

𝔼𝑥∈𝜒[𝐷(𝑥)] − 𝔼𝑧∈𝒵[𝐷(𝐺(𝑧))]. (4.5) 

To fully implement WGAN, it also requires to remove the sigmoid activation in the 

last discriminator layer and clip the weight range of the discriminator to force it to 

be 1-Lipschitz [57]. With such modifications, we can efficiently train a WGAN to 

regenerate the background edges. 

4.3.2. Bridge from Inverse Problems to WGAN 

Originally, GAN is used for synthesizing novel samples but recently, we can also 

find many applications of GAN or WGAN in solving the inverse problems like 

super-resolution [88], inpainting [61] and denoising [89]. The reason why GAN or 

WGAN can work well for recovering images is still not clearly explained. Here, we 

investigate the reason and build a bridge between the inverse problems and GAN 

by linking it to the traditional regularization theory. Traditionally, for solving the 

inverse problems in image processing, we can train an estimator 𝑓  with the 

parameters 𝜃 by minimizing a 2-norm distance between the estimation output image 

and the ground truth image as follows: 
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𝐿 = ‖𝑓(z; 𝜃) − 𝑥‖2
2, (4.6) 

where 𝑧 is the input and 𝑥 is the ground truth. However, such simple pixel-wise 

distance minimization often renders the output image blurry and gives low 

perceptual quality output.  In traditional prior regularization theory, it is known that 

we can produce a better result by adding the prior knowledge of 𝑥 to the objective 

function as follows: 

min
𝜃

‖𝑓(𝑧; 𝜃) − 𝑥‖2
2 + 𝑝(𝑓(𝑧; 𝜃)). (4.7) 

The prior function 𝑝  should give low response if 𝑓(𝑧; 𝜃)  follows the prior 

knowledge of 𝑥 and vice versa. For instance, if the distribution of 𝑥 is known, we 

can use it as prior knowledge. Then 𝑝 should give low response if 𝑓(𝑧; 𝜃) follows 

the distribution of 𝑥. If we consider the generator 𝐺 of a WGAN is also an estimator, 

we can rewrite (4.7) as follows:   

min
𝜃

‖𝐺(z) − 𝑥‖2
2 − 𝑝(𝐺(z)). (4.8) 

Note that the discriminator 𝐷 of a WGAN is trained to distinguish the generated 

sample 𝐺(𝑧) from the real sample 𝑥. It gives high response if it finds 𝐺(𝑧) is the 

same as the real sample and low response if it is fake. Therefore, 𝐷(𝐺(𝑧)) can be 

used as a prior function as follows: 
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min
𝐺

‖𝐺(𝑧) − 𝑥‖2
2 − 𝐷(𝐺(𝑧)). (4.9) 

To allow the discriminator to give high response to real samples and low response 

to fake samples, it needs to be jointly trained using the following cost function: 

min
𝐷

𝐷(𝐺(𝑧)) − 𝐷(𝑥). (4.10) 

It can be seen from the above discussion that a WGAN combined with a distance 

function can be a special form of the traditional prior regularization method for 

solving the inverse problems. It, however, can give much better performance than 

the general prior regularization methods since usually a huge image dataset will be 

used for training the generator and discriminator.  

4.3.3. Partial Edge Maps as Hints 

In the last sub-section, we have explained why a WGAN combined with a 

distance function can be used for solving the inverse problems. In this section, we 

show how we can use WGAN to regenerate the background edges, which is a typical 

inverse problem. As it is discussed in Chapter 3, we can easily separate the 

background and reflection edges if they have distinct depth ranges. However, if they 

have close depth values, or even share the same depth range, it will be very difficult 

or even impossible to separate them just from their depths. Any errors in the 

separation will either remove the background components or include the reflection 
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residues in the resulting background image. 

Following the background gradient regeneration strategy, we first classify the 

edges that have distinct depth values. They are extracted to form two partial edge 

sets. The edges of which the depth values cannot be used for their classification will 

be ignored. Then we make use of a WGAN and the two partial edge sets to 

regenerate the missing background edges to form the complete background edge set. 

More specifically, as described by the sandwich model in Fig. 4.1, we only extract 

the edge components in disparity ranges A and C with very large and small disparity 

values (i.e. small and large depth values respectively). Here, we use 𝐸1̇ and 𝐸2̇ to 

denote the extracted edge components supposed to belong to the first and second 

image layers respectively (one of them is the background, the other is the reflection). 

To determine the thresholds for defining the boundaries of ranges A and C of the 

sandwich model shown in Fig. 4.1, we apply the K-means method [79] to the edge 

disparity values similar to that in Section 3.3.2. Two clusters with two centers are 

then obtained. The values around these two centers are selected as the two 

thresholds. The edge components with disparity values above and below the large 

and small thresholds respectively will be extracted as 𝐸1̇ and 𝐸2̇. With the hints of 

𝐸1̇ and 𝐸2̇, we can use a WGAN to regenerate the missing background edges and 

form the complete background edge set. 
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4.3.4. Edge Map Reconstruction Using WGAN 

 Indeed, the reason why a WGAN can regenerate the missing background edges 

is due to the different distributions between the edges of normal images and those 

with reflection. Let us use an experiment to illustrate this argument. In the 

experiment, we use 100 real-life images (each with reflection) from the benchmark 

dataset SIR2 [66]. Since the ground truth background images are also provided in 

SIR2, we can compute the histograms of the images with and without reflection. 

The results are shown in Fig. 4.6. We can see that the edges of the images with 

reflection have a different bias and skewness compared with the images without 

      
Red channel                                               Green channel 

 

 
Blue channel 

 

Fig. 4.6. The distributions of the edges for images without reflection (green), and with 

reflection (blue) in the red, green and blue channels, respectively. 
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reflection. It is because of the additive light arisen from the superimposition of the 

uncorrelated background and reflection images. A WGAN can be trained to 

generate edges following the distribution of the background edges with reflection. 

The architectures of the generator and discriminator of the proposed WGAN are 

shown in Fig. 4.7. The generator is an auto-encoder and concatenations are added 

to connect the down-sampling and up-sampling sides for increasing the resolutions 

of the up-sampling side features [48]. Two discriminators are built to distinguish the 

generated background and reflection edges. These two discriminators have the same 

structure with six down-sampling blocks. We stack the original image edges 𝐸, and 

the two partial edge sets 𝐸1̇and 𝐸2̇ as the input signal z and feed to the proposed 

WGAN. We expect the partial edge sets 𝐸1̇and 𝐸2̇ can be the hints for the network 

 

 

                Fig. 4.7. The network architectures of the generator (auto-encoder) and the discriminator.  
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to regenerate the missing background edges and form the complete background edge 

set. 

