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ABSTRACT 

Abstract of thesis entitled:  Uncertainty-based robust optimal design and control of 

cleanroom air-conditioning systems 

 

Submitted by  :  ZHUANG Chaoqun 

For the degree of  :  Doctor of Philosophy  

at The Hong Kong Polytechnic University in September, 2019  

 

The total floor area and energy consumption of buildings with spaces requiring strict 

temperature and humidity control, such as pharmaceutical cleanrooms, hospitals, 

semiconductor/microchip factories (denoted as “cleanrooms” for brevity), have been 

growing rapidly worldwide. The energy intensity of cleanroom air-conditioning 

systems is usually 10-100 times greater than the average energy intensity of office 

buildings, due to the complexity of the systems and their operational needs for strict 

temperature and humidity control. However, the energy conservation issue in 

cleanrooms has not attracted sufficient attention. This PhD study attempts to 

comprehensively explore the ventilation strategy including the energy-efficient design 

and control of cleanroom air-conditioning systems by addressing the following 

questions which are not well answered in existing studies:  

• What is the most suitable ventilation strategy for cleanroom air-conditioning 

systems that can be adaptive to changes in different working conditions? 

• How to design cleanroom air-conditioning systems that can maximize their 

potentials in energy saving and cost reduction under uncertainties? 
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• How to control cleanroom air-conditioning systems in operation that can enable 

systems to operate at high energy efficiency and reliability under measurement 

uncertainties? 

To ensure the high performance of air-conditioning systems as its design expectation, 

the ventilation strategy adopted should be adaptive to changes in internal 

sensible/latent load and ambient conditions. An “adaptive full-range decoupled 

ventilation (ADV) strategy” is proposed to minimize the system energy consumption 

by incorporating the advantages of existing ventilation strategies and adopting a novel 

“adaptive economizer”. The main advantage of the ADV strategy is that it can select 

the optimal operation mode (i.e. with the minimum estimated energy use) from 

available/multiple operation modes. It avoids sub-cooling and reheating as far as 

beneficial via the best use of MAU and economizer for cooling and dehumidification. 

The energy and economic performance of the proposed ADV strategy are further 

evaluated under different climatic conditions. The results show that adopting the ADV 

strategy can offer significant and promising energy savings. The payback periods are 

attractive for both existing system retrofit and new system design in most climates. 

The design for cleanroom air-conditioning systems is a complicated task due to the 

coupling operation and counteraction/interaction among their components. An 

uncertainty-based robust optimal design method for cleanroom air-conditioning 

systems is developed for implementing the ADV strategy considering uncertainties. 

To address the issue of asynchronous loads in different zones/spaces with reduced 

computation demand, a probabilistic diversity factor method is developed to quantify 

the effects of uncertainties of space load diversities in multiple zones/spaces. The 

robust optimal design method is validated based on the actual air-conditioning systems 

in an existing pharmaceutical building. The test results show that the air-conditioning 
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system, which is designed for the ADV strategy using the proposed design method, 

offers superior economic performance and satisfaction of service. 

Besides the robust optimal design, an online supervisory control strategy is also 

essentially needed for practical implementations of the ADV strategy. A risk-based 

online robust optimal control strategy is developed for multi-zone air-conditioning 

systems considering component performance degradation and measurement 

uncertainties. The core element of this strategy is the robust decision-making scheme, 

which is developed for selecting the optimal control mode of the air-conditioning 

systems online by compromising between the potential risks and benefits. This online 

control strategy is validated on a dynamic system simulation platform constructed on 

the basis of existing air-conditioning systems at full scale. The test results show the 

proposed control strategy can successfully determine the best operation mode allowing 

for component performance degradation and measurement uncertainties, and ensure 

air-conditioning systems to operate at high reliability and energy efficiency. 

To conclude, the developed adaptive ventilation strategy, the system robust optimal 

design and robust online optimal control methods can provide significant 

improvements to current design and control practice of cleanroom air-conditioning 

systems. 
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CHAPTER 1  INTRODUCTION 

 

This chapter presents an outline of this thesis in the following three sections. The 

background and motivation of this study are described in Section 1.1. The aim and 

objectives are presented in Section 1.2. Section 1.3 shows the organization of this 

thesis and gives a brief description of each chapter. 

1.1 Background and motivation 

The depletion of fossil fuels, global climate change and dramatic growth of energy 

consumption are the main challenges to the governments and society today. Buildings 

consume 30-40% of primary energy globally (Duić et al., 2013), and this percentage 

is even higher (60% of primary energy and over 90% of electricity) in Hong Kong 

(EMSD, 2018). In response to these challenges, the Hong Kong government has set a 

target to achieve an energy intensity reduction target as a whole of 40% by 2025 using 

2005 as the base (ENVB, 2015). 

Buildings with spaces requiring strict temperature and humidity controls, such as 

pharmaceutical cleanrooms, hospitals, semiconductor/microchip factories, 

laboratories and museums (hereafter denoted as “cleanrooms” for brevity), have been 

growing rapidly in terms of total floor area and energy consumption. For instance, in 

the USA, the total area of cleanrooms increased from 4.2 million m2 in 1993 to about 

15.5 million m2 in 2015 (Mills, 1996). It increases even faster in South China (Pearl 

Delta Region) due to the rapid increase of semiconductor fabrication (Li, He, Shan, & 

Cai, 2018). Meanwhile, the energy intensity of air-conditioning systems in such 
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buildings/applications can be 30 to 50 times more energy-intensive than typical 

commercial buildings (Mathew, 2008), or 10 to 100 times more energy-intensive than 

typical office buildings (Mills et al., 2008; Tschudi & Xu, 2001). However, the annual 

energy intensity in cleanrooms has not seen a significant reduction over the last two 

decades  (Kircher, Shi, Patil, & Zhang, 2010; Mills, 1996). The industries, which may 

need cleanroom production environments, usually involve highly skilled and 

knowledge-intensive manufacturing processes. The efforts on cleanroom air-

conditioning systems in the past are mainly on the means to provide a satisfactory 

indoor environment in order to maintain the reliable operation of the 

machines/equipment. Therefore, the energy conservation issue in cleanrooms has not 

gained sufficient attention. The increased total floor area, high energy intensity and 

the complex system design and control of cleanrooms have raised widespread 

concerns over their rapidly growing energy consumption, leading to considerable 

interest in the potential for energy savings.  

According to the investigation and system retrofitting work by Shan and Wang (2017) 

in pharmaceutical factory buildings in Hong Kong, up to 42% of annual energy cost 

saving could be achieved by optimizing the system control without any hardware 

modification. This indicates that the energy-saving potential of air-conditioning 

systems is very high in spaces where strict and simultaneous temperature and humidity 

control is required. However, many problems need to be solved in order to realize this 

energy-saving potential, due to the complexity of air-conditioning systems and their 

operation for achieving strict humidity and temperature control. The challenges in 

solving these problems are particularly associated with ever-changing working 

conditions, the uncertainties in the information used for the air-conditioning system 

design as well as the uncertainties of measurements used for system online control 
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decisions. These challenges are summarized as follows, which are the main issues to 

be addressed in this PhD study. 

i. The energy performance of existing ventilation strategies is unsatisfactory under 

off-design conditions. Although most existing popular ventilation strategies today 

are energy-efficient under specific ranges of working conditions, their actual 

performance in operation often deviates significantly from their design 

expectations due to the fact that they cannot adjust to “off-design” changing 

ambient and load conditions. Furthermore, the counteractions and interactions 

among different air-conditioning processes often result in great energy waste. 

ii. Mismatches widely exist between air-conditioning system design and 

operation/control in current engineering practice. Although individual 

components are well designed and systems may work at high energy efficiency at 

design working conditions, mismatches are commonplace in practice. This is 

because the coordination and interaction between different components under off-

design conditions are usually not comprehensively considered.  

iii. The practical operation of ventilation strategies often deviates significantly from 

expectations due to measurement uncertainties/errors and model errors. Although 

models can be well trained at the initial stage, most models for online use today 

cannot adapt themselves to component performance degradation. The model 

prediction errors of component capacities and the errors in measuring cooling 

loads and working conditions result in the improper selection of control modes 

and consequently great energy waste. 
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1.2 Aim and objectives 

This study, therefore, aims to develop a new energy-efficient ventilation strategy, 

robust optimal design and online optimal control methods for cleanrooms air-

conditioning systems, which enable the systems to operate at high energy efficiency 

over a wide range of ever-changing load and ambient conditions. It is accomplished 

by addressing the following objectives and research tasks: 

i. Develop an “adaptive full-range decoupled ventilation (ADV) strategy”, which 

can provide superior energy performance over the full range of internal loads and 

ambient conditions; 

ii. Assess the energy and economic performance when implementing the proposed 

ADV strategy, as well as identify the applicable regions for different operation 

modes in different climate zones; 

iii. Develop and validate an uncertainty-based robust optimal design method for 

cleanroom air-conditioning systems facilitating the proposed ADV strategy. The 

robust optimal design method should be able to offer the systems with high energy 

efficiency at a wide range of internal loads and ambient conditions, taking into 

account design input uncertainties and load diversities of multiple spaces; 

iv. Develop and validate a risk-based online robust optimal control strategy for 

implementing the proposed ADV strategy. The control strategy should be able to 

determine/select the optimal control mode with high energy efficiency and 

reliability considering component performance degradation and measurement 

uncertainties. 
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1.3 Organization of this thesis 

Chapter 1 introduces the background and the motivation of the research by presenting 

the need of a comprehensive energy-conservative approach for cleanrooms air-

conditioning systems, including the ventilation strategy, system robust optimal design 

and control methods. The aim and main objectives are also presented in this chapter.  

Chapter 2 presents a comprehensive literature review of related existing studies, 

including the existing ventilation strategies and their limitations, as well as design and 

control optimization methods for air-conditioning systems. This chapter also 

elaborates on the research gaps which are addressed in this PhD study.  

Chapter 3 describes the mechanism and advantages of the proposed ADV strategy. It 

minimizes system energy consumption by avoiding sub-cooling and reheating as far 

as beneficial via the best use of make-up air handling units for dehumidification. In 

addition, a new “adaptive economizer”, with three modes of operation, is incorporated 

in the proposed strategy to optimize the outdoor air intake. Component and system 

modelling of cleanroom air-conditioning systems is also presented in this chapter. 

Chapter 4 illustrates the performance evaluation and applications of the proposed 

ADV strategy in different climate zones. Nine cities in five main climate zones are 

selected to test the application potentials of the proposed ventilation strategy. Energy 

and economic performance, the needs for existing system retrofits and new system 

designs, as well as the preferable operation modes are presented. 

Chapter 5 presents the design optimization of cleanroom air-conditioning systems 

considering uncertainties for implementing the ADV strategy.  To consider the effects 

of asynchronous loads in different zones/spaces with reduced computation demand, a 

probabilistic diversity factor method is proposed to quantify the effects of 
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uncertainties of space load diversities in multiple zones/spaces. The proposed design 

method is implemented and validated in the design optimization of air-conditioning 

systems for implementing four different ventilation control strategies considering 

possible and uncertain off-design conditions. 

Chapter 6 presents a risk-based online robust optimal control strategy for cleanroom 

air-conditioning systems considering component performance degradation and 

measurement uncertainties. An online control decision is made by compromising 

between the failure risks and energy benefits of different operation modes considering 

measurement uncertainties. The proposed control strategy is tested and validated on a 

dynamic simulation test platform constructed based on an existing pharmaceutical 

manufacturing building. 

Chapter 7 summarizes the main contributions of this PhD study and gives 

recommendations for future research on the subject concerned. 

The interconnection between the main chapters of the thesis is illustrated as shown in 

Figure 1.1. The development of a novel ADV strategy, as well as component and 

system energy models, which are the basic tasks of the whole study, are presented in 

Chapter 3. The performance evaluation and optimal design are addressed in Chapters 

4 & 5, based on the component and system energy models presented in Chapter 3. In 

Chapter 4, the energy and economic performance adopting the ADV strategy in 

different climate zones are presented. In Chapter 5, the optimal design of cleanroom 

air-conditioning systems for implementing the ADV strategy is presented. In Chapter 

6, a risk-based online robust optimal control strategy is presented. A robust online 

decision-making scheme is developed for selecting the best operation mode of air-

conditioning systems. A realistic dynamic simulation platform involving the 
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cleanroom air-conditioning component and system models is built for evaluating the 

actual performance of the proposed real-time control strategy. 

 

Figure 1.1 Organization of main chapters   

Chapter 3

Development of adaptive full-range decoupled ventilation 

(ADV) strategy for cleanroom air-conditioning systems

Chapter 4

Performance evaluation 

and applications of 

proposed ADV strategy 

in different climate zones
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Uncertainty-based robust 

optimal design method

for implementing ADV 

strategy 

Chapter 6

Risk-based online robust 

optimal control strategy 

considering measurement 

uncertainties
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CHAPTER 2 LITERATURE REVIEW 

 

Cleanrooms today are technology-intensive solutions with high demands on the indoor 

air cleanliness, pressurization, temperature and humidity controls. The energy 

conservation opportunities are prevalent for cleanroom air-conditioning systems due 

to high energy intensity and strict control requirements. Comprehensive approaches, 

including a proper ventilation strategy, optimal design and control methods, are 

essentially needed for achieving energy-efficient operation of cleanrooms. This 

chapter presents a comprehensive literature review on the existing ventilation 

strategies, design and control methods for air-conditioning systems for different 

applications. Section 2.1 briefly introduces the basic information about the cleanroom 

air-conditioning systems, including indoor environment control requirements and 

typical system configurations. Section 2.2 presents the existing ventilation strategies 

for cleanrooms or spaces requiring strict humidity control. The review of the studies 

on design and control optimization methods for general air-conditioning systems are 

presented in Section 2.3 and Section 2.4, respectively. Conclusive remarks of the 

reviews are given in Section 2.5. 

2.1 Overview of cleanroom air-conditioning systems and 

configurations 

2.1.1 Why are cleanrooms energy-intensive? 

Cleanrooms are special spaces that maintain the controlled environments (e.g. 

cleanliness, temperature, humidity, and pressure) required for the specific 
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manufacturing processes. The causes of high energy consumption in most cleanroom 

air-conditioning systems are mainly due to i.) high air recirculation rates and high 

airflow resistance (due to the use of filters) to ensure the indoor cleanliness; and ii.) 

some counteraction processes (i.e. overcooling and reheating) to ensure simultaneous 

indoor temperature and humidity control.   

Cleanrooms are usually designed with air changes per hour (ACH) between 20 to 160 

depending on theirs cleanliness level, which is much higher than the value (e.g. 5 ACH) 

in spaces of normal use (Schneider, 2001). Higher ACHs equate to higher airflows and 

more energy use. For instance, it is reported that the air recirculation system in the 

cleanroom accounts for about 10% of the total power consumption in semiconductor 

fabrication plants (Hu & Chuah, 2003; Lin, Hu, & Xu, 2015). In addition, compared 

with conventional air-conditioning systems with the general purpose of thermal 

comfort, adding humidity as a critical control objective in cleanrooms would raise the 

challenge of energy-efficient operation/control since cooling and dehumidification 

processes are highly coupled, leading to some unavoidable counteraction and 

interaction processes.  

Specifically, the energy consumed by air conditioning systems (e.g. chiller water, hot 

water, steam and fans) is approximately 58% of the total energy consumption in 

cleanrooms (Tschudi, Sartor, Mills, & Xu, 2002) as shown in Figure 2.1. Energy 

conservation opportunities of Heating, Ventilation and Air Conditioning (HVAC) 

systems are prevalent in cleanroom applications (Tschudi & Xu, 2001). 
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Figure 2.1 Energy end-use in production cleanrooms. (Tschudi et al., 2002)  

2.1.2 Typical system configurations 

Cleanroom air-conditioning systems suitable for the low-cleanliness requirement 

cleanrooms, i.e., IOS-8 (ISO, 2015), can be categorized into three typical types 

referring to existing design practice (Hu & Tsao, 2007; PG&E, 2011), as described 

below. They are concerned in this study. For the high cleanliness cleanrooms with 

strict contamination control, some specific configurations may be required (e.g. mini 

environments) due to their high ACH requirements, which is not included in the scope 

of this study. 

I - Single supply air-handling unit system: The configuration of the single supply air-

handling unit (AHU) system is shown in Figure 2.2. The AHU contains a cooling coil, 

a heater, a fan, a humidifier and filters for conditioning the supply air. The chilled 

water to AHU cooling coils is supplied by a chiller plant. This system only resorts an 

AHU to control the indoor temperature and relative humidity. All makeup air and 

recirculation air are mixed, conditioned and supplied from this unit in one airflow loop. 

Return and supply air are both via large plenum chambers under the floor and above 

the ceiling. Generally, cleanrooms require positive static pressure to avoid the 
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infiltration of pollutants from the outdoor air or adjacent area. The pressure stabilizer 

(i.e. adjustable automatic relief damper) controls the difference between the total 

supply and return air flowrates in order to maintain a positive pressure in cleanrooms. 

The amount of the exhaust air, which needs to be discharged, highly depends on the 

amount of induced outdoor air (i.e. make-up air) and leakage air.  

 

Figure 2.2 Configuration of single AHU system 

II - Make-up air-handling unit integrated with local axial fan and dry cooling coil: 

The configuration of a make-up air-handling unit (MAU) integrated with a local axial 

fan and a dry cooling coil (DCC) is shown in Figure 2.3. The MAU consists of a 

cooling coil, a fan and filters for conditioning the outdoor air. The MAU is used for 

handling all the indoor latent heat and part of indoor sensible heat while the DCC is 

used for handling residual indoor sensible heat only. Dual-temperature chilled water 

is required for such configuration. Low-temperature chiller water is supplied to the 

MAU. The medium-temperature chiller water is supplied to the DCC to avoid terminal 

condensation. Total supply air is transported in air aisle by the local axial fan. 
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Figure 2.3 Configuration of MAU integrated with local axial fan and DCC 

III - MAU integrated with AHU: The configuration of an MAU integrated with an 

AHU is shown in Figure 2.4. The MAU is used for conditioning the outdoor air and 

the AHU is used for conditioning the total supply air. The chilled water to both MAU 

and AHU cooling coils is supplied by a chiller plant. Both the MAU and AHU can 

handle the indoor sensible and latent heat depending on the ventilation strategy 

adopted.  

 

Figure 2.4 Configuration of MAU integrated with AHU 

For cleanroom air-conditioning systems, selection of the system configuration is a key 

issue for achieving high energy efficiency due to the required high recirculation 

Outdoor air

Cooling coil

Fan

Filter

Filter

Space

Pressure 
stabilizer

Exhaust 

air

MAU

C

C

Low temperature 

chiller water

Pressurized plenum

M

HEPA 
Filter

Axial 
fan

Humidifier

C

CR
e
tu

rn
 a

ir
A

ir 
ai

sl
e

Supply air

~
~

~
~

Medium temperature 

chiller water 

HEPA 
Filter

Outdoor air
Cooling coil

Fan

Filter

Filter

Cooling coil

Filter

FanHeater

AHU
Humidifier

Space

1 2 3 5 6 7

Grille

Pressure 
stabilizer

Exhaust 

air

8

MAU

4

C

C

C

C
M

M

Return air

Supply air

Chiller water 

from chiller plant

9

~
~

Pressurized plenum

M

M



13 

 

airflow rate and high-pressure losses at filters (Xu, 2003). The first configuration 

requires the least initial cost while the energy consumption in such configuration is 

high due to the need of overcooling and reheating processes to control the indoor 

temperature and relative humidity. The second configuration is recommended by some 

design guides because of its low-pressure drop characteristics and high energy 

efficiency (Hu & Tsao, 2007; PG&E, 2011). But such a configuration is not widely 

used due to the high initial cost and system complexity (e.g. the need for dual-

temperature chillers and additional air aisle construction) and the inconvenience of 

maintenance. The combined use of an MAU together with AHUs (i.e. third 

configuration) is still the mainstream configuration in real applications (Li, Lee, & Jia, 

2016; Shiue et al., 2011).  

2.2 Existing ventilation strategies for cleanrooms and their 

limitations 

2.2.1 Ventilation strategies under hot and humid outdoor conditions 

In a particular working condition, the matching between sensible heat ratio (SHR) of 

the space and the SHR of the system (i.e. system capacity) depends on the ventilation 

strategy used. The existing typical ventilation strategies for space temperature and 

humidity controls, as well as their limitations are summarized in Table 2.1.  
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Table 2.1 Typical ventilation strategies under hot and humid outdoor conditions 

Operational 

strategy 
Mechanism Description Limitations 

Interactive 

control (IC)  

Cooling (or sub-cooling) and 

reheating processes are adopted 

to eliminate the coupling 

between temperature and 

humidity control loops. 

Outdoor air is treated to 

be close to the indoor air 

enthalpy. Outdoor 

airflow is always set at 

the minimum. 

Simultaneous 

cooling and 

reheating  

Dedicated 

outdoor air 

ventilation (DV) 

MAU handles all the latent heat 

and part of space sensible heat 

while the AHUs remove the 

rest of space sensible heat. 

Outdoor air is treated 

below the indoor air 

dewpoint. Outdoor 

airflow can be set higher 

than the minimum. 

High ventilation 

energy demand 

Partially 

decoupled 

control (PD) 

MAU handles all the latent heat 

and part of space sensible heat 

while the AHUs remove the 

rest of space sensible heat 

under low internal loads. 

Outdoor air is treated 

below the indoor air 

dewpoint. Outdoor 

airflow is always set at 

the minimum. 

Simultaneous 

cooling and 

reheating under 

high internal 

latent loads  

Interactive control (IC) strategy: IC strategy (Cui, Watanabe, Ryu, Akashi, & 

Nishiyama, 1999; Jouhara, 2009; Yau, 2007), which is the most commonly used 

ventilation strategy in cleanrooms, employs cooling (or sub-cooling) and reheating 

processes to eliminate the coupling between temperature and humidity control loops. 

Figure 2.5(A) shows the air-handling process (state points shown in Figure 2.4) on the 

psychrometric chart adopting the IC strategy. The minimum required outdoor airflow 

is first introduced by the MAU with some temperature rise due to heat generation from 

the MAU fan motor (1→2). The MAU cools the outdoor air down to its apparatus dew 

point (2→3), which is near the indoor air enthalpy. The cooled outdoor air is then 

mixed with the recirculation air in the AHU (3→5, 4→5) before being handled by the 

AHU cooling coil (5→6) for space dehumidification and then reheated by the heater 

(6→7) if necessary. The supply air further gains heat from the AHU fan motor (7→9) 

and eventually reaches the supply air temperature set-point. 
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Figure 2.5 Psychrometric process of different ventilation strategies for hot and humid 

outdoor conditions  (A: IC strategy B: DV strategy or PD strategy under low 

internal latent loads C: PD strategy under high internal latent loads) 

Dedicated outdoor air ventilation (DV) strategy: DV strategy (Li et al., 2016; Tsao, 

Hu, Chan, Hsu, & Lee, 2008), also named “fully decoupled control strategy”, fully 

decouples cooling and dehumidification by coordinated use of make-up air-handling 

units (MAUs) (or primary air-handling units, PAUs) and air-handling units (AHUs). 

For a system adopting this ventilation strategy, the MAU deals with all the latent load 
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and part of the space sensible load while the AHUs deal with the rest of space sensible 

load. As such, no sub-cooling and reheating is necessary to achieve the desired 

humidity control. However, to remove moisture produced by 

machines/processes/occupants, the necessary outdoor airflow rate may exceed, from 

time to time, the outdoor airflow rate required to maintain acceptable indoor air quality 

and/or positive pressure. Thus, a large MAU cooling capacity is usually required to 

meet the high cooling demand to handle outdoor air. The outdoor air treatment 

accounts for 30% to 65% of total air-conditioning energy consumption in the 

subtropics (Brown, 1990).  

The air-handling process of the DV strategy is shown in Figure 2.5(B). The indoor 

relative humidity and dry-bulb temperature are controlled by the MAU and AHU 

respectively. Different from the IC strategy, the outdoor air is cooled below the 

dewpoint of the indoor air (2→3) and the MAU outlet air temperature set-point can be 

adjusted/reset according to the internal latent load. The MAU can induce higher 

outdoor airflow than its minimum requirement for the purpose of space 

dehumidification if the internal latent load is high. By adopting this strategy, no 

reheating is needed. 

Partially-decoupled control (PD) strategy: PD strategy was proposed by Shan and 

Wang (2017) to overcome the drawbacks of the fully decoupled ventilation strategy 

(DV strategy). It decouples the dehumidification/cooling processes while working at 

the required minimum outdoor airflow. This strategy has been implemented in 

retrofitting a few existing conventional air-conditioning systems with significant 

energy savings. However, this strategy is only applicable to systems serving spaces 

with relatively low internal latent loads due to the fact that simultaneous cooling and 

reheating would occur when the internal latent load is high.  
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The mechanisms and air-handling processes of the PD strategy are elaborated in 

Figure 2.5 (B-C). Figure 2.5 (B) illustrates the air-handling process of the PD strategy 

when the internal latent load is relatively low. In this circumstance, since the outdoor 

air is dried effectively by the MAU which can handle all outdoor and indoor latent 

loads, there is no need to subcool and reheat the supply air in the AHU (State 6 and 

State 7 overlapping). When the internal latent load increases, the air-handling process 

is shown in Figure 2.5 (C), where the AHU only undertakes part of the latent load 

restricted by the use of fixed outdoor airflow set-point. To handle the rest of the latent 

load, the supply air needs to be cooled by the AHU cooling coil (5→6). The air is then 

reheated by the heater (6→7) (unless the indoor sensible load is high enough), which 

is similar to the air-handling process of the IC strategy. 

The above review shows that each of the above existing strategies achieves good 

energy performance only in ambient and load conditions specifically favourable to 

that strategy. However, actual working conditions often deviate from design/ 

favourable conditions when adopting the existing ventilation strategies, resulting in 

significant energy waste. A ventilation strategy with high energy efficiency at different 

ambient and load conditions is essentially needed. 

2.2.2 Ventilation strategies with economizer under cold or cool outdoor conditions 

In cool or cold outdoor conditions, adopting an economizer system can be a superior 

option to reduce cooling energy use. An economizer system can save energy by 

strategically introducing outdoor air into occupied spaces based on the comparison of 

the outdoor and return air states (i.e. temperature, enthalpy, or humidity differences). 

Many studies have investigated the energy-saving potentials of the economizer in 

commercial and office buildings. Fasiuddin and Budaiwi (2011) found adopting 



18 

 

an enthalpy economizer in a shopping mall can achieve energy saving by 3% in Saudi 

Arabia. Yao and Wang (2010) evaluated potential energy conservation brought by 

different air-side economizers in office buildings, and the results indicate that energy 

savings by adopting the economizer are about 10-20% under hot climate zones and 5-

10% under cold climate zones. Budaiwi (2001) obtained up to 13% energy savings by 

utilizing an economizer based on a dry-bulb temperature differential control in a nine-

story office building under the hot-dry summer and cold winter climatic conditions. 

Son and Lee (2016) obtained around 10% energy savings by using a differential 

enthalpy control method in a three-story office building in Korea. 

The above review shows that current economizer operation strategies are generally 

developed for buildings requiring thermal comfort control only, where the main 

purpose of utilizing the economizer is for energy conservation. For the buildings with 

spaces requiring strict temperature and humidity controls, the existing economizer 

operations are required to be improved, to meet the strict control requirements. For 

instance, during very dry outdoor conditions, the amount of outdoor air should be 

properly induced to ensure the indoor air humidity is not lower than its lower limit. 

Although several studies were carried out to demonstrate the potential energy benefits 

of utilizing the economizer in data centers (Cho, Lim, & Kim, 2012; Cho, Chang, Jung, 

& Yoon, 2017; Ham, Park, & Jeong, 2015; Lee & Chen, 2013; Shehabi, 2008), the 

economizer operation for other types of buildings, especially for the buildings/spaces 

with the high internal latent load, are still not fully investigated.  
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2.3 Optimal design of air-conditioning systems 

2.3.1 Component design 

ASHRAE handbooks (2016) summarized the design approaches for generic air-

conditioning system equipment and components, such as fans, humidifiers, heaters, 

cooling/heating coils and heat recovery equipment. Some optimal design methods 

were also developed in an attempt to enhance the performance of temperature and 

humidity controls. Sekhar & Tan (2009) improved the dehumidifying performance of 

the oversized cooling coil by changing the effective surface area through simple 

manipulation of the effective number of rows of coil operation. Tsao et al. (2008) 

investigated the influence of fan location on the energy performance of a 

semiconductor cleanroom. The results show that a draw-through type MAU required 

less electrical power than a blow-off type MAU. Suzuki et al. (2000) found that 3% of 

electricity savings can be achieved by improving the heat transfer of cooling coils to 

remove fin condensation. Jo et al. (2017) employed a pressurized water atomizer in 

the humification system achieving more than 8% energy savings. 

