

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

MODELS AND METHODS FOR CONTAINER PORT

CONGESTION MITIGATION

SHUAI JIA

PhD

The Hong Kong Polytechnic University

2020

The Hong Kong Polytechnic University

Department of Logistics and Maritime Studies

Models and Methods for Container Port

Congestion Mitigation

Shuai Jia

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

July 2019

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief,

it reproduces no material previously published or written, nor material that has been accepted for

the award of any other degree or diploma, except where due acknowledgement has been made in

the text.

(Signed)

Shuai Jia (Name of Student)

Abstract

Driven by the development of global trade, demand for containerized cargo freight has been growing

over the years, leading to frequent vessel calls at major container ports around the world. As a

consequence, traffic congestion has increasingly become a burden in the busiest container ports.

High levels of congestion impede vessel service, causing long waiting times and severe vessel delays.

This thesis studies two optimization problems that aim at mitigating container port congestion

caused by the traffic of vessels.

The first problem is a berth allocation problem in which the vessels are classified into deep-

sea vessels and feeders. While the arrival times and service times of deep-sea vessels are known

to the port operator when berth plans are being devised, the service times of feeders are usually

uncertain due to lack of data interchange between the port operator and the feeder operators. The

uncertainty of feeders’ service times can incur long waiting lines and severe port congestion if the

berth plans are poorly devised. To alleviate port congestion and achieve satisfactory vessel service,

we allocate berth space to deep-sea vessels and schedule the arrivals of feeders so that the congestion

caused by the feeders is under control, while the departure tardiness of deep-sea vessels and the

schedule displacements of feeders are minimized. We develop a stochastic optimization model for

this problem, and propose a three-phase simulation optimization method, in which the simulation

budget is wisely allocated to the solutions explored.

The second problem aims at scheduling the vessel traffic in the port waters by managing the

utilization of the navigation channel and the anchorage areas. Navigation channels are fairways

for vessels to travel in and out of the terminal basin of a container port. The capacity of a

navigation channel is restricted by the number of traffic lanes and safety clearance of vessels, and

the availability of a navigation channel is usually affected by tides. The limited capacity and

availability of a navigation channel could lead to congestion in the terminal basin. When the

navigation channels run out of capacity, the anchorage areas in the terminal basin could serve as

a buffer. We develop a mathematical model that simultaneously optimizes the navigation channel

traffic and anchorage area utilization. We analyze the complexity of the model and propose a

i

Lagrangian relaxation heuristic in which the relaxed problem is decomposed into two asymmetric

assignment problems.

We evaluate the computational performance of the proposed solution methods using test in-

stances generated based on the operational data of the Yangshan Deep-water Port in Shanghai.

Computational results show that the proposed solution methods achieve satisfactory performance

within reasonable computation time and outperform benchmark methods in terms of congestion

mitigation and vessel service enhancement.

ii

Publications Arising from the Thesis

Jia S, Li C-L, Xu Z (2019) Managing navigation channel traffic and anchorage area utilization of a

container port. Transportation Science 53(3):728–745.

Jia S, Li C-L, Xu Z (2019) Deep-sea vessel berth planning and feeder arrival scheduling for port

congestion mitigation. Submitted for publication.

iii

Acknowledgements

I would like to thank Professor Chung-Lun Li and Professor Zhou Xu for the kind help and fruitful

discussions that have made this program successful. I could not have made such achievement

without the support of my family.

iv

Contents

1 Introduction · 1

1.1 Berth Allocation and Arrival Scheduling · 2

1.2 Vessel Traffic Scheduling · 6

1.3 Contributions · 10

2 Deep-Sea Vessel Berth Planning and Feeder Arrival Scheduling · · · · · · · · 13

2.1 Problem Description and Formulation · 13

2.2 Solution Method · 17

2.2.1 Global Phase . 18

2.2.2 Local Phase . 23

2.2.3 Clean-up Phase . 28

2.2.4 The Simulator . 29

2.3 Computational Experiments · 30

2.3.1 Problem Instances and Algorithm Parameters 31

2.3.2 Benchmark Methods . 34

2.3.3 Comparison with Benchmark Methods . 35

2.3.4 Varying the Queue Length Limit . 37

2.3.5 Benefits of Controlling the Queue Length of Feeders 38

2.4 Extensions · 41

3 Managing Navigation Channel Traffic and Anchorage Area Utilization · 43

3.1 Problem Description and Formulation · 43

3.2 Solution Method · 56

3.2.1 The Lagrangian Relaxation Problem and Its Subproblems 57

3.2.2 Upper Bound Heuristic and the Subgradient Method 70

v

3.3 Computational Experiments · 73

3.3.1 Generation of Problem Instances . 74

3.3.2 Benchmark Methods . 80

3.3.3 Comparison with Benchmark Methods . 83

3.3.4 Varying Anchorage Capacity and Tardiness Penalties 87

3.3.5 Sequencing Vessels by Ignoring Anchorage Capacity 89

3.4 Extensions · 92

3.4.1 Multiple Navigation Channels . 92

3.4.2 Heterogeneous Staging Anchorages . 94

3.4.3 Flexible Unberthing Times of Outgoing Vessels 95

4 Conclusions and Suggestions for Future Research · 97

References · 101

Appendix· 107

vi

Chapter 1

Introduction

Owing to the fast development of global trade, the maritime traffic has seen rapid growth in the

last decade. The volume of world seaborne trade increased from 7.7 billion tons in 2006 to 10.3

billion tons in 2016 (UNCTAD 2017). The ever-increasing demand for seaborne cargo freight has

given rise to frequent vessel calls at container ports around the world. As a consequence, traffic

congestion has increasingly become a burden in the busiest ports. High levels of congestion impede

vessel service, causing long waiting times and severe vessel delays. Thus, congestion mitigation

has become an important issue faced by the busiest container ports today. Besides infrastructure

expansion, which is usually time-consuming and capital-intensive, the following two methods have

been implemented in practice for port congestion mitigation: (i) allocating berths to vessels for

efficient vessel handling; and (ii) scheduling the vessel traffic in the port waters for efficient vessel

movement. This thesis studies a problem of allocating berths to vessels and a problem of scheduling

the vessel traffic in the port waters, and proposes optimization models and solution methods for

addressing the two problems.

For the first problem, we consider a container port that serves two types of vessels: deep-sea

vessels and feeders, where the number of feeders to be served is significantly larger than the number

of deep-sea vessels. We allocate berth space to deep-sea vessels and schedule the arrivals of feeders so

that the congestion caused by the traffic of feeders is under control, while the departure tardiness of

deep-sea vessels and the schedule displacements of feeders are minimized. For the second problem,

we consider given berth plans of vessels and schedule the vessel traffic by managing the utilization

of the navigation channel and the anchorage areas in the terminal basin, so that vessels can berth

and depart as planned. The goal of the thesis is to provide container ports with decision support

tools that can be used to improve the current practice of berth utilization and vessel traffic control

1

so that traffic congestion can be well alleviated.

1.1 Berth Allocation and Arrival Scheduling

Vessels served by a container port can usually be classified into two types: deep-sea vessels and

feeders (Cordeau et al. 2005; Emde and Boysen 2016; Ursavas and Zhu 2016). Deep-sea vessels are

large in size, and they transport containers between ports along long-haul ocean routes. Feeders

are small-sized vessels, and they provide transportation services between ports that are relatively

close to each other. For container ports located on the estuaries of busy waterways, such as the

Port of Shanghai, which is located on the Yangtze River estuary, feeders play an important role in

container transshipment. In these container ports, the number of feeders served can be significantly

larger than the number of deep-sea vessels.

One important issue faced by a port operator is the need for effective berth planning for both

deep-sea vessels and feeders. Deep-sea vessels visit container ports regularly by following their

voyage schedules. Thus, the scheduled port arrival and departure times of each deep-sea vessel are

known to the port operator. Using electronic data interchange, the port operator can acquire the

throughput information of deep-sea vessels. The scheduled arrival and departure times and the

throughput information are essential for making detailed service plans for the vessels. However,

due to the lack of data interchange between the port operator and the feeder operators, accurate

throughput information of feeders may not be available to the port operator in advance. This

poses a great challenge for berth planning, as service plans are made several days before vessels

arrive. Because of the uncertainties in service times, port operators do not usually reserve berth

space for feeders when making berth plans, but allocate berths to feeders dynamically according to

certain predetermined service rules (e.g., arbitrarily assigning an available berth to a feeder when

it arrives at the port). However, this practice may lead to severe congestion and also lower the

port’s operational efficiency. On the other hand, developing berth plans for deep-sea vessels and

simultaneously taking into account the uncertainties of feeder service times may actually alleviate

congestion and thus improve the efficiency of the port.

For a container port such as the Port of Shanghai, which serves a large number of feeders,

2

another important issue faced by the port operator is the need to mitigate port congestion by

controlling the waiting lines of feeders. Unlike deep-sea vessels that wait at the anchorage ground

upon arrival, feeders usually wait at the terminal basin, which is close to the berths. Long waiting

lines of feeders obstruct the traffic in the port, impeding the service of vessels and increasing the

high risk of vessel collisions. One method that has been implemented in practice for congestion

mitigation is to serve feeders by appointment. That is, the port operator makes adjustments to the

voyage schedules of feeders by assigning updated arrival times to the feeders, and the feeders are

required to arrive at the port at or close to their assigned arrival times. Assigning arrival times

to feeders allows the port operator to reduce the number of arrivals during peak hours. However,

the queue length of feeders depends not only on the feeder arrival times, but also on their service

times. Hence, to effectively control congestion in the port, the assignment of arrival times to feeders

should also take into account the service time uncertainties of feeders.

We study a problem that allocates berths to deep-sea vessels and assigns arrival times to feeders

for a container port where the service times of feeders are stochastic with known probability distri-

bution. We develop a stochastic optimization model for the problem. The model aims to minimize

the departure delays of deep-sea vessels and schedule displacements of feeders, subject to berth

availability and a queue length limit. We develop a simulation optimization method for solving this

model. Our model and solution method can be used for tactical berth planning at a container port

where information on feeders is limited and mitigating congestion is of great importance.

Berth allocation problems have attracted tremendous research efforts over the past two decades.

Various models have been developed by researchers for decision-making at tactical and operational

levels; see Steenken, Voß, and Stahlbock (2004), Bierwirth and Meisel (2010, 2015), Kim and

Lee (2015), and Gharehgozli, Roy, and de Koster (2016) for comprehensive reviews of the literature.

Most of the existing berth allocation models share the common feature that the arrival plans of

vessels are predetermined and must be respected by the port operator when devising berth plans.

In practice, however, port operators may need to change the vessel arrival plans when making berth

plans in order to alleviate congestion in the port. There exist a few works that study the scheduling

of vessel arrivals from the perspective of a port operator. Golias et al. (2009) assign arrival times to

3

vessels in a berth allocation model to minimize weighted total waiting time and departure delay of

vessels. Alvarez, Longva, and Engebrethsen (2010) and Lang and Veenstra (2010) use simulation to

evaluate different arrival scheduling strategies for minimizing the fuel consumption cost of vessels.

Du et al. (2015) assign arrival times to vessels in a tidal port to reduce vessel waiting times caused

by tidal effect in the navigation channels. Li and Lam (2017) schedule the arrivals of vessels at a

container port to resolve vessel conflicts in the fairways nearby the port. De et al. (2018) schedule

the berth utilization and the vessel arrivals to minimize the cost incurred by vessel fuel consumption

and terminal operations. In our model, the arrival times of deep-sea vessels are input parameters,

whereas the arrival times of feeders are decision variables. This model configuration is motivated

by the following facts: (i) Deep-sea vessels visit multiple ports by following their voyage schedules;

changing the arrival time of a deep-sea vessel at a port may have a significant impact on its schedule

for visiting other ports, which is undesirable in practice. (ii) The voyage schedules of feeders are

generally quite flexible, as feeders typically transport containers between only two ports. Thus,

scheduling the arrivals of feeders helps alleviate port congestion without incurring unacceptable

compromises in service quality.

Another important feature of our model is the stochasticity of the service times of feeders. Many

researchers have studied berth allocation problems with uncertain vessel information. Some berth

allocation models consider uncertain vessel arrival times (see, e.g., Moorthy and Teo 2006), while

some models consider uncertain vessel service times (see, e.g., Golias 2011). Some berth allocation

models take into account uncertainties in both vessel arrivals and vessel services; see, for example,

Han, Lu, and Xi (2010), Zhen, Lee, and Chew (2011), and Liu et al. (2016). Liu, Xiang, and

Zheng (2019) provide a summary of the existing works on stochastic berth allocation problems. In

most of the existing works, berths are explicitly allocated to vessels in the hope that vessels can

start being served as planned at their designated berths even if the vessel information is uncertain.

Our model differs from these models in that the berths for serving deep-sea vessels are determined

explicitly using complete vessel information, whereas the berths for serving feeders are modeled

implicitly due to the uncertainties of feeder service times. For evaluating the performance of the

berth plan generated by our model, we adopt an operational service rule that dynamically allocates

4

berths to feeders when the service times of feeders are observed.

In addition to the limited berth availability, which is the major constraint considered in the

berth allocation literature, our model considers the queueing behavior of feeders and imposes a

restriction on the expected queue length of feeders. This additional constraint is motivated by the

need to control vessel congestion in the terminal basin of a busy container port. The queueing

behavior of vessels has been studied using queueing and simulation models. These include studies

that model the arrival and service processes of vessels as queueing systems and evaluate the port

performances under different vessel service patterns (see, e.g., Radmilovich 1992; Zrnić, Dragović,

and Radmilović 1999), as well as studies that apply simulation models to evaluate the performance

of quay crane and berth allocation policies (see, e.g., Legato and Mazza 2001; Dragović et al. 2005;

Dragović, Park, and Radmilović 2006). Existing models on vessel queueing behavior typically focus

on the evaluation of predetermined vessel service policies. Our model, however, incorporates vessel

queueing behavior into berth allocation and feeder arrival scheduling decisions, so as to optimize

berth utilization while at the same time keeping vessel congestion under control.

We develop a simulation optimization method for solving the berth allocation and arrival

scheduling problem. Simulation optimization methods are widely used for solving optimization

problems where performance of each solution is evaluated by doing simulation experiments. Xu

et al. (2015) and Amaran et al. (2016) review various simulation optimization methods and their

applications. As noted by Lee, Chew, and Manikam (2006), performing a large number of sim-

ulation replications to obtain an accurate estimation of solution performance would consume an

unaffordable amount of computation effort, especially when the solution space is large, and thus

one should seek to balance the effort spent in running simulations and in sampling solutions. In the

literature of berth allocation, there exist a few works that apply simulation optimization for solving

problems with uncertainties. However, existing works either allocate a large simulation budget to

each solution and incur a heavy computation burden (see, e.g., Han, Lu, and Xi 2010), or attempt to

explore the solution space efficiently by ignoring uncertainties and then use simulation to evaluate

only a limited number of the visited solutions (see, e.g., Arango et al. 2011, 2013; Legato, Mazza,

and Gull̀ı 2014). Unlike these simulation optimization methods, we adapt the solution framework

5

developed by Xu, Nelson, and Hong (2010), which comprises a global phase, a local phase, and a

clean-up phase, where different amounts of simulation budget are allocated to different phases. We

develop new solution sampling strategies in the global and local phases so as to tackle our berth

allocation problem with feeder service time uncertainty.

1.2 Vessel Traffic Scheduling

Vessels that enter or leave a container port need to pass through a navigation channel. The

navigation channel is a fairway where vessels receive official pilotage services when traveling between

the berths and the open sea. The vessel traffic in a navigation channel is regulated by vessel traffic

service (VTS) operators (International Maritime Organization 1997). For tidal ports such as the

Port of Shanghai where the availability of the navigation channel is limited due to tidal effect, the

management of vessel traffic by VTS operators plays a crucial role in congestion mitigation. In

these tidal ports, terminal operators determine the berthing and unberthing times of calling vessels

based on their knowledge about the availability of the berths and navigation channels. After

receiving the berth plans proposed by the terminal operators, the VTS operator of the port needs

to schedule the vessels for traveling through the navigation channels such that the time windows

for the vessels to utilize the channels coordinate with the vessels’ planned berthing and unberthing

times at the terminals. Because of the limited number of traffic lanes and the safety clearance

requirement in navigation channels, the number of vessels that can sail in the channels is limited.

When the channels run out of capacity, the anchorage area in the terminal basin could serve as

a buffer. However, the poor planning of navigation channel and anchorage area utilization often

leads to congestion, which lowers terminal operation’s efficiency and incurs more vessel emissions.

If the VTS operator fails to arrange a schedule for some vessels to utilize the navigation channel,

the berth plans will be rejected by the VTS operator, and the terminal operators will have to revise

their plans.

Figure 1.1 provides a schematic layout of a container port. During each planning horizon, some

calling vessels need to be served at a container port according to the berth plans proposed by the

terminal operators. Each vessel arrives at the outer anchorage ground of the port at a given time

6

anchorage ground

navigation channel

container terminals

anchorage areas

in terminal basin

incoming vessels

outgoing vessels

Figure 1.1: Schematic layout of a container port.

with a planned berthing time at which it is expected to arrive at its designated berth. After the

vessel completes its service at the berth, it will leave the terminal basin, and is expected to arrive

at the outer anchorage ground by a certain expected departure time. Vessels that enter or exit the

terminal basin should pass through a navigation channel. The navigation channel consists of two

traffic lanes: one for incoming vessels (i.e., vessels that enter the terminal basin for service) and

the other for outgoing vessels (i.e., vessels that exit the terminal basin after service). Since each

traffic lane bears one-way traffic, incoming or outgoing vessels need to enter a lane one by one and

sail in a single line when getting through the channel. When sailing in the navigation channel,

vessels in the same traffic lane should keep a safety clearance among them. Because of tidal effect,

the water depth in the navigation channel varies over time. As a result, a vessel can only pass

through the navigation channel when the water level becomes deep enough (Du et al. 2015, Ding

et al. 2016). This tidal constraint, together with the limited capacity of the navigation channel,

imposes a serious restriction on the number of vessels that can enter and leave the terminal basin.

Vessels in the terminal basin should either moor at berth, or park at some small anchorage areas,

which we refer to as staging anchorages. The staging anchorages are utilized in the following ways:

(i) An incoming vessel that enters the terminal basin earlier than expected should wait at a staging

7

anchorage until it can moor as planned. (ii) After an outgoing vessel finishes service, the vessel

should wait at a staging anchorage if it cannot enter the navigation channel due to either inadequate

water level or limited channel capacity. To ensure that vessels can berth and depart as planned,

the VTS operator should manage the traffic by scheduling the utilization of the navigation channel

and the staging anchorages.

We consider a container port with a single navigation channel. We develop and analyze an

optimization model that simultaneously allocates space in the anchorage area to vessels and de-

termines the time for each vessel to utilize the navigation channel. The objective of this model is

to minimize vessels’ berthing and departure tardiness, as well as unsatisfied service requests. The

model can be used for constructing weekly “rough-cut” plans that determine the usage of pilots

and the number of tugboats needed for guiding the vessels, as well as shorter term plans (e.g., 1-

or 2-day plans) that determine the actual schedule of the vessels.

Seaside operations planning problems in container ports have been extensively studied by logis-

tics and operations researchers, and various mathematical models have been developed for different

applications. One common feature of the existing models is that problems are formulated from the

perspective of a terminal operator. These models include berth allocation models with different

spatial, temporal, and handling time attributes, quay crane scheduling models with different task,

crane, and interference attributes, as well as various models that integrate berth allocation and

quay crane scheduling decisions. Bierwirth and Meisel (2010, 2015) provide comprehensive reviews

on various berth allocation and quay crane scheduling problems. For other recent reviews on math-

ematical models for container terminal operations, see Carlo, Vis, and Roodbergen (2015), Kim

and Lee (2015), and Gharehgozli, Roy, and de Koster (2016). In addition to the limited availability

of terminal resources, low water level caused by tidal effect in navigation channels and limited space

in the anchorage area are other issues faced by many container ports. Yet, most existing seaside

operations planning models in the literature have excluded these factors. The tidal condition in

navigation channels often leads to tight time windows for vessels with deep drafts to enter and

exit the terminal basin. As a result, deep-draft vessels may need to enter and leave their allocated

berths at some specific time points, occupy the berth space for a longer time period, or wait at the

8

anchorage area in the terminal basin for berthing and departure.

A number of seaside operations planning models reported in the literature have considered tidal

conditions of a port. Barros et al. (2011), Xu, Li, and Leung (2012), Lalla-Ruiz, Melián Batista,

and Moreno Vega (2013), Lalla-Ruiz et al. (2016, 2017), Qin, Du, and Sha (2016), and Lalla-Ruiz

(2017) develop and analyze different seaside operations planning models with tidal effects at the

berths. Ilati, Sheikholeslami, and Hassannayebi (2014), Sheikholeslami, Ilati, and Kobari (2014),

Du et al. (2015), Ding et al. (2016), Dadashi et al. (2017), Yu, Wang, and Zhen (2017), and Zhen

et al. (2017) develop and analyze different seaside operations planning models by taking the tidal

impact on navigation channels into consideration. Existing works that study the tidal impact on a

navigation channel typically focus on examining how the tidal windows in the navigation channel

affect berth planning decisions. However, the limited traffic capacity of the navigation channel is

rarely considered in these works. Since the traffic capacity of the navigation channel is restricted

by the number of traffic lanes and the safety clearance of vessels, the number of incoming vessels

and the number of outgoing vessel that can enter the navigation channel at a time are limited. This

restriction would have a direct impact on the berthing and unberthing times of vessels.

Different from the above mentioned seaside operations planning models which allocate terminal

resources to calling vessels, our model takes vessel berthing information as input and focuses on

scheduling vessel traffic in a busy container port. Vessel traffic scheduling problems in restricted

water areas have been studied by some researchers. Petersen and Taylor (1988), Nauss (2008),

Verstichel et al. (2014), and Passchyn et al. (2016) model and solve lock scheduling problems for

inland waterways. Ulusçu et al. (2009) and Sluiman (2017) schedule the traffic of transit vessels in

straits. There also exist a few works on the scheduling of navigation channels of seaports that are

more related to our work. Kelareva et al. (2012) and Kelareva, Tierney, and Kilby (2013) consider

the scheduling of incoming and outgoing vessels of a navigation channel with predetermined vessel

berthing positions, tidal constraints in the channel, and constraints on tug availability, so as to

maximize the cargo throughput of the port. Zhang et al. (2016) also study the scheduling of incom-

ing and outgoing vessels of a navigation channel with predetermined vessel berthing positions and

tidal constraints in the channel, where the objective is to minimize the vessels’ total waiting time.

9

Tang et al. (2016) study the master planning of a new container terminal by taking the dimensions

of a navigation channel into account to avoid possible bottlenecks for the port’s future performance.

Lalla-Ruiz, Shi, and Voß (2018) consider a problem that schedules vessels for traveling through a

set of navigation channels with tidal constraints. They model the problem as a mixed integer linear

program (MILP) and propose a meta-heuristic for minimizing vessels’ waiting time at the outer

anchorage ground plus the travel time in the navigation channels. Hill et al. (2019) reformulate

Lalla-Ruiz, Shi, and Voß’s problem as a variant of the multi-mode resource-constrained project

scheduling problem and develop a compact MILP that can be solved efficiently by a mathematical

programming solver. However, existing works on scheduling vessel traffic in navigation channels of

seaports either ignore the utilization of staging anchorages or assume that the capacity of staging

anchorages are infinite. The issue of how the utilization of the limited anchorage capacity can miti-

gate congestion in navigation channels during low-tide periods has yet to be addressed. This study

therefore aims to scientifically model, solve, and analyze the anchorage area and navigation channel

planning problem of a container port. Similar to the model of Lalla-Ruiz, Shi, and Voß (2018),

scheduling the navigation channel traffic of a port is a key component of our model. However, our

model considers the assignment of the staging anchorages to vessels, takes into account of the safety

clearance of vessels and the pre-determined berth plans when scheduling the vessels, and has an

objective function different from that of Lalla-Ruiz, Shi, and Voß’s model.

1.3 Contributions

The main contributions of this study is summarized as follows. First, we address two important op-

timization problems for congestion mitigation in a busy container port. The first problem involves

the decisions of allocating berths to deep-sea vessels and scheduling the arrivals of feeders with

uncertainties of feeder service times; while the second problem involves the decisions of scheduling

the vessel traffic in the navigation channel and managing the utilization of the anchorage areas.

We develop optimization models for the two problems. The model of berth allocation and arrival

scheduling allocates berth space to deep-sea vessels by respecting the vessel arrival plans, and con-

trols the expected queue length of feeders by adjusting the feeder arrival plans. The model of

10

channel traffic scheduling and anchorage utilization management controls the vessel traffic in the

port waters by taking into account the berth plans of vessels. Second, we propose effective solution

methods for solving the models. For solving the stochastic optimization model of berth allocation

and arrival scheduling, we apply a three-phase simulation optimization method, in which we develop

new solution methods for the global and local phases. The simulation optimization method strikes

a balance between exploration and exploitation, and allocates the simulation budget to solutions

wisely, so that solutions with satisfactory performance can be identified using a reasonable amount

of computation effort. For solving the MILP model of channel traffic scheduling and anchorage

utilization management, we develop a Lagrangian relaxation heuristic in which the capacity con-

straint of the anchorage areas is dualized, and show that the remaining problem decomposes into

two asymmetric assignment problems, which can be solved in pseudo-polynomial time. Finally, we

generate extensive problem instances based on the operational data extracted from the Yangshan

Deep-water Port in Shanghai, and compare the computation performances of the proposed solution

methods against various benchmark methods via extensive computational experiments. Compu-

tational results show that the proposed solution methods outperform the benchmark methods in

terms of both efficiency and effectiveness, and thus, the proposed methods can possibly serve as

decision support tools for vessel service planning and congestion mitigation in a container port.

11

12

Chapter 2

Deep-Sea Vessel Berth Planning and Feeder

Arrival Scheduling

2.1 Problem Description and Formulation

We consider a set of vessels that need to be served at a container port during a planning horizon.

The vessels are classified into deep-sea vessels and feeders. Each deep-sea vessel has a scheduled

port arrival time and a target departure time. Deep-sea vessels strictly follow their voyage schedules

and arrive at the port on time. If the port fails to complete service at or before the target departure

time of a deep-sea vessel, then departure delay is incurred, resulting in a tardiness penalty cost.

Each feeder has an initially scheduled port arrival time. However, in order to mitigate congestion,

the port operator may need to control the arrivals of the feeders by altering their arrival plans.

The deviation between the assigned port arrival time and the initially scheduled port arrival time

of each feeder is referred to as the schedule displacement of the feeder. Schedule displacement

of each feeder incurs a penalty cost. Furthermore, to ensure that containers will be successfully

transshipped between feeders and deep-sea vessels, the schedule displacement of each feeder cannot

exceed a pre-specified upper limit. Consequently, each feeder has a time window during which it

is allowed to arrive at the port. In reality, service delays can propagate between feeders and deep-

sea vessels due to container transshipment. To account for the dependence between feeders and

deep-sea vessels, precedence relations on the services of vessels should be captured in the model.

However, such modeling approach has the following drawbacks. First, it significantly increases the

complexity of the model. Second, since the service times of feeders are uncertain, a solution to

the model may not avoid delay propagations even if the dependence between feeders and deep-sea

13

vessels are taken into account. On the other hand, imposing time windows on the arrivals of feeders

helps mitigate delay propagations while eliminating the dependence between feeders and deep-sea

vessels, making the model more tractable.

The service times of deep-sea vessels are known to the port operator at the planning stage.

However, accurate throughput information of feeders is unavailable when the service plan is devel-

oped. Hence, the service times of feeders are uncertain, and berths are usually assigned to feeders

dynamically according to chosen operational rules. Uncertainties in the service times can cause

stochastic dynamics in the queue length of feeders, which can result in severe congestion when the

number of feeders is large but the berths are not effectively utilized for serving the feeders. To

mitigate congestion, berth plans of deep-sea vessels and arrival schedules of feeders should be made

by taking into account both the uncertainties of feeder service times and the operational service

rules of feeders so that the expected queue length of feeders is well controlled.

For the purpose of modeling, we discretize the planning horizon and assume that all time-related

parameters are integer-valued. For simplicity, we assume that the port is empty at the beginning

of the planning horizon, and the planning horizon is set to be long enough so that all the vessels

considered can finish service within the planning horizon. We also assume that all feeders have

the same length σ, and that the lengths of deep-sea vessels are multiples of σ. This assumption is

justified by the fact that the lengths of deep-sea vessels are much larger than the lengths of feeders,

and the lengths of feeders are within a relatively small range compared to the lengths of deep-sea

vessels. We discretize the quay into a set of berth segments, with each berth segment having a

length equal to the length of a feeder. As a result, each feeder occupies exactly one berth segment

while each deep-sea vessel occupies multiple berth segments when being served. In Section 2.4, we

discuss how our solution method can be modified to handle problems where the port is not initially

empty and the lengths of feeders are non-identical.

The service times of feeders are modeled as random variables with known probability distri-

butions that are independent of the berth plan. The probability distributions of these random

variables can be derived by analyzing the historical operational data of the port. We assume that

berth segments are assigned to arrived feeders on a first-come first-served basis. When a feeder

14

arrives at the port, its service time will be known, and it will join the waiting line (ties broken

randomly if multiple feeders arrive at the same time). Suppose feeder i with service time τi is

the first feeder in the waiting line. Then, feeder i will start being served, say at time t, once a

berth becomes available throughout time interval [t, t+ τi] (ties broken randomly if multiple berth

segments become available at the same time). When we determine the berth plan, we impose an

upper limit on the expected queue length of feeders, so as to control the traffic in the port and the

feeder waiting time.

Our problem involves decisions for assigning each deep-sea vessel a berthing time and a berthing

position, and for assigning each feeder a port arrival time. The objective is to minimize the weighted

total departure tardiness of deep-sea vessels and the weighted total schedule displacement of feeders.

We denote this problem as P. The mathematical formulation of problem P is presented as follows:

Input data:

T : Length of the planning horizon.

N1: Number of deep-sea vessels to be served.

N2: Number of feeders to be served.

B: Number of berth segments available.

Hi: Service time of deep-sea vessel i.

Ri: Number of berth segments that deep-sea vessel i needs to occupy.

Ai: Port arrival time of deep-sea vessel i.

Di: Target port departure time of deep-sea vessel i.

Si: Initially scheduled port arrival time of feeder i.

[Ei, Ēi]: Time interval during which feeder i is allowed to arrive at the port.

Q̄: Upper limit on the expected queue length of feeders.

C1i: Unit cost of departure tardiness of deep-sea vessel i.

C2i: Unit cost of schedule displacement of feeder i.

The input data also include the probability distribution of the service time of each feeder, and

we let Gi denote the mean service time of feeder i.

Decision variables:

15

xibt: = 1 if deep-sea vessel i is served by berth segments b, b+ 1, . . . , b+Ri − 1 during the time

interval [t, t+Hi]; 0 otherwise.

yit: = 1 if feeder i is assigned an arrival time t; 0 otherwise.

l1i: Departure tardiness of deep-sea vessel i.

l2i: Schedule displacement of feeder i.

Random variables:

Qt(x,y): Number of feeders that are waiting for service during the time interval [t, t+ 1] if the

feeders are served according to a given service plan (x,y) and the feeders are allocated to the

berths on a first-come first-served basis, where x = (xibt | i = 1, . . . , N1; b = 1, . . . , B; t =

0, 1, . . . , T − 1) and y = (yit | i = 1, . . . , N2; t = 0, 1, . . . , T − 1).

Mathematical programming formulation:

P : minimize

N1∑
i=1

C1il1i +

N2∑
i=1

C2il2i (2.1)

subject to

B−Ri+1∑
b=1

T−Hi∑
t=Ai

xibt = 1 (i = 1, . . . , N1) (2.2)

Ēi∑
t=Ei

yit = 1 (i = 1, . . . , N2) (2.3)

N1∑
i=1

min{b,B−Ri+1}∑
b′=max{1,b−Ri+1}

min{t,T−Hi}∑
t′=max{0,t−Hi+1}

xib′t′ ≤ 1 (b = 1, . . . , B; t = 0, 1, . . . , T−1)

(2.4)

l1i = max

{
0,

B−Ri+1∑
b=1

T−Hi∑
t=Ai

(t+Hi)xibt −Di

}
(i = 1, . . . , N1) (2.5)

l2i =

∣∣∣∣∣
Ēi∑
t=Ei

tyit − Si

∣∣∣∣∣ (i = 1, . . . , N2) (2.6)

E[Qt(x,y)] ≤ Q̄ (t = 0, 1, . . . , T − 1) (2.7)

xibt ∈ {0, 1} (i = 1, . . . , N1; b = 1, . . . , B −Ri + 1; t = 0, 1, . . . , T −Hi) (2.8)

yit ∈ {0, 1} (i = 1, . . . , N2; t = 0, 1, . . . , T − 1) (2.9)

In objective function (2.1), the unit cost C1i represents the weight of the departure tardiness of

deep-sea vessel i, and the unit cost C2i represents the weight of the schedule displacement of feeder

16

i. Thus, objective function (2.1) minimizes the weighted total tardiness and schedule displacement

of vessels. Constraint (2.2) ensures that each deep-sea vessel is served during the planning horizon.

