
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



REAL-TIME CALCULUS:
REVISIT AND IMPROVEMENT

YUE TANG

PhD

The Hong Kong Polytechnic University

2020



The Hong Kong Polytechnic University

Department of Computing

Real-Time Calculus: Revisit and Improvement

Yue Tang

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

August 2019



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

(Signature)

Yue Tang (Name of Student)

iii



ABSTRACT

Real-time systems widely exist in our daily life, e.g., avionics, automotive electronics, wire-

less communications. In a real-time system, the correctness of the system behavior depends

not only on the logical results of the computations, but also on the physical instant at which

these results are produced. Satisfying the time constraints of a real-time system is equally

or even more important than other aspects of performance requirements, thus developing

analysis techniques to determine the whether time constraints are satisfied deserves the most

concern. As a real-time performance analysis framework, Real-Time Calculus is proved to

be appropriate for networked real-time systems, providing the sufficiently expressive and

effective analysis for timing behaviors. This thesis revisits Real-Time Calculus, improves

the analysis of fundamental abstract components and proves the correctness of basic prop-

erties, thus improving the overall timing analysis of real-time systems under the Real-Time

Calculus framework. In detail, the work in this thesis includes

(1) Improving the analysis of GPC (Greedy Processing Component), which is a

fundamental abstract component in Real-Time Calculus and mainly applied for modeling

priority-based resource arbitration. The improvement involves two aspects: First, this thesis

revises the misunderstanding part in the original proof of calculating output curves in GPC

and confirms the correctness of existing calculations for output curves of GPC. Second, two

different methods are proposed to derive more precise output arrival curves of GPC, thus

improving the analysis preciseness of GPC.

(2) Improving the analysis of AND connector, another widely used abstract com-

ponent for synchronization operations. This thesis first identifies a problem in the existing

analysis of AND connector that may lead to negative values in the output curves, and presents

corrections to the problem. Then the existing dual-input AND connector is generalized to
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synchronize more than two input event streams.

(3) Proving the Pay-Burst-Only-Once property in Real-Time Calculus. Pay-Burst-

Only-Once is one of the most important properties in Network Calculus, the root of Real-

Time Calculus. Naturally, people would expect the Pay-Burst-Only-Once property to also

hold in Real-Time Calculus since Real-Time Calculus builds up on and shares many similar-

ities with Network Calculus. In fact, existing work has used it in some performance analysis

problems. Unfortunately, the Pay-Burst-Only-Once property has never been proved in Real-

Time Calculus. There are even some results seeming to be against the Pay-Burst-Only-Once

property in Real-Time Calculus. As a result, it leaves an important open problem to find out

whether the Pay-Burst-Only-Once property holds in RTC. This thesis answers this problem

by proving that the property indeed holds.

Besides, this thesis improves global EDF scheduling by integrating analysis tech-

niques of Network Calculus and real-time scheduling theory. Different from most existing

analysis techniques analyzing sporadic tasks for global EDF, this thesis considers bursty

tasks which have more general arrival patterns. In detail, shapers are adopted to eliminate

burst in original system inputs and generate sporadic job sequences, and then the delay bound

of each task is calculated. To further improve the proposed approach, a heuristic algorithm

is designed to make as more tasks as possible to meet their deadlines by adjusting settings of

shapers.

All the above theoretical results are implemented in Real-Time Calculus Toolbox

and experiments show that the proposed methods and algorithms can lead to improvement

of precision and efficiency.
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CHAPTER 1

INTRODUCTION

1.1 Real-Time systems and analysis

Real-time systems widely exist in our daily life, e.g., avionics, automotive electronics, wire-

less communications. In a real-time system, the correctness of the system behavior depends

not only on the logical results of the computations, but also on the physical instant at which

these results are produced. When real-time systems have interactions with external entities,

e.g., triggered by the physical world and give response, they must react within a limited

length of time intervals, which are the timing requirements and constraints they must satisfy.

Violating the timing constraints may cause severe consequences even huge property damage

or loss of human life. For example, when crash happens, the airbag system must detect the

accidents and deploy the airbag in a timely manner, else passenger safety will be affected

adversely.

Satisfying the timing constraints of a real-time system is equally or even more impor-

tant than other aspects of performance requirements, thus developing techniques to determine

the whether timing constraints are satisfied deserves the most concern. The timing analysis

of real-time systems is never an easy job, and it becomes more difficult with distributed, par-

allel and heterogeneous designs, in which complex inputs, resource sharing, interferences

among tasks and different arbitration strategies bring significant challenges to the analysis

process. One possible solution is exhaustive testing. However, it is not applicable for com-

plex and large-scale systems due to infinite or large possible execution scenarios. Instead,

effective and efficient analysis techniques are strongly required.

An effective and efficient framework applicable to complex real-time systems must

satisfy the following requirements:
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(1) Correctness. This is the most fundamental requirement for an analysis framework.

A direct consequence of incorrect analysis is that timing constraints are not guaranteed to sat-

isfy, which may lead to operation failure, system crash and even more severe consequences

such as loss of human life. For example, if the response time of an airbag control system

is actually larger than the required threshold value, but is calculated to be smaller than that

after incorrect analysis, then when the system is put into use, it will be a potential threaten

and the safety of occupants will be severely affected when accident happens.

(2) Flexibility. Complex real-time systems are always dynamic, including network

dynamic, e.g., changing network topology, switching of computation or transmission node,

and input dynamic, e.g., changing users, applications and load. The analysis framework must

be flexible to deal with dynamic characteristics. If the structure of framework is relatively

fixed and difficult to modify, then the system framework needs to be rebuilt each time the

system changes, which is time-consuming and fallible. Efficient interfaces among different

modules should be maintained to implement the flexibility of system framework. For exam-

ple, if the outputs of one module are the inputs for another module, then the involved inputs

and outputs should be modeled in a unified manner, otherwise these two modules can not be

connected and the target networked systems can not be analyzed as a whole.

(3) Precision. Precise analysis eliminates pessimism and provides the closest de-

scription of system behavior. During the design stage, precision is the basis for theoretical

improvement such as fault detection and model optimization. Precise performance analysis

has also profound practical significance. For example, imprecise analysis results may lead

to deploying more processors than needed on chips, which not only causes resource waste

and increases production cost but increases temperature rise and accelerates the component

aging, damaging the benefits of both developers and users.

(4) Efficiency. The timing analysis must be at least conducted in acceptable time.

The shorter the analysis time is, the better it is for the design and refinement of the whole

system. For systems that require run-time analysis, the analysis efficiency is more critical to

guarantee the overall operation of the system.
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(5) Generality, which can be detailed in three aspects.

Inputs. First, various arrival patterns must be modeled. Since real-time systems in-

teract with varieties of external entities, the inputs are of different types and contain many

different arrival patterns. The model of inputs must possess sufficient expressiveness to deal

with this kind of variety. Further, uncertain and uncontrolled factors in physical worlds cause

the actual arrival patterns to be irregular and unpredictable, which requires the input model

to correctly describe the uncertainty and variation. Second, multiple inputs and their inner

relations should be considered and modeled. Thousands of entities may be involved with the

operation of a real-time system at one time, and the number of inputs is always more than

one, which must be considered in designing the input model of the analysis framework. Fur-

ther, inner correlations exist among multiple inputs and appropriate modeling of correlations

is required. For example, when a parallel task is executed on multiprocessors, the work-

load executed on each processor must confirm to the precedence constraints in the original

structure of the task. If this type of correlation is ignored, then the analysis results may be

incorrect.

Resources. In distributed and heterogeneous systems, several applications are de-

ployed on one processor and one application can execute on different processors. As a result,

different applications compete for and share resources, and the resource allocation no longer

fits into simple specific patterns such as TDMA. So the analysis framework must be general

enough to describe different complex allocation strategies and model the occupied resources

for each individual task and application.

Execution-time characteristics. In real-time systems, many different components are

designed and deployed to process the inputs, and the way in which inputs are processed by

these components varies. For example, how many resources are used to process one input

event, whether the event will be processed as soon as it arrives, or it will be processed until

some of its subsequent events arrive. It is impractical to design a specific framework for each

different module, and a general framework that can cover these features is needed.
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1.2 Why RTC?

The strong requirements for satisfying timing constraints in real-time systems generate in-

tense demands for precise and efficient timing analysis techniques. One possible method

for timing analysis is simulation. The main advantage of simulation-based techniques is the

large modeling scope, since various dynamic and complex interactions can be taken into

account. However, most simulation-based performance estimation methods suffer from in-

sufficient corner case coverage. As a result, formal analytic methods must be adopted to

precisely predict the timing performance of real-time systems.

Existing formal analytic methods are mainly developed in two directions: (1) model

checking and (2) real-time scheduling theory.

When adopting model checking to evaluate the performance of a real-time system,

automata-based models such as timed automata [5] and temporal logics [32, 60] are used to

the system behaviors, then exhaustive and automatic checking is conducted to check whether

this model meets a given specification (e.g., absence of deadlocks and similar critical states

that can cause the system to crash). Thanks to the strong expressiveness of automata-based

models, complex system behaviors and various properties can be modeled and checked.

However, this method suffers a lot from low efficiency, which is caused by its inherent high

computation complexity. As a result, model checking can only be applied in the analysis of

small-scale systems.

In real-time scheduling theory, system workload are described by task models of dif-

ferent abstraction levels, and dedicated techniques are developed to address a few specific

problems (e.g., bounding response time and detection of deadline miss). Most of the an-

alyzed task models are rather simple, such as the periodic/sporadic task models (A brief

introduction of real-time task models are in Chapter 2). The direct benefit of simple task

models is higher analysis efficiency. However, there are still some deficiencies that limit the

applications of real-time scheduling theory to the analysis of complex real-time systems.

(1) Insufficient expressiveness. Although most of the analysis targeting simple task

models is efficient, it pays. The expressiveness can only support the modeling of simple and
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regular system behaviors and many timing behaviors in real-time systems are too complex

to be characterized by these simple task models. For example, in the transmission of data

flows, it is common that some bits are blocked at one node due to hardware breakdown

or lack of bandwidth, and subsequent bits are accumulated at this node. When the node

resumes transmitting, these accumulated bits will be emitted simultaneously, which is called

’burst’. However, this extremely common phenomenon can hardly be modeled by all widely

used task models. Moreover, the task models considered for multiprocessor scheduling are

even more simple, and most of them are periodic and sporadic task models. Besides, it is

difficult for scheduling analysis techniques to be extended from simple to complex tasks.

Consequently, real-time scheduling analysis can not cope with complex system behaviors.

(2) Lack of interfaces. Most of the work in scheduling analysis focuses on how to cal-

culate the end-to-end delay under some specific scheduling strategies, and the timing behav-

iors of the output event sequence seem to be neglected and receive little attention. However,

the output event sequences are as equally important as the delay analysis in a networked

system. Only when information about the output sequences is obtained can it be possible

to develop interfaces to connect different modules. Take multiprocessor scheduling as an

example, where the execution of input events is not limited to one processor and the inter-

change of information among processors accounts for a lot in system performance. Lack of

information about the output sequences makes it hard to establish relationships between one

processing node and another, thus bringing difficulty to model networked structures.

(3) Lack of compatibility. In real-time scheduling analysis, the analysis techniques

under various scheduling strategies greatly differentiate from each other. It is hard to es-

tablish a unified framework compatible with all kinds of scenarios and the hardiness signifi-

cantly grows with the complexity of systems. As a simple example, one method to decide the

schedulability on uniprocessors under fixed-priority strategy is to check the relative relation

between the response time and relative deadline of each task, while the schedulability under

Earliest Deadline First (EDF) scheduling is decided by comparing the total utilization of the

task sets with 1. It is difficult to design a schedulability test applicable to both these two

scheduling strategies.
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Real-Time Calculus (RTC) can be viewed as a large extension along the line of real-

time scheduling theory to analyze distributed systems. RTC uses variability characterization

curves to model workload and resource, and analyzes workload flows through a network

of computation and communication resources to derive performance characteristics of the

system based on max plus/min plus algebra.

RTC has relatively high expressiveness. First, input workload and resources are mod-

eled with both upper and lower curves, which supports tighter computation of the output

curves and describes the worst-case and best-case of system performance. Any kind of work-

load and resources can be modeled in the RTC framework since there are no limitations to

the shapes of upper and lower curves. Moreover, the input models in RTC are generaliza-

tion of real-time task models. As an example, the workload generated by a periodic task

can be modeled as a regular stair-based curve, and that of a DRT task can also be modeled

with a little modification of curve shapes [42]. Second, RTC supports modeling different

execution-time characteristics. The relations between the inputs and outputs at specific pro-

cessing components are modeled as abstract components, and calculations for outputs of

these abstract components are developed based on the semantics of related concrete compo-

nents. As a direct consequence of introducing abstract components, inputs and outputs of

one component are of unified formats, which greatly facilitate the network analysis. Fur-

ther, RTC allows to model arbitrary connection of computation/communication components,

which makes it easy to adapt to dynamic networks.

On the other hand, the analysis with RTC is relatively efficient compared with model

checking method, and much work has been conducted to improve its analysis efficiency.

For example, finitary RTC (component-based and operator-based) has been proposed to

shorten the analyzed interval length for obtaining output curves in abstract components,

which greatly accelerate the analysis of RTC network.

Due to these advantages mentioned above, RTC has drawn considerable attention

from both academia and industry in recent years, and has been successfully applied to solve

many realistic problems. As an example, RTC is applied for modeling control systems in au-
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tomotive cars, where arrival curves model various input workload such as the sampling data

through I/O interfaces and service curves model the available resource such as the computa-

tion resource on ECUs and communication resource on buses. The composition of abstract

components models the workload processing behavior on different modules (e.g., ECUs,

bus, FPGA), the allocation of resources and processing order of workload. The analysis

of the modeled systems is based on max/min-plus algebra. The upper and lower bound of

processed events and unused resources in different lengths of time intervals are obtained

by calculating the output curves at each abstract component, and the end-to-end delay of

the complete system is equivalent to that of abstract components corresponding to modeled

modules.

1.3 Problems of existing RTC

RTC has been widely studied and applied since it was proposed. However, it is still not

perfect and there is still space for further improvement.

(1) The theory foundation of RTC analysis framework is not complete. Since NC is

the root of RTC, people sometimes directly borrow properties from NC and apply them in

RTC framework without proof, taking for granted that these properties will certainly hold. As

an example, the Pay-Burst-Only-Once, a basic property for obtaining tighter delay bounds in

networked systems, has been applied in RTC without direct proof of its correctness. More-

over, there is some work seemingly against the correctness of Pay-Burst-Only-Once in RTC.

As a result, it is essential and urgent to answer the question whether applying Pay-Burst-

Only-Once in RTC to obtain tighter delay bounds is correct. If the answer is ’no’, then the

delay bound analysis of real-time systems will be greatly influenced.

(2) The analysis results are pessimistic. In RTC, calculation for outputs of abstract

components is artificially designed based on the processing behaviors in real applications and

it accounts for a lot in the overall performance analysis. However, after comparing the actual

execution sequence with the calculated results, it is found that calculated outputs of some

basic abstract components are not precise. The pessimism not only influences the analysis at
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its direct successor component, but gradually spreads to all of the connected components in

the network, and the extent of pessimism accumulates, degrading the analysis precision of

the whole network.

(3) The application of RTC and its integration with other analysis techniques are lim-

ited. Benefiting from its expressiveness and analysis efficiency, RTC analysis framework

has the potential to be applied to many different networked systems such as multi-processor

systems on chip (MPSoC), Network on Chips (NoC) and Time-Sensitive Networking (TSN).

However, most existing work of RTC mainly focuses on uniprocessors and techniques that

support the extension of RTC have hardly been developed. On the other hand, although RTC

is closely related to real-time scheduling theory, almost no work has completed the integra-

tion of these two frameworks, missing the potential advantages brought by the integration.

1.4 Contributions

Based on deep research about RTC basics and its existing problems, this thesis revisits RTC,

improves the analysis of fundamental abstract components and proves the correctness of

basic properties, thus improving the overall timing analysis of real-time systems under the

RTC framework. In detail, this thesis completes the following work:

(1) Improving the analysis of GPC (Greedy Processing Component), which is a fun-

damental abstract component in RTC and mainly applied for modeling priority-based re-

source arbitration. The improvement involves two aspects:

First, this thesis revises the original proof of calculating output curves in GPC. Al-

though the calculation of output curves of GPC has been widely used, its proof for calculation

is not as elegant as supposed. Actually, the deduction of relations between two important pa-

rameters is not fully explained, which leads to misunderstanding and even doubt about the

correctness of the calculation. This thesis complements the missing parts and verifies that

the existing calculations are correct.

Second, this thesis proposes two methods to derive more precise output arrival curves
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for GPC. In the first method, a concrete component which has the same semantics as the con-

crete model corresponding to GPC is developed. Then it is proved which parts of resources

are used for processing events while others are not used. Then this thesis proposes how to

improve the analysis preciseness of output curves with the newly developed model: utilize

the remaining service curve to refine the information about how much resource can be actu-

ally consumed, and exclude the unused resource when computing the output arrival curves.

In the second method, the main idea is to explore the connections between output arrival

curves and the number of accumulated events.

(2) Improving the analysis of AND connector, another widely used abstract com-

ponent for synchronization operations. First, this thesis identifies a problem in the existing

analysis of AND connector that may lead to negative values in the output curves, and presents

corrections to the problem. Second, AND connector is generalized to support synchroniza-

tion of more than two input event streams. While real-time systems generally involve several

inputs for synchronization, the original AND connector can only deal with two inputs . A

straightforward way for the generalization is to model a multi-input AND as several dual-

input AND connectors cascaded together. However, this straightforward generalization is

both imprecise and inefficient. This thesis presents a more elegant way to generalize AND

to multiple inputs, which outperforms the straightforward generalization approach in terms

of both precision and efficiency.

(3) Proving the Pay-Burst-Only-Once property in RTC. Pay-Burst-Only-Once prop-

erty, originated in NC, is an extremely fundamental property and mainly used for the delay

bound analysis for a network consisting of many nodes. Since RTC builds on NC and inherits

many properties from it, people take for granted that the Pay-Burst-Only-Once property also

holds in RTC, and some work based on the RTC framework has applied it for delay bound

analysis. However, there has been no work directly proving the correctness of Pay-Burst-

Only-Once in RTC. Moreover, there exists work proving that the concatenation property,

which is the basis of Pay-Burst-Only-Once property in Network Calculus, does not hold in

RTC. Therefore, it leaves an important open problem to find out whether the Pay-Burst-Only-

Once property holds in RTC. This thesis proves that Pay-Burst-Only-Once does hold in RTC
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by establishing the numerical relations between resource models in RTC and NC. Moreover,

this thesis proposes how to calculate the outputs of a network system in a once-for-all way,

rather than calculating it node by node.

Besides, this thesis extends NC, the root of RTC, to the analysis of multiprocessor

scheduling. In detail, this thesis proposes a new approach to calculate delay bound for a

multiprocessor system with bursty tasks under GEDF using shapers. Bursty inputs are mod-

eled as bursty tasks and shapers are deployed for input bursty tasks. Once job sequences

generated by bursty tasks enter the system, they first go through corresponding shapers, af-

ter which the behaviors of these jobs conform to sporadic patterns. Then these output jobs

of shapers go into the scheduler and complete execution. With shapers, existing analysis

techniques analyzing sporadic tasks can be applied, and the delay bound of each task is cal-

culated. To further improve the proposed approach, this thesis designs a heuristic algorithm

which can increase the number of tasks meeting their deadlines in a task set by adjusting

settings of shapers.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 briefly introduces representative re-

sults for scheduling analysis, including real-time scheduling theory and compositional analy-

sis approaches. Chapter 3 reviews basic knowledge about NC and RTC. The improvement of

fundamental components, GPC and AND connector, are shown in Chapter 4 and Chapter 5

respectively. In Chapter 6, the Pay-Burst-Only-Once property is proved to hold in RTC. The

integration of analysis techniques in NC and classical scheduling analysis on multiproces-

sors is considered in Chapter 7. Chapter 8 concludes with a summary of the work presented

in this thesis and a discussion of future work.
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CHAPTER 2

RELATED WORK

Satisfying time constraints is of great importance in real-time systems, which greatly influ-

ences the overall system performance. To provide such guarantees, task models and precise

analysis techniques are required to check the timing correctness of the system. Over the

years, many different real-time task models and frameworks have been developed, which

describe and analyze the timing behaviors of systems in different abstraction levels. This

chapter first introduces real-time scheduling theory, including representative task models

and the scheduling analysis methods, and then present compositional analysis approaches.

2.1 Real-Time scheduling theory

In real-time scheduling theory, system workload are modeled as simple task sets and speci-

fied techniques are developed to evaluate timing performance such as checking the schedu-

lability and calculating response time. In this section, real-time task models and scheduling

analysis methods are introduced.