However, although the air-conditioning components may be well designed, a 

mismatch between system design and operation still widely exists because the 

coordination and interaction among these components/processes are not considered 

sufficiently. For example, a cleanroom facility site study (PG&E, 2011) has shown 

that the actual cooling load of the MAU in operation was only about one-fourth of its 

design value. Improper system design leading to control disorders and lower energy 

efficiency during operation is often observed and well-understood by engineers today.     
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2.3.2 Design optimization methods 

Many design optimization methods/algorithms have been proposed to establish 

systematic design approaches for air-conditioning systems of general use. Wright 

(1996) employed a genetic algorithm to optimize the design parameters of components, 

including cooling coils, heating coils, fans and ducts. Hanby and 

Angelov (2000) adopted a gradient-based technique for plant design optimization. 

Bichiou and Krarti (2011) adopted three optimization algorithms, including a genetic 

algorithm, a particle swarm algorithm and a sequential search algorithm, to minimize 

life-cycle costs of air-conditioning systems. Lee et al. (2009) applied a particle swarm 

algorithm to minimize the life cycle cost of ice-storage air-conditioning systems and 

obtained the optimal capacity of the ice storage tank. Doodman et al. (2009) combined 

global sensitivity analysis and a harmony search algorithm for the design optimization 

of air-cooled heat exchangers. The results show that, compared with the genetic 

algorithm, the harmony search algorithm converged to optimum solutions with higher 

accuracy. Such approaches are effective and commonly adopted but not certainly 

produce an optimal system design due to the settings of deterministic design 

inputs/parameters. The actual energy performance of air-conditioning systems may 

often deviate significantly from their design expectations due to the fact that even well-

selected data/information used as design inputs can be rather different from that in real 

operation. Such inherent deviations are regarded as “uncertainties”. 

In conventional design practice, the capacities of the air-conditioning components for 

a building are determined under the design condition which is certain and presumed 

in a climate region (Lu, 2008). For the design of building air-conditioning systems, 

cooling load calculation considering uncertainties have been considered when 

conducting performance estimates or optimizing the design of building energy systems 
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(De Wit & Augenbroe, 2002). Accurate and reliable prediction of cooling/heating 

loads is very important for building energy system design (Huang, Huang, & Sun, 

2018), and uncertainties in predicting cooling/heating loads have been studied widely 

to solve the under-sizing and over-sizing problems that widely exist in practical 

applications (Brohus, Frier, Heiselberg, & Haghighat, 2012; Hopfe, Augenbroe, & 

Hensen, 2013). Domínguez et al. (2010) quantified the uncertainties of building 

models and divided the input factors into three groups: certain factors, scenario 

elements, and uncertain factors. Sun et al. (2014) proposed a design method to size 

building energy systems considering uncertainties in weather conditions, building 

envelope and internal loads. There have also been a few studies on the design of central 

cooling plant design which considered the impacts of the cooling load uncertainties 

(Cheng, Wang, & Yan, 2016; Huang, Huang, Augenbroe, & Li, 2018) . 

The above review shows that although design optimization approaches are available 

for air-conditioning systems of general use, comprehensive design methodology 

suitable for cleanroom systems is not yet available, especially for cleanroom air-

conditioning system design considering inherent uncertainties in the design inputs and 

load diversities. 

2.4 Optimal control of air-conditioning systems 

Online supervisory control is important for achieving energy-efficient operation of air-

conditioning systems in practical applications (Dounis & Caraiscos, 2009). 

Supervisory control, often named optimal control, seeks to minimize or maximize a 

real function by systematically choosing the values of variables within allowed ranges 

(Wang & Ma, 2008). The building automation system (BAS) allows HVAC systems 
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to operate effectively and efficiently through supervisory control, improving the 

building energy or cost-efficiency with superior performance. 

Many studies have shown that supervisory control strategies greatly improve the 

indoor comfort and thermal environment while minimizing the energy input under 

dynamic working conditions (Wang & Ma, 2008). Nassif et al. (2005) used a two-

objective genetic algorithm to formulate a model-based supervisory control strategy 

for heating, ventilating, and air-conditioning (HVAC) systems, achieving an energy 

saving of 16% over an existing conventional air-conditioning system. West et al. (2014) 

adopted an optimized supervisory model predictive control (MPC) for HVAC systems 

in commercial buildings. Average energy reductions of 19% and 32% were achieved 

in the two buildings, respectively. Ferreira et al. (2012) applied a neural-network-

based predictive control strategy for HVAC real-time control in an educational 

building, achieving a satisfactory thermal comfort level and 50% energy savings. 

However, the existing supervisory control strategies are generally developed for 

buildings requiring thermal comfort control, implying that the system relies on 

temperature-based control to remove indoor moisture. Adding humidity as an 

objective complicates the task of control, necessitating a supervisory control strategy 

for optimizing the simultaneous control of space temperature and humidity. 

Due to the complexity of air-conditioning systems with counteractant processes and 

dynamic working conditions, errors and uncertainties in the measurements can lead to 

improper choices of system control modes, resulting in huge energy waste. For 

example, it has been reported that the measurement uncertainties of outdoor airflow 

can lead to 17% waste in cooling energy use and 43% waste in heating energy use 

(Yan, Li, Malkawi, & Augenbroe, 2017). The uncertainty in the occupancy 

measurements, meanwhile, can cause an increase of 18% in the total energy 
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consumption (Goyal, Ingley, & Barooah, 2012). Several online fault-tolerant control 

strategies have been developed and applied in air conditioning systems (Yu, 

Woradechjumroen, & Yu, 2014) to enable the systems to operate at high efficiency 

and reliability in the presence of sensor faults/errors. Yang et al. (2014) developed a 

fault-tolerant supervisory control scheme by correcting the faulty measurements and 

reconstructing the controller inputs. Wang and Chen (2002) used neural network 

models to diagnose the measurement faults of airflow sensors, and realized the fault-

tolerant control of outdoor airflow in the presence of sensor faults. Jin and Du (2006) 

proposed a fault-tolerant control method to regulate the outdoor airflow and adjust the 

air-handling unit (AHU) supply air temperature, based on principal component 

analysis, the joint angle method and compensatory reconstruction. The basic idea of 

these online fault-tolerant control strategies is to detect and identify the faults of the 

control systems, and then recover or correct the sensor measurements. However, due 

to the propagation and interaction of different measurement uncertainties in the control 

process, it is difficult to fix or remove the bias faults in cases with simultaneous 

multiple sensor biases. Simultaneous multiple sensor biases are a common issue in 

practical operation as the physical properties of sensors change over time. As a result, 

the measurement uncertainties significantly influence the proper selection of control 

modes.  

The above review shows that no effective optimal control method can be found for the 

energy-efficient control of cleanroom air-conditioning systems subject to various 

ambient and internal load conditions, particularly to avoid unhealthy counteraction 

and interaction among components. The quantification methods of measurement 

uncertainties to support robust online optimization decisions (or online control) cannot 

be found in the HVAC field. 
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2.5 Summary 

This chapter presented a comprehensive review on the existing studies on air-

conditioning systems. The typical configurations and components of cleanroom air-

conditioning systems were introduced briefly. The optimal design and control methods 

for air-conditioning systems of general use were presented. From the above review, 

the existing gaps can be summarized as follows: 

i. Existing ventilation strategies can achieve good energy performance only in 

ambient and load conditions specifically favourable to that strategy. However, 

actual conditions are often unfavourable, resulting in significant energy waste. A 

ventilation strategy with high energy efficiency at different ambient and load 

conditions is essentially needed. 

ii. Comprehensive optimal design methodology suitable for cleanrooms or spaces 

requiring strict humidity control is not yet available, especially when different 

sources of uncertainties are concerned. Effective design methods for multi-zone 

cleanroom air-conditioning systems cannot be found.   

iii. The existing online control strategies are not suitable for the energy-efficient 

control of cleanroom air-conditioning systems subject to various ambient and 

internal load conditions. They particularly lack the ability to avoid unhealthy 

counteraction and interaction among components. The online control strategies 

considering component performance degradation and measurement uncertainties 

towards robust supervisory control for air-conditioning systems (including that 

for cleanrooms) needs to be developed. 
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CHAPTER 3 DEVELOPMENT OF AN ADAPTIVE 

FULL-RANGE DECOUPLED VENTILATION 

STRATEGY  

This chapter presents the mechanism and main advantages of the proposed “adaptive 

full-range decoupled ventilation (ADV) strategy”. The energy performance of the 

proposed ventilation strategy is evaluated under different ambient and internal load 

conditions and compared with the most updated strategies available. Section 3.1 

presents and elaborates the typical configuration of cleanroom air-conditioning 

systems concerned. Section 3.2 presents and elaborates the mechanism and advantages 

of the proposed ADV strategy. Section 3.3 presents the energy models for the 

cleanroom air-conditioning systems. Energy performance maps of the ADV strategy 

under different ambient and internal load conditions are presented in Section 3.4. 

Conclusive remarks of this chapter are presented in Section 3.5. 

3.1 Description of the systems concerned  

The system configuration and air-conditioning components concerned, i.e. a blow-

through type MAU and a draw-through AHU, serve for cleanrooms or spaces with 

strict temperature and humidity controls, as presented in Figure 2.4. This configuration 

is common in real applications, especially for hot and humid regions. Due to the high 

supply air flowrate requirements of cleanrooms to meet the air cleanliness, the peak 

cooling/heating demands can be met even under the lower limit of supply air flowrate 

(i.e. 20 ACH for the Class ISO 8 cleanrooms (ISO, 2015)). The cleanroom air-



26 

 

conditioning systems of such configuration are usually designed as constant air 

volume (CAV) systems.  

3.2 Mechanism and advantages of adaptive full-range decoupled 

ventilation strategy 

To full use of the cooling/dehumidification capacity of outdoor air and avoid 

unnecessary reheating processes, a novel ADV strategy is developed. This strategy 

contains non-economizer operation modes (i.e. PD and DV modes) and economizer 

operation modes (i.e. FL, FS and FL modes) for different application situations. The 

mechanisms and descriptions of non-economizer and economizer operation modes of 

the ADV strategy are highlighted in Table 3.1. Due to the combination of the 

advantages of different operation modes, the ADV strategy can offer superior energy 

performance over the full range of internal load and ambient conditions. It avoids sub-

cooling and reheating as far as beneficial via the best use of MAU and economizer for 

cooling and dehumidification.  
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Table 3.1 Mechanisms and descriptions of operation modes of ADV strategy 

Operation mode Mechanism Description 

N
o

n
-e

co
n

o
m

iz
er

 

o
p

er
at

io
n

 m
o

d
e 

Dedicated 

outdoor air 

ventilation 

(DV) 

MAU handles all latent heat and 

part of space sensible heat while 

the AHUs remove the rest of 

space sensible heat 

Outdoor air is treated below 

the indoor air dewpoint. 

Outdoor airflow is adjusted 

according to the internal 

latent load 

Partially 

decoupled 

control 

(PD)  

MAU handles all latent heat and 

part of space sensible heat while 

the AHUs remove the rest of 

space sensible heat under low 

internal load conditions 

Outdoor air is treated below 

the indoor air dewpoint. 

Outdoor airflow is always 

set at the minimum 

E
co

n
o
m

iz
er

 

o
p
er

at
io

n
 m

o
d

e 

Following 

sensible 

load (FS) 

The indoor temperature is 

controlled by properly setting the 

outdoor airflow 

Outdoor airflow is adjusted 

according to the internal 

sensible load 

Following 

latent load 

(FL) 

The indoor relative humidity is 

controlled at the upper limit by 

properly setting the outdoor 

airflow 

Outdoor airflow is adjusted 

to control the indoor relative 

humidity at the upper limit 

Lower-

limit 

humidity 

control 

(LL) 

The indoor relative humidity is 

controlled at the lower limit by 

properly setting the outdoor 

airflow 

Outdoor airflow is adjusted 

to control the indoor relative 

humidity at the lower limit 

3.2.1 Non-economizer operation mode 

The air-handling processes of the DV and PD modes are identical to the DV and PD 

ventilation strategies as illustrated in Section 2.2.1. The required outdoor air intake for 

each mode is elaborated as follows.  

Dedicated outdoor air ventilation (DV) 

For the DV mode, the MAU cools and dehumidifies the outdoor airflow to handle all 

internal latent load and part of the internal sensible load, and the AHU removes the 

residual internal sensible heat. The outdoor air ratio of the DV mode is determined 

according to the internal latent load, which is allowed to be higher than the minimum 

requirements under high internal latent load conditions, as shown in Eq. 3.1, where 

αDV is the outdoor air ratio when adopting the DV mode. Qlat is the internal latent load 
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(W/m2). wMAU,min is the minimum outlet humidity ratio determined by MAU lower-

limit outlet temperature (kg/kg). hfg (2501 kJ/kg) is the latent heat of vaporization. 

 𝛼𝐷𝑉 = 𝑚𝑖𝑛(𝑚𝑎𝑥 (
𝑄𝑙𝑎𝑡

ℎ𝑓𝑔(𝑤4−min(𝑤2,𝑤𝑀𝐴𝑈,𝑚𝑖𝑛)
, 𝛼𝑚𝑖𝑛) , 1)    (3.1) 

Partially decoupled control (PD) 

The system adopting the PD mode keeps the outdoor airflow rate at its lower limit, 

which is expressed as Eq. 3.2, where αPD is the outdoor air ratio when adopting the PD 

mode. 

 𝛼𝑃𝐷 = 𝛼𝑚𝑖𝑛   (3.2) 

3.2.2 Economizer operation mode 

A new “adaptive economizer” is incorporated into the proposed strategy, which 

considers the need for both temperature and humidity controls comprehensively 

during the cool and cold seasons. The adaptive economizer adopts three economizer 

control modes, named “following sensible load” (FS), “following latent load” (FL) 

and “lower-limit humidity control” (LL) as shown in Figure 3.1. 
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Figure 3.1 Psychrometric processes of economizer for cool/cold and dry outdoor 

conditions (A. Free cooling; B. Free dehumidification; C. Lower-limit humidity 

control) 

Figure 3.1 (A) shows the air-handling process on the psychrometric chart adopting the 

FS mode. In this mode, the outdoor airflow is adjusted according to the internal 

sensible load and the humidification might be needed if the internal sensible load is 
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high (5→8). Figure 3.1 (B) shows the air-handling process on the psychrometric chart 

adopting the FL mode. In this mode, the latent heat is removed by adjusting the 

outdoor airflow rate, keeping indoor relative humidity at the upper limit, while the 

remaining sensible cooling load is handled by the AHU cooling coil (5→6). Figure 

3.1 (C) shows the air-handling process on the psychrometric chart adopting the LL 

mode. Compared with the FL mode, the indoor relative humidity is always controlled 

at the lower limit (State 4’), so more outdoor air can be induced to remove the internal 

sensible heat.  

The outdoor air ratios of different economizer modes are listed in Table 3.2. Here, αFS 

is the outdoor air ratio of adopting the FS mode. αFL is the outdoor air ratio of adopting 

the FL mode. αFL is the outdoor air ratio of adopting the LL mode. w4 and w4’ are upper 

and lower limit settings of indoor humidity respectively (kg/kg). Qsen is the internal 

sensible load (W/m2). Wsf is the supply fan power (W). ε is the motor installation factor, 

which is used to indicate the motor location. 

Table 3.2 Outdoor air ratios of different control modes of adaptive economizer 

Control mode Outdoor air ratio 

Following sensible load 𝛼𝐹𝑆 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (
𝑄𝑠𝑒𝑛+𝜀𝑊𝑠𝑓

𝑐𝑝(𝑡4−𝑡2)
, 𝛼𝑚𝑖𝑛) , 1)   (3.3) 

Following latent load 𝛼𝐹𝐿 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (
𝑄𝑙𝑎𝑡

(𝑤4−𝑤1)
, 𝛼𝑚𝑖𝑛) , 1)   (3.4) 

Lower-limit humidity control 𝛼𝐿𝐿 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (
𝑄𝑙𝑎𝑡

(𝑤4′−𝑤1)
, 𝛼𝑚𝑖𝑛) , 1)   (3.5) 

In operation, the proposed ventilation strategy identifies the economic operation mode 

under the dynamic ambient and internal load conditions. Under hot and humid outdoor 

conditions, if “inducing more outdoor air” is identified to be the most economical way, 

the air-conditioning system will operate as the displayed way in Figure 2.5(B). This 

operation mode allows the outdoor airflow to exceed the minimum outdoor airflow 
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rate required for maintaining an acceptable indoor air quality or space positive 

pressure in a space. Otherwise, the air-handling will follow the process shown in 

Figure 2.5 (C) using the minimum outdoor airflow rate. In the cool/cold and dry 

outdoor conditions, the proposed ventilation strategy will choose the economizer 

operation modes which have the best energy performance. 

The procedure and steps of selecting the optimal mode using the ADV strategy are 

illustrated in Figure 3.2. At each time step, the design indoor condition, outdoor 

condition, internal sensible and latent load, etc., are measured directly or computed 

based on measurements. The required supply air state including the temperature and 

humidity can then be determined. By considering the outdoor condition (air 

temperature and humidity) and required supply air state, the required outdoor air ratios 

of different operation modes (i.e. PD, DV and economizer modes) can be obtained 

using Eqs. 3.1-3.5. The feasibilities of utilizing particular operation modes are 

therefore assessed by verifying whether the required outdoor air ratio is within the 

required range (i.e. lower than 1). The electrical loads of the feasible operation modes 

can thus be calculated according to their corresponding working principles using Eqs. 

(3.6-3.7, 3.11-3.16). The ADV strategy will eventually select the operation mode with 

the minimum electrical load. 
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Figure 3.2 Proceduce and steps of selecting optimal operation mode by ADV 

strategy 

3.3 Component and system models  

The total electrical load of the air-side components is calculated using Eq. 3.6, which 

includes the electrical load of the MAU/AHU cooling coils, the AHU heater and 

humidifier, the make-up air fan and the supply air fan. 

 𝐸𝑡𝑜𝑡 =
𝑄𝑐𝑐,𝑀𝐴𝑈+𝑄𝑐𝑐,𝐴𝐻𝑈

𝐶𝑂𝑃𝑐
+
𝑄ℎ𝑒,𝐴𝐻𝑈

𝐶𝑂𝑃ℎ𝑒
+
𝑄ℎ𝑢,𝐴𝐻𝑈

𝐶𝑂𝑃ℎ𝑢
+𝑊𝑚𝑓 +𝑊𝑠𝑓  (3.6) 

where, COPc is the overall coefficient of performance of the cooling system. COPhe is 

the overall coefficient of performance of the heating system. COPhu is the overall 

coefficient of performance of the humidification system. Qcc,MAU is the cooling coil 

cooling load of the make-up air-handling unit (kW). Qcc,AHU is the cooling coil cooling 

load of the supply air-handling unit (kW). Qhe,AHU is the heater heating load of the 

supply air-handling unit (kW). Qhu,AHU is the humidification load of the supply air-

handling unit (kW). Wmf is the fan power of the make-up air-handling unit (kW). Wsf 

is the fan power of the supply air-handling unit (kW). 

Design indoor condition, outdoor condition, internal 

sensible & latent load, etc.

Determine the required supply air state Eqs. (3.8-3.10)

Calculate the required outdoor air ratio of different control 

modes Eqs. (3.1-3.4)

Select the feasible operation modes

Calculate the electrical load of feasible operation modes 

according to their corresponding working principles Eqs. 

(3.6-3.7, 3.11-3.16)

Select feasible mode with the minimum electrical load
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The energy models of the subsystems are described as follows.  

3.3.1 Fan model 

The fan powers of MAU/AHU fans are characterized by their volumetric flow rate, 

pressure rise and efficiency, as shown in Eq. 3.7, where Wf is total fan power (kW). V 

is air volumetric flow rate (m3/s). Δp is total pressure rise (kPa). ηf is fan efficiency.  

 𝑊𝑓 =
𝑉∆𝑝

𝜂𝑓
   (3.7) 

3.3.2 System energy balance model 

The thermodynamic states of the system are determined by heat balance Eqs. 3.8-3.15 

with the following main assumptions: i) The pressure drops through the ducts are 

constant and the air heat loss through the duct is neglected. ii) The minimum outlet 

temperatures of both MAU and AHU are set at 13 °C, a setting typically used in 

practice (Wang & Song, 2012), which are the lower limit of AHU and MAU outlet 

temperatures in design calculation when dehumidification requirements are concerned. 

iii) The saturated relative humidity is set at 95% when the processed air reaches the 

apparatus dew point. iv) The air is perfectly mixed inside all ducts and the thermal 

space. v) The ducts are well-sealed without air leakage. vi) The air states at the outlets 

of MAU and AHU vary simultaneously with the instantaneous sensible and latent 

cooling demands. vii) The overall coefficient of performance of the cooling system 

(COPc), heating system (electric heater) (COPh) and humidification system (electric 

humidifier) (COPhu) are assumed to be 2.5, 1.0 and 1.0 respectively as constants. 

After determining the air states for each ventilation strategy (Figure 2.5), the 

cooling/heating loads for the cooling coils/heater can be estimated using Eqs. 3.13-

3.15, where ms is the supply air mass flow rate (kg/s). h is the enthalpy of air (kJ/kg). 

The fan motor installation factor ε is used to indicate the motor location. It equals 1.0 
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if the fan motors are installed inside the MAU/AHU, and it equals the motor efficiency 

if motors are installed outside the MAU/AHU. The fan motor installation factor η 

equals 1 in the case study.   

 𝑄𝑠𝑒𝑛 = 𝑚𝑠𝑐𝑝(𝑡4 − 𝑡9)   (3.8) 

 𝑄𝑙𝑎𝑡 = 𝑄𝑠𝑒𝑛(
1-SHR

SHR
)   (3.9) 

 𝑄𝑙𝑎𝑡 = 𝑚𝑠ℎ𝑓𝑔(𝑤4 − 𝑤9)   (3.10) 

 𝑤5 = 𝛼𝑤3 + (1 − 𝛼)𝑤4  (3.11) 

 𝑡8 = 𝑡4 −
1

𝑚𝑠𝑐𝑝
(𝑄𝑠𝑒𝑛 + 𝜀𝑊𝑠𝑓)   (3.12) 

 𝑄𝑐𝑐,𝐴𝐻𝑈 = (𝑚𝑠 − 𝛼𝑚𝑠)ℎ4 + 𝛼𝑚𝑠ℎ3 −𝑚𝑠ℎ6   (3.13) 

 𝑄ℎ𝑒,𝐴𝐻𝑈 = 𝑚𝑠(ℎ7 − ℎ6) − 𝜀𝑊𝑠𝑓  (3.14) 

 𝑄𝑐𝑐,𝑀𝐴𝑈 = 𝛼𝑚𝑠(ℎ1 − ℎ3) + 𝜀𝑊𝑚𝑓  (3.15) 

During the transient seasons and winter, when the outside air is dry, the humidifier 

may be activated to avoid too low space humidity (i.e. lower than its lower limits). 

The humidification load of the humidifier is shown in Eq. 3.16.  

 𝑄ℎ𝑢,𝐴𝐻𝑈=𝑚𝑠ℎ𝑓𝑔(𝑤8 − 𝑤7)   (3.16) 

3.4 Energy performance of adaptive full-range decoupled 

ventilation strategy and comparison with existing strategies 

3.4.1 Test building and design conditions 

A pharmaceutical factory building located in Tai Po district of Hong Kong was 

selected for the comparison study. It has five floors and the total cleanroom area is 

about 3,620 m2. All the production areas were designed as Class ISO 8 cleanrooms 

(ISO, 2015). The configuration of a typical cleanroom air-conditioning system, i.e. the 

system serving part of the cleanrooms at the 2nd floor, is shown in Figure 2.4. A typical 
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air-conditioning system of the cleanrooms consists of the axial fans, chilled water-

cooling coils, an electric heater, an electric steam humidifier and other accessories.  

For the cleanrooms concerned, the minimum total supply and outdoor airflow rates 

were designed as 20 ACH and 2 ACH respectively to meet the requirements of indoor 

cleanliness and pressurization (ASHRAE, 2007; ASHRAE 62.1, 2016; ISO, 2015). 

The cleanroom air-conditioning systems usually adopt constant air volume (CAV) 

systems in practice. The height of the cleanrooms concerned is 2.8 m. The design room 

conditions, fan specification and control requirements are summarized in Table 3.3. 

Table 3.3 Design room conditions, fan specification, and control requirements 

Description Parameter Value 

Indoor design conditions 
Temperature (°C) 20±3 

RH (%) 55±10 

Outdoor and supply airflow rate  
Outdoor air changes per hour ≥2 

Supply air changes per hour   ≥20 

Installed fan specification  

MAU fan pressure (Pa) 1,600 

AHU fan pressure (Pa) 1,350 

Fan efficiency (%) 60 

In order to compare the energy performance of the cleanroom air-conditioning system 

of utilizing the proposed ADV strategy, three existing ventilation strategies (i.e. IC, 

DV and PD) were selected for comparison purposes. The working principles of three 

existing ventilation strategies are presented in Section 2.2.1. It is worth noticing that 

an enthalpy-based economizer was incorporated into the IC strategy. The economizer 

is activated according to the enthalpy differential between outdoor air and indoor air. 

If the outdoor air enthalpy is higher than indoor air enthalpy, the minimum outdoor 

airflow would be set. Otherwise, the outdoor airflow would be adjusted according to 
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the AHU cooling coil outlet temperature, and the MAU cooling coil value would be 

closed. 

3.4.2 Energy performance under different internal load conditions  

The system performance maps for the IC, DV, PD and ADV strategies are presented 

in Figure 3.3(A)-(D), which represents the situation at Hong Kong outdoor design 

condition where no economizer control is adopted. As recommended by ASHRAE 

fundamentals 14.6 (ASHRAE, 2013), the dew-point temperature corresponding to 1% 

annual cumulative frequency of occurrence (ASHRAE 1% DP-MCDB) was used as 

the outdoor design condition (i.e. 29.1 °C, 84.4%) when space dehumidification was 

the duty of the outdoor air ventilation system (i.e. make-up air-handling units). The 

total electrical load (Eq. 3.7) of each strategy was calculated under 6,147,072 working 

points/conditions (3,072×2,001), with an interval of 0.05 W/m2 and 5×10-4 in terms of 

space sensible cooling load (Qsen) and sensible heat ratio (SHR), respectively. Here, 

the total electrical load is the sum of the electrical loads of the cooling coils, the heater, 

the humidifier (if needed) and fans as calculated by Eqs. 3.8-3.16. It is worth noticing 

that although the selected outdoor condition is hot and humid without involving the 

economizer, the induced outdoor air flowrates of different ventilation strategies were 

still different and the outdoor air flowrates of some ventilation strategies may exceed 

the lower limits of their set-points. This is due to different MAU dehumidification 

requirements of different strategies. For the IC and PD strategies, the outdoor air 

flowrate was set at the lower limit as a constant value (i.e. 2 ACH or outdoor air ratio 

0.1 in the case study). For the DV and ADV strategies, the outdoor air flowrate was 

adjusted according to the internal latent load, allowing the amount of outdoor air 

higher than the lower limit to remove moisture under relatively high internal latent 

load conditions, as shown in Figure 3.4(A) and (B), respectively.  
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Figure 3.3 Space air-conditioning energy maps of four ventilation strategies under 

Hong Kong design outdoor condition  (A: Interactive control; B: Dedicated outdoor 

air ventilation; C: Partially decoupled control; D: Adaptive full-range decoupled 

ventilation) 

 

Figure 3.4 Outdoor air ratio of two ventilation strategies under Hong Kong design 

outdoor condition  (A: Dedicated outdoor air ventilation; B: Adaptive full-range 

decoupled ventilation) 

By comparing the energy performance of the existing and proposed strategies under 

different internal load regions, the preferred ventilation strategies (i.e. most energy-

efficient strategy) in different regions are shown in Figure 3.5. Here, blue dot lines are 
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the contour lines of energy-saving ratio. The energy-saving ratio of the proposed ADV 

strategy ranged up to 59.2% compared with that of the least energy-efficient strategy. 

In Region 1, the proposed ADV strategy, as well as the PD and DV strategies, had 

superior energy performance compared with the IC strategy, where the space had a 

comparatively high sensible heat ratio. In Region 2, the proposed ADV strategy and 

the DV strategy had superior energy performance compared with the other two 

strategies, where the space had a medium sensible heat ratio. In Region 3, the proposed 

ADV strategy, as well as the IC and PD strategies, were the superior options, where 

the space had a low sensible heat ratio.  

 

Figure 3.5 Preferred ventilation modes/strategies and their energy-saving ratio in 

different internal load regions under the Hong Kong design outdoor condition  

It can be summarized that although the energy performance of some existing 

ventilation strategies was as good as that of the proposed strategy in some of the three 
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regions, the proposed strategy was always the superior strategy in all regions or 

working conditions concerned. Table 3.4 shows the preferred ventilation strategies in 

different regions of working conditions according to the energy performance 

comparison results. It can be seen that the proposed ventilation strategy offered 

superior energy-efficiency over the full range of internal loads under the Hong Kong 

outdoor design condition.   

