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Abstract 

 

This thesis proposes an efficient, flexible and versatile 2D semi-analytical model for 

the vibration and sound radiation analyses of Acoustic Black Hole (ABH) plates. The 

proposed model, along with the associated wavelet-based solution procedure, is intended 

to overcome major technical difficulties which are specific to ABH structures: the non-

uniform wavelength distribution and ABH-induced wave compressions at the high 

frequency range in a realistic structure of finite size. Under the general Rayleigh-Ritz 

framework, Daubechies wavelet (DW) scaling functions are used for expressing the 

transverse displacement of the ABH plates. The accuracy of the propose model is 

thoroughly validated using Finite Element simulations and experiments. Results show that 

the model allows an accurate prediction of various vibration and sound radiation parameters 

and provides a truthful description of the typical ABH phenomena.  

 

Vibration analyses on the ABH plates show a drastic increase in structural damping, 

by using only a small amount of damping material. ABH local modes are shown to be 

dominant in the damping increase which leads to remarkably reduced vibration responses 

above the cut-on frequency. Meanwhile, ABH plates exhibit broadband sound power and 

sound radiation efficiency reduction, compared with uniform plates. Below the critical 

frequency, the reduced radiation efficiency is caused by the weakening of the structural 

stiffness due to the ABH indentation. Above the critical frequency, a subsonic region inside 

the ABH cell containing acoustically slow structural waves may appear. This region, 
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confined within a transonic boundary, is due to the ABH-specific phase velocity reduction 

of the bending waves. Visualization of the supersonic acoustic intensity allows identifying 

the effective sound radiation regions of ABH plates and their relationship with the transonic 

boundaries at different frequencies.  

 

Sound radiation analyses show that damping layers also increase the sound radiation 

efficiency of ABH plates due to their additional stiffness. The conflicting effect of damping 

layers in the increase of both structural damping and sound radiation efficiency calls for a 

balanced and meticulous design of their deployment to draw the best possible vibration or 

acoustic benefit. To tackle the problem, by combining the proposed model with an optimizer, 

the sound radiation of an ABH plate into a free space is minimized through adjusting the 

damping layer layout.  

 

Finally, an alternative ABH profile that is different from the standard ABH profiles is 

proposed for structural damping enhancement. Results show that a plate with optimized 

ABH profile entails significantly increased structural damping compared with a standard 

ABH plate. Local (n, 1) and (n, 2) modes that have n half waves in the circumferential 

direction and 1 or 2 half waves in the radial direction of the indentation dominate the modal 

damping increase. The optimized plate exhibits larger energy density ratio between the 

ABH portion and the uniform portion, which entails better energy dissipation. Also, a 

reduction in the sound radiation is observed which is confirmed by reduced energy level of 

the supersonic vibration components in wavenumber domain. 
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2
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1 Chapter 1 

Introduction 

 

1.1 Background 

Structural vibration is one of the main causes for noise generation and damage of 

thin-walled structures that are widely used in aircraft fuselages, ship hulls and vehicles. 

Also, unwanted vibration affects the comfort, durability and security of engineering 

structures in many applications. Therefore, mitigation of unwanted vibration has been a 

long-lasting issue and has attracted an ever-increasing attention from scientific 

community for decades.  

Vibration control can be implemented in either active or passive means. Despite 

their attractive features in terms of adaptability, active approaches are still perceived as 

cost prohibitive, complex and less robust in some applications. Therefore, passive 

methods, exemplified by damping enhancement in structures still remain popular for 

vibration and noise mitigations. However, traditional passive measures, such as surface 

damping treatment for vibration energy dissipation or graded impedance interface for 

reducing reflections of flexural waves from structural edges, are either uneconomical or 

difficult to achieve, thus hampering their wide use in industry. Therefore, seeking 

lightweight and cost-effective solutions which allow structural damping enhancement 

for vibration control is of practical significance.  
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In the past decades, Acoustic Black Hole (ABH) has been proven to be a promising 

passive means for vibration and noise mitigations  ADDIN EN.CITE [错误!未定义书

签。, thereby attracting increasing attention over the years from the scientific and 

engineering community  ADDIN EN.CITE [错误!未定义书签。. The great merit of 

the ABH is that only a small amount of damping material is needed to achieve a 

substantial increase in the overall structural damping, in contrast to traditional 

approaches. This attractive feature is of practical significance for the design of 

lightweight, yet highly damped structures in aeronautical and automotive industry. 

Despite the intensifying effort during the past few years, the study on ABH is still in its 

infancy. Among several important issues that will be discussed in detail later in this 

thesis, the lack of appropriate simulation tools is one of the bottlenecking problems in 

the ABH studies. In fact, due to the lack of analytical solutions, a large proportion of 

ABH studies resorts to the Finite Element Method (FEM) and experiments. While 

recognizing their ability in handling complex structures, they are not conducive to 

system analyses and optimization. As opposed to FEM analyses and experimental 

investigations, modelling based on energy principle might be a more flexible tool. 

Therefore, in this thesis, we propose an accurate semi-analytical wavelet model based 

on the Kirchhoff-Love thin plate theory under the framework of Rayleigh-Ritz method. 

The proposed model allows for accommodating fully coupled damping layers which 

play an indispensable role in the realization of ABH effect. The model is then exploited 

to explore various physical phenomena pertinent to ABH structures and to achieve 

structural optimizations from both vibration and sound radiation viewpoints. 
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1.2 Traditional measures for structural damping  

Considering the importance of the damping in vibration control, persistent effort 

has been made to develop various ways to increase system damping, among which two 

major measures are viscoelastic coating over the structural surface and wave reflection 

control from structural boundaries.  

 

Covering structural surface with highly energy-dissipating materials, such as 

polymer viscoelastic layers, to dissipate flexural waves is the most commonly used 

passive approach to achieve vibration attenuation, proven to be very efficient and 

successful [1-4]. In additional to the unconstrained configuration, the utilization of 

constrained damping layer has been shown to further increase the damping enhancement 

effect. However, due to the dispersive nature of the energy over structures, a large 

amount of viscoelastic material is usually needed to increase the overall structural 

damping to an appreciable level, thus giving rise to extra weight to the structure that 

may be unacceptable in many applications. Among many adverse consequences, 

increased weight of machines and vehicles would definitely lead to more fuel 

consumption and emissions [5]. These drawbacks make this traditional measure a major 

obstacle in its implementation into industrial world for which economic and ecological 

considerations are of crucial importance.  
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Reducing reflections of propagating waves from structural edges is another well-

known approach for vibration mitigation [4, 6]. For example, a graded impedance 

interface may consist of different materials of uniform thickness (shown in Figure 1.1), 

terminated with composite materials at the free edge of a structure. The decreasing 

impedance leads to the slowing-down of propagating waves and increased vibration 

amplitude towards the edge, which enables appreciable energy dissipation by terminated 

composite materials. Reflectivity analyses of a steel bar show that up to 60-80% of 

vibration energy can be dissipated upon proper design [6]. However, the efficiency 

strongly depends on the large vibration amplitude resulting from impedance gradation 

which is difficult to be attained. 

 

 

Figure 1.1 Graded impedance interface at the edge of a steel bar [6]. 

 

As an alternative option to reduce wave reflection from edges, a recently developed 

concept of the so-called acoustic black hole [7] constitutes an efficient and economical 

way to largely reduce reflections of flexural waves from edges over a broad frequency 

band with the utilization of only a small amount of damping material. The discovered 
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appealing features of the ABH have stimulated great interest of researchers. In the 

following sections, a literature review on various aspects pertinent to ABHs is presented. 

 

1.3 Literature review on acoustic black holes    

The concept of the black holes in astrophysics was initially proposed by Laplace 

[8], who stated that if an object can be compressed into a small enough radius, the escape 

velocity of that object would be even faster than light. The path of other objects passing 

around that object will be redirected towards the singularity point. Acoustic black hole 

(ABH) in vibration and acoustics can be regarded as the counterpart of the well-known 

astrophysical black hole. Pekeris [9] observed the phenomenon of decreasing sound 

velocity with increased depth in shallow zone in a half-space media. Analogously, 

Mironov [10] showed that, for a thin-walled structure whose thickness is tailored 

following a power-law profile, the phase speed of incident flexural waves would 

gradually slow down towards the thin edge tip alongside a simultaneous reduction of 

the wavelengths and an amplification of the vibration amplitude of vibration at the taper 

end. In an ideal scenario, i.e., the local thickness is smoothly decreased to zero at the 

edge tip, waves would stop propagating and never reach the end, giving rise to zero 

reflection from the edge. Consequently, vibration energy is accumulated and focalized 

at the extremity region of the taper. A small amount of damping material coated at the 

extremity region would allow for effective energy focalization and dissipation [7]. 

 

1.3.1 Acoustic black hole theory  
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To gain physical insights into the ABH phenomena, the geometrical acoustics 

theory [10] has been utilized for the illustration of flexural wave poropagation in elastic 

beams and plates whose thickness ideally varies and gradually reduces to zero according 

to a power-law relationship. Taking a simple beam containing an ABH wedge (as shown 

in Figure 1.2) as an example, the local thickness is progressively decreased following 

( )h x x= , where ε is a constant, γ the power law index, and x the distance measured 

from the wedge tip. Under the assumption of geometrical acoustics theory, the 

aggregated wave phase Ψ from an arbitrary point x to the wedge tip writes [7] 

 
0

( )
x

k x dx =    (1.1) 

where ( )
1/2

1/4 1/2( )=12 pk x k x
−

 is the local wavenumber, =p pk c . The phase velocity 

is associated with the shear wave velocity tc  and longitudinal wave velocity lc  as 

( )
1/2

2 22 1p t t lc c c c= − . Integration in Equation (1.1) tends to diverge if γ is equal or 

larger than two, i.e., 2    [11] for free wedges, and 5 3    [10] for immersed 

wedges. The divergence suggests that the wave phase is infinite and the wave will never 

reach the wedge tip, resulting in zero reflection of waves from the edge. With proper 

dissipation, the combined process (energy focalization and dissipation) constitutes the 

Acoustic Black Hole (ABH) phenomenon. 

 

However, in real world, zero thickness at the wedge tip is impossible to achieve, 

thus a truncation thickness always exists at the end of the power-law profile, which will 

adversely increase wave reflections and compromise the energy focalization at the same 

time. Equation (1.1) implies that even with a small truncation thickness (truncated at 
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coordinate x0), reflections occur. In fact, the reflection coefficient of flexural waves 

would be as large as 50-70% [7]. To counter this, a piece of damping layer deposited 

over the surface of the wedge was proposed by Krylov, which entailed a sharp decrease 

of the reflection coefficient to typically 1-3% upon the deployment of the damping 

materials, as demonstrated both numerically and experimentally [7, 12]. 

 

 

Figure 1.2 Elastic wedge of power law profile [7]. 

 

Wedges (1D acoustic black hole) exposed at the ends of beams or plates are fragile 

and prone to tearing, posing safety and health risks. One way to address the issue is to 

move the wedge to the inside of structures like plates. Similarly, plates embodied with 

circular indentations/pits (2D acoustic black hole) have been explored and also shown 

robust ABH effect [13-15].  

 

1.3.2 Numerical analyses of acoustic black hole structures 
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1.3.2.1 Wave reflection from ABH edges 

The reflection coefficient of flexural waves from an edge is perceived as a direct 

descriptor of the ABH effect and has been widely used in the literature. Employing the 

geometrical acoustics approach [7, 12, 16-19], the reflection coefficient of propagating 

flexural waves from the edge of elastic wedges was analytically derived and numerically 

calculated. In this regard, expressions of wavenumbers are considered in different ways, 

depending on the relative thickness of the damping layer to the truncation thickness of 

the wedge. For a relatively thin damping layer thickness compared to the truncation 

thickness of a quadratic wedge, the resulting reflection coefficient 0R   can be 

analytically derived as 

 ( )0 1 2=exp 2 2R  − −   (1.2) 

where  

 

1/4 1/2

1 1/2

0

12
= ln

4

p wk x

x






 
 
 

  (1.3) 

and  

 

1/4 1/2 2

02
2 3/2 2 2

1 0

3 12 1
= 1

4

p d dk h xE

E x x






  
− 

 
  (1.4) 

in which w  and d  are the loss factors of the wedge and that of the damping layer, 

respectively. E1 and E2 stand for their respective Young’s moduli. dh  is the thickness 

of the damping layer. The extension of the analyses to a smaller truncation thickness 

necessitates the consideration of wedges covered with damping layer of arbitrary 

thickness. This work was undertook in Ref. [7] under some simplifications. However, 
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the integration involved requires numerical calculations. Also under the framework of 

the geometrical acoustics approach, wave reflection and ray trajectories [20] (see Figure 

1.3) were calculated, revealing energy trapping effect of both 1D and 2D ABHs. 

 

 

Figure 1.3 Three typical ray trajectories illustrating propagation of bending waves 

over a pit of power law profile: the ray below is trapped by the acoustic black hole, 

which means that the reflection from it can be neglected [20]. 

 

Using Wentzel-Kramers-Brillouin (WKB) approximation, Mironov [21] also 

conceptually showed the possibility of the total energy absorption in a narrow 

waveguide (see Figure 1.4) which exhibits a vanishing acoustic wave velocity towards 

the termination. Karlos et al. [22] estimated the reflection from wedges of power-law 

profile exhibiting different thicknesses using WKB approximation.  
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Figure 1.4 Model of an acoustic black hole. The tube with rings whose inner 

radius ( )r x  decreases to zero [21]. 

 

Meanwhile, the high-order Wentzel-Kramers-Brillouin (WKB) method and FEM 

simulations were utilized by Karlos et al. [23] to characterize the reflection coefficient 

of a plate with a wedge of power-law profile. Guasch [24] calculated the reflection 

coefficients of acoustic black holes of linear and quadratic forms in duct terminations 

using the transfer matrix method and results were compared with those obtained from 

analytical solutions. Meanwhile, the influence of the number of rings, their thickness 

and damping on wave reflection were analyzed. Integrating the Riccati equation resulted 

in the impedance matrix from which reflection coefficients of flexural waves in a 1D 

ABH beam and 2D elliptical plate were numerically resolved by Georgiev et al. [13, 

14]. 

 

Predictions of flexural ray trajectories and power flow in time domain were 

performed by Huang et al. [25, 26]. Lee and Jeon [27] analytically derived the 

displacement expression of an Euler-Bernoulli ABH beam. The reflection coefficient at 

the interface of the uniform portion and the ABH portion of the beam was analytically 

derived and numerically calculated and agrees with that obtained by geometrical 

acoustics approach. All the investigations showed largely reduced reflecting waves from 

edges covered with a small amount of damping material, as compared with bare edges 

and uniform counterparts with the same deposition of damping materials.   
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Based on the abovementioned numerical analyses, the impaired wave reflections 

of ABH were exploited and implemented in some engineering scenarios. Through a 

parametric study of key parameters on 1D beams using FE models, a trade-off between 

the maximum modal density and minimum wave reflection was reached by Hook et al. 

[28]. Motivated by the appealing feature of ABH with low reflecting waves from 

wedges of power-law profile, a taper tip was implemented by Yang and Thompson [29] 

into FE models to represent a non-reflecting boundary. Reflection analyses quantified 

by the wave/FE superposition method show that the utilization of a taper tip is more 

effective than its uniform counterpart. Also, the application of a tapered tip into a FE 

train track model generates analogous point mobility to an analytical infinite track 

model, albeit smaller size of model was adopted. Inspired by artificial cochleae, a 

waveguide consisting of two ducts partitioned by a plate was designed for the 

observation of propagating waves. The plate exhibits varying width and is terminated 

with an ABH acting as an anechoic end. Immersed in fluid media, the feature of low 

reflectivity of ABH characterized using WKB method [30] was utilized to improve the 

quality of measuring tonotopy [31]. 

 

1.3.2.2 Modelling of vibration and sound radiation from ABH structures 
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For both ABH beams and plates, analytical solutions are scare. Therefore, much 

works related to ABH structures rely on numerical simulations, mainly including the FE 

method, the semi-analytical method, and the impedance method. 

 

1) FE/BE model  

The Finite Element Method (FEM) can readily handle structures of very complex 

geometries and irregular shapes. Also, complex boundary conditions, material 

properties and loading conditions can be easily taken care of using the FEM. Therefore, 

the FEM is universally popular among engineering community. However, FEM has its 

own disadvantages. In particular, the meshing and computation time involved in the 

solution of problems are intensive. Also, examining system response to changes in 

various parameters is tedious using the FEM, such as optimization problems. Despite of 

this, due to the absence of other alternatives, the FEM is by far still the most widely 

used method for ABH studies. 

 

Using the FEM method, Zhou and Cheng [32] proposed and numerically modelled 

a so-called ABH featured resonant beam damper that entails broadband vibration 

attenuation. Tang and Cheng [33] observed band gaps in beams containing double-leaf 

acoustic black hole using FE models. It is shown that bending waves cannot propagate 

with the so-called band gaps, thus leading to considerable vibration attenuations within 

a broad frequency range. Furthermore, through FEM simulations, Gao et al. [34] 

designed V-folded beams that exhibit complete attenuation of flexural waves and 
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longitudinal waves. Due to conversion of longitudinal waves to flexural waves, a 

complete band gap was attained below 1 kHz, resulting in the considerably improved 

efficiency of ABH effect at low frequencies. Furthermore, the formation of 2D acoustic 

lenses in plates based on periodic acoustic black holes [35-37], and the improvement of 

effect of these acoustic lenses utilizing gradient-index local inhomogeneity [38] were 

observed or demonstrated using FE simulations.  

 

Vibration characteristics of plates embedded with ABHs were extensively 

examined. Using FE/BE models, Conlon et al. [39] examined damping loss factors, 

vibration level and sound power of rectangular plates embedded with arrays of ABHs. 

Results show substantially increased damping and largely reduced sound power of a 

plate with ABHs as compared to a reference uniform plate. Meanwhile, possibilities for 

the enhancement of ABH effect at low frequencies were also explored [40]. Through 

FEM simulations, damping level of turbofan blades incorporating an ABH profile 

covered with non-polymeric damping materials was assessed [41]. Using FE models, 

Feurtado and Conlon [42, 43] characterized ABH behaviors at low, mid and high 

frequencies respectively. The low frequency performance of the ABH effect on damping 

was associated with low-order modes. Different damping layouts, such as the spatial 

coverage and the thicknesses of the damping layers over the ABH cell, were analyzed, 

with results suggesting that damping layers are beneficial to low frequency performance 

due to mass loading effect. On the other hand, an excessive thick damping layer on the 

sharp edge of wedges would probably impair damping increase because of the wave 
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reflection. Zhao and Semperlotti [44] modelled a plate embedded with multiple 2D 

ABHs mounted with piezoelectric transducers network. Dynamic behaviors of the 

model were quantitatively analyzed, showing broadband vibration attenuation 

performance. Meanwhile, an ABH plate combined with a dynamic absorber was 

numerically analyzed, showing substantial vibration reduction as compared with a 

uniform plate [45].  

 

2) Impedance method 

Not restricted to the hypotheses of the geometrical acoustic theory, Georgiev et al. 

analyzed the dynamic behaviors of ABH beams that follow Euler-Bernoulli assumptions 

and elliptical plates with indentations of power-law profile using the impedance method 

[13, 14] which allows taking evanescent waves into account. Additionally, the proposed 

model enables the accommodation of damping films which play a crucial role in 

vibration attenuation.  

 

3) Semi-analytical model 

Under the Rayleigh-Ritz framework, vibration characteristics pertinent to ABH 

beams were explored by Tang et al. [46] using a Mexican wavelet (MW) model. The 

predicted vibration field was experimentally validated. Meanwhile, the influence of 

damping layers of different configurations and an extended platform [47] at the ABH 

taper end on structural damping were investigated. In particular, the loss of ABH effect 

[48] was observed. Locally resonant band gaps in periodic beams [49] for vibration 
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mitigation were also studied employing the MW model. The aforementioned studies are 

limited to 1D cases. 

 

Based on the Rayleigh-Ritz approach, investigations into vibration characteristics 

of ABH plates have been conducted in several works. With simple sinusoidal functions 

used as the trial functions to describe the displacement field of a rectangular plate 

embedded with a power-law profiled groove (1D ABH), O’Boy and Krylov [50] 

examined damping loss factors for roughly the first 20 modes. Deng et al. [51] employed 

Gaussian expansion functions to describe the transverse vibration displacement of a 

plate embedded with circular ABH indentations [52] . All these analyses demonstrated 

the damping enhancement of ABH structures using a moderate amount of damping 

layers. Power flow or structural intensity is another useful tool to get physical insights 

into ABH phenomena. Using Fourier series with supplementary auxiliary functions to 

approximate the transverse displacement of an ABH beam, Wang et al. [53] explored 

the distribution of structural intensity for an ABH beam under a point force excitation. 

Results show that structural intensity experiences a sharp decrease entering the coated 

area, confirming that the coated area of the taper tip acts as an energy sink. This analysis 

enriches the understanding of utilization of damping materials to enhance ABH effect. 

 

In addition to several main approaches used to explore ABHs as abovementioned, 

other techniques such as the bending plate model, the wave model, the transfer matrix 

method, the image source approach, and the WKB method were also used for ABH 
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studies. O’Boy et al. [54] investigated the damping level of a plate with a wedge of 

power-law profile using a numerical bending plate model. The damping increase and 

the vibration reduction were clearly observed in the presence of damping material. 

O’Boy and Krylov [55] calculated the vibration response of a circular plate with a 

tapered central hole of quadratic power-law profile using a wave model. Using the 

transfer matrix method [56], vibration and sound radiation properties of a beam 

terminated with a wedge of power-law profile were investigated. Using a model based 

on the image source approach [57], Cuenca et al. investigated the damping efficiency 

of polygonal plates containing an circular ABH indentation. Exploiting the WKB 

method to characterize the fluid and solid fields, Zhou and Yu [58] numerically 

investigated the effectiveness of traditional Helmholtz Resonator (HR) combined with 

an ABH incorporated flexible plate. Magnified energy absorption and dissipation as well 

as enlarged working frequency were observed, suggesting that ABH is a viable solution 

to radically improve the efficiency of traditional HRs for noise mitigations.  

 

1.3.2.3 Energy harvesting 

Instead of converting strain energy to heat using damping material, piezo 

transducers deposited at the structural surface enables conversion of mechanical energy 

to electrical energy. Embracing the idea, Zhao et al. [59, 60] numerically established a 

fully coupled electro-mechanical model of an ABH plate. An indentation of power-law 

profile was incorporated in a plate with transducers mounted on the flat surface of the 
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indentation. The indentation undergoes wavelength sweep and exhibits high-density 

energy, leading to drastically increased efficiency in energy conversion (characterized 

by dissipated power) compared to traditional structures, regardless of steady-state 

excitation or transient excitation. It was concluded that ABHs exhibit progressive 

wavelength sweep and high-level energy density in the tapered region, thus making 

them a good candidate for vibration-based energy harvesting with mounted piezo-

transducers. The numerically observed efficiency of mechanical-electrical energy 

conversion was also experimentally evidenced [61]. 

 

1.3.3 Experimentally investigations of acoustic black hole structures 

1.3.3.1 Wave reflection from ABH edges 

A Kundt-like method was proposed by Denis et al. [62] to experimentally measure 

the reflection coefficient of beams with an ABH termination. This technique allows for 

the consideration of thick damping layer. The resulting reflection coefficient, to some 

extent, agrees with those obtained from the geometrical acoustic approach [7], the 

impedance method [63] and a plate model [64]. Hook et al. [28] experimentally 

evidenced the trends of bands of low wave reflection of ABH beams in parametric 

studies. 

 

The feature of the minimal reflection of propagating waves from the edges of 

elastic wedges makes ABH a good candidate to gain high Signal-Noise-Ratio (SNR) 
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direct Acoustic Emission (AE) waves [64], practically excluding wave reflection from 

structural boundaries. For example, in AE experiments, it is difficult to distinguish the 

characteristic information of noise source from received signal because of the 

interference of reflected wave components from structural boundaries. Inspired by the 

unique ABH feature of minimal wave reflection, Wang et al. [64] experimentally proved 

that the incorporation of an ABH into a disk is a viable option to lower wave reflection, 

yielding direct waves of high quality for AE tests. 

 

1.3.3.2 Vibration of ABH structures  

Vibration benefits drawn from the ABHs have been experimentally demonstrated 

in beams and plates. Experimental modal analyses on a beam with a power-law profiled 

termination and covered with damping materials were performed by Denis et al. [63]. 

Considerably increased modal overlap factors were observed compared against those of 

a uniform counterpart, suggesting reduced resonant behaviors of the beam with an ABH 

termination. The greatly attenuated vibration response observed in the so-called V-

folded beams [34] using FEM simulations was also experimentally confirmed.  

 

Rods with high damping offer a variety of possible applications in civil engineering 

and transportation industries. A steel rod featuring in a quadratic power-law profile 

covered by adhesive damping materials was proposed by Krylov [65] to damp vibrations. 

The observed reduction in mobility ensures that such a geometry combined with a small 
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amount of damping material represents an efficient damping system, pointing at its 

potential applications in the mitigation of impact-generated flexural vibrations 

frequently occurred in tennis racquets and golf clubs [66]. Extensive studies of vibration 

attenuation of 1D ABH beams can be found in Refs. [32, 46, 47, 56, 67, 68]. 