2.1.1 Real-Time task models

Over the years, a large number of real-time task models have been developed to model dif-

ferent workload release patterns. Some model is as simple as a periodic pattern characterized

by two parameters, while some of them are as expressive as Turing machine [75]. In general,

the simpler the task model is, the easier to analyze it. This subsection briefly reviews some

representative real-time task models, and only focuses on their expressiveness aspect.
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Periodic/Sporadic task models. The periodic task model was first proposed by Liu

and Layland [58], which describes the most basic timing behaviors of tasks in real-time

systems [56, 57]. A released task generates an infinite sequence of jobs. A periodic task is

characterized by worst-case execution time (WCET) C and period T . The first job of a task

may be released at any time, and each subsequent job is released with a fixed separation time

T from its predecessor job. Each job requires to execute for at most C time units and all jobs

have the same WCET. Each task has a deadline denoting the amount of time within which

each job should complete execution after its release. For a periodic task, its deadline equals

its period. Since a periodic task is sequential, its jobs may not execute on multiple processors

at the same time, i.e., parallelism is forbidden. The timing constraints of a periodic task are

relaxed in sporadic task models [63], where the inter-release time between two consecutive

jobs can be larger than its period and its deadline can be smaller than, larger than or equal

to the period. If the deadline is equal to (smaller than) the period, the task is called implicit

(explicit), else it is called an arbitrary task. The utilization of a task is the ratio between its

WCET and period, and the utilization of a task set is the sum of utilizations of all its tasks.

Although the periodic/sporadic task models can capture the basic properties of real-

time systems, their expressiveness is too limited to characterize the complex behaviors in real

applications. To improve the expressiveness, the periodic/sporadic task models are further

extended to graph-based real-time task models.

Graph-based real-time task models. One of the representative graph-based real-time

task models is the Multiframe (MF) task model [64], which extends the periodic task model

by modeling the execution of a sequence of jobs with different WCET. A further exten-

sion, the generalized multiframe (GMF) task model [10], not only allows tasks to have

different WCETs, but different relative deadlines and minimum inter-released separations

between two consecutive jobs. The release job sequence can be expressed by a set of triples

(ti, ci, vi), where ti is the release time of the i − th job vi and ci is its WCET. The GMF

task model can be expressed by a directed loop graph, where each vertex denotes a job

characterized by WCET and deadline, and each edge shows the minimum inter-release time

between two jobs. All jobs are connected into a cycle. An example of a GMF task is shown
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in Figure 2.1. The task releases 4 jobs of different WCET, denoted by v0, v1, v2, v3, and

the execution order of these 4 jobs is shown by the arrow directions of the edges. Sup-

pose the task starts execution with v0, then one of the possible released job sequences

is:{(0, 2, v0), (3, 3, v1), (7, 2, v2), (12, 2, v3), (16, 2, v0), (19, 3, v1)}.

Figure 2.1: An example of GMF task.

A more expressive task model is the digraph real-time (DRT) task model [62, 76–

80]. A DRT task is described by a directed graph, where the vertices denote jobs and the

edges denote the execution order. There are no further restrictions to limit the expres-

siveness of the task model and any directed graph is applicable. Any vertex can be the

first one to be executed. An example of DRT task and one of its possible job sequence

{(0, 3, v1), (6, 5, v1), (19, 5, v2)} are shown in Figure 2.2.

Parallel task models. Apart from the above task models for sequential workload,

parallel task models are also developed for characterizing parallelism on multiprocessors

(e.g. Gang task model [14, 37], parallel synchronous task model [70]), among which DAG

parallel task model is one of the most widely analyzed and applied [20, 46, 47, 61, 71].

A DAG parallel task is characterized with (
−→
C ,D, T ), where D and T are relative

deadlines and minimum inter-release separations as before.
−→
C = {C1, C2, ..., Ci} records

the WCETs of each thread of the task. The DAG parallel task has an internal structure mod-

Figure 2.2: An example of DRT task.
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Figure 2.3: An example of DAG task.

eled by a directed acyclic graph, describing the precedence relationships among the threads.

Each node represents a thread with worst-case execution time Ci and each edge represents

the execution order of the two nodes it connects. A node is eligible for execution only when

all its predecessors have completed execution. An example of the DAG parallel task model

executed on two processors P1 and P2 is shown in Figure 2.3. v2 and v3 can execute simul-

taneously if v1 completes and v4 can start execution only when all of its predecessor nodes

(v2 and v3) complete.

Although the DRT task model and DAG parallel task model are both modeled with

directed graphs, they differ from each other in three aspects. First, loops are allowed in DRT

task model, but not applicable in the DAG parallel task model. Second, in a DAG parallel

task, all the successors of a vertex will be released and executed after the vertex is completed,

while in a DRT task, only one of its successors will be executed. Third, the edges in DRT

denote the minimum inter-release time of the two vertices connected, while the edges in a

DAG task model only denote the relative execution order.

2.1.2 Real-Time scheduling analysis

Given a set of input workload and system resources, a scheduling algorithm must be decided,

which specifies when each job can be executed and where it is executed. Scheduling algo-

rithms are designed based on the timing constraints needed to satisfy. Before discussing the

exact scheduling algorithms and related analysis techniques, we first introduce some termi-

nologies for easier understanding.

Feasible: A task set is said to be feasible if there exists some way of scheduling and
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meeting all the deadlines of tasks in the task set.

Schedulable: A task is said to be schedulable on a hardware platform by some algo-

rithm if all jobs can meet their deadlines. A task set is said to be schedulable if all its tasks

are schedulable.

Optimal: A scheduling algorithm is said to be optimal if it can correctly schedule

every feasible task set for every hardware platform.

In the following, we first introduce scheduling analysis techniques on uniprocessors1

and then consider multiprocessors.

Analysis of uniprocessor scheduling

We classify the scheduling algorithms into two types and introduce scheduling anal-

ysis techniques respectively.

Static priority scheduling algorithms. Tasks are executed in an order that is decided

a priori, for example, tasks with shorter periods are assigned higher priorities. All jobs

generated by higher-priority tasks have precedence over jobs generated by lower-priority

tasks.

A simple feasibility test for implicit deadline tasks was proposed in [58]: a task set is

feasible if and only if the total utilization of the task set is no larger than 1. It also proved that

assigning higher priorities to tasks with shorter periods generates an optimal algorithm for

implicit deadline tasks. Further, a sufficient schedulability test was given which claims that a

task set with n tasks is schedulable under rate-monotonic scheduling ifU(τ) ≤ n×(21/n−1).

For sporadic task sets with explicit deadlines, the concept ’critical instant’ was pro-

posed, which shows that the scenario where all tasks release jobs at the same time gener-

ates the worst-case response time for the analyzed task [7]. It is proved that the worst-case

response time Ri for task τi is the smallest positive solution of the following recurrence

1We only introduce the analysis techniques for periodic and sporadic tasks since they are more related to

our work.
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relation,

R = Ci +
∑
j<i

dR
Pj
e × Cj

where Pj is smaller than Pi and
∑

j<id
R
Pj
e × Cj denotes the interference from a higher-

priority task.

Dynamic priority scheduling algorithms. The priorities of tasks can not be decided

until execution and the priorities of jobs generated by the same tasks may change during

execution. For example, in Earliest Deadline First (EDF) scheduling, the job with shorter

absolute deadline has higher priority.

EDF is proved to be optimal for many workload models on uniprocessors. For the

scheduling analysis of EDF, demand-bound function was proposed in [11]. The demand-

bound function describes the accumulated worst-case execution time of jobs whose release

times and deadlines are covered by the considered time interval. A task set is feasible if

and only if for any time interval, the value of the accumulated workload does not exceed the

length of time interval. Specially for sporadic tasks, a closed-form expression was derived

based on the observation that the demand-bound function of periodic tasks are regular step-

functions.

Analysis of multiprocessor scheduling

To deal with the increasing demands for system performance, the developers of real-

time embedded systems have gradually switched from concentrating on the miniaturization

required to increase processor clock speeds, to using multiprocessor platforms. Conse-

quently, the scheduling analysis on multiprocessors has drawn more attention. The schedul-

ing analysis on multiprocessors is not a simple extension of uniprocessor scenarios, and

the extra dimension of different processors brings much challenges to it. Compared with

scheduling analysis on uniprocessors which has already been reasonably mature, the schedul-

ing analysis on multiprocessors has a late start and there is still great scope to explore, which

is reflected by the fact that most scheduling analysis on multiprocessors considers simple

task models such as sporadic tasks.
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(a) Illustration for partitioned scheduling. (b) Illustration for global scheduling.

Figure 2.4: Illustration for partitioned and global scheduling.

The scheduling algorithms on multiprocessors fall into two types: partitioned schedul-

ing and global scheduling.

Partitioned scheduling. Under partitioned scheduling, tasks are allocated to the spe-

cific processor on which it can execute and no migration is permitted. Each processor acts

as a uniprocessor for tasks allocated to it and a separate local ready queue is maintained for

storing its ready jobs.The scheduling strategies on different processors can be same or differ-

ent. An appropriate partitioning algorithm should ensure that for each processor the sum of

the utilizations of tasks assigned to it does not exceed the utilization bound of its scheduler.

Scheduling under this model is shown in Figure 2.4-(a).

Global scheduling. Under global scheduling, tasks are permitted to migrate from

one processor to another and a global ready queue is used for storing ready jobs. At any

instant, at most m ready jobs with the highest priority (in the global queue) are scheduled to

be executed on the m processors. There are no restrictions about the processors a task may

be executed on. Different jobs of a task can be executed on different processors, and a given

job can be executed on different processors at different times (Note that a given job can only

be executed on one processor at each time.) Figure 2.4-(b) illustrates global scheduling.

Compared with partitioned scheduling, global scheduling has the following advan-

tages [33]:

(1) With global scheduling, there are typically fewer context switches and preemp-
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tions are less likely to occur since a task will only be preempted when there are no processors

idle [6].

(2) If a task executes for less than its worst-case execution time, then the remaining

computation resources will be utilized by all other tasks, while with partitioned scheduling,

only tasks allocated to the same processor can use the remaining computation resources.

(3) It is less possible for a task to overrun its worst-case execution time budget on all

processors than on one single processor. As a result, global scheduling is likely to suffer less

from deadline miss than partitioned scheduling.

(4) Since task allocation algorithms are not required when the set of tasks changes,

global scheduling is more appropriate for open and dynamic systems.

In the following, we introduce some work for scheduling analysis on multiprocessors

in two directions: schedulabiliy test and response time analysis.

Schedulability test. [8] developed a general strategy for determining the schedula-

bility of sporadic task sets. The outline of this basic strategy is as follows. Suppose that

a task τ is not schedulable under global EDF, and there exists one job sequence of τ on

which more than one job misses its deadline. Suppose that the time instant when the first

job misses its deadline is td, then the analysis is conducted over the interval [t0, td], where t0

is the earliest time instant prior to this job’s arrival time (Some conditions must be satisfied

for this time instant, for detail, refer to [9]). Then the upper bound on the amount of work

needed to be executed over the time interval [t0, td] is computed, and by setting this bound

to be large enough to leave less than a job’s worst-case execution time in its scheduling win-

dow, an unschedulability condition is obtained. There are two types of jobs whose workload

needs to be executed during the interval [t0, td]: jobs whose arrival time are in the interval,

and one additional job that arrives before t0 but has not completed execution by t0, which is

called a ’carry-in’ job. It is proved that not all jobs whose scheduling windows cover t0 have

’carry-in’ workload in [t0, td]. Actually, some jobs have completed their execution before t0

although t0 is included in its scheduling window.
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The analysis in [8] suffers from the disadvantage that it assumes that every task in

the considered system has ’carry-in’ workload. This assumption brings pessimism when the

number of tasks is much larger than the number of processors. This pessimism is improved

in [12], which differing from [8] is a generalization of the known exact EDF-schedulability

test on uniprocessors.

[12] derived a sufficient schedulability test for sporadic task sets with constrained

deadlines scheduled under global EDF. This test adopts the same basic analysis framework

as [8] but optimizes the analysis by considering t0 as some point when at least one of the

m processors is idle, which is an earlier time instant than considered in [8] , thus limiting

the number of tasks with ’carry-in’ workload to m − 1. Similar as [8] , the analysis in

[12] considers each task τk separately, and ensures that τk does not miss any deadline. The

maximum workload to be executed in [t0, td] is calculated by considering both arrived jobs

and ’carry-in’ jobs, and the conditions for schedulability test are obtained by ensuring that

the length of time interval when each job of all tasks can execute is no less than its worst-case

execution time.

While [8] and [12] analyze simple task patterns as sporadic tasks, [55] combines the

analysis framework with RTC and focuses on more general workload and resources patterns.

A schedulability test was proposed in [55] to check whether the given response-time bounds

are satisfied. The conditions for the schedulability test follow the similar idea as [8] and

[12]: it first computes the minimum amount of resources provided by all processors over the

analyzed interval, and then gets the finite upper bound on the computing demand and the

’carry-in’ workload. Finally, a sufficient test is obtained by checking whether for each task

the upper bound of workload does not exceed the minimum offered resources.

Delay bound analysis. Another direction for evaluating the timing performance on

multiprocessors is to compute the delay bound, which describes the maximum length of

duration from task activation to completion.

An innovative technique was introduced in [34] for determining delay bound for

global EDF, which has been widely applied to different scheduling algorithms, workload
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and processor models. The bound derived in [34] is as follows:

For each task τi, each job generated by τi is guaranteed to complete no later than

Ci +
Csum − Cmin
m− Usum

+Di

, where Csum and Usum denote the sum of the m− 1 largest WCET’s and utilizations respec-

tively, Di is the job’s relative deadline and Cmin is the smallest WCET of any task.

However, the delay bound in [34] suffers from pessimism since it calculates one

common value for all tasks (Csum−Cmin

m−Usum
). The work was improved in [38], where the above

mentioned expression is different for each task, thus reducing the pessimism. Further ex-

tension was proposed in [54], where the analysis is more general considering arbitrary job

priorities, capacity restrictions on certain processors and non-preemptive regions.

More general analysis with the similar idea as [34] was presented in [55], where

closed-form expressions of response time bounds are proposed for systems with general

inputs.

There are also other work on scheduling analysis on multiprocessors, but they are

less related to our work thus omitted. For further details, please refer to [33] and [36].

2.2 Compositional analysis approaches

The consistently increasing complexity of real-time systems raises demands for composi-

tional analysis techniques, where timing analysis results of local components are composed

to evaluate the timing performance of the overall system. The process of compositional anal-

ysis includes three major parts: implementing local analysis, deriving outputs, and connect-

ing different components. This section introduces two representative compositional analysis

approaches, SymTA/S and Real-Time Calculus.

20



2.2.1 The SymTA/S approach

SymTA/S (Symbolic Timing Analysis for Systems) is a system level analysis framework

[2, 44] which supports compositional analysis. SymTA/S can be viewed as a good integra-

tion of various real-time scheduling analysis techniques. For each component, the analysis

techniques based on the busy window technique [53] are adopted in SymTA/S. As a result,

many scheduling analysis techniques are applicable.

The connections of different components are implemented with standard event mod-

els and their transformation [68]. First, standard event models are proposed to provide a com-

paratively general model to describe the timings of both input and output event sequences

of components. Three parameters, period P , jitter J and minimum inter-release time D are

adopted in standard event models. The most simple model is described by period P , corre-

sponding to the event sequence where successive arrive with an separation time of J . Then

the model is extended by introducing jitter, which describes the irregular release of events.

Jitter is further limited by D, which constrains the maximum number of released events in

any interval. In total, 6 different event models are proposed.

Based on standard event models, event model interfaces (EMIFs) and event adapta-

tion function (EAF) are developed to transform event streams to a different event model [69].

For two connected components where the output event sequences of one component are

the inputs for the other component, the event models corresponding to the output event se-

quences are transformed to another one, which is consistent with the requirements for inputs

of the latter component. During the transformation, pessimism may be introduced but the

correctness of analysis results is guaranteed. The mechanism of event model transformation

can be illustrated by the following example. Suppose a periodic event sequence is scheduled

under fixed-priority strategy on a sequence of processors, and all processors require periodic

event sequences as inputs for analysis. During the scheduling process on the first scheduler,

the original regular arrival patterns are interrupted, and jitter occurs in the output event se-

quence. As a result, the output event sequence no longer fits into the original event model

and it does not satisfy the input requirements of the second processor. In this case, the event
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transformation functions are adopted to transform the irregular event sequence with jitter to

another periodic sequence, and then this new periodic sequence is used as input of the second

processor.

SymTA/S also supports synchronization of multi-inputs, which is implemented by

AND-activator [45], and the calculation for output event sequences of AND-activator is de-

veloped.

2.2.2 Real-Time Calculus

RTC originates from NC and inherits many concepts and properties from it. It is necessary

to present related work in NC as a foundation for RTC.

Network Calculus

NC is a theory analyzing queuing systems found in computer networks, whose focus is to

provide performance guarantees [21, 59]. NC models traffic and service with arrival and

service curves respectively, and performance bounds are derived with min-plus and max-plus

algebra. NC has been widely and successfully used for modeling and analysis in networked

systems such as in aeronautics industry for AFDX [41].

In the development of NC, two branches have appeared: algebraic NC [17, 19, 49],

which derives delay bound based on the composition of operators such as min-plus and max-

plus algebra [25], and optimization-based NC, which derives a linear program formulation

whose solution bounds the end-to-end delay [16]. This thesis focuses on algebraic NC (called

NC for short).

In NC, workload is modeled as arrival curves, which characterizes the upper bound of

arrived bits in any time interval of certain length. Compared with the standard event models

in SymTA/S, NC can model much more general workload patterns. The service guarantee

in NC is described with three types of service curve: minimum service curve, strict service

curve and maximum service curve. The definitions and applications of these three different
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types of service curves are different and the comparison is introduced in [22–24].

The traffic is regulated by greedy shaper, which is a fundamental component in NC.

Each greedy shaper is characterized with a shaping curve. When an arrived bit enters a

greedy shaper, it emits the bit only when doing this does not violate the time constraints

specified by the shaping curve, otherwise the bit will be buffered until the time constraints

are satisfied. Similar functions are realized with EMIFs and EAF in SymTA/S, while the

greedy shaper supports more general types of output sequences. Greedy shaper has been

adopted to improve system performance in real-time systems. In [67], shapers are used to

control the traffic of higher-priority tasks so as to reduce interference to lower-priority ones

under fixed-priority scheduling on uniprocessors, thus improving the system schedulability.

Shapers are also used in EDF scheduling [48], where arrival patterns are changed to reduce

peak temperature of chips. However, both of these two work assumes uniprocessors and the

analysis on multiprocessors is not considered.

For a network consisting of many nodes, the concatenation property plays an impor-

tant role in deriving tighter delay bound. The concatenation property proves how to derive

the minimum service curve provided for the system based on the minimum service curve

for each single node. The first well-known application of the concatenation property is the

Pay-Burst-Only-Once property, which avoids considering the analyzed flow’s burst at each

node it traverses. Another application is the Pay-Multiplexing-Only-Once property [18, 74],

which extends the Pay-Burst-Only-Once property to cross-flows and convolves as much ser-

vice curves as possible before subtracting the cross traffic. The influence of the concatenation

property is further explored in [73], which stated that concatenation brings pessimism to de-

lay bound under arbitrary multiplexing. The reason is that the convolution operation is not

sensitive to the operation order so that the topological information is ignored, making the

burst paid at nodes that the flow does not even traverse.
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Real-Time Calculus

RTC originates from NC and is also a queuing theory for performance analysis of real-time

networked embedded systems [28, 81].

Compared with NC, RTC supports more precise characterization of real-time sys-

tems. First, RTC models input workload and resources with both upper and lower curves,

while NC uses only upper curves for workload and lower curves for resources2. Second,

RTC supports the description of various execution-time characteristics and models them as

abstract components, which is less systematic in NC3. Moreover, both RTC and NC calcu-

late closed-form analytical bounds for output curves based on max/min plus algebra, which

provides a comparatively higher analysis efficiency compared with state-based modeling and

analysis techniques such as model checking [29, 40]. However, NC only pays attention to

the calculation of completed workload, but RTC considers both completed workload and

remaining resources.

Based on the general input workload and closed-form analytical results, RTC sup-

ports compositional analysis, where local analysis is performed fo each component to derive

the output event/resource models and afterwards the calculated output event models are prop-

agated to the subsequent components. For the performance analysis of networked systems

in RTC, the Pay-Burst-Only-Once property has been adopted to derive tighter delay bound,

which is first proposed in [82]. Then it is used in [50] for the delay bound calculation un-

der operator-finitary RTC, and also in [31] to minimize the energy consumption for pipelined

multiprocessor embedded systems. However, none of these includes the proof of correctness.

There have been previous efforts to improve the analysis accuracy of the RTC theory.

The first direction models the system using a state-based model, such as timed automata [3]

or event count automata [29], which can then be analyzed using standard verification tech-

niques. These approaches can provide tight bounds; however, as is with verification, they

2Here lower curves mean minimum service curve.
3Some abstract components in RTC are extension of counterparts in NC, such as greedy shaper [83].
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suffer from the state explosion problem. To solve this efficiency issue, prior work has devel-

oped interfacing techniques [52,66] that combine RTC with state-based approaches. Beyond

state-based approaches, the trajectorial approach has been developed [13] to bound the end-

to-end analysis of distributed systems. This approach gives better accuracy than RTC does,

but its fixed point computation is also much more expensive than RTC. Within the RTC

context, Bouillard [26, 27] has developed a tighter analysis for blind multiplexing and FIFO

networks using linear programming. This thesis focuses on improving the output bound

of a single component (GPC and multi-input AND), and thus it is orthogonal to the work

in [26,27]. Moy and Altisen [4,65] identified the causality problem in the arrival curves and

its solutions. The key insight is that interchanging the information between the upper and

lower bounds in the arrival curve may exclude invalid approximation areas. Part of work

about GPC in this thesis on a high level shares some similarity idea with their work, but

explores the interaction between the arrival and service curves. A hybrid framework was

proposed in [51] for analyzing real- time embedded systems combining RTC and Timed Au-

tomata. In principle, the timed automata component can be used to model synchronization

operations. However, this approach is still limited by the low efficiency for model-checking

the timed automata, although the state space has already been significantly reduced compar-

ing with modeling the whole system with a timed automata network.
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CHAPTER 3

PRELIMINARIES

This chapter briefly introduces basic background knowledge in NC, RTC and the system

model for global EDF scheduling.

