

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

ADDRESSING NEW
CHALLENGES IN PUBLIC-KEY

CRYPTOGRAPHY

ZUOXIA YU

PhD

The Hong Kong Polytechnic University

2020

The Hong Kong Polytechnic University

Department of Computing

Addressing New Challenges in
Public-Key Cryptography

Zuoxia Yu

A thesis submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

September 2019

ii

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that,

to the best of my knowledge and belief, it reproduces no mate-

rial previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except

where due acknowledgement has been made in the text.

Signed:

Name: Zuoxia Yu

iii

Abstract
Public-key cryptography, introduced by Diffie and Hellman in 1976, has
found numerous applications in reality. After years of development, public-
key cryptography has been well-studied and is gradually becoming mature.
However, the emerging of several exciting technologies in computer sci-
ence, while bringing convenience to our daily life, also imposes new chal-
lenges to current public-key cryptographic systems deployed in practical
applications. In this thesis, we focus on addressing some new challenges in
two well-known representatives of public-key cryptography, namely, public-
key encryption and digital signature. In particular, we aim at designing
an encryption scheme suitable for flexible and efficient data-sharing in the
cloud as well as enhancing its resilience against side-channel attacks. In
addition, we investigate the real-world applicability of signature scheme
in blockchain-based cryptocurrencies and explore how to strengthen the
signature component of blockchain-based cryptocurrencies to be quantum
safe.

More precisely, we present the following results:

• We present a new variant of public-key encryption named as cross-
system proxy re-encryption, which could make data-sharing in the
cloud flexible and efficient. It allows one to transform ciphertext of a
large class of attribute-based encryption schemes (a variant of public-
key encryption that supports fine-grained control over the decryption
ability) into ciphertext of any public-key encryption scheme.

• We present a general framework for constructing attribute-based en-
cryption schemes secure against side-channel attacks.

• We present the best possible statistical attack for tracing payers’ iden-
tity in transactions of privacy-preserving blockchain-based cryptocur-
rencies based on ring signature. We also find that if some natural con-
ditions are satisfied, our attack will not compromise security of the
cryptocurrency. In this way, we identify a safe mode to use public-key
cryptographic schemes in a blockchain-based cryptocurrency.

• We present the first lattice-based universal accumulator secure against
quantum attacks. This primitive can be used to construct quantum
safe dynamic group signature, a widely-used variant of digital signa-
ture that can be used to protect signers’ identity.

v

Publications
Conference Paper

1. Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. Col-
lusion Resistant Watermarking Schemes for Cryptographic Functionali-
ties. In Proceedings of the 25th Annual International Conference on the
Theory and Application of Cryptology and Information Security (Asi-
acrypt 2019), pages 371–398. Springer (2019).

2. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu,
William Whyte: Efficient Lattice-Based Zero-Knowledge Arguments with
Standard Soundness: Construction and Applications. In Proceedings of
the 39th Annual International Cryptology Conference (CRYPTO 2019),
pages147-175. Springer (2019).

3. Zuoxia Yu, Man Ho Au, Jiangshan Yu, Rupeng Yang, Qiuliang Xu, and
Wang Fat Lau. New Empirical Traceability Analysis of Cryptonote-style
Blockchains. In Proceedings of the Financial Cryptography and Data Se-
curity 2019 (FC 2019), pages 133–149. Springer (2019).

4. Zuoxia Yu, Man Ho Au, Rupeng Yang, Junzuo Lai, Qiuliang Xu: Lattice-
Based Universal Accumulator with Nonmembership Arguments. In Pro-
ceedings of the 23rd Australasian Conference on Information Security
and Privacy (ACISP 2018), pages 502–519. Springer (2018).

5. Rupeng Yang, Man Ho Au, Qiuliang Xu, Zuoxia Yu: Decentralized Black-
listable Anonymous Credentials with Reputation. In Proceedings of the
23rd Australasian Conference on Information Security and Privacy (ACISP
2018), pages 720–738. Springer (2018).

6. Zuoxia Yu, Man Ho Au, Rupeng Yang, Junzuo Lai, Qiuliang Xu: Achiev-
ing Flexibility for ABE with Outsourcing via Proxy Re-Encryption. In
Proceedings of the 2018 on Asia Conference on Computer and Commu-
nications Security (ASIACCS 2018), pages 659–672. ACM (2018).

7. Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, Zuoxia Yu: Un-
forgeable Watermarking Schemes with Public Extraction. In Proceedings
of the 11th International Conference on Security and Cryptography for
Networks (SCN 2018), pages 63–80. Springer (2018).

vi

8. Zuoxia Yu, Man Ho Au, Qiuliang Xu, Rupeng Yang, Jinguang Han: Leakage-
Resilient Functional Encryption via Pair Encodings. In Proceedings of
the 21st Australasian Conference on Information Security and Privacy
(ACISP 2016), pages 443–460. Springer (2016).

Journal Paper

1. Rupeng Yang, Man Ho Au, Qiuliang Xu, Zuoxia Yu: Decentralized Black-
listable Anonymous Credentials with Reputation. Computers & Security
85: 353-371. Elsevier (2019).

2. Zuoxia Yu, Man Ho Au, Qiuliang Xu, Rupeng Yang, Jinguang Han: To-
wards Leakage-Resilient Fine-Grained Access Control in Fog Comput-
ing. Future Generation Computer Systems, 78:763–777. Elsevier (2018).

3. Rupeng Yang, Qiuliang Xu, Man Ho Au, Zuoxia Yu, Hao Wang, Lu
Zhou: Position Based Cryptography with Location Privacy: A Step for
Fog Computing. Future Generation Computer Systems, 78:799–806. El-
sevier (2018).

Book Chapter

1. Zuoxia Yu, Man Ho Au, Rupeng Yang: Accountable Anonymous Cre-
dentials. Advances in Cyber Security: Principles, Techniques, and Appli-
cations, pages 49-68. Springer (2019).

vii

Acknowledgements
Studying at the Hong Kong Polytechnic University is such a valuable and
unforgettable experience.

First and foremost, I would like to thank my supervisor, Prof. Man Ho Au,
for teaching me how to do research. I appreciate the countless discussions,
helpful instructions as well as priceless suggestions, which help me on the
right track of research. I have always admired his attitude and determina-
tion in discovering and solving problems, and have always tried to learnt
from his ability of accurately abstracting the way of understanding the re-
sults. I am grateful for the freedom he gave me to explore my own research
interests, and the opportunities he offered to participate at numerous con-
ference, winter schools and research seminars. Besides research, his views
on life really taught me a lot.

I would like to express my sincere thanks to the cryptography group at
the Hong Kong Polytechnic University, including postgraduate students,
Xingye Lu, Kang Li, Xiao Yang, Borui Gong, together with all previous and
current post-docs, research assistants and project engineers. It is a plea-
sure to work with all of them, and thank them for making my work joyful,
let alone those happy gatherings. I also thank my kind office mates, Jiaxin
Chen and Kang Li, for those unexpected happiness in our daily life.

I wish to take this opportunity to express my heartful thanks to my master
supervisor, Prof. Qiuliang Xu, who takes me to the field of cryptography.
The results of this thesis emerged from the joint works with Prof. Man Ho
Au, Prof. Qiuliang Xu, Prof. Junzuo Lai, Dr. Jiangshan Yu, Dr. Rupeng
Yang, Wang Fat Lau and Dr. Jinguang Han. I thank them for all the won-
derful discussions and for all of their kind help.

I would like to give the sincerest appreciation and gratitude to my dearest
parents for their endless love, support, encouragement, and for everything.
Without them, I would not be where I am today.

Last, but certainly not least, to my husband, Rupeng, thanks for always
being there.

ix

Table of Contents

Abstract iii

Publications v

Acknowledgements vii

1 Introduction 1
1.1 Flexible ABE With Outsourcing 5
1.2 Leakage-Resilient Attribute-Based Encryption 6
1.3 Applicability of Cryptographic Primitives in Blockchain . . . 6
1.4 Quantum Safe Universal Accumulator 7
1.5 Related Work . 8
1.6 Sources and Organization of The Thesis 14

2 Preliminaries 15
2.1 Notations and Cryptographic Assumptions 15

2.1.1 Notations and Conventions 15
2.1.2 Composite-Order Bilinear Groups 16
2.1.3 Assumptions . 16

2.2 Attribute-Based Encryptions . 17
2.3 Secure ABE In CML Model . 19

2.3.1 Security Definition . 19
2.3.2 A Lemma for Leakage-Resilient Analysis 21

2.4 The Pair Encoding Framework 21
2.5 CryptoNote-Style Cryptocurrencies 24
2.6 Universal Accumulator . 25

2.6.1 Accumulator For Nonmembership 26
2.7 Zero-Knowledge Arguments of Knowledge 28

2.7.1 Abstract Stern’s Protocol 29

3 Cross-System Proxy Re-Encryption 31
3.1 Our Contribution in Constructing CS-PRE 32
3.2 Syntax of CS-PRE . 35

x

3.2.1 Security Notion . 35
3.3 Our Construction . 37

3.3.1 Overview of Our Construction 37
3.3.2 Our Construction of CS-PRE 38
3.3.3 Security Analysis . 39

3.4 Discussion . 42

4 Leakage-Resilient Attribute-Based Encryption 45
4.1 Our Contributions in Constructing LR-ABE 45
4.2 Leakage-Resilient Pair Encoding Scheme 46

4.2.1 Syntax . 46
4.2.2 Security Definitions . 49

4.3 From Leakage-Resilient Pair Encoding to LR-ABE 50
4.3.1 Generic construction . 50
4.3.2 Security Proof of Our Generic Construction 52

4.4 From Pair Encoding to Leakage-Resilient Encoding 54
4.4.1 Extending the Definition of Attrapadung’s Pair En-

coding to Support Encoding of Empty Attribute 54
4.4.2 Generic Transformation of Pair Encodings to Leakage-

Resilient Pair Encodings 55
4.5 Instantiations of Our Framework 59

5 Traceability Analysis of CryptoNote-Style Blockchains 61
5.1 Our Contributions . 63
5.2 Closed Set Attack . 64

5.2.1 Brute-Force Attack . 65
5.2.2 Our Attack . 66
5.2.3 On The Existence of Closed Set: A Theoretical Per-

spective . 75
5.3 Our Clustering Algorithm . 78
5.4 Experiment Result . 83

5.4.1 Analysis of Monero . 84
5.4.2 Analysis of Bytecoin . 85
5.4.3 Analysis of DigitalNote 86

5.5 Observations and Recommendations 87

6 Lattice-Based Universal Accumulator 89
6.1 Our Contribution and Overview of Our Idea 90
6.2 Lattice-Based Universal Accumulator 91

xi

6.2.1 Our Construction of Accumulator for Nonmembership 91
6.2.2 Zero-Knowledge Argument of Knowledge of Nonmem-

bership Witness . 95
6.3 Application of Our Accumulator 99

6.3.1 Definition of Fully Dynamic Group Signature 100
6.3.2 Our Construction . 102

7 Conclusion 109

A Proofs of Theorems 111
A.1 Proof of Theorem 3.3.1 . 111
A.2 Proof for Theorem 4.3.1 . 122

Bibliography 135

xiii

List of Figures

2.1 A General CryptoNote transaction 25
2.2 Abstract Stern’s protocol . 30

3.1 Workflow of our construction 33
3.2 Use Case 1 of our CS-PRE . 34
3.3 Use Case 2 of our CS-PRE . 34

4.1 Main results of our paper . 46

5.1 Frequency of number of mixins of anonymous inputs 86

6.1 A Merkle-tree Illustration . 93
6.2 Illustration of Correctness . 94

A.1 Proof Structure . 113

xv

List of Tables

1.1 Attribute-based PREs . 10

4.1 New schemes/constructions from our Framework 59

5.1 Experiment Results . 64
5.2 Our Analysis Results on Monero 85
5.3 Our Analysis Results on Bytecoin 87
5.4 Our Analysis Results on DigitalNote 87

xvii

List of Abbreviations

PKE Public-Key Encryption
ABE Attribute-based Encryption
KP-ABE Key-Policy Attribute-based Encryption
CP-ABE Ciphertext-Policy Attribute-based Encryption
IBE Identity-based Encryption
LR-ABE Leakage-Resilient Attribute-based Encryption
DFA Deterministic Finite Automata
SE Spatial Encryption
DSE Doubly Spatial Encryption
KP-DSE Key-Policy Doubly Spatial Encryption
HIBE Hierarchical Identity-Based Encryption
IPE Inner Product Encryption
FE Functional Encryption
COM Commitment Scheme
FDGS Fully Dynamic Group Signature
GM Group Manager
TM Tracing Manager
CH Chameleon Hash Function
PE Pair Encoding
LR-PE Leakage-Resilient Pair Encoding
PMH Perfectly Master-Key Hiding Property
SMH Selectively Master-Key Hiding Property
CMH Co-Selectively Master-Key Hiding Property
ZKAoK Zero-Knowledge Arguments of Knowledge
NIZK Non-Interactive Zero-Knowledge System
CML Continuous Memory Leakage Model
LRC Leakage-Resilient Cryptography
LR Leakage-Resilient Property
PRE Proxy Re-Encryption
CS-PRE Cross-System Proxy Re-Encryption
RKG Re-Encryption Key Generator
PKG Public-Key Generator

xviii

RingCT Ring Confidential Transaction
NM Non-Membership
Acc Accumulator
PPT Probabilistic Polynomial Time
NP Nondeterministic Polynomial Time
SIS Short Integer Solution Problem
LWE Learning With Error Problem
SD Subgroup Decision Assumption
SD1 Subgroup Decision Assumption 1
SD2 Subgroup Decision Assumption 2
SD3 Subgroup Decision Assumption 3
IND-CPA Chosen Plaintext Indistinguishability
IND-CCA Chosen Ciphertext Indistinguishability
CPA Chosen Plaintext Attack
CCA Chosen Ciphertext Attack
C.S. Closed Set

1

Chapter 1

Introduction

Public-key cryptography, introduced by Diffie and Hellman in [DH76], has
been widely employed. Roughly speaking, it refers to the kind of cryp-
tographic systems consisting of a pair of keys, i.e., public key and private
key, where public key is disseminated publicly and private key is known
only to the owner. Typical public-key cryptographic schemes mainly in-
clude public-key encryption (PKE) scheme and digital signature scheme.
They almost appear everywhere in our daily life. For example, when you
surf on the Internet, entering a link with prefix “https”, public-key encryp-
tion schemes are used to encrypt all transcripts between you and the server.
Another example, which appears recently, is that when you would like to
transform some bitcoin to another user, you should use a signature scheme
to identify your identity and authorize the validity of the transaction. In
this thesis, we focus on some research issues raised recently in the area of
public-key encryption and digital signature.

Public-Key Encryption. As a typical representative of public-key cryptog-
raphy, public-key encryption scheme is introduced to ensure data confiden-
tiality. It allows anyone to send some information to a receiver. Moreover,
security of the PKE scheme ensures that no one except the designated re-
ceiver could obtain any information from the communication. Traditional
PKE scheme only allows one designated receiver for each communication
and a variant, called attribute-based encryption (ABE), supports multiple
receivers. Roughly, in an ABE scheme, each user is assigned to some at-
tributes and each message is encrypted under a policy. The functionality of
ABE allows one to obtain the message if his attributes satisfy the policy and
its security prevents one from learning any information about the message
if his attributes do not satisfy the policy.

One important application of ABE schemes is to provide secure and fine-
grained data sharing in the scenario of cloud computing. In a nutshell, cloud

2 Chapter 1. Introduction

computing allows people to use remote servers, aka “cloud”, to complete
their computation or storage tasks. In this way, users of cloud computing
services can conduct (heavy) computation tasks or store and share (mas-
sive) data in a flexible and economical way. To use an ABE scheme to share
data, one first encrypts the data under some “policy”, then he puts the en-
crypted data on the cloud. Next, any one with the valid attributes is able
to retrieve the data. A (usually overlooked) problem in an ABE-based data
sharing system is "how to forward the data to others". At first glance, this
requirement can be trivially satisfied via letting the user to download the
ciphertext, decrypt it and send the plaintext to the target. However, as now
people will outsource heavy computation and storage tasks to the cloud,
they usually use a light device, e.g., a mobile phone, to deal with their data,
which may be too resource-constrained to fully decrypt and store the data.
Therefore, a better way to share data is to leave the encrypted data on the
cloud, but transform them into a ciphertext under the public-key of the tar-
get user. In this way, we need an ABE scheme that allows transformation of
its ciphertexts (e.g., from one policy to another) in a public way.

Besides, the development of technology enhances the adversary with
new attack means to the security of pubic-key encryption schemes. Among
them, side-channel attacks appear as a result of our ability in better control-
ling the hardware, including timing attacks [Koc96], power attacks [KJJ99],
cold-boot attacks [HSH+09], etc, all of which will attempt to steal the in-
ternal (secret) state of a computation procedure. Recall that, cryptographic
schemes were proved secure under the assumption that secret keys are per-
fectly protected against attackers. However, via launching side-channel at-
tacks, partial information about the secret key will be revealed to the at-
tacker and thus the previous proof will not be applicable. Even worse,
many cryptographic schemes secure in traditional model are indeed broken
by side-channel attacks. Hence, to enhance security of existing public-key
encryption scheme, we also investigate the construction of ABE schemes se-
cure against side-channel attacks.

Digital Signature. Digital signature scheme is proposed to guarantee the
authenticity of a message, where secret key is employed to sign a message
and generate a signature, associated public-key is used to verify the valid-
ity of a signature on a message. Since its introduction, signature scheme

Chapter 1. Introduction 3

has found numerous applications in practice. One of its famous applica-
tions proposed recently is blockchain-based cryptocurrencies, such as Bit-
coin, Ethereum, etc. For instance, in each transaction of Bitcoin, signa-
ture is generated by the sender to authorize the validity of that transac-
tion. While in some cases, one may hope that identities of users could
also be hidden and to achieve this, the digital signature scheme used in
Bitcoin should be replaced with a suitable privacy-preserving primitive,
such as signature scheme supporting anonymity. As one of the well-known
privacy-preserving primitives, ring signature [RST01, LSW06] is the signa-
ture scheme that allows a user to anonymously sign a message on behalf of a
group of users. In light of this, Cryptonote protocol as well as those variants
based on it, e.g., Monero, Bytecoin, etc., are designed to achieve anonymity
through utilizing ring signature. Since ring signature scheme is provably se-
cure, hence Cryptonote protocol as well as its variants, could provide good
privacy. However, as shown in some recent works [MSH+18, KFTS17], most
transactions in Monero, which use a linkable ring signature scheme to pro-
tect the payers’ identity, are easy to trace. Hence, a question arises: why
provably secure public-key cryptographic schemes fail to protect security
of real-world applications and is there a safe mode to use linkable ring sig-
nature scheme in Monero?

In addition, the emergence of quantum computer raises new threats to
those current cryptographic schemes based on traditional number theoreti-
cal assumptions. A quantum computer is referred to the kind of computer
which performs computations utilizing the quantum-mechanical phenom-
ena. The study of quantum computing can be dated back to 1980s when
Feynman [Fey82] first expressed the idea of simulating quantum mecha-
nism on computers. Since then, researchers have made great efforts in ex-
ploring both its existence and its usability. Especially, in 1994, Shor [Sho94]
finds that it is able to solve both the factoring problem and the discrete log-
arithm problem efficiently by using a quantum computer. Besides, there are
many breakthroughs towards implementing quantum computers in recent
years, and it is estimated that practical quantum computers are likely to
appear in a few decades.

It is widely known that modern public-key cryptography is built on the
hardness of the factoring problem and that of the discrete logarithm prob-
lem. So, if practical quantum computers are realised, most existing cryp-
tographic primitives based on traditional number theoretical assumptions
will be totally broken. As a result, it is an urgent task to develop schemes

4 Chapter 1. Introduction

secure against quantum attacks. In this thesis, we also investigate how to
enhance signature component used in cryptocurrency to be quantum safe.
Specifically, we will focus on lattice-based cryptography and particularly,
we will try to construct efficient privacy-preserving primitives (as just men-
tioned, they are variants of digital signature schemes) from lattice.

In summary, this thesis seeks to address the following questions:

• How to achieve flexible and efficient data sharing in the cloud.

• How to design secure public-key cryptographic primitives secure against
side-channel attacks.

• Why provably secure public-key cryptographic schemes fail to protect se-
curity of real-world applications and is there a safe mode to use linkable
ring signature scheme in Monero?

• How to enhance signature component used in cryptocurrency to be quan-
tum safe.

We give answers to the foregoing questions. Specifically,

• To support efficient and flexible data sharing over cloud, we formalize
the definition of cross-system proxy re-encryption, and propose a con-
struction supporting transform the ciphertext of various ABE schemes to
any target public-key encryption schemes.

• On addressing side-channel attacks, we introduce the first generic con-
struction of ABE schemes secure against continuous memory leakage.

• To clarify under what condition privacy-preserving primitives can be safely
used to protect users’ privacy in a blockchain-based cryptocurrency, we
present a new statistical attack for Monero (as an example). We prove that
this attack is the best possible attack an adversary can launch (without at-
tacking the underlying cryptographic primitives) and show that if some
condition is satisfied, our attack will not compromise users’ privacy. In
this way, we identify a safe mode to use privacy-preserving primitives in
a blockchain-based cryptocurrency.

• On addressing quantum attacks, we propose the first construction of uni-
versal accumulator in the lattice setting, which is a basic component for
constructing many advanced privacy-preserving primitive, such as fully
dynamic group signature.

1.1. Flexible ABE With Outsourcing 5

Next, we elaborate the background and the contribution of each result
from Section 1.1 to Section 1.4 and give the related works in Section 1.5.

1.1 Flexible ABE With Outsourcing

Outsourcing the decryption of ABE ciphertext is a promising method to
tackle the question about how users can decrypt it efficiently. However,
existing solutions require the type of the target ciphertext is determined at
the setup phase of the outsourcing scheme. Accordingly, a remaining issue
appears, namely, how to make the target cryptosystems (or the clients) to
be versatile. Here the problem we wish to tackle is to transform an ABE

ciphertext to any client who is using the same, or possibly different, public-
key encryption system with the sender. The problem is of practical interest
since it is hard to require all clients to use the same PKE, especially in the
case of remote and cross-system data sharing. In addition, we also consider
whether robust client-side decryption scheme can be adopted. This feature
is not supported in the existing ABE with outsourcing.

We introduce cross-system proxy re-encryptions (CS-PRE), which is a
new re-encryption paradigm in which a semi-trusted proxy converts a ci-
phertext of a source cryptosystem (Π0) into a ciphertext of a target cryp-
tosystem (Π). We formalize CS-PRE and present a construction that per-
forms well in the following aspects. (1)Versatility: Π0 can be any attribute-
based encryption (ABE) within Attrapadung’s pair encoding framework. Π
can be any public-key encryption. Furthermore, the keys and public param-
eters can be generated independently. (2) Compatibility: CS-PRE does not
modify the public parameters and keys of Π0 and Π. Besides, input for the
conversion is an ordinary ciphertext of Π0. (3) Efficiency: The computational
cost for re-encryption (resp. decryption) of the re-encrypted ciphertext is
roughly the same as a decryption in Π0 (resp. Π).

We prove that the construction is fully secure assuming Π0 is secure in
Attrapadung’s framework and Π is IND-CPA secure. Furthermore, it re-
mains secure when there are multiple target cryptosystems. As with other
proxy re-encryption, CS-PRE enables flexible sharing of cloud data, as the
owner can instruct the cloud server to re-encrypt his ciphertext to those for
the intended recipient. In addition, it allows lightweight devices to enjoy
access to remote data encrypted under powerful but possibly costly encryp-
tion, such as functional encryption, by utilizing the server’s power in con-
verting the ciphertext to a simpler encryption, such as RSA-OAEP. Finally,

6 Chapter 1. Introduction

instances of CS-PRE can be viewed as new proxy re-encryption schemes,
such as a PRE supporting ABE for regular language to Hierarchical IBE or
Doubly Spatial Encryption to lattice-based encryptions (e.g. NTRUCCA).

1.2 Leakage-Resilient Attribute-Based Encryption

On proposing construction of leakage-resilient cryptographic primitives, we
introduce the first adaptively secure attribute-based encryption schemes in
continual memory leakage model, which is a model that allows continuous
leakage on both user and master secret keys.

The proposed generic framework for constructing leakage-resilient fully
secure ABEs (LR-ABEs) results from leakage-resilient pair encoding, which is
an extension of pair encoding presented in the recent work of Attrapadung.
In this way, our framework simplifies the design and analysis of LR-ABEs
into the design and analysis of predicate encodings.Moreover, we discover
new adaptively secure LR-ABEs, including FE for regular languages, ABE for
large universe and ABE with short ciphertext. Above all, leakage-resilient
adaptively secure attribute-based encryption schemes can equip fog com-
puting with higher security and fine-grained access control.

1.3 Applicability of Cryptographic Primitives in

Blockchain

While the cascade effect attacks [MSH+18] on the untraceability of Monero
are circumvented by two approaches. The first one is to increase the mini-
mum ring size of each input, from 3 (version 0.9.0) to 7 in the latest update
(version 0.12.0). The second approach is introducing the ring confidential
transactions with enhanced privacy guarantee. However, so far, no formal
analysis has been conducted on the level of anonymity provided by the new
countermeasures in Monero. In addition, since Monero is only an example
of leading CryptoNote-style blockchains, the actual privacy guarantee pro-
vided by other similar blockchains in the wild remains unknown.

We propose a more sophisticated statistical analysis on CryptoNote-style
cryptocurrencies. In particular, we introduce a new attack on the transac-
tion untraceability, which we call closed set attack. We prove that our attack
is optimal assuming that no additional information is given. In other words,
in terms of the result, closed set attack is equivalent to the brute-force attack,

1.4. Quantum Safe Universal Accumulator 7

which exhausts all possible input choices and removes those that are impos-
sible given the constraints imposed by the mixins of each transaction.

To verify the impact of our attack in reality, we conduct experiments on
the top 3 CryptoNote-style cryptocurrencies, namely, Monero, Bytecoin and
DigitalNote, according to their market capitalization. Since the computa-
tional cost of performing closed set attack is prohibitively expensive, we pro-
pose an efficient algorithm, called clustering algorithm, to (approximately)
implement closed set attack. For Monero, out of the total of 23164745 trans-
action inputs (up to block 1541236), our clustering algorithm can further
identify the real payer of 5752 transaction inputs. Indeed, by combining our
clustering method with the cascade attack, we are able to identify the real
coin spent in 16334967 transaction inputs, and reduce the mixin set (so the
anonymity) of 1736530 inputs. Last but not least, through our combined
attack, we are able to identify the real coin being spent in 74.25% Bytecoin
inputs, and in 91.56% DigitalNote inputs.

In addition, we provide a theoretical analysis on the identified closed set
attack, i.e., if every input in a CryptoNote-style blockchain has 3 mixins,
and all mixins are sampled uniformly from all existing coins, the success
rate of this attack is very small (about 2−19). Given that closed set attack is
equivalent to the best possible statistical attack, our findings provide two
key insights. First, the current system configuration of Monero is secure
against statistical attacks, as the minimum number of mixin is 6. Second,
we identify a new factor in improving anonymity, that is, the number of
unspent keys. Our analysis indicates that the number of mixins in an input
does not need to be very large, if the percentage of unspent keys is high.

1.4 Quantum Safe Universal Accumulator

On addressing the quantum attacks, we introduce the first universal accu-
mulator in lattice setting. Universal accumulator is a cryptographic prim-
itive that provides a way to accumulate a set of elements into one. For
each element accumulated, it can provide a short membership (resp. non-
membership) witness to attest the fact that the element has been (resp. has
not been) accumulated. When combined with a suitable zero-knowledge
proof system, it can be used to construct many privacy-preserving applica-
tions. However, existing universal accumulator schemes are usually based
on non-standard assumptions, e.g., the Strong RSA assumption and the

8 Chapter 1. Introduction

Strong Diffie-Hellman assumptions, and are not secure against quantum
attacks.

The proposed lattice-based universal accumulator is based on standard
lattice-based assumptions. The starting point is the lattice-based accumu-
lator with Merkle-tree structure proposed by Libert et al. [LLNW16]. We
present a novel method to generate short witnesses for non-accumulated
members in a Merkle-tree, and give the construction of universal accumula-
tor. Besides, we propose the first zero-knowledge arguments for the pos-
session of the nonmembership witness of a value outside the accumula-
tor in the lattice-based setting via the abstract Stern’s protocol of Libert et
al. [LLNW17]. Moreover, our proposed universal accumulator is useful for
the construction of many privacy-preserving cryptographic primitives, such
as group signature and anonymous credential.

1.5 Related Work

In this section, we give the related work of the thesis. Specifically, we fo-
cus on the development of some cryptographic primitives, including proxy
re-encryption, attribute-based encryption and cryptographic accumulator.
Moreover, we recall the concept of leakage-resilient cryptography and the
existing attacks on Monero. The related works are given below.

Proxy Re-Encryption. Early PRE [BBS98, CH07, MNT10] considers bidi-
rectional delegation, which allows the proxy to transform ciphertexts of the
delegator to that of the delegatee and vice versa. This property, however, is
not desirable in many scenarios, including our cloud storage settings, since
the delegatee may not want to delegate his decryption rights to the del-
egator. Thus, another line of works [AFGH06, GA07, LV08, SC09] which
considers unidirectional delegation has attracted more attentions recently.

A PRE scheme is multi-hop if the proxy can perform multiple consecutive
re-encryptions on a ciphertext. Examples include [CH07, GA07, MNT10].
Otherwise, it is a single-hop PRE [ID03, AFGH06, GA07, LV08, SC09]. At a
first glance, multi-hop PRE schemes appear to be more powerful and may
even imply the later. However, the chain collusion attack presented by Shao
and Cao [SC09] illustrated that a secure multi-hop PRE scheme may not re-
main secure in the single-hop setting. In practice, either single-hop or multi-
hop PRE may be desirable and thus both types of PRE are being studied.

1.5. Related Work 9

While a variety of PRE schemes have already been proposed, we observe
that, as summarized in Figure 1.1, they fail in fulfilling those requirements.
Even worse, some of them have some security issues preventing them from
being deployed in practice. In particular, they face one or several of the
following problems.

• Not Supporting Cross-System. Only few works attempt to construct
PRE schemes supporting cross-system, and none of them supports
“arbitrary target system”.

• Poor Functionality. Many works only focus on ABE schemes with sim-
ple functionality, e.g. identity-based encryption (IBE) schemes, and
ABE schemes supporting more advanced access control, e.g. doubly
spatial encryption (DSE), have not been considered.

• Low Security Level. Some works only achieve a weak security level,
namely, selective security.

• Insecurity. Some schemes are broken by particular attacks. For in-
stance, Scheme 1 in [GA07], and schemes in [LAL+14, LAL+15, EMO10]
can be compromised by the chain collusion attack presented in [SC09],
which is effective for many single-hop PRE schemes. The main idea of
this attack is as follows. In a single-hop PRE scheme, let A be the target
of the adversary, and B, C be any two users, and consider the delega-
tion from A

P1−→ B, B
P2−→ C, then the adversary corrupts proxy P1, P2

and user C. Next, the adversary attempts to recover the secret key of A
from secret keys of parties he just corrupted. Note that this corruption
behaviour is allowed in the security model of the single-hop PRE as it
will not trivially break the security goal. Many schemes which apply
a similar technique applied in designing multi-hop PRE schemes, e.g.
those schemes we just mentioned, are vulnerable to this attack.

• Strong Assumptions. Some schemes establish their security in the ran-
dom oracle model, which is quite controversial [CGH04], and some
schemes need to involve a trusted central party to help generate the
re-encryption key.

Leakage-Resilient Cryptography. Leakage-resilient cryptography was de-
veloped to address side-channel attacks. To model the additional capabil-
ity in side-channel attacks, an attacker is allowed to submit an efficiently

10 Chapter 1. Introduction

single-hop

Scheme Functionality Adaptive Security Standard User-initiate RKG
Model cross-system -free

[GA07]
IBE X 5 NA XScheme1

[Mat07] PKE→ IBE NA CPA X = X
IBE X CPA X NA

[WWMO10] IBE X CPA NA
IBE X CCA NA

[THJ08] IBE→ IBE X CPA X X
[DWQ+15] IBBE→IBE CPA X X X

[MD09] ABE→IBE CPA X = X
[LAL+14] DFA X 5 X NA X
[LAL+15] ABE X 5 X NA X
[EMO10] IBE X 5 NA X
[BGT15] IPE X CPA X NA

Ours ∗ → ∗ X CPA X X X

multi-hop

Scheme Functionality Adaptive Security Standard User-initiate RKG-
Model cross-system free

[GA07]
IBE X CPA NA XScheme2

[WCW10] IBE X CCA NA X
[SC12] IBE X CCA X NA X

[CT07] IBE X CPA X NA X
IBE X 5[SC09] X NA X

[LCLS09] ABE CPA X NA X

Table 1.1: Attribute-based PREs.
1. ‘RKG’ denotes the Re-encryption Key Generator, a trusted third party,
might be operated by the same party as PKG. ‘NA’ means non-applicable.
‘User-initiate cross-system’ denotes the delegator can generate the re-
encryption key only by himself, without the help of RKG or interacting with

the delegatee.
2. ‘5’ means that the scheme in that work cannot achieve its claimed secu-

rity.
3.‘=’ denotes that scheme is not user-initiate cross-system. Namely, the del-

egator cannot initiate to generate the re-encryption key.
4. ‘∗ → ∗’ means that our construction supports a large class of attribute-
based encryptions (e.g. IBE, ABE, DFA, SE, DSE etc.) to any CPA-secure

public-key encryption scheme.

1.5. Related Work 11

computable leakage function f to obtain the output of f on the current
secret states of the cryptographic system. Many leakage models, differ in
the restrictions imposed on f , have been proposed. Among them, the con-
tinual memory leakage (CML) model [BKKV10, DHLAW10] is believed to
best describe those real world attacks. In this model, the entire lifetime
of a scheme is divided into periods. At the end of each period, the secret
state of the scheme is updated. The amount of leakage information in each
time period is bounded, but the total amount of leakage during the lifetime
of the scheme is unbounded. Since then, many cryptographic primitives
have been designed in this model, include signatures [MTVY11], public-key
encryption [DLWW11, YXZ+15], identity-based encryption (IBE) [YCZY12,
LRW11], attribute-based encryption (ABE) [LRW11], multiparty computa-
tion [BGJK12], etc.

Attribute-based Encryption. We recall the notion of ABEs following the
terminology of [Att14]. ABE is a new paradigm of public-key encryption
that supports fine-grained access control policy. In ABEs, secret keys are
associated with attributes X ∈ X , ciphertexts are associated with attributes
Y ∈ Y , and a secret key can decrypt a ciphertext if and only if R(X, Y) = 1,
where R is a predicate (access control policy) for attribute sets X and Y .
For example, IBE [Sha84, BF01] can be viewed as a kind of ABEs where R
checks for equality. Achieving fully secure ABEs even in the leakage-free
setting is difficult, since the attacker can choose the target after obtaining
many decryption keys for arbitrary attributes of its choice. In other words,
a successful security proof requires the construction of a simulator that can
generate decryption keys for arbitrary attributes and at the same time, the
ability to obtain information from the challenge ciphertext (by the attacker)
should be useful for the simulator. This seems to pose a dilemma: if the
simulator can generate all decryption keys, it can generate a key to decrypt
the challenge ciphertext by itself and thus the attacker will be of no use.
Indeed, many ABEs [BB04a, BB04b, BBG05, GPSW06, SW05] can be proven
secure when the attacker has to declare the target, say Y∗, before seeing
the public parameters. This avoids the dilemma since the simulator can be
constructed in a way that it can only generate decryption keys associated
with X as long as R(X, Y∗) = 0.

The dilemma was solved in 2009 by the seminal work of Waters [Wat09].
The main idea is to utilize two types of keys and ciphertexts, namely, nor-
mal and semi-functional, in the security proof. Both semi-functional keys

12 Chapter 1. Introduction

and ciphertext behave normally except that a semi-functional key cannot
decrypt a semi-functional ciphertext. In the security proof, the simulator
can only generate semi-functional keys and ciphertexts. Now the simulator
cannot create a key to decrypt the challenge ciphertext itself. The remain-
ing part of the dual system methodology is, roughly speaking, to prove
that the behavior of any attacker is the same regardless whether or not it
is given normal or semi-functional keys and ciphertext. This strategy, now
commonly known as dual system methodology, allows the constructions of
many ABEs [LW10, LW11, LOS+10, OT10, AL10, OT12, Lew12].

The usability of dual system methodology in leakage-resilient cryptog-
raphy is first observed by Lewko et al. [LRW11].The main idea is that in a
dual system security proof, the simulator is capable of generating arbitrary
decryption keys (in semi-functional form). If it can generate a key, it can
naturally allow leakage of these keys. Based on this idea, they are able to
introduce leakage-resilient IBE, ABE and HIBE in CML.

Based on the observation that many existing ABEs constructed in the
dual system paradigm exhibit very similar properties, Attrapadung [Att14]
and Wee [Wee14] independently proposed unifying frameworks, which sup-
port modular design and analysis of ABEs. Both frameworks reduce the
study of ABEs to the study of a simpler object called a pair encoding in [Att14]
or predicate encoding in [Wee14]. Specifically, given encoding scheme P,
one could convert P generically into a fully secure ABE following the frame-
work. Recently, there are a number of enhancement to these frameworks,
including one that works in prime order groups [Att15, CGW15].

Traceability Analysis of Monero. Recently, two independent and concur-
rent works [MMLN17, KFTS17]1 demonstrate that Monero transactions may
be de-anonymized via statistical analysis. Specifically, they found that most
inputs in Monero have very small number of mixins2 and more than half
inputs are paid without having any mixin. Those inputs without mixins
can be trivially de-anonymized. Even worse, once a coin payed without
mixin is chosen as a mixin in another transaction, the input of this transac-
tion also faces a danger of being de-anonymized. Based on this simple yet

1An updated version [MSH+18] of [MMLN17] also appears recently, but both the
method and the result for the traceability analysis are similar in these two works, thus
we focus on the initial version.

2 All other decoy coins in the input are called mixins.

1.5. Related Work 13

vital observation, these two works adopt similar strategies to conduct em-
pirical evaluations, which are based on the so-called “chain-reaction" anal-
ysis [MMLN17] or cascade effect [KFTS17]. Roughly speaking, the attacker
first finds out all inputs with zero-mixin. As each located input is payed
by merely one public-key, the public-key must be the real payer of the in-
put. Since each public-key can only be used once in Monero, it is safe to
delete these de-anonymized public-keys in mixins of the remaining inputs.
This will lead to new zero-mixin inputs and the attack could be conducted
repeatedly. According to the experiment results of [MMLN17, KFTS17], by
Feb 2017, nearly 65% of transaction inputs are with zero-mixin, and the cas-
cade effect can render another 22% of inputs traceable, i.e., nearly 87% of all
Monero inputs are insecure when considering users’ anonymity.

Having witnessed (and predicted) this type of attacks, Monero has pro-
posed a few countermeasures. First, at version 0.9.0 (January 1, 2016), it re-
leases a mandatory requirement that each transaction input should include
at least 2 mixins. Subsequently, at version 0.10.0 (September 19, 2016), ring
confidential transaction (Ring-CT), which aims at further enhancing privacy
of users via hiding the transaction amount, is introduced. An added advan-
tage of employing RingCTs is that all RingCT input must use outputs of
RingCTs as its mixins, i.e., no public-key used before version 0.10.0 will be
chosen as mixin for a RingCT input. Therefore, neither the chain-reaction
attack nor the cascade attack works for RingCTs. Besides, after realizing the
effect of the number of mixins, the minimum number of mixins gradually
increases from 2 to 6 in version 0.12.0 (March 29, 2018).