 

Vibration characteristics of plates with a wedge of power-law profile (1D ABH) 

were first experimentally [69] investigated by Krylov and Winward. Applying a point 

excitation force to the uniform portion, it was observed that peaks of mobilities of 

investigated plates in the vicinity of the wedge end covered with one adhesive strip were 

heavily damped, in comparison with those of uncovered ABH plates or covered uniform 

plates. However, increasing the number of adhesive strips shows little increase in the 

reduction of vibration peaks, which experimentally confirmed the theoretical 

calculation [7] that utilization of thicker damping material would not necessarily 

increase the structural damping, and even would be detrimental to ABH effect. It was 

concluded that a very small amount of damping material is sufficient to induce 

substantial damping of ABH structures, which is a remarkable feature of the ABHs. 

Adverse effect of the excessive use of damping material has also been evidenced in Refs. 

[43, 54, 70]. Bowyer et al. [71, 72] experimentally analyzed the damping performance 

of composite plates embedded with power-law slots. The potential application of 

wedges of power-law profile into turbofan blades for vibration attenuation was also 

experimentally attempted by E. Bowyer [73, 74]. Other experimental investigations into 

plates with 1D ABHs can be found in Refs. [54, 71, 75-78].  
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2D ABH Circular indentations were first experimentally examined in an elliptical 

plate by Gautier et al. [15]. An indentation located at one focus was covered by resins. 

Results show that the input mobility at the other focus exhibits a significant reduction 

at high frequencies, compared with that of a uniform elliptical plate completely covered 

with resins. Investigations of multiple-hole ABHs [79-81] embedded in a plate have also 

been carried out experimentally, showing that increased number of indentations will 

result in improved damping performance. The influence of the diameter of the 

indentations and the size of central holes on vibration attenuation were also examined 

[79]. Zhao and Semperlotti [44] experimentally demonstrated obvious broadband 

vibration attenuation characteristics based on multiple ABHs mounted with 

piezoelectric transducers. To attain improved damping performance, glass fibre 

composite panels [82, 83] encased with different configurations of power-law profiles 

were explored. Experimental results show that, with high-level intrinsic loss factor, 

composite panels embodied with multiple ABHs can result in effective damping 

performance with the absence of additional damping material, whilst maintaining 

similar surface texture as original sandwich panels as shown in Figure 1.5. 

 

 

Figure 1.5 A composite panel enclosed with circular indentations. 
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Other experimental observations of damping vibration of plates embedded with 

circular indentations can be found in Refs. [13, 42, 43, 57, 71]. Furthermore, 

experimental investigations show that robust ABH effect is still visible even with the 

presence of geometrical defects (see Figure 1.6) [77, 84], such as curling at the wedge 

tips [84]. 

 

 

Figure 1.6 2D ABH with manufacturing defects [84]. 

 

1.3.3.3 Sound radiation of ABH structures 

As opposed to vibration analyses, explorations of sound radiation properties of 

ABH structures are scarce. Experimental investigations into sound radiation 

characteristics pertinent to ABH plates were firstly carried out by Bowyer and Krylov 

[85]. Results show that the reduction of vibration level over the plate surface of uniform 

thickness necessarily leads to considerably reduced sound power level, despite the 

largely amplified vibration level at the ABH indentation center. The sound power was 

determined following ISO 3744 which requires the use of a rigid baffle with the test 
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sample. In this regard, the results obtained [85] may involve some errors at low 

frequencies because of the acoustic short circuiting resulted from free edges and the 

absence of the acoustic baffle. Feurtado and Conlon [43] also experimentally observed 

that a plate embodied with twenty circular indentations exhibits largely reduced sound 

power, compared with a uniform plate. The transformation of experimentally measured 

vibration velocity into wavenumber domain by Feurtado and Conlon [86, 87] offers 

useful physical insights into ABH behaviors. This wavenumber transform analysis 

reveals that ABHs are beneficial to redistribute vibration of supersonic components into 

subsonic components, subsequently the radiation efficiency was reduced. These 

analyses indicate that ABHs represent efficient means for noise mitigation.  

 

1.3.3.4 Sound transmission loss 

Sound transmission properties of structures constitute one of the main concerns in 

noise control application. The application of ABH concept for noise transmission 

control has also been attempted in the literature. ABH plate embedded with multiple 

circular ABH indentations was experimentally tested in a reverberant chamber by 

Feurtado and Conlon [88]. The measured transmission loss subjecting to a diffuse sound 

field agrees with its numerically predicted results. Experimentally results show that a 

damped ABH plate containing 5×4 rectangular array of ABHs exhibits an increase of 

6-9 dB in transmission loss over a uniform plate, achieved using less mass.   
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1.3.4 Potential applications of acoustic black hole structures 

Taking advantage of the ABH effects, rods of a circular cross section that follows 

a power-law profile were successfully exploited by Krylov [65, 66] to damp impact-

generated flexural vibration in tennis racquets and gulf clubs (see Figure 1.7) that are 

supposed to be the major paths to transmit impact energy to arms [89, 90]. With narrow 

strips of energy absorbing materials coated at the taper areas, a large reduction in cross 

mobility was observed, compared with bare rods.  

 

Figure 1.7 A tapered bar of circular cross-section with the radius described by a 

power-law profile and with the Sharp end covered by a thick absorbing layer (a); such 

a device forms a one-dimensional acoustic black hole that can be used for suppression 

of impact-induced resonant vibrations in the main structure of tennis racquets (only 

part of which close to the grip is shown) (b). 

 

Another potential application of ABH is suggested for turbofan blades whose 

trailing edge exhibits a power-law profiled thickness. Bowyer et al. [73, 74, 91] 

experimentally analyzed accelerations of straight and twisted turbofan blades of power-

law profile under air-flow excitations (shown in Figure 1.8). With moderate damping 

layers coated at trailing edges to produce original turbofan blades, separation of air flow 
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was eliminated and smaller vibration level was experimentally observed, which 

suggests that utilization of ABHs in trailing edges is a viable approach to damp structural 

vibration in engine fan blades. Using FE models, Bayod [41] numerically investigated 

the efficiency of abovementioned turbofan blades with a varying thickness of power-

law profile. Results show a reduction in vibration response of turbofan blades with the 

tapered areas coated with non-polymeric damping materials.   

 

Figure 1.8 Flow visualization diagram for (a): reference fan blade; (b) fan blade 

with power-law wedge; (c) fan blade with power-law wedge with single damping 

layer; (d) fan blade with power-law wedge with shaped damping layer. 

 

An automotive application of the ABHs into engine covers was exploited by 

Bowyer et al. [92]. The ABHs were boned into a standard engine cover (see Figure 1.9). 

Both vibration response and sound power were experimentally tested and compared 
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with those of a standard engine. Results indicate that the integration of ABHs into 

standards engines enabled a reduction of the total sound power by an average of 6.5 dB. 

 

 

Figure 1.9 ABH engine cover (top view) and locations of accelerometers on 

reference engine cover [92]. 

 

Investigations suggested that, with fixed minimum thickness at ABH taper ends, 

increased ABH length would give rise to increased damping performance. However, in 

practice, due to the limitation of space, the length of ABH should be restricted. To solve 

the problem, a so-called curvilinear shaped ABH (shown in Figure 1.10) was proposed 

by Lee and Jeon [93]. Numerical analyses in terms of driving point mobility and radiated 

sound power were conducted using the commercial finite element software ANSYS. 

Results are similar to those of a standard ABH, which indicates that the compact spiral 

ABH can be a replacement for a standard ABH. Meanwhile, more effective ABH 

performance is expected as the length of the ABH is no longer a major constraint.  
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Figure 1.10 Plate with an ABH of an Archimedean [93]. 

 

Targeting a different application, plates with wedges of power-law profile were 

experimentally explored by Anderson et al. [94] for improved efficiency of ultrasonic 

sound radiation with a frequency span of 20-100 kHz. This idea was proposed by 

Remillieux et al. [95, 96] to ensure that ultrasonic sound radiates efficiently into air, 

which was experimentally evidenced by Anderson. Results reveal that a plate with a 

cubic power-law profile mounted with piezoelectric transducers is an extremely 

efficient means to ultrasonic radiation, thus suggesting its implementation as main 

sources in a Time Reversal Acoustic Non-Contact Excitation (TRANCE) source [97]. 

 

1.3.5 Improvements to enhance acoustic black hole performance 

As aforementioned, ABH structures could act as efficient vibration absorbers. On 

the other hand, ABHs show little effect on damping enhancement at relative low 

frequencies, which is a major drawback of ABHs. To overcome the low frequency limit, 

some preliminary attempts were made, which are summarized in the following.  
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1) Nonlinear effect 

Most of the theoretical and numerical investigations into ABH behaviors are based 

on linear assumptions. However, the large amplitude of vibration displacement at the 

end of ABH tapers, as compared to the minimum thickness, is highly likely to yield 

nonlinear effect in which linear eigenmodes are coupled. Such coupling enables energy 

transfer from a low frequency range to a high frequency range where ABH effect is very 

efficient, which may lower the effective frequency range of the ABH. Denis et al. [98] 

experimentally evidenced the energy transfer between low and high frequency ranges, 

and numerically illustrated the competing effect between nonlinearity and damping. To 

gain improved efficiency at low frequencies, power density spectrums of velocity 

response of a number of ABH beams with/without damping layers were calculated, 

giving rise to a compromise between the profile thickness and the moderate length of 

the damping layer. This work is probably the first one to focus on the nonlinear effect 

present in ABH structures that had been overlooked in the literature but is of crucial 

importance. However, the gain in the efficiency was rather limited, which later on 

motivated the exploration of the vibro-impact mechanism [67] to ensure more effective 

energy transfer. Numerically simulations show that the strongly nonlinear vibration of 

an ABH beam can lead to significant improvement of the ABH performance. Also, 

nonlinear acoustic absorption was theoretically explored by Gusev et al. [99], showing 

that acoustic waves in most wedges exhibiting acoustic black holes are completely 

attenuated. These analyses also ascertained the existence of ABH effect beyond 
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geometrical acoustics assumptions and the possible implementations of ABHs into 

nondestructive evaluation of micro-inhomogeneous materials.  

 

2) Optimization of damping layer and ABH profile 

For the purpose of enhancing ABH effect, optimizations of ABH layout has been 

carried out. Rothe et al. [100] optimized the position of an ABH indentation to minimize 

the vibration level of a plate. ABHs of high taper power are expected to exhibit totally 

low reflection coefficients of flexural waves thus induce better ABH performance. On 

the other hand, a high taper power index is likely to violate the smooth assumptions 

required by better ABH effect. To compromise the competing effects, parameters of 

power-law profiles including the minimum thickness, the end thickness, the taper power 

and the length of tapers were used as design variables to achieve an optimized profile 

that takes both vibration suppression and the smooth condition into account. A pareto 

optimality curve associated with abovementioned two objectives was estimated under 

the framework of the evolutionary search [101]. In addition, to gain increased ABH 

performance, parameters of power-law profiles were also investigated in Refs. [10, 12, 

25, 28, 46, 47, 58, 64, 102-104]. 

 

3) Gradient thermal load 

Also in Ref. [104], Cuenca et al. imposed a temperature gradient to a beam, which 

leads to a varying Young’s modulus gradient along the distance, thus resulting in 

decreased structural wave velocity. Peaks of the reference input impedance were 
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practically eliminated, compared with their counterparts in the absence of gradient 

thermal load. 

 

4) Negative capacitance shunted piezoelectric transducers  

Beck and Cunefare [105] proposed to use shunted piezoelectric patches near the 

end of ABH tapers to increase the absorption of vibration energy. ABH, in turn, 

improved the efficiency of piezoelectric shunt control. In terms of the reduction in 

kinetic energy and reflection coefficient, the combination of negative capacitance 

shunted piezoelectric transducers with an ABH taper shows superiority over the 

traditional damping treatment coated at the ABH taper end.  

 

Other numerical simulations and experimental investigations associated with 

improved ABH effect in terms of reflection coefficients, damping vibration and noise 

mitigation can be found in the literature, e.g. functionally graded ABH [106], sandwich 

plate with periodic ABH circular indentations covered by constrained layers [107] and 

compound ABH beams [68]. More detailed descriptions can be referred to a few recent 

review papers [92, 108-110]. 

 

1.4 Research objectives 

Existing attempts on various aspects pertaining to ABH effects are presented above. 

As a summary, the reflection coefficient is perceived as a main intrinsic 

indicator/descriptor for assessing ABH effect of a structure. With a small amount of 



 

30 

 

damping material coating on the ABH taper end, the reflection coefficient undergoes a 

large decrease, entailing pronounced strain energy focalization/focusing at the extremity 

region of ABH tapers with proper dissipation, thus making the entire structure an 

efficient damping system. Investigations into energy harvesting show that, piezoelectric 

transducers mounted at ABH tapers allows for efficient conversion from mechanical 

energy to electrical energy, subsequently, vibration level of ABH structures was largely 

reduced. Additionally, the great potential of ABH plates in transmission loss 

applications was also experimentally observed. These works point at promising 

application of the ABH-based technology, as initially demonstrated by a few application 

cases. 

 

Despite the progress made, however, the underlying mechanism of ABH effect, as 

well as its optimal design to cater for particular application scenario, has not been fully 

revealed, probably due to a lack of flexible simulation and optimization tools. While the 

vibration analyses of ABH structures are extensively reported as summarized in the 

Section 1.3, the explorations in sound radiation properties of ABH structures are still 

relatively limited. Also, it can be surmised that optimizations of damping layers and 

ABH profiles may potentially enhance ABH performance, which has not practically 

been materialized. The ultimate solution to tackle these problem calls for flexible tools 

that enable examination of ABH behaviors in a versatile manner. This thesis attempts to 

contribute to the above-mentioned aspects. 
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The objectives of the thesis are as follows: 

 

1) Develop a semi-analytical model for the prediction of the vibration and sound 

radiation of realistic ABH plates of finite size up to a high frequency range. Add-on 

components such as damping layers should be integrated into the model in a fully 

coupled manner. 

2) Carry out experimental validations of the proposed model and demonstrate 

ABH effects on structural vibration and sound radiation.  

3) Carry out systematic investigations and exploration of underlying physics 

behind the vibration and sound radiation of ABH plates with the help of the established 

model. 

4) Optimize the layouts of the add-on damping layers for given targets such as 

minimization of structural vibration, and sound power.  

5) Propose other possible ABH thickness profiles through optimizations. The 

optimized profile is expected to increase the damping performance of ABH plates while 

respecting other constraints such as minimum structural thickness that can possibly be 

achieved by the current state-of-the-art manufacturing technology. 

 

1.5 Overview of the thesis 

To achieve the objectives described above, the remaining thesis is organized as 

follows. 
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 Chapter 2 focuses on mathematical formulations of a 2D Daubechies wavelet 

(DW) model and the calculations of scaling functions and connection coefficients 

involved in the modelling. Additionally, the established vibration model is extended to 

sound radiation calculation. In Chapter 3, the accuracy of the proposed model in terms 

of various vibration and sound radiation metrics is experimentally verified. Chapter 4 is 

dedicated to the analyses of the vibration characteristics of a plate embedded with a strip 

indentation (1D ABH). Chapter 5 explores the sound radiation properties of a plate 

containing a circular ABH indentation. Chapter 6 investigates the optimal layouts of 

topologically optimized damping layers mainly for minimization of radiated sound 

power. Chapter 7 proposes a profile that is different from the standard ABH profile with 

increased structural damping in an ABH plate. Chapter 8 concludes the thesis and gives 

suggestions for future ABH studies. Detailed description of each chapter are as follows: 

 

In Chapter 2, a model based on the Kirchhoff-Love thin plate theory is developed 

under the Rayleigh-Ritz framework. The damping layer covering the surface of the ABH 

indentation is integrated with the plate in a fully coupled manner. Values of DW scaling 

functions are recursively calculated. General expression of the connection coefficients 

involved in the mass and stiffness matrices are derived. Furthermore, the proposed 

model is extended to sound radiation field. Both far field and near field methods for 

sound radiation analyses are presented.  
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Subsequently in Chapter 3, the accuracy of the proposed model is thoroughly 

validated. Two key parameters, compactly supported length L and resolution m, that 

relevant to Daubechies wavelet scaling functions are carefully determined. The 

vibration field is verified through FE simulations, and the sound field is verified using 

a simply supported uniform plate for which analytical solutions are available. 

Furthermore, a rectangular plate embedded with a circular ABH indentation is 

successfully manufactured. The vibration parameters such as eigen-frequencies, mode 

shapes and mobilities, as well as the sound radiation parameters are experimentally 

measured to validate the proposed model.  

 

Based on the DW model developed in Chapter 2, vibration characteristics of a 

rectangular plate embedded with a strip indentation (1D ABH) are investigated in 

Chapter 4. Based on the model, effects of different configurations of damping layers 

coated at the ABH indentation on damping enhancement are quantitatively analyzed. 

The obtained damping loss factors are classified into three groups that are associated 

with ABH local modes. The vibration attenuation performance of ABH plates is 

assessed by comparing against that of uniform reference plates.  

 

In Chapter 5, reductions in the radiated sound power of ABH plates are 

quantitatively analyzed. Effect of the stiffness due to the add-on damping layer on the 

increase of sound radiation efficiency is revealed and qualitatively investigated, both for 

ABH plates and uniform plates. To understand the underlying mechanism for sound 



 

34 

 

radiation reduction, sound radiation properties of ABH plates along with transonic 

boundary of the ABH plate is examined. The effective radiation regions on ABH plates 

are identified using the supersonic intensity theory.  

 

Considering the competing effects of the damping layer on reduction of vibration 

level and reduced radiation efficiency, the damping layout of the viscoelastic coating 

over the surface of the ABH indentation is topologically optimized in Chapter 6. The 

optimization is carried out using either the mean square velocity over the entire ABH 

surface or the radiated sound power as objective functions. Differences in optimal 

layouts obtained under the two different objectives and the corresponding radiation 

efficiencies are compared and analyzed. Additionally, the averaged sound power within 

a frequency band is minimized and results are compared against those of an ABH plate 

with damping layer centrally covering ABH indentation and a bare uniform plate. 

 

In Chapter 7, subjecting to the satisfaction of the smooth conditions, ABH 

thickness profiles are optimized using the Non-dominant Sorting Genetic Algorithm II 

(NSGA II) method. The objective function is the maximization of the sum of the first 

one hundred modes. The damping level of the convergent profile is compared with that 

of a standard profile with a taper power of four. Furthermore, physical mechanisms 

leading to the damping increase in the optimized profile are analyzed.  
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Major conclusions are drawn and summarized in Chapter 8, with discussions 

and suggestions on possible future ABH work.  
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2 Chapter 2  

2D Daubechies wavelet semi-analytical model 

 

2.1 Introduction 

The design of effective ABH structures relies on a good understanding of the 

underlying physics and a meticulous setting of the design parameters, be it material or 

geometrical. This can only be achieved with the help of efficient simulation and 

optimization tools. Up to now, extensive work has been carried out, predominantly using 

numerical tools such as finite element methods and experiments [39, 69, 79, 85]. To a 

much less degree, effort has also been made to develop more physical models, aimed at 

capturing the fundamental features of the ABH phenomena using basic configurations, 

as reviewed in Chapter 1. Pros and cons of these methods have been extensively 

discussed in previous works [7, 46], among which geometrical and boundary restrictions 

of the structure as well as the applicable frequency range are the main concerns. More 

recently, structural modelling which considers more realistic structural features such as 

finite size, realistic structural boundaries and add-on damping layers has also been 

attempted, but mainly limited to 1D cases [46]. 

 

The modelling of the ABH structures is technically challenging due to the ABH-

specific features, which are mainly twofold: a) structural wavelength varies significantly 

over a structure with embedded ABH elements. At any given frequency, bending waves 
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experience a continuous wavelength variation and are severely compressed inside the 

ABH cells, while remaining relatively even over the uniform part of the structure; b) 

ABH effects start to systematically show only above the so-called cut-on frequency [39], 

when the structural wave length starts to be comparable with the characteristic 

dimension of the ABH cells. Therefore, simulation methods should be able to reach the 

relatively high frequency range while being able to accommodate the significant 

wavelength variations over the structure. Along with these challenges, there is also the 

need in accommodating various structural changes such as add-on damping layers [46] 

or energy harvesting elements [59], as well as a better versatility and flexibility in coping 

with the structural design and optimizations. All these add further difficulties to the 

modelling task.  

 

The use of wavelets under the Rayleigh-Ritz framework may provide a solution to 

cope with the abovementioned problems. In a previous work, a wavelet decomposed 

Rayleigh-Ritz method was proposed to model thin-walled structures with a constant 

thickness [111]. Results showed that the wavelet-based model can reach a much higher 

frequency range than the conventional Rayleigh-Ritz methods using admissible 

functions such as simple polynomials, Chebyshev series or trigonometric functions, 

which are prone to problems like numerical instability, ill condition or slow convergence 

[112, 113]. Meanwhile, the unique features of the wavelets such as flexible scaling, 

compact support and strong fitting capability are shown to be conducive to the handling 

of ABH-specific wavelength variations. The idea was tested on a 1D beam using 
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Mexican Hat Wavelets (MHWs) [46]. The formulation was rather straightforward since 

1D configuration is relatively simple and MHWs can be analytically expressed. It was 

shown that the MHW-based Rayleigh-Ritz model allowed a good description of the 

ABH phenomena by accurately predicting the system dynamics at relatively high 

frequencies. Up to now, however, semi-analytical modelling of 2D ABH structures is 

scarce with the exception of a very recent work by O’Boy and Krylov [50]. That work 

follows the same Rayleigh-Ritz framework using trigonometric series as the admissible 

functions. The reported frequency range, however, is relatively low, typically covering 

the first twenty structural modes.  

 

Inspired by our previous work on 1-D ABH beams [114] and the success in high 

frequency simulation on uniform structures [111], this paper proposes a 2D semi-

analytical ABH model using Daubechies wavelet scaling functions. Compared with the 

MHWs which are smooth and analytically expressible, DWs are expected to better 

respond to the local variations of the ABH phenomena. However, as DW scaling 

functions have no closed form expressions, a proper recursive procedure needs to be 

worked out to deal with various operations on the scaling functions. In the present work, 

the same configuration used in O’Boy and Krylov [50] is adopted with an intention of 

improving that model to reach the effective ABH zone at much higher frequencies.  

 

In this chapter, a versatile semi-analytical model is proposed based on the 

Kirchhoff-Love thin plate theory. The proposed semi-analytical model is first developed 
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for a plate embedded with strip/circular ABH indentations in Section 2.2. In the 

formulation, DW scaling functions are chosen as the admissible functions for flexural 

displacement decomposition under the general Rayleigh-Ritz framework. Solutions to 

the derivatives of DW scaling functions and the connection coefficients are derived. The 

formation of matrices of mass and stiffness involves the calculation of connection 

coefficients that are integrals of DW functions and their derivatives in a finite interval. 

The integration can be performed using 1D Gaussian integration method for 1D ABH 

indentations (strip indentations) and 2D Gaussian integration method for 2D ABH 

indentations (circular ABH indentations), respectively. Furthermore, the proposed 

vibration model is extended to sound radiation field.  

 

2.2 Semi-analytical modelling and formulation  

2.2.1 Modelling 

The modelling of 2D ABH plates is carried out for both strip and circular ABH 

indentations. Due to the similarity in the modelling approach, more details are given 

using strip case as an example. As shown in Figure 2.1(a), the investigated structure is 

a thin plate (with a dimension of a, b, and h), which contains a strip ABH indentation, 

symmetrically coated with damping layers on both sides. The strip ABH indentation 

featuring a thickness variation along one direction of the plate. Figure 2.1(b) gives the 

top view of the plate and Figure 2.1(c) the cross-sectional thickness profile. The plate 

consists of two portions. The region containing the ABH strip is referred to as ABH 

portion, and the one with a constant thickness the uniform portion. The ABH portion is 
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bounded by the range 1 2( , )x x  and 1 2( , )y y , centered at ( ,  )c cx y , featuring a thickness 

variation in x direction according to a power law relationship, i.e. 

0( ) ( )ch x x x  = − +  with ε  being a constant,   a power law index and 0  a 

parameter which determines the termination thickness in the thinnest middle part of the 

strip. Along the center at cx x= , the ABH indentation has the smallest thickness 0

 . 

Damping layers with a thickness dh  are coated within an area from 1dx  to 2dx  in x 

direction and from 1dy  to 2dy  in y  direction.  

 

As to a plate embedded with a circular ABH indentation (see Figure 2.2), it has a 

radius of ABHR , centered at ( , )c cx y . The thickness of the circular ABH indentation 

changes according to ( ) ( )( )2 2

0( , ) c ch x y x x y y h


= − + − + , where 0h  is the 

smallest thickness of the indentation. The central portion of the ABH indentation within 

a radius dR  is covered with the damping layer. Other materials can be found in 

Appendix B. 