Constraint (2.3) ensures that each feeder i arrives at the port during its feasible arrival time interval

[Ei, Ēi]. Constraint (2.4) ensures that each berth segment b is occupied by at most one deep-sea

vessel during each time interval [t, t+1]. Constraint (2.5) determines the departure tardiness of each

deep-sea vessel. Constraints (2.6) determines the schedule displacement of each feeder. Constraint

(2.7) imposes an upper limit on the expected queue length of feeders throughout the planning

horizon. Constraints (2.8) and (2.9) specify the binary requirements of xibt and yit.

2.2 Solution Method

Solving problem P is highly challenging, because (i) the mathematical formulation contains a large

number of constraints and binary decision variables; and (ii) the expected queue length E[Qt(x,y)]

in constraint (2.7) is dependent on both the service plan (x,y) and the service time distribution of

the feeders. In fact, when N2 = 0 (i.e., there are no feeders), the problem becomes a berth allocation

problem with a minimum weighted total tardiness objective. This special case is a generalization of

the single machine scheduling problem with a minimum weighted total tardiness objective, which is

known to be strongly NP-hard (Garey and Johnson 1979, p. 237). To tackle this difficult problem

P, we use a simulation optimization method, which is an adaptation of the method proposed by Xu,

Nelson, and Hong (2010) for solving fully-constrained discrete simulation optimization problems.

Our method runs in three phases: global phase, local phase, and clean-up phase. In the global

phase, we attempt to quickly identify a set of solutions with good estimated performance via a

genetic algorithm. Since the purpose of the global phase is to explore the solution space efficiently,

a relatively small simulation budget is allocated to the evaluation of visited solutions. In the local

phase, we construct a set of solution clusters using the solutions generated in the global phase,

and for each cluster we identify the most promising area, in which we use local search to obtain

a locally optimal solution. In this phase, we allow the solutions to be evaluated more intensively,

as the quality of the solutions obtained in this phase will have a higher impact on the overall

performance of the simulation optimization method. The clean-up phase selects the best solution

17

Table 2.1: Parameters used in each phase of the simulation optimization method.

Phase Parameter Description

Global phase s1 Population size used by the genetic algorithm

s2 No. of individual pairs selected for crossover in each iteration

µ Mutation rate
¯̀ Maximum number of iterations

n1 No. of simulation replications allocated to each new individual

n2 No. of simulation replications allocated to each individual that has been visited before

λ0 Initial value of the parameter λ of the relaxed problem P′(λ)

ζ Step size for updating parameter λ

Local phase s3 Maximum number of solutions in each solution cluster

s4 Maximum number of solutions evaluated in each iteration

h Parameter of the adaptive hyperbox algorithm’s stopping condition

n3 No. of simulation replications allocated to each visited solution

λ̄ Value of the parameter λ used in the local phase

Clean-up phase δ Indifference zone

ε Parameter used to define the confidence level

n4 No. of simulation replications allocated to the best solution

among the solutions generated by the local phase, and the performance of the best solution is

evaluated with high precision via simulation.

The global phase, local phase, and clean-up phase of our method are described in Sections 2.2.1,

2.2.2, and 2.2.3, respectively. The simulator that we use to evaluate the performance of a solution is

presented in Section 2.2.4. The parameters of the algorithms used in different phases are presented

in Table 2.1.

2.2.1 Global Phase

The global phase of our simulation optimization method aims to explore the solution space and

quickly identify a set of solutions with relatively good estimated performance. This is done via

a genetic algorithm. The advantage of using a genetic algorithm is that the algorithm employs a

population-based search which considers many good solutions in parallel. Compared to iterative

search methods that search the solution space by considering only one solution at a time, a genetic

algorithm tends to be more robust to stochastic noise (Xu, Nelson, and Hong 2010) and is widely

used as a component of simulation optimization (Fu, Glover, and April 2005; Xu et al. 2015; Amaran

et al. 2016).

Our genetic algorithm solves a relaxed version of problem P iteratively. This relaxed problem,

18

which has a nonnegative parameter λ, is defined as follows:

P′(λ) : minimize

N1∑
i=1

C1il1i +

N2∑
i=1

C2il2i + λ∆ (2.10)

subject to ∆ = max
{

0, max
0,1,...,T−1

{
E[Qt(x,y)]

}
− Q̄

}
(2.11)

constraints (2.2)–(2.6) and (2.8)–(2.9)

Variable ∆ measures the extent to which constraint (2.7) is violated, and λ is the unit penalty on

the constraint violation. Clearly, problem P′(λ) is always feasible. We have the following property.

Property 1 If problem P is feasible, then there exists λ̂ > 0 such that any optimal solution of

problem P′(λ̂) is also optimal to problem P.

Proof: Consider the situation where problem P is feasible. Note that in each problem instance of

P, there are finitely many possible (x,y) values. Let

∆min = min
(x,y) s.t. κ(x,y)>Q̄

{
κ(x,y)− Q̄

}
,

where

κ(x,y) = max
t=1,...,T−1

{
E[Qt(x,y)]

}
.

Then, ∆min > 0. Let Z∗ denote the optimal solution value of problem P, and let

λ̂ =
Z∗

∆min
+ 1.

Because any feasible solution of P is a feasible solution of P′(λ) with ∆ = 0, the optimal solution

value of P′(λ) is at most Z∗, for any λ ≥ 0.

Consider a feasible solution of P′(λ) with λ ≥ λ̂ and ∆ > 0. In this feasible solution, ∆ ≥ ∆min.

The objective function value of this feasible solution is at least λ∆ ≥ λ̂∆min > Z∗. Thus, this

feasible solution is not optimal. Hence, any optimal solution of P′(λ) with λ ≥ λ̂ must satisfy the

condition that ∆ = 0. Therefore, an optimal solution of P′(λ) with λ ≥ λ̂ is also optimal to P.

Property 1 implies that problem P can be solved optimally by solving P′(λ) with a sufficiently

large λ, provided that P is feasible. Instead of solving problem P directly, our genetic algorithm

19

solves problem P′(λ) iteratively, where the value of λ is updated periodically. Solving P′(λ) for a

variety of λ values enables the genetic algorithm to explore a broader set of possible service plans.

When λ is small, the service plans generated tend to have smaller tardiness and displacement costs

but be more likely to violate constraint (2.7). When λ is large, the service plans generated tend to

be more likely to satisfy constraint (2.7) but have larger tardiness and displacement costs. Both

types of service plans, however, may possess certain characteristics of a good solution that can pass

onto their offspring in the crossover process.

Let Θ denote the finite set of (x,y) values that satisfy constraints (2.2)–(2.4) and (2.8)–(2.9).

For each λ ≥ 0 and each (x,y) ∈ Θ, define

gλ(x,y) =

N1∑
i=1

C1il1i +

N2∑
i=1

C2il2i + λ∆,

where l1i, l2i, and ∆ are defined by equations (2.5), (2.6), and (2.11), respectively. We refer to

gλ(x,y) as the performance of the solution (x,y) for problem P′(λ). The exact value of gλ(x,y)

cannot be obtained easily because Qt(x,y) has no closed form over (x,y). However, since Qt(x,y)

can be observed through simulation experiments, we can estimate gλ(x,y) using the sample mean

of Qt(x,y) observed in multiple independent simulation replications. We let ḡλ(x,y) denote the

estimated performance of (x,y) obtained via simulation.

In a genetic algorithm, information of a solution is usually encoded into a string of numbers,

called an individual. In our implementation, each individual is a string p = (p1, . . . , pN1+N2), which

is a permutation of the (N1 +N2)-tuple (1, . . . , N1 +N2). For each i = 1, . . . , N1 +N2, the number

pi represents deep-sea vessel pi if pi ≤ N1, and represents feeder pi −N1 if pi > N1. Furthermore,

vessel pi has a higher service priority than vessel pj if i < j. An individual p is translated into

a solution (x,y) ∈ Θ via a decoding scheme. This decoding scheme assigns berth segments and

service start times to deep-sea vessels. It also assigns arrival times to feeders by reserving some

berth space for each feeder. Let ηbt = 1 if berth segment b has been allocated to a vessel during

time period [t, t+ 1], and ηbt = 0 otherwise. The decoding scheme is presented as follows:

Decoding Scheme:

Step 1: Set ηbt ← 0 for b = 1, . . . , B and t = 0, 1, . . . , T − 1. Set i← 1.

20

Step 2: If pi ≤ N1, then (allocate service capacity to deep-sea vessel):

Select the smallest t such that a b ∈ {1, . . . , B−Rpi+1} exists with
∑b+Rpi−1

b′=b

∑t+Hpi−1

t′=t ηb′t′

= 0. Then, select the smallest b such that
∑b+Rpi−1

b′=b

∑t+Hpi−1

t′=t ηb′t′ = 0. Set xpibt ← 1.

Set ηb′t′ ← 1 for b′ = b, b+ 1, . . . , b+Rpi − 1 and t′ = t, t+ 1, . . . , t+Hpi − 1.

Otherwise (allocate service capacity to feeder):

Select the smallest t among {Epi−N1
, . . . , T −Gpi−N1} such that a b ∈ {1, . . . , B} exists

with
∑t+Gpi−N1

t′=t ηbt′ = 0. Then, select the smallest b such that
∑t+Gpi−N1

t′=t ηbt′ = 0. Set

t̄←

 t, if t ≤ Ēpi−N1 ;

Ēpi−N1 , otherwise.

Set ypi−N1,t̄ ← 1. Set ηbt′ ← 1 for t′ = t, t+ 1, . . . , t+Gpi−N1 − 1.

Step 3: If i = N1 +N2, then stop. Otherwise, set i← i+ 1 and go to Step 2.

This decoding scheme allocates service capacity to vessels according to the string of N1 + N2

numbers in the individual. Specifically, the decoding scheme considers each i = 1, . . . , N1 +N2. If

pi ≤ N1, then pi represents deep-sea vessel pi. In this case, the decoding scheme allocates a feasible

service start time and Rpi consecutive berth segments to the vessel so that the departure tardiness

of the vessel is minimized. If pi > N1, then pi represents feeder pi −N1. In this case, the decoding

scheme assumes that the service duration of feeder i is Gi and allocates a target service start time

t and a target berth segment b to feeder i, so that feeder i can complete service as early as possible

when being served at berth segment b starting at time t. A feasible arrival time t̄ is then assigned

to the feeder, so that the waiting time of the feeder is minimized when the feeder’s service starts

at time t.

Let Ω denote the set of all individuals. It is not difficult to see that by means of the decod-

ing scheme, each individual p ∈ Ω corresponds to one solution (x,y) ∈ Θ. For each p ∈ Ω, let

(x(p),y(p)) denote the solution obtained by applying the decoding scheme on individual p. The

fitness of each individual p ∈ Ω is defined as 1/gλ(x(p),y(p)) and is estimated by 1/ḡλ(x(p),y(p)).

Note that ḡλ(x(p),y(p)) can be obtained by running simulation experiments on the solution

(x(p),y(p)). The genetic algorithm, which aims to identify a subset of individuals that result

21

in solutions of P with small tardiness and displacement costs of vessels, is described as follows:

Genetic Algorithm:

Step 1 (Initialization): Set `← 1 and λ← λ0. Generate an initial population with s1 individuals.

Each individual p is generated randomly as follows: For each i = 1, . . . , N1 + N2, select an

available position from p with all available positions being selected with equal probability,

and insert i into the selected position.

Step 2 (Crossover): Randomly select s2 pairs of distinct individuals from the current popula-

tion with equal probability. For each pair of individuals p = (p1, . . . , pN1+N2) and p̄ =

(p̄1, . . . , p̄N1+N2), generate two numbers j and j′ randomly from {1, . . . , N1 +N2} with equal

probability, where j < j′. Set

q← (0, . . . , 0︸ ︷︷ ︸
j−1 times

, pj , pj+1, . . . , pj′ , 0, . . . , 0︸ ︷︷ ︸
N1+N2−j′ times

) and q̄← (0, . . . , 0︸ ︷︷ ︸
j−1 times

, p̄j , p̄j+1, . . . , p̄j′ , 0, . . . , 0︸ ︷︷ ︸
N1+N2−j′ times

).

For i = 1, . . . , N1 +N2, if p̄i is not in q then replace the first 0 in q with p̄i, and if pi is not

in q̄ then replace the first 0 in q̄ with pi. Add q and q̄ to the population.

Step 3 (Mutation): For each individual p = (p1, . . . , pN1+N2) in the current population, generate

a real number µ̂ from a uniform distribution on [0, 1]. If µ̂ ≤ µ, then randomly select two

distinct numbers j and j′ from {1, . . . , N1 +N2} with equal probability. Swap the positions

of pj and pj′ in p.

Step 4 (Evaluation): For each individual p in the current population, if the individual has been eval-

uated previously, then perform n2 additional simulation replications on solution (x(p),y(p));

otherwise perform n1 simulation replications on solution (x(p),y(p)). Set the fitness of in-

dividual p to be the cumulative sample mean of the solution performance obtained in all

replications.

Step 5 (Selection): Sort the individuals of the current population in descending order of fitness.

Keep the first s1 individuals, and discard the other individuals.

Step 6 (Update λ): If ` = ¯̀, then stop. Otherwise, set ` ← ` + 1. Consider the first individual p

in the sorted individual list. If the estimated value of max0,1,...,T−1

{
E[Qt(x(p),y(p))]

}
is

greater than Q̄, then set λ← (1 + ζ)λ. Go to Step 2.

22

This genetic algorithm starts with a small λ value. When λ is relatively small, the genetic

algorithm focuses on searching for solutions that have small vessel tardiness and displacement

costs. If the best individual found so far corresponds to a solution of problem P′(λ) that violates

constraint (2.7), then the value of λ will be increased in the next iteration so that heavier emphasis

will be given to the satisfaction of constraint (2.7). This process is executed repeatedly until the

number of iterations reaches the upper limit ¯̀.

2.2.2 Local Phase

When the global phase terminates, we obtain a list of (x,y) values. These (x,y) values will be used

to initialize the local phase. Unlike the global phase, which diversifies the population of individuals

by solving the relaxed problem P′(λ) with various λ values, the local phase aims to intensify the

search for near-optimal solutions of problem P′(λ̄), where λ̄ is a large input parameter. Note that

if λ̄ is sufficiently large, then an optimal solution of problem P′(λ̄) is also optimal to problem P

(see Property 1).

Let S denote the list of (x,y) values passed onto the local phase, sorted in ascending order

of their estimated performance ḡλ̄(x,y). Let (xj ,yj) denote the jth element in the sorted list

S. For each (x,y) ∈ Θ, define a vector of integer values (e1(x); e2(x); e3(y)), in which e1(x) =

(e11(x), . . . , e1N1(x)), e2(x) = (e21(x), . . . , e2N1(x)), and e3(y) = (e31(y), . . . , e3N2(y)), where

e1i(x) =

B−Ri+1∑
b=1

T−Hi∑
t=0

bxibt and e2i(x) =

B−Ri+1∑
b=1

T−Hi∑
t=0

txibt

for i = 1, . . . , N1, and

e3i(y) =

Ēi∑
t=Ei

tyit

for i = 1, . . . , N2. Note that e1i(x) is the first berth segment allocated to deep-sea vessel i, e2i(x)

is the service start time of deep-sea vessel i, and e3i(y) is the arrival time of feeder i.

We define the distance between any two solutions (xj ,yj), (xj′ ,yj′) ∈ Θ as

djj′ =

√√√√ N1∑
i=1

[
e1i(xj)− e1i(xj′)

B

]2

+

N1∑
i=1

[
e2i(xj)− e2i(xj′)

T

]2

+

N2∑
i=1

[
e3i(yj)− e3i(yj′)

T

]2

,

which is the Euclidean distance between the normalized vectors
(e1(xj)

B ;
e2(xj)
T ;

e3(yj)
T

)
and

(e1(xj′)

B ;

e2(xj′)

T ;
e3(yj′)

T

)
. The local phase is initialized with a set of solution clusters obtained by partitioning

23

solution list S. The solution clusters are generated in such a way that the number of solutions in

each cluster is no greater than s3, and that for each cluster, the distance between the best solution

in the cluster and any other solution in the same cluster is relatively small. The procedure for

generating solution clusters is given as follows, in which Au denotes the uth cluster generated:

Cluster Generation Procedure:

Step 1: Set u← 1.

Step 2: Set j ← min{l | (xl,yl) ∈ S}. Create a new cluster Au ← {(xj ,yj)}. Set S ← S\{(xj ,yj)}.

Step 3: If |Au| < s3 and S 6= ∅, then let k be the element of S that has the smallest djk value (ties

broken arbitrarily), set Au ← Au ∪ {(xk,yk)}, set S ← S \ {(xk,yk)}, and repeat Step 3.

Step 4: If S = ∅, then stop. Otherwise, set u← u+ 1 and go to Step 2.

For each solution cluster Au generated by this procedure, we apply local search to identify a

locally optimal solution. We use the adaptive hyperbox algorithm developed by Xu, Nelson, and

Hong (2013) as the local search method. The adaptive hyperbox algorithm is a locally convergent

random search algorithm that has a special neighborhood structure called the most promising

area, which was initially proposed by Hong and Nelson (2006). The algorithm randomly samples

solutions from the most promising area and then updates the most promising area using the visited

solutions. This process is executed repeatedly until the solutions converge or some predetermined

stopping conditions are satisfied.

Consider any solution cluster Au. Let (x∗,y∗) be the best sampled solution in Au; that is,

(x∗,y∗) = arg min(x,y)∈Au
{ḡλ̄(x,y)}. For notational convenience, we denote

(e1; e2; e3) = ((e11, . . . , e1N1); (e21, . . . , e2N1); (e31, . . . , e3N2)) = (e1(x); e2(x); e3(y))

and

(e∗1; e∗2; e∗3) = ((e∗11, . . . , e
∗
1N1

); (e∗21, . . . , e
∗
2N1

); (e∗31, . . . , e
∗
3N2

)) = (e1(x∗); e2(x∗); e3(y∗)).

24

For any set V of integer vectors (e1; e2; e3), let

L1i =

 max(e1;e2;e3)∈V{e1i | e1i < e∗1i}, if exists;

1, otherwise;
(2.12)

U1i =

 min(e1;e2;e3)∈V{e1i | e1i > e∗1i}, if exists;

B −Ri + 1, otherwise;
(2.13)

L2i =

 max(e1;e2;e3)∈V{e2i | e2i < e∗2i}, if exists;

Ai, otherwise;
(2.14)

and

U2i =

 min(e1;e2;e3)∈V{e2i | e2i > e∗2i}, if exists;

T −Hi + 1, otherwise;
(2.15)

for i = 1, . . . , N1. For any V, let

L3i =

 max(e1;e2;e3)∈V{e3i | e3i < e∗3i}, if exists;

Ei, otherwise;
(2.16)

and

U3i =

 min(e1;e2;e3)∈V{e3i | e3i > e∗3i}, if exists;

Ēi, otherwise;
(2.17)

for i = 1, . . . , N2. The hyperbox containing (e∗1; e∗2; e∗3) is

H=
{

(e1; e2; e3)
∣∣L1i ≤ e1i ≤ U1i;L2i ≤ e2i ≤ U2i;L3j ≤ e3j ≤ U3j ; 1 ≤ i ≤ N1; 1 ≤ j ≤ N2

}
.

(2.18)

In other words, H consists of a set of (2N1 +N2)-dimensional vectors, in which each dimension has

two edges crossing two elements in V that are the closest to (e∗1; e∗2; e∗3) in that dimension, but not

in the same position as (e∗1; e∗2; e∗3).

Let Z2N1+N2 denote the (2N1 + N2)-dimensional integer space. The set H ∩ Z2N1+N2 is the

most promising area in which the adaptive hyperbox algorithm focuses on sampling solutions. The

25

adaptive hyperbox algorithm iteratively updates V and H, and selects integer vectors randomly

from H ∩ Z2N1+N2 in each iteration. Initially, we set V to

V0 =
{

(e1; e2; e3)
∣∣ (x,y) ∈ Au

}
.

Given any integer vector (e1; e2; e3) ∈ H ∩ Z2N1+N2 , the corresponding solution (x,y) can be

obtained as follows: For each i = 1, . . . , N1, each b = 1, . . . , B, and each t = 0, 1, . . . , T − 1, let

xibt = 1 if b = e1i and t = e2i, and let xibt = 0 otherwise. For each i = 1, . . . , N2 and each

t = 0, 1, . . . , T , let yit = 1 if t = e3i, and let yit = 0 otherwise. Note that the solution (x,y)

generated from (e1; e2; e3) may violate constraint (2.4).

Our implementation of the adaptive hyperbox algorithm is described below:

Adaptive Hyperbox Algorithm:

Step 1: Determine (x∗,y∗), (e∗1; e∗2; e∗3), and V0. Set V ← V0.

Step 2: Determine H using equations (2.12)–(2.18). Randomly generate s4 integer vectors from

H∩Z2N1+N2 . Each integer vector (e1; e2; e3) is generated as follows: For each i = 1, . . . , N1,

generate e1i and e2i uniformly from {L1i, L1i+1, . . . , U1i} and {L2i, L2i+1, . . . , U2i}, respec-

tively. For each i = 1, . . . , N2, generate e3i uniformly from {L3i, L3i + 1, . . . , U3i}. Remove

duplicates from the generated integer vectors. Let T be the set of the remaining integer

vectors. Set V ← V ∪ T .

Step 3: For each (e1; e2; e3) ∈ V, obtain the corresponding solution (x,y). If (x,y) satisfies

constraint (2.4), then set Au ← Au∪{(x,y)}. Perform n3 simulation replications on solution

(x,y), and set ḡλ̄(x,y) to be the cumulative sample mean of gλ̄(x,y) among all simulation

replications (including the replications performed in previous iterations).

Step 4: Determine (x∗,y∗) = arg min(x,y)∈Au
{ḡλ̄(x,y)}. Determine (e∗1; e∗2; e∗3). If the stopping

condition is satisfied, then stop; otherwise, go to Step 2.

Xu, Nelson, and Hong (2013) have shown that when solutions are uniformly and independently

sampled from the most promising area in each iteration, the adaptive hyperbox algorithm is locally

convergent; that is, the sequence of solutions generated by the algorithm converges with probability

26

1 to a locally optimal solution (with regard to a local neighborhood defined by solution distances).

In Step 2 of our implementation, the solutions are generated from the integer vectors that are

sampled uniformly and independently fromH∩Z2N1+N2 . Hence, our implementation of the adaptive

hyperbox algorithm is also locally convergent (i.e., the sequence of solutions generated converges

with probability 1 to a locally optimal solution of problem P′(λ̄)) as the number of iterations

approaches infinity. However, in practice, stopping conditions are needed to terminate the algorithm

at some point. In our implementation, the algorithm is terminated when the current best solution

(x∗,y∗) is unchanged for h consecutive iterations. The solution (x∗,y∗) is then treated as the

optimal solution for cluster Au.

We observe from preliminary computational results that Step 3 of the adaptive hyperbox al-

gorithm frequently generates solutions that violate constraint (2.4). To improve the quality of

the solutions generated in Step 3, we develop a solution refinement subroutine. When a solution

generated in Step 3 violates constraint (2.4), there are multiple deep-sea vessels occupying a berth

segment simultaneously. In such a situation, we select one of these deep-sea vessels and reassign a

service start time to the selected vessel, so that no conflicts will be incurred between the selected

vessel and any other vessels. This process is executed repeatedly until all conflicts are resolved.

Details of the solution refinement subroutine are provided below:

Notations:

P: Set of (b, t) pairs for which constraint (2.4) is violated.

Nbt: Set of deep-sea vessels that occupy berth segment b during time period [t, t+ 1].

ωbt: Number of deep-sea vessels that occupy berth segment b during time period [t, t+ 1].

b̄i: The first berth segment allocated to deep-sea vessel i.

t̄i: Service start time allocated to deep-sea vessel i.

Solution Refinement Subroutine:

The solution refinement subroutine is presented as follows:

Step 1 (Initialization): For each i = 1, . . . , N1, set b̄i ← min
{
b
∣∣ ∑T−Hi

t=0 xibt = 1; b = 1, . . . , B −

Ri + 1
}

and t̄i ← min
{
t
∣∣ xib̄it = 1; t = 0, 1, . . . , T − 1

}
. Set P ← ∅. For each b = 1, . . . , B

and t = 0, 1, . . . , T − 1, set Nbt ← ∅; in addition, if constraint (2.4) is violated for b and t,

27

then set P ← P ∪ {(b, t)}.

Step 2 (Resolving infeasibility): If P = ∅, then stop. Otherwise, randomly select an element from

P, with all elements having equal probability of being selected. Let (b, t) be the selected

element.

Step 2.1: For each i = 1, . . . , N1 such that b̄i ≤ b ≤ b̄i +Ri − 1 and t̄i ≤ t ≤ t̄i +Hi − 1, set

Nbt ← Nbt ∪ {i}.

Step 2.2: Randomly select an element from Nbt, with all elements of Nbt having equal prob-

ability of being selected. Let i be the selected element. For each b = 1, . . . , B and t =

0, 1, . . . , T −1, set ωbt ←
∑

i′∈{1,...,N1}\{i}
∑b

b′=max{b−Ri′+1,1}
∑t

t′=max{t−Hi′+1,0} xi′b′t′ .

Step 2.3: Set t̄i ← min
{
t
∣∣ ∑b̄i+Ri−1

b′=b̄i

∑t+Hi−1
t′=t ωb′t′ = 0; t = Ai, Ai + 1, . . . , T − Hi + 1

}
.

For each t = 0, 1, . . . , T − 1, if t = t̄i, then set xib̄it ← 1; otherwise, set xib̄it ← 0. Set

Nbt ← Nbt \{i}. If |Nbt| ≤ 1, then set P ← P \
{

(b, t)
}

and repeat Step 2. Otherwise,

go to Step 2.2.

We execute the adaptive hyperbox algorithm with the solution refinement subroutine for each

of the solution clusters Au generated by the cluster generation procedure. Therefore, at the end of

the local phase, we obtain m locally optimal solutions, where m is the number of solution clusters

generated by the cluster generation procedure. We then execute a clean-up phase to determine the

best solution among the m locally optimal solutions.

2.2.3 Clean-up Phase

At the beginning of the clean-up phase, there are m candidate solutions. If m = 1, then we

determine accurately whether the solution satisfies constraint (2.7) (and is therefore feasible to

problem P) with more simulation runs. Otherwise, we need to determine accurately whether the

m solutions are feasible to problem P and choose the best solution among the feasible solutions.

This requires intensive evaluation of the expected queue lengths of the feeders in the solutions.

When the number of candidate solutions is large, evaluating each solution with high precision

would require an unaffordable amount of simulation budget. One commonly used method for de-

termining the best solution in a clean-up phase is the ranking-and-selection method proposed by

28

Boesel, Nelson, and Kim (2003) which aims to minimize the number of simulation replications while

ensuring that the selected solution is better than the other alternatives by at least δ with probability

at least 1− ε, where δ is called the indifference zone and 1− ε is the desired confidence level. Given

the indifference zone, the confidence level, the number of simulation replications previously per-

formed on each solution, and the variation of solution performance obtained in previous simulation

replications, the ranking-and-selection method determines the number of additional replications

that need to be allocated to each solution, and chooses the solution that has the best cumula-

tive average performance after all additional replications are performed. In our implementation of

the clean-up phase, if m > 1, then we select the best solution among the m candidate solutions

using the ranking-and-selection method. When applying the ranking-and-selection method, the

performance of each candidate solution (x,y) is measured by gλ̄(x,y), which is estimated using

ḡλ̄(x,y). When there is only one solution left, we evaluate the solution by running n4 additional

simulation replications, where n4 is a large input parameter, so that the solution is evaluated with

high precision. Let Q̂max(x∗,y∗) be the sample mean of maxt=0,1,...,T−1{Qt(x∗,y∗)} generated for

the best solution (x∗,y∗) using n4 simulation replications. The best solution (x∗,y∗) is deemed as

feasible to problem P if Q̂max(x∗,y∗) ≤ Q̄, in which case the solution value obtained for problem

P is g0(x∗,y∗), and is deemed as infeasible to problem P otherwise.

2.2.4 The Simulator

For any solution (x,y) ∈ Θ, we may use discrete-event simulation to determine the objective

function value of (x,y) and to determine whether (x,y) satisfies constraint (2.7). In our discrete-

event simulation, the events are feeder-arrival and vessel-departure. The feeder-arrival event is

triggered whenever a feeder arrives at the port, and the vessel-departure event is triggered whenever

a deep-sea vessel or feeder finishes service at the port. Note that the arrival times of feeders are given

by the values of the yit variables, and the time intervals during which each berth segment is occupied

by deep-sea vessels can be derived using the values of the xibt variables. When a feeder arrives, the

feeder joins the queue, and the service time of the feeder is observed (by sampling). If the feeder is

in the first place of the queue and there exist some berth segments that can serve the feeder, then

the feeder will be served immediately; otherwise, the feeder will wait in the queue. When vessel-

29

departure occurs, some berth segments are released. If there exist some feeders in the queue at the

moment, then the feeders will be assigned to the released berth segments according to the first-

come first-served discipline described in Section 2.1. The discrete-event process is terminated when

all the vessels are served and the port becomes empty. Each run of the discrete-event simulation

results in an observation of Qt(x,y) for t = 0, 1, . . . , T − 1. The values of E[Qt(x,y)] and gλ(x,y)

can be estimated by running the simulation multiple times and taking the sample mean of multiple

runs.

2.3 Computational Experiments

The goal of the computational experiments is threefold. First, we would like to evaluate the

computational performance of the simulation optimization method for solving problem instances

of realistic sizes. For this purpose, we generate problem instances based on the operational data of

the Yangshan Deep-water Port in Shanghai, and compare the computational performance of our

simulation optimization method with the performances of some benchmark methods. Three genetic

algorithms are used as benchmark methods. The first genetic algorithm is the genetic algorithm

used in the global phase of our simulation optimization method. The second genetic algorithm is the

same as the first genetic algorithm, except that it evaluates the fitness of each individual using the

mean service times of feeders rather than the sampled service times. The third genetic algorithm is

also the same as the first genetic algorithm, except that it evaluates the fitness of each individual

with high precision by assigning a large simulation budget to each visited individual. Since users

of our simulation optimization method may want to set different queue length limits for feeders

under different situations (e.g., different weather conditions), our second goal is to examine how

the computational results are affected when the value of Q̄ varies. Our third goal is to evaluate the

benefits of controlling the queue length of feeders when making berth plans. For this purpose, we

analyze the solutions obtained by the current practice of the port operators that ignore the queue

length restriction, and compare the solutions with those obtained by our simulation optimization

method.

All algorithms were implemented in C#.Net and run on a computer with a 64-bit Intel i7-6700

30

3.40GHz CPU and 32GB of RAM.

2.3.1 Problem Instances and Algorithm Parameters

We generate test instances based on the operational data of the Yangshan Deep-water Port in

Shanghai. Table 2.2 presents the statistics of the operational data of year 2016 at the port. For

each month of the year, the following statistics are presented:

• Vess Num: Number of deep-sea vessels served.

• Feed Num: Number of feeders served.

• Vess Len Min, Vess Len Max, Vess Len Avg: Minimum, maximum, and average lengths (in

meters) of deep-sea vessels.

• Feed Len Min, Feed Len Max, Feed Len Avg: Minimum, maximum, and average lengths (in

meters) of feeders.

• Vess Time Min, Vess Time Max, Vess Time Avg: Minimum, maximum, and average service

times (in hours) of deep-sea vessels.

• Feed Time Min, Feed Time Max, Feed Time Avg: Minimum, maximum, and average service

times (in hours) of feeders.

Table 2.2: Monthly statistics of the operational data for 2016 at the Yangshan Deep-water Port∗

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average

Vess Num 381 356 403 382 376 396 411 398 360 363 344 357 377.3

Feed Num 1158 1061 1058 1122 1241 1162 1211 1250 1161 1104 1104 1131 1146.9

Vess Len Min 224.0 228.0 228.0 228.0 228.0 228.0 209.0 228.0 228.0 222.0 222.0 207.0 223.3

Vess Len Max 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0

Vess Len Avg 308.1 307.4 312.5 312.8 312.8 316.6 314.5 319.6 318.3 321.0 321.2 320.9 315.5

Feed Len Min 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0

Feed Len Max 140.0 140.0 157.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 141.4

Feed Len Avg 96.0 96.1 97.3 95.4 95.2 96.6 96.2 96.1 95.1 95.7 96.1 97.0 96.1

Vess Time Min 6.2 5.3 5.2 5.5 5.6 6.0 5.5 6.0 5.1 5.2 5.5 5.6 5.6

Vess Time Max 37.5 35.8 35.5 33.4 35.7 30.1 28.3 35.7 32.0 35.5 35.5 32.7 34.0

Vess Time Avg 14.8 13.2 14.8 14.1 14.3 13.3 14.7 14.9 15.3 16.8 16.8 16.9 15.0

Feed Time Min 0.4 0.4 0.7 0.6 0.2 0.7 0.2 0.3 0.3 0.5 0.2 0.5 0.4

Feed Time Max 10.0 8.2 9.7 8.1 9.7 9.2 9.1 8.6 9.0 9.1 9.7 8.5 9.1

Feed Time Avg 2.8 3.4 4.2 3.2 3.8 4.0 3.2 3.5 4.2 4.5 3.8 4.0 3.7

∗These statistics are obtained by ignoring data entries that are either improperly recorded or recorded under
abnormal situations (e.g., long vessel service times caused by equipment breakdowns).

