
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



PLANE EXTRACTION FROM

INHOMOGENEOUS POINT CLOUDS AND

PLANE-TO-PLANE ALIGNMENTS

WENZHENG FAN

PhD

The Hong Kong Polytechnic University

2020



The Hong Kong Polytechnic University

Department of Land Surveying and

Geo-Informatics

Plane Extraction from

Inhomogeneous Point Clouds and

Plane-to-plane Alignments

Wenzheng FAN

A thesis submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

July, 2019



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, of the best of knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

Wenzheng FAN (Name of Student)

i



Plane Extraction from Inhomogeneous Point Clouds and

Plane-to-plane Alignments

Abstract

Over the last few years, increasing demands for building interior surveying have

brought the challenge of acquiring the geometric information of indoor environ-

ments effectively and efficiently. Though the development of robotic engineering

had provided some preliminary solutions for building the virtual world for the

robotics, their precision and accuracy could not satisfy the applications in Architec-

ture, Engineering, and Construction (AEC). Various solutions have been introduced

with limitations in robust feature extraction, working range, accessibility, detail

levels, coverage, and reliability. Meanwhile, popular methods used for extracting

features, especially planes, from point clouds for mobile mappings were not suf-

ficient, accurate and robust enough for establishing 6 Degree-of-Freedom (DOF)

point alignment workflows.

A novel method for plane extraction from low-resolution inhomogeneous point

clouds captured by multi-line Mobile Laser Scanners (MLS), the Enhanced Line

Simplification (ELS) algorithm, was proposed and developed. The method em-

ployed raw data acquisition sequence to form point grids for analyzing curvatures

and identifying feature points along raw scanlines and dedicated virtual scanlines.

By clustering identified line segments concerning scanline directions, patches were



iii

detected and merged to form planes. The method eliminated the calculation of the

local estimated normals and overcame the over-segmentation problem in process-

ing noisy data.

Utilizing the plane extraction results, a plane-to-plane point cloud alignment

workflow was presented for aligning point clouds captured on a mobile platform to

the same frame. The workflow recovered the rotation and translation relationships

between frames by identifying common planes and non-linear optimization. The

implementation of the coarse-to-fine procedure and the shortest-path initialization

strategy waived the use of Inertial Measurement Units (IMU) and other positioning

sensors.

A backpack prototype, which adopted two multi-line laser scanners as the pri-

mary sensors, was designed to test the performance of the proposed methods in

multiple scenarios. The results showed that the proposed hardware system and the

processing workflow could achieve acceptable accuracy and reliability in typical in-

door and specific outdoor environments. The robustness of this IMU-free point

cloud alignment workflow was verified as well, which could be applied in future

mobile mapping and sensor fusion applications.
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Chapter 1

Introduction

GIS data capturing is a critical technique for modeling the real world. In the past

decades, sensors have been developed for capturing geometric data of specific loca-

tions, such as levels, theodolites, total stations, and Global Navigation Satellite Sys-

tem (GNSS) receivers. Based on the discrete geometric data captured, math models

and filtering methods were applied to generate fitted models of the real world.

To meet the demands for obtaining continuous or quasi-continuous geometry

data, especially information about terrain surfaces, such as Digital Elevation Model

(DEM) and Digital Surface Model (DSM) of urban and forest areas, advanced tech-

nologies using close-range photogrammetry and Light Detection And Ranging (Li-

DAR) have provided innovative methods for capturing quasi-continuous geometric

data of surfaces of objects. Different from the data captured using the conventional

surveying techniques, which adopt geometry information at specific locations to

1
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represent regional shapes, the quasi-continuous data generated by photogramme-

try and laser scanning enabled precise modeling with a nearly complete degree of

freedom. In addition, the tedious surveying procedures were also simplified to a re-

duced number of survey stations and an automatic observation for a large area at a

single time (Brilakis et al., 2010).

In recent years, the development of Building Information Modeling (BIM) intro-

duced a new challenge of acquiring detailed shapes and textures of indoor environ-

ments, making the indoor mapping technology a highlighted research area globally.

Under the circumstances, methods and solutions were proposed to deal with the

most familiar but complex environments. The most commonly used technology

for mapping in the narrowed indoor environment was laser scanning. Since pulses

could be reflected by objects from any incident angles, regardless of the presence

of texture, laser scanning was more convenient than photogrammetry for mapping

detailed indoor scenes and generating seamless models.

Meanwhile, the existence of artificial objects makes the point clouds of indoor

environments different from those of surface terrains and outdoor scenarios. Com-

pared with the outdoor environments, the point clouds of indoor environments

have the following unique characteristics, according to W. Fan (2015).

First, the feature point identification of indoor environments is crucial for in-

door mapping and visualization. Feature points are defined as the points with sharp

geometric changes, or points that are locally most representative in object shapes.

In other words, when all non-feature points are removed from raw point clouds, the
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shapes of the objects should be clear enough for human understanding, as shown in

Figure 1.1. Since most indoor surfaces are planar surfaces, such as walls, floors and

ceiling surfaces, if plane boundaries and feature points can be adequately identi-

fied, the segmentation of point clouds can accordingly be used for modeling indoor

planar surfaces. Meanwhile, based on the levels of interest, some uneven surfaces

can be replaced or represented by planar approximations or combinations of pla-

nar surfaces, such as curtains, ceiling ornaments, and decorations. Thus, feature

points of such objects are essential for determining the plane shapes and approxi-

mating the surface of arbitrary shapes. As the approximations significantly decrease

the complexity of object shapes and the point quantity, feature points can be used

to visualize sharp surface curvature changes on low-performance devices, which is

particularly useful in real applications. Furthermore, as the fundamental principle

of Simultaneous Localization and Mapping (SLAM) is feature extraction and match-

ing, the precise extraction of feature points and planes will improve the precision,

accuracy, and reliability of indoor SLAM since they are choosing the most represen-

tative points for matching, aligning and registering.

Second, since the resolution of indoor point clouds is a function of the range,

which is the distance between the sensor and the target object, and the angular

resolution, which is determined by the laser scanner while manufacturing, there

are severe detail loss problems in indoor spaces. Confined spaces, such as hall-

ways, washrooms, and pantries, commonly require more scan stations than wide

spaces. If not maintained properly, the point resolution might be too small and lead
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(a) (b)

FIGURE 1.1: Feature points helping human understanding. (a) The point cloud
with all points showing no feature is hard to understand. (b) With feature points
extracted and only represented, the corridor structure is easy to identify with the
doors and a trolley in front of the viewer.

to edge-loss problems, which may require prediction or approximation of the edges

rather than precise measurements (P. Tang, Akinci, & Huber, 2009). Additionally, the

inhomogeneous phenomenon brings a significant challenge for feature extraction

since it may omit the surface features if the checking kernels were not well selected.

Consequently, the robust method for extracting features from inhomogeneous point

clouds is also a challenge for indoor SLAM.

The most considerable difference between indoor point clouds and other point

clouds is the inevitable obstacles and specular surfaces in indoor environments.

Since the distances between the sensor and the target objects are much shorter than

those in the airborne LiDAR, the influences made by such obstacles and noisy points

are more critical. The borders of stationary obstacles need to be clearly identified for

the prediction based on the shape characteristics of continuous surfaces, while the

noisy points arising from moving obstacles and specular surfaces, such as glasses,
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mirrors, and extremely smooth metal surfaces, need to be detected and removed

since they are reflected by objects that do not exist in real scenes. These three kinds

of noisy points can cause scanline curvature changes, and they can be detected by

identifying feature points representing curvature changes.

The comparison above shows that of the characteristics of indoor point clouds,

feature point extraction is critical and valuable for data filtering, processing, and vi-

sualizing of indoor point clouds. Meanwhile, other problems of establishing a pre-

cise and accurate 3D GIS of indoor environments also need to be solved.

Mobile Mapping Systems (MMS) have been widely applied in mapping outdoor

environments. The systems synergized various sensors and technologies to achieve

continuous positioning and orientating. Researchers have tried to introduce out-

door solutions into indoor environments, but the lack of reliable positioning meth-

ods limits applications in such spaces. Though technologies and sensors have been

developed, there is still no satisfying solution for mobile mapping the building in-

teriors due to limitations in the working range, accessibility, detail levels, coverage,

and reliability.

In this thesis, a novel algorithm for extracting feature points for indoor scenarios

and its application to plane extraction from low-resolution inhomogeneous point

clouds is introduced and discussed. For further discussion on its usage and appli-

cations, a 3D SLAM algorithm for mapping artificial indoor environments, and its

carrier, the Seamless Spatial Data Acquisition System (S2D AS), is proposed and dis-

cussed.
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The rest of the thesis is organized as follows: In Chapter 2, current available sen-

sors and solutions for indoor 3D GIS data acquisition are introduced, followed by

a review of plane extraction methods and feature-based SLAM techniques. Chap-

ter 3 discusses the experiments and discussion based on the modified Enhanced

Line Simplification (ELS) algorithm together with its application to plane extraction

from low-resolution inhomogeneous point clouds. As the applications of ELS algo-

rithm did not require any hardware modifications, the design of the proposed mo-

bile mapping backpack prototype was introduced in Chapter 4, together with the

application of ELS-extracted planes, which is the plane-to-plane alignment work-

flow for mobile mapping. The corresponding point cloud alignment results are pre-

sented and discussed. Finally, Chapter 6 provides conclusions and future working

directions.



Chapter 2

Mobile Mapping Sensors, Systems, and

Technologies: A Review

Various sensors and technologies have been designed and adopted for recovering

the real world in 3D GIS. For example, laser scanning is one of the most popular

technologies for mapping indoor environments. Point clouds captured at different

locations are registered and merged using common features, targets and pre-known

positioning and orientation data. Point clouds can be used to generate 3D models,

the fundamental geometric elements of 3D geodatabases.

However, such station-by-station workflow may not be fluent enough in some

narrow indoor spaces, as the registrations between stations are difficult in specific

indoor scenarios. For instance, in narrow spaces and complex environments with

obstacles, direct line-of-sight (LoS) may be blocked, leaving remote possibility for

7
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resection. Another example would be the lack of adequate distinguishable com-

mon features and Ground Control Points (GCP) for co-registration when trying to

register two or more scan stations into the same coordinate frame. Although arti-

ficial targets, in the form of spherical and hemispherical targets, could be installed

to facilitate the registration process, the lack of LoS in such environments still pre-

vents successful alignments between scan stations. To fulfill the needs of mapping

in such scenarios, indoor MMS, which are similar to outdoor MMS, were introduced

and have become one of the most popular indoor mapping solutions.

In indoor environments, GNSS signals are no longer available and reliable, mak-

ing the positioning and orientation of the mapping platform a challenge. The Iner-

tial Navigation System (INS) is dedicated to providing orientation and positioning

data to some extent, although improvements are still needed in precision, reliabil-

ity, and costs. Consequently, researchers in the fields of robot control, computer

vision, and surveying have developed SLAM algorithms to determine the position

and orientation of the mobile platform in GNSS-denied environments. According to

Leonard and Durrant-Whyte (1991), SLAM was the simultaneous process that com-

bined the map building process, in which the geometric data captured by moving

sensors were aligned to the global reference frame, with the localization process, in

which the positions were determined using the geometric data on maps accumu-

lated in the mapping process.

In past years, new requirements were made for higher reliability, accuracy, and

robustness to facilitate the application of SLAM techniques to the mobile mapping
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process.

• Reduce the requirements on GCP. GCP are reliable controls and constraints

for noisy and unreliable SLAM positioning and orientation results, and the

key for registering the final dataset to the global reference frame. Their num-

ber and accuracy determine the overall indoor mapping accuracy. The proper

distribution of the GCP is determined by the degree of complexity of the in-

door environments, the planned path of the mobile mapping process, and the

design of the mapping solutions. For instance, staircases always require more

GCP for vertical variation control compared with flat rooms. The accuracy of

the GCP coordinates influences the registration accuracy and the elimination

of the drift error of the IMU and the SLAM algorithms.

• Extract valid features from the point cloud regardless of the resolution

changes. For LiDAR-based systems, extracting feature points from single-

frame point clouds plays a vital role in indoor SLAM workflow. In such envi-

ronments, the resolution directly affects the level of detail (LoD) the dataset

can achieve. The higher the LoD, the easier it is to extract the feature points.

Meanwhile, low-resolution point clouds may result in edge-loss problems,

which are challenging to recover (P. Tang et al., 2009). Therefore, some of the

solutions integrate multiple LiDAR to increase the resolution of point clouds.

If the resolution cannot be maintained, the algorithm adopted must be pre-

pared for processing such inhomogeneous data. Otherwise, the assistance of

ancillary information might be required.
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• Integrate multiple sensors. Different sensors used for geometric and texture

data acquisition, positioning, and attitude determination are integrated or-

ganically into most of the solutions to make more relevant data available, im-

proving the reliability of the SLAM algorithm. Sensor integration is used not

only for data fusion but also as corrections for other sensors to reduce drift-

ing errors, achieving higher accuracy and reliability. However, improving the

accuracy and reliability of single-sensor SLAM procedures is still an impor-

tant research topic because improving a single component would enhance the

whole system.

To fulfill the requirements above, both experimental and commercial solutions

are introduced for mapping indoor environments. In this chapter, specialized tech-

nologies, sensors, and solutions are presented, with discussions on their advantages

and limitations.

2.1 Mobile Mapping Sensors

Sensors installed in indoor mapping solutions can be grouped into three categories:

a) point cloud generation sensors responsible for geometric and texture data ac-

quisition, b) positioning and navigation sensors and technologies designed to pro-

vide positioning information or geo-reference information for geometric and tex-

ture data, and c) the attitude-determination sensors providing the corresponding
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attitude information of the sensor platform. By fusing data obtained from the sen-

sors of the three groups, point clouds, textures, and other kinds of data that describe

the real world can be generated to model the objects of interest.

2.1.1 Point Cloud Generation Sensors

Several technologies are involved in generating the point clouds of indoor mapping

solutions, as shown in Figure 2.1. The basic working principles of each sensor are

briefly introduced and compared in this section.

2.1.1.1 Terrestrial Laser Scanner (TLS)

As shown in Figure 2.1(a), TLS is designed to capture point clouds of the surround-

ing environments by rotating its internal prism or mirror and itself against the hori-

zontal axis and its base to make two-axis rotations of the laser beams (Shan & Toth,

2018). The distance between the laser scanner and the object can be calculated us-

ing Equation 2.1 while the coordinate of the object reflection can be derived from

Equation 2.2 as the angle encoders inside the TLS work with the ranger to provide

horizontal and vertical angles together with the travel time of the laser’s round trip

(Shan & Toth, 2018).

r = v ·∆t

2
(2.1)

where:
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(a) (b)

(c) (d) (e)

(f) (g)

FIGURE 2.1: Popular point cloud generation sensors for indoor mobile mapping.
(a) FARO Focus3D S 120 TLS © FARO Copyright 2015. (b) RIEGL VMX-450 MLS
© RIEGL Copyright 2015. (c) Hokuyo UTM-30LX 2D MLS. (d) Velogyne VLP-16 16-
line 3D MLS © Velodyne Copyright 2019. (e) FLIR Ladybug 5 panoramic camera
© FLIR Copyright 2015. (f) FLIR Bumblebee XB3 sensor © FLIR Copyright 2015. (g)
Microsoft Kinect depth camera (Gen. 2) © Microsoft Copyright 2015.

r is the direct LoS distance between the laser scanner and the object,

v is the speed of the laser beams,

∆t is the round travel time of the laser beam.
x = r sinθcosφ

y = r sinθ sinφ

z = r cosθ

(2.2)

where:
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(x, y, z) is the coordinate of the pending point in the Cartesian coordinate

frame of the TLS,

θ is the vertical/elevation angle of the laser beam in the spherical coordinate

frame of the TLS,

φ is the horizontal/azimuth angle of the laser beam in the spherical coordi-

nate frame of the TLS.

Therefore, the accuracy of TLS point coordinates is affected by errors in the hori-

zontal and vertical angle encoders and the distance measurements. The accuracy of

static TLS could be up to millimeter-level, which makes it perfect for capturing point

clouds for building the interior models that could be applied to AEC. The ranges of

TLS vary from tens of meters to thousands of meters, determined by the power of

the laser beams and the working principles. For those applied in AEC, the ranges

are commonly less than a hundred meters. Varieties of TLS are listed with detailed

information in Shan and Toth (2018), which will not be introduced here.

Most conventional spatial data acquisition solutions are based on TLS working

in fully static mode, stop-and-go mode, and profile mode (Chow, 2014) (Applanix

Corp., 2015). In static mode and stop-and-go mode, point clouds at scan stations

can be fused using reflective targets and spherical and hemispherical targets as GCP,

or Iterative Closest Point (ICP) algorithm, which uses the overall shape and point

distribution as the reference. The point registration process merges the clouds into
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the same reference frame and forms the point cloud describing the indoor environ-

ments as a single dataset. In profile mode, the scanner works as a single-line profiler

which maintains the horizontal angle unchanged while the platform keeps moving.

However, the profile mode requires individual permissions from the manufacturer

as most TLS would warn the users and stop work when its internal sensors sense

extensive vibrations or movement.

2.1.1.2 Mobile Laser Scanner (MLS)

According to Shan and Toth (2018), MLS, which is also called Dynamic Terrestrial

Laser Scanner, is a kind of scanner that is installed on dynamic platforms, such as

airplanes, boats, and ground-based vehicles, and rotates its internal prism to cap-

ture reflections of laser beams to generate point clouds of the surrounding environ-

ments. Two kinds of MLS are available. One, the conventional MLS is similar to the

TLS, and creates points by rotating the internal prism; the second, the flash LiDAR,

generates LiDAR beams in the form of grids to scan onward fields.

Similar to TLS, the prism inside the conventional MLS rotates against its axis

to create point clouds. However, there is only one rotation axis inside the MLS as

the conventional MLS is similar to the profiler installed horizontally. For single-

line MLS, such as the RIEGL VUX-1 profiler shown in Figure 2.1(b) and the Hokuyo

UTM-30LX 2D MLS shown in Figure 2.1(c), the prism rotates against the vertical

axis to create a 2D point cloud covering a specific horizontal Field of View (FOV).

Meanwhile, in multi-line MLS, such as the Velodyne VLP-16 shown in Figure 2.1(d),
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additional laser-detector pairs are installed to generate laser beams with inclination

angles against the vertical axis, providing beams with the extra vertical dimension

and generating 3D point clouds (Glennie, Kusari, & Facchin, 2016). The working

principle is shown in Figure 2.2(a) while an example of the point clouds captured is

shown in Figure 2.2(b).

Vertical FOV

Emitter/
Receiver

(a)

(b)

FIGURE 2.2: Working principle and point clouds of muilti-line MLS. (a) The laser
beams emitted by the emitter, reflected by the object, and received by the receiver.
(b) A single frame of MLS point cloud of room interior captured using VLP-16 and
visualized in VeloView provided by Velodyne.
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With the developing of autonomous driving technology, the previous military-

specified Geiger-mode scanner introduced by Shan and Toth (2018) was redevel-

oped to a flash LiDAR. In such scanners, tiny emitters, which are commonly Micro-

Electro-Mechanical System (MEMS) parts, are installed as plane arrays to generate

laser beams illuminating a relatively wide FOV with a much higher resolution and

updated frequency (M. Wang, 2018). Benefiting from modern development in the

semiconductor industry, the price of such scanners is much lower than traditional

scanners, and the price decreases with increasing production volume. However, the

accuracy of such flash light scanners is much lower, around 5 cm or less on measure-

ment accuracy. It can only fit needs in autonomous driving rather than in mapping

applications discussed in this thesis.

The calculation of the MLS point coordinates is still based on Equation 2.1 and

2.2. However, as the MLS keeps generating points in high speed and there is no on-

board storage in the scanner, the data are compressed for data transmission. Only

horizontal angles of the first point of a group of points are explicitly listed in the

output data package. Taking scanners made by Velodyne as an example, only the

azimuth angle of the first point of every thirty-two points is listed (Velodyne Acous-

tics Inc., 2015). Therefore, the horizontal angles of the rest points in the group can

only be derived using Equation 2.3, 2.4 and 2.5.

∆ti =∆tS ∗ IS +∆tDP ∗ IDP (2.3)
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where:

IS is the sequence index of the pending point i , which is the group index of

the sixteen-point group in the data package,

IDP is the data point index of the pending point i , which is the sequence index

of the point i in the sixteen-point group and corresponding to the laser beam ID,

∆tS is the given time interval for every sixteen beams of laser fires,

∆tDP is the given time interval between each of the adjacent laser fires,

∆ti is the time offset of the pending point i in the 384-point data packet.

∆φ j =φ j+1 −φ j (2.4)

where:

φ j is the horizontal angle of the j -th data block (the j -th group of thirty-two

points),

∆φ j is the time interval between the first point of the j -th and ( j +1)-th data

blocks.


φi =

∆ti − t j

∆tS ∗2
∗∆φ j +φ j

θi = θIDP

(2.5)

where:

t j is the time offset of the first point in the j -th thirty-two-point data block,
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∆tS is given time interval for each sixteen beams of laser fires,

φi is the horizontal angle of the pending point i ,

θIDP is the vertical angle of the giving data point index, which can be got from

Table 2.1 provided by Velodyne Acoustics Inc. (2015),

θi is the vertical angle of the pending point i .

TABLE 2.1: The corresponding firing sequences, fire ID, and vertical angles of Velo-
dyne VLP-16 3D scanner according to Velodyne Acoustics Inc. (2015)

Raw Sequence ID Fire ID Vertical Angle (◦)
1 0 -15
2 1 1
3 2 -13
4 3 3
5 4 -11
6 5 5
7 6 -9
8 7 7
9 8 -7

10 9 9
11 10 -5
12 11 11
13 12 -3
14 13 13
15 14 -1
16 15 15

1 (∗) 0 -15

(∗)Note: This is the first fire of the next firing loop showing the
horizontal angle change between loops.

Therefore, the accuracy of MLS point coordinates is affected by errors from the

horizontal angle encoders, distance measurements, installation error of the vertical
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prism (errors in vertical angle due to inaccurate installation), and variation in rota-

tion speed. As the sizes of MLS are smaller while the mechanisms inside are more

complicated, the accuracy of such MLS cannot achieve the accuracy of TLS. The

commonly declared measurement accuracy of such MLS is 3-5 cm while the best

could reach 2 cm (Velodyne Acoustics Inc., 2012) (Velodyne Acoustics Inc., 2015)

(Suteng Innovation Technology Co Ltd, 2015). As many of such scanners are based

on Time-of-Flight (ToF) mechanism and the update rate is up to 20 Hz, the valid

working range is limited to around 100 m.

Meanwhile, when the manufacturer changes the vertical installation angles of

the laser-detector pairs, the vertical FOV and resolution can be easily adjusted to

fulfill requirements in both autonomous driving and mobile mapping (Table 2.1).

To increase the resolution for semantic analysis, most vendors tend to reduce the

interval between scanlines for close-range targets by decreasing the vertical angle

intervals between scanlines whose inclination angles are close to 0 ◦, such as Hesai

Pandar40 (Figure 2.3).

Although the MLS might not be a perfect solution for autonomous driving due

to their relatively high expenses, they, especially the single-line models produced by

Hokuyo and SICK and multi-line models launched by Velodyne, are currently the

most commonly adopted mobile mapping sensors. However, the accuracy of such

scanners cannot satisfy their application in the field of AEC, especially for generat-

ing as-built BIM, which requires millimeter-level accuracy.
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FIGURE 2.3: Vertical Channel Distribution of the laser channels in the Hesai Pan-
dar40 Multi-line Scanner. The vertical intervals between each of the neighboring
channels between channel 1 and 6 and channel 30 and 40 are 1◦, while the intervals
between each of the neighboring channels between channel 6 and 30 are 0.33◦. The
overall coverage is from 16◦ below the horizontal plane to 7◦ above the horizontal
plane. © Hesai Copyright 2018

2.1.1.3 Stereo Camera

Few solutions are based on stereo cameras because the accuracy is related to the

main distance between two sensors, and the resolution is limited by the quality of

visible textures.

A few commercial solutions adopt close-range photogrammetry based on se-

quential images captured by monocular or panoramic cameras (Figure 2.1(e)). Al-

though panoramic cameras are commonly used in such systems, the overlapping

FOV is not large enough for building images for instant stereo images. The working

principle of close-range photogrammetry based on sequential images is by knowing

the interior orientation, which can be obtained by precise calibration in the labora-

tory, and exterior orientation, which is derived from the positioning and orienta-

tion of the mapping platform, to perform close-range photogrammetry processing

based on the feature and common points extracted from images (Iwane Laborato-

ries Ltd, 2010). Along with the increase of the baseline length, which is the distance
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between the data acquisition positions of neighboring images, the accuracy could

be up to tens of centimeters, fitting the needs for GIS database building.

Meanwhile, portable sensors based on binocular cameras are available (Figure

2.1(f)), whose accuracy is related to and restricted by the distance between the sen-

sor and the objects. As the gaps between the two optical sensors are usually around

tens of centimeters, the accuracy of binocular systems is worse than 10 cm when the

distance between the sensor and the object exceeds 4 m (FLIR Integrated Imaging

Solutions Inc, 2011). Intel released its new generation of RealSense devices in Jan-

uary 2018, and the stereo cameras based on artificial features, commonly infrared

tags, became commercially available with the valid range of a few meters (Keselman,

Woodfill, Grunnet-Jepsen, & Bhowmik, 2017) (Intel® Software, 2018).

2.1.1.4 Depth Camera

Originally designed for entertainment purposes, depth cameras, or RGB-Depth

(RGB-D) cameras as they can acquire both RGB information and depth data, are

advanced sensors based on infrared triangulation or ToF technology (Figure 2.1(g)).

The output of the depth camera is an RGB image and a depth image of the Instan-

taneous FOV (IFOV) where the multi-sensor camera is facing. Some researchers

also categorize sensors like FLIR Bumblebee as a depth camera since it can directly

output RGB-D images based on binocular photogrammetry. However, this thesis

still considers RGB-D cameras as a kind of sensor equipped with a dedicated emitter

and a corresponding receiver, usually a pair of infrared sensors, to generate depth
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maps of facing areas. Examples of such cameras include the Microsoft Kinect I and

II, Google Project Tango series (discontinued), Asus Xtion sensor (discontinued),

and Occipital Structure series (Haggag et al., 2013) (Darwish, Tang, Li, & Chen,

2017).

Recent developments still limit the working distance, resolution, and data acqui-

sition rate of depth sensors though scholars and researchers have already adopted

them as a convenient surveying tool. Many scholars are working on the calibra-

tion and working range extension, considering the compact sizes and low prices of

RGBD sensors. Darwish et al. (2017) introduced an online method that fused on the

data captured by the optical cameras of the Structure Sensor and its carrier, which

is an iPad, to form stereo images to calibrate the depth sensor and increase the valid

range as well. The Root Mean Square Error (RMSE) at 2.5 m distance can be reduced

to around 20 mm while the overall working range can reach up to 9 m. However, the

limited accuracy at the maximum range and the accuracy decreasing with the dis-

tance exponentially still limit the application of such sensors in large space mobile

mapping.

2.1.1.5 Structure-from-motion (SfM) and Visual SLAM (vSLAM)

SfM and vSLAM are two similar techniques rather than hardware sensors. They can

both recover the 3D structures of surrounding environments from monocular 2D

images. However, the differences are pronounced.
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By extracting and matching texture features, SfM connects 2D images with no

pre-known interior and exterior orientation based on tie points only. It recovers ge-

ometric relationships of unordered images taken from different viewpoints (Schon-

berger & Frahm, 2016). In addition to its inability to provide general, complete, and

robust solutions owing to the absence of texture features extracted, the most sig-

nificant limitation of this technology is that the algorithm cannot regain the scale

factor of the structures. Therefore, the implementation of the binocular SfM algo-

rithms always requires control points to recover the scale factors. However, as there

is no limitation on the image acquisition sequences, SfM has been widely applied in

the reconstruction of 3D object models by processing images taken at locations sur-

rounding the object. In the meantime, as single cameras are easy to carry and install

on unmanned vehicles and SfM can work even with the generally available internet

photos, scholars are working in this field to reconstruct ground objects using large-

scale image databases (Schonberger & Frahm, 2016) (Ewertowski, Tomczyk, Evans,

Roberts, & Ewertowski, 2019).

Similarly, vSLAM is a batch of algorithms which recover the 3D geometric re-

lationship using tie points extracted from 2D images. The sensors adopted can be

either monocular or binocular; the monocular solutions require the scale parame-

ter as an input factor because the algorithm itself cannot directly recover the factor.

Besides the difference in adjustment methods, the most appreciable difference be-

tween SfM and vSLAM is that the initial state between the ordered images in vSLAM

is often well-known by using other sensors, such as GNSS receivers or IMU Dead
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Reckoning (DR), or just zero difference from the frames ahead in the ordered image

sequence. Also, the main product of vSLAM is the trajectory of the sensor, while the

maps generated are often byproducts.

Although the two algorithms can both generate 3D maps and are widely used in

mobile mapping, they will not be discussed in detail as they are both data process-

ing algorithm whose points are generated as products rather than sensors through

which depth maps or point clouds can be directly produced.

2.1.1.6 Comparison of the Point Cloud Generation Sensors

The key specifications of the sensors above are listed in Table 2.2. Listed features

are considered as criteria for choosing sensors for mobile mapping based on the re-

quirements of the applications, such as BIM generation, progress monitoring, navi-

gation.

For BIM generation, experts from the AEC industry typically require millimeter-

level accuracy, making stationary and stop-and-go TLS the only choice. Navigation

applications often require lightweight solutions, accepting only small-size camera

sensors, either stereo cameras or depth cameras.

The reasonable level of accuracy and working range of MLS is currently a more

popular solution for most outdoor and indoor solutions. The 360 ◦ horizontal FOV

provides the possibility of SLAM with high robustness using the surrounding envi-

ronments, while the vertical FOV of tens of degrees enables 3D SLAM in most sce-

narios. By installing more than two multi-line MLS with angles between them, the
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TABLE 2.2: Comparison of the Point Cloud Generation Sensors

Sensor Type Working
Principle

Passive
/ Active

H. FOV (*) V. FOV(*) Range Accuracy

TLS (static) ToF Active 360 ◦ 135 ◦ × 100 m < 1 cm
TLS

(profiler)
ToF Active N/A 135 ◦ × 100 m < 1 cm

MLS
(single-line)

ToF Active 360 ◦ N/A × 100 m ∼ 3 cm

MLS
(multi-line)

ToF Active 360 ◦ 30-40 ◦ ∼ 100 m ∼ 3-5 cm

Stereo
Camera

Close-range
Photogrammetry

Passive w.r.t focal
lengths

w.r.t focal
lengths

< 10 m w.r.t.
distance
(10 cm at

4 m)
Depth

Camera
ToF /

Triangulation
Active < 90 ◦ < 60 ◦ < 10 m w.r.t.

distance
(3.85 cm
at 3.5 m)

(∗)Note: The range for horizontal FOV (H. FOV) is 0 ◦ - 360 ◦ and for vertical FOV (V. FOV) is 0 ◦ -
180 ◦.

system would be capable of recovering 360 ◦+ 360 ◦ FOV, providing much higher

reliability for 3D SLAM in building interiors.

In our dedicated system developed for indoor mobile mapping, two multiple-

scanline MLS are installed as the main point cloud generating sensors to capture

instant 3D point clouds used for 3D SLAM. Features extraction methods and the al-

gorithms are discussed in Chapter 3, while the point cloud alignment strategies and

algorithms based on such features for 3D IMU-free SLAM are presented in Chapter

4.
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2.1.2 Positioning and Navigation Sensors and Technologies

Various technologies can be used to facilitate positioning in mobile mapping appli-

cations, such as GNSS, IMU, and INS, which are the most commonly used position-

ing technologies. Meanwhile, SLAM has been utilized as one of the most popular

software solutions for generating trajectory and orientations.

2.1.2.1 Hardware Sensors

In outdoor mobile mapping based on vehicle platforms, the combination of GNSS,

IMU, and a wheel-side odometer (Figure 2.4), is mandatory for applications in com-

plex city environments. The kinematic positioning is required as well to provide

centimeter-level real-time positioning accuracy. It is similar to Position and Orien-

tation System (POS), which is the integration of GNSS and IMU, and enables the

applications of airborne laser scanner technique worldwide (Shan & Toth, 2018).

However, an extra odometer is provided to correct the IMU drift while GNSS solu-

tions are unavailable, which barely happens in airborne scenarios.

The GNSS receiver is responsible for solving the positions of the platform in 1

s interval by resectioning the satellites on the orbits. When GNSS signals are not

reliable enough, i.e., due to multi-path noises and blockage of surrounding high-rise

buildings, IMU data, consisting of accelerations and orientation measurements, are

used to calculate movements and attitudes from the signal-loss position using DR

method. As a data processing method based on high-frequency measurements and
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second-order integral, drifts accumulate with the increasing distance. Therefore,

the odometer is used to provide one-dimension measurements to derive the speed

of the platform and correct the differences in first-order integral resulting from the

small errors between the real acceleration and the measurement values (Georgy,

Karamat, Iqbal, & Noureldin, 2011). In the meantime, the high-frequency IMU also

enables the positioning and orientation of the platform between GNSS positioning

intervals, rather than calculating the differences from Doppler speed measurements

and moving directions on the trajectory.

FIGURE 2.4: Applanix POS LV system for positioning and heading applications
© Applanix Copyright 2019.

