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Abstract 

Binary droplet collision in gaseous environment is of relevance to many natural 

and industrial processes, which has been studied substantially to probe more 

complicated physics in the context of various spray processes. Compared to the 

extensively studied head-on droplet collision, the thesis attempts to focus on the 

three-dimensional (3D) off-center droplet collision, which is more general and 

practical but less investigated, and strives to numerically reveal both macroscopic and 

microscopic dynamics for bouncing and coalescence based on a volume-of-fluid 

(VOF) method. There are four parts in the thesis.  

1. Considering the facts that the elevated pressure environment promotes droplet 

bouncing in the real combustion chambers, and to serve for the modeling of 

Lagrangian simulations of sprays, the off-center collision of binary bouncing 

droplets of equal size was studied numerically by a volume-of-fluid (VOF) 

method with two marker functions. A non-monotonic kinetic energy recovery 

with varying impact parameters was discovered, and it can be explained by the 

prolonged entanglement time and the enhanced internal-flow-induced viscous 

dissipation for bouncing droplets at intermediate impact parameters. 
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2. The collision between initially spinning droplets, which occurs frequently in the 

practical sprays but is generally ignored in the previous studies, was numerically 

studied, with emphasis on the influences of rotation axis of spinning droplet on the 

droplet collision dynamics. The helicity analysis can be used to describe the 

“orthogonality” of droplets translational and spinning motions.  

3. To help understand the non-monotonic ignition delay time with impact parameters 

for the collision between two hypergolic ignition droplets, the off-center 

coalescence between two nonreactive droplets of unequal sizes were numerically 

studied. A general non-monotonic internal mass entanglement with varying the 

impact parameter was observed, which verifies that the ignition process upon the 

collision between two hypergolic ignition droplets is probably dominated by the 

internal mass entanglement in the preliminary collision stage.  

4. The internal mass entanglement, also referred as jet-like internal “mixing”, were 

analyzed to be attributed to a main vortex ring generated during the binary droplet 

coalescence, which was motivated by the vortex-ring generation during droplet 

colliding with liquid pool. The correlation between the main vortex ring and the 

jet-like “mixing” were verified and presented by using a vortex-ring-based 

Reynolds number.  
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Nomenclature 

Physical quantities 

𝐴𝐻 Hamaker constant 

𝐷 Droplet diameter  

𝐸𝑘 Kinetic energy 

𝑓𝐸  Kinetic energy dissipation factor 

ℎ Gas film thickness 

𝑘𝐵 Boltzmann constant 

𝑝 Pressure 

𝑅 Droplet radius  

𝑆 Surface area 

𝑡 Physical time 

𝑡osc Characteristic oscillation time 

𝑈  Experimental relative velocity between two colliding droplets 

𝑉 Volume of fluid droplets 

𝛼 Mass diffusivity  

𝜃  Angle between rotation axis and defined x-axis 

𝜆 Mean free path 

𝜇 Dynamic viscosity 

𝜌 Density  

𝜎 Surface tension coefficient  

𝜙 Viscous dissipation rate 

𝜒 Projection of the mass center connection line in the direction perpendicular to 𝑈 

𝜔 Angular velocity  
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Mathematical and numerical parameters 

𝑐 Volume fraction  

𝐶 Time-dependent dye function concentration 𝜑 in the merged droplet 

𝐶0 Dye function concentration 𝜑 in the initially unmixed droplets 

𝐶∞ Dye function concentration 𝜑 in the fully mixed droplets 

𝑫 Deformation tensor 

𝑓 Volume-of-fluid (VOF) function  

𝐻 Heaviside function  

𝑁 Mesh refinement level 

𝒏 Normal to the local interface 

𝒕 Shear to the local interface  

𝒖 = (𝑢, 𝑣, 𝑤) Velocity vector 

𝛿𝑠 Dirac delta function 

𝜅 Local curvature  

𝜑   Mass dye function with 𝜑 = 1 in the smaller droplet otherwise 𝜑 = 0 

𝝎 Vorticity  

 

Non-dimensional and normalized variables 

𝐵 Impact parameter, 𝐵 = 2𝜒 (𝐷𝑆 + 𝐷𝐿)⁄  

𝐶𝑎 Capillary number, 𝐶𝑎 = 𝜇𝑆𝑈 𝜎𝑆⁄  

𝐾𝑛 Knudsen number, 𝐾𝑛 = 𝜆 ℎ⁄  

𝑀 mixing index, 𝑀 = 1 − (∫ |𝐶 − 𝐶∞|𝐻(𝑓 − 1)𝑑𝑉
 

𝑉
) (∫ |𝐶0 − 𝐶∞|𝐻(𝑓 − 1)𝑑𝑉

 

𝑉
)⁄  

𝑂ℎ Ohnesorge number, 𝑂ℎ = 𝜇𝑆 √𝜌𝑆𝐷𝑆𝜎𝑆⁄  

𝑃𝑒 Peclet number, 𝑃𝑒 = 𝑈𝐷𝐿/𝛼 

𝑅𝑒 Reynolds number,𝑅𝑒 = 𝜌𝑆𝑈𝐷𝑆/𝜇𝑆 
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𝑇 Non-dimensional time, 𝑇 = 𝑡/𝑡𝑜𝑠𝑐 

𝑊𝑒 Weber number, 𝑊𝑒 = 𝜌𝑆𝐷𝑆𝑈
2 𝜎𝑆⁄  

𝑊𝑒∗ Symmetry weber number, 𝑊𝑒∗ = 𝛥3𝑊𝑒 [12(1 + 𝛥3)(1 + 𝛥2)]⁄  

𝛥 Size ratio of the larger droplet to the smaller droplet, 𝛥 = 𝐷𝐿 𝐷𝑆⁄  

 

Subscripts 

cr Critical value 

c Values of characteristic scale  

eff Effective quantity, for example effective viscosity 

𝑔 Fluid properties of the surrounding gas (air) environment 

𝐿 Fluid properties of the larger droplet  

ref Reference value  

𝑆 Fluid properties of the smaller droplet  

0 Values at the initial instant 

∞ Infinity, for example infinity-shear viscosity 
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1 Introduction 

1.1 Background 

Binary droplet collision in gaseous environment is of relevance to many natural 

and industrial processes, such as raindrop formation, ink-jet printing[1], spray 

combustion[2, 3], hypergolic ignition in rocket propulsion system, droplet 

manipulation in microfluidics[4, 5], and various applications involving functional 

interfaces[6-9] in materials science. Specifically, the coalescence and breakup of 

cloud droplets during the falling process account for the mechanisms of raindrop 

formation. In the spray combustion of diesel engines, the nozzle jet flow breaks up 

and generates a mass of fuel droplets that collide with each other under the turbulence 

flow in the combustion chamber, and their distributions of size, number density, 

velocity, and subsequent evaporation and combustion processes are accordingly 

influenced. In the rocket propulsion system, the hypergolic ignition process highly 

depends on the propellent droplet deformation, the internal mass mixing, and the 

subsequent chemical reactions in the liquid phase. Similarly, in the biochemical 

engineering, microscale droplets with micro reactants are often used as reaction 

carriers in which the droplet coalescence and subsequent internal mixing process are 

vital for the reaction control.  
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Generally, binary droplet collision in the sprays occurs with the droplet diameter 

less than one millimeter and the colliding process within several milliseconds. Thus, 

experimental observations and measurements on that such small length scale and 

short time scale heavily rely on high speed camera with high-resolution lens. As early 

as 1977, Bradley and Stow[10] performed an experiment of the collision between two 

water droplets. Thereafter, a large number of experimental studies on the binary 

droplet collision have been reported in the literature and summarized in a few 

excellent reviews[11, 12]. 

Collision outcomes between two droplets of equal size as increasing the relative 

impact inertia, such as coalescence, bouncing, separation, and splashing, can be 

phenomenologically described as follows. Impact inertia drives the interfaces to 

approach and thereby a squeezed gas film simultaneously forms by the entrained gas. 

Once the gas film thickness has reached the scale of hundreds of angstroms, the 

intermolecular (Van der Waals) attractive force[13] becomes dominant, pulls the 

droplet interfaces closer, and finally leads to interface merge. When the impact inertia 

is small, the sufficient time for the drainage of entrapped gas allows the gas film 

thickness to approach to the scale in which Van der Waals force becomes effective 

and finally leads to droplet coalescence. As increasing the impact inertia, the time of 

gas drainage process is comparable to that of droplet deformation, and droplet 
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interfaces tend to bounce off if the gas film thickness cannot reach Van der Waals 

scale. As further increasing the impact inertia, the inertia force can overcome the gas 

film resistance and merge the interfaces forcedly, meanwhile a small bubble forms by 

the entrapped gas. The minor bubble entrapment is a general phenomenon during the 

binary droplet collision that has been observed in the previous experiments, as shown 

in Figure 1.1. When the impact inertia is large enough exceeding the surface tension 

restraint and cannot be consumed by the inner viscous dissipation, the droplet 

separation occurs followed by the droplet coalescence with large deformation. As 

further increasing the impact inertia to an extreme high level, the splashing happens 

and generates numerous small children droplets induced by the capillary instability of 

the formed thin liquid film.  

Binary droplet collision in gaseous environment is a multi-scale, multi-physics, 

and nonlinear problem. The droplet diameter is sub-millimeter scale whereas the gas 

film thickness can be as small as 10 nanometers, and the mean free path of air gas in 1 

atm is around 100 nanometers. It is apparently seen that the multi-physics flow 

between the gas film – ranging from continuous flow, slip flow, transition flow, and 

free molecular flow. Meanwhile, the problem becomes nonlinear owing to the large 

droplet deformation after inelastic collisions and the induced internal viscous flow.  
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Figure 1.1 Enlarged photographs adapted from (a) Ashgriz and Poo[14], (b) Tang et 
al.[15], and (c) Wang et al.[16] showing trapped air bubbles during binary droplet 
collision.  
 

Experimental, theoretical, and numerical methods are all indispensable to study 

binary droplet collision. The theoretical analysis, such as an energy balance or a 

force/momentum balance, can obtain some qualitative findings based on the 

assumptions and simplified models, but they are not adequate to study the 

complicated problem. For the experimental methods, the stable droplet generation, the 

controllability of the collision parameters (for example collision velocity and angle), 

and the high-quality images of droplet deformation have been well developed in the 

previous experimental studies. However, the flow field visualization and 

measurement are still challenging currently. For the available numerical methods, 

they can help to analyze the microscopic flow field once the numerical simulations 

have been sufficiently validated by experimental observations. But it is noted that the 
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numerical method cannot predict the droplet collision outcomes from the first 

principle if not considering the lubrication layer theory, rarefied gas effects, and Van 

der Waals force[17]. Overall, binary droplet collision is the simplest case but of 

significance to the fundamental understanding of the complex spray processes.  

1.2 Research objectives 

Experimental observation is a direct method to discover and describe the 

macroscopic characteristics of collision outcomes between binary droplets. However, 

simply experimental observations are difficult to describe the microscopic 

characteristics of the inner flow upon the droplet collision since the droplet size in the 

sprays is as small as 𝑂(100) micrometers or even smaller. Thus, in the present thesis, 

the numerical methods with sufficient validations by experiments are mainly 

concerned for the fundamental understanding of the collision dynamics between 

binary droplets.  

The numerical method solves the unsteady, incompressible, and variable-density 

Navier-Stokes equations with surface tension. The Volume-of-fluid (VOF) method 

was adopted to track the free interface, which has been implemented in an open 

source code, Gerris[18, 19], featuring the quadtree/octree adaptive mesh refinement, 

the geometrical VOF interface reconstruction, and continuum surface force (CSF) 

with height function curvature estimation. 
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Compared to the extensively studied head-on collisions in the literatures, the 

present study attempts to focus on the three-dimensional (3D) off-center collisions 

between binary droplets, which is more general and practical but less investigated. 

However, 3D numerical simulations substantially increase the computational cost so 

that sometimes it is unpractical to set a large number of calculations. To circumvent 

these difficulties, the numerical methods have been modified according to the specific 

physical problems, such as the multiple VOF functions and collision-oriented 

adaptive mesh refinement technics.  

The overarching objective of the present thesis is to study impact parameter 

effects on off-center droplet collisions: coalescence and bouncing. The specific 

objectives can be summarized as follows: 

(1) To model 3D droplet bouncing in Lagrangian simulation of sprays, because 

the elevated pressure in the real engine conditions promotes droplet bouncing. 

A practically useful formula correlating the kinetic energy dissipation factor 

with the impact parameter for various Weber numbers and Ohnesorge 

numbers was desired.  

(2) To understand the collision dynamics between two droplets with initial 

self-rotations because the rotation effects are generally ignored in the 

literatures.   
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(3) To understand the effects of size ratio, Weber number, and impact parameter 

on the internal mass entanglement undergoing off-center droplet collision, 

and the correlation between the mass entanglement and hypergolic ignition 

for binary collision between reactive droplets.  

(4) To understand the physical mechanism of the internal “mixing” associated 

with the formation of jet-like structure by vortex-dynamical interpretations.  

1.3 Outline of thesis  

In the present work, a detailed literature review is introduced in Chapter 2. It 

includes the experimental observations on the binary collision between identical 

droplets, between droplets of unequal size, between droplets of different fluids (either 

miscible or immiscible), and between other (charged or reactive) droplets, followed 

by the theoretical analysis about the transitions between different collision outcomes 

in the regime diagram.  

The methodology of the numerical scheme solving unsteady, incompressible, 

variable-density Navier-Stokes equation and the free interface tracking methods are 

introduced in Chapter 3, with particular emphasis on the Volume-of-Fluid (VOF) 

method.  

The off-center collision of binary bouncing droplets of equal size was 

numerically studied by using a volume-of-fluid (VOF) method with two marker 
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functions in Chapter 4. The numerical studies and helicity analysis on the binary 

collision between two initially spinning droplets were presented in Chapter 5. The 

off-center coalescence between two nonreactive droplets of unequal sizes were 

numerically studied in Chapter 6 for creating the correlation between the internal 

mass entanglement and the hypergolic ignition process. The coalescence between two 

initially stationary droplets were numerically studied in Chapter 7 with emphasis on 

the vortex-dynamical interpretations to explain the jet-like internal “mixing”. Finally, 

general conclusions and the future research interests in binary droplet collision are 

summarized in Chapter 8. 
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2 Literature review 

2.1 Physical governing parameters  

The dynamics of binary droplet collision in the isothermal static gas environment 

can be described by a variable set 𝑄 as  

𝑄 = 𝑓(𝑈, 𝜒, 𝐷𝑆, 𝜌𝑆, 𝜇𝑆, 𝜎𝑆, 𝐷𝐿 , 𝜌𝐿 , 𝜇𝐿 , 𝜎𝐿 , 𝜌𝑔, 𝜇𝑔)                      (2.1) 

in which including 12 controlling parameters, namely the relative velocity 𝑈, the 

impact parameter 𝜒  (the projection of mass center distance in the direction 

perpendicular to the relative velocity), the diameter, 𝐷𝑆 and 𝐷𝐿, density, 𝜌𝑆 and 𝜌𝐿, 

viscosity, 𝜇𝑆 and 𝜇𝐿, and surface tension coefficient, 𝜎𝑆 and 𝜎𝐿, for small and large 

droplet respectively, the density 𝜌𝑔 and viscosity 𝜇𝑔 for gas, as shown in Figure 2.1. 

 

 

Figure 2.1 Schematic of binary droplet collision. 
 

Then, choosing the diameter 𝐷𝑆, density 𝜌𝑆, and surface tension 𝜎𝑆 of small 

droplet (denoted by subscript ‘S’) as the basic units, a dimensionless variable �̃� can 

be obtained as  
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�̃� = 𝑓 (𝑊𝑒, 𝐵, 𝛥, 𝑂ℎ;
𝜌𝐿

𝜌𝑆
,
𝜇𝐿

𝜇𝑆
,
𝜎𝐿

𝜎𝑆
,
𝜌𝑔

𝜌𝑆
,
𝜇𝑔

𝜇𝑆
)                            (2.2) 

The Weber number is defined as 

𝑊𝑒 =
𝜌𝑆𝐷𝑆𝑈

2

𝜎𝑆
                                                 (2.3) 

representing the ratio of droplet inertial force to surface tension force.  

The impact parameter is defined as 

𝐵 =
2𝜒

𝐷𝑆 + 𝐷𝐿
                                                  (2.4) 

characterizing the mass center deviation of the off-center collision (0.0 < 𝐵 < 1.0) to 

the head-on collision (𝐵 = 0.0), in which 𝐵 ≥ 1.0 denotes the grazing collision that 

two droplets cannot collide.  