3.1 Basics in NC

NC is a theory analyzing queuing systems found in computer networks, whose focus is to

provide performance guarantees [21, 59]. NC models traffic and service with arrival and

service curves respectively, and performance bounds are derived with min-plus and max-plus

algebra. NC has been widely and successfully used for modeling and analysis in networked

systems such as in aeronautics industry for AFDX [41].

3.1.1 Curves in NC

In NC, the accumulated number of input bits on a flow from time 0 to t is denoted by input

function R(t), which by definition is wide-sense increasing. Correspondingly, the number

of output bits during the same interval is denoted by output function R∗(t). The limitation

of bits is denoted by arrival curve, which describes an upper constraint of the flow.

Definition 3.1.1 (Arrival Curve in NC). Assume the input function of a flow is R(t), then the

flow has an arrival curve αU iff

∀s ≤ t, R(t)−R(s) ≤ αU(t− s)
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. which is equivalent to

R ≤ R⊗ αU

. where (f ⊗ g)(∆) = inf
0≤λ≤∆

{f(∆− λ) + g(λ)}.

Figure 3.1 shows an input flow, its corresponding input function (blue full line) and

arrival curve (black full line). The bits which should have been emitted at time 0 and 5

(shown with dashed up arrows) experience jitter of 10 and 5 respectively. As a result, three

bits are emitted simultaneously at 10.

Figure 3.1: An input flow and corresponding R(t) and αU .

For each arrival curve αU , there exists at least a pair of (η, Z) which satisfies:

αU(∆) ≤ η ∗∆ + Z for all ∆ ≥ 0 (3.1)

, where η > 0 and Z ≥ 0.

In the remaining part of paper, set η = lim∆→+∞
αU (∆)

∆
, which is the minimum value

of η that satisfies formula (3.1). For example, in Figure 3.1, the arrival curve is αU(∆) =

d∆+10
5
e, corresponding to α(0+) = 3. The smallest η satisfying formula (3.1) is 1

5
, and with

η = 1
5

the smallest Z satisfying (3.1) is 3, that is, y = ∆
5

+ 3 is the closest upper bound of

αU(∆), which is shown by the dashed black line.
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While arrival curve constrains the input flows, service curve describes the service

guarantees provided to these flows by network nodes. There are three types of service curve

in NC: minimum service curve, strict service curve, and maximum service curve.

Definition 3.1.2 (Minimum Service Curve). The network node offers a minimum service

curve βmin to a flow with input function R(t) and output function R∗(t) iff

R∗ ≥ R⊗ βmin

The process of deciding the minimum service curve is different depending on whether

the resource provided to the task can be specified. When the amount of resource a task

occupies can be specified, the minimum service curve is derived by calculating the minimum

number of execution units available over any time interval of length ∆. When it is hard to

find out the exact amount of resource offered to each task such as in EDF scheduling, the

minimum service curve is derived based on the delay bound of each task when scheduled in

the system.

Corollary 1. [21] Suppose the delay bound experienced by a task when scheduled in a

system is DLY , then the system provides a minimum service curve βmin(∆) to the task

where

βmin(∆) = δDLY (∆) =


0, 0 ≤ ∆ ≤ DLY

+∞, ∆ > DLY

δDLY is called the ’impulse function’, and it has the property that for any wide-sense

increasing function θ(t) defined with t ≥ 0,

(θ ⊗ δDLY )(t) =

{
θ(t−DLY ), t ≥ DLY

θ(0), otherwise

Definition 3.1.3 (Strict Service Curve). The network node offers a strict service curve βstrict

to a flow with output function R∗(t) iff during any backlogged period from s to t, it holds

R∗(t)−R∗(s) ≥ βstrict(t− s),
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Definition 3.1.4 (Maximum Service Curve). The network node offers a maximum service

curve βmax to a flow with input function R(t) and output function R∗(t) iff it holds

R∗ ≤ R⊗ βmax

Next introduce how to obtain performance bounds in NC.

Assume that a flow with input function R(t), output function R∗(t), arrival curve αU ,

traverses a node that offers a minimum service curve βmin and a maximum service curve

βmax. The virtual delay d(t) for all t satisfies:

d(t) = inf{τ ≥ 0 : R(t) ≤ R∗(t+ τ)} ≤ H(αU , βmin)

the backlog b(t) for all t satisfies:

b(t) = R(t)−R∗(t) ≤ V (αU , βmin)

where

H(f, g) = sup
s≥0
{inf{τ ≥ 0 : f(s) ≤ g(s+ τ)}}

V (f, g) = sup
s≥0
{f(s)− g(s)}

The output flow is constrained by output arrival curve

α′U = (αU ⊗ βmax)� βmin

or

α′U = αU � βmin(when βmax is unknown)

where (f � g)(∆) = sup
λ≥0
{f(∆ + λ)− g(λ)}.

3.1.2 Shapers

A greedy shaper S processes input flows and forces its output flows to conform to some time

constraints which generally set the minimum separation time between two consecutive bits.
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Figure 3.2: The input flow and output flow of a shaper.

A shaper works as follows: when a bit arrives at a shaper, the shaper first checks whether

outputting the bit is consistent with the supposed time constraint. If so, the bit will leave

the shaper immediately. Otherwise, the shaper will buffer the bit and output it as soon as

outputting the bit satisfies the constraint.

In NC, a greedy shaper is modeled as an abstract component. Each shaper S is

designed with a shaping curve σ, which uniquely decides the behavior of the shaper, and

thus its output flow. For example, when the shaping curve is designed as σ(∆) = d∆
ps
e,

the output flow has minimum separation time ps between any two consecutive bits. In this

special case of generating sporadic arrival patterns of bits, ps is called the period of the

shaper.

Assume that the input flow with arrival curve αU passes a shaper with shaping curve

σ, then the arrival curve of output flow is calculated by:

α′U = αU ⊗ σ = min(αU , σ) (3.2)

And the delay bound of the flow experienced at the shaper is calculated by

DLYs = H(αU , σ)

An example. Assume that the input flow shown in upper part of Figure 3.2 passes

a shaper, whose shaping curve is shown by σ′ in Figure 3.3. The output flow of the shaper

is shown in the lower part of Figure 3.2. Based on σ′, there can not be more than 1 output

bit in any time interval of length 3, so the three bits at time 10 can not leave the shaper at
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Figure 3.3: Different shaping curves and corresponding output arrival curves.

the same time. While the first one of these 3 bits is output exactly at 10, the other two bits

are delayed in the shaper until time 13 and 16, respectively. The delay of release time is

shown by the dashed arrows. The arrival curve of output flow, denoted by α′U , is same as σ′

according to formula (3.2). And the maximum delay experienced is 6, corresponding to the

delay experienced by the third bit at time 10. When changing the shaping curve to σ′′, the

output arrival curve is changed to α′′U correspondingly, and the maximum delay is 8. It can

be seen that given the same input curve, the lower the shaping curve is, the larger the delay

bound is.

3.1.3 Network analysis

Next we consider the analysis of networked nodes. One of the important properties is con-

catenation, which concerns the calculation of service curve when a flow traverses several

nodes.

Property 3.1.1 (Concatenation). Assume that a flow traverses m nodes S1, S2, ..., Sm in se-

quence, each offering a minimum service curve βmin,i, a maximum service curve βmax,i,

i = 1, 2, ...m to the flow respectively. Then the concatenation of the m nodes offers a min-

imum service curve βmin,1 ⊗ βmin,2... ⊗ βmin,m and a maximum service curve βmax,1 ⊗

βmax,2...⊗ βmax,m to the flow.
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According to the concatenation property, the overall minimum service curve of net-

worked nodes equals the convolution of minimum service curve offered by each node in the

network. As a result, the output arrival curves and delay bound can be calculated in the same

way as that of a single node, except replacing the minimum service curve with the overall

service curve. Specially, the delay bound derived in this way is tighter than that by simply

adding up delay bound at each traversed node, which is known as the Pay-Burst-Only-Once

property.

Property 3.1.2 (Pay-Burst-Only-Once). Assume that a flow with arrival curve αU traverses

m nodes S1, S2, ..., Sm in sequence, each offering a minimum service curve βmin,i, i =

1, 2, ...m to the flow respectively. Then

H(αU , βmin,1⊗βmin,2...⊗βmin,m) ≤ H(α′U0 , βmin,1)+H(α′U1 , βmin,2)+...+H(α′Um−1, βmin,m)

where α′Ui is the output arrival curve of the i − th node and the input arrival curve of the

(i + 1) − th node, and α′U0 = αU . The proof of the Pay-Burst-Only-Once property can be

found in [21].

3.2 Basics in RTC

RTC is a theoretical framework for performance analysis of networked embedded systems,

which is rooted in NC . This section introduces basic knowledge in RTC.

3.2.1 Curves in RTC

RTC uses arrival curves and service curves to describe timing properties of event streams

and available resource.

Definition 3.2.1 (Arrival Curve). Let R[s, t) denote the total number of arrived events in

time interval [s, t), where s and t are two arbitrary non-negative real numbers. Then, the
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corresponding upper and lower arrival curves are denoted as αu(t − s) and αl(t − s),

respectively, and satisfy:

∀s < t, αl(t− s) ≤ R[s, t)1 ≤ αu(t− s),

where αu(0) = αl(0) = 0.

Comparing the definitions of arrival curves in RTC and NC, the upper arrival curve

in RTC is equivalent to the arrival curve in NC.

Intuitively, arrival curves represent, for each ∆, the maximum and minimum number

of events arrived in any time interval of length ∆. While cumulative function corresponds

to one concrete event stream trace, arrival curves models the common worst-case/best-case

timing behavior of a set of event stream traces whose cumulative functions are bounded in

certain ranges. That is, in any time interval of length ∆, there are at most αu(∆) events

arrived and at least αl(∆) events arrived.

Definition 3.2.2 (Service Curve). Let C[s, t) denote the total available resource in time

interval [s, t). Then, the corresponding upper and lower service curves are denoted as βu

and βl, respectively, and satisfy:

∀s < t, βl(t− s) ≤ C[s, t) ≤ βu(t− s),

where βu(0) = βl(0) = 0.

This thesis adopts the PJD workload model for arrival curve and TDMA model for

service curve in [82]. In detail, the input arrival curves are characterized by (p, j, d), where

p denotes the period, j the jitter, and d the minimum inter-arrival distance of events in the

modeled stream:

αu(∆) = min

(⌈
∆ + j

p

⌉
,

⌈
∆

d

⌉)
, αl(∆) =

⌊
∆− j
p

⌋
.

1Both left-open and right-open are feasible.
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(a) Input arrival/service curve. (b) A possible event stream and TDMA resource.

Figure 3.4: An example of input workload and resources.

The service curves are characterized by (s, c, b):

βu(∆) =

(⌊
∆

c

⌋
· s+ min(∆ mod c, s)

)
· b, βl(∆) =

(⌊
∆′

c

⌋
· s+ min(∆′ mod c, s)

)
· b

, where ∆′ = max(∆− c+ s, 0).

Generally, arrival curves can be any sub-additive curves and can model different types

of job sequences2. The more complicated the expression of αu(αl) is, the more complex

job sequences it can model. For example, when αu(∆) = d∆
p
e, it models job sequences

generated by a sporadic task with period pi. When αu(∆) = d∆+j
p
e, it models sporadic

job sequences with period p and jitter j, where the difference between supposed and actual

release time of each job is at most j and at most b j
p
c+1 jobs can be released at the same time.

When j ≥ p, arrival curve models a bursty input. This thesis does not place any constraints

on the expressions of arrival functions.

The definitions of arrival curves and service curves are further explained in Figure

3.4. Figure 3.4-(a) shows arrival curves with p = 10, j = 2, d = 0 and service curves with

s = 1, c = 5, b = 1, and Figure 3.4-(b) shows a possible sequence of workload and TDMA

resource corresponding to Figure 3.4-(a).

2We do not consider dynamic inputs in this work.
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For simplicity of presentation, a curve pair f = (fu; f l) to represent both the upper

and lower curves.

3.2.2 GPC (Greedy processing component)

A GPC processes events from input in a greedy fashion, as long as it complies with the

availability of resources. When an event arrives at the input event port, it will be backlogged

in a FIFO buffer if currently no resource is available at the input resource port. When the

available resource arrives, the first event in the buffer is processed and an output event is

generated and sent to the output event port. If the buffer is empty, the resource will be

sent to the output resource port and passed to the subsequent component. That is, a GPC

behaves as if there was a built-in controller to decide whether the input resource would

process input events or directly go to output event port. Slightly abusing the notations, use

(R′, C ′) = GPC(R,C) to denote the function mapping the input event and resource traces

to the output event and resource traces that defines the operational semantics of GPC:

R′[s, t) = C[s, t)− C ′[s, t) (3.3)

C ′[s, t) = sup
s≤u≤t

{C[s, u)−R[s, u)−B(s), 0} (3.4)

The output event stream produced by GPC is described by arrival curve α′u, α
′l, and

the remaining resource is described by service curve β ′u, β
′l.

α′u = min((αu ⊗ βu)� βl, βu), (3.5)

α′l = min((αl � βu)⊗ βl, βl), (3.6)

β′u = (βu − αl)�0, (3.7)

β′l = (βl − αu)⊗0, (3.8)
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(a) GPC. (b) AND.

Figure 3.5: Schematic of GPC and AND, where solid lines denote event streams and dashed

lines denote resource streams.

where

(f ⊗ g)(∆) = inf
0≤λ≤∆

{f(∆− λ) + g(λ)},

(f⊗g)(∆) = sup
0≤λ≤∆

{f(∆− λ) + g(λ)},

(f � g)(∆) = sup
λ≥0
{f(∆ + λ)− g(λ)},

(f�g)(∆) = inf
λ≥0
{f(∆ + λ)− g(λ)}.

The maximum delay dmax experienced by any event on the event stream and the

amount of events in the input buffer bmax, i.e., the backlog, are respectively bounded by

dmax ≤ sup
λ≥0

{
inf{δ ≥ 0 : αu(λ) ≤ βl(λ+ δ)}

}
= H(αu, βl)

bmax ≤ sup
λ≥0
{αu(λ)− βl(λ)} = V (αu, βl)

Notes on delay and backlog bound. Note that the calculation of delay and backlog

bound originates from NC. It is known that the delay (backlog) bound in NC is calculated as

the maximum horizontal (vertical) distance between the arrival curve and minimum service

curve. Comparing the definitions of arrival curves and service curves in NC and RTC, it is

directly obtained that the the arrival curve in NC is equivalent to the upper arrival curve in

RTC. Meanwhile, it can be proved that a lower service curve in RTC satisfies the conditions

to be a minimum service curve in NC (to be proved in Chapter 6). Then the delay (backlog)

bound is derived by getting the maximum horizontal (vertical) distance between the upper
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(a) A networked system. (b) A GPC network.

Figure 3.6: An example for GPC network.

arrival curve and lower service curve in RTC, which actually maps to the arrival curve and

minimum service curve in NC.

GPCs can be connected together to model systems with various scheduling and ar-

bitration policies. One of the typical scenarios is to model fixed-priority scheduling, where

the resource allocation for tasks with different priorities is described by the resource stream

direction.

An example. Suppose two event streams I1, I2 are processed on two successive

processors. I1 has higher priority than I2 and the execution of I2 will be preempted by I1

as long as an event of I1 arrives on each processor. Such a system (Figure 3.6-(a)) can

be modeled by a GPC network (Figure 3.6-(b)). The processing of each stream on each

processor is modeled as a GPC component. The output arrival curves of G1 are the input

arrival curves of G2, corresponding to the system behavior that the events of I1 completing

execution on P1 are further processed on P2. And the remaining service curve of G1(G2) is

the input service curve G3(G4), since I1 has higher priority on both processors.

3.2.3 AND connector

Another useful abstract component is the AND connector [82], which models synchroniza-

tion behaviors that are ubiquitous in distributed sensing and processing systems. Such sys-

tems usually combine data from different sources with the same timestamp to infer useful
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information. The structure of AND connector is shown in Figure 3.5-(b).

Data arriving on one input stream must be buffered until partner events arrive on the

other input stream. Partnering events join together and immediately pass the AND connector,

and consequently either of the internal buffers is empty at any point of time. Let R1(t) and

R2(t) denote the accumulated number of events arrived to port 1 and port 2 respectively and

R′(t) the accumulated number of output events, B1 and B2 denote the initial buffer levels of

the two input ports. The operational semantics of AND connector can be described by

R′(t) = min(R1(t) +B1, R2(t) +B2).

If the two input event streams are characterized by arrival curves αu1 , α
l
1 and αu2 , α

l
2, the

following output curves αu1,2 and αl1,2 are used to upper and lower bound the combined event

streams at the output [82]:

αu1,2 = max(min(αu1�αl2 +B1 −B2, α
u
2),min(αu2�αl1 +B2 −B1, α

u
1)), (3.9)

αl1,2 = max(min(αl1�αu2 +B1 −B2, α
l
2),min(αl2�αu1 +B2 −B1, α

l
1)). (3.10)

The delay of events at two inputs is bounded by

d1 ≤ H(αu1 +B1, α
l
2 +B2),

d2 ≤ H(αu2 +B2, α
l
1 +B1),

and the backlog at the two input buffers are bounded by

b1 ≤ max(0, V (αu1 +B1, α
l
2 +B2)),

b2 ≤ max(0, V (αu2 +B2, α
l
1 +B1)).

3.3 Basics for global EDF scheduling

This section introduces the system model and analysis basics when extending techniques in

NC to improve the analysis for global EDF scheduling on multiprocessors.
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3.3.1 System model

Scheduling strategy and workload model. The system inputs are modeled as a set of n

bursty tasks τ = {τ1, τ2, ..., τn}, and they are considered to be scheduled under global EDF

onm ≥ 2 identical processors. In generally considered EDF scheduling, the relative deadline

not only expresses the constraint for delay bound, but acts as a priority indicator. A job’s

execution priority is decided by its absolute deadline (release time plus the relative deadline

of the task releasing it). The earlier the absolute deadline is, the higher priority a job has.

This thesis considers EDF of a more general type where the relative deadline only constrains

a task’s delay bound, and there exists another variable deciding the execution priority of each

job. The relative deadline and the priority indicator are set as two independent values and

they are not necessarily the same. Consistent with this general EDF scheduling, bursty task

models are as follows:

Each bursty task τi defines an infinite sequence of jobs. Jobs released by one task are

assumed to be sequential and at any time may execute on at most one processor. It is also

assumed that more than one job can be released simultaneously by the same task. A task τi

is characterized by (Ci, Di, λi, α
U
i ), where Ci, Di and λi are non-negative integers denoting

worst-case execution time (WCET), relative deadline and priority level respectively. Since

this thesis considers a general-style EDF as introduced above, Di and λi are independent.

αUi is the arrival curve in NC modeling the job sequence of task τi.

For each task τi, the maximum amount of execution units it requires in any time

interval of length ∆ is Ci ∗ αUi (∆). Its utilization is denoted by Ui = Ci ∗ ηi, and the total

utilization of task set τ is denoted by U =
∑n

i=1Ci ∗ ηi. Based on the analysis in [35], the

following two conditions must be satisfied to guarantee that the system is not overloaded.

ηi ∗ Ci ≤ 1

n∑
i=1

ηi ∗ Ci ≤ m

A task is schedulable if it meets its deadline, and a task set is schedualable when all

tasks in it meet their deadlines.
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3.3.2 Delay analysis for bursty tasks

Assume that a task τi with arrival curve (in NC) αUi and WCET Ci is executed in a sys-

tem providing minimum service curve βmin,i, then Ci, αUi and βmin,i make up inputs of the

corresponding component, based on which the delay bound DLYi of τi is calculated as:

DLYi = Del(Ci, α
U
i , βmin,i) (3.11)

where

Del(C, αU(∆), βmin(∆)) = sup
λ≥0
{inf{d ≥ 0 : C ∗ αU(λ) ≤ βmin(λ+ d)}

Note that Del(C, f, g) is a generalization of H(f, g) by considering the workload of

each job. Similarly, the Pay-Burst-Only-Once property is generalized for the delay bound

calculation of bursty tasks, and the delay bound experienced by task i is calculated as:

DLYcont,i = Del(Ci, α
U
i , β

cont
min ) (3.12)

, where

βcontmin = βmin,1 ⊗ βmin,2...⊗ βmin,m (3.13)

Assume that the job sequence of a task with upper arrival curve αU passes a shaper with

shaping function σ, then the delay bound of the task experienced at the shaper is calculated

by 3

DLYs = Del(1, αU , σ)

3Since this thesis only concerns about the number of jobs that can be output during certain length of inter-

vals, the WCET of the task can be viewed as 1.
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CHAPTER 4

IMPROVING THE ANALYSIS OF GPC

4.1 Introduction

RTC uses different abstract components to model different resource arbitration schemes or

operational semantics. GPC [28] is one of the fundamental abstract components in RTC,

which essentially models priority-based resource arbitration among multiple workload streams

sharing the same hardware platform. GPC is the most widely used building block in RTC

due to the universal use of fixed-priority scheduling in practice.