 

The boundary conditions of the plates are shown in Figure 2.1(d). A set of springs 

working in translation and rotation are uniformly distributed along the edges of the plate 

[115] (ki for translational spring stiffness and ci for rotational spring stiffness with i=1, 

2, 3, 4 representing the edge number of the plate). The use of the springs allows various 

boundary conditions to be simulated through adjusting their stiffness values. Meanwhile, 

it allows a flexible choice of the admissible functions which are required to only satisfy 
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the geometrical boundary conditions. The inherent material damping of the plate and 

that of the damping layers are introduced through complex Young’s modulus 

0 0 0(1 )E E i= +  and (1 )d d dE E i= + , respectively, where 0  and d  are the 

corresponding loss factors. The damping layer is explicitly modeled as an integrate part 

of the ABH plate, with both its stiffness and mass included in the global matrices of 

stiffness and mass of the whole system. 

 

(a)                                              (b) 

 

     (c)                               (d) 

Figure 2.1 Plate model with a strip ABH indentation: (a) plate with symmetrical 

power-law thickness profiles; (b) ABH portion in vertical view; (c) cross-section of 

the ABH portion; (d) modeling of the boundary conditions. 
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Figure 2.2 Plate model with a circular ABH indentation. 

 

The system is assumed to be symmetrical with respect to the midplane of the plate. 

According to the Love-Kirchhoff thin plate theory, the displacement field of the system 

can be written as: 

 { , , } , ,
w w

u v w z z w
x y

  
= − − 

  
  (2.1) 

in which vector { , , }u v w  contains the three displacements of a point, in either the plate 

or the damping layer.   

 

Employing dimensionless coordinates x̅ = x/a  and y̅ = y/b , the transverse 

displacement w can be approximated by: 

 ( ) ( ) ( )
p q

ij i j

i j

w a t x y =   (2.2)                                     

where φi(x̅)  and φj(y̅)  are the assumed admissible functions and ( )ija t  are the 

unknown complex coefficients; p̅  and q̅  are the truncation order representing the 

number of terms of admissible functions to be kept in the computation; ( )ija t  are the 
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generalized coordinates in the Euler-Lagrange equations which result from the 

stationary state of the system: 

 0
( ) ( )ij ij

d

dt a t a t

  
− =    

L L
  (2.3) 

where L  is the Lagrangian operator written as: 

 k p fE E W= − +L   (2.4) 

in which Ek and Ep  are the kinetic energy and the potential energy of the system, 

respectively; and fW  the work done by external forces. Neglecting small quantities of 

higher orders, these terms are expressed as: 
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  (2.5) 

where ρ  is the density,    the Poisson’s ratio and ( , )f fx y   the location of the 

excitation force. 1 2 3, ,k k k  and 4k  are the translation stiffness of the artificial springs along 

the plate edges with coordinates (0, y ), (1, y ), ( x , 0) and ( x , 1), respectively, and 1 2 3, ,c c c  
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and 4k  are the rotation stiffness. Integrals in Equation (2.5) should be evaluated for the 

whole system, including both the plate and the damping layers. Application of Equations 

(2.4) and (2.5) to Equation (2.3) leads to a set of linear equations, expressed in a matrix 

form as: 

 (t) (t) (t)+ =Ma Ka F   (2.6) 

where M  and K  represent the global mass and stiffness matrices (complex due to 

viscoelasticity of the material), respectively. For the strip ABH case, the entire structure 

is divided into five parts. The formation of K  and M  is given in Appendix A. 

Considering a harmonic excitation, the above Equation (2.6) can be cast into the 

standard matrix form 

 ( )2− =K M A F   (2.7) 

Dropping the excitation terms yields a standard eigenvalue problem, whose 

solution gives the natural frequencies of the system along the corresponding mode 

shapes. As K is complex, the natural angular frequencies are also in a complex form as: 

 
2 2(1 )n ni  = +  (2.8)                                                                                                       

where ωn  are the undamped natural angular frequencies and ηn  the corresponding 

modal loss factor. ηn is an important parameter to characterize the energy dissipation 

of individual resonant modes resulting from the ABH effects, which will be described 

in Chapter 4. 

 

2.2.2 Daubechies wavelet scaling functions 
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As shown in Appendix A, expressions of the stiffness matrix K and mass matrix 

M require the handling of some finite integral terms involving the DW scaling functions 

and their derivatives. This is worked out in this Section. For the benefit of the readership, 

Daubechies wavelets are briefly recalled and discussed. DWs are a compactly supported 

and orthogonal set which can be scaled to accommodate both localized and smooth 

variations [116]. Each DW member is governed by an even integer L and a set of wavelet 

filter coefficients  ,  0,1,2, 1lp l L=  −  through a two-scale relation: 

 
1

0

( ) (2 )
L

l

l

x p x l 
−

=

= −   (2.9) 

and 

 
1

1

2

( ) ( 1) (2 )l

l

l L

x p x l −
= −

= − −   (2.10) 

where φ(x)  is the scaling function and ( )x   the mother wavelet. Note φ(x)  and 

( )x   are completely localized in the interval [0, L − 1]  and [1 − L/2, L/2] , 

respectively. The conditions that the coefficients pj need to satisfy can be found in Ref. 

[116]. 

 

The constructed ( )x  possesses the following property: 

 ( ) 0          0,1, , / 2 1kx x dx k L
+

−
= =  −   (2.11) 

which indicates that the elements of the set 
/2 1{1, , , }Lx x −  can be a linear combination 

of φ(x − k), translated from φ(x) by k. Also, the nth derivative of the scaling function 

φ(n)(x) exists for n = 0,1, … , L 2⁄ − 1. Employing Equation (2.9), an analogous form 

of the two-scale relation for φ(n)(x) can be obtained as: 
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1

( ) ( )

0

( ) 2 (2 )
L

n n n

l

l

x p x l 
−

=

= −   (2.12) 

 

Equation (2.12) allows the calculations of the values of φ(n)(x) for all dyadic 

points at x = k 2j⁄ , when φ(n)(k) are known at the integer points k = 1,2, … , L/2. 

Substituting these integer points into Equation (2.12) gives a system of linear equations 

as: 

 2 n− =Χ PΧ   (2.13)                                                                                                        

where  

 
T

( ) ( ) ( )(1), (2), , ( 2)n n n L   =  − Χ   (2.14) 

in which superscript T denotes the transpose and P is a (L − 2) × (L − 2) matrix:  

 
1 2 1 22 1 , 2[ ]l l l l Lp −   −=P   (2.15) 

with 
1l   and 

2l   being the row and column indices, respectively. Vector Χ  , the 

eigenvector, can be uniquely determined with the following normalization condition 

[116]: 

 
2

( )

1

( ) ( ) !
L

n n

k

k k n
−

=

− =   (2.16) 

 

Upon getting values of φ(n)(k) at k = 1,2, … , L − 2, values of φ(n)(x) at x =

k 2j⁄  for k = 1,3,5, … , 2j(L − 1) − 1 and j = 1,2, . .. can be determined by using the 

relation: 

 
1

( ) ( )

1
0

( ) 2 ( )
2 2

L
n n n

lj j
l

k k
p l 

−

−
=

= −   (2.17) 
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knowing that φ(n)(x) = 0 for x ≤ 0 and x ≥ L − 1. Subsequently, the values of the 

scaling function φ(x) and its derivatives at any point can be recursively calculated. 

 

2.2.3 Connection coefficients 

Write the 2D wavelet base functions in the x̅  and y̅  directions as φi(x̅) =

2m/2φ(2mx̅ − i)  and φi(y̅) = 2m/2φ(2my̅ − j) , respectively, where m  is the 

resolution, i and j are the corresponding translation factors. To avoid the singularity 

when solving Equation (2.6), the integer translation factors i and j should be confined 

to the range [−L + 2, … , 2m − 1]. This leads to a total of number of terms given by 

p̅ = q̅ = 2m + L − 2 . All the wavelet terms located within the interval [0, L − 1] 

should be included in the displacement field.  

 

For the purpose of illustration, φi(x̅)  with m = 2  and i = −3, −2, … ,2,3  is 

shown in Figure 2.3. 

 

 

Figure 2.3 Daubechies scaling functions with L=12, m=2, i=-3, -2,…,2, 3.  
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As shown in Appendix A, constructing K  and M  for each part of the plate 

(numbered by q = 1,2, . . . ,5  in Appendix A) requires the calculations of 2-D 

connection coefficients which are the finite integrals involving admissible functions and 

their derivatives. The terminology of the so-called connection coefficients has been 

widely used in the literature on various applications of wavelets [111]. In the present 

case, the general form of 2D connection coefficients writes: 

 ( )
2 2

q1 1

( ) ( ) ( ) ( )

, , , [ ] ( ) ( ) ( )   
q q

q

y x
n

r i s j r i s j
y x

I h x x x y dxdy      
   =     (2.18) 

where x̅q1 and x̅q2 are, respectively, the lower and upper limits in x̅ direction for a 

given part of the plate q; and y̅q1 and y̅q2 in y̅ direction. n is equal to 1 for mass 

term and 3 for stiffness term. αx̅ , βx̅, αy̅ and βy̅ are the order of derivatives of the 

scaling functions. 

 

Due to the geometry of the strip ABH indentation, integrals in Equation (2.18) are 

separable. Recalling x̅ = x/a  and y̅ = y/b , φ(α)(x) = (1/a)αφ(α)(x̅)  and 

φ(α)(y) = (1/b)βφ(β)(y̅). The general forms of 1D connection coefficients, Ix and Iy 

in the x and y directions, can be written as: 
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where φ(α) and φ(β) (with  =0, 1, 2 ， ) are the derivatives of the scaling functions, 

which can be obtained by following the procedure described in Section 2.2.2. Finally, 

the 2D connection coefficients are decomposed as a tensor product of their 1D 

counterparts Ix and Iy as: 

 x yI = I I   (2.20) 

where   is the Kronecker tensor product symbol. Integrations in Equation (2.19) can 

then be carried out using 1D Gauss integration method.  

 

It is relevant to note that the established formulation and the associated numerical 

scheme also apply to plates with circular ABH indentations. In that case, the thickness 

of the plate is a function of both x̅ and y̅. Therefore, Equation (2.18) should be re-

written as: 

 ( )
2 2

q1 1

( ) ( ) ( ) ( )

, , , [ , ] ( ) ( ) ( )   
q q

q

y x
n

r i s j r i s j
y x

I h x y x x y dxdy      
   =     (2.21) 

As a result, terms involving x̅ and y̅ are inseparable and the integral should be 

calculated by the 2-D Gauss integration method which takes the following standard form 

 
0 01 1

-1 -1
1 1

( , ) ( , )
M N

i j i j

i j

f x y dxdy H H f x y
= =

=    (2.22) 

where Hi and Hj are the weighting coefficients, f(x̅i, y̅j) is the value of the integrand 

at the Gauss point (x̅i, y̅j) and M0, N0 the number of Gauss points.  
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2.2.4 Sound radiation model 

The sound radiation of the ABH plate is characterized using radiated sound power, 

and sound radiation efficiency. The aforementioned vibration model is extended to 

accommodate this need under the wavelet-based framework. 

2.2.4.1 Sound power and sound radiation efficiency 

The acoustic model used in the analyses is shown in Figure 2.4. The plate is 

assumed to be bounded by an infinitely large and rigid baffle. Setting the origin of the 

coordinates at the center of the plate, with x − y plane coinciding with the mid-plane 

of the plate, Rayleigh integral [117] can be used to calculate the sound pressure radiated 

into the far field in an infinitely large half space as 

 ( )
( )0

0

0

exp
( )

2

a

S

jk r rj
r r dS

r r





− −
=

− Vp   (2.23) 

where S represents the vibrating surface; ρa the density of air; ω the angular frequency 

and k the acoustic wavenumber. r is a position vector for a receiver position in the far 

field, r0 is a position vector on the vibrating surface S. ( )0rV  is the complex velocity 

normal to the plate surface. i is the imaginary unit which is the square root of -1. 

 

In the harmonic case, the averaged acoustic intensity writes 

 *1
Re[ ( ) ( )]

2
r r=I p u   (2.24) 

where ( )rp   and 
*( )ru  , are respectively the pressure and particle velocity. The 

superscript   denotes complex conjugate and Re the real part.  
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The sound power can be calculated using either far filed or near field methods. 

Adopting the far-field assumption and integrating the acoustic intensity in Equation 

(2.24) over a chosen hemispherical surface yield the total radiated sound power as  

 
2 /2

20

0 0

| ( , , ) |
sin

2
rad

a a

R
W r d d

c

   
  


=  

p
  (2.25) 

where θ is the polar angle, ϕ the azimuth angle, and ca the speed of sound. 

 

 

Figure 2.4 Coordinate system for the baffled plate. 

 

For the near field calculation, the vibration velocity at a point (x0, y0)  can be 

expressed as 

 0 0 1 1
( , ) ( ) ( ) ( )

p q

ij i ji j
v x y a t x y 

= =
=   (2.26) 
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Considering the ABH-specific strong wavelength variation over the plate and the 

need of reaching high frequency range, Daubechies wavelet scaling functions (DWs) 

are used as the admissible functions to capture the local details of the vibration field.  

 

Based on Equation (2.26) and segmenting the plate into N cells as elementary 

radiators, a velocity vector V can be constructed and expressed in a matrix form as 

 = V A  (2.27) 

in which Φ  is a N × (2m + L − 2)  matrix whose elements are φi(x̅)φj(y̅) =

2mφ(2mx̅ − i)φ(2my̅ − j); Ȧ is a vector of dimension (2m + L − 2) × 1 containing 

the time derivatives of ( )ija t . Subsequently, the radiated sound power in the near field 

writes [118] 

 ( )H H H

radW =V RV A R A=     (2.28) 

in which the superscript H is the Hermitian transpose operator; and R  the radiation 

resistance matrix, expressed as 
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where ∆S = S/N is the area of each elementary radiator on the plate; m0 = 1,2, … , N 

and n0 = 1,2, … , N.  

Upon obtaining the velocity V in Equation (2.27) and the sound power Wrad in 

Equation (2.28) , the sound radiation efficiency can also be calculated as [119]  

 
2

0 0 | |

radW

c S



=

V
  (2.30) 

where 2| |V   represents the spatially averaged mean square velocity over the 

plate of a total area S. This definition applies to the entire plate, part of the plate or one 

particular structural mode. In the latter case, the terminology of modal radiation 

efficiency will be used.   

To obtain the vibration velocity in Equation (2.27) and the sound power in 

Equation (2.28), A should be calculated through Equation (2.7) in which M  and K 

involves the calculation of the 2D connection coefficients that are the finite integrals of 

DWs and their derivatives.  

 

2.3 Summary 

A 2D semi-analytical wavelet plate model embedded with strip/circular 

indentations in the framework of the Rayleigh-Ritz method is proposed in this chapter. 

Calculations of connection coefficients that constitute the matrices of stiffness and mass 
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are described in detail. Theoretical modelling of vibration field in terms of eigen-

frequencies, mode shapes, modal loss factors and forced vibration response, and sound 

radiation field in terms of radiated sound power (both in the far field and near field) and 

sound radiation efficiency are presented. Based on the proposed model, the vibration 

and sound radiation fields predicted by the proposed model will be fully validated in the 

following chapter.  
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3 Chapter 3  

Model validations  

 

3.1 Introduction 

This Chapter validates the vibration and sound radiation model developed in 

Chapter 2, through comparisons with FEM and experimental results. Emphasis is put 

on the latter through meticulous design, fabrication and experimental testing using an 

ABH plate. In a broader sense, comparisons with experimental results, in views of 

model validations, are scarce in the literature. Among a few existing examples, one can 

cite O’Boy et al.  [54] who investigated the damping and mobility of a rectangular plate 

containing a wedge of power-law profile using a bending plate model. However, 

positions of resonant peaks showed significant differences with the results obtained 

from experiments. Experimental investigations into vibration characteristics of ABH 

plates have also been carried out in Refs. [13, 79]. As opposed to vibration analyses, 

explorations into sound radiation properties of ABHs are scarce. Bowyer and Krylov 

[85] firstly experimentally investigated the sound radiation properties of rectangular 

plates containing multiple circular indentations. While demonstrating some typical 

ABH phenomena and their vibration and acoustic benefits, it is observed that the 

experimental setup may cause some errors at low frequencies because of acoustic short 

circuiting resulting from the free edges of the plate due to the absence of the acoustic 

baffle.  
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Simulation models are of vital importance for carrying out ABH design, analyses 

and optimization. However, there is still a lack of well-calibrated experimental 

benchmark solutions for their validations. This is probably due to the challenging task 

of manufacturing high-precision ABH indentations. In fact, as demonstrated by Bowyer 

et al. [77, 84], ABH effects depend on geometrical details. Although effective damping 

of ABH structures can still be obtained with the existence of imperfect geometrical and 

material parameters, albeit being reduced, such a variability can be a serious issue from 

the viewpoint of model validations. Therefore, it is imperative to establish well-

controlled benchmark solutions, which motivates the present work. 

  

This chapter primarily focuses on the full validations of the proposed 2D semi-

analytical model. First, vibration characterizations of a rectangular plate embedded with 

a 1D ABH indentation (strip indentation) is validated against FE simulations. 

Furthermore, a rectangular plate embedded with a symmetric circular ABH indentation 

was meticulously manufactured using the Computer Numerical Control (CNC) milling. 

Structural properties of the manufactured sample, such as eigen-frequencies, mode 

shapes, forced vibration response and sound radiation into a baffled half-space were 

experimentally measured and compared with the predictions by a previously developed 

Daubechies wavelet (DW) model. The objective of this chapter is twofold: validating 

the previously developed model in Chapter 2 along with the experimental assertion of 
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the revealed phenomena; and offering a useful set of experimental benchmark solutions 

for future ABH studies. 

 

The rest of this chapter is structured as follows. In Section 3.2, numerical analyses 

on the first one hundred eigen-frequencies of the plate with free edges are carried out 

using different support lengths L and resolutions m. In this regard, the suitable support 

length L and resolution m are determined for follow-up analyses of ABH plates in this 

thesis. Modal analyses and forced vibration analyses are then conducted in comparisons 

with the FEM simulations. Section 3.4.1 gives a description of the high-precision ABH 

manufacturing process. In Section 3.4.2, experimental setup used for vibration and 

sound radiation tests are introduced, followed by a brief description of the sound power 

measurement procedure [120]. Comparisons between the experimental results and DW 

model predictions are then conducted in Section 3.4.3, in terms of eigen-frequencies of 

the first 120 modes, mode shapes, forced vibration response and radiated sound power. 

Finally, Section 3.5 briefly summarizes this chapter. 

 

3.2 Vibration validations by FE simulations 

3.2.1 Determination of DW parameters and vibration validations 

Using a rectangular plate embodied with a strip indentation (see Figure 2.1), the 

accuracy of the proposed model is first verified through comparisons with the FE 

simulations. Wavelet parameters are varied in order to determine a suitable combination 

to be used in the subsequent analyses for the maximum calculation efficiency and the 
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required accuracy. To this end, the eigen-frequencies of a typical ABH plate are 

calculated using different L and m values. Geometrical and material parameters of the 

plate as well as those of the strip ABH indentation are tabulated in Table 3.1. The four 

edges of the plate are set to be free, by assigning a zero-stiffness value to all the 

boundary springs. The FE model using COMSOL software is densely meshed with an 

element size of 0.005 m to ensure the convergence of the solution. This gives a total of 

12544 plate elements. 

 

Table 3.1 Geometrical and material parameters of a plate embedded with a trip 

indentation 

Geometry  Material 

a=0.56 m 1y =0.056 m 0E =200 GPa 

b=0.56 m 2y =0.504 m 0 =0.3 

h=6.4 mm 0h =0.4 mm 0 =0.01 

1x =0.16 m  =0.25 0 =7800 kg/m3 

2x =0.4 m  =2  

cx =0.28 m 0 =0.04 m  

cy =0.28 m   

 

Note that Equation (2.11) involves the derivative terms of the DWs up to an order 

of 2 1L − . Therefore, L should be at least equal to or larger than 10 [111]. Firstly, with 
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L fixed at 12, the influences of m are analyzed. Three typical m values, 6, 7 and 8, are 

used in the calculation which gives a total of 5476, 19044 and 70756 wavelet terms, 

respectively. The calculated eigen-frequencies of the first 100 modes are compared with 

those obtained by FEM in Figure 3.1. It can be seen that results with m = 7 and 8 agree 

well with FEM results within the entire mode range, while more noticeable deviations 

in the higher-order modes appear when m = 6. To quantify the calculation accuracy, the 

relative error, defined as 
mod| | / 100%el FEM FEMf f f−  , are calculated and shown in 

Figure 3.2. Results confirm the same trend as the one observed in Figure 3.1. Typically, 

m = 7 or 8 with L = 12 allows limiting the error below 3% for a large majority of modes. 

Clearly, a larger m (e.g. m=8) leads to a better accuracy for higher order modes, except 

for the first few modes. Similar phenomenon was also observed in a previous study 

using MH wavelets in 1D cases [46], which can be explained by the scaling properties 

of the wavelets. This suggests that a larger m is preferable for higher order mode 

prediction, which is the main frequency range of interest where systematic ABH effect 

is expected. Fixing m at 7 and varying L, the calculation errors against FEM results are 

given in Figure 3.3. As can be seen, the three cases give very similar accuracy, except 

for the very low-order modes.  

 

Apart from the accuracy, it is also relevant to consider the computation time which 

is mainly determined by the scaling factor m. For example, for a fixed L, the 

computation time for m=8 is four times that of m=7. Therefore, based on the above 

analyses, a calculation scheme using L=12 and m=7 is taken as a good compromise, 
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from both the accuracy and the computation time perspectives. This will be used in the 

subsequent analyses. 

 

 

Figure 3.1 Comparisons with FEM analyses for the first 100 eigen-frequencies: 

FEM (solid line); L=12, m=6 (short dash line); L=12, m=7 (short dot line); L=12, m=8 

(short dash dot line). 

 

 

Figure 3.2 Percent errors for the first 100 eigen-frequencies obtained by the 

present model with L=12: m=6 (circle dot); m=7 (square dot) and m=8 (triangle dot). 
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Figure 3.3 Percent errors for the first 100 eigen-frequencies obtained by the 

present model with m=7: L=12 (square dot); L=14 (circle dot) and L=16 (triangle dot). 

 

Figure 3.4 compares four arbitrarily chosen mode shapes, i.e., the 1st, 50th, 79th and 

98th modes, obtained by the present model and the FEM. It can be seen that, the proposed 

model allows a fine description of the vibrational details, including the local 

deformation within the ABH indentation area. Both sets of results seem to agree well, 

further confirming the remarkable ability of the proposed model in describing ABH-

specific features even for higher-order modes. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.4 Mode shape comparisons: present model (left); FEM (right). (a) 1st 

mode; (b) 50th mode; (c) 79th mode; (d) 98th mode. 
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A forced vibration analysis is further carried out. A unit harmonic excitation force 

is applied at point ( ,  ) (1 7,1 2)f fx y =  on the uniform portion of the plate. The mean 

square velocities, spatially averaged over the ABH portion and the uniform portion of 

the plate, respectively, are calculated and compared with the FEM results in Figure 3.5. 

It can be seen that, with the L and m combination suggested above, results calculated by 

the present model are in good agreement with those from the FEM analysis.   

    

   

Figure 3.5 Mean square velocity: ABH portion (left); uniform portion (right). 

 

To sum up, above comparisons show that the proposed model provides results 

which are consistent with FEM results, in terms of both modal characteristics and forced 

vibration responses. Most importantly, the model allows reaching the effective high 

frequency range, relevant to the ABH investigations. In fact, the frequency range 

outreach of the method well exceeds the conventionally reachable range using Rayleigh-

Ritz models reported in the literature, demonstrating the attractiveness of the 

Daubechies scaling functions as a global basis. 

 

3.3 Sound field Verifications by analytical solutions  
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As bending waves travel towards the center of the ABH indentation, structural 

wavelength gradually decreases. As demonstrated in the previous vibration study, a 

large number of decomposition terms are needed in Equation (2.2) to achieve an 

accurate description of vibration field in order to correctly capture the local structural 

details. For sound radiation analyses, acoustic waves should be further considered to 

determine various DW parameters to be used, especially above the critical frequency, 

2 2

0 0

2

0

12 (1 )

2

a
critical

c
f

E h

 



−
=  , where acoustic wavelength becomes smaller than their 

structural counterparts. A careful convergence study, though not detailed here, has been 

carried out to ensure the convergence of the solution. Specifically, the larger support 

length L and resolution m are, the more accurate the simulated vibration and sound field 

will be. However, more terms make the calculation cost ineffective. Finally, we still 

chose m=7 and L=12 for the subsequent analysis, in terms of convergence and 

computation time, this results in a total of 19044 terms to be used in the DWs.  

 

The proposed calculation scheme on sound radiation detailed in Chapter 2 is 

validated against the benchmark solutions on a simply supported plate in terms of 

radiated sound power and the modal radiation efficiencies of lower-order modes. The 

values of ε  and γ  are adjusted (0.0045 and 0 respectively) so that the ABH plate 

degenerates into a flat plate which is 0.5 m in length, 0.45 m in width, and 4.7 mm in 

thickness. A unit harmonic excitation force is applied at (0.05, 0.315) m. 
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Using far field approach, Equation (2.25), the sound power is calculated with 5565 

integration points uniformly distributed on a hemisphere with a radius of 10 m. 

