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ABSTRACT 

Quality plays a significant role in the construction industry in that it not only affects 

consumers’ satisfaction but also pertains to the lives and safety of people. To ensure 

the construction quality in the past decades, researchers proposed various 

approaches to monitor and manage the on-site activities, including wearable devices 

with activity recognition, surveillance cameras with computer vision, etc. However, 

the sensor-based methods were intrusive because the deployment added labor 

workloads, reduced labor productivity, and weakened the ability in handling daily 

construction activities; meanwhile the camera-based methods were seriously 

affected by the none-line-of-light effects, poor light illumination, and exposed 

environment. In addition, these approaches both contributed to the privacy issues at 

the construction sites, which resulted in a lack of independence and the depression 

of manpower. It was concluded that there was no efficient and effective way to 

record and recognize the on-site construction activities. A possible non-intrusive 

approach to recording the on-site events is suggested by considering the kinematic 

motions of construction tools used in construction tasks. As is well known, the way 

human beings make and use tools is perhaps what sets us apart more than anything 

else, employees in modern architecture, engineering and construction industry are 

always carrying out their behaviors with the assistance of valuable hand or power 

tools. This study therefore proposes a novel method that record and recognize the 
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on-site construction processes by collecting the motion data of the equipped tools, 

which possibly facilitates the management of construction quality within the 

expectation of privacy to be legally permissible. A wireless tool tracking gadget 

using micro-electro-mechanical-system inertial measurement unit is presented. The 

prototype is capable of capturing the direct motion data, consisting of acceleration, 

angular velocity, and magnetic field, as well as the indirect kinematic data, 

including displacement, velocity, rotation angle, etc. A model for the on-site 

process reconstruction and activity recognition is then presented, which also 

enables one to obtain the construction activity indicators for the quality control and 

management, such as work time and orthogonality. A model for the traceability 

along the construction process is also presented, which is based on Bayesian 

Networks that has the capability of tracking forward and backward by probability 

delivery and belief backpropagation. These models were tested in steel rebar 

connection and concrete consolidation experiments, and led to satisfactory results, 

showing the effectiveness and efficiency of the proposed method that makes the on-

site activity monitoring smarter and allows for traceability along the construction 

processes. 

Key Words: construction tracking, activity recognition, construction tools, on-site 

traceability 
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CHAPTER 1 INTRODUCTION 

1.1 Background to the problem 

The quality of a product is based on how well the product does, what it was designed 

to do, and how well it holds up over time, it is defined as delivering a customer’s 

service or product without a defect being present (Juran and Godfrey 1999). The 

importance of product quality cannot be overemphasized because it builds trust 

between producers and customers and provides them with a higher return on their 

investment along with a more comfortable lifestyle. High quality ensures higher 

satisfaction and a greater chance of continued partnership, whereas poor quality 

ruins the reputation of the manufacturer and destroys its relationship within the 

industry (Hallak 2006). 

Not as a degree of goodness or excellence in manufacture industry, in the construction 

industry, quality can be briefly described as conformance to project plans and 

specifications (Kubal 1994). But the terminology of quality is intrinsically a 

comprehensive and complicated definition that the client should take a number of 

aspects into consideration, including funding, time, corporate policies, requirements of 

business and stakeholders, the views of external organizations (such as local planning 

authority and design council), local and national legislation. The basic elements of 
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quality in construction are composed of design quality, construction materials quality, 

and on-site conformance quality. The quality of design primarily refers to the ability to 

satisfy given requirements of the standards, users, functionally efficient system, and 

economical maintainable system (Davis, Ledbetter, and Burati 1989); and the quality 

of construction materials is related to the satisfaction of materials and equipment 

requirements in the specification, consisting of all engineered, fabricated and bulk 

materials provided by vendors and subcontractors (Stukhart 1989); and the quality of 

conformance is the degree to which the constructed facility conformed the design and 

construction specification (Nandakumar, Datar, and Akella 1993).  

Although the quality in construction industry has many meanings, the overall 

management of it is a ‘bottom-line’ issue. It has become a crucial cog in modern 

systems, not only playing a significant role in the success of a building project but also 

pertaining to the lives and safety of the public. Good construction quality is a win-win 

situation; otherwise, all stake holders lose when a defective project is undertaken. 

For example, in June 2018, the newly constructed underground platforms at MTR 

corporation’s Hung Hom station have confirmed the suspicions of faulty work. 

Thousands of steel rebars were cut prior to being connected to screw couplers 

embedded in the concrete components (see Figure 1-1). The public were worried that 

there might be safety issues in twenty or thirty years. Till almost half a year later, the 

problematic couplers have been identified with unnecessary and unreasonable cost, 

manpower, and time (Cheng 2018).  



3 

 

Figure 1-1 Cutting steel rebars before being connected to couplers 

The modern construction industry faces ongoing challenges, such as increasing project 

requirements and growing building complexities, but with stringent regulations and 

tight deadlines. Under this situation, it can be seen from the sample that the 

construction quality has caused a bottleneck in the overall performance of a project 

in that the defective construction work, re-work, remedial work, and overall poor 

quality of building products account for roughly 4% - 6% of the contract price on 

average, as well as 7% - 8% of the delay in work time (Josephson and Hammarlund 

1999, Josephson, Larsson, and Li 2002).  

While the importance of quality in the construction industry as a project key point is 

clear, arguments exist over the proper approach to achieve quality goals. In the response 

to the growing concern about quality, academic researchers and construction institutes 

continuously pursue a major effort in the development of construction in engineering. 

However, regardless of quality assurance/quality control (QA/QC) programs, the 
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application and benefits of them are neither fully understood nor effectively utilized in 

the planning, design, and construction phases of engineered projects (Tang et al. 2005). 

In spite of the significance of the quality issue in engineered projects, an extensive 

review of the literature has revealed no effective and efficient system in the 

construction industry for the tracking and tracing of quality related activities. That’s 

one of the most crucial reasons accounting for the quality issues, just like the sample 

of improper rebar cutting. Therefore, the obvious question is, “Why are there no 

systems to track and trace quality-related activities in the construction industry?”  

After all, the concept of traceability for quality is not new and has been used in a 

number of industries for a long time. For example, the ability of tracking and tracing 

enables the medicine industry to shore up quality safety and shift out counterfeit drugs; 

the food industry to validate raw product processes for quality safety; and the 

manufacturing industry to maintain quality visibility as products move throughout the 

supply chain. The authors believe that a major reason that such system do not exist in 

the construction industry is the nature of the construction process. Drug, food or general 

manufacturing normally involves a steady-state process of assembly-line that the 

production procedures have been designed, constructed and optimized at stable status; 

meanwhile the construction industry involves single, unique projects with various 

changes occurring during the design and construction phases. It might be concluded 

that the concepts of manufacturing-oriented quality tracking and tracing do not apply 

to the construction industry because of the fundamental difference and continuous 

variability.  
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How do the quality managers and supervisors make intelligent decision about the 

mechanisms, extent and performance of their quality management efforts if they are 

not aware of the quality-related activities happened in engineered construction projects? 

How do they address the quality-related issues and prevent the negative effects if they 

do not know the relationship between quality-related activities and the quality defects? 

A quantitative method is needed to track and trace the construction activities in an 

effective and efficient manner. This is not limited to the engineered construction; every 

segment of the construction industry can benefit from quantitative record and analysis 

of the quality-related activities. It not only produces an overwhelming amount of data 

to validate the raw construction processes, yet along the man hours associated with 

keeping the data captured organized and useable, it also tracks and traces the 

construction accountability when coupled with detail assignments. Further, the tracking 

and tracing method has become a vital tool for all participants, across all stages to gain 

greater control over construction quality, respond to higher demands and rebuild the 

confidence of the public. 

1.2 Problem description 

To achieve the construction quality goals, researcher have proposed a series of 

methods using the state-of-the-art electrical technologies to enhance the control and 

management of the construction processes. For example, the wearable devices, 

containing watches, insoles, helmets, etc., are introduced at the construction sites to 

capture the construction activities. However, these devices are always intrusive that 
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the normal construction activities are disrupted because the inconvenient and 

complex data collections. In addition, the workers who are wearing the devices feel 

their personal privacy are offended by the inspectors that do harm to the beliefs 

between construction employees and employers. On the other side, contractors 

install surveillance cameras around the construction sites to monitor the 

construction process in a visual and timely manner. However, the cameras are 

tremendously affected by the none-line-of-sight effects, which means that the 

ambient occlusions and illumination made a significant contribution to the 

performance of the monitoring. Moreover, privacy issues also rise as the personal 

identities are recorded by the cameras.  

Rather, by having a well-functioning traceability system in other industries, such as 

food and drug industries, stake holders can demonstrate their own compliance with 

regulations, and retrieve detailed production to identify the potential problems and 

take corresponding corrective actions. Increased traceability can thus increase the 

control level and management strategy by learning lessons from history. In addition, 

it provides the proof of product authenticity as well.  

Also, in the construction industry, every participant is eager to improve the 

traceability and transparency for a better building quality. It is therefore of interests 

to introduce the traceability concept to the conventional construction management 

and find a new way to monitor and improve the current construction process without 

privacy and intrusion issues. 
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1.3 Research aim and objectives 

Since the quality issue has become the bottleneck in current construction industry 

and the traceability system has revolutionize the quality management in many other 

industries, this research therefore aims to improve the construction quality by 

introducing and increasing its traceability by a non-intrusive means.  

The objectives of this research are three-folded as follows: 

 to propose a new data collection and select suitable techniques for a prototype 

to track, monitor and control most of the construction processes without 

privacy and intrusion issues. 

 to review the literature of inertial navigation and develop data models to 

analyze the collected data and generate associated quality variables for 

compliance with existing regulations. 

 to present a framework to combine the data collection and data models, build 

up a traceable quality model for tracing backwards and forwards, test and 

validate the prototype and models in practical applications.. 

1.4 Research questions 

In order to fulfill the above research aims and objectives, there are three important 

areas to study. At first, a feasible solution to replace the conventional construction 

tracking methods through wearable devices and surveillance cameras needs to be 

figured out. Such data collection with advanced techniques should not bring 

interruptions or offences into the normal construction activities and provide reliable 



8 

and timely information on the construction process at the same time. Secondly, 

mathematical models to simulate and retrieve the next and the past construction 

activities need to be established, the input of which is the collected data by an ideal 

tracking system and the output is the process variables that can be compared with 

existing regulations. Thirdly, an integrated framework that combines the data 

collection and data analysis requires to be built up to form a structural quality chain, 

which works like a traceability chain in other industries, providing a solid proof for 

stake holders to trace forward and backward in life-cycle quality management. 

These three areas of investigation are formulated into the following three research 

questions: 

 How to collect the construction activities/processes data through the advanced 

techniques without privacy and intrusion issues? 

 How to analyze certain construction activities and evaluate their quality to 

determine whether they are conformity with the construction regulations 

relying on the collected data? 

 How to combine the non-intrusive data collection and the smart data analysis 

model to automatically generate a traceable structure framework for quality 

evaluation and root cause analysis? 

1.5 Outline of the report 

This thesis is composed of 11 chapters. Each chapter is briefly described in the 

following paragraphs to guide the reader. 
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 Chapter 1 – the introduction chapter presents the background and problem 

description to the research area. The research aim and objectives, the research 

questions and the research outline are introduced subsequently.  

 Chapter 2 – the literature review chapter introduces the background and 

associated concepts to provide a foundation of the research, containing the 

development of quality management in the construction industry, the 

traceability implementations in other industries, and the traceability 

implications to the construction industry.  

 Chapter 3 – the methodology chapter describes the chosen research approaches 

for data collection, data analysis, and the principles for technique selection. 

This chapter ends with a discussion on the validation and reliability of these 

research approaches. 

 Chapter 4 – the data collection chapter represents the proposed new method for 

data collection, discusses its pros and cons, analyses its potential noises and 

proposes models for specific construction applications. 

 Chapter 5 – this chapter introduces the proposed data model following the order 

of data processing, data fusion, data segmentation and feature extraction. 

 Chapter 6 – the theoretical traceability chain chapter represents the 

establishment of the construction traceability chain, and the quantitative 

methods to trace forward and backward along the network. 

 Chapter 7 – the prototype chapter systematically introduces the smart 

construction tool gadget with respect to system framework, instruments and 

devises, and data visualization/ 

 Chapter 8 & 9 – the experiment chapters show the implementation of the 

developed prototype and proposed methods on the rebar connection task by an 
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adjustable wrench and the concrete consolidation tasks by an internal concrete 

vibrator.  

 Chapter 10 – the discussion chapter discusses the validity of the experiment 

results, the generalization and the limitations of this research. 

 Chapter 11 – the conclusion chapter presents the answers to the research 

questions, explains the contributions of this research, and suggests the future 

research recommendations.  
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CHAPTER 2 LITERATURE REVIEW 

This chapter presents the research background based on published papers on the 

subjects of 1) quality in the construction industry; 2) the traceability applications 

for quality in other industries; 3) and the requirements on traceability within the 

construction industry. It provides a systematic literature review of quality-relevant 

studies between 1911 and 2019, complemented with comments of the author. The 

author’s opinion result from his perception and understanding of the development 

of quality in both the construction industry and other manufacture sectors. 

In Section 2.1, the general view of quality in the construction industry is drawn 

along the development timeline, including inspection, quality control, quality 

assurance, total quality management, and modern automated quality technologies. 

Section 2.2 refers to the commercial applications of traceability in manufacture 

sectors for quality and safety control and assurance, especially in the food 

traceability and drug traceability. Section 2.3 is devoted to the rigid demand of 

traceability concept for quality management in the construction industry. The 

overall structure of this section is described in Figure 2-1. 
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Figure 2-1 Structure of literature review chapter 

2.1 Quality in the construction industry 

Quality is defined as the degree to which a set of inherent characteristics fulfills 

requirements, where the degree refers to a level to which a product or service 

satisfies, termed as excellent, good or poor quality; and the inherent characteristics 

are those features that are a part of the product and are responsible to achieve 

satisfaction; and the requirements represents the needs of customers, organizations 

and other interested parties, including regulatory bodies, community, and 

environment, as well as the expectations that may be stated, generally implied or 

obligatory (International Organization for Standardization 2015). Drawn upon from 
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the general definition, construction quality is defined as the conformity of building 

products to the customer requirements and public regulations, as documented by 

plans, specifications, contracts, and applicable code and standards (Harris and 

McCaffer 2013).  

With respect to process perspective, construction consists of constructing, altering, 

erecting, assembling, installing, repairing, and demolishing building, infrastructure, 

civil engineering, and other similar structures. The outputs of construction are large, 

heavy, durable, immobile, unique, complex and expensive, such as houses, 

departments, bridges, and roads. The inputs of construction are discontinuous, 

uncertain, and in various sizes and types. The locations and resources change over 

the stages of construction process. Till now, the construction is still labor-intensive 

with low productivity because of these characteristics and a number of construction 

projects suffer from overruns in cost and time (McKinsey Global Institute 2017). 

Therefore, to simplify and make the lessons from manufacturing feasible, quality 

in the construction industry can be defined as the attainment of acceptable levels of 

performance from construction activities, in terms that the quality of construction 

is achieved when the related activities meets or exceeds the requirements of the 

client and the desired specifications (Mishra 2017). Achieving excellent quality in 

the construction industry in the long run is not easy and has become an open 

challenge since the characteristics of construction are tough issues. Quality 

management therefore has been one of the vital project objectives from an early age.  
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Quality management is defined as the process of identifying and administering the 

activities need to achieve the quality objectives of an organization (Tang et al. 2005). 

It is composed of a series of management functions that determine the quality policy, 

objectives and responsibilities, and implement them by means such as quality 

planning, quality control, quality assurance, and quality improvement with the 

quality system (International Organization for Standardization 2015).  

 

Figure 2-2 Four stages of quality management 

In the development of quality management, there exist four stages: inspection, 

quality control, quality assurance, and total quality management (Tang et al. 2005). 

As shown in Figure 2-2, inspection and quality control (QC) operate through 

detection, which aim to identify problems that have occurred; meanwhile quality 

assurance (QA) and total quality management (TQM) work in prevention mode, 

which aim to reduce and avoid potential problems occurring. These approaches are 

reviewed in the following sections. 

2.1.1 Inspection 

The use of quality inspection to assure conformity to specific requirements dates 
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back to the Middle Ages. Craft guilds established standards to safeguard their 

reputation in ancient European, and royal courts published technical treatises (a 

unified set of architectural standards) for builders, architects, craftsmen and 

governments to building coherence and safe use (Guo 1998). Based on these 

standards, quality inspection is performed at three levels: self-inspection, internal-

inspection, and external-inspection. Self-inspection refers to each craftsman 

exclusively inspecting the quality of his own work; internal-inspection occurs when 

several craftsmen perform similar tasks of which a skilled foreman is in charge of 

inspecting; and external-inspection represents a third-part, such as communities and 

governments, performing inspections. 

Although the early years of low-volume manufacturing and construction, manual 

inspection of products and projects and arbitrary review of worker output sufficed. 

However, as organizations and production yields became larger and more 

complicated, the need for better quality and less manpower through more effective 

and efficient operations became evident. 

2.1.2 Quality control and quality assurance 

In the beginning of 20th century, the concept of quality management took a huge 

leap forward with the advent of statistics (Taylor 1911). Quality control has been 

formalized as a distinct function conducted by inspectors who are not directly 

involved in the production process. After ten years, quality control has been 

developed to be proactive rather than strictly relying on measurements and 



16 

inspections of the final product (Shewhart and Deming 1986, Shewhart 1931). To 

enhance the role and involvement of management for high quality, Plan-Do-Study-

Act (PDSA) cycle was proposed and became a popular methodology for pretesting 

and perfecting before implementation. From a customer viewpoint, the quality 

trilogy (quality planning, control and improvement,) was established and served as 

the important quality initiatives (Juran and Godfrey 1999). Taking the cost of 

corrective actions into consideration, quality assurance was then derived from 

quality control that more quality actions were performed earlier in the product 

process. Although these terms “quality assurance” and “quality control” are often 

used interchangeably, it is remarkable to compare these approaches to ensure the 

quality of a product or service since the costs of them are distinctly different in the 

construction industry. 

As Table 2-1 lists, QA is defined as a part of quality management focused on 

providing confidence that quality requirements will be fulfilled; meanwhile QC is 

defined as a part of quality management focused on fulfilling quality requirements 

(International Organization for Standardization 2015). In short, QA is a strategy for 

prevention that demonstrates on planning, documenting, and agreeing on a set of 

necessary guidelines; and QC is a strategy for detection that demonstrates on 

determining the level of conformance to desired quality. 

In the 1970s, the automobile and electronic products of Japanese industry 

popularized around the world that quality movement was established for higher 
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quality with lower costs. Taking note of Japanese success, the quality management 

has grown and expanded through a milestone named total quality management. 

Table 2-1 The differences between quality assurance and quality control 

 Quality assurance Quality control 

Focus 

QA aims to prevent defects with 

focus on the product process. It is a 

proactive process 

QC aims to identify and correct 

defects with focus on the final 

product. It is a reactive process 

Goal 

The goal of QA is to improve the 

development process to avoid the 

appearance of defects when the 

product is being developed 

The goal of QC is to identify the 

defects to improve the final product 

after the product is developed 

Orientation QA is process oriented QC is product oriented. 

Example Verification Validation and testing 

Activity 
Periodic performance audits and 

continuous monitoring of the process 

Conformity with regulations and 

requirements 

Responsibility Everyone involved in production Testers and inspectors 

2.1.3 Total quality management 

Total quality management (TQM) refers to a management process directed at 

establishing organized and continuous process improvement activities, involving 

everyone in the organization in a totally integrated effort towards improving 

performance at every level (Aly, Maytubby, and Elshennawy 1990). The definition 

is based on the belief that an organization can build a long-term success by having 

all member focus on improving quality.  

To achieve the long-term success in quality, a series of pathways have to be 
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accomplished to instill a discipline of quality into the culture of organization and 

the development of production (Kanji 1990). These principles and actions are listed 

in Table 2-2. 

Table 2-2 Principles and actions for the development of the total quality management 

Principles Actions 

Approach Management-led 

Scope Company wide 

Scale Everyone is responsible for quality 

Philosophy Zero detection 

Standard Right first time 

Control Cost of quality 

Theme Continuous improvement 

To apply the systematic concept to practical projects, awareness of the additional 

benefits and costs of these quality development programs in the design and 

construction of engineered projects are needed. 

2.1.4 Cost of quality 

Cost of quality (CoQ) is usually understood as the sum of conformance and non-

conformance costs, where the cost of conformance is the price paid for prevention 

of poor quality (for example, inspection and quality appraisal), and cost of non-

conformance is the cost of poor quality caused by product and service failure (for 

example, rework and returns) (Schiffauerova and Thomson 2006). There exist a 
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number of CoQ models and the widely acceptable categorization of CoQ contains 

prevention, appraisal and failure costs. Prevention costs are associated with actions 

taken to ensure the desired quality; appraisal costs are related to measuring the level 

of quality attained by the process; and failure costs are incurred to correct quality 

in product and services prior to delivering to consumers (Armand V. Feigenbaum 

2004). The basic suppositions of these models are that investment in prevention and 

appraisal activities will reduce failure costs, and that further investment in 

prevention activities will reduce appraisal costs (Porter and Rayner 1992). Because 

the cost variables are negatively correlated, the objective of stake holders therefore 

is to find the minimum value of the total CoQ. From this traditional view, an 

optimum CoQ locates at a certain quality level where the increasing cost of 

prevention and appraisal exceeds the decreasing cost of failure, in terms that the 

costs of prevention plus appraisal outweighs the benefits of them in spite of 

increasing or decreasing the level of quality. However, the concept has been 

challenged from the modern view of CoQ. It is clarified that the optimum quality 

level equals or approximates to zero defects (Plunkett and Dale 1988). These views 

can be reconciled that the classic model works in time-constrained condition whilst 

the modern model prevails under infinite time horizon (Schiffauerova and Thomson 

2006). 

Since the time of a construction project is extremely long and the contractor usually 

earn profits that are unappreciated in conventional contracts, such as a reduction of 

expenses associated with inventory, rework, scraps and warranty (Jang and 
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Skibniewski 2009a). Besides, owners are likely to pay an extra premium, and 

government may hand out awards for high-quality buildings. With respect to 

modern model, these motivations have driven quality management to be one of the 

most competitive attributes in the construction industry (Crosby 1983). Since the 

goal of construction quality is zero defects, various state-of-the-art technologies are 

utilized to enhance the quality management over different periods. 

2.1.5 Technologies for construction quality 

To support quality decision-making process, advanced technologies for timely 

detection of construction discrepancies are becoming more and more significant. 

The associated technologies are categorized into detection, monitoring systems and 

management-enhancing tools by purpose. Defect identification is the crucial 

procedure for quality control; process monitoring is the approach for quality 

assurance; and management-enhancing technologies provide great help in quality 

decision making. 