The Ohnesorge number is defined as 

𝑂ℎ =
𝜇𝑆

√𝜌𝑆𝐷𝑆𝜎𝑆

                                                 (2.5) 

representing the ratio of droplet viscous force to surface tension force. It is noted that 

the 𝑂ℎ number is still valid for describing the collision between non-Newtonian 

droplets except that it is local shear-rate-dependent but not a constant.  

 The size ratio is defined as 

𝛥 =
𝐷𝐿

𝐷𝑆
                                                         (2.6) 

The Reynolds number is defined as 
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𝑅𝑒 =
𝜌𝑆𝑈𝐷𝑆

𝜇𝑆
                                                    (2.7) 

that can be calculated by 𝑂ℎ  and 𝑊𝑒  as 𝑅𝑒 = √𝑊𝑒/𝑂ℎ , thus it will not be 

presented as an independent parameter in the present thesis.  

The other five parameters affecting the binary droplet collision can be justified 

based on the following considerations. The density ratio 𝜌𝐿/𝜌𝑆, viscosity ratio 𝜇𝐿/𝜇𝑆, 

and surface tension ratio 𝜎𝐿/𝜎𝑆  describe the fluid properties of small and large 

droplets, and they are unity if considering the simplest case of the collision between 

two identical droplets. The surface tension difference (𝜎𝐿/𝜎𝑆 ≠ 1) between two 

miscible droplets can induce the Marangoni effects upon droplet coalescence. In 

addition, the gas-fluid density ratio and viscosity ratio are approximately of the order 

of 𝜌𝑔 𝜌𝑆⁄ ~𝑂(10−3) and 𝜇𝑔 𝜇𝑆⁄ ~𝑂(10−2), respectively. They have insignificant 

influences on the binary droplet collision with values in that small ranges[15, 20-23], 

however, they are increasingly effective when the density and viscosity of gas are 

comparable to that of fluids.  

Consequently, the Weber number 𝑊𝑒, the impact parameter 𝐵, the Ohnesorge 

number 𝑂ℎ  (or Reynolds number 𝑅𝑒 ), and the size ratio  𝛥  are four primary 

parameters that frequently discussed in the present binary droplet collision problems. 
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2.2 Binary collision between identical droplets 

A nomogram in the 𝑊𝑒 − 𝐵 parameter space[24, 25] was proposed for the 

binary collision between identical droplets: (I) coalescence after minor deformation, 

(II) bouncing, (III) coalescence after substantial deformation, (IV) coalescence 

followed by separation for near head-on collisions, (V) coalescence followed by 

separation for off-center collisions, and (VI) splashing at extreme large 𝑊𝑒~𝑂(102), 

as the schematic regime and experimental images shown in Figure 2.2.  

In the context of raindrop formation, the earlier studies were focused on the 

collision between two water droplets in atmosphere air[14, 25-28].[14, 25-28]. Figure 

2.3(a) shows the 𝑊𝑒 − 𝐵 collision regime diagram between two identical water 

droplets. Ashgriz and Poo[14] observed three collision outcomes: droplet permanent 

coalescence at small 𝑊𝑒 and either reflexive separation (at small 𝐵) or stretching 

separation (at large 𝐵) at large 𝑊𝑒. Qian and Law[25] also found bouncing between 

two water droplets at relative larger 𝐵 for near grazing collisions. Rabe et al.[28] 

yielded the similar results as Ashgriz and Poo without observing the phenomenon of 

droplet bouncing.  
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(a) 

 
(b) 

Figure 2.2 (a) Sketched regime nomogram and (b) experimental images[24] (first row 
for head-on collisions and second row for off-center collisions) for binary collision 
between identical droplets: (I) coalescence (𝑊𝑒 = 0.19), (II) bouncing (𝑊𝑒 = 3.6), 
(III) coalescence (𝑊𝑒 = 13.4), (IV) reflexive separation (𝑊𝑒 = 45.6), (V) stretching 
separation (𝑊𝑒 = 54.3), and (VI) splashing[29] (𝑊𝑒 = 1593).  
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Figure 2.3 𝑊𝑒 − 𝐵  regime diagram for the binary collision between identical 
droplets: (a) water, (b) alkanes, (c) organics, and (d) high-viscosity aqueous solution. 
 

However, the collision behaviors of hydrocarbon droplets are significantly more 

complex than that of water droplets. Motivated to understand the dense spray of fuel 

droplets in real engine conditions, Law and coworkers systematically studied the 

collision dynamics between hydrocarbon (such as n-heptane, n-decane, n-dodecane, 

n-tetradecane, and n-hexadecane) droplets in various gaseous environments (air, 

nitrogen, helium and ethylene) with different pressures in the range of 0.6 ~ 12 atm. 

Figure 2.3(b) shows the 𝑊𝑒 − 𝐵 collision regime diagram between two identical 

alkane droplets in 1 atm. nitrogen environment. Jiang et al.[24], and Qian and Law[25] 
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found that the head-on collision occurs bouncing phenomenon for tetradecane 

droplets whereas only permanent coalescence for water droplets, showing a 

nonmonotonic transition from coalescence after minor deformation (I) to bouncing (II) 

and to coalescence after substantial deformation (III) as increasing 𝑊𝑒. Furthermore, 

their results also show that the regime boundaries between different collision 

outcomes can be significantly affected by the properties of the ambient gas, such as 

the gas pressure, gas molecular weight and viscosity, and gas molecular structures. 

More specifically, for head-on droplet collisions, bouncing for alkane droplets is 

absent at lower pressures, as the regime diagram at 0.6 atm shown in Figure 2.3(b), 

although it is observed at atmospheric pressure. Similarly, the bouncing phenomena 

can be observed for water droplets at higher pressures although it is absent at 

atmospheric pressure, which indicates that increasing gas pressure promotes bouncing 

while decreasing pressure promotes coalescence. The substantiating experimental 

results also indicate that the liquid vapor enrichment promotes droplet merging. In the 

recent years, more comprehensive studies about the gas environment effects on the 

binary droplet collision have been performed extensively.   

Figure 2.3(c) shows the 𝑊𝑒 − 𝐵  collision regime diagram between two 

identical droplets of organics in atmosphere air. Estrade et al.[30] studied the collision 

regime between two ethanol droplets, which is similar to that of water droplets. Brenn 
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et al.[31] focused on the collision regime of separation between two propanol droplets 

and studied the number of satellite droplets formation. They reported that different 

droplet sizes (i.e. different 𝑂ℎ) lead to different results of satellite droplet formation 

even at same 𝑊𝑒 and 𝐵, which implies that 𝑂ℎ effect is a significant factor to the 

droplet collision but has often been missed in the current 𝑊𝑒 − 𝐵 nomogram. Willis 

and Orme[32, 33] studied the stretching deformation after the collision between two 

silicon-based oil droplets under vacuum environment and found that it became 

difficult to observe droplet separation, in which the critical 𝑊𝑒 for the transition 

between coalescence and separation is nearly 100 times larger than that of water 

droplets under atmosphere air.  

Figure 2.3(d) shows the 𝑊𝑒 − 𝐵  collision regime diagram between two 

identical droplets of high-viscosity aqueous solution. The deviation between collision 

regimes in 𝑊𝑒 − 𝐵 parameter space is attributed to the ignored 𝑂ℎ effects. In fact, 

it is difficult to experimentally change 𝑂ℎ among a wider range but with other 

parameters remain unchanged. This is because for a certain fluid 𝑂ℎ only depends 

on the droplet diameter, and the droplet with large diameter is hard to be spherical 

while small diameter is hard to be generated. Thus, the high-viscosity aqueous 

solution produced by adding additives into water allows us to easily study the 𝑂ℎ 

effects on the binary droplet collision. In recent ten years, Gotaas et al.[34] 
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Sommerfeld and Kuschel[35], Finotello et al.[36], and AI-Dirawi and Bayly[37] 

studied the effects of viscosity on the collision regime transitions with 𝑂ℎ in a wider 

range of 0.021~0.44. It is observed in Figure 2.3(d) that, as increasing 𝑂ℎ, the 

regime boundary between bouncing (II) and coalescence (III) moves towards 

smaller 𝑂ℎ, the regime boundary between coalescence (III) and reflexive separation 

(IV) moves towards larger 𝑂ℎ for near head-on collisions, and the regime boundaries 

between stretching separation (V) and either bouncing (II) or coalescence (III) are 

insensitive to the variation of 𝑂ℎ for off-center collisions.  

Overall, a complete regime nomogram for the binary collision between identical 

droplets (𝛥 = 1.0) should be in the three-dimensional 𝑊𝑒 − 𝐵 − 𝑂ℎ parameters 

space. The comprehensive studies on the transitions between different collision 

outcomes are benefit to the modelling of binary droplet collision that serves for the 

Lagrangian simulations of sprays. The classical O’Rourke model[38] and latter some 

other improved models by considering complex but complete collision outcomes have 

been studied extensively in the past years.  

Furthermore, Table 2.1 summaries all the above discussed experimental studies 

for a quick reference to the readers, including the research interests and relevant 

experimental parameters. 
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Table 2.1 Summary of the previous experimental studies on the binary collision between identical droplets. 

Year,  
Authors 

Fluid 
properties 

Drop 
diameter 

(𝜇𝑚) 
Medium 𝑊𝑒 𝐵 𝑂ℎ Research interests 

1968,  
Adam et al.[26] 

 water 
(charged) 

120, 600 1 atm. air 
2~100, 
10~400 

0.0~0.95 0.011, 0.0048 coalescence and separation 

1972, 
Brazier-Smith et al.[27] 

water 300~1500 1 atm. air 0.5~180 0.0~1.0 0.0030~0.0068 coalescence efficiency and 
criteria for separation 

1989,  
Brenn and Frohn[39] 

Propanol-2 70~200 1 atm. air 20~1000 0.0~1.0 0.042~0.071 
droplet size effects on 

coalescence and separation  

1990,  
Ashgriz and Poo[14] 

water 200~1000 1 atm. air 1~100 0.0~1.0 0.0037~0.0083 
theoretical prediction of 
reflexive and stretching 

separation 

1992,  
Jiang et al.[24] 

water, n-alkane 300 1 atm. air 0.1~100 0.0~1.0 0.0068~0.030 

non-monotonic collision 
outcomes and theoretical 
model for reflexive and 

stretching separation 

1997,  
Qian and Law[25] 

water, 
tetredecane 

200~400 
0.6~12 atm.  
air, nitrogen 

0.2~100 0.0~1.0 0.0059~0.036 
effects of ambient gas 

(pressure, viscosity, and 
molecular structure) 

1999,  
Estrade et al.[30] 

ethanol 80~300 1 atm. air 10~200 0.0~1.0 0.017~0.032 
theoretical prediction of 

bouncing  
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2003,  
Willis and Orme[33] 

silicon-based 
oils 

467 vacuum 300~4000 0.0 0.07~0.22 
viscosity effects on droplet 

maximum deformation 
2006,  

Brenn et al.[31] 
propanol-2 60~140 1 atm. air 40~280 0.0~1.0 0.050~0.077 

size effects on droplet 
breakup and instability 

2007,  
Roth et al.[40] 

water 220 1 atm. air 500~2600 0.0~1.0 0.0079 
collision outcomes at high 

𝑊𝑒 
2007,  

Gotaas et al.[34] 
n-decane, 

MEG, DEG 
324~375 1 atm. air 13.6~316 0.0~1.0 0.012~0.35 

viscosity effects on droplet 
collision 

2008,  
Pan et al.[41] 

tetradecane 200~340 1 atm. air 2.3~13.6 0.0 0.028~0.036 
energy budget for droplet 
coalescence and bouncing 

2009, 
 Pan et al.[29] 

water, alkane, 
and glycerin 

700~1200 1 atm. air 50~5100 0.0 0.0033~0.011 
droplet splattering at extreme 

high 𝑊𝑒 
2010,  

Rabe et al.[28] 
water  220~450 1 atm. air 20~280 0.0~1.0 0.0055~0.0079 

regime nomogram in 𝑊𝑒𝑐 −

𝐵 (symmetry 𝑊𝑒𝑐) 
2016,  

Sommerfeld and 
Kuschel [35] 

alcohols and 
PVP K30, and 

sucrose 
380 1 atm. air 0~100 0.0~1.0 0.049~0.37 

modeling of droplet collision 
outcomes for different 

viscosities 
2018,  

Finotello et al.[36] 
glycerol-water 700 1 atm. air 0~100 0.0~1.0 

0.021, 0.064, 
0.38 

viscosity effects on droplet 
collision 

2019,  
AI-Dirawi and Bayly 

[37] 

2%, 4%, 8% 
HPMC  

360~390 1 atm. air 0~100 0.0~1.0 
0.021, 0.063, 

0.22 
a new model for bouncing 

regime 
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2.3 Binary collision between droplets of unequal sizes  

Binary collision between identical droplets is the specific case whereas the 

collision between two droplets of unequal sizes occurs frequently in the realistic 

situations. However, considering the size ratio effect (𝛥) results in the collision 

regime nomogram too complicated to be a four-dimensional parameter space, i.e. 

𝑊𝑒 − 𝐵 − 𝑂ℎ − 𝛥. It is reasonable to analyze the collision outcomes by focusing on 

any three parameters as a variable set. And 𝑂ℎ effects on 𝑊𝑒 − 𝐵 nomogram has 

been briefly discussed in Section 2.2.  

2.3.1 𝜟 effects on 𝑾𝒆 − 𝑩 nomogram 

The symmetry of droplets deformation can be broken for the collision between 

two droplets of unequal sizes, as the early experimental images by Bradley and 

Stow[10] and Ashgriz and Poo[14] shown in Figure 2.4. Accordingly, the regime 

boundaries between different collision outcomes in 𝑊𝑒 − 𝐵 parameter space are 

influenced by 𝛥. Figure 2.5 shows the similar results adapted from Ashgriz and 

Poo[14] and Rabe et al.[28] that the colliding droplets tend to merge with increasing 

the values of 𝛥, which is manifested by the enlarged area of the coalescence regime 

in 𝑊𝑒 − 𝐵 nomogram with regime boundary between coalescence and reflexive 

separation moving towards smaller 𝐵 whereas the boundary between coalescence 
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and stretching separation moving towards larger 𝐵 . Brazier-Smith et al.[27] 

explained that droplet separation is not so easily achieved for higher values of  𝛥 (for 

fixed 𝑊𝑒 and 𝐵) because less angular momentum is available to pull the two drops 

apart, and proposed a simple criterion for droplet separation based on energy 

considerations that the boundary between coalescence and separation is obtained by 

the same amount of rotational kinetic energy and surface energy required to form two 

drops. It then spawned the early studies on the prediction of size ratio effects on the 

coalescence-separation boundary in the aspects of energy balance (Ashgriz and 

Poo[14], Rabe et al.[28], and Estrade et al.[30]).  

 

 

Figure 2.4 Experimental images of collision between two droplets of unequal sizes: 
water droplets of 𝛥 = 1.41, 𝑊𝑒 ≈ 20[10] at (a) 𝐵 = 0.0 and (b) 𝐵 = 0.9, and (c) 
water droplets of 𝛥 = 2.0, 𝑊𝑒 = 56 and 𝐵 = 0.0[14].  
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Figure 2.5 Variation of 𝑊𝑒 − 𝐵 regime boundary for three difference size ratios, 1.0, 
1.3, and 2.0, adapted from Ashgriz and Poo[14] (𝑂ℎ = 0.068) and Rabe et al.[28] 
(𝑂ℎ = 0.055~0.078).  
 

2.3.2 𝑶𝒉 effects on 𝑾𝒆 − 𝜟 nomogram (𝑩 = 𝟎) 

Testik[42] and Tang et al.[43] mainly studied the head-on collision outcomes in 

the 𝑊𝑒 − 𝛥  parameter space for different fluids (equivalent to different 𝑂ℎ ). 

Although droplet coalescence is promoted as increasing 𝛥 , it is still observed 

bouncing and separation for the binary collision between two droplets of unequal 

sizes, as the experimental images adapted from Tang et al.[43] shown in Figure 2.6. 

𝑊𝑒 − 𝛥  regime diagrams for head-on collisions between water, decane, and 

tetradecane droplets in Tang et al.[43] show that the critical 𝑊𝑒 of the transition 

from bouncing (II) to coalescence (III) is slightly influenced by the 𝛥 whereas the 

critical 𝑊𝑒 of the transition from coalescence (III) to reflexive separation (IV) 

increases significantly with increasing 𝛥, which is understood as a results of the 
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enhanced viscous dissipation with increasing 𝛥 that thereby suppresses the droplet 

separation.  