Cryptographic Accumulator. First introduced by Benaloh and De Mare
[BDM93], cryptographic accumulator provides a way to combine a set of
values into one, and simultaneously offers a short witness for a given value
which is accumulated. Since its introduction, accumulator has found nu-
merous applications, including time-stamping [BDM93], membership test-
ing [BDM93, LLX07], anonymous credential [AN11, CL02, LLX07, CKS09,
LH10], group signature [TX03, LLX07, LLNW16], ring signature [LLNW16],
fail-stop signature [BP97], anonymous authentication [DKNS04], anonymous
attestation [LLX07], certificate revocation [GTH02], etc. Subsequently, many
extensions have been introduced. Among them, Camenisch and Lysyan-
skaya [CL02] introduce the notion of dynamic accumulator which allows
one to dynamically add and delete a value to and from the accumulator in a
way that witnesses of existing elements can be updated efficiently. Later, Li

14 Chapter 1. Introduction

et al. [LLX07] propose universal accumulator which can also provide non-
membership proof for an element which is not accumulated.

1.6 Sources and Organization of The Thesis

The contents of this thesis are mainly taken from the following papers, in-
cluding:

• Zuoxia Yu, Man Ho Au, Rupeng Yang, Junzuo Lai, Qiuliang Xu: Achiev-
ing Flexibility for ABE with Outsourcing via Proxy Re-Encryption. In
Proceedings of the 2018 on Asia Conference on Computer and Com-
munications Security (ASIACCS 2018), pages 659–672. ACM (2018).

• Zuoxia Yu, Man Ho Au, Qiuliang Xu, Rupeng Yang, Jinguang Han:
Towards Leakage-Resilient Fine-Grained Access Control in Fog Com-
puting. Future Generation Computer Systems, 78:763–777. Elsevier
(2018).

• Zuoxia Yu, Man Ho Au, Jiangshan Yu, Rupeng Yang, Qiuliang Xu, and
Wang Fat Lau. New Empirical Traceability Analysis of Cryptonote-
style Blockchains. In Proceedings of the Financial Cryptography and
Data Security 2019 (FC 2019), pages 133–149. Springer (2019).

• Zuoxia Yu, Man Ho Au, Rupeng Yang, Junzuo Lai, Qiuliang Xu: Lattice-
Based Universal Accumulator with Nonmembership Arguments. In
Proceedings of the 23rd Australasian Conference on Information Se-
curity and Privacy (ACISP 2018), pages 502–519. Springer (2018).

The preliminaries of the thesis is given in Chapter 2. Chapters 3, 4, 5, 6
are dedicated to the foregoing contributions respectively. We conclude the
thesis in Chapter 7. The appendices are used to show some tedious proofs
of some theorems and lemmas claimed in the main body of the thesis.

15

Chapter 2

Preliminaries

In this chapter, we give the preliminaries that will be used in the following
contents. Here, the purpose is to show some background information on the
notations and definitions of some cryptographic primitives used latter. In
particular, we will introduce assumptions on composite-order groups and
on lattice, the syntax and security definition about ABE in standard model
as well as in CML model, the definition about cryptographic primitives in-
cluding pair encoding, zero-knowledge arguments, and universal accumu-
lator. For readers who are familiar with the foregoing topics may skip this
chapter.

2.1 Notations and Cryptographic Assumptions

2.1.1 Notations and Conventions

We use r $← R to denote that r is randomly and uniformly picked from a
finite set R. [n] is used to denote the integer set {1, 2, · · · , n}. For any set R,
its size is denoted as |R|. Also, for a distributionD, we use d← D to denote
sampling d according to D.

For a bit b, we use b̄ to denote the negation of b. We write negl(·) to
denote a negligible function. LetR be a binary relation, we useLR to denote
the language characterized byR.

Throughout this paper, we will use bold lower-case letters (e.g. v) to
delegate vectors, and use bold upper-case letters (e.g. A) to delegate matri-
ces. Note that we treat all vectors in this paper as column vectors, and all
elements in vectors and matrices are integers unless otherwise stated. 0m

denotes a zero vector with length m, 0m×n denotes a zero matrix which has
m rows and n columns. We use · to denote the dot product operation of
vectors, and ∗ to denote the component-wise multiplication of vectors. For

16 Chapter 2. Preliminaries

a vector v of length n, we use ‖v‖1 to denote its 1 norm, and we use v[i] to
denote its ith element where i ∈ [0, n− 1].

Let G be a group, and g ∈ G is a group element. For g ∈ G and~k = (k1,
k2, · · · , kn) ∈ Zn

N, g~k denotes (gk1 , gk2 , · · · , gkn).

Statistical Distance. Let X and Y be two random variables in a finite set
S. The statistical distance between X and Y is defined as

∆(X, Y) =
1
2

Σx∈S|Pr[X = x]− Pr[Y = x]|.

We say that X and Y are ε-close if ∆(X, Y) ≤ ε.

2.1.2 Composite-Order Bilinear Groups

We review the definition of composite-order bilinear group [BGN05]. Let
(G, GT) denote bilinear groups of composite order N = p1p2p3, where p1, p2

and p3 are distinct primes, with an efficiently computable bilinear map e :
G×G→ GT satisfying the following properties.

• Non-degenerate. e(g, h) 6= 1 ∈ GT if g, h 6= 1 ∈ G.

• Bilinear. e(ga, gb) = e(g, g)ab for any g ∈ G and a, b ∈ ZN.

We use G(1λ) → (G, GT, e, N, p1, p2, p3) to denote a bilinear group
generator, where 1λ is a security parameter. We recall some properties of
a composite-order bilinear group. If p|N, there exists a subgroup Gp of G

with order p. Also, for any g ∈ Gpi and h ∈ Gpj , if pi 6= pj, then e(g, h) = 1.
The later is sometimes referred to as orthogonality.

2.1.3 Assumptions

Subgroup Decision Assumptions (SD). We first re-cap some complexity as-
sumptions related to composite-order group, which are presented in [Wat09,
LW10]. Each of the SD assumptions starts with G(1λ) → (G, GT, e, N, p1,
p2, p3).

SD1: Given D = (g1
$← Gp1 , g3

$← Gp3) and T ∈ G, decides if T = T1
$←

Gp1 p2 or T = T2
$← Gp1 .

SD2: Given D = (g1
$← Gp1 , Z1Z2

$← Gp1 p2 , g3
$← Gp3 , W2W3

$← Gp2 p3) and

T ∈ G, decides if T = T1
$← Gp1 p2 p3 or T = T2

$← Gp1 p3 .

2.2. Attribute-Based Encryptions 17

SD3: Given D = (g1
$← Gp1 , g2

$← Gp2 , g3
$← Gp3 , gα

1Y2, gs
1W2) and T ∈ G,

decides if T = T1 = e(g1, g1)
αs or T = T2

$← GT, where W2, Y2
$← Gp2

and α, s $← ZN.

The advantage of adversary A for problem instance SDi is defined as fol-
lows:

AdvSDi
A (1λ) = |Pr[A(D, T1)]− Pr[A(D, T2)]|.

Then assumptions SD1, SD2 and SD3 for G assert that AdvSDi
A (1λ) is negli-

gible for all probabilistic polynomial time adversary A.

Lattice-Based Assumption. Here we review a hard problem in lattice-based
setting, i.e., the short integer solution (SIS) problem.

Definition 2.1.1 (SIS [GPV08]). The SIS∞
n,m,q,β problem is defined as follows:

given uniformly random matrix A ∈ Zn×m
q , find a non-zero vector Ax ∈ Zm

such that ||x||∞ ≤ β and A · x = 0 mod q.

If m, β = poly(n), and q ≥ β · Õ(
√

n), then SIS∞
n,m,q,β problem is at

least as hard as the worst-case lattice problem SIVPγ for some γ = β ·
Õ(
√

nm) [GPV08]. In particular, the SIS∞
n,m,q,1 problem is at least as hard

as SIVPÕ(n), when β = 1, q = Õ(n), m = 2ndlog qe [LLNW16].

Chernoff bound. We will need the Chernoff bound in our analysis. There
are various forms of the Chernoff bound, here we use the one from [Goe15].

Lemma 2.1.1 (Chernoff Bounds). Let X = ∑n
i=1 Xi, where Xi = 1 with prob-

ability pi and Xi = 0 with probability 1 − pi, and all Xi are independent. Let
µ = E(X) = ∑n

i=1 pi. Then

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δ µ for all δ > 0;

Pr[X ≤ (1− δ)µ] ≤ e−
δ2
2 µ for all 0 < δ < 1.

2.2 Attribute-Based Encryptions

We review the definition of attribute-based encryptions, a generalisation of
public-key encryption. We first recall the notion of predicate family in [Att14]
which is used to describe the access control policy in attribute-based encryp-
tion. A predicate family R = {Rk}k∈Nc for some constant c ∈ N, where

18 Chapter 2. Preliminaries

Rk : Xk × Yk → {0, 1} is a predicate function that maps a pair of attributes
(one in key space Xk, the other one in ciphertext space Yk) to {0, 1}. k is
the index which specifies a description of predicate Rk ∈ R. We require
that the first entry of k specifies the domain of predicate function Rk, and
write simply RN to denote Rk whose domain is ZN. RN is domain-transferable
if for p that divides N, then there exists projection maps f1 : XN → Xp,
f2 : YN → Yp, such that for all X ∈ XN, Y ∈ YN,

• Completeness: if RN(X, Y) = 1, then Rp(f1(X), f2(Y)) = 1.

• Soundness:

1. if RN(X, Y) = 0, then Rp(f1(X), f2(Y)) = 0.

2. if 1 does not hold, then there exists an algorithm F takes as input
(X, Y), and outputs a non-trivial factor a, where p|a and a|N.

An attribute-based encryption for predicate family R consists of four
algorithms, namely, (Setup, KeyGen, Enc, Dec), defined below.

Setup(1λ, k)→ (PK, MSK). This algorithm accepts a security parameter and
an index k of predicate familyR, outputs the public parameter PK and
the master secret key MSK. In the following, we assume the predicate
for this ABE is R : X ×Y → {0, 1}.

KeyGen(MSK, PK, X)→ SK. On input master secret key MSK, public param-
eter PK and key attribute X chosen from predicate space X , this algo-
rithm outputs secret key SK for key attribute X.

Enc(Y, M, PK)→ CT. On input a ciphertext attribute Y chosen from pred-
icate space Y , message M and public parameter PK, this algorithm
outputs ciphertext CT of M for attribute Y.

Dec(SK, CT)→ M. On input secret key SK with attribute X and ciphertext
CT with attribute Y, outputs a message M or ⊥.

Correctness. For all valid index k, all X ∈ Xk, Y ∈ Yk such that Rk(X, Y) = 1
and all valid message M, the following equation holds:

Dec(KeyGen(MSK, PK, X), Enc(Y, M, PK)) = M, (2.1)

where (PK, MSK) is the output of Setup(1λ, k).

2.3. Secure ABE In CML Model 19

Adaptive Security. For any stateful adversary A = {A1,A2}, we define
advantage of A as follows:

AdvABE
A (λ) = Pr



Setup:(MSK,PK)←Setup(λ,k);

Phase 1:(st,Y,M0,M1)←A
KeyGen(MSK,·)
1 (PK);

b = b
′

: Challenge:

 b $← {0, 1};
CT ←Encrypt(Y,Mb,PK);

Phase 2:AKeyGen(MSK,·)
2 (CT,st);

Guess:b
′←A2;


− 1

2
,

with the restriction that all key queries X that Amade to KeyGen(MSK, X)

satisfies Rk(X, Y) = 0. An attribute-based encryption scheme is adaptively
secure if for all PPT adversary A, AdvABE

A (λ) is negligible.

Remark 2.2.1. We note that the above definition also covers ordinary public-key
encryption when KeyGen outputs MSK and any predicate R in the familyR is of the
form {1} × {1} → {1}. In this case, encryption is only with respect to public key
PK and decryption requires the corresponding MSK. Note that since R(X, Y) = 1
for all X, Y, no key query is allowed.

2.3 Secure ABE In CML Model

2.3.1 Security Definition

An attribute-based encryption scheme is adaptively secure in the continual
memory leakage model [LRW11] if there is no PPT adversary A whose ad-
vantage is non-negligible in the following game.
Gamereal(`msk, `sk):

1. Setup Phase: Challenger C runs Setup(λ) → (PK, MSK), gives PK to
A, and setsQ = ∅ and T = {(0, ε, MSK, 0)}, whereQ denotes a subset
of predicate attribute X , and T denotes a set of tuples (H,X , (MSK or
SK), N), whereH is the handles set, N denotes the number of leakage
bit of key in this tuple.

2. Phase 1: In this phase, A can make the following queries, namely,
create query, leakage query and reveal query.

• Create query: A output a create query Create(h, X), where h is
the handle of a tuple in T whose key must be a master key, X can
either be a predicate attribute or be the empty string ε. C initially

20 Chapter 2. Preliminaries

scans T to check whether the tuple with handle h is of the form
(h, ε, MSK′, L). If this tuple does not exist or is not in this form,
C returns ⊥ to A. Otherwise, C runs KeyGen(X, MSK′, PK) → K
and adds tuple (H + 1, X, K, 0) to T . K can be either a master key
or a user key. C also needs to update the current handel H ←
H + 1.

• Leakage query: Amakes a leakage query Leak(h, f) about a key
with a handle h with a polynomial time computable function f
with constant output. C first scans T to find this specified tu-
ple with handle h, which is either with the form (h, X, SKX, L) or
(h, ε, MSK′, L).

– IfAmakes a user key leakage query for tuple (h, X, SKX, L).
C first checks whether f (SKX)+ L ≤ `sk. If yes, return f (SKX)

toA and update L in this tuple with L + f (SKX). Else, return
⊥ to A.

– IfAmakes a master key leakage query for tuple (h, ε, MSK′, L),
C first checks whether f (MSK′) + L ≤ `msk. If yes, return
f (MSK′) to A and update L in this tuple with L + f (MSK′).
Else, return ⊥ to A.

• Reveal Query A makes a reveal query Reveal(h). C scans T to
find the corresponding tuple. If this handle refers to a master
key, C returns ⊥. Else, C returns the user secret key in tuple
(h, X, SK, L) to adversary and add X to the set Q.

3. Challenge Phase: A outputs two challenge messages M0 and M1 for a
challenge attribute Y∗with the restriction that for all X ∈ Q, RN(X, Y∗)
6= 1. If no, return⊥, else C picks b ∗← {0, 1}, compute Encrypt(Y∗, Mb,
PK)→ CT and returns CT to A.

4. Phase 2: A can only make create query and reveal query for attribute
X′ with the restriction that RN(X′, Y∗) 6= 1. C return the correspond-
ing result to A.

5. Guess Phase: A output b′ ∈ {0, 1}. If b′ = b, then A successes.

The advantage of A in Gamereal is defined as following: AdvA(λ) =

|Pr[b′ = b]− 1
2 |.

Remarks: Note that this security model is equivalent to the widely accepted
continual leakage model if keys can be updated properly and no leakage

2.4. The Pair Encoding Framework 21

is allowed during the update process. We refer the reader to [LRW11] for
more details.

2.3.2 A Lemma for Leakage-Resilient Analysis

The analysis of leakage-resilient property of our pair encoding scheme relies
on the following lemma from [LRW11]. Let ∆(X1, X2) denote the statistical
distance of two random variables.

Lemma 2.3.1. Let m ∈ N, m > 3, and p be a prime. Let δ
$← Zm

p , τ
$← Zm

p ,
and τ′ be chosen uniformly and randomly from the set of vectors in Zm

p which are
orthogonal to δ under dot product modulo p. Let f : Zm

p → W be some function.
Then:

∆((δ, f (τ)), (δ, f (τ′))) ≤ ε,

as long as

|W| ≤ 4 · (1− 1
p
) · pm−2 · ε2.

2.4 The Pair Encoding Framework

In [Att14], Attrapadung introduced the pair encoding framework which
states that an ABE scheme can be described by a simpler primitive called
pair encoding which we review here. A Pair encoding scheme PE for predi-
cate familyR = {Rk : Xk ×Yk → {0, 1}}k∈Nc is a tuple of four deterministic
algorithms (Param, Enc1, Enc2, Pair) which are given below.

Param(k)→ n. This algorithm takes as input security parameter k and out-
puts the length of the public parameter~h used in Enc1 and Enc2.

Enc1(X, N)→ (~k; m2). On input attribute X ∈ X , N ∈ N, this algorithm
outputs a sequence of polynomials {k`}`∈[m1]

, each polynomial k` is
a linear polynomial in {α} ⋃ {hi}i∈[n]

⋃ {rj}j∈[m2], where {rj}j∈[m2] is
the randomness used in Enc1, and α is a variable.

Enc2(Y, N)→ (~c; w2). On input attribute Y ∈ Y , N ∈N, this algorithm out-
puts a sequence of polynomials {c`}`∈[w1]

, each polynomial c` is a lin-
ear polynomial in {hi}i∈[n]

⋃ {s, sj}j∈[w2], where~s = (s, s1, s2, . . ., sw2)

is the randomness used in Enc2.

Pair(X, Y, N)→ ~E. Take X, Y, N as input, output matrix ~E ∈ Zm1×w1
N .

22 Chapter 2. Preliminaries

Correctness. For any N ∈N, X ∈ X and Y ∈ Y , (~k, m2)← Enc1 (X, N), (~c;
w2)← Enc2 (Y, N), ~E← Pair (X, Y, N), if R(X, Y) = 1,

~k~E~c = αs.

Within this framework, an ABE scheme Π0 = (Setup, KeyGen, Enc, Dec)
for predicate family R can then be specified by a pair encoding scheme PE

= (Param, Enc1, Enc2, Pair) for the same predicate family.

Setup(1˘, k)→ (PK, MSK). Run (G, GT, e, N, p1, p2, p3)← G(1λ). Pick gen-

erators g1
$← Gp1 , g3

$← Gp3 . Then run n ← Param(k), pick ~h $← Zn
N,

α
$← ZN. The public parameter PK = (g1, g3, e(g1, g1)

α, g~h1), the master
secret key is MSK = α.

KeyGen(MSK, PK, X)→ SKX. Run (~k; m2) ← Enc1(X, N), choose~r $← Zm2
N ,

R3
$← G

m1
p3 , compute

SKX = g
~k(α,~h,~r)
1 · R3. (2.2)

Enc(PK, Y, M)→ CT = (C0, ~C1). Run (~c; w2) ← Enc2(Y, N), choose~s= {s,
s1, s2, . . ., sw2} $← Zw2+1

N .

C0 = M× e(g1, g1)
αs ~C1 = g~c(~s,~h)

1 . (2.3)

Dec(SKX, CT)→ M. Obtain X and Y from SKX and CT. If R(X, Y) = 1, run
Pair(X, Y) → ~E. Then compute e(SK~E, ~C1) → e(g1, g1)

αs and obtain
C0/e(g1, g1)

αs → M.

We also recall the security requirements of a pair encoding scheme, in-
cluding perfectly master-key hiding (PMH), selectively master-key hiding
security (SMH) and co-selectively master-key hiding security (CMH). As
stated in [Att14], both SHM and CMH are computational and the later, but
not the former, is implied by PMH.
Perfectly Master-Key Hiding Security. Let PE be a pair encoding scheme.
For N ∈ N, if R(X, Y) = 0, let n← Param(k), (~k; m2)← Enc1(X, N), (~c; w2)
← Enc2(Y, N). If the following two distributions are identical, we say PE is
perfectly master-key hiding (PMH).

{c(~s,~h),~k(0,~h,~r)} {c(~s,~h),~k(α,~h,~r)},

2.4. The Pair Encoding Framework 23

where the probability is taken over~h $← Zn1
N , α

$← ZN,~r $← Zm3
N ,~s $← Zw2+1

N .
Computational Security (CMH, SMH). We recall the ~ExpG,b,A,T(1

λ) to en-
compass these two security notions by using different types of Oracles (OT =

(OT,1,OT,2), T ∈ {SMH, CMH}) for adversary A = (A1,A2) as follows:
~ExpG,b,A,T(1

λ) :

1. (G, GT, e, N, p1, p2, p3)← G(1λ);

2. g1
$← Gp1 , g2

$← Gp2 , g3
$← Gp3 ;

3. α
$← ZN, n← Param(k),~h $← Zn

N;

4. st← A
OT,1

b,α,~h
(·)

1 (g1, g2, g3);

5. b′ ← A
OT,2

b,α,~h
(·)

2 (st).

The advantage of A in the corresponding security game ~ExpG,b,A,T(1
λ) is

defined as follows:

AdvT
A(1

λ) = |Pr[~ExpG,0,A,T(1
λ)] = 1| − |Pr[~ExpG,1,A,T(1

λ)] = 1|.

The different types of Oracle OT are defined as follows:

• Selective Security (SMH). OSMH,1 can be queried once only while OSMH,2

can be queried polynomial times.

– OSMH,1
b,α,~h

(Y): Run (~c; w2) ← Enc2(Y, p2), choose~s $← Zw2+1
p2 , return ~C←

g~c(~s,~h)
2 .

– OSMH,2
b,α,~h

(X): If Rp2(X, Y) = 1 return ⊥. Run (~k; m2) ← Enc1(X, p2),

choose~r $← Zm2
p2 , return~k←

 g
~k(α,~h,~r)
2 b = 0

g
~k(0,~h,~r)
2 b = 1

.

• Co-selective Security (CMH). Both OCMH,1 and OCMH,2 can be queried
once only.

– OCMH,1
b,α,~h

(X): If X is empty, return⊥. Otherwise, run (~k; m2)← Enc1(X, p2),

choose~r $← Zm2
p2 , return~k←

 g
~k(α,~h,~r)
2 b = 0

g
~k(0,~h,~r)
2 b = 1

.

– OCMH,2
b,α,~h,~x

(Y): If Rp2(X, Y) = 1, then return ⊥. Otherwise, run (~c; w2)←

Enc2(Y, p2), choose~s $←− Zw2+1
p2 , return ~C← g~c(~s,~h)

2 .

24 Chapter 2. Preliminaries

In this paper, we say that ABE Π is within the pair encoding framework if
it can be written as a pair encoding scheme PE and is constructed following
the above syntax. As a side note, [Att14] states that Π is adaptively secure if
PE satisfies PMH (or CMH and SMH) under assumptions SD1, SD2, SD3.

2.5 CryptoNote-Style Cryptocurrencies

As a decentralized peer-to-peer network, cryptocurrency utilizes an append-
only public ledger to record each user’s account balance, which is actually a
mapping between the user’s public-key and an amount of currency. This
public ledger is called as blockchain. Whenever an amount of currency
is spent, a user broadcasts a digitally signed message called as transac-
tion to the network. Only those transactions validated successfully can be
grouped into a block by a miner, and this new block will be appended to
the blockchain if it can be decided by the consensus protocol participated
by all miners, which is also called as proof-of-work protocol. Since all infor-
mation in the blockchain is publicly accessible, hence the double spending
checking of a coin is easier under this condition. Specifically, each trans-
action consists of several inputs and outputs, where input consumes coins
from the sender and output transfers coins to the receiver, while also main-
tains the total balance of coins. Besides, each transaction input should be an
unspent previous transaction output.

CryptoNote Protocol. CryptoNote protocol [VS13] aims at providing a
privacy enhanced cryptocurrency, with the following two properties:

• Untraceability: for any transaction, the real-spend should be anonymous
among all the sets of outputs in an input;

• Unlinkability: it is impossible to prove that any two transactions were
sent to a same user.

To achieve unlinkability, for each output in a transaction, CryptoNote
uses a one-time random public-key as the destination, which is derived
from receiver’s public-key and sender’s random data. In this way, only
the receiver who holds the permanent secret key can redeem that output.
Additionally, since each output can be uniquely identified by a public-key,
we interchangeably use the term output and public-key throughout this pa-
per. For the untraceability, CryptoNote adopts the ring signature, a cryp-
tographic primitive that allows a user to anonymously sign a transaction

2.6. Universal Accumulator 25

on behalf of a group of users, which is usually referred as a ring. There-
fore, the real-spend will be hidden via the help of other outputs, which are
called mixins. Obviously, for an input with n public-keys, the number of
its mixin is n-1. An abstract structure of a general CryptoNote transaction
is illustrated in Figure 2.1. We use tx.in to denote an input of a transaction

��������

�����

���
���
���

��������

��������

�����

���
���
��	

��������

��������

�����

���

��

��������

�������
����������

�����������

�������
����������

�����������

� �� ������� �����������

Figure 2.1: A General CryptoNote transaction.The transaction in this figure
has three inputs and two outputs. Each input is composed of three parts, the
input amount, a ring composed of several input keys, i.e., the one-time out-
put keys of previous transactions, and a ring signature. While each output
of the transaction is only composed of an output amount and a new one-
time output key. In some variations of CryptoNote protocol, the amount
of each input and output are hidden for stronger privacy, such as the ring

confidential transaction defined in Monero.

tx, which is a set of public-keys {pk1, pk2, . . . , pk`} used to create a ring sig-
nature. We also interchangeably call each input tx.in of a transaction as a
ring R throughout this paper. Specifically, we use R = {pk1, pk2, . . . , pkn} to
denote the transaction input including public-keys pk1, pk2, . . . , pkn.

2.6 Universal Accumulator

Universal accumulator is first proposed in [LLX07] and formalized by [DHS15].
Here we recall the scheme without trapdoor, and use type ∈{0, 1} to indicate
the given witness is a membership (type = 0) or nonmembership (type = 1)
witness. The syntax of a universal accumulator is given below:

Setup(n) → pp. On input a security parameter n, this algorithm outputs the
public parameter pp.

26 Chapter 2. Preliminaries

Accpp(R) → u. On input an accumulated set R = {d0, d1, . . . , dN−1} with
size N, the algorithm outputs the accumulator value u.

Witnesspp(d, R, type) → w or ⊥. The algorithm outputs a type of witness w
for d according to the value of type. It outputs ⊥ if d /∈ R ∧ type = 0
or d ∈ R ∧ type = 1.

Verifypp(d, u, w, type) → 0 or 1. The algorithm outputs 1 if one of the fol-
lowing two cases happen:

1. type = 0 and w is a witness for d ∈ R;

2. type = 1, and w is a witness for d /∈ R.

Otherwise, output 0.

Correctness. The correctness requires that for all pp ← NM-Setup(n), the
following equations hold:

1. for all d ∈ R, Verifypp(d, Accpp(R), Witnesspp(d, R, 0), 0) = 1;

2. for all d /∈ R, Verifypp(d, Accpp(R), Witnesspp(d, R, 1), 1) = 1.

Security Definition. A universal accumulator scheme defined above is
secure if for all probabilistic polynomial-time adversary A, the following
equation holds:

Pr


pp← NM-Setup(n); (R, d∗, w∗, type)← A(pp) :

d∗ ∈ R ∧ Verifypp(d
∗, Accpp(R), w∗, type = 1) = 1

or

d∗ /∈ R ∧ Verifypp(d
∗, Accpp(R), w∗, type = 0) = 1

 = negl(n),

where negl(n) is a negligible function about n. In other words, the security
of a universal accumulator requires that it is computationally infeasible to
prove that a value d∗ is not accumulated in the value u if it is or a value d∗

is accumulated in the value u if it is not.

2.6.1 Accumulator For Nonmembership

Observe that a universal accumulator concerns two types of witness, one is
the witness for membership and another is the witness for nonmembership,
where the first part is the original definition of accumulator. We refer the

2.6. Universal Accumulator 27

reader to Definition1 in [DHS15] for the formal definition of accumula-
tor (for membership). For the part about nonmembership, we separate the
scheme for it as follows:

An accumulator for nonmembership is consisted of a tuple algorithms
(NM-Setup, NM-Acc, NM-Witness, NM-Verify) given below:

NM-Setup(n) → pp. This algorithm is used to generate the public parameter
pp on the input security parameter n.

NM-Accpp(R) → u. On input a set R = {d0, d1, . . . , dN−1} with size N, the
algorithm outputs the accumulator value u.

NM-Witnesspp(d, R) → w. For a set R and a value d, if d ∈ R, then outputs
⊥. Otherwise, outputs a witness w for the fact that d is not accumu-
lated in the output of NM-Accpp(R).

NM-Verifypp(u, d, w) → {0, 1}. The algorithm outputs 1 if witness w can
prove that d is not accumulated into u. Otherwise, outputs 0.

Correctness. The correctness requires that for all pp ← Setup(n), the fol-
lowing equation holds for all d /∈ R:

NM-Verifypp(NM-Accpp(R), d, NM-Witnesspp(d, R)) = 1.

Security Definition. An accumulator for non-membership is secure if for
all probabilistic polynomial-time adversary A,

Pr[pp← Setup(n); (L, d∗, w∗)← A(pp) : d∗ ∈ L∧
NM-Verifypp(NM-Accpp(L), d∗, w∗) = 1] = negl(n),

where negl(n) is a negligible function about n. In other words, the secu-
rity says that it is computationally infeasible to prove that a value d∗ is not
accumulated in the value u if it is.

It is obviously that if we run the algorithms of accumulator and accu-
mulator for nonmembership independently, then the combination of these
two parts can give a universal accumulator. More precisely, let (M-Setup,
M-Acc, M-Witness, M-Verify) be an accumulator scheme, and (Setup, NM-Acc,
NM-Witness, NM-Verify) be an accumulator for nonmembership scheme, then
a universal accumulator scheme (Setup, Acc,Witness,Verify) can be constructed
as follows:

28 Chapter 2. Preliminaries

Setup(n). Run ppm←M-Setup(n), ppnm←Setup(n). Output pp = (ppm, ppnm).

Accpp(R). Run um←M-Accppm(R), unm←NM-Accppnm(R). Return (um, unm).

Witnesspp(d, R, type). If type = 0, run wm ← M-Witnessppm(d, R), and return
wm. Otherwise, run wnm←NM-Witnessppnm(d, R), and return the out-
put.

Verifypp(d, u, w, type). If type = 0, then recall M-Verifyppm(u, d, w), and re-
turn the output. Otherwise, run NM-Verifyppnm(u, d, w) and return the
output.

Both the correctness and the security can be reduced to underlying primi-
tives (accumulator and accumulator for nonmembership) straightforwardly,
and we just omit the details here.

2.7 Zero-Knowledge Arguments of Knowledge

Zero-knowledge arguments of knowledge [GMR89] (ZKAoK) is an interac-
tive protocol where a prover can convince the verifier that he possesses the
witness for a statement in a NP relation without revealing any information
about the witness. Moreover, we require it to have the following security
properties [GMR89]:

Completeness. The prover can convince the verifier if he knows a witness
testifying to the truth of the statement.

Soundness. A malicious prover cannot convince the verifier if the state-
ment is false.

Zero-knowledge. A malicious verifier can know nothing but the statement
is true from the proof.

Extractability. A probabilistic polynomial time extractor can extract the wit-
ness for a true statement from a convincing argument made by the
prover.

In addition, as mentioned in [FS86], also known as Fiat-Shamir heuristic,
a three round public-coin interactive ZKAoK can be transformed into a non-
interactive one in the random oracle model. We refer the reader to [BR93]
for the security analysis Fiat-Shamir heuristic.

2.7. Zero-Knowledge Arguments of Knowledge 29

2.7.1 Abstract Stern’s Protocol

Here we recall the abstract Stern’s protocol proposed by Libert et al. in
[LLNW17], which is a type of ZKAoK system capturing the following re-
lations. For all i ∈ [n], assume ni and di ≥ ni be positive integers. For
public matrices {Pi ∈ Zni×di

qi }i∈[n] and vectors vi ∈ Zni
qi , the prover argues

the possession of mutually related integer vectors {xi ∈ {−1, 0, 1}di}i∈[n] in
a zero-knowledge manner, such that :

∀i ∈ [1, n] : Pi · xi = vi mod qi.

Let d = d1 + d2 + . . . + dn, and x = (x1||x2|| . . . ||xn). Assume VALID

is a subset of {−1, 0, 1}d, and S be a finite set such that one can associate
every π ∈ S with a permutation Tπ of d elements which satisfies the condi-
tions (2.4), then we can get Lemma 2.7.1.{

x ∈ VALID⇐⇒ Tπ(x) ∈ VALID;

If x ∈ VALID and π is uniform in S, then Tπ(x) is uniform in VALID.

(2.4)

Lemma 2.7.1 (Theorem 1 in [LLNW17]). The constructed abstract Stern’s proto-
col shown in Figure 2.2 is a statistical ZKAoK with perfect completeness, soundness
error 2/3, and communication cost O(Σn

i=1di · log qi). In particular:

• There exists an efficient simulator that, on input {Pi, vi}i∈[1,n], outputs an
accepted transcript which is statistically close to that produced by the real
prover.

• There exists an efficient knowledge extractor that, on input a commitment
CMT and 3 valid response (RSP1,RSP2, RSP3) to all 3 possible values of
the challenger Ch, outputs x′ = (x′1, · · · , x′n) ∈ VALID such that Pi · x′i =
vi mod qi for all i ∈ [1, n].

Therefore, to employ the abstract Stern’s protocol to prove a statement,
one needs to first transform the statement into the form of Pi · xi = vi mod qi

with a specifically designed witness set VALID, then specify the set S and
permutations of d elements {Tπ, π ∈ S} which can make conditions (2.4)
hold. In this way, a ZKAoK can be constructed via the framework of abstract
Stern’s protocol.

30 Chapter 2. Preliminaries

1. Commitment: Prover P sample π
$← S, r1

$← Zd1
q1 , . . ., rn

$← Zdn
qn ,

and computes r = (r1|| . . . ||rn), z = x� r. Then P samples ρ1, ρ2,
ρ3 for commitment COM, then computes and sends CMT = {C1,
C2, C3} to verifier V, where

C1 = COM(π, {Pi · ri mod qi}i∈[1,n]; ρ1)

C2 = COM(Tπ(r); ρ2)

C3 = COM(Tπ(z); ρ3).

2. Challenge: Verifier V picks a uniformly random challenge Ch $←
{1, 2, 3}, and sends it to P.

3. Response: According to the Ch, P reveals different commitments
via sending RSP in the following way:

• Ch = 1 : let tx = Tπ(x), tr = Tπ(r), RSP = (tx, tr, ρ2, ρ3).

• Ch = 2 : let π2 = π, w = z, RSP = (π2, w, ρ1, ρ3).

• Ch = 3 : let π3 = π, RSP = (π3, r, ρ1, ρ2).

Verification: Once receiving RSP, verifier V checks as follows:

• Ch = 1 : check that tx is VALID, C2 = COM(tr; ρ2), C3 = COM(tx �
tr; ρ3).

• Ch = 2 : parse w = (w1|| . . . ||wn), where wi ∈ Zdi
qi for all i ∈ [1, n],

then check that C1 = COM(π2, {Pi ·wi − vi mod qi}i∈[1,n]; ρ1), and
C3 = COM(Tπ2(w); ρ3).

• Ch = 3 : parse r = (r1|| . . . ||rn), then check that C1 = COM(π3, {Pi ·
ri mod qi}i∈[1,n]; ρ1), and C2= COM(Tπ3(r); ρ2).

In each case, V outputs 1 if and only if all conditions hold.

Figure 2.2: Abstract Stern’s protocol[LLNW17]. COM is a string commit-
ment scheme proposed in [KTX08] with statistically hiding and computa-
tionally binding properties. ‘�’ is the modular addition operator, such that

z = ((x1� r1) mod q1)|| . . . ||(xn � rn) mod qn)).

31

Chapter 3

Cross-System Proxy Re-Encryption

Outsourcing the decryption of ABE is introduced by Green et al. [GHW+11]
to provide an efficient way to perform the decryption of the ciphertext of
ABE. Specifically, they proposed a mechanism which allows a proxy to
transform ABE ciphertext to a short Elgamal ciphertext which supports ef-
ficient decryption. However, in the aforementioned ABE with outsourcing,
the type of the target ciphertext is determined at the setup of the outsourc-
ing scheme. This leads to several problems.

• Firstly, the mechanism is not friendly for data sharing. For example,
Alice is a staff at a university. While the university often provides
daily information such as the notification of the Christmas party. Al-
ice wants to forward them to her friend, but she does not want to
complete the encryption operation on her mobile phone and hopes
to outsource this task to her server on the original encrypted email.
However, current outsourcing schemes cannot transform ciphertext
into the one encrypted under other’s public key.

• Secondly, the mobile phone may be infected with malware or suffered
from side channel attacks. Part of the secret key embedded inside the
phone may be stolen or tampered with. To guarantee data confiden-
tiality, a robust client side decryption scheme should be used. Ideally,
the target cryptosystem should offer resistance against side channel
and related-key attacks. However, current outsourcing schemes do
not support this.

To solve these problems, we revisit the task of ABE with outsourcing
and observe that proxy re-encryption (PRE) may help. The concept of PRE

was introduced by Blaze et.al. in [BBS98] to support delegation of decryp-
tion rights from one party to another with the help of a semi-trusted proxy
holding a re-encryption key. In this way, ciphertexts of the delegator can be

32 Chapter 3. Cross-System Proxy Re-Encryption

transformed to ciphertexts of the delegatee by a proxy without the involve-
ment of the former. Security of the PRE schemes requires that neither the
proxy nor the delegatee alone could learn any information from ciphertexts
of the delegator. This primitive has extensive pivotal applications, espe-
cially for efficient data storing and sharing [AFGH06, YWRL10, LWW14] in
cloud computing and social networks [JMB11]. Especially, it was deployed
by a company AtCipher in their product to enable secure cloud storage and
data sharing.

Now, with the help of PRE schemes, we can transform the source cipher-
text into the target ciphertext of a specific type of encryption scheme. For
example, in order to access data encrypted under ABE schemes, Alice could
send a re-encryption key to the cloud, then ask the cloud to transform the
ABE ciphertext to a lightweight one, say, RSA ciphertext when needed; or
ask the cloud to transform the ciphertext into the one encrypted under Bob’s
public key. Unfortunately, current existing constructions of PRE schemes
cannot satisfy our requirement. Especially, there is no PRE scheme support-
ing flexible target scheme previously.

Chapter Organization. We start by an overview about our contribution
and technique is given in Section 3.1. The formal definition of CS-PRE is
presented in Section 3.2, and the construction of CS-PRE is shown in Sec-
tion 3.3. Finally, the chapter ends with a discussion about the hardness of
constructing CS-PRE in prime-order groups in Section 3.4.

3.1 Our Contribution in Constructing CS-PRE

We introduce and formalize the notion of cross-system proxy re-encryption
(CS-PRE) which supports the transformation of the ciphertexts from the
source cryptosystem to those in the target cryptosystem. Our construction
of CS-PRE is versatile, supporting a large class of attribute-based encryp-
tions for the source cryptosystem and does not impose any restriction on
the target cryptosystem except that it must be IND-CPA secure. We prove
that our proposal is fully secure in the standard model under static assump-
tions. The architecture of our system is shown in Figure 3.1.