For training the networks, we first define an L2 norm loss function as the first 

term in (4.8) for forcing the regenerated edges to be similar to the ground truth as 

follows: 

𝐿𝑟𝑒𝑐
𝐸 = ‖𝐺𝐸(𝑧) − 𝐸1‖2

2, (4.11) 

where 𝐺𝐸 is the generator that regenerates the missing background edges and gives 

the complete background edge set, 𝐸1 is the ground truth background edges. Then 

we use two adversarial loss functions for forcing the output of 𝐺𝐸  to follow the 

distribution of background edges as follows: 

𝐿𝑎𝑑𝑣1
𝐸 = −𝐷1

𝐸(𝐺𝐸(𝑧)); (4.12) 

𝐿𝑎𝑑𝑣2

𝐸 = −𝐷2
𝐸(𝐸 − 𝐺𝐸(𝑧)). (4.13) 

𝐷1
𝐸 and 𝐷2

𝐸 are the two image edge discriminators. They act as the prior functions 

in the regularization process as discussed before. If 𝐺𝐸(𝑧) and  (𝐸 − 𝐺𝐸(𝑧)) are 

close to the background and reflection edges, 𝐿𝑎𝑑𝑣1
𝐸  and 𝐿𝑎𝑑𝑣2

𝐸 will give a low 

response. The overall loss function for the generator 𝐺𝐸 is as follows: 

𝐿𝐸 = 𝐿𝑟𝑒𝑐
𝐸 + 𝜆1(𝐿𝑎𝑑𝑣1

𝐸 + 𝐿𝑎𝑑𝑣2

𝐸 ). (4.14) 
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The discriminators 𝐷1
𝐸 and  𝐷2

𝐸 can be trained with the following loss functions, 

𝐿𝐷1

𝐸 = 𝐷1
𝐸(𝐺𝐸(𝑧)) − 𝐷1

𝐸(𝐸1); (4.15) 

𝐿𝐷2

𝐸 = 𝐷2
𝐸(𝐸 − 𝐺𝐸(𝑧)) − 𝐷2

𝐸(𝐸2), (4.16) 

where 𝐸2 is the ground truth edges of the second layer (reflection). We jointly train 

𝐺𝐸, 𝐷1
𝐸 and 𝐷2

𝐸 until they converge. We define the regenerated edges given by the 

generator as �̃�1 = 𝐺𝐸(𝑧). The final background binary edge map �̃�1 is obtained by 

thresholding �̃�1  with the value 0.05. Fig. 4.8 shows an example of �̃�1  obtained 

from the proposed algorithm. We denote the binary edge maps for 𝐸 and 𝐸1̇ as 𝑀𝐸 

and 𝑀𝐸1̇ respectively. It can be seen that 𝑀𝐸  contains both the background and 

reflection edges and the initial partial edge map 𝑀𝐸1̇  only contains a portion of the 

   

(a)                 (b)                   (c)                   (d)                    (e)                     (f) 

Fig. 4.8. The intermediate results of the proposed algorithm. (a) The input image with 

reflection. (b) The entire edge map 𝑀𝐸. (c) The initial partial background edge map 𝑀𝐸1̇ . 

(d) The estimated complete background edge map using the proposed WGAN. (e) The 

reconstructed background using the edge map shown in (d). (f) The reflection obtained by 

deducting the background image from the input image. The mean value of (f) is adjusted 

to the input images for clear visualization. 
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background edges. From Fig. 4.8(d), we can see that the proposed WGAN 

successfully estimates the background edges and ignores the reflection edges. 

4.4. Background Image Extraction Based on Edges 

As we have demonstrated in Chapter 3, we can use different optimization 

techniques [10, 31] to extract the background image from the original one guided 

by its edge map. However, the involved iterative optimization processes with huge 

matrices are very time-consuming. Considering the fast speed of DNN over the 

traditional optimization processes, here we also use a DNN to generate the 

background image guided by its edges.  

To the best of our knowledge, there are very few DNN approaches for extracting 

the background images based on their edges. The only one we are aware of is the I-

CNN in the method CEILNet [7]. However, the performance of I-CNN is rather 

unstable that the resulting image can lose many background details while keeping 

the reflection residual. It is because I-CNN works based on the assumption that the 

reflection is blurry. When the image contains reflection with strong edges, it is 

difficult for I-CNN to totally remove them. To solve the problem, we develop a new 

Background Image Extraction Network, which has an auto-encoder structure the 

same as that used for edge map estimation in Fig. 4.7 (upper). To remove the strong 

edges of the reflection remained in the resulting image, we pre-process the input 

image by removing the reflection edges. To do so, we first compute from the 
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estimated background edges �̃�2 = 𝑀𝐸 − �̃�1, which mainly indicates the positions 

of the reflection edges. Then we obtain an image 𝐼�̃�2
= (𝐼𝑐 − 𝐼𝑐 ∙ �̃�2), which is the 

original reference image without the reflection edges. We stack 𝐼𝑀1
= (𝐼 ∙ �̃�1) and 

𝐼�̅�2
 as the input signal 𝑧 and fed to the proposed Background Image Extraction 

Network. For training the network, we first use the following L2-norm loss function 

to confine the resulting image to follow the ground truth background at the pixel 

level, 

𝐿𝑟𝑒𝑐
𝐼 = ‖𝐺𝐼(𝑧) − 𝐼1‖2

2, (4.17) 

where 𝐼1 is the ground truth background image and 𝐺𝐼(𝑧) is the network output give 

the input 𝑧. In addition, we add the following perceptual loss function which can 

ensure the resulting image to follow the human perception, 

𝐿𝑃
𝐼 = ‖𝑉(𝐺𝐼(𝑧)) − 𝑉(𝐼1)‖

2

2
, (4.18) 

where 𝑉 represents the feature maps of the 14th layer of the pre-trained VGG-16 

network. Using the intermediate responses of high-level features is an effective way 

to measure the perceptual similarity [65]. Thus, the following overall loss function 

is used to train the proposed Background Image Extraction Network:  

𝐿𝐼 = 𝐿𝑟𝑒𝑐
𝐼 + 𝜆2𝐿𝑃

𝐼  (4.19) 
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Fig. 4.8(e) and (f) show an example of the background image and its residual 

(reflection layer) generated using the estimated background edge map shown in Fig. 

4.8(d). We can see that the network successfully extracts the background image 

from the original image guided by its edge map. To show the effectiveness of the 

proposed network, Fig. 4.9 (i) shows a simulation case using the I-CNN and the 

proposed Background Image Extraction Network respectively. To isolate the 

performance in background image extraction, both the proposed Background Image 

Extraction Network and I-CNN use the estimated background edge map generated 

by the Edge Regeneration Network. Since the reflection is not particularly blurred 

in the synthesized image, we can see that the strong edges of the reflection remain 

in the result of I-CNN. We also notice that many background details are missing. 