 

 

Figure 2.6 Head-on collisions between two tetradecane droplets of unequal sizes[43]. 
(a) 𝑊𝑒 = 7.3, 𝛥 = 1.46 , bouncing; (b) 𝑊𝑒 = 13.8, 𝛥 = 1.46 , coalescence; and 
(c)𝑊𝑒 = 52.8, 𝛥 = 1.50, reflexive separation.  
 

In the aspect of energy budget, this observation can also be understood as that[28] 

the ratio of total kinetic energy to total surface energy decreases as increasing 𝛥 and 

thereby reduces the possibility of occurrence of the separation. The symmetry Weber 

number, 𝑊𝑒∗[28], reflecting the ratio of overall kinetic energy 𝐸𝑘0 over the surface 

energy 𝑆0 can be defined as  

𝑊𝑒∗ =
𝐸𝑘0

𝜎𝑆0
=

𝛥3

12(1 + 𝛥3)(1 + 𝛥2)
𝑊𝑒                          (2.8). 

in which 𝑊𝑒  and 𝛥  play the competitive roles that increasing 𝑊𝑒  promotes 

droplet separation whereas increasing 𝛥 promotes droplet coalescence.  

Then the 𝑊𝑒∗ − 𝑂ℎ regime diagram is shown in Figure 2.7 by revisiting the 

original data from Tang et al.[43] to study 𝑂ℎ effects on head-on droplet collisions.  

From energy considerations, droplet bouncing occurs at small 𝑊𝑒∗, followed by 
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droplet coalescence at intermediate 𝑊𝑒∗ and droplet separation at large 𝑊𝑒∗. It is 

observed no bouncing regime for small 𝑂ℎ. The critical 𝑊𝑒∗ on the boundary for 

both bouncing-coalescence transition and coalescence-separation transition increases 

with increasing 𝑂ℎ. Owing to the competitive roles of 𝑊𝑒 and 𝛥 included in 𝑊𝑒∗, 

it is observed a banded transition zone in which the same 𝑊𝑒∗ would either result in 

separation or coalescence depending on which factor plays a dominant role between 

𝑊𝑒 and 𝛥, while beyond the transition zone shows unique collision outcomes.   

 

 

Figure 2.7 Head-on collision outcomes between two droplets of unequal sizes[43] in 
𝑊𝑒∗ − 𝑂ℎ parameter space.  
 

Furthermore, particularly in the regime of droplet coalescence, interesting 

phenomena of internal mushroom-like jet structure can be observed. Tang et al.[15] 

reported a non-monotonic variation of mushroom-like jet structures for the collision 

between two droplets of unequal sizes as increasing the impact inertia (𝑊𝑒 or 𝑊𝑒∗). 
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More specifically, as shown in Figure 2.8, the mushroom-like jet structure (type I) 

emerges at small 𝑊𝑒∗, however, such a jet structure disappears as increasing 𝑊𝑒∗, 

and another mushroom-like jet structure (type II) reemerges with further increasing 

𝑊𝑒∗ while it shows different appearances. They explained that, the type I jet at small 

𝑊𝑒∗ is driven by surface tension force with droplets merging at center that close to 

the axis; such jet structure disappears at large 𝑊𝑒∗  owing to the suppressed 

concentration of mass momentum (strong damping) along the central line with 

droplets merging at a significantly flattened surface; and the type II jet at higher 𝑊𝑒∗ 

is driven by impact inertia that strong droplet stretching in the direction of impact 

carries the spreading out mass of the small droplet into the large droplet to form a 

centrally hollow jet and thereby different from type I jet.  

 

 

Figure 2.8 Mixing pattern during collision of water droplets for (𝑊𝑒, 𝛥, 𝑊𝑒∗)[15]: (a) 
type I jet at (0.47,1.86,0.0075), (b) no jet at (8.59,2.61,0.15), and (c) type II jet at 
(17.2,2.43,0.19).  
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 The 𝑊𝑒∗ − 𝑂ℎ parameter space in Figure 2.7 can be further developed by 

including the mushroom-like jet structure varying with 𝑂ℎ, as shown in Figure 2.9. It 

is observed no mushroom-like jet structure for binary collisions between tetradecane 

droplets (𝑂ℎ = 0.036). It indicates that there exist a maximum 𝑂ℎ above which 

mushroom-like jet structure is absent. With decreasing 𝑂ℎ, the coalescence regime 

consists of type I jet zone for low 𝑊𝑒∗, soft merging, type II jet zone for high 𝑊𝑒∗, 

hard merging, and interestingly no jet zone separating two types of jet zones. The no 

jet zone is shrinking with decreasing 𝑂ℎ.  

 

 

Figure 2.9 Regime nomogram for mushroom-like jet structure upon droplet 
coalescence in 𝑊𝑒∗ − 𝑂ℎ parameter space. 
 

2.3.3 𝜟 − 𝑶𝒉 nomogram (𝑾𝒆 ≈ 𝟎 and  𝑩 = 𝟎) 

For the above discussed surface tension driven flow that accounting for the 

generation of type I jet structure, a critical and idealized state is the coalescence 
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between two initially stationary droplets with vanishing 𝑊𝑒 and 𝐵 = 0. Anilkumar 

et al.[44] experimentally studied the coalescence between two initially stationary 

droplets of unequal sizes in the cell filled with a specific water-glycerin solution. As 

shown in Figure 2.10(a) and (b), it is observed the mushroom-like jet structure upon 

the coalescence of droplets with small viscosity while no jet for droplets with large 

viscosity owing to the enhanced viscous damping. Based on the understanding of type 

I jet that driven by surface tension force, it is physically inferred, in fact also verified 

by several numerical simulations, that the mushroom-like jet structure can be 

promoted by a larger size disparity because the pressure difference, 4𝜎𝐷𝑆
−1(1 −

𝛥−1), close to the merge point is enlarged so that to strengthen the mass momentum 

of small droplet merging into the large droplet. With further increasing 𝛥, as shown in 

Figure 2.10(c), the formed bulge during droplet merging process would be pinched off 

by the interface capillary wave to generate a smaller daughter droplet. 

It is noted that experimental studies about the coalescence between two initially 

stationary droplets under gas environment is scarce in the literature. This is because it 

is difficult to maintain the droplet generation with such low velocity, droplet spherical 

shape, and most importantly the spatial possibility to collide at the same time. The 

alternative methods can be achieved by locating the larger droplet on the hydrophobic 

solid surface[45] or on the top of a nozzle outlet[46], in which the “wall effects” of 
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surface or nozzle on the coalescence process cannot be overlooked except the 

capillary wave which travels down the larger bottom hemisphere has not reached the 

bottom wall when the physical process already ends up. Otherwise, the reflected wave 

would influence the coalescence process.  

 

 
 

Figure 2.10 Typical sequence for the coalescence between two initially stationary 
droplets: (a) a mixture of silicone oil and bromobenzene with a measured viscosity of 
3.3 cP[44], (b) highly viscous silicone oil with measured viscosity of 99 cP[44], and 
(c) a satellite pinch-off[46] for distilled water drops with 𝛥 = 2.72.  
 

Considering the experimental difficulties for the coalescence between two 

initially stationary droplets, the “numerical experiments” after sufficient validations 
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by Xia et al.[23] verified that the mushroom-like jet structure was suppressed by 

increasing the droplet viscosity while promoted by the size disparity, as the jet regime 

nomogram in the 𝛥 − 𝑂ℎ parameter space shown in Figure 2.11. There exist a 

maximum value of 𝑂ℎjet that above which mushroom-like jet structure is absent. For 

the same token, Zhang et al.[46] experimentally determined a regime boundary with 

the critical 𝛥 that above which the pinch-off occurs, as the dashed area shown in 

Figure 2.11. Both the critical 𝛥 for mushroom-like jet regime and pinch-off regime 

increase monotonically with 𝑂ℎ.  

 

 
Figure 2.11 Regime nomogram of initially stationary droplet coalescence in the 𝛥 −

𝑂ℎ parameter space, adapted from Xia et al.[23]. The mushroom-like jet structure is 
denoted by the square, the no-jet regime by the cross, and the transition by the circlet. 
The dashed area corresponds to the ranges of  𝛥 and 𝑂ℎ occurring droplet pinch-off, 
experimentally given by Zhang et al.[46].  
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2.4 Binary collision between droplets of different fluids 

The macroscopic collision outcomes[47-53] of binary collision between droplets 

of different fluids, such as bouncing, coalescence, and separation, are not essentially 

different from that of collisions between droplets of same fluid, and thereby showing 

the similar regime nomogram in 𝑊𝑒 − 𝐵  parameter space[47-49] although the 

regime boundaries move with the liquid properties and collision parameters. However, 

the microscopic characteristics during the collision process between different droplets 

are of interests and more complex owing to the effecting parameters of droplets 

density, viscosity, and surface tension ratio as illustrated in Equation 1.1. Generally, 

the collisions between droplets of different fluids can be divided into two main types, 

namely the miscible droplet collision and immiscible droplet collision.  

2.4.1 Miscible droplet collision 

Figure 2.12 shows experimental images for the binary collision between droplets 

of different miscible liquids, in which the different collision outcomes compared to 

the binary collision between identical droplets are must originated from the density, 

viscosity, and surface tension differences between different miscible droplets. 

Chen[47] compared the collision between diesel-diesel droplets and diesel-ethanol 

droplets, as shown in Figure 2.12(a) and (b), and found nearly the same droplet 
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deformation and reflexive separation. This is because diesel (take pure tetradecane as 

an example) and ethanol droplets have similar surface tension coefficient and density 

although the viscosity of diesel is approximately twice to that of ethanol.  

 

 
Figure 2.12 Typical sequence for the binary collision between droplets of different 
miscible liquids: (a) reflexive separation for diesel-diesel droplets at 𝑊𝑒 ≈ 35[47], 
(b) reflexive separation between diesel and ethanol (colored) droplets at 𝑊𝑒 ≈ 35 
[47], (c) coalescence between a high viscous droplet (upper) and a low viscous droplet 
(below)[53], and (d) head-on coalescence between ethanol and water (colored) 
droplets at 𝑊𝑒 ≈ 20[49].  
 

To analyze the effects of viscosity disparity, Focke et al.[53] experimentally 

studied the collision between two miscible droplets (nearly same surface tension and 

density) with different viscosities (2.6mPas and 60mPas), as shown in Figure 2.12(c). 

The results show that viscosity disparity can delay the droplet initial coalescence, and 

the droplet with low viscosity moves faster and slightly overlays the interface of the 

droplet with high viscosity. The viscosity effect affects the droplet deformation in a 
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passive way to modulate the internal flow strength to a minor extent so that not likely 

to induce the transition of collision outcomes significantly.  

However, it is observed substantially asymmetric deformation during the 

collision between water and ethanol droplets with satellite droplets generation, as 

shown in Figure 2.12(d). This is attributed to the Marangoni flow induced by the 

surface tension difference (7.29 × 10−2 N m⁄  for water and 2.23 × 10−2 N m⁄  for 

ethanol). The Marangoni stress drives the mass of ethanol droplet diffusing along the 

interface of water droplet and thereby the induced ring-like (for head-on collision) 

Marangoni flow along the interface converges to one point on the symmetry axis to 

generate satellite droplets. The similar phenomenon upon the droplet coalescence with 

a reservoir has also been experimentally observed by Blanchette et al.[54] and 

numerically analyzed by Sun et al.[55]. In addition, Blanchette[56] numerically 

studied the Marangoni-flow-induced mixing within stationary coalescing drops and 

steadily flowing drops, and the results showed that surface tension variations might 

result in faster mixing than geometric effects.  

Marangoni effects can be produced by adding surfactants into aqueous solutions. 

It is worthy to mention that the surfactant can be used to suppress the coalescence of 

the dispersed fluid phase inner the continuous fluid phase, for example the 

water-in-diesel emulsion. The emulsified fuel with water is benefit for the 
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prevaporization (micro-explosion) that results in severe disruptive burning arising 

from dilution effects in both the gas- and liquid-phase reactions and those from the 

secondary atomization effects of the primary emulsified fuel spray[57, 58]. The 

rheology of emulsion can be influenced by various factors, such as density and 

viscosity of dispersed and continuum phase, size, distribution and volume fraction of 

the dispersed phase, and the interface rheology. Pal[59] found that the apparent 

viscosity of emulsion increases significantly by reducing the size of the dispersed 

phase. Chen et al.[60] experimentally studied the binary collision between 

water-in-diesel emulsion droplets of equal size. The results showed that the critical 

 𝑊𝑒 of the regime boundary between coalescence and separation was larger than that 

for biodiesel droplet collision. This can be understood as a result of the interaction 

between micro dispersed water droplets which increases the apparent viscosity 

significantly and thereby suppresses the droplet separation. Furthermore, Pan et al.[61] 

found that the Marangoni stress induced by the surface tension gradient along the 

interface (diffusive and nonuniform distribution of surfactants) was opposite to the 

gas drainage direction among the gas film and thereby promote droplet bouncing.  

2.4.2 Immiscible droplet collision 

Different from the miscible droplet collision involving the interdiffusion induced 

by density, viscosity, and surface tension disparity, for the collision between 
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immiscible droplets, there always exist an interface between different phases and a 

moving three-phase contact line. The near head-on collisions between immiscible 

droplets have been selected to be more representative to reflect the distinctive 

outcomes compared to the collision between droplets of same fluid.  

 

 

Figure 2.13 Typical sequence for the binary collision between droplets of different 
immiscible liquids: (a) coalescence between methanol and hexadecane droplets[16], 
(b) termed “overlying coalescence” between diesel (left) and water (right) 
droplets[48], and (c) termed “quasi-reflective separation”, “single-reflex separation”, 
and “crossing separation” between glycerol solution (left) and silicon oil (right) 
droplets[62]. 
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Figure 2.13 shows experimental images of binary collision between immiscible 

droplets. A clear separating interface[16] can be observed between different droplets 

in Figure 2.13(a) owing to the immiscibility, and it is seen an entrapped bubble as 

illustrated by the small black dot. As shown in Figure 2.13(b), the symmetry of 

droplet coalescence process has been broken showing the diesel droplet (small surface 

tension) overlays[48] along the interface of water droplet (large surface tension). The 

transparent diesel droplet tends to separate either from left or from right of the merged 

droplets. Consequently, as shown in Figure 2.13(c), the termed “quasi-reflective 

separation” and “crossing separation”[62] are observed with different separated 

droplets. Furthermore, the termed “single-reflex separation” occurs resulting in two 

encapsulated drops. The detailed mechanism occurring such rich phenomena for 

immiscible droplets collision has not been sufficiently understood, which is probably 

correlated to the time scale of overlaying process and droplet deformation process.  

Specifically, for the termed “overlaying coalescence” (or referred as liquid 

encapsulation by Planchette et al.[50, 63]), it is observed that the encapsulating 

droplet either overlays partially of the encapsulated droplet to form a “Janus 

droplet”[64] in Figure 2.13(a) or overlays completely to form a “liquid shell”[63] in 

Figure 2.13(b) and (c). Planchette et al.[50] studied the influence of the liquid 

properties, i.e. viscosity, density, surface and interfacial tensions, on the liquid 
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encapsulation efficiency. Regardless of the dynamical encapsulation process, the 

equilibrium states between two immiscible droplets (complete engulfing, partial 

engulfing, and non-engulfing) involving the three-phase contact line are determined 

by spreading parameters 

𝑆𝑖 = 𝜎𝑗𝑘 − (𝜎𝑖𝑗 − 𝜎𝑖𝑘)                                             (2.9). 

If assuming, without loss of generality, the convention of designating phase-1 to be 

that for which 𝜎12 > 𝜎23 , it follows from Equation (2.9) that 𝑆1 < 0 [52, 65]. 

Therefore, there are only three possible sets of values of 𝑆𝑖 that satisfying 𝑆1 <

0, 𝑆2 < 0  and 𝑆3 > 0  for complete engulfing, 𝑆1 < 0, 𝑆2 < 0  and 𝑆3 < 0  for 

partial engulfing, and 𝑆1 < 0, 𝑆2 > 0 and 𝑆3 < 0 for non-engulfing, which are also 

indicated by Pannacci et al.[66] in a regime of spreading parameters. 