The Techniques. The basic idea of our construction is similar to that in
[GA07, LAL+15]. However, to support the cross-system property and to
avoid the chain collusion attack, we encrypt the randomness used for hiding

3.1. Our Contribution in Constructing CS-PRE 33

ABE within [Att14]

Source Crypto-System

Proxy

Target Crypto-Systems (Any CPA-PKE)

PKE (e.g. Elgamal [ElG84], RSA [RSA78],

NTRUCCA [SLP+12]),

IBE(e.g., [Wat05, LW10]),

ABE (e.g., [LOS+10]),

HIBE (e.g., [BW06, GH09])

DFA-ABE (e.g., [Wat12]),IPE (e.g., [OT12])

C

Figure 3.1: Workflow of our construction.The rectangle on the right means
the set of all attribute-based schemes. ABE within [Att14] means those ABE
schemes within the framework presented in [Att14]. PKE means the set of
the original public-key encryption schemes. DFA-ABE means deterministic

finite automata-based ABE for regular language.

the secret key of the original encryption scheme with another CPA-secure
encryption scheme. To prove the security of the scheme, we devise an alter-
native proof sequence for re-encryption key queries for attributes matching
the challenge ciphertext. Looking ahead, we make use of the subgroup deci-
sion assumptions and the IND-CPA security of the target encryption scheme
to hide those keys computationally.

Two Application Scenarios. Here we also propose two applications of our
cross-system proxy re-encryption schemes.

• For the case of efficiency, our constructed CS-PRE can be used to trans-
form the ABE ciphertext into the ciphertexts of some lightweight public-
key encryption schemes suitable for the portable devices. This case is
very similar to outsourcing the decryption of ABE ciphertext. The ar-
chitecture for this case is illustrated in Figure 3.2, where a cloud user
may want to ask the cloud to help transform the ABE ciphertext put in
the cloud to a lightweight public-key ciphertext.

• For the consideration of enhanced functionality, our constructed scheme
can also be used to transform the ABE ciphertext into many differ-
ent ciphertexts. The targeted ciphertexts can be of the same type of
public-key encryption scheme but encrypted under different public
keys, or of different types of public-key encryption schemes. This kind
of transformation is done via the help of the different re-encryption
keys. The architecture for this case is illustrated in Figure 3.3.

34 Chapter 3. Cross-System Proxy Re-Encryption

Source Cryptosystem Target CryptosystemsProxy

1. ABE-CT

2. rk

3. r-CT

Figure 3.2: Use Case 1 of our CS-PRE.
“ABE-CT” denotes the ABE ciphertext, “rk” is the abbreviation for re-

encryption key, and “r-CT” denotes the re-encryption ciphertext.

Source Cryptosystem Target CryptosystemsProxy

(ABE-CT,rk1)
.
.
.

(ABE-CT,rkn)

r-CT1

r-CTn

.

.

.

r-CT2

CS1

CS2

CSn

Figure 3.3: Use Case 2 of our CS-PRE.
“ABE-CT” denotes the ABE ciphertext, “rk” is the abbreviation for re-
encryption key, and “r-CT” denotes the re-encryption ciphertext. “CS” is

the short for cryptosystem.

3.2. Syntax of CS-PRE 35

3.2 Syntax of CS-PRE

Recall that in REMARK 2.2.1, we analyze the definition of ABE scheme can
cover the definition of PKE. Hence, in this section, we directly consider the
transformation between two ABE schemes. Consider two attribute-based
encryption schemes, namely, Π0 and Π1. For notational convenience, we
use Πb.PK to denote the public parameter of an instance of Πb for b ∈ {0, 1}.
In other words, Πb.KeyGen(1λ)→ (Πb.PK, Πb.MSK). We slightly abuse the
notation and use Πb.SKX instead of Πb.SKΠb.X to denote a decryption key
of attribute Πb.X in cryptosystem Πb. A cross-system proxy re-encryption
scheme CS-PRE for Π0, Π1 is a tuple of three algorithms (RE-KeyGen, RE-Enc,
RE-Dec) whose definition is given below.

RE-KeyGen(Π0.PK, Π0.SKX, Π1.PK, Π1.Y)→rkΠ0.X→Π1.Y. The algorithm out-
puts the re-encryption key rkΠ0.X→Π1.Y, which can be used to convert
any ciphertext whose attribute matches Π0.X in Π0 to a ciphertext of
attribute Π1.Y in Π1.

RE-Enc(Π0.PK, rkΠ0.X→Π1.Y, Π0.CT)→ Π1.CT(2), which converts Π0.CT to ci-
phertext Π1.CT(2) on input a re-encryption key.

RE-Dec(Π0.PK, Π1.PK, Π1.CT(2), Π1.SK)→ M.

Correctness. For all valid index k and k′, all Π0.X ∈ Π0.Xk, Π0.Y ∈ Π0.Yk,
Π1.Y ∈ Π1.Yk′ , Π1.X ∈ Π1.Xk′ , if Π0.Rk(Π0.X, Π0.Y) = 1 and Π1.Rk′ (Π1.X,
Π1.Y) = 1, then for any ciphertext RE-Enc(Π0.PK,rkΠ0.X→Π1.Y, Π0.CT) →
Π1.CT(2), the following equation holds,

RE-Dec(Π0.PK, Π1.PK, Π1.CT(2), Π1.SKX) = M,

where rkΠ0.X→Π1.Y is the output of RE-KeyGen(Π0.PK, Π0.SKX, Π1.PK, Π1.Y),
and Π0.CT is computed by Π0.Enc(Π0.PK, M, Π0.Y).

3.2.1 Security Notion

We present a formal security model for the security requirement of CS-PRE.
We allow the adversary to adaptively introduce new target cryptosystem
and to obtain arbitrary decryption keys, master secret keys of the target
cryptosystems as well as re-encryption keys subject to the constraint that
none of which would allow the attacker to trivially win the security game.

36 Chapter 3. Cross-System Proxy Re-Encryption

Let Π0 be an ABE scheme. Looking ahead, Π0 acts as the source cryp-
tosystem in the attack game. Let CS-PRE be the cross-system proxy re-
encryption. Firstly, we define four oracles to model the capability of the
attacker.

1. OSetup(Πi): run Πi.Setup(1λ)→(Πi.PK, Πi.MSK), return the public key
Πi.PK.

2. O0
K: This oracle allows the adversary to obtain decryption keys and

re-encryption keys of Π0. This oracle works as follows.

• For a secret key query on (Π0.X). Run Π0.KeyGen(Π0.PK, Π0.MSK,
Π0.X)→ Π0.SKX, return Π0.SKX.

• For a re-encryption key query on (Π0.X, Πi.Y, Πi), run Π0.KeyGen(
Π0.PK, Π0.MSK, Π0.X) → Π0.SKX, compute RE-KeyGen (Π0.PK,
Π0.SKX, Πi.Y, Πi.PK)→ rkΠ0.X→Πi.Y, return rkΠ0.X→Πi.Y.

3. OK(Πi, Πi.X): run Πi.KeyGen(Πi.PK, Πi.MSK, Πi.X)→Πi.SKX, return
Πi.SKX.

4. Ocor(i): return Πi.MSK where i 6= 0.

The adaptively chosen-plaintext game Gamereal is defined as below.

• SetupPhase : C runs Π0.Setup(1λ, k)→(Π0.PK, Π0.MSK), then returns
Π0.PK to A.

• Phase1 : A can arbitrarily issue queries to the oracles defined above.

• Challenge Phase : A outputs two message (M0, M1) and a challenge
ciphertext attribute Π0.Y∗. C runs Π0.Enc(Π0.Y∗, Mb, Π0.PK)→Π0.CT∗,

and returns Π0.CT∗ to A, where {0, 1} $→ b. Otherwise, C returns ⊥.

• Phase2 : As in Phase1.

• GuessPhase : A outputs a guess b
′
. If b

′
= b, A wins.

• Restrictions. To prevent A from winning trivially, the following re-
strictions are imposed throughout the game.

1. For all O0
K(Π0.X) queries made, R0(Π0.X, Π0.Y∗) = 0.

2. For all OK(Πi, Πi.X) and O0
K(Π0.X, Πi.Y, Πi) queries, R0(Π0.X,

Π0.Y∗) and Ri(Πi.X, Πi.Y) cannot be 1 simultaneously.

3.3. Our Construction 37

3. For all Ocor(Πi) and O0
K(Π0.X, Πj.Y, Πj) queries, if R0(Π0.X,

Π0.Y∗) = 1, i 6= j.

Informally speaking,A cannot ask for a key that is capable of decrypt-
ing the challenge ciphertext directly (restriction 1). If A obtains a re-
encryption key from X∗ (an attribute such that R(X, Y∗) = 1) to Πi.Y′,
it cannot ask for a key that can decrypt ciphertext for Πi.Y′ (restriction
2) nor the master secret key for Πi (restriction 3).

Definition 3.2.1 (Security). A CS-PRE scheme is fully chosen-plaintext secure
if for all PPT adversary A = {A1,A2}, the advantage function AdvA(1λ) in the
above game is negligible:

AdvA(1
λ) = Pr



(Π0.MSK, Π0.PK)← Π0.Setup(1λ, k);
(st, M0, M1, Π0.Y∗)←
AO

0
K ,OK ,OSetup,Ocor

1 (Π0.PK);

b = b
′

:

{
b $← {0, 1};
Π0.CT ← Π0.Enc(Π0.Y∗, Mb, Π0.PK);

AO
0
K ,OK ,OSetup,Ocor

2 (Π0.CT, st);
b
′ ← A2;


− 1

2 .

For clarity, we have omitted restrictions in the above definition of advan-
tage function.

3.3 Our Construction

In this section, we present our construction of CS-PRE for any ABE within
the pair encoding framework discussed in Section 2.4 followed by its secu-
rity analysis. We would like to reiterate that only the source cryptosystem
needs to be within pairing encoding framework while the choice of the tar-
get cryptosystems does not have this requirement.

3.3.1 Overview of Our Construction

We observe that ABEs in the pair encoding framework [Att14] fit nicely into
our construction idea. Informally speaking, the structure of the secret key

38 Chapter 3. Cross-System Proxy Re-Encryption

and ciphertext are of the form1:

SKX = g
~k(α,~r,~h)
1 C0 = M× e(g1, g1)

αs CY = g~c(~s,~h)
1 .

If key attribute X matches ciphertext attribute Y, i.e., R(X, Y) = 1, then the
linear combination of~k(α,~r,~h) and ~c(~s,~h) can recover the value e(g1, g1)

αs.
In other words, there exists a matrix ~E such that e(SK~E

X, CY) = e(g1, g1)
αs,

where SKX and CY are both vectors of group elements. Note that this is what
we need exactly. For any SKX and any ciphertext C0, CY, e((SKδ

X)
~E, CY) =

e(g1, g1)
αsδ when R(X, Y) = 1.

Suppose (enc, dec) is the encryption and decryption algorithm of the tar-
get recipient, we can construct the re-encryption algorithm for any ABE in
the above form as follows.

• Re-encryption key: Randomly pick δ, compute rk0 := SKH(δ)
X and

rk1 := enc(δ), where H is a hash function that maps δ from the mes-
sage space of enc to ZN.

• Re-encryption: On input (C0, CY), compute

F := e(rkE
0 , CY) = e(g1, g1)

αsH(δ).

Output (C0, F, rk1).

• Re-Decryption: On input (C0, F, rk1), compute δ := dec(rk1). Output
C0/F1/H(δ).

3.3.2 Our Construction of CS-PRE

We present our construction of CS-PRE, which allows the proxy server to
convert a ciphertext from an ABE scheme Π0 within the pair encoding frame-
work to any other scheme Π. Since Π0 is within the framework, it works in a
bilinear group (G, GT, e, N). In the following, we assume H : {0, 1}∗ → ZN

is a hash function whose output is uniformly distributed if its input is uni-
form. Notably, it is not hard to find such kind of hash function, e.g. KDF
function in [CS03].

RE-KeyGen(Π0.PK, Π.PK, Π0.SKX, Π.Y)→ rkΠ0.X→Π.Y :=(~rk, Π.~C).

1Note that this is a simplified description where we omit the Gp3 -component of the keys
and ciphertexts.

3.3. Our Construction 39

Π.Y is the ciphertext attribute of Π, Π0.SKX is a user secret key for

attribute Π0.X. Run (~k; m2)← Enc1(Π0.X, N), choose~r2
$← Zm2

N , R3
$←

G
m1
p3 and δ

$←MΠ.

~rk = (Π0.SKX · R3 · g
~k(0,~h,~r2)
1)H(δ). (3.1)

Run Π.Enc(Π.PK, Π.Y, δ)→ Π.~C, return (~rk, Π.~C).

RE-Enc(Π0.PK, rkΠ0.X→Π.Y, Π0.CTZ, Π0.X)→ Π.CT(2). Suppose that
rkΠ0.X→Π.Y = (~rk, Π.~C), Π0.CTZ = (Π0.CZ,0, Π0.~CZ,1) and R0 (Π0.X,
Π0.Z) = 1. Run Pair(Π0.X, Π0.Z)→ ~E, compute

F = e(~rk
~E

, Π0.~CZ,1) (3.2)

Output Π.CT(2) = (Π0.CZ,0, F, Π.~C).

RE-Dec(Π0.PK, Π.PK, Π.CT(2), Π.SKW)→ M. If R(W, Y) = 1, then run Π.Dec

(Π.PK, Π.SKW , Π.~C)→ δ. Return Π0.CZ,0/F
1

H(δ) .

3.3.3 Security Analysis

Assume adversary Amakes q1 and q2 queries to O0
K in Phase1 and Phase2

respectively. Also, let A issue q queries to OSetup. We have the following
theorem regarding the security of our construction of CS-PRE.

Theorem 3.3.1. Suppose the underlying pair encoding scheme PE for Π0 is co-
selectively and selectively master key hiding and assumptions SD1, SD2, SD3 hold
in G. Also assume that the target cryptosystems {Πi}

q
i=1 are chosen-plaintext

secure. Then our construction satisfies Definition 3.2.1. More precisely, for any
PPT adversary A, there exists adversary B1, B2, · · · , B6 who run nearly the same
time as A, such that for any λ:

AdvA(1λ) ≤ 2AdvSD1
B1

(1λ) + (4q1 + 4q2 + 1)AdvSD2
B2

(1λ)

+ q1AdvCMH
B3

(1λ) + q2AdvSMH
B4

(1λ) + AdvSD3
B5

(1λ)

+ 2q(q1 + q2)AdvCPA
B6

(1λ). (3.3)

Remark 2. The selectively master-key hiding security for PE used in our
security proof is weaker than the original definition as mentioned in Sec-
tion 2.4. Here we require that both OSMH,1 and OSMH,2 can be queried once
only.

40 Chapter 3. Cross-System Proxy Re-Encryption

Semi-Functional Algorithm. The following algorithms will be used in the
security proof of our generic construction.

SFSetup(1λ, k). This algorithm is nearly the same as Setup(1λ, k) defined in

Section 2.4 except that it additionally outputs a generator g2
$← Gp2 ,

~̂h $← Zn
N. We call ~̂h the semi-functional parameters.

SFEncrypt(Π0.Y, M, Π0.PK, g2,~̂h). This algorithm first runs (~c; w2) ← Enc2

(Π0.Y, N). Then choose ~s= (s, s1, s2, . . ., sw2) $← Zw2+1
N , ~̂s $← Zw2+1

N ,
output the semi-functional ciphertext Π0.CT = (C0, ~C1):

C0 = e(g1, g1)
αs ×M ~C1 = g~c(~s,~h)

1 · g~c(~̂s,~̂h)
2 .

SFKeyGen(Π0.X, Π0.MSK, Π0.PK, g2, type, α̂,~̂h). This algorithm runs (~k; m2)

← Enc1 (Π0.X, N), picks ~̂r,~r $← Zm2
N , ~R3←Zm1

N , then outputs one type
of semi-functional secret key depending on the input type ∈ {1, 2, 3}.

Π0.SKX =


g
~k(α,~h,~r)
1 · g

~k(0,~̂h,~̂r)
2 · g~R3

3 if type = 1

g
~k(α,~h,~r)
1 · g

~k(α̂,~̂h,~̂r)
2 · g~R3

3 if type = 2

g
~k(α,~h,~r)
1 · g

~k(α̂,~0,~0)
2 · g~R3

3 if type = 3

SFRE-KeyGen(Π0.PK, Π0.SKX, Πi.Y, Πi.PK)→ rkΠ0.X→Πi.Y. Run (~k; m2)← Enc1

(Π0.X, N), pick δ
$← GT,~r2

$← Zm2
N , then compute

~rk =


(Π0.SKtype1

X · g
~k(0,~h,~r2)
1)H(δ) if type = 1

(Π0.SKtype2
X · g

~k(0,~h,~r2)
1)H(δ) if type = 2

(Π0.SKtype3
X · g

~k(0,~h,~r2)
1)H(δ) if type = 3

Πi.~C ← Πi.Enc(Πi.PK, Πi.Y, δ).

Notably, here the type of ~rk depends on the type of input Π0.SKX, and
Π0.SKtypei

X means SKX is a type-i secret user key.

Proof Overview. Here we first define a sequence of games.

Gamereal : This is the real game as defined in Section 3.2.1.

Gameres : This game is nearly the same as Gamereal, except that all attribute
X queried toO0

K is Rp2(Π0.X, Π0.Y∗) = 0 rather than RN(Π0.X, Π0.Y∗)
= 0.

3.3. Our Construction 41

Game0 : Run SFSetup(1λ, k) in the setup phase.

Modify Π0.CT∗ ← SFEncrypt(Π0.Y∗, Mb, Π0.PK, g2,~̂h).

Gamek : For those key queries and re-encryption key queries to O0
K made

byA , C answers the j-th query by generating the corresponding secret
key as follows.
α̂j ← ZN,
SKXj ←

SFKeyGen(Π0.Xj, Π0.MSK, Π0.PK, g2, 3, α̂j,~0,~0) j < k
SFKeyGen(Π0.Xj, Π0.MSK, Π0.PK, g2, 3, α̂j,~0,~0) j = k
KeyGen(Π0.Xj, Π0.MSK, Π0.PK) j > k

Game f inal : Modify M $←M, and Π0.CT∗ ← SFEncrypt(Π0.Y∗, M, Π0.PK,

g2, ~̂h).

The proof structure is stated as follows.
Greal Gres G0 · · · Gk−1 Gk · · ·

· · · Gq1+q2 G f inal

Semi-Functional Key Invariance in Our Proof. In fact, the proof structure
of our proof is similar as the proof in [Att14],but in our proof the simu-
lator needs to handle the simulation for the re-encryption key query from
Π0.Xk to Πi.Yk in each phase. As a result, the original indistinguishability
between Gamek−1 and Gamek does not hold if we use the proof techniques
as [Att14]. Then, for clarity of reading, we give the proof of the indistin-
guishability between any two adjacent games in Appendix A.1. In the fol-
lowing, we give the insight of proof of semi-functional key invariance.

As mentioned above, the main difference between our proof and the
proof in [Att14] is that the adversary additionally has the ability to make
query about re-encryption key from Π0.Xk to Πi.Yk in each phase. As a
result, the indistinguishability between Gamek−1 and Gamek may be com-
promised. To solve this problem, we further divide the k-th query into one
of the two cases, depending on whether the key attribute Π0.Xk in the k-
th re-encryption key query can match the ciphertext attribute Π0.Y∗ in the
challenge ciphertext. We prove that in both cases, indistinguishability be-
tween Gamek−1 and Gamek holds.

• Case 1: R(Π0.Xk, Π0.Y∗) = 0. That is, secret key of attribute Π0.Xj can-
not decrypt the challenge ciphertext. Then the security proof in this
case is similar as the proof for the fully security of an ABE scheme.

42 Chapter 3. Cross-System Proxy Re-Encryption

Since the simulator in an ABE scheme can generate all keys which
cannot decrypt the challenge ciphertext, it can also simulate the cor-
responding re-encryption key.

• Case 2: R(Π0.Xk, Π0.Y∗) = 1. In this case, secret key of attribute Π0.Xj

can decrypt the challenge ciphertext. Additional technique is required
to answer a re-encryption key query since simulator of an ABE scheme
cannot generate the keys which can decrypt the challenge ciphertext.
We leverage the fact that the simulator is not giving away this kind
of keys in plain. Rather, it is masked by δ. which is encrypted in
the target cryptosystem. The chosen-plaintext security of the target
scheme can guarantee that δ is indistinguishable from a randomly and
uniformly distributed value. The crucial point in the proof is that we
need to prove a re-encryption key in which the secret key can decrypt
the challenge ciphertext is indistinguishable from a re-encryption key
whose underlying secret key cannot decrypt the challenge ciphertext.
In this way, simulator of PREs can simulate this case.

Remark 3.3.1. We remark that when the target PKE scheme Π has an enhanced
security guarantee, e.g., leakage-resilience or relate-key attack resilience etc., the
security of the resulting scheme can also be boosted (i.e. the CS-PRE will be resilient
to the side-channel attacks or the related-key attacks to some extend).

Besides, the computation cost of the re-encryption process and re-decryption
process of our CS-PRE schemeare roughly the same as the decryption of the source
ciphertext and the decryption of the target ciphertext. The complexity of our proxy
re-encryption is determined by the complexity of the decryption algorithms in source
and target cryptosystems.

3.4 Discussion

Compared with composite-order groups, schemes based on prime-order
groups are preferable since they are more efficient. Recently, Chen et al.
present two types of techniques [CW13, CGW15] for simulating composite-
order groups in prime-order groups. Via their methods, many fully secure
ABE schemes in prime-order groups ([CW13, CGW15, Att15]) have been
presented. However, for the sake of efficiency and conciseness, only those
essential properties of composite order groups are simulated. Therefore,
their techniques are not applicable to our framework.

3.4. Discussion 43

To see this, recall that in these techniques, the encoding parts, namely,
the key encoding and the ciphertext encoding, are duplicated multiple times
to simulate those properties of composite order groups, and in the decryp-
tion algorithm, intermediate results for all pairs of key encoding and ci-
phertext encoding will be summed up to recover the mask of the plaintext.
These techniques, however, cannot be directly applied to our construction.
Specifically, in our re-encryption algorithm, the re-encryption key is used to
partially decrypt the ciphertext and that different intermediate results will
be masked with different randomness and therefore cannot be summed up
to recover the mask. Hence, we need to seek for new technique to con-
struct attribute-based proxy re-encryption schemes in prime-order groups
and leave this as an open problem.

45

Chapter 4

Leakage-Resilient Attribute-Based
Encryption

In this section, we focus on strengthening the security of attribute-based
encryption scheme to be secure against side-channel attacks, a new attacks
appearing due to our ability in better controlling the hardware on which the
cryptographic systems are deployed. In particular, we present the construc-
tion of attribute-based encryption schemes in the area of leakage-resilient
cryptography, where the additional ability of side-channel attacker is mod-
elled by queries of efficiently computable leakage function on secret states of
the scheme. Here we consider the most realistic security model in leakage-
resilient cryptography, namely, continual memory leakage model.

Chapter Organization. This chapter is started with an overview of our
contribution in constructing leakage-resilient attribute-based encryptions in
Section 4.1. We introduce the new proposed leakage-resilient pair encoding
scheme in Section 4.2. The general framework of constructing LR-ABE is
given in Section 4.3. Furthermore, Section 4.4 covers the general transfor-
mation to enhance pair encoding with leakage-resilient property. Finally,
this chapter ends with the instantiations of our framework in Section 4.5.

4.1 Our Contributions in Constructing LR-ABE

In this work, we mainly consider how to construct functional encryption ap-
plicable to fog computing. Inspired by the techniques of [LRW11] and the
framework of [Att14], we propose a framework for leakage-resilient adap-
tively secure ABEs. The main component of our framework is the defini-
tion of a new primitive that we called leakage-resilient pair encodings. Our
framework involves two transformations which are illustrated in Figure 4.1:

46 Chapter 4. Leakage-Resilient Attribute-Based Encryption

• Transformation from Pair Encodings to Leakage-Resilient Pair En-
codings. First, we define the notion of leakage-resilient pair encod-
ings. Then, we present a transformation technique that turns a large
class of pair encodings into leakage-resilient pair encodings.

• Transformation from Leakage-Resilient Pair Encodings to Leakage-
Resilient ABEs. We show how fully secure ABEs in CML model can
be obtained generically from leakage-resilient pair encodings.

Concrete ABEs as a result of our framework will be presented in Sec-
tion 4.5 in detail. Looking ahead, our framework leads to improved schemes
such as LR-IBE with tighter reductions and new schemes such as LR-ABE

for regular languages, LR-ABE for large universe and LR-ABE with short-
ciphertext, all with adaptive security in the standard model and the CML
model.

Pair
Encodings

Leakage-Resilient
Pair Encodings

Leakage-Resilient
Attribute-Based

Encryptions

Compiler 1 Compiler 2

Figure 4.1: Main results of our paper

4.2 Leakage-Resilient Pair Encoding Scheme

We first define a notion known as leakage-resilient pair encoding scheme.
Then we present a few definitions regarding its security requirements. Our
definitions can be thought of as extending the definition of pair encod-
ings [Att14] to capture leakage-resilience.

4.2.1 Syntax

A leakage-resilient pair encoding scheme for predicate family R is a tuple of
four deterministic algorithms, (Param, Enc1, Enc2, Pair):

Param(λ)→ (n1, n2). n1 denotes the number of the public variables h =
(h1, h2, · · · , hn1) used in encoding algorithms, n2 denotes the number
of another public variables x = (x1, x2, · · · , xn2) used in encoding algo-
rithms.

4.2. Leakage-Resilient Pair Encoding Scheme 47

Enc1(X, N)→ (k1, k2; m1, m2, m3), where X ∈ X , N, m1, m2 and m3 ∈ N.
k1(α, h, x, r) is a sequence of polynomials {k1,`}`∈[m1]

, each polynomial
k1,` is in {α}⋃{hj}j∈[n1]

⋃{xk}k∈[n2]
⋃{ri}i∈[m3]. Meanwhile, k2(h, r) is

a sequence of polynomials {k2,`}`∈[m2] and each k2,` is a polynomial in
{hj}j∈[n1]

⋃ {ri}i∈[m3]. More precisely, this algorithm outputs two sets
of coefficients:

{C`, C`,i, C`,i,j, C`,i,k}`∈[m1],i∈[m3],j∈[n1],k∈[n2]

{C′`′,i, C′`′,i,j}`′∈[m2],i∈[m3],j∈[n1]

k1,`(α, h, x, r) = C`α + (∑
i∈[m3]

C`,i · ri) + (∑
i∈[m3],j∈[n1]

C`,i,j · rihj)+

∑
i∈[m3]
k∈[n2]

C`,i,k · rixk. (4.1)

k2,`′(h, r) = ∑
i∈[m3]

C′`′,i · ri + ∑
i∈[m3],j∈[n1]

C′`′,i,j · rihj. (4.2)

The input attribute X of Enc1 could be empty string ε. In this case,
algorithm Enc1 also works in the same way as mentioned above. For
any set of predicate attribute X , we require that the outputs of this
algorithm Enc1 satisfy the regeneration property, meaning that for all
Enc1(X, N) → (k1, k2)(X ∈ X) and Enc1(ε, N) → (kε

1, kε
2), the fol-

lowing property hold:

Given (kε
1(α, h, x, r), kε

2(h, r)) and non-empty attribute X ∈ X , there
exists an efficient algorithm that can compute (k′1(α, h, x, r′), k′2(h, r′))
whose distribution is the same as (k1, k2).

Enc2(Y, N)→ (c = (c1, c2, · · · , cw1); w2). c = (c1, c2, · · · , cw1) is a set of poly-
nomials output by this encoding scheme with coefficients in ZN. We
require that each cι is a polynomial in {hj}j∈[n1]

⋃ {si}i∈[w2]
⋃ {xk}k∈[n2]⋃{s}.

cι(s, x, h) = aιs + ∑
i∈[w2]

aι,isi + ∑
k∈[n2]

a′ι,kxks + ∑
j∈[n1]

aι,jhjs+

∑
i∈[w2],j∈[n1]

aι,i,jhjsi, (4.3)

48 Chapter 4. Leakage-Resilient Attribute-Based Encryption

where s = (s, s1, s2, . . . , sω2)
$← Zω2+1

N .

Pair(X, Y, N)→ E. Takes as input X, Y, N, this algorithm outputs E, which
belongs to Z(m1+m2)×w1

N .

Correctness. For all valid attribute X (X is not empty), we require that
Enc1(X, N)→ (k1, k2;m1, m2, m3), Enc2(Y, N)→ (c; w2), and Pair(X, Y, N)

→ E. If R(X, Y) = 1, then

(k1, k2)> Ec= αs.

(`1, `2)-Leakage-Resilient Property (LR).
We say a pair encoding scheme P defined above is (`1, `2)-leakage-resilient
if for all probabilistic polynomial time adversaryA, advantage ofA in game
ExpG,b,A,LR(λ) is negligible. We denote it by:

AdvLR
A (λ) = |Pr[ExpG,0,A,LR(λ) = 1]− Pr[ExpG,1,A,LR(λ) = 1]| ≤ negl(λ).

ExpG,b,A,LR(λ) :

1. (G, GT, e, N, p1, p2, p3)← G(λ);

2. g1
$← Gp1 , g2

$← Gp2 , g3
$← Gp3 ;

3. α
$← ZN, (n1, n2)← Param(λ), h $← Zn1

N , x $← Zn2
N ;

4. st← A
OL

b,α,h,x(·)
1 (g1, g2, g3);

5. b′ ← A
O2

b,α,h,x(·)
2 (st);

Here we require that both OL and O2 are queried once only. Let f be
any polynomial time computable leakage function whose output size is no
longer than `1 or `2.

• OL
b,α,h,x(X, f): run Enc1(X, p2) → (k1, k2; m1, m2, m3), choose r $←−

Zm3
p2 , return f(k), where

k←
{

(gk1(α,h,x,r)
2 , gk2(h,r)

2) b = 0

(gk1(0,h,x,r)
2 , gk2(h,r)

2) b = 1

Notably, the query X input to OL could be empty, in this case | f (k)| ≤
`1. If X ∈ X , then | f (k)| ≤ `2.

• O2
b,α,h,x(Y): run Enc2(Y, p2) → (c, w2), choose s $←− Zw2+1

p2 , return

C← gc(s,h,x)
2 .

4.2. Leakage-Resilient Pair Encoding Scheme 49

4.2.2 Security Definitions

Similar to the definitions of pair encodings in [Att14], we define perfectly
master-key hiding security and computationally master-key hiding security
for leakage-resilient pair encodings.
Perfectly Master-Key Hiding Security. Let P be a leakage-resilient pair en-
coding scheme. For N ∈ N, if R(X, Y) = 0, let Param(λ) → (n1, n2),
Enc1(X, N) → (k1, k2; m1, m2, m3), Enc2(Y, N) → (c, w2). If the follow-
ing two distributions are identical, we say P is perfectly master-key hiding
(PMH).

{c(s, h, x), k1(0, h, x, r), k2(h, r)} and {c(s, h, x), k1(α, h, x, r), k2(h, r)},

where the probability is taken over h $←− Zn1
N , α

$←− ZN, r $←− Zm3
N , s $←−

Zw2+1
N , x $←− Zn2

N .
Computational Security. We define selectively master-key hiding secu-
rity (SMH) and co-selectively master-key hiding security (CMH) on a bilin-
ear group generator G respectively as follows. We define a game template
ExpG,b,A,T(λ) to encompass these two security notions by using different
types of Oracles (OT = (OT,1,OT,2), T ∈ {SMH, CMH}) for adversary
A = (A1,A2) as follows:
ExpG,b,A,T(λ) :

1. (G, GT, e, N, p1, p2, p3)← G(λ);

2. g1
$← Gp1 , g2

$← Gp2 , g3
$← Gp3 ;

3. α
$← ZN, (n1, n2)← Param(λ), h $← Zn1

N , x $← Zn2
N ;

4. st← A
OT,1

b,α,h,x(·)
1 (g1, g2, g3);

5. b′ ← A
OT,2

b,α,h,x(·)
2 (st)

The advantage of A in the corresponding security game ExpG,b,A,T(λ) is
defined as follows:

AdvT
A(λ) = |Pr[ExpG,0,A,T(λ) = 1]− Pr[ExpG,1,A,T(λ) = 1]|.

The different types of Oracle OT are defined as follows:

• Selective Security (SMH). OSMH,1 can be queried once while OSMH,2 can be
queried polynomially many times.

50 Chapter 4. Leakage-Resilient Attribute-Based Encryption

– OSMH,1
b,α,h,x (Y): Run Enc2(Y, p2)→ (c, w2), choose s $← Zw2+1

p2 , return C←
gc(s,h,x)

2 .

– OSMH,2
b,α,h,x (X): If Rp2(X, Y) = 1 or X is empty, return ⊥. Run Enc1(X, p2)

→ (k1,k2; m1,m2, m3), pick r $← Zm3
p2 , return

k←
{

(gk1(α,h,x,r)
2 , gk2(h,r)

2) b = 0

(gk1(0,h,x,r)
2 , gk2(h,r)

2) b = 1

• Co-selective Security (CMH). Both OCMH,1 and OCMH,2 can be queried
once only.

– OCMH,1
b,α,h,x (X): If X is empty, return ⊥. Otherwise, run Enc1(X, p2) →

(k1, k2; m1, m2, m3), choose r $← Zm3
p2 , return

k←
{

(gk1(α,h,x,r)
2 , gk2(h,r)

2) b = 0

(gk1(0,h,x,r)
2 , gk2(h,r)

2) b = 1

– OCMH,2
b,α,h,x (Y): If Rp2(X, Y) = 1, then return⊥. Otherwise, run Enc2(Y, p2)

→ (c, w2), choose s $← Zw2+1
p2 , return C← gc(s,h,x)

2 .

We would like to remark that perfectly master-key hiding implies CMH
but not SMH as in [Att14].

4.3 From Leakage-Resilient Pair Encoding to LR-

ABE

In this section, we first present a generic construction of leakage-resilient
attribute-based encryptions using leakage-resilient pair encodings as a build-
ing block. Then, we present a security analysis of our generic construction.
Our generic construction is based on [Att14].

4.3.1 Generic construction

Let P = (Param, Enc1, Enc2, Pair) be a (`msk, `sk)-leakage-resilient pair en-
coding scheme for predicate familyR. We construct a functional encryption
FE forR as follows:

• Setup(λ, k): Run (G, GT, e, N, p1, p2, p3) ← G(λ), pick generator g1
$←

Gp1 , g3
$← Gp3 . Run Param(λ) → (n1, n2) and Enc1(ε, N) →(kε

1, kε
2;

4.3. From Leakage-Resilient Pair Encoding to LR-ABE 51

m1, m2, m3). Pick h $← Zn1
N , x $← Zn2

N , α
$← ZN, r $← Zm3

N , R1
$← Zm1

N ,

R2
$← Zm2

N . The public key is PK = (g1, g3, e(g1, g1)
α, gh

1 , gx
1), the master

secret key is MSK = (K1, K2) = (gkε
1(α,h,x,r)

1 ∗ gR1
3 , gkε

2(h,r)
1 ∗ gR2

3).

• KeyGen (MSK, X, PK): Run Enc1(X, N)→ (kX,1, kX,2; m1, m2, m3). Pick

r′ $← Zm3
N . Then compute user key as follows:

SK = (K1, K2) = (gkX,1(α,h,x,r+r′)
1 ∗ gR1

3 , gkX,2(h,r+r′)
1 ∗ gR2

3).

Notably, SK can be computed from MSK due to the regeneration prop-
erty of P.

• Encrypt(Y, M, PK): Run Enc2(Y, N)→ (c; w2). Pick s = (s, s1, s2, . . . , sw2)
$← Zw2+1

N , and compute the ciphertext CT = (C0, C1) as follows:

C0 = M · e(g1, g1)
αs, C1 = gc(s,h,x)

1 .

• Decrypt(CT, SK): Obtain X, Y from SK and CT. Check whether R(X, Y) =
1. If yes, run Pair(X, Y, N) → E. Next compute e((K1, K2)

E, C1) to get
the blinding factor e(g1, g1)

αs and get the plaintext M.

M = C0
e((K1,K2)E,C1)

.

Semi-Functional Algorithms These algorithms will be used in the security
proof of our generic construction.

SFSetup(λ, k) This algorithm is nearly the same as Setup(λ, k) except that

it additionally outputs a generator g2
$← G2, ĥ $← Zn1

N and x̂ $← Zn2
N .

We call ĥ and x̂ semi-functional parameters.

SFEncrypt(Y, M, PK, g2, ĥ, x̂) : This algorithm first run Enc2(Y) → (c; w2).

Then pick s = (s, s1, s2, . . . , sw2)
$← Zw2+1

N , ŝ $← Zw2+1
N , output the

semi-functional ciphertext CT = (~C1, C0):

~C1 = gc(s,h,x)
1 ∗ gc(ŝ,ĥ,x̂)

2 .
C0 = e(g1, g1)

αs ·M.

SFKeyGen(X, MSK, PK, g2, type, α̂, ĥ, x̂) Note that, X is a predicate attribute
(or an empty string). In both case, run algorithm Enc1(X, N)→ (kX,1

, kX,2; m1, m2, m3). Next pick r̂ $← Zm3
N . Then output one type of

52 Chapter 4. Leakage-Resilient Attribute-Based Encryption

semi-function secret key (or master key) depending on the input type
t ∈ {1, 2, 3}.

K =


gkX,1(α,h,x,r)

1 ∗ gkX,1(0,ĥ,x̂,r̂)
2 ∗ gR3,1

3 , gkX,2(h,r)
1 ∗ gkX,2(ĥ,r̂)

2 ∗ gR3,2
3 t = 1

gkX,1(α,h,x,r)
1 ∗ gkX,1(α̂,ĥ,x̂,r̂)

2 ∗ gR3,1
3 , gkX,2(h,r)

1 ∗ gkX,2(ĥ,r̂)
2 ∗ gR3,2

3 t = 2

gkX,1(α,h,x,r)
1 ∗ gkX,1(α̂,0,0,0)

2 ∗ gR3,1
3 , gkX,2(h,r)

1 ∗ gkX,2(0,0)
2 ∗ gR3,2

3 t = 3

4.3.2 Security Proof of Our Generic Construction

Here we describe two ways to prove the security of our generic construc-
tion. If the underlying leakage-resilient pair encoding scheme can achieve
computational security (SMH and CMH), we give a tighter reduction with
cost ofO(q1). On the other hand, if the underlying leakage-resilient pair en-
coding scheme is perfectly master-key hiding1, we achieve a reduction with
cost ofO(q1 + q2). Here q1 and q2 are the numbers of queries made in Phase
1 and Phase 2 respectively.

Theorem 4.3.1. Assume that the (`msk, `sk)-leakage-resilient pair encoding scheme
P is selectively and co-selectively master-key hiding in G and subgroup assumption
SD1, SD2, SD3 holds in G. Then ABE constructed above from P is (`msk, `sk)-
leakage-resilient and adaptively secure in continual memory leakage model. For
any PPT adversary A, there exists adversary B1, B2, · · · , B6 who runs nearly the
same time as A, such that for any λ:

AdvABE
A (λ) ≤ 2AdvSD1

B1
(λ) + (2q1 + 3)AdvSD2

B2
(λ) + q1AdvCMH

B3
(λ)

+ q1AdvLR
B4
(λ) + AdvSMH

B5
(λ) + AdvSD3

B6
(λ) (4.4)

Proof Outline. Here we only give the definition of a sequence of games used
in our security proof. The indistinguishability between adjacent games are
given in Appendix A.2.

• Gamereal : This is the real game as defined in the continual memory
leakage model.

• Gameres : This game is exactly the same as Gamereal except that we re-
quire all attribute X contained in reveal queries made byA is Rp2(X, Y∗)
= 0 rather than RN(X, Y∗) = 0.

1Recall that perfectly master-key hiding only implies computational co-selective secu-
rity but not computational selective security.

4.3. From Leakage-Resilient Pair Encoding to LR-ABE 53

• Game0 : Run SFSetup(λ, k) in the setup phase. Run CT∗← SFEncrypt
(Y∗, Mb, PK, g2, ĥ, x̂).