The proposed Background Image Extraction Network can well recover the 

background components while removing the reflection since there is no assumption 

about the blurriness of the reflection and we also incorporate the human perception 

in the training process. More detailed comparisons can be found in the next section.    
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                          Synthesized input    Ground truth 𝐼𝐵     Ground truth 𝐼𝑅      

                   
                    (a)                       (b)                        (c)                       (d) 

 

Fig. 4.9 (i). The background images generated by using I-CNN and the proposed background 

image extraction network. (a) and (b) are the generated background image and its residual 

respectively using the Edge Disparity Network + Edge Regeneration Network + I-CNN. (c) and 

(d) are the generated background image and its residual respectively using the Edge Disparity 

Network + Edge Regeneration Network + the background image extraction network. 

 

       
                                       LS-SIFTF                 SID                     LS-DS 

       
                                        CEILNet                PLNet                  Proposed       

  

 

Fig. 4.9 (ii). The background images obtained from using different approaches. 
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4.5. Experiments and Evaluation 

For evaluating the performance of the proposed algorithm, we compare it with 

the state-of-the-art methods both quantitatively and qualitatively. Before showing 

the comparison results, let us clearly explain the details of training the networks and 

how the comparisons are carried out. 

4.5.1. Training Details 

We assume that five images of slightly different viewing angles are available as 

the input of the proposed Edge Depth Estimation Network. For convenience, we 

obtain the required images for the training of the network by using a light field (LF) 

camera, which can directly capture array images of the target scene in a single shot. 

We extract five of the captured images and input them to the network after alignment 

to the same viewing angle. For quantitative evaluation, we synthesize the required 

training images with reflections by randomly adding two sets of LF images together 

with different weights. More specifically, we capture 318 sets of LF images and 

resize them to 256×256 pixels. They are randomly added together and finally, 

112,225 images with reflection are synthesized as the training samples. To further 

increase the training samples, we augment the data by cropping the images into 

many 128×128 patches at every interval of 16 pixels, then randomly flipping and 

rotating them at every 90 degrees. The Edge Disparity Estimation Network is trained 
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using the ADAM solver [96] with learning rate 2 × 10−5, 𝛽1 = 0.9 and 𝛽2 = 0.999. 

For training the Edge Regeneration Network and the Background image Extraction 

Network, we only use the flipped and rotated images to augment the dataset. It is 

because a cropped patch may not have sua fficient amount of edges for training, as 

edges are sparse in nature. Similar to [57], we use RMSprop solver [97] to train the 

generator and the discriminators of the Edge Regeneration Network with learning 

rates 2 × 10−4  and 2 × 10−5 respectively. For the Background Image Extraction 

Network, we also use the RMSprop solver [97] with learning rate 2 × 10−4 for its 

training. The parameters 𝜆1 and 𝜆2 are set as 2.5 × 10−3 and 1.25 respectively. The 

training and testing are both performed on a desktop computer with Core i7 7820X 

CPU using a GTX 1080 Ti. 

4.5.2. Quantitative Evaluation 

A quantitative comparison is made between the proposed algorithm and a few 

recent methods, including the traditional optimization based approaches such as 

SIFT flow (LS-SIFTF) [10], superimposed image decomposition using low rank 

(SID) [9],  image layer separation based on the disparity signs (LS-DS) [12]; as well 

as two other CNN-based methods CEILNet [7] and PLNet [25]. Except for LS-DS 

which is implemented by us according to their paper, other methods are 

implemented by the source codes published in their websites. Because LS-SIFTF 

and SID require relatively large disparities between images, the images we captured 
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using the LF camera with small baselines cannot be directly used to test these two 

approaches. To solve the problem, we put the LF camera on a tripod and shift the 

camera up and down to five preset heights. For each height, we capture one set of 

LF image for each scene. Using only the central view of each LF image, we can 

obtain, for each scene, five images of relatively large disparities. We capture 20 

groups of such images of different scenes and create ten groups of images with 

reflections by adding ten of them to the other ten with the weights 0.6 and 0.4. These 

images are used to test the LS-SIFTF and SID methods. On the other hand, the 

method LS-DS requires LF images as input. For each group of LF image captured, 

this time we just use one of them for each scene. We extract the central 5 × 5 images 

of each LF image so that we have twenty sets of 5 × 5 images. They are mixed with 

a similar method as mentioned above to form ten testing images (with reflection) 

for LS-DS. CEILNet and PLNet are single-image reflection removal methods, thus 

we directly input the central view of each LF image to test these networks. Because 

LS-SIFTF, SID, LS-DS can only perform well with relatively higher resolution 

images, we feed images with resolution 625 × 434 to those methods and resize 

their results to 256 × 256  pixels for comparison. CEILNet and PLNet are directly 

fed with images with size 256 × 256  pixels. Fig. 4.9 (ii) shows one of the 

comparison results based on the testing images mentioned above. It can be seen that 

the proposed algorithm gives the best result compared to other methods. The 

average PSNRs of all the testing algorithms are shown in Table 4.1. Because the 

results of LS-SIFTF and SID can have large biases in the mean value which can 
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give very low PSNRs, we normalize the mean values of all the results to be the same 

as the ground truths. As shown in Table 4.1, the proposed method significantly 

outperforms the other competing methods. It is because all other methods have 

different assumptions about the input images. For instance, LS-SIFTF requires the 

gradients of the background to be much larger than the reflection; SID requires the 

background to be planar; LS-DS requires the background and reflection to be at 

different sides of the focal plane and the normal line of the camera must be 

perpendicular to the scene; CEILNet and PLNet have a stringent assumption that 

the reflection must be blurry. They all introduce the errors to the reflection removal 

process in case the input images do not follow exactly the respective assumptions. 

We also evaluate the influence of the input terms 𝐼𝑀1
, 𝐼�̅�2

 for the Background Image 

Extraction Network. The PSNR values of the generated background images are 

shown in Table 4.1. Since 𝐼𝑀1
 emphasizes useful edges and 𝐼�̅�2

 hides useless 

reflection edges, the Background Image Extraction Network can achieve the best 

performance when both of them are input to the network.   
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4.5.3. Effectiveness of The WGAN for Background Edge Estimation 

We also evaluate the effectiveness of the WGAN contributing to the estimation 

of the background edge map �̃�1 . We compare the proposed WGAN (the auto-

encoder jointly trained with the discriminators using the loss function (4.14)) and 

the same auto-encoder without the discriminators trained only using the loss 

function (4.11) to estimate �̃�1. We investigate the regenerated edge distributions of 

the proposed WGAN and only the auto-encoder trained without the adversarial 

terms. Fig. 4.10 shows the comparison results. In the figure, the histograms and the 

fitted distributions of the regenerated background edge components �̃�1 are shown. 