2.5 Binary collision between droplets of non-Newtonian fluids 

Generally, most of the fluids in the engineering applications somehow reflect the 

non-Newtonian flow characteristics that the apparent viscosity is a function of the 

local shear rate. The most common shear-thinning (shear-thickening) liquids are that 

whose viscosity decreases (increases) with increasing local shear rate. However, it is 

found that the experimental studies of binary collision between non-Newtonian fluids 

are scarce in the literature[11]. That is probably attributed to the practical difficulties 
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in generating spatially and temporally stable non-Newtonian droplet, which usually 

have very large low-shear-rate viscosity[67].  

 

 

Figure 2.14 Binary collision between droplets of shear-thinning fluids: (a) CMC 
aqueous solution[68] and (b) xanthan[69].  
 

Figure 2.14 shows few currently available experiments about the non-Newtonian 

droplet collision. Motzigemba et al.[68] experimentally studied the binary collision 
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between shear-thinning droplets of water/carboxymethylcellulose (CMC) aqueous 

solution and found that the droplet deformation can be enhanced by the shear-thinning 

effects when compared to the collision between Newtonian droplets at approximate 

𝑊𝑒, as shown in Figure 2.14(a). Finotello et al.[69] studied the binary collision 

between xanthan droplets and observed a thick toroidal rim during the droplet 

spreading process from the side view of camera, as shown in Figure 2.14(b). The 

diameter of this thick toroidal rim expands with increasing  𝑊𝑒 , however, no 

separation has been observed for 𝑊𝑒 up to 211 even at the averaged relatively small 

𝑂ℎ = 0.014. It is seemingly that the shear-thinning effects of non-Newtonian droplets 

promote the droplet maximum deformation due to the reduced local viscosity but 

probably not favors droplet separation for some unknown mechanisms.  

To analyze the microscopic flow of the binary collision between non-Newtonian 

droplets, several numerical studies have been conducted recently. Focke and Bothe[70] 

numerically showed that the collision outcomes between two identical shear-thinning 

droplets can be repeated by the collision between two Newtonian droplets with an 

equivalent effective viscosity 𝜇eff of the value between the infinity-shear viscosity 

𝜇∞ and zero-shear viscosity 𝜇0 . Chen and Yang[71] qualitatively described the 

collision outcomes transition between two shear-thinning droplets by using a 

Volume-of-fluid (VOF) method. Sun et al.[72, 73] performed comprehensive 
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numerical studies about the collision dynamics between non-Newtonian droplets by 

using phase field method combined with Lattice Boltzmann (LBM) method.  

 

 
 

Figure 2.15 Coalescence between Newtonian droplet and non-Newtonian droplet[72]. 
(a) non-Newtonian droplet (upper) and Newtonian droplet (below), 𝛥 = 1, 𝑂ℎ =

0.01 and 𝑂ℎ∞ = 0.0015; (b) both droplets are Newtonian, 𝛥 = 2 and 𝑂ℎ = 0.05; 
and (c) both droplets are non-Newtonian, 𝛥 = 2, 𝑂ℎ = 0.05 and 𝑂ℎ∞ = 0.002.  
 

More specifically, Figure 2.15(a) showed the initially stationary coalescence 

between one shear-thinning droplet (upper) and one Newtonian droplet (below) with 

the same density, zero-shear viscosity, and surface tension. It is observed that the 

Newtonian droplet is encapsulated by the non-Newtonian droplet owing to the locally 

reduced viscosity by shear-thinning effect, which is similar to the collision between 

one high viscous droplet and one low viscous droplet simulated by Focke et al.[53]. 

As shown in Figure 2.15(b), no mushroom-like jet structure can be observed for the 

collision between two Newtonian droplets with 𝛥 = 2 and 𝑂ℎ = 0.05, which is 

consistent with the previous results[44] that the internal jet is suppressed by large 
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viscosity. However, it is clearly seen the mushroom-like jet structure for the collision 

between two shear-thinning droplets with 𝛥 = 2, 𝑂ℎ = 0.05 and 𝑂ℎ∞ = 0.002, as 

shown in Figure 2.15(c). Considering that the initially stationary coalescence between 

two shear-thinning droplets is a surface tension driven flow, thus it is inferred that the 

internal jet can be further promoted significantly as increasing 𝑊𝑒 because the local 

shear rate became higher under large impact inertia.  

 

 
Figure 2.16 Head-on collisions of non-Newtonian droplets[73]: (a) 𝑊𝑒 = 40 and 
(b) 𝑊𝑒 = 80 for two different shear-thinning fluids; (c) 𝑊𝑒 = 100 for two identical 
shear-thickening droplets; (d) 𝑊𝑒 = 100, (e) 𝑊𝑒 = 200, and (f) 𝑊𝑒 = 250 for 
one shear-thinning droplet (left) and another shear-thickening droplet (right).  
 

Sun et al.[73] further numerically studied the binary collision between different 

non-Newtonian droplets of equal size and non-vanishing 𝑊𝑒. Figure 2.16(a) and 
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2.16(b) showed the collision between two droplets with different shear-thinning 

effects, which indicates that the disparity of shear-thinning effects can enhance the 

droplet deformation at small 𝑊𝑒 so that easily to separate the merged droplets into 

several small droplets. In addition, the separated droplets are still mixed with masses 

from two initial droplets, even though the separation was not desired for the internal 

mass interminglement. Figure 2.16(c) showed the collision between two identical 

shear-thickening droplets. The droplet deformation was significantly suppressed 

owing to the increased viscosity so that the droplet separation cannot occur even at a 

large 𝑊𝑒. Figure 2.16(d)-2.16(f) showed the collision between one shear-thinning 

droplet and one shear-thickening droplet for different 𝑊𝑒 from 100 to 250. It is seen 

that internal mass interminglement can be promoted by shear-thinning effects and 

droplet separation can be suppressed by shear-thickening effects so that to allow 

sufficient mixing, which is a promising concept for the fluid-phase fuel-oxidizer 

hypergolic ignition system in the rocket engine.  

2.6 Binary collision between other (charged or reactive) droplets 

The rich phenomena of binary droplet collision are of increasingly interests by 

considering more factors, for example, the collision between charged droplets under 

electrical field or the collision between reactive droplets involving phase change and 

chemical reactions.  
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Ristenpart et al.[74] reported that the oppositely charged droplets tend to bounce 

off at high electrical field strengths that are supposed to coalescence at low field 

strengths. The high-resolution images focusing on the transient formation of a 

meniscus bridge between the bouncing droplets show that this temporary bridge is 

unstable[75] with respect to capillary pressure when it forms in an electric field 

exceeding a critical strength. The external electrical force influences coalescence, 

separation, and satellites ejection between liquid metal droplets[76]. The effects of an 

external electric field on droplet coalescence can be found in a review paper by 

Kavehpour[77].  

Generally, the combustion of impinging fuel sprays[2, 3, 78] in the engines 

experiences several stages such as sprays breakup involving droplet collision, droplet 

heating, vaporization, and combustion in the gas phase. In terms of the 

micro-explosion phenomena induced by internal superheating that benefits to the 

prevaporization and second atomization, Wang et al.[16, 79] reported that the 

micro-explosion was only observed for the collision-generated droplets and believed 

to be initiated by the air bubbles entrapment during the collision.  

A representative binary droplet collision and subsequent ignition process 

between two reactive droplets, for example the hypergolic ignition between N, N, N’, 

N’−tetramethylethylenediamine and white fuming nitric acid droplets, has been 
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experimentally identified by Zhang et al.[80], as the shadowgraph images shown in 

Figure 2.17. The entire process can be visually divided into five stages: Stage I (0 ms 

– about 4.0 ms): droplet coalescence and deformation; Stage II (about 4.0 ms – about 

20.0 ms): droplet heating and vaporization; Stage III (about 20.0 ms – about 30.0 ms): 

rapid vaporization and reactions; Stage IV (about 30.0 ms – about 31.0 ms): ignition 

in gas phase; and Stage V (after about 31.0 ms): flame propagation and combustion. 

Zhang et al.[80] found the seemingly counterintuitive results that, in a certain (relying 

on 𝛥) range of 𝑊𝑒, the ignition delay times increase with 𝑊𝑒. This result can be 

speculatively attributed to the recently identified phenomena in droplet coalescence 

and internal mixing[15] that the jet-like mixing patterns emerge at relatively small and 

large 𝑊𝑒 but disappear at intermediate 𝑊𝑒. It indicates that the ignition process 

upon the collision between two hypergolic ignition droplets is probably dominated by 

the internal mass entanglement in the preliminary collision stage.  

 

 
Figure 2.17 Shadowgraph images of the hypergolic ignition at selected times[80].  
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2.7 Theoretical and numerical predictions on binary droplet collision 

We believe that a qualitatively understanding of the binary droplet collision has 

been obtained from the above discussions about the experimental phenomena. 

However, more general conclusions about the dynamics of collision process, such as 

coalescence, bouncing, separation, and splashing, and accurate predictions on the 

collision outcomes are anticipated. Considering the complexity of binary droplet 

collision with so many controlling parameters, the theoretical analysis can be initiated 

from the simplest model of the head-on collision between identical droplets, and then 

extended to more general case of off-center collision between droplets of unequal 

sizes.  

2.7.1 Coalescence – bouncing transition with minor droplet deformation 

As Qian et al.[25] reported that high pressure environment, equivalent to high 

gas-fluid density ratio according to the equation of state of gas, favors bouncing after 

collisions between two identical droplets, their further study indicated that it is easily 

to occur droplet bouncing under 7.5 atm helium than 1 atm nitrogen although the gas 

density is almost the same. This is because the viscosity of 7.5 atm helium is 11% 

larger than that of 1 atm nitrogen, which might account for the easily droplet 

bouncing.  
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Then, Bach et al.[81] proposed that the mean free path of the ambient gas  

𝜆 =
𝜇

𝜌
√

𝜋𝑚

2𝑘𝐵𝑇
                                                    (2.10) 

plays significant roles on the gas film draniage. Thus, the rarefied gas effect among 

the gas film region has to be considered to accuratly describe the transition between 

coalescence and boucning. The resutls showed that the critical Knudsen number of the 

transition state, 𝐾𝑛 = 𝜆 𝑎⁄  (𝑎  is droplet radius), was independent of 𝑊𝑒 , but 

increased with the increase of viscosity and decreased as increasing the ambient gas 

pressure. Binary droplets after the collision tend to bounce off with small gas mean 

free path, i.e. the smaller viscosity or larger environemtn pressure. That explains why 

the 7.5 atm helium favors dropelt bouncing than 1 atm Nitrogen because the mean 

free path of the former is 2.5 times smaller than that of the latter. However, this theory 

was only valid for the cases with 𝑊𝑒 ≪ 1 but not for dropelt collision with large 

deformation.  

2.7.2 Coalescence – bouncing – coalescence transition  

Zhang and Law[17] proposed a model, combining the lubrication layer theory, 

the pressure correction by the rarefied gas effects among the gas film, the Van der 

Waals attractive force, and the viscous dissipation evaluation, to predict the 
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nonmonotonic coalescence-bouncing-coalescence transition as increasing 𝑊𝑒 for the 

head-on droplet collision.  

 

 
Figure 2.18 Schematic of the analyzed droplet configuration[17]. The three 
time-dependent variables describing the droplet geometry and dynamics are the radius 
of the flattened interface 𝑎(𝑡), the perpendicular distance from the center of the 
spherical surface to the flattened interface 𝑏(𝑡) , and the distance between the 
impacting interface ℎ(𝑡). 
 

Topological changes of the droplet free interface at large 𝑊𝑒 are complicated 

than that at small  𝑊𝑒, thus the small spherical perturbation analysis cannot be 

available any more. The realistic droplet deformation can be described by a truncated 

sphere with a flattened cap, as shown in Figure 2.18. The problem can be simplified to 

focus on only one droplet because of the symmetry between identical droplets. Three 

independent time-dependent variables describing the geometrical droplet deformation 

and dynamics are, the radius of the flattened interface 𝑎(𝑡), the perpendicular 

distance from the center of the spherical surface to the flattened interface 𝑏(𝑡), and 
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the distance between the impacting interfaces ℎ(𝑡). The droplet radius 𝑅(𝑡) can be 

expressed using the above three variables as 𝑅2(𝑡) = 𝑎2(𝑡) + 𝑏2(𝑡).  

The correlations between these variables can be established based on the mass, 

momentum, and energy conservation laws. The mass conservation 𝑑𝑀/𝑑𝑡 = 0 has 

𝑑

𝑑𝑡
(2𝑅3 + 3𝑅2𝑏 − 𝑏3) = 0                                     (2.11) 

The deceleration by decreasing 𝑏 or acceleration by increasing 𝑏 of the droplet 

mass center 𝐺 = 𝑏 + 3(𝑅 − 𝑏)2/ [4(2𝑅 − 𝑏)] can be described as  

𝑑2

𝑑𝑡2
(𝐺 +

ℎ

2
) = ∫ 𝑝𝑔 (𝑟, 𝑧 =

ℎ

2
; 𝑡) 2𝜋𝑟𝑑𝑟

𝑎

0

                      (2.12) 

in which the right-hand side of equation (2.12) is the resistance force 𝐹(𝑡) on the 

flattened interface by the gas film pressure 𝑝𝑔.  

The energy conservation has 

𝑑

𝑑𝑡
(𝐸 + Σ) = �̇� − 𝜙                                             (2.13) 

where 𝐸 = 𝑀(𝐺 + ℎ/2)2/2 the translation energy of the droplet mass center, 𝛴 =

𝜎𝜋(3𝑅2 + 2𝑅𝑏 − 𝑏2)  the surface energy, �̇� = 𝐹ℎ̇/2  the power of gas film 

resistance force, and 𝜙 the total viscous dissipation rate of the inner flow. Once the 

flows inner gas film region and droplet are known, the gas film resistance 𝐹 and 

viscous dissipation rate 𝜙 can be calculated, and the ordinary differential equations 

describing the droplet deformation and coalescence can be solved accordingly.   
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 As discussed before, the minimum gas film thickness ℎ can reach 10 nanometers 

whereas the mean free path 𝜆 of atmosphere air in 1 atm is about 100 nanometers, 

resulting in the Knudsen number 𝐾𝑛 = 𝜆 ℎ⁄  as large as 10. Thus, the rarefied gas 

effect among the gas film must be considered to accurately estimate the pressure 

distribution, otherwise the exceeding resistance force induced by the overestimated 

pressure prevents the droplet interfaces from approaching sufficiently to the Van der 

Waals scale as small as 𝑂(102) nm, and thereby always leads to droplet bouncing.  

 In addition, the gas film thickness is assumed to be far less than the radius of the 

flattened interface because of the sufficiently large droplet deformation, i.e. ℎ ≪ 𝑎, 

thus the local gas film flow can be approximated as the rarified gas flow between two 

flattened interfaces (the approaching velocity and the radius expansion rate of the 

flattened interface are 𝑑ℎ/𝑑𝑡 and 𝜅 = (𝑑𝑎/𝑑𝑡)/𝑎, respectively). Zhang and Law[17] 

derived a solution that valid for a wide range of 𝐾𝑛 by solving Boltzmann equation 

with Bhatnagar-Gross-Krook (BGK) model as  

𝑝𝑔
′ =

3𝜇𝑔

ℎ3
(𝑟2 − 𝑎2) (

𝑑ℎ

𝑑𝑡
+ 2𝜅ℎ) 𝑓(𝐾𝑛)⁄                            (2.14) 

where  

𝑓(𝐾𝑛) = {
1 + 6.0966𝐾𝑛 + 0.9650𝐾𝑛2 + 0.6967𝐾𝑛3 (𝐾𝑛 < 1)

8.7583𝐾𝑛1.1551 (𝐾𝑛 ≥ 1)
    (2.15) 

It is noted that equation (2.14) can be degenerated to continuous lubrication flow if 

the rarefied gas effects are not considered.  
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 It is worthy to mention that the Van der Waals force accounting for the droplet 

coalescence mechanism can be included by adding another amount of negative 

pressure[13] on the droplet interface as 

𝑝𝑣𝑑𝑊 = −
𝐴𝐻

6𝜋ℎ3
                                              (2.16) 

where the Hamaker constant 𝐴𝐻 = 𝑂(10−21 − 10−18) J is very small. The negative 

pressure increases cubically with decreasing the gas film thickness ℎ and finally 

becomes significantly effective to rupture the interface only when the gas film 

thickness is sufficiently small. Consequently, the estimated pressure among the gas 

film region is a sum of the corrected pressure by rarified gas effects and the Van der 

Waals negative pressure: 𝑝𝑔 = 𝑝𝑔
′ + 𝑝𝑣𝑑𝑊.  