• Gamek,1 : For all Create queries made byA in Phase 1, answer the j-th
Create query by using the corresponding key as follows:

α̂j ← ZN, k j ←


SFKeyGen(Xj, MSK, PK, g2, 3, α̂j, 0, 0) i f j < k
SFKeyGen(Xj, MSK, PK, g2, 1, 0, ĥ, x̂) i f j = k
KeyGen(Xj, MSK, PK) i f j > k

Note that if Xj is null, then A is making a query about master key.

• Gamek,2 : For all Create queries made byA in Phase 1, answer the j-th
Create query by generating the corresponding key as follows:

α̂j ← ZN, k j ←


SFKeyGen(Xj, MSK, PK, g2, 3, α̂j, 0, 0) i f j < k
SFKeyGen(Xj, MSK, PK, g2, 2, α̂j, ĥ, x̂) i f j = k
KeyGen(Xj, MSK, PK) i f j > k

Note that if Xj is null, then A is making a query about master key.

• Gamek,3 : In this Game, for all Create queries made by A in Phase 1,
answer the j-th Create query by generating the corresponding key as
follows:

α̂j ← ZN, k j ←


SFKeyGen(Xj, MSK, PK, g2, 3, α̂j, 0, 0) i f j < k
SFKeyGen(Xj, MSK, PK, g2, 3, α̂j, 0, 0) i f j = k
KeyGen(Xj, MSK, PK) i f j > k

Note that if Xj is null, then A is making a query about master key.

• Game2,1 : For all Create queries made by A in Phase 2, generate the
corresponding key as follows:

k j ← SFKeyGen(Xj, MSK, PK, g2, 1, 0, ĥ, x̂).

• Game2,2 : For all Create queries made by A in Phase 2, generate the
corresponding key as follows:

k j ← SFKeyGen(Xj, MSK, PK, g2, 2, α̂, ĥ, x̂).

• Game2,3 : For all Create queries made by A in Phase 2, generate the
corresponding key as follows:

k j ← SFKeyGen(Xj, MSK, PK, g2, 3, α̂, 0, 0).

• Game f inal : M←M, CT∗ ← SFEncrypt(Y∗, M, PK, g2, ĥ, x̂).

54 Chapter 4. Leakage-Resilient Attribute-Based Encryption

Theorem 4.3.2. Assuming the (`msk, `sk)-leakage-resilient pair encoding scheme
P is perfectly master-key hiding and subgroup assumption SD1, SD2, SD3 holds
in G. Then ABE constructed above is (`msk, `sk)-leakage-resilient and adaptively
secure in continual memory leakage model. For any PPT adversary A, there exists
adversary B1, B2, B3, B4 who runs nearly the same time asA, such that for any λ:

AdvABE
A (λ) ≤ 2AdvSD1

B1
(λ) + (2(q1 + q2) + 1)AdvSD2

B2
(λ)

+ q1AdvLR
B3
(λ) + AdvSD3

B4
(λ) (4.5)

Proof outline. The proof for Theorem 4.3.2 is very similar to Theorem 4.3.1,
except that we handle Create key queries made in Phase 2 one by one. More
precisely, instead of changing the type of results of all Create key queries in
Phase 2 simutaneously, in each game, we only change the type of the result
of one Create key query. Besides, the indistinguishability between semi-
functional type-1 key and semi-functional type-2 key is based on the per-
fectly master-key hiding security of the underlying pair encoding. Hence,
the proof is completed.

4.4 From Pair Encoding to Leakage-Resilient En-

coding

In this section, we show how to construct leakage-resilient encodings from
pair encodings that satisfy some additional constraints. We would like to
remark that these additional conditions are not overly restrictive. In fact, a
large number of pair encoding schemes in [Att14] satisfies the requirements.

4.4.1 Extending the Definition of Attrapadung’s Pair Encod-

ing to Support Encoding of Empty Attribute

We extend the definition of pairing encoding schemes in [Att14] to support
encoding for the empty attribute ε. Specifically, a pair encoding scheme P =
(Param, Enc1, Enc2, Pair) for predicate familyR is defined as follows:

• Param(λ)→ n1, pick h = (h1, h2, · · · , hn1)
$← Zn1

N .

• Enc1(X, N):

4.4. From Pair Encoding to Leakage-Resilient Encoding 55

– If X is empty, Enc1(ε, N) → (kε
1, kε

2; 1, 1, 0) and kε
1(α, h, r) = α,

kε
2(h, r) = 0.

– If X ∈ X , then Enc1(X, N) → (k1, k2; m1, m2, m3), where X ∈
X . Let r = (r1, r2, · · · ,rm3) $← Zm3

N . k1 = {k1,`}`∈[m1]
is a set of

polynomials, each one is in {α}⋃{hi}i∈[n1]
⋃ {rj}j∈[m3]. k2 =

{k2,`′}`′∈[m2] is a set of polynomials and each polynomial is in
{hi}i∈[n1]

⋃{rj}j∈[m3]. That is,

k1,` = b`α + ∑
i∈[n1],j∈[m3]

b`,i,jhirj. (4.6)

k2,`′ = ∑
j∈[m3]

b`′,jrj. (4.7)

Remark 1: The output of Enc1(X) is divided into two sets k1 and k2,
and the concatenation of these two sets (k1, k2) is exactly the same as
the output of Enc1 as defined in [Att14]. Moreover, it is obvious that
given (kε

1, kε
2) and any attribute X ∈ X , we can generate an encoding

(k1, k2) for X which is properly distributed.

• Enc2(X, N) → (c; w2). Let s = (s, s1, s2, · · · , sw2)
$← Zw2+1

N . c =

{c`}`∈[w1]
is a set of polynomials, each one is in {s, sk}k∈[w2]

⋃{hi}i∈[n1]
.

c` = t`s + ∑
k∈[w2],i∈[n1]

t`,k,iskhi + ∑
k∈[w2]

t`,ksk + ∑
i∈[n1]

t′`,ihis. (4.8)

• Pair(X, Y, N)→ E, where E ∈ Z(m1+m2)×w1
N .

4.4.2 Generic Transformation of Pair Encodings to Leakage-

Resilient Pair Encodings

Let P = (Param, Enc1, Enc2, Pair) be a pair encoding supporting empty at-
tribute. Below we show how to construct a leakage-resilient pairing encod-
ing scheme P′= (Param′, Enc1′, Enc2′, Pair′).

• Param′(λ) : Run Param(λ) → n1, pick h = (h1, h2, · · · , hn1)
$← Zn1

N

and choose a proper parameter n = O(λ). Pick x = (x1, x2, · · · , xn)
$←

Zn
N and output (n1, n).

56 Chapter 4. Leakage-Resilient Attribute-Based Encryption

• Enc1′(X, N) : Run Enc1(X, N)→ (k1(α, h, r), k2(h, r); m1, m2, m3), then
choose (y1, y2, · · · , yn) $← Zn

N and set r′ = (y1, y2, · · · , yn, r).

k′1(α, h, x, r′) = (y1, y2, · · · , yn, k1(α, h, r)) + (

n︷ ︸︸ ︷
0, 0, · · · , 0,

∑
i∈[n]

-xiyi,

m1−1︷ ︸︸ ︷
0, · · · , 0). (4.9)

k′2(h, r′) = k2(h, r). (4.10)

Outputs (k′1(α, h, x, r′), k′2(h, r′); m1 + n, m2, n + m3).

• Enc2′(Y, N) : Run Enc2(Y, N)→ (c(s, h) = (c1, c2, · · · , cw1); w2), then

c′(s, h, x) = (x1c1, x2c1, · · · , xnc1, c(s, h)). (4.11)

Output c′(s, h, x).

• Pair′(X, Y, N): Runs Pair(X, Y, N) → E, then construct and output
matrix E′ defined as follows.

E′ =



1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
0 0 0 0 · · · 1

0n×w1

0(m1+m2)×n E


.

Theorem 4.4.1. P′ is a (`msk = (n− 1− 2c)log(p2), `sk = (n− 1− 2c)log(p2))-
leakage-resilient pair encoding scheme, for some positive constant c such that p−c

2

is negligible, if P satisfies the following conditions:

1. The first row of the reconstruction matrix E of P is (

w1︷ ︸︸ ︷
1, 0, 0, · · · , 0).

2. For any attribute X, run Enc1(X, N) → (k1, k2; m1, m2, m3). Then the
two distributions (k1(0, h, r), k2(h, r)) and (k1(α, h, r), k2(h, r)) are identi-
cal except that

kα
11 = k0

11 + α,

4.4. From Pair Encoding to Leakage-Resilient Encoding 57

where kα
11 is the first polynomial of k1(α, h, r), k0

11 is the first polynomial of

k1(0, h, r), and α
$← ZN, h $← Zn1

N , r $← Zm3
N .

Proof. In order to prove the above theorem, we will argue the correctness,
regeneration property and the leakage-resilient property of P′. Moreover,
we will argue that P′ preserves the original security properties (PMH, CMH,
SMH) of P.
Correctness. It is straightforward to verify the correctness of P′ due to the
correctness P and that the first row of the reconstruction matrix for P is
(1, 0, · · · , 0).
Regeneration Property. Here we argue that given (kε′

1 (α, h, x, r), kε′
2 (h, r))

and an attribute X ∈ X , we can generate properly distributed (k′1(α, h, x, r′),
k′2(h, r′)). From our above definition, it is not hard to see that kε′

1 (α, h, x, r)
is in the form (y1, y2, · · · , yn, α− ∑

i∈[n]
xiyi), where r = (y1, y2, · · · , yn). Then

run Enc1(X, N) → (k1(0, h, r′′), k2(h, r′′); m1, m2, m3), where r′′ $← Zm3
N .

Next picks (y′1, y′2, · · · , y′n)
$← Zn

N and compute

k′1(α, h, x, r′) = (kε′
1 (α, h, x, r),

m1−1︷ ︸︸ ︷
0, 0, · · · , 0) + (y′1, y′2, · · · , y′n,− ∑

i∈[n]
xiy′i,

m1−1︷ ︸︸ ︷
0, 0, · · · , 0) + (

n︷ ︸︸ ︷
0, 0, · · · , 0, k1(0, h, r′′)),

where r′ = (y1 + y′1, y2 + y′2, · · · , yn + y′n, r′′). k′2(h, r′) = k2(h, r′′) . We
would like to remark that this is still efficiently computable in group op-
erations.

Lemma 4.4.1. The resulting pair encoding scheme P′ constructed above is (`msk =

(n− 1− 2c)log(p2), `sk = (n− 1− 2c)log(p2))-leakage-resilient.

Proof. Assuming there exists PPT algorithmAwhose advantage in ExpG,b,LR

(1λ) is non-negligible. Then we will build PPT algorithm B who will dis-
tinguish between distributions (~δ, f (~τ)) and (~δ, f (~τ′)) with non-negligible
advantage. This will yield a contradiction since these two distributions are
statistically indistinguishable. B simulates the ExpG,b,LR(1

λ) for A as fol-

lows: Run (G, GT, e, N, p1, p2, p3)← G(λ), then pick generators g1
$← Gp1 ,

g2
$← Gp2 , g3

$← Gp3 and give (g1, g2, g3) to A.
At some point, A will make OL query for X∗. Note that here we only

consider either X∗ is empty or X∗ matches the challenge predicate Y∗ in-
put to O2 (namely the predicate in the challenge ciphertext). Otherwise,

58 Chapter 4. Leakage-Resilient Attribute-Based Encryption

leakage security is guaranteed by the perfect master-key hiding property or
co-selective property of P′.

Once A makes a leakage query about (X∗, f), B will not create this key
but instead encode the leakage function A asks as a single polynomial-time
computable function f ′ whose output size is limited. B receives its own
challenge instance (~δ, f ′(~Γ)), where~Γ = (Γ1, Γ2, · · · , Γn, Γn+1) is distributed
as either~τ or ~τ′, and use f ′(~Γ) to answer all ofA’s leakage queries. B can do
this by fixing all other variables in the challenge key, and works as follows:
B runs Enc1(X, N)→ (k1, k2; m1, m2, m3), computes (k1(0, h, r), k2(h, r))

(h $← Zn1
N , r $← Zm3

N), then implicitly sets (k′1(α, h, x, r′), k′2(h, r′)) = ~Γ′ and
K∗ = g~Γ′2 , where

~Γ′ = (Γ1, Γ2, · · · , Γn, Γn+1,

m1+m2−1︷ ︸︸ ︷
0, 0, · · · , 0) + (

n︷ ︸︸ ︷
0, 0, · · · , 0, k1(0, h, r), k2(h, r)).

At some point, A makes an oracle query about O2 for challenge predi-
cate Y∗. B constructs challenge ciphertext C = gc′(s,h,x)

2 as follows: run
Enc2(Y∗, N)→ (c; w2), and computes c(s, h) = (c1, c2, · · · , cw1) (s= (s, s1,s2,

s3, · · · , sw2) $← Zw2+1
N) , then set the cipertext for Y∗ to be C∗ = gc′(s,h,x)

2 = g~δ′2 ,
where

~δ′ = (δ1c1δ−1
n+1, δ2c1δ−1

n+1, · · · , δnc1δ−1
n+1, c(s, h)).

Here δ−1
n+1 means the inverse of δn+1 in Zp2 . If δn+1 = 0, B aborts this simula-

tion and randomly guess the distribution of Γ. However, this happens with
negligible probability. Observe that B perfectly simulates the corresponding
environment for A as it implicitly sets:

α = δ−1
n+1 ∑

i∈[n]
Γiδi + Γn+1.

• Case1:~Γ is orthogonal to~δ. It is clear thatB perfectly simulates ExpG,0,LR

(1λ) for A;

• Case 2: ~Γ is not orthogonal to ~δ. B simulates ExpG,1,LR(1
λ) for A.

The following lemma states that our transformation preserves the master-
key hiding property. The proof is straightforward and is thus omitted.

Lemma 4.4.2. If P is perfectly (resp. selectively, co-selectively) master-key hiding,
P′ is also perfectly (resp. selectively, co-selectively) master-key hiding.

4.5. Instantiations of Our Framework 59

4.5 Instantiations of Our Framework

Based on existing pair encodings, we achieve a number of new schemes and
schemes with better properties. This is summarised in Table 4.1.

Table 4.1: New schemes/constructions from our Framework

Predicates
Adaptively Leakage Constructions

Underlying
pair

Encoding
Secure? -Resilient? in [Att14]

IBE
X × [LW10, Att14]

X X (CML) [LRW11], this work Scheme 1(tighter reduction)
× × [Wat12]

FEs for X × [Att14]
regular

X X (CML) this work Scheme 3language (new construction)
× × [RW13]

KP-ABE X × [Att14]
for large

X X (CML) this work Scheme 4universe (new construction)
× × [ALDP11]

KP-ABE X × [Att14]
with short

X X (CML) this work Scheme 5ciphertext (new construction)

KP-DSE

× × [Ham11]
X × [Att14]

X X (CML) this work Scheme 6(new construction)

61

Chapter 5

Traceability Analysis of
CryptoNote-Style Blockchains

Since the introduction of Bitcoin in 2009 [Nak08], numerous distributed
cryptocurrencies have been proposed. Nonetheless, most of existing cryp-
tocurrencies are not designed to provide strong privacy protection. For
instance, several works [RH11, MPJ+13, RS13] showed Bitcoin, currently
the most popular and largest cryptocurrency, is vulnerable against the de-
anonymization attacks.

To address this problem, cryptocurrencies with stronger privacy guar-
antees are attracting more and more attentions. Among them, CryptoNote-
style cryptocurrencies are one of the noteworthy efforts. The CryptoNote
protocol was first introduced in [VS13], with a focus on protecting the pri-
vacy and anonymity of the electronic cash. Since its introduction, many
variations utilizing this protocol are gradually proposed, including Byte-
coin, Boolberry, Dashcoin, DigitalNote, Monero, etc. Similar to many other
distributed cryptocurrencies, CryptoNote also adopts the notion of transac-
tion to represent the process of spending coins. Each transaction contains
several inputs and outputs. The total amount of coins consumed in the
inputs and the total amount of coins transferred to the outputs should be
equal. Besides, each transaction should be signed by the sender to autho-
rize the transfer, by using the private key associated to the public-key (ad-
dress)1 of a to-be-spent coin. Here, a ring signature [RST01, LSW06] scheme
is adopted to guarantee the privacy of the real-spend of each input, which
is a cryptographic primitive that allows a user to anonymously sign a mes-
sage on behalf of a group of users. Therefore, the identity of the real-spend
is hidden. All other decoy coins in the input are called mixins.

1Throughout this work, we interchangeably use the term coin, output and the public-
key.

62 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

However, in practice, CryptoNote-style cryptocurrencies fall short from
achieving their claimed anonymity. Recently, two independent and con-
current works [MMLN17, KFTS17]2 demonstrate that Monero transactions
may be de-anonymized via statistical analysis. According to the experiment
results of [MMLN17, KFTS17], by Feb 2017, nearly 65% of transaction in-
puts are with zero-mixin, and the cascade effect can render another 22% of
inputs traceable, i.e., nearly 87% of all Monero inputs are insecure when
considering users’ anonymity. Having witnessed (and predicted) this type
of attacks, Monero has proposed a few countermeasures. Firstly, the mini-
mum number of mixins gradually increases from 2 in version 0.9.0 (January
1, 2016)to 6 in version 0.12.0 (March 29, 2018). Secondly, at version 0.10.0
(September 19, 2016), ring confidential transaction (Ring-CT), which aims
at further enhancing privacy of users via hiding the transaction amount, is
introduced.

There is no doubt that known attacks are circumvented by Monero, but
the initial problem still exists, which also threatens all CryptoNote-style
currencies. That is, can anonymity of users be well-protected with a cur-
rent small ring size, i.e., the countermeasures for known attacks? A re-
lated question is how to theoretically analyze the security level achieved by
those cryptocurrencies adopting the ring signature for untraceability. Be-
sides, to the best of our knowledge, there is no empirical analysis on other
CryptoNote-style currencies. So, a natural question is whether these sys-
tems in practice provide a similar guarantee.

Chapter Organization. We start by an overview of contributions in Sec-
tion 5.1. The definition of closed set attacks is introduced in Section 5.2.
Considering the inefficiency of closed set attacks, we propose an approxi-
mate but efficient algorithm called clustering in Section 5.3. The experi-
ment results on top three CryptoNote-style cryptocurrencies are given in
Section 5.4. This chapter is concluded with Section 5.5 about our observa-
tions and recommendations.

2An updated version [MSH+18] of [MMLN17] also appears recently, but both the
method and the result for the traceability analysis are similar in these two works, thus
we focus on the initial version.

5.1. Our Contributions 63

5.1 Our Contributions

In the following sections of the chapter, we give answers to the above ques-
tions. First, we show that the current countermeasures to resist known
attacks make Monero a good system to provide anonymity. However, on
the negative side, we show other CryptoNote-style protocols are still suffer-
ing from the same type of attacks. In fact, our combined attacks are much
more effective on ByteCoin and DigitalNote, as we can de-anonymize up to
91.56% transactions in the chain of DigitalNote.

We introduce a new attack on the untraceability of CryptoNote-style cur-
rencies called closed set attack. This attack is based on the fact that n transac-
tion inputs will and must use n distinct public-keys as real-spend, since each
public-key can only be redeemed once. A set of inputs is called a closed set if
the number of inputs equals to the number of distinct public-keys included.
Hence, we can deduce that all public-keys included in a closed set must be
mixins in other inputs outside of this closed set. In this way, the searching
for closed sets will be helpful to track the real-spend of some other inputs.
Different from cascade effect attack which relies on the “chain-reaction anal-
ysis” due to zero-mixin inputs, closed set attack conducts further traceability
without relying on any previous traceable inputs.

The contributions of this work can be divided into the following aspects:

1. We introduce closed set attack on the untraceability of CryptoNote-
style blockchains, and prove that closed set attack is optimal. In par-
ticular, it could get the minimal mixin for every input, i.e., it deletes
all public-keys payed elsewhere in a mixin, identical to the results of
brute-force attack.

2. We verify the impact of our attack via performing experiments on ac-
tual blockchain data, where we pick the top 3 CryptoNote-style cur-
rencies by market capitalization, i.e., Monero, Bytecoin and Digital-
Note. As the closed set attack is too expensive to run due to its high
complexity, we propose an efficient algorithm, namely, clustering al-
gorithm, to (approximately) implement closed set attack. We give a
lower bound of our clustering algorithm in implementing the closed set
attack. Specifically, we prove that our algorithm can find all closed set
of size 5.

For Monero, up to block 1541236, the cascade attack can find the real-
spend of 16329215 transaction inputs, which account for 70.492% of all

64 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

inputs. While our clustering attack can further identify the real-spend
of 5752 transaction inputs out of the remaining 6835530 transaction
inputs, accounting for 0.084% of all untraceable inputs after the cas-
cade attack. During this process, 3017 distinct closed sets are found.
For Bytecoin and DigitalNote, we provide the first work on analyzing
them. The experiment results of these three currencies are given in
Table 5.1.

Table 5.1: Experiment Results. All inputs considered in this work are non-
coinbase transaction unless specific stated. Total(%) denotes the total trace-
able rate, while Cas. denotes the percentage of those inputs traced by cas-
cade attack among all traceable inputs, and Clu. represents the percentage
of inputs contributed by clustering attack. No. of C.S. denotes the total

number of closed sets found by the clustering algorithm.

Coin total Blocks
total

Total(%)
% No. of

Inputs Cas. Clu. C.S.

Monero
1541236

23164745 70.516 99.96 0.04 3017
(30.03.2018)

Bytecoin
1586652

45663011 74.25 99.763 0.237 5912
(03.08.2018)

DigitalNote
699748

8110602 91.56 99.9993 0.0007 38
(13.08.2018)

3. In addition, we also provide a theoretical analysis on the existence
of closed set. We find that if all inputs have 3 mixins and all mixins
are uniformly distributed, with all but a very small probability (about
2−19), there will not exist any closed set. Our analysis suggests that the
usage rate of outputs is closely related to the anonymity of Monero.
Moreover, if we can guarantee that the probability of choosing an un-
spent key as mixin is 25%, then the number of mixins of each input
could be as small as 3 to render brute-force attack ineffective. Further-
more, to help users obtaining an improved anonymity guarantee, we
plan to release our algorithm as an online service for users to check if
an output is included in a closed set.

5.2 Closed Set Attack

In this section, we introduce our closed set attack. All attacks considered in
this section only assume the access to the transactions in the blockchain of a
CryptoNote-style currency, without any further active ability. This assump-
tion is valid since all transactions on the blockchains are publicly accessible.

5.2. Closed Set Attack 65

We prove that our proposed closed set attack is equivalent to the currently
known optimal attack, i.e., brute-force attack. Looking ahead, brute-force
attack will traverse all possible assignments of payers of all inputs and
delete those with conflict data. Both our attack and the brute-force attack
return perfect results, where the set of candidates for the real payer of each
input is minimum.

5.2.1 Brute-Force Attack

Brute-force attack is an attack that tries all possible sequences of distinct
public-keys to test whether it is valid for the assignments of the real-spends
for all transaction inputs. While a sequence of public-keys is valid if it satis-
fies requirements given below:

• the size of the sequence equals to the number of total transaction in-
puts in the dataset;

• all public-keys included in the sequence are distinct;

• for all index i of that sequence, the i-th public-key in the sequence
belongs to the corresponding i-th input in the dataset.

In other words, brute-force attack is the process of searching for all valid
sequences among the permutations of all public-keys with specific length
according to the above requirements. We call all elements included in index
i (i ≤ no. of all inputs) of all valid sequences as the candidates for the real-
spend of the i-th transaction input. Therefore, the resulted valid sequences
are the combinations of the possible real-spend of each transaction input.
Besides, if a transaction input only has one candidate for the real payer,
then the candidate must be its payer.

It is not hard to see that brute-force attack is a perfect attack which can
find out all possible real-spends for each transaction input. Assume that
there are n distinct keys and m transaction inputs in our dataset, and with-
out loss of generality, n is larger than m. Let Am

n denote the number of
permutations of m elements among n elements. The number of valid se-
quences after the execution of brute-force attack is (Am

n−|Conflicts|), where
Conflicts denotes the set of deleted permutations which fail to the above re-
quirements.

66 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

5.2.2 Our Attack

Although the aforementioned brute-force attack is perfect, the complexity is
quite expensive, which is O(n!). Considering the inefficiency and imprac-
ticability of brute-force attack, we propose a new attack, called closed set,
which is more efficient while providing the same result.

The proposed closed set attack is based on the observation that if the num-
ber of distinct public-keys included in a set of transaction inputs equals to
the number of the inputs of the set, then we can deduce that each public-key
included must be a real-spend of a certain input in this set. This observation
is due to the fact that each public-key (a.k.a., output of previous transaction)
can only be redeemed once. Such kind of set of inputs is called closed set
throughout this paper. Since each public-key included in a closed set must
be spent inside the closed set, then it is safe to remove these keys from all
other inputs outside the closed set. In this way, the finding of a closed set has
at least two significant impacts. Firstly, it will render other inputs become
traceable after removing public-keys of a closed set. Secondly, the average
size of the inputs will decrease, which is helpful for further operation.

The closed set attack is an iteration process that finds out all possible
closed sets from the transaction inputs, removes public-keys included, and
finds those traceable inputs. Compared with the previous cascade effect
attack presented by [KFTS17] or “chain-reaction” analysis by [MMLN17],
the closed set attack can render more inputs traceable. More precisely, cas-
cade effect attack utilizes the fact that the zero-mixins inputs will affect the
traceability of other inputs who pick those public-keys of them as mixins.
In other words, this attack bases on the set of previous traceable inputs to
track the remaining anonymous ones, while our attack can start from any
anonymous input.

To better explain our attack, we give a brief example below. Here we con-
sider four inputs included in transactions {txi}i∈[4] and assume that there
are four distinct public-keys {pk j}j∈[4] included in the input sets of them,
i.e.,

tx1.in = {pk1, pk2, pk3};
tx2.in = {pk2, pk3};
tx3.in = {pk1, pk3};
tx4.in = {pk1, pk2, pk3, pk4}.

Note that, there must exist no other transaction input who is only composed

5.2. Closed Set Attack 67

of public-keys among {pk j}j∈[4]. Otherwise, the design principle of Monero
that one output can only be redeemed once will be broken. While the origi-
nal cascade attack [MMLN17, KFTS17] does not work here, since there exists
no 0-mixin input.

Although we can not make all aforementioned inputs traceable, but we
can trace the real-spend of one of them. Specifically, consider the set S =

{txi.in}i∈[3]. Among that, the union set of all distinct public-keys included
is {pk1, pk2, pk3}. Clearly, the size of S equals to the number of distinct
public-keys included in it such that it is a closed set. Since each output can
be spent once only, then the output pk j (j ∈ [3]) must be a real-spend in a
certain txj(j ∈ [3]). In this way, we can deduce that the real-spend of tx4

must be pk4.

A Naive Implementation. A naive method to find all closed sets is to visit
all possible subsets of transaction inputs. For each visited subset, we check
whether it is a closed set by comparing the number of inputs and the number
of distinct public-keys included in it. If yes, we further conduct the remov-
ing and tracing operations triggered by this closed set. Otherwise, continue
the process until all subsets have been visited. Due to the space limitation,
we give this algorithm below.

Algorithm 1 Subset-Searching Algorithm

1: Let DataSet be the set of all transaction inputs in the blockchain.
2: Let ` be the size of current subset, and ` ≥ 2.
3: Cascade-Effect(Dataset).
4: while ` ≤ |DataSet| do
5: Let Set` ⊆ DataSet be the set of all inputs, s.t., the size of each input

is smaller than `.
6: Let {Subset`,j} be all subsets of Set` with size `, where j ∈ C`|Set`|

, and
each Subset`,j = {R1, R2, . . . , R`| ∀i ∈ [`], Ri ∈ Set`}

7: for j = 1 to C`|Set`|
do

8:
9: if Subset`,j is a closed set then

10: Remove(Subset`,j)→ f lag
11: if flag == true then
12: find traceable inputs
13: end if
14: end if
15:
16: end for
17: goto while with `++
18: end while

68 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

Theoretically, this algorithm can find all closed set included in the set of
transaction inputs. However, it is expensive to implement in reality, since
the complexity of traversing all subsets of inputs is ⊆(2m), where m is the
total number of all transaction inputs included in the blockchain. For in-
stance, until the block 1541236 of Monero, the number of inputs in all blocks
is 6835530 after removing all inputs of ring size 1 and those affected via cas-
cade effect. Starting from 6835530 inputs, at the step of searching subsets of
size 5, the complexity of the algorithm will become O(2100).

Analysis of Closed Set Attack. We prove that our closed set attack is op-
timal. In other words, our closed set attack is equivalent to the currently
known perfect attack, namely, brute-force attack. Specifically, we prove that
after the execution of our closed set attack, each transaction input is the set
of the possible candidates of real-spends for it found by brute-force attack.
This is to say, for each input, each public-key remaining inside must belong
to a valid sequence found by brute-force attack. The analysis is concluded
by the following theorem.

Theorem 5.2.1. The aforementioned closed set attack is equivalent to the brute-
force attack. In other words, for any set of transactions, the impact of our attack on
it is identical to the impact of brute-force attack.

Before giving the proof, we first introduce some notations used through-
out the proof. Assume m be the total number of transaction inputs, and n
be the total number of all distinct public-keys included in all inputs. We use
S to denote the sequence of distinct public-keys, and we call it as sequence
for short. Moreover, S[i] represents the i-th (i ∈ [|S|]) member in S. Let Am

n

be the set of all sequence of n public-keys taken m at a time without dupli-
cation. We use R to denote a set of public-keys, which is also known as a
transaction input, i.e., R = {pk1, . . . , pk`}. Additionally, R is used to denote
the set of all transaction inputs, namely, R = {R1, R2, . . . , Rm}.

Definition 5.2.1. Assume L be a relation. For any sequence S ∈ Am
n , and any

set of inputs R = {R1, R2, . . . , Rm}, we say (S,R) ∈ L if and only if ∀i ∈
[m], S[i] ∈ Ri.

Definition 5.2.2. For a set of rings R = {R1, R2, . . . , Rm}, if for any Q ⊆ [m],
we have

| ∪i∈Q Ri| ≥ |Q|, (5.1)

5.2. Closed Set Attack 69

then we call R as a good set.

Lemma 5.2.1. For any good set R = {R1, R2, . . . , Rm}, there exists a sequence S
such that (S,R) ∈ L.

Proof. We use proof by induction. Firstly, in the case of m = 1, R = {R1},
|R1| ≥ 1. Hence, there must exist a sequence S, such that (S,R) ∈ L.

While for the case m ≥ 2, we assume that the above lemma holds for
good set with size m = x, then we show that it would also be true for good
set with size m = x + 1. Let R′ = {R1, R2, . . . , Rx, Rx+1} be a good set with
size (x + 1), and R = {R1, R2, . . . , Rx} be a subset of R′. Since R′ is a good
set, we can easily deduce that R is also a good set. To complete the part
when m = x + 1, we need to utilize the following Claim.

Claim 5.2.3. Suppose Rm = {pk1, pk2, . . . , pkk} be the last input in R′, where
m = x + 1, and R′, R are defined above. For set R, there exists j ∈ [k] such that
R(j) = {R1 − {pk j}, R2 − {pk j}, . . . , Rx − {pk j}} is also a good set.

Proof. We exploit proof by contradiction. Assume that for all j ∈ [k], any
R(j) is not good set. In the remainder of this proof, we use R(j)

i to denote
the set Ri − {pk j}, and obviously R(j)

i ∈R(j).
Let Badj ⊆ [x] be a set such that

| ∪i∈Badj R(j)
i | ≤ |Badj| − 1. (5.2)

Meanwhile, as R is good, hence we can get

| ∪i∈Badj Ri| ≥ |Badj|. (5.3)

Since R(j)
i = Ri − {pk j}, we can get that

| ∪i∈Badj Ri| ≤ | ∪i∈Badj R(j)
i |+ 1. (5.4)

Inequality (5.2) holds due to the assumption that any R(j) is not good set,
where j ∈ [k]. Hence, there must exist a set of input’s index Badj such that
those inputs selected by Badj do not form a good set. Since R is a good set,
hence for any Badj, | ∪i∈Badj Ri| ≥ |Badj|. The reason why inequality (5.4)
holds can be divided into two cases. On one case, if for all i ∈ Badj, Ri

doesn’t include public-key pk j, then we can get that | ∪i∈Badj Ri| = | ∪i∈Badj

R(j)
i |, hence | ∪i∈Badj Ri| < | ∪i∈Badj R(j)

i |+ 1. On the other case, if there exists

70 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

at least one Ri (i ∈ Badj) including pk j, then we can get that | ∪i∈Badj Ri| =
| ∪i∈Badj R(j)

i |+ 1.
Considering the combination of inequalities (5.2, 5.3, 5.4,), it is not hard

to get

| ∪i∈Badj Ri| = |Badj|, and pk j ∈ ∪i∈Badj Ri. (5.5)

Until now, for each j ∈ [k], we find a bad indexes’ set Badj such that the
inputs set composed by those inputs whose index is in Badj is not a good
set.

Then consider the set

Uh = ∪j∈[h]Badj, (5.6)

Vh = ∪i∈Uh Ri, (5.7)

where 0 ≤ h ≤ k.
When h becomes (h + 1), the size variances of these two sets are given

below:

|Uh+1| = |Uh|+ |Badh+1| − |Repeath+1|
|Vh+1| ≤ |Vh|+ | ∪i∈Badh+1 Ri| − | ∪i∈Repeath+1

Ri|,

where Repeath+1 ⊆ Badh+1 is the set of replicate indexes introduced by
Badh+1.

Recall that R is a good set, hence

|Repeath+1| ≤ | ∪i∈Repeath+1
Ri|,

as Repeath+1 is a subset of [x].
Combining with the facts that |U0| = |V0| = 0, and |Badh+1| = | ∪i∈Badh+1

Ri|, finally, we can get that

|Uk| ≥ |Vk|.

Besides, since {pk1, pk2, . . . , pkk} ⊆ Vk, then we set

U = Uk ∪ {m}
V = Vk ∪ Rm.

5.2. Closed Set Attack 71

Then |V| = |Vk|, and |U|= |Uk| +1. In this way, we can deduce that

|U| > |V|. (5.8)

However, inequality (5.8) contradicts the fact that R′ is a good set.

Based on the above Claim 5.2.3, we know that there must exist a j∗ ∈
[k] such that R(j∗) = {R1 − {aj∗}, R2 − {aj∗}, . . . , Rx − {aj∗}} is a good set.
According to our assumption, there exists a sequence Sx of public-keys with
length x such that (Sx,R(j∗)) ∈ L, where aj∗ /∈ Sx since each input included
in R(j∗) does not include aj∗ .

Next, we append Sx with aj∗ which becomes Sx||aj∗ . Then for set R,
we can get that (Sx||aj∗ ,R) ∈ L, since R can be equivalently written as
R(j∗) ∪ {Rm}. Then we complete the part of the proof when m = x + 1, and
also complete the proof of this lemma.

Let R = {R1, R2, . . . , Rm} be the original dataset, and assume PKS =
{pk1, pk2, . . ., pkn} be the set of all public-keys included in the inputs. Then
for all i ∈ [m], Ri ⊆ PKS. Let R′ = {R′1, R′2, . . . , R′m} be the set of inputs
which has been removed all public-keys included in the closed set. For sim-
plicity, we use R′ = Closed_Set_Attack (R) to denote the process that our
closed set attacks algorithm takes R as input, and returns the result R′.

Based on the aforementioned definitions, we can get the following facts
after the execution of our closed set attacks.

1. Fact 1: for all i ∈ [m], R′i ⊆ Ri;

2. Fact 2: for any removed public-key pk ∈ Ri − R′i, there exists a set
T ⊆ [m] such that

|T| = | ∪j∈T Rj| ∧ pk ∈ (∪j∈TRj) ∧ i /∈ T.

3. Fact 3: for any pk ∈ R′i, and any set T ⊆ [m] such that |T| = | ∪j∈T Rj|,
then

i ∈ T or pk /∈ (∪j∈TR′j).

Additionally, for any set R, if there exists a set T ⊆ [m] that |T| =
| ∪j∈T Rj|, then for any public-key sequence S that (S,R) ∈ L, we have

72 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

the following fact, and name it as Fact 4.

{S[j]}j∈T = ∪j∈TRj.

Fact 4 states that for any sequence S and set R satisfying the relation L, and
for any found closed set {Rj ∈ R}j∈T, the j-th(j ∈ T) element of sequence
S, i.e., S[j], must be a public-key included in ∪j∈TRj.

Corollary 5.2.4. For any set R, if there exists a set T ⊆ [m] that |T| = | ∪j∈T Rj|,
then for any sequence S that (S,R) ∈ L, we have

{S[j]}j/∈T ∩ ∪j∈TRj = ∅.

This is a corollary of Fact 4. According to our algorithm, once finding a
closed set, we will remove all public-keys included in this closed set from the
remaining transaction inputs. In addition, since every public-key can only
be redeemed once, hence each public-key included in the closed set can only
be redeemed by a certain input of this closed set. For all other inputs outside
the closed set, its real input must not be any public-key of the closed set. As
we use S to denote the sequence of the real-input of each transaction, hence
for any index j /∈ T, Sj /∈ (∪j∈TRj).

Analysis of Correctness. To analyze the correctness of our closed set at-
tack, we give the following theorem, which states the fact that our attack
algorithm will not affect the real-spend of each input. In other words, any
candidate of the real-spend of each input will remain the same after running
our attack algorithm.

Theorem 5.2.2. For any set R, and the R′ = Closed_Set_Attack(R), for any
sequence S, we have the following equivalent relationship,

(S,R′) ∈ L ⇐⇒ (S,R) ∈ L.

Proof. The proof consists of two parts.

Part 1: (S,R′) ∈ L =⇒ (S,R) ∈ L For any sequence S such that (S,R′) ∈
L, we have that for any i ∈ [m], we have S[i] ∈ R′i. Since R′i ⊆ Ri according
to the aforementioned requirements, we get S[i] ∈ Ri for all i ∈ [m]. In this
way, we prove that (S,R) ∈ L.

5.2. Closed Set Attack 73

Part 2: (S,R′) ∈ L ⇐= (S,R) ∈ L This part is proved by contradiction.
Assume there exists a sequence S such that (S,R) ∈ L but (S,R′) /∈ L.
Then we have that ∃i∗ ∈ [m] such that S[i∗] ∈ Ri∗ and S[i∗] /∈ R′i∗ .

We assume that S[i∗] = pk∗. There is no doubt that pk∗ is removed from
Ri∗ by our closed set attack algorithm, i.e., pk∗ ∈ Ri∗ − R′i∗ . According to
Fact 2, we get that there exists a set T ⊆ [m], such that

|T| = | ∪j∈T Rj| ∧ pk∗ ∈ (∪j∈TRj) ∧ i∗ /∈ T. (5.9)

Hence, we can get ∃i∗ ∈ T, but {S[i∗]} ∈ (∪j∈TRj) (i), which contradicts
Corollary 5.2.4. This completes the proof of our correctness.

Analysis of Optimality. Next we argue that after the execution of our
closed set attack algorithm, i.e., R′ = Closed_Set_Attack(R), for any input
R′ ∈ R′, every public-key included in it might be the real-spend. There is
no extra useless public-key which can be removed from R′i, where i ∈ [m]. In
other words, any remaining public-key in R′i (∀i ∈ [m]), there is a sequence
returned by the brute-force attack whose i-th element is that.