As shown in Figure 2.5(a), it is a normal-sized antenna for survey-grade GNSS

applications, while the sensor shown in Figure 2.5(b) is a multi-antenna GNSS sys-

tem which can output both the positions and headings of the platform. In some mo-

bile mapping solutions, either backpack solutions or vehicle-based solutions, multi-

GNSS systems are used as both positioning and heading sensors, such as 3D Laser

Mapping ROBIN system by 3D Laser Mapping, shown in Figure 2.6(a), and MMS-A

by Mitsubishi, shown in Figure 2.6(b). When at least three antennas are provided,

the baselines between antennas can be used to calculate the three-axis attitude of

the installation platform as the Mitsubishi solution. Figure 2.5(c) shows a dedicated
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GNSS module, which consists of the compact antenna and the receiver board mod-

ule on the reverse side, designed for handheld devices. Figure 2.5(d) shows a MEMS

IMU intended for mobile mapping applications. Conventional IMU is quite heavy

and large. Although adopted in some of the solutions, especially vehicle-based so-

lutions that are not sensitive to weights and power consumption, it is believed they

will be replaced by MEMS sensors and algorithms in the future.

(a) (b)

(c) (d)

FIGURE 2.5: Popular positioning and navigation sensors for mobile mapping. (a)
NovAtel GNSS antenna © NovAtel Copyright 2016. (b) Hemisphere multi-antenna
GNSS © Hemisphere Copyright 2016. (c) Swift Piksi GNSS module © Swift Copy-
right 2016. (d) Series of MEMS IMU, Attitude and Heading Reference System and
GPS/INS products from Xsens © Xsens Copyright 2016.

However, since GNSS receivers can barely output precise positions in indoor en-

vironments, the IMU and its combination with SLAM algorithms would be a better

choice for indoor mobile mapping. Alternatively, if static or stop-and-go solutions

are adopted, total stations and other conventional survey instruments can be used

to obtain the accurate positions of the survey stations and the registration targets.
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(a)

(b)

FIGURE 2.6: Mobile mapping solutions utilizing multiple GNSS antenna for orien-
tating. (a) 3D Laser Mapping ROBIN system © 3D Laser Mapping Copyright 2019.
(b) Mitsubishi MMS-A © Mitsubishi Copyright 2019.

2.1.2.2 SLAM

SLAM is the most popular solution adopted in scenarios where GNSS signals are

no longer available, such as city canyons and indoor environments. Depending on

the data used, there are four kinds of SLAM methods—LiDAR SLAM, vSLAM, RGB-

D SLAM, and integrated SLAM—in which both image and LiDAR data will be used

in the positioning and mapping process. Despite the differences in source data,

the principles of these four SLAM methods are the same. They are all based on
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the registration and matching between data frames or the alignment between the

features and the local maps. By calculating the respective position and orientation

changes of the survey platform, the geo-referencing relationship between neigh-

boring frames and key frames can be estimated. Through these frame-to-frame or

frame-to-map alignments, an estimated relationship network can be built and ad-

justed, producing the estimated pose and position of every single frame. In most

algorithms, IMU data are thought to eliminate the lose-lock errors while the SLAM

results restrict the drifting of the SLAM trajectory. A SLAM processing result example

is shown in Figure 2.7, whose planes are adopted as features for alignment.

FIGURE 2.7: SLAM processing result example showing the trajectory in white and
the point cloud of the floor in blue

The SLAM processing method can be adopted for both outdoor and indoor en-

vironments: its most significant advantage is that it can provide reliable positioning

information in GNSS-denied environments. Most of the indoor mobile mapping so-

lutions nowadays are based on their integration with IMU. The detailed workflows

and techniques of SLAM are reviewed in Section 2.5.
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2.1.3 Attitude Determination Sensors and Technologies

Attitude determination methods are in two kinds: direct and indirect methods. In

direct methods, the corresponding sensors can output real-time attitude informa-

tion of the platform by analyzing the difference between the heading direction and

the magnetic north, and the angle between its downward direction and the direction

of the gravity. Such sensors include, but are not limited to, 2D/3D compass, IMU, in-

clinometer, gyroscopes, and Attitude and Heading Reference System (AHRS). With

the developing of MEMS technologies, such sensors, which used to be heavy and

large, are now small and easy to integrate with other sensors, as shown in Figure

2.5(d).

The second kind of attitude determination technology is based on indirect

methods. Such sensors calculate the estimated attitude information based on kine-

matic positionings, such as the one shown in Figure 2.5(b). For example, the attitude

determination device based on dual GNSS antenna calculates the single-direction

orientation of the platform based on the positioning differences with the known

baseline length as a constraint. Meanwhile, multi-antenna devices with more than

three antennas can output pitch, roll, and yaw information at the same time based

on the comparison between the orientations of the sensor pointing at the grid axes.

Another example is the attitude determination method, which can estimate the

attitude differences between two epochs in 3D scenarios or the heading variations in

2D scenes. Therefore, given the initial attitude information, the kinematic attitude
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determination can be derived. However, in such examples, the sensors involved are

the point cloud capturing sensors or the image sensors, which blurs the boundary

between the categories of point cloud and image capturing sensors and the dedi-

cated attitude determination sensors.

2.1.4 Discussion

As listed in previous sections, various sensors are implemented for mobile mapping

applications. Typically, a complete mobile mapping system consists of a position-

ing sensor, an attitude determination sensor, and at least one point-cloud capturing

sensor. In some of the solutions, a camera, either a normal camera or a panoramic

camera, is included for capturing images of the surrounding environments, which

could be used for both point cloud colorization and image documentation. For such

applications, panoramic cameras are better than traditional cameras as they are ca-

pable of providing 360 ◦ FOV.

In some solutions, the boundary between the three categories of sensors could

be blurred. For instance, the laser scanners, which are typically point cloud captur-

ing sensors, are used to provide point clouds to determine position and attitude in

the SLAM process instead of the dedicated sensors for localization and orientating.

Meanwhile, sensors are designed to be alternatives of other sensors to enhance the

reliability of the whole system, such as the adoption of IMU in outdoor POS.
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Based on this fundamental structure, indoor mobile mapping systems were de-

signed to meeting the needs of various GNSS-denied scenarios, which are intro-

duced in the next section.

2.2 State-of-the-art Indoor Mobile Mapping Solutions

Researchers and commercial suppliers have introduced a variety of mobile mapping

solutions for indoor environments. Brief introductions of these state-of-the-art sys-

tems are listed in this section.

The floorplan-only solutions are a product of outdated technology and are no

longer evolving presently. However, as some of them are also based on sensors in-

stalled on mobile platforms, the data processing algorithms and workflow can still

be referred to in state-of-the-art solutions. Therefore, they will be first presented,

followed by the introductions of semi-mobile and fully mobile solutions.

Meanwhile, solutions based on data fusion of multiple scan stations are fully

static solutions. The registration and point cloud alignments are based on common

features and targets extracted from overlapping areas. They will not be discussed

here either.

2.2.1 Floorplan-only Solutions

A few indoor solutions were introduced in earlier years based on the assumption

that there are only floors, ceilings, and walls in indoor environments, generating the
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surface model of the main infrastructures, which are similar to the 2.5D representa-

tion of the floorplan. The data capturing and processing workflow is then converted

to the process of intersection identification and point cloud classification.

Biber, Andreasson, Duckett, and Schilling (2004) introduced a floorplan-only so-

lution based on an integrated pushcart system. In the system, there was a 2D laser

scanner facing forward, as shown in Figure 2.8(a), used for extracting positions of

wall features and determining the position and orientation changes. The floorplan

could, therefore, be generated using 2D point clouds of assumed vertical wall fea-

tures, as shown in Figure 2.8(b). There was a panoramic camera on the top of the

trolley, capturing 360-degree images of the surrounding area. Based on the hypoth-

esis that all vertical wall boundaries were perpendicular to the upper and lower bor-

ders of the image, and the intersection extracted based on image texture, the regions

of the wall surfaces were identified. The texture patches were then attached directly

to the wall surface models to generate 2.5D models, as shown in Figure 2.8(c).

(a) (b) (c)

FIGURE 2.8: A floorplan-only solution creating floorplans and 2.5D models. (a)
Data acquisition platform. (b) Floorplan based on 2D point clouds. (c) Generated
2.5D models. (Biber, Andreasson, Duckett, & Schilling, 2004)
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Cabral and Furukawa (2014) described a piecewise planar and compact floor-

plan reconstruction method based on SfM and multi-view stereo. Given images

as shown in Figure 2.9(a), a novel structure classification was firstly performed to

categorize all pixels into three regions—floor, ceiling, and wall—as shown in Fig-

ure 2.9(b). Then the floorplan reconstruction problem was defined as the shortest

path problem based on piecewise planarity. The geometry of the models was recov-

ered using tied 3D points, as shown in Figure 2.9(c). A significant limitation of this

method was that all features, including furniture and decorations, are stitched to the

main infrastructure planes as textures. Such omissions resulted from the limited lo-

cations for capturing images while they could not be entirely avoided by adding ob-

serving stations due to the complexity of indoor environments. It not only removed

the indoor objects which might be of great interest but also created wrong textures

for the main infrastructure.

The two solutions above were just representative floorplan-only solutions. They

concentrated on getting the main structural features in artificial environments

rather than capturing all intricate shapes and variations. Generally, data acquisition

and processing time was much less than the detail capturing solutions. Their pros

were quite obvious:

• The data volume obtained was much smaller since there was neither re-

quirement on additional attitude determination sensors, nor dense 3D point

clouds.
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(a)

(b)

(c)

FIGURE 2.9: A panoramic image based floorplan-only solution and the 2.5D model
created. (a) Panoramic image acquired. (b) Classified panoramic image. (c) Gener-
ated 2.5D models. (Cabral & Furukawa, 2014)

• The final outputs concentrated on the floorplans and the 2.5D models of the

surrounding environments, which was the information on the underlying in-

frastructure itself. There was no data removal work required.

However, the limitation of such methods was the omission of the detailed infor-

mation on surfaces, such as decorations, shelf, and other surface variations, which

makes it applicable only to the reconstruction of empty spaces or environments
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in which the detailed information can be ignored. Also, the assumption of such

methods made them unreliable to work in complex environments, such as indoor

environments with quite a few wall intersections obstructing objects (Cabral & Fu-

rukawa, 2014). For modern architecture with glasses and steel, floorplan-only solu-

tions would omit most of the features as LiDAR reflections and images cannot fully

represent the as-built states of the environments, while the indoor infrastructure is

much more complicated as well.

2.2.2 Semi-mobile Solutions

As interim workflow before fully mobile solutions were introduced, semi-mobile so-

lutions were a perfect alternative to the station-by-station workflow as they decrease

the time used between stations while maintaining the accuracy of fully static solu-

tions. The concept is based on the simple consideration of installing TLS on a tripod,

which was fixed on a moving platform, such as a trolley, to reduce the time used for

moving and installing TLS at different scan stations.

In addition to the solutions adopted by survey companies, Chow (2014) verified

the possibilities and accuracy using such stop-and-go method with the integration

of depth-camera-based SLAM algorithms. In this application, the TLS was installed

on a pushcart, together with two self-calibrated Kinect depth cameras, a medium-

precision IMU (Xsens MTi-30 IMU) and a desktop computer, as shown in Figure

2.10(a). The Kinect sensors were responsible for capturing wall surface data, includ-

ing both texture and point clouds, for generating another model, as shown in Figure
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2.10(b). When either the TLS or the Kinect sensor was capturing data, the pushcart

was kept still, as in a full stop mode. The whole trolley was moved to the next station

after finishing one scan station, which is the go mode. Since the valid working range

of the RGB-D sensor was much smaller than the TLS, the distance between RGB-D

scan stations was much shorter than the distance between those of TLS, as indi-

cated in Figure 2.10(c) and 2.10(d). After capturing all data at scan stations around

the trajectory, the point clouds were registered into the same coordinate frame with

the assistance of the IMU and mesh-based SLAM algorithm to identify the position

changes between stations.

(a) (b)

(c) (d)

FIGURE 2.10: A semi-mobile solution combining TLS and RGB-D sensors on a trol-
ley. (a) The installation of the data acquisition platform. (b) The wall surface model
generated by Kinect sensor. (c) The floorplan generated using TLS point cloud fu-
sion with the green stars indicating the survey stations of TLS. (d) The floorplan
generated using Kinect mesh fusion with the purple dots indicating the survey sta-
tions of Kinect. (Chow, 2014)

The semi-mobile solution was a practical alternative for rapid data acquisition
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in indoor environments. For stop-and-go workflow with TLS, much higher accu-

racy could be achieved if proper scan targets were provided as control points for

point cloud registration to enable the system to work without IMU. ICP algorithms

and reasonable distribution of features would also offer the possibility of working

without scan targets, as they were just variants of the fully static workflow. Mean-

while, Chow (2014) had verified that the accuracy of indoor mapping using Kinect

sensors with SLAM algorithm was acceptable compared with reference value based

on Kinect with IMU sensors.

As the moving regions of such systems were restricted by the movement of the

platform, which was a wheeled trolley, the valid working range of such designs could

only be planar floor areas rather than staircases and slopes. The valid working range

of Kinect sensor was limited as well, which made this mobile mapping solution

practical only in cramped environments such as hallways and aisles. Furthermore,

as only the scan station installation time was waived in the working flow, the total

working time was not reduced too much.

2.2.3 Fully Mobile Solutions

To meet the increasing demands of rapid data acquisition, the fully mobile solutions

in the form of integrated trolleys and backpacks were introduced by many scholars,

researchers, and commercial organizations.

One of the most significant differences between these solutions was the instal-

lation platform. Since various sensors need to be installed on the same rigid frame



Chapter 2. Mobile Mapping Sensors and Systems, and Technologies: A Review 40

to make their geometrical relationship stable and measurable, most solutions were

based on either trolleys or backpacks, enabling the seamless mobility of the sensor

packages. The systems based on trolleys and pushcarts had restricted their mov-

ing regions since they could not be moved upstairs or downstairs. Meanwhile, floor

changing via lifts was not a very reasonable choice since the movement inside the

elevator would be derived using the measurements captured by the integrated IMU

only. Otherwise, external control points would be required. However, the wheeled

design would make more payload available, such as high-performance computers,

high-precision IMU, and large-volume batteries. Although the moving region of the

backpack design was more flexible than the trolleys, the moving pattern of the plat-

form would be much more complicated since there would be continuous movement

in the vertical direction, and the movement were difficult to estimate precisely.

Consequently, more companies were considering mobile mapping trolleys as a

temporary solution before satisfied mobile mapping backpacks could be launched.

The moving ranges of such backpack solutions were much more flexible compared

with the trolleys mentioned just mentioned. Nevertheless, as the movement of the

human body, the carrier of the platform, should be precisely modeled for reducing

drifts and errors in IMU data processing, only a few solutions could achieve accu-

racy better than 0.5% of the trajectory length in the translation errors (Geiger, Lenz,

& Urtasun, 2012).

Various solutions have been introduced in the past few years. Most were based

on portable sensors, including stereo cameras, RGB-D sensors, and laser scanners.
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They can be categorized into the following four kinds based on the point cloud ac-

quisition sensors adopted.

2.2.3.1 Optical-sensor-based Solutions

Optical-sensor-based solutions were almost ideal choices for outdoor mobile map-

ping since they could not only collect RGB information of surrounding environ-

ments but also generate stereo image pairs by using sequential images to provide

geometric data (Paz, Pinies, Tardos, & Neira, 2008). However, in indoor applications,

the absence of GNSS signals made the high-accuracy positioning data unavailable,

which made it much more challenging to generate stereo image pairs from sequen-

tial images. Although scholars were working on recovering scales from monocular

vSLAM results using IMU trajectory, the accuracy was still greatly affected by the

drifting error of the IMU (Lupton & Sukkarieh, 2008) (Nützi, Weiss, Scaramuzza, &

Siegwart, 2011) (Concha, Loianno, Kumar, & Civera, 2016). Additionally, the ab-

sence of texture features in images, which was quite common in indoor environ-

ments, especially in corridors and empty rooms, led to both tracking loss problems

and empty spaces on object surfaces. Lastly, the high cost of computing accurate

and dense stereo images also prevent the technique’s wide application (Jennings &

Murray, 1997). Therefore, not too many solutions adopted the optical-sensor-only

design for indoor mobile mapping.

In the automatic robot control field, Jennings and Murray (1997) introduced

a trinocular-sensor-based image acquisition system for detecting obstacles, path
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planning, and mobile mapping. The depth image generated was 128×120 in resolu-

tion with 20 disparities and computed in 350 ms using dedicated high speed Digital

Signal Processors (DSP), which was relative high-performance in 1997. However,

the limitation of high computational cost made the data acquisition rate lower than

2 Hz, which was not practical for applications.

Paz et al. (2008) introduced a binocular sensor, i.e., a FLIR Bumblebee 2, to re-

cover the geometric relationship and texture information of objects. However, the

accuracy of points with distances larger than 10 m was still with considerable uncer-

tainties due to the limited baseline length between the two optical sensors. More-

over, the huge computational cost was also a critical concern for mobile mapping

solutions.

Only a few indoor mobile mapping solutions which were based on optical sen-

sors only as data acquisition sensors owing to the enormous computation load and

the data uncertainty determined by the separated level of the binocular sensors.

Another problem of not adopting optical-sensor-only design would be the inability

to identify common points on surfaces without too much texture, which was quite

common in indoor environments. However, such solutions were the simplest in-

door mapping solution in most scenarios. Considering the popularity of binocular

and trinocular camera systems implemented on smartphones in present days, this

method was an excellent choice for navigation-grade applications, such as indoor

localization and pedestrian navigation.
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2.2.3.2 Depth-camera-based Solutions

The depth camera can produce RGB-D images that can be used for geometric re-

lationship recovery and texture data acquisition, meaning it is possible to imple-

ment vSLAM and point cloud SLAM. Several solutions were based on depth cam-

era, such as Google’s Project Tango, which was a series of tablet- or smartphone-

based solutions with integrated RGB-D sensors to produced 3D reconstructions of

the real world and the attitude change information based on optical and depth im-

ages, as shown in Figure 2.11 (Google, 2015). The most significant advantage of

Project Tango devices was that by integrating various sensors into the same small-

size handheld device, system developers were capable of developing embedded al-

gorithms to fuse corresponding data from different sensors (depth images, RGB im-

ages, and IMU measurements) to generate a trajectory estimation or local maps.

Unfortunately, Google officially shut down the project on March 01, 2018, making

this kind of solutions unavailable.

(a) (b)

FIGURE 2.11: Google’s Project Tango tablet and demo simulation. (a) Project Tango
Developer Toolkit. (b) RGB-D image simulation. © Google Copyright 2015

Microsoft Kinect sensors were also widely used in mapping indoor environ-

ments. As analyzed by Huai, Zhang, and Yilmaz (2015), because the working range,



Chapter 2. Mobile Mapping Sensors and Systems, and Technologies: A Review 44

resolution, and accuracy of the RGB-D were affected by the distances between the

sensor and the objects, a coarse-to-fine iterative ICP process needed to be per-

formed together with Scale Invariant Feature Transform (SIFT) visual odometry and

IMU to extract dense point clouds of objects. Similar indoor mapping solutions

were also introduced by Henry, Krainin, Herbst, Ren, and Fox (2012), Tsai et al.

(2015), and S. Tang et al. (2016) owing to the much lower prices of depth cameras

compared with MLS, and the much lower computational cost compared with con-

ventional binocular sensors. Such solutions could work either with or without an

onboard IMU, while the IMU could reduce the computational load and enhance

the overall reliability of the system.

However, most depth cameras required calibration before data acquisition since

they were initially designed for entertainment purposes rather than surveying ap-

plications, which also made this topic an important research area (Darwish et al.,

2017). Another disadvantage restricting their application area was the limited ef-

fective working range of only a few meters, which made it tedious for capturing 3D

GIS data of a large room as the operator needed to approach the main structure to

capture the data. S. Tang et al. (2016) and Darwish et al. (2017) introduced a method

based on online calibration between the depth camera and the RGB sensor, increas-

ing the valid working range of such sensors. Based on the precise estimation using

a short-range depth camera, the exterior orientation of the RGB image can, there-

fore, be determined by utilizing the parameters derived from the online calibration.

However, the results showed that the proposed workflow was still more useful for
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mapping small-size environments as drifting cannot be ignored in large spaces.

2.2.3.3 LiDAR-based Solutions

LiDAR-only solutions focused on the lightweight solutions for capturing 2D or 3D

geometric data of the surrounding environments. Multiple solutions were intro-

duced including the ZEB series by Bosse, Zlot, and Flick (2012) and GeoSLAM (2019);

the iMS 2D by ViAmetris 3D Mapping (2015a); a backpack solution by Nüchter, Bor-

rmann, Koch, Kühn, and May (2015); and the LiBackpack DG50 by GreenValley In-

ternational (2019). These solutions are based on different working principles.

As shown in Figure 2.12, Zebedee or ZEB1 was a LiDAR-IMU integrated solution

developed by GeoSLAM. The laser scanner and IMU were installed together as a

moving part and swung against the handler. Thus, in the constant moving process,

the velocity drifts were modeled by utilizing the zero-velocity moments. The system

could be installed on various platforms, including backpacks, handheld, and vehi-

cles, since the only requirement was maintaining the swinging movements while it

was working. The IMU mounted inside Zebedee was industrial-grade MEMS Mi-

croStrain 3DM-GX2 with high output rate and large measurement range (Bosse et

al., 2012). Subsequently, GeoSLAM released its optimized products. The successors

include ZEB Revo, ZEB Revo RT, and ZEB Horizon (GeoSLAM, 2019). As shown in

Figure 2.13, the scanner and IMU kept rotating together against the installation axis

while working. Although not explicitly explained, the change of moving mechanism
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was capable of providing relative attitude via the embedded angular encoder to cal-

ibrate IMU drifts.

(a) (b)

(c) (d)

FIGURE 2.12: ZEB1 handheld solution provided by GeoSLAM and sample data. (a)
The design of 1st and 2nd generation of Zebedee. (b) Zebedee working in backpack
mode. (c) The profile view of point clouds acquired with Zebedee mounted on the
backpack (close-loop). (d) SLAM results from the outdoor courtyard environment.
(Bosse, Zlot, & Flick, 2012)

(a) (b) (c)

FIGURE 2.13: GeoSLAM new product line. (a) ZEB Revo containing a single-line
Hokuyo scanner, an IMU, a rotation structure, and a handler. (b) ZEB Revo RT
which is an integration of ZEB Revo and a tablet controller on the handler. (c) ZEB
Horizon consists of a Velodyne 16-line scanner, an IMU, a rotation structure, and a
handler. © GeoSLAM Copyright 2019
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Based on the 2D SLAM with 6 Degree-of-Freedom (DOF) movement, iMS 2D

worked with the help of IMU because there were still attitude variations when the

operator was holding the instrument and moving around, as shown in Figure 2.14.

The system relied on the 200Hz high-accuracy AHRS IMU to provide precise attitude

and DR positioning results, while the 2D SLAM results offered positioning variations

in the 2D plane (ViAmetris 3D Mapping, 2015a). The system worked on the assump-

tion that a satisfying indoor positioning and orientation result, a 2D floorplan, and

the corresponding video stream could be provided by limiting and calibrating the

IMU drifts in the horizontal plane using 2D SLAM results. Therefore, the integrated

panoramic camera could only provide images used for documentary rather than for

generating texture data, which makes the only geometric output of iMS 2D either the

2D horizontal or the vertical profile of the surrounding environments. Moreover, it

might be theoretically practical to integrate the algorithm introduced by Biber et al.

(2004) to generate surface models.

(a) (b)

FIGURE 2.14: iMS 2D scanner and its data processing workflow. (a) The compact
2D scanner with panoramic camera and AHRS installed. (b) The working flowchart
of iMS 2D. © ViAmetris Copyright 2015
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The solution introduced by Nüchter et al. (2015) can work without any IMU us-

ing dense 3D point cloud and 3D SLAM algorithm, as shown in Figure 2.15. It is

based on a SICK LMS-100 2D LiDAR scanning 270 ◦ at 25 Hz and a RIEGL VZ-400 3D

LiDAR scanning 100 ◦ (V) × 260 ◦ (H) area at the update rate of lower than 1 Hz. The

solution worked based on a two-step registration process to achieve precise SLAM

without the assistance of IMU. The first matching process based on RANdom SAm-

ple Consensus (RANSAC) identified point pairs with similar distances in the scenes

and aligned the 2D point cloud roughly, while the subsequent ICP process refined

the alignment as it could not conduct on point clouds with large rotation differences

(Nüchter et al., 2015). It should be noted that an extra camera can be integrated with

VZ-400, which was originally designed as a TLS, to provide texture acquisition capa-

bility (RIEGL Laser Measurement Systems GmbH, 2015). Nevertheless, this was not

verified in their solution.

Jung, Yoon, Ju, and Heo (2015) delivered a pushcart-based triple 2D MLS solu-

tion under the constraints that all features were parallel or perpendicular and the

data acquisition process was captured in a closed loop, as shown in Figure 2.16.

However, this solution focused more on the planar indoor environment mapping,

which required more work to fit real applications of 3D GIS data acquisition.

Google released its exploring project in this area named Cartographer in 2015, as

shown in Figure 2.17, which was constructed based on dual 270 ◦ 2D LiDAR and at

least one IMU on the backpack (Lardinois, 2014). In October 2016, Google made this

project open source to share their achievements and encourage scholars to work in



Chapter 2. Mobile Mapping Sensors and Systems, and Technologies: A Review 49

(a)

(b)

(c)

FIGURE 2.15: A backpack-mounted TLS solution integrated with 2D LiDAR and its
sample data. (a) The photo of operating the backpack system. (b) The hardware
components. (c) The 3D point cloud output. (Nüchter, Borrmann, Koch, Kühn, &
May, 2015)

(a) (b)

FIGURE 2.16: A pushcart-based indoor mapping solution with constraints of per-
pendicular planes and its sample data. (a) The indoor mapping system. (b) The
generated point cloud of a classroom. (Jung, Yoon, Ju, & Heo, 2015)

this area, and it released little information afterwards (Google, 2016). Although not

installed in any of their public released demo versions, multi-line scanners, such as
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Velodyne VLP-16, were also supported in their source codes.

(a) (b)

FIGURE 2.17: The rear view and side view of Google Cartographer. (a) The rear
view of the backpack standing on the frame itself. (b) The side view showing two
perpendicular single-line laser scanners. (Lardinois, 2014)

As one of the major global LiDAR system vendors, Green Valley International

released several versions of their mobile mapping backpack. Recently, they an-

nounced their updated version of products. These were the LiBackpack D50 and

DG50, as shown in Figure 2.18, designed with two Velodyne VLP-16 Lite scanners

and an IMU inside the hardware frame (GreenValley International, 2019). Besides,

the DG version was installed with an extra GNSS receiver, obtaining the capability of

working outdoor and all data aligned to the global reference frames. Furthermore,

the GNSS results could provide extra high-accuracy control points anywhere when

valid GNSS solutions could be realized.

The most significant limitation of such LiDAR-only solutions was that the atti-

tude determination devices, both the IMU and the 3D LiDAR, needed to have the
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(a) (b)

FIGURE 2.18: The GVI LiBackpack D50 and DG50 dual scanner mobile mapping
backpack. (a) The side view of D50 with two multi-line laser scanner and embed-
ded IMU. (b) The rear view of DG50 with an additional GNSS receiver compared
with D50. The tablet, Microsoft Surface Pro, is connected to the internal process-
ing unit via a wireless connection to control the unit. © Green Valley International
Copyright 2019

ability of high-rate data output, which made the cost of such devices much higher

than other solutions. Furthermore, such solutions could only generate 2D or 3D

point cloud data without texture information because there were no imagery sen-

sor on board. Although the intensity of points could be used to represent material

changes, such characteristics can be easily affected by the changes in incident an-

gles of laser beams, which made it more difficult as the laser scanner is continu-

ously moving around. Last but not least, as most laser scanners adopted were de-

signed for outdoor autonomous driving applications, their distance measurement

accuracy was around 2-5 cm, making the overall accuracy of the point clouds barely

possible for high-accuracy applications, such as millimeter-level BIM generation.
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2.2.3.4 Integrated Solutions

Most of the commercialized solutions and some of the research outcomes can be

grouped as integrated solutions, which integrate multiple kinds of data acquisi-

tion sensors, which include, but are not limited to, single or multiple 2D or 3D

MLS or TLS, single panoramic camera or multiple fisheye cameras, IMU, and AHRS.

Their installation frame could be in the forms of either wheeled trolley or backpack.

Among all trolley-based solutions, Sanborn Platform for Indoor Mapping (SPIN),

TiMMS, and iMS 3D were the three major products available on the market in 2015.

SPIN was a commercial solution based on a robot platform with onboard 3-axis

digital gyroscope, odometer, two 2D MLS, and a Kinect depth camera, as shown in

Figure 2.19(a) (The Sanborn Map Company Inc., 2015). In the system, the horizon-

tal LiDAR with longer detection range was responsible for the 2D SLAM positioning

with help from the gyroscope and the odometer, while the vertical LiDAR with much

shorter working distance acted as the main point cloud generator. The Kinect sen-

sor, installed on the lower part facing forward, captured RGB-D images, to provide

texture information with the help of depth data for registration and data fusion. The

platform was manipulated via a joystick while moving was motorized by the robot

platform to achieve higher smoothness and robustness in the data acquisition pro-

cess. The system was released in 2014, but the information has hardly been updated

in recent years. In addition to the obvious limitations in size, weight, and moving

speed, the resolution of the texture data captured by Kinect sensor might also be

a little coarse, which made the coloring of the point clouds and the extraction of
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surface texture to contain more uncertainty.

(a) (b) (c)

FIGURE 2.19: Commercialized pushcart solutions. (a) SPIN © The Sanborn Map
Company Inc. Copyright 2015. (b) TiMMS © Applanix Corp. Copyright 2015. (c)
iMS 3D © ViAmetris Copyright 2015.

The TiMMS (Gen. 2, shown in Figure 2.19(b)) provided by Applanix, a Trimble

company, and the iMS 3D (shown in Figure 2.19(c)) provided by ViAmetris were sim-

ilar since they were using the same Ladybug 3 panoramic camera to collect texture

information (ViAmetris 3D Mapping, 2015b) (Applanix Corp., 2015). However, the

TiMMS was an IMU-only solution based on POS while the integrated 3D TLS worked

in 2D profile mode most of the time. In the meantime, the TiMMS required prede-

fined GCP to correct drift error of the IMU. On the other hand, the iMS 3D was a

much more comprehensive solution based on 2D SLAM and IMU. The dual vertical

2D scanners collected dense point clouds, collaborating with panoramic images to

generate colorized points and surface models.

With the development of algorithms and sensors, trolley-based systems became

less available as the limited moving range narrowed down the application fields.
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NavVis was one of the companies insisting on providing pushcart solutions (NavVis

US Inc., 2019). As shown in Figure 2.20(a), a Velodyne multi-line scanner was in-

stalled on top of the trolley, providing 6 DOF SLAM solutions. The tilted installa-

tion was designed to capture more points reflected from the ground and ceiling.

Meanwhile, three single-line scanners were installed vertically with angles to cap-

ture points as profilers. In addition, five cameras were installed around the top part

of the trolley, capturing 360 ◦ images of the environments. When moving, the upper

part of the trolley could be separated from the lower wheeled platform, and both

parts could be placed into cases for ease of carrying, as shown in Figure 2.20(b). In

scenarios such as multi-floor parking lot, slopes can be used to facilitate the move-

ments between floors and a compact point cloud can be generated based on the

utilization of IMU and 6 DOF SLAM process, as shown in Figure 2.20(c).

(a) (b) (c)

FIGURE 2.20: NavVis M6 Mobile Mapping Trolley. (a) The trolley in working mode,
pushed by the operator and moving around. (b) The system in carrier mode and
separated in two cases. (c) The point cloud of a multi-floor parking lot generated
by NavVis M6. © NavVis Copyright 2019

Another kind of rapidly developed solution was the mobile mapping backpack.

Various companies and research groups released their solutions. Generally, two
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multi-line laser scanners were installed, one on the top and the other in the rear. The

two scanners were installed perpendicular or nearly perpendicular to each other to

ensure maximum coverage of the single-frame point clouds. Most solutions were in-

stalled with Velodyne 16- or 32-line scanners, enabling the embedded precise time

synchronization via Pulse-Per-Second (PPS) technology. Meanwhile, a panoramic

camera consisting of multiple fisheye or wide-angle lens was installed. Such cam-

era can either be a compact camera solution, such as Ladybug 5/5Plus and Garmin

Virb 360, or a proprietary camera system with lens installed at different positions on

the backpack, facing different angles. Furthermore, there was an IMU or integrated

navigation system (GNSS + IMU) of reasonable accuracy, which was determined by

the performance of the SLAM workflow.

As shown in Figure 2.21, the backpack solution introduced by Liu et al. (2010)

was based on three monocular cameras and three 2D scanners, while the Pegasus:

Backpack provided by Leica Geosystems AG (2015) integrated five cameras and two

3D LiDAR, and the UltraCam Panther by Vexcel Imaging GmbH (2016) was supplied

with more than twenty cameras and a single 3D LiDAR.

The three solutions adopted an integrated imagery system to collect texture

data. The Pegasus: Backpack and UltraCam Panther produced frame-by-frame

panoramic images rather than colored points and relied on SLAM with the as-

sistance of high-precision IMU, while a second solution provided simple surface

models of planar vertical façades. The most considerable difference was that by
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installing a vertical pitch LiDAR, the solution by Liu et al. (2010) could extract ori-

entation changes in the pitch direction with higher precision. However, all three

solutions cannot achieve survey-grade accuracy. The Pegasus: Backpack was cur-

rently still under development and seeking for better indoor accuracy, while the

UltraCam Panther was claimed as being redesigned at the time of writing this the-

sis. The companies were defining such solutions as documentation tools rather

than surveying instruments, considering that the professional users could still not

accept such accuracy (Leica Geosystems AG, 2015) (Vexcel Imaging GmbH, 2016).