We can still yield some useful understandings although the analytical solutions 

are difficult to describe the unsteady droplet deformation and complicated inner flow 

in the realistic situations. Zhang and Law[17] simplified the droplet deformation as a 

rapidly expanding or contracting disk (analogous to Von Karman rotated disk flow), 

in which the viscous effects are mainly restricted into a thin layer close to the 

flattened interface (𝜂~√𝜈𝑙/𝜅). The simplified velocity field is given as 

𝑢 =
1

2
𝜈𝑙𝜂

2𝑟𝑒−𝜂𝑧, 𝑣 = −𝜈𝑙𝜂(1 − 𝑒−𝜂𝑧)                          (2.17) 
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Figure 2.19 Evolution of the time-dependent variable �̃�, �̃�, �̃�, and ℎ̃ describing the 
tetradecane droplet[17] (a) coalescence (I) at 𝑊𝑒 = 0.8, (b) bouncing (II) at 𝑊𝑒 =

6.1, and (c) coalescence (III) at 𝑊𝑒 = 34.1.  
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It shows the boundary-layer-like characteristics of the internal-flow-induced viscous 

dissipation during the radial expansion process. Then the total viscous dissipation rate 

𝜙 can be calculated.   

 The model has been validated to successfully predict the non-monotonic 

coalescence-bouncing-coalescence transition with large droplet deformation, as the 

examples of binary collision between tetradecane droplets shown in Figure 2.19. It is 

worthy to mention that the model prediction fails if ignoring no matter what viscous 

dissipation, rarefied gas effects, or Van der Waals force. Furthermore, the Knudsen 

number 𝐾𝑛, the Hamaker constant �̃�𝐻 , and the capillary number 𝐶𝑎 = 𝜇𝑔𝑉0/𝜎 

relevant to the initial values of the dynamics system, are indispensable to describe the 

droplet collision in the gaseous environment.  

2.7.3 Coalescence – separation transition  

Based on the negligible inviscid flow for the binary collision between water 

droplets, Ashgriz and Poo[14] proposed the capillary wave instability mechanism for 

the criteria of droplet reflexive separation. As pointed by Stone and Leal[82], the 

droplet filament should be stretched sufficiently to develop instable capillary waves if 

the capillary instability accounts for the mechanism of droplet separation, however, 

this cannot be observed in the previous experiments. Later, Jiang et al.[24] focused on 

the binary collision between alkane droplets (with viscosity larger than water) and 
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showed that the critical 𝑊𝑒 of the transition from coalescence to reflexive separation 

for head-on collisions increases as increasing the viscosity.  

Qian and Law[25] proposed a theoretical model (based on energy conservations 

between kinetic energy, surface energy, and viscous dissipation) to predict the critical 

transition between coalescence and reflexive separation for the head-on collision 

between identical droplets. It is found that the critical Weber number 𝑊𝑒𝑐 is linearly 

dependent on the Ohnesorge number 𝑍 = 16𝜇 (𝜌𝑅𝜎)1 2⁄⁄  as  

𝑊𝑒𝑐 = 𝛽𝑍 + 𝛾                                                      (2.18) 

It is a general conclusion for many different fluids (𝑂ℎ), as number points shown in 

Figure 2.20, where 𝛽  is a geometric parameter and independent of the fluid 

properties, while 𝛾  is the additional surface energy induced by the droplet 

deformation. This can be understood as that, the initial total kinetic energy of droplets 

occurring separation can be divided into two parts, one is for overcoming viscous 

dissipation and interface oscillation, and another is for compensating the addition of 

surface energy owing to droplet deformation. Then, Tang et al.[43] extended the 

model to binary collision between droplets of unequal sizes and found the similar 

expression as Qian and Law[25], in which the parameters 𝛽(𝛥) and 𝛾(𝛥) are size 

ratio dependent. The parameters in the model were determined from fitting the 
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experimental data of tetradecane droplets, and they were also satisfactorily valid for 

water and decane droplets.  

 

 

Figure 2.20 Critical Weber number versus Ohnesorge number for the regime 
boundary between coalescence (III) and separation (IV) in air environment[25]. 
Number 1 to 8 denote different cases of droplet collision of different fluids under a 
certain ambient gas environment. 
 

To further study the deviations between the model prediction and experiments, 

Tang et al.[43] performed a simple sensitivity analysis on the viscous dissipation and 

residual surface energy at different collision stages. It indicated that the viscous 

dissipation in the second stage (i.e. contracting stage from maximum droplet 

deformation to firstly recover to the approximately spherical shape driven by surface 

tension) contributed to the majority of the overall viscous dissipation and thereby 

suppressed the droplet reflexive separation. The critical 𝑊𝑒𝑐  increases with 

increasing 𝛥 owing to the enhanced viscous dissipation by internal flow.  
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Furthermore, for more general situation of off-center droplet collision, Ashgriz 

and Poo[14], Jiang et al.[24], and Rabe et al.[28] have also conducted some 

preliminary theoretical analysis on the prediction of the regime boundary between 

coalescence and stretching separation. 

2.8 Summary 

This literature review summarizes the previous studies on the binary droplet 

collision influenced by various parameters in accordance with the non-dimensional 

parameter analysis. Various distinctive collision outcomes have been identified and 

compared for each controlling parameter. Experimental, theoretical, and numerical 

methods are all indispensable to study binary droplet collision. The experimental 

method is a most direct way to study binary droplet collision but still challenging on 

the visualization and analysis on the microscopic flow filed that merits further 

development. The theoretical analysis can obtain some general conclusion but is 

hardly to predict the entire complicated and unsteady collision process involving 

multi-scale and multi-physics characteristics. Similarly, the numerical simulation also 

cannot predict the droplet collision although they are useful to analyze the 

microscopic flow filed once has been validated by experimental observations 

sufficiently.  
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Compared with the extensively studies on the effects of size ratio, Weber number, 

Ohnesorge number, and impact parameter on the binary droplet collision, the binary 

collision between droplets of different fluids, the non-Newtonian fluids effects, the 

pressure effects, and more practically the real sprays involving large amount of binary 

droplet collision have been paid increasing attentions in the recent years.  
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3 Numerical methodology 

3.1 Background 

Extensive advances have been achieved in the numerical simulation of droplet 

collision, by employing various interface tracking methods such as the Front Tracking 

(FT) method, the Volume-of-Fluid (VOF) method, the Level-set method[83, 84], the 

Phase Field method combined with Lattice Boltzmann method (LBM), the Smooth 

Particle Hydrodynamics (SPH) method[85, 86], the diffuse-interface method[87, 88], 

and other particle methods[89].  

The most commonly used interface tracking methods based on the continuum 

flow can be divided into two types: explicit front-tracking (Lagrangian method) and 

implicit volume-tracking (Eulerian method). For the former, for example the FT 

method, the flow field is solved by Euler method while the freely convective interface 

is tracked by the Lagrangian method with a set of sequenced points. For the latter, 

such as VOF, Level-set, and Phase Field method, the free interface is presented by a 

defined volume fraction function.  

FT method is perfectly in simulating binary droplet bouncing[41, 90] because 

two interfaces independently represented by two sets of sequenced points that cannot 

contact and without topological changes. However, to simulate droplet coalescence, it 

requires to merge the interface manually at predefined merging position and time. The 
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Lagrangian interface markers must be added or deleted according to the interface 

topological changes, which has more algorithm complexities than Eulerian methods to 

treat complex droplet deformation and remains challenging for the front-tracking 

family. 

In terms of VOF and Level-set methods, the droplet collision outcomes are 

strongly influenced by the mesh resolution near the interface. Consequently, a coarse 

mesh would induce “premature” coalescence of the droplets that are supposed to 

bounce off. Then, the adaptive mesh refinement technics have been applied to 

increase the mesh resolution especially for the interface region so that to delay the 

numerical droplet coalescence. Chen and Yang[91] developed a thickness-based 

adaptive mesh refinement method, and they could simulate droplet bouncing with a 

relatively smaller number of meshes because only the interface close to the interaction 

region was refined. However, the time step must be significantly decreased for 

numerical stability, thereby restricting the computational efficiency. Coyajee and 

Boersma[92] proposed a modified VOF approach which applies different marker 

functions to describe separate interfaces so as to avoid interface coalescence on a 

coarse mesh. Kwakkel et al.[93] applied this approach to establish a droplet 

coalescence model by manually merging two interfaces at the experimentally verified 
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gas film drainage time. This modified VOF method with multiple marker functions is 

partly similar to the front-tracking method.  

Different from above mesh-dependent interface tracking methods of VOF and 

Level-set, the Phase Field method solving Cahn-Hilliard advection-diffusion equation 

can simulate droplet collision at uniform meshes, where equilibrium in a 

heterogeneous system is obtained by minimizing the chemical potential through a 

parameter of mobility. It can delay the interface merging[72, 73, 94, 95] by choosing 

a reasonable parameter of mobility, which is more efficient than VOF and Level-set to 

simulate droplet bouncing at relative coarse mesh. 

However, it is noted that all the physically unrealistic interface merging 

mechanisms introduced to the above methods are unable to predict the binary droplet 

collision because of the absence of the connection between the macroscopic 

mechanics based on the continuum description and the microscopic mechanics 

implementing intermolecular forces[13] responsible for interface merging. In recent 

year, several attempts have been devoted for the prediction of droplet coalescence and 

bouncing from the first principle by implementing Zhang and Law’s[17] theory as a 

sub-grid model. Li[96] reported preliminary success in numerically predicting droplet 

coalescence by using finite element method. An important comment on the 

Supplementary Materials of[96] indicated that the interpolation of viscosity in VOF 
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methods grossly over-estimated the viscosity in the lubrication layer and hence the 

lubrication forces. Consequently, VOF methods were unable to predict the transition 

between coalescence and bouncing with minor droplet deformation because the 

thickness of the gas film cannot reach the length scale that Van der Walls force 

become effective. Musehane et al.[97] reported to successfully predict the droplet 

coalescence by coupling the multiple marker method[92] with a thin film drainage 

model based on VOF method. Rajkotwala et al.[98] improved and extended Local 

Front Reconstruction Method (LFRM) with a film drainage model based on the 

front-tacking method. Liu and Bohe[99] have also made some attempts on this topic. 

Overall, these numerical methods of predicting droplet coalescence with sub-grid 

models are still computationally expensive because it requires to resolve the interface 

mesh to the scale of 𝑂(10) nm, especially in 3D simulations. 

3.2 Volume-of-Fluid (VOF) method 

The VOF method is noted for its mass conservation but it is difficult to evaluate 

the interface curvature and normal vectors merely from VOF functions. While for 

Level-set method, the interface normal vector and curvature can be easily obtained by 

the level set function but it suffers from a disadvantage of mass loss although this can 

be improved by using “reinitialization” technique[100]. The level set function 

satisfies conservative law but does not imply the mass of each fluid is also conserved. 
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To take both advantages of each approach, a coupled Level-set Volume-of-Fluid 

method (CLSVOF)[101] was developed. However, CLSVOF method introduces two 

different representations of the same interface (i.e. Level-set function is for the 

evaluation of interface curvature and normal vector and VOF function is used to 

ensure mass conservation[92]), which inevitably results in numerical errors for the 

interface positions. That is because the Level-set function is reinitialized[92, 101] and 

constructed from the volume fraction at each timestep as a distance function to 

piecewise linear interface segments. The detailed “coupled” advection algorithm is 

explained in[101]. Cummins et al.[102] argued that the errors owing to the 

reinitialization of Level-set function can result in the inaccurate curvature estimation 

that do not converge with mesh resolution.  

In the present work, an alternative VOF method combining continuum surface 

force (CSF) with height function curvature estimation were applied. VOF/CSF 

method is different from CLSVOF method because the interface is only represented 

by the VOF function and existing no “coupling” between VOF function and height 

function. The height function and curvature[102, 103] can be accurately calculated 

from the conservative VOF function without any reinitializations.  

The present VOF/CSF method has been implemented in an open source code, 

Gerris[18, 19], featuring the 2D/3D quadtree/octree adaptive mesh refinement, the 
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geometrical VOF interface reconstruction, and continuum surface force (CSF) with 

height function curvature estimation. It solves the unsteady, incompressible, and 

variable-density Navier-Stokes equation with surface tension by using the classic 

fractional-step projection method. The temporal discretization is second-order and the 

Poisson equations is solved by a multi-level solver through iterative methods (Jacobi, 

Gauss–Seidel) using a relaxation operator. The resulting Crank–Nicholson 

discretization of the viscous terms is formally second-order accurate and 

unconditionally stable. Gerris has been demonstrated to be competent for solving a 

wide range of multiphase problems[15, 20, 21, 23, 91, 104-106].  

3.3 Strategy of adaptive mesh refinement 

For VOF simulations in Gerris, the numerical gas-liquid interface is identified by 

so-called “mixed cells” with 0 < 𝑐 < 1. Owing to the interface reconstruction, the 

spatial thickness of those “mixed cells” denoting the interface is only of one mesh size. 

Thus, to approach the infinite thin gas-fluid interface in real situations, the numerical 

interface cells must be as small as possible. A reasonable choice of adaptive mesh 

refinement method can reduce the total number of cells and increase the 

computational efficiency substantially.  

To resolve the droplet interface and also the internal flow, the computational 

domain can be divided into three physical zones, as schematically shown in Figure 3.2, 
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namely the gas, the interior of droplet, and the interface zone. Each zone has its own 

mesh refinement level denoted by 𝑁, which corresponds to a minimum mesh size of 

𝑂(2−𝑁). Accordingly, we can use (𝑁1, 𝑁2, 𝑁3) to prescribe the refinement levels in all 

three zones.  

 

 
Figure 3.1 Schematic adaptive mesh refinement in 3D numerical simulation: (a) 
topological refinement, (b) variable-based (color function or vorticity) refinement, (c) 
thickness-based (film thickness) refinement, and (d) curvature-based refinement. 
 

Based on three different physical zones, the domain can be further locally refined 

for different collision outcomes because the local information of flow field might be 

significant. As shown in Figure 3.1, four mesh refinement methods oriented to 

different physical problems are introduced. Figure 3.1(a) shows the topological 

refinement to locally refine the interface zone where the interface fragments are 

separated by less than two cells, which can be used to delay interface merging[91]; 

Figure 3.1(b) shows the variable-based refinement, for example the gradient of color 

function or vorticity, which can be used to study the inner mass interminglement or 
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the vorticity dynamics[23], respectively; Figure 3.1(c) shows the thickness-based 

refinement, which can be used to study the droplet spreading and film dynamics for 

the binary droplet collision at sufficient large Weber number; and Figure 3.1(d) shows 

the curvature-based refinement, which can be used to study the dynamics of droplet 

coalescence[107] at initially short period.  

3.4 Numerical specifications and preliminary validations 

To solve both gas and liquid phases, it introduces a volume fraction 𝑐, where 

𝑐 = 1 for liquid phase, 𝑐 = 0 for the gas phase, and 0 < 𝑐 < 1 for the gas-liquid 

interface. Then the global density and viscosity can be constructed by 𝑐 as 𝜌(𝑐) =

𝑐𝜌𝑙 + (1 − 𝑐)𝜌𝑔  and 𝜇(𝑐) = 𝑐𝜇𝑙 + (1 − 𝑐)𝜇𝑔 , in which the subscripts 𝑙  and 𝑔 

denote the liquid and gas phases, respectively. The volume fraction 𝑐 satisfies the 

advection equation  

𝜕𝑐 𝜕𝑡⁄ + ∇ ⋅ (𝑐𝒖) = 0                                              (3.1). 

The continuity and incompressible Navier-Stokes equations 

∇ ⋅ 𝒖 = 0,                                                           (3.2) 

𝜌(𝜕𝒖 𝜕𝑡⁄ + 𝒖 ⋅ ∇𝒖) = −∇𝑝 + ∇ ⋅ (2𝜇𝑫) + 𝜎𝜅𝒏𝛿𝑠,                     (3.3) 

are solved by using the classic fractional-step projection method, where 𝒖 is the 

velocity vector, 𝜌 the density, 𝑝 the pressure, 𝜇 the dynamic viscosity, and 𝑫 the 

deformation tensor defined as 𝐷𝑖𝑗 = (𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑗) 2⁄ . In the surface tension term 
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𝜎𝜅𝒏𝛿𝑠, 𝛿𝑠 is a Dirac delta function, 𝜎 the surface tension coefficient, 𝜅 the local 

curvature, and the unit vector 𝒏 normal to the local interface.  