2.1.5.1 Technologies for defect identification 

To achieve an objective and quantitative identification of construction defects, 

automated detection technologies are adopted and becoming a tireless inspector for 

building products. With the advent of low-cost and tiny sensors and artificial 

intelligence (AI), as listed in Table 2-3, more and more cutting-edge technologies 

are introduced for defect identification anytime and anywhere.  
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Table 2-3 Advanced technologies for construction defect identification 

Technology Defect identification References 

Computer vision (CV) 

Cracks, joint 

displacement, holes, 

erosion,  

(Moselhi and Shehab-Eldeen 1999, Zhu 

and Brilakis 2008, Koch et al. 2015) 

Laser scan Geometrical deviations (Yue et al. 2006) 

Light detection and 

ranging (LiDAR) 

Reinforcement corrosion, 

surface erosions, 

structural damages 

(Wang et al. 2015, Li and Liu 2019, 

Chen, Chung, and Park 2013) 

Piezoelectric sensing 

(PZT) 
Cracks, corrosion 

(Zhao et al. 2007, Tua, Quek, and Wang 

2004, Chen, Chung, and Park 2013) 

Ultrasonic/ultrasound + 

Frequency tomography 

Wood and concrete 

defects 

(Wenyong et al. 2006, Van Leeuwen, 

Nahant, and Paez 2011) 

Pulse phase 

thermography 
Honeycombing (Van Leeuwen, Nahant, and Paez 2011) 

Acoustic laser/emission 
Concrete defects, brick 

masonry defects 
(Yu et al. 2016, Labres et al. 2018) 

Ground penetrating radar 

(GPR) 

Tunnel defects, road 

surface defects, leakage 

(Zhang, Xie, and Huang 2010, 

Saarenketo and Scullion 2000, Lai, 

Kind, and Wiggenhauser 2011, Hunaidi 

and Giamou 1998) 

Impact echo 
Concrete and masonry 

defects 

(Sansalone and Streett 1997, Sansalone 

and Carino 1988, Pratt and Sansalone 

1992) 

Infrared thermography 
Concrete spalling, render 

lamination 

(Titman 2001, Taylor, Counsell, and 

Gill 2014) 

Sub-terahertz imaging Block defects (Oyama et al. 2009) 

Interferometric synthetic-

aperture radar (InSAR) 
Building deformations (Pieraccini et al. 2002) 

X-Ray 
Welding defects, 

moisture 

(Zhang, Xu, and Ge 2004, Pease, 

Scheffler, and Janssen 2012) 
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2.1.5.2 Technologies for process monitoring 

On-time feedback is critical for quality management in the construction industry 

that if any construction defects or discrepancies are determined, taking corrective 

actions in a timely manner not only mitigates the negative impacts on quality, but 

also save time and cost of rework (Omar and Nehdi 2016). A huge body of 

researchers, therefore, conducted research and proposed diverse automated 

approaches to process monitoring, and the related technologies were summarized 

in Table 2-4. It can be seen that given a demand of a certain level of data accuracy, 

sampling frequency, and budget, there is an abundance of technologies available to 

collect data from the on-site work flow; while, it is still worth treating the privacy 

and intrusion issues. 
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Table 2-4 Advanced technologies for on-site process monitoring 

Technology Data Objectives References 

Global 

positioning 

system (GPS) 

Location 
Materials, 

equipment 

(Pradhananga and Teizer 2013, Li et al. 

2005, Caldas, Torrent, and Haas 2006) 

Radio frequency 

identification 

(RFID) 

Location, 

identification 

Materials, 

manpower, 

vehicles, 

machinery 

(Song et al. 2005, Razavi and Moselhi 

2012, Lu et al. 2007, Lu, Huang, and Li 

2011) 

Ultra wide band 

(UWB) 
Location, pose 

Materials, 

crane 

(Zhang, Hammad, and Rodriguez 2011, 

Shahi et al. 2012, Cheng et al. 2011) 

Ultra high 

frequency (UHF) 

Location, 

identification 

On-site staffs, 

materials, 

machines 

(Yang et al. 2012, Tarng and Perng 

1997, Hubbard et al. 2015) 

Bluetooth low 

energy (BLE) 

Noise, location, 

connection 

Manpower, 

environment, 

harness 

(Park, Kim, and Cho 2016, Hughes, 

Yan, and Soga 2015, Gomez-de-Gabriel 

et al. 2019) 

Computer vision 

(CV) 

Location, 

geometry, 

identification, 

pose 

Manpower, 

vehicles, 

building 

elements, 

equipment 

(Son, Kim, and Choi 2010, Seo et al. 

2015, Park, Koch, and Brilakis 2011, 

Liu, Eybpoosh, and Akinci 2012, Li and 

Lee 2011, Ibrahim et al. 2009, Azar 

2015) 

Laser scan Geometry, pose 

Building 

elements, 

manpower 

(Su, Hashash, and Liu 2006, Gordon et 

al. 2003, Cheok et al. 2001, Bosche, 

Haas, and Akinci 2009) 

Ultra sound Location Materials,  
(Jang and Skibniewski 2009b, Jang and 

Skibniewski 2008) 

Infrared 

thermography 
Temperature Asphalt (Cho et al. 2011) 

Wearable 

devices 

Temperature, 

physiological 

indicators, 

EEG, EMG 

Manpower 

(Wang et al. 2017, Jebelli, Hwang, and 

Lee 2017, Guo et al. 2017, Cheng et al. 

2012, Awolusi, Marks, and Hallowell 

2018, Aryal, Ghahramani, and Becerik-

Gerber 2017) 
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2.1.5.3 Overview of methods for quality data acquisition 

The mentioned technologies have proven their ability to identify defects and 

monitor process for construction quality. In short, the technologies for defect 

identification and quality control are divided into destructive and non-destructive 

methods. Non-destructive methods are generally vision-based while destructive 

methods are sensor-based as the sensing gadgets have to be attached on the body of 

men, machines or materials (3M), or embedded in building blocks. With a dynamic 

respect to quality management, the entire construction process is likely to be 

recorded to obtain a whole picture of the building project. The technologies 

therefore have the capability of quick response, low-cost, easy-handling and 

continuous data acquisition. Table 2-5 summarizes the existing vision-based and 

sensor-based technologies to capture the on-site quality activities. 

Table 2-5 Summary of methods for construction quality data acquisition 

Method Advantages Limitations 

Vision-

based 

methods 

 Direct visualization 

 Easy interpretation 

 Wealth information 

 Multi-task 

 Subjective and labor consuming 

 Complicated algorithms 

 Qualitative results 

 Time consuming and time delay 

 Tag/anchor required 

Sensor-

based 

methods 

 Real-time response 

 Portable and wireless 

 Low cost 

 High accuracy 

 Intrusion 

 Destruction 

 Complicated data processing 

 Single task 

 Charge required 
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However, recent survey in practical projects reveals that although most of 

respondents are using advanced technologies for quality management, a number of 

on-site staffs present positive attitudes against the tracking technologies (Schiff et 

al. 2009). Since the vision-based methods and sensor-based methods are capable of 

identify ones’ identity through face recognition and personal unique characteristics, 

employees feel offended that their privacy has been invaded. 

In short, although the effective and efficient quality management tools have brought 

significant improvement in manufacturing industry, in the construction industry, 

the quality principles, actions and technologies raise the issue of defining the real 

quality need and determining if it has been met, as well as the privacy concern that 

the normal construction activities are intruded, the harmony employee-employer 

relationship is broken, and positive workplace culture is negatively affected. 

2.2 From quality to traceability  

During the past decades, the concept of traceability is formalized and applied to 

achieve the quality goal. A proven track and trace framework is now essential in all 

industries that it has been considered as a new era of production and distribution 

compliance. Today, a full end-to-end traceability means creating the physical and 

operational conditions necessary for enforcing quality assurance and quality control, 

in terms that using available technology to seamlessly integrate traceable data, yield 

an error proof, and ensure the error can be effortless accessed and take proactive 

actions in real-time. 
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2.2.1 Definitions and framework of traceability 

Traceability literately refers to the ability to trace all processes from procurement 

of raw materials to production, consumption and disposal to clarify when and where 

the products was produced by whom. The ISO has defined traceability as the ability 

to trace the history, application, use and location of an item or its characteristics 

through recorded identification data (International Organization for 

Standardization 2015). As Figure 2-3 describes, traceability enables access to 

relevant product data so that analysis and decisions are conducted in an effective 

and transparent way where the sharing, use, and reuse of the traceability data 

enhance the entire industry security and quality. 

 

Figure 2-3 Four stages of quality management 

The general framework for the development of a traceability system contains 

identification, data capture and data sharing, in terms that these needs are required 

to be addressed: 

 Unique identification of products, locations, and associated 3M 

 Labelling products with a certain singularity (class-, batch-, or instance-level) 

 Capturing and recording traceability data 

 Enabling access to the data 
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The traceability data includes information that spans five important dimensions: 

who, what, where, when and why, and provide valuable contexts to various 

applications. 

 Who are involved? 

 What are the primary and related objects to be recorded? 

 Where did the event take place? 

 When did the movements or events occur? 

 Why did the movements or events occur at a specific time and a specific place? 

2.2.2 Traceability in industry sectors 

The developments and the state-of-the-art applications of track and trace systems 

in diverse industries are listed below: 

2.2.2.1 Food traceability 

Quality issues in food industry contain conscious food fraud and inadvertent 

contamination in spite of the existing high standards of hygiene and measures for 

quality. Food traceability is believed as a safety solution to enhance the capability 

of addressing the quality breaks and recalling problematic food products (Creydt 

and Fischer 2019). The terminology of traceability has appeared recently but the 

idea was already used for a long time since the mad cow crisis in 1996. It is defined 

as the ability to discern, identify and follow the movement of a food or substance 

intended to be or expected to be incorporated into a food, through all stages of 

production, processing and distribution. It adds value to the overall quality 
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management system in six significant aspects. 

 Product traceability – which locates the physical position of a food at any 

stage in the supply chain to facilitate the dissemination of information to 

customers, regulators and production stake holders. 

 Process traceability – which ascertains the type and sequence of activities that 

have impacts on the food quality during the growing, harvest, producing and 

distributing operations. 

 Genetic traceability – which determines the genetic constitute of the food, 

particularly for the genetically modified organisms and materials. 

 Inputs traceability – which determines the chemical inputs of the food, 

including fertilizer, chemical sprays, feed, additives, and the presence of the 

other chemicals used for the preservation or transformation. 

 Disease and pest traceability – which determines the epidemiology of pest, 

and the biotic hazards such as bacteria, viruses and other emerging pathogens 

that may contaminate food. 

 Measurement traceability – which combines the individual measurement 

results through an unbroken chain of calibrations to the reference standards of 

acceptance.  

In implementing the traceability in the routine quality management system, the 

above six aspects have to be addressed to generate sufficient data for the reliable 

evaluation and take corrective actions for the food quality concerns. The strength 

of food traceability lies in preventing the incidence of food safety hazards, and 

reducing the enormity and impact of such incidents by facilitating the identification 
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of unacceptable products and batches, specifying what occurred, when and where 

it occurred. 

Above all, food traceability has been an important requirement in food law around 

the world, which obliges the business to be able to identify at least the immediate 

supplier and the immediate subsequent recipient, and achieve a high-level food 

quality and safety. 

2.2.2.2 Drug traceability 

Drug traceability, also named pharmaceutical traceability, is defined as the process 

that enables one to see the movement of prescription drugs or medical devices 

across the supply chain, trace backwards to identify the history of the transfers and 

locations of a product from the point of manufacture onwards, and track forwards 

to predict the intended route of the product towards the point of care. The 

introduction of traceability concept into the drug industry not only captures benefits 

to improve patient safety and drug quality, it also enhances the ability to rapidly 

identify and isolate issues, reduce supply disruptions, and lead to an effective recall 

process. In practice, four types of events are captured and recorded when 

monitoring the movements and whereabouts of products are: 

 When products are impacted? 

 When did this time-stamped event occur? 

 Where is the product at a specific time? 

 Which process steps are related to the observation? 
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To answer the above questions, serialization, track and trace, and verification are 

the three underpinnings to achieve drug traceability, 

 Serialization – which assigns a unique identity on a product at a certain level 

of granularity (item, batch, case or pallet level), indicating what events occur 

when drugs are produced, distributed and dispensed. 

 Track and trace – which captures the information from a forward view to show 

where is a product right now and from a historical view to present where has a 

product been. With the track and trace framework, one can understand the 

changes of ownership of a drug product and go back in time to a certain point 

even if the product has not change hands. 

 Verification – which verifies the information, such as ownership and movement 

by serial number and transaction history, about the products at one or more 

places in the supply chain. 

In short, drug traceability has brought both a challenge and an opportunity. 

Although the industry may be overwhelmed with the legislation, the end-to-end 

implementation of serialization and track-and-trace solutions, and the smart use of 

the rich data, provide unparalleled changes to improve control over supply chain, 

increase quality, safety, transparency, and reliability, as well as boost consumer 

confidence and brand image. 

Traceability has become a critical requirement for today’s industrial business to 

reduce risks and stay competitive. Apart from high regulated industries, such as 

food and drug industries, traceability is also a vital tool for all manufacturers, across 
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all domains, containing aerospace, automation, and instrument industries. It 

provides a centralized repository and process framework to collect and store all 

necessary product genealogy and traceability data from both internal and external 

systems and chain partners. General manufacturers can benefit from faster 

identification, isolation and containment of potential product defects across the 

production network, and ensure consistently higher product quality through lean 

data governance and standardization of key product and process data.  

2.2.3 Technologies for traceability 

Modern industry is becoming knowledge-intensive and information-driven. 

Technology innovations are introduced to facilitate the manufacturers to meet the 

higher regulations and consumer demands. In general, the technologies consist of 

identification technology, advanced measurements, and computer information 

programs. 

 Product identification technology – which attaches a tag with identity to the 

basic raw products in order to consistently track the locations. The identity is 

composed of a series of numbers and alphabets, which codifies specific 

information, such as date and resources. The forms of the carrier are various, 

containing Ear-Tag (used in the livestock industry), Bar-Code, QR-Code, 

DataMatrix, RFID tags for the agriculture, seafood, and pharmaceutical 

industry. Advancements in material science have greatly led the development 

of electrical tags that are resistant to tear and wear, and which can withstand 

harsh environmental conditions, with chips and handheld scanners for reading, 
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storing and transmitting traceability information. 

 Quality measurement technology – which measures and analyses the quality 

attributes and relevant status of products by specific instruments and 

procedures. The specifications include physical properties, such as size, mass, 

dimensions, color and flavor; mechanical properties, such as hardness and 

density; and chemical properties, such as acidity, etc. 

 Information technology – which is an integration of algorithms, programs, a 

central control system that links the traceability information with a local or 

cloud database at the company, national, and international level. At present, 

the blockchain technology is receiving increased attention as a popular one of 

distributed ledger technologies. Blockchain allows information transactions 

to be performed independently without a central entity. The basis is a digital 

logbook, named “block”, which records a timestamp and an indication of 

previous block, thus the blocks are linked together and secured against 

manipulations. First attempts have been made to present the strength of 

blockchain that it is possible to trace along the entire supply chain within a 

few seconds.  

By enforcing the use of the advanced technologies to tighten up and standardize the 

production and distribution, managers and supervisors can determine the 

authenticity, identity and whereabouts of a particular defect anytime and anywhere.  

2.3 Requirements on traceability within the construction 

industry 

Present construction projects are time- and labor-consuming that the construction 
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industry is still labor-intensive with fluctuating productivity rather than a significant 

improvement in the manufacturing industry. Novel and cutting-edge concept and 

technologies have not been introduced to this conventional domain due to the 

following natures of the construction industry: 

 Uniqueness – construction projects are commonly unique, and the construction 

process and building product is single-order and single-production. 

 Dynamics – construction sites are changing all the time because new physical 

spaces are built along the construction process, while the factory or plant for 

general production is fixed and ordered. 

 Numerous participants – owners, designers, engineers, contractors, 

subcontractors, material suppliers, inspectors, consultants, governments, 

communities, etc. are involved, the network of cooperation and the vision of 

responsibilities are neither simple nor clear. 

 Long life-cycle and enormous expense – construction projects always last for 

a long time and overrun a huge budget (see Figure 2-4). 

Because of the above natures, quality management concepts and frameworks from 

manufacturing have not been widely adopted as an effective and efficient tool to 

ensure the quality in the construction industry, such as traceability concept and 

industry 4.0. Therefore, construction defects issue a number of open challenges for 

quality management. 
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Figure 2-4 Life-cycle of a building project 

2.3.1 Investigation of construction defects 

A defect is generally understood as unnecessary rework that is required to be 

conducted more than once because the process was incorrectly implemented the 

first time, that is to say, construction defects are physical phenomena that need to 

be corrected, and the correcting process is unnecessary rework. In this study, the 

terms such as defect, fault, failure, and error are used interchangeably to describe 

building imperfections. 

Based on severity, construction defects can be categorized into technical, aesthetic, 

and functional classes (Georgiou, Love, and Smith 1999). Technical defects 

indicate a loss of structural capacity, such as a loose connection of reinforcement 

bars; aesthetic defects refer to an unexpected appearance of building components, 
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for example, a honeycomb surface of concrete panels; and functional defects 

indicate a failure to function or work as intended.  

Researchers investigated on the causes of three defects and summarized the 

following roots: 

⚫ unreasonable designs – include inappropriate specifications of the materials, 

layout, and integration between them. 

⚫ poor workmanship – includes poor installation methods, poor handling of 

materials and poor planning 

⚫ unqualified materials – refer to the materials that do not perform up to their 

required standards.  

⚫ improper maintenance – represents the irregular or nonexistence of 

maintenance at the occupancy stage. 

The failure mechanism of construction defects is complicated since any defect can 

have more than one root or cause. In addition, the defects can be found in any 

building elements. It is therefore a tedious task for inspectors to identify these 

defects and their causes for such a large product like a construction project. 

To prevent future defects, the preliminary causal model of construction defects was 

proposed based on the Swiss cheese model for safety accidents in which the 

hierarchy structures were similar but the factors were replaced. This model 

illustrates the consensus that the correction or elimination of root causes or causal 

paths should prevent quality defects from occurring, although a vague 

understanding of the mechanics and their complex correlations between causal 
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factors has limited the value of a root causal analysis. 

2.3.2 The need for traceability data 

To address the construction defects, monitoring on-site activities and operations of 

manpower, machinery and material is important, because it enables the construction 

process to be controlled with a high-resolution visibility. Timely reports on shifts 

and workers involved in the defective building product and process can be captured 

before the product is covered by the following materials. Traceability data therefore 

provides a solid chain of custody for tracking and tracing the on-site construction 

activities. 

Traceability data is the integration of the concerning information, which creates a 

hierarchy network like a family tree, illustrating the parent-child relationship of 

each movement or operation of an individual worker or shift. This genealogy with 

related information – movements, operations, identities building component details 

and on-site environment, etc. – guides documentation both backwards and forwards 

(upstream and downstream) from any item in question to its ultimate source or 

disposition. 

Each time a traceability relevant task is executed on a construction sites, traceability 

data is generated that spans five dimensions as mentioned in the previous section. 

 It is valuable to distinguish the person who involved in the creating, handling, 

operating of the objects moving on the construction sites, providing a clear 

vision of responsibility. 
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 Uniquely identifying objects or procedures that move and flow over time is 

critical, such as displacement, velocity, angular velocity, rotation, etc. Also, 

they may include other physical, kinematic, and physiological indicators and 

documents. 

 Accurate identified locations are critical to understanding the construction 

tasks that individual workers are assigned, executed, and accepted across stages. 

The area-restricted nature of construction projects makes the traceability data 

a validation between as-built and as-plan models. 

 The date, time and timestamp when a specific event occurs can draw a timeline 

of a building component’s life-cycle. 

 With a respect to systematic thinking, traceability data provides the 

construction context around the events that have occurred. Based on data 

analysis or data mining techniques, reversible and irreversible damages are 

identified so that corrective actions and eliminations are determined prior to 

passing to the next procedure or customer. 

2.3.3 The need for traceability analysis 

Given traceability data for the purpose of construction quality, traceability system 

needs to support a multitude of relevant applications, from regulations to 

sustainability, productivity, consumer trust, health and safety, and multiple cases, 

from foundation to structure, walls, beams, columns, slabs, etc. 

The legislative requirements of construction projects contain regulations on 

geometrical indicators and process parameter as below: 

 Geometrical indicators are generated from the comparison between as-built and 
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as-plan models, particularly from the geometrical shape deviations (polygonal, 

rectangular, circular, etc.). As a typical method of quality control, the geometry 

control need to be accounted from conceptual design throughout the production 

and final installation and erection (Zhang et al. 2011, Schwabe, König, and 

Teizer 2016).  

 Process parameters refer to the variables under control across the construction 

stages. Process control is to continuously inspect the project progress, assess 

the project health, and make recommendations in response to anticipated 

construction defects, which assure the quality of final products from a process-

oriented perspective (Srewil and Scherer 2013). 

To couple the virtual models (such as BIM) and physical construction for the 

regulation compliance, it is obvious to mine and analysis the traceability data to 

obtain the control variables of geometry and process.  

2.4 Summary 

This chapter reviews the literature about the quality in construction industry and 

presents a systematic view of the development of traceability framework in other 

industries. The main findings are summarized as follows: 

 There have been marked evolutions for the quality management in the 

construction industry along with the development of it in general industries. In 

addition, with the advances in sensor-based and vision-based technologies, the 

ability to identify the product defects and monitor the construction processes 

has become easier, more convenient and more automated to implement. 
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 Although sensor-based and vision-vision based destructive and non-destructive 

methods have proven their capability of defect identification and process 

monitoring, there are severe limitations on using them in construction projects, 

such as intrusion and privacy issues. 

 An end-to-end traceability system has been considered as a novel era of 

production and distribution and a necessary tool for quality and safety 

management in diver manufacturing sectors. The traceability data consisting of 

who, what, where, when and why provide valuable contexts to various 

applications. 

 The investigation of construction defects shows the open challenge of the 

vague understanding of the failure mechanism due to various and correlated 

factors. Traceability data and traceability analysis provides a high-resolution 

visibility to enhance quality in the construction industry. 

 



40 

CHAPTER 3 METHODOLOGY 

In this chapter, the research strategy is scientifically motivated and the research 

methodological approach is represented here in three parts: 1) methods of data 

collection; 2) methods of data analysis; 3) evaluation and justification of 

methodological choices. 

 

Figure 3-1 Structure of methodology chapter 

The beginning Section 3.1 introduces the methodological approach for this study 

from a systematical view, followed by detail introduction of specific methods. 

Section 3.2 presents the data collection methods, containing literature review, lab- 

and site-based experiments. Section 3.3 then describes the data processing and 

analyzing methods for the collected data. To test the concept of the proposed 

traceability concept, Section 3.4 shows the prototyping research method and the 
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technique selection criteria at the construction sites, particularly for the wireless 

communication and sensing techniques. The overall structure of this section is 

shown in Figure 3-1. 

3.1 Methodological approach 

The purpose of this thesis is to create a traceability system to track and trace the 

quality-related construction activities in an efficient and effective way, and to 

quantitatively identify the quality issues and prevent the negative impacts for the 

decision making process of the on-site quality management. To address the 

practical problem of construction quality, quantitative methods are adopted in this 

study and enable the authors to measure, categorize, identify activity patterns and 

make generalizations. 

Since the data collection and analysis proposed is not a standard methodology for 

construction quality management, these methods are evaluated and justified by 

classic representative samples. The valid research is designed carefully in which 

the variables are controlled and records are accessible that can be replicated by other 

researchers, so that knowledge and prototype about the traceability concept and 

system for construction quality can be generalized to other fields. The systematic 

view explains the justification and connection between the research objectives and 

research method is show in Figure 3-2. 
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Figure 3-2 The research process of this study 

3.2 Data collection methods 

Multiple sources of data are involved in this research, containing literature documents, 

lab-based and site-based experiment data. The experiment data is collected by sensors 
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and surveillance cameras that different sources of evidence are likely to increase the 

verification of this study. The literature review and two experiments are introduced in 

depth as follows: 

3.2.1 Literature review 

Literature review is initiated by searching the relevant background knowledge for 

a specific topic, including substantive findings, theoretical and methodological 

contributions. Most of the data come from academic journals and books, such as 

Automation in Construction and Advanced Engineering Informatics. The others are 

from construction quality and traceability standards of Hong Kong, U.K., U.S., 

Canada and China. 

To establish the background of this research, construction defect reports and news 

are collected from internet as the motivation of this research; relevant literatures are 

reviewed within the areas of quality in the construction industry, traceability 

applications in manufacturing sectors, and requirements of traceability for on-site 

quality. The key words consist of inspection, quality control, quality assurance, total 

quality management, food traceability, drug traceability and construction defects. 

3.2.2 Experimental methods 

Conducting experiments are the main method of inquiry in science. An experiment is 

an investigation in which a hypothesis or prototype is scientifically tested. 

Experimental methods are objective that the views and experience of the researchers 
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have no impacts on the test results, leading to more valid and less bias. In this research, 

two kinds of experiments are carried out, lab experiment and field experiment. 