This section makes a revisit to GPC in RTC. Our work includes two aspects: First,

revise the proof of output curves in GPC and complement the missing deduction steps, which

further clarifies the correctness of the original results. Second, derive tighter output arrival

curves to more precisely bound the timing behavior of output event streams with two meth-

ods. The original output arrival curves of GPC were developed about 15 years ago [28, 81],

as a major foundational result of the RTC framework. Since then, no improvement has ever

been made, although it is widely known that these bounds are not tight. Our work for the first

time makes these bounds tighter. The key idea of the first method is to utilize the remaining

service curve to refine the information about how much resource can be actually consumed,

and exclude the unused resource when computing the output arrival curves. The key idea of

the second method is to find the connection between output arrival curves and the number of

accumulated events. When modeling and analyzing a networked system, the output arrival

curves of one component are the input arrival curves of its successor component, and are the

necessities for delay bound analysis. Benefiting from the improvement brought by these two

new methods, a tighter delay bound can be obtained when GPCs are adopted to model the
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target system.

Experiments are conducted to evaluate our new results in different aspects, with ran-

domly generated system models under different configurations. Experiment results show

significant improvement of our new methods in analysis precision and efficiency.

4.2 Revised proof of output curves

Although how to calculate bounds for output curves in GPC has been proved in [82], some

important deduction steps are missing. In detail, the process of specifying the numerical

relations between some critical parameters is too simple to be convincing. This section adds

these missing deduction parts and gives revised proof of calculating output curves in GPC.

Theorem 4.2.1. Given a GPC with arrival curve αu, αl and service curve βu, βl, then its

remaining service curves are bounded by

β′u = ((βu − αl)�0)+

β′l = (βl − αu)⊗0

where for a function f(∆), (f(∆))+ = max(f(∆), 0).

Proof. (1) First prove β′l. Suppose p is an arbitrarily small time such that the backlog satis-

fies B(p) = 0.

Then for all p ≤ s ≤ t,

C ′[s, t) = C ′[p, t)− C ′[p, s) = sup
p≤a≤t

{C[p, a)−R[p, a)}+ − sup
p≤b≤s

{C[p, b)−R[p, b)}+

Since C[p, p) = R[p, p) = C[p, p) − R[p, p) = 0, the suprema are nonnegative and
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we have

C ′[s, t) = sup
p≤a≤t

{C[p, a)−R[p, a)} − sup
p≤b≤s

{C[p, b)−R[p, b)}

= inf
p≤b≤s

{ sup
p≤a≤t

{C[b, a)−R[b, a)}}

= inf
p≤b≤s

{max{ sup
b≤a≤t

{C[b, a)−R[b, a)}, sup
p≤a≤b

{C[b, a)−R[b, a)}}}

Let χ1(b) = sup
b≤a≤t

{C[b, a)−R[b, a)} = max{C[b, b)−R[b, b), C[b, b+1)−R[b, b+

1), ..., C[b, t)−R[b, t)} ≥ 0. 1

χ2(b) = sup
p≤a≤b

{C[b, a) − R[b, a)} = max{C[b, p) − R[b, p), C[b, p + 1) − R[b, p +

1), ..., C[b, b− 1)−R[b, b− 1), C[b, b)−R[b, b)} ≥ 0.

Next we prove that2 C ′[s, t) = inf
p≤b≤s

{max{χ1(b), χ2(b)}} = inf
p≤b≤s

{χ1(b)}.

We consider two cases:

1) For any i ∈ [p, s], χ1(i) ≥ χ2(i), then C ′[s, t) = inf
p≤b≤s

{max{χ1(b), χ2(b)} =

inf
p≤b≤s

{χ1(b)}, then C ′[s, t) = inf
p≤b≤s

{χ1(b)}.

2) There exists at least one i ∈ [p, s] that χ1(i) < χ2(i), that is, there exists one

x ∈ [p, i] that

C[b, a) − R[b, a) = C[i, x) − R[i, x) = max{χ1(i), χ2(i)} = max{C[i, p) −

R[i, p), ..., C[i, x− 1)−R[i, x− 1), ..., C[i, x+ 1)−R[i, x+ 1), ..., C[i, t)−R[i, t)}

Then we have

R[x, i)− C[x, i) ≥ R[p, i)− C[p, i)⇒ C[p, x) ≥ R[p, x)

1For ease of presentation assume s, t, a, b, p to be integer in following proofs.
2This part is just briefly explained as ′a ≥ b since t ≥ s′ in the existing proof [82].
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R[x, i)− C[x, i) ≥ R[p+ 1, i)− C[p+ 1, i)⇒ C[p+ 1, x) ≥ R[p+ 1, x)

...

R[x, i)− C[x, i) ≥ R[x− 1, i)− C[x− 1, i)⇒ C[x− 1, x) ≥ R[x− 1, x)

R[x, i)− C[x, i) ≥ R[x+ 1, i)− C[x+ 1, i)⇒ R[x, x+ 1) ≥ C[x, x+ 1)

R[x, i)− C[x, i) ≥ C[i, i+ 1)−R[i, i+ 1)⇒ R[x, i+ 1) ≥ C[x, i+ 1)

R[x, i)− C[x, i) ≥ C[i, t)−R[i, t)⇒ R[x, t) ≥ C[x, t)

Then when b = x, we have

χ1(x) = max{C[x, x)−R[x, x), C[x, x+1)−R[x, x+1), ..., C[x, t)−R[x, t)} = 0,

χ2(x) = max{C[x, p)−R[x, p), C[x, p+1)−R[x, p+1), ..., C[x, b−1)−R[x, b−

1), C[x, x)−R[x, x)} = 0.

So max{χ1(x), χ2(x)} = 0.

Then

C ′[s, t) = inf
p≤b≤s

{max{χ1(b), χ2(b)}} = max{χ1(x), χ2(x)} = 0 (since C ′[s, t) ≥

0).

On the other hand,

inf
p≤b≤s

{χ1(b)} = min{χ1(p), χ1(p+ 1), ..., χ1(x), ..., χ1(s)} = 0, then we have

C ′[s, t) = inf
p≤b≤s

{χ1(b)} = 0.

So in both cases, C ′[s, t) = inf
p≤b≤s

{χ1(b)}, which implies that removing the cases

when a < b does not influence the final result. Note that a ≥ b is a consequence of above

deduction, but not simply a direct result of s ≤ t as implied in [82].
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Then continue to lower bound C ′[s, t).

C ′[s, t) = inf
p≤b≤s

{ sup
b≤a≤t

{C[b, a)−R[b, a)}

= inf
p≤b≤s

{ sup
0≤a−b≤t−b

{C[b, a)−R[b, a)}

≥ inf
p≤b≤s

{ sup
0≤λ≤t−b

{βl(λ)− αu(λ)}

≥ sup
0≤λ≤t−s

{βl(λ)− αu(λ)}

= (βl − αu)⊗0

(2) Next prove β′u.

C ′[s, t) = C ′[p, t)− C ′[p, s)

= sup
p≤a≤t

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}

= max{ sup
p≤a≤s

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}, sup
s≤a≤t

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}}

= max{ sup
p≤a≤s

{min{ inf
a≤b≤s

{C[b, a)−R[b, a)}, inf
b≤a≤s

{C[b, a)−R[b, a)}}},

sup
s≤a≤t

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}}

Similar as above, defineψ = sup
p≤a≤s

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}, ψ1(a) = inf
a≤b≤s

{C[b, a)−

R[b, a)}, and ψ2(a) = inf
b≤a≤s

{C[b, a)−R[b, a)}. Next prove ψ ≤ 0.

For any a ∈ [p, s], consider three cases:

1) ψ1(a) = ψ2(a). Then there must exist binf = a such that

C[binf , a)−R[binf , a) = 0 = min{ψ1(a), ψ2(a)}.

2) ψ1(a) > ψ2(a). Then there must exist binf < a such that

C[binf , a)−R[binf , a) = min{ψ1(a), ψ2(a)} < ψ1(a) ≤ 0.
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3) ψ1(a) < ψ2(a). Then there must exist binf > a such that

C[binf , a)−R[binf , a) = min{ψ1(a), ψ2(a)} < ψ2(a) ≤ 0.

Then combining the above three cases, for each a ∈ [p, s], min{ψ1(a), ψ2(a)} ≤ 0, so

ψ ≤ 0.

By now we have

C ′[s, t) = sup
p≤a≤t

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}

= sup
s≤a≤t

{ inf
p≤b≤s

{C[b, a)−R[b, a)}}+

= sup
s≤a≤t

{ inf
a−s≤a−b≤a−p

{C[b, a)−R[b, a)}}+

Note that a ≥ b is a consequence of a ≥ s, but not a direct result of s ≤ t.

Then with substitution λ we have

C ′[s, t) ≤ sup
s≤a≤t

{ inf
a−s≤a−b≤a−p

{βu(λ)− αl(λ)}}+

≤ sup
s≤a≤t

{ inf
t−s≤a−b≤p

{βu(λ)− αl(λ)}}+

= inf
t−s≤λ≤p

{βu(λ)− αl(λ)}}+

= inf
t−s≤λ

{βu(λ)− αl(λ)}}+

= ((βu − αl)�0)+

Theorem 4.2.2. Given a GPC with arrival curve αu, αl and service curve βu, βl, then its

output arrival curves are bounded by

α′u = min((αu ⊗ βu)� βl, βu)

α′l = min((αl � βu)⊗ βl, βl)
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Proof. (1) We first prove α′u. Suppose p is an arbitrarily small time such that the backlog

satisfies B(p) = 0.

Then for all p ≤ s ≤ t,

R′[s, t) = R′[p, t)−R′[p, s)

= sup
p≤b≤s

{C[p, b)−R[p, b)}+ − sup
p≤a≤t

{C[p, a)−R[p, a)}+ + C[p, t)− C[p, s)

Since C[p, p) = R[p, p) = C[p, p)−R[p, p) = 0, the suprema are nonnegative and we have

R′[s, t) = sup
p≤b≤s

{C[p, b)−R[p, b)} − sup
p≤a≤t

{C[p, a)−R[p, a)}+ C[p, t)− C[p, s)

= sup
p≤b≤s

{ inf
p≤a≤t

{R[b, a) + C[a, t)− C[b, s)}}

= sup
p≤b≤s

{ inf
p≤a≤t

{C[s, t) + C[a, b)−R[a, b)}}

= C[s, t) + sup
p≤b≤s

{ inf
p≤a≤t

{C[a, b)−R[a, b)}}

= C[s, t) + sup
p≤b≤s

{min{ inf
b≤a≤t

{C[a, b)−R[a, b)}, inf
p≤a≤b

{C[a, b)−R[a, b)}}}

Let χ = sup
p≤b≤s

{min{ inf
b≤a≤t

{C[a, b)−R[a, b)}, inf
p≤a≤b

{C[a, b)−R[a, b)}}},

χ1(b) = inf
b≤a≤t

{C[a, b) − R[a, b)} = min{C[b, b) − R[b, b), C[b + 1, b) − R[b +

1, b), ..., C[t, b)−R[t, b)} ≤ 0,

χ2(b) = inf
p≤a≤b

{C[a, b) − R[a, b)} = min{C[p, b) − R[p, b), C[p + 1, b) − R[p +

1, b), ..., C[b− 1, b)−R[b− 1, b), C[b, b)−R[b, b)} ≤ 0.

Next we prove χ = sup
p≤b≤s

{χ1(b)}3.

We consider two cases:

1) For any i ∈ [p, s], χ1(i) ≤ χ2(i), then χ = sup
p≤b≤s

{χ1(b)}.

3This is not detailed in [82].
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2) There exists at least one i ∈ [p, s] satisfying χ1(i) > χ2(i), then

min{χ1(i), χ2(i)} = χ2(i) < 0,

Similar as the proof for β′l, there exists x ∈ [p, s] such that min{χ1(x), χ2(x)} =

χ1(x) = χ2(x) = 0. Then

χ = sup
p≤b≤s

{min{χ1(b), χ2(b)}}

= max{min{χ1(p), χ2(p)}, ...,min{χ1(x), χ2(x)}, ...,min{χ1(s), χ2(s)}}

= sup
b∈φ
{min{χ1(b), χ2(b)}} = sup

b∈φ
{χ1(b)}

where ψ is the set of values in [p, s] which satisfy for any b ∈ φ, χ1(b) ≤ χ2(b).

On the other hand, sup
p≤b≤s

{χ1(b)} = sup
b∈ψ
{χ1(b)}, since when b ∈ ([p, s]−ψ), χ1(b) <

0. Then we have χ = sup
p≤b≤s

{χ1(b)}.

So in both two cases we have χ = sup
p≤b≤s

{χ1(b)}. Then

R′[s, t) = C[s, t) + sup
p≤b≤s

{ inf
p≤a≤t

{C[a, b)−R[a, b)}}

= C[s, t) + sup
p≤b≤s

{ inf
b≤a≤t

{C[a, b)−R[a, b)}}

= sup
p≤b≤s

{ inf
b≤a≤t

{C[s, t) + C[a, b)−R[a, b)}}

= sup
p≤b≤s

{ inf
b≤a≤t

{R[b, a) + C[a, t)− C[b, s)}}
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Then with λ = s− b and µ = a+ λ− s, we have

R′[s, t) = sup
p≤b≤s

{ inf
b≤a≤t

{R[b, a) + C[a, t)− C[b, s)}}

= sup
0≤λ≤s−p

{ inf
0≤µ≤λ+(t−s)

{R[s− λ, µ− λ+ s) + C[µ− λ+ s, t)− C[s− λ, s)}}

≤ sup
0≤λ≤s−p

{ inf
0≤µ≤λ+(t−s)

{αu(µ) + βu(λ+ (t− s)− µ)− βl(λ)}}

≤ sup
0≤λ
{ inf

0≤µ≤λ+(t−s)
{αu(µ) + βu(λ+ (t− s)− µ)− βl(λ)}}

= (αu ⊗ βu)� βl

Since the number of processed events can not be larger than the available resource,

R′[s, t) ≤ βu(t− s), then we have R′[s, t) ≤ min((αu ⊗ βu)� βl, βu).

(2) The results for α′l can be proved as with a combination of β′u and α′u.

An example. Take the calculation of β′l as an example to showC ′[s, t) = inf
p≤b≤s

{χ1(b)}.

Let p = 0, s = 3, t = 5. Then the value of C ′[s, t) with different values of a, b is shown in

Table 4.1.

b = 0 b = 1 b = 2 b = 3

a = 0 0 R[0, 1)− C[0, 1) R[0, 2)− C[0, 2) R[0, 3)− C[0, 3)

a = 1 C[0, 1)−R[0, 1) 0 R[1, 2)− C[1, 2) R[1, 3)− C[1, 3)

a = 2 C[0, 2)−R[0, 2) C[1, 2)−R[1, 2) 0 R[2, 3)− C[2, 3)

a = 3 C[0, 3)−R[0, 3) C[1, 3)−R[1, 3) C[2, 3)−R[2, 3) 0

a = 4 C[0, 4)− C[0, 4) C[1, 4)−R[1, 4) C[2, 4)−R[2, 4) C[3, 4)−R[3, 4)

a = 5 C[0, 5)−R[0, 5) C[1, 5)−R[1, 5) C[2, 5)−R[2, 5) C[3, 5)−R[3, 5)

Table 4.1: An example for part of Theorem 1.
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Assume that when b = 2, χ1(2) < χ2(2) and χ2(2) = R[1, 2) − C[1, 2). Then we

have

R[1, 2)− C[1, 2) ≥ R[0, 2)− C[0, 2)⇒ C[0, 1) ≥ R[0, 1)

R[1, 2)− C[1, 2) ≥ C[2, 3)−R[2, 3)⇒ R[1, 3) ≥ C[1, 3)

R[1, 2)− C[1, 2) ≥ C[2, 4)−R[2, 4)⇒ R[1, 4) ≥ C[1, 4)

R[1, 2)− C[1, 2) ≥ C[2, 5)−R[2, 5)⇒ R[1, 5) ≥ C[1, 5)

Then when b = 1, max{χ1(1), χ2(1)} = χ1(1) = 0, and

C ′[0, 3) = inf
0≤b≤3

{max{χ1(b), χ2(b)}} = 0 = min{χ1(0), χ1(1), χ1(2), χ1(3)} =

inf
0≤b≤3

{χ1(b)}.

4.3 Improving the precision of GPC: method 1

The calculation of upper output arrival curves in existing RTC is pessimistic, and this sec-

tion introduces one method to improve the precision. The overall idea is shown in Figure

4.1, where we use GPC (GPC∗) when concerning more about semantics, and abstract GPC

(GPC∗) for analysis part. Recall that the calculation of output curves in existing analysis is

developed based on the semantics of GPC. To obtain tighter results, this thesis proposes a

model with equivalent semantics as original GPC, and develops the calculation based on the

new model. With the adoption of new model, the analysis process can partly exclude the

resource that is not actually consumed to process any events, and avoid mistaking them as

available for processing events, which causes pessimism in existing analysis.

The method starts by analyzing the processing behavior in GPC and proposes the

equivalent model.

In GPC, when the buffer is empty, the available resource is not consumed, but directly

sent to the output resource port. In other words, only a portion of the input resource is

actually consumed to process the events. If classifying the input resource into two types, (i)

those actually consumed to process events and (ii) those are not consumed, then eliminating
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Figure 4.1: The overall idea of method 1.

type (ii) resource from the input resource stream will not affect the timing behavior of output

event stream. Based on these observations, a new way to model the behavior of GPC is

introduced. The new model, denoted by GPC∗, is shown in Figure 4.2, and its behavior can

be described as follows:

• An event arriving at the input event port is immediately stored in the buffer of its

internal GPC in FIFO order.

• When resource is available at the input resource port, the internal controller checks

whether the buffer of its internal GPC is empty (this checking is instantaneous).

– If the buffer is not empty, the resource is immediately sent to the input resource

port of the internal GPC.

– If the buffer is empty, the resource is immediately sent to the output resource

port.

• Events emitted from the output event port of the internal GPC are immediately sent to

the output event port.

• The remaining resource sent out by the internal GPC is immediately set to the output

resource port.

According to the semantics of GPC and GPC∗, given same input event trace, the resource

that is sent to the output resource port in GPC∗ is equivalent to that in GPC, since they are
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Figure 4.2: The refined model of GPC.

both corresponding to the situation when the buffer of GPC (internal GPC of GPC∗) is empty.

That is, the C ′ in Figure 4.2 and that in Figure 3.5-(a) are equivalent when they have same

input R.

In the following, this thesis will prove GPC∗ is equivalent to GPC∗. First, a key

lemma showing that this new modeling method is equivalent to the original one is proved.

(Refer to Figure 3.5-(a) and 4.2).

Lemma 4.3.1. Let (R′, C ′) = GPC(R,C) and (R′′, C∗) = GPC(R,C−C ′), thenR′ = R′′

and C ′ = C ′′.

Proof. Let R′ = F(C,C ′) denote the function defined in (3.3) and C ′ = G(R,C) the func-

tion defined in (3.4).

SinceR′′ = F(C−C ′, C∗), C∗ = G(R,C−C ′),we haveR′′ = F(C−C ′,G(R,C−

C ′)), then by substituting C ′ by G(R,C), we get

R′′ = F (C − G(R,C),G(R,C − G(R,C))) , (4.1)
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then by applying the definition of F and G in (3.3) and (3.4) we have ∀s < t :

R′′[s, t) =C[s, t)− sup
s≤u≤t

{C[s, u)−R[s, u)−B(s), 0}

− sup
s≤u≤t

{C[s, u)− sup
s≤v≤u

{C[s, v)−R[s, v)

−B(s), 0} −R[s, u)−B(s), 0}.

Let f(u) = C[s, u)−R[s, u)−B(s), so the above equation can be rewritten as

R′′[s, t) = C[s, t)− sup
s≤u≤t

{f(u), 0} −X, (4.2)

where

X = sup
s≤u≤t

{f(u)− sup
s≤v≤u

{f(v), 0}, 0}.

Since

∀u ∈ [s, t] : f(u) ≤ sup
s≤v≤u

{f(v)} ≤ sup
s≤v≤u

{f(v), 0},

we know X ≤ 0. On the other hand, by the definition of X , we can easily see X ≥ 0 (since

X = sup{· · · , 0}). Therefore we can conclude X = 0, which together with (4.2) gives

R′′[s, t) =C[s, t)− sup
s≤u≤t

{C[s, u)−R[s, u)−B(s), 0}

=C[s, t)− C ′[s, t) = R′[s, t).

Moreover, since R′′ = C − C ′ − C∗, and R′ = C − C ′ and R′ = R′′, we have C∗ = 0, i.e.,

the internal GPC does not emit any available resource. Thus we know C ′′ = C ′.

The above lemma indicates that the output event trace produced by the original GPC

and the internal GPC are the same, and so are the output resource traces. Then it can be

concluded that the new model of GPC is equivalent to the original GPC.

Then the effective resource trace can be defined:
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Definition 4.3.1 (Effective Resource Trace). For any time interval [s, t), the effective re-

source trace E[s, t) is defined as

E[s, t) = C[s, t)− C ′[s, t). (4.3)

where C and C ′ are the input and output resource trace of a GPC.