It can be observed from Table 2.2 that the number of feeders served in the port is significantly

larger than the number of deep-sea vessels. The average numbers of deep-sea vessels and feeders

31

served monthly are 377.3 and 1146.9, respectively, indicating that the daily average numbers of

deep-sea vessels and feeders served are 12.6 and 38.2, respectively. In each of our test instances, the

number of deep-sea vessels and the number of feeders are set to N1 = 25 and N2 = 80, respectively,

which reflect the number of service requests over two days. The reason for using such a parameter

setting is that accurate throughput information of deep-sea vessels usually becomes available two

days before the vessels arrive at the port. The length of each time period of the planning horizon

is set to 1 hour. The length of the planning horizon is set to T = 96 (i.e., 4 days), which is long

enough to ensure service completion of all vessels.

Since the port has a quay wall of 5600 meters, we set the number of berth segments to B = 40,

so that each berth segment is 140 meters long, which can accommodate most feeders. The length

of each deep-sea vessel ranges between 207 meters and 400 meters. Since the lengths of deep-

sea vessels are modeled as multiples of the length of each feeders, we generate the length of each

deep-sea vessel i by Ri = d α
140e, where α is a real number generated uniformly from [207, 400].

The mean service time of deep-sea vessels over the year is 15.0 hours, and the variance of deep-

sea vessel service times is 40.8. Hence, we generate the service time Hi of each deep-sea vessel i using

a normal distribution with mean 15.0 and variance 40.8. When generating the value of Hi, we round

the sampled value up to the nearest positive integer. In order to evaluate the impact of the feeder

service time variance on the solution of problem P, we generate test instances with three different

probability distributions of the feeder service times, where the three probability distributions differ

from each other only in the variance. The mean service time of feeders over the year is 3.7 hours,

and the variance of the feeder service times is 5.2. Hence, our first probability distribution is a

normal distribution with mean 3.7 and variance 2.6, our second probability distribution is a normal

distribution with mean 3.7 and variance 5.2, and our third probability distribution is a normal

distribution with mean 3.7 and variance 7.8. When sampling feeder service times, we truncate the

normal distributions so that the sampled service times are non-negative.

We generate the port arrival time Ai of each deep-sea vessel i uniformly from {0, 1, . . . , 48}, and

set the target departure time to Di = Ai+Hi. We generate the initially scheduled port arrival time

Si of each feeder i uniformly from {0, 1, . . . , 48}. A maximum displacement of 12 hours on each

32

feeder arrival time is normally acceptable for port operators. We therefore set the earliest allowed

arrival time of each feeder i to Ei = max{0, Si−12}, and set the latest allowed arrival time of each

feeder i to Ēi = Si + 12. Since deep-sea vessels have a higher service priority than feeders, we set

the value of C1i to 5 for each i = 1, . . . , N1, and set the value of C2i to 1 for each i = 1, . . . , N2.

We consider five different feeder queue length limits by setting Q̄ to 5, 10, 15, 20, and 25. As

mentioned above, we consider three different feeder service time variances. Thus, there are 15 prob-

lem sets. For each problem set, we generate 10 random instances. Hence, there are 150 instances

in total. Table 2.3 summaries the configurations of the problem sets used in our computational ex-

periments. The values of the parameters used in our simulation optimization method are provided

in Table 2.4.

Table 2.3: Parameter values used in the computational study.

Low service time variance Medium service time variance High service time variance

Problem Service time Problem Service time Problem Service time
set Q̄ variance set Q̄ variance set Q̄ variance

L1 5 2.6 M1 5 5.2 H1 5 7.8

L2 10 2.6 M2 10 5.2 H2 10 7.8

L3 15 2.6 M3 15 5.2 H3 15 7.8

L4 20 2.6 M4 20 5.2 H4 20 7.8

L5 25 2.6 M5 25 5.2 H5 25 7.8

Table 2.4: Parameter values used in the simulation optimization method.

Phase Parameter Value

Global phase s1 100

s2 100

µ 0.1
¯̀ 60

n1 20

n2 5

λ0 100

ζ 0.5

Local Phase s3 20

s4 85

h 10

n3 50

λ̄ 105

Clean-up phase δ 1

ε 0.05

n4 3000

33

2.3.2 Benchmark Methods

Genetic algorithms are widely used for solving berth allocation problems with stochastic vessel

information. Our method differs from the existing genetic algorithms in that our method com-

bines local search with genetic algorithm and allocates different simulation budgets to solutions in

different search phases to strike a balance between exploration and exploitation, whereas existing

genetic algorithms lack mechanisms for controlling allocation of the simulation budget. For exam-

ple, there exist genetic algorithms that simplify the stochasticity of vessel information by replacing

the uncertain elements with their expected values, and generate solutions without simulation (see,

e.g., Golias 2011; Karafa et al. 2013), as well as genetic algorithms that attempt to find solutions

with good performance by assigning a large simulation budget to the visited solutions (see, e.g.,

Han, Lu, and Xi 2010).

To evaluate the computational performance of our simulation optimization method, we intro-

duce three genetic algorithms as benchmark methods and compare the performance of our method

with those of the benchmark methods. Each of the benchmark methods only executes a genetic

algorithm followed by a clean-up procedure, without dividing the search process into a global phase

and a local phase. The first benchmark method, denoted GA1, is the genetic algorithm used in

the global phase of our simulation optimization method (see Section 2.2.1). The second benchmark

method, denoted GA2, is the same as the genetic algorithm used in the global phase of our simu-

lation optimization method, except that it evaluates the fitness of each individual using the mean

service times of feeders rather than the sampled service times. Hence, the fitness of each individual

is deterministic in each iteration of the second benchmark method. The third benchmark method,

denoted GA3, is also the same as the genetic algorithm used in the global phase of our simulation

optimization method, except that it evaluates the fitness of each individual accurately by assigning

a large simulation budget to each visited individual. We use the same simulation budget as in

Han, Lu, and Xi (2010), and allocate 750 simulation replications to each solution that needs to be

evaluated. When the genetic algorithm of a benchmark method terminates, we execute a clean-up

phase to choose the best solution among the solutions generated by the genetic algorithm.

34

2.3.3 Comparison with Benchmark Methods

In this subsection, we evaluate the computational performance of the simulation optimization

method for instances with a medium queue length limit. We solve test instances of problem sets

L3, M3, and H3 using the simulation optimization method and the three benchmark methods (i.e.,

GA1, GA2, and GA3). We run each of the solution methods five times for each test instance, and

record the computational results obtained in each run. Table 2.5 summarizes the computational

results. For each solution method and each test instance, the “Min,” “Max,” and “Avg” columns

in Table 2.5 report the minimum solution value, the maximum solution value, and the average

solution value, respectively, among the five independent runs. The “Time” column reports the

average computation time (in seconds) of the five runs.

From Table 2.5, we observe that the average solution values of the simulation optimization

method are smaller than those of GA1. This indicates that the local phase of the simulation

optimization method improves the solutions generated by the global phase. We also observe from

the “Time” columns that the computation time of the simulation optimization method is much

longer than that of GA1. This is due to the fact that in the simulation optimization method,

the local phase uses a larger simulation budget than the global phase in order to evaluate the

performance of solutions more accurately. The running time of GA2 is much shorter than that of

the simulation optimization method. However, the average solution values of GA2 are consistently

larger than those of the simulation optimization method, indicating that the solutions generated

by GA2 are inferior to those generated by the simulation optimization method. This is expected,

since the short computation time of GA2 is achieved at the cost of ignoring the uncertainties of

feeder service times, which makes the evaluation of solution performance efficient, but which can

result in significant errors in the estimation of solution values. On the other hand, GA3 generates

better solutions than GA1 and GA2 (see the “Avg” values in Table 2.5). Since the simulation

budget used by GA3 for solution evaluation is substantially larger than those used by GA1 and

GA2, GA3 estimates solution values more accurately than GA1 and GA2 in each iteration, and

is therefore able to generate better solutions. However, because GA3 consumes a large amount

of simulation budget, its computation usually requires several hours. Compared to GA3, the

35

Table 2.5: Computational results for instances of problem sets L3, M3, and H3

Simulation optimization GA1 GA2 GA3

Instance Min Max Avg Time Min Max Avg Time Min Max Avg Time Min Max Avg Time

L3.1 133 145 140.9 1307.3 180 212 189.7 371.3 179 238 193.8 158.3 135 178 165.2 30410.3

L3.2 238 254 246.5 1538.0 270 323 291.1 432.8 291 355 311.6 100.4 249 295 276.9 28209.2

L3.3 199 216 205.4 1461.7 208 259 236.9 401.3 235 304 250.1 166.4 206 226 210.0 26097.5

L3.4 386 393 389.0 1451.5 406 466 421.2 404.9 455 557 474.8 124.4 382 423 406.7 26558.6

L3.5 349 362 352.7 1402.3 355 438 408.6 400.5 381 531 420.0 104.5 359 416 386.9 27923.2

L3.6 248 261 252.6 1555.7 273 307 287.1 442.8 278 381 321.3 141.1 260 287 283.5 29069.4

L3.7 378 388 383.3 1524.5 394 440 415.0 434.5 393 494 462.4 187.8 380 404 397.5 25396.1

L3.8 69 91 83.7 1410.2 101 180 141.6 411.4 126 192 147.2 186.1 94 168 126.8 27298.0

L3.9 147 161 153.7 1427.5 121 212 176.1 396.1 182 301 261.1 98.0 137 191 162.2 30108.9

L3.10 151 175 159.8 1456.9 171 217 195.2 394.6 167 316 200.6 109.9 165 193 177.1 26708.8

Avg 229.8 244.6 236.8 1453.6 247.9 305.4 276.2 409.0 268.7 366.9 304.3 137.7 236.7 278.1 259.3 27778.0

M3.1 228 271 255.2 1410.3 247 333 306.1 395.6 339 391 354.3 160.7 240 284 270.1 29924.6

M3.2 433 475 438.3 1533.9 461 519 485.2 424.2 476 623 540.3 102.0 433 513 470.3 28206.3

M3.3 420 439 427.5 1512.6 431 484 458.9 402.1 479 556 501.9 163.5 421 458 427.8 25656.7

M3.4 455 473 461.2 1484.7 471 538 484.4 401.3 524 650 566.5 129.7 439 528 462.8 26438.4

M3.5 457 498 469.3 1368.1 487 571 517.0 364.8 492 640 527.2 100.2 455 534 474.0 27448.5

M3.6 504 533 522.6 1559.7 542 589 556.5 423.3 501 589 541.0 137.2 508 561 532.1 28704.7

M3.7 642 675 657.8 1557.7 661 804 689.5 413.5 664 804 745.1 185.1 639 716 671.9 25062.3

M3.8 252 279 270.7 1523.5 285 357 321.9 419.5 310 389 329.4 182.3 284 345 310.7 27299.6

M3.9 242 275 262.7 1488.8 266 335 299.9 383.1 293 384 341.4 97.3 250 312 283.8 30387.4

M3.10 296 322 305.1 1429.8 309 360 333.2 386.4 311 441 347.4 110.4 296 332 323.9 26747.4

Avg 392.8 424.0 407.0 1486.9 415.7 489.0 445.3 401.4 438.9 546.7 479.5 136.9 396.6 458.4 422.7 27587.6

H3.1 327 402 373.4 1661.6 360 471 427.2 398.0 471 512 485.1 162.9 360 397 382.5 30025.1

H3.2 782 850 784.6 1718.8 806 890 832.6 450.6 820 1003 889.8 101.4 777 899 817.5 27829.1

H3.3 664 685 671.9 1688.1 674 739 701.0 418.5 697 813 750.3 169.7 653 723 666.9 25960.5

H3.4 711 741 721.9 1744.5 716 819 727.8 453.5 788 935 837.4 126.1 694 780 711.0 26417.3

H3.5 684 754 705.5 1626.7 695 789 724.7 444.1 731 866 751.5 107.1 694 781 704.6 28377.1

H3.6 729 774 761.6 1750.2 749 830 795.3 465.0 697 723 713.0 139.2 739 802 766.9 28870.1

H3.7 959 1015 984.3 1816.9 985 1135 1016.1 430.1 986 1144 1073.3 184.0 940 1065 998.3 24944.7

H3.8 765 796 787.7 1746.2 802 871 838.6 426.3 823 907 842.2 190.3 777 824 795.6 27286.7

H3.9 558 610 593.1 1649.5 606 660 639.0 439.1 648 733 671.6 102.9 585 650 623.7 30311.9

H3.10 463 491 472.0 1739.4 476 539 499.9 441.5 475 583 518.1 109.6 460 500 497.0 26626.5

Avg 664.2 711.8 685.6 1714.2 686.9 774.3 720.2 436.7 713.6 821.9 753.2 139.3 667.9 742.1 696.4 27664.9

simulation optimization method generates better solutions with a considerably smaller amount

of computation effort. Hence, the simulation optimization method outperforms the benchmark

methods in minimizing the tardiness and displacement cost of vessels.

Another observation from Table 2.5 is that the solution values obtained by the simulation

optimization method in multiple runs do not show high variations, whereas the solution values

obtained by the benchmark methods in multiple runs vary considerably. For example, the gap

between the “Min” and “Max” values of the simulation optimization method for instance H3.10 is

28, whereas the gaps resulting from GA1, GA2, and GA3 for the same instance are 63, 108, and

36

40, respectively. This indicates that the simulation optimization method is more robust than the

benchmark methods in terms of solution quality. Recall that problem sets L3, M3, and H3 differ

from each other only in the variance of feeder service times. Comparing the results obtained for

different problem sets, we observe that the solution values tend to increase as the feeder service

time variance increases. This is because when the feeders have a higher variation in service time,

the solutions tend to reserve longer berthing times for feeders, incurring larger departure tardiness

for deep-sea vessels, which increases the overall solution values.

2.3.4 Varying the Queue Length Limit

Next, we investigate how the computational results of the simulation optimization method and the

benchmark methods are affected as the upper limit on expected queue length of feeders varies. We

consider the test instances with different Q̄ values, and we run each of the solution methods five

times for each instance. Table 2.6 summarizes the computational results, where each row reports

the average computational results of ten instances in a problem set.

Table 2.6: Results for problem sets with different Q̄ values.

Problem
Simulation optimization GA1 GA2 GA3

set Q̄ Avg Time Avg Time Avg Time Avg Time

L1 5 315.5 1435.5 385.3 391.2 407.0 125.3 352.2 28380.0

L2 10 275.9 1465.7 332.4 407.9 373.1 101.4 296.4 25675.2

L3 15 236.8 1453.6 276.3 409.0 304.3 137.7 259.3 27778.0

L4 20 199.1 1472.8 229.0 405.1 277.3 150.9 209.1 29331.6

L5 25 174.3 1404.5 190.8 385.3 232.6 157.6 179.8 25211.6

M1 5 643.1 1478.4 701.4 388.4 768.3 131.2 665.9 28531.8

M2 10 501.2 1501.1 546.3 396.2 600.9 124.5 513.5 25999.9

M3 15 407.0 1486.9 445.3 401.4 479.5 136.9 422.7 27587.6

M4 20 328.6 1473.1 347.6 388.7 402.8 134.7 335.1 28402.6

M5 25 282.7 1437.4 310.3 360.5 339.8 156.7 279.0 25134.7

H1 5 893.6 1802.0 936.3 430.1 1003.7 136.1 918.6 30738.3

H2 10 741.4 1760.8 766.7 437.6 817.4 144.3 753.6 29766.1

H3 15 685.6 1714.2 720.2 436.7 753.2 139.3 696.4 27664.9

H4 20 568.9 1687.9 581.6 429.1 606.6 134.2 555.6 28498.1

H5 25 430.3 1467.2 444.2 323.7 474.7 158.6 414.9 29718.9

From Table 2.6, we observe that the average solution values obtained by the simulation opti-

mization method are smaller than those obtained by GA1 for different Q̄ values. This shows that

the local phase of the simulation optimization method improves the solutions obtained by the global

37

phase for various queue length limits. However, as the value of Q̄ increases, the improvement in

the solution value generated by the local phase tends to diminish. For example, the improvement

in the average solution value obtained by the local phase is 69.8 for problem set L1, where Q̄ is set

equal to 5. However, the improvement is only 16.5 for problem set L5, where Q̄ is set equal to 25.

One possible reason for this tendency is that as the queue length limit increases, constraint (2.7)

of problem P becomes less restrictive, increasing the chance of identifying good solutions in the

global phase of the simulation optimization method. The average solution values obtained by GA2

are consistently worse than those obtained by the simulation optimization method, showing that

the solutions obtained by ignoring uncertainties are inferior under different queue length limits.

On the other hand, the average solution values obtained by GA3 are worse than those obtained

by the simulation optimization method when Q̄ is small, but are comparable to those obtained

by the simulation optimization method when Q̄ becomes larger. However, the computation time

of GA3 is much longer than that of the simulation optimization method. Overall, the simulation

optimization method outperforms the benchmark methods for different queue length limits.

2.3.5 Benefits of Controlling the Queue Length of Feeders

As mentioned in Section 1.1, port operators usually serve deep-sea vessels by ignoring the uncer-

tainties of feeder service times (i.e., they develop detailed berth plans for deep-sea vessels based

on complete deep-sea vessel information) and allocate berths to feeders dynamically when feeders

arrive at the port. This service strategy can achieve good service levels for deep-sea vessels, as berth

space is reserved exclusively for deep-sea vessels. However, this strategy cannot control the waiting

times of feeders and is unable to mitigate port congestion incurred by feeder traffic. Unlike the

service strategy adopted by port operators, our simulation optimization method generates berth

plans for deep-sea vessels by taking into account feeder service times, and controls port congestion

and feeder waiting times by restricting the expected queue length of feeders. In this subsection, we

compare the performance of the simulation optimization method with the current practice of port

operators, and reveal the benefits of controlling the queue length of feeders.

We mimic the current practice of port operators using a sequential decision heuristic. In the

current practice, the planners ignore the queue length limit of feeders, i.e., the value of Q̄ in con-

38

straint (2.7) of problem P is set to be infinite. Note that after setting Q̄ equal to infinity, problem

P decomposes into two subproblems. One subproblem involves only the deep-sea vessels, while the

other subproblem involves only the feeders. The sequential decision heuristic first solves a deter-

ministic berth allocation model of the deep-sea vessels, which involves only the xibt and l1i variables,

and then allocates berths to feeders according to the first-come first-served discipline described in

Section 2.1. The deterministic berth allocation model of the deep-sea vessels is presented as follows:

minimize

N1∑
i=1

C1il1i

subject to (2.2), (2.4), (2.5), (2.8)

We solve the deterministic berth allocation model using CPLEX to obtain the total tardiness cost

of deep-sea vessels and the values of the xibt variables. To generate a service plan (x,y), we need

the values of the yit variables. For each i = 1, . . . , N2 and t = 0, 1, . . . , T − 1, we set yit = 1 if

t = Si, and set yit = 0 otherwise. With the value of (x,y), we run n4 simulation replications to

evaluate the expected queue lengths of feeders and the average waiting times of feeders.

We solve problem sets M1, M2, M3, M4, and M5 using the sequential decision heuristic, and

compare the solutions obtained by the sequential decision heuristic with those obtained by the

simulation optimization method using the following performance measures: (i) average departure

tardiness of deep-sea vessels (AT); (ii) average schedule displacement of feeders (AD); (iii) peak

expected queue length of feeders (PQL); and (iv) average waiting time of feeders (AWT). Table 2.7

compares the computational results obtained by the simulation optimization method with those

obtained by the sequential decision heuristic for the instances in problem set M3. All time-related

values reported in Table 2.7 are in hours.

From Table 2.7, we observe that the average AT and AD values of the sequential decision

heuristic are 0.4 and 0.0, respectively, indicating that the sequential decision heuristic performs well

in minimizing the departure tardiness of deep-sea vessels and the schedule displacements of feeders.

Compared to the sequential decision heuristic, the simulation optimization method has larger AT

and AD values. However, the PQL and AWT values of the simulation optimization method

are much smaller than those of the sequential decision heuristic. This shows that the simulation

39

Table 2.7: Results for instances of problem set M3.

Simulation optimization Sequential heuristic

Instance AT AD PQL AWT AT AD PQL AWT

M3.1 1.1 1.5 14.9 2.1 0.2 0.0 26.5 4.3

M3.2 2.7 1.2 13.6 4.3 0.5 0.0 37.9 12.4

M3.3 1.5 3.0 14.3 2.6 0.1 0.0 40.3 11.8

M3.4 2.7 1.6 15.0 1.8 0.9 0.0 36.9 8.0

M3.5 2.7 1.7 13.0 2.4 0.8 0.0 41.2 11.0

M3.6 2.5 2.5 14.3 5.0 0.2 0.0 43.3 13.6

M3.7 4.1 1.5 11.7 3.4 1.0 0.0 53.6 18.9

M3.8 1.6 0.8 14.9 3.5 0.0 0.0 42.3 13.3

M3.9 1.2 1.3 14.4 2.9 0.1 0.0 35.7 10.1

M3.10 1.6 1.3 14.7 3.3 0.0 0.0 41.8 11.0

Average 2.2 1.6 14.1 3.1 0.4 0.0 39.9 11.4

optimization method generates solutions that strike a balance between congestion mitigation and

deep-sea vessel service quality, and performs much better than the sequential decision method in

reducing feeder waiting times.

Figure 2.1 depicts the average performance measures obtained by the simulation optimization

method for different Q̄ values, as well as performance measures obtained by the sequential decision

heuristic. From Figure 2.1, we observe that the average departure tardiness of deep-sea vessels

and the average schedule displacement of feeders generated by the simulation optimization method

tend to decrease as Q̄ increases, whereas the peak expected queue length of feeders and the average

waiting time of feeders tend to increase as Q̄ increases. On the other hand, since the sequential

decision heuristic ignores the queue length restriction of feeders, its computational results are

independent of the Q̄ values. The comparisons show that the simulation optimization method

is more flexible than the sequential decision heuristic in controlling the expected queue length of

feeders, enabling terminal operators to quantify the trade-off between alleviating port congestion

and enhancing vessel service quality. For container ports that serve a large number of feeders (e.g.,

the Port of Shanghai), long waiting lines of feeders can result in severe congestion in the port basin,

impeding the service of vessels and creating a high risk of vessel collisions. Hence, the simulation

optimization method would be more preferable than the current practice of port operators for berth

allocation and congestion mitigation.

40

0.0

1.0

2.0

3.0

4.0

5.0

5 10 15 20 25

0.0

1.0

2.0

3.0

4.0

5.0

5 10 15 20 25

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

5 10 15 20 25

0.0

10.0

20.0

30.0

40.0

50.0

5 10 15 20 25

Average departure tardiness of deep-sea vessels (AT) Average schedule displacement of feeders (AD)

Peak expected queue length of feeders (PQL) Average waiting time of feeders (AWT)

Simulation optimization method Sequential decision heuristic

𝑄 𝑄

𝑄𝑄

Figure 2.1: Performance measures of solutions obtained for different Q̄ values.

2.4 Extensions

Our solution method can be modified easily to handle different extensions of the problem. First,

consider the situation where some vessels are being served and some feeders are waiting for service

at the beginning of the planning horizon. Having some vessels being served at time 0 implies that

some berth segments are unavailable for some initial time periods. We can modify our simulation

optimization method to handle this situation. This is done by modifying the decoding scheme in

such a way that allocating berth segments to vessels during the berth segments’ unavailable period

is disallowed. Having some feeders waiting for service at time 0 implies that those arrived feeders

have known service times, and thus the simulator must be modified accordingly. Next, consider the

situation where the feeder lengths are non-identical. In this situation, the first-come first-served

41

service rule described in Section 2.1 needs to be modified to ensure that a feeder can only be

served when there are sufficient consecutive berth segments available to accommodate the feeder.

Our simulation optimization method can be applied to this situation if we modify the decoding

scheme by allocating berth segments to a feeder only when there are sufficient consecutive berth

segments available. Finally, we remark that by modifying the implementation of the simulator,

our simulation optimization method is also applicable to the situation where feeders are served

according to particular service rules other than the first-come first-served rule.

42

Chapter 3

Managing Navigation Channel Traffic and An-

chorage Area Utilization

3.1 Problem Description and Formulation

Consider a planning horizon of length T , during which n1 incoming vessels and n2 outgoing vessels

are scheduled for service at the container terminals of a port. Note that the number of incoming

vessels may be different from the number of outgoing vessels, as a vessel that enters the terminal

basin during a planning cycle may leave in another cycle. Each incoming vessel i has an arrival

time Ai. Thus, vessel i may enter the navigation channel at or after time Ai. Incoming vessel i

also has a planned berthing time Bi as specified by the berth plans. Each outgoing vessel i has a

planned service completion time Ei at the berth, and a target departure time Di (i.e., time for the

vessel to arrive at the outer anchorage ground after service).

The water level in the navigation channel is tide-dependent, and a vessel can only sail in the

channel when the water becomes deep enough to hold the draft. Because the water level rises and

drops with the fluctuation of tide, each vessel i is subject to a number of tidal windows, during

which it can sail through the channel with a satisfactory water level. The vessels’ tidal windows

are “nested,” i.e., the tidal windows for vessels with a deeper draft are subsets of the tidal windows

for vessels with a shallower draft. Figure 3.1 illustrates the variation of the water level over time,

and the nested tidal windows for vessels with different drafts. We let ui denote the number of tidal

windows that vessel i has during the planning horizon, and [wil, w̄il] denote the lth tidal window

for vessel i.

Each vessel i has been assigned to a berthing position b(i) where the vessel should moor and

43

time

water level

draft 1

draft 2

tidal windows for vessels with draft 2

tidal windows for vessels with draft 1

planning horizon

Figure 3.1: Nested tidal windows of vessels with different drafts.

be handled. Here, b(i) represents a berth if the cargo terminal has a discrete berth layout, and a

specific position along the quay if the cargo terminal has a continuous berth layout. As mentioned

in Section 1.2, incoming vessels may utilize the staging anchorages if they arrive at the terminal

basin too early, and outgoing vessels may utilize the staging anchorages if they need to wait for the

availability of the navigation channel. Denote τ̄ as the navigation time in the navigation channel.

When traveling through the navigation channel, vessels in the same traffic lane must keep a safety

clearance σ, in terms of the length of travel time between two successive vessels. There are m

separate staging anchorages in the terminal basin, which may be located at different locations. We

denote τ0,b(i), τ
′
0k, and τ ′′k,b(i) as the travel time between the end of the navigation channel and

berthing position of vessel i, the travel time between the end of the navigation channel and staging

anchorage k, and the travel time between berthing position of vessel i and staging anchorage k,

respectively (see Figure 3.2).

To comply with the predetermined berth plans, an incoming vessel should not berth earlier than

its planned berthing time Bi in order to avoid interference on the berthing activities of other vessels.

In practice, some flexibility is allowed for the berthing of each incoming vessel, but a deadline B̄i

(B̄i ≥ Bi) on the actual berthing time of each incoming vessel i is imposed by the cargo terminal.

Therefore, vessel i should berth within the feasible time interval [Bi, B̄i] so as to complete service

on time. If the actual berthing time is later than Bi, berthing tardiness is incurred, resulting in a

44

staging anchorage k

berthing positions

 ,k b i 

 0,b i

0k 



position b(i)

entrance of channel

end of channel

Figure 3.2: Possible movements of vessels at the seaport and their corresponding travel times.

penalty cost. The tardiness penalty for late berthing is C1i per time unit for each incoming vessel

i. If the actual berthing time is later than B̄i, service completion will be delayed, which may affect

the actual berthing time of subsequent vessels, causing uncontrolled execution of the predetermined

berth plans. Each outgoing vessel i must unberth at time Ei. After unberthing, the outgoing vessel

will either sail directly through the navigation channel to the outer anchorage ground for departure,

or wait at a staging anchorage before sailing through the channel. On-time or early departure is

preferred, but late departure, i.e., departure later than Di, is allowed. The tardiness penalty for

late departure is C2i per unit time for each outgoing vessel i. If a vessel cannot be served at its

minimum requirement (i.e., an incoming vessel i cannot berth before its berthing deadline B̄i or an

outgoing vessel i cannot unberth at time Ei), the berth plan for the vessel will need to be revised

by the terminal operator. We let C0i be a large lump-sum penalty on such incidence for each vessel

i.

We assume that all time-related parameters in our model are multiples of the safety clearance

σ. Because σ is relatively small compared to other travel time parameters, the inaccuracy of the

solution caused by this assumption is relatively insignificant. Thus, by setting σ = 1, all time-related

45

parameters in our model become integer-valued. The problem involves decisions for determining

the actual berthing time of incoming vessels, the actual departure time of outgoing vessels, and the

time points for the incoming and outgoing vessels to enter the channel. In addition, the utilization

of the staging anchorages (i.e., whether a vessel should occupy a staging anchorage or not, which

staging anchorage is assigned to a vessel, and the time points for a vessel to enter and leave the

staging anchorage) must also be determined. The objective of the problem is to minimize the total

cost incurred by berthing tardiness of incoming vessels and departure tardiness of outgoing vessels,

as well as the cost incurred by the unsatisfied service requests. We denote this problem as P.

Additional assumptions of problem P are as follows:

(i) The outer anchorage ground is beyond the navigation channel and has infinite capacity. There-

fore, the utilization of the outer anchorage ground is not considered in our model.

(ii) Each staging anchorage can accommodate exactly one vessel. In addition, a vessel cannot stay

partially at one staging anchorage and partially at another staging anchorage.

(iii) All the staging anchorages are available for the vessels throughout the planning horizon.

(iv) The travel speed is constant and identical for all vessels in the navigation channel; the travel

speed is also constant and identical for all vessels in the terminal basin. Thus, the time for

traveling through the navigation channel is identical for all vessels, and the time for traveling

between any two locations in the terminal basin is symmetric and identical for all vessels.

For notational convenience, we number the incoming vessels from 1 to n1, and the outgoing

vessels from n1 + 1 to n1 + n2. Let M denote a large number. Problem P can be formulated as an

MILP as follows.

Input parameters:

T : Length of planning horizon

n1: Number of incoming vessels

n2: Number of outgoing vessels

m: Number of staging anchorages

b(i): Designated berthing position for vessel i

ui: Number of tidal windows for vessel i

46

[wil, w̄il]: lth tidal window for vessel i

Ai: Arrival time of incoming vessel i (i.e., the earliest possible time to enter the navigation

channel)

Bi: Planned berthing time of incoming vessel i

B̄i: Latest allowed berthing time of incoming vessel i

Ei: The time that outgoing vessel i must leave berthing position b(i)

Di: Expected departure time of outgoing vessel i

τ̄ : Amount of time for a vessel to travel through the navigation channel

τ0,b(i): Amount of time for vessel i to travel directly between the end of the navigation channel

and berthing position b(i)

τ ′0k: Amount of time for a vessel to travel between the end of the navigation channel and staging

anchorage k (τ ′00 = 0)

τ ′′k,b(i): Amount of time for vessel i to travel between staging anchorage k and berthing position

b(i) (τ ′′0,b(i) = τ0,b(i))

C1i: Unit cost of berthing tardiness for incoming vessel i

C2i: Unit cost of departure tardiness for outgoing vessel i

C0i: A (large) lump-sum cost if the service request of vessel i cannot be satisfied.

Decision variables:

xit: =1 if vessel i enters the navigation channel at time t; 0 otherwise

yik: =1 if vessel i occupies staging anchorage k; 0 otherwise

yi0: =1 if vessel i travels directly between the end of the channel and berthing position b(i)

without occupying any staging anchorage; 0 otherwise

zikt: =1 if vessel i occupies staging anchorage k at time t; 0 otherwise

ei: Time point for vessel i to enter a staging anchorage

fi: Time point for vessel i to leave a staging anchorage

gi: Berthing time of incoming vessel i

L1i: Berthing tardiness of incoming vessel i

47

L2i: Departure tardiness of outgoing vessel i

Ui: =1 if the service request of vessel i cannot be satisfied; 0 otherwise.