3.2.2.1 Lab-based experiment 

A laboratory experiment is a test under the condition that relevant variables are highly 

controlled and accurate measurements are available. The lab experiment is taken place 

in the Smart Construction Laboratory in the Department of Building and Real Estate in 

The Hong Kong Polytechnic University.  

Three participants are assigned to drive a nut into a bolt and loosen them apart for ten 

times. They adjusted the wrench and checked it to make sure the jaw opened a bit more 

than the size of a nut or bolt, and hence slipped the open jaw over clockwise to tighten 

until the nut is tight, and then turned the wrench in an anti-clockwise direction to loosen 

the nut until it was easy to remove. 

3.2.2.2 Site-based experiment 

Site-based experiment is done at an actual construction site by employed workers 

where the environmental variables are nearly under control in real-life setting. The 

field experiment is conducted in the School of Civil Engineering in Harbin Institute 

of Technology. 

Three workers are required to consolidate the fresh and pouring concrete with an 

internal concrete vibrator, which forces the air bubbles within the concrete to raise 

into the open air to achieve even and quality. Concrete consolidation is not exactly 
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necessary for small building blocks but is essential for large and load-bearing 

structures. 

3.3 Data processing and analyzing methods 

Data processing and data analysis always start in parallel with the data collection in 

experiments. Data processing is to prepare the data before analyzing, containing 

checking for missing data, removing outliers, transforming variables, etc., in short, 

it is technically manipulated to produce useful information from the raw data. In 

this research, multiple process models are adopted, such as time series models, 

stochastic process models, etc.; machine learning and artificial intelligence 

algorithms are also used to generate and interpret an output.  

Table 3-1 Mathematical model types in this research 

Type Characteristics System identification 

White-box 
Physical governing laws with known 

parameters 

Linear and non-linear differential 

equations 

Grey-box 
Physical governing laws with partial 

known model structure and parameters 

Linear and non-linear differential 

equations, state-space models, transfer 

and observe functions or fuzzy models 

with parameter estimation 

Black-box 
Unknown model structure and 

parameters 

Artificial neural networks, support 

vector machines 

Data analysis refers to the process of discovering useful information from processed 

data for decision making process. As listed in Table 3-1, white-box (theoretical), 

black-box (experimental), and their combination grey-box models are used for both 
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data processing and analyzing processes. For example, white-box models are used 

for known pattern recognition and signal processing, like local variance; black-box 

models are apt to unknown pattern recognition; grey-box models are adopted for 

the root analysis of construction defects because the mechanism and relevant factors 

are partly known and unknown according to current knowledge or standards. 

3.4 Prototyping and technique selection 

For the purpose of testing and improving the proposed traceability system, rapid 

prototyping as a research method is accepted to prove the concept of traceability in 

the construction industry. Prototype is the creation of low-fidelity objects enables 

designation with minimum investment in time and the cost of failure. Through 

making a simple and low-cost prototype, the traceability system is applied and 

tested in lab and field experiments to accelerate the iterative development. 

Since the prototype is an integration of multiple techniques, a variety of advanced 

techniques are compared and selected, including wireless communication 

techniques, sensing techniques, etc.  

3.4.1 Wireless communication techniques 

Construction site is always crowd of building materials, such as concrete blocks, 

reinforcement bars and pipelines. These materials may have a series of considerable 

impacts on the information delivery by signals, such as reflection, transmission, 

absorption, diffraction and scatter. When a radio wave propagating in the 
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atmosphere impinges on a dielectric material (concrete block, glass slab, etc.), part 

of it is reflected back and part is transmitted through the material. The proportion 

is determined by dielectric properties of the materials and the angle of incidence of 

the radio wave to the material. 

As shown in Figure 3-3, for construction site, such a local and exposed environment, 

Wi-Fi, Near-Field Communication (NFC), Bluetooth, and RFID techniques are 

preferred because they are compatible with daily life electronic devices in which 

the cost and time for development is lower. In this research, BLE, as the new version 

of Bluetooth with less energy consumption, is used for wireless communication 

between sensors, terminals and the database cloud.  

 

Figure 3-3 The comparison of several wireless communication techniques 
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3.4.2 Sensing techniques 

Sensors are devices, modules or machines with the capability of detecting events or 

changes in their environments. With advances in micromachinery and easy-to-use 

microcontroller platforms, sensing techniques have expanded beyond the 

temperature, pressure, acceleration measurements and the sensitivity has been 

improved significantly. In addition, with the emergence of micro-electro-

mechanical system (MEMS), a central unit (micro-processor) and several 

components (micro-sensors) are integrated by wet etching, dry etching or electro 

discharge machining so that the gadget is quite small in size but big in abilities. In 

this study, accelerometers, gyroscopes, e-compasses, temperature sensors are 

combined at present, and more sensors will be involved in future, such as pressure, 

touch, proximity, humidity sensors. 

3.5 Discussion of the research methodology 

To evaluate the trustworthiness of this study, validation (triangulation), 

complementarity, discrepancy (initiation), development, and expansion are the 

most important criteria for mixed-method research (Lee and Smith 2012, Greene, 

Caracelli, and Graham 1989). Validation refers to seeking convergence, 

corroboration, and correspondence of results from different methods studying the 

same phenomenon; complementarity is to seek elaboration, enhancement, 

illustration, and clarification of results from one method with results from another 

method, in terms that complementarity measures overlapping or different aspects 
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of the same phenomenon; and discrepancy aims to discover paradox, contradiction, 

new perspectives of frameworks, and fresh insights that also reframes a research 

question by analyzing inconsistent results from different methods studying the same 

phenomenon; development refers to using results from one method to help develop 

or inform the other method; and expansion is to use different methods for different 

inquiry components in studying multiple phenomena. 

In the literature study, the web and library sources are used to gather the relevant 

journals and production standards. Since web sources generally need more caution 

than printed materials, they are thereby double checked to verify the reliability. 

The experiment ground truth is collected by vision-based methods using bullet 

cameras, and omnidirectional cameras, and thereby is quantitative and visible. This 

method is considered to be the most appropriate method to collect data at the 

construction sites because it can not only track the behaviors of an object, it also 

collects the context around the object. In addition, the visible data collection is 

irreversible that is treated as the ground truth for other data collections. There are 

however some risks related to the selected data collection methods. For instance, 

when recording an invisible construction task, such as concrete consolidation, the 

cameras will be seriously affected by the none-line-of-light effect, leading to risk 

of deficient data. At the same time, the workers under monitoring also may be 

reluctant to conduct their assignments since there is a risk that the employees may 

be feel they are not trusted by employers. These reasons may result in a loss of 
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confidence and unreliable information. 

3.6 Summary 

This chapter introduces the methodology for data collection and analysis, and 

discuss its pros and cons in this research. The main findings are summarized as 

follows: 

 Multiple methodological approaches are adopted to enhance the mixed-method 

research, including literature review, lab- and site-based experiments and 

mathematical models. 

 To test the feasibility of the proposed traceability concept, wireless 

communications and sensing techniques are carefully selected according to the 

nature of the construction sites. 

 As a reliable data collection, the visible records of construction activities by 

video cameras are considered as the ground truth in this research.  
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CHAPTER 4 IMU-BASED MOTION DATA 

COLLECTION OF CONSTRUCTION 

TOOLS 

As described in Chapter 2, there exist two general approaches to construction data 

acquisition at the present: vision- and sensor-based methods. They are effective as 

they record the workplace behavior of workers directly; meanwhile they both raise 

issues about privacy, information security and employee-employer trust. This 

research therefore proposes a novel concept that using IMU to track tools instead 

of tracking workers, providing an alternative to construction progress monitoring. 

This chapter thus presents the new data collection in three parts: 1) the data to 

collect; 2) how to collect the data; 3) the pros and cons of this data collection. 

The first Section 4.1 describes various construction tools from two perspectives: 

how to select right tools and how to use the tools right. The next Section 4.2 

proposes an original concept that tracking the construction tools rather than tracking 

the construction workers for construction monitoring, followed by Section 4.3 

discussing the pros and cons of the proposed approach. To address the error 

accumulation concerns, Section 4.4 analyzes the systematic and random errors by 

Allan variance techniques. Subsequently, sensor models for the accelerometer, 

gyroscope, and magnetometer are established in Section 4.5. The overall structure 
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of this section is shown in Figure 4-1. 

 

Figure 4-1 Structure of IMU-based data collection chapter 

4.1 Overview of construction tools 

It is believed that making and using complex tools is one of the intrinsic abilities 

(others include language, knowledge transfer, etc.) that set us human beings apart 

from other species in nature (Washburn 1960, Gibson, Gibson, and Ingold 1994). 

Construction is a typical labor-intensive industry in which a variety of construction 

assignments are accomplished manually, such as wood formwork, reinforcement 

bar placement, and pipeline installation. To improve the productivity as well as 

ensure safety, diverse tools have been developed and implemented at construction 
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sites, and with the advances of construction tools, a large proportion of the 

construction tasks are performed more quickly and accurately but with fewer 

manpower.  

The term tool generally represents the instruments that are used by hand, whilst the 

term equipment refers to a set of tools used for a single purpose. At the smaller scale 

where an individual construction worker is able to hold, there are some overlap 

between these terms: tools and light equipment. In this research, we focus on hand-

control tools because they perform as the bridge between human actions and 

building materials or blocks where the kinematics of tools reflect the direct 

manipulation on building components. 

Construction tools are classified as hand tools and power tools. Hand tools refer to 

non-powered tools, including a wide range of tools, such as hammers, screwdrivers, 

brushes, trowels, wrenches, knives, crimpers, clamps, and so on; power tools are 

powered by electricity, compressed air, gasoline, pressure from a liquid or an 

explosive, containing electric tools, pneumatic tools, liquid-fuel tools, powder-

actuated tools and hydraulic tools. Construction power tools contain mixers, saws, 

cutters, drills, grinders, guns, breakers, and so on. 

4.1.1 Use the right tools 

The major problem that causing injuries is using a wrong tool for a specific job or 

a tool that has not been properly maintained. It is therefore important for workers 

to select a proper size, function, accessories, and platform. By the trade 
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classification in the construction industry, the general tools for different technicians 

are summarized in Table 4-1 (Environment Transport and Works Bureau 2003). It 

can be seen that the general tools, such as hammers, spanners and trowels are widely 

used and multi-functional; meanwhile special tools, such as rebar tiers and concrete 

vibrators are only necessary for special trades. Since there exist a huge number of 

construction tools, it is important to pick the suitable tools for a particular job, 

otherwise there may be delays, or conduct the job with an inappropriate tool which 

may result in damages of the structures and injuries of the operator. The selection 

criteria contain the appropriateness for the job, quality, safety, weight, comfort, 

duration of use, available space for use, security, power and fuel requirements, the 

maintenance status, construction regulations and standards, and the potential to 

cause nuisance to surroundings, such as noise, dust, vibrations and so on. 

For example, hammers have many types that each type has its own strengths and 

weakness: claw hammer is a daily-life tool driving nails and pulling out nails if 

required; cross-pein hammer is to hammer small pins and shape metal; brass 

hammer is used for safety in dusty environment as it does not create sparks; 

mallet/soft-face hammer is used in decoration works like driving nails without 

marring the surface of the wood; sledgehammer is for demolition with the heaviest 

head and the longest handle; ball-pein hammer refer to hardening and flattening 

metal works; geological hammer is used to break off rock samples; and jewellery 

hammer is specially for striking chisels. 
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Table 4-1 General tools for different construction trades 

Job title Job description Tools 

Scaffolder 

To erect and dismantle bamboo, 

metal, and aluminum scaffolding 

required in construction, repair or 

decoration work 

Scaffold spanners, tape measures, pipe 

cutters, rebar nips, scaffolding levels, 

podger hammers, scaffold keys, safety 

lanyards, etc. 

Bar bender 

& steel 

fixer 

To cut, bend and fix reinforcement 

steel bars 

Bar bending tools and plates, rob benders, 

hand/automatic rebar tiers, etc. 

Bricklayer 

To lay bricks, concrete masonry units, 

and building blocks for construction 

and repair 

Pointing/brick/finishing/edging trowels, 

brick bolsters, lump/claw/brick hammer, 

spirit/laser levels, clod chisels, brick 

jointer, brick tongs, rubber mallet, etc. 

Carpenter 
To erect and strike timber formwork 

for building and construction works 

Standard/coping/tenon/rip/table/key-

hole/circular/miter saws, hacksaws, 

screwdrivers, tape measures, clay 

hammers, wood mallets, levels, pry bars, 

combi/power drills, clamps, bradawls, 

oscillating tools, nail pullers/guns, sliding 

bevels, wood chisels, bench 

vices/grinders, pad sanders, etc. 

Concreter 

To mix, place, and compact concrete 

using vibrating machines and to carry 

out curing, levelling and smoothening 

of concrete 

Shovels, digging spades, rubber 

gloves/boots, mixers, buckets, laser 

levels, floats, groove cutters and edgers, 

saws, plate compactors, internal vibrators, 

power hammers and drills, mixing 

paddles, etc. 

Demolition 

worker 

To demolish, dismantle, and remove 

buildings and structures 

Sledge hammers, crowbars, pliers, nail 

pullers, snips, hammers, demo forks, 

wonder bars, power drills, etc. 

Floor layer 
To lay timber, PVC, and linoleum to 

floors, stair threads, skirtings, etc. 

Rubber hammers, pull bars, tapping 

blocks, spacers, etc. 

Paving 

block layer 

To lay paving blocks on floor, 

compact the base layer with vibrating 

machines, and cut pave blocks to fit 

floor layout 

Block mallets, gap wedges, alignment 

bars, rubber hammers, vaccum slabs, 

paving cutters, etc. 
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Job title Job description Tools 

Leveller 
To read and interpret drawings and set 

up job lines and levels 

Spirit/optical/lase levels, tape measures, 

theodolites, nylon strings and lime 

powder, etc. 

Welder To carry out welding or cutting 

Welding clamps, magnets, electrodes, 

angle grinders, metal brushes, welding 

helmets, shoes, gloves, masks, ear plugs, 

etc. 

Plasterer 

To apply coats of plaster to and to 

render walls and ceilings to produce 

finished surfaces, and screed floors, 

staircases and roofs 

Pointing/window/corner/finishing 

trowels, hand-boards (hawks), tin snips, 

spirit levels, scrapers, artex texture 

brushes, plaster floats, taping knives, 

drywall/hack saws, claw hammers, 

mixing paddles, etc. 

Plumber/ 

Pipelayer 

To assemble, install, repair and 

maintain pipes, fittings, sanitary 

fixtures, cold, hot and flush water 

systems, and soil, waste and rain-

water drainages systems 

To lay water mains, make pressurized 

joints by mechanical means, install 

pipes and fittings, and surround pipes 

with concrete 

Pipe cutters, telescopic tube cutters, 

adjustable/radiator spanners, pipe 

wrenches, slip joint/long nosed pliers, 

pipe benders, hacksaws/jigsaws, pipe 

deburring tools, SDS/combi-drills, sabre 

saws, magnetic levels, stubby 

screwdrivers, angle grinders, etc. 

Tiler 

To cut, shape and set tiles on walls, 

ceilings and floors to specified levels 

and patterns 

Tile cutters, sealant removers, grout 

rakes, drills, tile trowels, rubber grout 

floats, tile spacers, etc. 

Electrician 
To design, install, maintain and 

trouble shoot electrical wiring systems 

Insulated/crimping/side cutting/long 

nosed pliers, cable cutters, screwdrivers, 

trimming knives, voltage 

detectors/multimeters/circuit testers, 

combi drills, wire strippers, spanners, etc. 
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4.1.2 Use the tools right 

The other critical issue accounting for a large proportion of injuries in the 

construction industry is the improper use of hand and power tools, particularly, the 

cutting tools (knives, cutters, saws), digging tools (shovels), striking tools 

(hammers), surface tools (grinders and sanders), and boring tools (drills) are the 

leading sources of construction accident injuries by tools (Kendall Jones 2017). 

During the use of the construction tools, instructions for operation and standards 

for construction therefore should be followed all the time to achieve a safe, effective 

and efficient result. In addition, workers who use hand and power tools are exposed 

to the hazards of falling, flying, abrasive, and splashing objects, or to harmful dusts, 

fumes, mists, vapors, or gases must be provided with the appropriate personnel 

protective equipment. Basic rules for safety use contain: 

 Examine each tool for damage before use 

 Operate tools strictly according to the instructions and standards 

 Wear the right personal protective equipment 

For example, when use a hammer, one should: grip the hammer close to the end of 

its handle with dominant hand; place the nail at the right position and hold it near 

the bottom; watch the head of the nail all the time and swing the hammer loosely 

until the nail has sunk into the wood enough that it can stand on its own. It is 

suggested to use few, smooth, well-placed blows rather than pounding a nail with 

great force. 
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Similar to walking pattern in gait analysis, most of the construction tools performs 

a cyclic pattern when they are used at the construction sites, in terms that the use 

behavior of the construction tools is made up of a series of repetitive motions. 

According to the on-site observation and the construction standards, the corrective 

use of the following tools is likely to be spatial-temporally cyclic. As listed in Table 

4-2, when a construction tool is placed at the right position, its periodic rotation, 

translation or their combination repeats at regular time intervals. 

Table 4-2 Cyclic patterns in the use of general construction tools 

Cyclic pattern Tools 

Stillness 

Levels, automatic rebar tier, table/miter saws, 

Oscillating tools, nail guns, sliding bevels, bench vices, 

theodolites, pipe deburring tools, etc. 

2D rotation around the end of handle Hammers, Mallets, etc. 

2D rotation around pivot point (pin) Cutters, rebar nips, pliers, wire strippers, etc. 

2D rotation around the head of handle 
Spanners, scaffold keys, rob benders, pry bars (crow 

bars), nail pullers, shovels, etc. 

2D rotation around the shaft Hand rebar tiers, screwdrivers, mixing paddles,  

Translation along a vector 

Brick bolsters, clod chisels, brick jointers, 

tenon/rip/coping/drywall saws, hacksaws, tape 

measures, drills, concrete edgers, internal vibrator, 

knives, ground rake, etc. 

Translation in a plane 
Grinders, sanders, concrete float, plate compactors, 

vacuum slabs, metal brushes, etc. 

Rotation and translation Trowels, brick tongs, circular saws, etc. 

To gain a deep insight into the use of the construction tool and the construction 

process, this research proposes a novel approach to record the kinematics of the 
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construction tools by inertial measurement unit (IMU). 

4.2 Using IMU to track tools instead of workers 

Inertial measurement unit (IMU) is a device for measuring the inertial properties of 

objects. With the emergence and development of MEMS systems, the sensor has 

decreased in size, whereas the accuracy, robustness, and quick response have 

improved dramatically (Benoussaad et al. 2016, Seel, Raisch, and Schauer 2014). 

Nowadays, an IMU is made of a tri-axis gyroscope, a tri-axis accelerometer, a tri-

axis magnetometer, along with a thermometer, enabling the measurement of 

angular velocity, acceleration, the magnetic field, and temperature. MEMS 

gyroscope measures the angular rate through detecting the Coriolis force on the 

vibrating silicon rings embedded in the sensor; MEMS variable capacitive (VC) 

and piezoresistive (PR) accelerometer measures the acceleration by recording the 

changes of gap capacitor and resistance when the micro-machined proof mass 

moves; MEMS magnetic field sensor operates by detecting the effects of the 

Lorentz force on voltage or resonant frequency to measure the magnetic fields; and 

thermometer measures the temperature via detecting the actuating voltage 

generated by the effect of electron tunneling.  

Figure 4-2 describes the schematic diagram for data collection, including direct 

measurements of acceleration, angular velocity, magnetic field, and temperature, 

and indirect measurements of velocity, orientation by integral calculation, angular 
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acceleration by differentiating calculation, and displacement by dual integrals.  

 

Figure 4-2 Block diagram of IMU for data collection 

Since the construction hand tools are directly held or manipulated by hands, it is 

possible to evaluate the workloads according to the Newtonian mechanics. For 

example, force is equal to the mass times the acceleration (Newton’s Second Law), 

in the same way, torques equals to the product of the rational inertia about the axis 

and the angular acceleration. The work (kinetic energy/translational energy) 

therefore is computed as the product of the force and displacement: 

 
𝐸𝑡 = ∫𝐹 ∙ 𝑑𝑠 =

1

2
𝑚𝑣2 (4.1) 

where 𝐸𝑡  represents the translational energy, 𝐹  is the force, 𝑠  is the 

displacement, 𝑚 is the mass of the object, and 𝑣 is the velocity. 

The rotational work (angular kinetic energy/rotational energy) is assessed by the 

torque multiplying rotation: 
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𝐸𝑟 = ∫𝜏 ∙ 𝑑𝜃 =

1

2
𝐼𝜔2 (4.2) 

where 𝐸𝑟 represents rotational energy, 𝜏 is the torque, 𝜃 is the rotational angle, 

𝐼 is the moment of inertial, and 𝜔 is the angular velocity. 

And the total kinetic energy is the sum of translational and rotational kinetic 

energies: 

 𝐸𝑘 = 𝐸𝑡 + 𝐸𝑟 (4.3) 

where 𝐸𝑘 represents the total kinetic energy. 

4.3 Pros and cons of tracking tools 

Compared with the vision-based data collection by surveillance cameras and the 

sensor-based data collection by wearable devices, using IMUs to track and trace the 

construction tools has a number of advantages. 

 In the first place, the IMU-based process monitoring by the construction tools 

causes no privacy issues because no personal information of the participants 

has been collected. 

 Another important advantage of this approach is non-intrusive that there is no 

need to wear any devices on human body and no excessive intrusion is 

generated into ones’ daily productive activities. 

 An additional advantage is that the measurement principle of the proposed 

system is simple that the size is small and portable. Also, the deployment is 

easy-handling, low-cost, energy-saving, and has a short start-up time. 
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Nonetheless, the IMU sensor system has a series of unavoidable sources of errors. 

That is the most considerable drawback because the integration and double 

integration embedded in the sensor leads to error accumulation over time (Alexiev 

and Nikolova 2013). Moreover, MEMS sensors are more sensitive to temperature 

changes than optical devices that the IMU-based data collection may fail in extreme 

environments like severe heat and cold weather.  

4.4 Error analysis of the IMU-based system 

Errors of the IMU-based data collection are the consequences of systematic errors 

and random noises. Systematic errors refer to improper installation, unreasonable 

design, and incorrect calibration. They are consistent or regular and their effects 

can be eliminated perfectly by reinstallation, redesign and recalibration; meanwhile 

the random noises are comprehensive to describe and are impossible to avoid 

because their sources are various and have no patterns. 

4.4.1 Random error sources 

The random noises in IMU are composed of constant bias, bias asymmetry and 

instability, angle random walk/velocity random walk, quantization noise, rate 

random walk, rate ramp, sinusoidal noise and Markov noise. 

 Constant bias error is the average output of a fixed MEMS IMU over a period, 

which has no direct correlation with the sensor states. It is trivial to compensate 

for it by subtracting the bias from the output. 
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 Quantization noise (QN) is introduced by encoding an analogic signal into a 

digital signal, which is caused by the differences between the real amplitudes 

of the points sampled and the analog-digital converter resolution. 

 Angle/velocity random walk (RW), also known as white noise, generally is the 

major noise of MEMS IMUs, resulting from the thermo-mechanical noise 

fluctuating, which is also named thermo-mechanical white noise. Such noise is 

a sequence of zero-mean uncorrelated random variables from the sensors are 

perturbed by a white noise sequence. 

 Correlated noise (CN) is due to the mechanical shaking and decreases over time, 

which is also named Markov noise. 

 Sinusoidal noise (SN) is caused by the cyclical factors in environments, which 

is characterized by a number of frequencies. 

 Bias asymmetry and instability (BI) refers to the difference between the bias 

for positive and negative inputs and the variation over a finite sample of time, 

which is also known as flicker noise. The cause of BI may be the temperature 

drift, magnetism drift and so on. 

 Rate random walk (RRW) is the errors type with unknown sources at the 

present time. 

 Rate ramp (RR) is likely to be a deterministic error rather than a random noise, 

for long finite time spans. 