In recent years, more companies have embarked on excursions in this field by

releasing their mobile mapping backpacks. As shown in Figure 2.21(d)-2.21(f), such

brands and models included, but were not limited to, iScan-P by Hi-Target, bMS3D

LD5+ by ViAmetris, and C50 by Green Valley International. Both hardware and soft-

ware designs were similar in these solutions, which were using the 6 DOF SLAM and

loop closure results to calibrate the drifting errors of IMU, producing high-accuracy

point clouds (ViAmetris 3D Mapping, 2019). Meanwhile, some startup companies

released their shrank version of such backpacks by commercializing their research

outcomes in the universities, such as Kaarta products by J. Zhang and Singh (2015)

from Carnegie Mellon University and Paracosm’s PX-80 Handheld LiDAR from the

University of Florida (Higgins, 2018). As shown in Figure 2.22, the most significant

difference of such solutions was that the moving freedom was much more flexible

compared with their predecessors as they reduce the weight significantly. Some so-

lutions, such as Kaarta Stencil2, also provided post-processing options that trimmed
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(a) (b) (c)

(d) (e) (f)

FIGURE 2.21: Backpack mobile mapping solutions. (a) The CAD drawing provided
by Liu et al. (2010) with three industrial cameras. (b) Pegasus: Backpack provided
by Leica with five industrial cameras © Leica Geosystems Copyright 2015. (c) Vexcel
UltraCam Panther provided by Vexcel Imaging with more than twenty cameras and
a single 3D laser scanner © Vexcel Imaging Copyright 2016. (d) Hi-Target iScan-P
backpack demonstrating on InterGeo2015 (APOGEO, 2015). (e) bMS3D demon-
stration in shopping mall © ViAmetris Copyright 2019. (f) GVI C50 backpack with
both a laser scanner and a panoramic camera © Green Valley International Copy-
right 2019.

the noisy point clouds generated to slim planes by identifying the plane first and

then removing the unwanted noises automatically. This option was necessary be-

cause the SLAM algorithm can still not achieve a perfect level of accuracy so far.

Lehtola et al. (2017) and Nocerino, Menna, Remondino, Toschi, and Rodríguez-

Gonzálvez (2017) compared most of the solutions available on the open market by



Chapter 2. Mobile Mapping Sensors and Systems, and Technologies: A Review 58

(a) (b)

FIGURE 2.22: Portable integrated mobile mapping solutions by startup companies.
(a) Kaarta Stencil2, integrating an Intel NUC, a Velodyne VLP-16 scanner, a fisheye
camera, and an IMU inside, with a tablet for control and data visualization © Kaarta
Copyright 2019. (b) Paracosm PX-80 which is similar to Kaarta Stencil2 but with
different installation and processing workflow © Occipital Copyright 2019.

2017 and found most of them were capable of generating point clouds of typical in-

door scenarios with the vertical accuracy of tens of centimeters while the horizontal

accuracy of most systems is still not satisfactory so far. However, the accuracy of

such solutions is not only affected by the length of the trajectory but also by the

complexity and size of the spaces.

2.3 A Summary of Indoor Mobile Mapping Sensors and

System

In previous sections, relevant sensors and solutions in indoor mobile mapping ap-

plications were reviewed and discussed, and the designs and the working principles

of most of the mobile mapping systems available were reviewed. In designing a
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novel indoor mobile mapping system, its design and installation should be taken as

references for making a reasonable combination and design of sensors.

Firstly, GNSS signals are no longer reliable or are even unavailable in indoor en-

vironments. Although direct line-of-sight (LoS) surveying using total stations can

achieve the required precision and accuracy, the complex environments and nar-

row spaces would not allow such applications. Meanwhile, as workflow designed for

robot control, researchers in the fields of robot control, computer vision and survey-

ing had developed 2D and 3D SLAM algorithms, integrated SLAM algorithms, and

SLAM algorithms with constraints to correct the drifting errors of IMU. Therefore,

SLAM and IMU-SLAM were the most popular solutions for precise positioning and

orientation in such GNSS-denied scenarios. The reliability, precision, accuracy and

attitude recovery for the constant moving platform would continue to be the most

highlighted research area for such indoor mapping system.

Secondly, the presence and identification of features would undoubtedly affect

the precision and reliability of the SLAM algorithm. For multi-line MLS and RGB-D

cameras, the resolution of the point clouds, which was determined by the design

of the scanners and the distances between the objects and the scanners, decided

the detail levels of the features and their identification from the low-density inho-

mogeneous point clouds. Low-density point clouds may have resulted in edge-loss

problems that were difficult to recover (P. Tang et al., 2009). Meanwhile, for optical

sensors, the absence of texture in indoor environments was the main reason caus-

ing track-loss problems. Therefore, how to design the feature extraction algorithm
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to overcome the limitation of feature existence should be considered at the begin-

ning stage of developing the mobile mapping system.

Thirdly, sensor integration was a reasonable choice for building mobile position-

ing and orientation solutions. Different sensors used for geometric and texture data

acquisition, positioning, and attitude determination had already been integrated

into most of the solutions to make more relevant data available. However, sensor

integration should be used not only for data fusion but also as the extra source for

other sensors to achieve higher accuracy and reliability in both positioning and ori-

entation. As mentioned, both laser scanner and optical sensors had their limita-

tions in continuously capturing features used for the SLAM process. If fused with

IMU data, even segments of LiDAR SLAM or vSLAM results could be used to limit

the drifting of IMU and produce better DR results.

Last but not least, neither SLAM nor IMU can eliminate the drifting problem

in indoor positioning and orientation. The distribution and accuracy of GCP had

requirements. Satisfying distributions of GCP with acceptable accuracy were reli-

able controls for noisy and drifting positioning results. For example, the stair rooms

always required more GCP for vertical variation control than the flat rooms. The ac-

curacy of the GCP coordinates would, on the other hand, directly affect registration

accuracy and elimination of the drift error made by the onboard IMU and the SLAM

algorithm.
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2.4 Plane Extraction from Point Clouds

As discussed above, most solutions adopt Iterative Closest Points (ICP) as one of the

main tools for 2D LiDAR SLAM. However, 2D SLAM algorithm limited the moving

platform to the smoothly moving platforms, such as pushcarts and vehicle-based

robotics, which barely moved or only vibrated slightly and smoothly in the verti-

cal dimension. If there were any significant motions in the vertical dimension with

unknown tilt angles, such as a backpack solution, a high-precision IMU would be

an essential component for estimating the instantaneous attitude of the platform.

Since there was no high-precision IMU installed in the proposed S2D AS solution

and a high DOF SLAM would improve the reliability of the whole system, using the

IMU in isolation to facilitate the attitude recovering process was not considered.

Therefore, developing a novel algorithm to achieve IMU-free 3D SLAM would be

the first challenge in the data processing workflow.

For ordinary, high-resolution 3D point cloud alignments, ICP algorithms could

be directly applied to calculate the transformation matrix and register both point

clouds to the same coordinate frame (Granger & Pennec, 2002) (Niloy J Mitra,

Gelfand, Pottmann, & Guibas, 2004). Some of the other methods were based on

statistical histograms for rotation and translation movement (Makadia, Patterson,

& Daniilidis, 2006) (Rusu, Blodow, Marton, & Beetz, 2008) (Rusu, Blodow, & Beetz,

2009). However, the most critical difference between the high-resolution TLS point
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clouds and the point clouds generated by the multi-line scanners was the inhomo-

geneous distribution of points. This low-resolution problem also brought difficul-

ties in modeling the regional shapes of objects, such as estimating the local normal

vectors of points, which could be used to identify shapes from the point clouds. As

the proposed working areas for the proposed mapping system were artificial indoor

environments, planes extracted using a novel method were considered as the fea-

tures used for recovering the relationship between frames of point clouds, based on

the assumption that the geometric relationships between frames can be recovered

with at least three pairs of planes facing different directions.

To recover shapes from quasi-continuous point clouds, modeling of smooth sur-

faces, especially the planes, is one of the major research highlights in point cloud

processing. Such smooth surfaces include, but are not limited to, roads, walls, roofs

and other surfaces which could be considered as low-noise surfaces with consid-

erably small disturbances that could be represented using regular parametric sur-

faces. Meanwhile, such regions were commonly human-made objects of interest

and required automatic extraction from large-volume point clouds. Architectural

appearances, internal of manufacturing facilities, historic sites, and human organs

were categorized as such surfaces of great interest. Various modeling workflows had

been introduced by scholars and commercial software packages (Kusnoto & Evans,

2002) (P. Tang et al., 2009) (P. Tang, Huber, Akinci, Lipman, & Lytle, 2010) (Brilakis

et al., 2010) (Volk, Stengel, & Schultmann, 2014).

To achieve rapid extraction of features from low-resolution inhomogeneous
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point clouds for SLAM, planes were selected as features, and their specific distri-

butions were used as tie features between frames of point clouds. Once segmented

and identified, any disturbances and noises on the surfaces would be considered

as useless points, leaving only least-square fitted parametric elements representing

the given subsets of point clouds. Numerous techniques had been proposed and

developed for modeling planar surfaces. Some of the most typical workflows are

reviewed in this section.

2.4.1 RANSAC and Its Variants

RANSAC was one of the most popular modeling fitting methods in extracting shapes

from dense point clouds. Initially designed for establishing the geometric relation-

ship between images in photogrammetry, the algorithm and its principle, which was

seeking the subset with the largest number of elements fitting specific geometric

patterns, had been deployed in various software libraries for extracting shapes and

objects from given point clouds. Schnabel, Wahl, and Klein (2007) listed several ap-

plications for segmenting and identifying different shapes from point clouds, such

as planes, spheres, cylinders, cones, and tori. Meanwhile, the variants and exten-

sions of RANSAC—M-estimator SAmple and Consensus (MSAC), Maximum Likeli-

hood Estimation SAmple and Consensus (MLESAC), and PROgressive SAmple and

Consensus (PROSAC)—took the residuals for the estimated models into consider-

ation to improve the likelihood of the models fitted (Grilli, Menna, & Remondino,

2017). A universal solution for applying these sample consensus modules was Point
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Cloud Library (PCL) introduced by Rusu and Cousins (2011). Modules for extract-

ing planes, lines, circles, spheres, cylinders, cones, and elements with specific re-

quirements in directions and normal vectors were defined with estimators such as

classic RANSAC, Least Median of Squares, MSAC, Randomized RANSAC, Random-

ized MSAC, MLESAC, and PROSAC. Meanwhile, the free toolbox CloudCompare also

provided useful tools for RANSAC shape detection (Schnabel et al., 2007).

An example is used to demonstrate their application to an inhomogeneous

point cloud of a simple environment, which was captured by a multi-line MLS, as

shown in Figure 2.23. Wrong segments which could be easily spotted and removed

manually, were identified. However, RANSAC method could not perfectly identify

planes from low-resolution inhomogeneous point clouds of complex environments

directly, such as the point clouds captured by multi-line MLS.

(a) (b)

FIGURE 2.23: Example of applying classic RANSAC to extract planes from a multi-
line MLS point cloud of a neat room. (a) The raw point cloud that points are col-
orized concerning the reflected intensity, blue for low intensity while green for high
intensity. (b) The classic RANSAC plane extraction result using CloudCompare with
the implementation of Schnabel, Wahl, and Klein (2007). The value of the minimal
support points per primitive was set to 100. The distance-to-plane threshold was
set to 0.03 m. All other parameters were kept the default. Planes intersect in the
ceiling area, showing the improperly identified planes.
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In the meantime, as shown in Figure 2.24, when processing the low-resolution

part of the point cloud, the estimator, which considered the size of subsets only,

generated false results instead of the approximation in the vicinity. In some appli-

cations such as CloudCompare, local estimated normal vectors were introduced to

the estimator to eliminate such errors, as subsets with normal vectors with great

divisions would not be considered to be on the same plane.

Nevertheless, the local estimated normal vectors, which were the normal direc-

tion of the tangent plane at the pending point, were easily affected by the measure-

ment noises. Also, those matters affecting the estimation of the normal vectors, such

as the local resolution of the point cloud and kernel size of the neighborhood, also

reflected the local normal estimation process (Hoppe, DeRose, Duchamp, McDon-

ald, & Stuetzle, 1992) (Niloy J. Mitra & Nguyen, 2003). Because it is one of the main

factors in region growth workflow, the problem of miscalculation is discussed in Sec-

tion 2.4.2.

A robust algorithm was required to provide plane extraction results in the SLAM

process. RANSAC and its variants were not considered as a solution in the proposed

workflow due to their limitations. However, because it is a method for removing

noise by filtering unwanted data from given groups of points, RANSAC could be used

to provide refined estimations of models, i.e., planes, cylinders, and spheres.
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(a) (b)

(c) (d)

FIGURE 2.24: Example of applying RANSAC algorithm to extract planes from a
multi-line MLS point cloud of a corridor with glasses. (a) The raw point cloud in
which the points are colorized to reflect intensity, blue for low intensity and green
for high intensity. (b) The classic RANSAC plane extraction result using CloudCom-
pare with implementation of Schnabel, Wahl, and Klein (2007). The value of the
minimal support points per primitive was set to 100. The distance-to-plane thresh-
old was set to 0.03 m. All other parameters were kept the default. Wrong extrac-
tion results are marked in blue boxes. Although planes marked with red arrows are
points from the same plane, they were divided into two unparallel planes. (c) Re-
sult with pre-calculated normal vectors using Boulch and Marlet (2016) method in
CloudCompare to eliminate wrong planes in (c) (blue box region) but still wrong
results left (red box region). (d) The RANSAC detection result based on manually
selected points on the floor selected from the region in the red box shown on the
left-upper corner. The algorithm cannot properly group the given points into the
same plane but into three separated plane segments.

2.4.2 Classic Region Growth

Region growth was another popular solution for extracting segments from dense

point clouds and also was deployed in PCL (Rusu & Cousins, 2011). This algorithm
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was capable of connecting adjacent regions and points with similarity in the direc-

tions the patches were facing and in the curvature changes along with the expansion

of the planes. It did these by inputting and defining local estimated normal vectors,

local curvatures, neighbor finding function, curvature threshold, and angle thresh-

old in addition to the pending point clouds. In some solutions, point-to-patch dis-

tances of pending points were considered.

Though listed as one of the main input factors, the definition of the neighbor-

hood region affected the performance and reliability of this algorithm greatly. The

default method for search in PCL is the k-Nearest Neighbors (kNN) algorithm based

on k-d tree, while either the number of k or the distance threshold to the pending

point can be selected (Rusu & Cousins, 2011). In other words, this searching al-

gorithm was not considering that there might be congested points in small areas

affecting the estimated normal vectors and shapes. For example, if there were 50

points existing in a region of 10 cm × 10 cm × 10 cm with other nearest neighbor

(not a member of the 50 points subset) at the minimal distance of 1 m and the kNN

search distance was set to 10 cm, all the 50 points would be adopted for estimating

the local normal and their normal directions would be facing the same direction.

Consequently, the 50 points, which could be distributed in any shapes, would be

considered as a planar segment. Meanwhile, if the distribution of points was not

homogeneous, which is common in MLS point clouds, the search for eligible neigh-

bors would be conducted along the directions of the scanlines. The incapability of

searching neighbors in all directions might affect the estimation of the local areas.
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Using the same point cloud in Figure 2.24, Figure 2.25 shows some examples of

miscalculated local estimated normal vectors. The inhomogeneous distribution of

points in multi-line MLS point clouds, especially the linear distribution along the

rotating directions, had greatly affected the estimation of the local normal vectors

(Shan & Toth, 2018).

(a) (b)

(c) (d)

FIGURE 2.25: Estimated local normal vectors of the point cloud of a hallway. All
normal vectors are represented as thin gray line segments starting from the pend-
ing points and extending along the local estimated normal directions. (a) 45 ◦-view
of the hallway with local estimated normal vectors. (b) Corrected local estimated
normal vectors of points of wall surfaces with blue arrows marking local estimated
normal vectors pointing to nearly the same directions. (c) Wrong normal estima-
tion results using radius as parameters for determining local areas. The normal
vectors in blue were local estimated normal vectors that should be pointing to a
similar direction. (d) Errors in local normal estimation results using kNN for deter-
mining local areas. The arrows in blue should be pointing to similar directions as
the arrows in red.
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An alternative was to conduct a grid-based neighbor search strategy for esti-

mating local normal vectors by using the original data acquisition sequence of the

MLS. However, as the geometric resolution of the grid varies with the distance be-

tween the pending point and the scanner, in addition to the actual distance between

the neighbors in the grid, there should be an extra determination of removing fake

neighbors, which will affect the normal estimation result as well. For example, a grid

neighbor far away from the pending point might not be a suitable point for estimat-

ing the local normal of the neighborhood with the radius of 10 cm. However, even

when properly assigned, experiments by Miyazaki, Yamamoto, and Harada (2017)

showed that the normal estimations of points on the edges of planes were affected,

leading to the omission of plane boundary points on the identified planes. Such a

problem might not affect the high-resolution point cloud. However, it would create

vital failure in identifying planes from low-resolution point clouds as, indeed, there

were not so many points on the small-sized planes. The defects of the grid-based

normal estimation are further discussed in Section 2.4.4.

Another region growth workflow, which was not based on local estimated nor-

mal vectors, was realized by Vosselman, Gorte, Sithole, and Rabbani (2004). Named

Bottom-up method, this process of approximating and recovering planar patches

was considered a simple, easy-to-implement, and calculation-efficient method (P.

Tang et al., 2010). Starting from local patches of small sizes after examining the flat-

ness and surface curvatures of certain neighborhoods in point clouds using Hough
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transform, small meshes were used as initial elements in the hierarchy building pro-

cess to detect planes that were larger than the given thresholds (Vosselman et al.,

2004).

In the initial patch detection process, the least-square method and statistical

noise removal procedure were implemented to sort out the subset indicating a plane

and fit a specific set of parameters to it. Then, by checking the point-to-patch dis-

tances along the normal direction of the patch and the projection-to-boundary dis-

tances along the expanding direction within the patch plane, candidates were added

into the subset to form a larger patch if both requirements were met. The parameter

of the plane would also be updated once new points were added into the patch.

This method should be one of the universal methods as a normal vector was

not required in the entire bottom-up process, avoiding the error-prone normal es-

timation process. However, the tedious distance checking process for each single

point was considered to be time-consuming on a CPU-only platform. With the de-

veloping of parallel computing using GPU computing units, this algorithm could be

redeveloped.

Dong, Yang, Hu, and Scherer (2018) presented a supervoxel-based region growth

method that iteratively classified multiscale supervoxels into planar and nonplanar

supervoxels and connected them to form planes. However, the test was conducted

using a TLS point cloud, while the calculation of the pointwise geometric features

was based on kNN search and the spatial distance was selected as the only geo-

metric feature for over-segmentation, which was already proved to be unreliable in
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inhomogeneous MLS point clouds.

2.4.3 3D Hough Transform

As an extension of the 2D Hough transform in 3D spaces, 3D Hough transform could

be applied in the plane detection process (Vosselman et al., 2004) (P. Tang et al.,

2010). Based on Equation 2.6 of non-vertical planes in the real space given by Vos-

selman et al. (2004), the corresponding mapping of planes in the real space can be

defined as a point in the parameter space.

Z = sx X + sy Y +d (2.6)

where:

(X ,Y , Z ) are the coordinates of the points on the plane in the real space,

sx and sy represent the slope of the surface with respect to the direction along

the X-axis and Y-axis, and

d is the height of the surface in Z-axis at the origin point of the space.

As defined, the corresponding mapping point in the parameter space was point

(sx , sy ,d), which defined a plane in the real space. Therefore, all planes in the real

space, passing the pending point (X ,Y , Z ), could be represented as surfaces in the

parameter spaces. The detection of planes was based on the assumption that the

number of planes intersecting at the same point in the parameter space equals the
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number of points in the object space or the actual space that were located on the

same plane which was represented by the point in the parameter space (Vossel-

man et al., 2004) (Tarsha-Kurdi, Landes, & Grussenmeyer, 2007) (Borrmann, Else-

berg, Lingemann, & Nüchter, 2011). Consequently, the plane parameters would

be estimated using the intersection point in the parameter space. In reality, due

to inevitable variations, such as measurement noises and other disturbances, the

corresponding planes in the parameter space rarely intersected at the same point.

Therefore, a 3D bin was introduced for automatic identification of the intersection

(Vosselman et al., 2004).

With local estimated normal vectors provided, the planes in the parameter space

were limited to the tangent planes defined by the normal vectors. Subsequently, a

Gaussian sphere was used for identifying the normal vectors with similarity in point-

ing directions as a 2D parameter space, with a 1D parameter space for determining

the d value (Vosselman et al., 2004).

Compared with other popular methods such as RANSAC and region growth, 3D

Hough transform was considered a computational-intensive algorithm, which was

sensitive to the segmentation results before the estimation process, especially in the

applications to certain scenarios with plenty of parallel planes in the vicinity, while

the automatic determination of the parameters was also considered as a difficult job

(Tarsha-Kurdi et al., 2007). In addition, its definition of planes in Equation 2.6 also

restricted the facing directions of the plane extracted, which might not be suitable

for identifying planes in artificial environments.
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2.4.4 Plane Extraction from MLS Point Clouds

The linear distribution of points captured by vehicle-based mobile mapping sys-

tems had become one of the most popular survey products waiting for future pro-

cessing as well, though it differed from the point clouds captured by Airborne Laser

Scanning (ALS) and TLS. Moreover, the extraction of attribute information and se-

mantic modeling had been highlighted research topics in recent years. Planes, being

one of the most common natural and artificial elements, were crucial for extract-

ing structure information from point clouds of enormous sizes. Building facades,

road surfaces, traffic signs, and other objects of interests were commonly in the

shape of planes, and their identification was based on the prior extraction of the

segments from the point clouds first. In addition to the methods mentioned above,

workflows had been designed for detecting planes from point clouds captured by

vehicle-based MLS.

When normal vectors are available, region growth can be performed based on

Euclidean approximation, the angles between local estimated normal vectors of

points, and the distance between the pending point and the patch. Based on the

classic region growth method and analysis of normal vectors derived using PCA

algorithm, Nurunnabi, Belton, and West (2016) integrated a robust segmentation

method and a slice merging algorithm to form a plane detection algorithm for point

clouds captured by TLS, ALS, and MLS. However, for sparse point clouds, the linear

distribution of point clouds, which is quite common in MLS point clouds, missing

points along the moving directions of the platform may result in the incapability of
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estimating reliable normal vectors, which is similar to the results shown in Figure

2.25.

In most circumstances, the grid distribution of the multi-line MLS point clouds

could be used to calculate local estimated normal vectors. However, as the grid dis-

tribution did not reflect the actual geometric distributions based on 3D Euclidean

distances, the normal vectors estimated could be easily influenced by their neigh-

bors in the grid. Miyazaki et al. (2017) showed the normal calculation results of sim-

ilar data sets, linear single-line MLS data, showing the normal vectors of the knee

points on the scanline would be improperly tilted as its neighboring points were

actually on two different planes. Such disturbance would not significantly affect

dense point clouds, such as the sample data set listed in that report, as the rest of

the points were still abundant for identifying planes. However, for inhomogeneous

sparse point clouds captured by multi-line MLS, in which there might be only two

lines of points reflected by the pending planes, such mistakes would result in miss-

ing planes. Czerniawski, Sankaran, Nahangi, Haas, and Leite (2018) demonstrated

similar results, showing that even for dense point clouds, the normal vectors of edge

points would be affected, making the understanding of semantic information from

such data sets error-prone. Y. Fan et al. (2018) summarized and compared most

of the methods used for point cloud segmentation, presenting the importance of

the normal vectors for point cloud segmentation in conventional methods, which

was indispensable for recovering local geometric features from the point clouds. In
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other words, the mistakes in estimating local normal vectors would result in differ-

ent kinds of errors and incapability of extracting the intact planes.

To avoid using normal vectors in plane detection from point clouds captured

by vehicle-based MLS, Cabo, García Cortés, and Ordoñez (2015) and H. L. Nguyen,

Belton, and Helmholz (2019) designed similar methods for clustering and combin-

ing line segments extracted using the Douglas-Peucker algorithm. Cabo et al. (2015)

used neighboring endpoints in the line segment searching process for clustering.

However, for noisy point clouds, missing a few points from the extracted plane was

quite normal, which might result in the incapability of extracting valid planes using

these criteria. W. Wang, Sakurada, and Kawaguchi (2016) extended the application

of this workflow to the point clouds captured by multi-line MLS, which was simi-

lar to the sensors installed on S2D AS. The distance threshold was adopted in the

searching process, which was determined by the distance between the point and

the scanner and the elevation angle of the laser beam. However, checking only sin-

gle points for the whole line segments may cause misclassification since the small

but consist direction differences between the two adjacent line segments might be

considered as the existence of two lines on the two planes that are quite close but

with small angles. More representative points, such as the first and last points, and

the centroid of the line segments, should be checked.

Moreover, the analysis on single-line MLS data only concentrated on the mir-

ror rotating direction in Cabo et al. (2015) and H. L. Nguyen et al. (2019). Con-

sequently, parallel line segments with small variations in the direction within the
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pending plane, which were very common in the noisy point clouds captured by the

scanners designed for outdoor autonomous driving, could not be distinguished. An-

other main flaw of the three methods was that no scanline curvature was considered

in the merging process. As only one single dimension was considered in the solu-

tions mentioned above, which was the direction along the horizontal scanline, the

analysis on variations and shape changes was limited to the narrow scope of the

original scan sequence of points captured by the same scanline with the same ver-

tical elevation angle. The scanline curvatures, as introduced by Grant, Voorhies,

and Itti (2013) and shown in Figure 2.26, which were unavoidable in point clouds

of large-scale environments, were not considered in the three methods, while the

curvature caused the direction differences in line segments on the same plane.

FIGURE 2.26: Curved scanlines existing in point clouds captured by a multi-line
MLS scanner. Points are colored in different colors with respect to the scanlines.
There is significant curvature in the scanline in red and marked with white ar-
row. The curvature of neighboring scanlines shows identifiable differences from
the scanline marked with white arrow.
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In our experiments, line clustering methods that considered only the single se-

quence would be affected by the so-called "over-fragment" problem, which was the

same plane being separated by the scanline curvatures, as shown in Figure 2.27. Al-

though neighboring planes could be easily combined by checking their orientation

and distance, there were still risks that the missing edge points and the variations in

normal directions, which was quite common in MLS point clouds captured by laser

scanners with such low accuracy, would cause the miscalculation of the distance

between plane edges and result in unsuccessful plane fusing.

FIGURE 2.27: The over-fragment problem caused by scanline curvatures. The ceil-
ing points in the red box should be grouped into the same plane.
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In the meantime, Grant et al. (2013) utilized the curvatures of the laser scan-

lines in identifying planes from the low-resolution inhomogeneous point clouds.

However, for small planar patches, the occurrence of curvatures was not very iden-

tifiable compared with the vibrations of the scanner and the measurement noises,

which might cause unsuccessful detection and identification.

Depth images are another kind of structured point cloud data usually generated

by depth cameras. Pathak, Vaskevicius, and Birk (2009) and Pathak, Birk, Vaške-

vičius, and Poppinga (2010) have introduced a registration method for depth images

that planes were extracted for seeking the correspondence between frames. This

method made point clouds with homogeneous resolution possible for recovering

the correspondence. However, as points in depth images were evenly distributed

according to their sensor type and limited working range, the algorithms used for

extracting planes from depth images could not be applied to the low-resolution 3D

point cloud generated by the SLAM scanner in S2D AS.

2.4.5 Previous Works on the ELS Algorithm

In W. Fan (2015), an enhanced algorithm—the ELS algorithm—was designed and

verified on 3D TLS point clouds, for deploying 2D line simplification algorithms

to extract breakpoints and feature points from structured point clouds. The algo-

rithm was based on the linear distribution of the structured point clouds and acted

as an extension of the 2D line simplification algorithm. The ELS algorithm con-

sidered each of the points between the two endpoints of the given line segment as



Chapter 2. Mobile Mapping Sensors and Systems, and Technologies: A Review 79

the pending points. The feature points representing the most appreciable curva-

tures could be reserved by checking the distance between the pending point and the

straight line segments formed by the two endpoints. The checking procedure was

performed in the two original scanline directions of TLS. Subsequently, the most

representative points in shapes were extracted.

Similar ideas, such as the one in Woo, Kang, Wang, and Lee (2002), had already

been presented that the structure and sequence hidden in the point clouds with

respect to the working principle should be utilized. However, it was still the normal

vectors that were calculated and used as the features for identifying breakpoints and

boundaries. Although Delaunay triangulation was introduced to generate reliable

local surfaces for calculating local estimated normal vectors, the distances between

points, which may affect the local estimated normal vectors, were still not taken into

consideration.

One of the limitations of the proposed algorithms in W. Fan (2015) was that al-

though the algorithms were designed to omit the time-consuming normal calcula-

tion process, the efficiency of the algorithms was not preferable for real-time data

parsing. Therefore, modifications and improvements were made to allow the algo-

rithm become a high-performance workflow, which was part of the plane extrac-

tion algorithm. Moreover, considering that data processed in the real-time SLAM

progress on S2D AS was structured, the algorithm was implemented on the raw data

and used for extracting planar segments from the low-resolution point clouds.

Furthermore, although the algorithm was capable of extracting feature points
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which could be used for modeling planes, the final plane modeling processing was

a manual process based on the selected feature points rather than a direct segmen-

tation and plane extraction algorithm. Automatic plane extraction based on the ELS

algorithm should be implemented for batch processing of point clouds captured by

multi-line scanners.

2.5 Feature-based SLAM

The general working mechanism of SLAM was that by capturing point clouds or im-

ages, the corresponding features could be extracted and aligned to recover the geo-

metric relationship between the frames. Thus the trajectory of the moving platform,

including the positions and attitudes of every frame, could be derived recursively.

Although the errors in trajectory positions and attitudes increased with the accu-

mulation of the moving distances, redundant alignments between non-adjacent

frames could be established for adjustment. Such alignments were used to correct

the position and attitude drifts using the specific estimation and data processing

method, such as EKF, Unscented Kalman Filter (UKF), and partial filter in IMU DR

workflow (Montemerlo & Thrun, 2003) (J. Zhang & Singh, 2014) (J. Zhang & Singh,

2015) (Kamijo, Gu, & Hsu, 2015). Therefore, a fused trajectory of the platform could

be derived in the data fusion process.

In LiDAR SLAM, three typical categories were used to recover direct coordinate

relationships: point-to-point methods, feature-to-feature methods, and grid-based
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likelihood methods. In addition, there were also methods based on building the

relationship between the single-frame data and the accumulated maps, such as the

works done by J. Zhang and Singh (2015), also called incremental SLAM methods.

For direct point-to-point matches, either the geometric distribution of every sin-

gle point or the distribution functions of points could be utilized. ICP algorithm was

one of the most popular algorithms in implementing either point-to-point methods

or feature-based methods by conducting the iterative process to align the pair of cer-

tain subsets of the given point clouds (Besl & McKay, 1992) (C.-C. Wang & Thorpe,

2002) (Liu et al., 2010). Moreover, Iterative Matching Range Point (IMRP) and It-

erative Dual Correspondence (IDC) methods worked by iteratively optimizing the

position and orientation changes to align the frames (Lu & Milios, 1997) (Brenneke,

Wulf, & Wagner, 2003) (Diosi & Kleeman, 2005). Normal Distribution Transforma-

tion (NDT) used the point distribution functions to identify the likelihood of point

distributions between frames and estimate the corresponding position and attitude

changes (Biber & Strasser, 2003) (Magnusson, 2009). Biber, Fleck, Wand, Staneker,

and Straßer (2005) used scan matching based on the probabilistic density functions

to establish the pairwise relationships between frames with global optimizations.

Different kinds of features, namely landmarks, were selected for building the

relationships between frames of point clouds, such as endpoints by Achtelik,

Bachrach, He, Prentice, and Roy (2009) and Kohlbrecher, von Stryk, Meyer, and

Klingauf (2011); unevenly distributed points by J. Zhang and Singh (2014); line seg-

ments in 2D-only solutions by L. Zhang and Ghosh (2000), Pfister, Roumeliotis, and
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Burdick (2003), and V. Nguyen, Gächter, Martinelli, Tomatis, and Siegwart (2007);

and planes by Pathak, Birk, Vaskevicius, et al. (2010), W. Wang et al. (2016), and

Dai, Nießner, Zollhöfer, Izadi, and Theobalt (2017). Corners and lines in indoor

environments, and trees, which were cylinders in outdoor environments, were pop-

ular features used in the SLAM process (Y. Li & Olson, 2010). Since the points and

features were limited in single-frame point clouds, most of the feature-based meth-

ods were based on feature-to-map alignment to maximize the correlation between

point clouds. Meanwhile, when feature points were selected for alignments, the

feature-based methods were based on either point-to-point or point-to-map align-

ments with only specific feature points. Thus they were considered as points in the

matching process.

2D grids and 3D voxels, which are different forms of grid maps in 2D and 3D,

could be used to estimate the position and attitude change by checking the occu-

pied status in the observation spaces (Rivadeneyra & Campbell, 2011) (Lee, 2015).

Such methods considered the occupancy of points in the space. Then the occupied

cells were considered as points for the localization and orientation process.

2.5.1 Plane-based SLAM Algorithms

The selection of the features adopted in SLAM was changed with the evolving of

MLS. In the earlier years, when only 2D MLS were available, lines and circles were

selected as the features as they were the most identifiable features with low repeti-

tion. Furthermore, the specific distribution of such features was even more reliable
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as it was unique in the testing environments in most cases. With the subsequent

development of multi-line MLS and the invention of the dedicated spinning instal-

lation method, such as GeoSLAM products, 3D features, which include but are not

limited to planes, cones, and cylinders, were used as features for estimating location

and orientation changes in 3D spaces.

The use of cones and cylinders was similar to the application of line-based SLAM

algorithms, as they protracted along their axes, while the planes extended along all

directions which were perpendicular to their normal vectors. Meanwhile, consid-

ering the wide distribution of planes in natural and artificial spaces, plane-based

SLAM methods had been introduced and discussed by scholars in the past decades.