Theorem 5.2.3. For any R = {R1, R2, . . . , Rm}, let R′ = Closed_ Set_Attack(R),
where R′ = {R′1, R′2, . . . , R′m}. Then for any i ∈ [m], and any pk∗ ∈ R′i, there
exists a sequence S that

S[i] = pk∗ ∧ (S,R′) ∈ L.

Proof. We adopt the proof by contradiction. Assume there does not exist
such sequence S∗ among the result of brute-force attack for a public-key
pk∗, where pk∗ ∈ R′i∗ . In other words, for any sequence S satisfying the
relation (S,R′) ∈ L, we have S[i∗] 6= pk∗. Then we consider the following
two cases.

1. pk∗ is contained in a closed set∪j∈TR′j. In this case, i∗must belong to T∗,
otherwise, pk∗ will be removed from R′i∗ according to our attack algo-
rithm. Without loss of generality, we assume the closed set {R′j}j∈T∗ is
an indivisible closed set among all closed set including R′i∗ . As {R′j}j∈T∗

is indivisible, which means that any subset of this closed set will not
be a closed set. Hence for any subset of {R′j}(j∈T∗∧j 6=i∗), it will not be a
closed set, which can be written as

| ∪j∈T′ R′j| > |T′|, (5.10)

74 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

where T′ ⊆ T∗ \ {i∗}.

Next we delete pk∗ from each input R′j, where j ∈ T′. Then inequal-
ity (5.10) will become

|(∪j∈T′R′j) \ {pk∗}| ≥ |T′|. (5.11)

According to Lemma 5.2.1, we get that there exists a sequence S∗ such
that (S∗, {R′j}j∈(T∗\{i∗})) ∈ L, and pk∗ /∈ S∗. Whereas, if we combine
S∗ with pk∗, we can find a valid sequence S∗ ∪ {pk∗} for {R′j}j∈T∗ ,
namely, (S∗ ∪ {pk∗}, {R′j}j∈T∗) ∈ L. However, this contradicts the
assumption that there does not exist a sequence S, such that (S,R′) ∈
L and S[i∗] = pk∗.

2. pk∗ is not included in any closed set. We can deduce that R′ is not a
closed set since pk∗ is included in R′. Then for any subset T ⊆ ([m] \
{i∗}), we get that

| ∪j∈T R′j| > |T|. (5.12)

Next we remove pk∗ from each input R′j whose index is included in T,
i.e., j ∈ T. In this way, inequality (5.12) becomes

| ∪j∈T (R′j \ {pk∗})| ≥ |T|. (5.13)

According to Lemma 5.2.1, we get that there exists a sequence S∗ such
that (S∗, {R′j}j∈([m]\{i∗})) ∈ L, and pk∗ /∈ S∗. Whereas, if we combine
S∗ with pk∗, we can find a valid sequence S∗ ∪ {pk∗} for {R′j}j∈T∗ ,
namely, (S∗ ∪ {pk∗}, {R′j}j∈[m]) ∈ L. However, this contradicts the
assumption that there does not exist a sequence S, such that (S,R′) ∈
L and S[i∗] = pk∗.

This completes the proof.

In summary, we show that for each transaction input, its candidates for
real-spend found by brute-force attack and our closed set attack are identical.
That is to say that our proposed closed set attack is equivalent to brute-force
attack, both returns perfect results.

5.2. Closed Set Attack 75

5.2.3 On The Existence of Closed Set: A Theoretical Per-

spective

As mentioned before, the closed set attack is optimal as brute-force attack.
This is to say, we can conclude that anonymity of inputs cannot be reduced
if no closed set exists. In this section, we estimate the probability that there
exists at least one closed set in an ideal scenario, namely, all inputs have a
(small) constant number of mixins and all mixins are selected uniformly
from all keys.

More concretely, we consider a scenario that

• There are 6 · 220 inputs, with 6 · 220 real-spend public-keys;

• There are also additional 25% (i.e. 2 · 220) unspent public-keys;

• Each input has 3 mixins;

• Each mixin is sampled uniformly from all 8 · 220 keys;

where the first two conditions come from the real data of Monero after cas-
cade attack, and the third condition is based on the fact that the average ring
size after the cascade attack is 4.62.

Lemma 5.2.2. With all but a small probability 2−19, there does not exist any closed
set in the above dataset if all inputs have 3 mixins and all mixins are sampled
uniformly from all keys.

Proof. Before analyzing the probability, we first define the notion of “dirty
key” and show a relation between it and the existence of closed set.

Definition 5.2.5. We define dirty key recursively:

• An unspent key is a dirty key.

• If an input chooses a dirty key as its mixin, then the real-spend key of this
input is also a dirty key.

We call an unspent key a level-0 dirty key and call a dirty-key a level-i dirty key if
there exists a level-(i− 1) dirty key in its mixin and there does not exists a level-j
dirty key in its mixin for j < i− 1.

Lemma 5.2.3. A closed set does not include a dirty key.

76 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

Proof. First, as all keys in a closed set must be spent in one input in this
closed set, a level-0 dirty key, i.e., an unspent key, cannot be included in a
closed set.

Now, we assume there does not exist level-i dirty key in a closed set, and
prove there does exist level-(i + 1) dirty key in a closed set. Also, as all keys
in a closed set must be spent in one input in this closed set, a closed set with a
key pk must include the input that pk is its real-spend. Thus, a closed set in-
cluding a level-(i + 1) dirty key must also include a level-i dirty key, which
contradicts the assumption.

That completes the proof of Lemma 5.2.3.

Next, we bound the probability that there exists a closed set in the afore-
mentioned scenario. The main idea is to show that those 25% unspent key,
a.k.a., level-0 dirty key, will ultimately pollute all keys with a large proba-
bility.

Lemma 5.2.4. With all but a small probability (1/219), all 8 · 220 keys are dirty
keys.

More precisely, let K be all 8 · 220 keys, including all real-spent and unspent
keys, let Di be the set of level-i dirty keys and let Ki = K−

⋃i−1
j=0Dj (We also use

Ki to denote inputs using keys inKi as its real-spent key for simplicity of notation),
then with all but a small probability, namely, 1/219, we have:

1. At least 1/3 of all public-keys in K1 are level-1 dirty keys.

2. At least 1/2 of all public-keys in K2 are level-2 dirty keys.

3. At least 3/4 of all public-keys in K3 are level-3 dirty keys.

4. At least 31/32 of all public-keys in K4 are level-4 dirty keys.

5. All keys in K5 are either level-5 dirty keys or level-6 dirty keys.

Proof. Recall that a key becomes level-i dirty key if it includes a level-(i− 1)
dirty key in the mixin of its real-spent input. Thus, it is sufficient to analyse
how many inputs will be affected by a level-(i− 1) dirty key.

First, for each of the 6 · 220 inputs, the probability that all three mixins
are chosen from real-spent keys is 27/64. Then by the Chernoff bound, the
probability that there are more than two thirds inputs, namely, 222, does not
include a level-0 dirty key is:

Pr[X ≥ (1 +
94

162
) · 27

64
· 6 · 220] ≤ e−218

.

5.2. Closed Set Attack 77

Thus, the probability p1 that less than 1/3 real-spend keys, a.k.a., keys in
K1, are level-1 dirty key is no more than e−218

.
Next, let pi be the conditional probability that less than qi fraction of keys

in Ki are level-i dirty key for i ∈ [2, 4] (under condition that statement 1 to
i− 1 enumerated in the description of Lemma 5.2.4 holds), where q2 = 1/2,
q3 = 3/4, q4 = 31/32. Via a similar analysis, we have p2 ≤ e−217

, p3 ≤ e−216

and p4 ≤ e−213
.

Now, under the condition that statement 1 to 4 holds, which fail with a
probability that no more than p1 + p2 + p3 + p4 < e−212

, we prove statement
5. As statement 1 to 4 holds, there are at most 214 inputs remaining in K5,
all of which will use keys in K4, which is at least 32 times larger than K5,
as its mixins. Next, we analyze the probability p5 that there exists key in K5

that is neither a level-5 dirty key nor a level-6 dirty key. First, for each input,
the mixins can be viewed as sampled uniformly from all keys from K4, thus
the probability that all three mixins are chosen from K5 is 1/215. Next, we
consider the following two cases:

• There are less than 211 keys in K5. Then, by the union bound, the
probability that there exists 4 inputs that chooses mixins from K5 is
less than (211

4)/215·4 ≤ 2−20. That is to say, with probability 1− 2−20,
at most 3 keys are in K6. Since each input needs to choose three other
distinct keys as its mixins, all these three keys in K6 must be level-6
dirty keys.

• There are at least 211 but at most 214 keys in K5. Then, by the union
bound, the probability that there exists 9 inputs that chooses mixins
from K5 is less than (214

9)/215·9 ≤ 2−27. That is to say, with probability
1− 2−27, at most 8 keys are in K6. For each input in K6, the mixins can
be viewed as sampled uniformly from all keys from K5, which has
at least 211 keys, thus the probability that all three mixins are chosen
from K6 is 29/233 = 2−24. Then, by the union bound, the probability
that there exists at least one key that is not polluted by level-5 dirty
keys is at most 8 · 2−24 = 2−21.

To summarize, with probability 1 − 2−20, all keys in K5 are either level-5
dirty keys or level-6 dirty keys under condtion that statement 1 to 4 holds.
Therefore, the probability that all 5 statements hold is at least 1− (p1 + p2 +

p3 + p4 + p5) ≥ 1− 2−19.

By combining Lemma 5.2.3 and Lemma 5.2.4, we can conclude that with
all but a small probability 2−19, there does not exist a close set in Monero if

78 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

all inputs have 3 mixins and all mixins are sampled uniformly from all keys.
To some degree, we believe this analysis give the reason why our clustering
algorithm can only find 3017 closed sets.

5.3 Our Clustering Algorithm

Considering the impracticability of subset-based algorithm mentioned above,
here we introduce an approximate but efficient algorithm for searching closed
sets, which is named as clustering algorithm. Looking ahead, although the
clustering algorithm is just an approximate algorithm, we show that the
provably lower bound of the size of closed set found by it is 5. In other words,
for all closed set with size smaller than 5 can be found. Besides, we also con-
duct experiments and find that our clustering algorithm achieves a better
result during the actual running.

Intuition of Our Clustering Algorithm. Recall that, the main feature of
a closed set is that it embraces the same number of transaction inputs and
distinct public-keys. Hence, our target should be finding a set of inputs
with the above characteristics. To do so, one intuitive way is forming a set
from a certain input, then absorb other input which is helpful to achieve a
closed set. A key challenge is how to select other rings or what is the selection
criteria?

We observe that since the ultimate target is to make two numbers about
this set equal, it is possible to select rings based on the consequence of
adding an input into a set. For instance, assuming the set being consid-
ered now is called S, which is initialized by input R. Whenever an input R′

is added into S, the possible consequences can be divided into the following
three cases:

• Case 1. If all public-keys included in R′ are a subset of all public-
keys contained in S, then for set S, the number of included transaction
inputs is increased by one, and the number of distinct public-keys re-
mains the same. Thus, the insertion of R′ will certainly increase the
possibility of S becoming a closed set. We call such kind of input as
useful input.

• Case 2. If the insertion of R′ will only introduce one distinct public-
key to S, then the insertion of this input will not change the current

5.3. Our Clustering Algorithm 79

relationship between the number of distinct public-keys and the num-
ber of inputs included in S. This kind of input extends the public-key
set of S, which maybe helpful for absorbing other inputs. We call such
kind of input as uncertain input.

• Case 3. If the insertion of R′ will introduce two or more distinct public-
keys to S, then the number of inputs will only be increased by one, but
the number of public-keys will be increased by 2 or more. As this does
not help our analysis at all, we call such kind of input as bad input.

Above all, if we only pick the relatively useful and uncertain inputs to a
set, then we can find a closed set faster with high probability.

Definition of Cluster. A cluster Clus is defined as a set of inputs, namely,
Clus = {R1, R2, . . ., Rn}. Each cluster represents a set PK_Clus, which is
defined as PK_Clus =

⋃
R∈Clus R. In other words, PK_Clus is the set used to

collect all distinct public-keys included in the inputs in the cluster Clus.
The distance from an input to a cluster is defined as the number of public-

keys included in the input but not in the cluster. The formal definition of it
is given below:

Dist(R, Clus) = Dist(R, PK_Clus) = |R| − |PK_Clus ∩ R|,

where R is the input considered to be added, and Clus is a cluster with
public-keys set PK_Clus. Notably, this definition is not symmetric. Accord-
ing to our definition, the distance from an input to a cluster, i.e., Dist(R, Clus),
is different with the distance from a cluster to an input, i.e., Dist(Clus, R).

For instance, consider the cluster Clus and the input R composed as fol-
lows:

Clus = {{pk1, pk2}, {pk1, pk3}, {pk2, pk4}},
R = {pk1, pk3, pk5}.

Obviously, the public-key set of Clus is PK_Clus = {pk1, pk2, pk3, pk4}.
The size of R is 3, and number of common public-keys are 2. Hence, ac-
cording to our definition, the distance from R to Clus is Dist(R, Clus) =
Dist(R, PK_Clus) = 3− 2 = 1. So, if we add R into Clus, then only one new
public-key, i.e., pk5, will be introduced in Clus.

Starting from a specific input, the construction of a cluster is a dynamic
process of searching for other qualified inputs. To clarify how an input can

80 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

be added into a cluster, we associate each cluster with a distance. More
precisely, we say a cluster Clus with distance 1, if for all inputs which can
be added into this cluster, it satisfies that Dist(R, Clus) ≤ 1. Actually, for
a cluster, insertion of an input into it will cause changes to it. Hence, we
should always adopt the present cluster to calculate the distance from an
input to it. The algorithm for constructing a cluster from a certain input is
given in Algorithm 2.

Algorithm 2 Cluster_Form(R)

1: Start with an input R, and define the cluster as Clus = {R}
2: Let DataSet be all transaction inputs in the blockchain
3: for each R′(6= R) ∈ DataSet do
4: if Dist(R′, Clus) ≤ 1 then
5: Clus = Clus ∪ {R′}
6: end if
7: end for
8: return Clus

For each cluster, we use two additional parameters to check whether it
is a closed set. One is the number of inputs included in it, the other one
is the number of distinct public-keys included. Formally, if the number of
inputs equals to the number of distinct public-keys included in a cluster,
we say that this cluster is a closed set. Besides, in some cases, a closed set
may contain other sub-closed set. To find all closed sets, whenever we get a
closed set via this algorithm, we further conduct a sub-closed set searching
operation. An important observation we discovered is that if a public-key
only appears once in a closed set, then it must be the real spend of the input
including it. For simplicity, we utilize this method to test whether there
exists sub-closed set inside a closed set, since the complexity of brute-forcing
all subsets of this closed set is quite large.

Next we introduce the clustering algorithm for all clusters with distance
1. The main idea is that we repeatedly pass over all the transaction inputs
via numerous iterations. In each iteration, the algorithm picks an input and
uses it to initialize a cluster Clus. Then we run the constructing cluster al-
gorithm (Algorithm 2) to add proper inputs into Clus. Next the algorithm
checks whether the resulted cluster is a closed set. If not, continue with the
next iteration. Otherwise, before continuing with the next iteration, the al-
gorithm should finish the following operations. Remove all public-keys
contained in this cluster from the remaining inputs, and find the set of trace-
able ones. Afterwards, we check whether the current closed set includes a

5.3. Our Clustering Algorithm 81

public-key such that it only appears in one input. If yes, we further de-
anonymize inputs inside a closed set.

The algorithm of searching for all clusters with distance 1 from all trans-
action inputs in the blockchain is given in Algorithm 3. Notably, all rings
considered in our algorithm are anonymous. Once finding the real-spend
of an input, we will not do any operation on that input. Besides, our al-
gorithm concentrates on resulted data after the execution of cascade effect
attack. Hence, in Algorithm 3, we abuse the concept, where a cascade effect
algorithm is first invoked.

Algorithm 3 Clustering Algorithm

1: Let DataSet be all transaction inputs in the blockchain.
2: Cascade-Effect(Dataset)
3: Flag = true
4: while Flag == true do
5: Flag = false
6: for each R ∈ DataSet do
7: Clus_Form(R)→ Clus
8: if Clus is a closed set then
9: Remove(Clus)→ Flag

10: if Flag == true then
11: find traceable inputs
12: check whether rings inside Clus are traceable
13: end if
14: end if
15: end for
16: end while

Analysis of accuracy. The accuracy of the clustering algorithm is analyzed
through the following lemma, which gives a lower bound of the clustering
algorithm. This is to say that all closed sets with size smaller than 5 can be
found after the execution of the clustering algorithm.

Theorem 5.3.1. After the execution of our clustering algorithm with searching
distance 1, all indivisible closed sets with size at most 5 can be returned by our
algorithm.

Proof. Here we only consider whether our algorithm can find all closed sets
which do not contain any sub-closed set. We call such kind of closed set as
indivisible closed set.

The reason for this can be divided into two aspects. On one hand, the
search result of a closed set with sub-closed set relies on the result of its indi-
visible sub-closed sets. Without loss of generality, assume a closed set CoS1

82 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

can be divided into two parts, one is an indivisible sub-closed set named as
Cos1,1, another part is a cluster Clus1,2. In one case, if we can not find the
sub-closed set Cos1,1, then consider the search result for Cos1,1 will become a
smaller instance. While in the other case, if we can find sub-closed set Cos1,1,
then we will remove all public-keys contained in Cos1,1 from Clus1,2. The
remaining part of Clus1,2 become a smaller closed set again, and its search
result will affect whether the algorithm can find CoS1. We can repeat the
above process to find the smallest indivisible closed set. On the other hand, if
an indivisible closed set is found by our algorithm, and if the super closed set
of it exists, our algorithm will always return it.

We use proof by contradiction. Assume that there exists a closed set CoS
with size N ≤ 5, which cannot be detected by our algorithm. Based on the
definition of the closed set, there must be N inputs and N distinct public-keys
included in CoS. Since CoS already contains all related inputs, we only need
to consider those clusters initialized by the inputs included in CoS. In each
resulted clusters, we only consider the existence of those inputs included in
CoS. Because for any other input outside CoS, if it can be added into any
cluster aforementioned, it only introduces at most one public-key, which has
no effect on whether or not the part about CoS is a closed set.

In order to pick the so-called largest cluster, our selection criteria is stated
as follows. If there exists one and only one input in CoS whose size is maxi-
mum, then we pick the cluster initialized by this input. Otherwise, we com-
pare the size of all generated clusters, and pick the one who has the biggest
number of inputs inside. We denote the chosen cluster as Clus∗. Suppose
Clus∗ has m transactions and n distinct public-keys. Since we have assumed
that all resulted clusters are not closed sets, hence m < n.

Obviously, Clus∗ cannot contain all inputs of CoS, otherwise, it is a closed
set. For convenience, we call those inputs in CoS but not in Clus∗ as outsider
inputs. Observe that any outsider input must have minimum distance 2
with Clus∗, otherwise it will be included into. In other words, the outsider
inputs must occupy two distinct public-keys among all distinct public-keys
in CoS. Then we can get that n + 2 ≤ N ≤ 5, which can be simplified as
n ≤ 3. Until now, the possible value for n can only be 2 or 3. Next we
consider these two cases respectively.

• Case 1: n = 2. Since m < n, hence we can get that m = 1. This means
that the Clus∗ only consists of one input with two distinct public-keys.
Without loss of generality, we denote them as {pk1, pk2}. Recall the
selection criteria of the so-called largest cluster. If there exist one and

5.4. Experiment Result 83

only one input in Cos whose size is the biggest, then we pick the cluster
initialized by it as Clus∗. Otherwise, we pick the cluster who has the
biggest number of inputs in it. In other words, the size of all outsider
inputs cannot be larger than 2. Since the distance from each outsider
input to Clus∗ should be at least 2, then the public-keys pk1 and pk2

will never appear in any outsider input. However, in this situation,
the combination of the input pk1, pk2 and all outsider inputs are not a
closed set. which contradicts the fact that Cos is a closed set.

• Case 2: n = 3. As we require that N ≤ 5, and n + 2 ≤ N. Hence,
we can get that N = 5. As Clus∗ has m inputs, then the number of
outsider inputs is 5− m. Besides, the number of distinct public-keys
included in the outsider inputs is 2, since 3 public-keys are included in
Clus∗. As all clusters are not closed sets according to our assumptions,
and consider the relationship between the number of outsider inputs
and the number of distinct public-keys included in them. We can get
5 − m < 2, which states that m > 3. Whereas Clus∗ requires that
m < n = 3. Until now, we get a contradiction in this case.

Above all, we show that, for any atom closed set with size smaller than 5,
our clustering algorithm can certainly find it.

In summary, we can prove that our algorithm can guarantee the success-
ful searching for all closed sets whose size is smaller than 5. However, it is
just a lower bound. Since during the actual running, we find that our al-
gorithm also works well for searching those closed set with size more than
5.

Analysis of complexity. Assume the total number of transaction inputs
included in the blockchain is N. The number of iterations in our algorithm
is⊆(N). Suppose the average length of an input is `. While in each iteration,
in the worst case, we calculateO(`N) times distance between all inputs and
the current clusters. Therefore, in the worst case, the complexity is ⊆(`N2).

5.4 Experiment Result

To test the level of anonymity achieved by the CryptoNote-style currencies,
as well as the estimation of the probability of the existence of closed sets in
reality, we implement our clustering algorithm in C++, and the program is

84 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

executed on a computer with 3.1 GHz Intel Core i5 Processor, 16 GB RAM
and 256GB SSD storage disk. Notably, here we only analyze the top three
CryptoNote-style currencies according to their market capitalizations [coi],
i.e., Monero, Bytecoin and DigitalNote. For all these three currencies, we
export all related data directly from the corresponding blockchain database
via modifying its source codes.

5.4.1 Analysis of Monero

As there are two pioneering works [MMLN17, KFTS17] considering cas-
cade effect attacks on the untraceability of Monero transactions, we mainly
concentrate on the analysis of the anonymity of those data after the known
attacks.

Dataset Collection. We collect all blocks in the Monero blockchain from
the first block (18th April 2014) up to block 1541236 (30th March 2018). Ad-
ditionally, all related data is directly exported from the blockchain database
via modifying the source code of Monero [mon]. Our dataset in total con-
tains 4153307 transactions. Among them, 2612070 are non-coinbase trans-
actions, which are composed of 23164745 transaction inputs in total, and
25126033 distinct public-keys are involved. Notably, throughout this paper,
we only consider those non-coinbase transactions unless otherwise stated.

Experiment Results. In Table 5.2, we give the result of the clustering al-
gorithm on the aforementioned dataset. As it turns out, a total of 16334967
inputs become traceable. Specifically, 16329215 inputs are traceable due to
the cascade effect attack, and the remaining inputs, i.e., 5752 in total, are
traced by the finding of closed set. Total of 70.52% of Monero transaction in-
puts are traceable. While for the dataset after the cascade effect attack, only
0.084% inputs can be further traced.

Besides, a total of 6829778 transaction inputs are still untraceable. For all
these remaining inputs, we give the frequency of number of mixins before
and after the execution of clustering algorithm in Figure 5.1.

The clustering algorithm also finds 3017 distinct closed sets, whose size
vary from 2 to 55, and include a total of 7478 distinct public-keys. As we
mentioned before, these 7478 public-keys must be the real-spend of a cer-
tain input contained in these closed set. In other words, we can deduce that
they are spent although we do not know which concrete transaction they

5.4. Experiment Result 85

Table 5.2: Our Results. The first column denotes the number of mixins used
to calculate the frequency. The second column named as “Total” denotes the
total number of inputs with the corresponding mixins in the dataset. Col-
umn “Deducible” counts the number of inputs where the real spend can be
deduced. The following two columns denote the number of inputs deduced
by the titled attack. The last column counts the percentage of the traceable
inputs among the total value with in the same row. The last row counts the

total value of all values in a column.

No. of
Total Deducible

Cascade Clustering
(%)

mixins Effect Algorithm
0 12209675 12209675 12209675 0 100
1 707786 625641 625264 377 88.39
2 4496490 1779134 1776192 2942 39.57
3 1486593 952855 951984 871 64.10
4 3242625 451959 451230 729 13.94
5 319352 74186 73980 206 23.23
6 432875 202360 202100 260 46.75
7 21528 4296 4282 14 19.96
8 30067 3506 3490 16 11.66
9 17724 2178 2162 16 12.29
≥10 200030 29177 28856 321 14.59
Total 23164745 16334967 16329215 5752 70.52

are used. However, it is useless for the anonymity if any other new input
picking public-keys from them. We call these keys included in closed sets as
useless public-keys.

One may wonder there is a discrepancy between probability of 2−19 for
finding closed set and the existence of 3017 closed sets found during the exper-
iment. This is due to the fact that our analysis assumes mixins are chosen
uniformly and that each input has 3 mixins. However, in practice, sampling
distributions and number of mixins of all inputs are not uniform. This will
increase slightly the probability of finding closed set.

5.4.2 Analysis of Bytecoin

We provide the first work on analyzing the untraceability of Bytecoin via
cascade effect attack and clustering attack.

Dataset Collection. We collect all blocks in the Bytecoin blockchain from
block 1 (4 July 2012) to block 1586652 (3 August 2018). A total of 3782566
non-coin based transactions is contained in this dataset, and there are alto-
gether 45663011 transaction inputs included. Additionally, a total of 48613764
distinct public-keys are involved.

86 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

1 2 3 4 5 6 7 8 9 10+
0

0.5

1

1.5

2

2.5

·106

No. of mixins

C
ou

nt
of

Fr
eq

ue
nc

y
Before After

Figure 5.1: Frequency of number of mixins of those anonymous inputs be-
fore and after the execution of clustering algorithm.

Experiment Results. The experiment result on Bytecoin dataset is summa-
rized in Table 5.3. More specifically, a total of 33902808 Bytecoin transaction
inputs become traceable, counting for 74.25% of all inputs considered in our
dataset. Among them, 28591486 inputs are zero-mixin inputs, and the cas-
cade effect caused by them further makes 5231107 inputs become traceable,
which covers 99.763% of the total traceable inputs. Besides, our clustering
algorithm traces another 80215 transaction inputs from the remaining ones,
which counts to 0.68% of those untraceable inputs after the cascade effect
attacks. There are a total of 5912 closed sets found, whose size vary from 2 to
55.

5.4.3 Analysis of DigitalNote

We also provide the first work on analyzing the untraceability of Digital-
Note.

Dataset Collection. We collect all 633548 non-coin based transactions in-
cluded in the block 1 (31 May 2014) up to block 699748 (13 August 2018)
in the DigitalNote blockchain. A total of 8110602 inputs are included in the
aforementioned transactions, and 8396472 distinct public-keys are involved.

5.5. Observations and Recommendations 87

Table 5.3: Our Analysis Results on Bytecoin

No. of
Total Deducible

Cascade Clustering
(%)

mixins Effect Algorithm
0 28591486 28591486 28591486 0 100
1 5751268 3281500 3240142 41358 57.06
2 2840745 1133602 1112648 20954 39.91
3 1442133 261197 260298 899 18.11
4 2516851 276237 275172 1065 10.98
5 617041 59922 59493 429 9.71
6 3145092 270355 255156 15199 8.60
7 388759 26434 26160 274 6.80
8 81504 1231 1220 11 1.51
9 65379 397 389 8 0.61
≥10 222753 447 429 18 0.2
Total 45663011 33902808 33822593 80215 74.25

Experiment Results. The experiment result of DigitalNote is given in Ta-
ble 5.4. Specifically, 91.56% of all transaction inputs in our dataset is trace-
able, while 60.39% of them is without any mixin. Besides, the cascade at-
tack further contributes 39.60% of those traceable inputs. Our clustering
algorithm makes 49 additional inputs traceable, which covers 0.007% of the
untraceable inputs after the cascade effect attacks , with the help of 38 found
closed sets.

Table 5.4: The traceability of DigitalNote

No. of
Total Deducible

Cascade Clustering
(%)

mixins Effect Algorithm
0 4484726 4484726 4484726 0 100
1 2087295 1847151 1847132 19 88.49
2 1194410 895480 895472 8 74.97
3 129700 101872 101872 0 78.54
4 6225 4362 4358 4 70.07
5 193669 85941 85939 2 44.38
6 3071 1840 1837 3 59.92
7 844 442 440 2 52.38
8 1686 856 853 3 50.77
9 1288 682 681 1 52.95
≥10 7688 2684 2677 7 34.91
Total 8110602 7426036 7425987 49 91.56

5.5 Observations and Recommendations

In this section, we give our observations and recommendations according
to the experiment results.

88 Chapter 5. Traceability Analysis of CryptoNote-Style Blockchains

• Observation 1: The usage rate of outputs is an important factor for the anonymity
of CryptoNote-style currencies. The usage rate of outputs refers to the per-
centage of public-keys that have been spent. This can be easily calculated
by using the total amount of inputs in the dataset over the total number of
distinct outputs (i.e., public-keys), as each output can only be redeemed
once. As we mentioned in Section 5.2.3, those unspent public-keys play
an important role in preventing the formation of a closed set. Hence, it is
fair to say that, to some degree, decreasing the usage rate will improve
anonymity.

• Observation 2: Closed sets are closely related to the anonymity of inputs. In
this work, we have shown that finding closed sets could help identify real-
spends or decrease the ring size (so the level of anonymity) of those in-
puts. Although the probability of the existence of a closed set is not high,
but closed sets do exist and threaten the anonymity of inputs.

• Recommendation 1: Decreasing the usage rate of outputs by generating more
outputs. Recall that a lower usage rate of outputs is beneficial to the
anonymity of Monero inputs. Hence, to decrease the usage rate of out-
puts, we recommend users to additionally generate some outputs with 0
amount, which can make the unspent output set larger.

• Recommendation 2: Do not pick the useless mixin. Take the Monero as
an example, our clustering algorithm has found 3017 distinct closed sets,
which contain 7478 distinct public-keys. These 7478 public-keys must be
the real-spend of a certain input contained in these closed sets. Hence,
for any newly generated input, picking these keys as mixin will not im-
prove anonymity. So, we recommend users to not pick these useless mix-
ins. However, for an ordinary user, it is difficult to determine whether
an output is contained in closed sets or not. Thus, we plan to release our
algorithm as an online service for users to check the closed sets, to avoid
selecting those useless mixins.

89

Chapter 6

Lattice-Based Universal
Accumulator

Universal accumulator [LLX07] provides a way to combine a set of values
into one, and simultaneously offers a short membership witness for a given
value which is accumulated and a short nonmembership witness for a given
value which is not accumulated. Compared with traditional accumulator,
universal accumulator is suitable for the case where nonmembership wit-
ness is desirable, as in the following example.

Suppose there is an online forum, where only legitimate users can post
messages. Once a current legitimate user misbehaves, the forum manager
can flag this user with a label “malicious" and forbid his or her right to post
for a while, such as one day. To do this, the forum manager can maintain a
list of malicious users, and update it every day. Certainly, registration before
the first access of each user is needed. Then for any user who wish to post a
message on this forum, besides proof of membership, he or she also needs
to provide proof that he/she is not on the list of malicious users.

However, until now, the realizations of universal accumulator are mainly
based on two types of non-standard number theoretic assumptions. The
first type [LLX07] relies on the group of hidden order, such as Strong RSA
assumption. The schemes based on this assumption usually have short
public parameter but only permit primes to be accumulated. The second
type [ATSM09, DT08] bases on bilinear map assumptions, including Strong
Diffie-Hellman assumption. While there exists some hash-based construc-
tions of universal accumulator [BLL00, BLL02, CHKO08], but the adoption
of hash tree structure made them hardly compatible with efficient zero-
knowledge proof. Without a suitable zero-knowledge proof for proving
various facts about the accumulated values, they would not be as useful
as the aforementioned accumulators.

To the best of our knowledge, there is no construction of lattice-based

90 Chapter 6. Lattice-Based Universal Accumulator

universal accumulator. As lattice-based cryptography is promising in the
post-quantum era due to its attractive properties including strong secu-
rity from the worst-case hard problem, presumed resistance to quantum
attacks [P+16], we design a lattice-based construction of universal accumu-
lator with compatible zero-knowledge proofs.

Chapter Organization. For the following contents of this chapter, we start
with a brief introduction about our contribution and technique used in Sec-
tion 6.1. The proposed construction of universal accumulator appears in
Section 6.2. Finally, this chapter is concluded with Section 6.3 about the
application of our accumulator.

6.1 Our Contribution and Overview of Our Idea

The contribution of this work can be summarized as follows:

• The first construction of lattice-based universal accumulator. We propose
the first lattice-based universal accumulator, which can provide a short
witness for both an accumulated value and for a non-accumulated
value.

• The first zero-knowledge arguments of nonmembership in the lattice-based
setting. We introduce zero-knowledge arguments of knowledge (ZKAoK)
for proving the possession of the nonmembership witness of a non-
accumulated value.

Overview of Our Idea. Our Merkle-tree based accumulator considered
accumulated set which is sorted. Then for any value not in the accumulated
set, it must belong to an open interval formed by two adjacent values in
the set. Then we pick the sibling paths of the two sibling leaves (denoting
the two interval boundary values) to the root in the tree to be witness. In
order to show that a given value is not accumulated, we need to prove two
things in zero-knowledge: (1) the given value is between two sibling leaves
in the witness; (2) the knowledge of a hash chain (via the method intro-
duced in [LLNW16]). While the above approach appears to be very similar
to the lattice-based Merkle-tree accumulator [LLNW16], the construction of
the Merkle-tree in our paper is different to prevent revealing relationships
between the given nonmember value and member values.

6.2. Lattice-Based Universal Accumulator 91

6.2 Lattice-Based Universal Accumulator

In this section, we present our construction of a universal accumulator, that
is, an accumulator with membership and nonmemberhship proof. Our start-
ing point is the accumulator from Libert et al. [LLNW16]. Here we show
how to create nonmembership proof. For completeness, we separate the
part of accumulator for nonmembership from universal accumulator, and
give its definition in Section 2.6.1.

Throughout this section, we work with these positive integers, n, q, k,
and m, where n is used as security parameter, q is Õ(n1.5), k = dlog qe, and
m = 2nk.

Besides, for any vector v ∈ Zn
q , and its binary representation bin(v) ∈

{0, 1}nk, we have G · bin(v) = v, where matrix G is defined as follows:

G =


1 2 22 . . . 2k−1

1 2 22 . . . 2k−1

. . .

1 2 22 . . . 2k−1

 ∈ Zn×nk
q .

In order to assign a unique value for each binary vector with length nk,
we define the notion of integer value. The integer value Int(v) of a binary
vector bin(v) ∈ {0, 1}nk is computed as

Int(v) = (1 2 22 23 . . . 2(nk−1)) · bin(v),

where we label (1 2 22 23 . . . 2(nk−1)) as G′ in the following contents.

6.2.1 Our Construction of Accumulator for Nonmembership

In this section, we give our solution for nonmembership witness via con-
structing a Merkle-tree with 2`+1 leaves, where ` is a positive integer. Sim-
ilar to [LLNW16], the construction of Merkle-tree is based on a family of
lattice-based collision-resilient hash functionH = {hA|A = [A0||A1], A0, A1

∈ Zn×nk
q }, mapping from {0, 1}nk × {0, 1}nk to {0, 1}nk. For any (u0, u1) ∈

{0, 1}nk × {0, 1}nk, hA(u0, u1) = bin(A0 · u0 + A1 · u1 mod q) ∈ {0, 1}nk.
Our construction of accumulator for nonmembership consists of four al-

gorithms. Besides, for any input accumulated set S with size N = 2`− 1, two
auxiliary nodes are additionally chosen, denoted as First and Last.

92 Chapter 6. Lattice-Based Universal Accumulator

Setup(n). Pick A $← Zn×m
q , First = 0nk, and Last = 1nk . Then output pp =

{A, First, Last}.

NM-Accpp(S). The algorithm takes input an accumulated set S={x1, . . ., xN},
where each element xi ∈ {0, 1}nk \ {0nk, 1nk} (i ∈ [1, N]), and proceeds
as follows:

1. Sort Inputs. First sort S in ascending order via the corresponding
integer value Int(xj) (within 2nk) of each element xj, and let (x′1,
. . ., x′N) be the sorting result.

2. Assign Values. Let (u0, u1, u2, . . ., u2`+1−1) be 2N + 2 = 2`+1

variables. Then we assign value for each variable as follows:

• u0 = First;

• for j = 1 to N, uj = x′j;

• for j = N + 1 to 2N, uj = x′j−N;

• u2`+1−1 = Last.

In addition, for each j ∈ [0, (2`+1 − 1)], let (j1, j2, . . . , j`+1) be its
binary representation string, then uj = uj1,j2,...,j`+1 .

3. Construct Tree. Then construct a tree with depth (`+ 1) based on
the leaves (u0, u1, u2, . . ., u2`+1−1).

• At any depth i ∈ [1, `], for each (b1, b2, . . . , bi) ∈ {0, 1}i, each
node ub1,b2,...,bi is defined as

ub1,b2,...,bi = hA(ub1,b2,...,bi,0, ub1,b2,...,bi,1);

• At depth 0, the root node is u = hA(u0, u1).

The algorithm outputs the nonmembership accumulator value u.

NM-Witnesspp(S, d), where d /∈ S.

Let Int(d) be the integer value of d. First find two sibling leaves
(ub1,...,b`,0, ub1,...,b`,1) in the tree such that

Int(ub1,b2,...,b` ,0) < Int(d) < Int(ub1,b2,...,b` ,1).

Then return the witness for d as follows.

w = ((b1, b2, . . . , b`), (ub1,b2,...,b`,0, ub1,b2,...,b`,1,

ub1,b2,...,b̄` , . . . , ub1,b̄2
, ub̄1

)) ∈ {0, 1}` × ({0, 1}nk)`+2.

6.2. Lattice-Based Universal Accumulator 93

u000 u001 u010 u011 u100 u101 u110 u111

First x1 x2 x3 x1 x2 x3 Lastd

u00 u01 u10 u11

u0 u1

u

Figure 6.1: A Merkle-tree with 23 leaves, which accumulates the data blocks
in the set S= {x1, x2, x3} with ascending integer values, into an accumulator
value u. In addition, the bit string (01) and the gray nodes consist the wit-
ness for a node d, which is not accumulated in u, and Int(x2) < Int(d) <

Int(x3).

NM-Verifypp(u, d, w). Assume the witness w is of the form w = ((b1, b2, . . .,
b`), (w`,1, w`,2, w`, w`−1, . . ., w1)).

• First check whether Int(w`,1) < Int(d) < Int(w`,2).

• If yes, then compute v` = hA(w`,1, w`,2), and

∀i ∈ {`− 1, `− 2, . . . , 1, 0} : vi =

{
hA(vi+1, wi+1) i f bi+1 = 0
hA(wi+1, vi+1) i f bi+1 = 1

.

Finally, the algorithm returns 1 if v0 equals u. Otherwise, returns 0.

Then we give an example of a tree with 23 leaves, where the size of the
accumulated set is 3, and denote the set as S = {x1,x2, x3}. For simplicity,
we assume that elements in S are in ascending order. Then the tree is shown
in Figure 6.1.

Correctness. The correctness of the above construction requires that for
any binary string d ∈{0, 1}nk\{0 . . . 0, 1 . . . 1}, d /∈ S, and u ← Accpp(S),
computes witness w ← NM-Witnesspp(S, d), NM-Verifypp(u, d, w) = 1. We
also argue that for any d, its witness w is unique in the above Merkle-tree.