We can see that the �̃�1 estimated by the proposed WGAN has the distributions very 

 

Method  PSNR of the recovered background (dB) 

Synthetic input 13.094 

LS-SIFTF [10] 18.912 

SID [9] 15.488 

LS-DS [12] 18.855 

CEILNet [7] 17.714 

PLNet [25] 19.092 

Proposed w/o Edge Regeneration  22.774 

Proposed w/o discriminators 23.224 

Proposed w/o 𝐼�̅�2
 23.340 

Proposed w/o 𝐼𝑀1
 23.220 

Proposed  24.031 

 

Table 4.1 The average PSNR in dB of the resulting background images generated by 

different methods with respect to their ground truths. 
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close to the ground truths. It is because the proposed WGAN tends to constrain the 

generated samples to follow the distributions of the ground truths, such that the 

discriminators cannot distinguish them from the real ones. Without the 

discriminators, the network can only minimize the mean square difference between 

the generated result and ground truth. The distributions may deviate from the ground 

truth. Table 4.1 also shows the PSNR of the final background images generated with 

the Edge Regeneration Network but without using the discriminators. It can be seen 

that without the discriminators, the PSNR decreases by about 1.3 dB. 

 
 

Fig. 4.10. The histograms and fitted distributions of the estimated background edges �̃�𝐵 

given by the proposed WGAN and only the auto-encoder at different color channels. The 

first column shows the histograms of the ground truth edges; the second column shows the 

histograms of the edges generated from the proposed WGAN; the third column shows the 

histograms of the edges generated by the auto-encoder trained without the discriminators; 

the last column is their fitted distributions. Different rows represent different color channels. 
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4.5.4. Qualitative Evaluation 

For qualitative evaluation, we compare the visual quality of the extracted 

background and reflection images using different methods. In this evaluation, the 

testing images are directly captured in a real-life environment, such as in front of a 

glass, etc., so that a reflection of an unwanted scene is added to the image. Since we 

do not have the ground truth background of these images, we can only evaluate the 

performance by visual inspection. The comparison results are shown in Fig. 4.11. 

For LS-SIFTF, it cannot correctly separate the reflections from the backgrounds 

when both of them have strong gradients. Its performance is acceptable only for the 

fourth scene where the reflection is relatively weak. However, there are still many 

residuals remained in the regions with strong reflections. For SID, it assumes the 

background layer is planar and uses the homography to register the background 

while blurring the reflection. Thus, it can only deal with planar background scenes. 

In fact, even the background is planar, the features of the reflection can affect the 

homography estimation. Therefore, we can see that the resulting images are blurry 

due to inaccurate registration. For LS-DS, it requires the background and reflection 

to have absolutely different depth ranges and it also requires the camera to be 

perpendicular to the target scene. Such stringent requirements to the pose and 

photography environment introduce much difficulty to remove the reflection in 

practice. For CEILNet and PLNet, they assume the reflection is much smoother than 

the background. They fail to remove the strong and sharp reflection components in 
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the images. Without the abovementioned limitations, the proposed method 

 

                Fig. 4.11. The qualitative comparison results of different methods.  
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successfully extracts the backgrounds and separates the reflections for all scenes. 

4.5.5. Running Time 

We also compare the running times of different testing methods by taking the 

average processing times of these methods on five real-life images. This time we 

only evaluate the computational cost regardless of performance. Therefore, we feed 

images with size 256 × 256 to all methods. The results are shown in Table 4.2. We 

can see that the traditional optimization-based methods LS-SIFTF [10], SID [9], 

LS-DS [12] and LS-LS-LFGS [67] are much slower compared to the DNN-based 

methods, such as CEILNet [7], PLNet [25] and the proposed one. It is because those 

optimization-based methods require iterative operations on huge matrices, which 

can take a very long time. In contrast, CNN based approaches with parallel-

conducting kernel architectures are very suitable to GPU. They can efficiently 

utilize the massively parallel structure of GPU and complete the whole process 

within only one second.  

Method Average Time 

LS-SIFTF 130.59 s 

SID 58.95 s 

LS-DS  17.01 s 

LS-LFGS  69.51s 

CEILNet  0.82 s 

PLNet  1.15 s 

Proposed 0.88 s 

 

Table 4.2. The average execution times of different methods 
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4.6. Summary 

In this chapter, we proposed a novel DNN-based reflection removal algorithm 

following the background gradient regeneration strategy. For a target scene, the 

proposed algorithm only requires 5 images at different viewing angles as the input, 

which is in contrast to the approach we proposed in Chapter 3 where the light field 

image is needed. The relaxed hardware requirement allows the proposed algorithm 

to be more readily used in some array camera systems, which is increasingly popular 

in nowadays mobile devices. For the proposed algorithm, the input images are first 

aligned to the referenced viewing angle and fed to the Edge Disparity Network for 

estimating the edge disparities. Only the edges with distinct disparities are used to 

obtain two partial edge maps. The edges of which the disparity values are not 

distinct enough for their classification are ignored. They are regenerated by the Edge 

Regeneration Network which is implemented by a WGAN with one generator and 

two discriminators. The complete background edge set is then fed to the Background 

Image Extraction Network for extracting the resulting background image. 

Comparing to other single-image DNN-based methods, the proposed algorithm does 

not require the reflection to be blurry. Comparing to the traditional multiple-image 

optimization-based methods, the proposed algorithm is more robust since it does not 

have the various assumptions on the images and imaging environment. It has shown 

superior performance compared to the state-of-the-art methods. Even comparing 

with the method we proposed in Chapter 3, this DNN-based method also shows 
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significant improvement on the computation speed, particularly when implementing 

with GPUs.  
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Chapter 5. Single-Image Reflection 

Removal via a Two-Stage Background 

Recovery Process 

 

 

(This chapter is extracted from my paper [98]: Tingtian Li, and Daniel P.K. Lun, 

“Single-Image Reflection Removal via a Two-Stage Background Recovery Process,” 

IEEE Signal Processing Letters, 2019).  

 

 

In Chapter 3 and 4, we proposed two multiple-image reflection removal methods 

using the traditional optimization and deep learning methods respectively. However, 

in a practical situation, we are often required to deal with the reflection removal 

problem with only a single image on hand. In this chapter, we propose a novel deep 

learning-based reflection removal method using only a single image as the input. 

Due to the use of the background gradient regeneration strategy, the proposed 

algorithm gives superior performance compared with other state-of-the-art single-
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image DNN-based reflection removal methods. It is particularly suitable for the 

images with blurry reflection, which is not uncommon in daily photography. 