4.4.2 Allan variance 

Allan variance (AVAR) is a time domain technique designed for dividing and 

analyzing the random noises by characterizing the phase and frequency instability 

of precision devices (Oliver J. Woodman 2007), which is originally defined by: 
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𝜎𝑦

2(𝜏𝑜) =
1

2𝜏𝑜
2
〈(𝑥𝑘+2 − 2𝑥𝑘+1 + 𝑥𝑘)

2〉 (4.4) 

where 𝜎𝑦
2(𝜏𝑜) represents AVAR as a function of the observation period 𝜏𝑜 and 

〈∙〉 is the ensemble average. On expanding the ensemble average in equation (4.5), 

AVAR is thus computed by: 

 

𝜎2(𝜏𝑜) =
1

2𝜏𝑜
2(𝑁 − 2)

∑(𝑥𝑘+2 − 2𝑥𝑘+1 + 𝑥𝑘)
2

𝑁−2

𝑘=1

 (4.5) 

where 𝑁 is the total number of samples.  

Since the sources of the random errors are independent, AVAR is considered as the 

sum of the various error components by: 

 
𝜎𝑦

2(𝜏𝑜) = 𝜎𝑄𝑁
2 + 𝜎𝑅𝑊

2 + 𝜎𝐶𝑁
2 + 𝜎𝑆𝑁

2 + 𝜎𝐵𝐼
2 + 𝜎𝑅𝑅𝑊

2 + 𝜎𝑅𝑅
2  (4.6) 

where 𝜎𝑄𝑁
2  is the variance of quantization noise, 𝜎𝑅𝑊

2  is the variance of random 

walk/white noise, 𝜎𝐶𝑁
2  is the variance of correlated noise, 𝜎𝑆𝑁

2  is the variance of 

Sinusoidal noise, 𝜎𝐵𝐼
2  is the variance of bias instability, 𝜎𝑅𝑅𝑊

2  is the variance of 

rate random walk, 𝜎𝑅𝑅
2  is the variance of rate ramp. Based on the power spectral 

density (PSD) of these random noises, their components in AVAR thus is hence 

distinguishable by the highest polynomial degree of the time interval (refer to 

Appendix A). For the purpose of characterizing the noises, Allan deviation (ADEV) 

is obtained through taking the square root of AVAR and different types of random 

process cause slopes with different gradients to appear on the ADEV on a log-log 
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scale, as plotted in Figure 4-3. 

 

Figure 4-3 Schematic log-log plot of Allan deviation for noise deviation 

4.5 Sensor models of IMU-based system 

Once the sources of the IMU random errors are determined by AVAR, it is possible 

to establish a sensor model for IMU sensors and assess its effects on the 

performance of IMU-based data collection. The basic model for the 

gyroscope/accelerometer/magnetometer assumes that the direct output is made up 

of the true value of angular rate/acceleration/magnetic fields, a constant offset from 

systematic error, and a series of noises from random errors. 

 
�̂� = 𝑥 + 𝑐 + ∑𝜀 (4.7) 

where �̂� represents the output of IMU sensor and the estimator of true value 𝑥, 𝑐 

is the constant offset/bias, 𝜀 is the IMU noise, such as random walk, sensor drift 

or the moving bias, and so on. Through AVAR and autocorrelation analysis, the 

relevant coefficients are determined and verified with the acceptable specifications. 
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The developed models for gyroscope, accelerometer, and magnetometer, taking 

bias instability, white noise, random walk and environmental drifts into 

consideration for simulation (MathWorks 2019), are introduced as below: 

4.5.1 Model of accelerometer 

The model of accelerometer inputs the ground-truth orientation and acceleration, 

and four drifts to simulate the accelerometer’s output (see Figure 4-4). Although 

the accelerometer is designed for capturing the acceleration, in a way, it can gauge 

the orientation of a stationary item with relations to the Earth’s surface. More 

specially, since the accelerometer is sensitive to both linear acceleration and the 

local gravitational field, the former measures the tri-axis motions while the latter 

develops the tilt sensing ability by computing the rotation equation between the 

gravitation and linear acceleration outputs if the initial gravity force of a stationary 

object is aligned with one of the sensor axes (Pedley 2013). That’s the reason why 

orientation is also involved in the sensor model of accelerometer. Nevertheless, 

there is an exception to this rule. For example, in a free fall, outputs of the 

accelerometer are zero, ignoring the tilt entirely. 
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Figure 4-4 Sensor model of IMU accelerometer 

4.5.2 Model of gyroscope 

As shown in Figure 4-5, gyroscope’s model is more complex that the simulation 

take ground-truth angular velocity, orientation, acceleration and a series parameter 

for drifts as the inputs and set the angular velocity as the outputs. In the simulation, 

acceleration has an adverse impact within the environmental drift since the 

gyroscope identifies an actual value until the object stabilizes when gauging the rate 

of rotation around a particular axis.  
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Figure 4-5 Sensor model of IMU gyroscope 

4.5.3 Model of magnetometer 

Magnetism varies from place to place because of the differences in Earth’s magnetic 

field, due to differing nature of rocks and the interaction between charged particles 

from the sun and the magnetosphere of a planet. In the model of magnetometer 

described in ,Figure 4-6, the inputs of the model contain ground-truth magnetic field, 

orientation and parameters for drifts and the output is magnetic field. Since the 

magnetometer is composed of three orthogonally mounted fluxgates, if possible, 

the magnetometer should be used far from the magnetic materials so that the 

environmental effects on magnetic field are sufficiently small for accurate 

measurement. 
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Figure 4-6 Sensor model of IMU magnetometer 

4.6 Summary 

This chapter mainly describes the IMU-based motion data collection of the 

construction tools, discusses the advantages and disadvantages of tracking tools 

rather than manpower, analyzes the errors and establishes the sensor models in the 

data collection. The main findings are summarized as follows: 

 Various construction tools are generally used in almost all of the construction 

tasks. It is therefore an effective and efficient way to track the use of the 

construction tools instead of the behaviors of manpower for construction 

monitoring without intrusion and privacy concerns. 

 The collected acceleration, angular velocity, magnetic field and temperature of 

the construction tools by IMU sensors provide a valuable insight into the 

kinematics and the workload of a construction process. 
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 Random errors should be carefully addressed in IMU-based system as they are 

likely to accumulate over time by integration and double integration in the data 

collection. 
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CHAPTER 5 TOOL KINEMATIC MODEL 

FOR CONSTRUCTION QUALITY 

ASSESSMENT 

Once the data of the construction tools is collected by the proposed IMU-based 

approach in Chapter 4, this chapter thus conducts data processing and data fusion. 

Also, this chapter constructs a tool kinematic model and extract indicators for 

construction quality assessment in the end. In short, Chapter 5 is represented in four 

parts: 1) tool data processing; 2) tool data fusion; 3) tool kinematic model; 4) quality 

indicators extraction. 

Section 5.1 firstly introduces the data processing techniques for IMU raw data, 

including converting between coordinate reference frames, integration and 

deviation, and gravity compensation. The next Section 5.2 presents the data fusion 

methods for orientation and position at both low-level and medium level, which use 

accelerometers to estimate pitch and roll angles, use magnetometers to measure jaw 

angle, and combine them with gyroscopes’ measurements to generate orientations 

with a higher accuracy; use Kalman filter and Extended Kalman filter to fuse 

kinematic orientation and position data from different sources. In the Section 5.3, a 

tool kinematic model is built up based on the cyclic motion patterns during the use 

of the construction tools. This model is made up of cycle detection and periodic 
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calibration, which are used to segment motions and extract quality variables for 

quality control and assurance in the Section 5.4. The overall structure of this section 

is shown in Figure 5-1. 

 

Figure 5-1 Structure of tool kinematic model chapter 

5.1 Tool data processing 

Since the IMU directly measures the acceleration, angular velocity, magnetic field 

and temperature of the sensor in its own frame, it is significant to take data 

processing techniques to obtain information of the tools rather than the sensor for 

further analysis. The data processing techniques consist of converting between 

coordinate systems, integration and deviation, and gravity compensation. 
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5.1.1 Converting between coordinate systems 

There are five relevant coordinate frames in IMU-based systems, namely, an earth-

fixed coordinate frame, a navigation coordinate frame, a local level coordinate 

frame, a strapdown inertial coordinate body frame, and a non-rotating inertial 

coordinate frame. They are introduced as below: 

 

Figure 5-2 Coordinate frames of IMU-based system 

 Earth-fixed coordinate frame (E frame) refers to the frame in which the center 

of mass of the earth is defined as the origin, the z-axis lies along the earth's 

polar axis pointing north, the x-axis is at the equator and along the plane of the 

Greenwich meridian, and the y-axis completes the right-hand coordinate 

system. 

 Navigation coordinate frame (N frame) or east-north-up frame (ENU frame) 

serves at or near the surface of the earth, where the origin coincides with the 

center of the sensor, the x- and y-axes point east and north respectively, and the 

z-axis is orthogonal to these axes up into the sky. 
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 Local level coordinate frame (L frame) or north-east-down frame (NED frame) 

is similar to an N frame in that the axes are all parallel to those of the N frame, 

although the directions are different in that the x-axis points north, the y-axis 

points east, and the z-axis completes the right-hand coordinate system 

downward. 

 Inertial coordinate body frame (B frame) is a right-hand coordinate system that 

is tied to the body and rotated along with it. The origin is located at the center 

of the object. 

 Non-rotating inertial coordinate frame (I frame) represents a fixed right-hand 

coordinate frame on an IMU where the origin coincides with the center of the 

sensor and the axes coincide with the sensing orientations 

The IMU-based system collects data in the I frame. For the purpose of tool motion 

analysis, these data have to be converted into B frame; for location estimation, these 

data have to be converted into N frame, integrating with GPS sensors; and for 

gravity compensation, those data in I frame and the Earth’s physical model in E 

frame have to be both converted into L frame. 

To convert between coordinate systems, two basic operations for solid-body 

transformation are involved: translation and rotation. 

5.1.1.1 Translation 

Translation is an operation that displaces points by a fixed distance along a given 

direction. In homogeneous coordinates, the translation matrix is written by: 
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𝑻𝒓𝒂𝒏𝒔(𝛥𝑥, 𝛥𝑦, 𝛥𝑧) = [

1 0 0 𝛥𝑥
0 1 0 𝛥𝑦
0 0 1 𝛥𝑧
0 0 0 1

] (5.1) 

where 𝛥𝑥, 𝛥𝑦, 𝛥𝑧 represents the displacement in x-, y-, and z-axis respectively.  

5.1.1.2 Rotation 

Rotation refers to the operation that an angle is turned around an axis. Three rotation 

matrices corresponding to rotation about z, y, and x axes in homogeneous forms are: 

 
𝑹𝒐𝒕𝒙(𝜙) = [

1 0 0 0
0 cos𝜙 − sin𝜙 0
0 sin𝜙 cos𝜙 0
0 0 0 1

] 

𝑹𝒐𝒕𝒚(𝜃) = [

cos 𝜃 0 sin 𝜃 0
0 1 0 0

− sin 𝜃 0 cos 𝜃 0
0 0 0 1

] 

𝑹𝒐𝒕𝒛(𝜓) = [

cos𝜓 − sin𝜓 0 0
sin𝜓 cos𝜓 0 0

0 0 1 0
0 0 0 1

] 

(5.2) 

where 𝜙, 𝜃, 𝜓 represents the roll, pitch, and yaw angles around x, y, and z axes. 

5.1.2 Integration and deviation 

As mentioned in the block diagram of IMU sensors for indirect measurements, 

velocity is an integral of acceleration over time, displacement is also an integral of 

velocity with respect to time. The integration schemes are represented by: 
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 𝑠(𝑡) = 𝑠(0) + ∫𝑣

𝑡

0

𝑑𝑡 

𝑣(𝑡) = 𝑣(0) + ∫𝑎

𝑡

0

𝑑𝑡 

(5.3) 

where 𝑠, 𝑣, 𝑎  represent absolute displacement, velocity, and acceleration 

respectively. 𝑡 refers to time. 

Rotation is an integral of angular velocity over time, and angular acceleration is a 

derivative of angular velocity with respect to time. These indirect measurements 

are computed by: 

 𝑟(𝑡) = 𝑟(0) + ∫𝜔

𝑡

0

𝑑𝑡 

𝛼(𝑡) =
𝑑𝜔

𝑑𝑡
 

(5.4) 

where 𝑟, 𝜔, 𝛼  represents absolute rotation angle, angular velocity, and angular 

acceleration respectively.  

Rather than providing a continuous absolute signal, the IMU-based system usually 

collects relative data at a fixed frequency. The above integral and derivative is 

therefore approximated by numerical presentations, such as the trapezoid rule, and 

Simpson’s rule, and these formulas are summarized in Appendix B. 

5.1.3 Gravity compensation 

The G-force is also known as a specific force, which is not actually a force but a 
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type of acceleration. This acceleration is a proper acceleration relative to a free-fall. 

Accelerometers on the surface of the earth measure the proper acceleration 

produced by the G-force exerted by the ground, which is a constant determined by 

the location of measurement. To compensate the G-force in IMU-based system, the 

basic idea is to obtain the accurate gravity at a specific position and then eliminate 

it from the measurement of acceleration. 

5.1.3.1 Gravity model of Earth 

The physical model of Earth is generally considered as an ellipsoid. Assume the 

normal radius and meridian radius are denoted as 𝑅𝑁, 𝑅𝑀 , respectively. The 

geometry of Earth is calculated by: 

 𝑅𝑁 =
𝑅𝐸

(1 − 𝑒𝐸
2 sin2 𝜑)

1
2

 

𝑅𝑀 =
𝑅𝐸(1 − 𝑒𝐸

2)

(1 − 𝑒𝐸
2 𝑠𝑖𝑛2 𝜑)

3
2

 

(5.5) 

where 𝑅𝐸 represents the Earth’s equatorial radius/semi-major axis with a constant 

of 6,378.1370 km, 𝑒𝐸 is the Earth’s eccentricity with a constant of 0.08181919, 

and 𝜑 refers to the geodetic latitude of a specific location. 

Given the latitude and longitude of a location, the gravity at a certain level is 

computed by: 
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 𝑔(ℎ) =
𝑔𝐸(1 + 0.01512 sin2 𝜑 + 0.045 sin 2𝜑)

(1 +
ℎ
𝑅𝐸

)
2  

(5.6) 

where 𝑔(ℎ) represents gravity at the level of ℎ, and 𝑔𝐸 is the gravity constant 

with a value of 9.78032677 m/s2. 

5.1.3.2 G-force formula 

Assume that a construction tools is controlled by extra force by a worker and gravity 

force by the Earth, the basic differential equation in I frame is: 

 
𝑑2𝒔𝐼

𝑑𝑡2
= 𝒂 + 𝒈 (5.7) 

where 𝒔𝑰 represents the ground-truth displacement in I frame, 𝒂, 𝒈 refer to the 

acceleration and gravity vectors, respectively. As Earth rotates eastward in prograde 

motion, the converting between I and E frame based on the Coriolis effect is: 

 

𝑑𝒔𝐼

𝑑𝑡
=

𝑑𝒔𝐸

𝑑𝑡
+ 𝝎𝐼𝐸 × 𝒔𝐸 (5.8) 

where 𝒔𝐸  represents the ground-truth displacement in E frame, and 𝝎𝐼𝐸  is the 

rotation vector, with magnitude 𝜔𝐼𝐸, of the rotating reference frame relative to the 

inertial frame. For Earth, the value is 7.2921159 rad/s. The differential of equation 

(5.8) is: 

 
𝑑2𝒔𝐼

𝑑𝑡2
=

𝑑𝒗𝐸

𝑑𝑡
+ 𝝎𝐼𝐸 × 𝒗𝐸 + 𝝎𝐼𝐸 × (𝝎𝐼𝐸 × 𝒗𝐸) (5.9) 
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Combine equation (5.7) and (5.9), the velocity in I frame is calculated by: 

 

𝑑𝒗𝐼

𝑑𝑡
= 𝒂 − 𝝎𝐼𝐸 × 𝒗𝐸 + 𝒈𝑝 (5.10) 

where 𝒈𝑝 = 𝒈 − 𝝎𝐼𝐸 × (𝝎𝐼𝐸 × 𝒗𝐸) represents the actual measured gravity on the 

Earth’s surface, determined by the physical gravity model. Considering E frame as 

a transition coordinate frame, the velocity between N and I frame is clarified by: 

 

𝑑𝒗𝐼

𝑑𝑡
=

𝑑𝒗𝑁

𝑑𝑡
+ (𝝎𝐼𝐸 × 𝝎𝐸𝑁) × 𝒗𝐸 (5.11) 

The relative acceleration of tool use in N frame is thus computed by: 

 

𝑑𝒗𝐼

𝑑𝑡
= 𝒂 − (2𝝎𝐼𝐸 + 𝝎𝐸𝑁) × 𝒗𝑵 + 𝒈𝑝 (5.12) 

5.2 Tool data fusion 

As discussed in the models of IMU sub-sensors, the collected acceleration, angular 

velocity, magnetic field, and temperature are correlated through orientation and 

position. It is a good idea for IMU sensors to fuse data for accuracy and quick 

response. The taxonomy based on levels of abstraction categorize the data fusion 

into low level fusion, medium level fusion, and high level fusion (Nakamura, 

Loureiro, and Frery 2007). 

 Low level fusion refers to signal or measurement level fusion, providing more 

accurate data by integrating the raw data from multiple resources rather than 
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individuals. The main integration approach of the accelerometer and 

magnetometer for orientation is at this level that the raw and orthogonal 

acceleration and magnetic field are combined. 

 Medium level fusion represents the feature or attribute level fusion, which fuses 

the attributes and features of the objects (construction tools), such as the 

position integration with GPS and orientation integration within an IMU in this 

research. 

 High level fusion takes symbols as input and combines them to provide an 

accurate global decision. High level fusion is out of the scope of this research, 

which has not been discussed here. 

5.2.1 Low level data fusion 

Low level data fusion in IMU conceptually refers to the combination of acceleration 

and magnetic field for orientation estimation where the pitch and roll matrices come 

from accelerometer and jaw matrix from magnetometer. Here, roll, pitch, and yaw 

matrices 𝑹𝑥 , 𝑹𝑦, 𝑹𝑧 referring to the rotations by angles 𝜙 in roll, 𝜃 in pitch and 

𝜓 in jaw about the x, y and z axes respectively, are: 

 𝑹𝑥(𝜙) = [
1 0 0
0 cos𝜙 − sin𝜙
0 sin𝜙 cos𝜙

] 

𝑹𝑦(𝜃) = [
cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

] 

𝑹𝑧(𝜓) = [
cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

] 

(5.13) 
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There are six possible ordering of these three rotation matrices, and they are equally 

valid in principle. In this research, the order x-y-z is adopted as the relative 

transformation from L frame (where the gravity force is aligned with the z) to I 

frame, and the corresponding transformation matrix is: 

𝑹𝑥𝑦𝑧(𝜙, 𝜃, 𝜓) = 𝑹𝑥(𝜙)𝑹𝑦(𝜃)𝑹𝑧(𝜓)

= [

c 𝜃 c𝜓 c 𝜃 s𝜓 − s𝜃
c𝜓 s 𝜃 s𝜙 − c𝜙 s𝜓 c𝜙 c𝜓 + s 𝜃 s𝜙 s𝜓 c 𝜃 s𝜙
c 𝜃 c𝜓 s𝜙 + s𝜙 s𝜓 c𝜙 s 𝜃 s𝜓 − c𝜓 s𝜙 c 𝜃 c𝜙

] 
(5.14) 

5.2.1.1 Pitch and roll estimation 

In the Earth’s gravitational field, any axis with a value of g in the accelerometer 

output of a stationary item is obviously aligned with the Earth’s downward gravity 

force. As a matter of fact, the tri-axis accelerometer mounted on the construction 

tool orients in the Earth’s gravitational field, and undergoes linear acceleration 

measured in E frame (Pedley 2013). Thereby, based on the transformation matrix 

in equation (5.14), the equation between normalized acceleration readings and 

theoretic acceleration values generated by gravitational field is: 

 
𝒂

‖𝒂‖
=

1

√𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2
[

𝑎𝑥

𝑎𝑦

𝑎𝑧

] = 𝑹𝑥𝑦𝑧 [
0
0
1
] = [

− sin 𝜃
cos 𝜃 sin𝜙
cos 𝜃 cos𝜙

] (5.15) 

where 𝒂 = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧)
𝑇
 represents the raw acceleration detected from the IMU 

accelerometer. Solve this equation and obtain the roll and pitch angles in x-y-z order 

by: 
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𝜙 = tan−1

𝑎𝑦

𝑎𝑧
 

𝜃 = 𝑡𝑎𝑛−1
−𝑎𝑥

√𝑎𝑦
2 + 𝑎𝑧

2
 

(5.16) 

5.2.1.2 Jaw estimation 

In the Earth’s magnetic field, the components of down/up and north axes are parallel 

to the Earth’s surface; meanwhile the component along with the east direction is 

empty, as shown in Figure 5-3.. 

 

Figure 5-3 Magnetic field of Earth 

The normalized magnetic field measurements therefore satisfy the following 

equation: 

 
𝒉

‖𝒉‖
=

1

√ℎ𝑥
2 + ℎ𝑦

2 + ℎ𝑧
2
[

ℎ𝑥

ℎ𝑦

ℎ𝑧

] = 𝑹𝑥𝑦𝑧 [
ℎ𝑁

0
ℎ𝐷

] (5.17) 

where 𝒉 = (ℎ𝑥, ℎ𝑦, ℎ𝑧)
𝑇

 represents the magnetic field measured by the IMU 

magnetometer. ℎ𝑁, ℎ𝐷 refer to the constant components of magnetic field relative 

to Magnetic North and Down. In the northern hemisphere, the magnetic field points 
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downwards at the North Magnetic Pole and rotate upwards as the latitude decreases 

until it is horizontal at the magnetic equator, and vice versa in the southern 

hemisphere.  

Solve the equation (5.17) and extract the jaw angle around z axis following x-y-z 

order by: 

 𝜓′ =
ℎ𝑥

ℎ𝑦
 (5.18) 

where 𝜓′ represents the computed jaw angle. However, the magnetic field north 

does not exactly point to the true geometrical north and there is a declination within 

the computed jaw angle. The ground-truth jaw angle is therefore computed via: 

 
𝜓 = 𝜓′ ± Δ𝜓 (5.19) 

where 𝜓  represents the true jaw angle, and Δ𝜓  refers to the declination at a 

certain place. In Hung Hom, Hong Kong, the magnetic declination is around 2°59′ 

relative to west. 

5.2.2 Medium level data fusion 

Medium level fusion refers to fusing the spatial-temporal features and attributes of 

the construction tools, containing orientations and positions from different sources 

within the IMU-based system and other integrated systems, such as GPS. Since 

these data sources are always noisy and the mathematical and simplified models for 
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describing real phenomena are impossible to be perfectly accurate all the time, 

Kalman filter is adopted to take the uncertainties in measurements and models into 

account for the data fusion. The following hypothesis are satisfied in IMU-based 

system, Kalman filter is therefore globally optimal that the output is likely to be the 

ground truth based on the confidence on both measurements and models. 

 The random noises in IMU measurements in exposed environment follow zero-

mean uncorrelated Gaussian distributions. 

 The translation and rotation motion of the construction tools is a Markov’s 

chain that position and orientation at any time is only determined by the state 

attained at the previous time. 

 The IMU-based measurement is time invariant and linear. 

5.2.2.1 Standard Kalman filter 

The basic concept of Kalman filter is to compute the most likely output by 

minimizing the quadratic weighted error between measurements and predicted 

states. The measurement process is modelled by: 

 𝒛t = 𝑯𝒙𝑡 + 𝒗𝑡 (5.20) 

where 𝑯 represents the observation matrix, 𝒙, 𝒛 are the actual and observed state 

vector, and 𝒗~𝒩(𝜇, 𝑹) refers to the observation noise drawn from a multivariate 

normal distribution with mean of zero 𝜇 = 0 and a multivariable covariance 𝑹. 