Since set S is sorted via the integer value of each element in NM-Accpp

algorithm, here we directly assume that S = {x1, . . . , xN} be a sorted binary
string set, and each element inside is different. We use interval Ii to de-
note the open interval (Int(xi−1), Int(xi)), which is illustrated in Figure 6.2.
Observe that value Int(d) must fall into one and only one interval Ii in Fig-
ure 6.2 since d /∈ S. Then the corresponding elements in S, namely xi and

94 Chapter 6. Lattice-Based Universal Accumulator

x1I1 I2 x2 I3 x3 I4 x4 · · · IN xN

Figure 6.2: Illustration of Correctness

xi+1, constitute the first two nodes (sibling leaves) in the witness. Since we
require them to be sibling leaves in the tree T, then we choose the corre-
sponding sibling leaves uj and uj+1 based on Ii. If i is even, then choose
uN+i−1 and uN+i, and the siblings of each node in the path from them to
root to be witness. Otherwise, picks ui−1 and ui, and the siblings of each
node in the path from them to root.

Regarding the security of our construction, we have the following theo-
rem.

Theorem 6.2.1. Under the hardness of SIS problem, the construction for nonmem-
bership witness presented above is secure.

Proof. Assume that there exists an adversary B who can break the security
of the above accumulator scheme. Then we can construct another algorithm
which can break the collision-resilient property of the hash function h used
in the scheme, whose hardness is based on the SIS problem.

Given the public parameter pp = (A, First, Last) output by Setup(n), B
outputs (S∗, d∗, w∗) such that d∗ ∈ S∗, and algorithm NM-Verifypp(NM-Accpp

(S∗), d∗, w∗) = 1, where w∗ is in the form ((b∗1 , b∗2 , . . ., b∗`), (w∗`,1, w∗`,2, w∗` , w∗`−1,
. . ., w∗1)).

Since NM-Verifypp(NM-Accpp(S∗), d∗, w∗) = 1, hence Int(w∗`,1) < Int(d∗) <
Int (w∗`,2), which implies that d∗ 6= w∗`,1 and d∗ 6= w∗`,2. Let v∗` , v∗`−1, v∗`−2, . . .,
v∗0 be the path computed by algorithm NM-Verifypp. We also set v∗`,0 = w∗`,1,
and v∗`,1 = w∗`,2. Then v∗0 must be equal to u.

Next we construct the Merkle-tree T∗ based on the sorted set S∗,Frist,
and Last. Notably, each node in T∗ is represented via ui. Recall that (b∗1 ,
b∗2 , . . ., b∗`) is the bit string contained in w∗. Let ub∗1 ,b∗2 ,...,b∗` ,0, ub∗1 ,b∗2 ,...,b∗` ,1,
ub∗1 ,b∗2 ,...,b∗`

, ub∗1 ,b∗2 ,...,b∗`−1
,. . ., ub∗1

, u be the path from leaves ub∗1 ,b∗2 ,...,b∗` ,0, ub∗1 ,b∗2 ,...,b∗` ,1

to root u. Notably, d∗ must be equal to either ub∗1 ,b∗2 ,...,b∗` ,0 or ub∗1 ,b∗2 ,...,b∗` ,1 since
d∗ ∈ S∗. In this way, we get two paths, they are

Path1 : v∗`,0, v∗`,1, v∗` , v∗`−1, v∗`−2, . . . , v∗1 , v∗0
Path2 : ub∗1 ,b∗2 ,...,b∗` ,0, ub∗1 ,b∗2 ,...,b∗` ,1, ub∗1 ,b∗2 ,...,b∗`

, ub∗1 ,b∗2 ,...,b∗`−1
, . . . , ub∗1

, u

Comparing Path1 and Path2, we can find the smallest integer k ∈ [1, `+ 1]
such that v∗k 6= ub∗1 ,b∗2 ,...,b∗k

. Notably, in the case k= `+ 1, we mean either v`,0

6.2. Lattice-Based Universal Accumulator 95

6= ub∗1 ,b∗2 ,...,b∗` ,0 or v`,1 6= ub∗1 ,b∗2 ,...,b∗` ,1 or both. In this way, we find a collision for
hA for v∗k−1.

6.2.2 Zero-Knowledge Argument of Knowledge of Nonmem-

bership Witness

In this section, we give a ZKAoK to prove the possession of the nonmember-
ship witness of a non-accumulated value. More specifically, given common
inputs (pp = (A, First, Last), u), prover P convinces verifier V that he has (d,
w) such that NM-Verifypp (u, d, w) = 1. The relevant relation is defined as
Rnm:

Rnm =


((pp, u) ∈ (Zn×m

q × 0nk × 1nk × {0, 1}nk);

d ∈ {0, 1}nk, w ∈ {0, 1}` × ({0, 1}nk)`+2) :

NM-Verifypp(u, d, w) = 1

 .

Overview of Our Argument. Assume w is of the form ((b1, b2, . . ., b`),
(w`,1, w`,2, w`, w`−1, . . ., w1)). Observe that for any (d, w), algorithm
NM-Verifypp(u, d, w) = 1 if and only if the following two requirements being
satisfied:

1. The integer value of d belongs to the open interval (Int(w`,1), Int(w`,2)),
namely

Int(w`,1) < Int(d) < Int(w`,2). (6.1)

2. The path computed by NM-Verifypp(u, d, w) satisfies v0 = u, and

v` = hA(w`,1, w`,2),

∀i ∈ {`− 1, `− 2, . . . , 1, 0} : vi =

{
hA(vi+1, wi+1) if bi+1 = 0
hA(wi+1, vi+1) if bi+1 = 1

.

(6.2)

Roughly speaking, our proof can be reduced to proving the above two re-
quirements in zero-knowledge. Before going into details, we first give a
brief sketch about the techniques used in our proof. Based on the obser-
vation that if we can adjust each requirement into the form of Pi · xi =

vi mod qi, and define the valid set and permutation set for the two require-
ments satisfying the condition(2.4), then we can use the abstract Stern’s pro-
tocol [LLNW17] to get the zero-knowledge arguments protocol. For the

96 Chapter 6. Lattice-Based Universal Accumulator

first requirement, we observe that for any vector u, v ∈ {0, 1}nk, if Int(u)
< Int(v), then there is one and only one binary vector diff ∈ {0, 1}nk, such
that Int(v) - Int(u) − Int(diff) = 1 mod (2qn). This part can also be used
as range proof of integer values. For the second requirement, we need to
provide membership proof to sibling leaves w`,1 and w`,2, which can utilize
the technique of membership proof presented by Libert et al. in [LLNW16]
based on modulus q.

In the following contents, we first transform the above requirements into
the linear form P · x = v mod q, then define the corresponding valid set and
permutation set for the abstract Stern’s protocol.

Transformation of Requirement (6.1). Observe that for any vector v ∈
{0, 1}nk, its integer value is within the set {0, 1, 2, 3, . . ., 2nk-1 }. Then
for any three vectors v1, v2, v3 ∈ {0, 1}nk, if Int(v1) − Int(v2) − Int(v3) =

1 mod (2qn), then we can get that Int(v1) > Int(v2) mod qn. According to
this observation, we can equivalently rewrite condition (6.1) to be

Int(w`,1) < Int(d) mod qn

⇔ Int(d)− Int(w`,1)− 1 = Int(diff1) mod 2qn;
Int(d) < Int(w`,2) mod qn

⇔ Int(w`,2)− Int(d)− 1 = Int(diff2) mod 2qn,

(6.3)

where vectors diff1, diff2 ∈ {0, 1}nk are binary vectors of the differences.
Since for any binary vector v, we have Int(v) = G′·v, then requirement

(6.1) can be equivalently rewritten as{
G′ · d−G′ ·w`,1 −G′ · diff1 = 1 mod 2qn;
G′ ·w`,2 −G′ · d−G′ · diff2 = 1 mod 2qn.

(6.4)

Transformation of Requirement (6.2). Before going into details, we first
recall some notations and techniques introduced in [LLNW16].

• Bnk
m is used to denote the set of all vectors in {0, 1}m with hamming

weight nk. Besides, we denote Sm the set of all permutations of all m
elements.

• Let ext(b, v) denote the vector z ∈{0, 1}2i of the form z =

(
b̄ · v
b · v

)
,

where v ∈ {0, 1}i (i ∈ {nk, m}), and b ∈ {0, 1}.

6.2. Lattice-Based Universal Accumulator 97

• For any b ∈ {0, 1}, and for any π∈Sm, let Fb,π be the permutation on

vector z =

(
z0

z1

)
∈ {0, 1}2m with two blocks of size m, which is defined

as Fb,π =

(
π(zb)

π(zb̄)

)
.

Next, via the same transformation strategy presented in [LLNW16], the
second requirement (6.2) can be equivalently rewritten to be

A ·
(

w`,1

w`,2

)
−G · v` = 0 mod q;

∀i ∈ [1, `] : zi = ext(bi, vi), yi = ext(b̄i, wi);
∀i ∈ [1, `− 1] : A · zi+1 +A · yi+1 −G · vi = 0 mod q;
A · z1 +A · y1 = G · u mod q.

(6.5)

Until now, NM-Verify(u, d, w) =1 equals the equations (6.4) and (6.5) hold.
Beside the above transformations, extension technique presented in [LNSW13]
is also needed, which does the follows :

• Matrix extension: A = [A0||A1] is modified to be A∗ = [A0 || 0n×nk ||
A1|| 0n×nk], G is modified to be G∗ = [G||0n×nk], and G′ is modified to
be G

′′
= [G′||01×nk].

• Vector extension: all w`,0, w`,1, . . . , w1, v`, v`−1, . . . , v1, d, diff1, diff2

are extended into w∗`,0, w∗`,1, . . ., w∗1 , v∗` , v∗`−1, . . ., v∗1 , d∗, diff∗1 , diff∗2 ∈
Bnk

m respectively. For each vector, this is done by appending it with a
binary vector of length nk with the restriction that the resulted vector’s
Hamming weight is nk.

Then equations (6.4) and (6.5) can be equivalently written as follows:

G′′ · d∗ −G′′ ·w∗`,1 −G′′ · diff∗1 = 1 mod 2qn,
G′′ ·w∗`,2 −G′′ · d∗ −G′′ · diff∗2 = 1 mod 2qn,

A∗ ·
(

w∗`,1

w∗`,2

)
−G∗ · v∗` = 0 mod q,

∀i ∈ [1, `] : zi = ext(bi, v∗i), yi = ext(b̄i, w∗i),
∀i ∈ [1, `− 1] : A∗ · zi+1 +A∗ · yi+1 −G∗ · v∗i = 0 mod q;
A∗ · z1 +A∗ · y1 = G · u mod q.

(6.6)

Upon the above preparation, the interactive protocol can be summarized
as follows.

98 Chapter 6. Lattice-Based Universal Accumulator

Common inputs: Matrices G′′, A∗, G∗, G, and vector u.

Prover’s inputs: (diff∗1 , diff∗2 , d∗), (b1, . . . , b`),(w∗`,1, w∗`,2,w∗` , . . ., w∗1), (v
∗
` ,

. . ., v∗1), (z`, . . ., z1), (y`, . . . , y1)

Prover’s goal: prove the following things in a zero-knowledge manner.(1)
w∗`,1, w∗`,2 ∈ Bnk

m ; (2) for all i ∈ [1, `], v∗i , w∗i ∈ Bnk
m , and zi = ext(bi, v∗i),

yi = ext(b̄i, w∗i); (3) equations (6.6) hold.

Let x = (diff∗1 ‖ diff∗2 ‖ d∗ ‖ w∗`,1 ‖ w∗`,2 ‖ v∗` ‖ z` ‖ y` ‖ . . . ‖ v∗1 ‖ z1 ‖
y1). Next, we specify the definition of set VALID, set S and the associated
permutation Tπ for x which satisfy conditions (2.4).

Let VALID be the set of all vectors in {0, 1}5m+5m` with the same form of
vector x, where

• diff∗1 , diff∗2 , d∗, w∗`,1, w∗`,2, v∗` , v∗`−1 . . . , v∗1 ∈ Bnk
m ;

• for all j ∈ [1, `] (zi ∈ (Bnk
m × 0m) ∧ yi ∈ (0m × Bnk

m)) or (zi ∈ (0m ×
Bnk

m) ∧ yi ∈ (Bnk
m × 0m)).

The set S as well as the permutation {Tπ : π ∈ S} is defined as follows:

• S =

(5+2`)︷ ︸︸ ︷
Sm × Sm × . . .× Sm, where Sm is the set of all permutations for m

elements.

• For each π = (π1, π2, π3, π4, π5, . . . , π5+2`) ∈ S, where each πi ∈ Sm

(i ∈ [1, 5+ 2`]), and for each x = (diff1, diff1, d, w`,1, w`,2,v`, z`,y`,v`−1,
. . ., z1, y1), where diff1, diff1, d, w`,1, w`,2, v`, v`−1, . . ., v1 are with
length m, and each other vector has length 2m. For zi ∈ x, we denote

it as zi=

(
zi,1

zi,2

)
, where zi,1 and zi,2 have m elements respectively. We

denote yi =

(
yi,1

yi,2

)
similarly. The main technique used in the follows

is that each pair of vi and zi shares an identical permutation. Pick b`,

b`−1, . . ., b1
$← {0, 1}.

Tπ(x) = π1(diff1) ‖ π2(diff2) ‖ π3(d) ‖ π4(w`,1)||π5(w`,2) ‖ π6(v`)

‖
(

π6(z`,(1+b`))

π6(z`,(2−b`))

)
‖
(

π7(y`,(1+b`))

π7(y`,(2−b`))

)
‖ π8(v`−1) ‖

(
π8(z`−1,(1+b`−1)

)

π8(z`−1,(2−b`−1)
)

)

‖
(

π9(y`−1,(1+b`−1)
)

π9(y`−1,(2−b`−1)
)

)
‖ ‖

(
π5+2`(y1,1+b1)

π5+2`(y1,2−b1)

)
.

6.3. Application of Our Accumulator 99

Thanks to the useful equivalences introduced in [LLNW16], which state
that

• For any vector v ∈ {0, 1}m, and π ∈ Sm, we have

v ∈ Bnk
m ⇐⇒ π(v) ∈ Bnk

m ;

• For any vector v, w ∈ {0, 1}m, c, b ∈ {0, 1}, π, φ ∈ Sm, we have

z = ext(c, v) ∧ v ∈ Bnk
m ⇐⇒ Fb,π(z) = ext(c⊕ b, π(v)) ∧ π(v) ∈ Bnk

m

y = ext(c̄, w) ∧w ∈ Bnk
m ⇐⇒ Fb̄,φ(y) = ext(c⊕ b, φ(w)) ∧ φ(w) ∈ Bnk

m .

We can get that x ∈ VALID if and only if Tπ(x) ∈ VALID. Besides, if π is
uniformly chosen from S, then Tπ(x) is uniformly distributed in VALID. In
this way, we can run the abstract Stern’s protocol [LLNW17] to prove the
knowledge of x satisfying all requirements stated in Prover’s goal.

6.3 Application of Our Accumulator

As an independent interest, we give one potential application of our above
proposed accumulator, i.e. fully dynamic group signature. Unlike a static
group signature, a fully dynamic group signature should enable the users
dynamical joining and user revocation. Our idea is that we construct two
Merkle-trees in our constructed dynamic group signature scheme, one is for
membership proof and another one is for non-membership proof. In the
following, we call the Merkle-tree used for membership proof as T1, and
the Merkle-tree used for nonmembership proof as T2. We first give a brief
introduction on how to construct the group signature.

Firstly, group manager computes enough number of chameleon hash
values, and use them as the leaves to construct the Merkle-tree T1. Once a
user is joining, group manager opens a non-designed chameleon hash val-
ues to be the user’s public key. Notably, in our scheme, the joining operation
of a user won’t affect the root value of T1, and once a chameleon hash value
is open, it won’t change forever.

As mentioned before, T2 is the tree whose leaves are all users who have
been revoked, which is constructed via the method presented in Section 6.2.
When group manger wants to revoke a user at some time, he can just add
this user to be a leaf in T2, and this process needs to reconstruct T2.

100 Chapter 6. Lattice-Based Universal Accumulator

Then any member wants to produce a group signature, he needs to give
two types of proofs. The first one is to prove that he is a member in T1, this
can be done via utilizing the technique presented in [LLNW16]. The second
type of proof is to prove that he is not a member in the second tree T2 via
our technique. Then if these two parts are both valid, we say the signature
is valid.

Recently, Ling et al. [LNWX17] present a fully dynamic group signa-
ture from updatable Merkle-tree accumulator where the cost of adding and
deleting element is logarithmic size in the number of group member. In
addition, their scheme is also lattice-trapdoor-free. Looking ahead,in our
scheme, via the help of the chameleon hash function, the complexity of
adding a node is O(1), which needs to utilize a trapdoor of the chameleon
hash function. While every time the group manager issue a new revoked
list, he needs to reconstruct the second accumulator (based on revoked mem-
bers) for nonmembership proof. Hence the cost of deleting is the cost for
constructing a Merkle-tree for the revoked set, which is worse than [LNWX17].
Besides, the signature size of our scheme is not as compact as [LNWX17].
However, we argue that our fully dynamic group signature fits for the sce-
nario that user’s status frequently changes (either be valid or revoked) in
different time period, and the revoked list periodically updates.

6.3.1 Definition of Fully Dynamic Group Signature

We recall the definition of the fully dynamic group signature (FDGS)[BCC+16,
LNWX17]. A fully dynamic group signature (FDGS) is composed of the fol-
lowing polynomial time algorithms.

GS.Setup(λ) → pp. This algorithm takes the security parameter as input
and outputs the public parameter pp.

〈GS.KeygenGM(pp), GS.KeygenTM(pp)〉. This is an interactive protocol between
algorithms GS.KeygenGM(pp) and GS.KeygenTM(pp) run by group man-
ager GM and tracing manager TM respectively. If this protocol com-
pletes successfully, algorithm GS.KeygenGM(pp) outputs a group man-
ager key pair (msk, mpk). The algorithm GS.KeygenTM(pp) outputs a
key pair (tsk, tpk). Set the group public key gpk = (pp, mpk, tpk).

GS.UKgen(pp) → (upk, usk). On input the public parameter pp, this algo-
rithm outputs a user’s key pair (upk, usk).

6.3. Application of Our Accumulator 101

〈Join(Infoτ, gpk, upk, usk); Issue(Infoτ, msk, upk)〉. This is an interactive proto-
col between group manager GM and user. Upon successful comple-
tion, this user becomes an element of the group, and is assigned an
identifier uid. Algorithm Join also stores the secret signing key usk in
gsk[uid]. In addition, algorithm Join adds the registration information
to registration table reg with index uid.

GS.Revoke(gpk, msk, Infoτcurr , S, reg) → Infoτnew . This algorithm is done by
group manager GM to revoke users, update group information, and
advance the epoch. On input the group master public key gpk, group
master secret key msk, current group information Infoτcurr , a set S of
active users, registration table reg, the algorithm removes users in S
from the group, generates new group information Infoτnew , and may
update the registration table reg. If there is no change to the group
information, this algorithm outputs ⊥. This algorithm aborts if any
uid ∈ S has not run the Join protocol.

GS.Sign(gpk, gsk[uid], Infoτ, M) → Σ. This algorithm generates a signature Σ
for Message M by user uid. If the user uid is not an active user in time
epoch τ, this algorithm outputs ⊥.

GS.Verify(gpk, Infoτ, M, Σ) → 0 or 1. This deterministic algorithm checks the
validity of signature Σ at epoch τ, and outputs one resulted bit.

GS.Trace(gpk, tsk, Infoτ, reg, M, Σ) → (uid, Πtrace). This algorithm is run by
tracing manager TM to open the signing user uid for signature Σ. Be-
sides, this algorithm also generates a proof Πtrace to indicate that the
tracing result is correct. It returns ⊥ if it fails to trace to a group mem-
ber.

GS.Judge(gpk, uid, Infoτ, Πtrace, M, Σ) → 0 or 1. This algorithm is used to
check the validity of the proof Πtrace.

Correctness. The correctness of FDGS require that the signatures gener-
ated by an honest and active, and non-revoked users can always be accepted
by the GS.Verify algorithm. Besides, an honest tracing manager can always
identify the signer of the valid signatures mentioned above, and the proof
for tracing output by GS.Trace algorithm can be accepted by GS.Judge algo-
rithm.

102 Chapter 6. Lattice-Based Universal Accumulator

Security. The security of FDGS mainly contains the following requirements
as mentioned in [BCC+16]:
Anonymity requires that it is infeasible for any probabilistic polynomial time
adversary to distinguish two signatures generated by two active group mem-
bers which are chosen by adversary, even if the adversary can corrupt any
user and fully corrupt the group manager by generating her key. In addi-
tion, adversary can also access the GS.Trace oracle for any other signatures
except the challenge ones.
Non-Frameability requires that it is infeasible for any probabilistic polyno-
mial time adversary to generate a signature which can be accepted by GS.Verify

algorithm, and can be traced to an honest user who did not produce it. Even
if the adversary corrupts the group manager, tracing manager and all other
user in this system.
Traceability ensures that the adversary cannot produce a signature that can-
not be traced back to an active user of the group at the chosen epoch, where
adversary can corrupt any user and the tracing manager.
Tracing Soundness ensures that the adversary cannot produce a valid signa-
ture that traces back to two different active users of the group even if the
adversary can corrupt the group manager, tracing manager, and all mem-
bers of the group.

For simplicity of reading, here we only given an informal description of
those security definition. We refer the reader to [BCC+16] for the formal
definitions of correctness and security requirements of FDGS.

6.3.2 Our Construction

In this section, we show how to construct a lattice-based dynamic revocable
group signature based on our accumulator and argument systems.

Let n be the security parameter, and let N= 2` − 1 be the maximum
number of users contained in the group. The constructed group signature
scheme uses n, m, q, k as defined in Section 6.2. Let κ= ω(log n) be the pa-
rameter that determines the number of protocol repetitions. To utilize the
`-bits Regev’s encryption scheme, we set prime modulus p = Õ(n1.5), pa-
rameter mE = 2(n + `)dlog pe, and a LWE error distribution χ = DZ,2

√
n.

GS.Setup(λ) → pp. This algorithm takes the security parameter λ as input
and specifies the following parameters:

• Recall that n is public parameter, let q =Õ(n1.5) and k= dlog qe.

6.3. Application of Our Accumulator 103

• Set the maximum number of group member to N = 2` − 1.

• Matrix dimension of accumulator is m = 2nk. Picks the two hash
matrixs for two accumulators as A= A0||A1, A′= A′0||A′1 ∈ Zn×m

q .

• Let m′ = O(n log q), and let mch = nk+µ+m′ be the matrix dimen-
sion for chameleon hash. As stated in [CHKP10], the randomness
space is R = {r ∈ Zm′ : ||r|| ≤ s ·

√
m′} with Distribution space

D
Zm′ ,s. The message space is M = {0, 1}nk+µ, and range is Y =

Zn
q .

• Let p = Õ(n1.5) be prime modulus for Regev’s encryption scheme,
parameter mE = 2(n + `)dlog pe. Let β=

√
n ·ω(log n), and χ be a

β-bounded noise distribution.

• A hash function HFS: {0, 1}∗ → {1, 2, 3}κ, which is modeled as
a random oracle in the Fiat-Shamir transformations, where κ=
ω(log n).

• Let COM : {0, 1}∗ × {0, 1}m → Zn
q be the string commitment

scheme presented in [KTX08], which will be used in our zero-
knowledge argument of knowledge system.

• Picks a uniformly random matrix Auk ∈ Zn×m
q , which will be used

in generation of user’s key pair.

• Set First =

nk︷ ︸︸ ︷
(00 . . . 0), and Last =

nk︷ ︸︸ ︷
(11 . . . 1).

Then this algorithm outputs the public parameters

pp = {n, q, N, k, m, µ, mch, p, mE, β, χ, κ,HFS, COM,R,M,Y , A, A′,

Auk, First, Last}.

〈GS.KeygenGM(pp), GS.KeygenTM(pp)〉. In this interactive protocols, the group
manager GM and the tracing manager TM generate the keys and pub-
lic group information as follows:

• GS.KeygenGM(pp) run by GM:

– Pick msk
$← {0, 1}m, and computes mpk = Auk · msk mod q.

Same as in [BCC+16], msk is needed when a party want to
edit the group information board, which is visible to every-
one.

– Run CH.KeyGen(n) → (Ach, tch), whose message space, ran-
domness space and range is defined as those in pp.

104 Chapter 6. Lattice-Based Universal Accumulator

• GS.KeygenTM(pp) run by TM: choose B $← Zn×mE
q . For each i ∈

{1, 2}, sample Si
$← χn×`, Ei

$← χ`×mE , and compute Pi = ST
i · B +

Ei. TM sets tpk = (B, P1, P2) and tsk = (S1, E1).

• Then TM sends tpk to GM. Next GM initializes the public group
information:

– Picks y1, y2, . . ., yN
$← {0, 1}nk/{00 . . . 0, 11 . . . 1}. Let reg be

the registration table in the form (reg[0][1], reg[0][2], reg[0][3],
reg[1][1], reg[1][2], reg[1][3], . . ., reg[N][1],reg[N][2], reg[N][3])
be a public table, where reg[i][1] = yi, reg[i][2] = 0nk, reg[i][3]
= 0 for i ∈ [1, N], while reg[0][1] = First, reg[i][2] = 0nk, reg[i][3]
= 0. Looking ahead, reg[i][1] is used to record the chameleon
hash value of public key of user i, and reg[i][2] is used to
record the public key of user i, and reg[i][3] is used to record
the joining epoch of user i.

– Build a Merkle-tree T basing on nodes First, reg[1][1], reg[2][1],
. . ., reg[N][1]. Assume the root node for this tree is um.

– Set the counter of joined user c = 0.

Then group manager GM outputs the group public key gpk = (pp,
mpk, Ach, tpk), and the group information as Info = (0, um, ∅, ∅,
∅), while keeping tree T and c for himself.

GS.UKgen(pp) → (upk, usk). For each user who want to join the group, he
will adopt this algorithm to generate his own key pair via sampling x
$← {0, 1}m, then computing p = bin(Auk · x) mod q. Set usk = x, upk =

p.

〈Join(Infoτ, gpk, upk, usk); Issue(Infoτ, msk, upk)〉. Assume a user with key pair
(upk, usk) = (p, x) wants to join the group in the time epoch τ, he sends
his public key p to GM. Then if GM accepts this request, the following
operations will be done:

1. GM set the identifier to this user as uid = bin(c) ∈ {0, 1}`, and
computes bin(τ) ∈ {0, 1}µ. In addition, GM runs algorithm rch

← CH.H−1(tch, yc, (p ||bin(τ))). Then returns (uid, bin(τ), rch)it to
user. Then user set his signing key as gsk[c] = (bin(c), bin(τ), p, x, rch).

2. GM updates the group information:

• Register the user to table reg[c][2] = p and reg[c][3] = τ.

• Update the counter c = c + 1.

6.3. Application of Our Accumulator 105

GS.Revoke(gpk, msk, Infoτcurr , S, reg) → Infoτnew . Let S be the set of public key
of those revoked users, S = {reg[i1][1], reg[i2][1], ldots, reg[iι][1]}, where
ι ∈ [1, N], and i1, . . ., iι ∈ [1, N]. Then GM to generate another Merkle-
tree T2 runs algorithm unm ← NM-Accpp(S) via matrix A′, First, and
Last. Notably, as we require that the number of input nodes for algo-
rithm NM-Accpp should be 2η − 1 for any integer η, while the size of S
may not satisfy it in some cases. To handle these expected events, we
can simply choose some auxiliary nodes 0nk and 1nk to meet the above
requirement.

Let ωm,j denote the witness for the fact that the chameleon hash value
of a user’s public key is accumulated into the value um, and ωnm,i de-
note the witness for the fact that a user’s public key is not accumulated
into the value unm. Next GM update the group information to be

Infoτnew = (τnew, um, unm, {ωm,j}j, {ωnm,j}j)

Looking ahead, a verifier only needs to download the first 2` bits to
obtain um, unm to verify a signature at epoch τ. While a signer only
needs to download the witness for himself.

GS.Sign(gpk, gsk[uid], Infoτ, M) → Σ. In order to sign a message M at epoch
τs, signer j with secret signing key gsk[j] = (bin(j), bin(τ), p, x, rch)) first
needs to check whether there are two witnesses (one for membership
proof in the group member set, and another one for non-membership
proof in the revoked set) in Infoτ. If no, then return ⊥. Otherwise,
downloads um, unm , and two witness

ωm = (bin(j), (wm
` , . . . , wm

1)),

ωnm = (bin(j′), (wnm
`,1 , wnm

`,2 , wnm
` . . . , wnm

1)),

then proceeds as follows:

1. Using Regev’s encryption scheme to encrypt bit string bin(j) ∈
{0, 1}`. This is done by sampling rE,i

$← {0, 1}mE for each i ∈
{1, 2}, and computing

ci = (ci,1, ci,2)

= (B · rE,i mod p, Pi · rE,i + d
p
2
c · bin(j) mod p) ∈ Zn

p × Z`
p.

106 Chapter 6. Lattice-Based Universal Accumulator

2. Generation a NIZKAoK Πm to demonstrate the possession of a
valid tuple

(x, p, yj, bin(j), bin(j′), bin(τ), bin(τs), rE,1, rE,2, rch,

(wm
` , wm

`−1, . . . , wm
1), (w

nm
`,1 , wnm

`,2 , wnm
` . . . , wnm

1)),

such that

(a) VerifyA(um, y, (bin(j), wm
` , wm

`−1, . . . , wm
1)) = 1 mod q;

(b) NM-VerifyA′(unm, p, (bin(j′), wnm
`,1 , wnm

`,2 , wnm
` . . . , wnm

1)) = 1 mod
q;

(c) Auk · x = p mod q;

(d) Ach · (p||bin(τ), rch) = yj modq;

(e) c1 and c2 are both correct encryptions of bin(j) with random-
ness rE,1, rE,2.

(f) τ ≤ τs.

Notably, statement (2a) and (2e) can be proved by the protocols
presented in [LLNW16], and statement (2b) can be covered by our
protocols presented in Section 6.2.2. Obviously, statements (2c)
and (2d) can be covered by Stern’s-like protocol, such as the tech-
nique presented in [LNSW13]. The proof for the statement (2f) is
presented in Section 6.2.2. Besides, we can also apply the abstrac-
tion Stern’s protocol [LLNW17] to get a unifying ZKAoK for all
above requirements.

Then we can apply Fiat-Shamir heuristic to achieve non-interactive
property, the above protocol is needed to repeat κ times to achieve
negligible soundness error simultaneously. Let ΠFDGS = ({CMTi}κ

i=1,
CH, {RSP}κ

i=1), where

CH = HFS(M, {CMTi}κ
i=1,A,A′,Auk,Ach, um, unm, B,

P1, P2, c1, c2) ∈ {1, 2, 3}κ.

3. Finally, signer outputs the signature

Σ = (ΠFDGS, c1, c2).

6.3. Application of Our Accumulator 107

GS.Verify(gpk, Infoτ, M, Σ) → 0 or 1. Parse Σinto(ΠFDGS, c1, c2), then do the
following:

• Get um and unm from Infoτ.

• If CH 6= HFS(M, {CMTi}κ
i=1,A,A′,Auk,Ach, um, unm, B, P1, P2, c1, c2),

return 0.

• Run the Verification phase of the abstract Stern’s protocol, sim-
ilar as in Figure (2.2). Return 0 if any of the conditions are not
satisfied.

• If all the above conditions hold, return 1.

GS.Trace(gpk, tsk, Infoτ, reg, M, Σ) → (uid, Πtrace). First parse tsk into the form
(S1, E1), the do the following:

1. Decrypt c1 = (c1,1, c1,2) to get a bit string b ∈ {0, 1}` through com-
puting bc1,2 − ST

1 · c1,1/(p/2)e.

2. Checks that whether there is a witness in Infoτ containing b. If
yes, continue. Otherwise, return ⊥.

3. Let b′ ∈ [1, N] be the decimal value of b, checks whether reg[b′][2]=
0nk. If yes, return ⊥.

4. Next generate a ZKAoK via Abstract Stern’s protocol [LLM+16] to
prove the possession of S1 and E1,z ∈ Z` such that

||S1||∞ ≤ β; ||E1||∞ ≤ β; ||z||∞ ≤ dp/5e
ST

1 · B + E1 = P1 mod p;
c1,2 − ST

1 · c1,1 = z + bp/2c · b mod p.

Similarly, via applying on Fiat-Shamir heuristic, we can get the
proof Πtrace = ({CMTi}κ

i=1, CH, {RSP}κ
i=1), where

CH = HFS(M, {CMTi}κ
i=1, gpk, Infoτ, M, σ, b) ∈ {1, 2, 3}κ.

5. Set uid = b, and output (uid, Πtrace)

GS.Judge(gpk, uid, Infoτ, Πtrace, M, Σ) → 0 or 1. This algorithm is used to ver-
ify the validity of Πtrace through the Verification phase of the corre-
sponding ZKAoK protocol, If all conditions hold, return 1. Otherwise,
return 0.

108 Chapter 6. Lattice-Based Universal Accumulator

Correctness. The correctness of the scheme mentioned above is guaran-
teed with overwhelming probability via the correctness of Regev’s encryp-
tion scheme, the completeness of the abstract Stern’s protocol, and the cor-
rectness of chameleon hash function.

More precisely, a signature Σ produced by an honest and active group
member must be accepted by the GS.Verify algorithm. This is because this
user can always find a valid witness satisfying those requirements (2a to 2f)
in the GS.Sign algorithm.

For GS.Trace algorithm, Regev’s encryption scheme can guarantee that
we can find bin(j) with overwhelming probability. Then the completeness
of abstract Stern’s protocol can ensure the correctness of proof Πtrace.

Security. The security of the above scheme is guaranteed by the following
theorem.

Theorem 6.3.1. Suppose the ZKAoK protocols used in above fully dynamic group
signature are simulation-sound, HFS is modeled as random oracle, CH is a secure
chameleon hash function, the above scheme satisfies the security requirements group
signature, namely anonymity, non-frameability, traceability, and tracing sound-
ness, under the LWEn,p,χ and SIS∞

n,m,q,1 assumptions.

Combined with the security of the constructed universal accumulator as
well as the security of chameleon hash, the proof of the following security
properties is similar with the proof given in [LNWX17].

109

Chapter 7

Conclusion

This thesis aims at addressing some new challenges for the public-key cryp-
tographic primitives. In particular, the contributions of this thesis is sum-
marized as follows.

• In Chapter 3, we focus on enhancing the functionality of public-key en-
cryption schemes suitable for data-sharing on cloud. Specifically, we give
the construction of cross-system proxy re-encryption scheme (CS-PRE).
The proposed construction could transform the ciphertext of any attribute-
based encryption scheme within Attrapadung’s framework into the ci-
phertext of any public-key encryption scheme. Besides versatility, our
proposed CS-PRE embraces compatibility where CS-PRE does not need
to modify the parameters of both source and target schemes, and effi-
ciency where the computation cost of the re-encryption process is nearly
the same as the decryption cost in source and target schemes.

• To strengthen attribute-based encryption secure against side-channel at-
tacks, we propose the general construction of leakage-resilient attribute-
based encryption scheme secure in continuous memory leakage model in
Chapter 4.

• The analysis about anonymity achieved by Cryptonote-style cryptocur-
rencies is given in Chapter 5. Specifically, we propose an optimal statis-
tical analysis on the traceability of this kind of cryptocurrencies. In addi-
tion, we give theoretical and practical experiment analyses on the impact
of our attack.

• In Chapter 6, we give the first lattice-based universal accumulator scheme,
which can be used to construct lattice-based fully dynamic group signa-
ture scheme. Besides, we give the first lattice-based zero-knowledge ar-
guments for the possession of the non-membership witness of any value
outside the accumulated set.

110 Chapter 7. Conclusion

Open Problems. Many interesting problems are still open. One of them is
how to construct cross-system proxy re-encryption scheme in prime-order
groups. Besides, for the analysis of the anonymity of privacy-preserving
cryptocurrencies, whether there exist other attacks which utilise some addi-
tional information, such as information related with users’ IP address, that
could easily track the identity of the real-payer.

On addressing quantum attacks, most existing lattice-based (universal)
accumulator schemes are based on the Merkle-tree structure, which pro-
vides an elegant solution for current constructions. However, it may be
hard to extend such structure to the construction of many advanced crypto-
graphic primitives from accumulators, such as lattice-based vector commit-
ment. To solve this problem, we wonder whether it is possible to find other
constructing method for the lattice-based accumulator, which also enjoys
those good algebraic properties like those in traditional number theory.

111

Appendix A

Proofs of Theorems

A.1 Proof of Theorem 3.3.1

Lemma A.1.1. |GrealAdvA(1λ) - GresAdvA(1λ)| ≤ AdvSD1
B (1λ)+AdvSD2

B (1λ).

Proof. Assume there is an adversary A that can submit a query Π0.X such
that Rp2(Π0.X, Π0.Y∗) = 1 but RN(Π0.X, Π0.Y∗) = 0. We show how to
construct an adversary B that breaks Assumption SD1 or Assumption SD2.

Given (g1
$← Gp1 , Z3

$← Gp3 , N, G, GT, e), B simulates Gamereal for A. Once
A submits a query Π0.X such that R(Π0.X, Π0.Y∗) = 1 mod p2 but R(Π0.X,
Π0.Y∗) = 0 mod N with non-negligible probability, B use the correspond-
ing algorithm F to find a factor a, such that p2|a and a|N. Let b = N

a . Then
we consider two cases:

• Case 1: p1|b. B will break Assumption SD1 by verifying gb
1 is the

identity and then check whether Tb is identity. If yes, then T $← Gp1 ,

else T $← Gp1 p2 .

• Case 2: a = p1p2, b = p3. B will break Assumption SD2. As B is

additionally given (Z1Z2
$← Gp1 p2 , Z3

$← Gp3 , W2W3
$← Gp2 p3), it will

check (Z1Z2)
a and Zb

3 are both identity group elements. Then it will

verify whether e(W2W3, Tb) is identity, if yes, T $← Gp1 p3 ; else T $←
Gp1 p2 p3 .

Lemma A.1.2. |GresAdvA(1λ) - G0AdvA(1λ)| ≤ AdvSD1
B (1λ).

Proof. If the advantage ofA between Gres and G0 is non-negligible, then we
can build an algorithm B that breaks Assumption SD1. On input a prob-
lem instance (G, GT, N, e, g1, g3, T) for Assumption SD1, B needs to decide

whether T $← Gp1 or T $← Gp1 p2 . B works as follows:

112 Appendix A. Proofs of Theorems

1. Setup Phase. B runs Param(k) → n and picks~h $← Zn
N, α

$← ZN. Then B
computes Π0.PK = (g1, g3, e(g1, g1)

α, g~h1), Π0.MSK = α, and sends Π0.PK to
A.

2. Phase 1. For all queries toO0
K made byA in this phase, B works as follows:

• Case1 : A makes a secret key query about key attribure Π0.X, B runs

Enc1(Π0.X, N)→ (~k; m2), picks~r $← Zm2
N , ~R $← Zm1

N , computes

Π0.SKX = g
~k(α,~h,~r)
1 · g~R3

returns Π0.SKX to A.

• Case2 :A makes a re-encryption key query from key attribure Π0.X to
Πi.Y, which is a ciphertext attribute of Πi. B first generates Π0.SKX as
in Case 1, then run RE-KeyGen(Π0.PK, Π0.SKX, Πi.Y, Πi.PK)→rkΠ0.X→Πi.Y,

and returns it to A.