 

5.1. Introduction 

As mentioned in Chapter 4, many existing single-image reflection removal 

methods are inspired by [8] that assumes the reflection is defocused and has a 

distinct distribution from the focused background. It is true that, in daily 

photography, the background scene, which is the interest of the photographer, is 

often focused while the reflection scene is not. The reflection scene is thus often 

blurry as shown in the image and has a short-tailed distribution [8]. Based on this 

distinct distribution, researchers develop different methods including the DNN 

methods [7, 25] to recognize and remove the blurry reflection components. For 

example, [7] firstly uses a convolutional CNN to distinguish the sharp background 

edges and then uses another CNN to reconstruct the background. [25] also trains a 

CNN to recognize the blurry reflection components by minimizing a VGG 

perceptual feature distance [65]. Although the assumption that the reflection layer 

is blurry is valid in many situations, we notice that the strong edges of the blurry 

reflection can still have high gradient values. One example is shown in Fig 5.1(a) 

(the circled region). In this case, these DNN-based methods [7, 25] will mistakenly 

treat these high gradients reflection components as the background components and 
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leave them in the resulting image as shown in Fig 5.1(b) and (c). 

 

     
                (a) Input                 (b) CEILNet [7]                 (c) PLNet [25]                                           

    
                (d) 𝐵𝑖𝑛𝑖                   (e) 𝐵𝑖𝑛𝑖 without  𝐿𝐹𝑅          (f)  𝐼 − 𝐵𝑖𝑛𝑖                  

     
                (g) Confidence map 𝐶𝑟𝑓             (h) 𝐵𝑓𝑖𝑛𝑎𝑙                 (i) Ground truth                

Fig. 5.1. A reflection removal example. (a) The original image with reflection. Note that 

the reflection is blurry due to defocus. (b) and (c) Results of the traditional single-image 

DNN-based approaches. (d) to (g) The intermediate results of the proposed algorithm. (h) 

The final result of the proposed algorithm. (i) The ground truth background image. For 

visualizing the estimated initial reflection image clearly, the intensity of (f) is scaled up by 

two times.  
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In this chapter, we present a novel two-stage approach to remove the reflection 

using deep neural networks. The approach follows the background gradient 

regeneration strategy such that it first aggressively removes the reflection 

components in the image to ensure that only the background components remain in 

the image. Since such aggressive reflection removal process can accidentally 

remove the background components also, a refinement stage is carried out to 

regenerate the missing background components. To achieve the above strategy, we 

propose at the first stage of the algorithm to include a feature reduction term in the 

loss function when training a CNN to achieve the abovementioned aggressive 

reflection removal process. Then at the second stage of the proposed algorithm, we 

use the initial background estimation result to generate a confidence map for 

identifying the strong reflection and background gradients. A generative adversarial 

network (GAN) is used to reconstruct the background image from the classified 

gradients. The GAN can also help in regenerating the background gradients that are 

accidentally removed in the first stage. Experimental results show that the proposed 

algorithm can give superior performance compared to other single-image deep 

learning-based reflection removal methods. It shows a strong reflection removal 

capability even when the reflection scene contains strong gradients, which are often 

problematic to the traditional single-image reflection removal approaches. 
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5.2. Initial Background Estimation with Feature 

Reduction Term 

Perceptual features are widely used in deep-learning approaches for solving 

inverse problems [61, 65, 99]. Compared to the pixel-wise intensity, minimizing the 

perceptual feature distances can generate an image closer to the human perceptual 

expectation. The perceptual features can be obtained by extracting the intermediate 

layer features of a pre-trained network such as VGG-16, VGG-19 [5] trained on a 

large dataset. In fact, [25] also tries to remove the blurry reflection by minimizing 

the perceptual feature distance. Because this method highly depends on the 

assumption that the reflection components are blurry, it will fail when some parts of 

the reflection still show high gradient values. Just the perceptual feature distance is 

not enough to totally remove the reflection. For better solving this problem, in this 

section, we investigate the perceptual feature properties of the images with 

reflection and propose to include a feature reduction term in the loss function when 

training the network for further suppressing the reflection. 

When an image 𝐼2 is superimposed on another image 𝐼1, the resulting image 𝐼 

will contain the textures from both 𝐼1 and  𝐼2. Intuitively, such increase in texture 

will lead the superimposed image 𝐼  to have more perceptual features than the 
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original image 𝐼1. For validating this, we show in Fig. 5.2 the summed perceptual 

feature magnitudes of an image with reflection across all channels at different layers. 

Here, we use the VGG-19 network which is pre-trained on ImageNet [100] to 

produce the perceptual features. We can see the superimposed image 𝐼 will contain 

both the perceptual features of 𝐼1 and 𝐼2. Based on this observation, it is understood 

that a good reflection removal process should also minimize the perceptual features 

 

               𝐼1                   conv1_2(𝐼1)           conv2_2(𝐼1)        conv3_2(𝐼1)               

 
               𝐼2                  conv1_2(𝐼2)            conv2_2(𝐼2)       conv3_2(𝐼2) 

 
               𝐼                    conv1_2(𝐼)                conv2_2(𝐼)          conv3_2(𝐼) 

 

Fig. 5.2. The VGG-19 perceptual feature magnitudes of the superimposed image 𝐼 and two 

single layer images 𝐼1  and 𝐼2  at ‘ 𝑐𝑜𝑛𝑣1_2 ’, ‘ 𝑐𝑜𝑛𝑣2_2 ’, ‘ 𝑐𝑜𝑛𝑣3_2 ’ layers, where 

𝐼 = 𝛼 ∗ 𝐼1 + (1 − 𝛼) ∗ 𝐼2, 𝛼 = 0.6. The perceptual feature magnitudes of each image as 

shown in the figure are obtained by adding the perceptual feature magnitudes generated by 

a VGG-19 network across all channels at the denoted layers. 
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in the resulting image. Thus, we propose to include a feature reduction term in the 

loss function when training the network for reducing the low-level perceptual 

features in the resulting image.  For the 1st stage of the proposed method, a CNN is 

trained with a loss function 𝐿𝑖𝑛𝑖 as follows: 

𝐿𝑖𝑛𝑖 = 𝐿𝑟𝑒𝑐 + 𝐿𝐹𝑅. (5.2) 

𝐿𝑟𝑒𝑐 = ∑ 𝜆1‖𝜙𝑖(𝐹1(𝐼)) − 𝜙𝑖(𝐼𝐵)‖
2

2
+ 𝜆2‖𝐹1(𝐼) − 𝐼𝐵‖1

5

𝑖=1
 (5.3) 

𝐿𝐹𝑅 = ∑ 𝜆2‖𝜙𝑖(𝐹1(𝐼))‖
1

3

𝑖=1
 (5.4) 

where Φ𝑖 denotes the features at ‘conv(i_2)’ layer of a VGG-19 network pre-trained 

on the ImageNet dataset [100]. 𝐼𝐵 is the ground truth background image. 𝜆1, 𝜆2, and 

𝜆3 are the hyper-parameters, which are chosen as 3, 0.4 and 3, respectively, in our 

experiments. 𝐹1 represents the proposed CNN. So 𝐵𝑖𝑛𝑖 = 𝐹1(𝐼) represents the initial 

estimation of the background image. 𝐿𝑖𝑛𝑖 in (5.2) consists of two loss functions 𝐿𝑟𝑒𝑐 

and 𝐿𝐹𝑅. 𝐿𝑟𝑒𝑐 serves to preserve the background. It is a weighted sum of the feature 

distance and pixel-wise distance from the background ground truth as shown in (5.3). 