Meanwhile, the radiated sound power is also calculated in the near field using Equation 

(2.28). The plate is divided into 50000 elementary radiators to make sure the sound field 

can be accurately estimated. Calculated sound power using the two different methods 

are compared with the analytical solutions in Figure 3.6. It can be seen that the DW 

sound radiation model yields consistent estimation of the radiated sound power with 

analytical solutions. In the entire frequency range up to 3000 Hz, using either the far 

field or the near field methods. 

 

 

Figure 3.6 Radiated sound power obtained by the present theoretical model and 

analytical solution. 

 

Furthermore, modal radiation efficiencies of six low-order modes of the 

abovementioned flat plate are also calculated. Plate parameters remain the same except 

that the width b is changed to 0.5 m to form a square plate, to allow a comparison with 
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the classical results obtained by Wallace [119]. The sound radiation efficiency for each 

structural mode, as a function of frequency, is expressed in terms of the acoustic 

wavenumber k normalized by the structural wavenumber kb, calculated by  

 2 2

0 0( ) ( )bk p a q b = +   (3.1) 

in which p0 and q0 represents the number of half waves. Modal radiation efficiencies 

of the six low-order modes of the plate are plotted as a function of k/kb in Figure 3.7. 

Once again, a good agreement can be observed not only between the two calculation 

methods, but also with the standard solutions [119]. This further confirms the 

calculation accuracy of the proposed wavelet-based sound radiation model.  

 

 

Figure 3.7 Radiation efficiencies of the first six low-order modes: present model 

(solid line); analytical solution (dash line). 
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It can be concluded that the extended 2D wavelet model can accurately predict the 

sound radiation field of a planar structure. For the subsequent sound radiation analyses 

on ABH plates, the calculation procedure will remain the same and will be validated 

experimentally. 

 

3.4 Experimental validations 

In this section, a rectangular plate embedded with a circular ABH indentation (see 

Figure 2.2) is manufactured. The successful manufacturing procedure and method are 

presented. The vibration field and sound radiation field predicted by the proposed model 

will be fully validated through experiments. 

 

3.4.1 Manufacturing of ABH test sample 

Manufacturing procedure for an ABH plate sample and the parameters that control 

the manufacturing process are reported as follows. To quantify the deviation of the 

manufactured thickness profile from its predesigned standard, the thickness at multiple 

points over the manufactured profile is measured using the Coordinate Measuring 

Machine (CMM). 

 

The designed geometrical parameters of the test sample are shown in Table 3.2. 

Material parameters of ABH sample and those of the damping layer (3MTM VHBTM 

adhesive transfer tape F9473PC) are tabulated in Table 3.3. The damping material used 

in the tests are produced by 3M Company. 
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Table 3.2 Geometrical parameters of the experimental sample of an ABH plate 

a=0.6 m xc=0.3 m ε=0.24/m 

b=0.5 m yc=0.25 m γ=2 

h=6 mm h0=0.6 mm RABH=0.15 m 

 

Table 3.3 Material parameters of experimental ABH sample and the damping layers 

 Density Elastic modulus Loss factor Poisson’s ratio 

ABH plate ρ0=2800 kg/m3 E0=71 GPa η0=0.002 ν0=0.33 

F9473PC ρd=980 kg/m3 Ed=30 MPa ηd=0.9 νd=0.499 

 

3.4.1.1 Manufacturing method 

Manufacturing metallic structures with thin thickness is technically challenging, 

especially for an ABH plate that incorporates an indentation of power-law profile. The 

minimum thickness that can be reached in commonly used manufacturing techniques 

such as CNC milling and 3D printing is around 0.5 mm. In the present case, the targeted 

minimum thickness at the center of the indentation is chosen to be 0.6 mm. Meanwhile, 

the radius of the ABH indentation is relatively large, i.e., 0.15 m. All in all, two main 

concerns arise. First, suffering from the mechanical stress from the milling cutter, the 

thin area of the ABH indentation is susceptible to tearing. Second, the resulting high-
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temperature stress may deform the thin indentation area, thus compromising the 

accuracy of the thickness profile. Therefore, materials of the test sample and the milling 

cutter should be carefully selected. In the present case, top-grade aluminum 7075 which 

is widely used in aerospace industry is chosen. Aluminum 7075 has good machinability 

with high strength resistance to mechanical stress. Also, the sufficiently tough tungsten 

cutter with a ball end is a preferable choice for milling. The parameters that determine 

the manufacturing process should also be meticulously controlled. The rotation speed 

of the cutter is expected to be high, up to 10000 rpm. Also, the cutting volume and the 

cutting step of the milling cutter should be small, which are 0.5 mm and 0.15 mm, 

respectively. 

 

The manufacturing procedure mainly consists of four steps. Firstly, a flat plate 

which has the same size as the test sample was machined out from an aluminum block 

and the burs were removed, with the flatness error of the surface on both sides controlled 

within an acceptable level, e.g. 0.05 mm for the present case. Secondly, the milling 

cutter produced the ABH indentation following a circular path around the center of the 

indentation, from outside to inside. Meanwhile, cooling liquid was used to alleviate the 

induced high-temperature stress. Finally, after completing the indentation on the top 

side of the plate, the sample was set aside for stress release for several days. Prior to 

manufacturing the symmetric indentation on the other bottom side, the finished 

indentation on the top side was fully filled with plaster to alleviate possible flapping of 

the cutter. Note the flapping effect frequently occurs when machining thin metals during 
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CNC milling, which can even lead to the tearing of the structure if not properly refrained. 

Meanwhile, sufficient machining allowance should be considered in each 

manufacturing step. Following the procedure described above, the symmetric 

indentation was successfully produced using a three-axis CNC milling machine (type 

VSC-1470).  

 

3.4.1.2 Measurement of the manufactured ABH profile 

The manufactured test sample contains inevitable geometrical imperfections 

because of machining precision. Therefore, the deviation of the manufactured 

indentation from its predesigned profile is checked through measurement.   

 

For illustration purposes, the half thickness, defined as the distance from a point at 

the surface of the indentation to the mid-plane of the test sample, is used to evaluate the 

error of the manufactured profile. On the top side, 31 measurement points (including 

the ABH center point) are uniformly distributed along two perpendicular lines 

intersecting at the ABH center, as shown in Figure 3.8(a). The thickness profile 

variations along these two perpendicular lines, for a total of four profiles (numbered 1#, 

2#, 3#, and 4#), were examined and deviations of them from the predesigned profile were 

assessed. The projection of these profiles and the points onto the mid-plane is shown in 

Figure 3.8(a). Half thickness profile of these 31 points was measured using CMM. 

Similar measurement was also carried out for the bottom side of the plate. The half 
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thickness variations obtained for both sides are respectively shown in Figure 3.8(b) and 

Figure 3.8(c), in comparison with that of the predesigned standard profile. 

 

As can be seen from Figure 3.8(b), for the top side, the half thickness for points at 

the four measured profiles are very similar. This similarity can also be observed for the 

bottom side. Furthermore, the half thicknesses at four points located at the same circle 

are averaged, both for the top side and bottom side, and compared with their predesigned 

counterpart in Figure 3.8(d). It seems that, the half thickness on the top side shows a 

nice agreement with that of the predesigned profile, while a marginal deviation is 

observed for the bottom side, particularly at the central part (within a radius of 50 mm) 

of the indentation. However, this slight deviation is deemed to be acceptable, as will be 

further demonstrated by the agreement of vibration response between experimental tests 

and numerical simulations in Section 3.4.3.  
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(a)                                      (b) 

    

(c)                                     (d) 

Figure 3.8 Half thickness profile: (a) measuring points; (b) top side; (c) bottom 

side; (d) averaged manufactured profile and predesigned profile. 

 

3.4.2 Experimental setup 

The vibrational properties of the manufactured sample and its radiated sound field 

were measured, inside a test room and a fully anechoic room, respectively. This section 

reports the experimental setup used for both tests.  

3.4.2.1 Measurement of vibration characteristics  
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The test sample was vertically suspended onto a rigid frame using two flexible 

strings that introduce little damping, allowing for the vibration testing of the sample 

under free boundary conditions. The two strings pass through small holes (with a 

diameter of 4 mm) near the corner of the sample, as shown in Figure 3.9(a). The strings 

maintain adequate strength to support the weight of the sample plate (about 4.8 

kilogram). The plate was excited by electromagnetic shaker (type 4809) through a small 

thin rod/stinger to filter out possible moment excitation. A force transducer (B&K 8200) 

was fastened to the end of the stinger to measure the input force. To reduce possible 

mass loading effect, adhesive glue was used to connect the force transducer to the test 

sample, as shown in Figure 3.9(b). The electromagnetic shaker was fed by a power 

amplifier (B&K 2706) with the periodic chirp signal. The input signal was converted to 

voltage signal via a charge amplifier (B&K 2635). A Polytec scanning laser vibrometer 

(PSV) 400 was used for signal generation and data acquisition. The vibration response 

signals were averaged over ten measurements to guarantee statistically representative 

results. 
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(a)                                    (b) 

Figure 3.9 Experimental setup: (a) ABH test sample; (b) excitation with 

electromagnetic shaker and force transducer. 

 

3.4.2.2 Measurement of the radiated sound power  

The measurement of the radiated sound power was carried out in a fully anechoic 

chamber with an inner dimension 6 6 3 m  . Walls of the chamber are covered with 

acoustic absorbing material (fiberglass) to meet the free field condition. The cut-off 

frequency of the chamber is roughly 90 Hz. A B&K Pulse system was utilized for signal 

generation and data acquisition instead of PSV 400, while other equipment remaining 

the same as for the vibration test. Thick large wooden panels (8 long   8 ft wide   

0.75 inch thick) were used to surround the test sample and form a rigid acoustic baffle. 

Four smaller wooden panels, 4 ft long  4 ft wide  0.75 inch thick, were annexed 

to the four edges of the baffle to constitute a folded wall (see Figure 3.10(a)), which 

 
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allows for a larger effective sound wave blockage area. The test plate, flush-mounted 

with the surface of the baffle, was installed in the middle of the baffle, as shown in 

Figure 3.10(b). The gap between the wooden panel and the test sample was around 1 

mm to avoid additional damping to the test sample caused by friction. The 

electromagnetic shaker was sealed inside a thick-walled box made of Polymethyl 

methacrylate to minimize its direct sound generation. The linearity of the system was 

ensured by checking the sound power outputs while doubling the input force level. 

 

The sound power was obtained through sound pressure measurement in accordance 

with the international standard ISO 3744 [120]. Twenty microphones were installed in 

the prescribed positions of an assumed hemispherical surface enclosing the front panel, 

as shown in Figure 3.10(d), with their projection on the floor of the chamber shown in 

Figure 3.10(c). The radius of the hemispherical surface is chosen to be larger than twice 

the characteristic source dimension of the test sample (1.78 m for the current case). In 

the current case, microphones were positioned on a hemispherical surface with a radius 

of 1.3 m due to the restriction of the height of the chamber. 
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(a)                                (b) 

      

(c)                                (d) 

Figure 3.10 Anechoic chamber for radiated sound power tests: (a) position of the 

ABH test sample in relation to the rigid baffle; (b) coverage of the viscoelastic 

material F9473PC; (c) measuring points projected on the floor (red dot); (d) 

microphone positions over the hemispherical surface [120]. 

 

According to ISO 3744 [120], the pressure determined sound power can obtained 

by: 
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 ( )010lgW pL L S S= +  (3.2) 

in which 22S r=   is the area of hemispherical surface, 
2

0 =1 mS  , and pL   is the 

surface time-averaged sound pressure level which can be obtained by correcting the 

mean time-averaged sound pressure level ( )p STL  from background noise, 

 (ST) 1p pL L K= −  (3.3) 

where 1K  is the background noise correction. Assuming that the microphone positions 

are allocated with equal segment of areas, the mean time-averaged sound pressure level 

from arrays of microphones can be calculated as 

 ( )( )0.1

( ) 1
10log10 1 10 pi ST

N L

p ST i
L N

=
=   (3.4) 

where ( )pi STL  is the time-averaged sound pressure level at ith microphone position, and 

N the number of microphone positions which is 20 in the present case. 

 

3.4.3 Experimental results 

The eigen-frequencies of the first 120 modes and their corresponding mode shapes 

are first identified. Structural mobility and radiated sound power of the test sample 

subjecting to a point harmonic force are then measured, for plates with/without damping 

materials. These results are compared against the numerically predicted ones. 

Additionally, reductions on structural vibration and sound power level are also observed.  

 

3.4.3.1 Eigen-frequencies and mode shapes 
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Modal analyses of the manufactured ABH plate are carried out experimentally. 

Eigen-frequencies are identified based on the positions of resonant peaks observed from 

the frequency response curves measured by the laser-vibrometer. The obtained eigen-

frequencies of the first 120 modes are present and compared with their numerically 

predicted counterparts from the DW model in Figure 3.11 showing a good agreement 

with each other. To quantify the agreement level, relative errors, defined as 

( )mod- 100%test el testf f f   , are present in Figure 3.12, where testf   and modelf  

represent the eigen-frequency obtained from the experimental tests and the DW model, 

respectively. It can be seen that experimental values are slightly larger than the predicted 

ones due to shearing effect of the plate which is neglected in the DW model. 

Nevertheless, most of the errors are below 2% with the maximum one being 3.74%, 

which is deemed acceptable. 

 

 

Figure 3.11 Eigen-frequencies of the first 120 modes: DW model (short dash 

line); experiment (short dot line). 
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Figure 3.12 Relative errors of eigen-frequencies of the first 120 modes obtained 

from the DW model and experiments. 

 

Further comparisons are performed in terms of mode shapes. Seveal arbitrarily 

chosen mode shapes (6th, 24th, 30th, 48th, 49th, 50th, 60th, 63rd, 74th, 79th, 83rd, 118th, 119th) 

are present in Figures 13-25. To ensure a detailed comparison, different views (front 

view, side view, and vertical view) of these mode shapes are provided. To capture the 

local details inside ABH indentation, 75000 and 33233 points are respectively used to 

depict the mode shapes, obtained from numerical simulations and experiments. It is 

remarkable to see that experimentally measured mode shapes are in nearly perfect 

agreement with their numerically predicted counterparts, from low-order to high-order 

modes. Though signal to noise ratio is a bit low for high-order modes, details in 

deformation inside ABH indentation are clearly observable. 

 

As previously mentioned, energy focalization is one of the unique features of ABH. 

This can be clearly observed from the measured vibration patterns of the high-order 
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modes, as shown in Figures 13-25. The vibration amplitude inside ABH indentation is 

obviously larger than that of the uniform part of the plate, more evident around ABH 

center. Meanwhile, the highly compressed waves inside the indentation area can also be 

clearly observed. 

     

 

 

Figure 3.13 Comparison of 6th mode shape: (a) DW model (left), 105.2 Hznf = ; 

(b) experiment (right), 105.0 Hznf = . 
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Figure 3.14 Comparison of 24th mode shape: (a) DW model (left), 

767.7 Hznf = ; (b) experiment (right), 746.6 Hznf = . 
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Figure 3.15 Comparison of 30th mode shape: (a) DW model (left), 

1025.8 Hznf = ; (b) experiment (right), 1014.0 Hznf = . 
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Figure 3.16 Comparison of 48th mode shape: (a) DW model (left), 

1736.1 Hznf = ; (b) experiment (right), 1721.9 Hznf = . 
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Figure 3.17 Comparison of 49th mode shape: (a) DW model (left), 

1759.6 Hznf = ; (b) experiment (right), 1759.4 Hznf = . 
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Figure 3.18 Comparison of 50th mode shape: (a) DW model (left), 

1801.4 Hznf = ; (b) experiment (right), 1782.5 Hznf = . 
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Figure 3.19 Comparison of 60th mode shape: (a) DW model (left), 

2252.1 Hznf = ; (b) experiment (right), 2246.9 Hznf = . 
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Figure 3.20 Comparison of 63rd mode shape: (a) DW model (left), 

2329.6 Hznf = ; (b) experiment (right), 2318.8 Hznf = . 
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Figure 3.21 Comparison of 74th mode shape: (a) DW model (left), 

2788.9 Hznf = ; (b) experiment (right), 2766.0 Hznf = . 
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Figure 3.22 Comparison of 79th mode shape: (a) DW model (left), 

3001.8 Hznf = ; (b) experiment (right), 2992.0 Hznf = . 
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Figure 3.23 Comparison of 83rd mode shape: (a) DW model (left), 

3163.5 Hznf = ; (b) experiment (right), 3135.0 Hznf = . 

 



 

91 

 

 

 

 

Figure 3.24 Comparison of 118th mode shape: (a) DW model (left), 

4552.1 Hznf = ; (b) experiment (right), 4510.9 Hznf = . 
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Figure 3.25 Comparison of 119th mode shape: (a) DW model (left), 

4593.7 Hznf = ; (b) experiment (right), 4556.3 Hznf = . 

3.4.3.2 Cross point mobility 

Forced vibration analyses were carried out on the test sample with a harmonic 

excitation applied at (0.518, 0.165) m over the uniform portion. The amplitude of 

vibration of several measured points over the surface of the test sample was measured 



 

93 

 

from 5 Hz to 6000 Hz with an increment of 5 Hz. Mobilities ( 20lg( )v F ) at three 

representative points over the test sample were extracted after 10 times averages. These 

three points include ABH center point (0.3, 0.25) m, a point (0.0375, 0.25) m on the 

uniform portion, and the driving point (0.518, 0.165) m. Figures 17(a)-(c) respectively 

illustrate the comparisons with numerical simulations. A good consistency can be 

observed in the entire frequency range, especially below 5500 Hz. Above 5500 Hz, 

differences begin to show; this presumably can be attributed to the deviation of 

manufactured ABH indentation from the predesigned profile, since the response at high 

frequencies is supposed to be more sensitive to local details. Nevertheless, it can be seen 

that the rich dynamics of the system, manifested by a large number of resonant peaks, 

can be truthfully reproduced by the DW simulation model, testifying the accuracy of the 

model on one hand, and the accuracy in manufacturing the test sample on the other hand. 

 

 

    (a) 
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     (b) 

 

 

     (c) 

Figure 3.26 Cross point mobility of the ABH plate: (a) ABH center (0.3,0.25) m; 

(b) an arbitrary point (0.0375, 0.25) m on the uniform portion; (c) drive point at 

(0.518, 0.165) m. 

 

The deployment of damping layers inside the ABH indentation plays a crucial role 

in the realization of ABH effect. To illustrate the effect, the vibration response of the 
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ABH test sample with its central ABH portion covered with 3MTM VHBTM adhesive 

transfer tape F9473PC was experimentally measured. The density d , elastic modulus 

dE  and loss factor d  of this material were evaluated at 4000 Hz [121] and tabulated 

in Table 3.3. In the present case, the central area of ABH indentation within a radius of 

60 mmdR =   was covered with transfer tape F9473PC of a constant thickness 

0.75 mmdh = . Figure 3.27 shows the measured and predicted structural mobilities at 

(0.0375, 0.25) m, showing again a nice fit with each other. Compared with Figure 

3.26(a), the overall mobility level of the damped plate shows a general decreasing trend 

with frequencies alongside a general reduction in the peak levels, which can be 

attributed to the ABH-induced enhancement in the overall system damping. 

 

 

Figure 3.27 Comparison of cross point mobility at (0.0375, 0.25) m with damping 

layers: (a) present model (solid line); (b) experiment (dot line). DL denotes damping 

layer. 
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3.4.3.3 Radiated sound power 

Following the procedure described in Section 3.4.2.2, the sound power radiated 

from the baffled ABH test ample was measured. Using the same excitation as in the 

vibration test, the sound power radiated from test sample with/without damping 

materials was measured. For the sake of comparison, again, the measured sound 

pressure at each microphone position was normalized by the input force. Subsequently, 

substitution of averaged sound pressure level into Equation (3.2) yields the total sound 

power as shown in Figure 3.28. Comparing the experimentally obtained sound power 

with that of model simulations, an agreement can be noticed between these two sets of 

results, both with (Figure 3.28(a)) and without (Figure 3.28(b)) damping layers.  

 

The results also show that the signal to noise ratio is variable in the frequency range 

of interest. Due to the low signal to noise ratio in the frequency range between 1000 Hz 

and 1500 Hz, the observed sound power is larger than its numerical counterparts. 

Whereas for other frequency ranges, both sets of results match well. Interference from 

the shaker should be responsible for the discrepancy between 1000 Hz and 1500 Hz, as 

the noise from the shaker itself was detected and was difficult to be completely 

eliminated. Nevertheless, the overall agreement between the model and experiments is 

deemed satisfactory, especially for such a highly dynamic system exhibiting complex 

dynamic behaviors. 
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(a) 

 

 

(b) 

Figure 3.28 Radiated sound power: (a) without damping layer; (b) with damping 

layer. DL denotes damping layer. 
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3.5 Summary 

Full validations of the proposed model through FEM simulations and by 

experiments are presented in this chapter. It mainly reports a systematic experimental 

investigation on a rectangular plate embodied with a symmetric circular ABH 

indentation. Upon a meticulous design and realization of the manufacturing process, a 

high-precision ABH plate is manufactured. Using the manufactured sample, its 

structural properties, in terms of eigen-frequencies, mode shapes, forced vibration 

response and radiated sound power, were experimental tested and compared with a 

previously developed semi-analytical model. Meanwhile, with realistic damping 

materials deposited at the central portion of the ABH indentation, ABH effects on 

reductions in vibration response and sound power are experimentally verified.  

 

Through comparisons with FEM and experimental results,  

 

1) The DW model has been shown to provide remarkable accuracy in 

characterizing the vibration response and sound radiation of the ABH plate which 

exhibits rich dynamics and complex dynamic behaviors. More specifically, most of the 

relative errors on the eigen-frequencies of the first 120 modes of the plate are below 2% 

(compared with experimental results), alongside a good match in the corresponding 

mode shapes. The cross-point mobility and the radiated sound power predicted by the 

DW model also show a good agreement with experimental measurement up to a high 

frequency range, both with and without deposition of damping materials. Meanwhile, 
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typical ABH phenomena such as wave compression, energy focalization and the effects 

of viscoelastic damping layers are also clearly observed in experiments, also in 

agreement with numerical predictions. 

 

2) The proposed model, as well as the associated wavelet-based solution 

procedure, is shown to be able to overcome major technical difficulties which are 

specific to ABH structures: non-uniform wavelength distribution and ABH-induced 

wave compressions in the high frequency range in a realistic structure of finite size. The 

accuracy, as well as the frequency outreach well exceeds similar work reported in the 

literature. In that sense, this work offers a useful model which is conducive to the study 

of ABH phenomena. 

 

3) Another important outcome of this work is the establishment of a feasible 

manufacturing procedure of an ABH plate, as well as a full set of well-controlled 

experimental benchmark solutions on some important vibrational and acoustic metrics. 

Considering the lack of experimental data in the literature, we believe this would serve 

as an invaluable data source for future ABH studies.  
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4 Chapter 4  

A 2D Daubechies wavelet model on the vibration of 

rectangular plates containing strip indentations with a 

parabolic thickness profile 

 

4.1 Introduction 

Much work about vibration analyses of ABH beams and plates has been 

extensively studied through FEM simulations and experimental tests. However, 

explorations of vibration characteristics of 2D ABH plates using semi-analytical models 

are scarce, with the exception of a recent work by O’Boy and Krylov [50]. However, 

the frequency range that the model can reach is relatively low such that the ABH effect 

cannot systematically show.  

 

In this chapter, the proposed model that has been fully validated in Chapter 3 is 

utilized for vibration explorations of a rectangular plate embedded with a 1D ABH 

indentation (strip indentation). The same configuration used in O’Boy and Krylov [50] 

is adopted with an intention of improving that model to reach the effective ABH zone 

at much higher frequencies. Specifically, typical ABH phenomena such as wavelength 

compression and energy focalization are illustrated using the developed model. 

Vibration reduction effects of the ABH plates are investigated with comparisons against 

a reference uniform plate in Section 4.2.1. Effect of different configurations of damping 
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layers over the surface of ABH indentations on structural damping increase is examined 

in Section 4.2.2. Changes in the modal loss factors are investigated and linked up with 

typical ABH cell modes. The energy focalization capacities of a strip ABH and a circular 

ABH are investigated and compared in Section 4.2.3. Finally, the vibration benefits of 

ABH plates are summarized in Section 4.3. 