3. Challenge Phase In this phase, A outputs two messages M0, M1 ∈ GT

and challenge attribute Π0.Y∗. B picks b $← {0, 1}, runs Enc2(Π0.Y∗, N)→
(c; w2), picks s = (s, s1, s2, . . . , sw2)

$← Zw2+1
N , and computes the challenge

ciphertext Π0.CT = (C0, C1).

C0 = Mb × e(T, g1)
αs, C1 = Tc(s,h). (A.1)

4. Phase 2. B answers key queries (secret key or re-encryption key queries)
made by A as in Phase 1.

5. Guess Phase. A outputs a guess bit b
′

. If b
′
= b, then A wins.

We claim that B properly simulates Gameres or Game0 for A.

• If T $← Gp1 , B properly simulates Gameres as the challenge ciphertext gen-
erated by B is distributed identically as normal ciphertexts. Without loss of

generatity, we assume that T = gt1
1 , where t1

$← Zp1 . Then we observe that
the challenge ciphertext is

C0 = e(g1, g1)
t1αs ×Mb C1 = gt1c(s,h)

1 = gc(t1s,h)
1 ,

where t1s(mod p1) can be viewed as a random variable in Zw2+1
p1 . It is easy

to see that this challenge ciphertext is distributed identically as a normal
ciphertext.

A.1. Proof of Theorem 3.3.1 113

• If T $← Gp1 p2 , B properly simulates Game0. In this situation, B generates
the challenge ciphertext is a properly distributed semi-functional ciphertext.

Assume T = gt1
1 gt2

2 , where t1
$← Zp1 and t2

$← Zp2 . Then we observe that
the challenge ciphertext is

C0 = e(g1, g1)
t1αs ×Mb C1 = gt1c(s,h)

1 · gt2c(s,h)
2 ,

where we implicitly set ŝ = t2s mod p2 and the semi-functional parameters
ĥ = h mod p2. By Chinese Reminder Theorem, ĥ is properly distributed as
they are independent from h mod p1 respectively. In this way, B perfectly
generates a semi-functional ciphertext for A.

Lemma A.1.3. |Gk−1AdvA(1λ) - GkAdvA(1λ) | ≤ 2AdvCPA
B1

(1λ) + 4AdvSD2
B2

(1λ) + AdvCMH
B3

(1λ) , 1 ≤ k ≤ q1 .

Proof. In order to prove Lemma A.1.3, we consider the following two con-
ditions.

• Condition 1: The k-th key query to O0
K in Phase 1 is a re-encryption

query about rkΠ0.X→Πi. Y such that R(Π0.X, Π0.Y∗) = 1, where Π0.Y∗

is the ciphertext attribute in the challenge ciphertext.

• Condition 2: Otherwise.

The proof structure is shown in Fig. A.1. We will use two Corollaries
(Corollary A.1.1 and Corollary A.1.6) to show that in both Conditions, the
difference between the advantage of adversary A in Gamek−1 and Gamek

is negligible.

Gk−1

G1
k,1

C1

C2

G1
k,2 G1

k,3

G2
k,1 G2

k,2

Gk

Figure A.1: C1 and C2 are the abbreviations of Condition 1 and Condition
2 respectively.

In Condition 1:

Corollary A.1.1. |Gk−1AdvA(1λ) - GkAdvA(1λ)| ≤ 2qAdvCPA
B1

(1λ)+ 2AdvSD2
B2

(1λ),
2 ≤ k ≤ q1.

114 Appendix A. Proofs of Theorems

Proof. In order to prove Corollary A.1.1, we define a sequence of games
between Gamek−1 and Gamek. Notably, in this phase of proof, we assume
that the challenge ciphertext has been changed to be semi-functional. Here
we only focus on how to change all queried keys to be semi-functional type-
3.

Game1
k,1 : C answers the k-th key query rkΠ0.X→Πi.Y to O0

K in Phase 1 as fol-
lows.

(~rk, Πi.~C) = ((Π0.SKX · g
~k(0,~r′,~h)
1)H(δ), Πi.Enc(Πi.PK, Πi.Y, U))

where δ, U $←MΠi .

Game1
k,2 : C answers the k-th key query rkΠ0.X→Πi.Y as follows.

(~rk, Πi.~C) = ((Π0.SKtype2
X · g

~k(0,~r′,~h)
1)H(δ), Πi.Enc(Πi.PK, Πi.Y, U))

where δ, U $←MΠi .

Game1
k,3 : C answers the k-th key query rkΠ0.X→Πi.Y as follows.

(~rk, Πi.~C) = ((Π0.SKtype3
X · g

~k(0,~r′,~h)
1)H(δ), Πi.Enc(Πi.PK, Πi.Y, U))

where δ, U $←MΠi .

Claim A.1.2. |Gk−1AdvA(1λ) - G1
k,1AdvA(1λ)| ≤ qAdvCPA

B1
(1λ), 1 ≤ k ≤ q1.

Proof. If there is an adversary A whose advantage is not negligible in these
two games, then we can construct an algorithm B who will break the IND-
CPA security of one of the underlying target ABE scheme used for encrypt-
ing the hiding factor δ in ~rk. B is given PK∗ at the beginning of game and
B randomly guesses d ∈ [q], and returns PK∗ to A’s at its d-th setup queries
to OSetup. Then B runs (G, GT, N, p1, p2, p3)← G(1λ), n← Param(k), picks

α
$← ZN,~h $← Zn

N, computes e(g1, g1)
α and g~h1, gives the public key Π0.PK of

Π0 to A, where Π0.PK = (pk, g1, g3, e(g1, g1)
α, g~h1).

Phase 1: For all queries to OSetup(Πi)(i 6= d), B runs algorithm (Πi.PK,
Πi.MSK)← Πi.Setup (1λ) (i ∈ [q]) to setup this scheme. Observe that
B can also answer those queries for oracles OK and Ocor for scheme
Πi(i 6= d). For those secret key queries to OK(Πd, Πd.X), B forward
these queries to its own challenger and returns the output for A. If
A makes query about Ocor(Πd), B aborts this simulation. When A

A.1. Proof of Theorem 3.3.1 115

makes the j-th key query to O0
K, which is either a secret key query

about Π0.Xj or a re-encryption key query from Π0.Xj to Πi.Y, B does
as follows:

• Case 1: j < k. B generates semi-functional type-3 secret keys
for all Π0.Xj. To do so, B runs (~k; m2) ← Enc1(Π0.Xj, N), picks

α̂
$← ZN, computes

Π0.SKXj = g
~k(α,~r,~h)
1 · g

~k(α̂,~0,~0)
2 · gR3

3

IfA′s j-th key query toO0
K is a secret key query on Π0.Xj, returns

Π0.SKXj toA directly. Else, runs rkΠ0.Xj→Πi.Y← SFRE-KeyGen(Π0.PK,
Π0.SKXj , Πi.Y, Πi.PK), and returns rkΠ0.Xj→Πi.Y to A.

• Case 2: j = k. Conditioned on Condition 1 happens,Awill make
a re-encryption key query about Π0.Xk to Πi.Y such that R(Π0.Xk,
Π0.Y∗) = 1. If d 6= i, B output ⊥. Otherwise, B runs (~k; m2) ←
Enc1(Π0.Xk, N), picks~r,~r′ $← Zn

N, δ0, δ1
$← MΠi , a hash function

H: {0, 1}∗ →ZN , and computes

Π0.SKXk = g
~k(α,~r,~h)
1 · gR3

3 , ~rk = (Π0.SKXk · g
~k(0,~r′,~h)
1)H(δ0).

Then B makes a challenge ciphertext query about (δ0, δ1, Πi.Y) to
its challenger, gets the challenge ciphertext Πi.~C, returns rkΠ0.Xk→Πi.Y

= (~rk, Πi.~C) to A.

• Case 3: j > k. For all j-th (j > k) queries made by A, B gen-
erates normal type secret keys or the corresponding normal re-
encryption keys.

Challenge Phase: A outputs M0, M1, Π0.Y∗, B computes

C0 = Mb × e(g1, g1)
αs ~C1 = g~c(~s,~h)

1 · g~c(~̂s,~h)
2 ,

where b $← {0, 1},(~c; w2) ← Enc2(Π0.Y∗, N), ~s = (s,s1, . . ., sw2), ~̂s $←
Zw2+1

N .

Phase 2: B does the same as in Phase 1, except that for any query to O0
K,

B generates the corresponding normal secret keys. If the key query is
a re-encryption key query, B then runs the algorithm RE-KeyGen, and
returns the result to A.

116 Appendix A. Proofs of Theorems

Guess phase: A outputs a guess b
′
, and A wins if b

′
= b.

Then we analyze that B simulates Gamek−1 or Game1
k,1 for A.

• If Πi.~C ← Πi.Enc(Πi.PK∗, δ0, Πi.Y), then B simulates Gamek−1 for A.

• If Πi.~C ← Πi.Enc(Πi.PK∗, δ1, Πi.Y), as δ0 and δ1 are independent and
uniformly distributed inMΠi . Hence, given ~rkj, Πi.~C can be viewed
as the encryption of a randomness. In this case, B simulates Game1

k,1

for A.

Claim A.1.3. |G1
k,1AdvA(1λ) - G1

k,2AdvA(1λ)| ≤ AdvSD2
B2

(1λ), 1 ≤ k ≤ q1.

Proof. If there is an adversary A can distinguish Game1
k,1 and Game1

k,2, we
will build an algorithm B who can break Assumption SD2. On input a
problem instance (G, GT, N, e, g1, Z1Z2, g3, W2W3, T), B works as follows:

Setup Phase: B runs n← Param(k), computes Π0.PK to A, where Π0.PK =
(g1, g3, e(g1, g1)

α, g~h1).

Phase 1: For all OSetup(Πi) made by A in this phase, B generates the cor-
responding target scheme Πi via (Πi.PK, Πi.MSK) ← Πi.Setup(1λ)

(i ∈ [q]). Obviously, B can also answer those queries for oracles OK,
and Ocor for scheme Πi. When A makes the j-th key query to O0

K, B
does as follows:

• Case 1: j < i. B generates a semi-functional type-3 key for Π0.Xj.

B runs (~k; m2)← Enc1(Π0.Xj, N), picks α̂
$← ZN,~r $← Zm2

N , ~R $←
Zm1

N and computes:

Π0.SKXj = g
~k(α,~r,~h)
1 · (W2W3)

~k(α̂,~0,~0) · g~R3 .

IfA′s j-th key query is a re-encryption key query, runs rkΠ0.Xj→Πi.Y

← SFRE-KeyGen(Π0.PK, Π0.SKXj , Πi.Y, Πi.PK), and returns result
to A.

• Case 2: j = k. In Condition 1, the k-th query is a re-encryption

key query. Hence, B runs (~k; m2) ← Enc1(Π0.Xk, N), picks~r $←
Zm2

N , U $←MΠi , and computes

~rk = T~k(α,~h,~r) Πi.~C ← Πi.Enc(Πi.PK, Πi.Y, U).

A.1. Proof of Theorem 3.3.1 117

• Case 3: j > k. In this case, B generates normal secret key or
normal re-encryption key to A.

Challenge phase: A outputs M0, M1 ∈ GT and Π0.Y∗. B runs (~c; w2) ←
Enc2(Π0.Y∗, N), picks~s = (s, s1, . . . , sω2) $← Zω2+1

N , b $← ZN, computes
challenge ciphertext Π0.CT = (C0, C1) as follows:

C0 = e(Z1Z2, g1)
αs ·Mb C1 = (Z1Z2)

c(s,h)

Phase 2: B does the same as in Phase 1, except that for any key query to
O0

K, B generates a normal secret key Π0.SKXj or the corresponding
re-encryption key rkΠ0.Xj→Πi.Y ← RE-KeyGen(Π0.PK, Π0.SKXj , Πi.Y,
Πi.PK).

Guess phase: A outputs a guess b
′
, and A wins if b

′
= b.

As T $← Gp1 p3 or Gp1 p2 p3 , we denote it as T = gt1
1 gt3

3 or T = gt1
1 gt2

2 gt3
3 . Ob-

serve that

• If T ∈ Gp1 p3 , then
~rk = gt1~k(α,~h,~r)

1 · g~R3 .

Here we implicitly set H(δ) = t1. B simulates Game1
k,1 for A.

• If T ∈ Gp1 p2 p3 , then

~rk = gt1~k(α,~h,~r)
1 · gt2~k(α,~h,~r)

2 · g~R3 .

Here we implicitly set H(δ) mod p1 = t1, H(δ) mod p2 = t2. By the
Chinese Remainder Theorem, ~h mod p1 (rsep. α mod p1 and ~r mod
p1) and~h mod p2 (rsep. α mod p2 and~r mod p2) are independent and
uniformly distributed. Hence, the re-encryption key rkΠ0.Xj→Πi.Yj gen-
erated by B is semi-functional type-2, and B simulates Game1

k,2 for A.

Claim A.1.4. |G1
k,2AdvA(1λ) - G1

k,3AdvA(1λ)| ≤ AdvSD2
B1

(1λ), 1 ≤ k ≤ q1.

Proof. This proof is nearly the same as the proof of CLAIM A.1.3 except the
way that B used to answer the k-th key query in Phase 1. While in this
proof, B works as follows:

118 Appendix A. Proofs of Theorems

Phase 1: Case 2: j = k. B runs (~k; m2)← Enc1(Π0.X, N), picks~r,~r′ $← Zm2
N ,

U $←MΠi , τ1, τ2
$← ZN , ~R $← Zm1

N and computes

~rk = gτ1~k(α,~h,~r)
1 · (W2W3)

τ2~k(α̂,~h,~r) · T~k(0,~h,~r′) · g~R3
Πi.~C ← Πi.Enc(Πi.PK, Πi.Y, U).

Then B properly simulated Game1
k,2 if T = gt1

1 gt2
2 gt3

3 or Game1
k,3 if T = gt1

1 gt3
3

.

Claim A.1.5. |G1
k,3AdvA(1λ) - GkAdvA(1λ)| ≤ qAdvCPA

B1
(1λ), 1 ≤ k ≤ q1.

Proof. This proof is nearly the same as the security proof for the indistin-
guishability between Gamek−1 and Game1

k,1, except that for the k-th key
query to O0

K, B generates a semi-functional type-3 re-encryption key for A,
which works as follows.

Run (~k; m2) ← Enc1(Π0.Xk, N), pick ~r,~r′ $← Zn
N, δ0, δ1

$← MPKE, com-
putes

Π0.SKXk = g
~k(α,~r,~h)
1 · g

~k(α̂,~0,~0)
2 · gR3

3 , ~rk = (Π0.SKXk · g
~k(0,~r′,~h)
1)H(δ0).

Then B makes a challenge ciphertext query about (δ0, δ1, Πi.Y) to its chal-
lenger, gets the challenge ciphertext Πi.~C, returns rkΠ0.Xk→Πi.Y = (~rk, Πi.~C)
to A.

In Condition 2:

Corollary A.1.6. |Gk−1AdvA(1λ) - GkAdvA(1λ)| ≤ AdvCMH
B3

(1λ)+ 2AdvSD2
B2

(1λ),
1 ≤ k ≤ q1.

Game2
k,1 : For all key queries and re-encryption key queries to O0

K about
Π0.Xj made by A, challenger C answers the j-th query by generating
the secret key as follows.
α̂j ← ZN,

Π0.SKXj ←


SFKeyGen(Π0.Xj, Π0.MSK, Π0.PK, g2, 3, α̂j,~0) j < k

SFKeyGen(Π0.Xj, Π0.MSK, Π0.PK, g2, 1, 0,~̂h) j = k
KeyGen(Π0.Xj, Π0.MSK, Π0.PK) j > k

A.1. Proof of Theorem 3.3.1 119

Game2
k,2 : For all key queries and re-encryption key queries to O0

K about
Π0.Xj made by A, C answers the j-th query by generating the secret
key as follows.
α̂j ← ZN,

Π0.SKXj ←


SFKeyGen(Π0.Xj, Π0.MSK, Π0.PK, g2, 3, α̂j,~0) j < k

SFKeyGen(Π0.Xj, Π0.MSK, Π0.PK, g2, 2, α̂j,~̂h) j = k
KeyGen(Π0.Xj, Π0.MSK, Π0.PK) j > k

Claim A.1.7. |Gk−1AdvA(1λ) - G2
k,1AdvA(1λ)| ≤ AdvSD2

B2
(1λ), 1 ≤ k ≤ q1.

Proof. This proof is nearly the same as the proof of CLAIM A.1.3 except the
way that B used to answer the k-th key query in Phase 1. In this proof, B
works as follows:

Phase 1: Case 2: j = k. B runs (~k; m2)← Enc1(Π0.Xk, N), picks~r,~̂r $← Zm2
N ,

~R $← Zm1
N and computes

Π0.SKXk = g
~k(α,~h,~r)
1 · T~k(0,~h,~̂r) · g~R3 .

If A′s k-th query to O0
K is about a re-encryption key, B runs SFRE-

KeyGen (Π0.PK, Π0.SKXk , Πi.Y, Πi.PK), and returns result to A. No-
tably, in Condition 2, Π0.SKXk cannot decrypt the challenge cipher-
text. Hence, B can always generate Π0.SKXk .

As T $← Gp1 p3 or Gp1 p2 p3 , we denote it as T = gt1
1 gt3

3 or T = gt1
1 gt2

2 gt3
3 . Then if

T = gt1
1 gt3

3 , B has properly simulated Gamek−1; otherwise, B has properly
simulated Game2

k,1.

Claim A.1.8. |G2
k,1AdvA(1λ) - G2

k,2AdvA(1λ)| ≤ AdvCMH
B1

(1λ), 1 ≤ k ≤ q1.

Proof. Let B be an adversary for the co-selective security of the underlying
encoding P. B is given (g1, g2, g3) as in co-selective game and works as
follows:

Setup phase: B picks~h $← Zn
N, α

$← ZN, computes Π0.PK = (g1, g3, e(g1, g1)
α,

g~h1), and sends it to A.

Phase 1: For all OSetup(Πi) made by A in this phase, B generates the cor-
responding target scheme Πi via algorithm Πi.Setup(1λ) → (Πi.PK,
Πi.MSK) (i ∈ [q]). Furthermore, B can also answer those queries for
oracles OK, and Ocor for scheme Πi.

When Amakes the j-th query to O0
K, B works as follows.

120 Appendix A. Proofs of Theorems

• Case 1: j < k. B generates a semi-functional type-3 key for Π0.Xj

in the same way as mentioned in the proof of last Claim.

• Case 2: j = k. A makes a secret key query Π0.X or re-encryption
key query Π0.X → Πi.Y. In this case, B makes a secret query

Π0.X to its challenger and receives T = g
~k(η,~̂h,~̂r)
2 , where η

$← Zp2

or η = 0. Then B creates the k-th key for A as follows

Π0.SKXk = g
~k(α,~h,~r)
1 · T · g~R3 .

IfA′s k-th key query toO0
K is a re-encryption key query, then runs

SFRE-KeyGen(Π0.PK, Π0.SKXk , Πi.Y, Πi.PK), and returns result to
A.

• Case 3: j > k. B responds with a normal key for Π0.Xj or rkΠ0.Xj→Πi.Yj

← RE-KeyGen(Π0.PK, Π0.SKXj , Πi.Y, Πi.PK).

Challenge phase: A outputs messages M0, M1 ∈ GT along with a challenge
attributes Π0.Y∗. B then makes a query for Π0.Y∗ to its challenger and

receives back ~Tc = g~c(ŝ,~̂h)
2 . B runs (~c; w2) ← Enc2(Π0.Y∗, N) , picks

b $← {0, 1},~s = (s, s1, s2, . . . , sw2) $← Zw2+1
N , and computes the challenge

ciphertext Π0.CT∗ = (C0, ~C1) as follows:

C0 = e(g1, g1)
αs ·Mb C1 = g~c(~s,~h)

1 · ~Tc.

Phase 2: B does the same as in Phase 1, except that for all query to O0
K,

responds with normal secret keys or normal re-encryption keys.

Guess phase: A outputs a guess b
′
. If b

′
= b, then A wins.

Claim A.1.9. |G2
k,2AdvA(1λ) - GkAdvA(1λ)| ≤ AdvSD2

B2
(1λ), 1 ≤ k ≤ q1.

Proof. This proof is nearly the same as the proof of the indistinguishability
between Gamek−1 and Game2

k,1, except that for the k-th query of A to O0
K,

B generates a semi-functional type-3 key. To do this , B runs (~k; m2) ←
Enc1(Π0.Xk, N) , picks~r,~̂r $← Zm2

N , ~R $← Zm1
N and computes

Π0.SKXk = g
~k(α,~h,~r)
1 · (W2W3)

~k(α̂,~0,~0) · T~k(0,~h,~̂r) · g~R3 .

If A′s k-th key query to O0
K is a secret query about Π0.Xk, then returns

Π0.SKXk to A directly. Otherwise, runs rkΠ0.Xk→Πi.Y ← SFRE-KeyGen(Π0.PK,

A.1. Proof of Theorem 3.3.1 121

Π0.SKXk , Πi.Y, Πi.PK), and returns the re-encryption key rkΠ0.Xj→Πi.Y to A.
If T = gt1

1 gt3
3 , B simulated Gk and otherwise B simulated G2

k,2.

Lemma A.1.4. |Gk−1AdvA(1λ) - GkAdvA(1λ)| ≤ 2AdvCPA
B1

(1λ) +

4AdvSD2
B2

(1λ) + AdvSMH
B3

(1λ), q1 + 1 ≤ k ≤ q1 + q2.

Proof. This proof is very similar to Lemma A.1.3, so we omit it here.

Lemma A.1.5. |Gq1+q2AdvA(1λ) - G f inalAdvA(1λ)| ≤ AdvSD3
B (1λ).

Proof. Algorithm B takes input a problem instance(g1, g2,g3,gs
1W2, gα

1Y2,T)

of Assumption SD3. It needs to decide whether T = e(g1, g1)
αs or T $← GT.

Algorithm B works as follows:

Setup phase: B runs Param(k)→ n, picks~h $← Zn
N, computes Π0.PK = (g1,

g3, e(g1, gα
1Y2), g~h1), and sents Π0.PK to A.

Phase 1: In this phase, B generates a semi-functional type-3 key for any
kinds of key queries to O0

K in the following way:

runs Enc1(Π0.X, N) → (k; m2), picks α̂
$← ZN, ~r $← Zm2

N , ~R $← Zm1
N and

computes:

Π0.SKX = (gα
1Y2)

k(1,0,0) · g
~k(0,~r,~h)
1 · g

~k(α̂,~0,~0)
2 · g~R3

Challenge phase: A outpus two challenge message M0, M1 ∈ GT and a
challenge attribute Π0.Y∗, B runs Enc2(Π0.Y∗, N) → (~c; w2), picks ~s =

(1, s1, s2, . . . , sw2)
$← Zw2+1

N „ b $← {0, 1}, computes challenge ciphertext
Π0.CT = (C0, C1) as follows:

C0 = T ·Mb C1 = (gs
1W2)

~c(~s,~h)

Phase 2: B generates a semi-functional type-3 key for key queries in the
same way as Phase 1.

Guess Phase: A outputs a guess b
′
. If b

′
= b, then A successes.

122 Appendix A. Proofs of Theorems

A.2 Proof for Theorem 4.3.1

In this section, we clarify the security proof of Theorem 1. We use the fol-
lowing lemmas to prove the indistinguishability between the consecutive
games. We use GjAdvA (1λ) to denote the advantage of A in game Gamej.
Let AdvHP

B be the advantage of adversary B for hard problem HP. By reduc-
ing the indistinguishability between games to the hardness of the challenge
problems for simulator, we complete the proof.

In order to simulate properly for A, simulator B maintains a set T = {(h,
X , Key, L)}. Each tuple is made up of handles, attributes, keys(normal
or semi-functional keys) and the corresponding leakage bits of keys. Han-
dles index h ∈ Zq1+q2 (q1 and q2 are the numbers of Create queries made in
Phase 1 and Phase 2 respectively) and sets the handle counter H to 0. No-
tably, once a key in a tuple is created by B, all subsequent queries (Leakge
or Reveal) about this key act on the created version.

Proof.

Lemma A.2.1.

|GrealAdvA(1λ) − GresAdvA(1λ)| ≤ AdvSD1
B (1λ) + AdvSD2

B (1λ).

Proof. Assume there is an adversary A that can submit a query X such that
R(X, Y∗) = 1(mod p2) but R(X, Y∗) = 0(mod N). Then we can construct an
adversaty B that will break Assumption SD1 or Assumption SD2. Given

(g1
$← Gp1 , Z3

$← Gp1 , N, G, GT, e) B simulates Gamereal for A. Once A
submits a query X such that R(X, Y∗) = 1(mod p2) but R(X, Y∗) = 0 (mod
N) with non-negligible probability, B use the corresponding algorithm F to
find a factor a, such that p2|a and a|N. Let b = N

a . Then we consider two
cases:

• Case 1: p1|b. B will break Assumption SD1 by verifying gb
1 is the

identity and then check whether Tb is identity. If yes, then T $← Gp1 ,

else T $← Gp1 p2 .

• Case 2: a = p1p2, b = p3. B will break Assumption SD2. As B is

additionally given (Z1Z2
$← Gp1 p2 , Z3

$← Gp3 , W2W3
$← Gp2 p3), it will

check (Z1Z2)
a and Zb

3 are both indetity. Then it will verify whether

e(W2W3, Tb) is identity, if yes, T $← Gp1 p3 ; else T $← Gp1 p2 p3 .

A.2. Proof for Theorem 4.3.1 123

Lemma A.2.2. |GresAdvA(1λ) - G0AdvA(1λ)| ≤ AdvSD1
B (1λ).

Proof. If the advantage of A between Gres and G0 is non-negligible, then
we can build an algorithm B that can break Assumption SD1. On input
a problem instance (G, GT, N, e, g1, g3, T) for Assumption SD1, B needs to

decide whether T $← Gp1 or T $← Gp1 p2 .
B works as follows:

1. Setup Phase. B runs Param(λ) → (n1, n2) and picks h $← Zn1
N , x $← Zn2

N

and α
$← ZN. B runs Enc1(ε, N)→ (k1, k2; m1, m2, m3). and computes PK =

(g1, g3, e(g1, g1)
α, gh

1 , gx
1). B gives PK to A and adds (0, ε, ε, 0) to set T .

2. Phase 1. For all Create(h, Xj)(j ∈ [1, q1]) queries requested by A in this
phase, B first scans T to find whether tuple h refers to a master-key tuple. If
not, return ⊥. Otherwise, B generates a normal key for Xj in the following
way:

runs Enc1(Xj, N) → (kXj,1, kXj,2; m1, m2, m3), picks rj
$← Zm3

N , RXj,1
$← Zm1

N ,

RXj,2
$← Zm2

N and computes:

Kj = (g
kXj ,1

(α,h,x,rj)

1 ∗ g
RXj ,1

3 , g
kXj ,2(h,rj)

1 ∗ g
RXj ,2

3).

After that, B adds tuple (H + 1, Xj, Kj, 0) to T and updates handle counter
to H + 1← H. Notably, if Xj is empty, this means Kj is a master key.

3. Challenge Phase In this phase,A outputs two messages M0, M1 ∈ GT and

the challenge attribute Y∗. B picks b $← {0, 1}, runs Enc2(Y∗, N) → (c, w2),

picks s = (s, s1, s2, . . . , sw2)
$← Zw2+1

N , and computes the challenge ciphertext
CT = (C0, C1).

C0 = Mb · e(T, g1)
αs, C1 = Tc(s,h,x).

4. Phase 2. B answers the create queries made byA as the same way in Phase
1.

5. Guess Phase. A outputs a guess b
′

. If b
′
= b, then A successes.

We claim that as T chosen from different subgroups, B properly simulates
Gameres or Game0 for A.

• If T $← Gp1 , B properly simulates Gameres as the challenge ciphertext gen-
erated by B is distributed identically as normal ciphertexts. Without loss of

124 Appendix A. Proofs of Theorems

generatity, we assume that T = gt1
1 , where t1

$← Zp1 . Then we observe that
the challenge ciphertext is

C0 = e(g1, g1)
t1αsMb C1 = gt1c(s,h,x)

1 = gc(t1s,h,x)
1 ,

where t1s(mod p1) can be viewed as a randomly variable in Zw2+1
p1 . It is easy

to see that this challenge ciphertext is distributed identically as a normal
ciphertext.

• If T $← Gp1 p2 , B properly simulates Game0. In this situation, B generates
the challenge ciphertext distributed identically as semi-functional cipher-

text. Assume T = gt1
1 gt2

2 , where t1
$← Zp1 and t2

$← Zp2 . Then we observe
that the challenge ciphertext is

C0 = e(g1, g1)
t1αsMb C1 = gt1c(s,h,x)

1 ∗ gt2c(s,h,x)
2 .

where we implicitly set ŝ = t2s mod p2 and the semi-functional parameters
ĥ = h mod p2 and x̂ = x mod p2. By Chinese Reminder Theorem, ĥ and
x̂ are properly distributed as they are independent from h mod p1 and x
mod p1 respectively. In this way, B perfectly generates a semi-functional
ciphertext for A.

Lemma A.2.3. |Gk−1,3AdvA(1λ) - Gk,1AdvA(1λ)| ≤ AdvSD2
B (1λ), k ∈ [1, q1].

Proof. If there is an adversary A can distinguish Gk−1,3 and Gk,1, we will
build an algorithm B who can break Assumption SD2. On input a problem
instance (G, GT, N, e, g1, Z1Z2, g3, W2W3, T), B needs to decide whether T ∈
Gp1 p2 p3 or Gp1 p3 .
Algorithm B works as follows:

Setup phase: B runs Param(k) → (n1, n2), picks h $← Zn1
N , x $← Zn2

N , r $←
Zm3

N and α ← ZN, computes PK = (g1, g3, e(g1, g1)
α, gh

1 , gx
1). B sends PK to

A and adds tuple 0 of T to be the first tuple (0, ε, ε, 0) .

Phase 1: In this phase, whenAmakes the j-th Create(h, Xj) queries for Xj ∈
X or Xj = ε, B first scans T to find tuple h. If h does not refer to a master
key tuple or this tuple does not exist, then responds with ⊥.
Otherwise, B does as follows:

A.2. Proof for Theorem 4.3.1 125

• Case 1: [j < k]. B generates a semi-functional type-3 key for Xj by
working as follows:

runs Enc1(Xj, N) → (kXj,1, kXj,2; m1, m2, m3),picks α̂
$← ZN, r $← Zm3

N ,

R1
$← Zm1

N , R2
$← Zm2

N and computes:

Kj,SF3 = (g
kXj ,1

(α,h,x,r)

1 ∗ (W2W3)
kXj ,1

(α̂,0,0,0) ∗ gR1
3 ,

g
kXj ,2(h,r)

1 ∗ (W2W3)
kXj ,2(0,0) ∗ gR2

3)

After that, B adds tuple (H + 1, Xj, Kj,SF3, 0) to set T and updates han-
dle counter to H ← H + 1.

• Case 2:[j = k]. B runs Enc1(Xk, N) → (kXk,1, kXk,2; m1, m2, m3), picks

rk, r̂k
$← Zm3

N , Rk,1
$← Zm1

N and Rk,2
$← Zm2

N and computes

K∗ = (g
kXk ,1(α,h,x,rk)

1 ∗ TkXk ,1(0,h,x,r̂k) ∗ gRk,1
3 , g

kXk ,2(h,rk)

1 ∗ TkXk ,2(h,r̂k) ∗ gRk,2
3)

After that, B adds tuple (H + 1, Xk, K∗, 0) to set T and updates handle
counter to H ← H + 1.

• Case 3:[j > k] . B generates a normal key for Xj.

Challenge phase: A outpus two challenge message M0, M1 ∈ GT and a
challenge attribute Y∗. B first checks whether Y∗ ∈ R, if yes, return ⊥.

Otherwise, B runs Enc2(Y∗, N) → (c; ω2), picks s = (s, s1, s2, . . . , sω2)
$←

Zω2+1
N , b $← ZN, computes challenge ciphertext CT = (C0, C1) as follows:

C0 = e(g1, g1)
αs ·Mb C1 = (Z1Z2)

c(s,h,x)

Phase 2: In this phase, B answers all Create queries by generating normal
keys.

Guess phase: A outputs a guess b
′
. If b

′
= b, then A successes.

We claim that the master key or user secret key generated by B in Phase 1 is
properly distributed as them in Gk−1,3 or Gk,1.

• It is obvious that keys generated by B in Case 1 (resp. Case 3) are prop-
erly distributed as semi-functional type-3 keys(resp. normal keys).

126 Appendix A. Proofs of Theorems

• In Case 2: As T $← Gp1 p3 or Gp1 p2 p3 , we denote it as T = gt1
1 gt3

3 or
T = gt1

1 gt2
2 gt3

3 . The Gp1 component in the k-th key is :

(g
kXk ,1(α,h,x,(r+t1r̂j))

1 , g
kXk ,2(h,(r+t1r̂j))

1).

It is easy to see that this component is properly distributed as in nor-
mal key or semi-functional type-1 key if we take the radomness as
r + t1r̂j.
If T ∈ Gp1 p3 , then K∗ has no Gp2 parts, K∗ is a normal key, then B has
properly simulated Gk−1,3.
If T ∈ Gp1 p2 p3 , the Gp2 parts in K∗ is as follows:

(g
kXk ,1(0,h,x,t2r̂j)

2 , g
kXk ,2(h,t2r̂j))

2).

By the Chinese Remainder Theorem, h mod p2 and x mod p2 are inde-
pendent with h mod p1 and x mod p1. They can be viewed as random
variables, so K∗ is properly distributed as semi-functional type-1 mas-
ter keys. B has properly simulated Gk,1.

Lemma A.2.4.

|Gk,1AdvA(1λ)−Gk,2AdvA(1λ)| ≤ AdvCMH
B + AdvLR

B (1λ), k ∈ [1, q1].

Proof. If there is an advansary A whose advantage in distinguishing Gk,1

and Gk,2 is non-negligible, then we can build an algorithm B who can break
the co-selective security or leakage-resilient security of the underlying pair
encoding scheme P.

Let K∗ denotes the key generated by simulatorB for the k-th Create(h, Xk)

query of A in Phase 1. Let us define two events as follows:

• F be the event that: for all subsequent queries, A will not make reveal
queries for K∗.

• qF denotes the event that for all subsequent queries, A will make re-
veal queries for K∗.

It is easy to see that F and qF are complementary. Let Pr[F] denotes the prob-
ability that event F occurs, and Pr[qF] denotes the probability that event qF
occurs. Indeed, Pr[F] + Pr[qF] = 1.

A.2. Proof for Theorem 4.3.1 127

In order to complete the proof of the Lemma A.2.4, it suffices to prove
the following claims instead:

Claim A.2.1. In the case that event F occurs, we will prove that if A can dis-
tinguish these two games, then B will break the leakage-resilient security of the
underlying pair encoding scheme P. Indeed, |Gk,1AdvA(1λ) - Gk,2AdvA(1λ)| ≤
AdvLR

B (1λ), conditioned on F occurs.

Proof. LetB be an adversary for leakage-resilient security of P. Given (g1, g2, g3),
B works as follows:

Setup: Algorithm B runs Param(λ) → (n1, n2), picks h $← Zn1
N , x $← Zn2

N

and α
$← ZN, computes PK = (g1, g3, e(g1, g1)

α, gh
1 , gx

1), and gives PK to A.

Phase 1: WhenAmakes the j-th Create(h, Xj)query, B first checks whether
h refers to a master key tuple. If not, return ⊥. Otherwise, B works as
follows:

• Case 1: j < k. B generates a semi-functional type-3 key for Xj by
working as follows:

runs Enc1(Xj, N) → (kXj,1, kXj,2; m1, m2, m3), picks α̂
$← ZN, rj

$← Zm3
N ,

Rj,1
$← Zm1

N , Rj,2
$← Zm2

N and computes:

Kj,SF3 = (g
kXj ,1

(α,h,x,rj)

1 ∗ g
kXj ,1

(α̂,0,0,0)

2 ∗ g
Rj,1
3 , g

kXj ,2(h,rj)

1 ∗ g
kXj ,2(0,0)

2 ∗ g
Rj,2
3)

After that, B adds tuple (H + 1, Xj, Kj,SF3, 0) to set T and updates han-
dle counter to H← H + 1.

• Case 2: j = k. In this case, B adds a tuple (H + 1, Xk, ε, 0) to set T and
updates the handle counter to H ← H + 1, where the key filed is set to
be empty.
As this reduction conditioned on event F occurs, this meansA can only
make leakage query to this tuple in the subsequent queries. Once A
makes a leakage query for this key by inputting a leakage function

f , B encodes f into its own leakage queries for T (T =(g
kXk ,1(β,ĥ,x̂,r̂)
2 ,

g
kXk ,2(ĥ,r̂)
2), β = 0 or β

$← Zp2) by implicitly setting the challenge key to
be:

K∗ = (g
kXk ,1(α,h,x,r)
1 ∗ gR1

3 , g
kXk ,2(h,r)
1 ∗ gR2

3) ∗ T,

where Enc1(Xk, N) → (kXk,1 , kXk,2 ; m1, m2, m3), r $← Zm3
N , R1

$← Zm1
N ,

R2
$← Zm2

N . B makes leakage queries f
′
(T) = f (K∗) to its own chal-

lenger and forwards the result to A.

128 Appendix A. Proofs of Theorems

• Case 3: j > k. In this case, B generates a normal key for Xj.

Challenge phase: A outputs messages M0, M1 ∈ GT along with a challenge
attributes Y∗ such that for all X ∈ R, R(X, Y∗) = 0 mod p2. B then makes

a query for Y∗ to its challenger and receives back Tc = gcY∗ (ŝ,ĥ,x̂)
2 . Then

runs Enc2(Y∗, N) → (cY∗ ; w2), picks b $← {0, 1}, s = (s, s1, s2, . . . , sω2)
$←

Zω2+1
N ,and computes the properly distributed semi-functional challenge ci-

phertext CT∗ = (C0, C1) as follows:

C0 = e(g1, g1)
αs ·Mb C1 = gcY∗ (s,h,x)

1 ∗ Tc.

Phase 2: In this phase, B answers all Create queries by generating normal
keys as in Phase 1: Case 3.

Guess phase: A outputs a guess b
′
. If b

′
= b, then A successes.

Claim A.2.2. In the case that event F does not occur, we will prove that if A
can distinguish these two games, then B will break the co-selective security of the
underlying pair encoding scheme P. Indeed, |Gk,1AdvA(1λ) - Gk,2AdvA(1λ)| ≤
AdvCMH

B (1λ), conditioned on F does not occur.

Proof. Let B be an adversary for the co-selective security of P. B is given
(g1, g2, g3) as in co-selective game and works as follows:

Setup: Algorithm B runs Param(λ)→ (n1, n2), picks h $← Zn1
N and x $← Zn2

N
, computes PK = (g1, g3, e(g1, g1)

α, gh
1 , gx

1), and gives PK to A.

Phase 1: WhenAmakes the j-th Create(h, Xj) query, B first checks whether
h refers to a master key tuple. If not, return ⊥. Otherwise, B works as
follows:

• Case 1: j < k. B generates a semi-functional type-3 key for Xj in the
same way as mentioned in the proof of Claim A5.