Since the background images we used to train the network are all sharp and clear, 

𝐿𝑟𝑒𝑐 in effect guides the network to remove the pixels or perceptual features come 

from the blurred parts of the image. But if there exist some high gradient 

components in the blurred regions, the network will be confused. It will keep the 
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components and perhaps also the neighboring pixels. To solve the problem, we 

propose to incorporate a feature reduction term 𝐿𝐹𝑅 as shown in (5.4) when training 

the CNN. It gives the total feature magnitudes of the first few layers of a VGG-19 

network with 𝐵𝑖𝑛𝑖  as the input. It serves to minimize the low level perceptual 

features of 𝐵𝑖𝑛𝑖 . Since 𝐿𝐹𝑅 will lead to the suppression of all features and 𝐿𝑟𝑒𝑐 will 

try to preserve the background features, it ends up that the reflection features will 

be suppressed more comparing to the background features. More importantly, for 

the high gradient components in the blurred regions, 𝐿𝐹𝑅 together with 𝐿𝑟𝑒𝑐 will let 

the network have a stronger power to remove them although it is at the expense of 

the sharpness of the background layer since the gradients of the background will 

also be slightly reduced. Fig. 5.1(d) and (e) show a comparison between 𝐿𝑖𝑛𝑖 with 

and without 𝐿𝐹𝑅. We can see that if 𝐿𝐹𝑅 is not included, the result in Fig. 5.1(e) is 

similar to Fig. 5.1(b) and (c). There are obvious reflection edges remaining in the 

result. On the contrary, the one including 𝐿𝐹𝑅  in Fig. 5.1(d) has much weaker 

reflection edge residuals. However, as expected, including 𝐿𝐹𝑅 may also result in 

the removal of some background feature components, which leads to a blurrier 

background image than the ground truth. In the next section, we will discuss the 

second stage of the proposed algorithm for refining the background. 
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5.3. Background Refinement at The Second Stage 

The reduction of the low-level features in 𝐵𝑖𝑛𝑖  renders the attenuation of its 

gradient values. Interestingly, it provides us useful information to identify the strong 

gradients of the background and reflection layers. In fact, as discussed in [10, 67], 

the background layer can be reconstructed from its strong gradients, while those flat 

regions with weak or none gradients can be easily inferred by the networks or 

optimization processes. Now, let us consider the residue of the initial background 

estimate, i.e. (𝐼 − 𝐵𝑖𝑛𝑖). It contains mainly the reflection layers plus the attenuated 

background gradients as shown in Fig. 5.1(f). Comparing (𝐼 − 𝐵𝑖𝑛𝑖) with 𝐵𝑖𝑛𝑖, the 

attenuated background gradients in (𝐼 − 𝐵𝑖𝑛𝑖)  overlap with the background 

gradients in 𝐵𝑖𝑛𝑖. And according to the gradient independence property [9, 10, 67], 

the strong gradients of the background and reflection layers seldom overlap since 

they are often uncorrelated. It means that at the positions where the strong reflection 

gradients in (𝐼 − 𝐵𝑖𝑛𝑖) are found, we will not find any strong background gradients 

in 𝐵𝑖𝑛𝑖. Based on the above, we define a confidence map for identifying the strong 

reflection gradients as follows:  

𝐶𝑟𝑓 = 𝑙𝑜𝑔 (
𝐺𝐼−𝐵𝑖𝑛𝑖

𝐺𝐵𝑖𝑛𝑖
+ 𝜀

+ 1) ∙ 𝑀 (5.5) 

where 𝐺 represents the gradient magnitude, 𝜀 is a very small constant. M is a mask 

which has the value of 1 for those pixels in 𝐼 with the Sobel gradient magnitude 
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larger than 1, and 0 otherwise. It masks out only the positions in 𝐼 where strong 

gradients are found for the subsequent operations. As mentioned above, at the 

positions where 𝐺𝐼−𝐵𝑖𝑛𝑖
 contains strong reflection gradients, 𝐺𝐵𝑖𝑛𝑖

 will have small or 

even 0 values. And at the positions where 𝐺𝐼−𝐵𝑖𝑛𝑖
 contains the attenuated 

background gradients, 𝐺𝐵𝑖𝑛𝑖
 will have the original background gradients which have 

larger values. Thus, only the reflection strong gradients will have high confidence 

values in 𝐶𝑟𝑓 as shown in Fig. 5.1(g). Then we can run a 𝐾-means clustering process 

(𝐾 = 2) on this confidence map to generate an adaptive threshold 𝜉 for classifying 

the values in 𝐶𝑟𝑓  into two groups. The reflection strong gradients 𝐸𝑅  and 

background strong gradients 𝐸𝐵 can then be identified as follows: 

𝐸𝑅 = 𝐸𝐼 ∙ (𝐶𝑟𝑓 > 𝜉);  𝐸𝐵 = 𝐸𝐼 ∙ (𝐶𝑟𝑓 < 𝜉), (5.6) 

where 𝐸𝐼  denotes those pixels in 𝐼  whose gradient magnitudes above 1. We 

concatenate the image 𝐼  with 𝐸𝐵  and 𝐸𝑅  to form the input z and sent to a new 

network 𝐹2 for background reconstruction. A loss function is defined as follows 

𝐿2 = ∑ 𝜆1‖𝜙𝑖(𝐹2(𝑧)) − 𝜙𝑖(𝐼𝐵)‖
2

2
+ 𝜆2‖𝐹2(𝑧) − 𝐼𝐵‖1

5

𝑖=1

− 𝜆4𝐷(𝐹2(𝑧)) 

(5.7) 

Similar to 𝐿𝑟𝑒𝑐  in the first stage, the first two terms are used to reconstruct the 

background. Because 𝐸𝐵 and 𝐸𝑅 may contain outliers, we also use an adversarial 

term −𝜆4𝐷(𝐹2(𝑧)) to guide the results to follow the distribution of natural images. 



107 

(5.7) can be implemented using a GAN, where 𝐷 is the discriminator for measuring 

the similarity between the inferred background 𝐹2(𝐼)  and the ground truth 

background 𝐼𝐵. 𝜆4 is a hyper-parameter which is chosen as 0.05 in our experiments. 