Table 3.4 Superior ventilation strategies in different internal load regions under the 

Hong Kong outdoor design condition 

Strategy Region 1 Region 2 Region 3 

ADV √ √ √ 

IC 
  

√ 

PD √ 
 

√ 

DV 
 

√ 
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Figure 3.6 Boundary changes of preferred ventilation modes/strategies of ADV 

strategy in different internal load regions under different outdoor conditions 

The preferred ventilation modes of the ADV strategy in different internal load regions 

under the Hong Kong outdoor design condition are presented in Figure 3.5. However, 

it is also worth noticing that the boundary for selecting superior ventilation mode is 

affected significantly by the ambient conditions. As mentioned in Section 3.2, the 

proposed ADV strategy consists of three operation modes in hot and humid outdoor 

conditions and it operates at its most economical mode at a particular state. To 

illustrate how the most economical mode is affected by different indoor and outdoor 

conditions, further analysis was therefore conducted. Figure 3.6 presents the boundary 

of preferred ventilation strategies in different internal load regions, which moves when 

the outdoor condition varies. This map was made under the condition when the 

absolute humidity of the outdoor air was no less than that of the indoor air or the 

economizer is not applicable. Similar to Figure 3.5, in Region 1, the PD and DV 
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modes/strategies were the preferred modes, i.e., better than the IC mode/strategy. In 

Region 2, the DV mode/strategy was the preferred mode, i.e., better than the IC and 

PD modes/strategies. In Region 3, the IC and PD modes/strategies were the preferred 

options. The key difference between Figure 3.6 and Figure 3.5 was that, in Figure 3.6, 

the boundary between Region 2 and Region 3 moved when outdoor enthalpy changed. 

When the enthalpy of outdoor air reduced, this boundary line moved down and the 

area of Region 2 increased. Here, relative enthalpy ratio (γ) of the outdoor air is 

defined as the ratio of its actual enthalpy (hactual) to that of the air at the outdoor design 

condition (hdesign) (29.1 °C, 84.4%), as shown in Eq. 3.17. When the relative enthalpy 

ratio of the outdoor air was 0.62, which was equal to the enthalpy of the indoor design 

condition (23 °C, 65%), the area where the DV mode/strategy was the preferred mode 

covered most of the possible working conditions as indicated by 88.4% of the total 

operation area in the figure. It is worth noticing that, when the relative enthalpy ratio 

of the outdoor air decreased to 0.52 or below (equivalent to that at (19.2 °C, 70%) or 

(17.3 °C, 85%)), the DV mode/strategy was the preferred mode for all possible 

working conditions if no economizer was adopted and the Region 3 disappeared 

practically. 

 𝛾 =
ℎ𝑎𝑐𝑡𝑢𝑎𝑙

ℎ𝑑𝑒𝑠𝑖𝑔𝑛
  (3.17) 

3.4.3 Energy performance under different outdoor conditions  

Figure 3.7 (A)-(D) present the system performance maps for the IC, DV, PD strategies 

and the proposed ADV strategy at a given typical internal load condition (Qs=90 W/m2, 

SHR=0.8). The total electrical load (Eq. 3.6) of each strategy was calculated under 

1,806,301 working points/conditions (6,001×301), with an interval of 0.01 °C and 

1×10-4 in terms of outdoor air temperature and humidity ratio, respectively.  
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Figure 3.7 Space air-conditioning energy maps of four ventilation strategies under a 

typical internal load condition (Qs=90 W/m2, SHR=0.8)  (A: Interactive control with 

economizer; B: Dedicated outdoor air ventilation; C: Partially decoupled control; 

D: Adaptive full-range decoupled ventilation) 

An adaptive economizer, which involves three economizer operation modes, marked 

as “following sensible load” (FS), “following latent load” (FL) and “lower-limit 

humidity control” (LL), was investigated and adopted by the proposed ADV strategy. 

Figure 3.8(A) shows the applicable outdoor condition regions for activating the 

adaptive economizer. The adaptive economizer was not applicable in Regions 1-3 

since the enthalpy of outdoor air was comparatively high (i.e. Region 1 and 2) or the 

minimum outdoor airflow was enough for “free dehumidification” (i.e. Region 3). By 

contrast, the adaptive economizer was beneficial and more energy-efficient in Regions 

4-6 compared with that of the ventilation strategy without the economizer. The 

preferred economizer modes in different outdoor condition regions are shown in 

Figure 3.8(B), which is actually the enlarged figure of Regions 4-6 in Figure 3.8(A). 

The energy-saving ratio of the proposed ADV strategy adopting the adaptive 
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economizer ranged up to 27.4% compared with that of the ADV strategy without 

adopting an economizer. In Region 4, the proposed ADV strategy adopting the FL 

mode had the superior energy performance, where the outdoor airflow rate was 

adjusted to control the indoor humidity at its upper limit. In Region 5, the proposed 

ADV strategy adopting the FS mode had the superior energy performance, where the 

outdoor airflow rate was adjusted to control the indoor temperature while the indoor 

humidity varied in an allowable range. In Region 6, the proposed ADV strategy 

adopting the LL mode was the superior option, where the outdoor airflow rate was 

adjusted to control the indoor humidity to its lower limit. 

  

Figure 3.8 Applicable outdoor condition regions for adaptive economizer and 

preferred economizer modes at a typical internal load condition (Qs=90 W/m2， 

SHR=0.8)   

Table 3.5 shows the preferred ventilation strategies in different regions of ambient 

conditions according to the energy performance comparison results. It can be seen that 

the proposed ventilation strategy offered superior energy-efficiency over the full range 

of ambient conditions under a typical internal load condition (Qs=90 W/m2, SHR=0.8). 

In Region 1, the proposed ADV strategy, as well as the IC and PD strategies, were the 

most energy-efficient compared with the DV strategy, where the outdoor air had high 

enthalpy. In Region 2, the proposed ADV strategy and the DV strategy had superior 
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energy performance compared with the other two strategies, where the outdoor air 

enthalpy was not high. In Region 3, all the ventilation strategies had the same energy 

performance, where the minimum outdoor airflow was enough for “free 

dehumidification” since the outdoor air was extremely dry. In Region 4, the proposed 

ADV strategy and the IC strategy offered superior energy performance compared with 

the other two strategies due to the adoption of the economizer. In Regions 5-6, the 

proposed ADV strategy was the superior option since it adopted the adaptive 

economizer and made full use of the “free cooling and dehumidification” capacity of 

the outdoor air.  

Table 3.5 Superior ventilation strategies under different ambient conditions and the 

typical internal load condition  

Strategy Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

ADV √ √ √ √ √ √ 

IC √ 
 

√ √ 
  

PD √ 
 

√ 
   

DV   √ √       

3.4.4 Limitations of existing strategies and benefits of proposed strategy 

To justify the limitations of the existing ventilation strategies and the benefits of the 

proposed strategy, six typical and representative cases were selected to assess and 

compare the energy performance of the proposed and the existing most-updated 

ventilation strategies, as shown in Table 3.6. It is worth noticing that, in this table, the 

electrical loads of the MAU/AHU cooling coils, AHU heater and AHU humidifier 

were their cooling/heating loads (Eqs. 3.13-3.16) divided by the cooling/heating COPs 

respectively (i.e. 2.5/1.0 in this case study). The powers of MAU/AHU fans were 

calculated using Eq. 3.7. 
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The energy performance of different ventilation strategies under different internal load 

conditions was assessed in Case 1-3 (marked in Figure 3.5), where their performance 

under low/medium/high internal latent load conditions was compared. Similarly, the 

energy performance of different ventilation strategies under different outdoor 

conditions was assessed in Case 4-6 (marked in Figure 3.8B), where the space sensible 

cooling load (Qsen) and sensible heat ratio (SHR) in three cases were set the same.   

Case 1 represents the condition when indoor had a relatively low latent load, where all 

the latent gains can be removed by the MAU with the minimum outdoor airflow. The 

electrical load of the IC strategy was the largest, which was 16.3% more than that of 

the proposed ADV strategy as well as the PD and DV strategies, due to the sub-cooling 

and reheating process for removing the latent gains. Case 2 represents the condition 

when indoor had a medium latent load, where only part of the latent gains can be 

removed by the MAU with the minimum outdoor airflow using the PD strategy and 

therefore the reheating occurred. The electrical loads of the IC strategy and the PD 

strategy were the same, which were 10.6% more than that of the proposed ADV 

strategy and the DV strategy. Case 3 represents the condition when indoor had a high 

latent load. The DV strategy had a higher electrical load compared with the proposed 

ADV strategy as well as the IC and PD strategies since the amount of the AHU 

electrical load decrease overtook that of increased the MAU electrical load due to 

excessive high-enthalpy outdoor airflow. Case 4 represents the condition when the 

outdoor air was cool and dry. The FS strategy had the highest electrical load, which 

was 12.6% more than that of the most energy-efficient strategy (the proposed ADV 

strategy adopting the FL mode or the IC strategy), due to the excessive outdoor air 

intake. In this case, the electrical loads of the PD and DV strategies were also 6.1% 

and 1.1% more than that of the proposed ADV strategy respectively, since these two 
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strategies cannot make full use of the “free dehumidification” capacity of the outdoor 

air. Case 5 represents the condition when the outdoor air was cold and dry. The energy 

electrical loads of the PD and LL strategies were 21.7% and 20.0% more than that of 

the proposed ADV strategy (adopting the FS mode) respectively, due to the activation 

of heating processes. In addition, the electrical loads of the DV, IC and FL strategies 

were 15.3% more than that of the proposed ADV strategy (adopting the FS mode), 

since these three strategies cannot make full use of the “free cooling” capacity of the 

outdoor air. Case 6 represents the condition when the outdoor air was cold and 

extremely dry. The FS strategy had the highest electrical load, which was 22.5% more 

than that of the proposed ADV strategy (adopting the LL mode) since the 

humidification needed to be activated due to the excessive dry outdoor air intake. In 

this case, the electrical loads of the PD and DV strategies were also 5.3% more than 

that of the proposed ADV strategy (adopting the LL mode), since these two strategies 

cannot make full use of the “free cooling and dehumidification” capacity of the 

outdoor air. 
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Table 3.6 Electrical loads of studied cases under different internal load and ambient conditions 

Case 

Internal load Outdoor condition 

Ventilation 

strategy 

Outdoor air 

ratio 

Electrical load/ power (W/m2) 

Qsen 

(W/m2) 
SHR 

Temperature 

(°C) 

RH  

(%) 

MAU 

cooling 

MAU 

fan 

AHU 

cooling 

AHU 

heating 

AHU 

humidifier 

AHU 

fan 
Total 

1 70 0.9 

29.1 84.4 

IC 0.1 25.90  4.16  52.04  14.70  0.00  35.03  131.84  

ADV/PD/DV 0.1 35.61  4.16  35.57  0.00  0.00  35.03  110.37  

2 70 0.8 

IC 0.1 25.90  4.16  58.18  20.11  0.00  35.03  143.38  

PD 0.1 38.44  4.16  45.64  20.11  0.00  35.03  143.38  

ADV/DV 0.146 56.04  6.05  31.01  0.00  0.00  35.03  128.13  

3 70 0.7 

DV 0.25 96.11  10.38  23.16  0.00  0.00  35.03  164.67  

PD 0.1 38.44  4.16  53.60  27.24  0.00  35.03  158.48  

ADV(FL)/IC 0.1 25.90  4.16  66.14  27.24  0.00  35.03  158.48  

4 

90 0.8 

18 78 

FS 1 0.00  41.46  28.89  0.00  0.00  35.03  105.37  

PD 0.1 7.74  4.16  48.82  2.97  0.00  35.03  98.72  

DV 0.187 14.51  7.78  35.87  0.00  0.00  35.03  93.19  

ADV(FL)/IC 0.272 0.00  14.49  42.64  0.00  0.00  35.03  92.15  

5 13 80 
PD 0.1 1.66  4.16  45.95  2.97  0.00  35.03  89.77  

LL 0.937 0.00  38.86  0.00  12.81  0.00  35.03  86.70  
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Case 

Internal load Outdoor condition 

Ventilation 

strategy 

Outdoor air 

ratio 

Electrical load/ power (W/m2) 

Qsen 

(W/m2) 
SHR 

Temperature 

(°C) 

RH  

(%) 

MAU 

cooling 

MAU 

fan 

AHU 

cooling 

AHU 

heating 

AHU 

humidifier 

AHU 

fan 
Total 

IC/FL 0.118 0.00  4.86  43.05  0.00  0.00  35.03  82.94  

DV 0.118 1.95  4.86  41.10  0.00  0.00  35.03  82.94  

ADV(FS) 0.85 0.00  35.24  0.00  0.00  0.00  35.03  70.27  

6 13 70 

FS 0.85 0.00  35.24  0.00  0.00  31.57  35.03  101.84  

IC/FL 0.1 0.00  4.16  44.11  0.00  0.00  35.03  83.30  

PD/DV 0.1 1.66  4.16  42.44  0.00  0.00  35.03  83.30  

ADV(LL) 0.353 0.00  14.65  29.21  0.00  0.00  35.03  78.89  
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By comparing the energy performance of six typical working conditions (Cases 1-6), 

it can be concluded that each of the existing ventilation strategies has its limitations 

under certain internal load or ambient conditions. The proposed ADV strategy, having 

incorporated the advantages of different ventilation strategies and an adaptive 

economizer, could offer the superior energy performance in all cases by setting 

optimal outdoor airflow and activating the most energy-efficient operation mode of 

the adaptive economizer. 

3.5 Summary 

An “adaptive full-range decoupled ventilation strategy” (ADV) was developed to 

enhance the energy performance of cleanroom air-conditioning systems over the full 

range of internal load and ambient conditions. The mechanism, main advantages and 

energy performance of the proposed ADV strategy were studied and compared with 

the other three existing strategies based on the cleanroom air-conditioning systems of 

a pharmaceutical manufacturing building located in Hong Kong. The following 

conclusions can be made: 

i. Compared with the existing ventilation strategies, the proposed strategy has 

superior energy performance over the full range of internal load and ambient 

conditions. 

ii. Under hot and humid outdoor conditions, while the economizer is not activated, 

the proposed strategy can minimize system energy consumption by avoiding sub-

cooling and reheating as far as beneficial via the best use of MAU for 

dehumidification. 
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iii. Under dry and cool outdoor conditions, while the economizer is activated, the 

proposed strategy can optimize the outdoor air intake by the full use of the outdoor 

air “free cooling” and “free dehumidification” capacities. 
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CHAPTER 4 PERFORMANCE EVALUATION AND 

APPLICATIONS OF PROPOSED STRATEGY IN 

DIFFERENT CLIMATE ZONES 

Although the proposed “adaptive full-range decoupled ventilation (ADV) strategy” 

shows superior energy performance, the successful and full applications of the ADV 

strategy in practical applications are still facing the following questions: i) actual 

energy performance in different climates; ii) the new design and the needs of 

modifications in retrofitting existing systems and their cost-benefits; and iii) proper 

selection of the optimal alternatives from various operation modes in different climatic 

conditions. 

These questions are addressed by annual energy simulation tests with following tasks: 

i) evaluation of the energy and economic performance when implementing the ADV 

strategy in different climate zones, ii) investigation of the air-conditioning system 

design and the needs for existing system retrofitting, and iii) identification of the most 

suitable operation modes of the proposed ADV strategy when implemented in 

different climatic conditions. This chapter is organized as follows. Section 4.1 

introduces the test locations in typical climate zones and design conditions.  Section 

4.2 presents the annual energy saving potential and the preferable operation modes of 

the ADV strategy in different climatic conditions. Required air-conditioning system 

design and cost-benefit are evaluated and analysed in Section 4.3. The results of the 

tests and investigation are presented in Section 4.4. 
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4.1 Selection of test locations in typical climate zones and design 

conditions 

4.1.1 Selection of test locations 

Due to the large land area across a wide range of latitudes and complexities of 

topography, the climates are of large diversities in China (He, Yang, & Ye, 2014). In 

terms of the thermal design of buildings, a major climate classification is developed 

to distinct climatic features (MOHURD, 1993). The five major climate zones of this 

classification are as follows: severe cold, cold, hot summer and cold winter, temperate 

as well as hot summer and warm winter. Figure 4.1 shows the overall layout of the 

five major climate zones. Due to varying topology and elevation, the five climate 

zones are further divided into two or three subregions although they are not shown in 

the figure (MOHURD, 2015). Nine test locations, including Harbin (severe cold, 

45.8°N and 126.8°E), Urumqi (severe cold, 43.8°N and 87.6°E), Beijing (cold, 39.9°N 

and 116.3°E), Lhasa (cold, 29.7°N and 91.0°E), Shanghai (hot summer and cold winter, 

31.2°N and 121.4°E), Chongqing (hot summer and cold winter, 29.9°N and 108.6°E), 

Kunming (temperate, 25.0°N and 102.7°E), Nanning (Hot summer and warm winter, 

22.8°N and 108.4°E) and Hong Kong (Hot summer and warm winter, 22.3°N and 

114.2°E), within each of the five climate zones were selected for the analysis.  
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Figure 4.1 Geographical distribution of five major climates and nine cities   

(MOHURD, 1993) 

4.1.2 Building parameters 

The air-conditioning subsystem concerned (i.e. serving the space with a total floor area 

of 369.7 m2) has the system configuration as shown in Figure 2.4, containing the axial 

fans, chilled water-cooling coils, an electric heater, an electric steam humidifier and 

other accessories. It is worth noticing that no infiltration was considered in the load 

calculation due to the positive pressure control requirement on cleanrooms. The 

pharmaceutical building model was assigned envelope parameters, ventilation rates, 

internal loads, operating schedules, as well as indoor temperature and relative 

humidity setpoints compliant with prescriptive requirements or recommended design 

values in Chinese building energy efficiency standards (Wang & Zhang, 2015). The 

detailed characteristics of the simulated building are shown in Table 4.1. The load 

patterns of lighting, occupancy and equipment are shown in Figure 4.2.  
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Table 4.1  Characteristics of the simulated building 

Description Parameter Value 

Envelope details 

(MOHURD, 

2015) 

Roof thermal transmittance 

(W/m2·K) 

0.28 (Harbin), 0.35 (Urumqi), 0.45 

(Beijing & Lhasa), 0.5 (Shanghai & 

Chongqing), 0.8 (Kunming, Nanning 

& Hong Kong) 

Wall thermal transmittance 

(W/m2·K) 

0.38 (Harbin), 0.43 (Urumqi), 0.5 

(Beijing & Lhasa), 0.8 (Shanghai & 

Chongqing), 1.5 (Kunming, Nanning 

& Hong Kong) 

Window thermal 

transmittance (W/m2·K) 

2.7 (Harbin), 2.9 (Urumqi), 3.0 

(Beijing & Lhasa), 3.5 (Shanghai & 

Chongqing), 5.2 (Kunming, Nanning 

& Hong Kong) 

Window to wall ratio 

(WWR) 
0.2 

Indoor design 

conditions 

Temperature (°C) 20 ± 3 

Relative humidity (RH) (%) 55 ± 10 

Concerned space volume 

(m3) (length × width × 

height) 

1,035 (23.7×15.6×2.8) 

Outdoor and 

supply airflow 

Outdoor air changes per 

hour (ACH) 
2 

Supply air changes per hour 

(ACH)   
20 

Installed fans 

specification  

MAU fan pressure (Pa) 1,100 

AHU fan pressure (Pa) 850 

Fan efficiency (%) 60 

Internal loads 

(Sensible & latent 

heat) 

Lighting (W/m2)  13.9 + 0 

Occupants (W/m2)  22 + 37 

Equipment (W/m2)  57 + 19 

Internal load 

pattern 

Lighting  See Figure 4.2, referring to the 

defaults given 

in BEAM Plus (Burnett, Yik, Lee, 

Powell, & Tang, 2001) 

Occupancy  

Equipment  
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Figure 4.2 Load patterns of lighting, occupancy and equipment in the simulated 

building 

4.1.3 Weather conditions 

Typical Meteorological Year of different locations (Marion & Urban, 1995), which 

contains typical hourly weather data obtained from the Meteonorm database (Remund, 

Kunz, & Lang, 1999), were used for the whole-year building energy analysis. Figure 

4.3 presents the hourly TMY2 weather data on the psychrometric chart and the 

distribution of outdoor conditions in different regions for one year in Hong Kong. By 

selecting the indoor humidity at the lower-limit (23 °C, 45%) and upper-limit (23 °C, 

65%) as reference indoor conditions (point O1 and O2), the psychrometric chart can be 

divided into four regions based on differences between the outdoor and indoor air 

states. The air-conditioning systems should operate using non-economizer modes (i.e. 

the economizer is not activated) in regions I and II, while the systems were of high 

probability to operate using economizer modes in regions III and IV. Region I 

represents the humid outdoor conditions. The outdoor air humidity was higher than 

the upper-limit humidity of indoor air, so the MAU needed to dehumidify the outdoor 

air for removing the moisture. Region II represents the hot-dry outdoor air conditions. 

It was possible to remove all the indoor moisture by the introduction of the proper 
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outdoor airflow under low internal latent load conditions, while the cooling was still 

required to remove the sensible heat. Region III represents the cool-dry outdoor 

conditions. Through the introduction of cool outdoor air by the economizer cycle, the 

indoor environment was likely to be controlled at the allowable range even without 

additional cooling/dehumidification. Region IV represents the cold-dry outdoor 

conditions. Due to low temperature and humidity of outdoor air, heating and 

humidification were possibly needed to maintain the required indoor temperature and 

relative humidity. 

 

Figure 4.3 Hourly outdoor conditions for one year in Hong Kong 

Figure 4.4 presents the fraction of outdoor conditions that fell into each psychrometric 

region for nine selected cities. Nanning and Hong Kong, located in hot summer and 

warm winter climate zone, were hot and humid with over 60% of outdoor conditions 

fell into region I. Harbin, Urumqi, Beijing and Lhasa, located in the cold/severe cold 

zones, had more than 60% of time in the cold-dry region (i.e. region IV). Shanghai 
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and Chongqing, located in hot summer and cold winter climate zone, had more than 

30% of the time in both region I and region IV, with distinct dry and wet climates. 

Kunming, located in temperate climate zone, had more than 30% of the time in cool-

dry outdoor conditions (region III), significantly higher than that of the other cities. It 

can also be seen that, in moderate, cold and severe cold climate zones, the ambient 

conditions had a significant fraction falling into regions III and IV. These were the 

regions in which the economizer modes should be well-selected and applied. For the 

cities in hot climatic conditions, the non-economizer modes operated for the most time 

through a year. 

 

Figure 4.4 Fraction of a year for different psychrometric chart regions in different 

cities 

4.1.4 Load conditions 

Assuming that the indoor temperature and relative humidity of the cleanrooms were 

controlled at its upper limit (23 °C, 65%), the hourly space cooling loads of cleanrooms 

in nine cities were calculated in TRNSYS 18 (2017) as shown in Figure 4.5. Here the 
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cooling loads resulted from heat transfer processes through the building envelope 

(external elements) and internal sources while the outdoor air load (or ventilation load) 

was not taken into account. This is due to the outdoor air load was determined by the 

ventilation strategy adopted and handled by the MAU before entering the spaces. The 

mean sensible cooling loads varied between 23.6 W/m2 (Kunming) and 36.4 W/m2 

(Hong Kong), and the mean total cooling loads varied between 44.3 W/m2 (Kunming) 

and 57.4 W/m2 (Hong Kong). Although the selected cities are located in different 

climate zones, the space cooling load distributions had no significant difference when 

the outdoor air load was not taken into account.  

 

Figure 4.5 Space cooling load distributions of cleanrooms in nine cities 

4.2 Energy-saving potentials and preferable operation modes in 

different conditions 

The total electrical load of the cleanroom air-conditioning system was evaluated using 

the component and system energy models as introduced in Section 3.3. This total load 
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is composed of electrical loads from the MAU/AHU cooling coil, AHU heater, AHU 

humidifier, make-up air fan and supply air fan.  

In order to demonstrate the energy and economic performance of the proposed ADV 

strategy, the interactive control (IC) strategy was selected as a reference ventilation 

strategy for comparison purposes. The IC strategy is the most commonly used in 

cleanroom air-conditioning systems as presented in Section 2.2.1. In addition, an 

enthalpy-based economizer was incorporated into the IC strategy to improve the 

energy performance under cool/cold outdoor conditions. 

The energy performance of the ADV strategy was assessed and compared with the 

existing IC strategy in the selected nine cities. Figure 4.6 shows the annual energy 

consumption of different components adopting the IC strategy and ADV strategy. It 

can be seen that the annual energy consumption of the air-conditioning systems 

adopting the ADV strategy can be 6.8-40.8% less than that of the IC strategy. 

Compared with adopting the IC strategy, although more MAU cooling was required, 

a large amount of AHU cooling and heating energy consumption was reduced. This 

indicates that the overcooling and reheating processes were significantly reduced 

when adopting the proposed ADV strategy. In addition, for the cities in hot/temperate 

regions (i.e. Shanghai, Chongqing, Nanning, Hong Kong and Kunming), the energy 

savings (over 34%) were more significant than that in cold regions (i.e. Harbin, 

Urumqi, Beijing and Lhasa). It is worth noticing that applying the ADV strategy in 

Urumqi can only achieve 6.8% energy saving, which was the least among all the cities. 

The reason is that Urumqi is cool/cold and dry throughout a year, and the dry outdoor 

air can be directly induced for removing the indoor latent heat to avoid overcooling 

and reheating processes, resulting in little difference between using the ADV strategy 

and IC strategy in most operation time. 
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Figure 4.6 Annual energy consumption of adopting existing IC strategy and 

proposed ADV strategy in nine cities 

The running frequencies (%) of different control modes of the ADV strategy are 

presented as in Figure 4.7, to illustrate how the significant energy savings were 

achieved. The non-economizer modes accounted for more than 50% running time 

through a year in all selected cities. In this figure, the PD/DV mode represents that 

there is no difference between the PD mode and DV mode, which indicates all 

moisture heat can be removed at the minimum required outdoor airflow (i.e. 2 ACH 

in this case). The PD/DV mode accounted for the largest proportion among all 

operation modes (more than 42%). It is worth noticing that overcooling and reheating 

processes (i.e. represented by PD mode in this figure) to remove the internal latent 

load were seldom used in cold and temperate regions. However, for the cities in hot 

climate regions, such as Hong Kong, the overcooling and reheating processes were 

still adopted due to the high internal latent load and outdoor air enthalpy. The FL mode 

had the lowest running frequency in all cities. The running frequency of economizer 

mode was highest in Lhasa (45.6%), due to the high cooling/dehumidification 

potentials under plateau climatic conditions. 
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Figure 4.7 Running frequencies (%) of different control modes of ADV strategy 

To simplify the operations adopting the ADV strategy in real applications, it is 

recommended to only use DV mode in severe cold/cold and moderate regions due to 

the low running frequency of using PD mode (less than 2%). In addition, when the 

economizer was activated, the FL and FS modes were the main economizer modes in 

severe cold and cold regions (Harbin, Urumqi, Beijing and Lhasa), while the FS mode 

was the main economizer mode in hot or temperate regions (Shanghai, Chongqing, 

Nanning, Hong Kong and Kunming). 

Both the operation frequencies of economizer mode and energy-saving ratios when 

adopting the ADV strategy had a high correlation with the outdoor air humidity of 

locations as shown in Figure 4.8. Figure 4.8A presents the relations between the annual 

mean absolute humidity of outdoor air and frequencies of economizer mode in 

different locations. It can be seen that economizer modes were more frequently used 

for the cities in dry climatic conditions. Figure 4.8B presents that the overall energy 
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saving ratios were higher in humid climates than that in dry climates when adopting 

the ADV strategy. This indicates climate conditions, especially the outdoor air 

humidity, significantly influence the selection of best operation modes, and thus the 

energy performance of the systems.   