Intuitively, E is the input resource trace of the internal GPC.

In the following, this thesis will derive output arrival curves for GPC∗, which also

apply to GPC as their output event traces are equivalent. The resource sent to the internal

GPC in the time interval domain is modeled by effective service curve:

Definition 4.3.2 (Effective Service Curve). Let E[s, t) denote the amount of resource actu-

ally sent to the internal GPC of GPC∗ to process the events in time interval [s, t), then the

corresponding upper and lower effective service curves are denoted as γu and γl, respec-

tively, and satisfy:

∀s < t, γl(t− s) ≤ E[s, t) ≤ γu(t− s), (4.4)

where γu(0) = γl(0) = 0.

It is easy to know the following lemma:

Lemma 4.3.2. Let C[s, t) denote the amount of available resource in time interval [s, t),

C ′[s, t) denote the amount of resource not used to process events in [s, t). Let E[s, t) denote

the amount of resource actually sent to the internal GPC to process the events in [s, t). For

any time interval [s, t) it holds:

C[s, t) = E[s, t) + C ′[s, t).

Proof. Any available resource available in [s, t) is either used to process the events (included

in E[s, t)) or not (included in C ′[s, t)).
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By transferring this relation to the time interval domain, γu can be computed by β

and β′ as follows:

Lemma 4.3.3. For any time interval [s, t) with t = s + ∆ (∆ > 0), E[s, t) is upper and

lower bounded by

γu(∆) = inf
λ≥∆
{βu(λ)− β′l(λ)}, (4.5)

γl(∆) = sup
0≤λ≤∆

{βl(λ)− β′u(λ)}. (4.6)

Proof. First prove (4.5). For any time interval [s − ε1, t + ε2) with ε1 ≥ 0 and ε2 ≥ 0, it

holds E[s, t) ≤ E[s− ε1, t+ ε2), so we have

E[s, t) = inf
ε1≥0∧ε2≥0

{E[s− ε1, t+ ε2)}

= inf
ε1≥0∧ε2≥0

{C[s− ε1, t+ ε2)− C ′[s− ε1, t+ ε2)}

≤ inf
ε1≥0∧ε2≥0

{βu(∆ + ε1 + ε2)− β′l(∆ + ε1 + ε2)}

= inf
ε≥0
{βu(∆ + ε)− β′l(∆ + ε)}

= inf
λ≥∆
{βu(λ)− β′l(λ)}.

Then prove (4.6). For any time interval [s+ε1, t−ε2) with ε1 ≥ 0, ε2 ≥ 0 and ε1+ε2 ≤ t−s,

it holds E[s, t) ≥ E[s+ ε1, t− ε2), so we have

E[s, t) = sup
ε1≥0∧ε2≥0∧ε1+ε2≤t−s

{E[s+ ε1, t− ε2)}

= sup
ε1≥0∧ε2≥0∧ε1+ε2≤t−s

{C[s+ε1, t−ε2)−C ′[s+ε1, t−ε2)}

≥ sup
ε1≥0∧ε2≥0∧ε1+ε2≤∆

{βl(∆−ε1−ε2)−β′u(∆−ε1−ε2)}

= sup
0≤ε≤∆

{βl(∆− ε)− β′u(∆− ε)}

= sup
0≤λ≤∆

{βl(λ)− β′u(λ)}.
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With the γu and γl obtained from the above lemma, and the fact that GPC and GPC∗

are equivalent, now the output arrival curves for GPC can be computed:

Lemma 4.3.4. Given a GPC with input arrival curves αu, αl and service curves βu, βl, and

γu, γl computed by Lemma 4.3.3, the output events can be upper bounded by:

α′u = [(αu ⊗ γu) � γl] ∧ γu, (4.7)

where f ∧ g is defined as ∀δ, (f ∧ g)(δ) = min(f(δ), g(δ)). The new upper output

arrival curve in the above lemma is generally incomparable with the original one: sometimes

our new curve is tighter, sometimes the original one is tighter, and sometimes the new curve

and the original curve do not dominate each other (one curve is tighter for some parts and

the other curve is tighter for some other parts). Therefore, combining our new curve with the

original one gives the best result as stated in the following theorem:

Theorem 4.3.1. Given a GPC with input arrival curves αu, αl and service curves βu, βl,

and γu, γl computed by Lemma 4.3.3, the output events can be upper bounded by:

α′u = [(αu ⊗ γu) � γl] ∧ [(αu ⊗ βu) � βl] ∧ γu, (4.8)

Similarly, by using γu and γl to replace βu and βl, we can also get a new lower output

arrival curve. However, this yields a looser lower output arrival curve than the original one.

Therefore, for computing lower output arrival curve, we should still use (3.6). Finally, the

re-modeling of GPC into GPC∗ which contains an internal GPC would apply recursively. It

is an interesting question to ask what is the condition for such a recursion to reach the fixed

point. This thesis has conducted intensive experiments to test this, with all of them the fixed

point is reached after the first round (i.e., further substituting the internal GPC in GPC∗ does

not bring further benefits). However it is yet an open problem to find the general convergence

conditions.
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(a) Input curves. (b) Upper output arrival curves.

Figure 4.3: An example comparing the original and new upper output arrival curves for GPC.

An example. We use a simple example to demonstrate our new output arrival curve

bounds. Suppose we have a strictly periodic event arriving pattern with a period of 3 time

units (the processing of each event takes one time unit) and a TDMA resource provides

two time units of resource with a period of 4 time units, the corresponding arrival curves,

service curves and effective service curves of which are shown in Figure 4.3. The original

and our new output upper arrival curves, denoted by OLD and NEW respectively, are shown

in Figure 4.3, where we can see our new curve is tighter than the original one.

4.4 Improving the precision of GPC: method 2

This section adopts the idea in [15] and derives a new upper bound for output arrival curves,

which combined with the original result (3.5) generates a tighter upper bound, as shown in

Section 4.5.2.

Lemma 4.4.1. Given an event stream with input functionR(t), output functionR′(t), arrival

curve αu, αl, service curve βu, βl, the output arrival curve of a GPC is upper bounded by

α′u(∆) = αu(∆) + V (αu, βl)− αu(0+).

Proof. Use B(s) to denote the backlog at time s. For all s ≤ t, we have B(t) − B(s) =

R[s, t)−R′[s, t). Suppose p is an arbitrarily small time satisfyingB(p) = 0, then substituting
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t with p gives B(s) = R[p, s)−R′[p, s). Based on the behaviors of GPC, it holds that

C ′[p, s) = sup
p≤u≤s

{C[p, u)−R[p, u)−B(p), 0}

Then

R′[p, s) = C[p, s)− C ′[p, s) = C[p, s)− sup
p≤u≤s

{C[p, u)−R[p, u)−B(p), 0}

Since B(p) = 0 and C[p, p)−R[p, p) = 0, we have

R′[p, s) = C[p, s)− C ′[p, s) = C[p, s)− sup
p≤u≤s

{C[p, u)−R[p, u)}

Since αu(∆) is concave, there exists α̃u(∆) satisfying that for any ∆ > 0, αu(∆) =

α̃u(∆) + αu(0+). Then

R′[s, t) = R[s, t) +B(s)−B(t)

≤ R[s, t) +B(s)

= R[p, t)−R[p, s) +R[p, s)− {C[p, s)− sup
p≤u≤s

{C[p, u)−R[p, u)}}

= R[p, t)− C[p, s) + sup
p≤u≤s

{C[p, u)−R[p, u)}

= sup
p≤u≤s

{R[u, t)− C[u, s)}

≤ sup
p≤u≤s

{αu(t− u)− βl(s− u)}

= sup
p≤u≤s

{α̃u(t− u) + αu(0+)− βl(s− u)}

≤ sup
p≤u≤s

{α̃u(s− u) + α̃u(t− s) + αu(0+)− βl(s− u)}

= α̃u(t− s) + sup
p≤u≤s

{αu(s− u)− βl(s− u)}

≤ α̃u(t− s) + V (αu, βl)

= αu(t− s) + V (αu, βl)− αu(0+)

Then the lemma is proved.
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Theorem 4.4.1. Given a GPC with input arrival curves αu, αl and service curves βu, βl, the

output events can be upper bounded by:

α′u = ((αu ⊗ βu)� βl) ∧ βu ∧ (αu + V (αu, βl)− αu(0+)).

An example. Suppose a GPC has arrival curves and service curves as in Figure

3.4, then the output arrival curves calculated by Theorem 4.4.1 (blue dashed lines) and the

original result (blue full lines) are shown in Figure 4.4(a). Next we show the influence of

j, s to the results calculated with these two methods, where the result of original method is

denoted with full lines, and that of our new method (Theorem 4.4.1) is denoted with dashed

lines.

Figure 4.4-(a) shows the influence of j with 4 different sets of inputs. All these 4

inputs are generated with p = 10, d = 0, s = 1, c = 5, b = 1, and they differ in j which

equals 2, 4, 5, 6 respectively. Comparing the cases when j = 2, 4, 5 and that when j = 6,

it implies when p − j > c − s, the new method is more possible to outperform the original

one4. Focusing on the cases when j = 2, 4, 5, it is observed that the new method performs

better when j is smaller.

Figure 4.4-(b) shows the influence of s with 3 different sets of inputs. All these 4

inputs are generated with p = 10, j = 6, d = 0, c = 5, b = 1, and they differ in s which

equals 1, 2, 3 respectively. Our method outperforms the original one when s = 2, 3 with

p − j > c − s, which is consistent with the trend in Figure 4.4(a). Considering the inputs

with s = 2, 3, the difference between our method and the original one grows larger when s

is smaller.

Comparison between method 1 and method 2. Method 1 and method 2 improve

the precision of upper output arrival curves in GPC based on two different insights: method

1 focuses more on the amount of resource that is actually consumed to process events, while

method 2 explores the connection between the output arrival curves and the accumulated

4Note that this is not applicable to all task sets.
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(a) Different j. (b) Different s.

Figure 4.4: Intuitive observations about the influence of j and s.

events. With regards to the performance, both method 1 and method 2 improve the precision

compared with the original results in GPC, but neither of the two dominates the other, which

is further discussed in experiments.

(a) Percentage. (b) Distance.

Figure 4.5: Experiment results for single GPC.

4.5 Experimental evaluation

New theoretical results are implemented in RTC Toolbox [1] and experiments are conducted

to evaluate their performance.
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(a) The 4× 4 RTC network. (b) Relative Quality.

Figure 4.6: Experiment results for GPC network.

This section compares the analysis results by method 1 (denoted by m1), method

2 (denoted by m2) and the original GPC (3.5) (denoted by org). These three methods are

compared in the following aspects:

• Percentage, which is the ratio between the number of improved GPCs and the to-

tal number of generated GPCs in each setting, where improved GPCs are the ones

where the calculated results (including output curves and delay/backlog bound) of one

method are more precise than the other one.

• Distance. The distance of two curves f and g is defined as follows:

dist(f, g) =

∑n
∆=1 |(f(∆)− g(∆))|

n
.

• Relative quality, which is the ratio between the delay (backlog) bounds obtained using

two different methods.

The comparison between method 1 (method 2) with original GPC is shown in Section 4.5.1

(4.5.2), then the comparison between method 1 and method 2 is shown in Section 4.5.3.
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4.5.1 Comparing method 1 with original GPC

This subsection compares the analysis results by method 1 and the original calculation of

GPC (3.5).

Single GPC. The input arrival curves are randomly generated by selecting the p, j

and d values in the following ranges: p ∈ [20, 50], j ∈ [10, 100] and d ∈ [1, 10]. The input

service curves have a fixed c = 60 and b = 1, and s varies for different groups of experiments

(corresponding to the x-axis). With each s value, we perform 1000 experiments with both

methods.

Figure 4.5-(a) reports the percentage of generated GPC for which the output curve

obtained by method 1 is more precise than original GPC. We start from s = 2 (the system

is overloaded if s = 1). As s increases, the resource becomes more sufficient, and the

percentage of experiments in which method 1 is more precise becomes higher. Eventually,

when s ≥ 4, the long-term slope of resource curves is always larger than the arrival curves,

and our new method always yields more precise results than original GPC.

Figure 4.5-(b) reports the distance between the upper output arrival curves obtained

by method 1 and original GPC dist(αuold, α
u
new) with n = 200 and different s. For each s, the

upper and lower ends of the vertical segment represent the maximal and minimal distance,

and the cross symbol in the middle represents the average distance of all the experiments

with this s value. In general, the distance between method 1 and original GPC is larger when

s increases. In summary, Figure 4.5-(a) and (b) show that the precision improvement of new

upper output arrival curves is more significant with more sufficient resource.

GPC network. In RTC, the final goal is to compute the backlog and delay bounds of

the event streams. Therefore, the precision improvement in the output curves is meaningful

only if it leads to more precise backlog and delay bounds. Therefore, we evaluate the backlog

and delay bounds of a 4 × 4 RTC network, as shown in Figure 4.6. The initial input arrival

curves are randomly generated in the same way as the above experiments, and the initial

input service curves are generated with s = 20, c = 60 and b = 1. Figure 4.6-(b) shows the

ratio between the delay (backlog) bounds obtained using original GPC and those obtained
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by method 1. Each result for x-axis value i is the average of the delay (backlog) relative

quality of components in the ith column. Similar to Figure 4.5-(b), the results include the

minimal, maximal and average relative quality for each group of experiments. We can see

that the precision improvement for delay (backlog) bounds using new output arrival curves

is more significant for the downstream components. This is because the precision gain in

output curves by method 1 will be accumulated as the curves propagate in the network.

4.5.2 Comparing method 2 with original GPC

This subsection compares method 2 (Theorem 4.4.1) with the original calculation (3.5) for

output arrival curves.

Single GPC. For each GPC, its arrival curves and service curves are generated as:

p ∈ [20, 100], j ∈ [1, x], d ∈ [1, 20], s = y, c = 50, b = 1, where x and y vary in each

setting5. For each setting, we generate 1000 task sets.

Figure 4.7-(a) shows the results with different s (X-axis) with x = 100, n = 500,

and y-axis shows the percentage of task sets when method 2 generates tighter results than

original GPC and the distance between the results. Figure 4.7-(b) shows the results with

different jitter range (X-axis) with y = 20, 30, 40 respectively, and the definition of y-axis

is the same as Figure 4.7-(a). In both settings, the output arrival curves can be improved

by method 2. Specially, the percentage of improved GPCs increases with larger s. This is

consistent with the observation of the example in Section 4.4: when s is larger, it is more

possible that p− j > c− s can be satisfied. Besides, it can be observed in Figure 4.7-(b) that

the percentage of improved GPCs decreases with increasing jitter. The reason is that when

jitter is large, α+(0) becomes large, and it causes pessimism to the results.

GPC network. We generate 3× 3, 4× 4, 5× 5 GPC networks, and compare method

2 with original calculation. The generation of inputs is similar as for single GPC and we set

5Note that p and c are relatively small since larger values will cause computation exception with larger-scale

GPC networks.
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(a) Different s. (b) Different jitter range.

Figure 4.7: Experiment results for single GPC.

x = 100, y = 100. The results with s = 20, 30, 40 are shown in Figure 4.8 respectively.

The percentage of networks where method 2 generates tighter delay bound (backlog bound)

than the original method is shown by del(pc) and buf(pc), and the relative quality of delay

bound (backlog bound) calculated by these two methods is shown by del(qly) and buf(qly).

The improvement of method 2 is more obvious when the network scale is larger since the

improvement of output arrival curves accumulates.

4.5.3 Comparing method 1 with method 2

This subsection compares the analysis improvement of method 1 and method 2 with both the

parameter settings in last two subsections.

Single GPC. Figure 4.9 shows the comparison of method 1 and method 2 in the

same settings as Section 4.5.1. Figure 4.9-(a) compares the percentage of GPCs for which

the calculation results of A are more precise than B, denoted by pc(A,B), and Figure 4.9-

(b) shows the distance between calculated results of the related two methods, denoted by

dist(A,B). For example, the line labeled by pc(m2, org) shows the percentage of improved

GPCs where the results calculated by method 2 are more precise than the original GPC, and

dist(m2, org) describes the distance between upper output arrival curves calculated with
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(a) s = 20. (b) s = 30.

(c) s = 40.

Figure 4.8: Experiment results for GPC network.

these two methods. Under this setting, method 1 has better performance than method 2.

Figure 4.10 and 4.11 show the comparison of method 1 and method 2 with the same

settings as Section 4.5.2. In detail, Figure 4.10-(a) and (b) share the same settings with

Figure 4.7-(a) and show results with different s. With increasing s, the percentage of GPCs

for which method 2 generates more precise results than method 1 is increasing. Figure 4.11-

(a) to (f) share the same settings with Figure 4.7-(b) and show the results with different j.

With larger jitter range, the improvement of method 1 over original GPC stays relatively

stable, while improvement of method 2 becomes smaller.

GPC network. Figure 4.12 shows the comparison of different methods with regards

to calculated delay bound in a GPC network. In each setting, we evaluate the delay bound
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(a) The percentage with different s. (b) The distance with different s.

Figure 4.9: Experiment results for single GPC with settings in Section 4.5.1.

(a) The percentage with different s. (b) The distance with different s.

Figure 4.10: Experiment results for single GPC with settings in Section 4.5.2.

with 3×3, 4×4, 5×5 GPC networks respectively. In detail, Figure 4.12-(a) shares the same

settings as the part of GPC network in Section 4.5.1. Under this setting, the improvement

of method 1 over original GPC is more significant with larger scales of GPC network, while

there is almost no improvement of method 2 over original GPC. Figure 4.12-(b) to (d) share

the same settings as the part of GPC network in Section 4.5.2. When s = 20, method 1

generates tighter delay bound than method 2, while method 2 has better performance when

s gradually increases to 40.
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(a) The percentage, s = 20. (b) The distance, s = 20.

(c) The percentage, s = 30. (d) The distance, s = 30.

(e) The percentage, s = 40. (f) The distance, s = 40.

Figure 4.11: Experiment results for single GPC with settings in Section 4.5.2 with different

j.
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(a) Settings in Section 4.5.1. (b) Settings in Section 4.5.2, s = 20.

(c) Settings in Section 4.5.2, s = 30. (d) Settings in Section 4.5.2, s = 40.

Figure 4.12: Experiment results for GPC network.
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CHAPTER 5

IMPROVING THE ANALYSIS OF AND CONNECTOR

5.1 Introduction

One of the fundamental abstract components in RTC is AND connector [82], which models

synchronization of events from two streams. AND is widely used in many application do-

mains such as sensor networks and IoT, where the states of different parts of the system with

the same time stamp should be fused to derive useful information about the system.

This thesis makes a revisit to AND in RTC. It presents new results to fix problems

in existing RTC theory, improves the analysis precision and makes it more general. The

improvements of new results in AND analysis can generate tighter output curves and de-

lay/backlog bounds in efficient time, which greatly optimize the analysis of a various range

of real-time systems with synchronization modules. More specifically, this thesis makes

contributions in the following two aspects:

• Identify and fix a problem in the existing analysis method for AND in [82] that may

lead to negative values in the lower output curves. New lower output curves are present

to fix the problem.

• Generalize AND to support synchronization of more than two input event streams. The

original AND only has two input ports. A straightforward way for the generalization is

to model a multi-input AND as several dual-input AND connectors cascaded together.

However, this straightforward generalization is both imprecise and inefficient. This

thesis presents a more elegant way to generalize AND to multiple inputs, which out-
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performs the straightforward generalization approach in terms of both precision and

efficiency.

Finally, experiments are conducted to evaluate our new results in different aspects,

with randomly generated system models under different configurations. Experiment results

show significant improvement of our new methods in analysis precision and efficiency.

5.2 Revisiting AND

This thesis first identifies the problem in existing analysis methods of AND, and then presents

solutions to fix the problem.

5.2.1 Problem of existing AND analysis

Recall the original lower output curve in [82]:

αl1,2 = max(min(αl1�αu2 +B1 −B2, α
l
2),min(αl2�αu1 +B2 −B1, α

l
1))

We use the following example to illustrate its problem. Suppose we have two strictly periodic

event streams with periods P1 = 5 and P2 = 4, and initial buffers B1 = B2 = 0. The input

curves are shown in Figure 5.1. Then their upper and lower arriving curves are

αu1(∆) = d∆/5e , αl1(∆) = b∆/5c ,

αu2(∆) = d∆/4e , αl2(∆) = b∆/4c .

Let ∆ = 1, then following the definition of � we have

αl1,2(1) = max (min (X1, 0) ,min (X2, 0)) ,

where

X1 = inf
λ≥0
{b(1 + λ)/5c − dλ/4e} ≤ b(1 + 0.1)/5c − d0.1/4e = −1,

X2 = inf
λ≥0
{b(1 + λ)/4c − dλ/5e} ≤ b(1 + 0.1)/4c − d0.1/5e = −1.
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(a) Input arrival curves. (b) Lower output arrival curves.

Figure 5.1: An example illustrating the negative value problem in original output curves of

AND.

So both X1 and X2 are negative, and consequently αl1,2(1) is also negative (the resulting

output curve is shown as the dash line in Figure 5.1). This violates the basic assumption for

all the computation rules in RTC that all curves are non-negative.

By having a closer look into the above example, we will see that these negative

values are actually a precision problem rather than a correctness problem. αl is a lower

bound for the number output events, and a negative number is indeed a correct lower bound.