MILP formulation:

P : minimize
∑n1

i=1C1iL1i +
∑n1+n2

i=n1+1C2iL2i +
∑n1+n2

i=1 C0iUi (3.1)

subject to
∑n1

i=1 xit ≤ 1 (t = 0, 1, . . . , T) (3.2)∑n1+n2
i=n1+1 xit ≤ 1 (t = 0, 1, . . . , T) (3.3)∑T
t=0 xit = 1− Ui (i = 1, . . . , n1 + n2) (3.4)

xit = 0 (i = 1, . . . , n1; t = 0, 1, . . . , Ai − 1) (3.5)

xit = 0 (i = 1, . . . , n1 + n2; t ∈ {0, 1, . . . , T} \
⋃ui
l=1[wil, w̄il − τ̄]) (3.6)∑m

k=0 yik = 1− Ui (i = 1, . . . , n1 + n2) (3.7)

ei =
∑T

t=0(t+ τ̄)xit +
∑m

k=0 τ
′
0kyik (i = 1, . . . , n1) (3.8)

fi = gi −
∑m

k=0 τ
′′
k,b(i)yik (i = 1, . . . , n1) (3.9)

ei =
∑m

k=0(Ei + τ ′′k,b(i))yik (i = n1 + 1, . . . , n1 + n2) (3.10)

fi =
∑T

t=0 txit −
∑m

k=0 τ
′
0kyik (i = n1 + 1, . . . , n1 + n2) (3.11)

fi −M(1− yi0) ≤ ei ≤ fi (i = 1, . . . , n1 + n2) (3.12)∑n1+n2
i=1 zikt ≤ 1 (k = 1, . . . ,m; t = 0, 1, . . . , T) (3.13)

ei −M(1− zikt) ≤ t ≤ fi +M(1− zikt)

(i = 1, . . . , n1 + n2; k = 1, . . . ,m; t = 0, 1, . . . , T) (3.14)

fi − ei + 1−M(1− yik) ≤
∑T

t=0 zikt ≤Myik

(i = 1, . . . , n1 + n2; k = 1, . . . ,m) (3.15)

Bi(1− Ui) ≤ gi ≤ B̄i(1− Ui) (i = 1, . . . , n1) (3.16)

L1i ≥ gi −Bi (i = 1, . . . , n1) (3.17)

L2i ≥
∑T

t=0(t+ τ̄)xit −Di(1− Ui) (i = n1 + 1, . . . , n1 + n2) (3.18)

xit ∈ {0, 1} (i = 1, . . . , n1 + n2; t = 0, 1, . . . , T) (3.19)

yik ∈ {0, 1} (i = 1, . . . , n1 + n2; k = 0, 1, . . . ,m) (3.20)

48

zikt ∈ {0, 1} (i, j = 1, . . . , n1 + n2; k = 1, . . . ,m; t = 0, 1, . . . , T) (3.21)

Ui ∈ {0, 1} (i = 1, . . . , n1 + n2) (3.22)

ei, fi ≥ 0 (i = 1, . . . , n1 + n2) (3.23)

gi, L1i ≥ 0 (i = 1, . . . , n1) (3.24)

L2i ≥ 0 (i = n1 + 1, . . . , n1 + n2) (3.25)

Objective function (3.1) minimizes the total penalty, which includes the total berthing tardiness

penalty of the incoming vessels, the total departure tardiness penalty of the outgoing vessels, and

the penalty for unsatisfied service requests of vessels. Constraint (3.2) ensures that at most one

incoming vessel can enter the navigation channel from the outer anchorage ground at each time

point. Constraint (3.3) ensures that at most one outgoing vessel can enter the channel from the

terminal basin at each time point. Constraint (3.4) requires each accepted vessel to enter the

channel once. Constraint (3.5) specifies that an incoming vessel i cannot enter the channel before

Ai. Constraint (3.6) requires each accepted vessel i to enter the channel during time interval

[wil, w̄il − τ̄] for some l = 1, . . . , ui, so that the vessel can pass through the channel within tidal

window [wil, w̄il]. Constraint (3.7) ensures that each accepted vessel either travels directly between

the end of the navigation channel and its designated berthing position, or makes use of exactly

one staging anchorage. Constraints (3.8) and (3.9) define the time points when incoming vessel i

enters and leaves a staging anchorage (if yi0 = 1, then ei and fi are both set equal to the time point

when incoming vessel i arrives at the end of the navigation channel). Similarly, constraints (3.10)

and (3.11) define the time points when outgoing vessel i enters and leaves a staging anchorage.

Constraint (3.12) specifies a relationship between ei and fi. It also implies that fi = ei if vessel i

does not make use of any staging anchorage. Constraint (3.13) ensures that at most one vessel dwells

at staging anchorage k at each time point. We refer to this constraint as the capacity constraint of

staging anchorage k. Constraint (3.14) ensures that zikt can be set equal to 1 only when t ∈ [ei, fi],

i.e., vessel i dwells at a staging anchorage only within time window [ei, fi]. Constraint (3.15) states

that if vessel i does not make use of staging anchorage k, then it cannot dwell at staging anchorage

k at any time point; otherwise it must occupy staging anchorage k for fi − ei + 1 time points

49

(i.e., time points ei, ei + 1, . . . , fi). Constraint (3.16) ensures that each incoming vessel i berths

within the feasible time interval [Bi, B̄i] to satisfy its service request. Constraint (3.17) determines

the berthing tardiness L1i for each incoming vessel i. Constraint (3.18) determines the departure

tardiness L2i for each outgoing vessel i. Finally, constraints (3.19)–(3.25) specify the binary and

nonnegativity requirements of the decision variables.

A simple example that illustrates problem P is given as follows:

• Length of planning horizon: T = 12

• Number of incoming vessels: n1 = 2

• Number of outgoing vessels: n2 = 2

• Number of staging anchorages: m = 1

• Number of tidal window for vessel i: ui = 1 for i = 1, 2, 3, 4

• Tidal windows for incoming vessels: [w11, w̄11] = [3, 8]; [w21, w̄21] = [0, 12]

• Tidal windows for outgoing vessels: [w31, w̄31] = [3, 8]; [w41, w̄41] = [0, 12]

• Arrival times of incoming vessels: A1 = 2; A2 = 3

• Berthing time windows of incoming vessels: [B1, B̄1] = [11, 12]; [B2, B̄2] = [9, 10]

• Time points that outgoing vessels must leave their berthing positions: E3 = 0; E4 = 2

• Expected departure times of outgoing vessels: D3 = 7; D4 = 10

• Amount of time for a vessel to travel through the navigation channel: τ̄ = 5

• Amount of time for vessel i to travel directly between the end of the navigation channel and

berthing position b(i): τ0,b(i) = 1 for i = 1, 2, 3, 4

• Amount of time for a vessel to travel between the end of the navigation channel and the staging

anchorage: τ ′01 = 1

• Amount of time for vessel i to travel between the staging anchorage and berthing position b(i):

τ ′′1,b(i) = 1 for i = 1, 2, 3, 4

• Unit costs of berthing tardiness for incoming vessels: C11 = 2; C12 = 3

• Unit costs of departure tardiness for outgoing vessels: C23 = 2; C24 = 3

• Lump-sum cost if the service request of vessel i cannot be satisfied: C0i = 100 for i = 1, 2, 3, 4

In this example, there is only one staging anchorage, and each vessel has only one tidal window.

50

0 1 2 3 4 5 6 7 8 9 10 11 12

Channel entrance

Channel end

Staging anchorage

Berthing position b(4)

Berthing position b(3)

Berthing position b(2)

Berthing position b(1)

Locations

Time

Vessel 1:

Vessel 2:

Vessel 3:

Vessel 4:

Figure 3.3: Routes of vessels in a feasible solution of the example.

A solution of this example is depicted in Figure 3.3. In this solution, incoming vessel 1 travels

through the navigation channel during the time interval [3, 8], travels to the staging anchorage, and

then travels to berthing position b(1). Vessel 1 arrives at the staging anchorage at e1 = 8 + τ ′01 = 9

and leaves the staging anchorage at f1 = 10. Thus, the berthing tardiness of vessel 1 is L11 =

f1 + τ ′′1,b(1) − B1 = 0, and the tardiness cost of the vessel is C11L11 = 0. Incoming vessel 2 travels

through the navigation channel during the time interval [4, 9] and then travels directly to berthing

position b(2) without making use of the staging anchorage. The berthing tardiness of vessel 2 is

L12 = 9 + τ0,b(2) − B2 = 1, and the tardiness cost of the vessel is C12L12 = 3. Outgoing vessel 3

leaves berthing position b(3) at time E3 = 0, travels to the staging anchorage, and then travels to

the navigation channel. Vessel 3 arrives at the staging anchorage at e3 = 0 + τ ′′1,b(3) = 1, and leaves

the staging anchorage at f3 = 2. Thus, the departure tardiness of vessel 3 is L23 = max{0, f3+τ ′01+

τ̄ −D3} = 1, and the tardiness cost of the vessel is C23L23 = 2. Outgoing vessel 4 leaves berthing

position b(4) at time E4 = 2, travels to the staging anchorage, and then travels to the navigation

channel. Vessel 4 arrives at the staging anchorage at e4 = 2 + τ ′′1,b(4) = 3, and leaves the staging

anchorage at f4 = 4. Thus, the departure tardiness of vessel 4 is L24 = max{0, f4+τ ′01+τ̄−D4} = 0,

and the tardiness cost of the vessel is C24L24 = 0. Since the service requests of all vessels are

satisfied, the total cost of the solution is C11L11 + C22L22 + C23L23 + C24L24 = 5. Note that in

this solution, (i) each outgoing vessel i unberths at Ei; (ii) each incoming vessel i berths within its

51

berthing time window [Bi, B̄i]; (iii) each incoming vessel enters the navigation channel no earlier

than its arrival time; (iv) each vessel passes through the channel during its tidal window; (v) at

any time point, there is at most one incoming vessel entering the channel and at most one outgoing

vessel entering the channel; and (vi) at any time point, there is at most one vessel occupying the

staging anchorage. Hence, this solution is feasible.

The following theorem states the computational complexity of problem P.

Theorem 1 Problem P is NP-hard in the strong sense.

Proof: We transform 3-Dimensional Matching (3DM) to the decision version of problem P. Given

disjoint sets Xα = {α1, . . . , αr}, Xβ = {β1, . . . , βr}, and Xγ = {γ1, . . . , γr}, and a set S ⊆ Xα ×

Xβ×Xγ , the 3DM problem asks whether there exists a subset S′ ⊆ S such that |S′| = r and no two

elements of S′ agree in any coordinate. 3DM is known to be strongly NP-hard (Garey and Johnson

1979). For notational convenience, we denote S = {φ1, . . . , φs} and φk = (αµ(k,1), βµ(k,2), γµ(k,3))

for k = 1, . . . , s. We assume that s ≥ r (as the case where s < r is trivial).

Given an arbitrary instance of 3DM, we construct a corresponding instance of problem P as

follows. There are s + 2r incoming vessels, 0 outgoing vessels, and s staging anchorages. All

vessels have the same tidal windows. Among the incoming vessels, vessels 1, . . . , r correspond to

the elements in Xα; vessels r + 1, . . . , 2r correspond to the elements in Xβ; vessels 2r + 1, . . . , 3r

correspond to the elements in Xγ ; and vessels 3r + 1, . . . , s+ 2r do not correspond to any element

of Xα ∪Xβ ∪Xγ . Specifically, we let

T = s+ 8r;

n1 = s+ 2r;

n2 = 0;

m = s;

ui = 4, for i = 1, . . . , s+ 2r;

[wi1, w̄i1] = [0, s− r], for i = 1, . . . , s+ 2r;

[wi2, w̄i2] = [s, s+ r], for i = 1, . . . , s+ 2r;

[wi3, w̄i3] = [s+ 2r, s+ 3r], for i = 1, . . . , s+ 2r;

52

[wi4, w̄i4] = [s+ 4r, s+ 5r], for i = 1, . . . , s+ 2r;

Ai =



s, for i = 1, . . . , r;

s+ 2r, for i = r + 1, . . . , 2r;

s+ 4r, for i = 2r + 1, . . . , 3r;

0, for i = 3r + 1, . . . , s+ 2r;

Bi = B̄i =



s+ 3r, for i = 1, . . . , r;

s+ 5r, for i = r + 1, . . . , 2r;

s+ 7r, for i = 2r + 1, . . . , 3r;

s+ 8r, for i = 3r + 1, . . . , s+ 2r;

C1i = C0i = 1, for i = 1, . . . , s+ 2r;

τ̄ = 1;

τ0,b(i) = τ ′0k = r, for i = 1, . . . , s+ 2r and k = 1, . . . , s;

τ ′′k,b(i) =



r, if (1 ≤ i ≤ r and i = µ(k, 1))

or (r + 1 ≤ i ≤ 2r and i− r = µ(k, 2))

or (2r + 1 ≤ i ≤ 3r and i− 2r = µ(k, 3));

2r, otherwise,

for i = 1, . . . , s+ 2r and k = 1, . . . , s.

Clearly, this transformation is pseudo-polynomial. We will show that there exists a feasible solution

to the constructed instance of problem P with a zero total cost if and only if the answer to the 3DM

problem is “yes.” Suppose the answer to the 3DM problem is “yes.” Denote S′ = {φπ(1), . . . , φπ(r)},

where π(1), . . . , π(r) ∈ {1, . . . , s}. Then, consider the following solution to the constructed instance

of problem P: For i = 1, . . . , r, vessel i enters the navigation channel at time s+ i− 1; vessel r+ i

enters the navigation channel at time s+ 2r+ i− 1; and vessel 2r+ i enters the navigation channel

at time s + 4r + i − 1. For i = 3r + 1, . . . , s + 2r, vessel i enters the navigation channel at time

i − 3r − 1. In other words, vessels 1, . . . , r pass through the channel one by one during the tidal

window [s, s+ r]; vessels r+ 1, . . . , 2r pass through the channel one by one during the tidal window

[s+ 2r, s+ 3r]; vessels 2r+ 1, . . . , 3r pass through the channel one by one during the tidal window

[s + 4r, s + 5r]; and vessels 3r + 1, . . . , s + 2r pass through the channel one by one during the

53

tidal window [0, s − r]. Each of these vessels occupies a staging anchorage before traveling to its

designated berthing position. For i = 1, . . . , r, vessels µ(π(i), 1), r + µ(π(i), 2), and 2r + µ(π(i), 3)

occupy staging anchorage π(i) until r time units before their planned berthing time and then travel

to their designated berthing positions. Vessels 3r + 1, . . . , s + 2r are arbitrarily assigned to the

other s− r staging anchorages. These s− r vessels will stay at their staging anchorages until time

s + 6r and then travel to their designated berthing positions. Note that for all i = 1, . . . , s + 2r,

vessel i arrives at b(i) at exactly its planned berthing time Bi.

Since no two elements of S′ agree in any coordinate, µ(π(1), 1), . . . , µ(π(r), 1) are distinct el-

ements of {1, . . . , r}. Similarly, µ(π(1), 2), . . . , µ(π(r), 2) are distinct elements of {1, . . . , r}, and

µ(π(1), 3), . . . , µ(π(r), 3) are distinct elements of {1, . . . , r}. Hence, vessels 1, . . . , r occupy dif-

ferent staging anchorages; vessels r + 1, . . . , 2r occupy different staging anchorages; and vessels

2r + 1, . . . , 3r occupy different staging anchorages. Vessels 1, . . . , r occupy the staging anchorages

no later than time s+ 2r. Vessels r+ 1, . . . , 2r occupy the staging anchorages no earlier than time

s+ 3r + 1 and no later than time s+ 4r. Vessels 2r + 1, . . . , 3r occupy the staging anchorages no

earlier than time s + 5r + 1. Thus, at any point in time, each staging anchorage is occupied by

no more than one vessel. Hence, this solution is feasible. Since all service requests of vessels are

satisfied and all vessels arrive on time at their designated berthing positions, this solution has a

zero total cost.

Conversely, suppose that there exists a feasible solution to the constructed instance of problem

P with a zero total cost. In this solution, for all i = 1, . . . , s + 2r, vessel i must berth at time

Bi. Since A2r+1 = · · · = A3r = s + 4r, vessels 2r + 1, . . . , 3r must pass through the navigation

channel during the tidal window [s + 4r, s + 5r] in order to arrive at their berthing positions on

time. Since at most r incoming vessels can pass through the tidal window [s + 4r, s + 5r], this

tidal window is fully utilized by vessels 2r + 1, . . . , 3r. Since Ar+1 = · · · = A2r = s + 2r, vessels

r + 1, . . . , 2r must pass through the navigation channel during the tidal window [s + 2r, s + 3r]

in order to arrive at their berthing positions on time. Since at most r incoming vessels can pass

through the tidal window [s+ 2r, s+ 3r], this tidal window is fully utilized by vessels r+ 1, . . . , 2r.

Since A1 = · · · = Ar = s, vessels 1, . . . , r must pass through the navigation channel during the tidal

54

window [s, s + r] in order to arrive at their berthing positions on time. Since at most r incoming

vessels can pass through the tidal window [s, s + r], this tidal window is fully utilized by vessels

1, . . . , r. Now, the only tidal window left for vessels 3r + 1, . . . , 2r + s is [0, s − r]. Thus, vessels

3r + 1, . . . , s+ 2r must pass through the channel during this tidal window.

For i = 1, . . . , r, vessel i reaches the end of the navigation channel at a time point within the

time interval [s + 1, s + r]; vessel r + i reaches the end of the navigation channel at a time point

within the time interval [s + 2r + 1, s + 3r]; and vessel 2r + i reaches the end of the navigation

channel at a time point within the time interval [s+ 4r+ 1, s+ 5r]. Thus, these 3r vessels reach the

end of the channel at least 2r time units before their planned berthing time. Hence, each of them

must visit a staging anchorage before traveling to its designated berthing position. Clearly, each

of vessels 3r + 1, . . . , 2r + s must also visit a staging anchorage before traveling to its designated

berthing position. For i = 1, . . . , 2r + s, we let ki denote the staging anchorage which vessel i

occupies.

For i = 1, . . . , r, vessel i reaches a staging anchorage at a time point within the time interval

[s + r + 1, s + 2r], which is less than 2r time units before Bi. Vessel r + i reaches a staging

anchorage at a time point within the time interval [s + 3r + 1, s + 4r], which is less than 2r

time units before Bi. Vessel 2r + i reaches a staging anchorage at a time point within the time

interval [s + 5r + 1, s + 6r], which is less than 2r time units before Bi. Note that τ ′′k,b(i) equals

either r or 2r for any i and k. Therefore, vessels 1, . . . , 3r must leave their staging anchorages

exactly r time units before their planned berthing time in order to avoid berthing tardiness penalty.

Thus, the solution of the constructed instance has the following properties: (i) Vessels 1, . . . , r and

3r + 1, . . . , 2r + s are occupying s different staging anchorages at time s+ 2r; vessels r + 1, . . . , 2r

and 3r + 1, . . . , 2r + s are occupying s different staging anchorages at time s + 4r; and vessels

2r + 1, . . . , 3r and 3r + 1, . . . , 2r + s are occupying s different staging anchorages at time s + 6r.

(ii) µ(ki, 1) = i for i = 1, . . . , r; µ(ki, 2) = i − r for i = r + 1, . . . , 2r; and µ(ki, 3) = i − 2r for

i = 2r + 1, . . . , 3r (i.e., for 1, . . . , 3r, vessel i occupies staging anchorage ki such that τ ′′ki,b(i) = r).

Property (i) implies that vessels 1, . . . , r occupy different staging anchorages, i.e., k1, . . . , kr

are distinct values; vessels r + 1, . . . , 2r occupy different staging anchorages, i.e., kr+1, . . . , k2r are

55

distinct values; and vessels 2r + 1, . . . , 3r occupy different staging anchorages, i.e., k2r+1, . . . , k3r

are distinct values. This, together with property (ii), implies that µ(k1, 1), . . . , µ(kr, 1) are distinct

values, µ(kr+1, 2), . . . , µ(k2r, 2) are distinct values, and µ(k2r+1, 3), . . . , µ(k3r, 3) are distinct values.

Property (i) also implies that

{k1, . . . , kr} = {kr+1, . . . , k2r} = {k2r+1, . . . , k3r};

i.e., the r staging anchorages occupied by vessels 1, . . . , r are the same staging anchorages occupied

by vessels r + 1, . . . , 2r, which are the same staging anchorages occupied by vessels 2r + 1, . . . , 3r

(while the other s − r staging anchorages are occupied by vessels 3r + 1, . . . , 2r + s). Hence,

µ(k1, 1), . . . , µ(kr, 1) are distinct values; µ(k1, 2), . . . , µ(kr, 2) are distinct values; and µ(k1, 3), . . . ,

µ(kr, 3) are distinct values.

Let S′ = {φk1 , . . . , φkr}. Then, |S′| = r, and no two elements of S′ agree in any coordinate.

This completes the proof of the theorem.

Remark 1 In the proof of Theorem 1, we have shown that the answer to the 3-Dimensional Match-

ing problem is “yes” if and only if the constructed instance of problem P has a zero total cost. Thus,

unless P = NP , there exists no approximation algorithm for problem P with a constant bound on

the relative error.

Remark 2 In the proof of Theorem 1, the constructed instance of problem P has no outgoing vessel,

and all travel times satisfy the triangle inequality. Thus, problem P is NP-hard in the strong sense

even when there are only incoming vessels and all travel times satisfy the triangle inequality.

3.2 Solution Method

In this section, we present a Lagrangian relaxation heuristic for problem P. We first present

the Lagrangian dual problem, and show that the subproblems obtained by relaxing the capacity

constraints of the staging anchorages can be solved in pseudo-polynomial time. We then present

a heuristic for constructing a feasible primal solution from the solution to the Lagrangian dual

problem, as well as the subgradient optimization procedure for searching the Lagrangian multipliers.

56

3.2.1 The Lagrangian Relaxation Problem and Its Subproblems

Relaxing the staging anchorage capacity constraint (3.13) and placing it in the objective function

of problem P with Lagrangian multipliers λkt ≥ 0 (k = 1, . . . ,m; t = 0, 1, . . . , T), we obtain the

following relaxed problem:

P(λ) : minimize
∑n1

i=1C1iL1i +
∑n1+n2

i=n1+1C2iL2i +
∑n1+n2

i=1 C0iUi +
∑m

k=1

∑T
t=0 λkt(

∑n1+n2
i=1 zikt − 1)

subject to (3.2)–(3.12) and (3.14)–(3.25)

where λ denotes the vector of the λkt values. Let L(λ) denote the optimal objective value of

problem P(λ). The goal of the Lagrangian relaxation heuristic is to solve the following Lagrangian

dual problem:

PLD : max
λ

L(λ).

We search the optimal Lagrangian multipliers by applying the subgradient optimization method,

which will be described in the next section. In the following, we will show that given the values of

the Lagrangian multipliers, problem P(λ) can be solved in pseudo-polynomial time.

After dropping the constant term −
∑m

k=1

∑T
t=0 λkt from the objective function, problem P(λ)

can be decomposed into the following two independent subproblems:

Pin(λ) : minimize
∑n1

i=1

{
C1iL1i + C0iUi +

∑m
k=1

∑T
t=0 λktzikt

}
subject to (3.2), (3.4)–(3.9), (3.12), (3.14)–(3.17), and (3.19)–(3.24)

(for i = 1, . . . , n1 only)

and

Pout(λ) : minimize
∑n1+n2

i=n1+1

{
C2iL2i + C0iUi +

∑m
k=1

∑T
t=0 λktzikt

}
subject to (3.3)–(3.4), (3.6)–(3.7), (3.10)–(3.12), (3.14)–(3.15), (3.18)–(3.23), and (3.25)

(for i = n1 + 1, . . . , n1 + n2 only)

Subproblem Pin(λ) involves only decision variables of the incoming vessels, while subproblem

Pout(λ) involves only decision variables of the outgoing vessels. We will show that these sub-

problems can both be transformed into asymmetric assignment problems.

57

We first consider subproblem Pin(λ). For ease of presentation, we introduce a dummy time

point T + i and denote xi,T+i = Ui for each incoming vessel i = 1, . . . , n1. For i = 1, . . . , n1 and

t = 0, 1, . . . , T + n1, define

Fit(λ) =


mink=0,1,...,m

{
F

(k)
it (λ)

}
, if Ai ≤ t ≤ T and t ∈

⋃ui
l=1[wil, w̄il − τ̄];

C0i, if t = T + i;

+∞, otherwise;

where

F
(k)
it (λ) =



C1i(t+ τ̄ + τ0,b(i) −Bi), if k = 0 and Bi ≤ t+ τ̄ + τ0,b(i) ≤ B̄i;

C1i(t+ τ̄ + τ ′0k + τ ′′k,b(i) −Bi) + λk,t+τ̄+τ ′0k
, if k > 0 and Bi ≤ t+ τ̄ + τ ′0k + τ ′′k,b(i) ≤ B̄i;∑Bi−τ ′′k,b(i)

t′=t+τ̄+τ ′0k
λkt′ , if k > 0 and t+ τ̄ + τ ′0k + τ ′′k,b(i) < Bi;

+∞, otherwise.

Here, Fit(λ) represents the cost of letting incoming vessel i enter the navigation channel at time

t in the Lagrangian subproblem, F
(k)
it (λ) represents this cost when the vessel is assigned staging

anchorage k (if k > 0), and F
(0)
it (λ) represents this cost when the vessel is not assigned any staging

anchorage. Define

P′in(λ) : minimize
∑n1

i=1

∑T+n1
t=0 Fit(λ)xit

subject to
∑n1

i=1 xit ≤ 1 (t = 0, 1, . . . , T + n1)∑T+n1
t=0 xit = 1 (i = 1, . . . , n1)

xit ∈ {0, 1} (i = 1, . . . , n1; t = 0, 1, . . . , T + n1)

Lemma 1 Solving problem P′in(λ) yields the optimal objective value of problem Pin(λ).

Proof: We divide the proof into two parts. In the first part, we show that the optimal objective value

of P′in(λ) is less than or equal to the optimal objective value of Pin(λ). Let {x∗it, y∗ik, z∗ikt, e∗i , f∗i , g∗i , L∗1i, U∗i }

be an optimal solution of Pin(λ). We construct a solution {x∗∗it } of problem P′in(λ) by setting

x∗∗it =


x∗it, if t ≤ T ;

U∗i , if t = T + i;

0, otherwise;

58

for i = 1, . . . , n1 and t = 0, 1, . . . , T + n1. Constraint (3.2) implies that
∑n1

i=1 x
∗
it ≤ 1 for t =

0, 1, . . . , T . Thus, for t = 0, 1, . . . , T ,

n1∑
i=1

x∗∗it =

n1∑
i=1

x∗it ≤ 1.

For t = T + 1, . . . , T + n1,
n1∑
i=1

x∗∗it = x∗∗t−T,t = U∗t−T ≤ 1.

Constraint (3.4) implies that
∑T

t=0 x
∗
it = 1− U∗i for i = 1, . . . , n1. Thus, for i = 1, . . . , n1,

T+n1∑
t=0

x∗∗it =
T∑
t=0

x∗∗it +

T+n1∑
t=T+1

x∗∗it =
T∑
t=0

x∗it + U∗i = 1.

Hence, {x∗∗it } is a feasible solution of P′in(λ).

We now show that the objective value of this feasible solution is less than or equal to
∑n1

i=1{C1iL
∗
1i

+ C0iU
∗
i +

∑m
k=1

∑T
t=0 λktz

∗
ikt}, which is the optimal objective value of Pin(λ). To do so, we show

that for i = 1, . . . , n1, the inequality

T+n1∑
t=0

Fit(λ)x∗∗it ≤ C1iL
∗
1i + C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt (3.26)

holds. We divide the analysis into two cases.

Case 1: U∗i = 1. In this case, from (3.4), we have x∗i0 = x∗i1 = · · · = x∗iT = 0. Thus, x∗∗i,T+i = 1

and x∗∗it = 0 if t 6= T + i. We have

T+n1∑
t=0

Fit(λ)x∗∗it = Fi,T+i(λ) = C0i = C0iU
∗
i ,

and hence inequality (3.26) holds.

Case 2: U∗i = 0. In this case, by (3.4) and (3.19), exactly one of x∗i0, x
∗
i1, . . . , x

∗
iT is equal to 1.

Let t∗i be the value of t such that x∗it = 1. By (3.7) and (3.20), exactly one of y∗i0, y
∗
i1, . . . , y

∗
im is

equal to 1. Let k∗i be the value of k such that y∗ik = 1. Then, by (3.8),

e∗i = t∗i + τ̄ + τ ′0k∗i . (3.27)

By (3.9),

g∗i = f∗i + τ ′′k∗i ,b(i)
. (3.28)

59

By (3.14) and (3.15),

z∗ikt =

 1, if k = k∗i and e∗i ≤ t ≤ f∗i ;

0, otherwise;

which implies that
m∑
k=1

T∑
t=0

λktz
∗
ikt =

T∑
t=0

λk∗i tz
∗
ik∗i t

=

f∗i∑
t=e∗i

λk∗i t. (3.29)

Note that in this case, x∗∗i,T+1 = · · · = x∗∗i,T+n1
= 0. Furthermore, by (3.5) and (3.6), t∗i ∈

{Ai, . . . , T} ∩
⋃ui
l=1[wil, w̄il − τ̄]. Hence,

T+n1∑
t=0

Fit(λ)x∗∗it =
T∑
t=0

Fit(λ)x∗∗it =
T∑
t=0

Fit(λ)x∗it = Fit∗i (λ) = min
k=0,1,...,m

{
F

(k)
it∗i

(λ)
}
≤ F (k∗i)

it∗i
(λ). (3.30)

From (3.12), (3.16), and (3.17), we have

e∗i ≤ f∗i , (3.31)

Bi ≤ g∗i ≤ B̄i, (3.32)

and

g∗i −Bi ≤ L∗1i. (3.33)

From (3.27), (3.28), (3.31), and (3.32), we have

t∗i + τ̄ + τ ′0k∗i + τ ′′k∗i ,b(i)
≤ B̄i. (3.34)

We further divide this case into three subcases.

Case 2.1: k∗i = 0. In this case, by (3.12), e∗i = f∗i . This, together with (3.27) and (3.28), implies

that g∗i = t∗i + τ̄ + τ ′00 + τ ′′0,b(i), or equivalently,

g∗i = t∗i + τ̄ + τ0,b(i). (3.35)

From (3.32) and (3.35), we have Bi ≤ t∗i + τ̄ + τ0,b(i) ≤ B̄i. Thus, by (3.30), (3.33)–(3.35), and the

definition of F
(k)
it (λ),

T+n1∑
t=0

Fit(λ)x∗∗it ≤ F
(0)
it∗i

(λ) = C1i(t
∗
i + τ̄ + τ0,b(i) −Bi) = C1i(g

∗
i −Bi) ≤ C1iL

∗
1i,

and hence inequality (3.26) holds.

60

Case 2.2: k∗i > 0 and Bi ≤ t∗i+τ̄+τ ′0k∗i
+τ ′′k∗i ,b(i)

. From (3.34), we have Bi ≤ t∗i+τ̄+τ ′0k∗i
+τ ′′k∗i ,b(i)

≤

B̄i. Thus, by (3.27)–(3.31), (3.33), and the definition of F
(k)
it (λ),

T+n1∑
t=0

Fit(λ)x∗∗it ≤ F
(k∗i)
it∗i

(λ) = C1i(t
∗
i + τ̄ + τ ′0k∗i + τ ′′k∗i ,b(i)

−Bi) + λk∗i ,t∗i +τ̄+τ ′
0k∗

i

= C1i(e
∗
i + τ ′′k∗i ,b(i)

−Bi) + λk∗i e∗i ≤ C1i(f
∗
i + τ ′′k∗i ,b(i)

−Bi) + λk∗i e∗i

= C1i(g
∗
i −Bi) + λk∗i e∗i ≤ C1iL

∗
1i + λk∗i e∗i ≤ C1iL

∗
1i +

f∗i∑
t=e∗i

λk∗i t = C1iL
∗
1i +

m∑
k=1

T∑
t=0

λktz
∗
ikt,

and hence inequality (3.26) holds.

Case 2.3: k∗i > 0 and t∗i + τ̄ + τ ′0k∗i
+ τ ′′k∗i ,b(i)

< Bi. In this case, by (3.27)–(3.30), (3.32), and the

definition of F
(k)
it (λ),

T+n1∑
t=0

Fit(λ)x∗∗it ≤ F
(k∗i)
it∗i

(λ) =

Bi−τ ′′k∗
i
,b(i)∑

t=t∗i +τ̄+τ ′
0k∗

i

λk∗i t =

Bi−g∗i +f∗i∑
t=e∗i

λk∗i t ≤
f∗i∑
t=e∗i

λk∗i t =
m∑
k=1

T∑
t=0

λktz
∗
ikt,

and hence inequality (3.26) holds.

Summarizing the above cases, we conclude that the optimal objective value of P′in(λ) is no

greater than the optimal objective value of Pin(λ). This completes the first part of the proof.

In the second part, we show that the optimal objective value of Pin(λ) is less than or equal to the

optimal objective value of P′in(λ). Let {x∗∗it } be an optimal solution of problem P′in(λ) with a finite

objective value. Note that for i = 1, . . . , n1, either x∗∗i,T+i = 1 or exactly one of x∗∗i0 , x
∗∗
i1 , . . . , x

∗∗
iT

is equal to 1. For each i = 1, . . . , n1, we let t∗i be the value of t such that x∗∗it = 1, and let

k∗i = arg mink=0,1,...,m

{
F

(k)
it∗i

(λ)
}

, with ties broken arbitrarily. We construct a feasible solution

{x∗it, y∗ik, z∗ikt, e∗i , f∗i , g∗i , L∗1i, U∗i } of problem Pin(λ) as follows:

x∗it = x∗∗it (i = 1, . . . , n1; t = 0, 1, . . . , T);

U∗i = x∗∗i,T+i (i = 1, . . . , n1);

y∗ik =

 1, if k = k∗i and U∗i = 0,

0, otherwise,
(i = 1, . . . , n1; k = 0, 1, . . . ,m);

e∗i =

 t∗i + τ̄ + τ ′0k∗i
, if U∗i = 0,

0, otherwise,
(i = 1, . . . , n1);

61

g∗i =


max{t∗i + τ̄ + τ ′0k∗i

+ τ ′′k∗i ,b(i)
, Bi}, if U∗i = 0 and k∗i > 0,

t∗i + τ̄ + τ0,b(i), if U∗i = 0 and k∗i = 0,

0, otherwise,

(i = 1, . . . , n1);

f∗i =

 g∗i − τ ′′k∗i ,b(i), if U∗i = 0,

g∗i , otherwise,
(i = 1, . . . , n1);

z∗ikt =

 1, if k = k∗i , U
∗
i = 0, and e∗i ≤ t ≤ f∗i ,

0, otherwise,
(i = 1, . . . , n1; k = 1, . . . ,m; t = 0, 1, . . . , T);

L∗1i = max{g∗i −Bi, 0} (i = 1, . . . , n1).