The discriminator 𝐷 will show high values when 𝐹2(𝐼) follows the distribution of 

natural images. This discriminator can be jointly trained by minimizing the 

following loss function: 

𝐿𝑎𝑑𝑣 = 𝐷(𝐹2(𝑧)) − 𝐷(𝐼𝐵) (5.8) 

 

Fig. 5.1(h) shows an example of the final result 𝐵𝑓𝑖𝑛𝑎𝑙 . It shows that the final 

background is shaper compared to the initial result in Fig. 5.1(d) and without 

reflection residues. For validating the significance of using the initial background 

estimate 𝐵𝑖𝑛𝑖 as the input for the second stage, we also use the results of CEILNet 

[7] and PLNet [25] instead of using 𝐵𝑖𝑛𝑖 to generate the confidence map and then 

                   
  

         CEILNet+2nd stage            PLNet+2nd stage            𝐵𝑓𝑖𝑛𝑎𝑙(𝐵𝑖𝑛𝑖+2nd stage)       

                                    
Fig. 5.3. A comparison of final results by using different methods as the first stage.  
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reconstruct the final background. A comparison of using different approaches is 

shown in Fig. 5.3. We can see that only 𝐵𝑖𝑛𝑖  can support the background 

regeneration at the second stage without reflection residues. It is because the 

reflection residues in the results of CEILNet and PLNet will offset the reflection 

gradients in the reflection confidence map.  

 

                                

(a) The network structure of 𝐹1 (CNN in stage 1) and 𝐹2 (generator in stage 2). They have 

the same U-net like structure. 

            

       (b) The architecture of the discriminator 𝐷 

 

Fig. 5.4. The structures of the networks used in the proposed algorithm.  
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5.4. Experiments and Results 

5.4.1. Network Architecture 

For the first stage of the proposed algorithm, a U-net like auto-encoder as shown 

in Fig. 5.4(a) is used to generate the initial background estimation. U-net has been 

widely used in solving the inverse problems  [20, 48, 61]. For the proposed network, 

the encoder contains 6 levels of stride-two convolutional layers, each followed by a 

batch normalization layer and ReLU. The decoder part consists of also 6 levels of 

deconvolutional layer, followed by batch normalization layer and leaky ReLU. We 

also concatenate the features at the encoder side to the decoder side at each level for 

increasing the resolution of the results [48]. For the second stage, the structure of 

the generator network is the same as the auto-encoder used in stage 1. The 

discriminator network is relatively simple as shown in Fig. 5.4(b). It is composed of 

six blocks of stride-two convolutional layers, batch normalization layers, and leaky 

ReLU. The output of the discriminator is a scalar value indicating its judgment that 

the perceptual features are real or fake.  
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5.4.2. Training Data Preparation 

For training the networks, we synthesize images with reflection using the images 

in the VOC2012 dataset [101]. The synthetization strategy is similar to [7, 25] and 

metioned in Section 2.5.4.  A training sample is synthesized by superimposing one 

image serving as a reflection on another image serving as the background. Images 

in the dataset are mixed together randomly so that many training samples can be 

obtained. We simulate the blurring effect of the reflection layer by smoothing the 

reflection images before adding them to the background images. We also simulate 

the possible ghost effect [26] by convolving the reflection images with a kernel with 

two very close impulses. The synthesized images are then resized to 256 × 256. 

Rotation and flipping are also used for data augmentation. The networks of the first 

and second stages are trained sequentially for avoiding overfitting. The batch size 

we used is 3. We use the RMSprop solver [97] to train 𝐹1,  𝐹2 and 𝐷. Their learning 

rates are set to be 2 × 10−4, 2 × 10−4 and 2 × 10−5 respectively. For 𝐹2 and 𝐷, the 

gradient clipping is also used. The training and testing are both conducted on a 

computer using the GPU GTX 1080 Ti.  
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5.4.3. Evaluation and Comparison 

 For evaluating the performance of the proposed approach, we conduct a series 

of quantitative and qualitative comparisons with three recent DNN-based single-

image reflection removal methods: CEILNet [7],  PLNet [25] and BDN [64]. They 

are both implemented by the source codes published at their websites and their pre-

trained models are used in all comparisons. We test these methods using the 

benchmark dataset SIR2 [66] which contains 452 real scene images with reflections 

and ground truth backgrounds. Table 5.1 shows the performance. While having a 

similar SSIM score (if not better), the proposed method significantly outperforms 

the other methods in terms of average PSNR with a small standard deviation. We 

also show the performances of the proposed method with and without the 

adversarial term in (5.6). It shows that the adversarial term can further improve the 

performance by guiding the resulting image to follow the distribution of natural 

images. 

 

Method PSNR SSIM PSNR STD 

CEILNet [7] 21.75 0.835 4.52 

PLNet [25]  20.28 0.823 2.85 

BDN [64] 21.43 0.848 2.27 

Proposed w/o the 

adversarial term in 

(5.7) 

22.63 0.844 2.62 

Proposed 23.41 0.852 2.70 

 

Table 5.1 The performance of different methods testing with the benchmark real scene 

dataset SIR2 (452 images). 
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The qualitative comparison results are shown in Fig. 5.5. It can be seen that all 

competing methods have obvious reflection residues in their results. They mainly 

come from the strong edges of the reflection layers which have high gradient values. 

On the contrary, the proposed algorithm can better suppress the reflection 

components as shown in Fig. 5.5. As mentioned above, the initial stage of the 

proposed algorithm can blur the background as shown in Fig. 5.6. We make use of 

      

      

      

      
         Input                     CEILNet                 PLNet                       BDN             Proposed final result     Ground truth 

 

Fig. 5.5. The reflection removal results using different approaches on the images from a 

benchmark dataset SIR2. 
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the information provided in the initial result to refine the background estimates at 

the second stage. The resulting images have the best quality as can be seen in Fig. 

5.5 and are much clearer than the initial estimates as shown in Fig. 5.6. We also 

count the averaging execution times of different methods running on the images 

used in Section 4.5.5. The results are shown in Table 5.2. We can see they show 

similar fast speeds as they all use deep neural networks with feedforward structures 

and GPU acceleration. 

 

5.5. Summary 

In this chapter, we proposed a novel two-stage reflection removal algorithm using 

the deep neural networks based on the background gradient regeneration strategy. 

The new algorithm can fully remove the reflection residues which often appear in 

  

(a) 

  

(b) 

Fig. 5.6. Blow-ups of the red boxes in Fig. 5.5 to compare the initial and final results.    (a) 

Left: initial, right: final; (b) Left: initial, right: final. 
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the results of the traditional methods when the reflection also contains strong 

gradient components. In this chapter, we first investigated the perceptual feature 

property of the images with reflection and proposed to include a feature reduction 

term in the loss function when training the network for further suppressing the 

reflection strong gradients. As the background gradients may also be suppressed at 

the first stage, we proposed the second background regeneration network to refine 

the result. We used the initial result to obtain a reflection edge confidence map and 

used another auto-encoder trained with an adversarial term to regenerate the 

background image. Our experimental results have demonstrated the superior 

performance compared to other state-of-the-art DNN-based reflection removal 

methods. The proposed algorithm is particularly suitable to images with blurry 

reflection, which is not uncommon in daily photography.  