Therefore, for a single AND connector, the original lower output curve is still correct, but just

too imprecise (even more imprecise than the naive lower bound 0 in some cases). However,

when the AND connectors are put into a RTC network, the effect of these negative curves will

propagate to other components, and eventually may cause inconsistency to the operational

semantics of the system model, as all the computation rules in RTC are based on the implicit

assumptions that all curves are positive.

5.2.2 Solution

The problem mentioned above can be easily fixed by changing all the negative values to 0.

However, this quick fix only superficially solves the negative value problem, but does not

really address the real source of pessimism behind the problematic original lower output
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curve.

In the following, this thesis presents a new lower output curve for AND. Our new

result is tighter than the original one and systematically solves the negative value problem.

Let Ri[s, t) denote the total number of events arrived in time interval [s, t), and use

Ri(t) to represent Ri[0, t) for short. Moreover, use [x]+ to denote max(x, 0) for simplicity.

We first quote a known result from [82] (Lemma 1):

Lemma 5.2.1. Ri(t)−Rj(s) is upper and lower bounded by:

αli�αuj (t− s) ≤ Ri(t)−Rj(s) ≤ αui�αlj(t− s).

Theorem 5.2.1. The output event stream of an AND connector with two input event streams

characterized by arrival curves α1 and α2 is lower bounded by the curve:

αl1,2 = min(max(αl1�αu2 +B1 −B2, α
l
1),max(αl2�αu1 +B2 −B1, α

l
2)). (5.1)

Proof. The backlogs of the two streams at time t are

b1(t) = [R1(t) +B1 − (R2(t) +B2)]+,

b2(t) = [R2(t) +B2 − (R1(t) +B1)]+.

LetR1,2[s, t) denote the number of output events in time interval [s, t), which is the minimum

between the events of the two streams in this interval:

R1,2[s, t) = min(R1[s, t) + b1(s), R2[s, t) + b2(s))

= min(R1[s, t) + [R1(s)−R2(s) +B1 −B2]+,

R2[s, t) + [R2(s)−R1(s) +B2 −B1]+)

= min(max{R1[s, t), R1(t)−R2(s) +B1 −B2},
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max{R2[s, t), R2(t)−R1(s) +B2 −B1}).

and by applying Lemma 5.2.1 we finally get

R1,2[s, t) ≥ min(max(αl1�αu2 +B1 −B2, α
l
1),max(αl2�αu1 +B2 −B1, α

l
2)),

by which the theorem is proved.

The solid line in Figure 4.3-(b) is the lower output curve generated by our new

method. We can see that it does not only solve the negative value problem, but also in

general yields more precise than the original curve even if the negative values are changed

to zero.

5.3 Generalizing AND

Many realistic systems need to synchronize events from more than two streams. In the

following we generalize the original dual-input AND connector to the multi-input setting.

The semantics of an m-input AND connector can be defined as R′(t) = minmi=1(Ri(t) +Bi),

where Ri(t) represents the accumulated number of events arrived at the ith input port.

5.3.1 The cascaded approach

A straightforward approach to analyze AND connectors with multiple inputs is to model

a multi-input AND connector as several cascaded dual-input AND connectors. Figure 5.2

shows the cascaded modeling of a multi-input AND connector with four input streams.

We use

(αi,j, Bi,j) = (αi, Bi)⊕ (αj, Bj)

to represent the computation of output curves for an AND connector with input curves αi

and αj (using (3.9) to compute the upper curves and using our new method (5.1) to compute
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Figure 5.2: Modeling a multi-input AND connector as cascaded dual-input AND connectors.

the lower curves) as well as the initial buffer level Bi,j for this event stream that is useful

when it is further combined with other streams:

Bi,j = min(Bi, Bj).

In general, for n-input streams cascaded by dual-input AND connectors in a particu-

lar order π = {α1, α2, · · · , αn} the final output curve is computed by

(αand,π, Band) = (α1, B1)⊕ · · · ⊕ (αn, Bn). (5.2)

The result of this approach is sensitive to the order to cascade the inputs, and it is

generally unknown which order gives the best result. On the other hand, the output bounds

obtained with any of the pairing orders are valid. Therefore, we can join the results with all

the possible orders to get tighter bounds:

Theorem 5.3.1. For multi-input AND connector, let Π be the full permutation of {α1, · · · , αn},

i.e., the set of all possible cascading orders of the input streams, and αuand,π and αland,π are

the upper and lower output curves for a particular cascading order π ∈ Π, then output

curves of the multi-input AND connector is upper and lower bounded by:

αuand = min
π∈Π
{αuand,π}, αland = max

π∈Π
{αland,π}.

The proof the theorem is straightforward and thus omitted.

The computation of the maximum delay and backlog of each stream also depends on

the cascading order. For example, in Figure 5.2, the maximal delay (backlog) of events in

stream α1 should be counted as the sum of the delay (backlog) incurred at AND1, AND2 and
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AND3, while for an event in stream α4 only the delay (backlog) at AND3 is counted. Obvi-

ously, to compute a tight delay (backlog) bound for a stream αi, we should use a cascading

order in which αi only connects to the last dual-input AND connector:

Theorem 5.3.2. A multi-input AND connector has n inputs characterized by {α1, α2, · · · , αn}.

The maximal delay and backlog of events in a stream αi is upper bounded by

di ≤ H

(
αui +Bi, α

l∗ + min
i 6=j
{Bj}

)
,

bi ≤ max

(
0, V

(
αui +Bi, α

l∗ + min
i 6=j
{Bj}

))
,

where αl∗ is the output curve for joining the other n− 1 input streams using Theorem 5.3.1.

The proof the theorem is straightforward and thus omitted.

5.3.2 The holistic approach

After introducing the straightforward approach (which does not have good performance for

multi-input AND as shown in experiment section), a new approach is present to compute the

output curve and delay/backlog bounds for multi-input AND, which is both more precise and

more efficient. This new approach is called the holistic approach, as it computes the desired

results with all the inputs curves at the same time (rather than computing them step by step

with two input curves at each step in the cascaded approach).

Theorem 5.3.3. Given an AND connector with n inputs, which are characterized by the

input upper and lower curves (αu1 , α
l
1), (αu2 , α

l
2), · · · , (αun, α

l
n), and the initial buffer levels

B1, · · · , Bn, the output arrival curves are computed by:

αuand = max
all k

{
min

(
min
i 6=k

{
αui�αlk+Bi−Bk

}
, αuk

)}
, (5.3)

αland = min
all k

{
max

(
max
i 6=k

{
αlk�αui +Bk−Bi

}
, αlk

)}
. (5.4)
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The maximal delay and backlog of input i are bounded by

di = H

(
αui +Bi,min

j 6=i

{
αlj +Bj

})
, (5.5)

bi = max

(
V

(
αui +Bi,min

j 6=i

{
αlj +Bj

})
, 0

)
. (5.6)

Proof. We first prove (5.5). Let Ri(t) denote the accumulated amount of arrived events of

input i from time 0 to t. The total amount of available events of input i until time t is

Ri(t) + Bi. Then min
i 6=j
{Rj(t) + Bj} is the minimum of the available events among all the

other inputs. So the maximal delay of the event backlogged at input i at time t is

di(t) = inf{τ ≥ 0 : Ri(t) +Bi ≤ min
i 6=j
{Rj(t+ τ) +Bj}}

≤ sup
λ≥0
{inf{τ ≥ 0 : Ri(λ) +Bi ≤ min

i 6=j
{Rj(λ+ τ) +Bj}}

≤ sup
λ≥0
{inf{τ ≥ 0 : αui (λ) +Bi ≤ min

i 6=j
{αlj(λ+ τ) +Bj}}

=H(αui +Bi,min
i 6=j
{αlj +Bj}).

Now we prove (5.6). The total amount of output events by time t isR′(t) = min
all j
{Rj(t)+Bj},

so the buffer of input i at time t is

bi(t) = [Ri(t) +Bi − {min
i 6=j
{Rj(t) +Bj}}]+.

Therefore, we have

bi(t) = [max
i 6=j
{Ri(t)−Rj(t) +Bi −Bj}]+. (5.7)

By applying Lemma 5.2.1 to this, we get

bi(t) ≤ [max
i 6=j
{αui�αlj(0) +Bi −Bj}]+

= [max
i 6=j
{(αui +Bi)�(αlj +Bj)(0)}]+
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Figure 5.3: The relation between Ψ(k) and Ψ′(k).

= [max
i 6=j
{sup
λ≥0
{αui +Bi − (αlj +Bj)}}]+

= [sup
λ≥0
{max
i 6=j
{αui +Bi − (αlj +Bj)}}]+

= [V (αui +Bi,min
i 6=j
{αlj +Bj})]+.

In the following we prove (5.3). Rand[s, t) denotes the amount of output combined event

generated in time interval [s, t), which equals the minimum among all the inputs:

Rand[s, t) = min
all i
{Ri[s, t) + bi(s)}, (5.8)

where bi(s) is the buffer level of input i at time s.

In the following we prove

min
all i
{Ri[s, t) + bi(s)} = max

all k
{Ψ(k)}, (5.9)

where

Ψ(k) = min

(
min
i 6=k
{Ri[s, t) + bi(s)} , Rk[s, t)

)
.

By the definition of Ψ(k) we know that for any k ∈ [1, n]

Ψ(k) ≤ min
all i
{Ri[s, t) + bi(s)}. (5.10)
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On the other hand, at least one of b1(s), b2(s), · · · , bn(s) must be 0. Without loss of general-

ity, let bx(s) = 0, then by the definition of Ψ we have

Ψ(x) = min
all i
{Ri[s, t) + bi(s)}. (5.11)

In summary, the LHS of (5.9) is no smaller than Ψ(k) for all k ∈ [1, n], and there exists at

least one Ψ(x) that equals to the LHS (5.9), by which (5.9) is proved. Combining (5.8) and

(5.9) yields

Rand[s, t) = max
all k
{Ψ(k)}. (5.12)

In the following we will derive an upper bound for max
all k
{Ψ(k)}. Note that we will

derive an upper bound for the entire max
all k
{Ψ(k)}, rather than upper bounding Ψ(k) for each

k and then getting their maximum.

By applying (5.7) to Ψ(k), we have

Ψ(k) = min

(
min
i 6=k
{Ri[s, t) + [Ri(s) +Bi − σ]+}, Rk[s, t)

)
,

where

σ = min
i 6=j
{Rj(s) +Bj}.

We define another function Ψ′(k) respect to k as follows:

Ψ′(k) = min

(
min
i 6=k
{Ri[s, t) + [Ri(s) +Bi − σ′]+}, Rk[s, t)

)
,

where σ′ = Rk(s) +Bk.

Now we discuss the relation between Ψ′(k) and Ψ(k). First, since σ ≤ σ′, we know

the general relation between Ψ′(k) and Ψ(k):

Ψ′(k) ≤ Ψ(k).
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Then we focus on the relation between Ψ′(k) and Ψ(k) with a particular k satisfying bk(s) =

0 which means the available events during [0,t) for k is no more than that for all other inputs.

In this case, Rk(s) +Bk must be no larger than Ri(s) +Bi for any i , which implies σ = σ′.

Therefore, we know bk(s) = 0 implies Ψ(k) = Ψ′(k).

Moreover, by the definition of Ψ(k), we know Ψ(k) reaches its maximal value with

k if bk(s) = 0, i.e.,

Ψ(k) = min
all i
{Ri[s, t) + bi(s)} = max

all i
{Ψ(i)}. (5.13)

Putting the above discussions together, the relation between Ψ′(k) and Ψ(k) can be

summarized as follows:

In general Ψ′(k) ≤ Ψ(k), while both of them reach the same maximal value with a

particular k satisfying bk(s) = 0. Moreover, there must exist bk(s) = 0 among

{b1(s), b2(s), · · · , bn(s)} since at any time point at least one of the stream buffers must be

empty. These relations are illustrated in Figure 5.3. Therefore, we can conclude that

max
all k
{Ψ(k)} = max

all k
{Ψ′(k)}. (5.14)

In the following, we compute an upper bound for max
all k
{Ψ′(k)}:

max
all k
{Ψ′(k)} = max

all k
{min(min

i 6=k
{Ri[s, t) + [Ri(s) +Bi − σ′]+}, Rk[s, t))}.

Ψ′(k) reaches the maximal value with k satisfying bk(s) = 0. If bk(s) = 0, we know

Ri(s) +Bi −Rk(s)−Bk ≥ 0, i.e., Ri(s) +Bi − σ′ ≥ 0, so the above equation is rewritten

as

max
all k
{Ψ′(k)} = max

all k
{min(min

i 6=k
{Ri(t)−Rk(s) +Bi −Bk}, Rk[s, t))}.
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and finally by (5.12), (5.14) and Lemma 5.2.1 we have

Rand[s, t) ≤ max
all k
{min(min

i 6=k
{αui�αlk +Bi −Bk}, αuk)}(t− s).

By now we have proved (5.3) for the upper output curve.

In the following we prove (5.4) for the lower output curve.

The amount of output events in [s, t) is the minimum amount of events among all

streams in this time interval:

Rand[s, t) = min
all k
{Rk[s, t) + bk(s)}

= min
all k

{
Rk[s, t)+[max

i 6=k
{Rk(s)−Ri(s)+Bk−Bi)}]+

}
//by (5.7)

= min
all k

{
max(Rk[s, t),max

i 6=k
{Rk(t)−Ri(s)+Bk−Bi})

}
.

By Rk[s, t) ≥ αlk(t− s) and Lemma 5.2.1, we get

Rand[s, t) ≥ min
all k

{
max

(
max
i 6=k
{αlk�αui +Bk −Bi}, αlk

)}
.

5.4 Experimental evaluation

New theoretical results are implemented in RTC Toolbox [1] and experiments are conducted

to evaluate their performance. Experiments are conducted on a computer with a 2.50GHZ

Intel Core i7 processor and 4.00 GB RAM.

5.4.1 Evaluation for dual-input AND

Next we evaluate the precision improvement of our new lower output curves for dual-input

AND connectors in (5.1). We compare two methods to compute the lower output curves:
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• AND-Naive: The lower output curve obtained by simply changing the negative values

in (3.10) to 0.

• AND-New: Our new lower output curve in (5.1).

In all the experiments with AND (including the multi-input AND in the next subsection), we

use a revised version of the PJD event model to generate input curves. For AND, if the long-

term slope of the input curves are different, the events backlogged in the buffer of the one

with lower slope will increase infinitely. Therefore, AND is typically used to join curves with

the same long-term slope. However, in the original PJD model [82], the long-term slope of a

curve only depends on the parameter p, which represents the period of the events. Therefore,

with the original PJD model, all the input curves to AND must have the same period, which

not only represents a very special case but may lead to biased comparison results. In order to

cover more general cases and make our results more convincing, we extend the PJD model

from three parameters (p, j, d) to four parameters (p, j, d, r):

αu(∆) = min

(⌈
(∆ + j)r

p

⌉
,

⌈
∆

d

⌉)
, αl(∆) =

⌊
(∆− j)r

p

⌋

With the extended model, the long-term slope of the curves depends on the value of r
p
.

Therefore, we can generate curves with the same long-term slope but different periods.

The input curves are randomly generated by selecting the p, j and d values in the

same ranges as the experiments in Figure 4.5-(a) and (b). For the two input curves of an

AND, their r values are derived so that the long-term slopes of the two curves are the same.

The initial buffer level of each input stream is randomly chosen in the range [1, x], where x

corresponds to the x-axis in Figure 5.4. Figure 5.4-(a) reports the percentage of experiments

in which AND-New is more precise than AND-Naive, and Figure 5.4-(b) reports the distance

between the lower output curves obtained by AND-New and AND-Naive. The results show

that the precision improvement of our new results is more significant when the initial buffer

level is smaller.
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(a) Percentage. (b) Distance.

Figure 5.4: Experiment results for dual-input AND.

(a) Percentage. (b) Distance.

(c) Execution Time.

Figure 5.5: Experiment results for multi-input AND (output curves).
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(a) Percentage. (b) Relative Quality.

(c) Execution Time.

Figure 5.6: Experiment results for multi-input AND (delay and backlog).

5.4.2 Evaluation for multi-input AND

Next we evaluate the generalization of AND to multiple inputs. We first compare the output

curves obtained by the cascaded approach and the holistic approach:

• CAS-x: The cascaded approach to compute the output curves in (5.2). Recall that

the cascaded approach is sensitive to the order to apply dual-input AND to the event

streams. The result with any order provides valid upper and lower output curves, while

joining the results with different orders in general may improve the precision. CAS-x

represents the final results obtained by joining results with x randomly selected orders.

• HOL: The holistic approach to compute the output curves using (5.3) and (5.4).
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Figure 5.5 shows experiment results with AND with four input streams. There are in

total 4!/2 = 12 different cascading orders for a four-input AND. Figure 5.5-(a) reports the

percentage of experiments that HOL is more precise than CAS-x, and Figure 5.5-(b) reports

the distance between the output curves obtained by CAS-x and HOL, with x being 1, 3, 6

and 12, respectively. The input curves are generated in the same way as in Section 5.4.1.

We also compare the time consumed by the analysis of each four-input AND by

different methods in Figure 5.5-(c). The input curves are generated in a similar way with

above, and the only difference is that we change the range for selecting the period p: the

lower bound is 10, while the upper bound is 15, 20, · · · , 40 (the values on the x-axis). The

initial buffer level is in the range [1, 5]. The experiment results show that the HOL method is

consistently efficient: it on average takes less than 0.1 second, and rarely exceeds 1 second.

However, the efficiency of the cascaded approach is much lower. Even CAS-1 (only one

cascading order is analyzed) is much slower than HOL. The time consumption of CAS-x

increases exponentially as the range of periods increases.

The low efficiency of the cascaded approach is because of the period explosion prob-

lem [43]. Generally, the computation time and memory requirement of an operation between

two curves are proportional to the number of segments contained by the curves. The number

of segments of a curve representing a PJD event model is generally proportional to its pe-

riod. The period of the output curve of a dual-input AND is the hyperperiod of the two input

curves. In the cascaded approach, the period of the event stream increases exponentially

as it travels through the dual-input AND, which leads to the low efficiency of the cascaded

approach. When periods of the input curves are selected from a wider range, the resulting

hyperperiod of them is larger, and thus the efficiency of the cascaded approach is worse. By

contrast, the holistic approach in (5.3) and (5.4) only performs corresponding operations on

each pair of the input curves, which avoids the above period explosion problem.

To summarize, when calculating output curves, the HOL method outperforms the

cascaded approach with significant advantages with regard to analysis efficiency, and it can

generate more precise results in some cases.
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Finally, we compare the precision and computation efficiency of the delay (backlog)

bounds using the cascaded method (Theorem 5.3.2) and holistic method (Theorem 5.3.3)

for four-input AND. The input curves are generated in the same way as the corresponding

experiments in above. Figure 5.6-(a) and (b) report the percentage of experiments where the

holistic approach gives more precise results and ratio between the delay (backlog) bounds

by the cascaded approach and by the holistic approach. Figure 5.6-(c) gives the time con-

sumption of the two approaches, where the holistic approach on average takes less than 0.1

second, while the time consumption of the cascaded approach is much longer and increases

exponentially as the period range is larger. Note that to compute the delay and backlog

bounds of an event stream in a four-input AND, we only need to compute the output curve

joining the remaining three streams, so the time consumption is lower than the experiments

in Figure 5.5-(c) which join all the four streams. In summary, to generalize AND to support

multiple inputs, our new holistic approach is not only more precise but also significantly

more efficient than the naive approach by cascading dual-input AND.

85



CHAPTER 6

PAY-BURST-ONLY-ONCE IN RTC

6.1 Introduction

Pay-Burst-Only-Once is a fundamental and powerful property in NC, which states that the

delay bound obtained by considering the overall service curve of nodes a flow traverses is

better (tighter) than that by summing up the delay bound of each individual traversed node.

The Pay-Burst-Only-Once property relies on the concatenation property in NC, which proves

that concatenating the service curve of a sequence of nodes generates the overall service

curve for the whole system composed of these nodes. The Pay-Burst-Only-Once property is

proved based on the concatenation property.

Since RTC inherits many concepts and properties from NC, people naturally expect

the Pay-Burst-Only-Once property to also hold in RTC. Much work has already assumed it to

be true and applies it for performance analysis. However, the Pay-Burst-Only-Once property

has never been proved in RTC. Even worse, some existing results seem to be against the

concatenation property in RTC [23] (recall that in NC the Pay-Burst-Only-Once property is

proved based on the concatenation property). Therefore, it leaves an important open problem

to find out whether the Pay-Burst-Only-Once property holds in RTC.

Our work gives the answer to the problem mentioned above. We prove that the Pay-

Burst-Only-Once property indeed holds in RTC. The basic idea is that we first find some

numerical relations between curves in RTC and NC and then prove the property in RTC

indirectly by using the Pay-Burst-Only-Once property in NC.

Moreover, since the concatenation property does not hold in RTC, the service curve
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for the whole system can not be derived, and then the output arrival curves of the whole

system seemingly can only be derived by calculating the output arrival curves one node

after another. However, this process is so tedious, especially with large-scale systems. As

a consequence, it raises a question whether we can find a once-for-all derivation for output

arrival curves without knowing the exact overall service curve.