Figure 3.2 shows the axisymmetric coordinate for head-on droplet collisions with 

non-vanishing Weber number. The domain is 6𝐷𝑆 in length and 3𝐷𝑆 in width. The 

bottom boundary is the symmetric axis, which is specified as axisymmetric boundary 

condition while the others are specified as the free outflow boundary conditions. Two 

droplets collide in the axial z-direction with their velocity components 𝑈𝑆 =

−𝛥3𝑈 (1 + 𝛥3)⁄  and 𝑈𝐿 = 𝑈 (1 + 𝛥3)⁄  in the mass center coordinate so that the 

relative velocity is 𝑈 and the momentum of the collision system remains zero. The 

oscillation time is 𝑡osc = √𝜌𝑆𝐷𝑆
3/𝜎𝑆, by which the non-dimensional time can be 

defined as 𝑇 = 𝑡 𝑡osc⁄ .  

 

 
Figure 3.2 Schematic of the computational domain and adaptive mesh refinement for 
the head-on droplet collisions with non-vanishing Weber number. 
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Figure 3.3 Head-on binary collisions between tetradecane droplets of equal size[41], 
(a) 𝑊𝑒 = 2.25, coalescence; (b) 𝑊𝑒 = 2.27, bouncing; (c) 𝑊𝑒 = 9.33, bouncing; 
(d) 𝑊𝑒 = 13.63, coalescence. 

 
Figure 3.4 Head-on binary collisions between tetradecane droplets of unequal size[43], 
(a) 𝑊𝑒 = 7.0, 𝛥 = 2.33 , bouncing; (b) 𝑊𝑒 = 13.8, 𝛥 = 1.46 , coalescence; (c) 
𝑊𝑒 = 52.8, 𝛥 = 1.50, reflexive separation. 
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 The preliminary validations on the head-on collision between two tetradecane 

droplets of equal size[41] and unequal sizes[43] are briefly presented in Figure 3.3 

and Figure 3.4, respectively. The non-monotonic coalescence-bouncing-coalescence 

transition with increasing 𝑊𝑒 is successfully simulated by choosing reasonable mesh 

parameters. Based on the previously discussed mesh refinement strategy for three 

physical zones, the mesh refinement levels for each case in Figure 3.3 are (4,6,8), 

(4,6,9), (4,6,10), and (4,6,10), respectively. It indicates that mesh refinement level of 

(4,6,8) is sufficient to simulate droplet coalescence with minor deformation for Figure 

3.3(a), a larger mesh refinement level of (4,6,9) can delay the interface merging and 

result in droplet bouncing for Figure 3.3(b), and more larger mesh refinement level of 

(4,6,10) should be used to simulate droplet bouncing and coalescence with large 

droplet deformations for Figure 3.3(c) and (d). Furthermore, for simulating the 

bouncing and coalescence between tetradecane droplets of unequal sizes, a great 

larger mesh refinement level of (4,6,11) is required, as shown in Figure 3.4.  
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4 Non-monotonic viscous dissipation of 

bouncing droplets undergoing off-center 

collision 

4.1 Background and objectives 

The investigation of droplet collision could date back to the study on cloud 

aerosol, which was aimed to explain the mechanism of raindrop formation. 

Historically, studying the raindrop formation raised some arguments about which 

mechanism plays the dominant role, between the fragmentation of large droplets and 

the coalescence of minute droplets. It then spawned the early studies on the collision 

between two water droplets in standard atmosphere environment, resulting in the 

discovery of two collision outcomes, coalescence and separation. However, raindrops 

might have opposite charges[74] so that they tend to bounce off upon collision and 

their distributions of size, number density, and velocity are accordingly influenced.  

In recent years, to understand the sprays of liquid fuels in combustion conditions, 

research efforts have been devoted to the collision between two hydrocarbon 

droplets[24, 25] in various gaseous environments, and most relevant studies were 

focused on droplet coalescence[14, 25, 43, 77] and the subsequent internal mixing[22, 

23, 44, 56, 108]. Although not being sufficiently studied, interesting phenomena were 

also observed for droplet bouncing; for example, bouncing was found to occur to only 
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fuel droplets[24, 25] but not water droplets in standard atmosphere environment. 

Furthermore, the collision outcomes can be significantly affected by the gas 

environment; specifically, increasing the gas pressure promotes droplet bouncing and 

decreasing the gas pressure promotes droplet coalescence[25, 109, 110]. Given the 

elevated pressure[25, 110] in real combustion chambers, droplet bouncing is a 

prominent collision outcome and of great significance in dense spray combustion. It 

has been verified both experimentally and numerically[111-113] that high pressure 

environment favors droplet bouncing in impinging jets. 

Compared with the extensively studied droplet coalescence and separation, 

binary droplet bouncing has been investigated by only a few studies. AI-Dirawi and 

Bayly[37] experimentally studied the binary collision between identical droplets with 

different viscosities and proposed an improved model for the prediction of bouncing 

regimes in the nomogram of Weber number and impact parameter space. The 

dynamics of interfacial gas layer[114] and viscous effects[115] on the 

bouncing-to-merging transition in droplets impacting on the liquid film were studied, 

in which the droplet impacting on the liquid pool was a special case of binary droplet 

collision with infinite size ratio. Blanchette[116] proposed a model to describe 

droplets bouncing on an oscillated reservoir with various bouncing modes. Pan et 

al.[41] studied the evolution of energy budget for head-on bouncing between binary 
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droplets of equal size both experimentally and numerically. Tang et al.[43] 

experimentally observed the head-on bouncing between binary droplets of unequal 

sizes. The present study attempts to focus on the three-dimensional (3D) off-center 

droplet bouncing, which is more practical and general than the axisymmetric head-on 

case. Chen and Yang[91] developed a thickness-based adaptive mesh refinement 

approach based on the Volume-of-fluid (VOF) method to simulate 3D off-center 

droplet bouncing. Hu et al.[117] used a VOF method to numerically study 3D 

off-center bouncing of alumina droplets. In order to emphasize the influence of 

off-center collision (measured by the impact parameter) on droplet bouncing, the 

present study limits its scope to droplets of equal size to avoid possible complexity 

introduced by variable size ratio, although the size ratio effects have been 

demonstrated to be important to droplet collision in other studies[15, 20, 22, 43, 46, 

95, 108, 118].  

 In Lagrangian simulation of sprays, few previous works have investigated in 

detail the variation of the kinetic energy loss in off-center droplet bouncing. The 

classical O'Rourke model[38, 119] only considers droplet coalescence and grazing 

separation, in which droplet bouncing is treated as grazing collision with the kinetic 

energy dissipation factor 𝑓𝐸 ≡ 1 − KEa KEb⁄ = 0 , where KEb  and KEa 

respectively represent the kinetic energy of droplets before and after the collision. In 
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lieu of O’Rourke’s assumption, Zhang et al.[111] used an approximation of 𝑓𝐸 = 0.5 

suggested by Jiang et al.’s experiment[24]. The numerical simulation of Chen et 

al.[104] found that the normalized kinetic energy loss at the maximum droplet 

deformation decreases monotonically with increasing 𝐵 . Zhang and Zhang[90] 

numerically studied the kinetic energy recovery and viscous dissipation of bouncing 

droplets undergoing head-on collision. 

The present study attempts to promote both the physical understanding on the 

viscous dissipation of bouncing droplets undergoing off-center collision and the 

applications of the droplet bouncing modeling in Lagrangian simulations of sprays. 

The numerical methodology and validations are given in Section 4.2, followed by the 

preliminary analysis of the bouncing phenomenon and energy budget in Section 4.3. 

The detailed calculations and discussions of the viscous dissipation and the kinetic 

energy recovery are presented in Section 4.4 and Section 4.5, respectively. 

4.2 Numerical methodology and validations 

4.2.1 VOF method with two marker functions 

As discussed in Chapter 3, for the conventional VOF method with one marker 

function, the mesh size resolving the interfaces between two colliding droplets must 

be sufficiently small in order to capture the outcome of bouncing; otherwise, the 

unphysical interface coalescence would occur numerically. Whereas for the modified 
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VOF method with two marker functions, the unphysical interface coalescence can be 

avoided even with the coarse mesh. Thus, to improve the computational efficiency, 

we use two volume fractions[92] in the present simulation, namely 𝑐1 and 𝑐2, to 

separately track the interface of each liquid droplet. The same idea of multiple marker 

functions was also implemented in Gerris by Hu et al.[117] to simulate binary droplet 

bouncing. Then, the density and viscosity can be constructed by the volume fraction 

as  𝜌 = (𝑐1 + 𝑐2)𝜌𝑙 + (1 − 𝑐1 − 𝑐2)𝜌𝑔  and  𝜇 = (𝑐1 + 𝑐2)𝜇𝑙 + (1 − 𝑐1 − 𝑐2)𝜇𝑔 , in 

which the subscripts 𝑙 and 𝑔 denote the liquid and gas phases, respectively. The 

volume fraction 𝑐𝑖(𝑖 = 1,2) satisfies the advection equation 

𝜕𝑐𝑖 𝜕𝑡⁄ + ∇ ⋅ (𝑐𝑖𝒖) = 0                                            (4.1) 

with 𝑐𝑖 = 1 for liquid phase, 𝑐𝑖 = 0 for gas phase, and 0 < 𝑐𝑖 < 1 for gas-liquid 

interface.  

To compare the differences between these two VOF methods, the time evolution 

of the droplet deformation for 𝑊𝑒 = 2.3, 𝑂ℎ = 2.80 × 10−2, and 𝐵 = 0.0[41] is 

shown in Figure 4.1(a), which involves three different cases: one marker function 

with fine mesh, two marker functions with fine mesh, and two marker functions with 

coarse mesh. The results show that droplet deformations collapse with each other for 

different interface mesh resolutions and marker functions.  
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Figure 4.1 Comparison of (a) the droplet deformation and (b) the central interface 
distance, ℎ𝑐, of colliding droplets by using different interface mesh resolution and 
marker functions for the case at 𝑊𝑒 = 2.3, 𝑂ℎ = 2.80 × 10−2 and 𝐵 = 0.0 [41]. 
  

Figure 4.1(b) further shows the time evolution of the central interface distance 

ℎ𝑐 for the above three cases, where ℎ𝑐 is defined as the minimum distance between 

two colliding interfaces along the mass center connection line, as illustrated in the 

first subfigure of Figure 4.1(a). The evolutions of ℎ𝑐 for the one marker function and 

the two marker functions, both with fine mesh, are identical, while there show some 
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deviations from the two marker functions with coarse mesh. We argue that the VOF 

method by applying two marker functions with coarse mech is sufficiently accurate to 

simulate droplet bouncing in the present study for the following reasons. On the one 

hand, the minimum ℎ𝑐 at about T = 0.6 can be preserved; on the other hand, the 

deviations of ℎ𝑐 are in the order of 𝑂(10−2) compared with the droplet diameter 𝐷 

and effectively only cause a more time offset which does not affect the droplet 

deformation or other physics during the process.  

 

 
Figure 4.2 Evolution of interface positions and central interface distance ℎ𝑐 for the 
representative case shown in Figure 4.1. 
 

Figure 4.2 shows droplet interface positions and central interface distance ℎ𝑐 at 

four chosen time instants, T1, T2, T3 and T4. It indicates that droplet interfaces can be 

advected in the two immediately neighboring interface cells. The minimum central 

interface distance ℎ𝑐 = 0.004 occurs at about T4 = 0.6, which is nearly half of the 
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minimum mesh size of 1 27 ≈ 0.008⁄ . Thus, in the present simulations, the minimum 

central interface distance ℎ𝑐 can be smaller than the minimum mesh size.  

 Although the two volume fractions independently describe the two droplets with 

no explicit conditions imposed for avoiding overlap of interfaces, we found that, at 

least in the present simulations with the concerned controlling parameters leading to 

droplet bouncing, the interfaces respectively belonging to the two droplets cannot 

contact and there is no overlap between the different VOF functions, which can be 

quantitatively verified by the measurement of the maximum excess of the combined 

volume fractions[92] that defined as max (𝑐1 + 𝑐2 − 1). Consequently, the VOF 

method with two marker functions would always enforce droplet bouncing for any 

droplet collision process, and thus is applied in the present study for droplet bouncing 

cases that have been verified by experiment. 

4.2.2 Numerical specifications 

The 3D computational domain and numerical specifications are illustrated in 

Figure 4.3. The domain is 6𝐷 in length and 4𝐷 in both width and height, and all 

boundaries are specified with the free outflow boundary conditions. Two droplets of 

diameter 𝐷 are specified to collide along the x- direction with a relative velocity, 𝑈, 

and zero velocities in the y- and z- directions. The x- velocity component for each 

droplet has the same magnitude of 𝑈/2  but opposite sign so that the linear 
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momentum of the entire system remains zero. The x-z plane is established by the 

x-axis and the connection line denoted as 𝑂𝑂′, in which 𝑂 and 𝑂′ are the mass 

centers of the colliding droplets. The midpoint of 𝑂𝑂′ is located at the origin of the 

Cartesian coordinate system. It is noted that the x-z plane is always a plane of 

symmetry for the 3D colliding droplets. The deviation of the off-center collision from 

the head-on collision is qualified by 𝜒, which is defined as the projection of 𝑂𝑂′ in 

the z-direction. 

 

 

Figure 4.3 Computational domain and setup for 3D simulation of off-center droplet 
collision. 
  

Choosing 𝐷, 𝜌𝑙, and 𝜎 as the basic units, we can nondimensionalize the eight 

relevant variables into five non-dimensional parameters, such as 𝑊𝑒,𝑂ℎ, 𝐵, 𝜌𝑔 𝜌𝑙⁄ , 

and 𝜇𝑔 𝜇𝑙⁄ , which are the Weber number, 𝑊𝑒 = 𝜌𝑙𝐷𝑈2/𝜎; the impact parameter, 

𝐵 = 𝜒 𝐷⁄ ; and the Ohnesorge number, 𝑂ℎ = 𝜇𝑙/√𝜌𝑙𝜎𝐷 . In the present study 
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concerning the collision between droplets in standard atmosphere environment, the 

gas-liquid density ratio and viscosity ratio (using tetradecane as an example) are 

𝜌𝑔 𝜌𝑙⁄ =  1.61 × 10−3 and 𝜇𝑔 𝜇𝑙⁄ = 7.94 × 10−3, which has insignificant influence 

on droplet deformation and energy transfer according to previous studies[15, 23]. 

Consequently, the present problem is completely controlled by the three parameters, 

𝑊𝑒, 𝑂ℎ and 𝐵 for a fixed set of 𝜌𝑔 𝜌𝑙⁄  and 𝜇𝑔 𝜇𝑙⁄ . The non-dimensional time is 

defined as T = 𝑡 𝑡osc⁄ , where 𝑡  is the physical time and 𝑡𝑜𝑠𝑐 = √𝜌𝑙𝐷3/𝜎  is 

proportional to the natural oscillation time of droplet.  

In the present study, we used 6 × 4 × 4 = 96 boxes with length 𝐿 to constitute 

the entire computational domain, in which 6 boxes in x-direction and 4 boxes in y- 

and z- directions respectively. The droplet diameter is initialized as 𝐷 = 𝐿. The 

computational domain is divided into three physical zones, namely the gas, the droplet, 

and the interface, and each zone has its own mesh refinement level denoted by 𝑁, 

which corresponds to a minimum mesh size of 𝑂(2−𝑁). Accordingly, (𝑁𝑔, 𝑁𝑑 , 𝑁𝑖) is 

used to describe the refinement level in the three zones. A typical simulation run with 

the mesh refinement level (3, 5, 7) results in 514204 grid points in the entire domain, 

which is equivalent to about 2.0 × 108 grid points if applying a uniform mesh with 

size of 𝑂(2−7). The interface zone is identified by the VOF function with 0 < 𝑐1 +

𝑐2 < 1. Given the maximum mesh refinement level 𝑁𝑖, the minimum mesh size 
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is 𝐿 2𝑁𝑖⁄  in the interface zone. Then the maximum numerical resolution[117] (MNR) 

of a droplet is defined as MNR =  𝐷 ( 𝐿 (2𝑁𝑖 + 1)⁄ )⁄ = (2𝑁𝑖 + 1)𝐷 𝐿⁄ . The 

maximum mesh refinement level 𝑁 = 7 used in the present study corresponds to 

MNR = 129. It takes about 100 hours of real time to run the simulation up to T =

2.0 on an Intel Xeon(R) E5-2630 processor with 16 cores. 