 

Figure 4.8 Annual mean absolute humidity of outdoor air vs. A) frequencies of 

economizer mode B) energy-saving ratios in different locations  

4.3 Requirements on air-conditioning system design and cost-

benefit analysis 

Due to the strict requirements on temperature and humidity controls in cleanrooms, it 

is assumed that the component capacities should meet the maximum cooling/heating 

demands of a year. Therefore, the required capacities of the cooling coils, heater and 

humidifier were determined by the hourly maximum cooling, heating and 

humidification demands, respectively. The required powers of the MAU and AHU 

fans were determined by the maximum outdoor and supply airflow, respectively. The 

required capacities of air-conditioning components for implementing the IC and ADV 

strategies are shown in Figure 4.9. In general, the implementation of the ADV strategy 
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required larger capacities of MAU cooling coil, which can be 3.1 (Chongqing) to 9.4 

times (Urumqi) as larger as that for the IC strategy. In contrast, the required capacities 

of other components (i.e. fans, AHU cooling coil, humidifier and heater) were not 

larger or equal to that for the IC strategy. This result also offered a good reference for 

the existing system (i.e. initially adopting the IC strategy) retrofit and new system 

design. For the full implementation of the ADV strategy in an existing system, only 

the size of the MAU cooling coil was required to be enlarged while the other 

components can be unchanged. For the full implementation of the ADV strategy in a 

new system, compared with the design for the IC strategy, the required capacity of the 

MAU cooling coil was larger while the required capacities of AHU cooling coil and 

heater were smaller. It is worth noticing that, when adopting the IC strategy, the 

required fan power (9.9 kW) in Urumqi was lower than the others. When the enthalpy 

economizer was activated under dry outdoor conditions adopting the IC strategy, the 

amount of outdoor air was induced to control indoor relative humidity at its higher 

limit (i.e. 65%). Due to the dry climatic conditions in Urumqi (Figure 4.8), it is found 

that the maximum 94% (proportion to total supply airflow) outdoor airflow was 

required to be induced in the test year. For other cities, which were not as dry as 

Urumqi, the maximum 100% outdoor air was required to be induced according to the 

mechanism of the economizer adopting the IC strategy. For a new design of the case 

in Urumqi, the required MAU fan power (10.5 kW) adopting the ADV strategy was 

larger than that of adopting the IC strategy (9.9 kW). However, in the retrofitting case 

(originally designed for adopting the IC strategy), the modification on the MAU fan 

was not required due to that the fan capacity can almost meet the outdoor air 

ventilation requirements when the economizer was activated.  

 



64 

 

 

Figure 4.9 Air-conditioning component design capacities for implementing IC and 

ADV strategies 

The payback period (PBP) indicates the number of years needed for the payback of 

the surplus capital cost for using the ADV strategy to replace the IC strategy. This 

value is the ratio of capital cost difference and operation cost difference as shown in 

Eq. 4.1, where ∆CC and ∆CO are the increase of system capital cost and the annual 

operation (electricity) cost saving, respectively. For new system designs, the total 

capital cost is the sum of component investment costs. For existing system retrofits, 

the total capital cost includes the component investment costs and refurbishment costs. 

The component initial cost includes the cost of AHU/MAU cooling coils (IncCC), 

AHU/MAU axial fans (Incfan), AHU electric heater (Inche) and AHU electric 

humidifier (Inchu). The cost estimates, which are the functions of the corresponding 

component capacities, were based on RSMeans Mechanical Cost Data (Mossman, 

2008) as shown in Appendix A, where £e is the local electricity price (USD/kWh), as 

shown in Table 4.2. The electricity prices of all cities except for Hong Kong were 

obtained from National Development and Reform Commission (NDRC, 2018) and the 
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electricity price of Hong Kong was obtained from China Light & Power Company 

(CLP Hong Kong, 2018).  It is worth noticing that, the component investment cost 

considering the inflation was used to fit the cost equations. In this study, the 

component investment cost (in 2019) was used for cost analysis, which was obtained 

by adding the inflation on the cost data in 2008. It is also recommended to use actual 

manufacturers' quotations, if reliable, or newly updated cost data for cost analysis. For 

the retrofitting case, the refurbishment cost of a component (including additional 

installation cost) was assumed as 30% of its incremental investment cost considering 

the possible modification and maintenance of accessories and packages (Hang et al., 

2014).  

𝑃𝐵𝑃 = {

∆𝐶𝐶

∆𝐶𝑂
=
(𝐼𝑛𝑐𝑐𝑐+𝐼𝑛𝑐ℎ𝑒+𝐼𝑛𝑐ℎ𝑢+𝐼𝑛𝑐𝑓𝑎𝑛)𝐴𝐷𝑉−(𝐼𝑛𝑐𝑐𝑐+𝐼𝑛𝑐ℎ𝑒+𝐼𝑛𝑐ℎ𝑢+𝐼𝑛𝑐𝑓𝑎𝑛)𝐼𝐶

£𝑒×(𝐸𝑡𝑜𝑡,𝐼𝐶−𝐸𝑡𝑜𝑡,𝐴𝐷𝑉)
 , Newsystemdesign

∆𝐶𝐶

∆𝐶𝑂
=
1.3[(𝐼𝑛𝑐𝑐𝑐+𝐼𝑛𝑐ℎ𝑒+𝐼𝑛𝑐ℎ𝑢+𝐼𝑛𝑐𝑓𝑎𝑛)𝐴𝐷𝑉−(𝐼𝑛𝑐𝑐𝑐+𝐼𝑛𝑐ℎ𝑒+𝐼𝑛𝑐ℎ𝑢+𝐼𝑛𝑐𝑓𝑎𝑛)𝐼𝐶]

£𝑒×(𝐸𝑡𝑜𝑡,𝐼𝐶−𝐸𝑡𝑜𝑡,𝐴𝐷𝑉)
, Existingsystemretrofit

 (4.1) 

Table 4.2 Electricity prices (USD/kWh) for non-residential buildings in each 

simulated city 

City Electricity price (USD/kWh) 

Harbin 0.110 

Urumqi 0.071 

Beijing 0.121 

Lhasa 0.106 

Shanghai 0.116 

Chongqing 0.105 

Kunming 0.089 

Nanning 0.108 

Hong Kong 0.141 

Figure 4.10 shows the payback periods for existing system retrofits and new system 

designs adopting the ADV strategy. Due to the high energy saving potentials adopting 

ADV strategy, when retrofitting an existing system, the system payback periods in all 

cities except for Urumqi were all less than 4 years. Due to the required smaller sizes 
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of the AHU, for new system designs, the system payback periods in all cities except 

for Urumqi were all less than 2 years. In addition, the cities in hot climate zones 

(Shanghai, Chongqing, Kunming, Nanning and Hong Kong) had shorter payback 

periods than that of the cities in cold/severe cold climate zones (Harbin, Beijing and 

Lhasa). Urumqi required the longest payback periods compared with other cities, 

which were 13.6 years for the existing system retrofit and 8.3 years for the new system 

design. The reason is that Urumqi is dry throughout a year, and only slight energy 

saving (6.8%) can be achieved by adopting the ADV strategy.  

 

Figure 4.10 Payback periods for existing system retrofit and new system design   

The energy and economic performance of the proposed strategy were compared with 

desiccant cooling strategies, which are the most-updated strategies for indoor 

temperature and humidity controls. Table 4.3 lists the energy performance and 

payback periods of desiccant cooling systems compared with conventional vapor 

compression air-conditioning systems in the existing studies. Compared with the 

conventional vapour compression air-conditioning systems, although the energy 

performances of the desiccant cooling systems were superior, both the capital cost and 
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system complexity of them were increased significantly. Generally, the payback 

periods of desiccant cooling systems were 2-15 years, with the energy savings of 6-

78%, depending on the selection of hybrid systems and climatic conditions.  

It is worth noticing that the acceptance of the existing strategies listed in Table 4.3 for 

cleanroom applications might still be an issue to be confirmed. In these cases, the 

payback periods presented were those for new system designs. In cases of retrofitting 

the conventional vapour compression air-conditioning systems, the payback periods 

of desiccant cooling strategies will be much higher, due to the requirements of 

replacing the existing equipment. The proposed ADV strategy offers a much better 

solution for conventional system retrofits. A significant energy saving can be achieved 

by adopting the proposed ADV strategy while only minor hardware (i.e. sizing) 

modification is required.  
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Table 4.3 Overview of desiccant cooling systems for temperature and humidity 

controls 

Author 

(Year) 

City/ 

Country 
System 

Energy 

performance 

Payback 

period (years) 

Zhang 

and Niu 

(2003) 

Hong 

Kong 

Chilled ceiling combined 

with desiccant cooling 

40% primary 

energy saving 
15 

Mazzei et 

al (2005) 
Rome 

Desiccant wheel hybrid 

system 

23-38% operating 

cost savings  
2-3 

Gasparell

a et al. 

(2005) 

Bolzano 

Ground source heat 

pumps with chemical 

dehumidification 

30% primary 

energy saving 
7.8 

Hirunlabh 

et al. 

(2007) 

Thailand 
Solid air-conditioning 

system 

24% electricity 

saving 
4 

Khalid et 

al. (2009) 
Karachi 

Solar assisted pre-cooled 

hybrid desiccant cooling 

system 

6% thermal 

energy saving 
14 

Ge et al. 

(2010) 

Berlin 

and 

Shanghai 

Solar driven two-stage 

rotary desiccant cooling 

system 

78% (Berlin) and 

69% (Shanghai) 

electricity saving 

4.7 (Berlin) / 

7.2 (Shanghai)  

Li et al. 

(2010) 

Hong 

Kong 

Solar-assisted liquid 

desiccant cooling system 

Maximum 59.6% 

electricity saving  
7 

Qi et al. 

(2015) 
Singapore 

Solar-assisted liquid 

desiccant cooling system 

40% electricity 

saving 
6 

4.4 Summary 

This chapter presented the energy and economic performance, the required air-

conditioning system design and the most suitable operation modes of the proposed 

ADV strategy for cleanrooms or spaces requiring strict temperature and humidity 

controls under different climatic conditions. Based on the results of the tests and 

investigation, some detailed conclusions can be drawn as follows: 

i. The ADV strategy offers significant and promising energy savings in different 

climate zones. The annual energy consumption of the air-conditioning systems 

could be reduced by 6.8-40.8% when implementing the proposed ADV strategy, 
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compared with the most commonly used existing interactive control (IC) strategy. 

It has higher energy saving potentials in humid climates compared with that in 

dry climates. 

ii. When the economizer is not activated, dedicated outdoor air ventilation (DV) 

mode is highly recommended as the main operation mode of the ADV strategy in 

severe cold/cold and moderate regions. When the economizer is activated, the 

“following sensible load” (FS) mode and “lower-limit humidity control” (LL) 

mode are the recommended operation modes in cold/severe cold climate zones 

while the “following sensible load” (FS) mode is the recommended operation 

mode in hot/temperate climate zones. 

iii. For the full implementation of the ADV strategy in retrofitting an existing system 

(i.e. initially adopting the IC strategy), only the size of the MAU cooling coil 

needs to be enlarged while the other components can keep unchanged. For a new 

system design, the required capacities of the AHU cooling coil and heater are even 

smaller compared with those designed for the IC strategy.     

iv. The payback periods of existing system retrofits and new system designs could 

be less than 4 years and 2 years respectively in most climates when the ADV 

strategy is fully implemented. 
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CHAPTER 5 UNCERTAINTY-BASED ROBUST 

OPTIMAL DESIGN OF CLEANROOM AIR-

CONDITIONING SYSTEMS  

The practical implementation of the ventilation strategy requires proper system design 

and selection of air-conditioning components. The objective of design optimization is 

to minimize the life-cycle cost and provide systems with the robustness to operate at 

high energy efficiency under ever-changing dynamic working conditions. An 

uncertainty-based robust optimal design method for cleanroom air-conditioning 

systems is therefore proposed in this chapter. This chapter is organized as follows. 

Section 5.1 illustrates the problems concerned in the design of multi-zone cleanroom 

air-conditioning systems. To address these unexpected problems, an uncertainty-based 

robust optimal design method is proposed and an outline of this method is shown in 

Section 5.2. The quantification of inherent uncertainties involved, including design 

input uncertainties and load diversities among zones/spaces, are elaborated in Section 

5.3. The detailed procedure of the optimization process is presented in Section 5.4. 

The proposed design method is tested and validated using an existing pharmaceutical 

building as a reference building in Section 5.5. Conclusive remarks are presented in 

Section 5.6. 
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5.1 Challenges addressed in cleanroom air-conditioning system 

design 

Chapter 4 has presented the required component capacities and design of air-

conditioning systems for implementing the proposed ADV strategy, by considering 

the year-around operation conditions which are certain and presumed at the design 

stage. The sizing of the components was determined basically using the annual 

maximum cooling/heating demand. However, the proper and optimal design for 

cleanroom air-conditioning systems is particularly associated with ever-changing 

working conditions and the uncertainties of information used.  These challenges are 

summarized as follows, which are the main issues to be addressed. 

i. System design should coordinate effectively with certainly preferred ventilation 

strategy. The air-conditioning systems need to be designed with sufficient 

consideration on their coordination with a certain properly selected optimal and 

energy-efficient ventilation strategy to facilitate the systems to work at high 

energy efficiency under different off-design conditions.  

ii. System design should properly consider the accuracy of input data/information 

which can be rather different from that in real operation. Such inherent deviations 

are regarded as “uncertainties”. Due to the existence of uncertainties, the actual 

conditions of air-conditioning systems in operation often deviate significantly 

from those projected at the design stage.  

iii. System design should properly consider the realistic distribution of cooling loads, 

which could greatly affect the cooling demands on the air-conditioning 

subsystems associated with a zone, and the corresponding component capacities 

needed. The uneven distribution issue of the cooling load is regarded as the 
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diversity of the cooling load distribution. The cooling loads of different spaces in 

a zone could have large discrepancies at any moment and change with time (Zhou, 

Yan, Jiang, & Shi, 2016). The load diversities of multiple spaces (including 

sensible and latent loads), two of the major uncertainties in operation which are 

usually neglected in system design, affect the operation performance of air-

conditioning systems significantly (An, Yan, Hong, & Sun, 2017; Virote & 

Neves-Silva, 2012; Yu, Fung, Haghighat, Yoshino, & Morofsky, 2011).  

5.2 Outline of proposed uncertainty-based robust optimal design 

method 

Figure 5.1 shows the typical configuration of the multi-zone cleanroom air-

conditioning systems for multiple spaces requiring strict temperature and humidity 

controls. It consists of an MAU and a few AHUs. Each AHU might serve a few spaces. 

It is worth noticing that, different from the system configuration presented in previous 

chapters (i.e. 2-4) (one MAU and one AHU serve one zone/space), the cleanroom air-

conditioning system concerned here is typical in practical applications, which serves 

multiple zones (i.e. each served by an AHU) and each zone contains multiple spaces. 

This practically typical system configuration is considered in design optimization.   

 

Figure 5.1 System configuration of a typical multi-zone air-conditioning system 
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Figure 5.2 presents the procedure and major steps of the proposed design method for 

multi-zone cleanroom air-conditioning systems. The objective of the design 

optimization is to minimize the life-cycle cost and provide systems with the robustness 

to operate at high energy efficiency under ever-changing dynamic working conditions. 

The main challenges to be addressed are associated with the impacts of: i) variation of 

working conditions due to changes of ambient and internal loads; ii) the diversities of 

space latent and sensible loads, particularly sensible heat ratios (SHRs), among 

different spaces; and iii) the uncertainties of the ambient conditions and internal loads 

as well as their diversities. 

 

Figure 5.2 Procedure and steps of proposed uncertainty-based robust optimal design 

method using a probabilistic approach  

The objective function for optimization is the overall annualized total cost (COT,a) (i.e. 

Eq. 5.1), which includes the annualized values of capital cost (CC,a), maintenance cost 

(CM,a), operation (or energy) cost (CO,a) and penalty cost (CP,a). The operation cost 

includes the total cost of electricity consumed by air-conditioning components (Etot). 

The penalty cost is introduced to consider the impacts of insufficient cooling and 

dehumidification capacities to ensure the designed systems with a high level of service 

satisfaction. The system optimal design consists of three major steps involving the 
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quantification of these variations/diversities and their inherent uncertainties. In the 

first step, the design inputs (involving uncertainties) and design constraints are 

selected, including building envelope parameters, design indoor and ambient 

conditions, assumed efficiency and air-conditioning system constraints as well as the 

search ranges for the system design parameters (i.e. component capacities) to be 

optimized. The purpose of this step is to obtain the required information for design 

optimization. In the second step, the annual overall probabilistic sensible/latent 

cooling demands of individual AHUs in each zone are obtained, which involve 

quantified uncertainties and diversities of spaces. The design input uncertainties (i.e. 

weather, building construction and indoor conditions) are considered in the overall 

zone cooling load calculation with different trials. The diversities of spaces in a zone 

are considered by adopting a simplified method (namely ‘probabilistic diversity factor 

method’). Two probabilistic load diversity factors are introduced in this method. The 

probabilistic sensible and latent cooling demands (Dsen, Dlat) are then obtained using 

the space sensible and latent load distributions within a zone (Zsen, Zlat) multiplied by 

the space sensible and latent load diversity factors (with quantified distributions), as 

shown in Eqs. 5.2-5.3. The probabilistic diversity factors (βd,sen, βd,lat) represent the 

design input uncertainties during sensible and latent load calculations and their 

asynchrony in multiple spaces. The purpose of this step is to effectively quantify the 

design input uncertainties and the uncertainties due to the asynchronous behaviours of 

multiple spaces. In the third step, an “optimizer” determines the optimal component 

capacities by evaluating the overall system performance with various trials of 

component capacities within their search ranges. The purpose of this step is to find the 

optimal sizes for air-conditioning components based on the probabilistic cooling load 

profiles. A system energy model (Eq. 5.4), which is a function of dynamic cooling 
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demands of zones (Dsen, Dlat), is used to estimate the energy consumption (Etot) of the 

systems adopting a selected optimal ventilation control strategy (e.g. adaptive full-

range decoupled ventilation strategy). Here COPc and COPhe are the overall 

coefficients of performance for the central cooling and heating systems, respectively. 

For the central cooling system, the overall coefficient of performance of the central 

cooling system (COPc) including the pumps and the chiller is assumed to be constant 

as 2.5 when calculating the overall electricity use (Stetiu, 1999; Sun, Wang, & Zhu, 

2011). COP of the heating system (COPhe) is assumed to be constant as 1.0 due to the 

heating energy is provided by the electric heaters. Wf,MAU and Wf,AHU are the fan powers 

of the MAU and AHUs, respectively. Qcc,MAU and Qcc,AHU are the MAU and AHU 

cooling loads, respectively. Qhe,AHU is the AHU heating load. The detailed optimization 

process is shown in Figure 5.2 and elaborated as follows. 

 𝐶𝑂𝑇,𝑎 = (𝐶𝐶,𝑎 + 𝐶𝑀,𝑎 + 𝐶𝑂,𝑎) + 𝐶𝑃,𝑎                  (5.1) 

 𝐷𝑠𝑒𝑛 = 𝑍𝑠𝑒𝑛 ∗ 𝛽𝑑,𝑠𝑒𝑛   (5.2) 

 𝐷𝑙𝑎𝑡 = 𝑍𝑙𝑎𝑡 ∗ 𝛽𝑑,𝑙𝑎𝑡    (5.3) 

 𝐸𝑡𝑜𝑡 =
𝑄𝑐𝑐,𝑀𝐴𝑈

𝐶𝑂𝑃𝑐
+𝑊𝑓,𝑀𝐴𝑈 + ∑ (

𝑄𝑐𝑐,𝐴𝐻𝑈,𝑖

𝐶𝑂𝑃𝑐
+
𝑄ℎ𝑒,𝐴𝐻𝑈,𝑖

𝐶𝑂𝑃ℎ𝑒
+𝑊𝑓,𝐴𝐻𝑈,𝑖)

𝑘
𝑖=1 = 𝑓(𝐷𝑠𝑒𝑛,𝑖, 𝐷𝑙𝑎𝑡,𝑖)    (5.4)  

For retrofitting the air-conditioning systems of existing buildings, the improper sizing 

problems can be easily addressed through the analysis of the operation data. However, 

for new buildings in the design phase, various inherent uncertainties exist which need 

to be considered for accurate cooling load estimations. With the probabilistic estimates 

of cooling load distributions, the air-conditioning components are of higher 

probability to be properly designed, to avoid both under-sizing and over-sizing 

problems. Compared to current engineering practice involving detailed design 

calculation (Domínguez-Muñoz et al., 2010; Gang, Wang, Shan, & Gao, 2015; Sun et 
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al., 2014), no additional information is required at the design stage except the 

information or assumption on the load diversities among multiple zones/spaces. In the 

design stage, the model inputs required for design include the space control 

requirements, building layout, envelop parameters, historical weather, internal load 

conditions and possible distributions of concerned parameters, which are all the same 

as needed in current design practice when detailed design calculation is conducted. 

The users can obtain the information from the planning guide, local standards and 

regulations. However, for the multi-zone air-conditioning systems, each zone may 

contain several spaces. If the uncertainties in spaces were all considered individually, 

the calculation process would be very complicated. Therefore, to consider the effects 

of asynchronous loads in different zones/spaces with reduced computation demand, a 

probabilistic diversity factor method is proposed, which offers a simplified method to 

quantify the effects of uncertainties of space load diversities in multiple zones/spaces 

using diversity factors. More detailed descriptions are shown in Section 5.3. 

5.3 Uncertainty quantification in cooling demand calculation 

5.3.1 Quantification of design input uncertainties  

The uncertainties in design inputs are quantified by adopting the commonly-used 

Monte Carlo method (Doucet, De Freitas, & Gordon, 2001; Janssen, 2013). Based on 

inputs (x1, x2, …, xn), the outputs Q (i.e. sensible/latent cooling loads of a space) are 

obtained using Eq. 5.5. The design inputs involving uncertainties (X) are generated by 

Monte Carlo simulation using Eq. 5.7, according to their probability distributions (G). 

The probabilistic cooling loads of a zone (Z), which are usually regarded as the sum 

of the cooling loads of the corresponding spaces, are then obtained using building 

energy simulation software. 
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 𝑄 = [𝑞1, 𝑞2, … , 𝑞8760] = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)   (5.5) 

 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑛]   (5.6) 

 𝑋𝑖 = [𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑚]
𝑇 , 𝑋𝑖~𝐺𝑖 |𝑗 = 1,2, … , 𝑛   (5.7) 

 𝑍 = [𝑄1, 𝑄2, … , 𝑄𝑚]
𝑇 = 𝑓(𝑋1, 𝑋2, …𝑋𝑛)    (5.8) 

Three groups of variables X, including weather, building construction and indoor 

conditions, are selected and quantified as the design inputs. For the weather parameter, 

historical measurements of weather data are used, which is proved to be a better way 

to account for the weather uncertainties (Sun et al., 2014). For other variables, 

triangular distributions, normal distributions and uniform distributions are used 

respectively according to the characteristics of their variations. Latin Hypercube 

Sampling (LHS) method is used to improve the calculation efficiency (Saltelli, 

Tarantola, & Campolongo, 2000). By importing the samples into the cooling load 

calculation software, both the sensible and latent cooling load of the multiple spaces 

can be obtained. 

5.3.2 Quantification of multi-space load diversity effects concerning uncertainties 

As a major task and challenge, the diversities of sensible and latent cooling loads of 

the multiple spaces in a zone are quantified to take their effects and uncertainties into 

account. To reduce the computation complexity, a probabilistic diversity factor 

method is proposed, which is a simplified method to quantify uncertain space load 

diversities by introducing two probabilistic diversity factors (βd,sen, βd,lat) for sensible 

and latent loads respectively. These diversity factors are defined as the ratio of actual 

sensible (or latent) cooling demand (due to the need for over-cooling) to the sum of 

the cooling loads of all spaces concerned (Eqs. 5.9-5.10). Probabilistic diversity 

factors are introduced to quantify the load diversity effects of multiple spaces under 
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possible load profiles in a zone. Here, AHU supply air temperature (ts) and humidity 

(ws) of a zone are determined according to the air state of the critical space (associated 

to the zone) in each time step (Eqs. 5.11-5.12). ms is the supply airflow rate (kg/m3). 

tspace is the actual space temperature (°C). tset is the space temperature set-point (°C). 

wspace is the actual space humidity (kg/kg). wset is the space humidity set-point (kg/kg). 

k is the number of a space in a zone. Qsen,k and Qlat,k are the sensible and latent cooling 

load of space k (kW), respectively. cp is the air specific heat ratio (kJ/(m3•°C). hfg is 

the latent heat of vaporization (kJ/kg).  

 𝛽𝑑,𝑠𝑒𝑛 =
∑𝑚𝑠,𝑘(𝑡𝑠𝑝𝑎𝑐𝑒,𝑘−𝑡𝑠)

∑𝑚𝑠,𝑘(𝑡𝑠𝑒𝑡,𝑘−𝑡𝑠)
= 𝑓1(𝑄𝑠𝑒𝑛,𝑘)|𝑘 = 1,2, … ,𝑚  (5.9) 

 𝛽𝑑,𝑙𝑎𝑡 =
∑𝑚𝑠,𝑘(𝑤𝑠−𝑤𝑘)

∑𝑚𝑠,𝑘(𝑤𝑠−𝑤𝑠𝑒𝑡,𝑘)
= 𝑓2(𝑄𝑠𝑒𝑛,𝑘, 𝑄𝑙𝑎𝑡,𝑘)|𝑘 = 1,2, … ,𝑚 (5.10) 

 𝑡𝑠 = 𝑚𝑖𝑛(𝑡𝑠𝑝𝑎𝑐𝑒,𝑘 −
𝑄𝑠𝑒𝑛,𝑘

𝑐𝑝𝑚𝑠,𝑘
)|𝑘 = 1,2, … ,𝑚 (5.11) 

 𝑤𝑠 = 𝑚𝑖𝑛(𝑤𝑠𝑝𝑎𝑐𝑒,𝑘 −
𝑄𝑙𝑎𝑡,𝑘

ℎ𝑓𝑔𝐺𝑠,𝑘
)|𝑘 = 1,2, … ,𝑚 (5.12) 

Both diversities and their probability distributions considering uncertainties among 

different spaces in a zone will be identified according to the main steps using the 

probabilistic diversity factor method as shown in Figure 5.3. Based on the sensible and 

latent cooling load profiles of multiple spaces (i.e. the uncertain load data generated 

by Monte Carlo simulation in this study) and design constraints, the parameters of two 

diversity factor models are identified by the “model identification” scheme involving 

four steps as follows. In the first step, the diversity factors of both sensible and latent 

loads (SLDF/LLDF) are calculated based on the individual space loads as shown in 

Eqs. 5.9-5.10. In the second step, the diversity factors are classified into different 

clusters using the k-means clustering algorithm (Meesrikamolkul, Niennattrakul, & 

Ratanamahatana, 2012). In the third step, the correlations between the diversity factors 

and working conditions are identified using the decision-tree method (Quinlan, 1986), 
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which is one of the most commonly-used data mining approaches. In the fourth step, 

the probability distributions of two diversity factors in each cluster are quantified by 

fitting the data using typical distribution functions. In this study, the datasets (e.g. 

ambient conditions, sensible load ratio and space loads) of Zone 1 were used to 

quantify the diversity factors and train the diversity factor models, while the datasets 

of Zone 2 and Zone 3 were used to validate the models.  

The detailed approaches for the quantification of load diversities of multiple spaces in 

a zone considering uncertainties are elaborated as follows. 

 

Figure 5.3 Main steps of proposed probabilistic diversity factor method 

Clustering the load diversity factors: The task of this step is to categorize the data of 

the load diversity factors into proper clusters/subgroups, according to their magnitude 

and pattern. The k-means algorithm (Meesrikamolkul et al., 2012) is employed to 

ensure: i). instances in the same cluster have high similarity, and ii). instances in 

different clusters have low similarities. In the clustering process, the dissimilarity of 

the diversity factors is evaluated using the Euclidean distance (Han, Pei, & Kamber, 

2011) and the optimal number of clusters is evaluated by the Calinski-Harabasz (C-H) 

criterion (Maulik & Bandyopadhyay, 2002). 

Identification of the correlations between the diversity factors and working conditions: 

The task of this step is to create a decision tree model that predicts the value of target 

Calculating the diversity factors of sensible and latent loads
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variables based on predicted variables of the dataset. The target variables of the 

decision tree are the number of a cluster (i.e. Cluster 1, 2, …, n). The predicted 

variables are the ambient and internal load conditions, including the mean outdoor air 

temperature (Tavg), humidity (Wavg) and sensible heat ratio (SHRsum) during the 

operating period (i.e. 9:00-18:00) of a day, where SHRsum is the ratio of the total 

sensible cooling load to the total cooling loads of all spaces associated to an AHU, as 

shown in Eq. 5.13.   

 𝑆𝐻𝑅𝑠𝑢𝑚 =
∑ 𝑄𝑠𝑒𝑛,𝑘
𝑚
𝑘=1

∑ 𝑄𝑡𝑜𝑡,𝑘
𝑚
𝑘=1

     (5.13) 

The dataset (including predicted variables and target variables) is automatically and 

randomly split into two subsets, marked as “training set” (i.e. 3/5 of total data) and 

“testing set” (i.e. 2/5 of total data). The standard classification and regression trees 

(CART) algorithm (Breiman, Friedman, Stone, & Olshen, 1984) is employed to 

generate the decision tree using the training set. The decision tree is validated by cross-

validation (using the test set) to estimate the statistical performance of the 

classification. 