This thesis solves the output arrival curve problem: figure out how to compute the

output arrival curves of a concatenated system with a once-for-all method. The basic idea

is similar to the proof of the Pay-Burst-Only-Once property, and the difficulty lies in the

calculation of lower output arrival curves in NC, which as far as known have never been

defined and calculated before.

Output arrival curve (a single node) Output arrival curve with concatenation

RTC upper output arrival curve lower output arrival curve

Status derived in [82]
no results

derived in our work

NC output arrival curve lower output arrival curve

Status derived in [21] derived in our work same as for a single node

Table 6.1: The comparison of our contribution and existing work (curves).

Concatenation Pay-Burst-Only-Once

RTC about lower service curve

Status proved to not hold in [23]
used but not proved

proved to hold in our work

NC about maximum/minimum service curve

Status proved to hold in [21] proved to hold in [21]

Table 6.2: The comparison of our contribution and existing work (properties).
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The comparison between our contribution and existing work is summarized in Table

6.1 and 6.2, where our work is marked in blue.

6.2 Comparing curves in NC and RTC

Before stepping into the analysis of the Pay-Burst-Only-Once property, this thesis first ex-

plores the relations among curves in NC and RTC, which are the basis of further analysis

and summarized in Table 6.3.

Curve A Curve B Relation

arrival curve in NC upper arrival curve in RTC A ⇐⇒ B

lower arrival curve in NC lower arrival curve in RTC A ⇐⇒ B

strict service curve in NC minimum service curve in NC A =⇒ B

lower service curve in RTC strict service curve in NC A =⇒ B

upper service curve in RTC maximum service curve in NC A =⇒ B

Table 6.3: The summary of relations among curves in RTC and NC

6.2.1 Comparison of arrival curves

Based on the definitions in Section 3.2.1, the upper arrival curve in RTC is equivalent to the

arrival curve in NC. As a counterpart, the definition of lower arrival curve in NC is adopted

from [72], which lower bounds the number of arrived bits in NC and is equivalent to lower

arrival curve in RTC by definition.

Definition 6.2.1 (Lower Arrival Curve in NC). A lower arrival curve αL describes the mini-

mum number of arrived bits on a flow with input function R(t) in any time interval iff for all
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0 ≤ s ≤ t, there holds

R(t)−R(s) ≥ αL(t− s),

which is equivalent to say:

R(t) ≥ R⊗̄αL,

.

6.2.2 Comparison of service curves

In both NC and RTC, the amount of available resource is described with (different types

of) service curves. However, what the definitions in these two frameworks emphasize is

different. In NC, service curve expresses more about how much resource is used by some

input, that is, how much service is provided, while in RTC, it addresses the capability of the

system, no matter whether there is an input or how much traffic the input brings. That is

why the definitions of service curves in NC always involve an input. In this section we first

explore the relations between strict service curve and minimum service curve in NC, and

then the relations between lower/upper service curve in RTC and strict/maximum service

curve in NC1.

Theorem 6.2.1. If a node offers βstrict as a strict service curve to a flow with input function

R(t) and output function R∗(t), and then it also offers βstrict as a minimum service curve to

the flow.

Proof. For any time t ≥ 0, consider the output R∗(t). There are two cases: t is either in a

backlogged period or not.

1Note that in the following analysis, we assume that the start time of the system is 0, which is consistent

with the definitions of arrival and service curves in both RTC and NC.
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If t is in a backlogged period, let s0 denote the start time of the backlogged period,

implying all arrivals that have arrived before time s0 have been served by s0 and hence

R∗(s0) = R(s0). We then have:

R∗(t) = R∗(s0) +R∗(t)−R∗(s0)

= R(s0) +R∗(t)−R∗(s0)

≥ R(s0) + βstrict(t− s0) ≥ (R⊗ βstrict)(t)

If t is not in any backlogged period2, let t0 denote the finish time of the latest back-

logged period before t. Then R(t0) = R(t) and R∗(t0) = R∗(t), since otherwise we would

not have had t0 being the finish time of that backlogged period. In addition, the definition

of t0 also means that all arrivals that have arrived before time t0 have been served by t0, and

hence R∗(t0) = R(t0). Combining these, we consequently have R∗(t) = R(t). Finally in

this case, together with βstrict = 0, we obtain

R⊗ βstrict = inf
0≤s≤t

{R(t)−R(s) + βstrict(s)} ≤ R(t) = R∗(t)

Then the theorem is proved.

Corollary 2. Let βsupmin denote the supremum among all minimum service curves offered by a

node in NC, then βstrict ≤ βsupmin.

Next we show the relation between lower service curve in RTC and strict service

curve in NC.

Theorem 6.2.2. If a node offers a lower service curve βl to a flow with input function R(t)

and output function R∗(t), then it offers strict service curve βl, also minimum service curve

βl to the flow.

2This case is not considered in [23].
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Proof. Consider any backlogged period from s to t. In this period, the node will be busy serv-

ing, implying no capacity remaining in the period after serving the input. Hence, R∗(0, t]−

R∗(0, s] = C(0, t] − C(0, s]. Since the node offers lower service curve, i.e. C(0, t] −

C(0, s] ≥ βl(t− s), we hence have

R∗(t)−R∗(s) = R∗(0, t]−R∗(0, s] ≥ βl

This proves that the node offers a strict service curve βl. In addition, since strict service

curve implies minimum service curve in NC, βl is a minimum service curve to the flow.

Corollary 3. Let βsupstrict denote the supremum among all strict service curves offered by a

node in NC, then βl ≤ βsupstrict.

Theorem 6.2.3. If a node offers an upper service curve βu to a flow with input function R(t)

and output function R∗(t), then it offers a maximum service curve βu to the flow.

Proof. For any time t ≥ 0, consider the output R∗(0, t]. For any 0 ≤ s ≤ t, by the definition

of upper service curve together with the fact R∗(0, s] ≤ R(0, s], there holds: ∀0 ≤ s ≤ t,

R∗(t) = R∗(0, t] = R∗(0, s] +R∗(0, t]−R∗(0, s]

≤ R(0, s] +R∗(0, t]−R∗(0, s]

≤ R(s) + βu(t− s)

Hence

R∗(t) ≤ inf
0≤s≤t

{R(s) + βu(t− s)} = R⊗ βu(t)

Corollary 4. Let βinfmax denote the infimum among all maximum service curves offered by a

node in NC, then βu ≥ βinfmax.
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6.3 Pay-Burst-Only-Once in RTC

The Pay-Burst-Only-Once property has been assumed to be true in RTC and much work has

already applied it for deriving tighter delay bound. However, none of these work directly

proves the correctness of applying the Pay-Burst-Only-Once property in RTC, but simply

refers to the proof in NC. This direct mapping seems not so convincing since the concatena-

tion property, based on which the Pay-Burst-Only-Once property is proved in NC, does not

hold in RTC.

Theorem 6.3.1. If βl1, βl2 are lower service curves offered by two nodes S1, S2 respectively,

βl1 ⊗ βl2 is not necessarily a lower service curve offered by the concatenation of these two

nodes.

Proof. Based on Theorem 6.2.2, if a node Si offers βli as a lower service curve, then it offers

βli as a strict service curve. Since it has been proved in [23] that the concatenation of strict

service curves does not necessarily generate a strict service curve, the concatenation of lower

service curve is not necessarily a lower service curve, so the concatenation property does not

hold for lower service curve in RTC. Then the theorem is proved.

However, although the concatenation property does not hold in RTC, the Pay-Burst-

Only-Once property can be proved in RTC. Next we first explain the basic idea of the proof

and then give the formal deduction.

According to Section 3.2.1, the delay bound a flow experiences when it traverses a

concatenated system in RTC is calculated with a similar method as in NC and the difference

lies in the service curve involved: in RTC lower service curve is adopted while in NC it

is minimum service curve. To prove the Pay-Burst-Only-Once property in RTC, we first

calculate the delay bound in RTC and NC respectively. Then by utilizing the numerical

relations among curves explored in Section 6.2, we compare the derived delay bounds and

then prove the property.
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Theorem 6.3.2. The Pay-Burst-Only-Once property holds in RTC.

Proof. The proof of the theorem involves two aspects:

(1) Safety. The delay bound derived with convolved lower service curve is no smaller

than maximum delay experienced by the flow.

(2) Tightness. The delay bound derived with convolved lower service curve is no

larger than summing up the delay bound at each node.

Assume that a flow with upper arrival curve αu in RTC, arrival curve αU in NC

traverses a sequence of m nodes, each offering a lower service curve βli, i = 1, 2, ...m,

the supremum of strict service curves of node Si is denoted by βsupstrict,i, and supremum of

minimum service curves of node Si is denoted by βsupmin,i.The upper service curve offered

by each node is denoted by βui , and the infimum of maximum service curves is denoted by

βinfmax,i.

We first prove (1). According to Section 3.2.1, the maximum delay experienced dmax

satisfies

dmax ≤ H(αU , βsupmin,1 ⊗ β
sup
min,2...⊗ β

sup
min,m)

Since arrival curve in NC is equivalent to upper arrival curve in RTC, we have αu =

αU .

According to Section 6.2, βli ≤ βsupstrict,i ≤ βsupmin,i, then we have

βl1 ⊗ βl2...⊗ βlm ≤ βsupstrict,1 ⊗ β
sup
strict,2...⊗ β

sup
strict,m ≤ βsupmin,1 ⊗ β

sup
min,2...⊗ β

sup
min,m

Then

H(αu, βl1 ⊗ βl2...⊗ βlm) ≥ H(αU , βsupmin,1 ⊗ β
sup
min,2...⊗ β

sup
min,m)
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So

dmax ≤ H(αu, βl1 ⊗ βl2...⊗ βlm)

showing that the delay bound calculated with concatenated lower service curve in RTC is

safe.

Next we prove (2). Since βli ≤ βsupstrict,i ≤ βsupmin,i, there must exist a minimum service

curve βmin,i = βli for each node Si. Since βui ≥ βinfmax,i, there must exist a maximum service

curve βmax,i = βui for each node Si. According to the Pay-Burst-Only-Once property in NC,

we have

H(αU , βmin,1 ⊗ βmin,2...⊗ βmin,m) ≤ H(α′U0 , βmin,1) +H(α′U1 , βmin,2) + ...+H(α′Um−1, βmin,m)

Then by replacing βmin,i with βli , replacing βmax,i with βui , and replacing αU with αu, we

have

H(αu, βl1 ⊗ βl2...⊗ βlm) ≤ H(α′u0 , β
l
1) +H(α′u1 , β

l
2) + ...+H(α′um−1, β

l
m)

Then (2) is proved3.

6.4 Computation of output arrival curves

After verifying the correctness of the Pay-Burst-Only-Once property in RTC, we move on to

compute the output arrival curves when concatenating the nodes a flow traverses. Similar as

the proof of Theorem 6.3.2, this thesis first explores how to calculate output arrival curves in

NC, then prove that the corresponding results are applicable in RTC.

Since the derivation of (upper) output arrival curve is known in NC, we focus on how

to calculate the lower output arrival curve in NC.

3Here we assume α′Ui = (α′Ui−1 ⊗ βmax,i)� βmin,i and α′ui = (α′ui−1 ⊗ βu
i )� βl

i
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Theorem 6.4.1. Consider a node offers a minimum service curve βmin and maximum service

curve βmax to the input flow R(t) with arrival curve αU and lower arrival curve αL in NC.

Then output flow has a lower output arrival curve α′L with

α′
L

= [(αL ⊗ βmin) ∧ (βmin�̄αU)]+.

Proof. Since the output in any time interval can not be larger than the input, we haveR∗(t) ≤

R(t).

Based on the definitions of minimum service curve and maximum service curve, for

any time t we have (R⊗ βmin)(t) ≤ R∗(t) ≤ (R⊗ βmax)(t).

Based on the definitions of upper and lower arrival curve, we have

(R⊗̄αL)(t) ≤ R(t) ≤ (R⊗ αU)(t).

Then

R∗(t− s) = R∗(t)−R∗(s)

≥ (R⊗ βmin)(t)− (R⊗ βmax)(s)

= inf
0≤u≤t

[R(t− u) + βmin(u)]− inf
0≤v≤s

[R(s− v) + βmax(v)]

= inf
0≤u≤t

sup
0≤v≤s

[R(t− u)−R(s− v) + βmin(u)− βmax(v)]

= sup
0≤v≤s

inf
0≤u≤t

[R(t− u)−R(s− v) + βmin(u)− βmax(v)]

= sup
0≤v≤s

[ inf
0≤u≤t−s+v

[R(t− u)−R(s− v) + βmin(u)− βmax(v)]

∧ inf
t−s+v≤u≤t

[R(t− u)−R(s− v) + βmin(u)− βmax(v)]]

= sup
0≤v≤s

inf
0≤u≤t−s+v

[R(t− u)−R(s− v) + βmin(u)− βmax(v)]
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∧ sup
0≤v≤s

inf
t−s+v≤u≤t

[R(t− u)−R(s− v) + βmin(u)− βmax(v)] (6.1)

≥ sup
0≤v≤s

inf
0≤u≤t−s+v

[αL(t− u− s+ v) + βmin(u)− βmax(v)]

∧ inf
t−s≤u≤t

[R(t− u)−R(s) + βmin(u)] (6.2)

= sup
0≤v≤s

inf
0≤u≤t−s+v

[αL(t− u− s+ v) + βmin(u)− βmax(v)]

∧ inf
t−s≤u≤t

[βmin(u)− (R(s)−R(t− u))]

= sup
0≤v≤s

[(αL ⊗ βmin)(t− s+ v)− βmax(v)]

∧ inf
0≤u′≤s

[R(u′)−R(s) + β(t− u′)] (6.3)

≥ (αL ⊗ βmin)(t− s) ∧ inf
0≤u′≤s

[βmin(t− u′)− αU(s− u′)] (6.4)

= (αL ⊗ βmin)(t− s) ∧ inf
0≤u′≤s

[βmin(t− s+ s− u′)− αU(s− u′)]

= (αL ⊗ βmin)(t− s) ∧ inf
0≤u′′≤s

[βmin(t− s+ u′′)− αU(u′′)]

≥ (αL ⊗ βmin)(t− s) ∧ inf
0≤u′′

[βmin(t− s+ u′′)− αU(u′′)] (6.5)

= (αL ⊗ βmin) ∧ (βmin�̄αU) (6.6)

where ∧ gets the minimum of the two parts it connects; in obtaining (6.2) we take v = 0 of

the second part of (6.1); (6.4) is to take v = 0 in the first item of (6.3) and apply upper arrival

curve to R(s)− R(u′) in the second half of (6.3); (6.5) is because of taking larger range for

infimum operation.

Based on the definition of lower arrival curve, for any interval ∆, α′L(∆) ≥ 0, then

we have α′L = [(αL ⊗ βmin) ∧ (βmin�̄αU)]+. Then we know how to calculate the output

arrival curves after concatenation in RTC.

Corollary 5. Assume an event stream with arrival curve αu, αl traverses m GPC compo-

nents with service curves (βu1 , β
l
1), (βu2 , β

l
2), ..., (βum, β

l
m), then the output arrival curve at
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m− th component is upper and lower bounded by:

α′u = (αu ⊗ βu)� βl

α′l = [(αl ⊗ βl) ∧ (βl�̄αu)]+

where βu = βu1 ⊗ βu2 ...⊗ βum, βl = βl1 ⊗ βl2...⊗ βlm.

Proof. The proof is similar to that of Theorem 6.3.2 with the combination of Theorem 6.2.1,

6.2.2 and 6.2.3.
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CHAPTER 7

IMPROVING GLOBAL EDF USING SHAPERS

7.1 Introduction

It is widely accepted that future real-time embedded systems will be deployed on multi-

processors, to meet their rapidly increasing requirements of both high computational capacity

and low power consumption. One of the crucial requirements that must be satisfied by a

multiprocessor real-time system is that it can provide bounded delay, which describes the

duration from each task activation to its execution completion. Deriving the delay bound of

each task in a system during the design stage is important for both hard and soft real-time

systems, since delay bound can not only be used to test the schedulability of hard real-time

systems, but perform as an indicator for system performance of soft real-time systems. This

thesis considers the analysis of delay bound under GEDF for multiprocessor systems.

Global Earlist Deadline First (GEDF) scheduling is widely used and studied since

it incurs less preemptions and migrations compared with optimal scheduling and the max-

imum delay is bounded when it is used to schedule tasks in soft real-time systems. Most

of existing work for calculating delay bound on multiprocessors under GEDF analyzes spo-

radic tasks [35, 38, 39, 54], where any two consecutive jobs of task τi are assumed to be

released with minimum separation time Ti. However in real applications burst exists, where

a relatively large number of jobs are released over a short interval. Comparing sporadic and

bursty inputs, the minimum separation time between two consecutive jobs in different in-

tervals keeps more stable for the former, and it changes a lot for the latter. As a result, the

sporadic task model denoting sporadic inputs is not a good choice for bursty inputs. When

setting the period of a sporadic task as the minimum separation time during bursty interval in
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modeled bursty inputs, the over-estimated workload leads to pessimistic results, and setting

that as the minimum separation time during more smooth intervals generates a wrong model

due to under-estimated workload. Further, when jobs arrive simultaneously, the minimum

separation time can not be specified. In this case, the period does not exist and bursty inputs

can not be modeled as sporadic tasks.

As a result, most existing analysis techniques considering sporadic tasks can not

directly be used to analyze systems with bursty inputs. What’s more, it is difficult to extend

the analysis techniques to bursty inputs since the complex job sequences make it hard to

specify the worst case of execution. Compared with sporadic tasks, the work analyzing

bursty tasks is much less. And for the problem under our setting, there is only one [55].

However, the delay bound derived by [55] is very large compared with the real requests of

each input task. In summary, none of existing work provides a satisfactory solution for the

analysis of bursty inputs .

This thesis proposes a new approach to calculate delay bound for a multiprocessor

system with bursty tasks under GEDF. In detail, bursty inputs are modeled as bursty tasks and

shapers are deployed for input bursty tasks. Once job sequences generated by bursty tasks

enter the system, they first go through corresponding shapers, after which the behaviors

of these jobs conform to sporadic patterns. Then these output jobs of shapers go into the

scheduler and complete execution. With shapers, existing analysis techniques analyzing

sporadic tasks can be applied (in this work the techniques in [54] are adopted), and the

delay bound of each task is calculated. To further improve our approach, this thesis designs

a heuristic algorithm which can increase the number of tasks meeting their deadlines in a

task set by adjusting settings of shapers. Experiments show that the proposed algorithm can

improve the acceptance ratio, and the derived delay bound is much smaller compared with

the state-of-art.
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7.2 Overview

Basic idea. In existing work about calculating the delay bound for tasks scheduled on mul-

tiprocessors under global EDF, jobs are assumed to directly enter the ready queue of the

scheduler as soon as being released. Under this assumption, the more complex the released

job sequence is, the harder it is to accurately analyze the worst-case amount of interference

suffered by the analyzed task. As a result, it is difficult to analyze the delay bound of each

task.

The difficulty brought by complex job sequences to scheduling analysis can be sidestepped

when deriving the delay bound, which is implemented in our work by the adoption of

shapers. We assume that jobs first go through shapers then enter the ready queue of sched-

uler, rather than directly being ready for scheduling after being released as in existing work.

Using the traffic control function of shapers, complex job sequences are shaped to conform

to sporadic patterns, where the separation time between two consecutive jobs is no smaller

than a constant, and then existing analysis techniques targeting sporadic tasks are applied.

A system with shapers behaves as follows: after a job is released by a task, it first

goes through a shaper. The shaper checks the separation between release time of current

job and the output time of its predecessor job. If it is no shorter than the supposed constant

specified by the shaping function, the shaper outputs the job instantaneously and then the job

enters the ready queue of the scheduler. Otherwise, the shaper buffers the job and outputs it

as soon as the minimum separation time is satisfied. In total, the delay a job experiences is

from its release to leaving the shaper to completing execution at the scheduler, rather than

the single part at the scheduler. And the delay bound of a task is the maximum delay among

that of all its jobs.

System architecture. A system with shapers eliminating burst in inputs is shown in

Figure 7.1. For each bursty task τi, a greedy shaper Si is deployed to shape the job sequence

released by it. Each shaper has a buffer, which is used to store jobs that can not enter the

ready queue of the scheduler due to violation of minimum separation time constraint. We

assume that the buffer size of each shaper equals 0 when the first job is released and is large
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enough so that there is no job loss. Then the input of the scheduler is transformed from bursty

tasks (when without shapers) to sporadic tasks and the delay bound becomes analyzable.

Figure 7.1: The system architecture with shapers.

7.3 Analyzing the system with shapers

This section introduces the approach to derive the delay bound for a multiprocessor real-

time system with bursty inputs under global EDF by the adoption of shapers. We first model

the scheduler as an abstract component. Then the system with shapers can be modeled

as sequential components where the outputs of shapers constitute one of the inputs of the

scheduler component. After that, we show how to compute the delay bound and adjust

shapers to increase the number of schedulable tasks in a task set.

7.3.1 Modeling the scheduler

This subsection first models the input job sequence of the scheduler, then models EDF sched-

uler as an abstract component, and specifies how to calculate its inputs and outputs. Note

that original input tasks and shapers are assumed to be given.