With the extraction of plane boundaries, Poppinga, Vaskevicius, Birk, and Pathak

(2008) presented a direct registration method for RGB-D sensors as the resolution

was relatively more homogeneous. However, this method could not be applied for

low-resolution point clouds captured by multi-line scanners, because the sparse

distribution of the points introduced significant uncertainty in determining the po-

sition of the boundaries. Meanwhile, Theiler and Schindler (2012) addressed a co-

registration method by aligning intersection points of planes extracted from TLS

point clouds. Nevertheless, the result was limited by the accuracy of the plane ex-

tracted, as the accuracy of the TLS was much higher than that of the MLS. For planes

extracted from MLS point clouds, whose parameters might be affected by the in-

evitable noises and disturbances in the angle and distance measurements, the posi-

tions of the intersections might be fallible and cause significant errors in alignments.
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Pathak, Birk, Vaskevicius, et al. (2010) presented a robot based on a single-line

scanner pitching from -90 to +90 ◦, providing the vertical scanlines with the interval

of 0.5 ◦. The robustness and speed of the online region-growth-based plane extrac-

tion introduced by Poppinga et al. (2008) and the plane-based 3D SLAM had been

verified as feature-based SLAM. The algorithm demonstrated better performance

in both time consumption and robustness when compared with ICP. It also intro-

duced proper procedures which could be used for solving the position and orien-

tation changes. W. Wang et al. (2016) introduced a similar IMU-free SLAM pipeline

which was adopted in the proposed workflow listed in this report. However, the

segmentation results of the previous frame would be required to produce accept-

able results. Meanwhile, it was considered that the method would achieve better

performance with the availability of RGB panoramic images and the corresponding

integration.

Ulas and Temeltas (2012) utilized RANSAC extracted planes with EKF and UKF

processor. The results showed acceptable accuracy in indoor environments though

it did not perform well in outdoor environments. Geneva, Eckenhoff, Yang, and

Huang (2018) also proposed an integrated SLAM method where a continuous

pre-integration of RANSAC plane extractions and IMU measurements was imple-

mented together to produce reliable results in indoor environments. Meanwhile,

the RANSAC method proved to be so time-consuming that the plane extraction had

to be conducted offline.

By projecting point clouds to 2D image spaces to extract planar surfaces, Lenac,
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Kitanov, Cupec, and Petrović (2017) realized a plane-based SLAM workflow designed

for multi-line MLS by registering planes to local maps. However, the system did

not perform very well without IMU integration. Grant, Voorhies, and Itti (2019)

demonstrated the application of the plane detection algorithm introduced in Grant

et al. (2013) on outdoor SLAM that used both planes and points. The constraints

of planes in multiple directions were discussed, and points were used to facilitate

the alignment process when the planes were not capable of providing both rota-

tion and translation parameters in the three axes. The solution performed well in

both outdoor and indoor scenarios. However, the poor performance of the adopted

plane-extraction methods in complex environment must be considered.

2.5.2 Discussion

Various kinds of features were selected as the landmarks in SLAM workflows in the

past decades. Since the proposed mobile mapping solution was based on a back-

pack moving in 6 DOF, the motion of the platform would not be precisely estimated

with 2D SLAM techniques. Furthermore, point-to-point SLAM might not provide

robust results either since the vertical resolution of most modern 3D multi-line MLS

quite low. Taking the most widely adopted MLS, Velodyne Puck and Puck Hi-res

as examples, since the vertical interval between scanner channels was either 2 ◦

or 1.33 ◦, the possibility that the points of different frames might not be reflected

by the same positions on the surrounding objects must be considered. The laser
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beams emitted by the same multi-line scanner could barely hit the precise same po-

sition twice, as shown in Figure 2.28. The point-to-point SLAM workflow, which was

based on the hypothesis that the alignment of point clouds was equivalent to the

alignment of feature points, would be affected by such position changes of feature

points. Such influences were not quite apparent in 2D SLAM as it was easy to rectify

for the low-DOF platform. However, when the motion in 3D was considered, such

as movement on a backpack platform, the 6 DOF motions created significant uncer-

tainty in estimating the three-axis rotations and translations, which would result in

drifts in the subsequent DR process.

FIGURE 2.28: An illustration of the non-common-point problem on the platforms
with 6 DOF motion. The low-resolution point clouds of consecutive frames were
in different colors while they had been registered to the same frame. The intersec-
tional distributions of the points show that the points could hardly hit the same
location twice.

Therefore, planes were selected as the features in 3D SLAM with 6 DOF in the

proposed workflow, which was the main reason why the two scanners were required
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with angles between them, in addition to the purpose of capturing points from an

extra dimension for constructing the point cloud with higher coverage.

Generally, planes were selected as features used in SLAM workflow, and results

with acceptable accuracy had been produced for some of the IMU-free methods in

indoor environments. The main limitation of most of the algorithms and methods

was that the poor performance of the plane extraction workflow might degrade the

reliability of the IMU-free SLAM workflow. Consequently, the applications to out-

door datasets would require integration with IMU or other sensors to improve reli-

ability in complex environments with planes facing directions that are not enough

for solving 6-DOF position and attitude changes.

2.6 A Summary of Plane Extraction and SLAM Methods

for Mobile Mapping

In the sections above, various kinds of plane extraction methods and SLAM work-

flows, especially the plane-based SLAM techniques, were reviewed. Since the planes

identified and the subsequent SLAM process were implemented to serving the ap-

plications to the mobile mapping backpack, the sensors involved must be consid-

ered as well in the discussion.

Most of the plane extraction methods were designed to segment dense point

clouds, in which the local characteristics, such as the curvatures and local estimated
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normal vectors, were used to detect the flatness of the patches and merge corre-

sponding patches. Although the increasing size of the local neighborhood could

reduce the possibility of wrong estimation resulting from the inhomogeneous dis-

tribution of points, the limited dimensions of low-resolution point clouds captured

by multi-line scanner would restrict the identification of planes consisting of only a

few scanlines, while the local shapes might be ignored as well.

Furthermore, as the limitation of adopting ICP and other point-to-point align-

ment methods has been discussed above, the features, especially artificial features,

should be identified as the landmarks in the SLAM process. Since the feasibility of

adopting planes in the SLAM processes had been proved, the poor performance of

plane extraction from low-resolution inhomogeneous point clouds limited the reli-

ability and precision of most plane-based SLAM workflows. Meanwhile, most work-

flows relied on the external IMU to provide the state initializations for matching the

common plane pairs. The robustness of the plane extraction methods and the SLAM

workflow should be improved for reliable implementation.

Therefore, a novel plane extraction method based on ELS feature point extrac-

tion algorithms is introduced in Chapter 3. Subsequently, a plane-to-plane IMU-

free alignment workflow for low-resolution inhomogeneous point clouds captured

by multi-line MLS is presented in Chapter 4.



Chapter 3

Plane Extraction from Low-resolution

Inhomogeneous Point Clouds

As reviewed in Section 2.4, various plane extraction methods have been presented

in the past. However, most could not produce satisfying results when given low-

resolution inhomogeneous point clouds. To achieve 6 DOF alignment of point

clouds, the planes were selected as an effective feature for registering point clouds

to the same frame in the proposed mobile mapping workflow. The challenge in ap-

plying multi-line MLS to 6 DOF mobile mapping was in developing a novel method

that could detect and identify planar segments from the low-resolution inhomoge-

neous point clouds in order to establish an automatic workflow of feature matching

and point cloud alignments.

In this chapter, the modifications and improvements to the ELS algorithm to

make it applicable for feature point extraction from low-resolution inhomogeneous

89



Chapter 3. Plane Extraction from Low-resolution Inhomogeneous Point Clouds 90

point clouds are introduced. Secondly, the ELS-based line segment clustering algo-

rithms are presented. Finally, the test results on multiple scenarios are listed, and

their pros and cons are discussed.

3.1 Modification of the ELS Algorithm

To apply the ELS algorithm into point clouds captured by multi-line scanners, mod-

ifications were need for better results. These modifications included altering the

definition of point grid, extra virtual scanline directions, point shifting and projec-

tion, and optimizing programming codes. The reasons, changes, and results are

listed in this section.

3.1.1 Point Grid Recovery

As introduced in W. Fan (2015), the ELS algorithm was designed to extract feature

points and breakpoints from indoor point clouds from the curvatures of scanlines

and virtual scanlines. In conventional TLS, the single laser prism kept rotating or os-

cillating to generate point clouds of the surrounding environments. Consequently,

the vertical direction—the visible moving directions of the pulses due to the rotation

or oscillation of the prism—was defined as the scanline direction. The rotation of

the scanner base in horizontal plane caused the rotation of pulses in the horizontal

plane, generating a scanline consisting of all the points with the same vertical angle
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but different azimuth angles. The direction of this scanline was along the direction

of the rotation against the vertical axis of the scanner.

The firing sequences of most of the multi-line MLS differed from those of the

TLS. Taking Velodyne VLP-16 as an example, the point clouds generated were not

strictly aligned in the form of grids because the sixteen lasers were fired with in-

tervals in horizontal and vertical directions. Consequently, the original firing se-

quence was not a sequenced line but a set of connected polylines along the vertical

and diagonal directions, as shown in Table 2.1 and Figure 3.1(a) (Velodyne Acoustics

Inc., 2015). The data output from the scanner needed to be rearranged before the

ELS processing according to the corresponding vertical angles of points, which were

along the increasing sequence of vertical angles, as shown in Figure 3.1(b).
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FIGURE 3.1: Profile views of a single vertical scanline demonstrating the point se-
quence before and after scanline rearrangement. (a) Raw point sequence recov-
ered before scanline rearranged, the number labels beside the points are the fire se-
quence ID. (b) Rearranged scanline sequence, the number labels beside the points
are the rearranged sequence ID.
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After the initial firing sequence in each of the groups of the sixteen points had

been recovered and rearranged, the assumed point grid could be recovered, as

shown in Figure 3.4. The original raw scanline indicating the altered data acquisi-

tion sequence was along the vertical direction, although the horizontal angles were

not the same. The sequence in the group of the sixteen points was changed while

the sequence between the groups was maintained, generating the horizontal scan-

lines. Also, based on the vertical and horizontal scanline grids, the two diagonal

scanline directions could be defined. Consequently, the ELS algorithm could be

implemented.

As discussed in W. Fan (2015), the splitting operation would speed up the ELS

processing, which was no longer needed in processing multi-line MLS point clouds.

For three of the four processing directions, the length of each of the scanline seg-

ments was only the same as the number of the laser channels—sixteen if a Velodyne

VLP-16 scanner were considered as the scanner. On the other hand, if the highest

horizontal interval were adopted, which was 0.1 ◦ interval, each scanline would have

3600 points. The pre-separation would then no longer be necessary in this imple-

mentation. For easy understanding and implementation, the horizontal scanline

direction was defined as the row while the vertical direction was defined as the col-

umn.

Another problem considered in the grid recovering process was the horizontal

offset. The problem affected the processing of point clouds captured by some of the
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multi-line scanner modules, such as RoboSense RS-LiDAR-32D and Velodyne VLP-

32 (Suteng Innovation Technology Co Ltd, 2015) (Velodyne Acoustics Inc., 2018).

The horizontal offsets within the group of thirty-two points could be up to a few de-

grees, as shown in Table A.1 in Appendix A and Figure 3.2. Therefore, an additional

operation was needed that would rearrange all points of a single frame to minimize

the horizontal sequential offsets between points.

FIGURE 3.2: Horizontal distribution of installation offsets in ReboSense RS-LiDAR-
32D scanner according to Suteng Innovation Technology Co Ltd (2015). The x-axis
is the sequential ID of the rearranged channels, while the y-axis is the horizontal
installation offsets with respect to the calculated horizontal angles versus the rota-
tion speed and timestamp. Note that the horizontal installation offsets are different
between scanners of the same model due to installation error.

Multiple methods have been implemented and compared, including methods

based on minimal neighboring offsets, sharing points as public neighbors, direct

shifting in the installation offsets, and nearest neighbor to the azimuths of the

middle-column points. The fourth method was the best choice as less misalignment

and sharing was generated, considering the corresponding time synchronization.

In other words, the sixteenth point in the rearranged point column, which was the
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middle point in the column, was selected as the reference point in the column.

Regardless of the original data capturing sequence, the search for nearest neigh-

bor with the minimal azimuth difference was conducted from the middle to the

two endpoints in the column. Such neighbors were selected as points on the same

column. The process is shown in Figure 3.3. After this process, a few points with az-

imuth differences that were too large could still not be properly reorganized as they

were out of the major azimuth range of the rest points. They would be considered

as feature points in most cases as they were identified by the ELS algorithm.

16th Row

dsdl

ds

ds

ds

ds

dsdl

dl

dl

dl

dl

FIGURE 3.3: The rearrangement of point grid with horizontal installation offsets.
The search starts from the only blue point in the sixteenth row, and the blue and
red arrows indicate the candidates. The points with smaller angular differences
d_s are selected as the nearest neighbors in the rearranged column and marked in
blue. The points in blue are the final rearranged vertical scanline column.

3.1.2 Virtual Scanline Directions

In addition to checking the existence of polylines along the original scanline direc-

tion, which was the vertical data acquisition sequence in most of the TLS, W. Fan

(2015) performed an extra check along the assumed scanline direction, which was
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the horizontal direction against the rotation axis of the TLS base. In this thesis, the

two diagonal directions were also considered in the feature point checking process.

As shown in Figure 3.4, the azimuth and elevation angles of the laser beams were

considered as grid coordinates. As the horizontal and vertical intervals in TLS point

cloud acquisition were alterable, the grid resolution could be changed while still

evenly distributed, which was different from the situation on a typical multi-line

MLS, such as the Velodyne VLP-16 scanner. However, the change in angular reso-

lution would not affect implementation of the ELS algorithm because not only the

grid neighborhood relationship but also the distances between points in the clouds

were considered in the feature extraction process.

(a) (b)

FIGURE 3.4: The applicable scanlines in an assumed point cloud captured by TLS.
Points in black represent an evenly distributed point grid in both figures. (a) Orig-
inal scanline distribution in the point grids. Dashed lines in red show the original
data acquisition sequence while the dashed lines in blue represent virtual scan-
lines along the rotation direction of the TLS, which is the horizontal sequence of
TLS point acquisition. (b) The distribution of the two diagonal virtual scanline
directions in the point grids. The dashed lines in red and blue represent the two
directions which are diagonal in the point grid.
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3.1.3 Point Shifting and Projection

Because the beam emitter kept rotating during the period of firing the sixteen laser

beams, the horizontal angles of the points were not the same as what happened on a

TLS. According to Velodyne Acoustics Inc. (2015), if the highest spinning speed were

configured, which was 20Hz for a Velodyne VLP-16 scanner, a 7200 ◦/s angular speed

would be achieved. In other words, given the firing interval of 2.304 µs, the horizon-

tal offsets between each of the laser beams and the first beam in the sixteen-point

group could be calculated using Equation 2.5, and the results are listed in Table 3.1.

TABLE 3.1: The rearranged sequences, raw fire ID, vertical angles, and horizontal
offsets at the rotation speed of 20 Hz / 1200 rpm from the first point of the group of
Velodyne VLP-16 3D scanner according to Velodyne Acoustics Inc. (2015)

Rearranged
Sequence ID

Fire
ID

Vertical
Angle (◦)

Time
Offset (µs)

Horizontal
Offset (")

Sequential
Offset (")

1 0 -15 N/A N/A N/A
2 2 -13 4.608 1.991 1.991
3 4 -11 9.216 3.981 1.991
4 6 -9 13.824 5.972 1.991
5 8 -7 18.432 7.963 1.991
6 10 -5 23.040 9.953 1.991
7 12 -3 27.648 11.944 1.991
8 14 -1 32.256 13.935 1.991
9 1 1 2.304 0.995 -12.939

10 3 3 6.912 2.986 1.991
11 5 5 11.520 4.977 1.991
12 7 7 16.128 6.967 1.991
13 9 9 20.736 8.958 1.991
14 11 11 25.344 10.949 1.991
15 13 13 29.952 12.939 1.991
16 15 15 34.560 14.930 1.991

1 (∗) 0 -15 55.296 23.888 8.958

(∗)Note: This is the first fire of the next firing loop showing the horizontal
angle change between loops.
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Given a maximum sequential horizontal offset of 12.939 " at the rotation speed

of 1200 rpm, the corresponding offset in Euclidean distance could be estimated us-

ing the arc length, which was 0.038 m at 10 m range and 0.188 m at 50 m range.

The offsets would be significant enough to affect the ELS results when the distance

between the object and the scanner were larger than 10 m if the selected thresh-

old value in ELS workflow was set to 0.045 m. Besides, this misalignment affects

extraction along the two diagonal directions as well. Although this offset could be

eliminated by shifting the lower or upper part of eight points into the neighboring

column, there was no need for such implementation as this operation would, there-

fore, cause more severe misalignment problems. To reduce the curvature changes

resulting from the uneven distribution in horizontal angles, a point shifting and pro-

jection operation was performed to enable the algorithm to concentrate on the vari-

ation analysis of the polyline within the scan plane.

Firstly, the projection plane was determined by the three selected points on the

same scanline, which were the origin of the scanner and the two endpoints on the

pending scanline. On an ideal scanline, the endpoints of the scanline were the first

point in the rearranged sequence with the lowest elevation angle (-15 ◦) and the

last point in the rearranged sequence with the highest elevation angle (15 ◦). In

some scenarios, if there were either no first point or no last point as the points of the

object might be too close or too far to the scanner and void points were generated,

the neighboring point beside the endpoint would be used. If the neighboring point

remained void, the replacement would keep going until there would not even be
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three points forming a plane. Thus there would be no need for projection if only

two or fewer points were valid in the group of the scanline. The process is shown in

Figure 3.5.
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FIGURE 3.5: Profile views of the single column of points demonstrating the deter-
mination of the scanline plane. (a) In ideal scenarios, the origin point and the two
endpoints in red are selected to determine the scanline plane. (b) When points in
gray are omitted for certain reasons, neighbor points would be selected to build the
scanline plane. The missing of points between endpoints will not affect the process
of determining the scanline plane.

Once the scanline plane was determined, all points were projected to the scan-

line plane against the normal vector of the plane, and the projected points were

used to extract feature points instead of the raw points. Consequently, any varia-

tions or components of variations against the directions of the normal vectors of the

projection plane would be ignored in the ELS processing after the projection. The

algorithm would therefore concentrate on analyzing the changes of shapes within

the scanline planes. Such projections were performed on the group of the points

on every single scanline, namely sixteen points for the vertical and diagonal scan-

lines. Meanwhile, there was no need for conducting such projection on them as the

elevation angles of the points on the same horizontal scanlines were the same.
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3.1.4 Double Feature Points in the Last Segments

Due to the inevitable noisy disturbance in the distance measurements and the esti-

mated dynamic azimuth angles, the most representative feature points extracted

might be second-degree feature points, as shown in Figure 3.6. In such circum-

stances, the false selection of the feature points might result in wrong line segmen-

tation sections and diverted directions, which might affect the plane generation re-

sults as well. Consequently, a double feature point selection mechanism was added

to the last segment generation process.

A BC D

FIGURE 3.6: The feature point selected accidentally and the double feature points
selected. In the original process, because the distance between the orange point
and the line segments ending in the two red points is the largest, it is taken as the
feature point. However, it is appreciated that the extracted segments C and D are
less representative than segments A and B . Consequently, by selecting both blue
and orange points as feature points, segments A and D would be selected as final
line segments.

In the recursive feature extraction process, the lowest-level line segment con-

sisted of two segments with no more subdivisions, such as the segment containing

A and B in Figure 3.6. An extra selection process was conducted to check for the

additional feature points. The points with the largest and second largest vertical

distances were selected as the double feature points. Two groups of line segments

of the two segments in each group were checked. The squared sum of distances
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between each of the points between new endpoints and new sub-line segments,

which could be understood as the squared sum of the residuals of the two groups of

the new segments, were calculated. If the squared sum of the group of the second

appreciable feature point, which was the point with the second largest vertical dis-

tance, were larger than the square sum of the group of the largest feature point, the

second appreciable feature point would be taken as a feature point as well. There-

fore, both points were selected as feature points in the ELS workflow.

The introduction of the double feature point mechanism decreased the possibil-

ity of wrong segmentation while at the same time probably reduced the length of the

line segments. For segments with both feature points, there was a possibility that the

segments were affected by the largest appreciable feature point as well, as the D seg-

ment in Figure 3.6. However, the directions of the segments were determined using

the Singular Value Decomposition (SVD) analysis rather than the direction from one

of the endpoints to the other, and the direction of the final segment would, there-

fore, be less affected. In the example given in Figure 3.6, the direction of the segment

D would be close to the direction of segment B.

3.1.5 Significant Feature Points

Some points could not be distinguished as feature points in the ELS workflow,

though they needed to be considered as feature points in reality. The points with

zero coordinate—zero points—and the points that were far from their nearest

neighboring points were considered significant feature points.
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As the raw point grids were adopted in the ELS process, zero points were existing

due to the presence of unmeasurable objects because the detector received no valid

reflection. Such points were defined as the first kind of significant feature points

as they could not be used to form any objects or segments. Moreover, points with

significant distance to their neighboring points in the grid also exist in certain envi-

ronments. The ELS workflow may not identify them as shape change points as the

vertical distances between these points and the corresponding neighboring points

might be smaller than the given threshold. Consequently, if the distance from the

pending point to its neighbor points in the grid were larger than a given threshold,

such as 1 m, it would also be considered a significant feature point. The determi-

nation of the value is subject to the resolution changes in the indoor environments

and the extent of the corresponding environment. For typical indoor environments,

the value could be set to triple the resolution as there might be one or two points

missing due to the errors in scanners and changes in reflectance. For outdoor envi-

ronments, the value may be set to 5 m, as there would be more points missing due

to the variety of the object surfaces.

Significant feature points were introduced to exclude points with certain am-

biguity from the group of the normal points because specific reasons made those

points distinguishable. However, such features could not be identified using the cri-

teria for identifying feature points in the ELS workflow. Consequently, those points

were added as the significant feature points at the end of the ELS workflow.
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3.1.6 Code Implementation

The implementation structure of the codes was altered to speed up the ELS pro-

cess. The detailed revisions include (1) data format revising for more compact vari-

ables, especially the bitwise variable defining the feature characteristics, (2) itera-

tor retrieving and searching algorithms by using point ID and data offset in Stan-

dard Template Library (STL) containers, (3) initialing and optimizing memory to

run smoothly on low-RAM computers, (4) revising logical flow from simple loops

to recursive calls of the kernel function, and (5) skipping large size of blocks in the

enhanced Lang algorithms.

The optimizations succeeded in reducing processing time on the mentioned

platform. The time used for extracting feature points from a point cloud of 1,612,070

points, shown in Figure A.1(a), was reduced from 42’26" to less than 2", as the result

shown in Figure A.1(b). The optimization shorten the time used for ELS algorithm

by about 95%, making the algorithm applicable for real-time applications. Conse-

quently, the processing time for extracting feature points from the four directions

of scanlines was reduced to milliseconds for the given frames of points, consisting

of around 25,000 raw points per frame. The possibility of implementing GPU com-

puting had been verified as well, and the results were that the parallel calculation of

distance in processing point clouds could not be faster than CPU logic process with

optimized spatial indexing method. Alternatively, the CPU-based parallel process-

ing, OpenMP library, was still implemented in the processing codes (OpenMP ARB,

2015).
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The overall flowchart of the implemented ELS algorithm is listed in Figure A.2,

with the corresponding modification and revision facilitating it. The extraction re-

sults can be used to extract plane segments from low-resolution structured point

clouds acquired by 3D SLAM scanner in S2D AS. The detailed processing proce-

dures and problems are discussed in Section 3.2.

3.2 Plane Extraction Based on ELS Extraction Results

As discussed in W. Fan (2015), regardless of the inhomogeneous resolution of the

point clouds, the feature point extraction results can be used for plane segment ex-

traction. This section discusses the plane extraction workflow based on the ELS ex-

traction results. Firstly, some line segments were identified in the four given scanline

directions by extracting feature points using the ELS algorithm. Next, plane frac-

tions were generated by clustering line segments pointing to similar directions with

limited distance between them. The plane fractions for different scanline directions

were merged to generate large planes, which were the final outputs.

3.2.1 ELS Feature Extraction

The first step of the proposed plane extraction workflow was the extraction of fea-

ture points using ELS algorithm, introduced in detail in the previous section. The

corresponding feature points and their indices in the respective scanline sequence

were recorded for the following procedures. After this process, all feature points and
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future procedures were conducted in the four parallel sections with respect to the

horizontal and vertical scanline directions and the two diagonal virtual scanline di-

rections until explicitly noted.

3.2.2 Scanline Segment Seeking

The scanline segment seeking procedure was along the sequence of the individual

scanline. When the seeker came across a directional non-feature point, the point

was selected as the first point in the line segment group. The seeking process con-

tinued until the next directional feature point was met, with all non-feature points

added into the segment group. Then the segment was extended in both directions

with the neighboring feature points added to the group as the endpoints of the seg-

ment. The seeking process is illustrated in Figure 3.7. After all the points were

checked in this scanline segment seeking process along the four scanline directions,

the process was concluded with the centroids and the direction vectors of each of

the line segments estimated using SVD.

1

2

3 4 5 6 7 8 9 10 11
12 13

14
15

16

FIGURE 3.7: An example of the scanline segment seeking process. The numbers
beside points label the rearranged scanline sequence while points in red and black
indicate feature points and points in white for non-feature points. The seeking pro-
cess starts at the blue points along the scanline direction marked with orange ar-
rows and terminated at the last non-feature points. Then the segment is extended
along the red arrow and ends at the feature points. The dashed arrows represent
the directional vector of the scanline segments.
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When a feature point was selected as the endpoints of neighboring segments,

such as the middle red point labeled with 12 in Figure 3.7, an approximating selec-

tion process was performed to eliminate ambiguity. In this process, the pending

points were grouped into segments with the smaller distance between the pending

point and either of the line segments without the pending point, namely the subsets

consisting of points 3-11 and points 13-16. If the distances to the two segments were

the same, the pending points would be grouped into the segments with more points

in its group. The pending point would be removed from the other segment, and the

direction vectors and centroid would be updated as well.

3.2.3 Scanline Segment Clustering

The segments identified cluster together to form plane fractions in the clustering

process. In this procedure, an initial scanline segment was selected as the seed

segment. The direction of the pending line segment next to the seed segment was

checked, and the difference between them was calculated. With the difference

smaller than a certain given threshold, the two segments would be merged as the

initial segment, while all points on the two segments would be used to calculate the

local estimated normal npln. The corresponding threshold value was set to 90 ◦ for

excluding gross differences.

The search continued with an extra displacement vector vdis in addition to the

direction vector vdir, as shown in Figure 3.8. vdis was defined as the unit vector point-

ing to the centroid of the pending line segment from the current line segment, which
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was already a part of the plane. The cross product of vdis and vdir was calculated and

defined as normal vector of the newly added planar segments, i.e., nnew. If there

were any possibility that the pending line segment was not on the same plane as the

current line segment as they already pointed to the same direction, nnew would not

be parallel to npln. The purpose of introducing nnew defined by the point direction

and the displacement vector was to eliminate misclassifying parallel line segments

that were on a plane parallel but not overlapping, or a plane that was not parallel

to the current plane but on a plane that was intersecting with the current plane, as

shown in Figure 3.9.

vdis

vdir vdir

FIGURE 3.8: The definitions of the direction vector and the displacement vector of
the scanline segments. The points in the blue box represent identified points on the
same plane while points in the yellow box show a pending scanline segment. The
points in red are the virtual centroid points of the two neighboring scanline seg-
ments. The dashed arrows in green show the direction vectors (vdir) of the neigh-
boring scanline segments while the dashed arrow in red demonstrates the displace-
ment vector (vdis) pointing from the centroid of the current scanline segment to the
centroid of the pending scanline segment.

If nnew and npln were not parallel, there was an alternative check considering

that the unavoidable noise might have affected the comparison. The displacement

vector defined by each of the grid neighboring points on the current line segments
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FIGURE 3.9: Parallel scanline segments which are not on the same plane. The
points in different colors represent the three planes. The planes in yellow and red
are parallel planes with a distance of 2 cm, while planes in red and green are per-
pendicular to each other. The blue line segments A and B are parallel segments,
and the white segments C and D are parallel as well.

and the pending line segments would be calculated, i.e., vi
dis, as well as ni

new. If any

of ni
new was parallel to npln, nnew is considered to be parallel to npln.

Furthermore, the neighboring rate would be checked if the two neighboring line

segments were considered to be parallel and facing the same direction. The neigh-

boring rate was defined as the number of points on the pending line segments which

were grid neighbors of the current line segments versus the total number of points

on the pending line segments, or vice versa, whichever was larger. Only if the neigh-

boring rate were larger than a given empirical threshold would the two line seg-

ments be considered as eligible for clustering.

After all parallel line segments within a certain distance added into the group of

points of the pending plane, the search process paused, and the plane was gener-

ated. As Principal Component Analysis (PCA) was sensitive to measurement noises,

especially when the size of the subset used for estimating normal directions was not

very large, the parameters of Hessian formula representing the pending plane were



Chapter 3. Plane Extraction from Low-resolution Inhomogeneous Point Clouds 108

then estimated using a RANSAC process with all disturbances filtered out as noises

(Nurunnabi et al., 2016). The plane fragments were then reserved in the pending

fragment group of the respective scanline directions.

3.2.4 Multi-direction Fragment Merging

As all the directional scanlines had been handled in parallel sections, the planar

fragments were listed in the four groups. Their overlapping relationships were fur-

ther analyzed. Some of the patches were merged in the fragment merging process.

Merging was based on the examination of their normal directions: if two planes

from different groups were facing the same direction, or if the angular difference

between their normal directions was smaller than a given empirical threshold.

Once the fragments were considered as facing the same direction, the overlap-

ping status was checked. Because the normal directions had been checked and the

planes had been selected from different sequences of the same point cloud, the

planes sharing at least one point in common were considered as sharing the same

region and could be combined. This common point was identified in a binary search

based on the sorted lists of point indices and was terminated once a common point

was spotted.

Subsequently, the merged planes were reserved in a pending plane group and

checked with the planes from other groups. The merging procedure was an iterative

process. It kept running until neither common point nor parallel fragment could be
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identified. In this process, neighboring planes which were separated due to unnec-

essary feature points identified in ELS workflow, such as the misclassified feature

points from scanline curvature, would be merged as the possibility was low that the

falsely identified feature points would affect more than one direction.

Furthermore, in case of false merging, the appearance times of the fragments in

different groups were also checked. Only planes that were identified in more than

two different directions were considered as valid planes. The overall flowchart of the

plane extraction process is presented in Figure A.3 and A.4.

3.3 Sample Tests and Results

Typical indoor environments were used to test the performance and reliability of

the proposed workflow, including corridors (simple and complicated), laboratories,

large lecture halls, and stairwells. There are appreciable disadvantages in applying

the state-of-the-art algorithms in extracting planes from the low-resolution inho-

mogeneous point clouds and some of the false extraction results had been listed in

Section 2.4, and only results produced by the RANSAC workflow were compared in

this section. Inevitable measurement noises affected the distribution of points, so

the distance thresholds of RANSAC used in the direct RANSAC plane extraction and

ELS-based method were set to the same value of 3 cm for comparison.
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3.3.1 Corridor

Two corridors were selected as the testing site to test the effect of glasses on the two

methods. The corridor with glasses and the dual-tier ceiling was more complicated

for identifying all planes at the same time, while the simpler T-junction corridor was

larger in scale.

Corridor with glasses for separating partitions was a typical office environment,

as shown in Figure 3.10. The presence of glasses replaced the sidewalls, and the left

parts were only low walls. Meanwhile, the dual-tier structure of the ceiling intro-

duced long and narrow strips in the ceiling as well. Furthermore, the horizontally

installed scanner could only capture points of ceilings and floors with long distances

between neighboring rows of points, causing difficulties in understanding the point

cloud. Three types of extraction results were selected for comparison, showing the

differences in the results.

For the parts with high resolution, the two methods did not produce too many

differences between the extracting results. However, significant differences exist in

the extracting results of long strips and parallel planes. Figure 3.11 gives an example

of long strips of parallel ceiling sections which could not be extracted properly using

the RANSAC method. One possible cause was the miscalculated normal vectors.

As the normal vectors estimated were corresponding to the points in the spherical

region with given distances, narrow strips might result in diverted normal vectors,

generating the plane extraction results that only the center part of the ceiling could
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(a) (b)

(c) (d)

FIGURE 3.10: The photo and point cloud of the corridor dataset, with the process-
ing results of RANSAC and the proposed method. (a) Photo of the corridor dataset
showing the position of the doors, sidewalls, and glasses, as well as the dual-tier
ceiling (red arrows). (b) The single frame point cloud captured by Velodyne VLP-16
multi-line scanner. (c) RANSAC processing result with colored blocks showing the
identified planes. (d) The result produced by the proposed method of which points
in different colors represent groups of points extracted as planes.

be extracted as planes.

Extracting the Z-shape areas correctly was another challenge spotted. The

RANSAC method leaned toward direct plane extraction results from the maximum

subset, making the complete Z-shape area extracted with the two tilted planes

wrongly extracted, as shown in Figure 3.12(a). As for the connected Z-shape re-

gions, there were possibilities that all the connected areas would be identified as

planes with high levels of noises, as shown in Figure 3.12(c). In the meantime, the

proposed method showed acceptable results that only the respective planar regions
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FIGURE 3.11: A part of the point cloud showing the RANSAC result and the result
produced by the proposed method. The points in different colors show extraction
results of the proposed method while the block in green is showing the only plane
identified by the RANSAC method.

were selected as planes.

Adjacent parallel sidewalls with distances between them were not amendable

for plane extraction using the RANSAC method as well, especially when the dis-

tances between them or the sizes of the neighboring planes were not too large. Fig-

ure 3.13(a) shows an example of the RANSAC method extracting adjacent parallel

regions as a single plane, with all distance between adjacent planes being consid-

ered acceptable disturbances during the subset selection process. Meanwhile, Fig-

ure 3.13(b) shows the results using the proposed method, in which separated planes

were extracted.