It is easy to see that this solution satisfies constraints (3.2), (3.4), (3.7)–(3.9), (3.14), (3.15), (3.17),

and (3.19)–(3.24) (for i = 1, . . . , n1). Since the objective value of solution {x∗∗it } is finite, Fit∗i (λ)

is finite for all i = 1, . . . , n1. Thus, for i = 1, . . . , n1, either t∗i = T + i or t∗i ∈ {Ai, . . . , T} ∩⋃ui
l=1[wil, w̄il−τ̄], which implies that x∗it = 0 if t /∈ {Ai, . . . , T}∩

⋃ui
l=1[wil, w̄il−τ̄]. Hence, x∗it satisfies

constraints (3.5) and (3.6) (for i = 1, . . . , n1). For i = 1, . . . , n1, if U∗i = 1, then e∗i = f∗i = y∗i0 = 0,

and thus e∗i , f
∗
i , and y∗i0 satisfy (3.12). If U∗i = 0, then e∗i = t∗i + τ̄ + τ ′0k∗i

≤ g∗i − τ ′′k∗i ,b(i) = f∗i ,

where the inequality becomes an equality when k∗i = 0 (i.e., when y∗i0 = 1), and thus e∗i , f
∗
i , and

y∗i0 satisfy (3.12). Hence, this solution satisfies constraint (3.12). For i = 1, . . . , n1, if U∗i = 0, then

t∗i 6= T + i, which implies that Fit∗i (λ) = mink=0,1,...,m

{
F

(k)
it∗i

(λ)
}

= F
(k∗i)
it∗i

(λ) and that F
(k∗i)
it∗i

(λ) is

finite. Thus, either k∗i = 0 and Bi ≤ t∗i + τ̄ + τ0,b(i) ≤ B̄i, or k∗i > 0 and t∗i + τ̄ + τ ′0k∗i
+ τ ′′k∗i ,b(i)

≤ B̄i.

In both cases, Bi ≤ g∗i ≤ B̄i. Hence, this solution also satisfies constraint (3.16). Therefore,

{x∗it, y∗ik, z∗ikt, e∗i , f∗i , g∗i , L∗1i, U∗i } is a feasible solution of Pin(λ).

We now show that the objective value of this feasible solution is less than or equal to∑n1
i=1

∑T+n1
t=0 Fit(λ)x∗∗it , which is the optimal objective value of P′in(λ). To do so, we show that

for i = 1, . . . , n1, the inequality

C1iL
∗
1i + C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt ≤

T+n1∑
t=0

Fit(λ)x∗∗it (3.36)

holds. We divide the analysis into two cases.

Case 1: U∗i = 1. In this case, x∗∗i,T+i = 1, g∗i = 0, and z∗ikt = 0 for k = 1, . . . ,m and t =

62

0, 1, . . . , T . Thus, L∗1i = 0 and
∑m

k=1

∑T
t=0 λktz

∗
ikt = 0. We have

C1iL
∗
1i + C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt = C0i = Fi,T+i(λ) ≤

T+n1∑
t=0

Fit(λ)x∗∗it ,

and hence inequality (3.36) holds.

Case 2: U∗i = 0. In this case, t∗i 6= T + i. Thus, t∗i ∈ {Ai, . . . , T} ∩
⋃ui
l=1[wil, w̄il − τ̄]. Hence,

T+n1∑
t=0

Fit(λ)x∗∗it = Fit∗i (λ) = min
k=0,1,...,m

{
F

(k)
it∗i

(λ)
}

= F
(k∗i)
it∗i

(λ). (3.37)

We further divide this case into three subcases.

Case 2.1: k∗i = 0. In this case, if t∗i + τ̄ + τ0,b(i) /∈ [Bi, B̄i], then F
(k∗i)
it∗i

(λ) = +∞, and by (3.37),∑T+n1
t=0 Fit(λ)x∗∗it = +∞, which implies that inequality (3.36) holds. If Bi ≤ t∗i + τ̄ + τ0,b(i) ≤ B̄i,

then

F
(k∗i)
it∗i

(λ) = C1i(t
∗
i + τ̄ + τ ′0,b(i) −Bi). (3.38)

Note that in this case,
∑m

k=1

∑T
t=0 λktz

∗
ikt = 0 and L∗1i = g∗i −Bi = t∗i + τ̄ + τ0,b(i) −Bi. By (3.37)

and (3.38),

C1iL
∗
1i + C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt = C1i(t

∗
i + τ̄ + τ0,b(i) −Bi) = F

(k∗i)
it∗i

(λ) =

T+n1∑
t=0

Fit(λ)x∗∗it ,

and hence inequality (3.36) holds.

Case 2.2: k∗i > 0 and Bi ≤ t∗i + τ̄ + τ ′0k∗i
+ τ ′′k∗i ,b(i)

. In this case, if t∗i + τ̄ + τ ′0k∗i
+ τ ′′k∗i ,b(i)

> B̄i,

then F
(k∗i)
it∗i

(λ) = +∞, and by (3.37),
∑T+n1

t=0 Fit(λ)x∗∗it = +∞, which implies that inequality (3.36)

holds. If t∗i + τ̄ + τ ′0k∗i
+ τ ′′k∗i ,b(i)

≤ B̄i, then

F
(k∗i)
it∗i

(λ) = C1i(t
∗
i + τ̄ + τ ′0k∗i + τ ′′k∗i ,b(i)

−Bi) + λk∗i ,t∗i +τ̄+τ ′
0k∗

i

. (3.39)

Note that in this case, g∗i = t∗i + τ̄ + τ ′0k∗i
+ τ ′′k∗i ,b(i)

, which implies that

L∗1i = t∗i + τ̄ + τ ′0k∗i + τ ′′k∗i ,b(i)
−Bi. (3.40)

In addition, e∗i = f∗i = t∗i + τ̄ + τ ′0k∗i
, which implies that

m∑
k=1

T∑
t=0

λktz
∗
ikt =

f∗i∑
t=e∗i

λk∗i t = λk∗i ,t∗i +τ̄+τ ′
0k∗

i

. (3.41)

63

From (3.37) and (3.39)–(3.41), we have

C1iL
∗
1i + C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt = C1i(t

∗
i + τ̄ + τ ′0k∗i + τ ′′k∗i ,b(i)

−Bi) + λk∗i ,t∗i +τ̄+τ ′
0k∗

i

= F
(k∗i)
it∗i

(λ) =

T+n1∑
t=0

Fit(λ)x∗∗it ,

and hence inequality (3.36) holds.

Case 2.3: k∗i > 0 and t∗i + τ̄ + τ ′0k∗i
+ τ ′′k∗i ,b(i)

< Bi. In this case, gi = Bi, which implies that

f∗i = Bi − τ ′′k∗i ,b(i) and L∗1i = 0. Note that

m∑
k=1

T∑
t=0

λktz
∗
ikt =

f∗i∑
t=e∗i

λk∗i t. (3.42)

By (3.37), (3.42), and the definition of F
(k)
ik (λ),

C1iL
∗
1i + C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt =

f∗i∑
t=e∗i

λk∗i t =

Bi−τ ′′k∗
i
,b(i)∑

t=t∗i +τ̄+τ ′
0k∗

i

λk∗i t = F
(k∗i)
it∗i

(λ) =

T+n1∑
t=0

Fit(λ)x∗∗it ,

and hence inequality (3.36) holds.

Summarizing the above cases, we conclude that the optimal objective value of Pin(λ) is no

greater than the optimal objective value of P′in(λ). Combining the results of the two parts, we

conclude that problems Pin(λ) and P′in(λ) have the same optimal objective value. Hence, solving

P′in(λ) yields the optimal objective value of Pin(λ).

Next, we consider subproblem Pout(λ). Again, we introduce a dummy time point T + i and

denote xi,T+i = Ui for each outgoing vessel i = n1 + 1, . . . , n1 + n2. Similar to subproblem P′in(λ),

for i = n1 + 1, . . . , n1 + n2 and t = 0, 1, . . . , T + n2, we define

Git(λ) =


mink=0,1,...,m

{
G

(k)
it (λ)

}
, if t ∈

⋃ui
l=1[wil, w̄il − τ̄];

C0i, if t = T + i− n1;

+∞, otherwise;

where

G
(k)
it (λ) =


C2i max{t+ τ̄ −Di, 0}, if k = 0 and t = Ei + τ0,b(i);

C2i max{t+ τ̄ −Di, 0}+
∑t−τ ′0k

t′=Ei+τ ′′k,b(i)
λkt′ , if k > 0 and t ≥ Ei + τ ′′k,b(i) + τ ′0k;

+∞, otherwise.

64

Define

P′out(λ) : minimize
∑n1+n2

i=n1+1

∑T+n2
t=0 Git(λ)xit

subject to
∑n1+n2

i=n1+1 xit ≤ 1 (t = 0, 1, . . . , T + n2)∑T+n2
t=0 xit = 1 (i = n1 + 1, . . . , n1 + n2)

xit ∈ {0, 1} (i = n1 + 1, . . . , n1 + n2; t = 0, 1, . . . , T + n2)

Lemma 2 Solving problem P′out(λ) yields the optimal objective value for problem Pout(λ).

Proof: We divide the proof into two parts. In the first part, we show that the optimal ob-

jective value of P′out(λ) is less than or equal to the optimal objective value of Pout(λ). Let

{x∗it, y∗ik, z∗ikt, e∗i , f∗i , L∗2i, U∗i } be an optimal solution of Pout(λ). We construct a solution {x∗∗it }

of problem P′out(λ) by setting

x∗∗it =


x∗it, if t ≤ T ;

U∗i , if t = T + i− n1;

0, otherwise;

for i = n1 + 1, . . . , n1 + n2 and t = 0, 1, . . . , T + n2. Constraint (3.3) implies that
∑n1+n2

i=n1+1 x
∗
it ≤ 1

for t = 0, 1, . . . , T . Thus, for t = 0, 1, . . . , T ,

n1+n2∑
i=n1+1

x∗∗it =

n1+n2∑
i=n1+1

x∗it ≤ 1.

For t = T + 1, . . . , T + n2,

n1+n2∑
i=n1+1

x∗∗it = x∗∗t−T+n1,t = U∗t−T+n1
≤ 1.

Constraint (3.4) implies that
∑T

t=0 x
∗
it = 1 − U∗i for i = n1 + 1, . . . , n1 + n2. Thus, for i =

n1 + 1, . . . , n1 + n2,
T+n2∑
t=0

x∗∗it =
T∑
t=0

x∗∗it +

T+n2∑
t=T+1

x∗∗it =
T∑
t=0

x∗it + U∗i = 1.

Hence, {x∗∗it } is a feasible solution of P′out(λ).

We now show that the objective value of this feasible solution is less than or equal to∑n1+n2
i=n1+1{C2iL

∗
2i + C0iU

∗
i +

∑m
k=1

∑T
t=0 λktz

∗
ikt}, which is the optimal objective value of Pout(λ).

65

To do so, we show that for i = n1 + 1, . . . , n1 + n2, the inequality

T+n2∑
t=0

Git(λ)x∗∗it ≤ C2iL
∗
2i + C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt (3.43)

holds. We divide the analysis into two cases.

Case 1: U∗i = 1. In this case, from (3.4), we have x∗i0 = x∗i1 = · · · = x∗iT = 0. Thus, x∗∗i,T+i−n1
= 1

and x∗∗it = 0 if t 6= T + i− n1. We have

T+n2∑
t=0

Git(λ)x∗∗it = Gi,T+i−n1(λ) = C0i = C0iU
∗
i ,

and hence inequality (3.43) holds.

Case 2: U∗i = 0. In this case, by (3.4) and (3.19), exactly one of x∗i0, x
∗
i1, . . . , x

∗
iT is equal to 1.

Let t∗i be the value of t such that x∗it = 1. By (3.7) and (3.20), exactly one of y∗i0, y
∗
i1, . . . , y

∗
im is

equal to 1. Let k∗i be the value of k such that y∗ik = 1. Then, by (3.10),

e∗i = Ei + τ ′′k∗i ,b(i)
. (3.44)

By (3.11),

f∗i = t∗i − τ ′0,k∗i . (3.45)

By (3.14) and (3.15),

z∗ikt =

 1, if k = k∗i and e∗i ≤ t ≤ f∗i ;

0, otherwise;

which implies that
m∑
k=1

T∑
t=0

λktz
∗
ikt =

T∑
t=0

λk∗i tz
∗
ik∗i t

=

f∗i∑
t=e∗i

λk∗i t. (3.46)

Note that in this case, x∗∗i,T+1 = · · · = x∗∗i,T+n2
= 0. Furthermore, by (3.6), t∗i ∈

⋃ui
l=1[wil, w̄il − τ̄].

Hence,

T+n2∑
t=0

Git(λ)x∗∗it =
T∑
t=0

Git(λ)x∗∗it =
T∑
t=0

Git(λ)x∗it = Git∗i (λ) = min
k=0,1,...,m

{
G

(k)
it∗i

(λ)
}
≤ G(k∗i)

it∗i
(λ). (3.47)

From (3.12), we have

e∗i ≤ f∗i . (3.48)

66

From (3.18) and (3.25), we have

max{t∗i + τ̄ −Di, 0} ≤ L∗2i. (3.49)

From (3.44), (3.45), and (3.48), we have

t∗i ≥ Ei + τ ′′k∗i ,b(i)
+ τ ′0k∗i . (3.50)

We further divide this case into two subcases.

Case 2.1: k∗i = 0. In this case, by (3.12), e∗i = f∗i . This, together with (3.44) and (3.45), implies

that t∗i = Ei + τ ′00 + τ ′′0,b(i), or equivalently,

t∗i = Ei + τ0,b(i). (3.51)

Thus, by (3.47), (3.49), (3.51), and the definition of G
(k)
it (λ),

T+n2∑
t=0

Git(λ)x∗∗it ≤ G
(0)
it∗i

(λ) = C2i max{t∗i + τ̄ −Di, 0} ≤ C2iL
∗
2i,

and hence inequality (3.43) holds.

Case 2.2: k∗i > 0. In this case, by (3.44)–(3.47), (3.49), (3.50), and the definition of G
(k)
it (λ),

T+n2∑
t=0

Git(λ)x∗∗it ≤ G
(k∗i)
it∗i

(λ) = C2i max{t∗i + τ̄ −Di, 0}+

t∗i−τ ′0k∗
i∑

t=Ei+τ ′′k∗
i
,b(i)

λk∗i t

≤ C2iL
∗
2i +

f∗i∑
t=e∗i

λk∗i t = C2iL
∗
2i +

m∑
k=1

T∑
t=0

λktz
∗
ikt,

and hence inequality (3.43) holds.

Summarizing the above cases, we conclude that the optimal objective value of P′out(λ) is no

greater than the optimal objective value of Pout(λ). This completes the first part of the proof.

In the second part, we show that the optimal objective value of Pout(λ) is less than or equal to

the optimal objective value of P′out(λ). Let {x∗∗it } be an optimal solution of problem P′out(λ) with

a finite objective value. Note that for i = n1 + 1, . . . , n1 + n2, either x∗∗i,T+i−n1
= 1 or exactly one

of x∗∗i0 , x
∗∗
i1 , . . . , x

∗∗
iT is equal to 1. For each i = n1 + 1, . . . , n1 + n2, we let t∗i be the value of t such

that x∗∗it = 1, and let k∗i = arg mink=0,1,...,m

{
G

(k)
it∗i

(λ)
}

, with ties broken arbitrarily. We construct a

67

feasible solution {x∗it, y∗ik, z∗ikt, e∗i , f∗i , L∗2i, U∗i } of problem Pout(λ) as follows:

x∗it = x∗∗it (i = n1 + 1, . . . , n1 + n2; t = 0, 1, . . . , T);

U∗i = x∗∗i,T+i−n1
(i = n1 + 1, . . . , n1 + n2);

y∗ik =

 1, if k = k∗i and U∗i = 0,

0, otherwise,
(i = n1 + 1, . . . , n1 + n2; k = 0, 1, . . . ,m);

e∗i =

 Ei + τ ′′k∗i ,b(i)
, if U∗i = 0,

0, otherwise,
(i = n1 + 1, . . . , n1 + n2);

f∗i =

 t∗i − τ ′0,k∗i , if U∗i = 0,

0, otherwise,
(i = n1 + 1, . . . , n1 + n2);

z∗ikt =

 1, if k = k∗i , U
∗
i = 0, and e∗i ≤ t ≤ f∗i ,

0, otherwise,
(i = n1+1, . . . , n1+n2; k = 1, . . . ,m; t = 0, 1, . . . , T);

L∗2i =

 max{t∗i + τ̄ −Di, 0}, if U∗i = 0,

0, otherwise,
(i = n1 + 1, . . . , n1 + n2).

It is easy to see that this solution satisfies constraints (3.3), (3.4), (3.7), (3.10), (3.11), (3.14),

(3.15), (3.18)–(3.23), and (3.25) (for i = n1 + 1, . . . , n1 + n2). Since the objective value of solution

{x∗∗it } is finite, Git∗i (λ) is finite for all i = n1 +1, . . . , n1 +n2. Thus, for i = n1 +1, . . . , n1 +n2, either

t∗i = T + i−n1 or t∗i ∈
⋃ui
l=1[wil, w̄il− τ̄], which implies that x∗it = 0 if t /∈

⋃ui
l=1[wil, w̄il− τ̄]. Hence,

x∗it satisfies constraint (3.6) (for i = n1 + 1, . . . , n1 + n2). For i = n1 + 1, . . . , n1 + n2, if U∗i = 1,

then e∗i = f∗i = y∗i0 = 0, and thus e∗i , f
∗
i , and y∗i0 satisfy (3.12). If U∗i = 0, then t∗i 6= T + i − n1,

which implies that Git∗i (λ) = mink=0,1,...,m

{
G

(k)
it∗i

(λ)
}

= G
(k∗i)
it∗i

(λ) and that G
(k∗i)
it∗i

(λ) is finite. Thus,

either k∗i = 0 and t∗i = Ei + τ0,b(i), or k∗i > 0 and t∗i ≥ Ei + τ ′′k∗i ,b(i)
+ τ ′0k∗i

. In the first case, y∗i0 = 1

and e∗i = Ei + τ ′′k∗i ,b(i)
= Ei + τ0,b(i) = t∗i = f∗i , and thus e∗i , f

∗
i , and y∗i0 satisfy (3.12). In the second

case, y∗i0 = 0 and e∗i = Ei + τ ′′k∗i ,b(i)
≤ t∗i − τ ′0k∗i = f∗i , and thus e∗i , f

∗
i , and y∗i0 also satisfy (3.12).

Hence, this solution satisfies constraint (3.12). Therefore, {x∗it, y∗ik, z∗ikt, e∗i , f∗i , L∗2i, U∗i } is a feasible

solution of Pout(λ).

We now show that the objective value of this feasible solution is less than or equal to∑n1+n2
i=n1+1

∑T+n2
t=0 Git(λ)x∗∗it , which is the optimal objective value of P′out(λ). To do so, we show

68

that for i = n1 + 1, . . . , n1 + n2, the inequality

C2iL
∗
2i + C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt ≤

T+n2∑
t=0

Git(λ)x∗∗it (3.52)

holds. We divide the analysis into two cases.

Case 1: U∗i = 1. In this case, x∗∗i,T+i−n1
= 1, L∗2i = 0, and z∗ikt = 0 for k = 1, . . . ,m and

t = 0, 1, . . . , T . Thus,
∑m

k=1

∑T
t=0 λktz

∗
ikt = 0. We have

C2iL
∗
2i + C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt = C0i = Gi,T+i−n1(λ) ≤

T+n2∑
t=0

Git(λ)x∗∗it ,

and hence inequality (3.52) holds.

Case 2: U∗i = 0. In this case, t∗i 6= T + i− n1. Thus, t∗i ∈
⋃ui
l=1[wil, w̄il − τ̄]. Hence,

T+n2∑
t=0

Git(λ)x∗∗it = Git∗i (λ) = min
k=0,1,...,m

{
G

(k)
it∗i

(λ)
}

= G
(k∗i)
it∗i

(λ). (3.53)

We further divide this case into two subcases.

Case 2.1: k∗i = 0. In this case, if t∗i 6= Ei + τ0,b(i), then G
(k∗i)
it∗i

(λ) = +∞, and by (3.53),∑T+n2
t=0 Git(λ)x∗∗it = +∞, which implies that inequality (3.52) holds. If t∗i = Ei + τ0,b(i), then

G
(k∗i)
it∗i

(λ) = C2i max{t∗i + τ̄ −Di, 0}. (3.54)

Note that in this case,
∑m

k=1

∑T
t=0 λktz

∗
ikt = 0 and L∗2i = max{t∗i + τ̄ −Di, 0}. By (3.53) and (3.54),

C2iL
∗
2i + C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt = C2i max{t∗i + τ̄ −Di, 0} = G

(k∗i)
it∗i

(λ) =

T+n2∑
t=0

Git(λ)x∗∗it ,

and hence inequality (3.52) holds.

Case 2.2: k∗i > 0. In this case, if t∗i < Ei + τ ′′k∗i ,b(i)
+ τ ′0k∗i

, then G
(k∗i)
it∗i

(λ) = +∞, and by (3.53),∑T+n2
t=0 Git(λ)x∗∗it = +∞, which implies that inequality (3.52) holds. If t∗i ≥ Ei+τ ′′k∗i ,b(i)

+τ ′0k∗i
, then

by the definition of G
(k)
it (λ),

G
(k∗i)
it∗i

(λ) = C2i max{t∗i + τ̄ −Di, 0}+

t∗i−τ ′0k∗
i∑

t=Ei+τ ′′k∗
i
,b(i)

λk∗i t = C2i max{t∗i + τ̄ −Di, 0}+

f∗i∑
t=e∗i

λk∗i t. (3.55)

Note that in this case,

L∗2i = max{t∗i + τ̄ −Di, 0} (3.56)

69

and
m∑
k=1

T∑
t=0

λktz
∗
ikt =

f∗i∑
t=e∗i

λk∗i t. (3.57)

By (3.53) and (3.55)–(3.57),

C2iL
∗
2i +C0iU

∗
i +

m∑
k=1

T∑
t=0

λktz
∗
ikt = C2i max{t∗i + τ̄ −Di, 0}+

f∗i∑
t=e∗i

λk∗i t = G
(k∗i)
it∗i

(λ) =

T+n2∑
t=0

Git(λ)x∗∗it ,

and hence inequality (3.52) holds.

Summarizing the above cases, we conclude that the optimal objective value of Pout(λ) is no

greater than the optimal objective value of P′out(λ). Combining the results of the two parts, we

conclude that problems Pout(λ) and P′out(λ) have the same optimal objective value. Hence, solving

P′out(λ) yields the optimal objective value of Pout(λ).

Problems P′in(λ) and P′out(λ) are n1 ×
(
T + n1 + 1

)
and n2 ×

(
T + n2 + 1

)
asymmetric assign-

ment problems, respectively, and can be solved by the Hungarian method whose running time is

polynomial in the problem size. Since the sizes of these asymmetric assignment problems are linear

functions of T , these two problems can be solved in pseudo-polynomial time.

3.2.2 Upper Bound Heuristic and the Subgradient Method

Given any vector λ of λkt values, the optimal objective value of problem P(λ), i.e., L(λ), is a

lower bound on the optimal objective value of problem P. We now develop a heuristic method for

constructing a feasible solution of problem P based on the optimal solution of problem P(λ). The

objective value of this feasible solution serves as an upper bound on the optimal objective value of

problem P, and this upper bound is used for updating the Lagrangian multipliers in a subgradient

optimization framework, which will be described later. In the optimal solution of problem P(λ),

each vessel i either cannot be served successfully (i.e.,
∑T

t=0 xit = 0) or is assigned a time point

for entering the navigation channel (i.e.,
∑T

t=0 xit = 1). A feasible solution of problem P can be

constructed by fixing these xit values and then solving the MILP of problem P. After fixing the

xit values, the MILP of problem P can be simplified as follows. Denote Ω = {i |
∑T

t=0 xit = 1; i =

1, . . . , n1 + n2}. For i, j ∈ Ω such that i 6= j, define new binary variables δij = 1 if vessel i arrives

at its staging anchorage earlier than vessel j, and δij = 0 otherwise. Then, a feasible solution to

70

problem P can be obtained by solving the following problem:

Pub : minimize
∑n1

i=1C1iL1i +
∑n1+n2

i=n1+1C2iL2i +
∑n1+n2

i=1 C0iUi

subject to (3.7)–(3.12), (3.16)–(3.18), (3.20), (3.22)–(3.25)

ej ≥ fi + 1−M(1− δij) (i, j ∈ Ω; i 6= j) (3.58)

δij + δji ≥ yik + yjk − 1 (i, j ∈ Ω; i 6= j; k = 1, . . . ,m) (3.59)

δij ∈ {0, 1} (i, j ∈ Ω; i 6= j) (3.60)

Problem Pub differs from problem P in that (i) xit has become an input parameter, (ii) variable

zikt and constraints (3.2)–(3.6) and (3.13)–(3.15) have been removed, and (iii) variable δij and

constraints (3.58)–(3.59) have been introduced to ensure that [ei, fi] and [ej , fj] do not overlap if

vessels i and j make use of the same staging anchorage. After solving problem Pub, we let zikt = 0

if yik = 0 or t /∈ [ei, fi], and let zikt = 1 if yik = 1 and t ∈ [ei, fi]. It is easy to see that these zikt

values satisfy constraints (3.13)–(3.15). Hence, solving problem Pub yields a feasible solution of

problem P. Note that the number of variables in problem Pub is independent of T ; therefore, the

number of decision variables and the number of constraints of problem Pub are polynomial in the

input size.

We apply the standard subgradient optimization method (see Held, Wolfe, and Crowder 1974)

to update the Lagrangian multipliers. The subgradient for constraint (3.13) at the `-th iteration

of the subgradient algorithm is the vector ∆` with components

∆`
kt =

∑n1+n2
i=1 z`ikt − 1,

for k = 1, . . . ,m and t = 0, 1, . . . , T . Denote λ`kt as the value of λkt at the `-th iteration of the

subgradient algorithm. The value of λkt is updated as follows:

λ`kt =

 0, if ` = 1;

max{0, λ`−1
kt + ζ`−1∆`−1

kt }, if ` ≥ 2;
(3.61)

where ζ` is the step size at the `-th iteration.

Let ZLD be the optimal objective value of the Lagrangian dual problem PLD, and Z(λ`) be the

optimal objective value of problem P(λ`). According to Fisher (2004), the most commonly used

71

step size rule is in the following form:

ζ` = ε
Z∗ − Z(λ`)

‖∆`‖2
, (3.62)

where Z∗ is an estimate of ZLD, and ε is a step size control parameter. Held, Wolfe, and Crowder

(1974) showed that if Z∗ is a lower bound of ZLD and 0 < ε ≤ 2, then Z(λ`) converges to either

Z∗ or a value between Z∗ and ZLD. Since a good lower bound of ZLD is typically not known,

Z∗ is usually set to be an upper bound of the optimal objective value of the primal problem P.

Meanwhile, to ensure convergence of Z(λ`), ε is often decreased iteratively so that ζ` converges to 0.

In our implementation, we determine the step size according to (3.62). We can make use of

an upper bound Z̄(λ`) obtained by solving problem Pub to estimate ZLD. However, as mentioned

earlier, the cost coefficients of unsatisfied service requests (i.e., the C0i values) are often significantly

larger than the cost coefficients of berthing and departure tardiness (i.e., the C1i and C2i values).

Hence, Z̄(λ`) can be much larger than ZLD if Ui = 1 for some i in the upper bound solution

but Ui = 0 for all i in an optimal solution of problem P. To overcome this pitfall, we use Z∗ =

min{Z̄(λ`), 2Z(λ`)} as a better estimate of ZLD.

We start the subgradient algorithm with ε initially set to 1. Let Z̄ and Z denote the best upper

bound and the best lower bound found so far, respectively. When the value of Z is not improved

for 5 consecutive iterations, we reduce ε by 20%. The subgradient algorithm is terminated when

(i) we reach 100 iterations, or (ii) the optimality gap, measured by
(
Z̄ − Z

)
/Z × 100%, is below

1%. A pseudo-code of our solution method is provided below:

Notations:

`: Iteration number

θ`: Optimality gap at the `th iteration, which is measured by
(
Z̄ − Z

)
/Z × 100%

κ: An integer that records the number of consecutive iterations during which Z is not improved

The pseudo-code is given as follows:

Lagrangian Relaxation Heuristic:

Initialization:

1: `← 1; κ← 0; ε← 1; Z ← 0; Z̄ ← +∞; θ` ← +∞; λ`kt ← 0 (k = 1, . . . ,m; t = 0, . . . , T).

72

Subgradient optimization procedure:

2: While ` ≤ 100 and θ` ≥ 1%

3: Solve problems Pin(λ`) and Pout(λ
`) to obtain optimal xit values for problem P(λ`) and the

lower bound Z(λ`);

4: If Z(λ`) > Z Then

5: Z ← Z(λ`); κ← 0

6: Else

7: κ← κ+ 1.

8: End If

9: Solve problem Pub with the xit values obtained in Step 3 to obtain the z`ikt values and the

upper bound Z̄(λ`);

10: Z̄ ← min{Z̄, Z̄(λ`)}; θ` ←
(
Z̄ − Z

)
/Z;

11: If κ ≥ 5 Then

12: ε← 0.8× ε; κ← 0.

13: End If

14: ∆`
kt ←

∑n1+n2
i=1 z`ikt − 1 (k = 1, . . . ,m; t = 0, . . . , T);

15: Z∗ ← min{Z̄(λ`), 2Z(λ`)}; ζ` ← ε(Z∗ − Z(λ`))/(‖∆`‖2);

16: `← `+ 1; λ`kt ← max{0, λ`−1
kt + ζ`−1∆`−1

kt } (k = 1, . . . ,m; t = 0, . . . , T).

17: End While

Steps 2–17 form the main body of the Lagrangian relaxation heuristic. Step 3 solves the

Lagrangian relaxation problem. Steps 4–8 update the best lower bound Z. Step 9 executes the

upper bound heuristic to obtain a feasible solution of problem P. Step 10 updates the best upper

bound Z̄ and the optimality gap. Steps 11–13 determine if ε should be reduced by 20%. Steps

14–17 update the step size, the iteration number, and the Lagrangian multipliers. The output of

the Lagrangian relaxation heuristic is the solution corresponding to the best upper bound Z̄.

3.3 Computational Experiments

The goal of the computational experiments is threefold. First, we would like to evaluate the

computational performance of the Lagrangian relaxation heuristic for problems of different sizes.

73

For this purpose, we generate problem instances with planning horizons of different lengths and

compute the optimality gaps of the solutions obtained by the heuristic. We also compare the

computational performance of Lagrangian relaxation heuristic with those of benchmark solutions.

Two benchmark solution methods are used for comparison. One method is to solve the MILP

of problem P directly using CPLEX, a well-known mathematical programming solver. Another

method is to adopt a rule-based approach which mimics the current practice of the VTS operator

at the Yangshan Deep-water Port in Shanghai. Since in practice some parameter values may be

different under different situations, our second goal is to investigate how the performance of the

Lagrangian relaxation heuristic is affected as these parameters vary. In particular, since weather

conditions may affect the availability of staging anchorages in the terminal basin, we examine how

the results are affected as the number of staging anchorages varies. We also analyze the sensitivity

of the Lagrangian heuristic’s performance to different settings of tardiness penalties (i.e., the C1i

and C2i values). Because it is not easy to quantify the tardiness penalties, a solution with lower

sensitivity to the values of the tardiness penalties is considered more robust, and thus of higher

practicality. Our third goal is to evaluate the benefits of taking the anchorage area’s capacity into

consideration when planning navigation channel traffic. To achieve this, we analyze the solutions

obtained by several vessel sequencing policies when the anchorage area’s capacity is ignored.

All algorithms were implemented in C#.Net and ran on a computer with a 64-bit Intel i7-

6700 3.40GHz CPU and 32GB RAM. In the Lagrangian relaxation heuristic, the upper bound was

obtained by solving the MILP of problem Pub. All MILPs were solved by CPLEX 12.5 with default

configurations.

3.3.1 Generation of Problem Instances

In this subsection, we describe the test instances used in our computational experiments. These

test instances are randomly generated with the parameter setting selected based on the physical

layout and the characteristics of the operational data of the Yangshan Deep-water Port of Shang-

hai. Figure 3.4 depicts the physical layout of the Yangshan Deep-water Port. The port has one

navigation channel with two traffic lanes. One traffic lane is for incoming vessels, and the other

is for outgoing vessels. We let U{α, .., β} denote the random number generator which returns a

74

Figure 3.4: Layout of the Yangshan Deep-water Port (not to scale).

uniformly distributed random integer from {α, α+ 1, . . . , β}, and we say that R ∼ U{α, .., β} if R

is a random number generated by U{α, .., β}. We let U [α, β] denote the random number generator

which returns a uniformly distributed random real number lying within the interval [α, β], and we

say that R ∼ U [α, β] if R is a random number generated by U [α, β].