Fitting of the probability distribution for clusters: The task of this step is to fit the 

probability distributions for each cluster. For each cluster, the probability distributions 

of diversity factors (in each hour) are firstly fitted using four commonly-used 

probability density functions (PDFs): i.e. Normal distribution, Gamma distribution, 

Weibull distribution and Lognormal distribution (Forbes, Evans, Hastings, & Peacock, 

2011). The detailed functions can be found in Table 5.1. The parameters defining these 

four PDFs are estimated based on the commonly-used the maximum likelihood 

method (Holland, Fitz-Simons, & Hopke, 1982) while the Kolmogorov-Smirnov (K-

S) test is introduced as the error metric to evaluate the fitness of each PDF (Weber, 
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Leemis, & Kincaid, 2006). The minimum K-S error of the four distributions is then 

selected as the target distribution function, where ‘K-S error’ is the maximum absolute 

difference between the CDFs of the distributions of the two data vectors, as shown in 

Eq. 5.14. 

 𝐾 − 𝑆𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥(|�̂�1(𝑥) − �̂�2(𝑥)|)     (5.14) 

Table 5.1 Detailed descriptions of four commonly-used probability distribution 

functions 

Distribution Probability density function Coefficient description 

Normal 𝑓(𝑥|𝜇, 𝛿) =
1

𝛿√2𝜋
𝑒
−(𝑥−𝜇)2

2𝛿2  
μ is the mean parameter, and σ is the 

standard deviation parameter. 

Lognormal 𝑓(𝑥|𝛾, ∅) =
1

𝑥∅√2𝜋
𝑒
−(𝑙𝑛𝑥−𝛾)2

2∅2  
γ is the mean parameter of ln(x) and ∅ is 

the standard deviation parameter of ln(x) 

Gamma 𝑓(𝑥|𝛼, 𝛽) =
𝑥𝛼−1𝑒

(−
𝑥
𝛽
)

𝛽𝛼𝛤(𝛼)
 

α is a shape parameter, β is an inverse 

scale parameter, and Γ(α) is a complete 

Gamma function 

Weibull 𝑓(𝑥|𝜆, 𝑘) =
𝑘

𝜆
(
𝑥

𝜆
)𝑘−1𝑒(−

𝑥
𝜆
)𝑘

 
λ is the scale parameter, and k is the shape 

parameter 

 

5.4 Detailed description of optimization method 

Energy models are developed in Chapter 3.3 to estimate the energy performance of 

the air-conditioning systems under different load and ambient conditions, which are 

controlled ideally by the ventilation strategies concerned respectively. The optimal 

design of the system for implementing the “adaptive full-range decoupled ventilation 

(ADV) strategy” is the focus of this study compared with that of the other three 

ventilation strategies. The ADV strategy is a recommended ventilation strategy for 

cleanrooms, which takes into account the interaction among different air-conditioning 

components/zones and provides systems with the robustness to operate at high energy 

efficiency under ever-changing dynamic working conditions. A Genetic Algorithm 
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(GA) (Vose, 1999) is used to minimize the overall annualized total cost (COT,a) (i.e. 

the objective function: Eq. 5.1). The capital cost (CC) includes the investment (Inc) 

and installation cost (assumed as 30% of the investment cost as shown in Eq. 5.15 

(Hang et al., 2014)). The investment cost (Inc) includes the costs of major components, 

such as fans, ducts, cooling coils, heaters, economizer, etc. The unit price of air-

conditioning components in this study is presented in Appendix A, where the length 

of the MAU duct (lenduct) is set as 15 m. The annualized maintenance cost (CM,a , Eq. 

5.16) is assumed as 20% of the annualized capital cost (Henning, 2004). The operation 

or energy cost (annualized as shown in Eq. 5.17) includes the cost of electricity 

consumed by the cooling/heating equipment and fans, calculated according to the air-

handling processes of the selected ventilation strategy. The electricity cost is 

calculated using the local electricity price in Hong Kong, which takes the average price 

of 0.141 USD/kWh (CLP Hong Kong, 2018). The penalty cost (CP) is introduced as a 

“virtual expense” to quantify the service quality dissatisfaction due to insufficient 

cooling or heating capacity. It is quantified by the accumulation of unmet demand 

multiplied by a penalty price (£pen) (Eq. 5.19), where CRF is the capital recovery factor, 

the weighting factor for calculating the present value of an annuity (a series of equal 

annual cash flows, Eq. 5.20). i’ is the real discount rate (Eq. 5.21) accounting for the 

general inflation rate (ig) and the discount rate (id). i’’ is the effective discount rate 

adjusted for energy inflation (Eq. 5.22) accounting for the general inflation rate (ig) 

and the energy inflation rate (ie). id, ig and ie are set as typical values of 8%, 4% and 

5% respectively (Daud & Ismail, 2012). N is the lifetime of air-conditioning systems, 

which is set as 20 years. 

 𝐶𝐶,𝑎 = 𝐶𝐶 ∙ 𝐶𝑅𝐹(𝑖
′, 𝑁) = 𝐶𝐼(1 + 30%) ∙ 𝐶𝑅𝐹(𝑖

′, 𝑁)     (5.15) 

 𝐶𝑀,𝑎 = 𝐶𝐶,𝑎 ∙ 20%     (5.16) 
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 𝐶𝑂,𝑎 = 𝐶𝑂 ∙ [
𝐶𝑅𝐹(𝑖′,𝑁)

𝐶𝑅𝐹(𝑖′′,𝑁)
]     (5.17) 

 𝐶𝑃,𝑎 = 𝐶𝑃 ∙ [
𝐶𝑅𝐹(𝑖′,𝑁)

𝐶𝑅𝐹(𝑖′′,𝑁)
]     (5.18) 

 𝐶𝑃 = £𝑝𝑒𝑛 ∙ ∑ 𝑚𝑎𝑥(0, 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) − 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)
8760
𝑗=1    (5.19) 

 𝐶𝑅𝐹(𝑟𝑎𝑡𝑒, 𝑦𝑒𝑎𝑟) =
𝑟𝑎𝑡𝑒∙(1+𝑟𝑎𝑡𝑒)𝑦𝑒𝑎𝑟

(1+𝑟𝑎𝑡𝑒)𝑦𝑒𝑎𝑟−1
     (5.20) 

 𝑖′ =
𝑖𝑑−𝑖𝑔

1+𝑖𝑔
     (5.21) 

 𝑖′′ =
𝑖𝑑−𝑖𝑒

1+𝑖𝑒
     (5.22) 

Different from the ventilation strategies applied in general buildings, such as office 

buildings and commercial buildings, the ADV strategy is applicable for cleanrooms 

or spaces requiring strict humidity/temperature controls, such as pharmaceutical 

cleanrooms, semiconductor/microchip factories and hospitals. The key issue of the 

ADV strategy is to identify the optimal operation mode under different ambient and 

internal load conditions. At the design stage, the optimal operation mode when 

adopting the ADV strategy can be identified based on the information of possible 

building cooling load profiles and ambient conditions. For the design optimization of 

the air-conditioning systems facilitating the ADV strategy, an overall trade-off 

between the satisfaction of service and system costs is made as shown in Figure 5.4. 

With the decrease of service satisfaction (or component capacities), the operation 

(energy) cost increases first due to the limited choice of operation modes (from 

optimum to suboptimum) and then decreases due to the insufficient capacities (i.e. 

under-provision). The overall total cost decreases first and then increases after it 

reaches the minimum at point “O”, which is the target point indicating the optimal 

capacity. Since the performance robustness of air-conditioning systems is the main 

concern in the design of cleanrooms, a higher penalty price (i.e. greatly larger than 
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local electricity price in Eq. 5.19) is usually set to avoid insufficient air-conditioning 

component capacities. When the component capacities are relatively small (i.e. 

insufficient cooling/heating capacities), the penalty cost can be higher than the 

operation cost. The decrease in the total cost is mainly due to the decrease in the 

penalty cost. In contrast, when the component capacities become larger, the required 

cooling loads of MAU/AHU can be met at most of the operation period, and the 

penalty cost can be close to zero. The ADV strategy provides various operation modes 

and, in operation, the most economic mode will be selected in a particular working 

condition. The ADV strategy has the lowest operation cost and superior energy 

performance compared with that of adopting the other three existing ventilation 

strategies (i.e. IC, PD and DV). The optimal design method minimizes the overall 

annualized total life-cycle cost and therefore makes a proper compromise between the 

satisfaction of service and system life-cycle costs. 

 

Figure 5.4 Cost vs. capacity of air-conditioning systems facilitating ADV strategy 

The method and procedure to estimate the penalty cost due to insufficient capacity are 

shown in Figure 5.5. The actually available choices of operation modes in a particular 
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load/ambient condition are subject to the provision of sufficient capacities of all 

components needed for the operation modes concerned. At each time step of 

performance evaluation, for the trial component capacities given by the optimizer, the 

feasibilities of utilizing optimal/suboptimal operation modes are assessed by verifying 

whether the required component capacities are satisfied. The best available mode is 

then chosen as the actual operation mode. If required component capacities of all 

operation modes cannot be satisfied, i.e., the system fails to provide satisfactory 

performance, a penalty cost (Cp) would be given (that hour is also called as ‘unmet 

hour’ (Uh)). Due to the different control modes provided by the ADV strategy, the 

ADV strategy can choose the optimal mode that can satisfy the control requirements 

under the given capacities of air-conditioning components and working conditions. 

This indicates the ADV strategy can offer superior service satisfaction (less unmet 

hour) due to the operation mode switching compared with other ventilation strategies. 

 

Figure 5.5 Procedure to estimate penalty cost/unmet hour facilitating ADV strategy 
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5.5 Case study 

5.5.1 Building/system description and load characteristics 

For the cleanrooms concerned, the configuration of a typical cleanroom air-

conditioning sub-system was selected as shown in Table 5.2. In this sub-system, an 

MAU serves three AHUs, and each AHU serves several cleanrooms on the 2nd floor 

with constant air flowrate (i.e. 20 ACH). The system configuration of the selected 

system is similar to Figure 5.1, while the difference is that the humidifier is not adopted 

due to the humid outdoor conditions in Hong Kong.  

Table 5.2 Cleanroom subsystem configuration and control requirements 

Floor area of the served zones 

Zone 1: Total 100.5 m2 (9 spaces served by AHU-1) 

Zone 2: Total 121 m2 (8 spaces served by AHU-2) 

Zone 3: Total 151 m2 (8 spaces served by AHU-3) 

Height of the served zones 2.8 m 

Operating period 9:00-18:00 

Installed fans specification  

MAU fan (centrifugal) pressure (Pa) 1,600 

AHU fan (axial) pressure (Pa) 1,350 

Fan efficiency (%) 60 

The overall coefficient of 

performance (COP) of 

systems  

Cooling system (central cooling)  
2.5 

(constant) 

Heating system (electric heater) 
1.0 

(constant) 

Space control requirements 

Temperature (°C) 20±3 

Relative Humidity (%) 55±10 

Supply airflow rate (ACH) ≥20 

Outdoor airflow rate (ACH) ≥2 

TRNSYS 18 (2017) was used to calculate the probabilistic sensible and latent cooling 

loads of the selected multi-zone cleanroom systems considering weather, building and 

internal load uncertainties. Totally 950 (38×25) sets of samples were used to obtain 

the uncertain sensible and latent cooling loads for spaces in each zone. The weather 
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uncertainty was introduced by using historical weather data of 38 years (1979 to 2016) 

instead of one typical year. Building parameter and internal load uncertainties were 

introduced by randomly sampling according to their distributions. Eventually, 25 sets 

of their samples were selected. The weather, building and load parameters and their 

uncertainties are shown in Table 5.3. It is worth noticing that, the weather and building 

parameters were sampled and set as the same for all the spaces associated to a zone, 

while the internal loads were sampled independently for different spaces concerning 

their asynchronous behaviors.  

Table 5.3 Weather, building and load parameters and their uncertainties for cooling 

load calculation 

Group Parameter 
Uncertainty analysis 

Distribution Values 

Weather 

Outdoor dry-bulb air temperature 

(°C) 

Actual data: 1979–2016 Outdoor air relative Humidity (%) 

Global radiation (W/m2) 

Diffuse radiation (W/m2) 

Building 

parameter 

Internal shading coefficient Normal (0.5, 0.12) 

External shading coefficient Normal (0.2, 0.052) 

Conductivity of window 

(W/(m2·K)) 
Uniform (1.5, 3) 

Indoor 

condition 

Occupant density (m2/person) Triangular 
10 × triangular (0.3, 

1.2, 0.9) 

Lighting density (W/m2) Triangular 
14 × triangular (0.3, 

1.2, 0.9) 

Process sensible load (W/m2) 
Relative 

normal 
45 × normal (1, 0.062) 

Process latent load (W/m2) 
Relative 

normal 
15 × normal (1, 0.062) 

Figure 5.6 shows the cumulative distribution functions (CDFs) of space/zone loads 

served by three AHUs. Although the spaces in a zone had similar functions, the 

cooling load profiles were different. The cooling load (W/m2) of a zone is the weighted 
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average of the cooling loads of spaces in this zone. It can also be seen that the peak 

cooling load of a zone had a high probability to be lower than that of the simple sum 

of peak loads of individual spaces. In the air-conditioning design, the actual 

cooling/heating demands of the components (serve for a zone) are significantly 

influenced by the cooling load of the critical space particularly when both temperature 

and humidity are controlled. It is especially great for the cleanroom air-conditioning 

systems which have very high air flow rates and employ CAV systems (Zhou et al., 

2016). This indicates that if the total sensible and latent cooling loads of a zone are 

directly used for sizing the components, the systems will be of high possibility to be 

undersized significantly. It confirms that the load diversity effects of multiple spaces 

should be taken into account in the system design.  

 

Figure 5.6 Distribution of cooling loads in multiple spaces/zones 
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5.5.2 Training of diversity factor models 

Clustering the load diversity factors: Figure 5.7 shows the distributions of space load 

diversity factors of Zone 1 calculated by Eqs. 5.9-5.12, by fully considering 

constraints/interaction among multiple spaces and the cooling loads of the critical 

space. It can be seen that estimated kernel density estimation functions well matched 

the histograms of both the diversity factors. 95% confidence interval of sensible/latent 

cooling load diversity factors were in the range of [1.06, 1.38] and [1.48, 2.89], 

respectively. This indicates that the actual cooling demands were significantly larger 

than the cooling loads of the corresponding zone. Figure 5.8 shows the clustering 

performance evaluated by the Calinski-Harabasz criterion (Caliński & Harabasz, 1974) 

using the Statistics and Machine Learning Toolbox™ in MATLAB. By comparing the 

performance of clustering solutions containing two to six clusters, both the diversity 

factors of sensible cooling load and latent cooling load were grouped into two 

clusters/subgroups. Figure 5.9 shows the results of categorizing the diversity factors 

into an optimal number of clusters, where the blue line is the centroid curve of 

diversity factors in a cluster. The diversity factors of sensible cooling load were 

categorized into two clusters (i.e. Cluster A-1 and Cluster A-2). Cluster A-1 represents 

that sensible cooling loads of multiple spaces had high similarity while Cluster A-2 

represents that sensible cooling loads of multiple spaces had low similarity. The 

diversity factors of latent cooling load were categorized into two clusters (i.e. Cluster 

B-1 and Cluster B-2). Cluster B-1 represents that the latent cooling loads of multiple 

spaces had low similarity while Cluster B-2 represents that the latent cooling loads of 

multiple spaces had high similarity. 
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Figure 5.7 Histograms and Kernel density estimation functions of diversity factors  

 
Figure 5.8 Clustering performance for different numbers of clusters  
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Figure 5.9 Clustering results for each subgroup   

Correlations between the diversity factors and working conditions: Based on predicted 

variables (i.e. SHRsum, Tavg and Wavg), decision trees and decision rules can be utilized 

to predict target variables (i.e. the number of a cluster) as shown in Figure 5.10. The 

accuracy of the decision trees should be evaluated before being applied to the datasets 

of other zones (i.e. Zone 2 and 3). Table 5.4 shows that 91.6% and 87.0% of all the 

training records were correctly classified for the target clusters of sensible cooling load 

diversity factor (SLDF) and latent cooling load diversity factor (LLDF), respectively. 

Accordingly, the obtained decision trees were applied to the testing sets and the results 

are also given in Table 5.4. The result shows that 91.0% and 86.0% of the testing 
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records were correctly classified for the target clusters of SLDF and LLDF, 

respectively. This indicates a good accuracy of the decision tree models which can be 

further applied to a new dataset for classification and prediction. 

 

 

Figure 5.10 Decision trees for prediction of target clusters  

Table 5.4 Classification performance of the decision tree models 

Dataset Decision tree Predicted cluster 
Correct/total 

number 
Accuracy 

Training 

set 

Decision tree for 

prediction of target 

clusters (SLDF) 

Cluster A-1 141,919/151,046 

91.6% 

Cluster A-2 48,757/57,004 

Decision tree for 

prediction of target 

clusters (LLDF) 

Cluster B-1 52,630/62,913 

87.0% 

Cluster B-2 138,046/145,137 

Testing 

set 

Decision tree for 

prediction of target 

clusters (SLDF) 

Cluster A-1 111,783/119,762 

91.0% 

Cluster A-2 35,737/42,325 

Decision tree for 

prediction of target 

clusters (LLDF) 

Cluster B-1 38,885/47,822 

86.0% 

Cluster B-2 108,635/114,265 

The probability distribution for clusters/subgroups: The diversity factor in each cluster 

was then used to fit the probability distributions using the four alternative PDFs listed 

in Table 5.1. By selecting the distributions with the minimum K-S error, the fitted 
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PDFs and the identified parameter values of the diversity factors are listed in Table 

5.5. 

Table 5.5 Identified probability distribution functions and parameter values for the 

fitted probability density functions of diversity factors 

Time 

Cluster A-1 Cluster A-2 Cluster B-1 Cluster B-2 

Distribution 

(Parameter) 

Distribution 

(Parameter) 

Distribution 

(Parameter) 

Distribution 

(Parameter) 

9:00 Logn (0.11,0.040) Logn (0.23, 0.062) Logn (0.77, 0.126) Logn (0.56 0.114) 

10:00 Logn (0.13,0.043) Logn (0.25, 0.058) Logn (0.84, 0.116) Gam (69.55, 0.026) 

11:00 Gam (497.7, 0.002) Logn (0.25, 0.056) Logn (0.90, 0.114) Norm (1.92, 0.246) 

12:00 Logn (0.14, 0.045) Logn (0.26, 0.054) Logn (0.93, 0.113) Gam (60.67, 0.032) 

13:00 Logn (0.14, 0.044) Gam (359.1, 0.004) Logn (0.95, 0.111) Gam (62.79, 0.032) 

14:00 Gam (561.9, 0.002) Logn (0.25, 0.052) Logn (0.94, 0.108) Gam (62.79, 0.030) 

15:00 Logn (0.13,0.040) Logn (0.25, 0.052) Logn (0.92, 0.105) Gam (65.82, 0.029) 

16:00 Logn (0.13,0.039) Gam (358.5, 0.004) Logn (0.89, 0.103) Gam (68.79, 0.027)  

17:00 Logn (0.12,0.039) Logn (0.24, 0.055) Logn (0.86, 0.110) Gam (71.67, 0.026) 

18:00 Logn (0.12,0.039) Logn (0.23, 0.059) Logn (0.80, 0.126) Logn (0.58 0.119) 

* Note: Logn, Gam, Norm represent Lognormal, Gamma and Normal distribution, respectively.   

5.5.3 Validation of diversity factor models 

The diversity factor models were validated using the datasets of Zones 2 and 3 (i.e. 

served by AHU-2 and AHU-3 respectively). Figure 5.11 shows the CDFs of the 

cooling loads and demands of the two zones. The predicted cooling demands represent 

the cooling demands calculated using the proposed probabilistic diversity factor 

method. The actual cooling demands represent the cooling demands calculated by Eqs. 

5.9-5.12 when fully considering constraints/interaction among multiple spaces and the 

cooling loads of the critical space. It can be seen that the distributions of cooling 

demands of these two zones were very close, while the values of the cooling demands 

were significantly larger than that of the cooling loads. The index of agreement (d) 

(Heo, Choudhary, & Augenbroe, 2012) was used to evaluate the similarity of the 

predicted and actual cooling demands, as shown in Eq. 5.23, where A and P are the 
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actual and predicted values respectively, sorted in ascending order. The actual average 

value of the cooling demand is denoted by Ā. The range of d lied between 0 and 1, 

with higher values signifying a good fit between the model and data.  

 𝑑 = 1 −
∑ (𝐴𝑖−𝑃𝑖)

2𝑛
𝑖=1

∑ (|𝑃𝑖−�̅�|+|𝐴𝑖−�̅�|)
2𝑛

𝑖=1

  (5.23) 

By calculating the index of agreement of predicted and actual sensible/latent cooling 

demands, it is found that the four indexes of cooling demands of two zones (also 

shown in Figure 5.11) were all higher than 0.95. This confirms that the proposed 

probabilistic diversity factor method is deemed satisfactory, which can be used to 

effectively quantify the diversity effects of multiple spaces.   

 

Figure 5.11 Cumulative distribution functions (CDFs) of cooling loads and cooling 

demands  
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5.5.4 Performance of air-conditioning systems designed for different ventilation 

strategies 

Referring the actual sizes of the air-conditioning systems and the actual energy 

consumption of the building, the search ranges for the cooling coil of MAU, the 

cooling coils of AHUs, the electric heaters of AHUs, and design outdoor air flowrate 

for different ventilation strategies were set between [0, 300] kW, [0,100] kW, [0, 50] 

kW and [0.58, 5.80] m3/s, respectively.  

As introduced in Section 5.4, the penalty price affects the design objective. Before a 

sensitivity study of the penalty price was conducted, the optimization based on a 

penalty price of 1.41 USD/kWh (i.e. penalty price ratio equals 10) was conducted first 

and the results are shown in Figure 5.12. In this figure, the “penalty price ratio” (γpen) 

is defined as a ratio of penalty price (£pen) to the local electricity price (£e) as shown 

in Eq. 5.24. 

 𝛾𝑝𝑒𝑛 =
£𝑝𝑒𝑛

£𝑒
 (5.24) 

Figure 5.12(A) presents the required cooling/heating capacities of the air-conditioning 

system adopting four different ventilation strategies (ADV, DV, PD and IC). In 

general, the capacities of components adopting the ADV strategy were in-between that 

of the other three ventilation strategies. The DV strategy required the highest cooling 

capacity of MAU, which can be 2.4, 5.8 and 8.9 times that of the ADV, PD and IC 

strategy, respectively. The PD strategy required the highest heating capacities while 

the IC strategy required the highest cooling capacities of all three AHUs. Figure 5.12 

(B) shows the design outdoor air flowrate for different ventilation strategies. The IC 

strategy required the largest design volume of outdoor airflow (i.e. 5.26 m3/s or 18 

ACH) due to the involvement of the enthalpy-based economizer. The PD strategy 
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required the minimum (i.e. 0.58 m3/s or 2 ACH), while the design outdoor air flowrates 

for the ADV and DV strategy were 72.6% and 68.2% compared with that of the IC 

strategy. The overall annualized mean total costs of adopting different ventilation 

strategies are shown in Figure 5.12(C). It can be seen that the overall annualized mean 

total cost adopting the ADV strategy was reduced by 18.2%, 13.6% and 6.5% 

compared with that of using the DV, PD and IC strategy respectively.  

 

Figure 5.12 Optimal air-conditioning sizes and objective value adopting different 

ventilation strategies 

The optimal capacities of the air-conditioning system partially depend on the 
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Figure 5.13 Optimal sizes at different penalty price ratios adopting different 

ventilation strategies 
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conditioning system, which was designed for the ADV strategy using the proposed 

design method, can offer superior energy and economic performance as well as the 

satisfaction of service (represented by the unmet hour) than the other three ventilation 

strategies. It is also worth noticing that a higher penalty price would ensure the air-

conditioning system with a higher level of service satisfaction (more cooling/heating 

demands can be met and lower annual mean unmet hours). Under a low penalty price 

ratio (i.e. penalty price ratio=2), the annual mean unmet hour of the air-conditioning 

system adopting the ADV strategy was about 468 h, slightly higher than that of 

adopting the IC strategy (450 h), significantly lower than that adopting the DV (1,223 

h) and PD strategies (856 h). When the penalty price ratio was larger than 10, the 

annual mean unmet hour was smaller than 35 h by adopting the ADV strategy, 

significantly lower than that associated to the other three ventilation strategies. This 

indicates that the penalty price ratio should be properly set especially for the 

cleanroom system requiring a high level of service satisfaction. 

 

Figure 5.14 Overall annualized mean total cost and annual mean unmet hour at 

different penalty price ratios   
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5.6 Summary 

An uncertainty-based robust optimal design method of air-conditioning systems was 

developed for cleanrooms/spaces requiring strict temperature and humidity controls, 

which facilitates optimal ventilation control strategies to be implemented successfully 

under uncertainties. To consider the effects of asynchronous loads in different 

zones/spaces with reduced computation demand, a probabilistic diversity factor 

method was proposed, which is a simplified method to quantify the uncertainty of 

space load diversity in multiple zones/spaces using a diversity factor. The proposed 

design method was implemented and validated in the design optimization of air-

conditioning systems for implementing four different ventilation control strategies 

with full consideration of possible and uncertain off-design conditions. Based on the 

results and analysis of a case study, detailed conclusions can be made as follows.  

i. The proposed uncertainty-based robust optimal design method offers optimal and 

energy-efficient alternatives for cleanroom air-conditioning system design, 

facilitating different ventilation control strategies. 

ii. The air-conditioning system, which is designed for the “adaptive full-range 

decoupled ventilation (ADV) strategy” using the proposed design method, offers 

the superior economic performance and satisfaction of service compared with 

systems designed for other ventilation strategies. The overall annualized mean 

total cost of the systems designed for the ADV strategy could be reduced by 

18.2%, 13.6% and 6.5% compared with that of the systems designed for the DV, 

PD and IC strategy respectively in the selected case. 

iii. The diverse behaviour of multiple zones/spaces has significant effects on the 

cooling demand of components, and thus the sizing of optimal design. The design 
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approach without considering the diverse behaviour of multiple spaces will result 

in undersized problems for some components. It is recommended to conduct 

uncertainty quantification of load diversity when estimating the cooling loads of 

system and components at the design stage. 

iv. The introduction of two probabilistic diversity factors using the proposed 

probabilistic diversity factor method is very effective to quantify the effects of 

load diversities in multiple zones/spaces. 

v. The optimal capacities of the components are affected significantly by penalty 

prices. The optimal component capacities become larger at higher prices. In the 

selected case, when the penalty price ratio was larger than 10, the optimal design 

capacities of air-side components vary only within a small range. The penalty 

price ratio needs to be properly set, in order to obtain a system with desirable life-

cycle costs and satisfaction of service. 

It is worth noticing that the diversity factor models were trained using the building 

simulation tools and validated in specific cases in this study. To improve/ensure the 

accuracy of the diversity factor models in a particular application, operation or 

simulation data of typical representative working conditions relevant to the application 

case are needed in the model training. To obtain more generic models to extend their 

application scope, different types of building data, such as the number of spaces, zone 

orientation, space function, working schedules, etc., are also needed for training the 

models. 

It is also worth noticing that, in this study, the design optimization of the cleanroom 

air-conditioning systems was conducted under the condition that ideal controls were 

adopted to achieve the intended operation of specific ventilation strategies. For the 

ADV strategy, the required system configuration was the same as that of the existing 
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ventilation strategies. However, the successful implementation of the ADV strategy 

requires the supervisory controller to identify the best operation mode. In actual 

applications, an online control strategy is needed to ensure the actual achievement of 

the ventilation strategy systems concerning measurement uncertainties and component 

degradation, which needs further investigations.   
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CHAPTER 6 RISK-BASED ONLINE ROBUST OPTIMAL 

CONTROL OF CLEANROOM AIR-CONDITIONING 

SYSTEMS CONSIDERING MEASUREMENT 

UNCERTAINTIES 

 

Besides appropriate design, online supervisory control is also essential for the 

successful implementation of the ADV strategy, in order to achieve energy-efficient 

operation of cleanroom air-conditioning systems in practical applications. In this 

chapter, a risk-based online robust optimal control strategy for multi-zone cleanroom 

air-conditioning systems is proposed, which minimizes the energy consumption by 

properly selecting the control mode considering measurement uncertainties and 

component performance degradation. The proposed control strategy is tested and 

implemented in a dynamic simulation platform based on an existing pharmaceutical 

industrial building in Hong Kong located in a subtropical region. 

This chapter is organized as follows. The challenges concerned in the online control 

of cleanroom air-conditioning systems are presented in Section 6.1. Section 6.2 

presents the overall structure of the risk-based online robust optimal control strategy. 