 

4.2 Numerical Analyses and discussions 

4.2.1 ABH phenomena and vibration benefit 

Typical ABH phenomena, in terms of the compressed wavelength and increased 

vibration amplitude, are first analyzed using the same free plate. Note the issue of 

addressing other types of boundary conditions using Rayleigh-Ritz method has been 

extensively discussed in the literature [111]. The geometrical and material parameters 

of the plate embedded with a strip indentation is tabulated in Table 3.1. It was observed 

(not shown here) that the boundary conditions do not fundamentally change the typical 

ABH phenomena that will be reported hereafter using a freely supported plate. In this 

case, the ABH strip covers the entire y direction of the plate. Figure 4.1(a) shows a cross 

sectional view along the x-axis of a typical mode shape (92th order) obtained by the 

present model. It can be seen that the wavelength begins to decrease at the interface 

between the uniform portion and the ABH portion. Meanwhile, the vibration amplitude 

gradually increases, typical of the expected ABH feature.  
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The concept of cut-on frequency [39], 
( )

0

2 2

0 0

=
12 (1 )2

cuton

ABH

Eh
f

R



 −
 , means 

that when the wavelength of incident flexural waves matches the characteristic 

dimension (length for 1D ABH and diameter for 2D circular indentation) of ABH tapers, 

the waves will well interact with ABH cell, leading to systematic ABH phenomena 

above the corresponding frequency. After ABH cell modes cut on, the ABH cell is 

expected to interact with the incident bending wave to create a significant vibration 

energy shift to the ABH portion. This is quantified by the ratio of the mean square 

velocity of the ABH portion to that of the uniform portion, defined as 

2

10 2
=10log ABH

uniform

v

v

  
     

 . A larger    signifies a greater energy concentration in the 

ABH portion. Figure 4.1(b) shows a clear vibration energy shift from the uniform 

portion to the ABH portion as a result of typical ABH effect, leading to a strong energy 

focalization within the ABH strip. This ABH-induced feature is conducive to energy 

harvesting and vibration reduction through local damping enhancement. Results also 

demonstrate that the present model correctly captures the main ABH-specific features 

of the plate.   

 

 

   (a)                                  (b) 



 

103 

 

Figure 4.1 Typical ABH features: (a) decreased wavelength towards the center of ABH 

portion; (b) ratio of the mean square velocity between the ABH portion and that of the 

uniform portion. 

 

To investigate the potential of using a strip ABH for vibration reductions, damping 

layers are symmetrically placed with respect to the central line of the strip (see Figure 

4.2(b)), from 1dx  =0.25m to 2dx  =0.31m and from 1dy  =0 to 2dy  =0.56 m, with a 

constant thickness of 02dh h= . The damping material has a Young’s modulus dE =5 

GPa, a density d =950 kg/m3 and a Poisson ratio d =0.3. Plate parameters are the 

same as those used before, tabulated in Table 3.1. The total mass of the added damping 

layers is 0.26% that of the plate. For comparisons, a reference flat plate of the same size 

(coated with the same amount of damping layers at the same corresponding location, 

shown in Figure 4.2(a)) is also considered.  

 

 

(a)                              (b) 

Figure 4.2 Reference plate and ABH plate coated with the same amount of damping 

layers. Coating area xd1 ~ xd2=0.25~0.31 m, yd1 ~ yd2=0~0.56 m and thickness hd=2h0: 

(a) Reference plate; (b) ABH plate. Dark gray area denotes the area coated with 

damping layers. 
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Under the same mechanical excitation, the mean square velocities averaged over 

the uniform portion of the two plates are compared in Figure 4.3. It can be seen that the 

vibration level of the plate with the ABH indentation is generally much lower than that 

of its flat counterpart. Typically, peak levels differ by up to 12 dB. This shows the benefit 

of tailoring an ABH strip by removing materials from a flat panel to make the structure 

lighter and more vibration appealing at the same time, as far as the uniform part of the 

plate is concerned. 

 

The aforementioned phenomena can be better explained by investigating the 

effects of the damping layers on each plate. Figure 4.4 shows that, due to the rather 

uniform energy distribution in the flat plate, the use of the small amount of damping 

layers turn out to be insignificant, barely visible for some particular resonances. As to 

the ABH-featured plate, however, the same amount of damping leads to a much more 

visible vibration reduction, as demonstrated in Figure 4.5. The vibration reduction is 

more obvious and systematic at higher frequencies, typically above the characteristic 

frequency of 500 Hz, where incident flexural waves interact more effectively with the 

ABH indentation due to their shorter wavelengths compared to the size of the ABH cell. 

This is also consistent with previous studies on 1D ABH wedges [7, 12] which showed 

that the impaired ABH effect caused by the thickness truncations can be well 

compensated by using a small piece of damping layer coated on the tapered ABH region. 

The presence of the damping layers largely reduces the reflection coefficient, thus 
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leading to a more significant energy concentration and dissipation in the tapered ABH 

region. 

 

 

Figure 4.3 Mean square velocity of uniform portion: reference plate with 

damping layers (dot line); strip ABH plate with damping layers (solid line). 

 

 

Figure 4.4 Mean square velocity of the uniform portion of reference plates: 

without damping layers (dot line); with damping layers (solid line). 
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Figure 4.5 Mean square velocity of the uniform portion of strip ABH plates: 

without damping layers (dot line); with damping layers (solid line). 

 

4.2.2 Modal loss factors  

As the ABH tapered area features in strong energy focalization, a small amount of 

damping material coated at this area will visibly increase the structural damping of the 

system. To observe this, modal loss factors of an ABH plate embedded with a strip 

indentation are calculated. A uniform plate is used as reference. The whole ABH area is 

covered with a thin piece of damping layer whose thickness is as thin as 0.5 h0. The 

mass of the used damping layers merely accounts for 0.26% of the mass of the plate. 

For companions, the reference plate with the same amount of damping material coated 

at the corresponding ABH area is also investigated. The cross sections of the reference 

plate, reference plate coated with damping layers, and the ABH plate coated with 

damping layers are shown in Figure 4.6(a). Comparisons of modal loss factors of the 

first 100 modes of these three systems are illustrated in Figure 4.6(b). 
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(a) 

 

(b) 

Figure 4.6 Plates and modal loss factors: (a) bare reference plate (upper); 

reference plate with damping layers (middle); ABH plate with damping layers (lower); 

(b) reference plate (square dot); reference plate with damping layers (circular dot); 

ABH plate with damping layers (triangular dot). 

 

It can be seen from Figure 4.6(b), modal loss factors slightly increased for 

reference plate coated with damping layers, in comparison to that of the reference plate. 

However, note that, for ABH plate coated with damping layers, as compared with the 
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inherent material damping (0.01 for the plate), one notices a significant damping 

increase for most modes, consistent with the observations made in 1D structures [46].  

 

Furthermore, the bi-dimensionality of an ABH plate is expected to exhibit different 

features as compared to a 1D ABH beam taper [46]. This is scrutinized from the overall 

modal loss factors of the strip ABH plate. Upon the deployment of the damping layers 

over the strip ABH plate, same as Section 4.2.1, Figure 4.7 depicts the calculated modal 

loss factors for the first 100 structural modes. However, different from the 1D ABH 

beam [46] where damping enhancement is systematic for all modes with roughly the 

same enhancement level above the characteristic frequency, the current 2D plate 

exhibits a much more scattered pattern in terms of damping enhancement. More 

specifically, the cloud points in Figure 4.7 seem to regroup into different clusters, each 

following a different variation trend with respect to the increasing mode 

number/frequency. Typical mode shapes in each group are shown in Figure 4.7. The first 

group of modes seem to follow an obvious monotonically increasing trend with the 

frequency, with significantly topped-up damping. Mode shapes show that these modes 

share the common feature of having a half-wave along the x-direction (thickness 

tailoring direction) of the ABH strip, denoted as (1, n) modes. The following group with 

a moderate damping increase consists of (2, n) modes, with a full wave contained within 

the ABH strip in the x-direction. With the further increase in the structural deformation 

within the ABH cells along x-direction, the increase of the modal loss factors of the plate 

further diminishes. At the bottom of the cloud points are these modes involving a global 
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structural deformation of the plate. When this happens, the deployed damping layers 

within the small ABH region cannot generate meaningful damping increase in the 

overall structure. Therefore, the observed overall damping increase, brought up by the 

viscoelastic coating, as well as the vibration reduction phenomena observed in Figure 

4.5, is mainly attributed to the significant damping enhancement of the lower order local 

ABH modes, typically these involving a half and one wave in the direction in which the 

plate thickness profile is tailored. 

 

Figure 4.7 Modal loss factors of the strip ABH plate coated with damping layers: 

(1, n) ABH cell modes (dots with hollow lower part); (2, n) ABH cell modes (dots 

with hollow upper part); global modes (solid dots). 

 

4.2.3 Strip ABH versus circular ABH  

It is surmised that bi-dimensionality properties of ABH plates would be better seen 

with a circular ABH indentation, since its local thickness variation might generate more 

pronounced coupling effects between the x and y directions of the plates. As 

aforementioned, apart from some mathematically treatments which are specific to the 
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calculation of the energy terms, the proposed modelling approach is also valid for plates 

embedded with a circular indentation, shown in Figure 4.8. Using the model, a strip 

ABH plate and a circular ABH plate are compared in terms of energy concentration. 

While the local thickness variation of the strip ABH being 0( ) (| |)ch x x x h= − + , that 

of the circular indentation follows 0( )h r r h= + , where r is the radial coordinate of 

the circular ABH indentation. For comparisons, the dimensions of these two plates are 

chosen to be the same: 0.5a = m, 0.5b = m, 4.7h = mm. Parameters for both ABH 

indentation are 0.2 =  , 2 =   and 0 0.2h =   mm. The circular indentation has a 

radius ABHR =0.15 m. To ensure the same area for both indentations, the dimension of 

the strip ABH is determined, covering an area from 1x  =0.1 m to 2x  =0.4 m in x 

direction and from 1 0.1= 3225y  m to 2 =0.36775y  m in y direction. Similarly, the same 

amount of damping material, 0.146% of the bare reference plate, is used around the 

center of both ABH indentations. For comparison purposes, the mean square velocity 

ratio and the overall loss factors of each plate are calculated and compared.  

 

In the absence of the damping layers, Figure 4.9 shows that, above the 

characteristic frequency (500 Hz), the strip ABH plate seems to be generally superior to 

its circular counterpart in terms of energy focalization. The overall ABH effect is also 

confirmed by Figure 4.10 in that, upon using the damping layers, the overall loss factors 

of most the strip ABH modes are also much larger than those of circular ABH.  
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Figure 4.8 Plates with two types of ABH indentations: strip (left); circular (right). 

Dark gray area denotes the area coated with damping layers. 

 

 

Figure 4.9 Comparison of the ratio of the mean square velocity between the ABH 

portion and that of the uniform portion without damping layers: strip ABH plate (solid 

line); circular ABH plate (dot line). 
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Figure 4.10 Comparison of the modal loss factors of the strip ABH plate and the 

circular ABH plate with damping layers: strip ABH plate (square dot); circular ABH 

plate (circular dot). 

 

The dynamics of the circular ABH plate can be better understood by examining the 

local deformation of the ABH indentations. Having understood the relationship between 

the damping loss factor with the local mode shapes in the case of the strip ABH plate, 

the same analysis is now carried out for the circular one. Similar to the strip ABH plate, 

Figure 4.10 shows that the largest damping increase also corresponds to the local ABH 

modes in the circular ABH plate. Different from the strip ABH plate, for which (1, n) 

modes have larger modal loss factors than (2, n) modes, for the circular ABH plate, local 

ABH (1, 2) and (2, 1) modes seem to provide very similar modal loss factors. Same 

applied to modes (1, 4) and (4, 1). This is naturally due to the bi-dimensionality of the 

circular ABH indentation. In the case of the circular ABH indentation, as opposed to the 
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strip case, mode classifications seem to be more difficult, although results still suggest 

that significant damping enhancement is governed by the lower order local ABH modes.  

 

4.3 Summary 

In this chapter, the proposed semi-analytical DW model is used for the vibration 

analyses of rectangular plates containing strip ABH indentations with a parabolic 

thickness profile. Numerical analyses lead to the following conclusions: 

 

Numerical analyses show typical energy focalization and dissipation phenomena 

of a plate with an embedded ABH indentation covered by a small amount of damping 

materials, pointing at the possibility of designing lightweight structures with better 

vibration reduction performance. Study of different configurations of damping layers 

over the surface of the strip indentation shows that, the same amount of damping 

materials coated at the ABH central portion can significantly increase the modal loss 

factors, compared with a uniform plate. It is shown that, above the cut-on frequency of 

the panel, the ABH-induced damping enhancement phenomenon is mainly attributed to 

the local structural modes within the ABH indentation. These modes exhibit lower-order 

deformations (typically half and one wave along the thickness tailoring direction) for 

the strip indentation. Contributions to the damping increase by the higher-order local 

modes along the thickness tailoring direction and global modes are trivial and negligible. 

Owing to the high structural modal density, this turns out to be enough to produce an 

appreciable damping increase, and subsequent a vibration reduction of the entire 
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structure. A circular indentation basically follows the same trend, except that dominant 

local modes apply to both directions of the plate. For the same given indentation area, a 

strip indentation seems to outperform its circular counterpart, in terms of both energy 

focalization and the overall damping enhancement.   

   

As a final remark, Daubechies wavelets, including both highly localized and highly 

smooth members, are compactly supported and orthogonal. These properties endow 

them with the ability to capture local structural changes and details, even when the ratio 

of ABH dimension to the overall structural dimension becomes small. In such cases, 

one should expect the effective range of the systematic ABH effects to be increased. For 

a given problem, a possible optimization could be conducted using the present model, 

such as finding the optimal distribution of the damping layers and the optimal ABH 

profile for reduced sound radiation and increased structural damping, as will be 

discussed in Chapter 6 and 7. 
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5 Chapter 5  

Sound radiation and transonic boundaries of a plate 

with a circular acoustic black hole indentation 

 

5.1 Introduction 

Apart from vibration benefits, lightweight structures with low sound radiation 

capability are also in great demand for various applications in aerospace, automobile 

and marine industries. The feasibility of making use of ABH concept for lightweight 

and quiet structure design is investigated in this Chapter. In particular, the proposed 2D 

semi-analytical ABH model is utilized to revisit some fundamental ABH-specific sound 

radiation issues. 

 

This chapter aims to investigate and scrutinize the sound radiation properties of a 

plate with an embedded circular ABH indentation by employing the DW model. 

Particular attention is paid to the description and understanding of the underlying 

physical process of the sound radiation in different frequency ranges, with the help of 

relevant physical parameters such as changes of the transonic boundaries inside the 

ABH indentation and supersonic acoustic intensity [122, 123]. Results are expected to 

enrich the existing understanding on the sound radiation of ABH structures. 
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This chapter is organized as follows. Section 5.2 introduces the procedures to 

calculate the supersonic acoustic intensity of the radiated sound in spatial domain. In 

Section 5.3, investigations into the sound radiation of ABH plates are performed through 

examining the radiated sound power and sound radiation efficiency of the ABH plate in 

different frequency ranges. Reductions in vibration response and sound power were also 

experimentally observed. Subsequently, the observed reduction in the sound radiation 

is scrutinized and quantified by examining the ABH-induced structural stiffness changes 

in the low frequency range and the creation and evolution of the transonic boundary in 

the high frequency range. Supersonic acoustic intensity in spatial domain is validated 

using a simply supported uniform plate. Subsequently, supersonic intensity is exploited 

to identify the vibrating regions that are responsible for the effective sound radiation to 

the far field. Effect of the damping layers on sound radiation efficiency is also 

investigated, showing the non-negligible added stiffness effect for the investigated 

configuration. Finally, Section 5.4 summarizes this chapter. 

 

5.2 Supersonic acoustic intensity in spatial domain 

The supersonic acoustic intensity is are useful to identify the region of structures 

that effectively radiates sound into the far field. The sound radiation model is extended 

to accommodate this need under the wavelet-based framework. The supersonic acoustic 

intensity [124] can be calculated using a spatial domain approach [123]. The supersonic 

pressure and supersonic normal velocity are defined as [124] 
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in which the superscript S   denotes the supersonic quantity. rS   represnets the 

integration area, defined within a circle, comprising all values of xk  and yk  such that 

2 2 2

x yk k k+  . Analogous to Equation (2.24), the supersonic acoustic intensity is defined 

as 

  ( ) ( ) ( )1
( , , ) Re ( , , ) ( , , )

2

s s s HI x y z p x y z v x y z=  (5.3) 

In spatial domain, the calculation of the supersonic acoustic intensity is based on a 

two-dimensional convolution between the acoustic field and a radiation filter mask. 

Compared with wave number approach, the advantage of the direct convolution method 

is that it avoids a Fourier transformation in wave number domain and is relatively simple 

to implement. To this end, a unit circle function is defined with values transitioned from 

zero to one at the boundary of the circle.  

 

The convolution theorem yields  

 
( ) ( )( , , ) ( , , ) ( , )s sp x y z p x y z h x y=   (5.4) 

where 
( ) ( , )sh x y  is the radiation filter mask, which can be expressed as [123] 
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where 1J  is the Bessel function of first kind. Equation (5.4) can then be discretized as  

 
( ) ( )

1

( , , ) ( , , ) ( , )
N

s s

n n n n

n

p x y z S p x y z h x x y y
=

   =   − −  (5.6) 

where S  is the area of each plate cell. Similar treatment also applies to the velocity 

terms. Subsequently, using Equation (5.3) allows the calculation of the supersonic 

acoustic intensity.   

 

5.3 Model implementation and numerical analyses  

Implementation of the simulation model requires the truncation of the 

decomposition series in Equation (2.2). As bending waves travel towards the center of 

the ABH indentation, structural wavelength gradually decreases. Therefore, a 

sufficiently large number of decomposition terms are needed to capture the local 

structural details. For sound radiation analyses, acoustic waves should be further 

considered to determine various DW parameters to be used in the computation, 

especially above the critical frequency where acoustic wavelength becomes smaller than 

their structural counterparts. For the subsequent sound radiation analyses on ABH plates, 

the same calculation procedure in Chapter 3 (in terms of integration scheme and number 

of elementary radiators) will be followed. 

 

5.3.1 Vibration and sound fields of ABH plates 
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Using the model and the far field method described in Section 2.2.4, the sound 

power radiated from ABH plate is examined. Parameters used in the calculations are 

tabulated in Table 5.1, for both the ABH plate and its uniform counterpart. A unit 

harmonic excitation force is applied at (0.05, 0.315) m. 

 

A partial damping treatment with a constant thickness 0.3 mmdh =   is applied 

within a radius of 86.5 mmdR =   in the central portion of the ABH cell (shown in 

Figure 2.2). The same damping treatment is also applied to the uniform plate for 

comparisons. Edges of both plates are assumed to be clamped. The space-averaged 

mean square velocity, with reference to 2| | 1 m/s
ref
=v , and the sound power radiated 

by both plates are compared in Figure 5.1.  

 

Table 5.1 Geometrical and material parameters of a plate with a circular ABH 

indentation 

Geometry Material 

a=0.5 m xc=0.25 m E0=200 GPa Ed=5 GPa 

b=0.45 m yc=0.25 m ν0=0.3 νd=0.3 

h=4.7 mm ε=0.2/m η0=0.01 ηd=0.3 

RABH=0.15 m γ=2 ρ0=7800 kg/m3 ρd=950 kg/m3 

h0=0.2 mm    
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     (a) 

 

(b) 

Figure 5.1 Comparisons between the reference plate and the ABH plate: (a) 

space-averaged mean square velocity; (b) radiated sound power. DL denotes damping 

layers. 

 

For the present case, the cut-on frequency [39] of the ABH plate is around 500 Hz. 

As illustrated in Figure 5.1, below 500 Hz, effects of the ABH on the plate vibration and 

sound power are not systematic in the sense that the inclusion of ABH indentation into 
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the plate cannot lead to any meaningful and systematic changes in neither structural 

vibration nor sound radiation. In the present case, it is rather the adverse effect that one 

can observe. However, above 500 Hz, reductions in the vibration amplitude begin to 

systematically show, with vibration peaks smoothened, especially at high frequencies 

as shown in Figure 5.1(a). Meanwhile, the ABH plate shows a significant reduction in 

the radiated sound power in the same frequency range. Note this is achieved by an ABH 

plate whose total mass is 88% that of the uniform plate due to the ABH indentation. 

These results demonstrate the potential and the benefit of using ABH principles to 

design lightweight structures. The observed sound reduction is definitely directly related 

to the typical ABH effect in terms of vibration energy localization and dissipation, 

leading to the reduced structural vibration. Meanwhile, a comparison between Figure 

5.1(a) and Figure 5.1(b) indicates that the reduction in sound radiation seems to exceed 

that of the structural vibration. This points at the existence of other ABH-induced 

structural changes which contribute to the overall reduction of radiated sound power.  

 

To explain this, the sound radiation efficiencies of ABH plates with/without 

damping layers are investigated. Again, results are compared against their uniform 

counterparts, as illustrated in Figure 5.2. The critical frequency of the reference flat plate 

is 2554 Hz around which the radiation efficiencies peak for both plates with/without 

damping layers. Above this frequency, called supersonic region, the structural waves 

travel faster than acoustic waves, thus showing a consistently high efficiency in sound 

radiation, as one might expect from the basic sound radiation theory. 
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Figure 5.2 Comparisons of the sound radiation efficiencies between the reference 

plates and the ABH plates. DL denotes damping layers. 

 

Figure 5.2 shows that the inclusion of the ABH indentation brings about significant 

changes in the sound radiation efficiency of the structure. 1). With or without damping, 

the radiation efficiencies of the ABH plates and the uniform reference plates are very 

similar before the first structural resonance. 2). Entering into the dynamic region and 

getting closer to the cut-on frequency (500 Hz), in this specific case, ABH plates show 

a siginificantly reduced radiation efficiency, compared with the uniform plates. 3). The 

same tendency maintains above the cut-on frequency. Above the critical frequency, the 

acoustically slow structural waves (also called subsonic structural waves) exist if the 

thinnest thickness is small enough. These waves lead to the reduced radiation efficiency, 

contributing to the overall reduction in the sound power of ABH plate as illustrated in 

Figure 5.1(b). It can also be observed from Figure 5.2 that the deployment of the 
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damping layers on the flat plate does not seem to alter much the radiation efficiency due 

to the small amount of coating used and the energy dispersive nature of the vibration 

energy over the plate. However, interestingly enough, the radiation efficiency of the 

ABH plate with the same coating is increased above the cut-on frequency in this 

particular case.  

 

To ascertain this, influences of the stiffness and the mass of the damping layer are 

considered seperately in the ABH plate and shown in Figure 5.3. As can be seen, the 

mass of the damping layer has negligible effect on the radiation efficiency. On the 

contrary, the effect of its stiffness is apparent. Note that the values of mass density and 

stiffness of damping layer used are realistic ones, consistent with those used in some 

reference papers [63, 125]. Therefore, the results call for a careful handling of damping 

layer in order to maximize the sound radiation reduction. 
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Figure 5.3 Effect of the stiffness and mass of the damping layers on the sound 

radiation efficiency of ABH plate. 

 

5.3.2 Phenomena assertion by experiments 

As aforementioned, damping layers coated around ABH center are indispensable 

for the realization of ABH effects and are beneficial to energy dissipation and vibration 

attenuation. This has been confirmed through experimental tests using the previous test 

sample. Note the mass of the damping material only accounts for 0.66% of the entire 

plate. Cross mobility at point (0.0375, 0.25) m over the uniform portion was measured. 

Compared with bare ABH test sample, the reduction of vibration peaks is visible. 

Similar trend is observed for sound power analyses. The parameters of experimental 

sample and the add-on damping layers are shown in Table 3.2 and Table 3.3. 

 

The damping material FP9473 used in the experimental validation part in Chapter 

3 is relatively soft. For comparisons, another type of damping sheets, stiffer but also 

realistic, SD40PSA produced by 3M company were used for additional tests. While 

keeping the same coverage configuration as before, the thickness of the damping 

material SD40PSA was increased to 1.2 mm. The density of SD40PSA is 1682 kg/m3. 

Similarly, structural mobility and the radiated sound power of the test samples with the 

two different types of damping layers, alongside those of the bare ABH sample are 

compared in Figure 5.4 and Figure 5.5, respectively. It can be seen that a stiffer and 

more effective damping material enables significantly damped vibration peaks as 
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compared with the bare ABH plate, more obvious at high frequencies. Analogously, 

reduction in the sound power is also observed, especially above the critical frequency 

of 1995 Hz, estimated using the thickness of the uniform portion of the plate. The 

averaged reduction with respect to the bare plate can be up to 10 dB. The reduction of 

sound power is not only attributed to the suppressed vibration level but also to the 

reduced sound radiation efficiency of the ABH plate. Therefore, the utilization of 

realistic damping material deposited at the central portion of the ABH test sample allows 

for a substantial attenuation of structural vibration response and its radiated sound power, 

showing the great potential of ABH structures for vibration and noise control 

applications. 

 

 

Figure 5.4 Measured cross point mobility at (0.0375, 0.25) m on the uniform 

portion of the test samples: (a) without damping material (solid line); (b) with 

damping material FP9473 (dot line); (c) with damping material SD40PSA (dash line). 

DL denotes damping layer. 
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Figure 5.5 Measured radiated sound power of test samples: (a) without damping 

material (solid line); (b) with damping material FP9473 (dot line); (c) with Damping 

material SD40PSA (dash line). DL denotes damping layer. 

 

5.3.3 Sound radiation mechanism analyses 

5.3.3.1 Stiffness-controlled sound radiation efficiency 

The observed reduction in the sound radiation efficieny below the cut-on frequency 

in Section 5.3.1 can actually be attributed to the structural stiffness changes due to the 

inclusion of the ABH cell. This can be demonstrated by examining a uniform plate 

having the same mass, but with a reduced stiffness or thickness (not shown here). 