The safety clearance between vessels traveling through the navigation channel is set equal to

10 minutes. Thus, each time unit represents 10 minutes. The amount of time for a vessel to travel

through the navigation channel τ̄ is set equal to 12 time units. We generate test instances with

planning horizons varying from 1 day to 7 days (i.e., T is set equal to 144, 288, . . . , 1008 time units)

in three categories, namely the low-traffic case, the medium-traffic case, and the heavy-traffic case,

and develop 21 problem sets. For each problem set, we generate 5 random test instances, and

thus, there are 105 test instances in total. For a test instance with a planning horizon of d days,

the number of incoming vessels is obtained by setting n1 ∼ U{10d, .., 12d} for the low-traffic case,

n1 ∼ U{12d, .., 14d} for the medium-traffic case, and n1 ∼ U{14d, .., 16d} for the heavy-traffic case.

The number of outgoing vessels n2 is set equal to n1. See Table 3.1 for a summary of the problem

sets.

The Yangshan Deep-water Port possesses a continuous quay wall divided into 16 berth segments.

Hence, in each test instance, there are 16 berthing positions, numbered from 1 to 16. For example,

if vessel i is designated to berth at the 10th position, then b(i) = 10. The number of staging

75

Table 3.1: Problem sets used in the computational study.

Low-traffic Medium-traffic Heavy-traffic

T Problem set n1 and n2 Problem set n1 and n2 Problem set n1 and n2

144 L-1 U{10, .., 12} M-1 U{12, .., 14} H-1 U{14, .., 16}
288 L-2 U{20, .., 24} M-2 U{24, .., 28} H-2 U{28, .., 32}
432 L-3 U{30, .., 36} M-3 U{36, .., 42} H-3 U{42, .., 48}
576 L-4 U{40, .., 48} M-4 U{48, .., 56} H-4 U{56, .., 64}
720 L-5 U{50, .., 60} M-5 U{60, .., 70} H-5 U{70, .., 80}
864 L-6 U{60, .., 72} M-6 U{72, .., 84} H-6 U{84, .., 96}
1008 L-7 U{70, .., 84} M-7 U{84, .., 98} H-7 U{98, .., 102}

anchorages is set to m = 3. The travel speed of all vessels in the terminal basin is set equal to 1000

meters per time unit. The coordinates of the berthing positions, staging anchorages, and end of

navigation channel, measured in meters, are provided in Table 3.2. The travel times τ0,b(i), τ
′
0k, and

τ ′′k,b(i) are obtained by dividing the Euclidean distances between the two locations concerned by the

travel speed of the vessel and rounding the results to the nearest integers. For example, suppose

vessel i is assigned to staging anchorage 1 and b(i) = 10. Since the Euclidean distance between

staging anchorage 1 and berthing position 10 is
√

(3500− 1800)2 + (0− 2000)2 ≈ 2625 meters, we

have τ ′′1,b(i) = 2625/1000 ≈ 3.

Table 3.3 presents the statistics of the operational data of year 2016 at the Yangshan Deep-water

Port. For incoming vessels, the following statistics are presented:

• VESS IN: Average number of scheduled incoming vessels per day;

Table 3.2: Coordinates of different locations.

Berthing positions and Staging anchorages and Coordinates of the end
their coordinates their coordinates of navigation channel

1 (350, 0) 1 (1800, 2000) (0, 600)
2 (700, 0) 2 (2800, 2000)
3 (1050, 0) 3 (3800, 2000)
4 (1400, 0)
5 (1750, 0)
6 (2100, 0)
7 (2450, 0)
8 (2800, 0)
9 (3150, 0)
10 (3500, 0)
11 (3850, 0)
12 (4200, 0)
13 (4550, 0)
14 (4900, 0)
15 (5250, 0)
16 (5600, 0)

76

• BTHmin, BTHmax, BTHavg: Earliest, latest, and average planned berthing time of the scheduled

incoming vessels;

• BTH LEAD: Average length (in minutes) of the interval between arrival time and planned

berthing time of the scheduled incoming vessels;

• BTH DELAY: Average length (in minutes) of the interval between the planned berthing time

and the actual berthing time of the scheduled incoming vessels;

• DP DFT IN: Proportion of deep-draft vessels (i.e., vessels with drafts not less than 12.5 meters)

among all the scheduled incoming vessels;

• DFT INmin, DFT INmax, DFT INavg: Minimum, maximum, and average draft (in meters) of the

deep-draft incoming vessels.

For outgoing vessels, the following statistics are presented:

• VESS OUT: Average number of scheduled outgoing vessels per day;

• UBTmin, UBTmax, UBTavg: Earliest, latest, and average planned unberthing time of the sched-

uled outgoing vessels;

• DPT LEAD: Average length (in minutes) of the interval between unberthing time and expected

departure time of the scheduled outgoing vessels.

For each month, the average number of scheduled incoming vessels and the average number

of scheduled outgoing vessels are almost the same. The value ranges between 11.5 and 13.4, with

a mean of 12.3 (see the VESS IN and VESS OUT values in Table 3.3). Therefore, in each test

instance of our computational study, we set n1 = n2. To capture the variation in the number of

scheduled vessels, we generate three categories of test instances, namely the low-traffic case, the

medium-traffic case, and the heavy-traffic case. For instances of the low-traffic case, 10 incoming

vessels and 10 outgoing vessels are scheduled for service per day; for instances of the medium-

traffic case, 12 incoming vessels and 12 outgoing vessels are scheduled for service per day; and for

instances of the heavy-traffic case, 14 incoming vessels and 14 outgoing vessels are scheduled for

service per day. Note that the berth plans that we extracted are executed berth plans, i.e., they

have been verified by the VTS operator. In the berth plans initially devised and proposed by the

terminal operators, the number of scheduled incoming and outgoing vessels may be larger than

77

Table 3.3: Monthly statistics of the operational data of 2016 at the Yangshan Deep-water Port∗

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average

Incoming vessels

VESS IN 12.5 12.2 13.0 12.8 12.2 13.3 13.2 12.9 11.9 11.7 11.5 11.5 12.2

BTHmin 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

BTHmax 23:59 23:59 23:59 23:59 23:30 23:59 23:59 23:59 23:30 23:30 23:30 23:59 23:49

BTHavg 11:58 11:48 12:05 12:45 12:14 11:24 12:04 12:25 12:06 12:00 11:40 12:21 12:04

BTH LEAD 1521 1871 2531 1923 1078 1480 1533 1267 1614 1869 2117 2181 1749

BTH DELAY 1530 1470 1530 1790 1560 1560 1531 1531 1650 1560 1510 1650 1656

DP DFT IN 0.28 0.26 0.22 0.26 0.27 0.28 0.25 0.25 0.23 0.21 0.20 0.22 0.24

DFT INmin 12.5 12.6 12.5 12.7 12.5 12.5 12.6 12.5 12.6 12.5 12.5 12.5 12.5

DFT INmax 14.3 14.3 15 14 14.4 14.2 15.2 14.5 14.3 14.5 14.7 14.6 14.4

DFT INavg 13.1 13.3 13.5 13.3 13.6 13.6 13.4 13 13.1 13.6 13.2 13.6 13.3

Outgoing vessels

VESS OUT 12.5 12.2 13.0 12.8 12.3 13.3 13.4 12.9 11.9 11.7 11.5 11.6 12.3

UBTmin 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

UBTmax 23:30 23:30 23:30 23:30 23:30 23:30 23:30 23:59 23:30 23:30 23:30 23:30 23:32

UBTavg 11:39 10:44 11:43 12:24 12:03 11:23 11:54 11:44 12:07 12:11 11:34 12:00 11:47

DPT LEAD 354 −83 498 425 −424 −288 40 14 43 464 719 802 214

∗These statistics are for large vessels only. This is because small vessels and barges need not enter the navigation
channel when arriving at or departing from the port. In addition, small vessels and large vessels do not occupy
the same anchorage area. Therefore, we only consider large vessels in our test instances.

that in the executed berth plans, as service requests of some vessels may have been rejected by

the VTS operator due to insufficient traffic capacity. To capture the difference in the number of

scheduled vessels between the executed berth plans and the initial berth plans, we enlarge both the

number of scheduled incoming vessels and the number of scheduled outgoing vessels by ε for each

instance, where ε ∼ U{0, .., 2d}, and d is the number of days in the planning horizon. Consequently,

for each instance with a planning horizon of d days, the number of incoming vessels (or outgoing

vessels) is generated by U{10d, .., 12d}, U{12d, .., 14d}, and U{14d, .., 16d} for the low-traffic case,

medium-traffic case, and heavy-traffic case, respectively.

Both the planned berthing times of incoming vessels and the planned unberthing times of

outgoing vessels shown in Table 3.3 range between 00:00 and 23:59, with a mean value around

12:00 (see the BTH and UBT values in the table), indicating that the Bi and Ei values are evenly

distributed throughout the planning horizon. Since the travel time of a vessel is no more than

20 time units (12 time units in the navigation channel and, according to the locations shown

in Table 3.2, no more than 8 time units in the terminal basin), we generate the values of Bi

by U{20, .., T}, and generate the values of Ei by U{0, .., T − 20}. For the incoming vessels, the

78

BTH LEAD values range between 1078 and 2531 minutes (i.e., between 107.8 and 253.1 time

units). Thus, for each incoming vessel i, we set Ai = max{0, Bi − R} with R ∼ U{100, .., 250}.

The BTH DELAY values range between 1470 and 1790 minutes (i.e., between 147.0 and 179.0 time

units). Thus, for each incoming vessel i, we set B̄i = min{Bi +R, T} with R ∼ U{150, .., 180}. For

the outgoing vessels, the DPT LEAD values range between −424 and 802 minutes (i.e., between

−42.4 and 80.2 time units). Thus, for each outgoing vessel i, we set Di = max{0, Ei + R} with

R ∼ U{−40, .., 80}.

Vessels with draft greater than 12.5 meters are classified as “deep-draft vessels.” We refer to

those vessels with draft no greater than 12.5 meters as “non-deep-draft vessels.” Non-deep-draft

vessels are unaffected by the tide and have a single tidal window [0, T]. Among the incoming vessels,

about 24% of them are deep-draft vessels (see the DP DFT IN value in the “Average” column of

Table 3.3). To reflect this characteristic, in our computational study we randomly select 24% of

the incoming vessels to be deep-draft vessels. The drafts of deep-draft vessels range between 12.5

meters and 15.2 meters, with a mean of 13.3 meters (see the DFT IN values in Table 3.3). Thus, we

generate the drafts of deep-draft incoming vessels by U [12.5, 15.2] meters. The drafts of outgoing

vessels are not recorded at the Yangshan Deep-water Port. However, the proportion of deep-draft

vessels among the outgoing vessels is about the same as that of the incoming vessels. We therefore

generate deep-draft vessels and their drafts for the outgoing vessels the same way as we do for the

incoming vessels. We derive the tidal windows of the deep-draft vessels based on their drafts and

the information of the tide. The average water level of the port is 16 meters, the average highest

and lowest tide of the port is ±1.5 meters, and the average duration of each tidal cycle of the port

is 12 hours (i.e., 72 time units). Following the method of Du et al. (2015), we simulate the tidal

pattern using a sine curve. Hence, we let the water level at time t be 16 + 1.5 sin πt
36 . A vessel is

allowed to navigate through the navigation channel when the water level is greater than or equal

to the draft of the vessel plus a seabed clearance of 2 meters. Therefore, the tidal windows of a

deep-water level with draft ξ is given as
{
t
∣∣ 16 + 1.5 sin πt

36 ≥ ξ + 2; 0 ≤ t ≤ T
}

.

Deep-draft vessels have a higher service priority than non-deep-draft vessels. We set the tardi-

ness penalties C1i and C2i to 2 if vessel i is a deep-draft vessel, and set C1i and C2i to 1 if vessel

79

i is a non-deep-draft vessel. The objective of our model includes two types of penalties, namely

the penalties on berthing and departure tardiness of vessels, and the penalties on unsatisfied vessel

service requests. In practice, satisfying vessel service requests is of the highest priority. To reflect

this priority, we set C0i to a significantly larger value than C1i and C2i. For each vessel i, we set

C0i equal to 10000. Thus, if the objective value of a heuristic solution exceeds 10000, it indicates

that either the given berth plans are impossible to satisfy all service requests due to limited traffic

capacity of the port, or the heuristic fails to identify a solution that satisfies all service requests.

3.3.2 Benchmark Methods

To evaluate the computational performance of the Lagrangian relaxation heuristic, we introduce

two benchmark methods for solving problem P and compare the performance of the Lagrangian

relaxation heuristic with the performances of these benchmark methods. The first benchmark

method is to solve the MILP formulation of problem P presented in Section 3.1 directly by CPLEX.

The second benchmark method is a rule-based heuristic, which simulates the decision of a VTS

operator. In the following, we provide a description on the manual decision process.

The VTS officers at the Yangshan Deep-water Port currently adopt a rule-based approach to

manage the traffic in the navigation channel and the utilization of the staging anchorages. This

rule-based heuristic gives priority to outgoing vessels to ensure on-time unberthing, so as to provide

berth vacancy for subsequent vessels. It first considers the outgoing vessels one by one according to

their unberthing times. In each step, the heuristic allocates a time slot of the navigation channel to

the outgoing vessel being considered. It also allocates some time slots of a staging anchorage to this

vessel if the vessel cannot travel to the channel and exit the port directly. If two outgoing vessels

have the same unberthing time, then the one with the higher service priority (i.e., larger C2i value)

is considered first. Next, the heuristic considers the incoming vessels one by one according to their

planned berthing times. In each step, it allocates the next available time slot of the navigation

channel to the incoming vessel being considered. It also allocates some time slots of a staging

anchorage to this vessel if the vessel is too early to travel to its berth directly. If two incoming

vessels have the same planned berthing time, then the one with the higher service priority (i.e.,

larger C1i value) is considered first. The pseudo-code of the rule-based heuristic used to simulate

80

the manual decision process is presented below:

Notations:

TC: The objective value

V1, V2: Sets of the incoming and outgoing vessels, respectively, that have not been considered

T1, T2: Sets of available time points for the incoming and outgoing vessels, respectively, to enter

the navigation channel

Sk: Set of available time points for staging anchorage k

W: A set for storing the indices of vessels

eki , f
k
i : The values of ei and fi, respectively, if vessel i makes use of staging anchorage k

The rule-based heuristic is presented as follows:

Rule-based Heuristic:

Initialization:

1: TC ← 0; V1 ← {1, . . . , n1}; V2 ← {n1 + 1, . . . , n1 + n2}; T1 ← {0, 1, . . . , T}; T2 ← {0, 1, . . . , T};

Sk ← {0, 1, . . . , T} (k = 1, . . . ,m); t← 0.

Managing traffic of outgoing vessels:

2: While t ≤ T

3: W ← {i ∈ V2 | Ei = t};

4: While W 6= ∅

5: i← arg maxj∈W{C2j} (ties broken arbitrarily);

6: If t+ τ0,b(i) ∈ T2 ∩
⋃ui
l=1[wil, w̄il − τ̄] Then

7: T2 ← T2 \ {t+ τ0,b(i)}; Ui ← 0; V2 ← V2 \ {i}; TC ← TC + C2i max{0, t+ τ0,b(i) + τ̄ −Di}

8: Else

9: eki ← Ei + τ ′′k,b(i); f
k
i ← min{t′ ∈ T2 ∩

⋃ui
l=1[wil, w̄il − τ̄] | t′ ≥ eki + τ ′0k} − τ ′0k (k = 1, . . . ,m);

10: If ∃k = 1, . . . ,m such that [eki , f
k
i] ⊆ Sk Then

11: ei ← eki ; fi ← fki ; T2 ← T2 \ {fi + τ ′0k}; Sk ← Sk \ [ei, fi]; Ui ← 0; V2 ← V2 \ {i};

TC ← TC + C2i max{0, fi + τ ′0k + τ̄ −Di}.

12: End If

13: End If

14: W ←W \ {i}.

15: End While

81

16: t← t+ 1.

17: End While

Managing traffic of incoming vessels:

18: t← 0.

19: While t ≤ T

20: W ←
{
i ∈ V1 | Bi = minj∈V1{Bj}; t ≥ Ai; t ∈

⋃ui
l=1[wil, w̄il − τ̄]

}
;

21: While W 6= ∅

22: i← arg maxj∈W{C1j} (ties broken arbitrarily);

23: If Bi ≤ t+ τ̄ + τ0,b(i) ≤ B̄i Then

24: T1 ← T1 \ {t}; Ui ← 0; V1 ← V1 \ {i}; TC ← TC + C1i

(
t+ τ̄ + τ0,b(i) −Bi

)
; W ← ∅

25: Else

26: eki ← t+ τ̄ + τ ′0k; f
k
i ← eki if eki + τ ′′k,b(i) ≥ Bi; f

k
i ← Bi − τ ′′k,b(i) if eki + τ ′′k,b(i) < Bi

(k = 1, . . . ,m);

27: If ∃k = 1, . . . ,m such that [eki , f
k
i] ⊆ Sk and fki + τ ′′k,b(i) ≤ B̄i Then

28: ei ← eki ; fi ← fki ; T1 ← T1 \ {t}; Sk ← Sk \ [ei, fi]; Ui ← 0; V1 ← V1 \ {i};

TC ← TC + C1i max{0, fi + τ ′′k,b(i) −Bi}; W ← ∅

29: Else

30: W ←W \ {i}.

31: End If

32: End If

33: End While

34: t← t+ 1.

35: End While

Including the costs of unsatisfied service requests:

36: For i ∈ V1 ∪ V2

37: Ui ← 1 and TC ← TC + C0i.

Steps 2–35 form the main body of the heuristic for scheduling vessel traffic. The main body

consists of two parts. The first part (i.e., steps 2–17) schedules the traffic of the outgoing vessels,

whereas the second part (i.e., steps 18–35) schedules the traffic of the incoming vessels. In each

iteration of the first part, a time point t is considered. Given the time point t, step 3 identifies

82

the outgoing vessels that should unberth at time t. If such outgoing vessels are identified (whose

indices are stored in the set W), the one with the highest service priority is then selected in step 5

(with ties broken arbitrarily). Then, steps 6–13 determine whether the selected outgoing vessel can

enter the navigation channel or not. If the outgoing vessel cannot enter the channel directly, then

the vessel is assigned a staging anchorage, provided that at least one staging anchorage is available.

If the outgoing vessel is assigned a time point for entering the navigation channel, the vessel is

then eliminated from the outgoing vessel list V2, and its departure tardiness cost is then added to

the total cost TC. Each of the outgoing vessels in the set W is eliminated from the set in step 14

after being treated in steps 6–13. In each iteration of the second part, a time point t is considered.

Given the time point t, step 20 identifies the incoming vessels that can enter the navigation channel

at time t, among which the ones with the earliest planned berthing time are selected with their

indices stored in the set W. Among the incoming vessels in W, the one with the highest service

priority is selected in step 22 (with ties broken arbitrarily). Then, steps 23–32 determine whether

the selected incoming vessel can berth within its berthing time window or not. If the incoming

vessel cannot travel to its berthing position directly and berth within its berthing time window,

then the vessel is assigned a staging anchorage, provided that at least one staging anchorage is

available. If the incoming vessel is assigned a time point for entering the navigation channel, the

vessel is then eliminated from the incoming vessel list V1, and its berthing tardiness cost is then

added to the total cost TC. Each of the incoming vessels in the set W is eliminated from the set

after being treated in steps 23–32. When the iterations of the main body are exhausted, vessels

that remain in the sets V1 and V2 will not be served. Thus, in steps 36–37, the cost for unsatisfied

service requests is added to the total cost TC for each of the vessels that remain in the sets V1 and

V2.

3.3.3 Comparison with Benchmark Methods

We solve the problem sets presented in Table 3.1 in Section 3.3.1 using the Lagrangian relaxation

heuristic and the two benchmark methods, namely solving the MILP directly via CPLEX (which

we refer to as the “MILP/CPLEX method”) and the rule-based heuristic. When solving each

problem, the running time of the MILP/CPLEX method is restricted to no more than 3600 seconds.

83

Table 3.4: Computational results for the tested problem sets.

Problem
Lagrangian Relaxation MILP/CPLEX Rule-based Heuristic

set #I #R G1 (%) G2 (%) Time #I #R G1 (%) G2 (%) Time #I #R G1 (%) G2 (%) Time

Low-traffic
L-1 0 0 0.0 0.0 0.1 0 0 0.0 0.0 11.5 1 0.4 ≥ 100 0.5 0.0
L-2 0 0 2.7 2.7 3.1 0 0 5.5 5.5 2414.1 1 0.2 ≥ 100 12.1 0.0
L-3 0 0 0.7 0.7 3.1 1 0.4 ≥ 100 11.4 3168.4 0 0 14.3 14.3 0.0
L-4 0 0 0.0 0.0 0.8 3 1.0 ≥ 100 6.6 3580.6 1 0.2 ≥ 100 16.4 0.0
L-5 1 0.2 ≥ 100 1.6 21.1 5 7.2 ≥ 100 – 3600 2 0.6 ≥ 100 9.5 0.0
L-6 0 0 1.2 1.2 36.8 5 26.8 ≥ 100 – 3600 2 0.4 ≥ 100 21.0 0.0
L-7 2 0.4 ≥ 100 1.4 75.1 5 82.8 ≥ 100 – 3600 1 0.6 ≥ 100 18.3 0.0

Medium-traffic
M-1 0 0 0.0 0.0 0.1 0 0 0.0 0.0 16.1 0 0 4.4 4.4 0.0
M-2 0 0 1.9 1.9 1.7 0 0 8.4 8.4 2932.5 2 0.4 ≥ 100 21.2 0.0
M-3 0 0 3.1 3.1 13.6 2 0.4 ≥ 100 27.3 3600 0 0 14.5 14.5 0.0
M-4 0 0 3.2 3.2 34.4 5 4.8 ≥ 100 – 3600 0 0 26.5 26.5 0.0
M-5 0 0 4.4 4.4 60.7 5 7.6 ≥ 100 – 3600 1 0.2 ≥ 100 21.8 0.0
M-6 0 0 1.5 1.5 98.7 5 28.4 ≥ 100 – 3600 1 0.2 ≥ 100 23.2 0.0
M-7 1 0.4 ≥ 100 4.8 176.2 5 87.8 ≥ 100 – 3600 1 0.4 ≥ 100 32.2 0.0

Heavy-traffic
H-1 0 0 0.1 0.1 0.2 0 0 0.0 0.0 54.3 1 0.4 ≥ 100 3.2 0.0
H-2 0 0 0.5 0.5 1.6 1 0.4 ≥ 100 18.4 2978.1 0 0 23.4 23.4 0.0
H-3 0 0 1.8 1.8 20.8 4 2.2 ≥ 100 29.1 3600 2 0.4 ≥ 100 23.7 0.0
H-4 1 0.2 ≥ 100 4.7 39.5 5 6.0 ≥ 100 – 3600 2 1.2 ≥ 100 30.7 0.0
H-5 0 0 7.7 7.7 106.8 5 22.8 ≥ 100 – 3600 1 0.2 ≥ 100 35.6 0.0
H-6 1 0.4 ≥ 100 4.4 133.5 5 91.4 ≥ 100 – 3600 3 1.8 ≥ 100 40.9 0.0
H-7 0 0 4.2 4.2 273.1 5 134.0 ≥ 100 – 3600 3 0.6 ≥ 100 33.6 0.0

Table 3.4 reports the computational results obtained by the Lagrangian relaxation heuristic, the

MILP/CPLEX method, and the rule-based heuristic, where each row summarizes the results of 5

random test instances. For each problem set and each solution method, the “#I” column reports the

number of instances (out of 5 instances) in which some service requests cannot be satisfied, and the

“#R” column reports the average number of unsatisfied service requests. Detailed computational

results, including the upper bound and lower bound values of each test instance, are provided in

Appendix B.

The “G1” columns report the average optimality gaps of the objective values of the test instances

in each problem set. The optimality gap of a test instance is given by (UB − LB)/LB × 100%,

where UB is the objective value of the solution generated by the solution method concerned, and

LB is the lower bound generated by the Lagrangian relaxation heuristic. Recall that the penalty

on each unsatisfied service request, C0i, is significantly larger than the tardiness penalties C1i and

C2i. Hence, if there exists an instance for which all vessel service requests are satisfied in the

lower bound solution but some are not satisfied in the upper bound solution, then the optimality

84

gap of that instance, and thus the G1 value of the problem set, would become very large. As a

supplementary to the G1 columns, we report in the “G2” columns the average optimality gaps of

those test instances for which all vessel service requests are satisfied in the upper bound solutions.

Hence, the G2 values represent the accuracy of the solution methods on determining the berthing

and departure tardiness costs. For each problem set, if service requests are not satisfied in each

of the 5 instances, then the G2 value for this problem set is unavailable. The running time (in

seconds) of the solution methods is reported in the “Time” columns.

From Table 3.4, we observe that the values in the “#I” column of Lagrangian relaxation heuristic

are small, showing that the Lagrangian relaxation heuristic could identify complete vessel schedules

for most of the test instances. In particular, for those instances with planning horizons no more

than 3 days (i.e., instances in L-1, L-2, L-3, M-1, M-2, M-3, H-1, H-2, and H-3), the Lagrangian

relaxation heuristic successfully finds solutions with no unsatisfied service request. In contrast,

both the MILP/CPLEX method and rule-based heuristic fail to identify complete vessel schedules

frequently. Values in the “#R” columns show that the Lagrangian relaxation heuristic results

in very few unsatisfied service requests. However, the MILP/CPLEX method results in far more

unsatisfied service requests. For instances with planning horizons longer than 3 days, the number of

unsatisfied service requests generated by the MILP/CPLEX method increases dramatically as the

length of the planning horizon increases. The rule-based heuristic also results in more unsatisfied

service requests than the Lagrangian relaxation heuristic. Thus, the Lagrangian relaxation heuristic

outperforms the benchmark methods by far in minimizing the number of unsatisfied service requests.

To evaluate the performance of the solution methods on minimizing the berthing and departure

tardiness, we compare the optimality gaps on the tardiness cost, i.e., the values in the G2 columns.

The performance of the Lagrangian relaxation algorithm is as good as that of CPLEX for small-sized

instances in L-1 and M-1. For larger problem instances, the G2 values of MILP/CPLEX are either

unavailable or greater than those of the Lagrangian relaxation heuristic. The G2 values of rule-

based heuristic are significantly worse than those of the Lagrangian relaxation heuristic. Hence, the

Lagrangian relaxation heuristic is superior over the benchmark methods in minimizing the berthing

and departure tardiness of vessels. Overall, the average optimality gap of the Lagrangian relaxation

85

heuristic on the tardiness cost is within 8% for each of the tested problem sets. The Lagrangian

relaxation heuristic reaches the stopping criteria within a reasonable amount of computer time. On

the other hand, the MILP/CPLEX method finds optimal solutions within the running time limit

only for small instances.

From Table 3.4, we observe that the #I, #R, G1, and G2 values of all three solution methods

tend to increase as the length of the planning horizon increases, indicating that it is more difficult to

schedule the vessel traffic for longer term planning. The performance of the three solution methods

is also affected by the traffic density. As the traffic density increases, it is more difficult to ensure

on-time berthing and departure, and thus the objective values of the solutions generated by the

three solution methods, as well as the Lagrangian relaxation lower bound, tend to increase as the

traffic density increases (see Tables A1–A3 in Appendix B). In addition, we observe that the G1 and

G2 values of all three solution methods also tend to increase as the traffic becomes heavier. This

shows the increase in difficulty in finding good solutions as the traffic density increases. However,

the #I and #R values of Lagrangian relaxation heuristic are hardly affected by traffic density. This

shows that the Lagrangian relaxation heuristic is quite capable in minimizing unsatisfied service

requests under heavy traffic conditions.

As mentioned earlier, the rule-based heuristic mimics the current practice of the VTS operator

at the Yangshan Deep-water Port in Shanghai. Hence, a comparison between the performance of

the Lagrangian relaxation heuristic and that of the rule-based heuristic reflects the benefit of using

the Lagrangian relaxation heuristic. Table 3.5 summarizes the overall improvement generated by

the Lagrangian relaxation heuristic as opposed to the rule-based heuristic. The comparison shows

that the Lagrangian relaxation heuristic results in a 17.9% reduction in vessel tardiness. The most

significant benefit brought by the Lagrangian relaxation heuristic is that the Lagrangian relaxation

solutions have substantially fewer unsatisfied service requests. Because the terminal operators will

have to adjust the berth plans when vessels’ service requests cannot be satisfied, the Lagrangian

relaxation heuristic can help reduce the frequency of berth plan adjustment.

86

Table 3.5: Performance improvement of Lagrangian relaxation over rule-based heuristic.

Number of instances Average number of Average Average
with unsatisfied unsatisfied service tardiness cost total cost
service requests requests per instance per instance per instance

Lagrangian Relaxation 6 0.1 1183.4 1945.3

Rule-based Heuristic 25 0.3 1440.9 5345.7

Percentage Improvement 76.0% 82.9% 17.9% 63.6%

3.3.4 Varying Anchorage Capacity and Tardiness Penalties

In the computational study presented in Section 3.3.3, we have set the number of staging anchorages

to 3. However, in practice, the number of available staging anchorages in the terminal basin is

different under different situations. Thus, we investigate how the computational performance of

the Lagrangian relaxation heuristic is affected as the anchorage capacity varies. For this purpose,

we solve the problem sets with the longest planning horizon (i.e., L-7, M-7, and H-7) using the

Lagrangian relaxation heuristic with different values of m.

We analyze the computational results with m set equal to 1, 2, 3, 4, and 5. When changing the

value of m, we regenerate the locations of the staging anchorages by evenly dividing the anchorage

area of the terminal basin (see Figure 3.4) into m parts. Table 3.6 summarizes the computational

results.

Table 3.6: Computational results under different values of m.

Problem set m #I #R G1 (%) G2 (%) Time

L-7 1 5 4.4 ≥ 100 – 49.0
2 2 2.8 ≥ 100 8.2 78.2
3 2 0.4 ≥ 100 1.4 75.1
4 0 0 0.5 0.4 25.9
5 0 0 0.1 0.1 11.6

M-7 1 5 5 ≥ 100 – 96.9
2 3 1 ≥ 100 11.4 112.7
3 1 0.4 ≥ 100 4.8 176.2
4 1 0.2 ≥ 100 1.7 89.6
5 0 0 0.2 0.2 20.1

H-7 1 5 3.2 ≥ 100 – 150.2
2 2 0.4 ≥ 100 17.8 201.2
3 0 0 4.2 4.2 273.1
4 0 0 1.2 1.2 172.5
5 0 0 0.2 0.2 52.8

From these results, we observe that the Lagrangian relaxation heuristic is successful in identify-

ing complete vessel schedules when m equals 5, but often fails to do so when m equals 1 and 2. This

87

is because when the number of staging anchorages decreases, the chance that the optimal solution

contains no unsatisfied service request drops. We also observe that the optimality gap G2 improves

as m increases. This is because the Lagrangian relaxation problem P(λ) is developed by dualizing

constraint (3.13). Since the purpose of constraint (3.13) is to ensure that at most one vessel dwells

at each staging anchorage at each time point, increasing the number of staging anchorages makes

this constraint less restrictive, and, as a result, tightens the lower bound.

In the computational study presented in Section 3.3.3, we have set the tardiness penalties C1i

and C2i to 1 or 2 depending on whether vessel i is a deep-draft vessel or not. In practice, there

may be other factors affecting a vessel’s service priority. Thus, we investigate the sensitivity of the

Lagrangian relaxation heuristic performance to a change in the tardiness penalties’ distribution.

For this purpose, we generate new instances from the problem sets L-7, M-7, and H-7 by randomly

perturbing the tardiness penalties of vessels. Let ν ∈ [0, 1) be a parameter, and let C ′1i and C ′2i be

the tardiness penalties of vessels after perturbation. For each instance in the original data set, we

generate new instances by setting C ′1i = ρC1i with ρ ∼ U [1 − ν, 1 + ν] for each i = 1, . . . , n1, and

setting C ′2i = ρC2i with ρ ∼ U [1 − ν, 1 + ν] for each i = n1 + 1, . . . , n1 + n2. For each instance in

problem sets L-10, M-10, and H-10, we generate four new instances with ν set equal to 0.1, 0.2,

0.3, 0.4. We solve these new instances using the Lagrangian relaxation heuristic.

Table 3.7: Computational results under different values of ν.

Problem set ν #I #R G1 (%) G2 (%) Time

L-7 0 2 0.4 ≥ 100 1.4 75.1
0.1 2 0.4 ≥ 100 1.3 76.1
0.2 2 0.4 ≥ 100 1.4 93.4
0.3 2 0.4 ≥ 100 1.2 86.2
0.4 2 0.4 ≥ 100 1.2 80.2

M-7 0 1 0.4 ≥ 100 4.8 176.2
0.1 1 0.4 ≥ 100 5.4 170.7
0.2 1 0.4 ≥ 100 5.8 172.3
0.3 1 0.4 ≥ 100 5.3 185.1
0.4 1 0.4 ≥ 100 6.0 182.2

H-7 0 0 0 4.2 4.2 273.1
0.1 0 0 4.8 4.8 291.4
0.2 0 0 4.9 4.9 282.6
0.3 0 0 5.2 5.2 292.5
0.4 0 0 4.7 4.7 269.1

Table 3.7 summarizes the computational results under different values of ν. From these results,

88

we observe that the #I and #R values are insensitive to the change in ν value, showing the number

of unsatisfied service requests is insensitive to the change of tardiness penalties. We also observe

that the G1 and G2 values are also insensitive to the change in ν value. This implies that the

performance of the Lagrangian relaxation heuristic is insensitive to the C1i and C2i values.