Section 6.3 presents the detailed procedure and steps of the risk-based online robust 

optimal control strategy. Section 6.4 presents a real-time dynamic simulation platform 

of a pharmaceutical building and its air-conditioning systems, which is developed to 

implement the proposed control strategy. In addition, the coefficients of the adaptive 

models are identified. Section 6.5 presents the test and implementation results of the 
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proposed online control strategy on the simulation platform. Conclusive remarks are 

given in Section 6.6. 

6.1 Challenges addressed for cleanroom air-conditioning system 

control  

The proposed “adaptive full-range decoupled ventilation (ADV) strategy” includes 

various modes for different ambient and internal load conditions. However, due to the 

complexity of air-conditioning systems with counteractant processes and the dynamic 

nature of the working conditions, errors and uncertainties in measurements might lead 

to improper selection of system operation modes, which often results in huge energy 

waste. These challenges are the main issues to be addressed in developing the risk-

based online robust optimal control strategy, which are summarized as follows: 

i. Different sources of measurement uncertainties are needed to be quantified 

effectively. The measurements in the cleanroom air-conditioning systems, such 

as temperature, humidity and air flowrate, suffer easily from measurement noises, 

outliers and biases. The measurement errors can significantly influence system 

online control decisions. 

ii. Models for online use are needed to be adaptive to component performance 

degradation. Even if the models can be well trained at the initial stage, the model 

prediction errors of component capacities can be significant due to changes of 

component performance. 

iii. The correlations between different control modes are needed to be identified. To 

evaluate the performance of different control modes online, the energy 
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performance of other operation modes is needed to be evaluated/predicted using 

the available data of current operation mode. 

iv. An online optimal decision-making scheme is needed to select the optimal mode 

by compromising between the risks and benefits of adopting different control 

modes.  

6.2 Assessment of decision-making risks due to measurement 

uncertainties  

A risk-based approach is adopted to support robust decision-making, “aiming for an 

optimal balance between acceptable levels of risk and the costs of further risk 

reduction” in the face of uncertain information (Kuklicke & Demeritt, 2016). This 

approach can be found in marketing (Hult, Craighead, & Ketchen David J, 2010), 

financial (Kuklicke & Demeritt, 2016), ecological (Peterman & Anderson, 1999) and 

civil infrastructure (Ellingwood & Wen, 2005) fields, which provides flexibility for 

decision-makers in responding to possible changes that are uncertain or as yet 

unknown. The main advantage of this approach is that the risks and benefits of 

decisions are evaluated by quantifying the propagation of “aggregated uncertainties” 

instead of considering the uncertainty of each source. 

6.2.1 Overall structure of risk-based online robust optimal control strategy 

Figure 6.1 shows the overall structure of the risk-based online robust optimal control 

strategy, which involves decision-making approaches and adaptive control at two 

levels. At the local level, local feedback process controllers control the process outputs 

at their optimum or predetermined set-points according to the control mode 

determined at the upper level. At the upper level, the optimal control modes for 
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individual AHUs are determined by the “online optimal decision-making scheme”. 

The scheme compares the risks/benefits of different control modes and selects the 

optimal mode for each AHU, to achieve energy-efficient and reliable temperature and 

humidity controls. The control modes available to the system are PD and DV. The 

differences of control logics between the two modes are highlighted by the different 

line styles in Figure 6.1.  

Control mechanism of PD mode: The fan speed and cooling coil valve opening of the 

MAU are modulated by pressure and temperature controllers respectively to maintain 

the air static pressure (i.e. at the sensor location) and outlet temperature at a lower limit 

(i.e. much lower than indoor air dew-point temperature). The heater output of each 

AHU is modulated (by a humidity controller) to control the space relative humidity 

within its allowable range. The cooling of each AHU is modulated (by a temperature 

controller) to control the supply air temperature at its set-point (TAHU,sp). The supply 

air temperature set-point (TAHU,sp) is adjusted (by a temperature reset controller) 

according to the indoor air temperature. The make-up air damper for each AHU is 

modulated (by an airflow controller) to control the outdoor airflow at its lower limit 

(Vfh,PD), which is the minimum outdoor airflow rate required for maintaining the 

acceptable indoor air quality or space positive pressure. 

Control mechanism of DV mode: The DV mode differs from the PD mode in two ways. 

First, the setpoint of outdoor airflow (Vfh,DV) is adjusted (by a humidity controller) 

according to the indoor air relative humidity (i.e. indoor latent load). Second, the 

heating of each AHU is seldom used due to the fully decoupled temperature and 

humidity control loops. 
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To select the optimal control mode online, two objectives of the online optimal 

decision-making scheme need to be addressed, including i) risk and benefit evaluation 

of operation modes, and ii) optimal control mode. The need and benefits of developing 

the decision-making scheme are outlined in Section 6.2.2. The mechanism of optimal 

control mode selection is illustrated in Section 6.2.3. The development of adaptive 

models to identify the correlations between different modes considering uncertainties 

for risk and benefit evaluation is presented in Section 6.2.4. 

 

 

Figure 6.1 Overall structure of developed risk-based online robust optimal control 

strategy 

6.2.2 The requirements and benefits of risk-based decision-making  

Multiple control modes are available in many control systems. However, because the 

optimal control mode varies according to the working conditions, its identification is 

an important challenge, especially when the systems suffer from component 

performance degradation and measurement uncertainties. Figure 6.2 presents a typical 

case for cleanroom air-conditioning control systems, which shows the optimal control 
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modes under different indoor load regions. The figure was plotted under a given 

outdoor condition, assuming that the component capacities can satisfy the cooling 

demands. The SHR is defined as the sensible heat or cooling load divided by the total 

heat or cooling load. Under the same total cooling load, a lower SHR indicates that a 

higher moisture load needs to be handled. The SHR is used to represent the load 

characteristics in cleanrooms. When a space has a comparatively high SHR (Region 

1), both the PD and DV modes have the same energy performance, because all of the 

indoor latent load can be removed by the MAU to avoid the need for overcooling and 

reheating counteraction processes. When a space has a medium SHR (Region 2), the 

DV mode outperforms the PD mode, because the energy saving (i.e. by avoiding 

counteraction processes) exceeds the energy waste (i.e. by introducing intensively 

high-enthalpy outdoor air). When a space has low SHR (Region 3), PD outperforms 

DV, because the energy saving of the latter is less than the energy waste. With the 

decrease of outdoor air enthalpy, the boundary line between Region 2 and 3 moves 

down and the area of Region 2 increases, eventually subsuming Region 3. More details 

can be found in Section 3.4.2. 
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Figure 6.2 Optimal modes under different indoor load regions and a given outdoor 

condition 

The major task of the proposed online control strategy is to identify the optimal control 

mode (i.e. DV or PD), which is defined as the mode that enables the system to operate 

at the highest energy efficiency and reliability. However, the actual performance of a 
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Therefore, the control mode should be properly set to avoid control failure (i.e. MAU 

demand exceeding its capacity), especially when the latent loads of all zones are in 

Region 2. The optimal mode is determined based on the online decision-making 

scheme by selecting between conservative and aggressive control modes, to avoid 

control failure while minimizing energy consumption. For instance, if the component 

cooling capacity can meet the required cooling demand under the aggressive mode, 

this mode is optimal as its energy performance is better than that of the conservative 

mode. In contrast, if the component cooling capacity cannot meet the required cooling 

demand under the aggressive mode, the conservative mode is optimal due to its high 

reliability (i.e. the aggressive mode will consume more energy when control failure 

occurs). Figure 6.3B shows the four possible operation options when the latent loads 

of all zones are high (i.e. in Region 2). For Option 1, all zones adopt the aggressive 

mode (DV mode). Therefore, high MAU cooling demand is required for 

dehumidification purposes, which exceeds the MAU cooling capacity and results in 

control failure. For the other three options, one zone adopts the conservative mode and 

the other zones adopt the aggressive mode. Options 2-4 all ensure successful system 

operation, although the optimal option (endowing systems with the highest energy-

efficiency and reliability) must be determined according to their actual energy 

performance, which is further elaborated in Section 6.3.3. In real applications, the 

actual cooling demand and capacity are difficult to accurately estimate due to 

component performance degradation and measurement uncertainties, which 

significantly influences the proper selection of control modes. To avoid the failure of 

the selected control modes, a decision-making scheme considering the possible 

uncertainties is needed.     
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Figure 6.3 Problems affecting the selection of control modes for multiple zones (A. 

MAU cooling demand under different latent load conditions; B. MAU cooling 

demand versus MAU cooling capacity in different options) 

 

6.2.3 Mechanism of risk-based control mode selection 
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resulting in control failure (denoted as “aggressive mode failure”). The optimal 

switching point for the control mode should be the point at which QD=QC in principle, 

but the actual estimation of this point is itself uncertain due to the uncertainties in 

estimating the cooling demand and cooling capacity. When the selected switching 

point moves to the right, the failure risk (Pf) increases, as shown in the figure. 

 

 

Figure 6.4 Probabilistic optimal decisions for selecting the optimal control mode 

The compromise-based decision will keep the system in the aggressive control mode 
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as shown by Eq. 6.1. Here, Enb is a weighted value considering the energy benefit 

(Eb)/waste (Ew) and the corresponding modes’ probabilities of success (Rs)/failure (Rf). 

A dead band (ΔE) is introduced to avoid situations where switching between the two 

modes is too frequent. The evaluation of energy benefit/waste and their probabilities 

is further elaborated in Section 6.3.3. 
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               {
𝐸𝑛𝑏 = ∫𝐸𝑏𝑅𝑠 − 𝐸𝑤𝑅𝑓 ≥ 𝐸𝑡ℎ𝑟 +

∆𝐸

2
→ 𝑎𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑚𝑜𝑑𝑒

𝐸𝑛𝑏 = ∫𝐸𝑏𝑅𝑠 − 𝐸𝑤𝑅𝑓 < 𝐸𝑡ℎ𝑟 −
∆𝐸

2
→ 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒𝑚𝑜𝑑𝑒

       (6.1) 

6.2.4 Adaptive models for risk evaluation considering component performance 

degradation and measurement uncertainties 

Due to the component performance degradation and measurement uncertainties, the 

actual cooling capacity (Qc) and cooling demand (Qd) are challenging to accurately 

estimate through direct measurements. In this study, the maximum (Vfh,max) and the 

demanded outdoor air flowrate (Vfh), which represent the correlations between Qc and 

Qd as described by Eq. 6.2, are used to evaluate the failure risks of a prospective 

decision. Here, Vfh,max is the maximum outdoor airflow rate that the MAU can handle 

under constant outlet temperature (i.e. at dew-point). Vfh is the outdoor airflow that the 

system currently requires. For the conservative mode, there is no risk that the 

demanded outdoor airflow will be higher than Vfh,max because the demanded outdoor 

airflow (Vfh,PD) is always maintained at its lower limit. For the aggressive mode, Vfh,DV 

is adjusted according to the indoor latent load, and can exceed its lower limit. Hence 

there is a risk that the demanded outdoor airflow will be higher than Vfh,max especially 

when the indoor latent load and outdoor air enthalpy are high. When the system 

operates in the aggressive mode, the demanded outdoor air flowrate (Vfh,DV) can be 

directly measured. The critical issue is to evaluate the value of Vfh,DV at which the 

system decides to shift from the conservative mode to the aggressive mode. The 

correlations between different control modes can be identified by comparing the air 

states of two modes under the same or similar indoor load conditions (i.e. similar 

supply air and indoor air states) as elaborated in Section 6.3.2. 

 
𝑉𝑓ℎ,𝑚𝑎𝑥

𝑉𝑓ℎ
=

𝑄𝑐

𝑄𝑑
 (6.2) 
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Adaptive models (Eqs. 6.3 and 6.4) are developed to predict the Vfh,max and the Vfh,DV 

using measured data. The outdoor air enthalpy, hfh, which is a function of the measured 

outdoor air temperature and relative humidity, is used to predict the Vfh,max. The 

adaptive models are built by assuming the component capacities are unchanged in a 

short period. A “fictitious” AHU cooling coil outlet temperature (Tfic,PD, in the 

conservative mode) is introduced to predict the Vfh,DV in the aggressive mode. Tfic,PD is 

estimated by assuming a virtual temperature sensor located on the AHU cooling coil 

outlet, as marked in Figure 6.1. Tfic,PD is a function of the measured AHU supply air 

temperature (Ts) and heating load of heaters (Qhe) as shown in Eq. 6.5, where a1, a2, 

b1 and b2 are correlation coefficients with certain distributions needed to be quantified, 

aggregating the component performance degradation, measurement biases and noises. 

Trise,fan and ms are the air temperature rise (K) due to the fan motor and supply mass 

airflow (kg/s), respectively, which are constant for a constant air volume (CAV) 

system. Qhe is evaluated using the heater output and rated power (kW). 

The correlations between Tfic,PD and Vfh,DV (Eq. 6.4) are based on the assumption that 

the MAU outlet air state is in a steady state (e.g. 13 °C, 95%). When the system 

operates using the aggressive control mode, the demanded outdoor airflow is 

proportional to the space latent load as shown in Eq. 6.6. When the system resorts to 

overcooling and reheating to remove indoor latent heat using the conservative mode, 

Tfic,PD is the apparatus dewpoint. The moisture content (wout,PD) is linearly related to 

apparatus dewpoints (ASHRAE, 2013). Therefore, the AHU cooling coil outlet 

temperature has negative linear relationship to the indoor latent cooling load (Qlat) and 

demanded outdoor airflow of the aggressive mode (as shown in Eq. 6.7). Eq. 6.4 can 

then be derived by combining Eqs. 6.6-6.7. 
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 𝑉𝑓ℎ,𝑚𝑎𝑥 =
𝑎1

ℎ𝑓ℎ
+ 𝑎2 (6.3) 

 𝑉𝑓ℎ,𝐷𝑉 = 𝑏1𝑇𝑓𝑖𝑐,𝑃𝐷 + 𝑏2  (6.4) 

 𝑇𝑓𝑖𝑐,𝑃𝐷 = 𝑇𝑠 − 𝑇𝑟𝑖𝑠𝑒,𝑓𝑎𝑛 −
𝑄ℎ𝑒

𝑚𝑠
= 𝑓(𝑇𝑠, 𝑄ℎ𝑒)  (6.5) 

 𝑉𝑓ℎ,𝐷𝑉 ∝ 𝑄𝑙𝑎𝑡 (6.6) 

 𝑇𝑓𝑖𝑐,𝑃𝐷 ∝ 𝑤𝑜𝑢𝑡,𝑃𝐷 ∝ 𝑄𝑙𝑎𝑡 ∝ −𝑉𝑓ℎ,𝐷𝑉 (6.7) 

The coefficients of the adaptive models are fitted offline using measured data. Figure 

6.5(A) shows the correlation between hfh and Vfh,max, which is affected by the 

performance degradation of the MAU. The solid curve represents the performance of 

a new MAU and the dashed curve represents the degraded MAU affected by the 

aging/fouling. The correlations are obtained by assuming that the outlet temperature 

(i.e. at the dew-point) of the MAU cooling coil is constant (i.e. 13 °C).  Figure 6.5(B) 

shows the correlations between Tfic,PD and Vfh,DV of different zones. For zones with the 

same volume, the trends of Tfic,PD and Vfh,DV should be the same, as shown by the solid 

red line if no uncertainties are involved. The correlations are obtained by assuming 

that the temperature rise due to heat generation from the AHU fan motor is constant 

and identical under the same supply air flowrate. However, due to measurement 

uncertainties in each zone, the slope and intercept of the lines differ between zones. 

The measurement uncertainties (noises and biases) are thus aggregated into the 

adaptive models by identifying the model coefficients. The coefficients of the adaptive 

models are updated regularly, considering the changes in the uncertainties and the 

component performance degradation.   
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Figure 6.5 Adaptive models considering component performance degradation and 

measurement uncertainties  (A. outdoor air enthalpy versus maximum outdoor air 

flowrate; B. fictitious AHU cooling coil outlet temperature of conservative mode 

versus demanded outdoor air flowrate of aggressive mode)  

6.3 Detailed steps of risk-based online robust optimal control 

strategy 

The detailed steps of the proposed risk-based online robust optimal control strategy 

considering the measurement uncertainties are shown in Figure 6.6. The first of the 

three main steps is to remove the outliers and identify the steady-state measurements. 

The second step is to identify the coefficients of the adaptive models. Both the 

maximum and demanded outdoor air flowrate models are fitted in advance using the 

measured data. The MAU fan energy model can be fitted using measurements or 

manufacturers’ performance data. These models are updated regularly considering the 

measurement uncertainties and component performance degradation. The third step is 

to evaluate the risks and benefits of each control mode based on the possibilities of 

both the maximum and demanded air flowrate, as well as the predicted fan energy 

power, for online decision-making. These steps are elaborated in detail in the 

subsections below. 
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Figure 6.6 Detailed steps of risk-based online robust optimal control under 

measurement uncertainties 

 

6.3.1 Outlier removal and steady-state identification 

The measurements of temperature, humidity and air flowrate are highly susceptible to 

measurement noises, outliers and biases (Huang, Wang, Xiao, & Sun, 2009; Wang & 

Xiao, 2004). Taking measurement noises and biases into account, the reading given 

by a sensor is described by 

 �̂� = 𝑚𝑟 + 𝑒 + 𝛽 (6.8) 

where mr
 is the true value of m̂, e is white noise and β denotes the sensor biases. A 

moving window is used to reduce the effects of measurement noise and outliers, which 

is defined as a matrix with dimension Lw × np as shown in Eq. 6.9. Lw and np are the 

length of the moving window and the number of variables, respectively. k is the time 

instant. To simplify the data preprocessing, two conventional assumptions are made 

(Kuklicke & Demeritt, 2016): (i) Measurement noises are normally distributed. (ii) 

Measurement biases are unknown constants within the moving window. 
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Figure 6.7 shows the flowchart of the outlier removal and steady-state identification. 

The three-sigma rule (Smirnov & Dunin-Barkowski, 1963) is used to detect the outlier 

and steady-state within a moving window. If the measurements in the defined window 

are more than three scaled median absolute deviations (MAD) away from the median, 

the system may experience significant dynamics or the measurements are outliers. The 

dynamic measurements and outliers are then removed from the datasets. A further step 

of the dynamic filter is applied. If the standard deviation (δ) of a measurement from 

the mean value in the window is larger than a threshold αt, this measurement is 

regarded as dynamic and removed from the database. Because the measurement noise 

e has zero expectation, m̄ will be close to (mr + β) when Lw is large enough as shown 

in Eq. 6.10. Taking the mean value (m̄) of the moving windows reduces the influence 

of sensor noises.  

 �̅�𝑘 = 𝑚𝑘
𝑟 + 𝔼(𝑒) + 𝛽 ≈ 𝑚𝑘

𝑟 + 𝛽, 𝑒~𝑁(0, 𝜎2) (6.10) 

 

 

Figure 6.7 Outlier removal and steady-state identification 
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6.3.2 Identification of model coefficients  

In this study, both the maximum and demanded outdoor air flowrate models are 

modelled “probabilistically” and their coefficients are identified in specific ranges 

(confidence intervals) with proper distributions rather than deterministic values. The 

MAU fan model is a regular deterministic model and its coefficients are deterministic 

constants. A probabilistic model is necessary because both the maximum and 

demanded outdoor air flowrate have significant implications for the selection of the 

control mode, as shown in Section 6.2.4, and the risk of each prospective mode due to 

these erratic flowrate data needs to be carefully addressed.    

Maximum outdoor airflow model: The data for fitting this model (i.e. Eq. 6.3) are 

selected based on the assumption that when the MAU cooling valve is switched from 

partially open to fully open and vice versa, the MAU capacity is equal to its measured 

cooling load. Figure 6.8 shows an actual profile of the cooling valve position of an 

MAU in a pharmaceutical cleanroom subsystem during a summer day. Due to the 

insufficient capacity of the MAU, its cooling valve was fully open between 12:20 and 

13:40 and between 17:00 and 18:30. Vf1, Vf2, Vf3 and Vf4 are thus the switching points 

as mentioned above. The corresponding data of the outdoor airflow and outdoor air 

states are selected to form the model training database. 
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Figure 6.8 Opening status of the MAU cooling valve on a summer working day 

Demanded outdoor airflow model: The data for fitting this model (Eq. 6.4) are selected 

by identifying the similarity of the indoor load conditions between the two modes, 

which involves two steps. In the first step, the “distances” (Eq. 6.11) between two sets 

of measurements, taken under the aggressive mode and the conservative mode 

respectively, are calculated. The distances are used to quantify the similarities of the 

indoor load conditions under the two control modes. Here, Tr and Ts are room and 

supply air temperature (°C). RHr and RHs are the room and supply air relative humidity 

(%). In the second step, the sets of measurements with the distances lower than a 

threshold γt are selected and used as visible operational states in the two different 

control modes under the same indoor load conditions. The corresponding data of 

heater output, supply air temperature and outdoor air flowrate are selected to form the 

model training database. 

    𝑑𝑘 = √(�̂�𝑟,𝑃𝐷 − �̂�𝑟,𝐷𝑉)𝑘
2
+ (𝑅�̂�𝑟,𝑃𝐷 − 𝑅�̂�𝑟,𝐷𝑉)𝑘

2
+ (�̂�𝑠,𝑃𝐷 − �̂�𝑠,𝐷𝑉)𝑘

2
+ (𝑅�̂�𝑠,𝑃𝐷 − 𝑅�̂�𝑠,𝐷𝑉)𝑘

2
 (6.11) 

MAU fan energy model: The MAU fan power is approximated as a three-order 

polynomial function of the volumetric flowrate as shown in Eq. 6.12, where c1, c2, c3 

and c4 are deterministic constants fitted using the measured outdoor flowrate (Vfh) and 
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fan power (Pfan). In real applications, if the fan power data are not available, the fan 

power can also be estimated using the manufacturer’s performance data (Salimifard, 

Delgoshaei, Xu, & Freihaut, 2014). This will not seriously affect the decision-making 

process because the energy consumed by the fan motor is much smaller than 

cooling/heating energy. The accuracy of fan energy estimation thus has little impact 

on the final decision. 

 𝑃𝑓𝑎𝑛 = 𝑐1𝑉𝑓ℎ
3 + 𝑐2𝑉𝑓ℎ

2 + 𝑐3𝑉𝑓ℎ + 𝑐4  (6.12) 

 

6.3.3 Quantification of risks/benefits and selection of optimal control modes 

As mentioned in Section 6.2.3, the critical issue when selecting the optimal 

operation/control mode is to evaluate the expected net energy benefit (Enb, Eq. 6.1). 

This is a weighted value considering the energy benefit (Eb)/waste (Ew) and the 

corresponding success (Rs)/failure probabilities (Rf) of the modes, elaborated as 

follows. 

Energy benefit (Eb) and waste (Ew) evaluation: The energy benefit (Eb) of using the 

aggressive mode can be calculated using Eq. 6.13. The first two terms represent the 

additional energy uses (MAU cooling and fan energy) compared with the conservative 

mode, due to the introduction of excessive outdoor airflow. The third term represents 

the energy saving due to the prevention of overcooling and reheating. The energy 

waste (Ew) when using the aggressive mode can be calculated using Eq. 6.14. When 

failure occurs, a “penalty” is introduced by assuming that 100% outdoor airflow would 

be induced (i.e. the outdoor air damper is fully open). In addition, the AHUs resort to 

overcooling and reheating processes to ensure the indoor environment can be 

controlled within the allowable range. Here, hr (kJ/kg) is the room air enthalpy under 

the design conditions (i.e. 23 °C, 63%). ρfh and ρs are the air density (kg/m3) of the 
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outdoor air and supply air, respectively. COPc and COPhe are the overall coefficient 

of performance of the cooling system and heating system, assumed to be constant as 

2.5 and 1.0, respectively. Vfh,full is the 100% outdoor air flowrate (L/s), which is equal 

to the supply air flowrate (Vs). Pfan is a function of the volumetric flowrate, as shown 

in Eq. 6.12.  

𝐸𝑏 =
𝜌𝑓ℎ(𝑉𝑓ℎ,𝐷𝑉−𝑉𝑓ℎ,𝑃𝐷)(𝐻𝑜𝑎−𝐻𝑟)

𝐶𝑂𝑃𝐶
+ [𝑃𝑓𝑎𝑛(𝑉𝑓ℎ,𝐷𝑉) − 𝑃𝑓𝑎𝑛(𝑉𝑓ℎ,𝑃𝐷)] + 𝜌𝑠𝑉𝑠𝑄ℎ𝑒(

1

𝐶𝑂𝑃𝐶
+

1

𝐶𝑂𝑃ℎ𝑒
)     (6.13) 

 𝐸𝑤 =
𝜌𝑓ℎ(𝑉𝑓ℎ,𝑓𝑢𝑙𝑙−𝑉𝑓ℎ,𝑃𝐷)(𝐻𝑜𝑎−𝐻𝑟)

𝐶𝑂𝑃𝐶
+ [𝑃𝑓𝑎𝑛(𝑉𝑓ℎ,𝑓𝑢𝑙𝑙) − 𝑃𝑓𝑎𝑛(𝑉𝑓ℎ,𝑃𝐷)]  (6.14) 

Evaluation of success and failure probabilities: The failure probability (Rf) and 

success probability (Rs) of the different control modes are estimated using Eqs. 6.15 -

6.16. The failure probability refers to the probability that the maximum outdoor air 

flowrate (Vfh,max) will be less than the demanded outdoor air flowrate (Vfh,DV), while 

the success probability is the probability that Vfh,max will be higher than the Vfh,DV. Here, 

f1 and f2 are probability density functions (PDFs) of Vfh,max and Vfh,DV respectively 

under a certain working condition, obtained from the adaptive models (Eqs. 6.3-6.4). 

When the system adopts the aggressive mode (Figure 6.9A), Rf is the integral of f1 over 

the range between -∞ and the measured outdoor airflow (V̂fh). Rs is the integral of f1 

over the range between V̂fh and +∞. When the system operates in the conservative 

mode (Figure 6.9B), Rf is the overlap area of f1 and f2. Rs is the integral of [f2-min (f1, 

f2)].  

          𝑅𝑠 = {
∫ 𝑓1(𝑉𝑓ℎ,𝐷𝑉) 𝑑𝑉𝑓ℎ,𝐷𝑉|𝑉𝑓ℎ,𝐷𝑉 < �̂�𝑓ℎ, undersuperiormode

∫ 𝑓2(𝑉𝑓ℎ,𝐷𝑉) − 𝑚𝑖𝑛[𝑓1(𝑉𝑓ℎ,𝐷𝑉), 𝑓2(𝑉𝑓ℎ,𝐷𝑉)] 𝑑𝑉𝑓ℎ,𝐷𝑉, underconservativemode
 (6.15) 

 𝑅𝑓 = {
𝑓1(𝑉𝑓ℎ,𝐷𝑉)𝑑𝑉𝑓ℎ,𝐷𝑉|𝑉𝑓ℎ,𝐷𝑉 ≥ �̂�𝑓ℎ, undersuperiormode

𝑚𝑖𝑛[𝑓1(𝑉𝑓ℎ,𝐷𝑉), 𝑓2(𝑉𝑓ℎ,𝐷𝑉)] 𝑑𝑉𝑓ℎ,𝐷𝑉 , underconservativemode
 (6.16) 
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Figure 6.9 Failure and success probability evaluation (A. under aggressive mode B. 

under conservative mode) 

Because Eb, Ew, Rf and Rs are all functions of the outdoor airflow rate (Vfh,DV), Eq. 6.1 

can be rewritten as Eq. 6.17. 

  𝐸𝑛𝑏 = ∫{𝑅𝑠(𝑉𝑓ℎ,𝐷𝑉)𝐸𝑏(𝑉𝑓ℎ,𝐷𝑉) − 𝑅𝑓(𝑉𝑓ℎ,𝐷𝑉)𝐸𝑤(𝑉𝑓ℎ,𝐷𝑉)} 𝑑𝑉𝑓ℎ,𝐷𝑉 (6.17) 

Figure 6.10 illustrates the detailed steps of selecting the optimal control modes for 

individual AHUs. In the first step, the measurements, including supply air state, 

outdoor air state and heater status, are preprocessed using a low-pass filter (Eq. 6.18), 

to reduce the influence of random noises. Here, θotp is the filtered output. λ is the 

filtering weight factor. θinp is the actual measurement, and j and j-1 are the current and 

previous sampling instants. In the second step, the failure risks and energy benefits of 

the different control modes are evaluated. If the cooling capacity of the MAU is 

estimated to be insufficient, the zone(s) with least heater energy use (estimated by Eq. 

6.5) will adopt the conservative mode (i.e. the heaters of the corresponding AHU will 

be activated). In the third step, the decision is made, aiming to avoid unnecessary 

overcooling and reheating while ensuring that the system can operate at a low failure 

risk.  