The comparison of the T-junction corridor data of a residence site did not show

too many differences like the previous comparison, as shown in Figure A.5 in Ap-

pendix A. However, because the testing site consisted of long, narrow corridors, the

distance variations introduced changes in resolution along the vertical distribution
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(a)

(b) (c)

FIGURE 3.12: The point clouds and extraction results using the two methods of
Z-shape point clouds. (a) The points and extraction results of both methods. The
points in green represent the only plane extracted by the proposed method while
all the points were used for extracting and estimating plane parameters of the two
planes in RANSAC and two wrong results, represented by black lines, were gener-
ated. (b) A side view of the connected Z-shape region where only white points are
extracted by the proposed method for estimating plane parameters while points in
both green white and yellow are extracted as elements of the plane. (c) The top
view of the points showing in (b) and the line representing the plane estimated by
the RANSAC method.

of the scanner channels. It was clearly shown that the reduced resolution led to un-

successfully plane extracting in RANSAC results, as shown in Figure A.5(e).

3.3.2 Laboratory

The extraction results of a regulated room, which was a laboratory, showed differ-

ences in extracting specific planes as well. The RANSAC method extracted most of
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(a) (b)

(c)

FIGURE 3.13: Extraction results of adjacent parallel planes. (a) The RANSAC extrac-
tion result shows the block area in claret using all visible points. (b) The extraction
results using the proposed method in which the isolated planes were extracted. (c)
The top view of the points identified as a single plane. All points, regardless of color,
were used to estimate RANSAC parameters; while distance is significant between
adjacent parallel planes in pink and white.

the planes from the point clouds. In addition, the proposed method could extract

more small-sized planes in addition to the planes extracted by the RANSAC work-

flow, as shown in Figure 3.14.

As for differences in details, since there were motions within the point cloud

due to the movements of the sensors, there were motion differences between the

first and last captured points in a single frame of the point cloud. As mentioned

above, the RANSAC method may consider adjacent parallel planes as a single plane

with disturbances. The same problem would exist were the problem of correspond-

ing motion difference to be spotted, as indicated in Figure 3.14(c) and 3.14(d). The

proposed method produced no such failure since it already showed its capability in
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(a)

(b) (c) (d)

FIGURE 3.14: The photo and the plane extraction results of the laboratory data us-
ing both the RANSAC method and the proposed method. (a) The panoramic photo
of the laboratory. (b) The raw data for plane extraction with red indicating high-
est intensity and blue indicating lowest intensity. (c) The RANSAC extracting re-
sults with various blocks in different colors indicating the results. (d) The proposed
plane extraction results with points in different colors indicating groups of points
representing planes.

distinguishing such adjacent planes in the previous comparison. Meanwhile, the

proposed method considered the fringe area as the two sides of the point grid, and

there was no possibility for merging according to the working mechanism of the

proposed method.

However, when planar objects reflect only two scanlines of points, the extracted
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plane might be incomplete. The limitation was due to the working mechanism that

the successful extraction of scanline segments was based on the identification of

non-feature points between the two endpoints, requiring at least three points on

a single scanline segment. An example is provided in Figure 3.15, showing that no

non-feature point could be identified from three of the four scanline directions, re-

sulting in no non-feature point for generating a valid scanline segment. Therefore,

results indicate that the planes extracted using the proposed method might not be

as universal as the RANSAC methods.

FIGURE 3.15: An example of two-line planes that cannot be identified by the pro-
posed method. Three of the four scanline directions, in green, red, and yellow, can-
not produce non-feature point for valid scanline segments.

3.3.3 Large Lecture Hall

The crucial challenges in extracting planes properly from the single-frame point

cloud of a large lecture theater included the estimation of the local estimated nor-

mal vectors, the identification and separation of theater seats, and the division of

the quasi-curved planes on the large theater ceiling. As the dimensions of the point

cloud had been enlarged greatly, the distances between neighboring scanlines had

been increased as well. Therefore, the correct estimation of the local normal vectors

required the proper selection of the radius used for searching for local neighbors.
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Otherwise, the planes extracted would be a series of parallel planes facing wrong di-

rections, as shown in Figure 3.16(d). Such results proved the necessity of gird normal

estimation for such low-resolution inhomogeneous point clouds as it would avoid

the improperly selected searching radius. Once normal vectors were estimated cor-

rectly, the planes with small directional differences, which formed the quasi-curved

ceiling, could be identified and divided respectively using the RANSAC method, as

shown in Figure 3.16(c).

(a) (b)

(c) (d)

FIGURE 3.16: Raw points of the theater and the processing results using RANSAC
and the proposed methods. (a) The raw points of the theater. (b) Extraction re-
sults produced by the proposed method with the groups of points in different col-
ors representing different planes. (c) The RANSAC extraction result produced by
local normal estimated with a long radius. (d) The RANSAC extraction result pro-
duced by local normal estimated with a short radius. The ceiling part was separated
as multiple planes. Every plane segment consisted of one scanline segment.

Meanwhile, the local normal estimation was affected by the radius problem as
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well. As shown in Figure 3.17(c), too large radius values would result in wrong nor-

mal estimations which turned the grouping of points on seats into a process of esti-

mating an inclined plane with all seat points considered as disturbances and noises.

When proper normal vectors could be estimated, as shown in Figure 3.17(d), the

working mechanism of the RANSAC method would connect all points reflected by

the seats on the same row as the same plane, while the proposed method would

only be capable of extracting some of the chairs, as shown in Figure 3.17(b). There-

fore, both methods did not produce satisfying results of extracting such small planes

from large-scale point clouds.

3.3.4 Stairwell

A single-frame point cloud of the stairwell was used to test the proposed workflow

as planes would be used for point cloud alignment in such environments. As the

testing environment was quite small, the resolution of the point cloud was much

higher than the resolution in other cases. The inhomogeneous distribution of the

points on the sidewalls was not severe enough to affect the estimation of the local

normal vectors, making them more precise as well. As shown in Figure 3.18, there

was no great difference in extracting such large and appreciable planes except the

aforementioned problems in extracting the two adjacent planes with distances and

the small planes, as shown in Figure 3.18(c).

However, both methods were not capable of identifying each of the steps of stairs

instead of a plane across multiple steps, as shown in Figure 3.19. The proposed
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(a) (b)

(c) (d)

FIGURE 3.17: The raw points of the theater seats and the processing results using
RANSAC and the proposed methods. (a) The raw points of the theater seat area.
(b) The extraction results produced by the proposed method, with only five of the
seats successfully extracted. The two larger planes in light blue show the successful
extraction of two steps on the aisle. (c) The RANSAC extraction result produced by
local normal estimated with a long radius. Points of seats of neighboring rows are
grouped as plane points with noises and disturbances. (d) The RANSAC extraction
result produced by local normal estimated with a short radius. Points of seats of the
same row are grouped as plane points together rather than as individual seats.

method extracted small fragments instead of the large plane in Figure 3.19(b), while

the results were not completely correct. However, as the changes in point positions

between frames would result in minor changes in plane parameters and cause align-

ment errors in the SLAM process, the small fractions might be easier to exclude as

they cannot be aligned, which was easier for the SLAM process.
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(a) (b)

(c)

FIGURE 3.18: The raw points of the stairwell and the processing results using
RANSAC and the proposed methods. (a) The raw points of the stairs. (b) The
RANSAC extraction result in which all stair points were grouped into the same
plane. (c) The result produced using the proposed method. The planes labeled
with green arrows show the planes that were successfully distinguished while the
planes labeled with red arrows indicate the small planes extracted.

3.4 Summary

By comparing extraction results and examining limitations, the proposed ELS-

based plane extraction algorithm demonstrated its contribution in processing low-

resolution inhomogeneous point clouds. The algorithm showed its advantages in

processing point clouds of long strips with small height differences, individual or

connected Z-shape areas, adjacent parallel planes, planes with inhomogeneous
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(a) (b) (c)

FIGURE 3.19: The raw points of the staircase and the processing results using
RANSAC and the proposed methods. (a) The raw points of the stairs. (b) The
RANSAC extraction result in which all stair points were grouped into the same
plane. (c) The result produced using the proposed method where small fractions of
planes were extracted.

point resolution, and small-size planes. The limitations which were not properly

handled, such as the false feature points due to scanline curvatures, biased fea-

ture points resulting from the inflexible segment slicing rather than an adaptive

threshold, incapability of extracting planes consisting of scanlines with only fea-

ture points, and the respective non-parallel parameter estimation process in code

implementations, have been discussed.

With these pros and cons, the proposed algorithm was a more reliable work-

flow in processing low-resolution inhomogeneous point clouds. Since the scanners

installed on S2D AS were multi-line MLS, which produced such point clouds, the ex-

traction of planes based on ELS feature point results had been implemented in the

form of C++ codes and packaged as a compact library for applications to the plane-

based SLAM process, which was discussed in Chapter 4. Indeed, the ELS-based

plane extraction algorithm could be implemented in a lightweight FPGA platform
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for easy and rapid implementation in any corresponding platforms.



Chapter 4

ELS-based 3D Point Cloud Alignments

Various feature-based SLAM workflows were reviewed in Section 2.5, and the plane-

to-plane point cloud alignment methods discussed. However, the unreliable planar

segmentation limited the performance of most methods, and these methods did not

show acceptable results, given the low-resolution inhomogeneous point clouds.

Based on the plane extraction methods designed for point clouds captured by

multi-line MLS, a new point cloud alignment process was proposed to register the

point clouds captured on a mobile backpack platform to the same reference frame.

The process was similar to the SLAM process, but it was not a real-time process-

ing workflow. Multiple versions of dual-scanner systems were designed to test the

performance of the proposed method, and several on-site tests were conducted in

typical scenarios on the university campus.

In this chapter, the design of the mobile mapping backpack is first introduced,

123



Chapter 4. ELS-based 3D Point Cloud Alignments 124

and the dedicated time synchronization methods between the scanners explained.

Secondly, the ELS-based point cloud alignment workflow is presented. A few sam-

ple tests are conducted, and the results shown in the third section. The overall dis-

cussions on the results and the performance of the workflow are listed in the final

section.

4.1 S2DAS: A Seamless Mobile Mapping Backpack

With the continuous urbanization in the world, the complexity and heterogeneity

of spatial data in the vertical dimension raised new challenges to the traditional

surveying techniques. As shown in Figure 4.1, conventional technologies devel-

oped for 2D and 3D spatial data acquisition provided remote data acquisition meth-

ods for collecting both geometry and attribute information of ground objects and

enabling data manipulations in GIS. These technologies include satellite remote

sensing and photogrammetry, airborne remote sensing and photogrammetry, and

oblique photogrammetry. Such remote sensing methods offered geographic data in

various scales from different platforms on varying altitudes. In addition, conven-

tional surveying techniques, such as leveling, control and detail surveying, close-

range photogrammetry, and vehicle-based mobile mapping system, made it possi-

ble for close-range surveying on the ground.

However, for more than 80% of human activity environments, such as indoor

environments and congested areas in cities, effective and efficient methods and
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FIGURE 4.1: Data capturing techniques for building 3D geodatabases. The figures
on the left side show the data captured at different altitudes. The pictures in the
middle part illustrate the various kinds of equipment and platforms for the data on
the left side. The figures on the right present a few examples of the 3D geodatabase
applications.

solutions for acquiring and recovering the real world in virtual environments are

still being developed. We proposed and designed S2D AS, a backpack mobile map-

ping system to capture geometry data and texture data for 3D GIS modeling in in-

door environments, to fulfill the requirements of indoor 3D spatial data acquisition

and support the development of 3D GIS. By synergizing advanced spatial informa-

tion technologies, the multi-sensor integrated system captures location and textural

information for indoor and congested 3D city environments, and provides a pre-

processing toolkit for fusing multi-source data as an effective and reliable data cap-

ture device. As shown in Figure 4.1, S2D AS and other mobile mapping solutions are

essential parts of modern spatial data acquisition workflow.
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Based on the degree of complexity of the working environments, the devel-

opments and the long term roadmap of S2D AS were divided into three stages:

1) building-wide stage with backpack mapping platform and data processing al-

gorithm and toolkits for indoor environments, 2) citywide stage with seamless

backpack mapping platform for both indoor and outdoor environments, concen-

trating more on the algorithms and methodologies for complicated cross regions

of city canyons and open areas, and 3) smart city stage with vehicle- and UAV-

based seamless mobile mapping platform enabling multi-platform seamless map-

ping technologies for various urban environments. Implementing the three phases

would enable effective and efficient 3D seamless geodatabase producing, process-

ing, management, and geo-visualization.

The development of S2D AS was part of the project entitled Develop 3D Geo-

database Framework for Hong Kong—A Lightweight 3D Seamless Spatial Data Ac-

quisition System (SSDAS), which was supported by the Innovation and Technology

Support Programme (ITSP) of Hong Kong SAR.

4.1.1 Hardware Design for Testing the LiDAR Point Alignment

Workflow

As discussed in Chapter 2, multiple sensor integration was the most popular and ap-

propriate choice for generating indoor point clouds. The adoption of a single sensor
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usually comes with omission and inevitable errors. In the proposed platform, mul-

tiple sensors not only facilitated the use of initial values and constraints for improv-

ing the processing efficiency and accuracy but also provided various kinds of data

for building the 3D models of the objects.

Taking SLAM methods as an example, dual systems were implemented in

S2D AS for SLAM data acquisition. The primary system was based on two multi-line

MLS generating low-resolution point clouds, and the LiDAR SLAM workflows were

conducted in real-time and post processing. Meanwhile, optical images captured

during motion were used as the data source for vSLAM, the secondary SLAM sys-

tem. Algorithms were designed and modified for cooperative working with laser

scanners and improving localization and orientation precision in post processing

with the assistance of MEMS IMU to accomplish the integrated multi-sensor com-

bination.

To test the performance of the proposed point cloud alignment workflow, a sim-

plified version of S2D AS was designed. The system consisted of two multi-line laser

scanner, a Velodyne Puck with 2 ◦ vertical interval and a Velodyne Puck Hi-res with

1.33 ◦ vertical interval, a simulator that kept outputting timing signals similar to a

GNSS module in indoor environments, a switch for Ethernet communication, a data

logging PC, and a dedicated battery unit.

Initially, the two scanners were named SLAM scanner and PCD scanner as it was

considered that the former would be responsible for 6 DOF SLAM and the latter

would be used purely for gathering point clouds of surrounding environments. The
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SLAM scanner was installed over the top of the operator’s head, generating point

clouds covering large areas horizontally. The PCD scanner was installed nearly per-

pendicular to the ground to capture point clouds of vertical spaces. Figure 4.2 shows

the point clouds captured by the two scanners. However, it was soon discovered

that both scanners should be adopted for the SLAM process to generate satisfying

results because the SLAM scanner could not capture horizontal planes in some en-

vironments. Meanwhile, the results of the PCD scanner were always better: slight

attitude errors would be amplified with the wider distribution of point clouds cap-

tured by the SLAM scanner. Therefore, the names were maintained as point clouds

captured by both scanners were used for SLAM while only the points captured by

the PCD scanner were used for merging and generating the final results.

FIGURE 4.2: A single frame of point cloud captured by two laser scanners installed
with angles between them. The points in red were captured by the horizontally in-
stalled 16-line scanner, the SLAM scanner, while the points in blue were captured
by the vertically installed 16-line PCD scanner. The model of SLAM scanner is Velo-
dyne VLP-16 with 2 ◦ vertical resolution while the PCD scanner is Velodyne Puck
Hi-Res with 1.33 ◦ vertical interval.
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4.1.2 Data Processing Workflow and Software Design

Given the plan of implementing LiDAR SLAM, vSLAM, and IMU DR on S2D AS, the

workflow of S2D AS is shown in Figure B.1 in Appendix B. The workflow was de-

signed at the beginning stage of the project and updated whenever modifications

were needed with respect to any specified requirements and design changes.

The basic concept of the workflow was a sequence of processing procedures.

The dual laser scanners were adopted as main SLAM positioning and orientation

data source. The vSLAM process was conducted offline after all data were cap-

tured. The SLAM results were passed to Extended Kalman Filter (EKF), correcting

IMU drifts and generating more reliable results. The results were used to correct the

motion changes and deformations in the point clouds. Subsequently, the second-

pass LiDAR SLAM was conducted. The rectified SLAM results were passed to the

EKF, with vSLAM results and IMU readings, for the final trajectory and the georefer-

enced point clouds and images.

Meanwhile, in the point cloud merging process, the point cloud generated in

the vSLAM process would be combined with the LiDAR point cloud colorized by the

geo-referenced images. Consequently, the colorized point clouds were provided in

the modeling process in which the 3D models of indoor environments were gener-

ated.
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4.1.3 Time Synchronization

When combining point clouds, either mobile mapping or static point cloud, the

alignment and co-registration of the sensor coordinate frames was a vital process.

This process recovers the geometric relationships between coordinate frames of

each scan stations and aligns geometric data of stationary objects to the same co-

ordinate frame. This co-registration process is inevitable and more important for

moving platforms and sensors as data acquired by various sensors need to be fused

into the same coordinate frame. However, there may not be enough features to align

different kinds of data.

Consequently, time alignment is a critical requirement for system integration

because all sensors are installed on a moving platform whose attitudes and positions

keep changing while their positions and orientations keep the same as a rigid body.

Provided no external references, time references could be facilitated as the initial

reference for recovering the alignments, with the known geometric relationships.

Therefore, if there was any misalignment in time, the time differences between dif-

ferent sensors would cause misalignment and errors. Two kinds of synchronizations

were carried out in the system: synchronizations based on a dedicated hardware

device providing timing signals and the frame slicing and synchronization of laser

scanners.
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4.1.3.1 Dedicated Hardware GNSS Simulator

According to Velodyne Acoustics Inc. (2015), the Velodyne Puck series scanners

adopted GNSS timing signals as the external reference for time synchronization.

The scanners captured the pulse signal from the GNSS module once per second,

i.e., 1 PPS, to achieve the precise synchronization with the external reference. When

the external signals were absent, the internal clock with a drift of 5 s for every 24

hours, namely 57 ns per second, would provide the internal time reference for the

points captured. However, the drifts between the internal clocks of scanners could

not be the same as they were random drifts, while such amounts of time were ap-

preciable in calculating the position of the points. Therefore, a GNSS simulator was

implemented in the system, providing a consistent time reference for the two laser

scanners in the forms of 1 PPS and the corresponding time tags.

4.1.3.2 Synchronization between Laser Scanners

The synchronization between the two laser scanners was different from other sen-

sors, as it was a section splitting problem rather than direct time alignment. Orig-

inally, the continuous point cloud capturing process was split into sections with

respect to the 0 ◦ horizontal angles. Consequently, the time duration of the point

clouds cannot be automatically aligned even when their internal time frames were

aligned.

Time differences between sensor frames were always unavoidable, and the data
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captured with time tags can be considered as corresponding data with constant

time offsets once the stable time reference could be maintained, as shown in Figure

4.3(a). Meanwhile, this principle could also be applied to every point in the point

clouds captured by laser scanners as points were indeed time tagged with the data

capturing time.

Sensor A Data
#1

Sensor A Data
#2

Sensor A Data
#3

Sensor B Data
#1

Sensor B Data
#2

Sensor B Data
#3

Time Tag #1 Time Tag #2 Time Tag #3

t2t1 t3

t

(a)
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Time Tag #1 Time Tag #2 Time Tag #3
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#0

Sync Sensor B Data 
#1

Sync Sensor B Data
#2

t

(b)

FIGURE 4.3: Time synchronization based on time tags. (a) Time synchronization
between normal sensors based on single time tags. The time offsets between the
real time given by sensors and the given time frame (t1 and t2) and between sensors
(t3) kept changing within a small range, which was considered as synchronization
errors and drifts. (b) Time synchronization between point clouds captured by dif-
ferent scanners. Instead of recovering time-to-time correspondence between each
single points, synchronization was based on section slicing on continuous data
streams. The block with blue boundaries shows the original stream slices based
on horizontal angles of points (0-360 ◦) while red separations illustrate the time
intervals used for slicing when aligned to the corresponding time slots of sensor A.

Consequently, the synchronization between laser scanners was converted into a

section slicing problem that points captured in the same time slots were considered
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as corresponding frames of points rather than splitting the continuous point cap-

turing process with respect to the horizontal angles of each single point, as shown

in Figure 4.3(b). Therefore, the two point clouds captured by different scanners dur-

ing the same time slots were considered as synchronized point clouds of the same

frame.

4.1.4 Prototypes for Algorithm Verification

The conceptual hardware design of the initial verification prototype is shown in

Figure B.2 in Appendix B. This prototype could barely meet the requirements of

lightweight and compact. However, the large-sized hardware frame could provide

plenty of installation positions and angles for adjustments and modifications for

developing a system with higher feasibility and better performances. Based on this

hardware design, an updated version of installation frame based on a hiking back-

pack frame was designed, as shown in Figure 4.4(a) and B.3 in Appendix B, while the

photos of an operator carrying the backpack are given in Figure B.4.

Six camera lenses were integrated into the Ladybug camera, the optical sensor

installed on the platform for testing the vSLAM workflow, and a significant part of

FOV was blocked by the base plate of the camera, which was similar to the bottom

blocked area of TLS. Therefore, as shown in Figure 4.4(b), there was a titled angle

between the base plate of the panoramic camera and the assumed horizontal plane,

making one of the six camera lens to face downwards, to capture features near the
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(a) (b)

FIGURE 4.4: The side view of the installation frame with only the scanners and the
panoramic camera installed. (a) The complete frame showing the positions of the
scanners and the camera. (b) The detail of the higher part shows that the camera
was installed obliquely for better coverage in the front direction.

carrier and in front of the backpack, and fulfill the data capturing requirements in

narrowed spaces, such as stairwells and corridors.

In addition to the self-obstructing problem, the blocked FOV caused by other

sensors and the backpack installation frame needed to be considered as well. As

the sensors, i.e., the laser scanners and the panoramic camera, were installed on the

same frame, they needed to be distributed in a compact space to reduce displace-

ment and errors due to the deformation of the installation frames. However, the

congested installation space may cause severe obstruction since they would appear

in the FOV of other sensors, and they might be considered as tie points between

frames to generate false geometric relationships. Obstruction to the MLS would re-

sult in the blocked FOV, which further reduced coverage of the scanners which was

already incomplete. Figure 4.5 provides an example of the FOV of the panoramic

camera, which was partly blocked by the laser scanner above it.
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FIGURE 4.5: The example of neighboring sensors blocking part of the panoramic
FOV of the camera. For the six cameras numbered from 0-5, the top right and bot-
tom right corners of camera 2, the top left and bottom left corners of camera 3, and
the lower part of camera 5, which are all marked with red circles, are blocked by the
two laser scanners beside the camera lens.

In the proposed design, the FOV of both the camera and the scanners were plot-

ted, and their installation positions were adjusted to minimize the obstructed zones,

as shown in Figure 4.6. Eventually, considering the size of the backpack and that

height of the backpack and the carrier might be too high to move around in indoor

environments, there were still obstructions in the camera FOV in the final design.

A simplified version of a mobile mapping helmet was designed to conduct the

initial LiDAR SLAM algorithm test. Only the two laser scanners were installed on

the helmet, with the same installation angle as designed on the backpack, as shown

in Figure 4.7. The time synchronization signals were provided by either an external

GPS or the dedicated synchronizer.
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FIGURE 4.6: The example of FOV-based sensor position adjustment. The region in
red is the FOV of the horizontally installed laser scanner while the region in yellow
is for the oblique scanner. The region in white and gray is the FOV of the six camera
lens of FLIR Ladybug 5Plus. It is shown that the camera has obstructed the right
part of FOV of the horizontal laser scanner while the horizontal laser scanner also
blocked small parts of Ladybug’s FOV.

(a) (b)

FIGURE 4.7: The compact helmet design used for verifying LiDAR SLAM algorithm.
(a) Rear view with 45 ◦ angle. (b) Front view with 45 ◦ angle.

As shown in Figure 4.4(b), 4.6 and 4.7, the angle between the axes of the two

scanners is nearly 76 ◦, increasing the probability of capturing horizontal planes in

narrow spaces, reducing the possibility of capturing the moving human heels, and

making the two overlapped point clouds with extended coverage at the same time.

Figure 4.8 provides an example on the FOV of the proposed installation method,
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in which it is clearly shown planes facing multiple directions could be captured,

enabling the 3 DOF estimation of the 3-axis rotation and the 3 DOF estimation of

the 3-axis translation between consecutive frames.

(a) (b)

FIGURE 4.8: The side view and top view of a single frame of the point cloud cap-
tured by the scanners installed on S2D AS. The points captured by the horizontal
scanner are in red, while the points captured by the other scanner are in white. (a)
The side view showing the difference in coverage. (b) The top view showing the
complementary coverage.

4.2 ELS-based Point Cloud Alignment Workflow

In the proposed method, plane-to-plane registrations were implemented to solve

alignment problems between consecutive frames, while extra alignments between

frames, which were not adjacent and used as redundant observations, were added

in the proposed workflow to enhance the network building for adjustment, which

was similar to the architecture introduced in Dai et al. (2017).
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4.2.1 General Alignment Process

In this report, the successful alignments established between frames of points were

called observations. In other words, if the relationship was built between two given

point clouds, the estimated rotation and translation parameters, in the form of a 4×4

matrix as listed in Equation 4.1 and 4.2, were defined as an observation representing

the position and orientation difference between the two frames.

Rj
j→i =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , T j
j→i =


t1

t2

t3

 (4.1)

where:

Rj
j→i is the 3× 3 rotation matrix of which the target frame is the i−th frame,

the source frame is the j−th frame and the current coordinate frame before trans-

formation is in the j−th frame, and

T j
j→i is the 3×1 translation vector of which the target frame is the i−th frame,

the source frame is the j−th frame and the current coordinate frame before trans-

formation is in the j−th frame.

RT j
j→i =

Rj
j→i T j

j→i

0 1

=



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1


(4.2)
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where:

RT j
j→i is the 4×4 transformation matrix of which the target frame is the i−th

frame while the source frame is the j−th frame and the current coordinate frame

before transformation is in the j−th frame.

Consequently, given the correspondence between the planes extracted from two

frames of point clouds, the rotation matrix and the translation vector can be es-

timated. To reduce the number of parameters invoked in the process, axis-angle

parameters was introduced to maintain the unique transformation and the corre-

spondence, rather than the Euler-angle parameters which would easily be affected

by the rotating sequence, as shown in Equation 4.3. Besides, the unique correspon-

dence between the rotation matrix and the axis-angles could be facilitated for the

derivation-based non-linear optimization in the pose estimation process. Given the

parameters representing all the corresponding planes in the pairwise combination

in Equation 4.4, solving the rotation matrix between the two frames of point clouds

could be converted to solving the axis-angles, considering the two combinations of

plane normal directions. It was the question of how the normal directions of the

planes in frame j could be rotated to coincide with the corresponding normal di-

rections of the planes in frame i , as shown in Equation 4.5.

Rj
j→i ↔

[
θ1 θ2 θ3

]T

(4.3)

where:
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θ1, θ2 and θ3 are the corresponding axis-angles with respect to the rotation

matrix Rj
j→i.

ni
k =


ai

k

bi
k

c i
k

 , N i =
[

ni
1 ni

2 . . . ni
l

]
=


ai

1 ai
2 . . . ai

l

bi
1 bi

2 . . . bi
l

c i
1 c i

2 . . . c i
l

 (4.4)

where:

ni
k is the normal direction of the identified plane k in frame i ,

ai
k , bi

k and c i
k are normalized parameters of the plane according to the Hessian

formula, and

N i is the parameter matrix consisting of all normal vectors of the correspond-

ing planes in the frame i .

N i = Rj
j→i N j (4.5)

In the estimation progress, the residual vector could be defined as the angular

distances between the normal vectors of the planes in the target frame and the nor-

mal vectors of the corresponding planes after rotation, as shown in Equation 4.6

and 4.7. These residuals were converted to the difference between the dot product

of the two normal vectors and 1, which was the cosine value of the maximum an-

gle between the vectors after ignoring the facing direction. The problem was then

defined as a non-linear process of optimizing the residual to the minimum values.
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nj
kR = Rj

j→i nj
k (4.6)

where:

nj
kR is the rotated normal direction of the k−th plane in the j−th frame.

εkR = 1−ni
k ·nj

kR (4.7)

where:

εkR is the residual between the normal directions of the k−th plane in the i−th

frame, which is the target frame, and the normal directions of the corresponding

rotated planes of the j−th frame.

Once the rotation matrix was solved, the translation was estimated with respect

to the 3 DOF. In this progress, the pairwise vertical distances between the planes

in the target frame and the corresponding rotated planes in the source frame were

considered the residuals. The vertical distances were calculated using the projected

distance of the vector starting at the geometric center points of the planes on the

k−th plane in the i−th frame and the center points of the corresponding rotated

planes on the j−th plane after the translation, which were calculated using Equation

4.8.

εkT = vj→i
kT ·ni

k

= (vj→i
k −T iR

j→i) ·ni
k

(4.8)



Chapter 4. ELS-based 3D Point Cloud Alignments 142

where:

εkT is the residual of the translation between the k−th plane in the i−th frame

and the corresponding rotated and translated plane in the j−th frame,

vj→i
k is the vector starting at the center point of the k−th plane in the i−th

frame and pointing at the center point of the corresponding rotated plane in the

j−th frame with no translation,

vj→i
kT is the vector starting at the center point of the k−th plane in the i−th

frame and pointing at the center point of the corresponding rotated and translated

plane in the j−th frame, and

T iR
j→i is the translation vector in the coordinate frame defined by the rotated

j−th frame.

The weight values were considered in the estimation progress that the difference

in point numbers between corresponding planes and the ratio of the number of

points on the plane to the total number of points extracted as points on planes, as

shown in Equations 4.9-4.11. Consequently, the weighted residuals were calculated

using Equations 4.12 and 4.13.

wdk = N less
k

N mor e
k

(4.9)

where:

wdk is the weight determined by the difference in the number of points on the

corresponding plane pairs,



Chapter 4. ELS-based 3D Point Cloud Alignments 143

N less
k is the number of points on the corresponding k−th planes, of which

frame the number of points is the smaller, and

N mor e
k is the number of points on the corresponding k−th planes, of which

frame the number of points is the larger.

wpk = Nki

Npl n,i
(4.10)

where:

wpk is the weight determined by the ratio of the number of points on the plane

to the total number of all the points extracted as the points on all the planes,

Nki is the number of points on the k−th plane in the i−th frame, and

Npl n,i is the total number of points on all the planes which are used for the

plane matching progress.

wk = wdk ·wpk (4.11)

where:

wk is the weight defined for estimating the transformation process.

εkwR = wk ·εk R (4.12)

where:

εkwR is weighted rotation residual of the k−th plane.
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εkwT = wk ·εk T (4.13)

where:

εkwT is weighted translation residual of the k−th plane.

The axis-angle conversion and the non-linear optimization were done by the

library provided by Google, namely Ceres Solver (Sameer, Keir, et al., 2010). Either

sharing planes of different frames or the plane pairs, which were not reflected by the

same segments of the plane but the correspondence was explicitly assigned, could

be used for the estimation. Thus the estimation could be used for both intra-scanner

calibration, in which no same segment of the sharing plane could be identified, and

the alignment between frames of point clouds, in which the planes could be auto-

matically matched.

Consequently, the estimated rotation matrix and the translation vector could be

combined in the form of Equation 4.2 and the relationship between the two frames

could be represented in Equation 4.14.

X i
j = RT j

j→i X j
j (4.14)

where:

X j
j is the coordinates of the j−th frame points in its original coordinate frame

defined by the scanner coordinate frame, and

X i
j is the coordinates of the j−th frame points in the coordinate frame defined

by the i−th frame.
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4.2.2 Intra-scanner Calibration

To determine the coordinate relationship between the two scanners, a temporal cal-

ibration site was designed based on the assumption that the 6 DOF coordinate re-

lationship could be estimated with the sharing planes facing the three directions

which were perpendicular to each other. As shown in Figure 4.9(a), the FOV of the

two scanners could be illustrated using connected cones. Therefore, if three planes

were provided in the form of three perpendicular planes, as shown in Figure 4.9(b),

three pairs of planes could be identified.

In practice, there was no need for the three planes to be perfectly perpendicular

to each other. By implementing the plane-to-plane alignments over manually as-

signing the correspondence to them, the rotation and translation between the two

coordinate frames could be identified. Since the horizontally installed scanner was

chosen as the primary scanner and its coordinate frame was selected as the main

coordinate frame, the lever arm of the other scanner was estimated using the pro-

cess mentioned above in Section 4.2.1.

4.2.3 Frame-to-frame Alignment Based on Plane Matching

The automatic frame-to-frame alignment was based on the plane matching results

that could be used in the alignment process listed in Section 4.2.1. The alignment

process is following a coarse-to-fine procedure that a coarse alignment was per-

formed before the general alignment process to provide an initial relationship for
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(a) (b)

(c) (d)

FIGURE 4.9: Calibration between the two multi-line scanners. The two connected
cones are used to illustrate the 30 ◦ FOV of the SLAM scanners and the 20 ◦ FOV
of the PCD scanner. (a) The overlapped coverage of the two scanners installed on
S2D AS. (b) The three planes, A, B, and C, show the three common planes that are
used for calibration as sharing planes. (c) The photo of the calibration site with
the assumed planes marked as A, B and C. (d) The calibrated point clouds with the
horizontally scanned point cloud in black and the other point cloud in white. The
corresponding A planes are in blue and red, while the corresponding B planes are
in yellow and orange and the corresponding C planes in green and purple.

the plane matching process.