4.2.3 Numerical validations and grid-dependence analysis 

To validate the present numerical setup, the head-on droplet bouncing at two 

critical transition Weber numbers, corresponding to the so-called “soft” and “hard” 

collisions, and an off-center droplet bouncing are simulated and compared with the 

experimental results from Pan et al.[41] and Qian and Law[25], respectively. Figure 

4.4 shows the comparison between experimental images and simulation results. The 

presented simulation results are those having the most agreed droplet deformation 

with the experimental images, whereas the time discrepancies between them could 

serve as an indicator for the simulation performance.  

Figure 4.4(a) and 4.4(b) show the experimental images and the simulation results 

of the head-on (𝐵 = 0)  droplet bouncing at  𝑊𝑒 = 2.3  and 𝑂ℎ = 2.80 × 10−2 

(𝑡𝑜𝑠𝑐 = 1.06𝑚𝑠)[41], respectively. The experimental and simulation times are nearly 

identical in early collision stages and begin to display slight discrepancies as time 



78 

evolves in later stages. The time errors are generally less than 3% except it is about 5% 

at T = 1.08.  

 

 

Figure 4.4 Comparison between the experimental images and the simulation results 
for bouncing droplets of equal size. (a) the experiment images from Figure 2 in Pan et 
al.[41] (head-on collision between tetradecane droplets in 1 atm air, 𝑅 = 170.6 μm 
and 𝑉0 = 0.243 m s⁄ ), (b) the simulation results at 𝑊𝑒 = 2.3, 𝑂ℎ = 2.80 × 10−2 
and 𝐵 = 0.0 (𝑡𝑜𝑠𝑐 = 1.06𝑚𝑠), (c) the experiment images from Figure 3 in Pan et 
al.[41] (head-on collision between tetradecane droplets in 1 atm air, 𝑅 = 167.6 μm 
and 𝑉0 = 0.496 m s⁄ ), (d) the simulation results at 𝑊𝑒 = 9.3, 𝑂ℎ = 2.78 × 10−2 
and 𝐵 = 0.0 (𝑡𝑜𝑠𝑐 = 1.03𝑚𝑠), (e) the experiment images from Figure 4(r) in Qian 
and Law[25] (off-center collision between tetradecane droplets in 1 atm air, 𝑊𝑒 =

14.5, 𝑅𝑒 = 149.1, 𝑅 = 180 μm  and 𝐵 = 0.34 ), (f)-(h) the simulation results at 
𝑊𝑒 = 48.8, 𝑂ℎ = 2.80 × 10−2  (𝑡𝑜𝑠𝑐 = 1.06𝑚𝑠) and (f) 𝐵 = 0.72, (g) 𝐵 = 0.82, 
and (h) 𝐵 = 0.90 (adapted from Figure 15 in Chen and Yang[91]). The physical 
time 𝑡 is related to the computational time T by 𝑇 = 𝑡/𝑡𝑜𝑠𝑐. 
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Similarly, Figure 4.4(c) and 4.4(d) show the experimental images and the simulation 

results of the head-on (𝐵 = 0)  droplet bouncing at 𝑊𝑒 = 9.3  and 𝑂ℎ =

2.78 × 10−2 (𝑡𝑜𝑠𝑐 = 1.03𝑚𝑠)[41], respectively. Again, the simulation agrees well 

the experiment and the time errors are less than 2%. The discrepancies between 

experiment and simulation may be attributed to the imperfect experimental conditions 

to be specified as follows. First, experimental images of droplet deformation show not 

perfectly symmetric with the small experimental error probably caused by the 

unavoidable disturbances of ambient gas flow to the droplets. Second, it might be 

caused by the experimental uncertainties in temporal resolution and the parameters 

measuring errors, for example, the droplets can be easily off-center in the direction 

perpendicular to the image plane. Furthermore, the above discussions about the 

imperfections of the experiments do not rule out the possible numerical errors. 

Figure 4.4(e) shows the experimental images of off-center droplet bouncing 

adapted from Figure 4(r) in Qian and Law[25], who reported this case for 𝑊𝑒 =

14.5, 𝑂ℎ = 2.80 × 10−2  and 𝐵 = 0.34 . After a careful examination of their 

experimental images, we found that the droplets were very likely to undergo a nearly 

grazing collision with the impact parameter to be within 0.7-0.9. This may be caused 

by the possibly misplaced captions of Figure 4(r) and Figure 4(q) in their paper[25]. 

To further substantiate our claim, the simulation results by using 𝑊𝑒 = 48.8, 𝑂ℎ =
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2.80 × 10−2 and 𝐵 = 0.72 (used for Figure 4(q) in Qian and Law[25]), 𝐵 = 0.82, 

and 𝐵 = 0.90 (used for Figure 15 in Chen and Yang[91]) have been presented in 

Figure 4.4(f)-4.4(h), respectively. These simulations can be considered as a sensitivity 

analysis of the impact parameter. It is seen that these simulations predict very similar 

droplet deformation to the experiment, and that using 𝐵 = 0.82 enables us to obtain 

quantitatively good agreement with the experiment. The time errors are about 10%, 

which is probably attributed to the experimental uncertainties in the measurement for 

time and collision parameters[25]. 

Although a more detailed analysis on the experimental uncertainty of measured 

impact parameter is beyond the scope of the present study, a few remarks about this 

issue may be of use for future numerical studies that adopt those earlier experimental 

images for validation purpose. In Qian and Law[25], the droplet sizes and velocity 

and thereby 𝑊𝑒  and 𝐵 were determined from the recorded images on a video 

recorder by using a strobelight synchronized with the droplet generator. The reported 

measurement errors of droplet size and impact parameter in Qian and Law[25] are 

about 10%. Gotaas et al.[120] have pointed out that such an experimental method in 

measuring impact parameter is generally not very accurate, and the measurement 

errors could be larger. Consequently, Gotaas et al.[120] proposed a more accurate and 
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efficient aliasing method for continuous variation of impact parameter over its whole 

range from zero to unity.  

 

 
Figure 4.5 Grid-independence analysis in terms of (a) the droplet kinetic energy (KE) 
and (b) the surface energy (SE) of the liquid droplets, which are normalized by the 
initial total energy (𝐸𝑘0 + 𝜎𝑆0), for the validation case (a) shown in Figure 4.4. 
(𝑁𝑔, 𝑁𝑑, 𝑁𝑖) is used to describe the mesh refinement levels in each zone of the gas, 
the liquid, and the droplet interface.  
  

The grid-independence analysis was performed for the validation case (a) of 

Figure 4.4. The kinetic energy (KE) and surface energy (SE) of the liquid droplets are 

normalized by the initial total energy and compared for totally six different mesh 

refinement level sets (𝑁𝑔, 𝑁𝑑, 𝑁𝑖), as shown in Figure 4.5. The initial total energy is 
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defined as 𝐸𝑘0 + 𝜎𝑆0, in which 𝐸𝑘0 = 𝜋𝑊𝑒 24⁄  is the initial kinetic energy and 

𝑆0 = 2𝜋 is the initial surface energy, respectively. By fixing the mesh refinement 

level of the gas and the droplet zones at 𝑁𝑔 = 2 and 𝑁𝑑 = 4, respectively, we can 

analyze the grid dependence of the interface zone, and the results show convergence 

up to T = 1.2 as increasing the mesh refinement level from 𝑁𝑖 = 7 to 𝑁𝑖 = 8. 

Similarly, the result comparison between (2, 4, 7) and (3, 5, 7) and further comparison 

between (2, 4, 8) and (4, 6, 8) also imply convergence of simulation with different 

mesh refinement levels of the gas and the liquid zones. As a balance between 

computational cost and accuracy, the intermediate mesh refinement level of (3, 5, 7) 

has been used in the validation cases and all simulations in the following sections.  

4.3 Preliminary analysis 

4.3.1 Phenomenological description 

The representative case of 𝑊𝑒 = 9.3 and 𝑂ℎ = 2.80 × 10−2 at four impact 

parameters, 𝐵 = 0.0, 0.3, 0.6  and 0.9 , has been used to phenomenologically 

describe the differences between the head-on and the off-center droplet bouncing, as 

shown in Figure 4.6. The projection of droplet deformation on the symmetry (x-z) 

plane is shown in the first row of each case, in which the mass of the colliding droplet 

centers, 𝑂 and 𝑂′, are indicated by black solid points. To analyze the flow field 

within the droplets, the pressure contours and streamlines on the symmetry (x-z) plane 
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and on the  𝑌𝑂𝑂′ plane where the y-axis and the line 𝑂𝑂′ lie, are shown in the 

second and third rows of each case in Figure 4.6.   

 A prominent similarity between head-on and off-center collisions is the 

formation of a flat interaction region as the two droplets “squeeze” against each other. 

Although the dimension of this region and the duration of its existence both decrease 

notably with increasing the impact parameter, it always results in the locally enhanced 

capillary pressure around the rim of the interaction region where curvature is large. 

Once the inertia responsible for the “squeezing” is depleted, the deformed droplets are 

driven by the capillary pressure difference to bounce back, meanwhile converting the 

surface energy back to the kinetic energy. Subsequently, the droplets experience 

several oscillation periods before completely recovering their original spherical shape, 

which happens at later times beyond those of Figure 4.6. It is noted that the pressure 

distributions and streamlines on 𝑌𝑂𝑂′ plane for head-on and off-center collisions are 

qualitatively similar except the pressure amplitude for off-center collisions is smaller. 

The distinctive differences can be observed on the x-z plane for off-center collisions 

that the mass deviation in z-direction results in the asymmetric pressure distribution 

for each droplet. In addition, the shear flow is clearly seen in the vicinity of the 

droplet interaction region only for off-center collisions on the symmetry (x-z) plane 

but not on the 𝑌𝑂𝑂′ plane nor any plane of the head-on collision. 
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Figure 4.6 Comparison of droplet deformation, pressure profiles and streamlines 
between (a) head-on bounding (on the symmetry plane x-z only because it is 
axisymmetric) and (b-d) off-center bouncing (both on the symmetry plane x-z at first 
two rows and on the plane 𝑌𝑂𝑂′ consisting of y-axis and mass center connection line 
𝑂𝑂′ at the last row) for the representative case at 𝑊𝑒 = 9.3 and 𝑂ℎ = 2.78 ×

10−2.  
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4.3.2 Energy budget 

Based on the preliminary phenomenological observations, the entire collision 

process can be divided into three stages, namely impacting, bouncing, and oscillating 

stages. The energy budget analysis is conducted based on liquid droplets[24, 25, 41, 

43], as shown in Figure 4.7, in which the time evolution of the kinetic energy (KE) 

and the surface energy (SE) of the liquid droplets are normalized by their initial total 

energy 𝐸𝑘0 + 𝜎𝑆0. T = 0.0 is defined as the time instant when 𝐷𝑂𝑂′ = 𝐷 for the 

first time as the two droplets approaching each other, where 𝐷𝑂𝑂′ is the mass center 

distance shown in Figure 4.7. It follows that the droplet impacting stage starts from 

T = 0.0 to the time instant with SE reaching its first maximum. The droplet bouncing 

stage then extends from the first local maximum to the first local minimum of SE, 

with the rest being the droplet oscillating stage. It is noted that the separation point 

(local maxima and minima of SE) and time duration for each stage are different 

between different impact parameters. The time evolution of 𝐷𝑂𝑂′ shows that the 

increase of mass center distance for 𝐵 = 0.3  is slowest with delayed droplet 

bouncing as the droplet entanglement time is prolonged for moderately off-center 

collisions, indicating a non-monotonic variation with increasing 𝐵.  
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Figure 4.7 Evolution of mass center distance 𝐷𝑂𝑂′ and energy budget analysis of the 
off-center droplet bouncing for the representative case at 𝑊𝑒 = 9.3  and 𝑂ℎ =

2.80 × 10−2. The total energy (TE), the surface energy (SE), the kinetic energy (KE), 
and the total viscous dissipation energy (TVDE) of the liquid droplets are normalized 
by the initial total energy. The entire droplet collision process can be divided into 
three stages, namely impacting, bouncing, and oscillating stages, based on the 
phenomenological observations. 
  

During the droplet impacting stage, both the total decrement of KE and the total 

increment of SE decrease monotonically with increasing 𝐵 from 0.0 to 0.9. This is 

because increasing 𝐵 tends to decrease the effective impact velocity (𝑈√1 − 𝐵2 2⁄ ) 
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of colliding droplets along the mass center connection line and thereby results in a 

smaller droplet deformation with a smaller KE loss. During the droplet bouncing 

stage, the droplets start to bounce back with a decrease of SE and an increase of KE. 

Then, during the droplet oscillating stage, several apparent oscillations of SE and KE 

can be observed owing to the unbalanced capillary pressure shown in Figure 4.6, 

particularly for the intermediate impact parameters at 𝐵 = 0.3 and 𝐵 = 0.6, and 

these oscillations are gradually attenuated by the viscous dissipation. An interesting 

observation throughout the entire droplet oscillating stage is that the KE for 𝐵 = 0.3 

is significantly lower than the other cases.  

We note that KE and SE show the same variation trend accompanied by the 

deforming interface during droplet oscillation stages. The oscillation frequency of KE 

and SE increases with the impact parameter from 𝐵 = 0.0 to 𝐵 = 0.6, as the local 

maxima of SE shown in Figure 4.7. However, the non-dimensional oscillation period 

is not unity, indicating the droplet oscillation time is not the natural oscillation time. 

To further explain this observation, the total viscous dissipation energy (TVDE) 

of the liquid droplets normalized by the initial total energy is shown in Figure 4.7. 

The TVDE is defined by 

TVDE(T) = ∫ (∫ 𝜙
 

𝑉𝑙

𝑑𝑉)𝑑T′
T

0

                                 (4.2) 
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where 𝑉𝑙 is the volume of liquid droplets and 𝜙 is the local viscous dissipation rate 

(VDR) given by[121] 

𝜙 = 2𝜇 [(
𝜕𝑢

𝜕𝑥
)
2

+ (
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2
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(4.3) 

As shown in Figure 4.7, the TVDE of 𝐵 = 0.3  during droplet bouncing and 

oscillating stages is the largest among all 𝐵s, indicating that the non-monotonic 

kinetic energy recovery is caused by the non-monotonic TVDE. To further understand 

the viscous dissipation of bouncing droplets in different stages, the temporal total 

viscous dissipation rate will be discussed in Section IV. 

 

 
Figure 4.8 Comparison of the evolution of the total energy (TE for the liquid droplets 
and TE’ for the total flow field), the surface energy (SE), the kinetic energy (KE and 
KE’), the total viscous dissipation rate (TVDR and TVDR’) and the total viscous 
dissipation energy (TVDE and TVDE’) by respectively considering liquid phase only 
(solid lines) and both liquid and gas phases (dashed lines) for the representative case 
at 𝑊𝑒 = 9.3, 𝑂ℎ = 2.78 × 10−2 and 𝐵 = 0.0. 
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Furthermore, it is seen that the normalized total energy of droplets 

(TE=KE+SE+TVDE) is slightly lower than 1 and decreases with time, which can be 

explained as follows. First, the total energy (TE) is not exactly the total flow energy 

(TE’=KE’+SE+TVDE’ where the superscript prime denotes liquid and gas phases) 

because the contribution from the gas flow is neglected. Second, as shown in Figure 

4.8, TE’ including the kinetic energy and viscous dissipation of both liquid and gas 

phases is slightly larger than that (TE) of liquid phase only. This verifies that the 

energy budget of the gas flow is insignificant compared with that of the liquid 

droplets. Third, the normalized TE’ being still slightly lower than 1 might be due to 

the numerical dissipation. It is noted that the above is a posteriori examination of 

energy conservation, because the energy conservation equation is not solved in the 

present simulation framework.  

4.4 Viscous dissipation for off-center collisions 

4.4.1 Enhanced viscous dissipation for moderately off-center collisions 

The total viscous dissipation rate (TVDR), defined as a volume integral ∫ 𝜙
 

𝑉𝑙
𝑑𝑉, 

and the contours of local VDR are illustrated in Figure 4.9(a) and 4.9(b-d), 

respectively, to explain the enhanced viscous dissipation at 𝐵 = 0.3. It is seen that in 

all cases both the droplet impacting stage and the droplet bouncing stage contain a 

single peak of TVDR, whereas the droplet oscillating stage has several local maxima. 
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The time instants corresponding to the first three local maxima of TVDR are denoted 

T1, T2 and T3. 