 𝜃𝑜𝑡𝑝,𝑗 = 𝜆𝜃𝑜𝑡𝑝,𝑗−1 + (1 − 𝜆)𝜃𝑖𝑛𝑝,𝑗  (6.18) 
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Figure 6.10 Procedure of risk-based online decision making for individual AHUs 

6.4 Test platform and identification of model coefficients  

6.4.1 TRNSYS-MATLAB co-simulation testbed and test conditions 

A virtual simulation platform was constructed using dynamic models developed in 

TRNSYS [34] to test the effectiveness of the proposed control strategy for cleanroom 

air-conditioning systems. To take advantage of its powerful computational capabilities, 

MATLAB was used to program the supervisory controller (which determines the 

optimal control mode on the basis of risks and benefits). The combined use of 

TRNSYS and MATLAB is presented in Figure 6.11. The detailed physical models, 

building envelop and major components (e.g. fans, hydraulic network, air ducts, 

cooling coils and heaters) of an air-conditioning subsystem were included in this 

dynamic simulation platform. The dynamic processes of hydraulics, heat transfer, 

airflow/pressure balancing, energy conservation and control were simulated for the 

entire system. The models used in the test platform were calibrated using real site 

operational data (Wang, 1998, 1999). The building’s thermal performance under the 

influences of weather, occupancy, and air-conditioning systems were characterized 
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using the model type 56 in TRNSYS. The cleanroom air-conditioning subsystem 

mainly consists of an MAU and three AHUs, having the configuration shown in Figure 

6.1. This type of system is the most popular in real building projects of this kind and 

hence was selected for the testing and implementation of the proposed strategy. The 

simulated air-conditioning system was modified based on such a system from an actual 

pharmaceutical building in Hong Kong and the main design parameters (i.e. the inputs 

of the simulation platform) are presented in Table 6.1.  

 

Figure 6.11 TRNSYS-MATLAB co-simulation testbed for performance evaluation 

of control strategies 

The studied cleanrooms are designed as ISO class 8 (ISO, 2015). The minimum total 

supply and outdoor airflow rates are designed as 20 air change rates per hour (ACH) 

and 2 ACH respectively to meet the requirements of indoor cleanliness and 

pressurization (ASHRAE 62.1, 2016; ISO, 2015). Three typical air-conditioned zones 

in this building were selected, served by one MAU and three AHUs. The upper limits 

of indoor temperature and relative humidity were set at 23 °C and 63% respectively, 

which are slightly lower than the upper limits of their allowable ranges. The actual 

MAU cooling capacity in operation was assumed to be degraded by 20% (i.e. 112 kW) 

compared with its rated cooling capacity. The reference control strategies and the 
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proposed control strategy were all tested on the same platform to avoid the effects of 

model errors and obtain reliable performance data of the proposed control strategy.  

Table 6.1 Design room conditions, equipment configuration and control 

requirements 

Description  Parameter  Value 

Envelope details 

Wall (W/m2·K) 1.5 

Roof (W/m2·K) 0.8 

Window (W/m2·K) 2.7 

Window to wall ratio 

(WWR) 
0.2 

Indoor design 

conditions 

Temperature (°C) 21 ± 3 

Relative humidity 

(RH) (%) 
55 ± 10 

Floor area (m2) 

Zone A: 105 (served by AHU-1) 

Zone B: 78.6 (served by AHU-2) 

Zone C: 99.8 (served by AHU-3) 

Height (m) 2.8 

Internal loads 

(sensible and latent 

heat) 

Lighting (W/m2) 13.9 + 0 (all zones) 

Occupants (W/m2) 22 + 37 (all zones) 

Equipment (W/m2) 
151 + 55 (Zone A), 142 + 55 (Zone B), 

144 + 52 (Zone C) 

Outdoor and supply 

airflow rate  

Outdoor air changes 

per hour (h-1) 
≥2 

Supply air changes per 

hour (h-1) 
≥20 

Installed fans Rated power (kW) 
34 (MAU), 16 (AHU-1), 14 (AHU-2), 

15 (AHU-3) 

Cooling coils 
Rated cooling capacity 

(kW) 

140 (MAU), 38 (AHU-1), 32 (AHU-2), 

35 (AHU-3) 

Multi-stage heaters 

Rated power of each 

heater (kW) 

2.4 (AHU-1), 2.1 (AHU-2), 2.0 (AHU-

3) 

Number of stages 5 (AHU-1), 4 (AHU-2), 5 (AHU-3) 

To test the robustness of the proposed control strategy, measurement uncertainties 

(including biases and noises) were set for each type of sensor as summarized in Table 

6.2. 
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Table 6.2 Sensor noises and biases introduced for case study 

Measurement Unit Bias Noise 

MAU outlet temperature  °C 1.0 N (0,0.12) 

MAU air flowrate L/s -54 N (0,5.43) 

AHU-1 supply air temperature  °C 0.9 N (0,0.12) 

AHU-1 supply air RH % 2.0 N (0,0.78) 

AHU-1 outdoor air flowrate L/s 20 N (0,5.43) 

AHU-1 supply air flowrate L/s -62 N (0,5.43) 

AHU-2 supply air temperature  °C -2.2 N (0,0.12) 

AHU-2 supply air RH % 1.5 N (0,0.76) 

AHU-2 outdoor air flowrate L/s -17 N (0,5.43) 

AHU-2 supply air flowrate L/s 32 N (0,5.43) 

AHU-3 supply air temperature  °C -0.7 N (0,0.12) 

AHU-3 supply air RH % -2.0 N (0,5.43) 

AHU-3 outdoor air flowrate L/s -16 N (0,5.43) 

AHU-3 supply air flowrate L/s -45 N (0,5.43) 

6.4.2 Identification of model coefficients for risk and benefit evaluation  

The normal operational data for calculating the model coefficients (Eqs. 6.3, 6.4, 6.12) 

were generated by simulating the cleanroom air-conditioning systems over a wide 

range of ambient and indoor load conditions. Two sets of operational data were 

generated: one was free of measurement errors, while the other was obtained after 

introducing the measurement errors. Figure 6.12 shows the theoretical and adaptive 

models of the maximum outdoor airflow and demanded outdoor air flowrate. It can be 

seen that due to the MAU performance degradation and measurement uncertainties, 

the predicted values deviate far from the theoretical values under the given working 

conditions. The coefficients of the theoretical and adaptive maximum and demanded 

outdoor air flowrate models (Eqs. 6.4-6.5) are listed in Table 6.3. The coefficients of 

the adaptive models are uncertain while those of the theoretical models are 

deterministic. 
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Figure 6.12 Comparison of theoretical and adaptive models  (A. maximum outdoor 

air flowrate models; B-D. demanded outdoor air flowrate models for AHU-1, AHU-2 

and AHU-3) 

Table 6.3 The coefficients of theoretical and adaptive models 

Coefficien

t 

Identified value for theoretical models 

(deterministic value) 

Identified value for adaptive models 

(with 95% confidence bounds) 

a1 4.35×105 3.40×105 (3.15×105, 3.65×105) 

a2 -3057 -2294 (-2626, -1963) 

b1,1 -387.8 -390.7 (-406.8, -374.6) 

b2,1 6630 6312 (6084, 6541) 

b1,2  -257.2 -240.3 (-251.5, -229.1) 

b2,2 4566 3266 (3140, 3391) 

b1,3 -368.6 -385.4 (-398.4, -372.5) 

b2,3 6302 5598 (5435, 5760) 

The fan power model was fitted using the “measured” outdoor airflow as shown in 

Figure 6.13. Eq. 6.19 was used to estimate the fan power under a given outdoor airflow. 
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Figure 6.13 Estimated fan power using the measured outdoor airflow 

 

 𝑃𝑓𝑎𝑛 = 3.4 × 10
−7𝑉𝑓ℎ

3 − 0.0008𝑉𝑓ℎ
2 + 2.39𝑉𝑓ℎ + 398.47  (6.19) 

 

6.5 Performance tests and evaluation of proposed risk-based 

optimal control strategy 

6.5.1 Reference control strategies and load conditions 

To demonstrate the control performance and energy efficiency of the cleanroom air-

conditioning system using the proposed risk-based online optimal control strategy 

(Strategy #5), four control strategies were selected for comparison as shown in Table 

6.4. Strategies #1, #2 and #3 each adopt a single control mode while Strategies #4 and 

#5 enable dynamic selection of the control mode from multiple options during 

operation. Strategy #1 adopts IC, the most commonly used control strategy in 

cleanroom air-conditioning systems. The MAU outlet temperature is controlled at 

18 °C by modulating the MAU cooling coil valve. Zone temperature and relative 

humidity are controlled by adjusting the AHU cooling coil valve and heater output. 

Strategy #2 adopts PD, and has the same mechanism and settings as the PD mode of 

Strategy #5. In Strategy #3, the control mode is DV, under the same mechanism and 
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settings as the DV mode of Strategy #5. Meanwhile, Strategy #4 allows both DV and 

PD modes, and selects between them by comparing their predicted energy 

performance based on the theoretical models. The difference between Strategy #4 and 

#5 is that the component performance degradation and measurement uncertainties are 

not considered in Strategy #4. 

Note that only local process controls are involved for Strategies #1, #2 and #3 while 

both local-level process controls and upper-level supervisory controls are required for 

Strategies #4 and #5. For Strategies #3, #4 and #5, when the MAU cooling demand 

exceeds its capacity, control failure may occur (i.e. the indoor temperature and relative 

humidity will go outside of the allowable ranges). In this study, to ensure the control 

reliability of the systems, subcooling and reheating processes of the AHU are adopted 

for Strategy #3 when control failure occurs (for a minimum of 10 mins). For Strategies 

#4 and #5, inside the critical zone (i.e. the zone with least estimated heater energy use), 

the control mode is switched from aggressive to conservative when control failure 

occurs. The threshold (Ethr) and dead band (ΔE) in Eq. 6.1 are selected as 0 kW and 5 

kW respectively. 
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Table 6.4 Description of the control strategies 

 Strategy Description 
Supervisory 

control 
R

ef
er

en
ce

 s
tr

at
eg

ie
s 

Strategy #1 

MAU outlet temperature is controlled at 18 °C. 

Outdoor air flowrate is set at minimum. System 

resorts to sub-cooling and reheating processes for 

indoor air temperature and humidity control. 

× 

Strategy #2 

MAU outlet temperature is controlled at 13 °C. 

Outdoor air flowrate is set at minimum. System 

resorts to sub-cooling and reheating processes when 

the indoor latent load is high.  

× 

Strategy #3 

MAU outlet temperature is controlled at 13 °C. 

Outdoor air flowrate is adjusted according to the 

indoor latent load. 

× 

Strategy #4 

MAU outlet temperature is controlled at 13 °C. The 

system selects the best operation mode by comparing 

energy performances of modes based on the 

theoretical models.  

Performance degradation and measurement 

uncertainties are not considered using this strategy. 

√ 

P
ro

p
o
se

d
  

Strategy #5  

MAU outlet temperature is controlled at 13 °C. The 

system selects the best operation mode based on the 

risk-based online optimal decision-making scheme.  

Performance degradation and measurement 

uncertainties are considered using this strategy. 

√ 

 

A typical day in Hong Kong was selected to test the performance of the proposed 

control strategy. The ambient conditions and load settings are shown in Figure 6.14. 

The patterns of lighting and occupants of all three zones were set as constants (i.e. 1.0 

and 0.5 respectively) on the test day. 
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Figure 6.14 Ambient conditions and load patterns for performance evaluation 

Note: The load patterns are given as fractions of their respective design values 

 

6.5.2 Energy performance comparison of proposed and reference strategies 

To demonstrate the mechanism of energy-efficient control under the proposed control 

strategy, the outdoor air flowrate, cooling and heating output in the dynamic 

simulation are compared with the reference strategies. Figure 6.15 shows the outdoor 

air flowrates and cooling value of the MAU using the different strategies. Strategies 

#1 and #2 always induced the minimum required outdoor air flowrate, and the MAU 

cooling valve opening was less than in the other three control strategies throughout 

the day. Under Strategies #3, #4 and #5, the minimum required outdoor air flowrates 

were induced for a short period (00:00-02:00) during which the indoor latent load in 

the three zones was low, but these outdoor air flowrates were above their lower limits 

for most of the day (02:00-24:00) due to the need of dehumidification in the MAU. 

However, for Strategy #3, during 09:40-16:30 the cooling valve of the MAU was 

frequently fully open, indicating that the dehumidification capacity of the MAU was 

insufficient to handle the complete indoor latent load of all three zones. The 
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insufficient MAU capacity resulted in a large amount of outdoor air being introduced, 

leading to system control failure. For Strategy #4, the cooling valve of the MAU was 

likewise fully open during 09:40-10:00, resulting in a brief episode of control failure. 

This failure can be attributed to the neglect of measurement uncertainties and 

component performance degradation in Strategy #4, which jeopardized the accuracy 

of the estimated MAU cooling demand and cooling capacity. For Strategy #5, the 

cooling valve of the MAU was never fully open, indicating that its cooling capacity 

met its cooling demand throughout the day thanks to the judicious choice of control 

modes for individual zones. 

 

Figure 6.15 Outdoor air flowrate and cooling valve opening of MAU using five 

control strategies 
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#2, overcooling and reheating were avoided during certain times (e.g. from 00:00 to 

02:00) compared with Strategy #1 under conditions of low indoor latent load. For 

Strategy #3, the three AHUs likewise underwent counteraction processes due to the 

insufficient MAU cooling capacity around 10:00-16:30. For Strategies #4 and #5, the 

counteraction processes only occurred in Zone C (served by AHU-3), while the heaters 

in the other two AHUs (associated with Zone A and Zone B) were not activated at any 

time during the day. However, the activation of heaters was delayed under Strategy #4 

compared with Strategy #5. The schemes for control mode selection (represented by 

the heater output) differed between Strategies #4 and #5 due to the existence of 

measurement uncertainties and different decision-making schemes.      

 

Figure 6.16 Heater stage of AHUs using five control strategies 
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The energy consumption terms, including the cooling coils, heaters and fans as well 

as the entire air-conditioning systems, using the five control strategies are shown in 

Table 6.5. Compared with the conventional Strategy #1, Strategy #2 saved both the 

cooling and heating energy by 5.8% and 24.0% due to the avoidance of overcooling 

and reheating under low space latent load. For Strategies #3, #4 and # 5, the heating 

energy use was significantly decreased by 89.5%, 96.5% and 96.6% respectively due 

to the decoupling temperature and humidity control loops. However, the cooling 

energy use increased by 18.4%, 5.9% and 5.4% respectively due to the introduction of 

excessive high-enthalpy outdoor air flowrates. Compared with Strategy #1, the overall 

energy savings of Strategies #2, #3, #4 and #5 were 9.3%, 9.2%, 19.4% and 19.9%, 

respectively. 

Table 6.5 Energy consumptions using five control strategies on the test day 

  

Strategy 

#1 

Strategy 

#2 

Strategy 

#3 

Strategy 

#4 

Strategy 

#5 

MAU fan consumption (kWh) 31.7 31.7 99.7 73.9 71.0 

MAU cooling consumption 

(kWh) 
110.5 180.1 661.5 532.8 523.5 

AHU cooling consumption 

(kWh) 
552.1 444.1 122.7 168.9 174.8 

AHU heating consumption 

(kWh) 
345.6 262.6 36.4 12.0 11.8 

AHU fan consumption (kWh)  259.2 259.2 259.2 259.2 259.2 

Overall energy consumption 

(kWh) 
1299.1 1177.8 1179.6 1046.8 1040.2 

Cooling energy saving (%) - 5.8 -18.4 -5.9 -5.4 

Heating energy saving (%) - 24.0 89.5 96.5 96.6 

Overall energy saving (%) - 9.3 9.2 19.4 19.9 

6.5.3 Control reliability of proposed strategy compared with reference strategies 

For cleanroom air-conditioning systems, the reliability of indoor temperature and 

relative humidity control is a major issue. Reliability implies that the indoor 
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temperature and relative humidity can be controlled within the allowable ranges 

during operation, meaning that satisfactory services can be offered.  Figure 6.17 shows 

the indoor air temperature and relative humidity profiles of the three zones using the 

five control strategies. Generally, the indoor air temperature and relative humidity 

were controlled within the allowable range using Strategies #1, #2 and #5. However, 

for Strategies #3 and #4, control failure occurred around 09:50-10:10 due to the 

insufficient MAU cooling capacity for dehumidification. For Strategy #5, the indoor 

air temperature and relative humidity of the zones were controlled within the allowable 

ranges throughout the test day. This indicates that the proposed risk-based online 

optimal control strategy can fulfil the requirements of indoor environment control and 

thus offer satisfactory service.   
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Figure 6.17 Indoor air temperature and relative humidity profiles using five control 

strategies 

Figure 6.18 shows the control mode selection (i.e. the number of zones adopting the 

aggressive mode) of Strategies #4 and #5, demonstrating the importance of 
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advance (i.e. at 08:55) to avoid control failure, based on the risk assessment. In 

16
18
20
22
24
26
28
30
32
34

16
18
20
22
24
26
28
30
32
34

16
18
20
22
24
26
28
30
32
34

16
18
20
22
24
26
28
30
32
34

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

16
18
20
22
24
26
28
30
32
34

T
em

p
er

at
u

re
 (
C

)

 Zone A  Zone B  Zone CTemperature: 

Relative humidity:

Temperature control band (18 - 24C): 

Humidity control band (55 - 65%): 

40

45

50

55

60

65

70

R
el

at
iv

e 
h

u
m

id
it

y
 (

%
)

T
em

p
er

at
u

re
 (
C

)

Control failure

Control failure

A) Strategy #1

B) Strategy #2

C) Strategy #3

D) Strategy #4

E) Strategy #5

40

45

50

55

60

65

70

 Zone A  Zone B  Zone C

R
el

at
iv

e 
h

u
m

id
it

y
 (

%
)

T
em

p
er

at
u

re
 (
C

)

40

45

50

55

60

65

70

R
el

at
iv

e 
h

u
m

id
it

y
 (

%
)

T
em

p
er

at
u

re
 (
C

)

40

45

50

55

60

65

70

R
el

at
iv

e 
h

u
m

id
it

y
 (

%
)

T
em

p
er

at
u

re
 (
C

)

Time

40

45

50

55

60

65

70

R
el

at
iv

e 
h

u
m

id
it

y
 (

%
)



137 

 

contrast, aggressive mode failure occurred under Strategy #4, due to the inaccurate 

estimation of MAU cooling demand and capacity. In addition, compared with Strategy 

#5, the mode shifting was delayed under Strategy #4, causing more energy waste. 

 
Figure 6.18 Number of zones adopting aggressive mode using Strategies #4 and #5 

Figure 6.19 presents the risks and expected net energy benefits in the decision-making 

process when adopting Strategy #5, evaluated under the assumption that all zones 

adopt the aggressive mode. The selected control modes for individual zones in the 

decision-making process are shown in Table 6.6. When the space latent load stayed at 

a low level (i.e. in periods 1 and 3), the failure probability was also estimated to be 
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6.4-6.5), switched from the aggressive to the conservative mode, to ensure that the 

other two zones could operate under the aggressive mode successfully.   

 

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
0

1

2

3

4

Aggressive mode failure

N
u

m
b

er
 o

f 
zo

n
es

 

ad
o

p
ti

n
g

 a
g

g
re

ss
iv

e 
m

o
d

e

Time

 Strategy #4  Strategy #5

Aggressive mode shifting delayed



138 

 

 
Figure 6.19 Risks and expected net energy benefits in decision-making process 

Table 6.6 Control mode at different periods using risk-based decision-making 

approach 

  Period 1 (00:00-08:55) Period 2 (08:55-18:00) Period 3 (18:00-24:00) 

Zone A Aggressive mode Aggressive mode Aggressive mode 

Zone B Aggressive mode Aggressive mode Aggressive mode 

Zone C Aggressive mode Conservative mode Aggressive mode 
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Based on the performance tests of the developed strategy and a review of the existing 

literature, several issues still need to be addressed in further studies for the successful 

implementation of the risk-based control strategy in practice: 

i. Concerning measurement, there is a need to collect data regularly under different 

operation states (i.e. failure or success) of the control modes. The data can be used 

to update the component performance model and improve the accuracy of 

risk/benefit evaluation. For instance, in the selected test case, if aggressive control 

fails, the outdoor air flowrate induced in practice can be obtained from actual 

measurements. The flowrate measurements can then be used for quantifying the 

energy waste of the aggressive mode. 

ii. Concerning the model prediction, there is a need for sensitivity and uncertainty 

analysis to identify the impacts of errors of different sensors on the performance 

of the control strategies. This would reduce the need for data collection, and 

simplify the risk/benefit analysis, hence facilitating online decision-making. For 

instance, Shan et al. (2013) conducted a sensitivity analysis of measurements and 

found that the accuracy of the outdoor airflow meter had the most significant 

impact on the performance of the ventilation control strategy. 

iii. The successful implementation of the risk-based control strategy requires the 

predictive models to be adaptive to the changes of working conditions. In this 

study, the parameters of the models were identified using operational data under 

normal conditions. There is a need for a robust approach to self-tune the 

coefficients/parameters of predictive models in cases of control failure. In 

practical applications, control failure (i.e. due to improper decision making) may 

occur due to either changes of working conditions or sensor errors. An online 

learning and estimation approach is required to re-calculate and update the 
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coefficients of the predictive models and preserve the model accuracy when the 

working conditions change or the component performance is degraded. 

iv. The cost function (for evaluating risk and benefit) for decision-making must be 

modified for cleanrooms requiring higher cleanliness levels. In such applications, 

due to the higher requirements of environmental control, the tolerance for control 

failure is lower. The cost function must be updated to ensure that the systems 

operate with high reliability. This can be achieved by properly setting the penalty 

for unsatisfactory service. 

6.7 Summary 

A risk-based online optimal control strategy for multi-zone cleanroom air-

conditioning systems was proposed. As the core of the control strategy, an online 

optimal decision-making scheme was developed based on a compromise between the 

risks and benefits of various control modes, to select the optimal mode, allowing for 

component performance degradation and measurement uncertainties. The proposed 

control strategy was tested and implemented on a simulation platform. Based on the 

results of the tests and implementation, some detailed conclusions can be drawn: 

i. The proposed strategy can successfully determine the optimal control mode 

allowing for component performance degradation and measurement uncertainties, 

enabling air-conditioning systems to operate with both high reliability and energy 

efficiency.  

ii. The online optimal decision-making scheme is effective in quantifying the 

correlations between different control modes and evaluating the energy benefits 

and failure risks of these modes under uncertainties. 
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iii. In the test period, the proposed strategy based on risk-assessment achieved 

approximately 20% overall energy saving compared with interactive control, the 

most commonly used method.  

The proposed risk-based online decision-making approach can also be applied for 

other systems with multiple control modes that may require mode shifting under 

certain conditions. In real applications, due to various uncertainties, engineers usually 

prefer to select a conservative/safe mode rather than an aggressive mode (i.e. with 

more energy-saving potential but higher risks), to ensure highly reliable operation 

(Teng & Ho, 1996). In this study, a quantification method of risks and benefits was 

developed for decision-making accounting for measurement uncertainties, offering a 

promising means for engineers to exploit the potential benefits of control mode 

shifting.   

Notably, the coefficients of the adaptive models were fitted using building simulation 

tools and implemented in specific cases in this study. In real applications, operational 

data of typical working conditions under different control modes are needed to identify 

these coefficients.  

It is also worth noting that in this study, in the case of mode failure, a penalty was 

incurred by assuming that 100% outdoor airflow is induced associated with 

simultaneous cooling and heating processes, forcing the system to provide satisfactory 

environmental control. In real applications, the penalty should be properly set 

according to the environmental control requirements.  

More importantly, on-site implementation and comprehensive validation of the 

proposed online control strategy and the corresponding control schemes, are needed 

under real conditions matching the system requirements. On-site test results will be 
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essential for updating the strategy to achieve satisfactory performances in practical 

applications. Further tests and validation of the proposed online control strategy in real 

buildings would be of considerable value in future studies. 
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CHAPTER 7 CONCLUSIONS AND 

RECOMMENDATIONS 

 

This PhD thesis presented a novel “adaptive full-range decoupled ventilation (ADV) 

strategy”, an uncertainty-based robust optimal design method, and a risk-based robust 

online optimal control strategy for achieving energy-efficient air-conditioning systems 

for cleanrooms or spaces requiring strict humidity and temperature control. The 

developed ventilation strategy, design and control methods were tested and validated 

based on the actual air-conditioning systems in an existing pharmaceutical building. 

This chapter presents the overall conclusions and recommendations, which is 

organized as follows. Section 7.1 presents a summary of the main contributions of this 

PhD study. The conclusions based on the work done are summarized in Section 7.2. 

The recommendations for future work are presented in Section 7.3. 

7.1 Summary of main contributions 

The main contributions of this PhD study are summarized as follows: 

i. An “adaptive full-range decoupled ventilation (ADV) strategy” is developed for 

cleanroom air-conditioning systems. This strategy can offer superior energy 

performance over the full range of internal load and ambient conditions. It 

minimizes system energy consumption by avoiding sub-cooling and reheating as 

far as beneficial via the best use of MAU and economizer for dehumidification. 

ii. The energy and economic performance, as well as the preferable operation modes 

of the ADV strategy are fully explored when implemented in different climate 
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regions. The new design and the needs of modifications in retrofitting existing 

systems are presented for implementing the ADV strategy in cleanroom air-

conditioning systems under different climatic conditions. 

iii. An uncertainty-based robust optimal design method is developed for cleanroom 

air-conditioning systems facilitating the adaptive ventilation strategy under 

uncertainties. A probabilistic diversity factor method is proposed to quantify the 

effects of asynchronous loads in different zones/spaces. The robust optimal design 

offers systems high energy efficiency at a wide range of internal loads and 

ambient conditions, taking into account design input uncertainties and load 

diversities. 

iv. A risk-based online robust optimal control strategy is developed, which 

determines the optimal control mode and settings in order to minimize energy use 

taking account of component performance degradation and measurement 

uncertainties. An “online optimal decision-making scheme” is developed by 

compromising between the risks and benefits of control modes, to select the best 

control mode allowing for uncertainties. 

7.2 Conclusions 

On the “adaptive full-range decoupled ventilation strategy”  

Compared with the existing ventilation strategies, the developed “adaptive full-range 

decoupled ventilation (ADV) strategy” has superior energy performance over the full 

range of internal load and ambient conditions. 

Under hot and humid outdoor conditions, while the economizer is not activated, the 

proposed strategy can minimize system energy consumption by avoiding sub-cooling 

and reheating as far as beneficial via the best use of MAU for dehumidification. Under 
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dry and cool outdoor conditions, while the economizer is activated, the proposed 

strategy can optimize the outdoor air intake by the full use of the outdoor air “free 

cooling” and “free dehumidification” capacities. 

On the performance and applications of ADV strategy in different climate zones 

The developed ADV strategy offers air-conditioning systems significant and 

promising energy savings in different climate zones. Concerning its short payback 

period, it is attractive for both existing system retrofits and new system designs in most 

climates. 

The test results show that the annual energy consumption of the air-conditioning 

systems could be reduced by 6.8-40.8% when adopting the proposed ADV strategy, 

compared with the most commonly used existing interactive control (IC) strategy. It 

has higher energy saving potentials in humid climates compared with that in dry 

climates. 

When the economizer is not activated, dedicated outdoor air ventilation mode is highly 

recommended as the main operation mode of the ADV strategy in severe cold/cold 

and moderate regions. When the economizer is activated, the “following sensible load” 

(FS) and “lower-limit humidity” (LL) control modes are the recommended operation 

modes in cold/severe cold climate zones, while the “following sensible load” (FS) 

mode is the recommended operation mode in hot/temperate climate zones. 

For the full implementation of ADV strategy in retrofitting an existing system (i.e. 

initially adopting the IC strategy), only the size of the MAU cooling coil needs to be 

enlarged while the other components can keep unchanged. For a new system design, 

the required capacities of the AHU cooling coil and heater are even smaller compared 

with those designed for the IC strategy. The payback periods of existing system 
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retrofits and new system designs could be less than 4 years and 2 years respectively in 

most climates when the ADV strategy is fully implemented. 

On the uncertainty-based robust optimal design method   

The uncertainty-based robust optimal design method can offer cleanroom air-

conditioning system superior economic performance and satisfaction of service, 

facilitating the developed ADV strategy under uncertainties.  

The diverse behaviour of multiple zones/spaces has significant effects on the cooling 

demand of components, and thus the sizing of optimal design. The design approach 

without considering the diverse behaviour of multiple spaces will result in undersized 

problems for some components. The introduction of two probabilistic diversity factors 

using the developed probabilistic diversity factor method is very effective to quantify 

the effects of load diversities in multiple zones/spaces. 

The case study shows that the overall annualized mean total cost of the system 

designed for the ADV strategy could be reduced by up to 18% compared with that for 

existing ventilation control strategies. The optimal capacities of the components are 

affected significantly by penalty prices. When the penalty price is over a threshold, 

the optimal design capacities of air-side components vary only within a small range.  