The prediction process identifies the true state at current time 𝑡 is evolved from 
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the state at the previous time 𝑡 − 1, and its linear discrete-time stationary model 

without a control loop is represented by: 

 𝒙𝑡 = 𝑨𝒙𝑡−1 + 𝑩𝒖𝑡−1 + 𝒘𝑡−1 (5.21) 

where 𝜱 represents the state transition matrix, 𝑩 is the control matrix of noises, 

and 𝒘~𝒩(𝜇, 𝑸)  is the process noise following a multivariate Gaussian 

distribution with zero mean 𝜇 = 0 and a multivariable covariance 𝑸. 

 

Figure 5-4 Discrete Kalman filter cycle 

As shown in Figure 5-4, Kalman filter estimates a process and then obtains feedback 

from measurements to update the process estimation. As such, Kalman filter 

contains two groups: time update equations and measurement update equations. 

Time update process projects forward the current state and error variance estimates 

to update the prior estimates for the next time step, and the measurement update 

process is responsible for feedback that incorporates the measurements into the 

prior estimates to obtain improved posterior estimates.  



86 

In the time update process, the current state estimate is computed by: 

 �̂�𝑡|𝑡−1 = 𝑨�̂�𝑡−1|𝑡−1 + 𝑩𝒖𝑡−1 (5.22) 

where �̂� represents an estimation on the system state, the subscript 𝑡 refers to the 

instant time and | is the Bayes’ rule notation. The prediction error covariance is 

calculated by: 

 𝑷𝑡|𝑡−1 = 𝑨𝑷𝑡−1|𝑡−1𝑨
𝑇 + 𝑸 (5.23) 

where 𝑷 represents the prediction error covariance. In the measurement update 

process, the optimal Kalman gain is computed via: 

 𝑲𝑡 = 𝑷𝑡|𝑡−1𝑯
𝑇(𝑯𝑷𝑡|𝑡−1𝑯

𝑇 + 𝑹)−1 (5.24) 

where 𝑲  represents the Kalman gain. Subsequently, a posterior estimate by 

incorporating the measurement is computed by: 

 �̂�𝑡|𝑡 = �̂�𝑡|𝑡−1 + 𝑲𝑡(𝒛t − 𝑯�̂�𝑡|𝑡−1) (5.25) 

Finally, a posterior error covariance is estimated via: 

 𝑷𝑡|𝑡 = (𝑰 − 𝑲𝑡𝑯)𝑷𝑡|𝑡−1 (5.26) 
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where 𝑰 represents the identity matrix. 

5.2.2.2 Extended Kalman filter 

Considering the uncertainties and non-linear stochastic processes embedded in the 

practices, the standard Kalman filter is improved to generate extended Kalman filter 

(EKF) (Philipe miranda de moura 2018). Thus, the prediction process is governed 

by non-linear stochastic different equation: 

 𝒙𝑡 = 𝑓(𝒙𝑡−1, 𝒖𝑡−1, 𝒘𝑡−1)4 (5.27) 

The measurement model is also modified as: 

 𝒛t = 𝑔(𝒙𝑡 , 𝒗𝑡) (5.28) 

where 𝑓  represents the non-linear function that relates the states at sequential 

timestamps and 𝑔  represents the measurement non-linear function relating the 

state to the measurement. 

For the time update step, since the individual values of noises at each time step are 

unknown in practice, the current state estimate is simplified as: 

 �̂�𝑡|𝑡−1 = 𝑓(�̂�𝑡−1|𝑡−1, 𝒖𝑡−1, 0) (5.29) 

The prediction error covariance is computed by: 
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 𝑷𝑡|𝑡−1 = 𝑨𝑡𝑷𝑡−1|𝑡−1𝑨𝑡
𝑇 + 𝑾𝑡𝑸𝑡−1𝑾𝑡

𝑇 (5.30) 

where 𝑨𝑡 ,𝑾𝑡  represent the Jacobian matrices of partial derivatives of 𝑓  with 

respect to 𝑥, 𝑤. Elements of these matrices are computed via: 

 𝐴𝑖,𝑗 =
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝒙𝑡−1, 𝒖𝑡−1, 0) 

𝑊𝑖,𝑗 =
𝜕𝑓𝑖
𝜕𝑤𝑗

(𝒙𝑡−1, 𝒖𝑡−1, 0) 

(5.31) 

In the measurement update process, the optimal Kalman gain is similarly modified 

as: 

 𝑲𝑡 = 𝑷𝑡|𝑡−1𝑯𝑡
𝑇(𝑯𝑡𝑷𝑡|𝑡−1𝑯𝑡

𝑇 + 𝑽𝑡𝑹𝑡𝑽𝑡
𝑇)−1 (5.32) 

where 𝑯𝑡, 𝑽𝑡  represents the Jacobian matrices of partial derivatives of 𝑔 with 

respect to 𝑥, 𝑣, these are: 

 𝐻𝑖,𝑗 =
𝜕𝑔𝑖

𝜕𝑥𝑗

(𝒙𝑡 , 0) 

𝑉𝑖,𝑗 =
𝜕𝑔𝑖

𝜕𝑣𝑗

(𝒙𝑡 , 0) 

(5.33) 

The posterior state estimate is computed via: 
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 �̂�𝑡|𝑡 = �̂�𝑡|𝑡−1 + 𝑲𝑡 (𝒛t − 𝑔(�̂�𝑡|𝑡−1, 0)) (5.34) 

The last equation of posterior error covariance remains the same as the standard 

Kalman filter by: 

 𝑷𝑡|𝑡 = (𝑰 − 𝑲𝑡𝑯)𝑷𝑡|𝑡−1 (5.35) 

5.3 Tool kinematic model 

5.3.1 Basic kinematic model 

The state of any construction tool is defined by acceleration, velocity, position, 

angular acceleration, angular velocity, and orientation, which is also represented by: 

𝒙𝑡 = (𝒔𝑡 , 𝒗𝑡 , 𝒂𝑡 , 𝒓𝑡 , 𝝎𝑡 , 𝜶𝑡)
𝑇

= (𝑠𝑥, 𝑠𝑦, 𝑠𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝑎𝑥 , 𝑎𝑦, 𝑎𝑧, 𝑟𝑥, 𝑟𝑦, 𝑟𝑧, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧, 𝛼𝑥 , 𝛼𝑦, 𝛼𝑧)
𝑇
 

(5.36) 

The transition and observation functions in an absolute reference frame are thus 

denoted by: 

 

𝑓(𝒙) =

[
 
 
 
 
 
𝑰 𝑇𝑰 0.5𝑇2𝑰 𝟎 𝟎 𝟎
𝟎 𝑰 𝑇𝑰 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝑰 𝑇𝑰 0.5𝑇2𝑰
𝟎 𝟎 𝟎 𝟎 𝑰 𝑇𝑰
𝟎 𝟎 𝟎 𝟎 𝟎 𝑰 ]

 
 
 
 
 

𝒙 (5.37) 
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𝑔(𝒙) =

[
 
 
 
 
 
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝑰 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎]

 
 
 
 
 

𝒙 

where 𝑰, 𝟎 represent the identity matrix and zero matrix with a 3 × 3 dimension. 

In relative reference frames, the position, velocity and acceleration is related to the 

angular velocity and orientation that the transition function involves the converting 

matrix between I frame and N frame.  

5.3.2 Cyclic tool kinematic model 

Since the construction tools are always designed for specific activities, it is believed 

that the motions of the construction tools are highly specific for different types of 

motions and these mathematical spatiotemporal patterns bring an independent 

separation from common components (Tsai et al. 1994).  

In gait analysis, cyclic walking pattern has become one of the significant 

characteristics of human behaviors. Also, the use of the construction tools performs 

a general cyclic pattern in motions (refers to Table 4-2). Here, the cycle motion is 

defined as the motion undertaken by a construction tool that follows a repeating 

path over time and the path is likely to 2D/3D rotation, translation, or their combines. 

Examples include turning a nut by a spanner, driving a nail by a hammer, and 

cutting wood by a coping saw.  

The cyclic tool kinematic model proposed in this research is composed of two parts: 
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cycle detection and cyclic motion update. 

5.3.2.1 Cycle detection 

To detect cycles and identify events during the use of the construction tools, this 

research proposes a general batch-mode algorithm using acceleration, angular 

velocity and magnetic field as follows: 

 Compute the magnitude of sensor data for each sample by: 

 𝑥 = ‖𝒙‖ = √𝑥𝑥
2 + 𝑥𝑦

2 + 𝑥𝑧
2 (5.38) 

where 𝑥 represents the magnitude of the state data, and 𝑥𝑥, 𝑥𝑦, 𝑥𝑧  refer to the 

direct measurement of acceleration, angular velocity or magnetic field along x, y, 

and z axes, respectively. Sometimes, a smooth filter, such as median filter and mean 

filter, is required to eliminate the fluctuations and isolated points causes by minor 

accidents. 

 Compute the local variance and remove the constant bias by: 

 𝜎𝑖
2 =

1

2𝑤 + 1
∑ (𝑥𝑗 − �̅�𝑖)

2
𝑖+𝑤

𝑗=𝑖−𝑤

 (5.39) 

where 𝜎𝑖
2 represents the local variance of sample data at time step 𝑖. 𝑤 defines 

the size of a moving window, and �̅�𝑖 is the average value of samples within the 

window. It is noticed that local variance is not the only feature for cycle detection, 

but it is more effective than mean, skewness, kurtosis, energies, max and min value 
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in this study. 

 Apply a threshold to recognize the events and segment the entire process. 

 A cycle is detected if and only if, when the last phase of previous cycle ends 

and the beginning phase of the subsequent cycle starts. 

5.3.2.2 Cyclic motion update 

Cyclic motion update is a kind of virtual aiding proposed in the research, which is 

designed to enforce a constraint due to prior knowledge. It not only provides a 

periodic calibration to alleviate the noise accumulation over time, it also facilitates 

an empirical reference input to the control system for reliability. The basic concept 

is that the motions of the construction tools are supposed not to move outside a 

particular plane or line because the repetitive use of any construction tool is always 

in 1D line or 2D plane (refer to the cyclic pattern summarized in Table 4-2).  

Referring to the zero velocity update (ZUPT) in inertial navigation system (INS), 

cyclic motion update is also a static calibration that relies on the fact that use of 

construction tools is stationary in the line or plane that is orthogonal to the working 

plane or line (Grejner‐Brzezinska, Yi, and Toth 2001). The cyclic motion update 

events thereby are detected automatically by testing the acceleration, angular rate, 

and magnetic field components with a certain tolerance level as the following 

equation: 
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 |𝑥𝑖 − 𝑥𝑖
0| ≤ 3𝜎𝑥𝑖

, i ∈ {𝑥, 𝑦, 𝑧} (5.40) 

where 𝑥 represents the direct measurement from IMU sensors along the stationary 

orientation or in the stationary plane. 𝑥0 refers to the empirical mean and 𝜎𝑥 is 

the tolerance estimated from empirical investigation. 

During the construction process, the continuous signals are collected and monitored 

to identify the cyclic motion update events based on specific working patterns, and 

if the threshold for acceptance of the cyclic motion conditions exceeds a certain 

duration, the processing module switches automatically from monitoring to 

calibrating mode. 

The tool kinematic model is established at the level of data, valuable indicators for 

quality assessment are more practical that they have visually physical meanings and 

are compatible with the current construction quality standards.  

5.4 Construction quality indicators extraction 

The segmentation and recognition of elementary actions from a construction 

process is a foundation in activity understanding and has a wide range of 

applications, such as quality assessment and safety and health management. 

Nonetheless, it is still an open challenge for segmentation in human activities due 

to high variability of appearance, shapes and possible occlusions. Fortunately, the 

segmentation in the use of the construction tools is simplified because of the clear 
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motions and cyclic patterns. 

5.4.1 Segmentation of motions 

To distinguish different action segments from a sequence of human behaviors, 

researchers have developed two series of classifiers: sequence-based and feature-

based methods. Sequence-based classifiers contain dynamic time warping (DTW), 

hidden Markov model (HMM), maximum-entropy Markov model (MEMM), and 

so on. Sequence-based approaches are specifically developed for time series 

analysis; whilst the extraction of high-level features from sequential motions bring 

comprehensive machine learning algorithms into the feature based methods, such 

as sparse coding, k-nearest neighbors (KNN), support vector machines (SVM), 

accumulated motion energy model, random forest (RF) and artificial neural network 

(ANN) (Huang et al. 1999, Shan and Akella 2014, Yan, Wang, and Xie 2008, Wang 

et al. 2012, Liu, Zhang, and Qi 2003, Müller and Röder 2006). 

Compared with human skeleton, the classification algorithms of the construction 

tools are much simpler because there are less joints and chains in the tool motions. 

For example, a spanner is rigid without joint and a plier is made up of a pair of 

metal levels with a joint locating at the fulcrum. 

In this research, the collected data are processed by fast Fourier transform (FFT), 

PSD, and autocorrelation functions to extract the characteristics in both time- and 

frequency-domain. And signal features like relative maxima, minima and local 

peaks are then obtained for segmentation classifiers. Since different construction 
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tools have different working patterns and spatial-temporal characteristics, it is 

scientific to apply trials for the effective and efficient features and classifiers. The 

detail case is introduced in the following sections. 

5.4.2 Process quality variables 

Table 5-1 General quality indicators in the use of various construction tools 

Quality indicators Relevant construction tool samples 

Absolute 

orientation 

Levelness Levels, table saws, etc. 

Verticality Internal concrete vibrators, coping saws, etc. 

Relative 

orientation  

Parallelism Brick tongs, concrete floats, grinders, etc. 

Perpendicularity Drills, scaffold keys, etc. 

Rotation angle Drills, spanners, wrenches, etc. 

Absolute position Almost all of the construction tools. 

Positions 

Depth/Height Internal concrete vibrators, saws, etc. 

Width/Length Brick blosters, metal brushes, grinders, etc. 

Effect area Mixed paddles, pad sanders, taping knives, etc. 

Velocity Saws, vibrators, grinders, pad sanders, etc. 

Time 

Working time Almost all of the power tools 

Accumulated time Vibrators, etc. 

Amount Almost all of the power tools 

Environmental 

variables 

Temperature Almost all of the tools with chips embedded 

Humidity Almost all of the tools with chips embedded 

Illumination Optical construction measurement tools 

Other specific variables Specific tools for specific tasks 
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In a sufficient long motion sample with multiple repetitions of atomic actions, the 

movement of certain tools show acceleration and deceleration with respect to 

position or rotation alternately. To quantitative the construction process, it is crucial 

to convert these data changes into process quality variables. According to 

construction standards, safety and health regulations, there are a number of 

construction process variables for quality management. Here, the indicators relative 

to the use motion of the construction tools are summarized in Table 5-1. 

To extract those quality indicators, Figure 5-5 illustrates the workflow based on the 

motion data generated from IMU-based tracking system. It can be seen that real-

time quality indicators describe the construction process and ensure the quality 

without complex computation; meanwhile the time-delayed quality indicators show 

the level of completion of the construction process that integrated with time and 

prior knowledge, providing an overview of construction quality. Here, levelness 

and verticality represent the absolute orientations pointing or are orthogonal to 

upward/downward; parallelism and perpendicularity refer to the relative 

orientations between building components and construction tools; and rotation 

angle is an integral of angular velocity from the beginning phase to the end action 

segment. Most of the orientation indicators are relative to the measurement tools, 

which have significant impacts on the performance of measurement. Position data 

are mainly used for effect areas, depth or length estimation which describes the 

places where the jobs have done and also reveals the blank places that the jobs 

should be done. In addition, the combination of time and atomic action data are able 
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to show the amount of the tool cyclic working patterns as an objective measurement 

of labor inputs for piece-rate pay and the average or accumulated working time for 

time wage. Besides, environmental variables are also necessary as the temperature, 

humidity, and illumination have significant impacts on the measurements by 

electric chips. 

 

Figure 5-5 Schematic diagram of quality indicators extraction 

5.5 Summary 

This chapter mainly illustrates the data processing algorithms for the raw tool data, 

introduces the data fusion techniques at low and medium levels, establishes the 

crucial tool kinematic model by cyclic use patterns, and extracts the quality 

variables from the model finally. The main findings are summarized as follows: 

 The use of the construction tools performs an obviously cyclic pattern due to 

the repetitive nature of the construction tasks. Spatial-temporal kinematic 
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models enable an accurate description of such cyclic patterns in a mathematical 

representation. 

 During the use of any construction tools, the repetitive use patterns are likely 

to be observed along a specific direction/around a specific axis/within a 

specific plane. The calibration based on such kinematic characteristics provides 

a feasible method to address the IMU error accumulation issue. 

 IMU-based system for tracking tools provides a wealth of data. By data fusion 

at different levels from multiple sources, the accuracy and quality of data can 

be significantly improved and enhanced. 
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CHAPTER 6 TRACEABILITY CHAIN 

MODEL FOR CONSTRUCTION 

QUALITY MANAGEMENT 

To bridge the gap between construction quality-relative process and the final 

building products’ quality, this chapter therefore establish a traceability chain model 

that describes the causes and effects of construction defects based on probabilistic 

and graph theories. This chapter also represents the mechanism of tracking forward 

and backward within a traceability chain. Above all, Chapter 6 is structured in three 

parts: 1) construction traceability chain; 2) trace forward; 3) trace backward. 

Section 6.1 introduces the basics of the traceability chain in the construction 

industry, including its concept and philosophy, the way to construct the upper and 

 

Figure 6-1 Structure of the traceability chain chapter 
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lower traceability chain. The following section 6.2 and 6.3 present the methods to 

trace forward and trace backward respectively. 

6.1 Construction traceability chain 

The tasks in construction projects are always carried out in a comprehensive way 

that four kinds of task interdependences are involved, including sequential 

interdependence, reciprocal interdependence, and pooled interdependence. Thus, 

the defects in the previous construction task is likely delivered to the subsequent or 

other relevant tasks, sometimes lead to reworks and even hazards (Yang et al. 2017). 

Draw upon from the experiences and development in the food and drug industries 

(refer to literature review), traceability chain is proposed in this research to model 

the transformation of construction defects over construction trades. 

6.1.1 Construction traceability and philosophy 

The terminology, traceability, etymologically comes from the French "contre-rolle", 

which literally means "counter roll". The concept has been applied in various 

domains, such as food traceability, drug traceability and manufacturing traceability 

(refer to the section of literature review). Although traceability is now a pervasive 

term, its definitions and interpretations required further development in the 

construction industry, the definition of which is modified as the ability to trace the 

history, location and motion/behavior of a building component or its relevant 

process for quality management. 
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To achieve the construction traceability, this research proposes a probabilistic 

model based on Bayesian network (BN) theory as the construction process is 

commonly a combination of sequential activities/tasks, which is reasonable to use 

a directed acyclic graph (DAG) for description. This model allows to combine 

certain and uncertain knowledge and exploit both data at the present and knowledge 

from the history. This chain model is presented by 𝐺(𝑉, 𝐸), where 𝑉 is a set of 

the graph vertices and 𝐸 is a set of the graph edges that link those vertices. In the 

model, each node is relative to a marginal or conditional probability distribution 

table (CPT) whose entities are conditional probabilities of a child node given parent 

nodes, and each edge shows the child-parent relationships between those nodes. 

There are two approaches to construct a BN. One aims to learn the structure of a 

BN directly from the collected data by machine learning techniques, while the other 

approach is that experts define local graph patterns according to known 

relationships along with determined CPT and then a complete BN is constructed by 

combining them together. Since a construction project is always composed of a 

sequence of tasks, and a task is always accomplished by a group of workers 

cooperating, the traceability chain thus is constructed by a series of nodes 

representing tasks or men in chronological order following the second approach.  

6.1.2 Upper level traceability chain 

Construction process is area-restricted that the building components are fixed whilst 

the workers shift to complete building tasks step by step. Given the location and 
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time data of a worker, it is possible to measure the labour inputs and assign 

responsibility to individuals in a quantitative way. Assume that manpower has to 

conduct their jobs close to their locations that a person can only manipulate objects 

within one’s reach, and based on this assumption, a specific task can be mapped to 

a specific worker over time, therefore, the comparison between actual task 

accomplishments at the construction stage and predefined tasks assignment at the 

design stage enables the identification of discrepancies between as-built and as-

planned procedures. 

Consider each task by an individual or a group as a node, place these tasks in 

chronological or logical order, and link each node to all its following nodes because 

the quality performance of any construction task has an impact on every task 

conducted afterwards. A simple upper level traceability chain therefore describing 

the responsibility delivery across five tasks is plotted in Figure 6-2. For example, 

to build a concrete beam/column/slab/wall, the general building process consists of 

formwork establishment, rebar placement, HVAC or electrical installation, concrete 

pouring and consolidation, and formwork removal. These five tasks all have 

apparent effects on the quality performance of the final concrete product. In 

addition, the quality of the former tasks also has impacts on the latter tasks, such as 

the improper construction of wood formwork is likely to cause issues in the 

installation and removal of rebars and other house accessories. 
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Figure 6-2 Sample plot of a task-level traceability chain 

6.1.3 Lower level traceability chain 

Within a single task, there are a number of variables that reveal the quality of the 

process, which is also considered as indicators to assure the quality performance at 

an early stage. Consider each variable as a node, and each causal relationship is 

represented as a directed link between nodes. Thus, a fault diagnosis network, also 

is named lower level traceability chain is generated. The construction of such 

models is always determined by intuition that the models may be incomplete 

and the causal relationships may be incorrect. At present, to automate the 

construction process, novel methods that learn the structure from the data are 

proposed and tested. However, the performance of these methods is seriously 

affected by the richness (amount and category) of the data, and the prior 

knowledge of the network before. For a single construction task, it is suggested 

to apply traditional ways to construct the traceability chain at the beginning and 

use data-driven approaches for establishment if adequate data of these variables 

are collected.  
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There are three possible connections by which the variables can generate impacts 

in a directed graph: diverging, serial and converging connections. As shown in 

Figure 6-3, a diverging connection is an appropriate model whenever it is believed 

that variable A is relevant for both B and C, and that B and C are conditionally 

independent given A. In other words, if the state of A is known, the belief about the 

possible states of B is not affected by the knowledge of C, and vice versa. If the 

state of A is unknown, then the knowledge of C provides information about the 

possible states of B, and vice versa. Serial connection refers to the sequential 

reasoning, typically apply to task-level traceability chain. A serial connection is an 

appropriate model whenever it is believed that variable A is relevant for B, that B 

is relevant for C, and that A and C are conditionally independent given C. If the 

state of B is known, the knowledge of A does not change the belief about the 

possible states of C, and vice versa. If the state of B is unknown, the knowledge of 

A then generate impacts on the possible states of C, and vice versa. A converging 

connection illustrates a more complicated reasoning relation whenever it is believed 

that B and C are both relevant for A, and B is relevant for C given known A, but B 

and C are conditionally independent given unknown A, that means if the state of A 

is known, B provides information about the possible states of C, and vice versa; 

meanwhile B and C are irrelevant variables if the state of A is unknown.  
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Figure 6-3 Possible connections in a variable-level traceability chain 

Take typical concrete consolidation process as an example, temperature, humidity, 

aggregate gradation and water-cement ratio are critical factors contributing to the 

concrete viscosity, which are built by converging connections; concrete viscosity is 

relevant for almost all of the defects in concrete consolidation, such as honeycombs, 

segregation, etc. These are modeled by diverging connections; considering the 

concrete viscosity as an unknown transfer variable, the environmental and material 

specification variables are relevant for the performance of concrete consolidation 

which are described by serial connections. 

6.2 Trace forward 

Once the traceability chain was established based on the collected data, it is 

reasonable to infer the quality issue with the tool data. Here, tracing forward refers 

to pursuing the downstream direction along the structure of the Bayesian network. 

Given information I, the probability of a proposition at each node that the 

construction quality meets the construction standards and the user requirements, i.e., 

 0 ≤ 𝑃(𝑋 = 𝑥|𝐼) ≤ 1 (6.1) 

For a discrete random variable is an uncertainty quality that can take a discrete 
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number of mutually exclusive and exhaustive values with probability. 