Results show that the observed reduction in the sound radiation efficiency of the ABH 

plate before the ABH cut-on is merely due to the overall stiffness reduction of the plate, 

instead of the intrinsic ABH feature. This explains the aforementioned increase in the 

sound radiation efficieny when damping layers are used over the ABH indentation, in 
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which case the added stiffness of the damping layers is non-negligeable as compared to 

the thinnest part of the indentation.  

 

5.3.3.2 Sound radiation within the transonic boundary 

When bending waves travel across ABH boundary toward its center, with smoothly 

decreasing structural thickness, their phase velocity gradually reduces. For a given 

frequency above the critical frequency of the flat portion of the plate, a subsonic region 

may be created inside the ABH cell if the thickness of the ABH indentation is small 

enough. This subsonic region is delimited by a circle, referred to as the transonic 

boundary, whose radius is defined by 

 ( )( )
1

2 2

0 0 012 1 (2 )t aR c E f


   = −  (5.7) 

As an example, the sound power radiated from the area inside the transonic 

boundary corresponding to 4000 Hz (Rt=118.4 mm) is evaluated for three different 

plates: the reference flat plate and two ABH plates with/without damping layers.  
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Figure 5.6 Sound power radiated from the region inside the area with a radius of 

118.4 mm, corresponding to the transonic boundary at 4000Hz. 

 

Figure 5.6 shows that, below the cur-on frequency (500 Hz), the investigated 

region (inside the transonic boundary) of the ABH plates (with and without damping 

layers) generates a higher sound power as compared with the reference plate. This is 

definitely due to the ABH-induced amplification of the vibration amplitude in the center 

area of the ABH cell, despite the aforementioned reduction in the radiation efficiency. 

Above 500 Hz, the ABH effect is cut-on, resulting in an obvious sound power reduction, 

especially when the frequency approaches the critical frequency at 2554 Hzcriticalf = . 

Up to 4000 Hz, the entire region inside the transonic boundary of ABH plates is subsonic. 

This results in the remarkably reduced sound power as compared with its counterpart in 

the reference panel. Above 4000 Hz, the transonic boundary starts to enter into the 

investigated area and keeps shrinking with the increase of the frequency, containing both 

subsonic and supersonic structural waves, along with greatly concentrated vibration 
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energy. When this happens, the sound power reduction, albeit clearly observable, 

becomes less significant due to the existence of acoustically fast structural waves.    

 

5.3.3.3 Sound radiation efficiency with transonic boundary changes 

Variations of the sound radiation efficiency along with transonic boundary changes 

are quantified. Specifically, the radiation efficiency of a series of concentric rings, 

moving from the inside to the outside of the transonic boundary are investigated. In each 

step, the width of the rings is kept constant, 1 6 tR R = , as shown in Figure 5.7. The 

radiation efficiencies of the rings at different frequencies (from 4000 Hz to 8000 Hz) 

are compared in Figure 5.8(a). At each frequency, the inner ring radius innerR   is 

normalized by its corresponding transonic boundary radius. A uniform plate is also used 

as reference. 

 

 

Figure 5.7 Diagram of investigated ring on the ABH plate. 
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 (a) 

 

 

  (b) 

Figure 5.8 Radiation efficiency of rings around transonic boundary of ABH plate 

compared with those of reference plate at different frequencies: (a) Reference plate; 

(b) ABH plate. 

 

For the flat plate, (Figure 5.8(a)) shows that, despite slight variations, the radiation 

efficiency for each calculated ring is consistently high and rather stable. As expected, 

with the increase of frequency, the radiation efficiency generally increases. For the ABH 
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plate, similar phenomenon can be observed when / 1.0inner tR R   (Figure 5.8(b)) when 

the ring moves outside the transonic boundary and enters into supersonic region; as a 

result, its radiation efficiency is consistently high. When the rings are inside their 

respective transonic boundaries, e.g. / 1.0inner tR R  , the sound radiation efficiency of 

the rings dwells at relatively low levels. While the rings passing through the transonic 

boundary, their corresponding radiation efficiencies undergo a sharp rise. This variation 

in the sound radiation efficiency is consistent with what one might expect from classical 

structural acoustic theory. 

 

5.3.3.4 Verification of Supersonic acoustic intensity  

To verify the procedures of supersonic intensity in a spatial domain in Section 5.2, 

the supersonic intensity of normal modes of a simply supported uniform square plate is 

first analyzed. The dimension of the plate is 2 m   2 m. The plate is surrounded by a 

rigid baffle. To compare the results obtained in spatial domain with those obtained by 

William [122] using Fourier transform analyses, two representative normal modes 

below the critical frequency are chosen: (11, 3) and (11, 9) modes, corresponding to ka 

amounting to 17.92 and 12 respectively. Figure 5.9 shows the supersonic intensity of 

these two modes. As expected, an edge mode and a corner mode are observed, in line 

with the classic structural radiation theory. Meanwhile, the obtained supersonic intensity 

matches well with that obtained in Ref. [122]. 
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(a)                              (b) 

Figure 5.9 Supersonic intensity of normal modes: (a) (11, 3) mode at ka=17.92; 

(b) (11, 9) mode at ka=12. 

5.3.3.5 Numerical illustration of the supersonic acoustic intensity 

To further illustrate the sound radiation properties of the ABH plate, various forms 

of acoustic indensity are calculated using the extended 2D Daubechies wavelet (DW) 

model, in comparison with its uniform counterpart for a few selected representative 

frequencies. The acoustic pressure over the vibrating surface and the baffle is calculated 

using Rayleigh integral in Equation (2.23). Supersonic acoustic intensity maps are 
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compared with the classical acoustic intensity maps. Variations of the supersonic 

acoustic intensity alonside the transonic boundary changes are also illustrated. 

 

Figure 5.10(a) and Figure 5.10(b) show the supersonic acoustic intensity of the 

uniform plate and ABH plate, respectively, at 2000 Hz which is below the critical 

frequency. To facilitate the comparison, same scale is used for both plots. Supersonic 

acoustic intensity maps of the uniform plate in Figure 5.10(a) shows that effective sound 

radiation is basically from the two edges of the panel along y direction, which resembles 

the edge mode radiation, although the frequency is not a structural natural frequency to 

warrant perfect radiation cancellation as expected from the classical structural radiation 

theory. In comparison, the inclusion of the ABH indentation alters the radiation pattern 

as shown in Figure 5.10(b). Nevertheless, effective sound radiation still originates from 

the edge of the panel with a more scattered pattern and a reduced level as compared to 

the uniform plate. Classical acoustic intensity map of the ABH plate, Figure 5.10(c), 

shows that, because of the energy concentration, the energy level inside ABH cell is 

indeed very high, with both positive and negative values, specific to the near field 

feature of the sound radiation. With the circulating intensity being removed, supersonic 

acoustic intensity indeed allows for the identification of the hot spots over the plate, 

which are responsible for effective sound radiation into the far field. In this case, it is 

predominantly confined to the uniform part outside the ABH boundary, as shown in 

Figure 5.10(b). 
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Following the same procedure, evolutions of these intensity maps with increasing 

frequencies (f=4200 Hz and 7300 Hz) are illustrated from Figure 5.10(d) to Figure 

5.10(i). Meanwhile, changes of the corresponding transonic boundary (marked by a 

dash circle inside the ABH boundary) are also shown for the three arbitrarily chosen 

frequencies, all above the critical frequency of the flat panel. For the flat plates (Figure 

5.10(d) and Figure 5.10(g)), when the frequency increases, the sound radiation pattern 

shown by the supersonic intensity maps become more regular over the entire plate 

surface, similar to the surface radiation pattern. For the corresponding ABH plate, a 

transonic boundary appears and gradually reduces in size with the frequency. However, 

different from the uniform plate, the distribution of the effective sound radiation areas 

becomes less regular. More specifically, apart from the upper-left corner of the panel 

where the excitation force is applied, most energetic sound radiators gradually move 

into the ring between the ABH periphery and transonic boundaries when frequency 

increases (Figure 5.10(e) and Figure 5.10(h)). This ring area, being supersonic, exhibits 

high radiation efficiency and contains a considerable amount of vibration energy at the 

same time. In terms of intensity level, judged by the darkness of the maps (or by the 

colors on-line), it is also obvious that the flat plates radiate much more efficiently than 

the ABH plate does, even though the near filed acoustic intensity could be high (Figure 

5.10(f) and Figure 5.10(i)) inside the subsonic region of the ABH plate. These results 

agree with the sound radiation properties along with transonic boundary changes 

analyzed in Section 5.3.3.2.  
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Figure 5.10 (Color on-line) Acoustic intensity maps: (a-b-c) f=2000 Hz; (d-e-f) 

f=4200 Hz; (g-h-i) f=7300 Hz. (a-d-g) supersonic acoustic intensity of the reference 

plate; (b-e-h) supersonic acoustic intensity of the ABH plate; (c-f-i) acoustic intensity 

of the ABH plate. The dot circle denotes the ABH periphery and the dash circle the 

transonic boundary. SSI indicates the supersonic acoustic intensity; SI the acoustic 

intensity and SWL the total radiated sound power. 
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5.4 Summary 

As an alternative to conventional FEM, the proposed 2D Daubechies wavelet (DW) 

model is utilized to explore the sound radiation mechanisms of a plate embedded with 

a circular ABH indentation. The model allows the exploration of ABH-specific sound 

radiation features in relation to the transonic boundary changes. Supersonic acoustic 

intensity in spatial domain is used to visualize the sound radiation pattern and identify 

the dominant sound radiation areas on the vibrating surface of the ABH plate. Numerical 

analyses lead to the following main conclusions:  

 

1) The investigated ABH plate is shown to exhibit a significantly reduced sound 

radiation efficiency in a broad dynamic frequency range as compared to its uniform 

counterpart. Physical mechanisms in different frequency ranges are revealed. Before the 

cut-on of the ABH effect, this is mainly due to the weakening of the overall structural 

stiffness, which persists until the critical frequency. Above the critical frequency, the 

subsonic region within the transonic boundary results in an impaired sound radiation 

efficiency of the plate due to the subsonic structural waves. Supersonic acoustic 

intensity maps show that the regularly distributed supersonic waves over the flat plate 

are altered by the presence of the ABH indentation. As a result, the far field acoustic 

energy is mainly generated by the ring area between the ABH periphery and the 

corresponding transonic boundary. 
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2) For the investigated configuration, an increase in the sound radiation efficiency 

of the ABH panel is observed, which is caused by the added stiffness effect of the 

damping layer. This points at the need of striking a balance between the dual effects of 

the damping layers: damping enhancement and stiffness-induced increase in the sound 

radiation efficiency of the structure. 

 

The present work attempts to claim a three-fold novelty: 1). A wavelet-based model 

is established for the acoustic radiation prediction as an alternative to the FE/BE. 2). 

ABH effect on the sound radiation is demonstrated and physically explained using 

parameters such as supersonic acoustic intensity and transonic boundary changes. This 

allows the visualization of the sound radiation in spatial domain and hopefully enriches 

the existing understanding on the sound radiation of ABH structures. 3). The stiffness 

effect of damping layers on the increase of the sound radiation efficiency calls for a 

careful handling of the viscoelastic coating for sound radiation applications. 
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6 Chapter 6  

Topological optimization of damping layers 

 

6.1 Introduction 

Controlling sound radiation of vibrating structures is an important research topic 

for many engineering applications. ABH structures have shown great potential in 

reduction of sound radiation, as demonstrated in Chapter 5. As a counter measure for 

impaired wave reflections caused by truncation thickness, the deposition of a thin layer 

of viscoelastic damping materials over the ABH portion has been shown to be necessary 

to draw energy away from the system [12], a phenomenon which was later confirmed 

in other works [39, 46, 50]. Therefore, the use of the damping layers constitutes an 

indispensable part in the realization of the ABH effect.  

 

However, it was also observed that an excessive use of the damping layers could 

cause adverse effects. For example, it was noted that the coating layer may generate 

non-negligible added stiffness effect to the host structure [46], which in turn would 

affect the expected ABH effect. Meanwhile, the intuitive way of coating the center of 

the indentation in an imperfect ABH plate with a modified ABH thickness profile would 

increase its minimum thickness and then offset the focal point of energy localization 

[26]. Using a laser excitation and wave decomposition technique, the existence of an 

optimal thickness for the damping layer which leads to minimum wave reflections was 
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experimentally determined. It was observed that the excessive use of the coating may 

compromise or even jeopardize the expected energy focalization due to its dynamic 

interference with the host structure, leading to an impaired energy dissipation [70]. Also, 

it was discovered in Chapter 5 that the use of damping layers could be responsible for 

the increase of sound radiation efficiency of an ABH panel due to the additional stiffness 

effect. All these observations point at the need for a meticulous design and optimization 

of the layout of the damping layers in order to strike a balance between their dual effects: 

damping enhancement and stiffness-induced increase in the wave reflection and sound 

radiation efficiency. However, systematic investigations of the issue, as well as the 

development of the required topological optimization tools, are still lacking.   

 

Topological optimization of sound radiation requires the provision of two major 

components: an efficient vibro-acoustic solver and an adaptive optimizer. For the former, 

the commonly used FE/BE discretizes the solution domain into meshes, a process that 

needs to be repeated in every optimization loop, which is very computationally intensive 

and cumbersome. In that regard, the semi-analytical sound radiation model, detailed 

previously, shows its advantages. The model provides an ideal platform to incorporate 

the add-on damping layers and accommodate the changing topology incurred during the 

optimization process. In fact, due to the energy-based and modular nature of the model, 

the coating area to be optimized can be discretized into a number of elementary sections. 

Employing the Solid Isotropic Material with Penalization (SIMP) method [126], the 

stiffness and mass matrices for each section, and the complex normal velocity of the 
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plate are readily available for sensitivity analysis of the objective function with respect 

to design variables.  

 

As another important component, structural topology optimization has been widely 

studied for various vibration problems such as the optimization of fundamental eigen-

frequencies [127-129], band gaps [130, 131], system loss factors [132] and dynamic 

compliance [133] etc. Minimization of structural vibrations [134-137] and their sound 

radiation under harmonic excitations is another important topic for topology 

optimization. So far, much work has focused on the topology optimization of structures 

to achieve better acoustical properties. Using a mixed finite element formulation, Yoon 

et al. [138] minimized the averaged sound pressure of 2D vibro-acoustic structures 

within a frequency interval. Du and Olhoff [139] topologically optimized vibrating bi-

material structures to minimize their radiated sound power. Meanwhile, optimization of 

damping layers to minimize vibration response and sound radiation has also attracted 

the attention of many researchers. Employing the complex mode superposition method, 

damping layers in shell structures were optimized to minimize the vibration amplitude 

at specific points [135, 140]. Zhang and Kang [141] also optimized the layout of 

damping layers in a square plate and a hollow box to achieve minimized sound pressure 

at specific points under harmonic excitations. Yan et al. [142] topologically optimized 

the damping layer for minimized residual vibration under impact loads. 
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So far, topological optimization design of ABH structures for sound radiation 

minimization has not been dealt with in the literature. The only remotely related paper 

is the one by Rothe et al. [100], in which the position of acoustic black holes was 

optimized for sound radiation of ABH plates using evolutionary optimization algorithm. 

As previously discussed, damping layer plays an important role in achieving ABH effect 

for the mitigation of vibration and sound radiation. Considering the dual conflicting 

effects of the damping layers, e.g. enhancing system damping and increasing its sound 

radiation efficiency, and the lack of analysis and understanding on the topic, we explore 

the issue in this Chapter by proposing a general methodology for the topological 

optimization of the layout of damping layers on an acoustic black hole (ABH) plate. By 

combining the previous semi-analytical wavelet plate model, the Solid Isotropic 

Material with Penalization method (SIMP) and the Optimality Criteria (OC) method 

[143], the sound radiation into a free space by ABH plates is minimized at either a given 

frequency or within a frequency band. 

 

This Chapter is organized as follows. Section 6.1.1 formulates the topology 

optimization. As an important component in the optimization process, a sensitivity 

analysis of the objective function with respect to design variables is derived using 

adjoint variable method (AVM), under the wavelet framework in Section 6.1.2. The 

adopted optimization method is validated using a square uniform plate in Section 6.1.3. 

Numerical results and analyses are presented in Section 6.2. Main focus is put on the 

minimization of the radiated sound power of ABH plates. Effects of damping layers 
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deposited at the central area of the ABH indentation are first analyzed. With the same 

amount of damping material, optimal placement of the damping layers is then 

topologically searched at a given frequency or within a frequency band. For comparison, 

minimization of the mean square velocity of the plates is also conducted. Wavenumber 

analyses are performed on different configurations to illustrate the underlying physical 

process as a result of the optimization. Finally, Section 6.3 summarizes this chapter. 

 

6.1.1 Formulation of topological optimization 

The layout of the damping layers is to be optimized within a pre-defined 

search/design space, which is divided into a number of elementary sections. Figure 6.1 

schematically shows an example of the optimized configuration, in which the 

segmented elements are denoted either by 1 or 0, indicating that the corresponding area 

is either fully coated or not coated by damping layer, respectively. Note during the 

optimization process, however, values associated to each element evolve from 0 to 1, 

before reaching the final optimized configuration, as detailed later.   

 

 

Figure 6.1 Optimized layout of damping layers. 
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The model described in Chapter 2 is used to topologically optimize the layout of a 

given amount of damping material to minimize various physical quantities such as the 

plate vibration or the radiated sound power. In the latter case, assuming 2= −S K M , 

the optimization problem within a frequency band, from lf   to uf  , can be 

mathematically defined as 
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 (6.1) 

in which C  is the objective function; min. is the abbreviation of minimize; and s.t. the 

abbreviation of subject to. The constraint condition Equation (6.1) imposes a restriction 

on the volume of the damping material used in the optimization process. vf  represents 

the prescribed volume fraction. Ne is the total number of segmented elements within the 

design area. ev   is the volume of damping material for element e. Note e   is an 

important control parameter defining the degree of fulfillment of an element e by the 

damping material, which can be regarded as a relative density term of the damping layer. 

The constraint condition min0 1e     in Equation (6.1) indicates that the relative 

density changes within 0 and 1 in the process of iteration. Usually, a lower limit min , 

a small positive value, should be assigned in the calculation procedure. 

 

With the aforementioned topology representation, the global stiffness and mass 

matrices of the system are assembled as 
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where plate
K   and plate

M   are the stiffness and mass matrices of the base plate 

respectively; 
damp

eK   and 
damp

eM   are those of the damping layers for section e, 

respectively. Employing the Solid Isotropic Material with Penalization (SIMP) method 

[126]. 
damp

eK  and 
damp

eM  can be expressed as 

 
( )

( )
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qdamp damp

e e e
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=
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 (6.3) 

in which 
damp

eK  and 
damp

eM  are respectively the stiffness and mass matrices for section 

e when 1e = . p  and q  are the penal factors that are selected to be 3 in this study. 

 

With given initial values, the design variable e  for each section e will be updated 

during the optimization process. When the iteration terminates to reach a complete 

converged result, e  will be either 0 or 1, corresponding to an empty and fully coated 

element, respectively. 

 

6.1.2 Sensitivity analysis for optimization 

The minimization problem defined in Equation (6.1) requires the calculation of 

the sensitivity of the objective function C with respect to the design variable e . The 

sensitivity of the objective function is derived using adjoint variable method (AVM) 

[135]. To make the paper self-contained, some key equations related to AVM are 

recalled from Ref. [135], cast into the present modelling framework and briefly 
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presented below. Recall Equation (2.27), =V ΦA , it seems that the objective function 

C depends on the complex coefficients A. To derive the sensitivity expression, C is 

written as: 

 ( ) ( )1 2( ) T TC C= + − + −A μ SA F μ SA F   (6.4) 

where 1

T
μ  and 2

T
μ  are the adjoint vectors. 

 

Differentiating Equation (6.4) with respect to e  yields 
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and 2 1

T T=μ μ , where i  is the imaginary unit, Equation (6.5) can be written as 
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Discretizing the integration in Equation (6.1) and considering Equation (2.27) 

yield 
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where W   is the complex displacement vector of the plate with subscripts R and I 

indicating the real part and imaginary part, respectively. N is the number of vibrating 

points on the investigated system. Substituting Equation (6.6) and Equation (6.8) into 

Equation (6.7) yields  
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in which J   is the number of discretized frequencies. Optimizations at a single 

frequency can be treated as a special case of the above defined optimization problem. 

In that case, Equation (6.9) degenerates to 

 2 12 Re H

e e
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

 

− 
= −  

 

S
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Meanwhile, if the focus is on the minimization of the plate vibrational response in 

terms of mean square velocity, a parallel formulation can be easily established by 

following the same procedure. In that case, Equation (6.9) and Equation (6.10) still 

hold by simply replacing the radiation resistance matrix R  by a unit matrix. Using the 

above sensitivity expressions, the relative density e   for each section e is updated 

using an optimizer based on Optimality Criteria (OC) method [143] by  

 ( )1

e e eB


   + =  (6.11) 

where   is the number of iteration;   the numerical damping coefficient [143] and 

( )( )max 0,e eB dC d  = −  , where    is a Lagrangian multiplier which can be 
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obtained using bi-sectioning algorithm. During the process of iteration, a mesh-

independency filter [144] is used to avoid the checkboard pattern.  

 

6.1.3 Validation examples 

The proposed topology optimization procedure involves two modules: a numerical 

solver of the physical system (vibration and sound radiation model) and an optimizer. 

The former has been thoroughly validated in a previous work, in terms of both vibration 

and sound radiation prediction. Hereafter, the optimizer is to be validated. To that end, 

the test case used in [135] is considered, in which damping layers coated on a simply 

supported square plate are topologically optimized. The plate is made of aluminum and 

has a dimension of 3 3 0.02    m. Using the same set of geometrical and material 

parameters, the current model differs slightly from [135] in two aspects: 1) a structural 

damping model via complex Young’s modulus is used for the damping layer in the 

present model, instead of a Rayleigh damping model used in [135]; 2) the plate is 

symmetrically covered on both sides in the current model, whilst in Ref. [135], the same 

amount of damping was applied on only one side of the plate. 

 

The damping layers are discretized into 30 30  meshes, in contrast to 60 60  

meshes used in the Ref. [135]. Same as in [135], a point force excitation is applied at 

the center of the plate. The square of the amplitude of vibration displacement at the 

excitation point is chosen as the objective function. The iteration process terminates 
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when the convergence criteria ( )1

max
0.01%e e e

    + −    is satisfied. Using the 

optimization method described in Sections 6.1.1 and 6.1.2, the resulting optimal 

damping layout is compared with the results given in [135] using mathematical 

programming algorithm (MMA). Among several frequencies being tested, three typical 

ones are shown in Figure 6.2 for f=30, 60, 90 Hz, respectively. It can be seen that both 

set of results agree in terms of coverage topology. The present model uses a smaller 

number of elements which inevitably affects the resolution of the image. Meanwhile the 

aforementioned differences in the model also contribute to the observed differences. 

Nevertheless, the proposed optimization algorithm gives the optimized configurations, 

consistent with results from [135], thus validating the established optimization approach.  

 

       

(a1)  f=30 Hz          (a2)  f=60 Hz           (a3)  f=90 Hz 

       

(b1)  f=30 Hz          (b2)  f=60 Hz           (b3)  f=90 Hz 
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Figure 6.2 Optimal layout of damping layers at different frequencies: Present 

model with OC method (a1-a2-a3); Results from [135] with MMA method ((b1-b2-b3)). 

 

6.2 Numerical analyses 

Numerical examples and analyses use a simply supported ABH plate with 

geometrical and material parameters the same as in Table 5.1. Apart from those 

previously defined parameters, additional ones include the densities 0  , d   and 

Poisson’s ratios 0  , d   for the plate and the damping layers, respectively. The 

reference case is defined as the one with central part of the ABH indentation fully coated 

inside a circle with a radius of 86.5dR =  mm. In this reference case, referred to as 

circular case hereafter, the damping layer has a uniform thickness 0.3dh =  mm on 

each side of the plate. The basic sound radiation phenomena of this reference case, in 

particular the effect of the damping layers, will first be illustrated. Then, topological 

optimization will be applied to determine the optimal coating layout which allows the 

minimization of the radiated sound power, by using the same amount of damping 

material, at either a given frequency or within a pre-defined frequency band. A harmonic 

point force is applied at (0.05, 0.315) m over the uniform portion. 

 

6.2.1 Effect of damping layers on the vibration and sound radiation of ABH 

plates 

Using the previously developed DW model, the effect of the damping layers 

(reference case with central circular coating) on the vibration of the ABH plates and 
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their radiated sound field are first analyzed to show the necessity of the optimization. A 

bare ABH plate without any damping treatment is taken as comparison basis. Some 

important comparative results between the ABH plates with/without central circular 

coating are recapped here, as shown in Figure 6.3. Figure 6.3 (a) and Figure 6.3 (b) 

show the comparisons in terms of the radiated sound power level and the corresponding 

mean square velocity level (referenced to 1 m2/s2) of the plates, averaged over their 

entire surface. It can be seen that, compared with the bare plate, the use of the damping 

layers obviously reduces the resonance peaks as well as the overall level of the both the 

plate vibration level and the radiated sound power, especially above the cut-on 

frequency [39]. The so-called cut-on frequency is an indicative frequency at which the 

wavelength of the incident bending waves starts to be equal to the characteristic 

dimension (the diameter of the circular indentation in the present case) of the ABH 

indentation. It is commonly accepted that the bending waves interact more effectively 

with the ABH indentation above this frequency, thus producing systematic ABH effects. 