3.3.5 Sequencing Vessels by Ignoring Anchorage Capacity

One key feature of our optimization model is that the capacity of the anchorage area and the

capacity of the navigation channel are considered simultaneously. If the capacity of the anchorage

area is ignored, then the problem becomes a pure vessel-sequencing problem that can be solved

efficiently via some heuristic rules. However, the effectiveness of the solution is affected if the

capacity of the anchorage area is not considered when the traffic of the navigation channel is

scheduled. In this subsection, we computationally assess the benefits of taking the anchorage area’s

capacity into consideration when planning navigation channel traffic.

Suppose the capacity of the anchorage area is ignored. Then, the main problem is to determine

the sequence of incoming vessels that enters the navigation channel from the outer anchorage

ground, as well as the sequence of outgoing vessels that enters the navigation channel from the port

basin. We consider several vessel sequencing policies that other researchers have considered for port

management, including the first-come first-served (FCFS) policy, the shortest time windows length

(STW) policy, and the random sequencing (RS) policy; see Cordeau et al. (2005) and Lalla-Ruiz,

Shi, and Voß (2018).

We computationally evaluate the performances of the FCFS, STW, and RS policies for sequenc-

ing incoming and outgoing vessels when these policies are applied to our model. When applying

the FCFS policy to our problem, we let the incoming vessels enter the navigation channel in as-

cending order of their port arrival times, and let the outgoing vessels enter the navigation channel

in ascending order of their unberthing time, with ties broken arbitrarily. When applying the STW

policy to our problem, we let the incoming vessels enter the navigation channel in ascending order

of their tidal window lengths, and let the outgoing vessels enter the navigation channel in ascending

order of their tidal window lengths, with ties broken arbitrarily. When applying the RS policy to

our problem, a random sequence of incoming vessels is generated by selecting vessels one by one

89

with equal probability, and a random sequence of outgoing vessels is generated by selecting vessels

one by one with equal probability.

Because we have ignored the anchorage capacity when scheduling the navigation channel traffic,

the anchorage area may run out of capacity during execution. Thus, we need a mechanism to

allocate the anchorage space. In our computational experiments, after obtaining the sequence of

incoming vessels and the sequence of outgoing vessels, we allocate the staging anchorages to the

vessels in a greedy manner as follows:

Step 1: Set t← 0.

Step 2: Consider the next vessel i in the given outgoing vessel sequence.

Step 2.1: Determine the earliest time point t′ ≥ t+ 1 at which vessel i can enter the navigation

channel.

Step 2.2: If vessel i cannot travel directly to the navigation channel and reach the end of the

channel at time t′, then search for an available staging anchorage for vessel i (with ties

broken arbitrarily), and let i be an unsatisfied service request if no staging anchorage

is available.

Step 2.3: Set t ← t′. If vessel i is not the last vessel in the outgoing vessel sequence, then

repeat Step 2.

Step 3: Set t← 0.

Step 4: Consider the next vessel i in the given incoming vessel sequence.

Step 4.1: Determine the earliest time point t′ ≥ t+ 1 at which vessel i can enter the navigation

channel.

Step 4.2: If vessel i cannot travel directly to its berthing position after entering the channel at

time point t′, then search for an available staging anchorage for vessel i so that vessel

i can reach b(i) during the time window [Bi, B̄i] (with ties broken arbitrarily), and

let i be an unsatisfied service request if no such staging anchorage is available.

Step 4.3: Set t ← t′. If vessel i is not the last vessel in the incoming vessel sequence, then

repeat Step 4.

Note that in the above steps, priority is given to outgoing vessels in order to ensure on-time

unberthing and to provide berth vacancy for subsequent vessels. As mentioned by Lalla-Ruiz, Shi,

and Voß (2018), the RS policy has the advantage that different vessel sequences can be obtained

90

by repeating the policy multiple times and that each run requires very little time effort. Hence,

in our computational study, if the RS policy fails to generate a solution with no unsatisfied vessel

service, then we repeat the RS policy with different vessel sequences until either (i) a solution with

no unsatisfied vessel service is generated, or (ii) the RS policy has been repeated 100 times.

We test the FCFS, STW, and RS policies using the same test instances as in Section 3.3.3.

Table 3.8 reports the results, where each row summarizes the results of 5 random test instances.

Since the execution of these policies requires very little computational time, the running times are

not included in this table. Detailed computational results for each test instance are provided in

Appendix B.

Table 3.8: Comparison with different vessel sequencing policies.

Problem
Lagrangian Relaxation FCFS STW RS

set #I #R G1 (%) G2 (%) #I #R G1 (%) G2 (%) #I #R G1 (%) G2 (%) #I #R G1 (%) G2 (%)

Low-traffic
L-1 0 0 0.0 0.0 0 0 ≥ 100 ≥ 100 0 0 ≥ 100 ≥ 100 0 0 97.1 97.1
L-2 0 0 2.7 2.7 0 0 39.4 39.4 5 9.2 ≥ 100 – 5 16.2 ≥ 100 –
L-3 0 0 0.7 0.7 0 0 44.7 44.7 5 20.2 ≥ 100 – 5 25.2 ≥ 100 –
L-4 0 0 0.0 0.0 0 0 43.3 43.3 5 35.4 ≥ 100 – 5 37.8 ≥ 100 –
L-5 1 0.2 ≥ 100 1.6 0 0 52.1 52.1 5 46.2 ≥ 100 – 5 51 ≥ 100 –
L-6 0 0 1.2 1.2 0 0 65.8 65.8 5 59 ≥ 100 – 5 63.6 ≥ 100 –
L-7 2 0.4 ≥ 100 1.4 2 0.6 ≥ 100 50.7 5 72.8 ≥ 100 – 5 74.8 ≥ 100 –

Medium-traffic
M-1 0 0 0.0 0.0 0 0 33.1 33.1 0 0 41.8 41.8 0 0 ≥ 100 ≥ 100
M-2 0 0 1.9 1.9 0 0 69.7 69.7 4 12 ≥ 100 ≥ 100 4 16.8 ≥ 100 ≥ 100
M-3 0 0 3.1 3.1 0 0 54.7 54.7 5 26.2 ≥ 100 – 5 34.6 ≥ 100 –
M-4 0 0 3.2 3.2 0 0 80.7 80.7 5 46.6 ≥ 100 – 5 50.6 ≥ 100 –
M-5 0 0 4.4 4.4 0 0 70.3 70.3 5 60.4 ≥ 100 – 5 62.6 ≥ 100 –
M-6 0 0 1.5 1.5 1 0.2 ≥ 100 87.9 5 74.2 ≥ 100 – 5 76 ≥ 100 –
M-7 1 0.4 ≥ 100 4.8 1 0.4 ≥ 100 58.0 5 88 ≥ 100 – 5 91 ≥ 100 –

Heavy-traffic
H-1 0 0 0.1 0.1 0 0 ≥ 100 ≥ 100 0 0 ≥ 100 ≥ 100 0 0 ≥ 100 ≥ 100
H-2 0 0 0.5 0.5 0 0 ≥ 100 ≥ 100 5 15.2 ≥ 100 – 5 23.4 ≥ 100 –
H-3 0 0 1.8 1.8 1 0.2 ≥ 100 78.0 5 37 ≥ 100 – 5 35.6 ≥ 100 –
H-4 1 0.2 ≥ 100 4.7 1 0.2 ≥ 100 95.1 5 55.2 ≥ 100 – 5 56.4 ≥ 100 –
H-5 0 0 7.7 7.7 0 0 ≥ 100 ≥ 100 5 70 ≥ 100 – 5 71.8 ≥ 100 –
H-6 1 0.4 ≥ 100 4.4 1 0.4 ≥ 100 87.3 5 84 ≥ 100 – 5 88.6 ≥ 100 –
H-7 0 0 4.2 4.2 1 0.2 ≥ 100 88.1 5 98.4 ≥ 100 – 5 ≥ 100 ≥ 100 –

From Table 3.8, we observe that the #I and #R values of the FCFS policy are comparable to

those of the Lagrangian relaxation heuristic, and are significantly smaller than those of the STW

and RS policies. This is because berth planners typically plan the incoming vessels’ berthing times

based on their arrival times, and plan the outgoing vessels’ unberthing times based on their expected

departure times. Thus, in the given data, the latest allowed berthing times of the incoming vessels

91

are positively correlated with their arrival times, and the unberthing times of the outgoing vessels

are positively correlated with their expected departure times. Since the FCFS policy sequences

the incoming and outgoing vessels based on the their arrival and unberthing times, respectively,

it requires less anchorage capacity for the vessels than the other policies. Hence, it is relatively

easy for the FCFS policy to satisfy all service requests. However, since these vessel sequencing

policies ignore the utilization of the staging anchorages when they sequence the vessels, the staging

anchorages tend to be utilized ineffectively in the solutions generated by these policies. Therefore,

as indicated by the G2 values in Table 3.8, the performances of the FCFS, STW, and RS policies in

minimizing the berthing and departure tardiness of vessels are worse than that of the Lagrangian

relaxation heuristic. Overall, the computational results indicate that integrating the management of

the anchorage area utilization into the decision for channel traffic control can significantly improve

the vessel service.

3.4 Extensions

In this section, we discuss extensions of problem P that may arise in practical operations, and

propose generalizations of our model and solution approaches for handling generalized problems.

3.4.1 Multiple Navigation Channels

Some seaports have more than one navigation channel, such as the Waigaoqiao Port in Shanghai

(Lalla-Ruiz, Shi, and Voß 2016). In these seaports, incoming and outgoing vessels may utilize any

of the navigation channels. In this scenario, an additional decision that needs to be made is to

determine which navigation channel should be assigned to each vessel. Denote p as the number

of navigation channels, where each channel has a one-way traffic lane for each direction. For each

i = 1, . . . , n1 + n2 and q = 1, . . . , p, denote uiq and [wiql, w̄iql] as the number of tidal windows of

vessel i and the lth tidal window of vessel i, respectively, in the qth navigation channel. For each

q = 1, . . . , p, denote τ̄q as the amount of time for a vessel to travel through the qth navigation

channel. Let xiqt be the decision variable that takes value 1 if vessel i enters navigation channel q

at time t, and takes value 0 otherwise. In the MILP of problem P, constraints (3.4), (3.6), (3.8),

92

(3.11), and (3.18) should be replaced by the following constraints:

∑p
q=1

∑T
t=0 xiqt = 1− Ui (i = 1, . . . , n1 + n2);

xiqt = 0 (i = 1, . . . , n1 + n2; q = 1, . . . , p; t ∈ {0, 1, . . . , T} \
⋃uiq
l=1[wiql, w̄iql − τ̄q]);

ei =
∑p

q=1

∑T
t=0(t+ τ̄q)xiqt +

∑m
k=0 τ

′
0kyik (i = 1, . . . , n1);

fi =
∑p

q=1

∑T
t=0 txiqt −

∑m
k=0 τ

′
0kyik (i = n1 + 1, . . . , n1 + n2);

L2i ≥
∑p

q=1

∑T
t=0(t+ τ̄q)xiqt −Di(1− Ui) (i = n1 + 1, . . . , n1 + n2).

In addition, in constraints (3.2)–(3.3), (3.5), and (3.19), variable xit should be replaced by xiqt,

and parameter τ̄ should be replaced by τ̄q. These constraints should also be imposed for each

q = 1, . . . , p. In the Lagrangian relaxation heuristic, problems P′in and P′out should be modified as

follows:

P′in(λ) : minimize
∑n1

i=1

∑p
q=1

∑T+n1
t=0 Fiqt(λ)xiqt

subject to
∑n1

i=1 xiqt ≤ 1 (q = 1, . . . , p; t = 0, 1, . . . , T + n1)∑p
q=1

∑T+n1
t=0 xiqt = 1 (i = 1, . . . , n1)

xiqt ∈ {0, 1} (i = 1, . . . , n1; q = 1, . . . , p; t = 0, 1, . . . , T + n1)

and

P′out(λ) : minimize
∑n1+n2

i=n1+1

∑p
q=1

∑T+n2
t=0 Giqt(λ)xiqt

subject to
∑n1+n2

i=n1+1 xiqt ≤ 1 (q = 1, . . . , p; t = 0, 1, . . . , T + n2)∑p
q=1

∑T+n2
t=0 xiqt = 1 (i = n1 + 1, . . . , n1 + n2)

xiqt ∈ {0, 1} (i = n1 + 1, . . . , n1 + n2; q = 1, . . . , p; t = 0, 1, . . . , T + n2)

where Fiqt(λ) and Giqt(λ) are defined by replacing ui with uiq, replacing τ̄ with τ̄q, and replacing

[wil, w̄il− τ̄] with [wiql, w̄iql− τ̄q] in functions Fit(λ) and Git(λ), respectively. Problems P′in(λ) and

P′out(λ) are now n1 ×
(
T + n1 + 1

)
p and n2 ×

(
T + n2 + 1

)
p asymmetric assignment problems,

respectively, and can be solved in pseudo-polynomial time.

93

3.4.2 Heterogeneous Staging Anchorages

In problem P, each staging anchorage can accommodate exactly one vessel. In reality, however,

the capacities of the staging anchorages may be different. In such case, the number of vessels that

a staging anchorage can accommodate depends on its capacity. For each k = 1 . . . ,m, denote sk as

the capacity of staging anchorage k. For each i = 1, . . . , n1 + n2, denote ui as the size of vessel i.

The problem with heterogeneous staging anchorages can be modeled by adding the constraint

yik = 0 (i = 1, . . . , n1 + n2; k = 1, . . . ,m; ui > sk),

and replacing constraint (3.13) with the constraint

∑n1+n2
i=1 uizikt ≤ sk (k = 1, . . . ,m; t = 0, 1, . . . , T). (3.63)

In the Lagrangian relaxation heuristic, after relaxing constraint (3.63), the objective function

of problem P(λ) becomes

minimize
∑n1

i=1C1iL1i +
∑n1+n2

i=n1+1C2iL2i +
∑n1+n2

i=1 C0iUi +
∑m

k=1

∑T
t=0 λkt(

∑n1+n2
i=1 uizikt − sk).

When solving subproblems P′in(λ) and P′out(λ), the cost functions F
(k)
it (λ) and G

(k)
it (λ) are modified

as follows:

F
(k)
it (λ)=



C1i(t+ τ̄ + τ0,b(i) −Bi), if k = 0, and Bi ≤ t+ τ̄ + τ0,b(i) ≤ B̄i;

C1i(t+τ̄+τ ′0k+τ ′′k,b(i)−Bi)+uiλk,t+τ̄+τ ′0k
, if k>0, ui≤sk, and Bi≤ t+τ̄+τ ′0k+τ ′′k,b(i)≤B̄i;

ui
∑Bi−τ ′′k,b(i)

t′=t+τ̄+τ ′0k
λkt′ , if k > 0, ui ≤ sk, and t+ τ̄ + τ ′0k + τ ′′k,b(i) < Bi;

+∞, otherwise

(i = 1, . . . , n1; k = 0, 1, . . . ,m; t = 0, 1, . . . , T + n1);

G
(k)
it (λ) =


C2i max{t+ τ̄ −Di, 0}, if k = 0, and t = Ei + τ0,b(i);

C2i max{t+τ̄−Di, 0}+ui
∑t−τ ′0k

t′=Ei+τ ′′k,b(i)
λkt′ , if k>0, ui≤sk, and t≥Ei+τ ′′k,b(i)+τ ′0k;

+∞, otherwise

(i = n1 + 1, . . . , n1 + n2; k = 0, 1, . . . ,m; t = 0, 1, . . . , T + n2).

Note that problem Pub is no longer valid for modeling the upper bound problem as the hetero-

geneity of the staging anchorages’ capacities are not taken into account in the MILP of problem

94

Pub. Hence, a new upper bound method should be devised for generating feasible solutions of

problem P. Given the values of the xit variables in a lower bound solution, one possible way for

constructing a feasible solution is to plug all the xit values into the updated MILP of problem P

and solve the MILP.

3.4.3 Flexible Unberthing Times of Outgoing Vessels

If the solution of problem P contains some unsatisfied service requests of outgoing vessels, the

terminal operators will need to adjust their berth plans. One frequently occurred adjustment is

to delay the outgoing vessels’ unberthing times. Such delay in unberthing is often possible but

undesirable as it could reduce the berth productivity (a berth is not productive when an outgoing

vessel is waiting for unberthing at the berth). To resolve this issue, an alternative model would

be to allow an outgoing vessel i to stay at berth b(i) beyond time Ei at a cost. The alternative

model that allows such flexibility can be described as follows. Each outgoing vessel i is allowed to

unberth within a time window [Ei, Ēi], where Ēi is the deadline for unberthing. An unberthing

tardiness cost of C3i > 0 per unit time is incurred when vessel i is unberthed after time Ei. Let hi

be the actual unberthing time and L3i be the unberthing tardiness of vessel i. Then, the MILP of

problem P can be modified by changing the objective function to

∑n1
i=1C1iL1i +

∑n1+n2
i=n1+1 (C2iL2i + C3iL3i) +

∑n1+n2
i=1 C0iUi,

and replacing constraint (3.10) by the following constraints:

ei =
∑m

k=0(hi + τ ′′k,b(i))yik (i = n1 + 1, . . . , n1 + n2);

Ei ≤ hi ≤ Ēi (i = n1 + 1, . . . , n1 + n2);

L3i ≥ hi − Ei (i = n1 + 1, . . . , n1 + n2);

L3i ≥ 0 (i = n1 + 1, . . . , n1 + n2).

These changes should also be made to problem Pub when deriving the upper bound solution. When

solving subproblem P′out(λ), the cost function G
(k)
it (λ) should be modified as follows:

95

G
(k)
it (λ) =



C2i max{t+τ̄−Di, 0}+ C3i(t−Ei−τ0,b(i)), if k = 0 and Ei + τ0,b(i) ≤ t ≤ Ēi + τ0,b(i);

C2i max{t+ τ̄ −Di, 0}

+ minθ=Ei,...,min{Ēi,t−τ ′0k−τ
′′
k,b(i)

}{Γikt(θ)}, if k > 0 and t ≥ Ei + τ ′′k,b(i) + τ ′0k;

+∞, otherwise;

where

Γikt(θ) = C3i(θ − Ei) +

t−τ ′0k∑
t′=θ+τ ′′

k,b(i)

λkt′ .

In this equation, θ is the unberthing time of outgoing vessel i. Note that solving the modi-

fied Lagrangian relaxation subproblem P′out(λ) requires more computational time than solving

the original subproblem, because in the modified subproblem a search of the θ value among

Ei, Ei + 1, . . . ,min{Ēi, t− τ ′0k − τ ′′k,b(i)} is required when determining each G
(k)
it (λ) value.

96

Chapter 4

Conclusions and Suggestions for Future Re-

search

This thesis studies two optimization problems for container port congestion mitigation. The first

problem aims to optimize the berth allocation of deep-sea vessels and schedule arrivals of feeders by

taking into account a queue length restriction of feeders, and the second problem aims to scheduling

the vessel traffic in the port waters by optimizing the utilization of the navigation channel and the

anchorage areas.

For the problem of allocating berths to deep-sea vessels and scheduling the arrivals of feeders,

we develop a stochastic optimization model to account for the uncertainties of feeder service times.

We solve the stochastic optimization model using a simulation optimization method that searches

the solution space via a global phase, a local phase, and a clean-up phase, and allocates different

amounts of simulation budget to different search phases in order to balance the effort spent on

solution evaluation and solution sampling. We generate problem instances based on the operational

data of the Yangshan Deep-water Port in Shanghai, and compare the computational performance

of the simulation optimization method with those of three benchmark methods that share the same

solution sampling strategy but are assigned different amounts of simulation budget for solution

evaluation. The computational results indicate that for the solution sampling strategy employed by

the benchmark methods, allocating a larger simulation budget to solution evaluation improves the

capability of generating good solutions but leads to considerably stronger demand for computation

effort, and vice versa. On the other hand, our simulation optimization method finds good solutions

with a reasonable amount of computation effort and thus outperforms the benchmark methods. We

also compare the solutions obtained by the simulation optimization method with those obtained by

97

a sequential decision heuristic that mimics the current practice of port operators. The comparisons

show that the simulation optimization method provides the flexibility of allocating berth space to

deep-sea vessels and scheduling the arrivals of feeders under different queue length limits, whereas

the sequential decision heuristic is incapable of controlling the queue length of feeders. Hence, the

simulation optimization method would be a promising decision support tool for berth allocation

and congestion mitigation in a port that serves a large number of feeders.

For the problem of scheduling channel traffic and anchorage area utilization, we develop a MILP

model for the problem and show that the problem is strongly NP-hard. We also show that after

relaxing the anchorage capacity constraint, the resulting subproblems can be transformed into two

asymmetric assignment problems that are solvable in pseudo-polynomial time. Based on this ob-

servation, we develop a Lagrangian relaxation heuristic for the problem. We generate test instances

based on the layout and operational data of the Yangshan Deep-Water Port in Shanghai, and com-

pare the computational performance of the Lagrangian relaxation heuristic with those of CPLEX

and a rule-based heuristic that mimics the current practice of a VTS operator. The computational

results indicate that the manual decision process for scheduling vessel traffic often results in large

tardiness penalties and a large number of unsatisfied service requests, while CPLEX finds optimal

solutions within reasonable computation times only for the smallest instances. On the other hand,

the Lagrangian relaxation heuristic provides high-quality solutions in relatively short computa-

tion times for instances with planning horizons varying from one day to one week. Therefore, the

Lagrangian relaxation heuristic achieves a good balance between effectiveness and efficiency, and

thus can serve as a decision support tool for congestion mitigation and improving vessel service

levels at container ports. Furthermore, we computationally test the performances of various vessel

sequencing policies by ignoring the anchorage capacity, and find that the solutions obtained by

ignoring the anchorage capacity incur significantly larger penalty costs than the solutions obtained

by the Lagrangian relaxation heuristic. This indicates the importance of considering the anchorage

capacity when scheduling the navigation channel traffic.

Future research could focus on improving the performance of the proposed solution methods

and extending the current models and solution methods for solving a wide range of problems.

98

In the decoding scheme described in Section 2.2.1, the vessels are considered sequentially when

assigning berths, and each deep-sea vessel is assigned an earliest feasible service start time. However,

it may be possible to delay the berthing of a deep-sea vessel without increasing its tardiness,

so that the tardiness of the subsequent vessel can be reduced. To achieve better assignment of

service start times for the deep-sea vessels, a more sophisticated algorithm should be embedded

into the decoding scheme. The development of such algorithm is left for future research. Our

simulation-optimization method can be adapted for solving a variety of port operation management

problems with uncertainties. For example, in a yard crane scheduling problem, the yard cranes

need to serve container trucks that pick up containers from or deliver containers to the yard.

Since the arrival times of the container trucks are uncertain to the port operator, it would be

important to take into account the stochastic arrivals of container trucks when scheduling the yard

cranes. To solve different port operation management problems with uncertainties, the solution

sampling strategy used in the global phase and the local phase can be tailored to the particular

problem in order to explore the solution space efficiently. The simulation budget allocation strategy

(i.e., allocating different amounts of simulation budget to solutions in different search phases) will

therefore still be useful for enhancing the computational efficiency. A variety of extensions on

the channel traffic and anchorage utilization management problem can be investigated in future

research. For instance, vessels are usually guided by tugboats when sailing in or out of a seaport

(see, e.g., Ilati, Sheikholeslami, and Hassannayebi 2014). When the availability of tugboats is

limited, decisions for scheduling the tugboats should be integrated into the channel traffic and

anchorage utilization management problem. Some seaports have navigation channels with single

traffic lane. Those seaports are often highly congested as incoming and outgoing vessels share the

same traffic lane when traveling through a navigation channel. Modeling and solving a problem

with incoming and outgoing vessels sharing a single traffic lane could be a future research topic.

Another interesting research direction could be to develop and analyze a model that integrates the

decisions for berth allocation, navigation channel traffic, and staging anchorage utilization, since

such integration could significantly improve port performance in terms of throughput enhancement

and congestion mitigation. However, as mentioned in Section 1.2, berth allocation decisions are

99

made by terminal operators whereas vessel traffic is regulated by VTS operators. Thus, a model

that integrates berth allocation and vessel traffic management is applicable only if there is an

authority that could centralize the decision making for both terminal operations and vessel traffic

regulations.

100

References

Alvarez JF, Longva T, Engebrethsen ES (2010) A methodology to assess vessel berthing and speed

optimization policies. Maritime Economics & Logistics 12(4):327–346.

Amaran S, Sahinidis NV, Sharda B, Bury SJ (2016) Simulation optimization: A review of algorithms

and applications. Annals of Operations Research 240(1):351–380.

Arango C, Cortés P, Muñuzuri J, Onieva L (2011) Berth allocation planning in Seville inland port

by simulation and optimisation. Advanced Engineering Informatics 25(3):452–461.

Arango C, Cortés P, Onieva L, Escudero A (2013) Simulation-optimization models for the dynamic

berth allocation problem. Computer-Aided Civil and Infrastructure Engineering 28(10):769–779.

Barros VH, Costa TS, Oliveira ACM, Lorena LAN (2011) Model and heuristic for berth allocation

in tidal bulk ports with stock level constraints. Computers & Industrial Engineering 60(4):606–

613.

Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in

container terminals. European Journal of Operational Research 202(3):615–627.

Bierwirth C, Meisel F (2015) A follow-up survey of berth allocation and quay crane scheduling

problems in container terminals. European Journal of Operational Research 244(3):675–689.

Boesel J, Nelson BL, Kim S-H (2003) Using ranking and selection to “clean up” after simulation

optimization. Operations Research 51(5):814–825.

Cordeau J-F, Laporte G, Legato P, Moccia L (2005) Models and tabu search heuristics for the

berth-allocation problem. Transportation Science 39(4):526–538.

Dadashi A, Dulebenets MA, Golias MM, Sheikholeslami A (2017) A novel continuous berth schedul-

ing model at multiple marine container terminals with tidal considerations. Maritime Business

Review 2(2):142–157.

De A, Pratap S, Kumar A, Tiwari MK (2018) A hybrid dynamic berth allocation planning problem

with fuel costs considerations for container terminal port using chemical reaction optimization

101

approach. Annals of Operations Research, forthcoming, https://doi.org/10.1007/s10479-018-

3070-1.

Ding Y, Jia S, Gu T, Li C-L (2016) SGICT builds an optimization-based system for daily berth

planning. Interfaces 46(4):281–296.

Dragović B, Park NK, Radmilović Z (2006) Ship-berth link performance evaluation: Simulation

and analytical approaches. Maritime Policy & Management 33(3):281–299.

Dragović B, Park NK, Radmilović Z, Maraš V (2005) Simulation modelling of ship-berth link with

priority service. Maritime Economics & Logistics 7(4):316–335.

Du Y, Chen Q, Lam JSL, Xu Y, Cao JX (2015) Modeling the impacts of tides and the virtual

arrival policy in berth allocation. Transportation Science 49(4):939–956.

Emde S, Boysen N (2016) Berth allocation in container terminals that service feeder ships and

deep-sea vessels. Journal of the Operational Research Society 67(4):551–563.

Fisher ML (2004) The Lagrangian relaxation method for solving integer programming problems.

Management Science 50(12):1861–1871.

Fu MC, Glover FW, April J (2005) Simulation optimization: A review, new developments, and

applications. Kuhl ME, Steiger NM, Armstrong FB, Joines JA, eds., Proceedings of the 2005

Winter simulation conference, Orlando, FL, 83–95.

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP-

Completeness (Freeman, New York).

Gharehgozli AH, Roy D, de Koster R (2016) Sea container terminals: New technologies and OR

models. Maritime Economics & Logistics 18(2):103–140.

Golias MM (2011) A bi-objective berth allocation formulation to account for vessel handling time

uncertainty. Maritime Economics & Logistics 13(4):419–441.

Golias MM, Saharidis GK, Boile M, Theofanis S, Ierapetritou MG (2009) The berth allocation

problem: Optimizing vessel arrival time. Maritime Economics & Logistics 11(4):358–377.

Han X-L, Lu Z-Q, Xi L-F (2010) A proactive approach for simultaneous berth and quay crane

scheduling problem with stochastic arrival and handling time. European Journal of Operational

Research 207(3):1327–1340.

102

Held M, Wolfe P, Crowder HP (1974) Validation of subgradient optimization. Mathematical Pro-

gramming 6:62–88.

Hill A, Lalla-Ruiz E, Voß S, Goycoolea M (2019) A multi-mode resource-constrained project

scheduling reformulation for the waterway ship scheduling problem. Journal of Scheduling

22(2):173–182

Hong LJ, Nelson BL (2006) Discrete optimization via simulation using COMPASS. Operations

Research 54(1):115–129.

Ilati G, Sheikholeslami A, Hassannayebi E (2014) A simulation-based optimization approach for

integrated port resource allocation problem. Promet – Traffic & Transportation 26(3):243–255.

International Maritime Organization (1997) Resolution A.857(20): Guidelines for vessel traffic

services. http://www.maritime-vts.co.uk/A857.pdf.

Karafa J, Golias MM, Ivey S, Saharidis GKD, Leonardos N (2013) The berth allocation problem

with stochastic vessel handling times. The International Journal of Advanced Manufacturing

Technology 65(1–4):473–484.

Kelareva E, Brand S, Kilby P, Thiébaux S, Wallace M (2012) CP and MIP methods for ship

scheduling with time-varying draft. Proceedings of the Twenty-Second International Conference

on Automated Planning and Scheduling (Sao Paulo, Brazil), 110–118.

Kelareva E, Tierney K, Kilby P (2013) CP methods for scheduling and routing with time-dependent

task costs. Lecture Notes in Computer Science 7874:111–127.

Kim KH, Lee H (2015) Container terminal operation: Current trends and future challenges. Lee

C-Y, Meng Q, eds. Handbook of Ocean Container Transport Logistics (Springer, Switzerland),

43–73.

Lalla Ruiz E, Melián Batista B, Moreno Vega JM (2013) Adaptive variable neighbourhood search

for berth planning in maritime container terminals. Proceedings of the Workshop on Constraint

Satisfaction Techniques for Planning and Scheduling Problems (Beijing, China), 35–43.

Lalla-Ruiz E (2017) Intelligent management of seaside logistic operations at maritime container

terminals. 4OR 15(2):217–218.

Lalla-Ruiz E, Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega JM (2016) A set-partitioning-

103

based model for the berth allocation problem under time-dependent limitations. European Jour-

nal of Operational Research 250(3):1001–1012.

Lalla-Ruiz E, Shi X, Voß S (2018) The waterway ship scheduling problem. Transportation Research

Part D 60:191–209.

Lalla-Ruiz E, Voß S, Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega JM (2017) A POPMUSIC-

based approach for the berth allocation problem under time-dependent limitations. Annals of

Operations Research 253:871–897.

Lang N, Veenstra A (2010) A quantitative analysis of container vessel arrival planning strategies.

OR Spectrum 32(3):477–499.

Lee LH, Chew EP, Manikam P (2006) A general framework on the simulation-based optimization

under fixed computing budget. European Journal of Operational Research 174(3):1828–1841.

Legato P, Mazza RM (2001) Berth planning and resources optimisation at a container terminal via

discrete event simulation. European Journal of Operational Research 133(3):537–547.

Legato P, Mazza RM, Gull̀ı D (2014) Integrating tactical and operational berth allocation decisions

via Simulation-Optimization. Computers & Industrial Engineering 78:84–94

Li Q, Lam JSL (2017) Conflict resolution for enhancing shipping safety and improving naviga-

tional traffic within a seaport: Vessel arrival scheduling. Transportmetrica A: Transport Science

13(8):727–741.

Liu C, Xiang X, Zhang C, Zheng L (2016) A decision model for berth allocation under uncertainty

considering service level using an adaptive differential evolution algorithm. Asia-Pacific Journal

of Operational Research 33(6):1650049 (28 pages).

Liu C, Xiang X, Zheng L (2019) A two-stage robust optimization approach for the berth allo-

cation problem under uncertainty. Flexible Services and Manufacturing Journal , forthcoming,

https://doi.org/10.1007/s10696-019-09343-w

Moorthy R, Teo CP (2006) Berth management in container terminal: The template design problem.

OR Spectrum 28(4):495-518.

Nauss RM (2008) Optimal sequencing in the presence of setup times for tow/barge traffic through

a river lock. European Journal of Operational Research 187(3):1268–1281.

104

Passchyn W, Coene S, Briskorn D, Hurink JL, Spieksma FCR, Vanden Berghe G (2016) The

lockmaster’s problem. European Journal of Operational Research 251(2):432–441.

Petersen ER, Taylor AJ (1988) An optimal scheduling system for the Welland Canal. Transporta-

tion Science 22(3):173–185.

Qin T, Du Y, Sha M (2016) Evaluating the solution performance of IP and CP for berth allocation

with time-varying water depth. Transportation Research Part E 87:167–185.

Radmilovich ZR (1992) Ship-berth link as bulk queueing system in ports. Journal of Waterway,

Port, Coastal, and Ocean Engineering 118(5):474–495.

Sheikholeslami A, Ilati Gh, Kobari M (2014) The continuous dynamic berth allocation problem at

a marine container terminal with tidal constraints in the access channel. International Journal

of Civil Engineering 12(3):344–353.

Sluiman FJ (2017) Transit vessel scheduling. Naval Research Logistics 64(3):225–248.

Steenken D, Voß S, Stahlbock R (2004) Container terminal operation and operations research—a

classification and literature review. OR Spectrum 26(1):3–49.

Tang G, Wang W, Song X, Guo Z, Yu X, Qiao F (2016) Effect of entrance channel dimensions on

berth occupancy of container terminals. Ocean Engineering 117:174–187.