• Case 2: j = k.
In this case, B makes a query Xj to its challenger and receives T =(

g
kXj ,1

(β,ĥ,x̂,r̂)

2 , g
kXj ,2(ĥ,r̂)

2). B need to guess if β is randomly chosen from
Zp2 or is 0. Then B creates the k-th key for A as follows

K∗ = (g
kXk ,1(α,h,x,rk)

1 ∗ gRk,1
3 , g

kXk ,2(h,rk)

1 ∗ gRk,2
3) ∗ T,

A.2. Proof for Theorem 4.3.1 129

where Enc1(Xk, N) → (kXk,1, kXk,2; m1, m2, m3), rk
$← Zm3

N , Rk,1
$← Zm1

N ,

Rk,2
$← Zm2

N .

After that, B adds tuple (H + 1, Xk, K∗, 0) to the set T and updates the
handle counter to H ← H + 1.

• Case 3: j > k. B generates normal key for Xj.

Challenge phase: A outputs messages M0, M1 ∈ GT along with a challenge
attributes Y∗ such that for all X ∈ R, R(X, Y∗) = 0 mod p2. B then makes

a query for Y∗ to its challenger and receives back Tc = gcY∗ (ŝ,ĥ,x̂)
2 . B runs

Enc2(Y∗, N) → (cY∗ ; w2), picks b $← {0, 1}, s = (s, s1, s2, . . . , sw2)
$← Zω2+1

N „
and computes the challenge ciphertext CT∗ = (C0, C1) as follows:

C0 = e(g1, g1)
αs ·Mb C1 = gcY∗ (s,h,x)

1 ∗ Tc.

Note that this reduction based on the fact that qF occurs, which means that
A must make reveal query for K∗, namely Xk must be added to the reveal
attribute set R. Thus, it is obvious that Y∗ 6= Xk. As a result, B can always
receive back Tc for Y∗ from its challenger.

Phase 2: In this phase, B answers all Create queries by generating normal
keys.

Guess phase: A outputs a guess b
′
. If b

′
= b, then A successes.

Lemma A.2.5. For all k ∈ [1, q1], |Gk,2AdvA(1λ) - Gk,3AdvA(1λ)| ≤ AdvSD2
B (1λ).

Proof. If there is an adversary A who can distinguish Gk,2 and Gk,3, then
we will build an algorithm B who can break Assumption SD2. On input
a problem instance (G, GT, N, e, g1, Z1Z2, Z3, W2W3, T), B needs to decide
whether T ∈ Gp1 p2 p3 or Gp1 p3 . We denote it as T = gt1

1 gt3
3 or T = gt1

1 gt2
2 gt3

3 .
Algorithm B works as follows:

Setup phase: B runs Param(k) → (n1, n2), picks h $← Zn1
N , x $← Zn2

N , and
α ← ZN, computes PK = (g1, Z3, e(g1, g1)

α, gh
1 , gx

1). B sends PK to A and
adds tuple 0 of T to be the first tuple (0, ε, ε, 0) .

Phase 1: In this phase, whenAmakes the j-th Create(h, Xj) queries for Xj ∈
X or Xj = ε, B first scans T to find whether tuple h refers to a master key

130 Appendix A. Proofs of Theorems

tuple. If not, then responds with ⊥.
Otherwise B does as follows:

• Case 1: [j < k]. B generates a semi-functional type-3 key for Xj in the
following way:

runs Enc1(Xj, N) → (kXj,1, kXj,2; m1, m2, m3),picks α̂
$← ZN, rj

$← Zm3
N ,

Rj,1
$← Zm1

N , Rj,2
$← Zm2

N and computes:

Kj,SF3 = (g
kXj ,1

(α,h,x,rj)

1 ∗ (W2W3)
kXj ,1

(α̂,0,0,0) ∗ g
Rj,1
3 ,

g
kXj ,2(h,rj)

1 ∗ (W2W3)
kXj ,2(0,0) ∗ g

Rj,2
3).

After that, B adds tuple (H + 1, Xj, Kj,SF3, 0) to set T and updates han-
dle counter to H← H + 1.

• Case 2:[j = k]. B runs Enc1(Xk, N) → (kXk,1, kXk,2;m1,m2,m3), picks α̂
$←

ZN, rk, r̂k
$← Zm3

N , Rk,1
$← Zm1

N and Rk,2
$← Zm2

N , and computes

K∗ = (g
kXk ,1(α,h,x,rk)

1 ∗ (W2W3)
kXk ,1(α̂,0,0,0) ∗ (T)kXk ,1(0,h,x,r̂k) · ZRk,1

3 ,

g
kXk ,2(h,rk)

1 ∗ (W2W3)
kXk ,2(0,0) · (T)kXk ,2(h,r̂k) ∗ ZRk,2

3).

After that, B adds tuple (H + 1, X, K∗, 0) to set T and updates handle
counter to H ← H + 1.

We claim that K∗ is the properly distributed semi-functional type-2 or
semi-functional type-3 key. Firstly, we observe that the Gp1 component
in K∗ is :

(g
kXk ,1(α,h,x,(rk+t1r̂k))

1 , g
kXk ,2(h,(r+t1r̂k))

1).

It is easy to see this component is properly distributed as in semi-
functional type-2 or semi-functional type-3 if we take the radomness
as r + t1r̂j.

Let W2W3 to be gŴ2
2 gŴ3

3 .

– if T = gt1
1 gt3

3 , then K∗ is a properly distributed semi-functional
type-3 key. The Gp2 component in K∗ is distributed as follows

(gk1(Ŵ2α̂,0,0,0)
2 , gk2(0,0))

2).

A.2. Proof for Theorem 4.3.1 131

– if T = gt1
1 gt2

2 gt3
3 , then K∗ is a properly distributed semi-functional

type-2 key. The Gp2 component in K∗ is distributed as follows

(g
k1(Ŵ2α̂,h,x,t2r̂j)

2 , g
k2(h,t2r̂j))

2).

• Case 3:[j > k]. B generates a normal key for Xj.

Challenge phase: A outpus two challenge message M0, M1 ∈ GT and a
challenge attribute Y∗. B first checks whether Y∗ ∈ R, if yes, return ⊥.

Otherwise, B runs Enc2(Y∗, N) → (c; w2), picks s = (s, s1, s2, . . . , sω2)
$←

Zω2+1
N , b $← {0, 1}, computes challenge ciphertext CT = (C0, C1) as follows:

C0 = e(g1, g1)
αs ·Mb C1 = (Z1Z2)

c(s,h,x)

Phase 2: In this phase, B answers all Create queries by generating normal
keys .

Guess phase: A outputs a guess b
′
. If b

′
= b, then A successes.

Lemma A.2.6. |Gq1,3AdvA(1λ) - G21AdvA(1λ)| ≤ AdvSD2
B (1λ).

Proof. If there is an adversaryAwho can distinguish Gq1,3 and G2,1, we will
build an algorithm B who can break Assumption SD2. On input a problem
instance (G, GT, N, e, g1, Z1Z2, Z3, W2W3, T), B needs to decide whether T ∈
Gp1 p2 p3 or Gp1 p3 . We denote it as T = gt1

1 gt3
3 or gt1

1 gt2
2 gt3

3 .
Algorithm B works as follows:

Setup phase: B runs Param(k) → (n1, n2), picks h $← Zn1
N , x $← Zn2

N , and
α ← ZN, computes PK = (g1, Z3, e(g1, g1)

α, gh
1 , gx

1). B sends PK to A and
adds tuple 0 of T to be the first tuple (0, ε, ε, 0) .

Phase 1: In this phase, when A makes the j-th Create(h, Xj) queries for
Xj ∈ X or Xj = ε, B first scans T to find whether tuple h refers to a master
key tuple. If not, then responds with ⊥. Otherwise, B generates a semi-
functional type-3 key for Xj in the following way:

runs Enc1(Xj, N) → (kXj,1, kXj,2; m1, m2, m3),picks α̂
$← ZN, rj

$← Zm3
N ,

132 Appendix A. Proofs of Theorems

Rj,1
$← Zm1

N , Rj,2
$← Zm2

N and computes:

Kj,SF3 = (g
kXj ,1

(α,h,x,rj)

1 ∗ (W2W3)
kXj ,1

(α̂,0,0,0) ∗ g
Rj,1
3 ,

g
kXj ,2(h,rj)

1 ∗ (W2W3)
kXj ,2(0,0) ∗ g

Rj,2
3).

After that, B adds tuple (H + 1, Xj, Kj,SF3, 0) to set T and updates handle
counter to H ← H + 1.

Challenge phase: A outpus two challenge message M0, M1 ∈ GT and a
challenge attribute Y∗. B first checks whether Y∗ ∈ R, if yes, return ⊥.

Otherwise, B runs Enc2(Y∗, N) → (c; w2), picks s = (s, s1, s2, . . . , sω2)
$←

Zω2+1
N „ b $← {0, 1}, computes challenge ciphertext CT = (C0, C1) as follows:

C0 = e(g1, g1)
αs ·Mb C1 = (Z1Z2)

c(s,h,x)

Phase 2: For all Create(h, Xj) queries in this phase, B runs Enc1(Xj, N) →
(kXj,1, kXj,2;m1,m2,m3), picks rj, r̂j

$← Zm3
N , Rj,1

$← Zm1
N and Rj,2

$← Zm2
N , and

computes

Kj = (g
kXj ,1

(α,h,x,rj)

1 ∗ (T)kXj ,1
(0,h,x,r̂j,) ∗ Z

Rj,1
3 , g

kXj ,2(h,rj)

1 ∗ (T)kXj ,2(h,r̂j) ∗ Z
Rj,2
3).

After that, B adds tuple (H+ 1, Xj, Kj, 0) to set T and updates handle counter
to H ← H + 1.

We claim that for j ∈ [1, q2], Kj is the properly distributed as normal key
or semi-functional type-1 key. If T = gt1

1 gt3
3 , Kj is properly distributed as

normal key. If T = gt1
1 gt2

2 gt3
3 , Kj is properly distributed as semi-functional

type-1 key.

Guess phase: A outputs a guess b
′
. If b

′
= b, then A successes.

Lemma A.2.7. |G21AdvA(1λ) - G22AdvA(1λ)| ≤ AdvSMH
B (1λ).

Proof. If there is an adversary A who can distinguish G21 and G22, we will
build an algorithm B who can break the selective security of the underlying
pair encoding scheme P. Given (g1, g2, g3) as in selective game, algorithm
B works as follows:

A.2. Proof for Theorem 4.3.1 133

Setup phase: B runs Param(k) → (n1, n2), picks h $← Zn1
N , x $← Zn2

N , and
α ← ZN, computes PK = (g1, g3, e(g1, g1)

α, gh
1 , gx

1). B sends PK to A and
adds tuple 0 of T to be the first tuple (0, ε,−, 0) .

Phase 1: In this phase, when Amakes the j-th Create(h, Xj) queries, B first
scans T to find whether tuple h refers to a master key tuple. If not, then
responds with ⊥. Otherwise, B generates a semi-functional type-3 key for
Xj.

Challenge phase: A outputs messages M0, M1 ∈ GT along with a challenge
attributes Y∗ such that for all X ∈ R, R(X, Y∗) = 0 mod p2. B then makes

a query for Y∗ to its challenger and receives back Tc = gcY∗ (ŝ,ĥ,x̂)
2 . B runs

Enc2(Y∗, N) → (cY∗ ; w2), picks b $← {0, 1}, s = (s, s1, s2, . . . , sω2)
$← Zω2+1

N ,
and computes the challenge ciphertext CT∗ = (C0, C1) as follows:

C0 = e(g1, g1)
αs ·Mb C1 = gcY∗ (s,h,x)

1 ∗ Tc.

Phase 2: For all Create(h, Xj) queries requested by A, B makes a query Xj

to its challenger and receives Tj = (g
kXj ,1

(β,ĥ,x̂,r̂)

2 , g
kXj ,2(ĥ,r̂)

2). B need to guess
if β is randomly chosen from Zp2 or is 0. Then B creates the j-th key for A
as follows

Kj = (g
kXk ,1(α,h,x,rj)

1 ∗ g
Rj,1
3 , g

kXk ,2(h,rj)

1 ∗ g
Rj,2
3) ∗ Tj,

where Enc1(Xk, N) → (kXk,1, kXk,2; m1, m2, m3), rj
$← Zm3

N , Rj,1
$← Zm1

N ,

Rj,2
$← Zm2

N .

After that, B adds tuple (H + 1, Xj, Kj, 0) to the set T and updates the handle
counter to H ← H + 1.

Guess Phase: A outputs a guess b
′
. If b

′
= b, then A successes.

If β = 0, B perfectly simulates G21 for A; Otherwise, B perfectly simulates
G22.

Lemma A.2.8. |G22AdvA(1λ) - G23AdvA(1λ)| ≤ AdvSD2
B (1λ).

Proof Outline. This proof is very similar to the proof of Lemma A.2.5, so we
just give a proof outline here. In this proof, simulator B encodes its own
challenge string into those keys generated in Phase 2, and simulates the
proper environment for A. Hence, the indistinguishability between these
two games can be reduced to the hardness of Assumptin SD2.

134 Appendix A. Proofs of Theorems

Lemma A.2.9. |G23AdvA(1λ) - G f inalAdvA(1λ)| ≤ AdvSD3
B (1λ).

Proof. Algorithm B takes input a problem instance(g1, g2, g3, gs
1W2, gα

1Y2, T)

of Assumption SD3. It needs to decide whether T = e(g1, g1)
αs or T $← GT.

Algorithm B works as follows:

Setup phase: B runs Param(k) → (n1, n2), picks h $← Zn1
N , x $← Zn2

N , and
computes PK = (g1, g3, e(g1, gα

1Y2), gh
1 , gx

1), sends PK to A and adds tuple 0
of T to be the first tuple (0, ε, ε, 0), where the key filed is empty.

Phase 1: In this phase, when Amakes the j-th Create(h, Xj) queries, B first
scans T to find whether tuple h refers to a master key tuple. If not, then
responds with ⊥.
Otherwise, B generates a semi-functional type-3 key for Xj in the following
way:

runs Enc1(Xj, N) → (kXj,1, kXj,2; m1, m2, m3),picks α̂
$← ZN, rj

$← Zm3
N ,

Rj,1
$← Zm1

N , Rj,2
$← Zm2

N and computes:

Kj,SF3 = ((gα
1Y2)

kXj ,1
(1,0,0,0) ∗ g

kXj ,1
(0,h,x,rj)

1 ∗ g
kXj ,1

(α̂,0,0,0)

2 ∗ g
Rj,1
3 ,

g
kXj ,2(h,rj)

1 ∗ g
kXj ,2(0,0)

2 ∗ g
Rj,2
3).

After that, B adds tuple (H + 1, Xj, Kj,SF3, 0) to set T and updates handle
counter to H ← H + 1.

Challenge phase: A outpus two challenge message M0, M1 ∈ GT and a
challenge attribute Y∗. B first checks whether Y∗ ∈ R, if yes, return ⊥.

Otherwise, B runs Enc2(Y∗, N) → (c; w2), picks s′ = (1, s1, s2, . . . , sω2)
$←

Zω2+1
N , b $← {0, 1}, computes challenge ciphertext CT = (C0, C1) as follows:

C0 = T ·Mb C1 = (gs
1W2)

c(s′,h,x)

Phase 2: B generates a semi-functional type-3 key for Xj in the same way
as Phase 1.

Guess Phase: A outputs a guess b
′
. If b

′
= b, then A successes.

Combining all the lemmas mentioned above, we can prove the indistin-
guishability between those games defined in our proof, hence we complete
this proof.

135

Bibliography

[AFGH06] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Ho-
henberger. Improved proxy re-encryption schemes with ap-
plications to secure distributed storage. ACM Transactions on
Information and System Security (TISSEC), 9(1):1–30, 2006.

[AL10] Nuttapong Attrapadung and Benoît Libert. Functional en-
cryption for inner product: Achieving constant-size cipher-
texts with adaptive security or support for negation. In Public
Key Cryptography–PKC 2010, pages 384–402. Springer, 2010.

[ALDP11] Nuttapong Attrapadung, Benoît Libert, and Elie De Panafieu.
Expressive key-policy attribute-based encryption with
constant-size ciphertexts. In Public Key Cryptography–PKC
2011, pages 90–108. Springer, 2011.

[AN11] Tolga Acar and Lan Nguyen. Revocation for delegatable
anonymous credentials. In International Workshop on Public Key
Cryptography, pages 423–440. Springer, 2011.

[ATSM09] Man Ho Au, Patrick P Tsang, Willy Susilo, and Yi Mu. Dy-
namic universal accumulators for ddh groups and their appli-
cation to attribute-based anonymous credential systems. In
Cryptographers? Track at the RSA Conference, pages 295–308.
Springer, 2009.

[Att14] Nuttapong Attrapadung. Dual system encryption via dou-
bly selective security: Framework, fully secure functional en-
cryption for regular languages, and more. In Advances in
Cryptology–EUROCRYPT 2014, pages 557–577. Springer, 2014.

[Att15] Nuttapong Attrapadung. Dual system encryption frame-
work in prime-order groups. IACR Cryptology ePrint Archive,
2015:390, 2015.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id se-
cure identity-based encryption without random oracles. In

136 BIBLIOGRAPHY

Advances in Cryptology-EUROCRYPT 2004, pages 223–238.
Springer, 2004.

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryp-
tion without random oracles. In Advances in Cryptology–Crypto
2004, pages 443–459. Springer, 2004.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical
identity based encryption with constant size ciphertext. In
Advances in Cryptology–EUROCRYPT 2005, pages 440–456.
Springer, 2005.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible
protocols and atomic proxy cryptography. In Advances in
Cryptology-EUROCRYPT’98, pages 127–144. Springer, 1998.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam
Ghadafi, and Jens Groth. Foundations of fully dynamic group
signatures. In International Conference on Applied Cryptography
and Network Security, pages 117–136. Springer, 2016.

[BDM93] Josh Benaloh and Michael De Mare. One-way accumulators:
A decentralized alternative to digital signatures. In Work-
shop on the Theory and Application of of Cryptographic Techniques,
pages 274–285. Springer, 1993.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption
from the weil pairing. In Advances in Cryptology—CRYPTO
2001, pages 213–229. Springer, 2001.

[BGJK12] Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tau-
man Kalai. Multiparty computation secure against continual
memory leakage. In Proceedings of the forty-fourth annual ACM
symposium on Theory of computing, pages 1235–1254. ACM,
2012.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf
formulas on ciphertexts. In Theory of cryptography, pages 325–
341. Springer, 2005.

[BGT15] Michael Backes, Martin Gagné, and Sri Aravinda Krishnan
Thyagarajan. Fully secure inner-product proxy re-encryption

BIBLIOGRAPHY 137

with constant size ciphertext. In Proceedings of the 3rd Inter-
national Workshop on Security in Cloud Computing, pages 31–40.
ACM, 2015.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and
Vinod Vaikuntanathan. Overcoming the hole in the bucket:
Public-key cryptography resilient to continual memory leak-
age. In Foundations of Computer Science (FOCS), 2010 51st An-
nual IEEE Symposium on, pages 501–510. IEEE, 2010.

[BLL00] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable
certificate management using undeniable attestations. In Pro-
ceedings of the 7th ACM conference on Computer and communica-
tions security, pages 9–17. ACM, 2000.

[BLL02] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Eliminating
counterevidence with applications to accountable certificate
management 1. Journal of Computer Security, 10(3):273–296,
2002.

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators
and fail-stop signature schemes without trees. In International
Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 480–494. Springer, 1997.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are prac-
tical: A paradigm for designing efficient protocols. In Proceed-
ings of the 1st ACM conference on Computer and communications
security, pages 62–73. ACM, 1993.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical
identity-based encryption (without random oracles). In Ad-
vances in Cryptology-CRYPTO 2006, pages 290–307. Springer,
2006.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random
oracle methodology, revisited. Journal of the ACM (JACM),
51(4):557–594, 2004.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual
system abe in prime-order groups via predicate encodings.

138 BIBLIOGRAPHY

In Advances in Cryptology-EUROCRYPT 2015, pages 595–624.
Springer, 2015.

[CH07] Ran Canetti and Susan Hohenberger. Chosen-ciphertext se-
cure proxy re-encryption. In Proceedings of the 14th ACM con-
ference on Computer and communications security, pages 185–
194. ACM, 2007.

[CHKO08] Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and
Roberto Opazo. Strong accumulators from collision-resistant
hashing. In International Conference on Information Security,
pages 471–486. Springer, 2008.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert.
Bonsai trees, or how to delegate a lattice basis. In Annual In-
ternational Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 523–552. Springer, 2010.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An
accumulator based on bilinear maps and efficient revocation
for anonymous credentials. In International Workshop on Public
Key Cryptography, pages 481–500. Springer, 2009.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumula-
tors and application to efficient revocation of anonymous cre-
dentials. In Annual International Cryptology Conference, pages
61–76. Springer, 2002.

[coi] Cryptocurrencies market capacity. URL:https:
//coinmarketcap.com/all/views/all/, Online accessed
16 April 2018.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of
practical public-key encryption schemes secure against adap-
tive chosen ciphertext attack. SIAM Journal on Computing,
33(1):167–226, 2003.

[CT07] Cheng-Kang Chu and Wen-Guey Tzeng. Identity-based proxy
re-encryption without random oracles. In International Confer-
ence on Information Security, pages 189–202. Springer, 2007.

https://coinmarketcap.com/all/views/all/
https://coinmarketcap.com/all/views/all/

BIBLIOGRAPHY 139

[CW13] Jie Chen and Hoeteck Wee. Fully,(almost) tightly secure ibe
and dual system groups. In Advances in Cryptology–CRYPTO
2013, pages 435–460. Springer, 2013.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryp-
tography. IEEE transactions on Information Theory, 22(6):644–
654, 1976.

[DHLAW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt,
and Daniel Wichs. Cryptography against continuous memory
attacks. In Foundations of Computer Science (FOCS), 2010 51st
Annual IEEE Symposium on, pages 511–520. IEEE, 2010.

[DHS15] David Derler, Christian Hanser, and Daniel Slamanig. Revis-
iting cryptographic accumulators, additional properties and
relations to other primitives. In CT-RSA, pages 127–144, 2015.

[DKNS04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Vic-
tor Shoup. Anonymous identification in ad hoc groups. In
International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 609–626. Springer, 2004.

[DLWW11] Yevgeniy Dodis, Allison Lewko, Brent Waters, and Daniel
Wichs. Storing secrets on continually leaky devices. In Founda-
tions of Computer Science (FOCS), 2011 IEEE 52nd Annual Sym-
posium on, pages 688–697. IEEE, 2011.

[DT08] Ivan Damgård and Nikos Triandopoulos. Supporting non-
membership proofs with bilinear-map accumulators. IACR
Cryptology ePrint Archive, 2008:538, 2008.

[DWQ+15] Hua Deng, Qianhong Wu, Bo Qin, Willy Susilo, Joseph K.
Liu, and Wenchang Shi. Asymmetric cross-cryptosystem re-
encryption applicable to efficient and secure mobile access to
outsourced data. In Feng Bao, Steven Miller, Jianying Zhou,
and Gail-Joon Ahn, editors, Proceedings of the 10th ACM Sym-
posium on Information, Computer and Communications Security,
ASIA CCS ’15, Singapore, April 14-17, 2015, pages 393–404.
ACM, 2015.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In Advances in cryptol-
ogy, pages 10–18. Springer, 1984.

140 BIBLIOGRAPHY

[EMO10] Keita Emura, Atsuko Miyaji, and Kazumasa Omote. An
identity-based proxy re-encryption scheme with source hid-
ing property, and its application to a mailing-list system.
In European Public Key Infrastructure Workshop, pages 77–92.
Springer, 2010.

[Fey82] Richard P Feynman. Simulating physics with computers. In-
ternational journal of theoretical physics, 21(6):467–488, 1982.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Confer-
ence on the Theory and Application of Cryptographic Techniques,
pages 186–194. Springer, 1986.

[GA07] Matthew Green and Giuseppe Ateniese. Identity-based proxy
re-encryption. In Applied Cryptography and Network Security,
pages 288–306. Springer, 2007.

[GH09] Craig Gentry and Shai Halevi. Hierarchical identity based
encryption with polynomially many levels. In TCC, volume
5444, pages 437–456. Springer, 2009.

[GHW+11] Matthew Green, Susan Hohenberger, Brent Waters, et al. Out-
sourcing the decryption of abe ciphertexts. In USENIX Secu-
rity Symposium, volume 2011, 2011.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof systems. SIAM
Journal on computing, 18(1):186–208, 1989.

[Goe15] Michel Goemans. Lecture notes in chernoff bounds, and
some applications, February 2015. URL:http://math.mit.
edu/~goemans/18310S15/chernoff-notes.pdf.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters.
Attribute-based encryption for fine-grained access control of
encrypted data. In Proceedings of the 13th ACM conference on
Computer and communications security, pages 89–98. Acm, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trap-
doors for hard lattices and new cryptographic constructions.
In Proceedings of the fortieth annual ACM symposium on Theory
of computing, pages 197–206. ACM, 2008.

http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

BIBLIOGRAPHY 141

[GTH02] Michael T Goodrich, Roberto Tamassia, and Jasminka Hasić.
An efficient dynamic and distributed cryptographic accumu-
lator. In International Conference on Information Security, pages
372–388. Springer, 2002.

[Ham11] Mike Hamburg. SPATIAL ENCRYPTION. PhD thesis, STAN-
FORD UNIVERSITY, 2011.

[HSH+09] J Alex Halderman, Seth D Schoen, Nadia Heninger, William
Clarkson, William Paul, Joseph A Calandrino, Ariel J Feld-
man, Jacob Appelbaum, and Edward W Felten. Lest we re-
member: cold-boot attacks on encryption keys. Communica-
tions of the ACM, 52(5):91–98, 2009.

[ID03] Anca-Andreea Ivan and Yevgeniy Dodis. Proxy cryptography
revisited. In NDSS, 2003.

[JMB11] Sonia Jahid, Prateek Mittal, and Nikita Borisov. Easier:
Encryption-based access control in social networks with ef-
ficient revocation. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, pages 411–
415. ACM, 2011.

[KFTS17] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Sax-
ena. A traceability analysis of monero’s blockchain. In Euro-
pean Symposium on Research in Computer Security, pages 153–
173. Springer, 2017.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. In Advances in Cryptology—CRYPTO’99, pages
388–397. Springer, 1999.

[Koc96] Paul C Kocher. Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems. In Advances in Cryptol-
ogy—CRYPTO’96, pages 104–113. Springer, 1996.

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Con-
currently secure identification schemes based on the worst-
case hardness of lattice problems. In International Conference
on the Theory and Application of Cryptology and Information Se-
curity, pages 372–389. Springer, 2008.

142 BIBLIOGRAPHY

[LAL+14] Kaitai Liang, Man Ho Au, Joseph K Liu, Willy Susilo, Dun-
can S Wong, Guomin Yang, Tran Viet Xuan Phuong, and
Qi Xie. A dfa-based functional proxy re-encryption scheme
for secure public cloud data sharing. IEEE Transactions on In-
formation Forensics and Security, 9(10):1667–1680, 2014.

[LAL+15] Kaitai Liang, Man Ho Au, Joseph K Liu, Willy Susilo, Dun-
can S Wong, Guomin Yang, Yong Yu, and Anjia Yang. A se-
cure and efficient ciphertext-policy attribute-based proxy re-
encryption for cloud data sharing. Future Generation Computer
Systems, 52:95–108, 2015.

[LCLS09] Xiaohui Liang, Zhenfu Cao, Huang Lin, and Jun Shao. At-
tribute based proxy re-encryption with delegating capabili-
ties. In Proceedings of the 4th International Symposium on Infor-
mation, Computer, and Communications Security, pages 276–286.
ACM, 2009.

[Lew12] Allison Lewko. Tools for simulating features of composite or-
der bilinear groups in the prime order setting. In Advances in
Cryptology–EUROCRYPT 2012, pages 318–335. Springer, 2012.

[LH10] Zi Lin and Nicholas Hopper. Jack: Scalable accumulator-
based nymble system. In Proceedings of the 9th annual ACM
workshop on Privacy in the electronic society, pages 53–62. ACM,
2010.

[LLM+16] Benoît Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen,
and Huaxiong Wang. Signature schemes with efficient proto-
cols and dynamic group signatures from lattice assumptions.
In Advances in Cryptology–ASIACRYPT 2016: 22nd International
Conference on the Theory and Application of Cryptology and Infor-
mation Security, Hanoi, Vietnam, December 4-8, 2016, Proceed-
ings, Part II 22, pages 373–403. Springer, 2016.

[LLNW16] Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang.
Zero-knowledge arguments for lattice-based accumulators:
Logarithmic-size ring signatures and group signatures with-
out trapdoors. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 1–31.
Springer, 2016.

BIBLIOGRAPHY 143

[LLNW17] Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang.
Zero-knowledge arguments for lattice-based prfs and appli-
cations to e-cash. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 304–
335. Springer, 2017.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators
with efficient nonmembership proofs. In Applied Cryptography
and Network Security, pages 253–269. Springer, 2007.

[LNSW13] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang.
Improved zero-knowledge proofs of knowledge for the isis
problem, and applications. In Public-Key Cryptography–PKC
2013, pages 107–124. Springer, 2013.

[LNWX17] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu.
Lattice-based group signatures: Achieving full dynamicity
with ease. In International Conference on Applied Cryptography
and Network Security, pages 293–312. Springer, 2017.

[LOS+10] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki
Takashima, and Brent Waters. Fully secure functional en-
cryption: Attribute-based encryption and (hierarchical) inner
product encryption. In Advances in Cryptology–EUROCRYPT
2010, pages 62–91. Springer, 2010.

[LRW11] Allison Lewko, Yannis Rouselakis, and Brent Waters. Achiev-
ing leakage resilience through dual system encryption. In The-
ory of Cryptography, pages 70–88. Springer, 2011.

[LSW06] Joseph K Liu, Willy Susilo, and Duncan S Wong. Ring signa-
ture with designated linkability. In International Workshop on
Security, pages 104–119. Springer, 2006.

[LV08] Benoît Libert and Damien Vergnaud. Unidirectional chosen-
ciphertext secure proxy re-encryption. In Public Key
Cryptography–PKC 2008, pages 360–379. Springer, 2008.

[LW10] Allison Lewko and Brent Waters. New techniques for dual
system encryption and fully secure hibe with short cipher-
texts. In Theory of Cryptography, pages 455–479. Springer, 2010.

144 BIBLIOGRAPHY

[LW11] Allison Lewko and Brent Waters. Unbounded hibe and
attribute-based encryption. In Advances in Cryptology–
EUROCRYPT 2011, pages 547–567. Springer, 2011.

[LWW14] Qin Liu, Guojun Wang, and Jie Wu. Time-based proxy re-
encryption scheme for secure data sharing in a cloud environ-
ment. Information Sciences, 258:355–370, 2014.

[Mat07] Toshihiko Matsuo. Proxy re-encryption systems for identity-
based encryption. In Pairing-Based Cryptography–Pairing 2007,
pages 247–267. Springer, 2007.

[MD09] Takeo Mizuno and Hiroshi Doi. Hybrid proxy re-encryption
scheme for attribute-based encryption. In Information security
and cryptology, pages 288–302. Springer, 2009.

[MMLN17] Andrew Miller, Malte Möser, Kevin Lee, and Arvind
Narayanan. An empirical analysis of linkability in the monero
blockchain. arXiv preprint arXiv:1704.04299, 2017.

[MNT10] Toshihide Matsuda, Ryo Nishimaki, and Keisuke Tanaka. Cca
proxy re-encryption without bilinear maps in the standard
model. In International Workshop on Public Key Cryptography,
pages 261–278. Springer, 2010.

[mon] Monero source code. URL:https://github.com/
monero-project/monero,Online accessed 30 March 2018.

[MPJ+13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill
Levchenko, Damon McCoy, Geoffrey M Voelker, and Stefan
Savage. A fistful of bitcoins: characterizing payments among
men with no names. In Proceedings of the 2013 conference on
Internet measurement conference, pages 127–140. ACM, 2013.

[MSH+18] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry
Heffan, Shashvat Srivastava, Kyle Hogan, Jason Hennessey,
Andrew Miller, Arvind Narayanan, et al. An empirical anal-
ysis of traceability in the monero blockchain. Proceedings on
Privacy Enhancing Technologies, 3:143–163, 2018.

https://github.com/monero-project/monero
https://github.com/monero-project/monero

BIBLIOGRAPHY 145

[MTVY11] Tal Malkin, Isamu Teranishi, Yevgeniy Vahlis, and Moti Yung.
Signatures resilient to continual leakage on memory and com-
putation. In Theory of Cryptography, pages 89–106. Springer,
2011.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem. 2008.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure
functional encryption with general relations from the deci-
sional linear assumption. In Advances in Cryptology–CRYPTO
2010, pages 191–208. Springer, 2010.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively
attribute-hiding (hierarchical) inner product encryption. In
Advances in Cryptology–EUROCRYPT 2012, pages 591–608.
Springer, 2012.

[P+16] Chris Peikert et al. A decade of lattice cryptography. Foun-
dations and Trends R© in Theoretical Computer Science, 10(4):283–
424, 2016.

[RH11] Fergal Reid and Martin Harrigan. An analysis of anonymity
in the bitcoin system. In Privacy, Security, Risk and Trust (PAS-
SAT) and 2011 IEEE Third Inernational Conference on Social Com-
puting (SocialCom), 2011 IEEE Third International Conference on,
pages 1318–1326. IEEE, 2011.

[RS13] Dorit Ron and Adi Shamir. Quantitative analysis of the full
bitcoin transaction graph. In International Conference on Finan-
cial Cryptography and Data Security, pages 6–24. Springer, 2013.

[RSA78] Ronald L Rivest, Adi Shamir, and Len Adleman. A method
for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[RST01] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a
secret. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 552–565. Springer,
2001.

146 BIBLIOGRAPHY

[RW13] Yannis Rouselakis and Brent Waters. Practical constructions
and new proof methods for large universe attribute-based en-
cryption. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages 463–474. ACM,
2013.

[SC09] Jun Shao and Zhenfu Cao. Cca-secure proxy re-encryption
without pairings. In International Workshop on Public Key Cryp-
tography, pages 357–376. Springer, 2009.

[SC12] Jun Shao and Zhenfu Cao. Multi-use unidirectional identity-
based proxy re-encryption from hierarchical identity-based
encryption. Information Sciences, 206:83–95, 2012.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature
schemes. In Advances in cryptology, pages 47–53. Springer,
1984.

[Sho94] Peter W Shor. Algorithms for quantum computation: Discrete
logarithms and factoring. In Proceedings 35th annual symposium
on foundations of computer science, pages 124–134. Ieee, 1994.

[SLP+12] Ron Steinfeld, San Ling, Josef Pieprzyk, Christophe Tartary,
and Huaxiong Wang. Ntrucca: How to strengthen ntruen-
crypt to chosen-ciphertext security in the standard model. In
Public Key Cryptography–PKC 2012, pages 353–371. Springer,
2012.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryp-
tion. In Advances in Cryptology–EUROCRYPT 2005, pages 457–
473. Springer, 2005.

[THJ08] Qiang Tang, Pieter Hartel, and Willem Jonker. Inter-domain
identity-based proxy re-encryption. In International Confer-
ence on Information Security and Cryptology, pages 332–347.
Springer, 2008.

[TX03] Gene Tsudik and Shouhuai Xu. Accumulating composites and
improved group signing. In International Conference on the The-
ory and Application of Cryptology and Information Security, pages
269–286. Springer, 2003.

[VS13] Nicolas Van Saberhagen. Cryptonote v 2. 0, 2013.

BIBLIOGRAPHY 147

[Wat05] Brent Waters. Efficient identity-based encryption without ran-
dom oracles. In Advances in Cryptology–EUROCRYPT 2005,
pages 114–127. Springer, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully se-
cure ibe and hibe under simple assumptions. In Advances in
Cryptology-CRYPTO 2009, pages 619–636. Springer, 2009.

[Wat12] Brent Waters. Functional encryption for regular languages.
In Advances in Cryptology–CRYPTO 2012, pages 218–235.
Springer, 2012.

[WCW10] Hongbing Wang, Zhenfu Cao, and Licheng Wang. Multi-
use and unidirectional identity-based proxy re-encryption
schemes. Information Sciences, 180(20):4042–4059, 2010.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encod-
ings. In Theory of Cryptography, pages 616–637. Springer, 2014.

[WWMO10] Lihua Wang, Licheng Wang, Masahiro Mambo, and Eiji
Okamoto. New identity-based proxy re-encryption schemes
to prevent collusion attacks. In International Conference on
Pairing-Based Cryptography, pages 327–346. Springer, 2010.

[YCZY12] Tsz Hon Yuen, Sherman SM Chow, Ye Zhang, and Siu Ming
Yiu. Identity-based encryption resilient to continual auxiliary
leakage. In Advances in Cryptology–EUROCRYPT 2012, pages
117–134. Springer, 2012.

[YWRL10] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. At-
tribute based data sharing with attribute revocation. In Pro-
ceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, pages 261–270. ACM, 2010.

[YXZ+15] Rupeng Yang, Qiuliang Xu, Yongbin Zhou, Rui Zhang,
Chengyu Hu, and Zuoxia Yu. Updatable hash proof sys-
tem and its applications. In Computer Security–ESORICS 2015,
pages 266–285. Springer, 2015.

	Abstract
	Publications
	Acknowledgements
	Introduction
	Flexible ABE With Outsourcing
	Leakage-Resilient Attribute-Based Encryption
	Applicability of Cryptographic Primitives in Blockchain
	Quantum Safe Universal Accumulator
	Related Work
	Sources and Organization of The Thesis

	Preliminaries
	Notations and Cryptographic Assumptions
	Notations and Conventions
	Composite-Order Bilinear Groups
	Assumptions

	Attribute-Based Encryptions
	Secure ABE In CML Model
	Security Definition
	A Lemma for Leakage-Resilient Analysis

	The Pair Encoding Framework
	CryptoNote-Style Cryptocurrencies
	Universal Accumulator
	Accumulator For Nonmembership

	Zero-Knowledge Arguments of Knowledge
	 Abstract Stern's Protocol

	Cross-System Proxy Re-Encryption
	Our Contribution in Constructing CS-PRE
	Syntax of CS-PRE
	Security Notion

	Our Construction
	Overview of Our Construction
	Our Construction of CS-PRE
	Security Analysis

	Discussion

	Leakage-Resilient Attribute-Based Encryption
	Our Contributions in Constructing LR-ABE
	Leakage-Resilient Pair Encoding Scheme
	Syntax
	Security Definitions

	From Leakage-Resilient Pair Encoding to LR-ABE
	Generic construction
	Security Proof of Our Generic Construction

	From Pair Encoding to Leakage-Resilient Encoding
	Extending the Definition of Attrapadung's Pair Encoding to Support Encoding of Empty Attribute
	Generic Transformation of Pair Encodings to Leakage-Resilient Pair Encodings

	Instantiations of Our Framework

	Traceability Analysis of CryptoNote-Style Blockchains
	Our Contributions
	Closed Set Attack
	Brute-Force Attack
	Our Attack
	On The Existence of Closed Set: A Theoretical Perspective

	Our Clustering Algorithm
	Experiment Result
	Analysis of Monero
	Analysis of Bytecoin
	Analysis of DigitalNote

	Observations and Recommendations

	Lattice-Based Universal Accumulator
	Our Contribution and Overview of Our Idea
	Lattice-Based Universal Accumulator
	Our Construction of Accumulator for Nonmembership
	Zero-Knowledge Argument of Knowledge of Nonmembership Witness

	Application of Our Accumulator
	Definition of Fully Dynamic Group Signature
	Our Construction

	Conclusion
	Proofs of Theorems
	Proof of Theorem 3.3.1
	Proof for Theorem 4.3.1

	Bibliography