 
∑𝑃(𝑋 = 𝑥|𝐼)

𝑥

= 1 (6.2) 

Based on the multiplication law of probability and chain rule, the joint distribution 

of the network is the set of probabilities: 

𝑃(𝑋1, …𝑋𝑛|𝐼) = 𝑃(𝑋1|𝐼) × 𝑃(𝑋2|𝑋1, 𝐼) × …× 𝑃(𝑋_𝑛|𝑋1, …𝑋𝑛−1, 𝐼) (6.3) 

for all possible values 𝑥𝑖 of variable or task 𝑋𝑖. 

The probability of a variable or task can be obtained by marginalization as the sum 

over all of its relevant joint distribution: 

𝑃(𝑋 = 𝑥|𝐼 ) = ∑𝑃(𝑋 = 𝑥, 𝑌 = 𝑦|𝐼)

𝑦

 (6.4) 

For any pair of propositions about the quality of variables or tasks in the traceability 

network, the degree of belief that A is true, given that one assume that B is true, is 

equal to the degree of belief that A and B are both true given background 

information I, divided by the degree of belief that B is true, given background 

information I, provided that 𝑃(𝐵|𝐼) > 0. 

 
𝑃(𝐴|𝐵, 𝐼) =

𝑃(𝐴, 𝐵|𝐼)

𝑃(𝐵|𝐼)
=

𝑃(𝐵|𝐴, 𝐼) × 𝑃(𝐴|𝐼)

𝑃(𝐵|𝐼)
 (6.5) 

Equation (6.5) is named Bayes’ theorem, which is important due to the fact that it 

is the basic rule for updating degrees of belief in the traceability chain on receiving 
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new tool data as the evidence for evaluation and management. 

Specifically, 𝑃(𝐴|𝐵, 𝐼)  represents the probability of A, conditional on B, 

meanwhile 𝑃(𝐵|𝐴, 𝐼)  is the likelihood of A, conditional on B. The confusion 

between the likelihood and probability of the same hypothesis and evidence is 

called fallacy of the transposed conditional from the fact that if A has occurred, then 

B occurred with a high probability, it is erroneously concluded that if B has occurred, 

then A occurs with a high probability as well. 

For more than two propositions, the updating process can be carried out in various 

ways, given that the multiplication law is commutative, it is notable that the paths 

following different temporal orders can be selected for convenience. 

6.3 Trace backward 

Tracing backward aims to investigate the root causes in the upstream direction 

along the traceability chain, enabling the identification of relevant construction 

procedures and the division of personal responsibilities.  

The process of ensuring the construction quality in conformity with the construction 

standards and user requirements can be modelled as a sequence of steps in time 

domain. At time 𝑡0, it is planned to seek evidence B for hypothesis A that B is 

related to A due to prior knowledge.  

𝑃0(𝐴|𝐵, 𝐼) =
𝑃0(𝐵|𝐴, 𝐼) × 𝑃0(𝐴|𝐼)

𝑃0(𝐵|𝐴, 𝐼) × 𝑃0(𝐴|𝐼) + 𝑃0(𝐵|�̅�, 𝐼) × 𝑃0(�̅�|𝐼)
 (6.6) 
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where 𝑃0(𝐴|𝐼) and 𝑃0(�̅�|𝐼) represent prior or initial probabilities of hypothesis 

A, and 𝑃0(𝐴|𝐵, 𝐼) is the probability of hypothesis A, conditional on evidence B, 

𝑃0(𝐵|𝐴, 𝐼) and 𝑃0(𝐵|�̅�, 𝐼) refer to the likelihood of A and its complementary set, 

given B. At time 𝑡1, it is found that B is true, satisfies the demands, or obeys the 

rules with a tolerance. Thus, the knowledge of B has been learnt and become a part 

of the background information, the overall belief in A at this time is equal to the 

belief in A, conditional on determined B, written as 

𝑃1(𝐴|𝐼) = 𝑃0(𝐴|𝐵, 𝐼) (6.7) 

It can be concluded that this situation is the same as when there is information at 

time 𝑡0 that a proposition B that had not been thought before time 𝑡1. To assess 

the relevance of B for A and the effect of this relevance on the degrees of belief, 

thoughts of likelihood and prior knowledge on the probability are necessary.  

Since the conditional probability of node A given B is related to the converse 

conditional probability of B given A due to the Bayes’ theorem, it is possible to 

reverse all edges and construct a new directed acyclic graph. But the simple 

reversing graph may not be an equivalent Bayesian network. Notably, 

supplementary edges are added to represent all of the original independence 

relationships as well. 

6.4 Summary 

This chapter introduces the construction of the traceability chain and its traceable 
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use according to the specific knowledge and work experiences. The main findings 

are summarized as follows: 

 Since the construction tasks are sequential dependent over time, it is reasonable 

to use a directed graph model to describe and visualize the relations between 

construction activities. 

 Similar to diagnose network, Bayesian network is an effective and efficient 

way to model the traceability along the construction process, providing a 

scientific and quantitative method to trace forward and backward. 
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CHAPTER 7 PROTOTYPE OF SMART 

CONSTRUCTION TOOL GADGET 

To validate the proposed concepts and methods, this chapter then builds an early 

prototype with low-cost and energy-saving sensors and processors. Above all, 

Chapter 7 is represented in three parts: 1) system framework; 2) instruments and 

devices; 3) data visualization. 

 

Figure 7-1 Structure of the prototype chapter 

Section 7.1 roughly introduces the entire system framework of the rapid prototype 

for data collection, processing and storage at the beginning. The following Section 

7.2 describes the relevant sensors and their specifications, which are selected and 
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developed with respects to robustness, accuracy, precision, weights, etc. The last 

Section 7.3 represents the implementation of data visualization, specifically for 

concealed projects which are invisible for inspectors in a timely manner. The overall 

structure of this section is shown in Figure 7-1. 

7.1 System framework 

To monitor the behaviors of the construction tools for construction quality 

management, this research proposes a general system, which is simple, advanced, 

integrated, and intelligent. In this proposed system, there are four crucial layers as 

shown in Figure 7-2. Sensing layer is composed of multiple sensors and actuators, 

which are used to sense the changes of construction components and environment; 

data layer contains several databases for common and specific construction tasks, a 

data processor and a platform for data collection, processing, analyzing, sharing, 

and AI algorithms to improve the automation and intelligence of the system, such 

as the enhancement of the data compression and the optimization of data-driven 

expert system; application layer represents the various applications of the proposed 

system that provides a helpful assistant in the construction management domain 

with respect to multiple domains; and user layer refers to the potential end users of 

this system, including government, owners, the public and individual workers.  
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Figure 7-2 The system framework in this research 

To deploy the system, sensors have appended on tolerant body of hand tools or 

embedded in the electrical board of power tools to collect dynamic signals; 

facilitator hubs, such as mobile phones, laptops or portable devices, are carried for 

convenience to gather signals from the remote sensors and send these signals to the 

cloud database station and remote processors for further analysis; and visualized 

terminals and platforms are installed and established for human-machine 

interactions, including construction process tracking, quality visualization and real-

time monitoring. Figure 7-3 describes the potential deployments on power tools, 

hand tools, personal protective equipment, common equipment, heavy equipment 

and surveillance cameras, where the wearable sensors are communicated by BLE 
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and the cameras are connected by wireless networks. The organized network is 

scalable and extensible that more sensors or actuators can be added and connected.  

 

Figure 7-3 The comparison of several wireless communication techniques 

7.2 Instruments and devices 

 

Figure 7-4 The JY901 chip 

The electric chip used in the rapid prototype is JY901, which is produced in 

Shenzhen, China. As shown in Figure 7-4, this chip is composed of a MEMS tri-

accelerometer, a tri-gyroscope, a tri-magnetometer, a thermometer and a barometer, 

which measures the acceleration, angular velocity, magnetic field, temperature and 
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barometric pressure. The pin description is listed in Table 7-1. 

Table 7-1 Pin description of chip JY901 

Pin category Pin name Details 

Serial RX, TX, used to receive and transmit TTL serial data.  

Input/output D0, D1, D2, D3 Used as digital, analog, and PWM input or output pins. 

Power GND, VCC 

VCC: 3.3 ~ 5 V, power supply used to power 

microcontroller and other components on the board. 

GND: ground pins. 

TWI SCL, SDA 

Used as I2C or IIC pins for two wire serial 

communication (TWI) 

SCL: serial clock 

SDA: serial data 

Particularly, the Kalman filter and Attitude and Heading Reference System (AHRS) 

are embed in the sensor to decrease the measurement errors and increase the 

measurement accuracy. The specifications of JY901 is listed in Table 7-2. 

This research suggests the users to create a screw closure holding the sensor and 

batter inside, which is easily reclosable and cost-effective. By this means, the sensor 

is fixed at the end of the handle and the rotation of z axis indicates the dynamic 

motions of the construction activities. With respect to the combination tools, such 

as combination wrenches and pliers, the sensors are suggested to attached on the 

middle surface or joint of the handles that the rotation around z axis describes the 

crucial motions of the construction activities. Also, the sensors can be immediately 

placed on the PPE gloves by Velcro, which is an easy hook-and-loop solution for 
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fastening. 

Table 7-2 The specifications of chip JY901 

Item Specifications 

Operating voltage 3.3 V 

Voltage limits 3.3 ~ 5 V 

Operating current 25 mA 

Dark current 0.1 mA 

Current limits 0.1 ~ 40 mA 

Measurement range 
Acceleration: -16 ~ 16 g 

Angular velocity: -2000 ~ 2000 degree 

Measurement precision 

Angle: 0.05 degree (static), 0.1 degree (dynamic) 

Magnetic field: 1 mg 

Barometric height: 0.5 m 

Baud rate 2400 ~ 38400 bps 

Output frequency 0.1 ~ 200 Hz 

The protype has been iteratively developed and improved for three times. In the 

first iteration, BLE module is added to realize the wireless communication; in the 

second iteration, the chip board is revised and reintegrated to reduce the size in 

order to be more portable; and in the latest iteration, the GPS module is added to 

provide the latitude and longitude data for automated acceleration and magnetic 

field adjustment, but the antenna is a must for the accuracy of GPS module. This 

prototype is therefore still under development for a wireless version. 
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7.3 Data visualization 

Multivariate and multiview data are collected in this research, the data type of IMU 

sensors is composed of 1-dimensional measurements, 2-dimensional locations and 

multi-dimensional kinematic measurements (Richter 2009). 1-dimensional data 

type refers to the linear data collected from a thermometer and this information is 

organized in a linear way; 2-dimensional data represent the geographical location 

tracks coming from the GPS or INS module where data are projected on a plane; 

multi-dimensional data type mainly represents 3-dimentional positions and postures, 

generated by the integral of 3-dimentional acceleration and angular velocity. These 

data illustrate the translation and rotation and their combination as 6-dimensional 

data describe the complete rigid-body dynamics of the objective tools under the 

action of external forced by users.  

To visualize these sensor data for management, certain principles are adopted to 

facilitate the understanding and design a generous interface of good quality. For 

example, the temperature is visualized with a color scale that blue is mapped to cool 

temperatures and red represents hot temperatures. With such perception properties 

in common, the data visualization in this research is designed at three levels: text 

level, line-graph level and 3d-graph level. Text level represents the form of digital 

characters that single sensor data are displayed on the screen directly, which is 

achieved by PyQt 5 directly; line-graph level refers to the form of scatterplots, line 

and multiple line graph that sensor data are expressed by points and lines over time, 
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this dynamic plot is created by PyQtGraph; and 3d-graph level is the form of 

animation that a virtual rigid body is used to show the position and posture of the 

objective tool. This research adopt Pygame and Blender to visualize the 

construction tools in virtual reality with a fixed perspective projection and a flexible 

view, respectively.  

7.4 Summary 

This chapter mainly represents the crucial components that construct the prototype 

of the smart construction tool gadget, including the system framework, the used 

instruments and devices, and the data visualization methods. The main findings are 

summarized as follows: 

 The construction project is composed of visible part and invisible part. For the 

visible part, it is effective and efficient to apply surveillance cameras to monitor 

the construction activities meanwhile for the concealed projects, it is wise to 

utilize wireless sensors to track the motion of tools instead of workers.  

 Prototype as an early model of the smart construction tools is a reliable test of 

the concept proposed in this research for a non-intrusive construction progress 

management. 

 To enhance the automated construction management, the sensor data are 

represented in different kinds of visualizations where an interaction between 

real world and computer virtual environment is possible, by which an ordinary 

user can easily understand. 
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CHAPTER 8 REBAR CONNECTION 

EXPERIMENT 

As mentioned in Section 1.1, the rebar connection issues of the metro platform have 

caused serious anxiety in the public, for they clearly relate to worrying the safety at 

the maintenance and operation stage. But there may be one nimble way to try to 

address the issues and outwit the public anxiety and that is with a question that the 

proposed concept ensures the quality of the rebar connection – that it can capture 

the associated construction processes and evaluate the strength by analyzing the 

process of turning the rebar couplers. 

.  

Figure 8-1 Structure of rebar connection experiment chapter 

This chapter therefore presents the experiment of the rebar connection via applying 

the prototype in Chapter 6 to validate the new concept and enhance the performance 
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in a real, working world rather than a theoretical one. The experiment is described 

in four parts: 1) rebar connection task; 2) experiment procedure; 3) turning data 

analysis; and 4) experiment results. 

Section 8.1 introduces the background and significance of rebar connection tasks in 

common construction structures and it is reasonable to take it as a typical case for 

testing the proposed prototype and methods. The next Section 8.2 explains the detail 

experimental procedure and identifies the four activity phases for detection. The 

experiment data are then analyzed and segmented in Section 8.3 using model-based 

and machine learning techniques respectively. The last Section 8.4 presents the 

experiment results and compares them with record videos and participant reports to 

prove the feasibility of the developed prototype and proposed methods. The overall 

structure of this section is shown in Figure 8-1. 

8.1 Rebar connection task 

Mechanical rebar connection / splicing refers to joining certain lengths of two 

reinforcement steel together. Such system saves the materials and simplifies the 

processes that is more efficient and effective than traditional welding and 

overlapping rebar connections. This connection consists of two parts: one is female 

steel coupler, and the other is male threaded rebar coupler. According to 

construction standards, the characteristics of the connection are demanded to be 

stronger or at least equal to that of an uninterrupted reinforcement rebar so that the 

full tensile strength can be transferred with variable loads.  
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Generally, the couplers are installed by torque wrench that enable the fasten of a 

nut or a bolt with a appreciate torque. In the case of Hung Hom station expansion 

project, simple visual check is the only method used to ensure the position of the 

rebar couplers for safety, allowing a fast and easy construction process without 

special tools, power sources or adequate training of the personnel. However, the 

subcontractor trims the steel bars deliberately to make it look like they had been 

screwed properly into the couplers. Ultrasonic detection reveals that there is a gap 

of around 10 mm inside the couplers which may result in leakage, crack or other 

safety issues in the underground platform.  

 

Figure 8-2 Stress-Strain model of rebar connection 

Standards governing rebar splicing, such as International Building Code (IBC), 

America Concrete Institute (ACI) codes, China National Standards, and Hong Kong 

Construction Standards, set the embedded length of threaded rebars in the quality 

control program (Tazarv and Saiidi 2016). This length not only generates impacts 

on the performance of transferring both tensile and compressive forces but also 

expand the prefabricated concrete structures in moderate and high seismic zones. 
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As Figure 8-2 illustrates, although the soft initial stress-strain behavior is attributed 

to the threaded anchoring mechanism, the larger rigid length within the coupler 

increases the overall stiffness. The adjoining length of rebars and their couple is 

therefore an important indicator for the quality of rebar connection task. 

8.2 Experiment procedure 

To test the proposed concept, a study with a descriptive design is presented, in 

which the rebar connection task is performed to track the behaviors of the wrench 

by the prototype, analyze the segmentation of the connecting stages by the tool 

kinematic model, and assess the labor inputs and quality performance by the 

traceability chain. 

8.2.1 Design and setting 

A total of 10 workers between 22 and 30 years old are recruited to conduct the 

experimental rebar connection tasks in the Smart Construction Lab at The Hong 

Kong Polytechnic University, Hung Hom, Hong Kong SAR. 

Prior to the task, the experiment is explained to the participants in details and trials 

without data collection are performed to check the understanding and practice.  

In Figure 8-3, the prototype is positioned on the handle at the front of the adjustable 

wrench, allowing the detection of all kinematic factors in exposed environment. 

The entire experiment is performed under the supervision of an inspector and a 
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video camera and the video data is used to validate the proposed method in the 

following sections. 

 

Figure 8-3 Set up for the rebar connection experiment 

8.2.2 Activity identification 

Normally, the rebar connection task is performed by a single worker when installing 

prefabricated building components, placing rebars prior to pouring fresh concrete, 

or connecting new entities with existing building structures. Such task may occur 

anywhere and anytime, and it consists of four phases: 1) jaw-fitting phase; 2) 

turning phase; 3) jaw-leaving phase; 4) returning phase. As shown in Figure 8-4, 

the jaw-fitting phase begins when the worker opens the jaw enough for the female 

or male coupler to fit in. It is common that the opened jaw is a bit larger than the 

size of the coupler; the turning phase refers to applying torque over the wrench that 

the wrench is held and turned in a clockwise direction or counter-clockwise 

direction to tighten or loosen; the jaw-leaving phase describes the process that the 

wrench is removed from the coupler in a limited workplace; and the returning phase 

is the procedure that the wrench is reset to the original position for the next cycle. 

These four activities are repeated until the coupler and the rebar are tightly 
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connected that no more torque could be added or loose enough to remove the 

coupler directly. 

 

Figure 8-4 Activities performed in rebar connection task 

8.3 Turning data analysis 

Applying the data processing techniques in Chapter 5, the collected turning data is 

filtered and fused at the preprocessing stage, following by segmentation for further 

analysis. 

8.3.1 Data preprocessing 

Considering the sampling rate of 100 Hz, more than 50,000 samples are collected 

across 5 tries. Figure 8-5 shows a sample of collected raw acceleration data from 

the experiment. As the main activity of turning wrenches is rotating motions, the x, 

y components of accelerations fluctuate around zero whilst the z component 

fluctuates near to the constant one due to z axis pointing at the ground where it 

parallels to the gravity.  
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Figure 8-5 Samples of collected raw acceleration 

It can be proved by Figure 8-6 that the crucial motion of rebar connection task is 

applying torquer on wrench to forcing it to turn around z axis. The amplitudes of z 

component of the raw angular velocity are extremely large than that of x and y axes. 

In addition, the repetitive plot also identifies the repetitive patterns during the use 

of the wrench.  

 

Figure 8-6 Samples of collected raw angular velocity 
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Compared with the raw data of angular velocity, as shown in Figure 8-7, the raw 

magnetic fields perform a clearer repetitive pattern as the rectangular wave repeats 

over time. The component of x axis remains relatively constant while the y and z 

components increase/decrease dramatically and stays constant temporally.  

 

Figure 8-7 Samples of collected raw magnetic field 

To address the systematic and random noises within the signals, AVAR is employed 

to determine the main source of noises and the noises are then modelled to penetrate 

within the signals. 

8.3.2 Activity segmentation 

With respect to the real-time applications, model-based algorithms due to the cyclic 

working patterns are adopted to recognize the cycles and count the numbers; 

meanwhile for the off-line applications, for example, the daily reports and 

productivity measurement, RNN-based algorithms using data features are 

employed to segment the motion stages and obtain the quality variables. 
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8.3.2.1 Model-based cycle detection 

Referring to the tool kinematic model proposed in Section 5.3, the magnitudes of 

raw data, containing accelerations, angular velocities and magnetic fields, are 

plotted in Figure 8-8. 

 

Figure 8-8 Samples of magnitudes of acceleration, angular velocity and magnetic field 

Since the crucial motion of a wrench is rotating around the target nut or bolt, the 

motion of rotation is plotted by integration of angular velocity, suggesting the 

wrench is forced to turn clockwise to tighten between the rebars and steel couplers. 

Moreover, the rotation around z axis appears to be much larger than that around x 

and y axes, indicating that the main operation on the wrench is to apply torque to 

turning around z axis. 
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Figure 8-9 Samples of rotations by integration of angular velocity 
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Figure 8-10 Comparison of local variance with different window sizes for rotation 

To segment the cyclic motions, the local variance is computed with different sizes 

of moving windows at first. As shown in Figure 8-10, the line of local variance 

achieves local highest peaks when the rotation angle changes dramatically. The 

larger window size is, the higher peaks of the local variance waves reach. 

Meanwhile the offset between the catastrophe point of the raw rotation and the 

maximum point of the local variance decreases over the window size; that is to say, 

when the origin data begin to increase, the local variance changes subsequently with 

a delay, the delay increases with the enlargement of the moving window size, 

contributing to the reduction of sensitivity, and vice versa. A careful balance has to 

be maintained between sensitivity and visibility for the choose of parameters. In 

this experiment of rebar connection, 49 as an odd window size is adopted. 

The motion cycles – turning the wrench around z axis therefore are detected by 

applying a threshold immediately. Figure 8-11 indicates the cycles detected by the 
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model-based segmentation algorithms, which is simple and flexible for multiple 

kinds of construction tasks. It can be seen that a cycle is composed of two adjacent 

local peaks. One represents the process that a worker is applying torque (turning 

phase); the other one refers to resetting the wrench to its beginning place (returning 

phase). The gentle curves following these peaks are phases that the worker adjust 

the wrench to the target (jaw-fitting phase) or remove it from the target (jaw-leaving 

phase). Since the quick adjustment of a wrench requires some specific skills and 

working experiences, the subjects in this experiment sometimes cannot grasp the 

nut or bolt at the first time. That’s the reason why there also exist tiny peaks at the 

gentle phases. Once the cyclic motions are detected and the phases are segmented, 

the productivity can be measured quantitively by counting turning cycles, and the 

final rotation of wrench is calculated as the product of the amount of cycles and the 

average rotation of each cycle. 

 

Figure 8-11 Samples of cycles detected by model-based segmentation from rotation 
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8.3.2.2 ML-based cycle detection 

Compared with the model-based cycle detection algorithms, the machine learning 

(ML) techniques are simple to apply but comprehensive to understand. ML-based 

cycle detection has been widely used in waveform segmentation, such as human 

electrocardiogram (ECG) signals and electroencephalography (EEG) signals. 

Similarly, the construction task can be modelled as a sequence of motions as a 

sequence of kinematic data collected by IMU sensors on the construction tools.  

In this research, the authors build up an open-source dataset, aiming to provide a 

reference for measurements that useful for segmenting the use phases, assessing the 

overall quality of the construction tasks and the presence of abnormalities. 

The ML-based cycle detection consists of two steps: feature selection and 

classification. The raw data are sampled in fixed-width sliding window of 1.28 sec 

and 50% overlap, that each record contains 128 samples from IMU sensors. For 

each window, the following features are obtained by calculating variables from the 

acceleration, angular velocity and magnetic field in both time and frequency 

domain. 
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Table 8-1 Features of IMU data for machine learning 

Signals Time-domain feature Frequency-domain feature  

ax, ay, az,  

wx, wy, wz,  

hx, hy, hz,  

rx, ry, rz 

Mean Frequency components 

Standard deviation Fundamental frequency (2nd) 

Mean absolute deviation Spectral centroid 

Maximum/ minimum Spectral flux 

Signal energy Spectral density 

Interquartile range Spectral roll-off 

Entropy  

Autocorrelation (lag=1)  

Zero cross rate  

Maximum amplitude  

xy, xz, yz (a, w, h, r) Correlation coefficient  

xyz (a, w, h, r) Magnitude  

Prior to feature extraction, the raw data in time domain has to be transformed into 

frequency domain, which describes the distribution of data components within 

different frequencies. As Figure 8-12 illustrates, the components of acceleration are 

distributed evenly overall the frequencies, and no frequencies dominates where the 

repetitive pattern is not clear or its frequency is not stable. 
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Figure 8-12 Frequency components of collected raw acceleration 

With respect to raw angular velocity, it can be seen from the Figure 8-13 that the 

main components are located within lower frequencies. Particularly, the angular 

velocity around z axis, which locates from 0 to 2 Hz, represents the crucial motions 

during the rebar connection task. 