4.2.3.1 Coarse Alignment

Coarse alignment was performed over the NDT process, implemented via the PCL

library. The corresponding frames of points captured by the two scanners during
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the same period were marked as frame i . Given two frames of points, i and j , their

alignment could be achieved, marked as RT j→i
NDT . In most of the NDT processes, the

results were not capable of achieving perfect alignments in which significant mis-

alignments were spotted due to the low-resolution distributions of the inhomoge-

neous point clouds, as shown in Figure 4.10.

FIGURE 4.10: The example of the coarse-to-fine alignment results. The points in
yellow are points from the target frame while the points in red are the source frame
points aligned using the NDT result, and the points in blue are the points aligned
using the proposed coarse-to-fine method. The NDT result shows significant mis-
alignments along the direction of the green arrow.

In certain circumstances, the NDT alignment might be unsuccessful and signif-

icant errors might be produced, leading fruitless plane matching results. Therefore,

an alternative process was implemented to introduce the position and attitude es-

timated using the state of the last frame and the motion calculated using Equation

4.14-4.16 and 4.18, which is Equation 4.19.

X 0
j = RT j

j→0 X j
j ↔ X j

j = RT j
j→0

−1
X 0

j (4.15)
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where:

the 0−th frame is defined as the target coordinate frame.

RT i
j = RT j

j→i RT j
j (4.16)

where:

RT j
j is the 4×4 position and orientation matrix of the j−th frame defined by

the raw coordinate frame of the j−th frame, which is the identity matrix,

RT i
j is the 4×4 position and orientation matrix of the j−th frame defined by

the raw coordinate frame of the i−th frame, and

RT j
j→i is the 4×4 rotation and translation matrix used to transform the coor-

dinates from the j−th frame to the i−th frame.

RT j
j→i RT j

j→0

−1
X 0

j =

RT j
j→i X j

j = X i
i

= RT i
i→0

−1
X 0

i

(4.17)

consequently,

RT j
j→i = RT i

i→0
−1

RT j
j→0 (4.18)

RT 0
i

∧
= RT i

i→i-1

∧
RT 0

i-1

= RT i-1
i-1→i-2 RT 0

i-1

= RT i-2
i-2→0

−1
RT i-1

i-1→0 RT 0
i-1

(4.19)
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where:

RT 0
i

∧
is estimation of the 4×4 position and orientation matrix of the i−th frame

in the coordinate frame of the initial frame, and

RT i
i→i-1

∧
is the estimation of the 4×4 rotation and translation matrix used to

transform the coordinates from the i−th frame to the (i −1)−th frame.

4.2.3.2 Fine Alignment

The fine alignment was conducted based on the successful plane matching and op-

timization process. Certain definitions were used in determining the quality of the

plane pairs:

• The vertical distance between the planes, DPctr , which was estimated using

the vertical distance between the center point of the corresponding plane,

• The average vertical distance, ADPeach , which was the average value of the

distances between each of the point pairs consisting of points selected from the two

planes,

• The average resolution of points on the planes, AResv , which was the average

value of the Euclidean distance between neighboring points on the same vertical

scanline,

• When the distance between points from the two pending plane pairs was

smaller than AResv or the given threshold T HMi nRes , which was larger, the point

would be considered as an overlap point,
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• The overlap rate, ROver l apPl n , which was the ratio of the number of the overlap

points to the number of points on the plane,

• The overlap rate of the pair, ROver l apPai r , which was the larger ratio of the

pairwise values of ROver l apPln ,

• The weight for checking overlap rate, ωover l ap , which was corresponding to

the ratio of the number of points on one of the planes (NPln A) to the number of

points on the other plane (NPlnB ), as calculated using Equation 4.20, and

ωover l ap = 1∣∣∣∣NPln A

NPlnB
−1

∣∣∣∣ (4.20)

• The weighted overlap rate, W Rover l ap , which was the product of ROver l apPai r

and ωover l ap .

Once the initial state was determined using the NDT or the state and the motion

of the previous frames, the correspondence between the planes of the given two

frames could be identified using the following criteria, which were empirical values

determined in the experiments:

• DPctr should be smaller than the given threshold value T HCopl anar i t y ,

• ADPeach should be smaller than the given threshold value T HPer Di st ,

• ROver l apPai r should be larger than the given threshold T Hover l ap ,

• W Rover l ap should be larger than the given threshold T Hover l ap .
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When multiple planes met the requirements of corresponding to the same plane,

the one with the largest weighted overlap rate was selected as the best correspond-

ing plane. Consequently, the correspondences were generated for estimating the

relationship between frames using the method listed in Section 4.2.1.

In the alignment process, if any of the unweighted residuals were larger than the

given threshold values, T Hr ot and T Htr ansl determined by the empirical values, the

corresponding plane pairs would be removed, and the remaining pairs would be

used for alignment estimation in the next iteration until a converged solution could

be provided.

Moreover, the main directions of the plane pairs were checked at the end of every

iteration. The main directions were defined as the three normal directions of the

pairwise planes, with the largest total angular differences between each pair. The

angular differences between every pair of the main directions should be larger than

the given empirical threshold value of T HM ai nDi r Di f f . If the valid main directions

were not selected, the matching would be considered as a failed matching.

Furthermore, the main directions were used to evaluate the plane matching pro-

cess by checking the number of planes in every group concerning the differences be-

tween the normal directions of the planes and each of the main directions, namely

the Pairing Score (vPS). The matching was considered as qualified only when the

number of corresponding plane pairs in each group, which were stored in a 3D vec-

tor named as the pairing score vector, was larger than the given empirical threshold

T HGr oup .
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When the matching relationships were successfully established, it was consid-

ered a valid observation. The observations were reserved in a list for further pro-

cessing and invoking.

4.2.3.3 Plane Matching Failure

In certain circumstances, there might not be enough planes matching or enough di-

rections facing, which would cause unsuccessful position and orientation solving.

Consequently, previous frames were used for establishing possible links with the

pending frames. For example, if the observation between frame i and i −1 was not

established, the processor would try to establish the observation between frame i

and i −2. Moreover, if no linkage was built, the NDT solutions would be used as the

only solutions. In other words, the coarse aligned NDT solutions provided alterna-

tives when no optimum results could be estimated, which increased the reliability

of the overall alignment process.

4.2.4 Redundant Observations

The ordinary frame-to-frame alignments were first conducted between adjacent

frames, building the initial trajectory. To provide redundant observations as the

architecture introduced in Dai et al. (2017), key frames were identified, and extra

alignments were established.

As introduced in the previous section, the Pairing Score (vPS) was used to check

the quality of plane matching. The plane numbers in every group were then adopted
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for checking the need for new key frames, which were the most representative

frames in the local sections consisting of a few frames. If any of the elements in the

current Pairing Score (vi
PS) were smaller than the corresponding threshold, the new

key frame would be required. The seeking and the identification of the key frames

and the redundant alignments are listed in Algorithm 4.1.

Algorithm 4.1 Observation Establishment
Notation:

i : frame ID imax : maximum frame ID
iK F : key frame ID ArK F : array of key frame ID
j : key frame ID in the key frame array jmax : number of key frames
Aa : alignment between adjacent frames
AK F : alignment between normal frame and the previous key frame
ArOb : array of observations Arpl n : extracted plane features
vPSKF : the pairing score between the current frame and the previous key frame
vPS: the user-defined key frame pairing score vector threshold

Input: Arpln

Output: ArOb

1: procedure OBSERVATION ESTABLISHMENT

2: iK F ← i
3: i ← i +1
4: insert iK F into ArK F

5: jmax ← size of ArK F

6: while i 6= imax do Ordinary Observation Establishing
7: Aa ← alignment from i to i −1
8: insert Aa into ArOb

9: AK F ← alignment from i to iK F

10: insert AK F into ArOb

11: vPSKF ← AK F

12: if vPSKF < vPS then
13: iK F ← i
14: j ← jmax

15: while j 6= 0 do Redundant Key Frame Observation Establishing
16: AK F j ← alignment from iK F to ArK F [ j ]
17: insert AK F j into ArOb

18: j ← j −1

19: insert iK F into ArK F

20: jmax ← jmax +1

21: i ← i +1
22: return ArOb

Consequently, all the observations built between the pending frames and the
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previous key frames and the alignments between the key frames were stored as ex-

tra observations, which were used for the adjustment in addition to the ordinary

alignments between each of the pairwise adjacent frames.

4.2.5 Alignment Transferring and Shortest Path

A significant drawback of applying NDT for the coarse alignment was that success-

ful estimation requires a roughly aligned initial state. Meanwhile, since the mobile

mapping process was a DR process, both the position and attitude were drifting

along the accumulation of alignment errors.

With all the adjacent frames aligned to each of their preceding neighbors, the

alignment results would be passed on between frames if no error or misalignment

were considered. The equations for direct transferring can be derived based on

Equation 4.16 and 4.19, as shown in Equation 4.21.

RT i
j =

�
RT j

j→i RT j
j

= RT j-1
j-1→i RT j

j→j-1 RT j
j

= . . .

= RT i+1
i+1→i RT i+2

i+2→i+1 . . .RT j
j→j-1︸ ︷︷ ︸

j−i+1

RT j
j

(4.21)

where:
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�
RT j

j→i is the estimated value of the rotation and transformation from the j−th

frame to the i−th frame.

As aforementioned in the previous sections, extra observations between the cur-

rent frames and the previous key frames were built to check the pairing scores and

identify new key frames. Therefore, if there were at least one frames between the

current frame and the preceding key frame, more than one route would exist, which

transferred the rotation and translation relationship from the current frame to the

key frame if all transformations were considered to be unidirectional, as the exam-

ple given in Figure 4.11(a). When estimating the relationship between key frames,

the similar multi-path problem existed, as shown in Figure 4.11(b).

To reduce the drifts, errors, and misalignments in initializing the rotation and

translation relationships using transferred estimations, the problem was defined as

a shortest-path problem based on the assumption that all transformations were uni-

directional pointing from the latter frames with the larger frame ID to the previous

frames with the smaller frame ID. The problem was solved when Dijkstra’s Short-

est Paths in boost C++ library was implemented (Siek, Lee, & Lumsdaine, 2002).

When the length of the successful alignment observation was defined as 1, the short-

est path between any two frames could be identified with the lowest accumulative

misalignment errors introduced. Therefore, given the corresponding shortest-path

transformation matrices provided, as in Equation 4.21, the initial value of the trans-

formation matrix between any two frames could be estimated via the shortest paths,

namely RT0
j→i in Equation 4.22.
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(a) (b)

FIGURE 4.11: The routes of transferring the rotation and translation with redun-
dant observations. With the frame ID beside, the dots in green represent the posi-
tions of the key frames, and those in white indicate other regular frames. (a) The
line segments between dots show the observations established. Multiple paths can
be identified for estimating the relationship between the pending frame and the
preceding key frame. For example, given frame 4565 as the pending frame, the
available paths are 4565 → 4564 → 4563 → 4562 → 4561, 4565 → 4564 → 4563 →
4561, and 4565 → 4564 → 4561. (b) The existence of multi-path problem for esti-
mating the initial relationship between key frames with only observations between
key frames are shown in blue line segments. The available paths from 5290 to 5328
include 5290 → 5300 → 5328, 5290 → 5300 → 5319 → 5328, 5290 → 5300 → 5310 →
5319 → 5328, 5290 → 5310 → 5319 → 5328, and 5290 → 5319 → 5328.

X 0
i = RT0

j→i X 0
j (4.22)

Moreover, the raw observation between the two key frames, which was based on

the point clouds in their raw coordinate frame corresponding to the scanner cen-

ter, could be derived for building the edges in the adjustment process, as shown in

Equation 4.24.
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RTi
i→0 RTj

j→i X j
j =

RTi
i→0 X i

i = X 0
i

= RT0
j→i X 0

j

= RT0
j→i RTj

j→0 X j
j

(4.23)

which is equivalent to

RTi
i→0 RTj

j→i = RT0
j→i RTj

j→0 ↔ RTj
j→i = RTi

i→0
−1

RT0
j→i RTj

j→0 (4.24)

Indeed, although the tedious searching of successful alignments between key

frames significantly slowed down the whole aligning process, the redundant obser-

vations provided profuse edges connecting the key frames and formed small loops

used for reducing the position and orientation drifts. Figure 4.12 shows an example

that of redundant observations built in mapping the interior of a large lecture hall

that could hold up to 400 people.

4.2.6 Motion Rectification

When point clouds were captured on a mobile platform, they were distorted in the

movement during the time of capturing this specific frame of data. For profiler

installed vertically on the mobile systems that were not based on SLAM but on

GNSS/IMU integrated system, the distortions could be rectified automatically as
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(a) (b)

FIGURE 4.12: An example of the redundant observations during mapping a lec-
ture hall. The dots are representing positions of frames with gradient green while
the red line segments are showing the successful alignment between frames. (a)
The overall trajectory and observation edges. (b) A selected part of (a) showing the
redundant alignment between 300th-400th frames and 9400th-9650th frames.

the positions and orientations of the scanner at the specific acquisition time were

interpolated from the trajectory and attitude changing data stream. However, for

SLAM-based solutions with either single-line scanners or multi-line scanners, the

point clouds were divided into frames concerning the horizontal azimuth angle

loops. Therefore, the time for capturing the single-frame point cloud would result

in inevitable distortion when the platform was moving.

Given the position and orientation change in the form of 4× 4 matrix, the dis-

tortion in the time change could be derived with the given positions and attitudes.

Given Equation 4.1, 4.2, 4.3 and 4.16 with the timestamp of the first point in the cur-

rent frame and the next frame, tc0 and tn0, and the timestamp of the pending point
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tpt , the rectified rotation and translation matrix of the point is shown in Equation

4.28.

ppt =
tpt − tc0

tn0 − tc0
(4.25)

where:

ppt is the portion of the time elapsed over the total time interval of the current

frame.

Rpt ↔ θpt = ppt

[
θi 1 θi 2 θi 3

]T

(4.26)

where:

Rpt is the rotation matrix that is used for estimating the coordinate changes

with respect to the platform movement, and

θpt is the vector of angle-axis that is used for representing the rotation of the

point cloud concerning the time when the pending time is captured.

T pt = ppt T i (4.27)

where:

T pt is the translation vector used for estimating the coordinate changes along

the platform movement, and

T i is the translation vector of the whole point cloud within the total time in-

terval.
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[
xpt T ypt T zpt T 1

]T

= X ptT

= RT pt X pt

= RT pt

[
xpt ypt zpt 1

]T

(4.28)

where:[
xpt T ypt T zpt T 1

]T

and X ptT are the rectified coordinates of the pending

point, and

RT pt is the transformation matrix derived using Equation 4.2, 4.26, and 4.27.

The motion during the capturing of the last frame could not be estimated and

updated because the last frame did not have a next frame. Therefore, for a data

stream consisting of N frames, only the points of the first N − 1 frames would be

rectified. However, if the update rate of the laser scanner were high enough or the

moving of the platform was not quite obvious, the motion rectification would not

be quite considerable. An example of motion rectification is shown in Figure 4.13.

4.2.7 Overall Procedure

Given these processes above for building ordinary observations between each

adjacent-frame pair, the normal-to-key observations between every frame and the

nearest preceding key frames, and the key-to-key observations between any two of

the key frames, all successful alignments achieved were saved as edges connecting

the two frames.
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(a) (b)

FIGURE 4.13: Comparison between the raw point cloud and the rectified point
cloud. The raw point cloud is in Blue → Green → Yellow → Red depending on
the time stamp of the points, while the rectified point cloud is colored in white for
comparison. (a) The overall comparison of the whole point cloud shows apprecia-
ble differences between rectified points and raw points. The differences increase
with the ascent of the time stamp of points and are identifiable at the positions
marked with arrows. (b) A part of the point cloud located at the position in (a)
marked in a red box. The points are the pulses reflected from the sidewall. The
points in red, which are not rectified and captured at the ending time of the frame,
show significant misalignments with blue points, which are captured at the initial
time of the frame. As opposed to the distorted points, the rectified points in white,
which correspond to the red points, show great compliance with the positions of
the blue points and form a straight line rather than fractures.

All observations were adopted in the adjustment process, which was based on

the General Graph Optimization (g2o) library by Kummerle, Grisetti, Strasdat, Kono-

lige, and Burgard (2011). The library was initially designed for adjusting vSLAM re-

sults while the frame-to-frame structure for alignments in the proposed workflow is

similar to the workflow required by the library. In the implementation, the raw tra-

jectory derived from the frame-to-frame alignments between adjacent frames was
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used as the initial position and attitude values of the vertices in the adjustment pro-

cess, with all the observations inputted as edges with the same weight and quality.

An example of the trajectory before and after the adjustment is given in Figure 4.14

to show the differences.

(a) (b)

FIGURE 4.14: The unadjusted and adjusted trajectory of mapping the lecture hall.
The points in red are representing the positions of captured frames in the coordi-
nate frame determined by the scanner-centered coordinate frame of the first frame.
The preceding frames are in red while colors are fading with the increasing frame
ID. (a) The raw trajectory with no G2O adjustment shows a twisted result. (b) The
adjusted trajectory shows great coincidence with the real trajectory.

After adjustments, point clouds would be registered to the same coordinate

frame, which is the coordinate frame of the first frame centering at the origin of

the scanner coordinate frame. The motion rectification could be performed, and

it might be necessary for performing the whole alignment and adjustment process

once more. However, there would not be too many differences, considering the

accuracy of the MLS. Then all the point clouds of different frames would be merged

to form a point cloud of the mapping area.
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The overall aligning and mobile mapping process adopted is shown in Algorithm

C.2 in Appendix C. The listed procedure is the complete offline processing workflow.

For the online process, only alignments between adjacent frames are conducted

with neither redundant observations nor g2o adjustments.

4.3 Sample Tests and Result Analysis

The proposed workflow of IMU-free 3D LiDAR mobile mapping was applied on

S2D AS. Several typical indoor scenarios and an outdoor terrace were used as test

sites to verify the feasibility and reliability of the proposed methods. In the point

cloud merging process, only the points captured by the vertically installed scanner

were used to limit the influences of the errors in the attitudes of the horizontal scan-

ner.

A TLS was also implemented in the test sites with target balls to capture point

clouds used as reference point clouds, checking the accuracy of S2D AS. The scan-

ner was a FARO Focus M70 designed for indoor and short-range applications. The

declared ranging accuracy of the scanner was ±3 mm while the angular and 3D ac-

curacy were not provided (FARO Technologies Inc, 2019). The point clouds captured

at every scan station were merged using ICP provided in the FARO Scene processing

software while all target spheres and hemispheres were extracted using the RANSAC

shape detection function provided by CloudCompare (Schnabel et al., 2007).



Chapter 4. ELS-based 3D Point Cloud Alignments 164

The point clouds captured by S2D AS were automatically processed in the toolkit

implemented using C++ with the dependent libraries of PCL and ELSExt, which is

a C++ implementation of the ELS-based plane extraction method, as introduced in

Chapter 3. The parameters for processing all the data were kept the same with no

manual intervention during the whole process.

4.3.1 Large Lecture Hall

A large lecture hall holding up to 400 peoples, which is Room Z209, Block Z, The

Hong Kong Polytechnic University (HKPU), was selected as the test site representing

the typical large space scenarios. The inside of the hall was modified with small pla-

nar boards which formed large curved surfaces in order to provide excellent stereo

effects, which was believed to be an extra challenge for S2D AS as every small pla-

nar board needs to be distinguished for precise alignments. The merged TLS point

clouds and the mobile mapping results are shown in Figure 4.15, with all the posi-

tions of the scan stations and the target spheres and hemispheres, and the trajectory.

The two methods showed their limits in covering the floor and stairs. In Fig-

ure 4.15(c), the laser beams emitted by the TLS could not reach most of the floor

areas between the neighboring row of seats due to the obstructions of the cinema

chairs, while similar problems occurred only in the two high areas on the top of Fig-

ure 4.15(d). In other words, the TLS was not capable of capturing every detail in

the congested areas with obstructions if the scan stations did not distribute densely,

while the mobile mapping solution required direct accessibility for detail capturing.
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(a) (b)

(c) (d)

FIGURE 4.15: The point clouds of the lecture hall captured by TLS and S2D AS. The
positions of the target spheres and hemispheres are marked with triangles labeled
"T1" to "T9". (a) The point cloud captured by TLS and colorized using the images
captured by the embedded camera. (b) The point cloud captured by S2D AS and
colorized with respect to the point intensity provided by the multi-line scanner in-
stalled. Points in blue are with low intensities while those in green show high in-
tensities. (c) The red squares show the positions of the eleven scan stations labeled
"S1" to "S11". (d) The moving trajectory of S2D AS shown in white with the posi-
tions of targets.

The nine target spheres and hemispheres were installed on the tripods dis-

tributed in the lecture hall to compare the distances between each of the two targets

and the angles of the triangles formed by each of the three targets. The coordinates

of the extracted targets in the three datasets are shown in Table 4.1. The hemisphere
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target labeled "T8" could not be extracted from the mobile mapping point cloud be-

cause the distance between the target and the nearest data capturing position was

too far. The noises and the misalignment errors showed significant disturbances on

the target surfaces, and no model with substantial compliance could be fitted.

TABLE 4.1: Target coordinates in both point clouds (the Lecture Hall dataset, not
aligned)

Target ID Type Coordinates by TLS (m) Coordinates by S2D AS (m) Radius (cm)
T1 Hemisphere (-4.298, 4.415, 3.893) (6.073, 3.794, 2.268) 7.5
T2 Hemisphere (3.490, 0.560, 4.953) (0.191, -2.712, 0.995) 7.5
T3 Hemisphere (-9.112, 11.619, 4.111) (13.802, 6.341, 5.223) 7.5
T4 Sphere (-4.878, 12.753, 3.191) (14.051, 1.997, 4.070) 10.0
T5 Hemisphere (8.255, 10.622, 4.220) (8.499, -10.170, 2.338) 7.5
T6 Sphere (4.140, 17.355, 3.882) (15.809, -7.998, 4.633) 10.0
T7 Hemisphere (-2.092, 25.100, 3.286) (24.638, -4.210, 7.414) 7.5
T8 Hemisphere (14.349, 19.426, 5.101) unable to extract 7.5
T9 Hemisphere (13.777, 21.073, 3.801) (16.756, -18.224, 4.370) 7.5

Furthermore, as the radius of the hemisphere targets was only 7.5 cm, which is

not significantly large considering the distance measurement accuracy of the laser

scanner (3 cm) and the possible positioning and orientation errors, the extraction

of the hemisphere targets was quite difficult when the distance between the targets

and the nearest data capturing positions was too long. Therefore, larger and whole

spherical targets are suggested in future tests.

The distances between the centers of the targets and the angles of the triangles

formed by every three targets were used to check the accuracy of the mobile map-

ping results. The detailed results are listed in Table C.1, C.13 and C.14 in Appendix

C while the distributions are shown in Figure 4.16(a) and 4.16(b). The distribution
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TABLE 4.2: Target coordinates in both point clouds (the Lecture Hall dataset,
aligned)

Target ID Coordinates by TLS (m) Coordinates by S2D AS (m)
T1 (-4.298,4.415,3.893) (-4.355 4.424 3.931)
T2 (3.490,0.560,4.953) (3.528 0.526 5.029)
T3 (-9.112,11.619,4.111) (-9.162 11.623 4.079)
T4 (-4.878,12.753,3.191) (-4.896 12.747 3.185)
T5 (8.255,10.622,4.220) (8.390 10.623 4.104)
T6 (4.140,17.355,3.882) (4.144 17.354 3.787)
T7 (-2.092,25.100,3.286) (-2.099 25.155 3.339)
T8 (14.349,19.426,5.101) unable to extract
T9 (13.777,21.073,3.801) (13.731 21.044 3.883)

of coordinate variations between targets along the axes of the TLS coordinate frame

were calculated and are illustrated in Figure 4.17.
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FIGURE 4.16: The distribution of distance and angle differences between the tar-
gets in the TLS point cloud and the S2D AS point cloud (the Lecture Hall dataset).
(a) Distribution of distance differences. (b) Distribution of angle differences.

The distance, coordinate, and angular accuracy of T2 and T5 are significantly

worse than the accuracy of the other targets. Although both the extreme differences

along the x-axis and the z-axis are larger than the value along the y-axis, the overall

difference in the horizontal plane is smaller than the value in the vertical direction.
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FIGURE 4.17: The distribution of distance differences along the Cartesian axes be-
tween the targets in the TLS point cloud and the S2D AS point cloud (the Lecture
Hall dataset). (a) The distribution of the differences with respect to each of the tar-
gets along the Cartesian axes. (b) The distribution of all the differences with respect
to the Cartesian axes.

4.3.2 Sealed Stairwell

The indoor stairwell of North Wing, Block Z, HKPU was selected as the test site for

the multistory scenarios. The stairs from 6/F to 8/F were used to verify the perfor-

mance of the proposed system and the algorithms. Nine target spheres and hemi-

spheres were used as control points to compare results. The corresponding terres-

trial laser scanning was performed at five scan stations. The overall merged point

cloud was colorized using the images captured by the TLS and is shown in Figure

4.18.

The points indicating thin surfaces, i.e., planes, in the point cloud captured by

S2D AS are not as thin as the planes in the reference point cloud captured by TLS.

The main reason was that the low-accuracy MLS generated inevitable random mea-

surement noises which resulted in the distribution of points in a range of 3 cm

around the real distance, while the corresponding measurement accuracy of FARO
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(a) (b)

(c) (d)

FIGURE 4.18: The point clouds of the stairwell captured by TLS and S2D AS. (a) The
point cloud captured by TLS is colorized using the images captured by the embed-
ded camera. (b) The point cloud captured by S2D AS and colorized with respect to
the point intensity provided by the multi-line scanner installed. Points in blue are
with low intensities while those in green show high intensities. (c) The red squares
show the positions of the five scan stations. (d) The moving trajectory of S2D AS is
shown in white.

Focus M70 was 3 mm. The uncertainty would additionally create misalignment,

which increased the thickness of the planes as well.

As mentioned above, nine target spheres and hemispheres were distributed in

the stairwell for comparison. The locations of the targets are shown in Figure 4.19.

Their corresponding coordinates in the respective coordinate frame are shown in

Table 4.3. Consequently, the detailed distance and the angle comparison between
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target centers of the two results are shown in Table C.3, C.15, and C.16 in Appendix

C, while the distribution of the comparison results is shown in Figure 4.20. The dis-

tribution of difference in the variations along the TLS axes are presented in Figure

4.21.

(a) (b) (c) (d)

FIGURE 4.19: The locations and labels of the nine target spheres and hemispheres
in the two results. (a) The upstairs part of the TLS point cloud with the labeled
triangles showing the positions of the targets. (b) The downstairs part of the TLS
point cloud with the labeled triangles showing the positions of the targets. (c) The
upstairs part of the S2D AS point cloud with the labeled triangles showing the po-
sitions of the targets. (d) The downstairs part of the S2D AS point cloud with the
labeled triangles showing the positions of the targets.

TABLE 4.3: Target coordinates in both point clouds (the Stairwell dataset, not
aligned)

Target ID Type Coordinates by TLS (m) Coordinates by S2D AS (m) Radius (cm)
T1 Hemisphere (1.302, 4.957, 7.005) (2.880, 2.847, 7.018) 7.5
T2 Sphere (1.103, 1.046, 4.500) (0.777, 0.255, 3.765) 10.0
T3 Hemisphere (1.827, 2.672, 3.961) (2.499, 0.974, 3.626) 7.5
T4 Sphere (1.541, 4.939, 2.067) (4.116, 2.935, 2.101) 10.0
T5 Hemisphere (1.071, 1.082, 0.488) (1.526, 0.435, -0.106) 7.5
T6 Hemisphere (1.061, -1,791, 8.509) (-1.941, -2.145, 7.050) 7.5
T7 Hemisphere (1.225, -1.737, 4.617) (-0.958, -1.914, 3.356) 7.5
T8 Hemisphere (6.015, 3.334, 3.032) (6.192, -1.291, 3.318) 7.5
T9 Hemisphere (1.370, -0.670, 0.557) (0.575, -1.084, -0.265) 7.5
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FIGURE 4.20: The distribution of distance and angle differences between the tar-
gets in the TLS point cloud and the S2D AS point cloud (the Stairwell dataset). (a)
The distribution of distance differences. (b) The distribution of angle differences.

The nine targets were used to estimate the corresponding transformation pa-

rameters and the transformed coordinates are listed in Table 4.4. The differences in

the three axes were calculated and are presented in Table C.4. The referenced coor-

dinates were used to calculate the differences between coordinate variations along

the Cartesian axes. The results are shown in Figure 4.21. The accuracy in the hor-

izontal plane, i.e., along the x-axis and y-axis, were much better than the vertical

direction, which might be due to the complex multistory structure of this scenario.

TABLE 4.4: Target coordinates in both point clouds (the Stairwell dataset, aligned)

Target ID Coordinates by TLS (m) Coordinates by S2D AS (m)
T1 (1.302, 4.957, 7.005) (1.282, 4.970, 7.080)
T2 (1.103, 1.046, 4.500) (1.083, 1.102, 4.487)
T3 (1.827, 2.672, 3.961) (1.855, 2.721, 3.954)
T4 (1.541, 4.939, 2.067) (1.559, 4.946, 2.017)
T5 (1.071, 1.082, 0.488) (1.062, 1.021, 0.541)
T6 (1.061, -1.791, 8.509) (1.066, -1.841, 8.396)
T7 (1.225, -1.737, 4.617) (1.205, -1.701, 4.572)
T8 (6.015, 3.334, 3.032) (6.047, 3.363, 3.019)
T9 (1.370, -0.670, 0.557) (1.357, -0.749, 0.670)
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FIGURE 4.21: The distribution of distance differences along the Cartesian axes be-
tween the targets in the TLS point cloud and the S2D AS point cloud (the Stairwell
dataset). (a) The distribution of the differences with respect to each of the targets
along the Cartesian axes. (b) The distribution of all the differences with respect to
the Cartesian axes.

4.3.3 Corridor

The corridor test site was located on the LG2/F, Block Z, HKPU, as shown in Figure

4.22. The corridor consisted of multiple right-angle turns and corners with tidy side

walls. It was divided into two parts for testing the performance of the proposed

solution in similar environments with different restrictions. As shown in Figure 4.23,

the longer part of the corridor with a L-shape turn and a C-shape turn was used to

test the non-loop mapping performance by comparing the two single-pass mobile

mapping results with the TLS point cloud, while the other part was used to test the

performance of the round-trip mapping method in narrow spaces.

The test of the single-pass mapping method was conducted in both directions

along the corridor to eliminate the possible influences caused by the incident an-

gles. The two datasets were called Departing Trip and Returning Trip to indicate

the difference in moving directions. As they were independent mapping processes
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FIGURE 4.22: The point cloud of the long corridor captured by TLS.

FIGURE 4.23: The top view of the point clouds captured by TLS and the mapping re-
gions of the two corridor datasets. The red box illustrates the region of the two-way
single-pass trip while the blue one shows the region of the round trip for mapping
the L-shape region.

rather than round-trip mapping with adjustment, the repeatability and reliability of

the proposed system could also be checked. In the meantime, the round-trip map-

ping of the L-shape part was called Round Trip. The result point clouds are shown

in Figure 4.24, while the moving trajectories of the three point clouds are illustrated

in Figure 4.25.

The same TLS point cloud, as shown in Figure 4.22, was used as the reference

point cloud and multiple stations were implemented in case there was any detail
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(a) (b)

FIGURE 4.24: The two point clouds captured by S2D AS via routes in opposite di-
rections. (a) The point cloud captured along the departing trip with the start and
end positions indicated. (b) The point cloud captured along the returning trip with
the start and end positions indicated.

(a) (b)

(c)

FIGURE 4.25: The moving trajectories of the two single-trip moving routes and the
round-trip moving trajectory. (a) The point cloud and the trajectory along the de-
parting trip, moving from T1 to T6. (b) The point cloud and the trajectory along
the returning trip, moving from T6 to T1. (c) The point cloud captured in the
round trip with white points indicating the trajectory, moving along the sequence
as T6→T7→T8→T7→T6.

loss. The positions of the scan stations and the spherical and hemispherical tar-

gets are marked in Figure 4.26. The coordinates of the spherical and hemispherical

targets are shown in Table 4.5.
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FIGURE 4.26: The distribution of the scan stations, which are rectangles labeled
"STN1" to "STN11", targets, which are triangles labeled "T1" to "T9", and vertical
reference boards used as extra references labeled "B1" and "B2".

TABLE 4.5: Target Coordinates in the TLS Point Cloud (the Corridor dataset)

Target ID Type Coordinates by TLS (m) Radius (cm)
T1 Hemisphere (7.258, -26.104, 0.252) 7.5
T2 Hemisphere (-1.918, -27.142, -0.194) 7.5
T3 Hemisphere (-4.625, -15.641, -1.273) 7.5
T4 Sphere (-6.790, 2.233, 0.155) 10.0
T5 Hemisphere (-0.887, 4.147, 0.003) 7.5
T6 Sphere (-3.847, 12.548, 0.073) 10.0
T7 Hemisphere (15.060, 15.550, -0.120) 7.5
T8 Hemisphere (17.170, 22.119, 0.073) 7.5

In addition, multiple retractable banners were erected in the middle of the cor-

ridor to provide vertical planes for point cloud alignments as past experiments

showed that this part of the corridor was too long for direct 6 DOF plane-based

alignments, as shown in Figure 4.27. Though not completely flat, the banners were

considered as planes concerning the measurement accuracy of the MLS. The distri-

bution of banners is shown in Figure 4.26.

Consequently, the corresponding reference targets were extracted and their co-

ordinates in the respective coordinate frames are listed in Table 4.6. Respectively, the

coordinates of the three point clouds captured by the S2D AS could be transformed
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FIGURE 4.27: The vertical banners in the middle of the corridor as the reference
planes.

to the coordinate frame of the TLS point cloud. The results are listed in Table 4.7.