In the present case, the cut-on frequency is 500 Hz. Above the cut-on frequency, these 

aforementioned phenomena are obviously due to the coating-enhanced ABH effects in 

terms of energy focalization and dissipation towards the indentation center. A less 

known phenomenon, however, is the coating-induced changes in the sound radiation 

efficiency of the plate as shown in Figure 6.3(c). In fact, the deployment of the damping 

layers generates an obvious increase in the sound radiation efficiency of the plate, again 

more obvious and systematic after the ABH cut-on. The increase in the radiation 

efficiency is attributed to the additional stiffness of the damping layers rather than their 
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mass, as demonstrated in Section 5.3.1. The trend continues even after the critical 

frequency of the plate calculated based on the thickness of the uniform portion of the 

plate. Above critical frequency criticalf , the length of the bending waves inside the plate 

becomes larger than that of the acoustic waves. In another word, structural waves travel 

faster than their acoustic counterparts, thus producing the so-called supersonic structural 

waves, which are shown to be efficient in sound radiation by classical structural acoustic 

theory. Thanks to the gradually decreased thickness of the ABH indentation, at a given 

frequency above criticalf , a so-called transonic circular boundary with a radius in 

Equation (5.7) is created, which demarcates a subsonic region inside the circle with a 

supersonic region outside. Therefore, the inside region within tR  is less efficient in 

sound radiation. These observations point at the need for a meticulous design and 

optimization of the layout of the damping layers in order to strike a balance between 

their dual effects: damping enhancement and stiffness-induced increase in the sound 

radiation efficiency. 

 

 

(a) 
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(b) 

 

 

(c) 

Figure 6.3 Comparison between ABH plate (dot line) and ABH plate with 

damping layers (solid line): (a) Radiated sound power; (b) Mean square velocity; (c) 

Radiation efficiency. DL denotes damping layer. 

 

6.2.2 Topological optimization for the minimization of sound power 

The optimization method is employed to seek solutions to the minimization of the 

radiated sound power of a plate defined in Section 6.2.1. at single frequencies. The 

design area is a square which frames the ABH external peripheral circle and is 
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discretized into 12 12  elements. The volume fraction vf  is restricted to 0.2618 to 

make sure that the total volume of damping layer is the same as the reference case with 

a circular coverage, as discussed in Section 6.2.1.  

 

An arbitrary frequency of 3480 Hz is chosen to show the typical evolution of the 

objective function (the radiated sound power level in the present case) during the 

iteration process in Figure 6.4. It can be seen that the objective function undergoes a 

continuous decrease from 67.1 dB to approach a converged value of 64.9 dB after 

roughly 10 iterations. Meanwhile, the layout of the damping layer also evolves 

accordingly, starting from the initial uniform coverage to gradually converge to a stable 

and fully converged optimal configuration. The grey color shown in the map of 

configuration of damping layers at step 1 indicates that, at the beginning of iteration, 

the relative density, e  , is quite different from either 0 or 1. With the increase of 

iteration loop, e  gradually gets closer to 0 or 1. It is interesting to note that, at this 

particular frequency, the initially covered central area of the ABH indentation (step 4) 

tends to be gradually emptied, until reaching the final optimal layout in which the central 

portion of ABH indentation is not fully coated (steps 9-18), in contrast to the intuitive 

guess that one might have to simply cover the central area.  
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Figure 6.4 Convergence of iteration process at 3480f = Hz. The outer dot circle 

represents the ABH peripheral circle, and the inner dash circle represents the circular 

coverage of damping layers. DL denotes damping layer and W the radiated sound 

power. Step 1 is the initial starting configuration. 

 

The same process can be followed for every given frequency of interest. The 

outcome of the optimization is shown in Figure 6.5(a)-(c) in terms of sound power level, 

mean square velocity level as well as the sound radiation efficiency, respectively. Again, 

results are compared with their reference counterparts with the circular coating using 

the same amount of damping materials. 

 

Figure 6.5(a) shows that, compared with the circular case, the optimal damping 

layout results in a reduced radiated sound power of different level, which may go up to 

roughly 4 dB in the present case. Below the cut-on frequency (500 Hz), the effect of the 

optimization is trivial. The same observation also applies to the mean square velocity of 
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the plate (Figure 6.5(b)), as well as the sound radiation efficiency (Figure 6.5(c)). This 

is understandable since ABH effect is absent in this low frequency range so that the 

room for optimization is basically non-existent. In fact, as to be demonstrated later on, 

the finally reached optimized layout in the low-frequency range is basically the same as 

the central coverage case. Above the cut-on frequency, a systematic reduction in the 

radiated sound power starts to show as a result of the optimization. The mean square 

velocity level, however, though generally following the same reduction trend but to a 

less degree, exhibits an increase at some frequencies. Note that when approaching and 

exceeding the critical frequency (2554 Hz), changes in the vibration level becomes even 

smaller. The above observation suggests that the observed systematic reduction in the 

sound radiation cannot be totally attributed to the changes in the vibration level of the 

system. Instead, a possible change in the sound radiation properties of the structure due 

to the different coating layouts is expected. This is further confirmed by examining the 

corresponding changes in the sound radiation efficiency of the plate before and after 

optimization, as shown in Figure 6.5(c). It seems that, though not being directly used as 

the objective function, the sound radiation efficiency of the plate is almost 

systematically reduced by the optimization, more significantly at higher frequencies. 

This shows that the optimization impacts on the physical system in a way that its sound 

radiation properties are altered through a more reasonable design of the damping layer 

layout.   
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(a) 

 

 

(b) 
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(c) 

Figure 6.5 Comparison between initial case (square symbol) and the case of 

optimized sound power (circular symbol) at single frequencies: (a) Sound power; (b) 

Mean square velocity; (c) Radiation efficiency. DL denotes damping layer, and W the 

radiated sound power. 

 

Meanwhile, the reduction in the radiation efficiency indicates that the plate is less 

effective in radiating sound. To better show the underlying physical process, a 

wavenumber transform analysis [87] is performed on the vibration velocity field of the 

ABH plates at 3480 Hz , with the circular and the optimized damping layout, 

respectively. To this end, the vibration velocity is transformed from spatial domain to 

wavenumber domain as: 

 
( )

( , , ) ( , , ) x yj k x k y

x yk k f x y f e dxdy
− +

= V V   (6.12) 

where xk  and yk  are the wavenumbers in x and y directions, respectively, and 

( , , )x yk k fV  is the vibration velocity in wavenumber domain. Figure 6.6 shows a plot 
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of the two normalized wavenumber components xk  and yk  of ( , , )x yk k fV , i.e., xk  

and yk  are normalized with respect to 2 ak f c= , where ac  is the speed of sound. 

The circle on each figure denotes a unit radiation circle which demarcates the vibrational 

supersonic components of the plates (inside the circle) form the subsonic ones (outside 

the circle).   

 

Figure 6.6 Wavenumber spectra of ABH plates at 3480 Hz: (a) ABH plate with no 

damping layers; (b) ABH plate with damping layers coated inside a central circle; (c) 

ABH plate with optimized damping layers. The solid circle indicates the normalized 

radiation circle with radius of r=1. 

 

It can be seen from Figure 6.6 that for the bare plate (Figure 6.6(a)), energetic 

vibration components are mainly located inside the radiation circle. This is 

understandable since the frequency under investigation is above the critical frequency 

of the flat plate; therefore, supersonic components exist in the system. With circular 

damping coverage (Figure 6.6(b)), supersonic components inside the radiation circle is 

reduced. This trend is further accentuated with the optimal damping layout, as shown in 

Figure 6.6(c). Therefore, the wavenumber analysis further confirms the fact that the 

optimal layout of the damping layer changes the sound radiation properties of the plate 
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by reducing the supersonic components in the plate vibration, thus resulting in a 

minimized radiated sound power. 

 

6.2.3 Vibration minimization versus sound power minimization 

The previously established optimization methodology applies to the optimization 

of both sound radiation and structural vibration. Since the excessive use of the damping 

layer may affect both the wave reflection and sound radiation, probably in different 

ways, it is relevant to examine the issue to understand its impact on the final optimized 

system topology. To this end, the optimal damping layer layouts based on vibration 

minimization (using the mean square velocity, MSV, of the plate) and sound radiation 

minimization (using radiated sound power, radW ) are compared at three representative 

frequencies: 100 Hz (before the ABH cut-on), 1700 Hz (after cut-on) and 3150 Hz 

(above the critical frequency). Results are tabulated in Table 6.1 for comparisons. 

C=MSV and C=Wrad means that the objective functions are taken as the mean square 

velocity and radiated sound power, respectively.  

 

 It can be seen that, at the low-frequency of 100 Hz, which is below the cut-on 

frequency and around the first natural frequency (92 Hz) of the plate, both optimization 

problems lead to basically the same optimal damping layout with a central coverage. 

With the increase of frequency (above the ABH cut-on), differences between the two 

cases start to be noticeable. Specifically, compared with the structural vibration 

minimization, optimized coated area based on sound radiation tends to be further away 
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from the central portion of the ABH indentation. This is an indication that the adverse 

effect of the coating, which is presumably more significant at the ABH center, is more 

significant on sound radiation (e.g. increased sound radiation efficiency) than on 

structural vibration (increased wave reflections). To quantify this phenomenon and also 

to examine its applicability to other frequencies, a Coverage Ratio (CR) is used to 

quantify the fulfillment level of the central area of the ABH indentation. CR is defined 

as the ratio between the coated area inside the inner dash circle depicted in Table 6.1 

(corresponding to the periphery of the circular coverage) and the total area inside the 

circle.  

  

CR curves for both the MSV and radW  optimization within the entire frequency 

range of interest are compared in Figure 6.7. It shows that, with only a few exceptions, 

CR based on radW  optimization is smaller than its MSV-based counterpart at almost all 

frequencies, especially above the ABH cut-on frequency. This confirms the general 

character of the optimal damping layout observed before. 

 

As can be seen from Table 6.1, in contrast to the vibration optimization, damping 

layers tend to spread more towards the periphery region of the ABH indentation as a 

result of acoustic optimization. This is understandable since, as shown in Figure 6.5(c), 

damping layers coated at the central portion of the ABH indentation (with very thin 

thickness and therefore weak stiffness) would increase the radiation efficiency of the 

structure. This observation further confirms the fact that, among the dual adverse effect 
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of the damping in terms of the increased wave reflection and radiation efficiency, the 

latter seems to be more dominant. While the vibration optimization only needs to cope 

with the former, acoustic optimization has to deal with both. Therefore, through the 

optimized damping layout, the acoustic benefit is achieved as a result of balanced 

consideration of both aspects, predominantly through a reduced radiation efficiency.  

 

Table 6.1 Comparison of optimal layouts of damping layers under different objective 

functions. The outer dot circle represents the ABH peripheral circle, and the inner dash 

circle represents the circular coverage of damping layers. 

Optimal layout f =100 Hz f =1700 Hz f =3150 Hz 

Objective function, 

C= MSV. 

 

 

 

 

 

 

Objective function, 

C= Wrad. 

 

 

 

 

 

 

 

 

 



 

162 

 

 

Figure 6.7 Comparison of the coverage ratios radW : Sound power optimization 

(circular dot); MSV: mean square velocity optimization (star dot). 

 

6.2.4 Minimization of sound power within a frequency band 

Possible variations in the excitation frequencies can be dealt with by considering a 

frequency band instead of discrete frequencies. To investigate the issue, minimizations 

of the radiated sound power within a prescribed frequency band, mathematically defined 

in Equation (6.1), is investigated. To this end, an arbitrary frequency band of 50 Hz is 

chosen as an example. It should be noted that the proposed methodology and tools can 

be applied to any frequency range. The reason why we choose a 50Hz band is to 

accommodate a typical engineering scenario in which relatively stable excitation is 

exerted onto the structure, but with slight variations. Four representative frequency 

bands are selected for analyses: one below cut-on frequency (175-225 Hz), two between 

the cut-on frequency and the critical frequency (1675-1725 Hz and 2225-2275 Hz, 

respectively), and the third one above the critical frequency (3725-3775 Hz). For 
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comparison purposes, central circular coverage configuration is taken as reference to 

quantify the changes in various physical parameters: sound power variation as well as 

the overall reduction within the band, alongside the corresponding mean square velocity 

and the radiation efficiency of the plate. Results are shown in Table 6.2. The optimal 

coating layouts for each frequency bands are also presented.  

 

This comparison allows to revisit and confirm the general character of several 

observations that are previously made using particular discrete frequencies. Again, 

optimizations allow to determine the optimal layout towards the minimization of the 

structural sound radiation for any given frequency band. The reduction level resulting 

from the optimal layout, as compared to the central coverage case using the same 

amount of damping materials, varies depending on the frequency band of interest, trivial 

in the non-dynamic low frequency range, and more appreciable at higher frequencies 

after the ABH effect is cut-on. Effect of the optimization is quasi-unobservable on any 

physical parameters of the system at the low frequency, typically below the ABH cut-

on. When frequency increases, however, the reduction W   in the radiated sound 

power does not always go hand in hand with the variation in the vibration level of the 

plate. A typical example is the case corresponding to the B-column of Table 6.2, where 

vibration level of the plate increases while the radiated sound is reduced within a portion 

of the frequency band. Having said that, a remarkably consistent phenomenon is that, in 

all cases considered in Table 6.2, the sound radiation efficiency of the plate with optimal 

damping layout is systematically reduced above the ABH cut-on. This further 
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consolidates the conclusion that the reduced sound radiation of the optimized ABH plate 

roots in an improved sound radiation property of the structure as a result of the 

optimization. Meanwhile, the optimal damping coverage is not always concentrated on 

the central ABH indentation area, consistent with the previous observations made on 

single frequency cases. It is also relevant to compare the coated cases against a bare 

plate (with corresponding quantities shown by black dotted lines in Table 6.2). Below 

the cut-on frequency, the effect of ABH plate on sound power is not obvious as expected, 

compared with that of a uniform plate. Above the cut-on frequency, however, as can be 

seen in column B-2, C-2, and D-2, the reduction in the radiated sound power can be up 

to 8-10 dB. 

 

Table 6.2 Characteristics of sound radiation under different frequency bands. Solid line 

represents the reference circular case, the dot line the optimized case, and the dash line 

the uniform plate 

 

Frequency 

band 

 

cut onf f −   

 

cut on criticalf f f−     

 

criticalf f   

W  0W =  dB 2.31W =  dB 3.25W =  dB 3.60W =  dB 
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Layout 

 

A-1 

 

B-1 

 

C-1 

 

D-1 

Sound 

power  

 

A-2 

 

B-2 

 

C-2 

 

D-2 

Mean 

square 

velocity  
 

A-3 

 

B-3 

 

C-3 

 

D-3 

Radiation 

efficiency 

 

A-4 

 

B-4 

 

C-4 

 

D-4 

 

6.3 Summary 

A general topological optimization methodology is proposed in this Chapter to 

achieve a minimized vibration or sound radiation of an acoustic black hole (ABH) plate 

through optimizing the layout of the damping layers coated on its surface. The proposed 

tool encompasses a 2D semi-analytical Daubechies Wavelet (DW) model with an 

adaptive optimizer based on the Solid Isotropic Material with Penalty (SIMP) method 
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and the Optimality Criteria (OC) method. System optimization can be performed at 

either a given frequency or within a prescribed frequency band. The work aims at 

providing a solution to address the conflicting role that damping layers play in a typical 

ABH structure in terms of energy dissipation versus degraded structural properties. 

Based on numerical analyses, the main conclusions are summarized as follows. 

 

1) The developed DW model is shown to be flexible and versatile to deal with the 

topological evolutions incurred during the optimization process. Its energy-based, 

modular and additive properties in relation to the handling of damping layers make it 

conducive for topological optimizations.    

 

2) The optimization allows a reduction of the radiated sound power at either a 

given frequency or within a prescribed frequency band. For the configuration 

investigated in the paper, the reduction level can be up to 4 dB compared with its 

reference plate with standard damping coating at the ABH center using the same amount 

of materials. At low frequencies before the ABH cut-on, the reduction in the sound 

radiation is insignificant due to the absence of the ABH effect, while at high frequencies, 

the optimization warrants a systematic reduction in the sound radiation efficiency of the 

plate, which is the dominant factor leading to the reduced sound radiation. Along with 

this is an impaired energy level of the supersonic vibration components in the plate. 
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3) The optimal damping layout, irrespective of the minimization parameters 

(sound power or mean square velocity), is basically the same as the central coverage 

configuration below the cut-on frequency of the plate. Above the ABH cut-on, however, 

the two optimization problems end up with different optimal configurations, which 

shows that the best coating area may not necessarily be the center of the ABH 

indentation center. The optimized layout based on sound radiation optimization draws 

damping material further away from the central portion of the ABH indentation, as 

compared to the vibration-based optimization does. This shows that the adverse effect 

of the excessive use of the coating impacts more on the sound radiation than structural 

vibration. 

 

It is relevant to note that the optimization results reported obviously depend on 

numerous parameters of the system such as structural details, excitation as well as the 

frequencies of interest. The focus of the work is placed on 1) showing a general design 

methodology by providing the necessary tools and 2) revealing the underlying physical 

changes in the structural properties alongside the topological evolution of the damping 

treatment. In that sense, striving for the maximum performance was not the main 

objective of this work. Should this be the main objective, the proposed methodology 

could be extended to also consider other factors such as coating with non-uniform 

thickness or other non-perfect ABH profiles, for which the system is shown to be more 

sensitive to the deployment of the damping layers [26, 46]. 
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7 Chapter 7  

Optimization for alternative ABH profiles  

 

7.1 Introduction 

Apart from the reflection coefficient that described in Chapter 1, structural 

damping is another intrinsic indicator for evaluating the overall effects of an ABH 

structure. Analyses have demonstrated that ABH structures combined with damping 

materials entail significant damping enhancement, as compared with uniform ones with 

the same damping treatment [50]. Recently, most works on damping enhancement of 

ABH structures focus on the layout of the damping layer deployment. For example, 

using an Euler-Bernoulli beam, Tang et al.  [46] investigated the influences of the 

shape and the location of damping layers coated over the surface of an ABH taper on 

system loss factors. Feurtado and Conlon [43] investigated the effect of the damping 

layer thickness and that of the coverage on modal loss factors. Results show that coating 

over the central portion of an ABH indentation can largely increase the modal loss 

factors of the entire structure, and that an enlarged coverage of damping layer cannot 

necessarily result in an improvement of the system damping. It is relevant to recall that, 

as aforementioned, damping layer imposes the dual effects of increasing both energy 

dissipation and wave reflections, especially when the thickness becomes excessively 

large. 
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Different from the existing studies on damping layer for structural damping 

enhancement, in this chapter, we focus on seeking alternative ABH profiles to achieve 

enhanced system damping through optimizing the structural thickness. This would lead 

to an ABH thickness profile which is, in principle, different from the classical ABH 

profiles defined by the standard power-law relationship. For a standard ABH profile, the 

taper power index can be any integer larger than 2, but usually less than 4 to satisfy the 

smoothness conditions required [12, 102]. Therefore, in this chapter, we would seek an 

optimized new thickness profile, which takes the form of a combination of power-law 

profiles with different power indices. The optimization is achieved using a fast and 

elitist genetic algorithm: Nondominated Sorting Genetic Algorithm II (NSGA II). 

  

The rest of this chapter is organized as follows. In Section 7.2, the optimization 

problem is defined. The constraint-handling NSGA II adopted for the thickness profile 

optimization is briefly introduced, as well as the Lagrange interpolation polynomials. 

In Section 7.3 , the optimization is performed based on the previously established 2D 

semi-analytical wavelet model. Numerical analyses of a clamped plate embedded with 

an optimized ABH indentation are then conducted. Issues like system loss factors, their 

relationship with structural deformation depicted by mode shapes, energy distribution 

as well as the vibration and sound radiation properties are scrutinized. Meanwhile, 

vibration response is analyzed using a wave number transform analysis to explain the 

improved ABH effects resulting from the optimized ABH profile. Results are also 
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compared with those of a standard ABH plate (with a taper power index of 4). Finally, 

a summary is given in Section 7.4. 

 

7.2 Formulation and procedures of the optimization 

7.2.1 Objective function and constraints 

The structure under investigation is a rectangular plate embedded with a symmetric 

circular indentation. While the thickness profile of standard ABH indentations follows 

a power-law relationship, an alternative ABH thickness profile is attempted for 

improving the overall ABH effect of the plate. To define the searching scope, the 

diameter (2RABH) of the indentation, the minimum thickness h0 and the maximum 

thickness h of the thickness profiles are kept constant, as shown in Figure 7.1.  

 

Structural damping is a direct and intrinsic descriptor of the ABH effect, which is 

independent of external excitations. As a quantitative measure, structural damping is 

used to construct the objective function for the optimization. More specifically, the sum 

of the first 100 modal loss factors in the plate is maximized. The fitness function in the 

optimization problem is the reciprocal of the objective function, which will be 

minimized. Thickness profiles of individuals in the initial population are represented by 

polynomials, up to a given order, which are determined by several distinct points (shown 

in Figure 7.1) using the polynomial interpolation functions that will be introduced in 

Section 7.2.3. 
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The optimization problem can be mathematically defined as  
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


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  (7.1) 

in which i  stands for the modal loss factor of the ith mode and xmin the position of the 

minimum thickness; optk  and stdk  are the wavenumbers of the propagating waves 

inside the optimized profile and the standard profile, respectively. The first constraint 

0 ( )  h h x h    defines the variation range of the thickness. The second constraint 

min0 ABHx R    stipulates that the position of the minimum thickness can be at any 

location within the indentation, rather than at the indentation center like the case of a 

standard ABH profile. The last constraint ( ) ( )
0 0

 
ABH ABHR R

opt stdk x dx k x dx   ensures that 

the accumulated phase of the bending waves inside the optimized ABH indentation is 

larger than that of the standard indentation, which imposes that the propagating waves 

would take more time to travel inside the indentation, thus resulting in a better ABH 

effect. 

 

 Rotating the 1D profile ( )h x  around z axis, as shown in Figure 7.1, yields a 2D 

circular indentation expressed as 
2 3 4

0 1 2 3 4( )h r a a r a r a r a r= + + + +  . The thickness 

profile of the ABH indentation will be optimized to achieve the maximum structural 

damping of the plate using the NSGA II that will be described in Section 7.2.2.  
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Figure 7.1 The design variables (shown in pink color) that determine the ABH 

profile. 

 

7.2.2 Constraint-handling NSGA II 

Nondominated sorting genetic algorithm II (NSGA-II) is a fast and elitist genetic 

algorithm developed by Deb [145]. Herein a brief description of the procedure for 

selecting the best solution is presented. Initially, a population tP  of size Np is randomly 

generated, with each individual being assigned a fitness value that is equal to its 

nondominant level (in a decreasing order from level 1 being the best, level 2 being the 

next-best and so on). Then the following procedures are performed to minimize the 

fitness. 

 

1) An offspring tQ   of size Np is created through binary tournament selection, 

recombination and mutation operators.  

2) Combining the parent population and the offspring leads to a combined 

population tR  of size 2Np; this combination guarantees the elitism of the population.  
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3) Sorting the combined population tR  using nondomination (more details can 

be found in Ref. [145]). 

4) Assembling a new population 1tP+  of size Np. Individuals belonging to the first 

dominated set 1  are the best solutions which should be emphasized more than other 

individuals. If the number of individuals in 1  is smaller than Np, all individuals in 

1  will be selected as the new population 1tP+ . The remaining individuals in 1tP+  

will be chosen from 2 , and so on. To exactly choose a population of size Np, the best 

individuals in the last dominated front l   will be chosen using the crowded-

comparison operator n  [145] to fill the population 1tP+ . 

5) Finally, the new population 1tP+  will be used to create next generation, and the 

above steps will be repeated till the convergence of the fitness function.  

 

The flow chart of getting the converged solutions is shown in Figure 7.2. 
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Figure 7.2 The flow chart of NSGA-II.  

A simple strategy for handling constraints [145] is necessary for implementations. 

The constraint-handling approach uses the tournament selection, i.e., two individuals 

are picked from the population and the better one is selected. Each individual can be 

feasible or infeasible in the presence of constraints. Considering the single objective 

optimization nature of the current problem, the following simple rule is used for the 

tournament selection: 

 

1) If both individuals are feasible, the one with a better objective function will be 

chosen; 

2) If one individual is feasible and the other one is not, choose the feasible one; 

3) If none of the individuals is feasible, choose the one with smaller overall 

constraint violation. 
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7.2.3 Lagrange interpolation polynomials for profile generation 

We first discuss the description of the thickness profile. Lagrange interpolation 

polynomials are very useful and important in numerical analyses, because they can 

uniformly approximate any defined and continuous functions within a bound. If there 

are n  11 distinct data points, x0, x1,…, nx  , and f   is a function whose values are 

given at these points, there is a unique polynomial P(x) of degree at most n  with 

 ( ) ( )k kf x P x=   (7.2) 

in which k=0, 1, 2, …, n . The polynomial is given by 

 ( ) ( )
0

n

k k

k

P x f x l
=

=  (7.3) 

where kl  is the Lagrange interpolation operator which is written as 
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 (7.4) 

     

Based on the above, the Lagrange interpolation polynomials are used to create the 

thickness profiles in the population for the optimization. To satisfy the smoothness 

condition required by realization of ABH effect, the taper power of the ABH profiles 

should be equal to or less than 4. Therefore, five distinct points are used to create the 

polynomials for thickness profiles.  