In a system with shapers, the burst in original input job sequences is eliminated and

the inputs to the scheduler conform to a sporadic pattern. Based on this, we define virtual
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sporadic task:

Definition 7.3.1 (Virtual sporadic task). Suppose that the job sequence released by task τi

passes a greedy shaper Si with shaping function θi(∆) = d ∆
T i
s
e. Then the output job sequence

of Si has minimum separation time T is , and is modeled by an implicit-deadline sporadic task

τ ′i . τ
′
i is called the virtual sporadic task of τi, whose period equals T is and WCET equals that

of τi. 1

Next we model an EDF scheduler as an EDF component.

Definition 7.3.2 (EDF component). A scheduler that schedules a task set τ = {τ1, τ2, ..., τn}

under global EDF is modeled as anEDF component, which is characterized by (
−→
C ,
−→
αU ,
−→
β ,
−→
α′U),

where
−→
C = {C1, C2, ..., Cn} is the WCET of each task,

−→
αU = {αU1 , αU2 , ..., αUn } is the arrival

curve,
−→
β = {βmin,1, βmin,2, ..., βmin,n} denotes the service curve provided for each task, and

−→
α′U = {α′U1 , α′U2 , ..., α′Un } is the arrival function of processed jobs.

In the framework shown in Figure 7.1, the inputs to EDF scheduler are virtual spo-

radic tasks. So for an EDF component, each element in
−→
C equals the WCET of correspond-

ing input bursty task. Next we will show how to derive
−→
αU ,
−−→
βmin,

−→
α′U for an EDF component.

1) Deriving
−→
αU

Suppose the periods of virtual sporadic tasks which are inputs to an EDF scheduler

are:
−→
Ts = {T 1

s , T
2
s , ..., T

n
s }, then the arrival function of each input task of EDF component is

denoted by:

αUi (∆) = d∆

T is
e

1Note that virtual task τ ′i does not exist in real systems and is defined only for analysis. Also, the deadline

of a virtual sporadic task is more used as an indicator for scheduling priority than a constraint for completion

time.
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Then we have
−→
αU = {d ∆

T 1
s

e, d ∆

T 2
s

e, ..., d∆

T is
e}

2) Deriving
−−→
βmin and

−→
α′U

Suppose the delay bound experienced by each input task at EDF scheduler is known

as DLYschd = {DLYschd,1, DLYschd,2, ..., DLYschd,n}, then
−−→
βmin and

−→
α′U can be derived.

Next we will first introduce the derivation of delay bound of each task at EDF scheduler

part, and then show how to derive
−−→
βmin and

−→
α′U with DLYschd.

Since each input task of EDF scheduler is a virtual sporadic task in our system,

the delay bound experienced can be calculated by existing analysis techniques analyzing

sporadic tasks scheduled under global EDF. We first model the analysis process of deriving

the delay bound at the scheduler:

Definition 7.3.3 (Calculation of delay bound). Assume that the input of a global EDF sched-

uler is a task set of n sporadic tasks. The task set is characterized by
−→
C∗ = {C∗1 , C∗2 , ..., C∗n},

−→
T ∗ = {T ∗1 , T ∗2 , ..., T ∗n}, and

−→
D∗ = {D∗1, D∗2, ..., D∗n}, which denote each sporadic task’s

WCET, period and relative deadline respectively. Suppose the analysis technique ξ is adopted

to derive the delay bound DLYschd = {DLYschd,1, DLYschd,2, ..., DLYschd,n} at the sched-

uler for each task in the task set, then the analysis process can be modeled as a function

Caldelay with

DLYschd = Caldelay(ξ,
−→
C∗,
−→
T ∗,
−→
D∗)

In our work, we adopt analysis techniques in [54] (denoted by ξG) and the delay

bound at the scheduler can be calculated as

DLYschd = Caldelay(ξG,
−→
C ,
−→
Ts,
−→
Ts)

, where
−→
C equals the WCET and

−→
Ts = {T 1

s , T
2
s , ..., T

n
s } equals the period of n virtual spo-

radic tasks.
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Then
−−→
βmin and

−→
α′U can be derived based on DLYschd.

The service curve βmin,i provided for each virtual task τ ′i can be derived based on

DLYschd and Corollary 1:

βmin,i(∆) = δDLYschd,i(∆)

{
0, 0 ≤ ∆ ≤ DLYschd,i

+∞, ∆ > DLYschd,i

Each output arrival function is calculated as α′Ui (∆) = αUi (∆ − DLYschd,i), so we

have

−→
α′U = {αU1 (∆−DLYschd,1), αU2 (∆−DLYschd,2), ..., αUi (∆−DLYschd,i)}

7.3.2 Calculating the delay bound

Figure 7.2: Modeling the system in Figure 7.1 into a set of abstract components.

After modeling the EDF scheduler as EDF component, the system in Figure 7.1 is

modeled into a network composed of n greedy shapers and one EDF component in Figure

7.2. Based on formula (3.13) and (3.12), to derive the delay bound of each task traversing

the system with shapers, the service function provided by each shaper component and EDF

component must be known. In this subsection, we assume that σi(∆) is given, based on

which we can derive the period of each virtual sporadic task, the delay bound at the scheduler

DLYschd, and
−−→
βmin. Next we explore the remaining unknown parameter, that is, the service

function provided by each shaper.
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Lemma 7.3.1. Assume a job sequence generated by task τi with WCET Ci passes a shaper

with shaping function σi, then the shaper provides to the task a service curve βsmin denoted

by βsmin = Ci ∗ σi.

Proof. The lemma can be easily proved with Corollary 1.5.1 in [21].

Now we can calculate the delay bound DLYi for each task τi.

Lemma 7.3.2. The delay bound of each task τi is calculated asDLYi = DLYs,i+DLYschd,i.

Proof. Based on the concatenation property, the delay bound is computed as

DLYi = Del(Ci, α
U
i , (Ci ∗ σi(∆))⊗ βmin,i)

, where βmin,i = δDLYschd,i .

Based on the property of βmin,i,

(Ci ∗ σi(∆))⊗ βmin,i = Ci ∗ σi(∆−DLYschd,i)

Then we have

DLYi = Del(Ci, α
U
i , Ci ∗ σi(∆−DLYschd,i))

= Del(Ci, α
U
i , Ci ∗ σi(∆)) +DLYschd,i

= Del(1, αUi , σi(∆)) +DLYschd,i

= DLYs,i +DLYschd,i

Then the lemma is proved.

From Lemma 7.3.2, the delay bound of each task equals the sum of that at the shaper

and at the scheduler. Also, given fixed inputs, processors and analysis techniques for sporadic

tasks, the shaping function of each shaper uniquely decides the delay bound of each task.
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7.3.3 The design of shapers

Different from above two subsections where shapers are known, in this subsection they are

not given and become the target of our analysis. We will discuss how to implement a shaper

with sporadic output and specify settings of shapers to increase the number of schedulable

tasks.

1) The implementation of greedy shaper

At the first sight, a token bucket seems to be one choice for generating sporadic

outputs. However, the following example shows that the output job sequence of a token

bucket can not satisfy the minimum separation time constraint in all cases.

An example. Suppose that a token bucket with token generation rate 1/Ts is used to

generate a job sequence with minimum separation time Ts. Consider that two jobs arrive at

the same time at a(1) and the bucket is full with one token generated at e(1) with e(1) ≤ a(1).

At a(1), one of the two jobs can pass the shaper and the other is buffered. Then at e(1) + Ts,

a new token is generated and the second job can be emitted. However, the separation time

between it and the first job is e(1) + Ts − a(1) ≤ Ts. The example shows that only when

e(1) = a(1), the minimum separation time constraint can be guaranteed by the token bucket.

However, e(1) = a(1) is only one special case and the behavior of token bucket when

e(1) = a(1) can not represent general cases.

Based on this observation, we define an interval-guaranteeing shaper whose output

always satisfies the minimum separation time constraint.

Definition 7.3.4 (Interval-guaranteeing shaper 2). [30] An interval-guaranteeing shaper

outputs jobs at e(i) satisfying

e(1) = a(1); e(i) = max{a(i), e(i− 1) + Ts}

2An interval-guaranteeing shaper is a type of greedy shaper.
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where a(i) denotes the arrival time of job i to the shaper, and Ts is the minimum separation

time in the output job sequence.

Lemma 7.3.3. The shaping function σ(∆) of an interval-guaranteeing shaper satisfies σ(∆) =

d ∆
Ts
e, where Ts is the minimum separation time in its output.

Proof. Can be obtained based on the behavior of an interval-guaranteeing shaper.

2) Specify the setting of shapers

Now we have already designed a shaper with shaping function σ(∆) = d ∆
Ts
e to im-

plement minimum separation time Ts in its output job sequence. From last two subsections,

for fixed input tasks executed on a multiprocessor platform, the periods of shapers uniquely

decide the delay bound. Next we focus on how to adjust the value of period T is of each shaper

Si to make more tasks schedulable.

To guarantee the system is not overloaded and jobs buffered at the shaper are limited,

the following two conditions must be satisfied:

n∑
i=1

Ci
T is
≤ m (7.1)

0 ≤ T is ≤
1

ηi
(7.2)

A simple choice to set T is = 1
ηi

with ηi defined in Section 3.2.1. However, this

can not guarantee the task meets its deadline. Actually, the shaper that makes a task meet

its deadline can not be derived with simple observation and the reason is two-fold. First,

the total delay bound is the sum of that at the shaper and that at the scheduler. Although

larger period leads to lower utilizations and intuitively smaller delay bound in the part of

EDF scheduler, it causes larger delay bound at the shaper. So it is hard to decide whether

to increase or decrease the shaper’s period without real computation. Second, changing the

period of shaper corresponding to one virtual sporadic task will influence the execution of

other virtual sporadic tasks. So the choice of period can not be independent.
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To make more tasks schedulable, it is necessary to enumerate all possible values of

T is satisfying formula (7.1) and (7.2). The process can be time-consuming and we propose a

simple heuristic to increase the number of schedulable tasks.

Algorithm 7.3.1 Decide the period of each shaper

1: for each shaper Si, T is = 1/ηi

2: calculate DLYi = DLYs,i +DLYsched,i

3: calculate sched and unsched

4: numsched = size(sched)

5: sort unsched with descending DLY −D

6: sort sched with descending D −DLY

7: num = size(τ)

8: while unsched(τ) and numsched < num do

9: numsched = size(sched)

10: while notempty(unsched) do

11: current←− pop the first from unsched

12: while unsched(τ) and candecrease(T currents ) do

13: T currents = T currents − 1

14: end while

15: end while

16: calculate sched and unsched

17: while notempty(sched) do

18: current←− pop the first from sched

19: while unsched(τ) and canincrease(T currents ) do

20: T currents = T currents + 1

21: end while

22: end while

23: calculate sched and unsched

24: num = size(sched)

25: end while
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In Algorithm 7.3.1, τ is the input task set. A shaper is put into set sched if its cor-

responding bursty task meets its deadline, else is put into unsched. We first decrease the

period of each shaper in unsched on the condition that the number of shapers in sched does

not decrease and the corresponding bursty task’s delay bound is smaller than before. After

adjusting the periods of all shapers in unsched, we increase the period of each shaper in

sched on the condition that its corresponding bursty task does not miss its deadline. For each

iteration, we check whether the number of shapers in sched increases. If not, the iteration

stops.

An example. We consider a task set composed of 5 tasks τ = {τ1, τ2, ..., τ5}. The

arrival function αi of each task τi is characterized by αUi (∆) = d∆+ji
pi
e. The parameters and

calculated delay bounds are shown in Table 7.1. DLY is the calculated delay bound when

setting T is = pi. T ′ is randomly generated period for shapers on the condition that formula

(7.1) and (7.2) are satisfied, and DLY ′ is corresponding delay bound. T ′′ is period derived

with Algorithm 7.3.1, and DLY ′′ is the corresponding delay bound.

From the table, in the first two settings of shapers, some task will miss its deadline.

After adjusting the period with the heuristic, all tasks meet their deadlines and the original

task set becomes schedulable.

C p j λ D T ′ T ′′ DLY DLY ′ DLY ′′

τ1 4 24 24 16 36 12 10 62 39 34

τ2 4 8 8 8 36 7 8 30 29 30

τ3 12 16 16 16 56 14 16 54 51 54

τ4 8 12 12 12 52 11 12 42 41 42

τ5 4 28 28 24 40 22 12 70 59 38

Table 7.1: A task set and its delay bound calculated with different settings of shapers.
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(a) Different jitter/period, d = 0. (b) Different jitter/period, d 6= 0.

(c) Different period, d = 0. (d) Different period, d 6= 0.

Figure 7.3: The comparison of acceptance ratio

7.4 Experimental evaluation

We implement our proposed approach in RTC Toolbox [1] and conduct experiments to eval-

uate the performance.

Task generation. We first generate its arrival function based on the PJD workload

model in RTC Toolbox [83] characterized by (p, j, d).

The range of p, j, d will be specified in following content and j/p is set to be an

integer in all experiment settings. After generating p, j, d, other parameters are randomly

chosen in following ranges: C ∈ [1, p], λ ∈ [C, p], andD ∈ [p∗ j
p
+C+p, p∗ j

p
+C+p+500].
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For each task set, we generate 5 tasks. Then the total utilization U of the task set is

calculated as U =
∑5

i=1
Ci

pi
, and the number of processors m is set as m = ceil(U).

In this section, we compare the performance of 4 approaches:

(1) the approach in [55], denoted by ′EXT ′.

(2) the approach proposed in our work with setting T is = pi, denoted by ′T = p′.

(3) the approach proposed in our work with randomly generated T is satisfying formula

(7.1) and (7.2), denoted by ′T = random′.

(4) the approach proposed in our work with the period setting derived with Algorithm

7.3.1, denoted by ′T = heuristic′.

Note that in (2) (3) (4) we adopt the techniques in [54] at EDF scheduler part, T is is

the period of shaper corresponding to task τi and pi is defined in the generation of task τi.

Experimental results. The above 4 approaches are compared in two aspects: accep-

tance ratio and normalized delay bound.

1) Acceptance ratio

Figure 7.3-(a) and (b) show the comparison among 4 approaches under different

jitter-period-ratio (X-axis). We generate 500 task sets for each different jitter-period-ratio.

In Figure 7.3-(a), p is randomly generated in [1, 60] and d = 0. d = 0 means that jobs can

be released simultaneously. Figure 7.3-(b) has the same parameter setting as Figure 7.3-(a)

except that d is randomly generated in [1, p], meaning that no two jobs are released at the

same time. The Y-axis shows the percentage of schedulable task sets among all task sets

generated for each jitter-period-ratio, denotedy by Acceptance Ratio. Based on the experi-

ment results, our approach performs better than ′EXT ′ regardless of the jitter-period-ratio

and settings of shapers. In detail, with the increasing of jitter-period-ratio, the acceptance

ratio of ′EXT ′ decreases, since jobs released simultaneously can potentially lead to un-

fair allocation of processor resources, causing large incremental in calculated delay bound.

What’s more, the improvement by the heuristic increases with jitter-period-ratio, since same
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(a) Different jitter/period, d = 0. (b) Different jitter/period, d 6= 0.

(c) Different period, d = 0. (d) Different period, d 6= 0.

Figure 7.4: The comparison of normalized delay bound

decrease of shaper period can potentially lead to more delay reduction at the shaper. The

performance under d 6= 0 is slightly better than d = 0, since when d 6= 0 no two jobs are re-

leased simultaneously and the delay experienced by each task at the shaper is comparatively

smaller.

Figure 7.3-(c) and (d) show the comparison among 4 approaches under different

range of p (X-axis). For each value i in X-axis, we generate 500 task sets with p ∈ [1, i]. In

Figure 7.3-(c), j/p = 1 and d = 0. Figure 7.3-(d) has the same parameter setting as 7.3-(c)

except that d ∈ [1, p]. It can be seen that ′T = heuristic′ still has the best performance.
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2) Normalized delay bound

Figure 7.4-(a) and (b) show the comparison among 4 approaches under different

jitter-period-ratio (X-axis). The parameter settings and corresponding number of task sets

are same as Figure 7.3-(a) and (b) respectively. We choose the delay bound calculated with

′T = p′ as the standard, and the Y-axis shows the ratio between the delay bounds derived with

other three different approaches and ′T = p′, namely Normalized delay bound, calculated

as
∑5

i=1DLYcomp,i/DLYp,i
5

, where DLYp,i is the delay bound of task τi calculated with ′T = p′,

and DLYcomp,i is that calculated with one of other three approaches. Each result for X-axis

value i is the average of the normalized delay bound of task sets with jitter-period-ratio equal

to i.

Figure 7.4-(c) and (d) show the comparison among 4 approaches under different

range of p (X-axis). The parameter settings and corresponding number of task sets are same

as Figure 7.3-(c) and (d) respectively.

Experiments show that the delay bound calculated by our methods is much smaller

than that by ′EXT ′ under both different jitter-period-ratio and range of p.

113



CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

Timing constraints are of great significance in real-time systems and developing analysis

techniques to determine the validity of a real-time system deserves the most concern. RTC is

a powerful real-time performance analysis framework for networked systems, providing the

most expressive and effective analysis for timing behaviors. This thesis revisits Real-Time

Calculus, improves the analysis of fundamental abstract components and proves the cor-

rectness of basic properties, thus improving the overall timing analysis of real-time systems

under RTC framework. In detail, this thesis improves existing RTC theory in the following

aspects:

(1) Improve the analysis of fundamental components, GPC and AND Connector.

For GPC, the thesis revises the proof for output arrival curves and proposes two methods to

improve the analysis precision. Experiment results show that these two methods can improve

the calculation results in original GPC under different cases, and neither dominates the other.

For AND, the thesis fixes a fundamental issue in existing analysis and proposes a more

precise and efficient approach to analyze the outputs in multi-input AND. The advantages

of improvements with regard to precision and efficiency are demonstrated in corresponding

experiments.

(2) Prove the correctness of Pay-Burst-Only-Once property in RTC. This work is the

theoretical basis for obtaining tighter delay bound in a networked system by concatenating

sequential nodes.
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(3) Extend NC to multiprocessors and improve global EDF with the integration of

real-time scheduling theory. Experiments compare the acceptance ratio and relative quality

of delay bound calculated by the new method and the only existing work, and show that the

new method can derive much tighter delay bound.

It is worth noting that the improvements above all contribute to the same target: they

greatly improve the delay bound analysis in complex real-time systems. Delay bound is one

of the most important criteria for timing performance evaluation, and work in this thesis

undoubtedly improves the overall analysis of real applications.

8.2 Future work

For future research, we plan to extend analysis techniques in RTC/NC and real-time systems

to other time critical network environments.

(1) Timing analysis in Time-Sensitive Networking (TSN): TSN is a set of standards

under development by the Time-Sensitive Networking task group of the IEEE 802.1 work-

ing group which gets more attention of the industry these years. TSN has superiorities of

low jitter, low latency and deterministic transmission, and is applicable to systems with cruel

requirements of transmission delay, and especially provides strong support for the develop-

ment of industrial Internet. The rapid development of industrial Internet has put forward

much higher requirements for communication network addressing the transmission of very

low latency and high availability. The improvement of manufacturing technology and the

refinement of control process all need a network capable of fast real-time communication

to support, whereas traditional Ethernet is difficult to meet the needs of various industrial

scenarios. TSN will play a significant role in the industrial Internet.

The scheduling in TSN. There is no scheduling mechanism based on service class

priorities that can effectively guarantee bounded end-to-end delay of time-sensitive data load.

Due to queuing, if a low-priority Ethernet frame is already in the transmission process, it will

delay the transmission of other Ethernet frames, even if these frames have the highest priority.
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This can happen every time the transmission path is switched or routed. In order to solve

this problem, sufficient and necessary conditions for schedulability, throughput bounds, and

other classic measures in TSNs need to be explored.

Traffic shaping. Different traffic classes with various priorities coexist on the same

network, and each has different requirements to available bandwidth and end-to-end latency.

The traditional ’Best-effort’ transmission mode has very poor predictability and is difficult to

predict when a ’Best-effort’ packet is transmitted, which will lead to potential transmission

conflicts. We plan to study the mechanisms to manage the bursty traffics (shaper / traffic

regulation) with regards to throughput and delay performance.

The cooperation and synchronization. To guarantee the latency requirement of differ-

ent services, all devices in this network need to have a common time reference and therefore,

it is needed to synchronize their clocks among each other. Only through synchronized clocks,

it is possible for all network devices to operate in union and execute the required operation at

exactly the required point in time. Furthermore, it is necessary to conduct closer cooperation

between devices globally in a TSN. For the above reasons, we plan to investigate the time

synchronization approach and global management of timing in TSNs.

(2) The scheduling timing analysis in other networks: Another direction focuses on

extending the RTC/NC analysis techniques to different networks, e.g., DNNs and SoCs.

Nowadays, we see the applications of DNNs in many applications, such as self-driving cars.

On one hand, traditional empirical evaluation approaches for the efficiency of DNNs (e.g.,

inference period) can hardly meet the timing predictability requirements in many hard real-

time environments. We will seek to collaborate RTC and the real time analysis techniques

with the inference latency analysis of DNNs. On the other hand, there are rarely schedul-

ing techniques involved for improving the efficiency of DNNs since the computation among

layers is sequential. However, the interconnection among layers in more recent CNN algo-

rithms, e.g. ResNets and Google Inception, are more complex, and it is necessary to manage

the execution sequences by developing real-time scheduling algorithms to meet the latency

requirement in hard real-time systems.
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