TABLE 4.6: Target Coordinates in the S2D AS Point Clouds (the Corridor dataset,
not aligned)

Target
ID

Coordinates in
Departing Trip (m)

Coordinates in
Returning Trip (m)

Coordinates in
Round Trip (m)

T1 (-0.949, 0.967, -0.407) (12.154, 3.837, 27.823) N/A
T2 (6.810, 5.962, 0.610) (20.661, 7.193, 26.166) N/A
T3 (14.298, -3.283, 0.298) (24.584, -2.079, 19.939) N/A
T4 (23.588, -18.554, 2.799) (29.567, -18.156, 13.231) N/A
T5 (19.201, -22.830, 1.902) (24.139, -21.096, 13.316) N/A
T6 (25.440, -29.122, 3.027) (27.925, -27.906, 8.967) (27.090, -26.763, 4.631)
T7 N/A N/A (8.924, -32.893, 3.836)
T8 N/A N/A (7.833, -39.637, 4.760)

The differences in distance and angles are listed in Tables C.5-C.10 and C.17-

C.19, while the distributions of errors are shown in Figure 4.28 - 4.30. As the edges

and triangles formed in the Round Trip dataset were not enough, the distribution

plot of that dataset was not listed. The comparison showed a similar pattern as the

results in previous sections: errors in the vertical direction was larger than errors in

the horizontal plane.
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TABLE 4.7: Target Coordinates in the S2D AS Point Clouds (the Corridor dataset,
aligned)

Target
ID

Coordinates in
Departing Trip (m)

Coordinates in
Returning Trip (m)

Coordinates in
Round Trip (m)

T1 (7.252, -26.035, 0.219) (7.280, -26.042, 0.281) N/A
T2 (-1.954, -27.192, -0.079) (-1.928, -27.155, -0.308) N/A
T3 (-4.623, -15.661, -1.333) (-4.623, -15.665, -1.242) N/A
T4 (-6.734, 2.210, 0.050) (-6.838, 2.252, 0.298) N/A
T5 (-0.859, 4.161, -0.067) (-0.948, 4.092, 0.121) N/A
T6 (-3.892, 12.557, 0.225) (-3.753, 12.559, -0.134) (-3.879, 12.530, 0.073)
T7 N/A N/A (15.054, 15.563, -0.119)
T8 N/A N/A (17.208, 22.124, 0.073)
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FIGURE 4.28: The distribution of distance and angle differences between the tar-
gets in the TLS point cloud and the S2D AS point cloud (the Single-trip Corridor
dataset). (a) Departing Trip, distance differences. (b) Returning Trip, distance dif-
ferences. (c) Departing Trip, angle differences. (d) Returning Trip, angle differences.

In addition to the numerical comparison results, the two single-pass results were

plotted in the same viewer to check the repeatability of the proposed system, as

shown in Figure 4.31. Contrary to the results shown in Table 4.7, C.17 and C.18,

where there were barely significant differences spotted, the visual differences were

appreciable in specific view angles, which, on the other hand, showed the impor-

tance of the closed loop and control points and their role in overall adjustment.

Some of the differences are shown in Figure 4.32.

Generally, the two passes from opposite directions produced similar results in
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FIGURE 4.29: The distribution of distance differences along the Cartesian axes be-
tween the targets in the TLS point cloud and the S2D AS point cloud (the Departing
Trip, Single-trip Corridor dataset). (a) The distribution of the differences with re-
spect to each of the targets along the Cartesian axes. (b) The distribution of all the
differences in the Cartesian axes.
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FIGURE 4.30: The distribution of distance differences along the Cartesian axes be-
tween the targets in the TLS point cloud and the S2D AS point cloud (the Returning
Trip, Single-trip Corridor dataset). (a) The distribution of the differences with re-
spect to each of the targets along the Cartesian axes. (b) The distribution of all the
differences in the Cartesian axes.

the distribution of errors concerning the differences in the coordinate changes.

However, there were still appreciable differences between the two single-pass re-

sults, which proved the importance of the closed loops in the mapping procedure.

In the meantime, the errors distributed along the vertical direction were much

larger than errors along the two horizontal axes, which was similar to the previous

comparison results.
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(a)

(b)

FIGURE 4.31: The visual comparison of the two single-pass point clouds captured
by S2D AS (the Corridor dataset). The Departing Trip cloud is in red while the other
cloud in yellow. (a) Vertical view. (b) Horizontal view. Significant differences can be
spotted on the left side and the middle part.

(a) (b)

FIGURE 4.32: Some of the appreciable differences between the two point clouds
in the detailed vertical view. The arrows in blue marked the significant differences
between the sidewalls and the tripods.

4.3.4 Outdoor Terrace

Although defined as an indoor mobile mapping solution, the backpack was used

to capture point clouds of an outdoor terrace on 6/F, Block Z, HKPU, as shown in
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Figure 4.33(a). The planar surfaces, which were the facade of the buildings on one

side, the concrete walls of the flower beds and surrounding barrier, and the tiles and

boardwalks, were used as the references for point cloud alignments.

(a) (b)

FIGURE 4.33: The point clouds of the outdoor terrace captured by TLS and S2D AS.
(a) The point cloud captured by TLS and colorized using the images captured by
the embedded camera. (b) The point cloud captured by S2D AS and colorized with
respect to the point intensity provided by the multi-line scanner installed. Points
in blue are with low intensities while those in green show high intensities.

Figure 4.33 shows the data captured using the FARO Focus M70 scanner and the

S2D AS mobile mapping backpack. Table 4.8 lists the coordinates of the centers of

the targets used for comparison.

TABLE 4.8: Target coordinates in both point clouds (the Outdoor Terrace dataset,
not aligned)

Target ID Type Coordinates by TLS (m) Coordinates by S2D AS (m) Radius (cm)
T1 Hemisphere (1.839, 1.472, 9.055) (1.198, -2.212, -0.475) 7.5
T2 Hemisphere (-7.319, -4.174, 9.044) (-5.515, 6.174, -0.550) 7.5
T3 Hemisphere (-16.736, 4.099, 8.120) (1.446, 16.628, 0.145) 7.5
T4 Hemisphere (-28.396, 7.397, 9.152) (3.199, 28.494, 2.240) 7.5
T5 Sphere (-20.376, 10.419, 9.067) (7.160, 20.899, 2.035) 10.0
T6 Hemisphere (-16.53, 9.116, 8.682) (6.360, 16.972, 1.258) 7.5
T7 Hemisphere (-11.856, 10.430, 9.170) (8.222, 12.393, 1.571) 7.5
T8 Sphere (-9.375, 6.347, 9.060) (4.518, 9.480, 0.782) 10.0
T9 Hemisphere (-2.009, 6.385, 7.938) (5.646, 2.277, -0.794) 7.5
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Figure 4.34 shows the distribution of the scan stations, the targets, and the tra-

jectory of the mobile mapping. An additional reference board was also placed on the

ground, in case the number of the vertical surfaces might not be enough for provid-

ing sufficient alignment. The installation of the board is shown in Figure 4.35 while

the position is shown in Figure 4.34.

(a) (b)

FIGURE 4.34: The point clouds of the outdoor terrace captured by TLS and S2D AS.
The positions of the target sphere and hemispheres are marked with triangles la-
beled "T1" to "T9". The rectangle marked with "B1" is the position of the reference
board. (a) The red squares show the positions of the seven scan stations labeled
"STN1" to "STN7". (b) The moving trajectory of S2D AS shown in gray, with the
labeled triangles showing the locations of the targets. The rectangle box in red la-
beled "B1" shows the location of the erect reference board.

The detailed differences in the distances and angles are listed in Table C.11, C.12,

C.20 and C.21 in Appendix C, while the distribution of errors is listed in Figure 4.36.

Similar to the comparison in the previous sections, the targets were used to

transform the S2D AS point cloud to the coordinates in the reference system of the

TLS point cloud. The coordinates after transformation are listed in Table 4.9 and

the distance and angle comparison results are listed in Table C.11 and C.12. The re-

sults were used to calculate the distance differences along the Cartesian axes, and

the boxplots are illustrated in Figure 4.37.
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(a) (b)

FIGURE 4.35: The reference board installed beside the mapping path. (a) The
front view of the board facing the opposite direction as the moving direction of the
S2D AS mobile mapping process. (b) The back view of the board facing the same
direction as the moving direction of the S2D AS mobile mapping process.
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FIGURE 4.36: The distribution of distance and angle differences between the tar-
gets in the TLS point cloud and the S2D AS point cloud (the Outdoor Terrace
dataset). (a) The distribution of distance differences. (b) The distribution of an-
gle differences.

Accuracy along different axes showed no significant difference. All the absolute

values of the difference were smaller than 10 cm, which might be resulting from

the low complexity of the dataset. As assumed, the results showed the proposed

solution was completely capable of working in such environments.
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TABLE 4.9: Target coordinates in both point clouds (the Outdoor Terrace dataset,
aligned)

Target ID Coordinates by TLS (m) Coordinates by S2D AS (m)
T1 (1.839 1.472 9.055) (1.871, 1.491, 9.062)
T2 (-7.319 -4.174 9.044) (-7.283, -4.132, 9.041)
T3 (-16.736 4.099 8.120) (-16.783, 4.066, 8.159)
T4 (-28.396 7.397 9.152) (-28.438, 7.460, 9.109)
T5 (-20.376 10.419 9.067) (-20.401, 10.431, 9.083)
T6 (-16.53 9.116 8.682) (-16.567, 9.081, 8.709)
T7 (-11.856 10.43 9.170) (-11.817, 10.405, 9.183)
T8 (-9.375 6.347 9.060) (-9.357, 6.312, 9.027)
T9 (-2.009 6.385 7.938) (-1.982, 6.378, 7.915)
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FIGURE 4.37: The distribution of distance differences along the Cartesian axes be-
tween the targets in the TLS point cloud and the S2D AS point cloud (the Outdoor
Terrace dataset). (a) The distribution of the differences with respect to each of the
targets along the Cartesian axes. (b) The distribution of all the differences with re-
spect to the Cartesian axes.

4.4 Summary

A plane-based point cloud alignment was proposed based on the plane extracted

using the ELS algorithm presented in Chapter 3. Data captured using the prototype

had been used to validate the proposed workflow. Both narrow corridors and large

halls were used to test the feasibility, accuracy, and robustness of the hardware sys-

tem and the software workflow.
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The results showed that the proposed integrated hardware system and the data

processing workflow were capable of mapping structured indoor environments and

specific outdoor spaces when enough planes facing multiple directions could be

identified for point cloud registration and alignments.



Chapter 5

Discussions

Methods used for extracting planes from low-resolution inhomogeneous point

clouds and plane-to-plane alignments between such point clouds have been in-

troduced and the results have been demonstrated and compared qualitatively and

quantitatively. In this chapter, the methods and their advantages and disadvantages

will be discussed.

5.1 Plane Extraction Based on ELS Extraction Results

By extracting geometric feature points along multiple scanline directions, generat-

ing line segments, merging parallel segments, and fusing the plane patches, planes

are extracted from low-resolution inhomogeneous point clouds. The method is

used in extracting planes from point clouds captured by a sixteen-line MLS. It shows

great reliability in accomplishing the demanded jobs.

185
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5.1.1 Applications of ELS-based Plane Extractions

The proposed method generated significantly better results when the resolution of

the point cloud was not too high or when the distribution of points was not homo-

geneous, while there were not too many differences in plane extraction results for

dense or homogeneous point clouds. The processing along the point grid reduced

the effects made by the resolution change with respect to the distance between ob-

jects and the scanner, resulting in more planes extracted, especially floors, ceilings,

and sidewalls in large spaces. The algorithm eliminated misinterpretations of short

curvature segments as straight line segments and reduced the possibility of misclas-

sifying the individual or connected Z-shape regions as planes with disturbances.

The proposed algorithm also produced better results in congested areas as it did

not require the estimation of the local normal vectors, which were fallible in such

irregular dense regions.

The topological relationship between the points were considered based on the

definition of the raw and virtual scanlines. Therefore, the small differences between

planes can be identified. However, their topological relationships were not consid-

ered in the plane matching and alignment process, as the current implementation

did not consider the relationships between planes as a factor.
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5.1.2 Limitations of ELS Algorithms

The ELS algorithm had been proved to be an effective and efficient method for ex-

tracting feature points and planes, according to the test results above. The reliability

and robustness of applying it on extracting planes from low-resolution inhomoge-

neous point clouds were significantly better than other state-of-the-art algorithms,

which was essential for the application to the plane-based SLAM workflow. Never-

theless, there were still limitations and room for improvements.

5.1.2.1 Organized Point Clouds

As mentioned above, the successful implementation of the ELS algorithm requires

the foregone knowledge of the grid distribution of points. All the tests of the pro-

posed algorithm were conducted on the point clouds captured by TLS and MLS with

known scanning sequence. When the sequence of data capturing conflicted with

the geometric distribution sequence, the point grid would need to be reorganized

to recover the geometric distribution of points, such as the shifting and projection

operations mentioned in previous sections.

In other words, when given a point cloud with no information on the organized

distribution of points, the point cloud would need to be reorganized. This is also

the reason why downloaded open datasets may not be used to test the performance

of the algorithm. Meanwhile, when the point clouds were formed by merging two

point clouds and could not be perfectly reorganized, they could not be directly
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processed using the proposed algorithm. Otherwise, a pre-process procedure with

down-sampling and reorganized with respect to the assumed origin point would be

required.

5.1.2.2 False Feature Points

The false identification of feature points was due to the unwanted scanline curva-

ture with respect to the working mechanism of the horizontally rotating scanners

and the feature point determination mechanism of the ELS algorithm. As intro-

duced in W. Fan (2015), the ELS workflow examined scanlines and virtual scanlines

as straight lines and identified breakpoints according to the distance between pend-

ing points and the corresponding line segments. However, as shown in Figure 2.26

and 5.1, the scanlines were not entirely straight lines in certain circumstances. Such

curvatures existed in most of the scanlines. It was the length of the scanline seg-

ment that may have made the curvature not significant enough for identification.

These curvatures became appreciable for understanding when non-feature points

were removed from the grid view, leaving only horizontal feature points, as shown in

Figure 5.1(c). If the scanline segments were not long enough or the plane segments

were not large enough, it would not have been possible for these curvatures to make

variations significant enough for the ELS algorithms to extract feature points falsely.

Nevertheless, for large line segments such as those on walls and ceiling surfaces, as

in the example in Figure 2.26, there was a possibility that the ELS algorithms would
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identify false breakpoints along the horizontal scanline direction, slicing the scan-

lines into shorter segments.

(a) (b) (c)

FIGURE 5.1: The recovered grid showing the curved scanlines in a TLS point cloud.
The three subfigures are showing the same region of the TLS point cloud. The black
dots illustrate the points while the line segments are connecting the neighboring
points and feature points. (a) the grid view of the raw TLS point cloud (b) the grid
view of the processed TLS point cloud in which feature points with respect to their
directions are connected. (c) the grid view of the processed TLS point cloud with
only horizontal feature points connected sequentially.

Generally, such drawbacks amplified the curvature and direction changes be-

tween neighboring points to the directional differences of line segments. In the pro-

posed clustering process, the direction differences in neighboring scanlines were

overcome by the reduced difference between the sharing neighbor, as shown in Fig-

ure 5.2.

However, if the unwanted curvatures could be rectified or modeled before the

feature point extraction process, the possibility of such feature points would be

eliminated, resulting in fewer scanline segments. As the existence of such curva-

tures indeed converts the 2D scanline to a 3D shape, an improper process would

cause the dimension loss problem.
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FIGURE 5.2: Ignoring the direction difference in scanline segments by introducing
the sharing neighbor segment. The two segments with blue dashed arrows showing
they are pointing at different directions while the segment, which is labeled with
the red dashed arrow showing its direction, is their sharing neighbor segment. The
search and clustering direction is along the gray dashed arrows and, therefore, the
three segments could be segmented to the same group regardless of the existence
of the feature point due to scanline curvature.

Meanwhile, another possible solution was that by identifying each of such

curved scanlines as a piece of the planar fraction instead of several 2D line seg-

ments and merging the fractions based on the planar features. The idea is similar to

the work done by Grant et al. (2013), whose idea was considered as not universally

applicable.

5.1.2.3 Adaptive Threshold and Feature Point

The ELS algorithm was based on the well-known 2D line simplification algorithms,

which were designed to simplify polylines by using most representative feature

points to omit unnecessary detailed curvature changes (Z. Li, 2006) (Shi & Cheung,

2006). Consequently, limitations of conventional line simplification algorithms

were also affecting the performance of ELS-based plane extraction workflow.

Firstly, the threshold values used in most line simplification algorithms were
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constant values. In other words, the determinations of the thresholds were gener-

ally based on empirical values and experiences, or on an interactive selection pro-

cess. In most cases, especially for the algorithms suitable for 3D applications, the

thresholds were not affected by the geometric approximability or resolution of the

point clouds, or the length of the pending line segments, which brought the prob-

lem, as introduced in Section 3.1.5. Therefore, an adaptive threshold determination

process would hopefully reduce the possibility of such problems since the adaptive

value would be adjusted with the distribution of the points in three dimensions.

Secondly, selecting the feature points would also be an adaptive process in

which the extra feature points indicating better slices of scanline segments could

be introduced. As shown in Figure 5.3, there are always differences in the geometric

representations and the reality of the objects. The introduction of the extra feature

points for scanline segmentation could generate better end point positions rather

than the method proposed in Section 3.2.2. Meanwhile, the extra feature points may

enable the identification of the line segments with no non-feature points, which

would benefit the extraction of small-sized planes. However, this process would be

time consuming and computation dependent, which would not be appropriate for

real-time processing as this process would require pre-processing and understand-

ing of the curvature patterns.
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(a) (b)

FIGURE 5.3: An example of the adaptive feature point selection process. (a) The
geometric representation in the form of dashed lines by connecting scanned points
in blue. (b) The possible reality that the two scanline segments intersect at the
position of the red point. The red point, which does not exist in the raw point cloud,
should be the actual position of the feature point.

5.1.2.4 Scanline with Only Feature Points

Given the working mechanism of the proposed method, there should be at least one

non-feature point existing. Consequently, the proposed method could not identify

scanline segments without non-feature points, even if they were part of a plane. As

four directions were defined in the workflow, for two-line strips as shown in Fig-

ure 3.15, it might be possible to identify non-feature points only when the exten-

sion direction was along the horizontal direction. Moreover, for the remaining three

directions, all points would be identified as feature points and no corresponding

line segment would be detected. Therefore, the unsuccessful identification of non-

feature points resulted in the unproductive extracting results, as mentioned before

and shown in Figure 3.15.

5.1.2.5 Time Consumption

The algorithm and workflow proposed were designed to be applied to the batch pro-

cesses of extracting planes from such low-resolution inhomogeneous point clouds,

and time was important for both real-time processing and post-processing as the
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accumulation of short process span of thousands of frames would be plenty of time

that could not be ignored. In most of our experiments, there were more than 6,000

frames of LiDAR point clouds, consisting of 12,000 frames of point clouds consisting

of 25,000 points on average.

Most of the algorithms in the workflow were implemented based on PCL, such as

SVD for segment directions, RANSAC for noise removal and parameter determina-

tion, and k-d tree indexing for nearest neighbor search, thus some of the processes

could not be implemented in parallel sessions. The most notable example here was

the RANSAC process. A sharing random number generator was implemented in the

library and implementing a parallel RANSAC process would have caused the un-

wanted inconsistent random number, which would cause the unreliable subset se-

lection results that there might be difference existing randomly between the two

processes of the same point cloud. Nevertheless, the RANSAC processes were the

most time-consuming part of the complete workflow, taking up to 50% of the to-

tal span. The unsuccessful implementation of a parallel RANSAC process indeed

restrains the performance improvement of the whole workflow.

5.2 ELS-based 3D Point Cloud Alignments

Based on the plane extraction results utilizing the proposed ELS-based plane extrac-

tion method, the low-resolution inhomogeneous point clouds are aligned into the
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same reference frame for mobile mapping. Experiments were performed in mul-

tiple scenarios and the results show the proposed method is capable of IMU-free

point cloud registrations with the given mobile mapping platform, S2DAS.

5.2.1 Accuracy Assessment Results

The accuracy assessment results based on the distance and angle checking using

the extracted spherical and hemispherical targets are listed in Table C.22. As shown

in Figure 5.4, the accuracy in the horizontal plane was better than the value in the

vertical direction, while the average absolute distance differences in both horizontal

directions were smaller than 10 cm. The distance measurement accuracy was rel-

evant to the length of the distance measurements, which was better than 1%. The

performance of the proposed system met the requirements of the system design, as

listed in the ITSP proposal.
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FIGURE 5.4: The distribution of all the distance differences and percentages in the
Cartesian axes.
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On the other hand, as an IMU-free system was not available on the open market

yet, a comparison with similar products could not be made. The proposed system

can achieve the same accuracy level as the commercial products, which declared

that the accuracy of tens of centimeters could be achieved in indoor environments

(Leica Geosystems AG, 2015) (Nocerino et al., 2017) (Lehtola et al., 2017). Referring

to Geiger et al. (2012), which is currently one of the most popular benchmarks for

SLAM evaluation, the translation accuracy of the proposed system was better than

most of the methods listed, except the recent new champion by Dimitrievski, Van

Hamme, Veelaert, and Philips (2016). Moreover, as the rotation accuracy listed in

the benchmark was corresponding to the attitude of the platform, it could not be

directly compared with the angle accuracy evaluated in this report. Notably, most

of the solutions listed on the KITTI benchmark website were integrated with IMU

and GPS while the proposed system was an IMU-free system working in GPS-denied

environments.

5.2.2 Further Improvements

As some of the failure cases showed, the working mechanism of the proposed

method was also its main drawback. The proposed method was not capable of

providing ultimate solutions for position and orientation changes when adequate

planes were not identified or differentiation in the facing directions was not ade-

quate. Therefore, the IMU-free solution itself did not fit the applications to mapping
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natural environments, such as caves, cylinder tunnels, and every scenario with nei-

ther flat floor nor planar ceiling. Also, the size of the boards used as premeditated

landmarks should not be too small. Otherwise, they would not be identified by the

multi-line MLS, which only covered limited FOV.

IMU, which was already installed on S2D AS but not used in the proposed

method, had been proven to be a useful DR sensor in most academic and com-

mercial solutions (Ulas & Temeltas, 2012) (J. Zhang & Singh, 2014) (J. Zhang & Singh,

2015) (Leica Geosystems AG, 2015) (Geneva et al., 2018) (ViAmetris 3D Mapping,

2019) (GreenValley International, 2019). They were designed to provide continu-

ous data streams of accelerations and were barely affected by the environments.

Although the position and orientation readings, which were integral values of ac-

celerations, drifted with time, multiple methods have been introduced to reduce

such errors, which made it possible to use the high-accuracy plane-based mobile

mapping result to calibrate IMU drifting, which was similar to the visual odometer

in J. Zhang and Singh (2014) and J. Zhang and Singh (2015).

On the other hand, the IMU readings could be fused with the proposed methods

and would result in (1) providing initial alignments rather than the inaccurate NDT

alignments, as the preceding drifts had already been calibrated, which would re-

duce the total time as well since the tedious, time-consuming NDT process has been

skipped, (2) assisting the alignment process to achieve better quality and smaller

residuals to reduce the number of key frames as they were corresponding to the

unsuccessful alignments, and (3) generating more reliable alternative position and
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orientation solutions if there were no valid plane matching and alignment results

rather than using the NDT alignments or motion extensions of previous frames. As a

designed feature of S2D AS, the integration between the proposed method and IMU

could be either online or offline. Both procedures are shown in Figure C.1 in Ap-

pendix C. Furthermore, other SLAM methods, such as vSLAM, were also introduced

and planned in the proposal of S2D AS, which was designed as a future commercial

solution.
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Conclusions

In this thesis, recent developments in indoor mobile mapping solutions have been

reviewed and discussed. To fulfill the requirements of IMU-free alignment of point

clouds captured in indoor environments, an ELS-based plane extraction method

was designed to detect and identify planes from single frames of low-resolution

inhomogeneous point clouds captured by multi-line MLS. A mobile mapping back-

pack was presented as the testing platform for verifying the proposed IMU-free

point cloud alignment workflow, which used the planes extracted to build point

clouds of the desired environments. The results show that the proposed sensor

integration and data processing methods were capable of generating point clouds

with acceptable accuracy in certain environments consisting of enough planes with

the differentiation in facing directions. As a mobile mapping solution package seek-

ing commercial opportunities, the necessity of introducing IMU and other SLAM

techniques into the proposed plane-to-plane point cloud alignment method has

198
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also been discussed.

6.1 Contributions

The works presented in this thesis included plane extraction from low-resolution in-

homogeneous point clouds, the prototype design for testing the performance, and

the plane-based 6 DOF IMU-free point cloud alignment method, forming the com-

plete data capturing and processing workflow and the corresponding hardware sys-

tem using the proposed methods. The main innovations in the presented work in-

clude a plane extraction method utilizing the linear distribution of points in low-

resolution inhomogeneous point clouds, a dedicated coarse-to-fine procedure for

IMU-free initialization between adjacent frames, and a shortest-path initialization

strategy to alleviate the accumulation of drifts in alignments. Meanwhile, the corre-

sponding contributions of the research are introduced in this section.

Robust Plane Extraction from Low-Resolution Inhomogeneous Point Clouds.

Although many scholars had proposed plane-based SLAM in the past decades, no

commercial solution was based on these algorithms. One of the most critical rea-

sons was the lack of a robust plane extraction algorithm designed for low-resolution

inhomogeneous point clouds captured by multi-line MLS. Indeed, considering the

limitations of the ELS-based plane extraction method listed, it was not a perfect and

universal solution for extracting planes from all kinds of 3D point clouds. However,

the proposed algorithm fulfilled the plane extraction requirements as desired, and
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it was proved to be reliable for mapping indoor environments and certain outdoor

environments.

Hardware Design Using Planes for 6 DOF Point Cloud Alignment. Although

most academic and commercial solutions integrate two laser scanners to cover

larger FOV, the purpose of the more vertically installed scanners was similar to the

profiler in outdoor mobile mapping systems, while the horizontal scanners were

designed for SLAM positioning. In some of the solutions, the data captured by the

vertical scanner had also been used for SLAM and improved accuracy and reliabil-

ity in 6 DOF. In the proposed system, the vertical scanner was designed to enlarge

the FOV for capturing planes that could be used to determine the motion in verti-

cal directions, such as ceilings and floors. It was also one of the main reasons the

system could be used for mapping stairwells without IMU, which were the most

challenging scenarios for other solutions.

Coarse-to-fine Alignment for Planes Matching. The introduction of the

coarse-to-fine alignment process solved two problems in IMU-free point cloud

alignments: it provided (1) the initial estimation for better plane matching and

(2) the alternative solution when plane matching failed. For frame-to-frame align-

ments between key frames, the drift errors of the position and orientation were

inevitable. NDT alignments were conducted to provide coarse alignments that were

better than the drifted initialization poses and more reliable for matching corre-

sponding planes. On the other hand, when planes were not enough, or were not

facing different directions that facilitated progress in 6 DOF estimation, the NDT
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solution provided another choice in addition to extending the previous motion

between the preceding frames.

Shortest-path for Alignment Initialization. In addition to the coarse-to-fine

alignment process, the redundant alignments were adopted to generate better ini-

tial pose for NDT rather than the direct frame-to-frame transformation passing.

Such implementations reduced the possibility of NDT coarse alignment failure and

increased the chances of successful plane matching. Besides, the coarser initializa-

tion could reduce the time used for NDT alignment as well.

An IMU-free 6 DOF LiDAR point alignment method that can work in stair-

wells. Based on the algorithms and hardware mentioned above, several typical

indoor scenarios were used to test the accuracy and reliability of the proposed sys-

tem. The system had been proved to be a practical indoor mobile mapping solution

without the presence of IMU. Unlike most of the solutions which required shape

or distance changes in the point clouds to work, the proposed system could work

in any scenario if a notable number of planes facing multiple directions could be

spotted. The proposed IMU-free solution could work in stairwells as well, which

was one of the most challenging environments for most of the other mobile map-

ping solutions, waiving the extra GCP in capturing the reality of multiple floors for

registration.
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6.2 Limitations and Open Problems

The proposed solution generated promising results. However, the limitations of the

proposed hardware system and data processing workflow were appreciable. There

were open problems left for solving.

Adaptive Threshold in Feature Point Extraction. Multiple thresholds had

been implemented in the data processing workflow, reducing errors and misclas-

sifications. However, most of the thresholds were empirical values based on numer-

ous tests and comparisons, regardless of the given testing environments. If these

thresholds were determined in an automatic process based on data processing re-

sults of numerous scenarios, such as a machine learning process, the thresholds

would be universal. For example, if an unsatisfied result were produced, human op-

erators would check the processing results manually and spot the errors while the

algorithm could analyze and learn these results to generate a set of refreshed thresh-

olds. Then the data could be reprocessed using the updated parameters to generate

more satisfying results.

Small Plane Detection. As mentioned in Chapter 3, because they could only

be identified in one of the four checking directions, the small planes consisting of

parallel scanlines with only feature points were not correctly identified as planes

by the proposed methods. However, in complex environments, such as corridors

and office rooms with partition boards, such planes were commonly captured by

the multi-line MLS because their vertical angular resolutions were relatively low. In
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such complex scenarios, the successful detection of such planar stripes is crucial

as they might be the only planar regions facing the particular direction and used

for alignments. Therefore, a better detection strategy would be necessary for such

applications.

Planes as Features and Landmarks. In the proposed workflow, planes were

used as features for recovering the geometric alignments between frames of point

clouds. However, there were two more possibilities for applying plane features in

the SLAM process. The first was introducing the planes as features in addition to

those feature points in the archived algorithms, such as LOAM. The extra features

might be possible for improving accuracy and reliability in the SLAM process. The

second one, all planes used in alignments in the proposed methods were uncon-

nected entities rather than merged and updated planes. Therefore, planes with no

overlapped areas, which were different parts of the same plane and extracted from

different frames, could not be identified as corresponding planes, reducing the suc-

cess rate of plane matching. Moreover, as there were inevitable misalignment errors

and residuals in each of the successful alignments, the merging and update process

would contain ambiguity of plane positions and thickness, and require certain re-

fining process. Otherwise, the disturbances around the plane would result in high

uncertainty in the alignment process.

Key Frame Detection. As introduced in Chapter 4, identification of the key

frames was based on the number of matched planes between the current pending
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frame and the nearest preceding key frame. Consequently, not only the changes be-

tween the point clouds but also the misalignment errors would affect the number

of key frames. In other words, when the misalignment errors between the pend-

ing frame and the preceding key frame accumulated to a certain level with respect

to the corresponding candidate planes for matching, an unnecessarily key frame

might be identified. Furthermore, the ascending number of key frames would de-

crease the time efficiency of the whole workflow as a massive number of pairs of

extra key frames would be asking for redundant observation building. A better im-

plementation of key frame detection and identification, such as reduced misalign-

ment errors based on the IMU-LiDAR data fusion, might be a possible improvement

in the future.

Integration with IMU and Loop Detection. The possibility and feasibility of

integrating the proposed method with IMU has been discussed in Chapter 4. In

addition to the precise estimations for initial plane matching, the IMU could also be

used to provide trajectory with an acceptable level of accuracy for detecting loops

online. Also, the IMU, together with other SLAM techniques if available, could be

used to provide position and pose changes when the proposed alignment method

cannot generate reliable estimations in addition to providing the initial estimation

of point cloud alignment.
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6.3 Future Works

In addition to the aforementioned open problems, there are possible working di-

rections in the future, to improve the unsatisfactory specifications of the current

version of S2D AS in precision, accuracy, and reliability.

Integrating Multiple SLAM Techniques. The feasibility of the proposed work-

flow based on pure point cloud alignments with no IMU have been proved with a

certain level of accuracy and reliability. It was not a perfect solution for all the ar-

tificial environments because there were always spaces that did not have enough

planes for registration. However, it did prove that the proposed method could be

used as a part of the SLAM workflow to enhance robustness. To make S2D AS a

commercial-grade mobile mapping solution, which would be used in multiple sce-

narios, the proposed method would have to be organically combined with other

SLAM techniques and positioning and orientation sensors to form a comprehensive

solution for both outdoor and indoor mobile mapping. As introduced in Chapter

4, the next-step integration plan included data fusion with the panoramic vSLAM,

which was Panoramic Direct Feature SLAM (PDFSLAM), and IMU DR techniques.

For example, 7 DoF ICP can be directly applied for fusing vSLAM and LiDAR mo-

bile mapping trajectories, while IMU results may be used as either an initializer to

replace NDT results as it is too slow or an error detector to remove the wrong align-

ment results, improving the overall reliability.
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High-accuracy Indoor Mobile Mapping Platform. In outdoor mobile map-

ping based on vehicle platforms, the positioning accuracy of the onboard GPS/IMU

system was around ten times worse than the measurement accuracy of the laser

scanner. However, benefiting from the adjustment process, the relative accuracy of

the final point clouds was acceptable, considering the distance measurement accu-

racy of the laser scanner adopted on such platforms was usually a few millimeters.

In the meantime, the accuracy of the multi-line MLS adopted in most indoor mobile

mapping solutions was around 3-5 cm, while the overall positioning accuracy of the

indoor platform could achieve a similar level of accuracy as the outdoor solutions.

Therefore, if the current mobile mapping backpack, S2D AS, were to be used as a

positioning and orientation platform on which a millimeter-accuracy laser scan-

ner was installed as the profiler, the possibility of such a system generating high-

accuracy point clouds would be practical. The weight and synchronizing problem

must be fixed to enable its wide applications.