 

In the example to be discussed hereafter, the diameter and the minimum thickness 

of the ABH indentation remain the same as the values used in the experiment tests in 
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Chapter 3, with parameters tabulated in Table 3.1. Five points, (0, y1), (xmin, h0), (x2, y2), 

(x3, y3) and (RABH, h) as shown in Figure 7.1, are taken as variables to depict the ABH 

thickness profile. The x-coordinates of the points for creating the polynomials in 

Equation (7.3) can be nonuniformly distributed. In the current case, x2=1/3RABH and 

x3=2/3RABH, and the corresponding thickness y2, y3, and y1 at the indentation center are 

undetermined. The minimum thickness of the indentation is set to be h0=0.6 mm. This 

value is chosen in consideration of the manufacturing capability that is readily 

achievable by traditional manufacturing methods such as CNC milling. Meanwhile, this 

might also be the minimum thickness that can be acceptable for practical applications. 

However, the position of the minimum thickness, xmin, is not fixed a priori. The 

thickness at the junction between the uniform portion and the ABH portion of the plate 

should be continuous, i.e., the point (RABH, h) is given a priori. As a result, there are 4 

design variables: the thickness y1 at the indentation center, the thicknesses y2 and y3 at 

two fix positions and the position of the minimum thickness, xmin. The variable bounds 

for y1, y2, y3 and xmin are [h0, h] and [0, RABH), respectively.  

 

An initial population containing 96 individuals are randomly generated in 

compliance with Equation (7.3) to start the optimization process. As an example, the 

first 8 individuals are shown in Figure 7.3. 
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Figure 7.3 The first 8 individuals in the randomly generated initial population. 

 

7.3 Numerical analyses and discussions 

7.3.1 Damping performance  

Exploiting the NSGA-II described in Section 7.2.2, the minimization problem 

defined in Equation (7.1) is investigated using the previously 2D semi-analytical 

wavelet model. In the present case, the geometrical and material parameters of the plate 

and those of the add-on damping layer remain the same as those used in the experiment 

tests, as listed in Table 3.1 and Table 3.2, respectively. Note that the entire ABH 

indentation, rather than the central ABH portion, is covered with soft damping layers. 

The supported length L and resolution m used in the wavelet series are selected to be 12 

and 5, respectively. Distribution indices [146] are used for crossover and mutation 

operators as c  =20 and m  =20, respectively. After 153 generations, the fitness 

function converges. For comparisons, the values of the objective function for the initial 



 

178 

 

population before optimization are presented in Figure 7.4. Best values of the initial 

population in each generation are shown in Figure 7.5(a).  

 

 

Figure 7.4 Objective values for the initial population. 

 

 

(a) 
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(b) 

Figure 7.5 Steps of optimization process: (a) objective values of the best 

individual in each step; (b) optimal profile in each step. 

 

Figure 7.5(a) shows that the objective value of the best individual in each 

generation experiences a rising trend with the number of the generation. Though most 

of the objective values for the initial population are relatively low (shown in Figure 7.4), 

the one with the largest value is actually very close to the final optimal one. To illustrate 

the evolution process, the profiles of the best individuals at a few generation steps (1st, 

32nd, 63rd, 72nd, 91st, 153rd) are illustrated in Figure 7.5(b). It can be seen that the 

thickness of the portion of the thickness profile close to the outer junction with the 

uniform part of the plate gradually reduces (from 1st to 32nd generation) and then 

becomes thicker (from 32nd to 153rd generation), while the thickness of the other parts 

of the thickness profile show a decreasing trend with the number of generation. Finally, 
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the optimization result converges to the best individual without noticeable further 

changes. 

 

The finally achieved ABH thickness profile, described in a polar coordinate system 

writes: ( ) ( ) ( ) ( )2 3 4= 0.0021 0.12 3.3243 36.85 141.23opth r r r r+ − + + − +  . For 

comparison, a standard thickness profile expressed as ( ) 40.6 3 10.67stdh e r= − +   is 

presented and compared with the optimized profile in Figure 7.6. Figure 7.6(a) shows 

both profiles in 1D view along the radial direction of the indentation. Different from the 

standard profile, the optimized one undergoes a sharp decrease in thickness when 

entering the ABH indentation from the outer junction with the uniform part of the plate, 

dwells into a thin plateau and then undergoes a raise-up at the indentation center. The 

position of the minimum thickness is 0.0336 m away from the indentation center instead 

of at the indentation center. The thickness at the indentation center of the optimized 

profile is around 2.1 mm. Three-dimensional schematic views of both the standard and 

optimized indentations are shown in Figure 7.6(b) and Figure 7.6(c), respectively. 
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(a) 

       

    (b)                                    (c) 

Figure 7.6 Plates with different ABH profiles: (a) the standard profile and 

optimized profile in 1D view; (b) a plate with an indentation of standard ABH profile; 

(c) a plate with an indentation of optimized profile. 

 

Numerical analyses of both plates are conducted with resolution m=7 to ensure a 

better accuracy up to a high frequency range. Firstly, mode shapes of a clamped plate 

embedded with the optimized indentation are investigated. Several typical mode shapes 

(i.e., 4th, 9th, 52nd, 67th, 148th) from low to high orders are presented in Figure 7.7. It can 

be observed that, ABH local modes occur at relatively low orders such as 9th mode. 
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Similar phenomena can also be observed for the standard ABH plate. However, different 

from the standard ABH plate, local ABH (n, 1) and (n, 2) modes inside ABH indentation 

are clearly observed. The (n, 1) and (n, 2) modes here represent mode shapes that exhibit 

n half waves in the circumferential direction and one or two half waves in the radial 

direction of the indentation, e.g., 67th and 148th mode shapes depicted in Figure 7.7(d)-

(e).  

 

      

(a) 4th mode 

      

(b) 9th mode 

       

(c) 52nd mode 
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(d) 67th mode 

      

(e) 148th mode 

Figure 7.7 Mode shapes of a plate embedded with an indentation of optimized 

profile. 

 

An examination on the modal loss factors shows that, the optimized profile leads 

to a significantly increased structural damping compared with the standard ABH one. 

More specifically, the overall damping enhancement for the first 100 modes amounts to 

around 39.5%. 

 

To gain insights into the underlying phenomena induced by the optimized profile, 

the first 150 modal loss factors are shown in Figure 7.8. It can be seen that, for the 

standard ABH case, the loss factors dwell in the interval (0.004, 0.01). For the optimized 



 

184 

 

ABH case, the loss factors are primarily scattered from 0.004 to 0.016, with their 

averaged value increasing by 43.7%, compared with that of the standard ABH case. 

Typical mode shapes corresponding to the loss factors of low, medium and high levels 

are also presented. It seems that, the low-value loss factors mostly correspond to global 

modes, e.g., 52nd mode; in agreement with the analyses of the modal loss factors 

reported in Section 4.2.2. Also, two representative modes (18th and 113th) for the 

standard ABH case with high and low loss factors are presented. Relationships between 

the loss factors and the mode shapes are very similar to those observed for a standard 

ABH plate in Section 4.2.3, which will not be repeated here. It can be seen from Figure 

7.8 that, the loss factors of most modes of the optimized ABH case are larger than those 

of the standard ABH case. Further explorations into modes with high loss factors, i.e., 

above the level of 0.012, shows that, these modes are primarily local ABH (𝑛, 1) and (n, 

2) modes such as the 67th mode and the 148th mode depicted in Figure 7.7(d)-(e). 

 

The occurrence of the local ABH (𝑛, 1) and (n, 2) modes which give high loss 

factors in the optimized ABH case is attributed to the unique feature of the optimized 

thickness profile. In fact, because the minimum thickness is away from the indentation 

center in the optimized ABH profile, a ring-shaped area (from radius 0.0336 m to 0.0972 

m) is formed inside the indentation, which is conducive to further reducing the structural 

stiffness along the circumferential direction and promoting energy focalization. For the 

standard ABH plate, however, only the central area of the indentation is effective in 

energy focalization. From wave propagation perspective, it can be surmised that the 



 

185 

 

extended thin thickness plateau between the center and the outer boundary of the 

optimized ABH indentation (or the valley area of the ring) would probably create a bi-

directional ABH effect so that wave energy is trapped from both sides (incoming waves 

or the residual waves reflected by the indentation center). 

 

 

Figure 7.8 Comparison of modal loss factors: (a) standard profile (square dot); (b) 

optimized profile (circular dot). 
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An energy density ratio between the ABH portion and the uniform portion of the 

plate, defined as 
* *

V V

1 1
10lg

ABH uni
ABH uni

dV dV
V V

   
   
    

 VV VV , is utilized to further 

assess the energy focalization ability of the optimized indentation. A harmonic point 

excitation force is applied at (0.518, 0.165) m over the uniform portion of the plate. 

Comparisons between the standard ABH plate and the optimized ABH plate are 

illustrated in Figure 7.9. It can be observed that, above the critical frequency of 1995 

Hz (calculated using parameters of the uniform portion of the plate), the optimized ABH 

plate exhibits a significantly larger energy density ratio than the standard ABH plate. 

This indicates that the optimized profile indeed exhibits enhanced energy focalization. 

 

 

Figure 7.9 Ratio of energy density between the ABH portion and the uniform 

portion: (a) standard profile (solid line); (b) optimized profile (dot line). 

 

7.3.2 Vibration response and sound radiation characterizations  
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The vibration response and sound radiation characteristics of the optimized ABH 

plate are investigated. Comparisons with their counterparts of the standard ABH plate 

are shown in Figure 7.10(a)-(c), in terms of the mean square velocity, radiated sound 

power and radiation efficiency. To facilitate the comparison, a uniform plate of the same 

dimension is also included as reference. 

 

 

(a) 

 

(b) 
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(c) 

Figure 7.10 Comparisons between a plate of uniform thickness (dash line) and 

plates embedded with an indentation of standard ABH profile (solid line) and 

optimized profile (dot line): (a) space-averaged mean square velocity; (b) radiated 

sound power; (c) sound radiation efficiency. 

 

Compared with the uniform plate, it is not surprising that both the standard ABH 

and the optimized ABH plates show drastic reductions in the mean square velocity, 

radiated sound power and radiation efficiency, especially above the cut-on frequency of 

644 Hz, as expected. Meanwhile, a noticeable reduction in the peak levels of the mean 

square velocity (roughly 1.7dB), radiated sound power (2.5dB) and the radiation 

efficiency of the optimized ABH plate is also observed above the critical frequency of 

1995 Hz, in comparison with the standard ABH plate.  
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To better evaluate the global improvement of the optimized ABH plate over the 

standard ABH plate, results above the critical frequency are averaged into one-third 

octave bands and shown in Figure 7.11. It can be seen that, the averaged mean square 

velocity of the optimized ABH plate experiences a downward trend, in contrast to that 

of the standard ABH plate, with reductions around 1 dB at frequency bands centered at 

2000, 2500 and 4000 Hz. Meanwhile, the averaged sound power is reduced by 1.5~2 

dB in the frequency bands centered at 2500, 3150, 4000 and 5000 Hz. The reduction of 

the sound power observed in Figure 7.11(b) is attributed to the reduction in the vibration 

response and the radiation efficiency shown in Figure 7.11(c). Additionally, the 

calculated radiation efficiencies in the last four frequency bands are evidently reduced, 

which is justifiable considering the constraint in Equation (7.1). Another explanation of 

the reduced radiation efficiency is due to the weakened stiffness of the plate; which can 

be seen from the reduced eigen-frequencies (not shown here).  

 

 

(a) 
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(b) 

 

(c) 

Figure 7.11 Comparisons between the standard ABH plate and the optimized 

ABH plate in one third octave band: (a) space-averaged mean square velocity; (b) 

radiated sound power; (c) sound radiation efficiency. 

 

Wavenumber transform analyses are carried out for the illustration of the improved 

ABH effect of the optimized ABH plate. Again, the uniform plate is used as reference. 

Employing Equation (6.12), the spatial variations of the vibration velocity are 



 

191 

 

transformed into wavenumber domain. Comparisons between the uniform plate, plates 

with the standard ABH profile and the optimized one are conducted at representative 

frequencies (2250 Hz around the critical frequency and 3390 Hz above the critical 

frequency) with results shown in Figure 7.12.     

 

 

(a) 

 

(b) 

Figure 7.12 Wavenumber spectra of uniform plate (left), ABH plates embedded 

with an indentation of standard profile (middle) and optimized profile (right) at 

different frequencies: (a) 2250 Hz; (b) 3390 Hz. The dash circle indicates the 

normalized radiation circle with radius r=1. 
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Figure 7.12(a) shows the vibration velocity at 2250 Hz in the wavenumber 

domain. It seems that for the uniform plate (left column), the high-amplitude vibration 

velocity mainly locates at the periphery of the normalized radiation circle. As to the 

standard ABH plate (middle column), the vibration velocity inside the normalized 

radiation circle is significantly reduced, as expected. A further reduction in the vibration 

velocity with supersonic components is observed for the optimized ABH plate (right 

column). Similarly, Figure 7.12(b) compares the vibration velocity at 3390 Hz, which 

is above the critical frequency of 1995 Hz. For the uniform plate, the high-amplitude 

vibration velocity resides inside the normalized radiation circle, as expected. However, 

for the standard ABH plate and the optimized ABH plate, the vibration velocity with 

supersonic components is reduced, and the high-amplitude vibration velocity also 

spreads outside the normalized radiation circle. Compared with the standard ABH plate, 

the optimized one shows a significant reduction in the vibration velocity with supersonic 

components. These analyses confirm the improved ABH effect of the optimized ABH 

plate in terms of sound radiation. 

 

7.4 Summary 

In this chapter, based on the previously established 2D semi-analytical wavelet 

model, an optimal ABH profile is proposed through a systematic optimization procedure 

using NSGA II. Maximization of the structural damping is taken as the objective 

function. Performance comparisons between the standard and the optimized ABH plates 
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are conducted to show the superiority of the latter in terms of the ABH effects, as 

reflected by the overall enhancement of the structural damping, and a general reduction 

of major vibration and sound radiation metrics. Main conclusions are summarized as 

follows: 

 

1) Employing the NSGA II, an optimized thickness ABH profile which is different 

from the standard ABH profile is proposed. The optimized ABH thickness profile entails 

improved ABH effects. More specifically, the sum of the first 100 modal loss factors 

(taken as the objective function) is increased by 39.5% in the optimized configuration, 

as compared with the standard one.  

 

2) Mode shape analyses of the optimized ABH plate show that local ABH (n, 1) 

and (n, 2) modes feature relatively high loss factors. The occurrence of these modes is 

attributed to the unique feature of the optimized ABH profile for which the minimum 

thickness is away from the center of the indentation, thus forming a flexible ring which 

is beneficial to energy focalization. This is further confirmed by the energy density ratio 

between the ABH portion and the uniform portion of the optimized plate, which allows 

increased structural damping with the use of the same amount of damping materials. 

 

3) Compared with the standard ABH plate, vibration response and sound radiation 

analyses on the optimized ABH plate also show a reduction in the mean square velocity, 

sound power and sound radiation efficiency above the critical frequency of 1995 Hz. 
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For the investigated case, the averaged reductions in the peak values of the mean square 

velocity and sound power above the critical frequency is about 1.7 dB and 2.5 dB, 

respectively, or 1 dB and 1.5~2 dB in the one-third Octave bands. Wavenumber 

transform analyses confirm the reduced vibration velocity with the supersonic 

components, which is mainly responsible for the far-field sound radiation. 
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8 Chapter 8  

Conclusions and future research 

 

8.1 Conclusions 

This thesis establishes an efficient, flexible and versatile semi-analytical model for 

the simulation of vibration and sound radiation of a 2D Acoustic Black Hole (ABH) 

structure of finite size. The model is based on the Love-Kirchhoff thin plate theory under 

the framework of Rayleigh-Ritz method. Daubechies wavelet scaling functions are used 

as the admissible functions to approximate the transverse displacement of the plate. The 

proposed model allows for the accommodation of add-on damping layers in a fully 

coupled manner. As an alternative to the conventional FEM, the proposed 2D 

Daubechies wavelet (DW) model is utilized to explore the vibration and sound radiation 

mechanisms of a plate embedded with an ABH indentation shows its efficacy for 

structural analysis and optimization. In addition, the energy-based, modular and additive 

properties of the proposed model allow the inclusion of other add-on components that 

may be required by particular applications, and in particular entail topological 

optimization of damping layouts and the searching of alternative ABH thickness profiles.  

 

Major conclusions out of this work are summarized as follows: 
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1) The DW model is shown to provide remarkable accuracy in characterizing the 

vibration response and sound radiation of the ABH plate which exhibits rich dynamics 

and complex dynamic behaviors. More specifically, most of the relative errors on the 

eigen-frequencies of the first 120 modes of the investigated plate are below 2% 

(compared with experimental results), alongside a good match in the corresponding 

mode shapes. The cross-point mobility and the radiated sound power predicted by the 

DW model also show a good agreement with experimental measurement up to a high 

frequency range, both with and without deposition of damping materials. Meanwhile, 

considering the lack of experimental data in the literature, the reported experimental 

results would serve as an invaluable data source for future ABH studies.  

 

2) The proposed model, as well as the associated wavelet-based solution 

procedure, is shown to be able to overcome major technical difficulties which are 

specific to ABH structures: non-uniform wavelength distribution and ABH-induced 

wave compressions in the high frequency range in a realistic structure of finite size. The 

accuracy, as well as the frequency outreach well exceeds similar work reported in the 

literature. In that sense, this work offers a unique and useful model which is conducive 

to the study of ABH phenomena. 

 

3) Studies on different damping configurations over the surface of a strip/circular 

ABH indentation shows that, the same amount of damping materials coated at the 

central portion of standard ABH indentation can significantly increase the modal loss 
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factors, compared with a uniform plate of the same thickness and dimension. 

Subsequently, a significant reduction in the vibration response is achieved. 

Investigations into the modal loss factors show that, above the cut-on frequency of the 

panel, the ABH-induced damping enhancement phenomenon is mainly attributed to the 

local structural modes within the ABH indentation. These modes exhibit lower-order 

deformations (typically half and one wave along the thickness tailoring direction). 

Contributions to the damping increase by the higher-order local modes along the 

thickness tailoring direction and global modes are trivial and negligible.  

 

4) ABH plates exhibit significantly reduced sound power and sound radiation 

efficiency in a broad dynamic frequency range as compared to its uniform counterpart. 

The reduction in the radiated sound power is attributed to a reduction in both the 

vibration response of the plate and its sound radiation efficiency. Physical mechanisms 

for the reduced radiation efficiency in different frequency ranges are revealed. Before 

the cut-on of the ABH effect, this is mainly due to the weakening of the overall structural 

stiffness, which persists until the critical frequency. Above the critical frequency, the 

subsonic region within the transonic boundary results in an impaired sound radiation 

efficiency of the plate due to the subsonic structural waves. Supersonic acoustic 

intensity maps show that the regularly distributed supersonic waves over the flat plate 

are altered by the presence of the ABH indentation. As a result, the far field acoustic 

energy is mainly generated by the ring area between the ABH periphery and the 

corresponding transonic boundary. 
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5) The topological optimization of the damping layout over the surface of 

standard ABH indentations allows a reduction of the radiated sound power either at a 

given frequency or within a prescribed frequency band. For the configuration 

investigated in this thesis, the reduction level can be up to 4 dB compared with its 

reference plate with standard damping coating at the ABH center using the same amount 

of materials. At low frequencies before the ABH cut-on, the reduction in the sound 

radiation is insignificant due to the absence of the ABH effect, while at high frequencies, 

the optimization warrants a systematic reduction in the sound radiation efficiency of the 

plate, which is the dominant factor leading to the reduced sound radiation. 

 

6) Damping layer coated over the standard ABH indentation creates dual effects. 

On one hand, they are conducive to energy focalization and dissipation; on the other 

hand, they would increase the sound radiation efficiency due to their additional stiffness. 

Topological optimization of damping layout shows that, irrespective of the 

minimization parameters (sound power or mean square velocity), optimization is 

meaningless below the cut-on frequency of the plate. Above the ABH cut-on, however, 

the two optimization problems (vibration reduction or sound radiation reduction) end 

up with different optimal configurations, while all pointing at a common conclusion that 

the best coating area may not necessarily be the center of the ABH indentation center. 

The optimized layout based on sound radiation optimization tends to draw damping 

material further away from the central portion of the ABH indentation, as compared to 
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the vibration-based optimization does. This testifies that the adverse effect of the 

excessive use of the coating impacts more on the sound radiation than the structural 

vibration. 

 

7) An alternative ABH thickness profile that is different from the standard ABH 

profiles is proposed through system optimization. The optimized ABH thickness profile 

entails improved ABH effects. More specifically, the sum of the modal loss factors of 

the first 100 modes (taken as the objective function) is increased by 39.5% in the 

configuration studied in this thesis, as compared with the standard case. Mode shape 

analyses of the optimized ABH show the dominance of local ABH (n, 1) and (n, 2) 

modes with relatively high loss factors. The occurrence of these modes is attributed to 

the unique feature of the optimized profile, namely the area with the minimum thickness 

is away from the center of the indentation, thus forming a flexible ring which is 

beneficial to energy focalization. This is further confirmed by the energy density ratio 

between the ABH portion and the uniform portion of the optimized plate, which allows 

increased structural damping with the use of the same amount of damping materials. 

 

8.2 Suggestions for future research 

This thesis mainly focuses on vibration and sound radiation mitigation of ABH 

plates. Numerical analyses are conducted using the proposed 2D semi-analytical 

wavelet model. The research findings provide inspirations for further exploration in 

future research: 
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1) The proposed semi-analytical wavelet model is based on the Love-Kirchhoff 

thin plate theory which requires that the investigated plate should be symmetric with 

respect to its midplane. In this regard, the ABH indentation should also be asymmetric 

on both sides of the plate. This brings a great challenge for the manufacturing of ABH 

indentations in thin-walled structures. Efficient manufacturing methods of ABH 

structures and their real-world applications constitute a significant and important 

research direction. Meanwhile, possible nonlinear effects due to the large amplitude 

vibration of the ABH indentation, as well as its impact on the expected ABH effects 

should be further evaluated. 

 

2) The realization of ABH effect requires that the local thickness is tailored 

according to a power-law relationship. Up to now, most of the work about ABH is 

conducted on relatively thick beams and plates. However, in many branches of 

industries such as household appliances, the commonly used panels are as thin as 1-2 

mm. The realization of the ABH effect in such thin panels is a real issue which has not 

been investigated in the literature. Undoubtedly, this issue is of practical significance 

for the implementations of ABH structures for real-world applications. 

 

3) In terms of structural strength, plates embedded with ABH indentations on one 

side or with double-layer ABH indentations are superior to those embedded with 

symmetric ABH indentations investigated in this thesis. In this regard, modelling and 
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investigations of these kind of ABH structures of relatively high strength is of practical 

significance. 

 

4) Apart from the simple ABH indentations investigated in this thesis, ABH plates 

embedded with indentations on one side and with doubled-layer indentations are also  

 

5) ABH structures feature locally tailored thickness profile that warrants the 

slowing-down of the propagating bending waves. By the same token, the reduced 

thickness would weaken the stiffness and integrity of the structures, making them 

vulnerable and easy to be damaged. More innovative design of new types of ABH 

structures is highly desirable. 
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Appendix A 

 Formulas for M, K, and F for a plate embedded with 

a strip ABH indentation 

 

The plate structure is divided into five parts: uniform parts from 1 to 4 and an ABH 

part 5. 

 

Figure A.1 Division of a strip ABH plate. 
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       (0) (0)r i  − =  

       (1) (1)r i  + =  

       (0) (0)r i  −
  =  

       (1) (1)r i  +
  =  

i te =f(t) F   

, ( ) ( )r s r sx y =F F   

where 

 2, 1 ,2 2,2 1m mr L L= − + − + − −   

2, 1 ,2 2,2 1m mi L L= − + − + − −   

2, 1 ,2 2,2 1m ms L L= − + − + − −   

2, 1 ,2 2,2 1m mj L L= − + − + − −   

3

0

2

012(1 )

E h
D


=

−
 is the bending rigidity of uniform portion of the plate. 
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Appendix B 

 Formulas for M and K for a plate embedded with a 

circular ABH indentation 

 

The plate structure is divided into five parts: uniform parts from 1 to 4 and an ABH 

part 5. The part coated with damping layers is number 6. 

 

Figure B.1 Division of a circular ABH plate. 

 

Uniform ABH Damping= + +M M M M  

Uniform ABH Spring= + +K K K K  
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Calculations of the stiffness of artificial springs and force remain the same as in 

Appendix A.  
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