 

 

Method Average Time 

CEILNet 0.82 s 

PLNet 1.15 s 

BDN 0.79 

Proposed 0.73 s 

 

Table 5.2 The averaging execution times of different methods running on the images used 

in Section 4.5.5. 
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Chapter 6. Conclusion and Future 

Works 

 

 

6.1. Conclusion 

In this thesis, we propose three algorithms for removing the reflection in images. 

These algorithms all follow the same strategy: background gradient regeneration. 

Since the reflection removal problem is severely ill-posed, existing reflection 

removal methods need to make different assumptions on the properties of the 

background and reflection for their separation. Unfortunately, due to the similar 

morphological properties of the background and reflection images, these weak 

assumptions often cannot be fulfilled in many practical situations. Many reflection 

residues thus remain in their inferred background results. Rather than following the 

existing approaches in searching for a perfect assumption that can accurately 

distinguish the background and reflection in all situations, we believe it is more 

realistic and effective to look for a remedial strategy in case the separation is 

unsuccessful. The proposed background gradient regeneration strategy suggests to 

firstly remove the reflection components in an aggressive manner even in the 

expense of losing some of the background components. The missing background 
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components are then regenerated based on the remaining ones using different 

estimation methods. The advance in the data regeneration techniques renders the 

successful implementation of the proposed strategy in this research study.  

The proposed reflection removal methods have been elaborated in detail in 

Chapter 3 to 5. These three methods have fully demonstrated the effectiveness of 

the proposed strategy in reflection removal. For the first method using the traditional 

optimization methods based on the background gradient regeneration strategy, it 

outperforms the traditional multiple-image reflection removal methods by more 

than 3dB in PSNR as shown in our experiments. For improving the speed, the 

second proposed method integrates the strategy with different deep neural network 

(DNN) techniques. It achieves superior performance similar to the first proposed 

algorithm while providing a more than 1,000 times speedup when implementing 

with GPUs. The first two proposed algorithms require multiple input images. The 

third proposed algorithm requires only a single image as the input. Following the 

background gradient regeneration strategy, a 1.7dB improvement in PSNR is 

achieved compared to other single-image DNN-based reflection removal methods. 

They are indeed some significant contributions to the field of study. 
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In recent years, computational imaging technology has been widely adopted in 

digital cameras, mobile devices, and image processing software. Although the 

advance of such technology has made possible many new functions in imaging, 

there are still problems that cannot be totally resolved. One of them is reflection 

removal. In fact, the reflection problem is often encountered in daily photography 

and greatly affecting the image quality. However, a truly robust solution is yet to be 

Method Advantages Disadvantages 

Light-field 

optimization-based 

method 

• Robust performance  

• Does not require any 

training 

  

• Not fit for the situation 

when the background 

and reflection have their 

depth ranges largely 

overlapped  

• Low speed and require 

large memory storage 

• Need special imaging 

device 

Multiple-image 

DNN-based method 
• Robust performance 

• High speed 

• Not fit for the situation 

when the background 

and reflection have their 

depth ranges largely 

overlapped  

• Need special imaging 

device 

• Performance can be 

affected by the size and 

variety of the training 

dataset   
Single-image DNN-

based method 
• Does not require any 

special imaging device 

• High speed 

• Require reflection to be 

defocused 

• Performance can be 

affected by the size and 

variety of the training 

dataset  

 

Table 6.1 A comparison of different proposed approaches. 
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developed due to the ill-posedness of the problem. The proposed reflection removal 

algorithms can be readily implemented by existing imaging hardware and can 

provide real-time performance when implementing with GPUs. Most importantly, 

they provide the much-needed robustness which the existing approaches cannot 

achieve. They have provided some practical solutions to the problem and we believe 

they will arouse great interest from the competitive digital imaging industry.  

We also summarize the advantages and disadvantages of these three methods in 

Table 6.1. The first and second proposed methods can give robust performances in 

different environments. Although these two algorithms can give considerable 

performance improvement over the existing methods, they still have their own 

weaknesses. They cannot deal with the situations that the depth ranges of the 

background and reflection overlap largely. In this case, the depth range of the pure 

background components becomes very narrow such that there will not be enough 

background components for regenerating the missing ones. And because the first 

method is optimization-based, it takes much longer time than the second approach 

for its computation. Also as light field images are used, this method requires large 

memory storage. For the third proposed method, it requires only a single input image 

thus it does not need special hardware device for image capture. It is DNN-based so 

it is also very fast. It has less reflection residuals as compared with the existing 

single-image reflection removal methods. However, the method still requires the 

reflection to be de-focused. Although it is not uncommon to have blurry reflection 
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images, there are still quite a lot of images having a sharp reflection. Finally, for 

both proposed DNN-based approaches, the performance can be affected by the 

choice of the training dataset, while it is not the case for the proposed optimization-

based method which does not require any training. These weaknesses of the 

proposed algorithms can be the directions for further research. Fig. 6.1 shows the 

comparison results of different proposed approaches. Here we can see that the LF 

based and multiple-image based methods can remove the reflection very well, since 

they use a similar strategy and framework. On the other hand, the single-image 

based method cannot totally remove the reflection, because the reflection is not 

blurry. It is a limitation of that method. 

 

 

 

Fig. 6.1. Comparison results of different proposed approaches 
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6.2. Future Works 

As an extension to the existing work, removing the reflection in videos can be a 

valuable direction. In videos, the differences in the motions of background and 

reflection between adjacent frames naturally provide a useful clue to distinguish the 

background and reflection components. Especially nowadays some digital cameras 

can capture videos at very high frame rates (e.g. 960 fps) for slow-motion video 

recording. Considering the movement of a camera held by a photographer can be 

approximated as linear and homogeneous during a very short time interval (e.g. 0.01 

seconds), we can capture many images (e.g. 9 images) in that short time interval by 

using slow-motion video recording. It is equivalent to capturing the images by a 

linear row of cameras. If we can develop a method to rectify the slight jitters in the 

captured images, we can use our first or second proposed algorithm to remove the 

reflection with only a single camera. 

Furthermore, the recurrent neural network (RNN) and long short term memory 

(LSTM) neural network, which have been adopted in video object recognition [102, 

103] and tracking [104], can also be used for further exploring the motion 

relationship between video frames. The power of RNN and LSTM in exploring the 

potential background and reflection motion information in the video frames will be 

helpful for obtaining more accurate motion models for reflection removal.  
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