Time Efficiency. The time efficiency of the proposed C++ implementation

was still not practical for real-time processing. For a dataset consisting of around

16,000 frames of point clouds, which was captured in a large lecture hall, nearly

1,300 frames were identified as key frames, and it took almost 13 hours to process

the data. As previously discussed, the considerable number of key frames was one

of the main reasons that made the whole procedure time-consuming. This time

could be improved with the following aspects: (1) revising the key frame identifi-

cation criteria, (2) introducing IMU estimations to reduce the misalignment errors
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and residuals and the time cost on NDT coarse alignments, (3) improving the loop

closure and key frame relationship building process by a pre-check process based

on corrected IMU trajectories, and (4) introducing parallel processing in building

key frame relationships.
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TABLE A.1: The rearranged sequences, raw fire ID, vertical angles, time offsets and
horizontal time and installation offsets at the rotation speed of 20 Hz / 1200 rpm
from the first point of the 32-point group of RoboSense RS-LiDAR-32 3D scanner
according to Suteng Innovation Technology Co Ltd (2015) (∗)

Rearranged
Sequence ID

Fire
ID

Vertical
Angle (◦)

Time
Offset (µs)

H. Time
Offset (′)

H. Installation
Offset (◦)

1 16 -24.9706 50.0 21.600 -7.73545
2 18 -14.6883 56.0 24.192 -7.74978
3 0 -10.3157 N/A N/A 8.19589
4 20 -7.9978 62.0 26.784 -7.91365
5 2 -6.4594 6.0 2.592 8.25322
6 22 -5.4780 68.0 29.376 -7.83230
7 30 -4.6670 92.0 39.744 7.83511
8 28 -4.4042 86.0 37.152 2.56844
9 26 -4.0713 80.0 34.560 -2.69507

10 24 -3.7027 74.0 31.968 -8.03434
11 23 -3.3152 71.0 30.672 7.63674
12 21 -2.9643 65.0 28.080 2.30018
13 19 -2.6849 59.0 25.488 -2.98962
14 17 -2.3687 53.0 22.896 -8.25363
15 31 -1.9821 95.0 41.040 7.71533
16 29 -1.6670 89.0 38.448 2.42453
17 27 -1.3330 83.0 35.856 -2.82134
18 25 -0.9642 77.0 33.264 -8.29783
19 7 -0.6312 21.0 9.072 7.61699
20 5 -0.3330 15.0 6.480 2.28952
21 3 0.0000 9.0 3.888 -3.06551
22 1 0.3151 3.0 1.296 -8.42088
23 15 0.7028 45.0 19.440 7.54721
24 13 1.0000 39.0 16.848 2.31369
25 11 1.3330 33.0 14.256 -2.96384
26 9 1.6670 27.0 11.664 -8.29716
27 4 2.3330 12.0 5.184 7.76623
28 6 3.3330 18.0 7.776 -7.73591
29 8 4.6136 24.0 10.368 8.01336
30 10 7.0000 30.0 12.960 -8.27124
31 12 10.2983 36.0 15.552 8.32025
32 14 15.0334 42.0 18.144 -7.74762

(∗) Note: the horizontal offsets between scanners are different due to assembly
errors.
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(a)

(b)

FIGURE A.1: The raw data and the ELS processing result used for examining the
algorithm optimization result. (a) The rainbow-color point cloud of the Z block
building of HKPU containing 1,612,070 points (989×1630). The color is defined by
the intensity values of the points with the color ramp showing at the right side of the
figure. (b) The feature point extraction result using the enhanced Douglas-Peucker
algorithm with the threshold of 0.03 m. Only 254,755 points were extracted (15.8%
maintaining rate) while 163,026 points were extracted along the vertical scanline
direction and 150,588 points were extracted along the horizontal scanline direction.



Appendix A. Plane Extraction Flowcharts and Results 211

Start

Raw point cloud

Horizontal scanline 
direction?

ST: calculate perpendicular 
distances till final segments with 

no child feature points

Y N

Scanline seperation 

Scanline plane identification 
formed by origin point and the 
two end points (zero points not 

included)

Project all points between end 
points to the plane

Higher level OMP
(ST processing)Low level OMP

(MT processing)

MT: calculate perpendicular 
distances till final segments with 

no child feature points

Scanline seperation 

Scanline plane identification 
formed by origin point and the 
two end points (zero points not 

included)

Project all points between end 
points to the plane

Compare the penperdicular 
distance for largest as feature 

point and second largest

Both side no break-
down?

Calculate the total perpendicular 
distance and the total squared 

perpendicular distance

Y 

N 

Get all feature points? Get all feature points?
N 

Y Y 

The raw point cloud 
contains all 

measurement points, 
including those zero 

points. 

Either sum value :57�
WKH�VHFRQG�ODUJHVW�
IHDWXUH�SRLQW�LV�ODUJHU"

Take the point with the largest 
perpendicular distance as feature 

point

N 

Take both points as feature points 

Compare the penperdicular 
distance for largest as feature 

point and second largest

Both side no break-
down?

N 

Take the point with the largest 
perpendicular distance as feature 

point

Calculate the total perpendicular 
distance and the total squared 

perpendicular distance

Either sum value :57�
WKH�VHFRQG�ODUJHVW�
IHDWXUH�SRLQW�LV�ODUJHU"

Take both points as feature points 

N 

Y 

N 

Higher level OMP for 
vertical, diagonal 1, and 
diagonal 2 sequences

OMP computing

Four pure ELS directional feature 
points datasets 

End

FIGURE A.2: The overall flowchart of the ELS algorithm for feature point extraction.
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displacement vector

Any segment 
unchecked?

Remove duplicated line ID and checked line ID (add to 
pending group if it is not marked as added)

If any neighbouring line 
segments not checked?

Y 

N 

The first two segments 
on the “plane”?

If parallel to the current 
directional vector?

N 

Add the line to the 
plane

Y 

Mark all the 
segments as NOT 

checked

Valid plane"

Using RANSAC to 
get parameters and 
add to the plane list

N 

Identify neighbouring line segments in single-direction 
neighbourhood of each element point

Y 

Y 

N 

Four directional feature point 
datasets

Identify all line segments by 
identifying non-feature points first

Compute centroid points and 
directional vector (SVD) of all 

segments

Y 

N 

Y 

OMP computing

N 

Update LEN if iteration times < 10

'LVWDQFH�WR�ERWK�
VHJPHQWV�WKH�VDPH"

Y N 

FIGURE A.3: The overall flowchart of the plane extraction workflow based on ELS
results (Part I).
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CUDA computing

OMP computing

Planes from the four groups with similar normal directions 
and sharing at least one points would be fused together 

iteratively

Directional plane lists

RANSAC to get plane 
parameters and remove points on 

more than one planes

Theoretically, the 
more points 

removed in this 
step, the worse 

processing 
previously done

Stop

Calculate displacement vector (from the centroid point of the given 
line segment to the centroid point of the pending line segment)

Get the cross product of the initial 
displacement vector and the directional 

vector of the initial line segment

If the two cross product 
parallel?

Add the line to the plane

Get the cross product of the current 
adaptive displacement vector and the 
directional vector of the current line 

segment

Is it the third segment on 
the plane? Mark the three segments as checked

Mark the pending segment as checked

Y 

N 

Y 

N 

All directional data 
processed?

Y 

N 

Calculate the 
adaptive 

displacement vector 
and respect LENs 

WRT grid 
neighbours and 
measurement 

noises

If any of the LENs is 
parallel to the plane 

LEN?

Overlap between the 
two neighbouring line 

segments > 0.3?

N Overlap between the two 
neighbouring line segments 

> 0.3?

N Y 

N 

Y 

Check duplicates by calculating 
the minimal distances between 

each of the point-pairs and 
remove those ones with smaller 

distances and less elements

Plane fusion here 
(TBA) 

Check distance 
between 

scanlines (TBA) 

FIGURE A.4: The overall flowchart of the plane extraction workflow based on ELS
results (Part II).
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(a) (b)

(c) (d)

(e)

FIGURE A.5: Plane extraction results of the T-junction corridor dataset using both
the RANSAC method and the proposed method. (a) The top view of the point cloud
of the testing area with the red point indicating the data acquisition position. (b)
The raw point cloud captured. The points are rendered with respect to the point
intensity with blue as the lowest and red as the highest. (c) The RANSAC extraction
results with white points showing points not extracted as planes while the colored
blocks indicating extracted planes. (d) The points in different colors show various
extracted planes using the proposed method. (e) Point clouds with planes extracted
using both methods. The points in white indicate the incomplete extracting result
of the floor while the points in yellow shows the unsuccessful extraction of the side-
wall.
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(a) (b) (c)

FIGURE B.2: The initial prototype design of S2D AS. The components labeled in
the diagram are (1) 3D SLAM laser scanner, (2) adjustable scanner brace, (3) GPS
antenna, (4) industrial PC, (5)optical cameras, (6) Power/Input/Output (PIO) box
with synchronizer, IMU, 3D compass, GPS module, and connectors installed, (7)
hardware frame, (8) battery, and (9) 2D point cloud scanner. (a) The right-side view.
(b) The 45 ◦-angle view. (c) The front-side view.
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(a) (b) (c)

FIGURE B.3: The finalized prototype hardware design of S2D AS. Only the key sen-
sors, the two Velodyne VLP-16 multi-line scanners and the FLIR Ladybug 5Plus
panoramic camera, are shown. The IMU not shown explicitly is pasted beside the
camera system while all other components are placed into a backpack hanging at
the bottom of the backpack frame. (a) The right-side view. (b) The 45 ◦-angle view.
(c) The front-side view.
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(a) (b)

(c)

FIGURE B.4: The finalized prototype frame of S2D AS with the operator carrying it.
(a) The front view of S2D AS and the operator. (b) The rear view of S2D AS and the
operator. (c) The side view of S2D AS and the operator.
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Algorithm C.2 Overall Alignment and Mapping Procedure
Notation:

i : frame ID imax : maximum frame ID
iK F : key frame ID ArK F : array of key frame ID
j : key frame ID in the key frame array jmax : number of key frames
Aa : alignment between adjacent frames
AK F : alignment between normal frame and the previous key frame
ArOb : array of observations ArV er : array of G2O vertices
ArE d g e : array of G2O edges
POi : the position and orientation of the i -th frame
ArPO : array of frame position and orientation Arpl n : extracted plane features
Mi : motion within frame
PC Di : the i -th frame of point cloud data
PC DR

i : the transformed and motion rectified i -th frame of point cloud data

PC DM : the merged point cloud data
vPSKF : the pairing score between the current frame and the previous key frame
vPS: the user-defined key frame pairing score vector threshold

Input: PC Di and Arpln

Output: PC DM

1: procedure OVERALL POINT CLOUD ALIGNMENT PROCESS

2: iK F ← i
3: i ← i +1
4: insert iK F into ArK F

5: jmax ← size of ArK F

6: while i 6= imax do Ordinary Observation Establishing
7: Aa ← alignment from i to i −1
8: insert Aa into ArOb

9: POi ← POi−1 and Aa

10: insert POi into ArPO

11: initial �AK F ← shortest-path from i to ArK F [ jmax ] with ArOb

12: AK F ← alignment from i to iK F with �AK F

13: insert AK F into ArOb

14: vPSKF ← AK F

15: if vPSKF < vPS then
16: iK F ← i
17: j ← jmax

18: while j 6= 0 do Abundant Key Frame Observation Establishing
19: initial �AK F j ← shortest-path from iK F to ArK F [ j ] with ArOb

20: AK F j ← alignment from iK F to ArK F [ j ] with �AK F j

21: insert AK F j into ArOb

22: j ← j −1

23: insert iK F into ArK F

24: jmax ← jmax +1

25: i ← i +1
26: ArV er ← ArPO

27: ArE d g e ← ArOb

28: Adjust positions and orientations ArPO ← g 2o adjustment
29: for i = 1 to imax −1 do Motion Correction and Registration
30: Mi−1 ← ArPO[i ] and ArPO[i −1]
31: PC DR

i−1 ← Mi−1, ArPO[i −1] and PC Di

32: PC DM ← PC Di (i = 1,2, . . . , imax −1)
33: return PC DM
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TABLE C.1: Distance Comparison in Both Point Clouds (the Lecture Hall dataset,
not aligned) (*)

T1 T2 T3 T4 T5 T6 T7 T8 T9
T1 N/A 8.754

8.863
1.24%

8.667
8.658

-0.11%

8.388
8.374

-0.16%

14.008
14.173
1.18%

15.448
15.474
0.17%

20.811
20.862
0.24%

23.969
N/A
N/A

24.581
24.563
0.07%

T2 - N/A 16.788
16.885
0.58%

14.893
14.958
0.43%

11.157
11.245
0.78%

16.842
16.885
0.26%

25.222
25.320
0.39%

21.768
N/A
N/A

22.977
22.944
-0.14%

T3 - - N/A 4.479
4.501
0.50%

17.396
17.580
1.06%

14.442
14.491
0.34%

15.222
15.282
0.40%

24.746
N/A
N/A

24.767
24.757
-0.04%

T4 - - - N/A 13.345
13.486
1.06%

10.148
10.164
0.16%

12.658
12.720
0.49%

20.441
N/A
N/A

20.435
20.403
-0.16%

T5 - - - - N/A 7.898
7.964
0.83%

17.820
17.938
0.66%

10.744
N/A
N/A

11.828
11.712
-0.98%

T6 - - - - - N/A 9.959
10.002
0.43%

10.488
N/A
N/A

10.330
10.273
-0.55%

T7 - - - - - - N/A 17.487
N/A
N/A

16.380
16.364
-0.10%

T8 - - - - - - - N/A 2.175
N/A
N/A

T9 - - - - - - - - N/A

(∗) Note: the first line in each cell is the distance in the TLS point cloud, while the second line is
the distance in the S2D AS point cloud and the third line is the difference in percentage. The unit
of distance is meter.
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TABLE C.2: Distance Comparison in Both Point Clouds (the Lecture Hall dataset,
aligned) (*)

T1 T2 T3 T4 T5 T6 T7 T8 T9
∆x -9.5 -0.7 -3.9 -19.2 -6.1 -5.0 -1.1

T1 ∆y N/A 4.3 0.5 1.5 0.8 1.0 -4.6 N/A 3.8
∆z -3.8 7.0 4.4 15.4 13.3 -1.5 -4.4
∆x 8.8 5.6 -9.7 3.4 4.5 8.4

T2 ∆y - N/A -3.8 -2.8 -3.5 -3.3 -8.9 N/A -0.5
∆z 10.8 8.2 19.2 17.1 2.3 -0.6
∆x -3.2 -18.5 -5.4 -4.3 -0.4

T3 ∆y - - N/A 1.0 0.3 0.5 -5.1 N/A 3.3
∆z -2.6 8.4 6.3 -8.5 -11.4
∆x -15.3 -2.2 -1.1 2.8

T4 ∆y - - - N/A -0.7 -0.5 -6.1 N/A 2.3
∆z 11.0 8.9 -5.9 -8.8
∆x 13.1 14.2 18.1

T5 ∆y - - - - N/A 0.2 -5.4 N/A 3.0
∆z -2.1 -16.9 -19.8
∆x 1.1 5.0

T6 ∆y - - - - - N/A -5.6 N/A 2.8
∆z -14.8 -17.7
∆x 3.9

T7 ∆y - - - - - - N/A N/A 8.4
∆z -2.9

T8 - - - - - - - N/A N/A
T9 - - - - - - - - N/A

(∗) Note: the three lines in each cell are the distance difference along the three axes, x-axis, y-axis,
and z-axis, of the TLS point cloud. The unit of distance is centimeter.
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TABLE C.3: Distance Comparison in Both Point Clouds (the Staircase dataset) (*)

T1 T2 T3 T4 T5 T6 T7 T8 T9
T1 N/A 4.649

4.661
0.26%

3.842
3.893
1.33%

4.944
5.071
2.57%

7.586
7.642
0.75%

6.918
6.940
0.32%

7.108
7.128
0.29%

6.374
6.464
1.41%

8.558
8.591
0.38%

T2 - N/A 1.860
1.871
0.62%

4.612
4.593

-0.39%

4.012
3.947

-1.63%

4.911
4.893

-0.38%

2.788
2.808
0.69%

5.614
5.649
0.62%

4.309
4.251

-1.32%
T3 - - N/A 2.968

2.964
-0.13%

3.894
3.947
0.01%

6.418
6.416

-0.03%

4.498
4.513
0.33%

4.341
4.343
0.06%

4.792
4.804
0.24%

T4 - - - N/A 4.194
4.222
0.68%

9.329
9.327
0.02%

7.153
7.130

-0.33%

4.850
4.863
0.27%

5.811
5.856
0.77%

T5 - - - - N/A 8.520
8.360

-1.88%

5.002
4.866

-2.73%

5.999
6.039
0.67%

1.779
1.799
1.15%

T6 - - - - - N/A 3.896
3.830

-1.70%

8.989
8.989
0.00%

8.037
7.808

-2.84%
T7 - - - - - - N/A 7.153

7.177
0.33%

4.200
4.019

-4.32%
T8 - - - - - - - N/A 6.613

6.666
0.79%

T9 - - - - - - - - N/A

(∗) Note: the first line in each cell is the distance in the TLS point cloud, while the second line is
the distance in the S2D AS point cloud and the third line is the difference in percentage. The unit
of distance is meter.
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TABLE C.4: Distance Comparison in Both Point Clouds (the Staircase dataset,
aligned) (*)

T1 T2 T3 T4 T5 T6 T7 T8 T9
∆x 0.0 -4.8 -3.8 -1.1 -2.5 0.0 -5.2 -0.7

T1 ∆y N/A -4.3 -3.6 0.6 7.4 6.3 -2.3 -1.6 9.2
∆z 8.8 8.2 12.5 2.2 18.8 12.0 8.8 -3.8
∆x -4.8 -3.8 -1.1 -2.5 0.0 -5.2 -0.7

T2 ∆y - N/A 0.7 4.9 11.7 10.6 2.0 2.7 13.5
∆z -0.6 3.7 -6.6 10.0 3.2 0.0 12.6
∆x 1.0 3.7 2.3 4.8 -0.4 4.1

T3 ∆y - - N/A 4.2 11.0 9.9 1.3 2.0 12.8
∆z 4.3 -6.0 10.6 3.8 -1.4 3.1
∆x 2.7 1.3 3.8 -1.4 3.1

T4 ∆y - - - N/A 6.8 5.7 -2.9 -2.2 8.6
∆z -10.3 6.3 -0.5 -3.7 -16.3
∆x -1.4 1.1 -4.1 0.4

T5 ∆y - - - - N/A -1.1 -9.7 -9.0 1.8
∆z 16.6 9.8 6.6 -6.0
∆x 2.5 -2.7 1.8

T6 ∆y - - - - - N/A -8.6 -7.9 2.9
∆z -6.8 -10.0 -22.6
∆x -5.2 -0.7

T7 ∆y - - - - - - N/A 0.7 11.5
∆z -3.2 -15.8
∆x 4.5

T8 ∆y - - - - - - - N/A 10.8
∆z -12.6

T9 - - - - - - - - N/A

(∗) Note: the three lines in each cell are the distance difference along the three axes, x-axis, y-axis,
and z-axis, of the TLS point cloud. The unit of distance is centimeter.
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TABLE C.5: Distance Comparison in Both Point Clouds (the Departing Corridor
dataset) (*)

T1 T2 T3 T4 T5 T6
T1 N/A 9.245

9.284
0.42%

15.906
15.844
-0.39%

31.628
31.518
-0.35%

31.329
31.267
-0.20%

40.216
40.169
-0.12%

T2 - N/A 11.864
11.901
0.31%

29.778
29.788
0.03%

31.307
31.372
0.21%

39.738
39.797
0.15%

T3 - - N/A 18.061
18.049
-0.07%

20.178
20.216
0.19%

28.232
28.271
0.14%

T4 - - - N/A 6.207
6.191

-0.26%

10.727
10.731
0.04%

T5 - - - - N/A 8.907
8.932
0.27%

T6 - - - - - N/A

(∗) Note: the first line in each cell is the distance in the TLS point
cloud, while the second line is the distance in the S2D AS point
cloud and the third line is the difference in percentage. The unit
of distance is meter.
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TABLE C.6: Distance Comparison in Both Point Clouds (the Departing Corridor
dataset, aligned) (*)

T1 T2 T3 T4 T5 T6
∆x 3 -0.8 -6.2 -3.4 3.9

T1 ∆y N/A 11.9 8.9 9.2 5.5 6
∆z -14.8 2.7 7.2 3.7 -18.5
∆x -3.8 -9.2 -6.4 0.9

T2 ∆y - N/A -3 -2.7 -6.4 -5.9
∆z 17.5 22.0 18.5 -3.7
∆x -5.4 -2.6 4.7

T3 ∆y - - N/A 0.3 -3.4 -2.9
∆z 4.5 1 -21.2
∆x 2.8 10.1

T4 ∆y - - - N/A -3.7 -3.2
∆z -3.5 -25.7
∆x 7.3

T5 ∆y - - - - N/A 0.5
∆z -22.2
∆x

T6 ∆y - - - - - N/A
∆z

(∗) Note: the three lines in each cell are the distance difference along
the three axes, x-axis, y-axis, and z-axis, of the TLS point cloud. The
unit of distance is centimeter.
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TABLE C.7: Distance Comparison in Both Point Clouds (the Returning Corridor
dataset) (*)

T1 T2 T3 T4 T5 T6
T1 N/A 9.245

9.294
0.53%

15.906
15.864
-0.27%

31.628
31.620
-0.03%

31.329
31.237
-0.29%

40.216
40.148
-0.17%

T2 - N/A 11.864
11.838
-0.22%

29.778
29.820
0.14%

31.307
31.265
-0.13%

39.738
39.756
0.05%

T3 - - N/A 18.061
18.119
0.32%

20.178
20.142
-0.18%

28.232
28.259
0.10%

T4 - - - N/A 6.207
6.174

-0.54%

10.727
10.768
0.38%

T5 - - - - N/A 8.907
8.923
0.18%

T6 - - - - - N/A

(∗) Note: the first line in each cell is the distance in the TLS point
cloud, while the second line is the distance in the S2D AS point
cloud and the third line is the difference in percentage. The unit
of distance is meter.
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TABLE C.8: Distance Comparison in Both Point Clouds (the Returning Corridor
dataset, aligned) (*)

T1 T2 T3 T4 T5 T6
∆x 3.2 2.0 7 8.3 7.2

T1 ∆y N/A 7.5 8.6 4.3 11.7 5.1
∆z 14.3 0.2 11.4 8.9 23.6
∆x 1.2 3.8 5.1 10.4

T2 ∆y - N/A 1.1 3.2 4.2 2.4
∆z 14.5 25.7 23.2 9.3
∆x 5.0 6.3 9.2

T3 ∆y - - N/A 4.3 3.1 3.5
∆z 11.2 8.7 23.8
∆x 1.3 14.2

T4 ∆y - - - N/A 7.4 0.8
∆z 2.5 35.0
∆x 15.5

T5 ∆y - - - - N/A 6.6
∆z 32.5
∆x

T6 ∆y - - - - - N/A
∆z

(∗) Note: the three lines in each cell are the distance difference along
the three axes, x-axis, y-axis, and z-axis, of the TLS point cloud. The
unit of distance is centimeter.

TABLE C.9: Distance Comparison in Both Point Clouds (the Round-trip Corridor
dataset) (*)

T7 T8 T9

T7 N/A
19.145
19.189
0.23%

23.094
23.164
0.31%

T8 - N/A
6.902
6.894

-0.12%
T9 - - N/A

(∗) Note: the first line in each cell is the distance in the TLS point cloud, while the sec-
ond line is the distance in the S2D AS point cloud and the third line is the difference in
percentage. The unit of distance is meter.
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TABLE C.10: Distance Comparison in Both Point Clouds (the Round-trip Corridor
dataset, aligned) (*)

T7 T8 T9
∆x -2.6 -7.0

T7 ∆y N/A -3.1 -2.3
∆z -0.1 -0.0
∆x -4.4

T8 ∆y - N/A 0.8
∆z 0.1

T9 - - N/A

(∗) Note: the three lines in each cell are the distance difference along the three
axes, x-axis, y-axis, and z-axis, of the TLS point cloud. The unit of distance is
centimeter.

TABLE C.11: Distance Comparison in Both Point Clouds (the Outdoor Terrace
dataset) (*)

T1 T2 T3 T4 T5 T6 T7 T8 T9
T1 N/A 10.759

10.742
-0.15%

18.783
18.852
0.37%

30.810
30.891
0.26%

23.949
23.999
0.21%

19.899
19.942
0.21%

16.365
16.335
-0.18%

12.228
12.219
-0.07%

6.340
6.328

-0.19%
T2 - N/A 12.569

12.579
0.08%

24.045
24.123
0.32%

19.582
19.600
0.09%

16.174
16.152
-0.14%

15.293
15.228
-0.43%

10.720
10.647
-0.68%

11.871
11.824
-0.39%

T3 - - N/A 12.161
12.579
0.08%

7.355
7.380
0.35%

5.053
5.050

-0.05%

8.062
8.117
0.68%

7.754
7.806
0.68%

14.904
14.982
0.52%

T4 - - - N/A 8.571
8.568

-0.03%

11.999
11.988
-0.09%

16.816
16.880
0.38%

19.050
19.115
0.34%

26.434
26.505
0.27%

T5 - - - - N/A 4.079
4.082
0.08%

8.521
8.585
0.75%

11.730
11.787
0.49%

18.839
18.896
0.31%

T6 - - - - - N/A 4.880
4.953
1.50%

7.681
7.730
0.63%

14.794
14.855
0.41%

T7 - - - - - - N/A 4.779
4.778
0.02%

10.716
10.703
0.12%

T8 - - - - - - - N/A 7.451
7.459
0.11%

T9 - - - - - - - - N/A

(∗) Note: the first line in each cell is the distance in the TLS point cloud, while the second line is
the distance in the S2D AS point cloud and the third line is the difference in percentage. The unit
of distance is meter.
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TABLE C.12: Distance Comparison in Both Point Clouds (the Outdoor Terrace
dataset, aligned) (*)

T1 T2 T3 T4 T5 T6 T7 T8 T9
∆x -0.4 7.9 7.4 5.7 6.9 -0.7 1.4 0.5

T1 ∆y N/A -2.3 5.2 -4.4 0.7 5.4 4.4 5.4 4.4
∆z 1.0 -3.2 5.0 -0.9 -2.0 -0.6 4.0 3.0
∆x 8.3 7.8 6.1 7.3 -0.3 1.8 0.9

T2 ∆y - N/A 7.5 -2.1 3.0 7.7 6.7 7.7 4.9
∆z -4.2 4.0 -1.9 -3.0 -1.6 3.0 2.0
∆x -0.5 -2.2 -1.0 -8.6 -6.5 -7.4

T3 ∆y - - N/A -9.6 -4.5 0.2 -0.8 0.2 -2.6
∆z 8.2 2.3 1.2 2.6 7.2 6.2
∆x -1.7 -0.5 -8.1 -6.0 -6.9

T4 ∆y - - - N/A 5.1 9.8 8.8 9.8 7
∆z -5.9 -7.0 -5.6 -1.0 -2.0
∆x 1.2 -6.4 -4.3 -5.2

T5 ∆y - - - - N/A 4.7 3.7 4.7 1.9
∆z -1.1 0.3 4.9 3.9
∆x -7.6 -5.5 -6.4

T6 ∆y - - - - - N/A -1 .00 -2.8
∆z 1.4 6.0 5.0
∆x 2.1 1.2

T7 ∆y - - - - - - N/A 1.0 -1.8
∆z 4.6 3.6
∆x -0.9

T8 ∆y - - - - - - - N/A -2.8
∆z -1.0

T9 - - - - - - - - N/A

(∗) Note: the three lines in each cell are the distance difference along the three axes, x-axis, y-axis,
and z-axis, of the TLS point cloud. The unit of distance is centimeter.
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TABLE C.17: Angle Comparison in Both Point Clouds (the Corridor dataset, Depart-
ing Trip)

T1 T2 T3 T4

T2,T3
0.834, 1.693, 0.615
0.844, 1.676, 0.622

1.20%, -1.01%, 1.16%
- - -

T2,T4
1.223, 1.622, 0.296
1.236, 1.607, 0.299

1.03%, -0.93%, 0.86%
- - -

T2,T5
1.420, 1.425, 0.296
1.433, 1.411, 0.297

0.91%, -0.99%, 0.41%
- - -

T2,T6
1.404, 1.506, 0.231
1.415, 1.494, 0.233

0.79%, -0.81%, 0.46%
- - -

T3,T4
0.399, 2.393, 0.349
0.403, 2.387, 0.352

1.05%, -0.28%, 0.69%

0.123, 2.939, 0.080
0.128, 2.929, 0.084

4.64%, -0.33%, 5.03%
- -

T3,T5
0.591, 2.095, 0.455
0.596, 2.090, 0.456

0.77%, -0.24%, 0.10%

0.281, 2.697, 0.164
0.282, 2.694, 0.165

0.47%, -0.08%, 0.59%
- -

T3,T6
0.575, 2.254, 0.312
0.579, 2.251, 0.312

0.63%, -0.17%, 0.03%

0.207, 2.848, 0.086
0.211, 2.842, 0.088

2.10%, -0.22%, 2.25%
- -

T4,T5
0.197, 1.424, 1.520
0.197, 1.432, 1.512

0.05%, 0.53%, -0.50%

0.197, 1.720, 1.225
0.196, 1.730, 1.215

-0.63%, 0.61%, -0.75%

0.307, 1.761, 1.074
0.305, 1.772, 1.065

-0.67%, 0.60%, -0.79%
-

T4,T6
0.180, 2.403, 0.558
0.179, 2.413, 0.549

-0.96%, 0.42%, -1.49%

0.116, 2.699, 0.327
0.112, 2.712, 0.317

-2.94%, 0.50%, -3.05%

0.151, 2.734, 0.256
0.145, 2.752, 0.245

-4.22%, 0.64%, -4.38%
-

T5,T6
0.017, 3.064, 0.060
0.021, 3.048, 0.073

22.02%, -0.55%, 21.48%

0.082, 2.770, 0.290
0.084, 2.759, 0.299

3.00%, -0.40%, 3.02%

0.560, 0.718, 1.864
0.556, 0.712, 1.874

-0.61%, -0.82%, 0.50%

0.979, 1.545, 0.617
0.983, 1.544, 0.615

0.35%, -0.08%, -0.35%

(∗) Note: the first line in each cell is the angles in radian in the triangles formed in the TLS point cloud, while the second
line is the angles in rad in the triangles formed in the S2D AS point cloud and the third line is the difference in percentage.
The unit of angle is rad.
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TABLE C.18: Angle Comparison in Both Point Clouds (the Corridor dataset, Return-
ing Trip)

T1 T2 T3 T4

T2,T3
0.834, 1.693, 0.615
0.835, 1.685, 0.621

0.18%, -0.46%, 1.02%
- - -

T2,T4
1.223, 1.622, 0.296
1.229, 1.615, 0.298

0.45%, -0.45%, 0.60%
- - -

T2,T5
1.420, 1.425, 0.296
1.425, 1.419, 0.299

0.30%, -0.46%, 0.75%
- - -

T2,T6
1.404, 1.506, 0.231
1.412, 1.496, 0.233

0.62%, -0.67%, 0.64%
- - -

T3,T4
0.399, 2.393, 0.349
0.402, 2.390, 0.350

0.80%, -0.16%, 0.17%

0.123, 2.939, 0.080
0.119, 2.946, 0.077

-3.23%, 0.24%, -3.74%
- -

T3,T5
0.591, 2.095, 0.455
0.593, 2.092, 0.456

0.32%, -0.13%, 0.20%

0.281, 2.697, 0.164
0.277, 2.702, 0.162

-1.32%, 0.22%, -1.35%
- -

T3,T6
0.575, 2.254, 0.312
0.581, 2.248, 0.313

0.92%, -0.30%, 0.46%

0.207, 2.848, 0.086
0.202, 2.855, 0.084

-2.28%, 0.24%, -2.56%
- -

T4,T5
0.197, 1.424, 1.520
0.196, 1.411, 1.534

-0.46%, -0.94%, 0.94%

0.197, 1.720, 1.225
0.197, 1.707, 1.237

-0.24%, -0.71%, 1.03%

0.307, 1.761, 1.074
0.307, 1.747, 1.088

-0.11%, -0.78%, 1.32%
-

T4,T6
0.180, 2.403, 0.558
0.185, 2.387, 0.570

2.37%, -0.68%, 2.17%

0.116, 2.699, 0.327
0.121, 2.681, 0.340

4.03%, -0.65%, 3.91%

0.151, 2.734, 0.256
0.160, 2.710, 0.272

6.01%, -0.90%, 6.05%
-

T5,T6
0.017, 3.064, 0.060
0.013, 3.083, 0.045

-24.32%, 0.62%, -24.69%

0.082, 2.770, 0.290
0.078, 2.788, 0.276

-4.48%, 0.64%, -4.90%

0.160, 2.614, 0.368
0.156, 2.629, 0.357

-2.57%, 0.58%, -3.03%

0.979, 1.545, 0.617
0.977, 1.554, 0.611

-0.28%, 0.59%, -1.03%

(∗) Note: the first line in each cell is the angles in radian in the triangles formed in the TLS point cloud, while the second
line is the angles in rad in the triangles formed in the S2D AS point cloud and the third line is the difference in percentage.
The unit of angle is rad.

TABLE C.19: Angle Comparison in Both Point Clouds (the Corridor dataset, Round
Trip)

T6

T7,T8
0.270, 2.039, 0.833
0.268, 2.045, 0.828

-0.78%, 0.33%, -0.54%

(∗) Note: the first line in each cell is the angles in radian in the
triangles formed in the TLS point cloud, while the second line is
the angles in rad in the triangles formed in the S2D AS point cloud
and the third line is the difference in percentage. The unit of angle
is rad.
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FIGURE C.1: The design plan of integrating IMU with the proposed point cloud
alignment method. (a) The online process of IMU integration that the IMU would
be used for providing initial position and pose estimations for alignment while the
final position and pose changes produced by EKF would be used to correct the ac-
cumulative errors of IMU. (b) In addition to the online integration, a loop closure
detection procedure based on the adjusted trajectory was implemented in the of-
fline process, in order to replace the tedious frame-to-frame alignment between
any two of the key frames by the trajectory-based loop detection.
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