Ulusçu ÖS, Özbaş B, Altıok T, Or İ, Yılmaz T (2009) Transit vessel scheduling in the Strait of

Istanbul. The Journal of Navigation 62(1):59–77.

UNCTAD (2017) Review of maritime transport 2017. United Nations Conference on Trade and

Development (Geneva, Switzerland).

Ursavas E, Zhu SX (2016) Optimal policies for the berth allocation problem under stochastic nature.

European Journal of Operational Research 255(2):380–387.

Verstichel J, De Causmaecker P, Spieksma F, Vanden Berghe G (2014) The generalized lock schedul-

ing problem: An exact approach. Transportation Research Part E 65:16–34.

Xu D, Li C-L, Leung JY-T (2012) Berth allocation with time-dependent physical limitations on

vessels. European Journal of Operational Research 216(1):47–56.

Xu J, Huang E, Chen C-H, Lee LH (2015) Simulation optimization: A review and exploration in

the new era of cloud computing and big data. Asia-Pacific Journal of Operational Research

105

32(03):1550019 (34 pages).

Xu J, Nelson BL, Hong LJ (2010) Industrial strength COMPASS: A comprehensive algorithm

and software for optimization via simulation. ACM Transactions on Modeling and Computer

Simulation 20(1):3:1–3:29.

Xu J, Nelson BL, Hong LJ (2013) An adaptive hyperbox algorithm for high-dimensional discrete

optimization via simulation problems. INFORMS Journal on Computing 25(1):133–146.

Yu S, Wang S, Zhen L (2017) Quay crane scheduling problem with considering tidal impact and

fuel consumption. Flexible Services and Manufacturing Journal 29(3–4):345–368.

Zhang X, Lin J, Guo Z, Liu T (2016) Vessel transportation scheduling optimization based on

channel-berth coordination. Ocean Engineering 112:145–152.

Zhen L, Lee LH, Chew EP (2011) A decision model for berth allocation under uncertainty. European

Journal of Operational Research 212(1):54–68.

Zhen L, Liang Z, Zhuge D, Lee LH, Chow EP (2017) Daily berth planning in a tidal port with

channel flow control. Transportation Research Part B 106:193–217.

Zrnić DN, Dragović BM, Radmilović ZR (1999) Anchorage-ship-berth link as multiple server queu-

ing system. Journal of Waterway, Port, Coastal, and Ocean Engineering 125(5):232–240.

106

Appendix

Tables A1–A3 provide the detailed computational results discussed in Section 3.3.3, the MILP/CPLEX

method, and the rule-based heuristic, where each row reports the results of each test instance. The

#R and UB values obtained by these three methods, as well as the LB values obtained by the

Lagrangian relaxation heuristic, are reported. The “G” columns report the optimality gaps of the

heuristic solution values of each test instance, and the “Time” columns report the computational

time (in seconds).

Tables A4–A6 provide the detailed computational results discussed in Section 3.3.5, where each

row reports the results of each test instance. The #R and UB values obtained by these four vessel

sequencing policies, as well as the LB values obtained by the Lagrangian relaxation heuristic, are

reported. The “G” columns report the optimality gaps of the objective function values generated

by the four policies, and the “Time” columns report the computational time (in seconds).

107

Table A1: Details of the computational results reported in Table 3.4 (low-traffic instances).

Problem Instance
Lagrangian Relaxation MILP/CPLEX Rule-based Heuristic

set #R UB LB G (%) Time #R UB G (%) Time #R UB G (%) Time

L-1 1 0 138 138.0 0.0 0.1 0 138 0.0 14.8 0 140 1.4 0.0
2 0 92 92.0 0.0 0.1 0 92 0.0 8.4 0 92 0.0 0.0
3 0 102 102.0 0.0 0.1 0 102 0.0 11.6 0 102 0.0 0.0
4 0 356 356.0 0.0 0.1 0 356 0.0 9.8 0 358 0.6 0.0
5 0 91 91.0 0.0 0.1 0 91 0.0 12.6 2 20091 ≥ 100 0.0

L-2 1 0 672 668.0 0.6 0.2 0 668 0.0 287.6 0 673 0.7 0.0
2 0 532 482.9 10.2 5.3 0 532 10.2 3600 1 10586 ≥ 100 0.0
3 0 804 796.0 1.0 3.3 0 922 15.8 3600 0 893 12.2 0.0
4 0 480 480.0 0.0 0.2 0 480 0.0 982.6 0 506 5.4 0.0
5 0 544 535.2 1.7 6.6 0 544 1.7 3600 0 697 30.2 0.0

L-3 1 0 575 575.0 0.0 3.1 0 713 24.0 3600 0 722 25.6 0.0
2 0 662 662.0 0.0 0.4 0 796 20.2 3600 0 730 10.3 0.0
3 0 595 595.0 0.0 0.5 0 603 1.3 3600 0 657 10.4 0.0
4 0 523 523.0 0.0 0.4 0 523 0.0 1442.1 0 523 0.0 0.0
5 0 614 593.1 3.5 10.9 2 20638 ≥ 100 3600 0 744 25.4 0.0

L-4 1 0 804 804.0 0.0 0.8 1 10816 ≥ 100 3600 0 904 12.4 0.0
2 0 861 861.0 0.0 1.0 0 861 0.0 3502.8 0 862 0.1 0.0
3 0 816 816.0 0.0 0.8 1 11058 ≥ 100 3600 0 1004 23.0 0.0
4 0 579 579.0 0.0 0.8 0 655 13.1 3600 0 753 30.1 0.0
5 0 886 886.0 0.0 0.8 3 30840 ≥ 100 3600 1 10970 ≥ 100 0.0

L-5 1 0 1331 1321.5 0.7 19.3 7 71497 ≥ 100 3600 1 11518 ≥ 100 0.0
2 0 906 868.8 4.3 40.5 12 121366 ≥ 100 3600 0 1102 26.8 0.0
3 0 895 891.0 0.4 1.4 7 71922 ≥ 100 3600 0 897 0.7 0.0
4 0 1357 1345.0 0.9 1.7 3 31606 ≥ 100 3600 0 1359 1.0 0.0
5 1 10985 968.2 ≥ 100 42.7 7 71766 ≥ 100 3600 2 21175 ≥ 100 0.0

L-6 1 0 903 903.0 0.0 20.2 83 832151 ≥ 100 3600 0 1035 14.6 0.0
2 0 1260 1259.0 0.1 2.7 12 121986 ≥ 100 3600 1 11363 ≥ 100 0.0
3 0 1454 1408.8 3.2 71.9 9 92426 ≥ 100 3600 0 1813 28.7 0.0
4 0 1973 1930.3 2.2 86.3 18 183727 ≥ 100 3600 1 12308 ≥ 100 0.0
5 0 1516 1508.0 0.5 2.9 12 123402 ≥ 100 3600 0 1806 19.8 0.0

L-7 1 1 12059 2063.3 ≥ 100 115.2 98 981470 ≥ 100 3600 0 2668 29.3 0.0
2 1 12134 2070.4 ≥ 100 103.8 95 952787 ≥ 100 3600 3 32475 ≥ 100 0.0
3 0 1699 1651.7 2.9 95.8 79 795146 ≥ 100 3600 0 1940 17.5 0.0
4 0 1538 1524.5 0.9 34.8 93 932379 ≥ 100 3600 0 1744 14.4 0.0
5 0 2457 2448.6 0.3 26.0 49 495957 ≥ 100 3600 0 2741 11.9 0.0

108

Table A2: Details of the computational results reported in Table 3.4 (medium-traffic instances).

Problem Instance
Lagrangian Relaxation MILP/CPLEX Rule-based Heuristic

set #R UB LB G (%) Time #R UB G (%) Time #R UB G (%) Time

M-1 1 0 300 300.0 0.0 0.1 0 300 0.0 11.1 0 362 20.7 0.0
2 0 297 297.0 0.0 0.1 0 297 0.0 10.1 0 297 0.0 0.0
3 0 280 280.0 0.0 0.1 0 280 0.0 20.5 0 280 0.0 0.0
4 0 159 159.0 0.0 0.1 0 159 0.0 13.4 0 161 1.3 0.0
5 0 272 272.0 0.0 0.1 0 272 0.0 25.5 0 272 0.0 0.0

M-2 1 0 270 270.0 0.0 0.3 0 340 25.9 3600 1 10298 ≥ 100 0.0
2 0 522 522.0 0.0 0.3 0 522 0.0 2530.3 0 694 33.0 0.0
3 0 595 595.0 0.0 0.4 0 595 0.0 3562.6 1 10790 ≥ 100 0.0
4 0 597 597.0 0.0 0.3 0 597 0.0 1369.7 0 598 0.2 0.0
5 0 687 627.1 9.6 7.5 0 729 16.3 3600 0 818 30.4 0.0

M-3 1 0 1188 1162.2 2.2 20.0 1 11642 ≥ 100 3600 0 1449 24.7 0.0
2 0 718 663.9 8.2 14.9 0 880 32.6 3600 0 773 16.4 0.0
3 0 983 958.3 2.6 16.2 0 993 3.4 3600 0 1009 5.1 0.0
4 0 630 626.0 0.6 0.8 0 914 46.0 3600 0 758 21.1 0.0
5 0 628 615.9 2.0 16.2 1 10756 ≥ 100 3600 0 648 5.2 0.0

M-4 1 0 1680 1539.9 9.1 45.1 5 52325 ≥ 100 3600 0 1893 22.9 0.0
2 0 952 922.8 3.2 32.3 4 41735 ≥ 100 3600 0 1104 19.6 0.0
3 0 1297 1269.7 2.2 48.2 7 71693 ≥ 100 3600 0 1694 33.4 0.0
4 0 1504 1484.5 1.3 41.2 4 42162 ≥ 100 3600 0 1795 20.9 0.0
5 0 1360 1359.0 0.1 5.3 4 41849 ≥ 100 3600 0 1842 35.5 0.0

M-5 1 0 1970 1884.1 4.6 86.6 9 92438 ≥ 100 3600 0 2611 38.6 0.0
2 0 2067 2030.1 1.8 74.1 10 103114 ≥ 100 3600 0 2227 9.7 0.0
3 0 1348 1174.7 14.8 64.4 9 92104 ≥ 100 3600 1 11598 ≥ 100 0.0
4 0 1795 1779.0 0.9 4.6 5 52252 ≥ 100 3600 0 1922 8.0 0.0
5 0 1097 1097.0 0.0 74.0 5 51596 ≥ 100 3600 0 1434 30.7 0.0

M-6 1 0 2046 2002.4 2.2 128.5 41 415137 ≥ 100 3600 0 2572 28.4 0.0
2 0 1390 1390.0 0.0 125.7 26 264468 ≥ 100 3600 0 1745 25.5 0.0
3 0 2255 2179.8 3.4 122.6 27 272941 ≥ 100 3600 1 12840 ≥ 100 0.0
4 0 2125 2092.6 1.5 112.1 33 335243 ≥ 100 3600 0 2493 19.1 0.0
5 0 1438 1436.0 0.1 4.5 15 152901 ≥ 100 3600 0 1718 19.6 0.0

M-7 1 0 2511 2262.0 11.0 175.6 101 1013989 ≥ 100 3600 0 3273 44.7 0.0
2 0 2601 2535.1 2.6 189.2 65 655988 ≥ 100 3600 0 3349 32.1 0.0
3 0 1352 1339.2 1.0 154.3 49 495803 ≥ 100 3600 0 1655 23.6 0.0
4 0 2297 2191.9 4.8 189.5 110 1103285 ≥ 100 3600 0 2816 28.5 0.0
5 2 22379 2819.2 ≥ 100 172.4 114 1142223 ≥ 100 3600 2 23206 ≥ 100 0.0

109

Table A3: Details of the computational results reported in Table 3.4 (heavy-traffic instances).

Problem Instance
Lagrangian Relaxation MILP/CPLEX Rule-based Heuristic

set #R UB LB G (%) Time #R UB G (%) Time #R UB G (%) Time

H-1 1 0 232 232.0 0.0 0.1 0 232 0.0 16.1 2 20232 ≥ 100 0.0
2 0 86 86.0 0.0 0.1 0 86 0.0 34.3 0 90 4.7 0.0
3 0 192 192.0 0.0 0.2 0 192 0.0 21.1 0 192 0.0 0.0
4 0 149 148.0 0.7 0.2 0 148 0.0 153.7 0 160 8.1 0.0
5 0 250 250.0 0.0 0.1 0 250 0.0 46.4 0 250 0.0 0.0

H-2 1 0 529 523.9 1.0 4.8 0 612 16.8 3600 0 614 17.2 0.0
2 0 465 465.0 0.0 0.3 0 601 29.2 3600 0 554 19.1 0.0
3 0 414 411.3 0.7 1.8 0 525 27.7 3600 0 597 45.2 0.0
4 0 396 393.0 0.8 0.4 2 20615 ≥ 100 3600 0 456 16.0 0.0
5 0 341 341.0 0.0 0.4 0 341 0.0 490.5 0 407 19.4 0.0

H-3 1 0 1318 1314.0 0.3 29.5 2 21339 ≥ 100 3600 0 1478 12.5 0.0
2 0 1069 1063.6 0.5 25.3 0 1376 29.1 3600 1 11483 ≥ 100 0.0
3 0 1238 1232.0 0.5 0.9 5 52099 ≥ 100 3600 1 11265 ≥ 100 0.0
4 0 1010 1010.0 0.0 26.2 3 31132 ≥ 100 3600 0 1245 23.3 0.0
5 0 1010 936.3 7.9 22.3 1 11240 ≥ 100 3600 0 1266 35.2 0.0

H-4 1 0 1253 1251.0 0.2 1.7 3 31339 ≥ 100 3600 0 1502 20.1 0.0
2 0 2111 2046.2 3.2 56.9 7 71841 ≥ 100 3600 0 2283 11.6 0.0
3 1 11445 1448.8 ≥ 100 72.0 10 101673 ≥ 100 3600 1 12523 ≥ 100 0.0
4 0 873 869.0 0.5 2.1 1 11288 ≥ 100 3600 0 1394 60.4 0.0
5 0 1361 1181.9 15.2 64.8 9 91836 ≥ 100 3600 5 51844 ≥ 100 0.0

H-5 1 0 1277 1273.0 0.3 3.7 20 202927 ≥ 100 3600 0 1396 9.7 0.0
2 0 1635 1527.4 7.0 111.7 59 594185 ≥ 100 3600 0 2312 51.4 0.0
3 0 1791 1615.6 10.9 121.0 11 113108 ≥ 100 3600 1 12312 ≥ 100 0.0
4 0 2325 2102.0 10.6 177.8 12 123674 ≥ 100 3600 0 2876 36.8 0.0
5 0 1823 1661.0 9.8 119.9 12 124542 ≥ 100 3600 0 2404 44.7 0.0

H-6 1 0 2345 2337.4 0.3 56.1 30 305530 ≥ 100 3600 3 32701 ≥ 100 0.0
2 0 2034 2014.0 1.0 26.1 87 874460 ≥ 100 3600 0 2695 33.8 0.0
3 0 1520 1500.1 1.3 185.4 160 1600637 ≥ 100 3600 4 42021 ≥ 100 0.0
4 2 22610 2630.6 ≥ 100 202.3 89 896332 ≥ 100 3600 2 23521 ≥ 100 0.0
5 0 2723 2366.6 15.1 197.4 91 914753 ≥ 100 3600 0 3500 47.9 0.0

H-7 1 0 2247 2167.7 3.7 269.0 128 1282685 ≥ 100 3600 1 12578 ≥ 100 0.0
2 0 2816 2635.9 6.8 275.2 182 1820975 ≥ 100 3600 1 13455 ≥ 100 0.0
3 0 2725 2638.8 3.3 334.4 143 1432143 ≥ 100 3600 0 3788 43.6 0.0
4 0 1878 1789.4 4.9 267.6 106 1065635 ≥ 100 3600 1 12555 ≥ 100 0.0
5 0 1985 1942.3 2.2 219.2 111 1113555 ≥ 100 3600 0 2402 23.7 0.0

110

Table A4: Details of the computational results reported in Table 3.8 (low-traffic instances).

Problem Instance LB
Lagrangian Relaxation FCFS STW RS

set #R UB G (%) Time #R UB G (%) Time #R UB G (%) Time #R UB G (%) Time

L-1 1 138.0 0 138 0.0 0.1 0 270 95.7 0.0 0 322 ≥ 100 0.0 0 156 13.0 0.0
2 92.0 0 92 0.0 0.1 0 354 ≥ 100 0.0 0 288 ≥ 100 0.0 0 368 ≥ 100 0.0
3 102.0 0 102 0.0 0.1 0 188 84.3 0.0 0 236 ≥ 100 0.0 0 157 53.9 0.0
4 356.0 0 356 0.0 0.1 0 518 45.5 0.0 0 534 50.0 0.0 0 457 28.4 0.0
5 91.0 0 91 0.0 0.1 0 102 12.1 0.0 0 159 74.7 0.0 0 173 90.1 0.0

L-2 1 668.0 0 672 0.6 0.2 0 1272 90.4 0.0 12 121221 ≥ 100 0.0 17 170669 ≥ 100 0.0
2 482.9 0 532 10.2 5.3 0 613 26.9 0.0 12 120476 ≥ 100 0.0 18 180476 ≥ 100 0.0
3 796.0 0 804 1.0 3.3 0 1111 39.6 0.0 12 121088 ≥ 100 0.0 16 161064 ≥ 100 0.0
4 480.0 0 480 0.0 0.2 0 564 17.5 0.0 10 100822 ≥ 100 0.0 19 190480 ≥ 100 0.0
5 535.2 0 544 1.7 6.6 0 657 22.8 0.0 0 1986 ≥ 100 0.0 11 111093 ≥ 100 0.0

L-3 1 575.0 0 575 0.0 3.1 0 897 56.0 0.0 18 181217 ≥ 100 0.0 27 270705 ≥ 100 0.0
2 662.0 0 662 0.0 0.4 0 885 33.7 0.0 15 151692 ≥ 100 0.0 27 270702 ≥ 100 0.0
3 595.0 0 595 0.0 0.5 0 881 48.1 0.0 24 240921 ≥ 100 0.0 22 220879 ≥ 100 0.1
4 523.0 0 523 0.0 0.4 0 722 38.0 0.0 22 220603 ≥ 100 0.0 23 231051 ≥ 100 0.0
5 593.1 0 614 3.5 10.9 0 875 47.5 0.0 22 220760 ≥ 100 0.0 27 270724 ≥ 100 0.0

L-4 1 804.0 0 804 0.0 0.8 0 1421 76.7 0.0 35 350892 ≥ 100 0.0 37 371264 ≥ 100 0.1
2 861.0 0 861 0.0 1.0 0 1134 31.7 0.0 37 370966 ≥ 100 0.0 36 360996 ≥ 100 0.1
3 816.0 0 816 0.0 0.8 0 1015 24.4 0.0 32 321124 ≥ 100 0.0 37 371142 ≥ 100 0.0
4 579.0 0 579 0.0 0.8 0 790 36.4 0.0 37 370581 ≥ 100 0.0 39 390581 ≥ 100 0.1
5 886.0 0 886 0.0 0.8 0 1304 47.2 0.0 36 361002 ≥ 100 0.0 40 400925 ≥ 100 0.3

L-5 1 1321.5 0 1331 0.7 19.3 0 1612 22.0 0.0 49 491326 ≥ 100 0.0 53 531326 ≥ 100 0.2
2 868.8 0 906 4.3 40.5 0 1525 75.5 0.0 47 470926 ≥ 100 0.0 48 481032 ≥ 100 0.1
3 891.0 0 895 0.4 1.4 0 1536 72.4 0.0 43 431403 ≥ 100 0.0 48 481022 ≥ 100 0.1
4 1345.0 0 1357 0.9 1.7 0 1770 31.6 0.0 52 521347 ≥ 100 0.0 53 531585 ≥ 100 0.2
5 968.2 1 10985 ≥ 100 42.7 0 1537 58.7 0.0 40 401819 ≥ 100 0.0 53 530961 ≥ 100 0.1

L-6 1 903.0 0 903 0.0 20.2 0 1768 95.8 0.0 54 541325 ≥ 100 0.0 62 620903 ≥ 100 0.2
2 1259.0 0 1260 0.1 2.7 0 1942 54.2 0.0 56 561445 ≥ 100 0.0 64 641263 ≥ 100 0.2
3 1408.8 0 1454 3.2 71.9 0 2603 84.8 0.0 63 631375 ≥ 100 0.0 63 631375 ≥ 100 0.1
4 1930.3 0 1973 2.2 86.3 0 3055 58.3 0.0 64 642270 ≥ 100 0.0 66 661928 ≥ 100 0.2
5 1508.0 0 1516 0.5 2.9 0 2049 35.9 0.0 58 581510 ≥ 100 0.0 63 631514 ≥ 100 0.4

L-7 1 2063.3 1 12059 ≥ 100 115.2 0 3293 59.6 0.0 72 722063 ≥ 100 0.0 74 742063 ≥ 100 0.5
2 2070.4 1 12134 ≥ 100 103.8 1 13092 ≥ 100 0.0 75 752043 ≥ 100 0.0 76 762043 ≥ 100 0.5
3 1651.7 0 1699 2.9 95.8 2 22913 ≥ 100 0.0 73 731663 ≥ 100 0.0 73 731663 ≥ 100 1.5
4 1524.5 0 1538 0.9 34.8 0 2345 53.8 0.0 72 721524 ≥ 100 0.0 75 751524 ≥ 100 0.2
5 2448.6 0 2457 0.3 26.0 0 3393 38.6 0.0 72 722450 ≥ 100 0.0 76 762450 ≥ 100 0.4

111

Table A5: Details of the computational results reported in Table 3.8 (medium-traffic instances).

Problem Instance LB
Lagrangian Relaxation FCFS STW RS

set #R UB G (%) Time #R UB G (%) Time #R UB G (%) Time #R UB G (%) Time

M-1 1 300.0 0 300 0.0 0.1 0 441 47.0 0.0 0 536 78.7 0.0 0 651 ≥ 100 0.0
2 297.0 0 297 0.0 0.1 0 413 39.1 0.0 0 407 37.0 0.0 0 624 ≥ 100 0.0
3 280.0 0 280 0.0 0.1 0 306 9.3 0.0 0 347 23.9 0.0 0 336 20.0 0.0
4 159.0 0 159 0.0 0.1 0 232 45.9 0.0 0 228 43.4 0.0 0 692 ≥ 100 0.0
5 272.0 0 272 0.0 0.1 0 338 24.3 0.0 0 343 26.1 0.0 0 400 47.1 0.0

M-2 1 270.0 0 270 0.0 0.3 0 471 74.4 0.0 17 170484 ≥ 100 0.0 20 200671 ≥ 100 0.0
2 522.0 0 522 0.0 0.3 0 715 37.0 0.0 0 1654 ≥ 100 0.0 0 2403 ≥ 100 0.0
3 595.0 0 595 0.0 0.4 0 899 51.1 0.0 15 150596 ≥ 100 0.0 22 220596 ≥ 100 0.0
4 597.0 0 597 0.0 0.3 0 1388 ≥ 100 0.0 10 101433 ≥ 100 0.0 21 210677 ≥ 100 0.0
5 627.1 0 687 9.6 7.5 0 964 53.7 0.0 18 181049 ≥ 100 0.0 21 210678 ≥ 100 0.0

M-3 1 1162.2 0 1188 2.2 20.0 0 1722 48.2 0.0 20 202210 ≥ 100 0.0 35 351158 ≥ 100 0.0
2 663.9 0 718 8.2 14.9 0 884 33.2 0.0 32 320664 ≥ 100 0.0 34 340664 ≥ 100 0.1
3 960.3 0 983 2.4 16.2 0 1741 81.3 0.0 27 271245 ≥ 100 0.0 34 341109 ≥ 100 0.0
4 626.0 0 630 0.6 0.8 0 968 54.6 0.0 24 242026 ≥ 100 0.0 35 350626 ≥ 100 0.0
5 615.9 0 628 2.0 16.2 0 961 56.0 0.0 28 280836 ≥ 100 0.0 35 350612 ≥ 100 0.0

M-4 1 1539.9 0 1680 9.1 45.1 0 2643 71.6 0.0 52 521519 ≥ 100 0.0 51 511754 ≥ 100 0.1
2 922.8 0 952 3.2 32.3 0 1434 55.4 0.0 41 411372 ≥ 100 0.0 47 470896 ≥ 100 0.1
3 1269.7 0 1297 2.2 48.2 0 3019 ≥ 100 0.0 50 501460 ≥ 100 0.0 53 531272 ≥ 100 0.1
4 1484.5 0 1504 1.3 41.2 0 2258 52.1 0.0 45 451691 ≥ 100 0.0 51 511455 ≥ 100 0.0
5 1359.0 0 1360 0.1 5.3 0 2536 86.6 0.0 45 451642 ≥ 100 0.0 51 511366 ≥ 100 0.1

M-5 1 1884.1 0 1970 4.6 86.6 0 2794 48.3 0.0 61 611854 ≥ 100 0.0 66 661820 ≥ 100 0.1
2 2030.1 0 2067 1.8 74.1 0 3624 78.5 0.0 63 632026 ≥ 100 0.0 65 652300 ≥ 100 0.1
3 1174.7 0 1348 14.8 64.4 0 2043 73.9 0.0 57 571205 ≥ 100 0.0 61 611159 ≥ 100 0.1
4 1779.0 0 1795 0.9 4.6 0 2698 51.7 0.0 61 611801 ≥ 100 0.0 59 591816 ≥ 100 0.1
5 1097.0 0 1097 0.0 74.0 0 2183 99.0 0.0 60 601433 ≥ 100 0.0 62 621249 ≥ 100 0.2

M-6 1 2002.4 0 2046 2.2 128.5 0 2835 41.6 0.0 74 742003 ≥ 100 0.0 76 762003 ≥ 100 0.1
2 1390.0 0 1390 0.0 125.7 0 2602 87.2 0.0 73 731393 ≥ 100 0.0 74 741400 ≥ 100 0.2
3 2179.8 0 2255 3.4 122.6 1 14286 ≥ 100 0.0 74 742167 ≥ 100 0.0 76 762167 ≥ 100 0.4
4 2092.6 0 2125 1.5 112.1 0 4392 ≥ 100 0.0 73 732221 ≥ 100 0.0 75 752221 ≥ 100 0.6
5 1436.0 0 1438 0.1 4.5 0 3055 ≥ 100 0.0 77 771565 ≥ 100 0.0 79 791565 ≥ 100 0.4

M-7 1 2262.0 0 2511 11.0 175.6 0 3036 34.2 0.0 87 872197 ≥ 100 0.0 90 902217 ≥ 100 0.2
2 2535.1 0 2601 2.6 189.2 0 4393 73.3 0.0 89 892662 ≥ 100 0.0 93 932662 ≥ 100 0.4
3 1339.2 0 1352 1.0 154.3 0 2391 78.5 0.0 82 821330 ≥ 100 0.0 86 861337 ≥ 100 0.1
4 2191.9 0 2297 4.8 189.5 0 3203 46.1 0.0 90 902195 ≥ 100 0.0 93 932195 ≥ 100 0.4
5 2819.2 2 22379 ≥ 100 172.4 2 24529 ≥ 100 0.0 92 922905 ≥ 100 0.0 93 932729 ≥ 100 1.0

112

Table A6: Details of the computational results reported in Table 3.8 (heavy-traffic instances).

Problem Instance LB
Lagrangian Relaxation FCFS STW RS

set #R UB G (%) Time #R UB G (%) Time #R UB G (%) Time #R UB G (%) Time

H-1 1 232.0 0 232 0.0 0.1 0 430 85.3 0.0 0 595 ≥ 100 0.0 0 466 ≥ 100 0.0
2 86.0 0 86 0.0 0.1 0 280 ≥ 100 0.0 0 347 ≥ 100 0.0 0 292 ≥ 100 0.0
3 192.0 0 192 0.0 0.2 0 426 ≥ 100 0.0 0 567 ≥ 100 0.0 0 539 ≥ 100 0.0
4 148.0 0 149 0.7 0.2 0 315 ≥ 100 0.0 0 296 ≥ 100 0.0 0 616 ≥ 100 0.0
5 250.0 0 250 0.0 0.1 0 449 79.6 0.0 0 409 63.6 0.0 0 702 ≥ 100 0.0

H-2 1 523.9 0 529 1.0 4.8 0 845 61.3 0.0 16 161368 ≥ 100 0.0 19 191222 ≥ 100 0.0
2 465.0 0 465 0.0 0.3 0 928 99.6 0.0 0 2400 ≥ 100 0.0 20 200982 ≥ 100 0.0
3 411.3 0 414 0.7 1.8 0 795 93.3 0.0 19 190505 ≥ 100 0.0 26 260424 ≥ 100 0.0
4 393.0 0 396 0.8 0.4 0 1143 ≥ 100 0.0 19 190466 ≥ 100 0.0 26 260559 ≥ 100 0.0
5 341.0 0 341 0.0 0.4 0 625 83.3 0.0 22 221393 ≥ 100 0.0 26 260551 ≥ 100 0.0

H-3 1 1314.0 0 1318 0.3 29.5 0 2477 88.5 0.0 38 381733 ≥ 100 0.0 31 311921 ≥ 100 0.1
2 1063.6 0 1069 0.5 25.3 0 1926 81.1 0.0 37 371425 ≥ 100 0.0 38 381275 ≥ 100 0.1
3 1232.0 0 1238 0.5 0.9 1 12052 ≥ 100 0.0 40 401343 ≥ 100 0.0 34 341755 ≥ 100 0.1
4 1010.0 0 1010 0.0 26.2 0 1859 84.1 0.0 35 351180 ≥ 100 0.0 36 361293 ≥ 100 0.1
5 936.3 0 1010 7.9 22.3 0 1480 58.1 0.0 35 351387 ≥ 100 0.0 39 390903 ≥ 100 0.0

H-4 1 1251.0 0 1253 0.2 1.7 0 2355 88.2 0.0 52 521642 ≥ 100 0.0 55 551344 ≥ 100 0.1
2 2046.2 0 2111 3.2 56.9 0 3517 71.9 0.0 55 552013 ≥ 100 0.0 53 532187 ≥ 100 0.1
3 1448.8 1 11445 ≥ 100 72.0 1 13291 ≥ 100 0.0 59 591275 ≥ 100 0.0 58 581449 ≥ 100 0.1
4 869.0 0 873 0.5 2.1 0 2270 ≥ 100 0.0 54 541114 ≥ 100 0.0 59 590877 ≥ 100 0.2
5 1181.9 0 1361 15.2 64.8 0 2303 94.8 0.0 56 561425 ≥ 100 0.0 57 571387 ≥ 100 0.1

H-5 1 1273.0 0 1277 0.3 3.7 0 2882 ≥ 100 0.0 70 701273 ≥ 100 0.0 70 701293 ≥ 100 0.1
2 1527.4 0 1635 7.0 111.7 0 2812 84.1 0.0 71 711540 ≥ 100 0.0 72 721606 ≥ 100 0.1
3 1615.6 0 1791 10.9 121.0 0 3903 ≥ 100 0.0 67 671815 ≥ 100 0.0 72 721595 ≥ 100 0.3
4 2102.0 0 2325 10.6 177.8 0 3722 77.1 0.0 72 722079 ≥ 100 0.0 73 732037 ≥ 100 0.4
5 1661.0 0 1823 9.8 119.9 0 2895 74.3 0.0 70 701624 ≥ 100 0.0 72 721624 ≥ 100 0.1

H-6 1 2337.4 0 2345 0.3 56.1 0 4122 76.4 0.0 82 822337 ≥ 100 0.0 86 862337 ≥ 100 0.3
2 2014.0 0 2034 1.0 26.1 0 3955 96.4 0.0 87 872026 ≥ 100 0.0 89 892099 ≥ 100 0.4
3 1500.1 0 1520 1.3 185.4 0 3069 ≥ 100 0.0 86 861504 ≥ 100 0.0 89 891504 ≥ 100 0.6
4 2630.6 2 22610 ≥ 100 202.3 2 24603 ≥ 100 0.0 88 882461 ≥ 100 0.0 92 922461 ≥ 100 0.4
5 2366.6 0 2723 15.1 197.4 0 3565 50.6 0.0 77 772503 ≥ 100 0.0 87 872245 ≥ 100 0.1

H-7 1 2167.7 0 2247 3.7 269.0 1 14067 ≥ 100 0.0 100 1002145 ≥ 100 0.0 100 1002145 ≥ 100 0.2
2 2635.9 0 2816 6.8 275.2 0 4283 62.5 0.0 91 912842 ≥ 100 0.0 100 1002638 ≥ 100 0.6
3 2638.8 0 2725 3.3 334.4 0 5042 91.1 0.0 104 1042585 ≥ 100 0.0 108 1082597 ≥ 100 0.5
4 1789.4 0 1878 4.9 267.6 0 3335 86.4 0.0 102 1021762 ≥ 100 0.0 101 1011826 ≥ 100 0.4
5 1942.3 0 1985 2.2 219.2 0 4208 ≥ 100 0.0 95 951944 ≥ 100 0.0 98 982071 ≥ 100 0.4

113

	Pages from 4760-signature panel-PDF Tool xxxtest-before signature3
	Pages from 4760-signature panel-PDF Tool xxxtest-signature
	Pages from 4760-signature panel-PDF Tool xxxtest-after signature