 

Figure 8-13 Frequency components of collected raw angular velocity 

Similar to the raw magnetic field in time domain, Figure 8-14 also reveals that the 
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lower components dominate along with the y and z axes in frequency domain, 

particularly the component of 0.25 Hz, possibly suggesting the frequency of the 

crucial repetitive motion cycles.  

 

 

Figure 8-14 Frequency components of collected raw magnetic field 

The simplest ML model selected in this research is support vector machine (SVM). 

State-of-the-art ML models, such as long short-term memory model (LSTM) and 

prohet time series forecasting model, are examined in further research, which is out 

of the scope of this study. 

8.4 Experiment results 

With respect to the amount of turning motions, the model-based activity 

segmentation is capable of achieving 100% accuracy in the laboratory environment 

due to suitable parameters and regular activities in conformity with the construction  
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conventions and standards. However, under the circumstance that the project is 

carried out in exposed environment, two assumptions must be fulfilled before the 

implementation of model-based activity recognition. One assumption is to ensure 

the workers carry out their tasks according to the normal practice; the other is to 

adjust the model parameters carefully, containing the size of the moving window 

and the threshold for filtering. 

On the other side, the classification results of the ML-based model are depicted by 

a confusion matrix, which is listed in   
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Table 8-2. Given the accuracy, precision, and recall, more than a half of samples 

can be identified correctly. The matrix shows that the classification precision of 

picking/putting phase performs better than others, meanwhile the recall of 

picking/putting phase and jaw-leaving phase are both better. Rather, for turning 

phase and returning phase, although the precision is more than a half, the recall is 

far from acceptance. This exposes some false detection mostly in the dynamic and 

short-duration activities possibly due to the rolling windows size since larger 

window size captures more time and frequency information but fuzzies the 

boundaries between adjacent motions, and vice versa. In addition, the number of 

short-duration phases is less than that of long-duration activities, the corresponding 

coefficients are insufficiently finetuned.  
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Table 8-2 Confusion matrix of SVM for rebar connection task 

Activity PP JF TN JL RT Recall 

Picking/putting (PP) phase 73 0 0 2 0 97.33% 

Jaw-fitting (JF) phase 11 139 4 26 2 76.37% 

Turning (TN) phase 1 44 23 59 3 17.69% 

Jaw-leaving (JL) phase 8 24 9 191 3 81.28% 

Returning (RT) phase 1 32 1 46 19 12.09% 

Precision 77.66% 58.16% 62.16% 58.95% 57.89% 61.29% 

Figure 8-15 describes the activity segmentation of the experiment after 

synchronization with recorded videos. Within a repetitive cycle, the JF, TN, JL, and 

RT activities are carried out one by one to enforce the nut or bolt tighten. Commonly, 

although applying torque is the crucial and productive activity for rebar connection 

task, its time lasts for only a small portion across the construction stages. Therefore, 

collecting the rotation angle around z axis of sensor can reveal the performance of 

the connection tasks, including total turning angle, total turning time, and 

productivity, which are used to trace backward the construction process with 

reliable proofs, particularly the embedded length of the threaded rebars. 



137 

  

Figure 8-15 Activity detection using proposed prototype and models 

Considering the entire rotation angle equals to the product of rotation amount and 

rotation angle, it is believed to draw a conclusion for quality evaluation based on 

the collected data from IMU sensors according to the traceability chain of rebar 

connection tasks as shown in Figure 8-16. The variable N refers to the amount of 

repetitive turning activities which is detected by activity segmentation model and 

the variable R representing the rotation angle of each turning activity is identified 

by the integration of angular velocity in turning phase. The variable of total rotation 

angle is thus obtained by the product of variable N and R, which can be mapped to 
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embedded length by multiplying the screw pitch of the nut/bolt or thread, providing 

the crucial assessment for connection quality. 

  

Figure 8-16 Rebar connection traceability chain 

In the experiment, each time and each subject is required to force the wrench rotate 

around the nut or bolt for 120 degree, and the wrench revolves the nut or bolt for 

21 or 22 loops, in terms that the wrench has to be turned by 7 circles to tighten the 

nut and bolt. Here, the amount of rotation loops is recognized correctly by the 

activity segmentation proposed in this research, and for each repetitive rotation, the 

average rotation angle is 106.67 degree with a standard deviation of 6.50 degree. 

As the histogram in Figure 8-17 describes, most of the rotation angles cannot reach 

120 degree as suggested, and the total rotation angles for each test are 2146.38, 

2112.03, 2253.56, 2186.57, 2278.06 degree. The discrepancies between suggestion, 

recorded videos and the collected data by proposed methods are the possible results 

of personal work experiences, skills and their subjective consciousness towards the 

rebar connection tasks. In conclusion, the direct measurement using IMU sensor 

with an accuracy of 88.81% provides a reliable and quantitative reference for 

decision making process, particularly for concealed projects that are invisible. 
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Figure 8-17 Histogram of rotation angle for rebar connection experiment 

8.5 Summary 

This chapter chiefly shows the feasibility of applying the prototype developed and 

the model proposed in previous sections by a rebar connection experiment. The 

results prove the effectiveness and efficiency of the smart construction tool gadget 

using a solo IMU sensor attached on an adjustable wrench. The primary findings 

are summaries as follows: 

 Rebar connection plays an important role in the construction of concrete 

structures. To ensure the strength of the connection, the rigid length must be 

governed to be conformity with standards. 

 Since the nuts, bolts and threads at construction sites are always joined by 

turning crews, rigid length is thus determined by the rotation process of a 

wrench; that is to say, monitoring the use of a wrench enables the management 

of the rebar connection tasks. 

 Model-based approach to detect repetitive motions is simple and effective but 
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requires predefined parameters determined by work experiences, meanwhile 

ML-based cycle detection is flexible and robust under different personal 

circumstances but fails for dynamic and short-duration activities due to the 

sample size. 

 Compared with the record videos and oral reports of the participants, the result 

draw using the smart construction tool gadget is likely to be rigorous because 

of possible signals delays and discrepancies caused by personal work 

experiences, skills and their subjective consciousness. 
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CHAPTER 9 CONCRETE 

CONSOLIDATION EXPERIMENT 

Apart from visible construction processes in a project, there are also a number of 

invisible processes that cannot be inspected and monitored directly or covered by 

other building components, such as concrete consolidation and cast-in-place 

concrete components (piles, beams, walls, slabs, and columns). The only way to 

control and manage the quality of these construction process and products is to track 

the entire construction process with novel methods that are not affected by none-

line-of-light effects. 

This chapter thus test the developed prototype and proposed methods in a typical 

concealed project – concrete consolidation experiment with a concrete internal 

vibrator. The experiment is introduced in four parts: 1) concrete consolidation task; 

2) experiment procedure; 3) moving data analysis; and 4) experiment results. 

Section 9.1 briefly represents the importance and the mechanism of the concrete 

consolidation, but it is hardly to monitor with the current ways due to its invisible 

property. The following Section 8.2 introduces the design and setting of the 

experiment procedures and the activity identification of the concrete consolidation 

by a model-based approach using the repetitive features in the use of the vibrator. 

The collected data are then processed and analyzed in Section 9.3, following by the 



142 

Section 9.4 describing the results with physical meanings. The last Section 9.5 

establishes the traceability chain to combine the dependent and independent 

variables from manual efforts and environmental effects for the evaluation of the 

concrete quality. The overall structure of this section is shown in Figure 9-1. 

 

Figure 9-1 Structure of rebar connection experiment chapter 

9.1 Concrete consolidation task 

The consolidation of concrete plays an important role in the short- and long-term 

performance of concrete building components with respect to the mechanical, 

aesthetic and functional aspects. To ensure the consolidated quality of a concrete 

construction, it is common and economical to utilize internal/immersion, surface, 

external vibrators, and rebar shakers. An internal vibrator as the most common used 

power tool aims to eliminate an excessive amount of entrapped air and facilitate the 

concrete consolidation process. However, the vibration process is invisible due to 
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the fresh concrete is not transparency that the level of concrete consolidation is 

immeasurable if it is pouring into the formworks.  

Improper concrete consolidation may cause a series of concrete defects, such as 

over-vibration and insufficient vibration, which leads to the reduction of the long-

term compressive and tensile strength and durability (Eghtesadi and Nokken 2017). 

For example, well-proportioned concrete has adequate consistency that is not 

readily susceptible to segregation because of over-vibration. But if the mixture 

containing excess mortar, it is prone to serious segregation that some size groups of 

aggregates separate from cement mortar in terms that the denser aggregates settle 

to the bottom while the lighter cement paste tends to move upwards. The upper 

layer is therefore weaker than the lower that possibly make failures of the concrete 

structure during the operation because of the potential plane of weakness. In short, 

the segregated concrete performs weak in strength and inhomogeneous in quality, 

resulting in plastic shrinkage cracks on the surface and difficulties at the concrete 

compaction. By the contrary, concrete with insufficient vibration or without 

vibration reduce the actual strength and durability dramatically as the trapped air 

and voids cannot prevent the rebars from environmental damages and steel 

corrosion. In addition, as the fresh concrete carbonates over time, the pH drops 

along the front deeper, the passive oxide layer that formed around the steel dissolves, 

and the rebar corrosion proceed, all facilitating the further reduction of strength and 

durability. It can be learnt that the concrete vibration underscore strength and 

durability of the fresh concrete, without which, the reinforcement concrete can 
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hardly be used.  

Therefore, the core indicator to evaluate the concrete quality is the area of effect 

(AoE) of the internal vibrator. When an immersion/internal concrete vibrator is 

inserted into the fresh or soft concrete, a compression wave is formed around the 

body of the poker body, which is broadcast within the concrete to transmit the force 

and energy. Thus, the concrete particles are forced to flow like a liquid where the 

internal friction decreases. The aggregates are reconstructed to sink, and the trapped 

air rises, resulting in the consolidation of the concrete. However, the shear forces 

weaken over distance and time and are affected by the intrinsic specifications of the 

concrete vibrator. When the shear force is less than the internal friction, the concrete 

is not allowed to flow, which is called a Bingham plastic effect. As Figure 9-2 

illustrates, the AoE of an internal concrete vibrator is a cylinder where the fresh 

concrete within the cylinder is vibrated. It is thus obvious to conclude that the 

tracking the position of the vibrator is the effective and efficient way to monitor the 

quality of concrete consolidation.  

 

Figure 9-2 AoE of an internal concrete vibrator 



145 

In this research, the radius of the work region is affected by the attenuation of the 

compression waves (Dessoff 1937), the recommend formula of which can be 

written as follows: 

 𝑣𝑟 = 𝑣0
√

𝑟𝑖
𝑟

𝑒
−

𝛺
𝑟−𝑟𝑖 (9.1) 

where 𝑣𝑟  is the radial velocity at radius 𝑟 , 𝑣0  refers to the velocity of the 

vibrations of the vibrator surface, 𝑟𝑖 represents the radius of the poker body, and 

𝛺 is the coefficient of damping, of which the consistency for concrete ranges from 

flowing to plastic, which is determined to have a value of between 0.04 and 0.08, 

respectively .  

9.2 Experiment procedure 

Similar to the rebar connection task experiment, concrete consolidation experiment 

is also conducted by the smart construction tool gadget in the laboratory. The 

difference is that the process of concrete consolidation is invisible, and the 

processing data is positions instead of postures.  

9.2.1 Design and setting 

There are 10 participants in this experiment, and each of them is asked to simulate 

the use of an internal concrete vibrator in virtual fresh concrete. The developed 

prototype is installed inside the tube body (vibrator head) of the internal concrete 

vibrator. The IMU sensor integrated with BLE module is settled in the head cap 
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filled with protective and cushioning materials. The head cap is then connected to 

the vibrator by mechanical threads which is simple and easy handling for charging. 

Notably, this connection is feasible for wireless IMU sensor that the signals can 

transmit through metal materials. Rather, for IMU integrated with GPS module, it 

is suggested to embed the sensor in the board of the vibrator which is accessible by 

wires and antennas.  

 

Figure 9-3 Deployment of the IMU sensor in concrete consolidation experiment 

9.2.2 Activity identification 

The concrete consolidation task is commonly divided into four steps, the 

acceleration, velocity, and displacement exhibit periodic changes. These four steps 

consist of putting down phase (D phase), vibration phase (B phase), pulling up 

phase (U phase), and moving phase (T phase). As Table 9-1 lists, these four phases 

have totally different characteristics according to the position of the vibrators.  
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Table 9-1 Confusion matrix of SVM for rebar connection task 

Activity Key characteristics 

D phase Putting the vibrator down 

B phase Vibrating the concrete at the bottom 

U phase Pulling the vibrator up 

T phase Moving the vibrator to another place 

In addition, not only the positions are critical features used for activity identification, 

the other dynamic motion features, such as the velocity and acceleration, can also 

be used for activity recognition. For example, when a vibrator jams quickly into the 

wet concrete under a steady state, the displacement reaches the appropriate depth, 

and the velocity increases from zero and decreases to zero at different speeds owing 

to medium changes. After a short sinking time, the vibrator rises into the open air, 

where the displacement returns to the initial value, and then repeats the increase-

decrease cycle again. Each time the concrete vibrator sinks into the wet concrete, it 

will promote the concrete particles to settle into a solid mass as well as encourage 

trapped air pockets and voids to rise out of the wet concrete. Therefore, the 

associated progress variable for concrete consolidation contains various indicators, 

containing position, vibration time, velocity, acceleration, etc.  
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Figure 9-4 Activities performed in concrete consolidation task 

9.3 Moving data analysis 

In the concrete consolidation experiment, this section focuses on the moving data 

analysis. Rotation is the direct integral of the raw angular velocity for rebar 

connection task. Rather, position is calculated as the quadratic integral of the raw 

acceleration, which is more comprehensive and error-prone due to the cumulated 

random noises. Such noises are delivered from acceleration to velocity, passed to 

final position, and become larger and larger over time. 

9.3.1 Data processing 

The raw data collected with sampling frequency of 100 Hz is shown in Figure 9-5. 

It can be seen that the acceleration along z axis fluctuates around 1 due to gravity, 

which can be eliminated by gravity compensation in Section 5.1.3. While the raw 

acceleration along x and y axes appears to change around 0. An interesting finding 

is that the x-axis acceleration decreases meanwhile the y-axis acceleration increases 

at the same time. Such situation may be the result of right-handed effect that when 
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participants cannot hold the vibrator strictly vertical, they are prone to move the 

vibrator back to original position and posture along different orientations. 

 

Figure 9-5 Samples of collected raw acceleration 

The above discussion can be proved by the plot of the raw angular velocity in Figure 

9-6. Since the vibrator is required to keep straightly across the experiment, the tri-

axis angular velocity should be constant at zero. But this figure reveals that for each 

movement, it is impossible for subjects to behave strictly following the ideal 

regulations. Therefore the signals seem to perform a cyclic patter from the 

systematic view but random from the personal view.  
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Figure 9-6 Samples of collected raw angular velocity 

For the raw magnetic field, Figure 9-7 shows the clear repetitive patterns in all of 

the axes. It can be concluded that for each time of inserting the vibrator, the tri-

magnetic field increases and decreases dramatically, following by a stable state, and 

repeats the increase and decrease process again. 

 

Figure 9-7 Samples of collected raw magnetic field 
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9.3.2 Activity segmentation 

As identified in the previous sections, the vibration cycle is composed of four 

phases and their characteristics are listed as follows: 

 D phase - The immersion vibrator sinks into the soft concrete. At this stage, the 

vibrator begins with an acceleration larger than gravity, and ends with an 

acceleration smaller than gravity, leading to a static beginning state and a static 

ending state. Simultaneously, the magnetic field signals suggest similar 

patterns. 

 B phase - The vibrator is immersed in concrete, which should remain stable for 

a certain time. 

 U phase - The vibrator rises from the concrete, which is almost the same as the 

down phase but should be slower to avoid voids and hidden holes. 

 T phase - The vibrator remains in the air for another movement. The 

acceleration, angular velocity and magnetic field are commonly determined 

based on the working path patterns, such as a zigzag or spiral. 

Commonly, the less random noises the raw data contain, the clearer information 

they provide. To improve the performance of activity segmentation, the raw data 

are transformed into frequency domain to determine the features. Figure 9-8 

describes the distribution of acceleration components from 0 to 30 Hz, where most 

of them locate within 5 Hz. It is obvious that the acceleration along z axis occupies 

the largest proportion with respect to the strength, indicating the crucial motion of 

the vibrator is to move upwards and downwards, whereas most components of the 
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acceleration along x and y axes are low-frequency components since the vibrator is 

moved horizontally after the completion of consolidation at a certain place.  

 

Figure 9-8 Frequency components of collected raw acceleration 

For the angular velocity, there exist two main frequency components in Figure 9-9. 

The lower frequency components are similar to that of the acceleration, resulting 

from the movement of vibrator from one place to another, meanwhile the higher 

frequency components refer to the random noises. 
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Figure 9-9 Frequency components of collected raw angular velocity 

The magnetic field performs best with respect to the distribution of the frequency 

components. As shown in Figure 9-10, there are almost no random noises embedded 

in the raw magnetic field data due to no high frequency components. Among the 

low frequency components along z axis, the fundamental frequency is 0.12 Hz, 0.48 

Hz, and 0.61 Hz.  

 

Figure 9-10 Frequency components of collected raw magnetic field 
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9.4 Experiment results 

The simplest task for concrete consolidation experiment is to count the number of 

vibrations. However, since the direct characteristic of the concrete consolidation 

experiments is the position of vibrator, which is quadratic integral of the raw 

collected acceleration, the direct segmentation using the location tracks is error-

prone due to the cumulated random noises over time. Therefore, this study tests the 

proposed methods on acceleration and magnetic field. Figure 9-11 illustrates the 

counting results relying on the acceleration data. From the systematic view, 

although the acceleration data are likely to segment the activities, the hidden 

repetitive pattern is not obvious because of a number of peaks from random noises. 

 

Figure 9-11 Counting the number of vibrations by magnetic field 

Compared with acceleration data, magnetic field data is simple and clear so that the 

repetitive pattern can be easily identified in Figure 9-12. It is therefore to conclude 

that the accuracy of counting by segmentation on magnetic field data is more 
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effective and efficient than the others.  

 

Figure 9-12 Counting the number of vibrations by magnetic field 

Once each of the repetitive cycle is segmented, the four phases for the use of the 

internal concrete vibrator can be recognized based on their dynamic features of 

motions. As Figure 9-13 describes, at the D phase, the magnetic field along the 

gravity direction increases and decreases dramatically to insert into the fresh 

concrete; at the B phases, it keeps constant for a while until no more air can escape 

from the concrete; at the U phase, the signal follows its path at D phase, but in 

opposite direction; and at the T phase, the vibrator moves to another place and its 

magnetic field remains constant as well. 
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Figure 9-13 Activity segmentation using proposed prototype and models 

Besides, the rotation of the vibrator is also a critical variable as it has direct impact 

on the placement quality of steel rebars according to the construction standards, 

particular for the cast-in-site concrete structure and reinforced concrete block 

structures. Assume the local coordinate system of an internal concrete vibrator is 

shown in Figure 9-14, and the acceptable rotation angles around x and y axes are 

15 degrees, ensuring that the vibrators do not vibrate the rebars or formwork when 

putting or pulling. 
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Figure 9-14 Local coordinate system of an internal concrete vibrator 

Figure 9-15 shows samples of rotation angles calculated as the integral of the raw 

angular velocity. It can be seen that the rotations around x and y axes are in 

conformity with the assumption. Notably, the rotation around z axis, yaw motion is 

caused by rotating the body of vibrator by hands, which has few impacts on the 

performance of the concrete consolidation.  

 

Figure 9-15 Samples of calculated rotation angles 

Thus, based on the on-site experience, an under-vibration or low temperature during 

the pouring of concrete contributes significantly to a honeycomb surface, 

particularly when the temperature of the concrete is less than 5° during the pouring 
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procedure in winter, whereas an over-vibration is accountable for a serious 

segregation. An assessment of the vibration at a specific location is clearly affected 

by the vibration duration, number of vibrations, and the vibration effect. It is well 

known that a long vibration duration leads to an over-vibration, whereas a short 

vibration duration results in an under-vibration. With respect to the vibration effect, 

the key factors are the number of vibrations, vibration action region, viscosity of 

the concrete and the vibrator specifications, whereas high-viscosity concrete with a 

flowable property increases the effects of the vibration and low-viscosity has an 

adverse impact. To model these dependencies, a traceability chain model is 

established in Figure 9-16. The node S represents the specifications of the vibrator, 

contains running time, maximum vibrations per minute (VPM), length and diameter. 

V refers to the viscosity of the fresh concrete, known as the resistance to 

deformation at a given rate. N, R, and D nodes are number of vibrations, vibration 

rotation angle, and vibration depth respectively, generated by the developed 

prototype and the proposed models. These nodes determine the efforts of the 

operator during a vibration at a certain place, which is named node E, from which 

it can be concluded that the construction subprocess is over-vibration, insufficient 

vibration or proper vibration. Node E, S and V are account for the node A, 

describing the area of effect per vibration. Combining them and vibration position 

of node P, and environmental variable of node T (such as temperature and humidity), 

the vibration quality of node Q can be evaluated in a quantitative way. Based on 

these probabilities, it can be used to infer the quality risks of some certain concrete 
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defects, such as honeycomb surface and segregation. For example, if the detected 

data of the vibrator reveals the vibration time is less than expected, the vibration 

effect is prone to be insufficient, and the risk of honeycomb surface of the concrete 

increases subsequently. On the contrary, if the data shows that the number of 

vibrations exceeds the expectation, the fresh concrete is therefore over-vibrated that 

may lead to segregation and the reduction in strength.  

 

Figure 9-16 Concrete vibration traceability chain 

In this experiment, the vibration cycle is segmented by the magnetic field data 

around z axis. Figure 9-17 illustrates the histogram of the vibration time for the 

concrete consolidation experiment, the mean value and standard deviation of which 

are 1015.70 ms and 81.18 ms. The reason for the small deviation is that the subjects 

conduct the experiment with a stopwatch to ensure that the vibration time locates 

between the acceptable minimum and maximum durations around 10 s.  
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Figure 9-17 Histogram of vibration time for the concrete consolidation experiment 

Based on the vibration cycles, the rotation angles in each cycle are plotted in Figure 

9-18. It can be seen from the subfigures that all of the vibration samples satisfy the 

assumed regulations that all of the angles around x and y axes are less than 15 

degree. Therefore, the node probabilities collected from the vibrators are generated 

and the trace forwards and backwards are available.  

 

Figure 9-18 Sample of rotation around x and y axes in vibration cycles 
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In addition, the depth of vibration is calculated by the integral of the raw 

acceleration in each cycle. As Figure 9-19 illustrates, although the required 

vibration depth in this simulated experiment is 1.5 m, most of the participants tend 

to move the vibrator for a longer distance with a mean of 1.36 m and a standard 

deviation of 0.17 m.  

 

Figure 9-19 Histogram of vibration depth for the concrete consolidation experiment 

9.5 Traceability analysis 

Aiming to infer the quality issue according to the tool data, a trace forward refers 

to pursuing the downstream direction along the structure of the Bayesian network. 

Based on the Bayesian network theory, the inference expresses the joint distribution 

of the entire network which can be calculated based on the chain rule. Therefore, 

the conditional probability distributions are then denoted by tabular probability 

distributions as a simple representation. 
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Since the prior probabilities of some nodes in the traceability chain are unknown 

according to the current knowledge, this section thus begins with some assumptions 

that provides the basic information for the traceability analysis. 

 Node V: the concrete viscosity is categorized into high, medium or low levels. 

Assume their probabilities equals and the marginal probability of node V can 

be represented by Table 9-2. 

Table 9-2 Marginal probability of the concrete viscosity 

Concrete viscosity High Medium Low 

P(V) 0.33 0.34 0.33 

 

 Node S: the vibrator specifications are commonly fixed in a construction 

project. It is assumed to be normal and suitable for the concrete consolidation 

here to simplify the inference. The node S is therefore considered to be totally 

right with a probability of 1. 