On the risk-based online robust optimal control   

The risk-based online optimal control strategy developed can successfully determine 

the best operation allowing for component performance degradation and measurement 

uncertainties. This strategy ensures the cleanroom air-conditioning systems to operate 

at high reliability and energy efficiency. The “online optimal decision-making scheme” 

is effective for decision-making by quantifying the correlations between different 
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operation modes and evaluating the energy benefits and failure risks of different 

operation modes under uncertainties. 

Test results show that this risk/benefit-based control strategy could achieve up to 20% 

overall energy saving with high control reliability compared with the conventional 

control strategies.  

7.3 Recommendations for future work 

The major efforts of this PhD study have been made on the development of the optimal 

ventilation strategy, as well as the optimal design and control methods for 

implementing the developed ventilation strategy under uncertainties. It would be very 

desirable and valuable to make further efforts on the following aspects to improve the 

quality of the research and to bring these methods into practical applications.  

• Effective and accessible tools are necessary to implement the proposed design 

methods considering uncertainties. More generic models are needed to be 

developed to quantify the load diversities of multiple spaces, which are the key 

sources of uncertainty in the performance of air-conditioning systems. It will be 

much more helpful if such tools can be integrated with popular building energy 

simulation tools, such as EnergyPlus and TRNSYS.  

• The design and control methods for other cleanroom configurations are required 

to be further developed. For instance, for the cleanroom with higher cleanliness 

requirements (i.e. higher air changes rate per hour), the optimization of air 

recirculation systems (i.e. air distribution and flow pattern) is a challenge worth 

undertaking. The cleanroom air conditioning systems integrated with advanced 
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heat recovery devices are also needed to be optimized to achieve minimum life-

cycle costs.    

• On-site implementation and validation of the proposed online control strategy and 

the corresponding schemes are needed when the real conditions can meet the 

requirements. The on-site test results are very important to update them and to 

achieve desirable and satisfactory performances in practical applications. It would 

be an energy-consuming task and considerable efforts need to be paid to test and 

validate the proposed online control strategy in the practical buildings in future 

studies. 
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APPENDIX A INVESTMENT COST MODELS OF 

COMPONENTS 

The investment costs of air-side components are the functions of the corresponding 

component capacities in this study. The investment costs (USD) of the centrifugal fan, 

axial fan, duct, cooling coil, electric heater and electric humidifier can be estimated by 

Eqs. A.1-A.6 based on RSMeans Mechanical Cost Data (Mossman, 2008). The 

RSMeans Mechanical Cost Data was built based on continuously monitoring the 

available costs from the manufacturers in the construction industry. Considering the 

inflation, the component investment cost (Inc) used in this study is calculated as Eq. 

A.7. Here, the Nc is the investment cost provided by RSMeans Data. i is the annual 

inflation rate set as 4% (Daud & Ismail, 2012), and n is the number of time periods 

(years) past, selected as 11 years in this study. The investment cost of the economizer 

is estimated as 8 USD/m2 of the floor area considering the installation of additional 

dampers, sensors and actuators (Fisk, Black, & Brunner, 2012).    

 𝐼𝑛𝑐𝑓𝑎𝑛,𝑐𝑒𝑛 = 1125.9𝑓 𝑜𝑤+ 3375.1𝑓 𝑜𝑤 ∈ [0.5, 6]  (A.1)  

 𝐼𝑛𝑐𝑓𝑎𝑛,𝑎𝑥𝑖 = 297.0𝑓 𝑜𝑤+ 1406.4𝑓 𝑜𝑤 ∈ [0.5, 6]  (A.2) 

𝐼𝑛𝑐𝑑𝑢𝑐𝑡 = (3.0𝑓 𝑜𝑤
3 − 29.2𝑓 𝑜𝑤2 + 138.9𝑓 𝑜𝑤 + 7.68) ×  𝑒𝑛𝑑𝑢𝑐𝑡𝑓 𝑜𝑤 ∈ 0.5, 6] (A.3)       

 𝐼𝑛𝑐𝑐𝑐 = −1.33𝐶 𝑃𝑐𝑐
2 + 165.1𝐶 𝑃𝑐𝑐 + 1746.7𝐶 𝑃𝑐𝑐 ∈ [2, 55] (A.4)  

 𝐼𝑛𝑐ℎ𝑒 = 221.0𝐶 𝑃ℎ𝑒 + 211.1𝐶 𝑃ℎ𝑒 ∈ [0.5,20] (A.5)  

 𝐼𝑛𝑐ℎ𝑢 = 74.8𝐶 𝑃ℎ𝑢 + 3353.1𝐶 𝑃ℎ𝑢 ∈ [5,90] (A.6)  

 𝐼𝑛𝑐 = 𝑁𝑐(1 + 𝑖)𝑛     (A.7) 
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where, CAPcc (kW), CAPhe (kW), CAPhu (kW) and flow (m3/s) are the capacities of the 

cooling coil, electric heater, electric humidifier and design air flowrate, respectively. 

lenduct is the length of the MAU duct. It is worth noticing that when the design 

capacities of the cooling coil, electric heater and electric humidifier are larger than the 

upper limit of the ranges (e.g. 55 kW for cooling coil), several same components would 

be selected. For example, if the design cooling coil capacity is 100 kW, the investment 

cost of the cooling coil is the sum of the investment costs of two cooling coils, each 

with a capacity of 50 kW.



151 

 

REFERENCES 

An, J., Yan, D., Hong, T., & Sun, K. (2017). A novel stochastic modeling method to 

simulate cooling loads in residential districts. Applied Energy, 206, 134-149. 

ASHRAE. (2007). ASHRAE Handbook: HVAC applications. American Society of 

Heating, Refrigerating and Air Conditioning Engineers, Atlanta, GA. 

ASHRAE. (2013). ASHRAE Handbook: Fundamentals. American Society of 

Heating, Refrigerating and Air Conditioning Engineers, Atlanta, GA. 

ASHRAE. (2016). ASHRAE Handbook: HVAC systems and equipment. American 

Society of Heating, Refrigerating, and Air Conditioning Engineers, Atlanta, 

GA. 

ASHRAE 62.1. (2016). Ventilation for Acceptable Indoor Air Quality. American 

Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA. 

Bichiou, Y., & Krarti, M. (2011). Optimization of envelope and HVAC systems 

selection for residential buildings. Energy and Buildings, 43(12), 3373-3382. 

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and 

regression trees. The Wadsworth Statistics/Probability Series. Chapman and 

Hall, New York. 

Brohus, H., Frier, C., Heiselberg, P., & Haghighat, F. (2012). Quantification of 

uncertainty in predicting building energy consumption: A stochastic approach. 

Energy and Buildings, 55, 127-140. 

Brown, W. K. (1990). Makeup air systems energy-saving opportunities. ASHRAE 

Transactions, 96, 609-615. 



152 

 

Budaiwi, I. M. (2001). Energy performance of the economizer cycle under three 

climatic conditions in Saudi Arabia. International Journal of Ambient Energy, 

22(2), 83-94. 

Burnett, J., Yik, W., Lee, W., Powell, G., & Tang, A. (2001). Hong Kong building 

environmental assessment method. HK-BEAM version 5/04 existing buildings. 

HK-Beam Society, Hong Kong. 

Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. 

Communications in Statistics-Theory and Methods, 3(1), 1-27. 

Cheng, Q., Wang, S. W., & Yan, C. C. (2016). Robust optimal design of chilled 

water systems in buildings with quantified uncertainty and reliability for 

minimized life-cycle cost. Energy and Buildings, 126, 159-169. 

Cho, J., Lim, T., & Kim, B. S. (2012). Viability of datacenter cooling systems for 

energy efficiency in temperate or subtropical regions: Case study. Energy and 

Buildings, 55, 189-197. 

Cho, K., Chang, H., Jung, Y., & Yoon, Y. (2017). Economic analysis of data center 

cooling strategies. Sustainable Cities and Society, 31, 234-243. 

CLP Hong Kong. (2018). Tariff review presentation. Retrieved from 

https://www.clpgroup.com/en/Media-Resources-site/Current Releases 

Documents/20171212_Appendix_en.pdf.  

Cui, J., Watanabe, T., Ryu, Y., Akashi, Y., & Nishiyama, N. (1999). Numerical 

simulation on simultaneous control process of indoor air temperature and 

humidity. Sixth International IBPSA Conference, Proceedings, 2, 1005-1012. 

Daud, A.-K., & Ismail, M. S. (2012). Design of isolated hybrid systems minimizing 

costs and pollutant emissions. Renewable Energy, 44, 215-224. 

https://www.clpgroup.com/en/Media-Resources-site/Current%20Releases%20Documents/20171212_Appendix_en.pdf
https://www.clpgroup.com/en/Media-Resources-site/Current%20Releases%20Documents/20171212_Appendix_en.pdf


153 

 

De Wit, S., & Augenbroe, G. (2002). Analysis of uncertainty in building design 

evaluations and its implications. Energy and Buildings, 34(9), 951-958. 

Domínguez-Muñoz, F., Cejudo-López, J. M., & Carrillo-Andrés, A. (2010). 

Uncertainty in peak cooling load calculations. Energy and Buildings, 42(7), 

1010-1018. 

Doodman, A. R., Fesanghary, M., & Hosseini, R. (2009). A robust stochastic 

approach for design optimization of air cooled heat exchangers. Applied 

Energy, 86(7-8), 1240-1245. 

Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential 

Monte Carlo methods. Sequential Monte Carlo Methods in Practice. Statistics 

for Engineering and Information Science. Springer, New York, 3-14. 

Dounis, A. I., & Caraiscos, C. (2009). Advanced control systems engineering for 

energy and comfort management in a building environment—A review. 

Renewable and Sustainable Energy Reviews, 13(6-7), 1246-1261. 

Duić, N., Guzović, Z., Kafarov, V., Klemeš, J. J., vad Mathiessen, B., & Yan, J. 

(2013). Sustainable development of energy, water and environment systems. 

Applied Energy, 101, 3-5. 

Ellingwood, B. R., & Wen, Y. (2005). Risk‐benefit‐based design decisions for low‐

probability/high consequence earthquake events in Mid‐America. Progress in 

Structural Engineering and Materials, 7(2), 56-70. 

EMSD. (2018). Hong Kong Energy End-use Data 2018. The Energy Efficiency 

Office Electrical & Mechanical Services Department, Hong Kong. 

ENVB. (2015). Energy Saving Plan for Hong Kong’s Built Environment 2015-

2025+. Environment Bureau, Development Bureau and Transport and Housing 

Bureau, Hong Kong. 



154 

 

Fasiuddin, M., & Budaiwi, I. (2011). HVAC system strategies for energy 

conservation in commercial buildings in Saudi Arabia. Energy and Buildings, 

43(12), 3457-3466. 

Ferreira, P. M., Ruano, A. E., Silva, S., & Conceicao, E. Z. E. (2012). Neural 

networks based predictive control for thermal comfort and energy savings in 

public buildings. Energy and Buildings, 55, 238-251. 

Fisk, W. J., Black, D., & Brunner, G. (2012). Changing ventilation rates in US 

offices: Implications for health, work performance, energy, and associated 

economics. Building and Environment, 47, 368-372. 

Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions, 

4th edition. John Wiley & Sons, New York, US. 

Gang, W. J., Wang, S. W., Shan, K., & Gao, D. C. (2015). Impacts of cooling load 

calculation uncertainties on the design optimization of building cooling 

systems. Energy and Buildings, 94, 1-9. 

Gasparella, A., Longo, G. A., & Marra, R. (2005). Combination of ground source 

heat pumps with chemical dehumidification of air. Applied Thermal 

Engineering, 25(2-3), 295-308. 

Ge, T. S., Ziegler, F., Wang, R. Z., & Wang, H. (2010). Performance comparison 

between a solar driven rotary desiccant cooling system and conventional vapor 

compression system (performance study of desiccant cooling). Applied Thermal 

Engineering, 30(6-7), 724-731. 

Goyal, S., Ingley, H. A., & Barooah, P. (2012). Effect of various uncertainties on the 

performance of occupancy-based optimal control of HVAC zones. 2012 IEEE 

51st IEEE Conference on Decision and Control (CDC), 7565-7570. 



155 

 

Ham, S. W., Park, J. S., & Jeong, J. W. (2015). Optimum supply air temperature 

ranges of various air-side economizers in a modular data center. Applied 

Thermal Engineering, 77, 163-179. 

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques, 3rd 

Edition. Morgan Kaufmann Publishers, San Francisco, CA, US. 

Hanby, V. I., & Angelov, P. P. (2000). Application of univariate search methods to 

the determination of HVAC plant capacity. Building Services Engineering 

Research and Technology, 21(3), 161-166. 

Hang, Y., Qu, M., Winston, R., Jiang, L., Widyolar, B., & Poiry, H. (2014). 

Experimental based energy performance analysis and life cycle assessment for 

solar absorption cooling system at University of Californian, Merced. Energy 

and Buildings, 82, 746-757. 

Henning, H. M. (2004). Solar-assisted air-conditioning in buildings: a handbook for 

planners. Springer, New York, US. 

Heo, Y., Choudhary, R., & Augenbroe, G. A. (2012). Calibration of building energy 

models for retrofit analysis under uncertainty. Energy and Buildings, 47, 550-

560. 

Hirunlabh, J., Charoenwat, R., Khedari, J., & Teekasap, S. (2007). Feasibility study 

of desiccant air-conditioning system in Thailand. Building and Environment, 

42(2), 572-577. 

Holland, D. M., Fitz-Simons, T., & Hopke, P. K. (1982). Fitting statistical 

distributions to air quality data by the maximum likelihood method. 

Atmospheric Environment, 16(5), 1071-1076. 



156 

 

Hopfe, C. J., Augenbroe, G. L. M., & Hensen, J. L. M. (2013). Multi-criteria 

decision making under uncertainty in building performance assessment. 

Building and Environment, 69, 81-90. 

Hu, S. C., & Chuah, Y. K. (2003). Power consumption of semiconductor fabs in 

Taiwan. Energy, 28(8), 895-907. 

Hu, S. C., & Tsao, J. M. (2007). A comparative study on energy consumption for 

HVAC systems of high-tech FABs. Applied Thermal Engineering, 27(17-18), 

2758-2766. 

Huang, G. S., Wang, S. W., Xiao, F., & Sun, Y. (2009). A data fusion scheme for 

building automation systems of building central chilling plants. Automation in 

Construction, 18(3), 302-309. 

Huang, P., Huang, G., Augenbroe, G., & Li, S. (2018). Optimal configuration of 

multiple-chiller plants under cooling load uncertainty for different climate 

effects and building types. Energy and Buildings, 158, 684-697. 

Huang, P., Huang, G., & Sun, Y. (2018). Uncertainty-based life-cycle analysis of 

near-zero energy buildings for performance improvements. Applied Energy, 

213, 486-498. 

Hult, G. T. M., Craighead, C. W., & Ketchen David J, J. (2010). Risk uncertainty 

and supply chain decisions: a real options perspective. Decision Sciences, 41(3), 

435-458. 

ISO. (2015). 14644-1: 2015, Cleanrooms and associated controlled environments–

Part 1: Classification of air cleanliness by particle concentration. International 

Organization for Standardization, Geneva, Switzerland. 

Janssen, H. (2013). Monte-Carlo based uncertainty analysis: Sampling efficiency and 

sampling convergence. Reliability Engineering & System Safety, 109, 123-132. 



157 

 

Jin, X., & Du, Z. (2006). Fault tolerant control of outdoor air and AHU supply air 

temperature in VAV air conditioning systems using PCA method. Applied 

Thermal Engineering, 26(11-12), 1226-1237. 

Jo, M. S., Shin, J. H., Kim, W. J., & Jeong, J. W. (2017). Energy-saving benefits of 

adiabatic humidification in the air conditioning systems of semiconductor 

cleanrooms. Energies, 10(11), 1774. 

Jouhara, H. (2009). Economic assessment of the benefits of wraparound heat pipes in 

ventilation processes for hot and humid climates. International Journal of Low-

Carbon Technologies, 4(1), 52-60. 

Khalid, A., Mahmood, M., Asif, M., & Muneer, T. (2009). Solar assisted, pre-cooled 

hybrid desiccant cooling system for Pakistan. Renewable Energy, 34(1), 151-

157. 

Kircher, K., Shi, X., Patil, S., & Zhang, K. M. (2010). Cleanroom energy efficiency 

strategies: Modeling and simulation. Energy and Buildings, 42(3), 282-289. 

Kuklicke, C., & Demeritt, D. (2016). Adaptive and risk-based approaches to climate 

change and the management of uncertainty and institutional risk: The case of 

future flooding in England. Global Environmental Change, 37, 56-68. 

Lee, K.P., & Chen, H.L. (2013). Analysis of energy saving potential of air-side free 

cooling for data centers in worldwide climate zones. Energy and Buildings, 64, 

103-112. 

Lee, W.S., Chen, Y., & Wu, T. H. (2009). Optimization for ice-storage air-

conditioning system using particle swarm algorithm. Applied Energy, 86(9), 

1589-1595. 



158 

 

Li, H., Lee, W. L., & Jia, J. (2016). Applying a novel extra-low temperature 

dedicated outdoor air system in office buildings for energy efficiency and 

thermal comfort. Energy Conversion and Management, 121, 162-173. 

Li, H., He, H., Shan, J., & Cai, J. (2018). Innovation efficiency of semiconductor 

industry in china: A new framework based on generalized three-stage DEA 

analysis. Socio-Economic Planning Sciences, 66, 136-148. 

Li, Y., Lu, L., & Yang, H. (2010). Energy and economic performance analysis of an 

open cycle solar desiccant dehumidification air-conditioning system for 

application in Hong Kong. Solar Energy, 84(12), 2085-2095. 

Lin, T., Hu, S. C., & Xu, T. (2015). Developing an innovative fan dry coil unit 

(FDCU) return system to improve energy efficiency of environmental control 

for mission critical cleanrooms. Energy and Buildings, 90, 94-105. 

Lu, Y. (2008). Practical Handbook of heating and air conditioning design. China 

Building Industry Press, Beijing, China. 

Marion, W., & Urban, K. (1995). User’s Manual for TMY2s: Typical Meteorological 

Years: Derived from the 1961-1990 National Solar Radiation Data Base. 

National Renewable Energy Laboratory, Golden, CO, USA 

Mathew, P. (2008). An estimate of energy use in laboratories, cleanrooms, and data 

centers in New York. Lawrence Berkeley National Laboratory Report, Berkeley, 

CA, US. 

Maulik, U., & Bandyopadhyay, S. (2002). Performance evaluation of some 

clustering algorithms and validity indices. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 24(12), 1650-1654. 



159 

 

Mazzei, P., Minichiello, F., & Palma, D. (2005). HVAC dehumidification systems 

for thermal comfort: a critical review. Applied Thermal Engineering, 25(5-6), 

677–707. 

Meesrikamolkul, W., Niennattrakul, V., & Ratanamahatana, C. A. (2012). Shape-

Based Clustering for Time Series Data. Pacific-Asia Conference on Knowledge 

Discovery and Data Mining, 530-541. 

Mills, E. (1996). Energy efficiency in California laboratory-type facilities. Lawrence 

Berkeley National Laboratory Report, Berkeley, CA, US. 

Mills, E., Shamshoian, G., Blazek, M., Naughton, P., Seese, R. S., Tschudi, W., & 

Sartor, D. (2008). The business case for energy management in high-tech 

industries. Energy Efficiency, 1(1), 5-20. 

MOHURD. (1993). Thermal design code for civil building (GB 50176-93). Ministry 

of Housing and Urban-Rural Development, People’s Republic of China. 

MOHURD. (2015). Design Standard for Energy Efficiency of Public Buildings 

(50189-2015). Ministry of Housing and Urban-Rural Development, People’s 

Republic of China. 

Mossman, M. J. (2008). RSMeans mechanical cost data. A Division of Reed 

Construction Data Construction Publishers & Consultants, Kingston. 

Nassif, N., Kajl, S., & Sabourin, R. (2005). Optimization of HVAC control system 

strategy using two-objective genetic algorithm. HVAC&R Research, 11(3), 459-

486. 

NDRC. (2018). Announcement on Changing the Electricity Price on the Grid. 

National Development and Reform Commission, People’s Republic of China. 



160 

 

Peterman, R. M., & Anderson, J. L. (1999). Decision analysis: a method for taking 

uncertainties into account in risk-based decision making. Human and 

Ecological Risk Assessment: An International Journal, 5(2), 231-244. 

PG&E. (2011). A design guideline sourcebook: High performance cleanrooms. San 

Francisco: Pacific Gas and Electric Company. 

Qi, R., Lu, L., & Huang, Y. (2015). Parameter analysis and optimization of the 

energy and economic performance of solar-assisted liquid desiccant cooling 

system under different climate conditions. Energy Conversion and 

Management, 106, 1387–1395. 

Wang, Q., & Zhang, M. (2015). Introduction of the standard for energy efficient 

building evaluation. Sustainable Cities and Society, 14, 1–4. 

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. 

Remund, J., Kunz, S., & Lang, R. (1999). METEONORM: Global meteorological 

database for solar energy and applied climatology. Solar Engineering 

Handbook, Bern, Meteotest. 

Salimifard, P., Delgoshaei, P., Xu, K., & Freihaut, J. D. (2014). Comparison of 

actual supply air fan performance data to ASHRAE 90.1 Standard-2010 and 

DOE Commercial Reference Buildings part load fan energy use formula. 

ASHRAE/IBPSAUSA Building Simulation Conference, 386-393. 

Saltelli, A., Tarantola, S., & Campolongo, F. (2000). Sensitivity anaysis as an 

ingredient of modeling. Statistical Science, 15(4), 377-395. 

Schneider, R. K. (2001). Designing clean room HVAC systems. ASHRAE Journal, 

43(8), 39. 



161 

 

Sekhar, S. C., & Tan, L. T. (2009). Optimization of cooling coil performance during 

operation stages for improved humidity control. Energy and Buildings, 41(2), 

229-233. 

Shan, K., & Wang, S. W. (2017). Energy efficient design and control of cleanroom 

environment control systems in subtropical regions–A comparative analysis and 

on-site validation. Applied Energy, 204, 582-595. 

Shan, K., Wang, S. W., Xiao, F., & Sun, Y. J. (2013). Sensitivity and uncertainty 

analysis of measurements in outdoor airflow control strategies. HVAC&R 

Research, 19(4), 423-434. 

Shehabi, A. (2008). Energy implications of economizer use in California data 

centers. Lawrence Berkeley National Laboratory Report, Berkeley, CA, US. 

Shiue, A., Den, W., Kang, Y. H., Hu, S. C., Jou, G., Lin, C. H., Hu, V., & Lin, S. I. 

(2011). Validation and application of adsorption breakthrough models for the 

chemical filters used in the make-up air unit (MAU) of a cleanroom. Building 

and Environment, 46(2), 468-477. 

Smirnov, N. V, & Dunin-Barkowski, I. V. (1963). Mathematische statistik in der 

technik. Deutscher Verl. Der Wissenschaften. 

Son, J. E., & Lee, K. H. (2016). Cooling energy performance analysis depending on 

the economizer cycle control methods in an office building. Energy and 

Buildings, 120, 45-57. 

Stetiu, C. (1999). Energy and peak power savings potential of radiant cooling 

systems in US commercial buildings. Energy and Buildings, 30(2), 127-138. 

Sun, Y., Gu, L., Wu, C. F. J., & Augenbroe, G. (2014). Exploring HVAC system 

sizing under uncertainty. Energy and Buildings, 81, 243–252. 



162 

 

Sun, Z. W., Wang, S. W., & Zhu, N. (2011). Model-based optimal control of outdoor 

air flow rate of an air-conditioning system with primary air-handling unit. 

Indoor and Built Environment, 20(6), 626-637. 

Suzuki, H., Hanaoka, H., Ohkubo, Y., Yamazaki, Y., Shirai, Y., & Ohmi, T. (2000). 

Energy saving in semiconductor fabs by out-air handling unit performance 

improvement. Proceedings of ISSM2000. Ninth International Symposium on 

Semiconductor Manufacturing (IEEE Cat. No. 00CH37130), 293-296. 

Teng, S. G., & Ho, S. M. (1996). Failure mode and effects analysis. International 

Journal of Quality & Reliability Management, 13(5), 8-26. 

TRNSYS. (2017). Transient System Simulation Tool. University of Wisconsin, USA: 

Solar Energy Laboratory. 

Tsao, J. M., Hu, S. C., Chan, D. Y. L., Hsu, R. T. C., & Lee, J. C. C. (2008). Saving 

energy in the make-up air unit (MAU) for semiconductor clean rooms in 

subtropical areas. Energy and Buildings, 40(8), 1387-1393. 

Tschudi, W., Sartor, D., Mills, E., & Xu, T. (2002). High-performance laboratories 

and cleanrooms. Lawrence Berkeley National Laboratory Report, Berkeley, 

CA, US. 

Tschudi, W., & Xu, T. (2001). Cleanroom energy benchmarking results. Lawrence 

Berkeley National Laboratory Report, Berkeley, CA, US. 

Virote, J., & Neves-Silva, R. (2012). Stochastic models for building energy 

prediction based on occupant behavior assessment. Energy and Buildings, 53, 

183-193. 

Vose, M. D. (1999). The simple genetic algorithm: foundations and theory. MIT 

Press, Cambridge, MA, US. 



163 

 

Wang, G., & Song, L. (2012). Air handling unit supply air temperature optimal 

control during economizer cycles. Energy and Buildings, 49, 310-316. 

Wang, S. W. (1998). Dynamic simulation of a building central chilling system and 

evaluation of EMCS on-line control strategies. Building and Environment, 

33(1), 1-20. 

Wang, S. W. (1999). Dynamic simulation of building VAV air-conditioning system 

and evaluation of EMCS on-line control strategies. Building and Environment, 

34(6), 681-705. 

Wang, S. W., & Chen, Y. M. (2002). Fault-tolerant control for outdoor ventilation 

air flow rate in buildings based on neural network. Building and Environment, 

37(7), 691-704. 

Wang, S. W., & Ma, Z. J. (2008). Supervisory and optimal control of building 

HVAC systems: A review. HVAC&R Research, 14(1), 3-32. 

Wang, S. W., & Xiao, F. (2004). AHU sensor fault diagnosis using principal 

component analysis method. Energy and Buildings, 36(2), 147-160. 

Weber, M. D., Leemis, L. M., & Kincaid, R. K. (2006). Minimum Kolmogorov–

Smirnov test statistic parameter estimates. Journal of Statistical Computation 

and Simulation, 76(3), 195-206. 

West, S. R., Ward, J. K., & Wall, J. (2014). Trial results from a model predictive 

control and optimisation system for commercial building HVAC. Energy and 

Buildings, 72, 271-279. 

Wright, J. A. (1996). HVAC optimisation studies: sizing by genetic algorithm. 

Building Services Engineering Research and Technology, 17(1), 7-14. 

Xu, T. (2003). Efficient Airflow Design for Cleanrooms Improves Business Bottom 

Lines. Lawrence Berkeley National Laboratory Report, Berkeley, CA, US. 



164 

 

Yan, B., Li, X., Malkawi, A. M., & Augenbroe, G. (2017). Quantifying uncertainty 

in outdoor air flow control and its impacts on building performance simulation 

and fault detection. Energy and Buildings, 134, 115-128. 

Yang, X. Bin, Jin, X. Q., Du, Z. M., Fan, B., & Zhu, Y. H. (2014). Optimum 

operating performance based online fault-tolerant control strategy for sensor 

faults in air conditioning systems. Automation in Construction, 37, 145–154. 

Yao, Y., & Wang, L. (2010). Energy analysis on VAV system with different air-side 

economizers in China. Energy and Buildings, 42(8), 1220-1230. 

Yau, Y. H. (2007). Application of a heat pipe heat exchanger to dehumidification 

enhancement in a HVAC system for tropical climates—a baseline performance 

characteristics study. International Journal of Thermal Sciences, 46(2), 164-

171. 

Yu, Y., Woradechjumroen, D., & Yu, D. (2014). A review of fault detection and 

diagnosis methodologies on air-handling units. Energy and Buildings, 82, 550-

562. 

Yu, Z., Fung, B. C. M., Haghighat, F., Yoshino, H., & Morofsky, E. (2011). A 

systematic procedure to study the influence of occupant behavior on building 

energy consumption. Energy and Buildings, 43(6), 1409-1417. 

Zhang, L. Z., & Niu, J. L. (2003). A pre-cooling Munters environmental control 

desiccant cooling cycle in combination with chilled-ceiling panels. Energy, 

28(3), 275-292. 

Zhou, X., Yan, D., Jiang, Y., & Shi, X. (2016). Influence of asynchronous demand 

behavior on overcooling in multiple zone AC systems. Building and 

Environment, 110, 65-75. 

 