 Node N: the number of vibrations is detected exactly by the developed 

prototype and the proposed method. According to the result, all of the concrete 

at the required places is vibrated, and the probability of node N is determined 

to be 1 as well.  

 Node D: the duration of vibrations is also captured by the smart construction 

tool gadget. Assume the acceptable vibration time varies from 0.8 to 1.2 m, the 

tabular probability of the vibration time is summarized in Table 9-3. 
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Table 9-3 Tabular probability of the vibration duration 

Vibration duration Long Medium Short 

P(D) 0.02 0.96 0.02 

 

 Node R: the rotation angles are also collected to ensure the verticality during 

the vibration and assume the states of vibration include acceptable rotation and 

unacceptable rotation. In the experiment, all of the vibrations are in conformity 

with the current regulations and the probability of node R is thus described in . 

Table 9-4 Tabular probability of the vibration rotation 

Vibration rotation Acceptable Unacceptable 

P(R) 1.00 0.00 

 

 Node P: the vibration position refers to the coverage rate of the vibration 

process. Since no participants have missed certain vibration points, the 

probability of node P is therefore considered to be 1.  

 Node T: as the temperature in the experimental environment is suitable for the 

fresh concrete. The effect of temperature on the fresh concrete is reasonable to 

be ignored for simplification. 

The above nodes, generated from collected data, work experiences and prior 

knowledge, are independent variables. But the following nodes are dependent nodes 

that conditional probabilities are provided based on prior knowledge of the 

construction quality management.  

 Node E: the vibration effect mainly refers to the manual efforts on the 
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performance of the concrete consolidation, which is composed of three states: 

over-vibration, insufficient vibration and proper vibration. This probability is 

determined by the number of vibrations, the vibration rotation and vibration 

time. Considering all the vibration rotations and the number of vibrations meet 

the requirements, and the tabular probability distribution is thus simplified and 

assumed in Table 9-5. 

Table 9-5 Tabular probability of the vibration effect 

P(E|D) Vibration effect 

Vibration duration Over-vibration Proper vibration Insufficient vibration 

Long 0.7 0.2 0.1 

Medium 0.1 0.8 0.1 

Short 0.0 0.2 0.8 

 

 Node A: the vibration area of effect represents the action region of each 

vibration, which is determined by the concrete viscosity, the vibrator 

specifications and the vibration effect. Considering all the vibration rotations 

meet the requirements of regulations, the tabular probability of the area of 

effect is listed in Node Q: represents the vibration quality from a systematic 

view that combines vibration positions, their vibration AoEs, vibration effects, 

and environmental variables, such as temperature and humidity. For this node, 

it is suggested to apply weighted average to calculating the systematic quality 

of the concrete consolidation. Notably, the node Q has a continuous 2D 

distribution due to the 2D input - vibration positions. 

 Node F: refers various concrete defects that the stake holder concerns so the 

conditional probability is provided by experts and skilled workers, such as 
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honeycomb surface, segregation, exposed bars, etc. 

 Table 9-6. 

 Node Q: represents the vibration quality from a systematic view that combines 

vibration positions, their vibration AoEs, vibration effects, and environmental 

variables, such as temperature and humidity. For this node, it is suggested to 

apply weighted average to calculating the systematic quality of the concrete 

consolidation. Notably, the node Q has a continuous 2D distribution due to the 

2D input - vibration positions. 

 Node F: refers various concrete defects that the stake holder concerns so the 

conditional probability is provided by experts and skilled workers, such as 

honeycomb surface, segregation, exposed bars, etc. 

Table 9-6 Tabular probability of the vibration AoE 

P(A|E, V) Vibration AoE 

Vibration effect Concrete viscosity Proper vibration Improper vibration 

Over-vibration 

High 0.1 0.9 

Medium 0.2 0.8 

Low 0.4 0.5 

Proper vibration 

High 0.6 0.4 

Medium 1.0 0.0 

Low 0.6 0.4 

Insufficient vibration 

High 0.4 0.6 

Medium 0.2 0.8 

Low 0.0 1.0 

Given the conditional probabilities, the joint distribution of all attributes can be 
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calculated by the chain rule, which can be written as follows: 

 𝑃(𝑋1, ⋯𝑋𝑛) = ∏𝑃

𝑛

𝑖=1

(𝑋𝑖|𝑃𝑎𝑟(𝑋𝑖)) (9.2) 

where 𝑃𝑎𝑟(⋅)  is the parent of node 𝑋𝑖 . The Lauritzen-Spiegelhalter, Shenoy-

Shafer and Hugin algorithms can be used to conduct a belief propagation, providing 

a time-saving and storage-saving solution to exactly identify the conditional quality 

issues (Lepar and Shenoy 2013). Thus, the distribution of the vibration effect is 

showed in Table 9-7, and that of the vibration AoE is listed in Table 9-8. 

Table 9-7 Probability distribution of the vibration effect 

Vibration effect Over-vibration Proper vibration Insufficient vibration 

P(E) 0.11 0.776 0.114 

Table 9-8 Probability distribution of the vibration AoE 

Vibration AoE Proper vibration Improper vibration 

P(A) 0.619566 0.376804 

9.6 Summary 

This chapter reshows the feasibility of applying the developed prototype and the 

proposed models in this research by a more complex and comprehensive 

experiment – concrete consolidation experiment. The results prove the effectiveness 

and efficiency of the smart construction tool gadget for a concealed project – 

concrete consolidation tasks with an internal concrete vibrator. The main findings 
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are listed as follows: 

 Concrete consolidation as a concealed project in the construction industry 

determines the quality performance of the final concrete products. The only 

way to monitor such invisible projects is to control and track the associated 

construction tasks. 

 The number, time, depth, position and posture of the vibrator all have impacts 

on the performance of the concrete consolidation. It is reasonable to apply 

kinematic models to analyze the use of the vibrator by its repetitive features. 

 As the manual efforts on the vibrators are evaluated in a quantitative and 

scientific way, subjective variables and objective variables (such as 

environmental and material variables) can be combined together in the 

traceability chain for tracking and tracing.  
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CHAPTER 10 DISCUSSIONS 

The aim of this study is to present a concept idea of traceability to monitor and 

manage the construction process without privacy issues and intrusions. It is 

proposed to track the construction hand and power tools instead of tracking worker 

by an IMU sensor integrated with a BLE module, enabling the trace forwards and 

backwards of the associated construction process for quality assessment and root 

cause identification. The focus of this chapter is the prototype, smart construction 

tool gadget, developed by the authors in Chapter 4, 7, and the data process and 

analysis methods, proposed by the authors, in Chapter 5 and 6. This chapter 

therefore discusses three topics: 1) validity of the results; 2) generalization of the 

prototype and methods; 3) limitations of this study. 

10.1 Validity of the results 

The prototype – smart construction tool gadget has been developed for manual 

construction tasks with hand or power tools, and the model has been proposed based 

on solid work experiences and construction knowledge. Two experiments are 

carried out to test them for improvement. The first experiment is rebar connection 

task using an adjustable wrench, which is common, typical and significant in the 

construction industry. The second experiment is concrete consolidation task using 
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an internal concrete vibrator, which is invisible and distributed at the construction 

sites. In total, more than 20 participants have engaged in the lab experiment 

although they are not working as construction labor in daily life. To ensure the 

simulation close to the reality in practical projects, all of the participants are 

required to be trained and tested prior to the tasks so that their productivity and 

accuracy can achieve the appropriate levels.  

Considering the potential errors generated from the developed system, the authors 

also have installed surveillance cameras to compare the IMU collected data with 

recorded videos and manual reports. The results show the high accuracy and 

reliability of the smart construction tool gadget with respect to the acceleration, 

angular velocity, magnetic field and temperature. For other indirect variables, such 

as displacement, velocity and rotation, these data are produced by numerical 

mathematical equations with an acceptable error. For example, the error term of the 

Trapezoid rule for integration is related to the 3th power of the sample interval, 

which is less than 10-6 and is considered to be acceptable for motion analysis.  

Since there is limited research associated to traceability concept or applications in 

the construction industry, the proposed traceability chain model is built up based on 

the mature traceability models in other industries, containing food and drug 

industries. Even if the proposed model has not been completely and exactly verified, 

this traceability model and analysis model is still to the greatest extent based on 

literature within the construction field. The validity of the data model and 
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traceability chain therefore depends on the validity of the literature used and a 

number of practical experiments. On one hand, many of the frameworks in 

literatures have been tested and proved to be effective and efficient in practice; on 

the other hand, two experiments of rebar connection task and concrete consolidation 

have been investigated and studies to highlight the feasibility of applying new 

concepts in the conventional construction industry without a huge change in normal 

activities. They both increase the validity of the data model and traceability chain, 

which in turn increase the validity of the developed prototype as well.  

10.2 Generalization of the prototype and models 

As discussed before, no published studies associated with the traceability concept 

in the area of construction has been found by the authors. It is therefore believed 

that the prototype developed, and the models proposed in this research can make a 

great contribution to the construction informatics within the construction industry. 

For the smart construction tool gadget, since it is designed to be portable and easy-

handling, the sensor is capable of installing on the body of tools, crewing to the 

handle of tools, and embedded in the board of power tools. If the model-based data 

model is adopted, the use of the tools must contain repetitive rotation or movement 

patterns as the patter is the foundation of activity segmentation in model-based 

kinematic models. Moreover, if the ML-based approach is implemented, it can be 

widely used for any kinds of construction tools after training or finetuning the 

artificial intelligence. 
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With respect to the traceability chain, the establishment of the Bayesian network, 

particularly, the structure and the conditional probability, is heavily relied on the 

prior knowledge and work experience. For example, researchers have shown the 

relation between the rigid length and the mechanical strength of steel coupler. It is 

obvious to build up a traceability chain that contains the node of rigid length, and 

the node of the connection quality as well as links them with an arrow to describe 

their cause-effect relation. With the advances in data-driven methods to construct 

the complex network, it is also possible to work out the structure and conditional 

probabilities of traceability chain without prior knowledge, but with adequate 

collected motion data of the associated tools in the future. 

In addition, since the rebar connection and concrete consolidation are quite 

common at the construction sites, the implementation of the developed prototype 

and the proposed methods can expand to most of the other construction activities, 

even certain invisible activities that current approaches cannot monitor, such as 

formwork by a hammer, rebar cut by a cutter or bender, rebar placement by a tie 

wire twister, etc.  

10.3 Limitations of this research 

Although this research develops a novel framework to monitor the construction 

quality performance and addresses the privacy and intrusion issues in the 

conventional data collection at sites, there are still certain limitations that may 

prevent the implementation and application of the prototype and models. These 



172 

limitations are summarized as follows:  

 For the construction tasks without tools, such as carrying heavy entities and 

manual inspections, although the smart construction tool gadget can be 

installed on the personal protective equipment, the data model based on 

repetitive features can not be applied immediately as the human body is not 

rigid without deformations. 

 Though the experiments in this study are typical and valuable to show the 

feasibility of smart construction tool gadget, more complex scenarios are not 

investigated and tested. For example, one of the most comprehensive 

construction tasks is formwork. When carpenters are forming for concrete 

structures, they carry and use various construction tools, containing hammers, 

nail guns, etc. To monitor the entire construction progress of formwork, all 

associated tools must be tracked and recorded at the same time, and data from 

multiple sources must be fused for traceability. The authors at the present time 

cannot construct the traceability chain and evaluate the quality performance 

without a strong knowledge background. Such limitations expose the risks of 

applying the prototype and models to more complex construction tasks. 

 Despite of the repetitive rotation and displacement, there are also other kinds 

of repetitive patterns. However, this research only focuses on rigid with 

repetitive patterns, the shape of which does not change across the construction 

stages. The construction activities that have no repetitive motions are not tested 

and examined in this research. For example, using concrete forming plastic 

chairs to place rebars may cost larger than expectation as the sensors are 

disposable.  
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10.4 Summary 

In this research, the results of the two experiments have clearly shown the 

effectiveness and efficiency of the smart construction tool gadget. The accuracy of 

the collection motions by IMU sensor and BLE module compared with recorded 

videos is more than 80 % and the proposed data model is capable of monitoring and 

tracing the entire construction process with a structured network for the rebar 

connection task and the concrete consolidation task.  

Although the developed prototype and models are applied and tested in practical 

experiments, it is still the authors’ belief that the prototype and models still require 

to be improved in the long run, and they should be adjusted to each construction 

activity for different construction defects.  
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CHAPTER 11 CONCLUSIONS 

To conclude, this chapter 1) summarizes the answers to the research questions at 

the beginning of this research; 2) presents the theoretical contributions and the 

practical implications to the construction industry; and 3) suggests the following 

research in the future. 

11.1 Answers to the research questions 

The purpose of this research is to improve the construction quality by introducing 

and increasing its traceability. To fulfill this purpose, the three-folded research 

questions are answered in the thesis: 

 How to collect the construction activities/processes data through the advanced 

techniques without privacy and intrusion issues? 

 A novel data collection using IMU and BLE techniques to track the 

construction hand tools and power tools for construction monitoring is 

proposed in this research. This tool-based data collection not only collects the 

kinematic motions of the tools, containing acceleration and angular velocity, it 

also records the dynamic changes of environment, including the magnetic field 

and temperature. Such data collection provides a non-intrusive alternative to 

the traditional construction tracking systems, such as wearable devices and 

surveillance cameras. In addition, the proposed data collection enables the 
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construction continuous monitoring of certain concealed projects. 

 How to analyze certain construction activities and evaluate their quality to 

determine whether they are conformity with the construction regulations 

relying on the collected data? 

 A tool kinematic model and several sensor models are proposed in this research 

to deal with the collected tool data. Here the tool kinematic model is composed 

of data processing, data fusion, data segmentation and feature extraction. The 

data processing module converts the direct measurements of IMU into the rigid 

movement of the construction tools; the data fusion module combines the data 

from different sources and integrates the data at adjacent times to improve the 

accuracy; the data segmentation module utilizes the cyclic patterns during the 

use of the tools to recognize the construction activities at different phases; and 

the feature extraction module calculates the process control variables for the 

compliance with associated regulations. The tool kinematic model based on a 

solo IMU sensor can not only retrieve the historical construction process, it can 

also segment the construction process for quality assessment of manual efforts 

at each stage. According to the two experimental results, given a cyclic 

repetitive pattern, this model semi-automatically conducts the data processing 

and analysis for the assessment of quality with a high accuracy. Moreover, ML-

based approach for segmentation is also tested in the experiment to show the 

feasibility of applying AI techniques to automatize quality control and 

monitoring completely.  

 How to combine the non-intrusive data collection and the smart data analysis 

model to automatically generate a traceable structure framework for quality 

evaluation and root cause analysis? 
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 A smart construction tool gadget and a construction traceability chain model 

are developed and proposed respectively to represent the framework of non-

intrusive and automated quality evaluation and root cause analysis. The tool-

based prototype is made up of an IMU and a BLE module, which validates the 

proposed data collection in practice. The construction traceability chain model 

formulates the collected data and quality information as a Bayesian network to 

conduct the quality analysis and management quantitatively. The two lab 

experiments proves that the combined framework of a non-intrusive tool-based 

data collection and a construction traceability chain model enables a clear 

vision of responsibilities and a structure record for quality evaluation and root 

causes analysis. 

This thesis has answered the research questions and validated these answers by 

practical experiments. Hence, the developed prototype and proposed method has 

fulfilled the research purpose and generated both theoretical and practical 

contributions.  

11.2 Theoretical contributions and practical implications 

This research firstly introduces the traceability concept into the construction 

industry, it therefore theoretically contributes to the research area of the 

construction quality management and practically contributes to the stake holders in 

the construction industry. These theoretical contributions are listed as follows: 

 This thesis has contributed to the research field with a detailed introduction of 

traceability concept to the construction industry. This concept and its associated 
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management framework have tested and analyzed to be feasible for the current 

construction quality management. 

 The kinematic tool data model makes contributions to the research field of 

activity recognition in many scenarios since it provides an effective and 

efficient alternative to the collect associated data instead of tracking the 

workers directly. Compared with the traditional ways, the proposed method is 

simple that can be transferred to various applications. 

 The traceability chain model theoretically contributes to the research area of 

the structural record of the construction process. It provides a new alternative 

to briefly capture the construction process as a flight box for air crafts. The 

recorded network is more effective and efficient than the manual reports. 

This thesis has also shown the practical implications by the rebar connection task 

and the concrete consolidation task, which are listed as follows: 

 The first practical implication is that the stake holders involved in the 

construction industry should increase the understanding of traceability concept 

for the quality management. They can gain a clear vision of responsibility due 

to the established traceability and transparency. 

 The second practical implication is that the contractors can apply the tool-based 

construction activity capture system instead of wearable devices and 

surveillance cameras to avoid offending personal privacy and enhance the 

relations between employees and employers. 

 The third practical implication is related to the public government. The 

construction associations and communities can apply the tool-based 

construction activity data collection to concealed projects in order to gain a 
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systematic view of the construction quality and outwit the anxiety in public. In 

addition, the regulations that govern the construction progress can also obtain 

a quantitative feedback for improvement in the next version. 

11.3  Future research 

This thesis within the area of the construction quality is limited due to the 

assumptions of working repetitive patterns and the two simple but typical 

experiments, but the framework of the construction traceability can serve as a 

starting point for future research in the research area of construction quality 

management. There are still a body of areas and techniques where researchers need 

to investigate and develop before the traceability concept widely implemented in 

the construction industry. These future researches contain, but not limited to the 

following areas: 

 The current IMU-based data collection only contains spatial parameters, such 

as the acceleration, the angular velocity, the magnetic field and the temperature. 

However, the construction process is not only affected by human behaviors but 

also by environmental factors, such as the humidity and illumination. Data 

from a variety of resources need to be added in future research to enrich the 

existing data and improve the robustness and reliability of the system. 

 A GPS connected with an antenna is wired and must be exposed to the outdoor 

environment to receive data from satellites, resulting in low accuracy for indoor 

environments. More state-of-the-art technologies need to be applied and used 

in the future to realize a wireless global localization. 
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 The energy of the developed system is supported by batteries. Thus, the sensors 

need to be charged over time. Biomechanical and passive tags should be 

investigated for future implementations to avoid frequent intervention. 

 In the future, the Standard Method of Measurement used in measurement of 

the quantities in construction projects will be investigated. The proposed 

methods can be integrated to achieve an automated and non-intrusive 

measurement in practices.  

 To construct a realistic traceability chain, a number of field experiments are 

required to generate the appropriate conditional and prior distribution 

parameters in the network. Only under this condition can the accuracy, as well 

as the determined prediction and cause, be inferred. 
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APPENDIX A NOISE POWER SPECTRAL 

DENSITY 

Noise power spectral density is the noise power per unit of bandwidth over 

frequency. The power spectral density (PSD) function of each noise in this research 

is listed as follows: 

 Quantization noise’s power spectral density function is written by: 

 

𝑃𝛺 = 4𝜋2𝑓2𝐶𝑄𝑁𝜏𝑐 (11.1) 

 Random walk/white noise’s power spectral density function is written by: 

 
𝑃𝛺 = 𝐶𝑅𝑊

2  (11.2) 

 Correlated noise’s power spectral density function is written by: 

 𝑃𝛺 =
𝑞2𝜏𝑐

2

1 + 4𝜋2𝑓2𝜏𝑐
2
 (11.3) 

 Sinusoidal noise’s power spectral density function is written by: 

 𝑃𝛺 =
𝛺0

2

2
(𝛿(𝑓 − 𝑓0) + 𝛿(𝑓 + 𝑓0)) (11.4) 

 Bias instability’s power spectral density function is written by: 

 𝑃𝛺 = {

𝐶𝐵𝐼
2

2𝜋𝑓
, 𝑓 ≤ 𝑓0

0, 𝑓 ≥ 𝑓0

 (11.5) 

 Rate random walk’s power spectral density function is written by: 
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 𝑃𝛺 =
𝐶𝑅𝑅𝑊

2

2𝜋𝑓2
 (11.6) 

 Rate ramp’s power spectral density function is written by: 

 𝑃𝛺 =
𝐶𝑅𝑅

2

8𝜋3𝑓3
 (11.7) 

Integration of these spectral components yields the total variance in a statistical 

process like AVAR by: 

 𝜎𝑦
2(𝜏) = 4∫ 𝑃𝛺

+∞

0

(𝑓)
sin4(𝜋𝑓𝜏)

𝜋2𝑓2𝜏2
𝑑𝑓 (11.8) 

where 𝑃𝛺 represents the PSD, 𝑓 is the frequency, and 𝜏 is the time interval. In 

time domain, the component of each noise in AVAR therefore is calculated by the 

following equations: 

 Quantization noise’s component in AVAR is represented by: 

 
3𝐶𝑄𝑁

2 ⋅ 𝜏−2 
(11.9) 

 Random walk/white noise’s component in AVAR is represented by: 

 
𝐶𝑅𝑊

2 ⋅ 𝜏−1 (11.10) 

 Correlated noise’s component in AVAR is represented by: 

 {

𝐶𝐶𝑁
2 ⋅ 𝜏−1, 𝜏 ≫ 𝜏𝑐

𝐶𝐶𝑁
2

3
⋅ 𝜏, 𝜏 ≪ 𝜏𝑐

 (11.11) 

 Sinusoidal noise’s component in AVAR is represented by: 
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 𝛺0
2
sin4𝜋𝑓0𝜏

𝜋4𝑓0
4𝜏4

 (11.12) 

 Bias instability’s component in AVAR is represented by: 

 
2ln2𝐶𝐵𝐼

2

𝜋
⋅ 𝜏0 (11.13) 

 Rate random walk’s component in AVAR is represented by: 

 
𝐶𝑅𝑅𝑊

2

3
⋅ 𝜏 (11.14) 

 Rate ramp’s component in AVAR is represented by: 

 
𝐶𝑅𝑅

2

2
⋅ 𝜏2 (11.15) 

where 𝐶𝑄𝑁 is the coefficient of QN, 𝐶𝑅𝑊 is the coefficient of RW, 𝐶𝐶𝑁 is the 

coefficient of CN, 𝐶𝐵𝐼 is the coefficient of BI, 𝐶𝑅𝑅𝑊 is the coefficient of RRW, 

𝐶𝑅𝑅 is the coefficient of RR. 
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APPENDIX B NUMERICAL INTEGRATION 

AND DIFFERENTIATION 

Integration and differentiation are basic mathematical operations in IMU data 

processing. For example, velocity is an integral of acceleration over time, 

displacement is an integral of velocity, and translational energy is an integral of 

force with respect to displacement. Also, jerk is a derivative of acceleration with 

respect to time and snap is a derivative of jerk. 

Suppose that 𝑓 is the direct measurement that is measured at a fixed time interval 

𝑇, its integral 𝐹 is approximated by the following equations: 

 Trapezoid rule: 

 𝐹(𝑡) ≈
𝑇

2
[𝑓(𝑡) + 𝑓(𝑡 + 𝑇)] (11.16) 

 Simpson’s rule: 

 𝐹(𝑡) ≈
𝑇

3
[𝑓(𝑡) + 4𝑓(𝑡 + 𝑇) + 𝑓(𝑡 + 2𝑇)] (11.17) 

 Simpson’s 3/8 rule: 

 𝐹(𝑡) ≈
3𝑇

8
[𝑓(𝑡) + 3𝑓(𝑡 + 𝑇) + 3𝑓(𝑡 + 2𝑇) + 𝑓(𝑡 + 3𝑇)] (11.18) 

And its derivative 𝑓′ is approximated as follows: 

 Newton’s different quotient/first-order divided difference: 
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 𝑓′(𝑥) ≈
𝑓(𝑥 + 𝑇) − 𝑓(𝑥)

𝑇
 (11.19) 

 Two-point formula/symmetric different quotient: 

 𝑓′(𝑥) ≈
𝑓(𝑥 + 𝑇) − 𝑓(𝑥 − 𝑇)

2𝑇
 (11.20) 

 Four-point formula: 

𝑓′(𝑥) ≈
−𝑓(𝑥 + 2𝑇) + 8𝑓(𝑥 + 𝑇) − 8𝑓(𝑥 − 𝑇) + 𝑓(𝑥 + 2𝑇)

2𝑇
 (11.21) 
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