 

 
Figure 4.9 Comparison of the (a) total viscous dissipation rate (TVDR) and (b-d) the 
contour of local viscous dissipation rate (VDR) at three chosen time instants, T1, T2 
and T3 , for the representative case at 𝑊𝑒 = 9.3  and 𝑂ℎ = 2.80 × 10−2 . The 
contours have been blanked with a low threshold value of 0.5 for clear comparison of 
the VDR concentration that shown both in three-dimensional and on symmetry (x-z) 
and 𝑌𝑂𝑂′ plane that defined in Figure 4.6.  
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A common feature during the droplet impacting stage is that it has the highest 

peak of TVDR and contributes to the majority of the overall viscous dissipation. As 

shown by the VDR contours at T1 in Figure 4.9(b), the local VDR is mainly 

distributed around the droplets interaction region where the liquid is both compressed 

along the 𝑂𝑂′ direction and expanded radially, displaying a boundary-layer-like 

internal flow that was also observed in previous theoretical analysis[17] and 

numerical simulation[90]. Furthermore, comparing the cases of different 𝐵s, it is seen 

that the TVDR decreases monotonically with increasing 𝐵 during the droplet 

impacting stage. As the droplet deformation in this stage is inertia-dominant, this 

observation can be understood by an approximate estimation of the TVDE, previously 

proposed by Jiang et al.[24] and Tang et al.[43], as 𝛼𝐸𝑘(𝐵) =  𝛼(1 − 𝐵2)𝐸𝑘(𝐵 = 0) 

where 𝛼 is the viscous dissipation coefficient and 𝐸𝑘(𝐵) is the effective impact KE 

o f  t he  co l l i d ing  d rople t s  a long  the  mass  cente r  connec t ion  l i ne .  

During the droplet bouncing stage, the droplets bounce back under the capillary 

pressure difference with the SE transferring into the KE. Figure 4.9(c) shows that at 

T2 the VDR in the droplet interior being away from the interaction region decreases 

from maximum at 𝐵 = 0.0 to nearly vanishing at 𝐵 = 0.9. In this case, the TVDR 

can be estimated as 2 𝜇𝑙(∆SE)𝑉𝑙 𝑚𝐷2⁄ , where ∆SE  is the change of SE, the 

characteristic velocity is 𝑢~√2∆SE 𝑚⁄ , and the characteristic length is 𝐷. Since 
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∆SE is closely related to the deformation of the droplets, the formula indicates that a 

larger droplet deformation in the droplet impacting stage would cause a larger TVDR 

in the droplet bouncing stage, which is consistent with the above observation. On the 

other hand, it is interesting to note that the local VDR emerges in the vicinity of the 

droplet interaction region only for off-center collisions but not for the head-on 

collision. This part of VDR is caused by the shear flow of off-center collisions as it 

becomes more prominent with increasing 𝐵. Apparently, the two parts of VDR, 

respectively corresponding to the droplet deformation and the shear effect between 

the droplets, together form a competition mechanism which is responsible for the 

non-monotonic variation of TVDR as a function of 𝐵.  

As shown in Figure 4.9(a), the fluctuations of TVDR during the droplet 

impacting stage emerge at small and intermediate impact parameters but not large 

impact parameters. Thereby, Figure 4.10 shows the closeup of the fluctuation region 

and the corresponding contours of local viscous dissipation rate (VDR) for 𝐵 =

0.0, 0.3 and 0.6. The locally enhanced TVDR is mainly located at the droplet interior 

being away from the interaction region with the convex interface tends to be flatten. 

That is consistent with the first peak of TVDR induced by the droplet impacting at 

initial stages, which can be understood as that the large viscous dissipation is 
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generally accompanied by the intensive interface deformation with large curvature 

gradient change on the interface.  

 

 
Figure 4.10 The local fluctuations of total viscous dissipation rate (TVDR) and the 
contour of local viscous dissipation rate (VDR) (embedded subfigures) at three 
different time instants during the droplet impacting stage for the representative case at 
𝑊𝑒 = 9.3 and 𝑂ℎ = 2.80 × 10−2. 
 

4.4.2 Quantitative explanation of the competition mechanism of VDRs 

To further understand the competition mechanism between the VDR related to 

the droplet deformation and the VDR owing to the shear effects of off-center 

collisions, it is natural to separate the VDR terms in Equation 4.3 into two parts, 

namely the TVDR(N) related to the normal strains (the first three terms) and the 

TVDR(S) related to the shear strains (the last three terms). The shaded area in Figure 

4.11(a) and 4.11(b) respectively shows the TVDR(N) and TVDR(S) in the droplet 
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impacting and bouncing stages. The two representative time instants, Tn and Ts, 

respectively correspond to the local maximum of TVDR(N) in the impacting stage 

and the local maximum of TVDR(S) in the bouncing stage. As a reference, the 

TVDR(N)+TVDR(S) is plotted in the droplet oscillating stage. The case of 𝐵 = 0.9 

has been excluded from this discussion because it does not have a notable bouncing 

stage owing to the dominance of the shear effect, as indicated by Figure 4.11(a) and 

4.11(b).  

It can be observed that for the small impact parameter at 𝐵 = 0.0 the TVDR(N) 

is generally larger than the TVDR(S), whereas for the moderate impact parameters at 

𝐵 = 0.3 and 0.6 the TVDR(N) and TVDR(S) become equally significant to the 

TVDR. Specifically, during the droplet impacting stage and droplet bouncing stage, 

the TVDR(N) decreases monotonically as increasing 𝐵 as shown in Figure 4.11(a) 

and visualized by the local VDR contours at time Tn in Figure 4.11(c), whereas the 

TVDR(S) increase monotonically from 𝐵 = 0.0 to 0.6 as seen in Figure 4.11(b) and 

the local VDR contours of Figure 4.11(c) at time Ts . Therefore, we have 

demonstrated the competition mechanism through the different variation trends of 

TVDR(N) and TVDR(S) with increasing 𝐵, which accounts for the non-monotonicity 

of TVDR being the largest around 𝐵 = 0.3.  
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Figure 4.11 Comparison of the total viscous dissipation rate (TVDR) induced by (a) 
the normal strains [TVDR (N)] and (b) the shear strains [TVDR (S)], and (c) the 
contour of local VDR at time instants of Tn and Ts, for the representative case at 
𝑊𝑒 = 9.3 and 𝑂ℎ = 2.80 × 10−2. 
 

4.5 Non-monotonic kinetic energy dissipation 

4.5.1 The dependence of kinetic energy dissipation on 𝑾𝒆 and 𝑶𝒉 

In Lagrangian simulation of sprays[27, 30, 38, 122, 123] where the binary 

droplet collision is simplified as the collision between two mass points, the 
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post-collision velocity of each droplet has to be determined from secondary models to 

serve as input. Since the mass center trajectories always lie on the symmetry (x-z) 

plane, only four unknown velocities in the x- and z- directions are needed for a pair of 

colliding droplets. Given the conservations of the momentum in the x- and z- 

directions and the angular momentum in the x-z plane, one requires the kinetic energy 

dissipation factor 𝑓𝐸  to close the equation system for the terminal velocity 

calculation. In the present study, we can compute 𝑓𝐸  numerically with KEb 

determined from the initial conditions and KEa evaluated at the time instant when 

𝐷𝑂𝑂′ = 3𝐷, after which the KEa is effectively unchanged for all cases. Accordingly, 

the kinetic energy recovery factor is calculated as 1 − 𝑓𝐸 .  

 

 

Figure 4.12 Variation of the kinetic energy dissipation factor 𝑓𝐸  with impact 
parameters 𝐵 at different 𝑊𝑒 and 𝑂ℎ. 
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Figure 4.12(a) shows 𝑓𝐸  with varying 𝐵  for different 𝑊𝑒 . For small and 

intermediate 𝐵 in the range of 0.0 ~ 0.7, 𝑓𝐸  increases with 𝑊𝑒 and the deviations 

of 𝑓𝐸  among different 𝑊𝑒 are enlarged at intermediate 𝐵. This is because the 

viscous dissipation induced by the droplet deformation is inertial-controlled and 

enhanced as increasing 𝑊𝑒. However, it is interesting to find that, 𝑓𝐸  is not sensitive 

with varying 𝑊𝑒 for 𝐵 in the range of 0.7 ~ 1.0. This indicates that 𝑊𝑒 is a 

secondary factor to the viscous dissipation for near grazing collisions, which is likely 

the outcome of the shear effects dominating over the droplet deformation. 

Furthermore, the critical impact parameter 𝐵𝑐𝑟 , which is defined as the 𝐵 

corresponding to the local maximum of 𝑓𝐸  (for fixed 𝑊𝑒  and 𝑂ℎ), decreases 

slightly as increasing 𝑊𝑒. This is again attributed to the competition between the 

inertia and shear effects that increasing 𝑊𝑒 causes greater relative importance of the 

droplet deformation on viscous dissipation so that the maximum 𝑓𝐸  occurs at a 

smaller 𝐵𝑐𝑟.  

Figure 4.12(b) shows the variation of 𝑓𝐸  as a function of 𝐵 for different 𝑂ℎ. It 

is seen that 𝑓𝐸  increases monotonically with 𝑂ℎ  for all 𝐵 , which is clearly 

attributed to the increased viscosity. However, the gaps among 𝑓𝐸  of different 𝑂ℎ 

appear to be the largest at 𝐵 = 0.0. The effect of 𝑂ℎ is further studied in Figure 

4.13, which shows that the increase of 𝑓𝐸  is approximately linearly proportional to 
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the increase of 𝑂ℎ 𝑂ℎref⁄  (or equivalently the ratio of the viscous coefficient 𝜇𝑙) 

where 𝑂ℎ is normalized by a reference 𝑂ℎref = 1.4 × 10−2. However, the slop for 

different impact parameters is not unity. This can be understood by the VDR 

estimation in Equation 4.3 that the viscous dissipation is a synergistic effect that is 

influenced not only by the viscous coefficient but also by the velocity gradients 

related to the internal flow and the integral droplet interaction time. Furthermore, the 

slops for different impact parameters seem to be consistent except the cases of 𝐵 =

0.0. This is likely to reflect the additional dissipation effect associated with the 

distinct droplet deformation, which occurs as a byproduct of changing viscosity when 

the impact inertia is large at small 𝐵.  

 

 
Figure 4.13 Variation of the kinetic energy dissipation factor 𝑓𝐸  with 𝑂ℎ for the 
representative 𝑊𝑒 = 9.3. 
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4.5.2 An approximate fitting formula 

The above results have demonstrated an overall general trend of the 

non-monotonic kinetic energy recovery and viscous dissipation for different 𝑊𝑒 and 

𝑂ℎ . Here, we propose an approximate fitting formula of 𝑓𝐸 𝑓𝐸0⁄  to serve for 

Lagrangian spray simulations based on the following considerations. First, this 

formula reflects the most important finding of the present study that the kinetic energy 

dissipation factor varies non-monotonically with the impact parameter. Second, the 

functional dependence of the factor on 𝑊𝑒 and 𝑂ℎ for head-on collisions, namely, 

𝑓𝐸0(𝑊𝑒, 𝑂ℎ) = 𝑓𝐸(𝑊𝑒, 𝑂ℎ, 𝐵 = 0), has been comprehensively studied by Zhang and 

Zhang[90]. The normalized 𝑓𝐸  by 𝑓𝐸0  for different 𝑊𝑒  and 𝑂ℎ  is shown in 

Figure 4.14(a) with scattering points. Thus, following their conclusions, we 

incorporate the additional impact parameter effect to attain a simple fitting formula 

𝑓𝐸/𝑓𝐸0 = 𝑎(𝐵 − 𝐵𝑐𝑟)
2 + 𝑏                                       (4.4) 

to describe the non-monotonic variation of 𝑓𝐸 𝑓𝐸0⁄  as increasing 𝐵. The parabola on 

the 𝑓𝐸/𝑓𝐸0 − 𝐵 plane must cross the point of (0, 1) by definition, yielding 𝑎 =

(1 − 𝑏) 𝐵𝑐𝑟
2⁄ < 0, and the point of (𝐵𝑐𝑟 , 𝑏) to reflect the existence of a maximum 

value on the parabola. We found that the proposed approximate formula with 𝐵𝑐𝑟 =

0.5 − 0.2(𝑊𝑒 10⁄ )  and 𝑏 = 0.83 + 0.3(𝑊𝑒 10⁄ ) + 0.9(𝑂ℎ 10−2⁄ )−1  can 
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satisfactorily fit our numerical data for the concerned parameter space of 𝑊𝑒 =

2.3~9.3 and 𝑂ℎ = 1.4 × 10−2~5.6 × 10−2, as the lines shown in Figure 4.14(a).  

Figure 4.14(b) shows the comparison between numerical and fitting results, 

indicating that they are in good agreement at small and intermediate 𝐵 in the range 

of 0.0 ~ 0.6 although they deviate at large 𝐵 where the small 𝑓𝐸 𝑓𝐸0⁄  is insignificant 

to the practical purpose. The more accurate high-order fitting formula merits future 

investigations, given more numerical or experimental data, but is beyond the scope of 

the present study.  

 

 

Figure 4.14 Comparison of (a) the kinetic energy dissipation factor 𝑓𝐸   normalized 
by 𝑓𝐸0 that obtained from previous study[90] (scattering points of numerical results 
and lines of fitting formula) and (b) deviation of 𝑓𝐸 𝑓𝐸0⁄  between numerical 
(horizontal) and fitting (vertical) results. 
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4.6 Concluding remarks  

Two droplets bouncing undergoing off-center collisions were simulated in the 

present study by using a modified VOF approach with two marker functions and 

validated against experiments of both head-on and off-center collisions. The 

implementation of multiple marker functions helped to avoid the unphysical 

numerical coalescence under relatively coarse mesh, so that it allows us to study the 

3D off-center droplet bouncing with substantially increased computational efficiency.  

The analysis of mass center trajectory demonstrates that the droplet entanglement 

time is prolonged for moderately off-center collisions. A non-monotonic kinetic 

energy recovery with varying impact parameter was observed, which is attributed to 

the enhanced viscous dissipation of moderately off-center collisions.  

The present study has strived to unveil and interpret the non-monotonicity. 

Specifically, as increasing 𝐵 from 0 to 1, the VDR in the droplet interior being away 

from the interaction region decreases because of the reduced droplet deformation, 

whereas the VDR in the vicinity of the droplet interaction region increases owing to 

the enhanced droplet shear flow. The competition mechanism between these two parts 

of VDR accounts for the enhanced viscous dissipation at intermediate 𝐵 in the early 

stages of droplet collision; while the enhanced droplet oscillation owing to the 

unbalanced capillary pressure distributions results in the further increase of viscous 
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dissipation at intermediate 𝐵  in the late periods of droplet oscillation. This 

mechanism can also be understood as the competition between VDR induced by 

normal strains and shear strains, which quantitively verifies our discussions and helps 

us understand the viscous dissipation for off-center droplet collisions.  

The non-monotonic kinetic energy recovery has been quantitatively verified to 

be a general phenomenon for various 𝑊𝑒 and 𝑂ℎ. The total viscous dissipation is 

understood as a concerted work by the liquid viscosity, internal-flow-induced droplet 

deformation, and droplet interaction time. A correlation formula, 𝑓𝐸/𝑓𝐸0 =

𝑎(𝐵 − 𝐵𝑐𝑟)
2 + 𝑏 , has been proposed for 𝑊𝑒 = 2.3~9.3  and 𝑂ℎ = 1.4 ×

10−2~5.6 × 10−2. This formula could be useful for the droplet collision modeling in 

the Lagrangian simulation of sprays, particularly under the elevated gas pressure in 

the real combustion engines.  
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5 Helicity analysis of binary collision between 

initially spinning droplets  

5.1 Background and objectives 

For the modelling of binary droplet collision in Lagrangian simulation of sprays, 

the general 3D collision is simplified as the collision between two rigid bodies 

without self-rotations. In classical mechanics, the arbitrary 3D collision between two 

rotation free rigid bodies in laboratory coordinate can be always equivalent to a 2D 

collision in the mass center coordinate, in which the 2D plane consists of the mass 

center connection line and the direction line of relative velocity. Consequently, the 

system has four freedoms corresponding to four post-collision velocities for each rigid 

body in 2D (x-z) plane, in which the velocities are uniquely determined by the 

conservations of the linear momentum in the x- and z- directions, the angular 

momentum perpendicular to the x-z plane, and the kinetic energy dissipation factor 

𝑓𝐸[21, 90]. 

The binary droplet collision in real situations is however more complicated than 

the simplified collision between two rigid bodies without self-rotation, because the 

real inelastic collision involves the droplet stretching and rotations. The spinning 

motion can be created either from the droplet injectors or after off-center collisions. 

Bradley and Stow[10] showed the experimental images of droplet spin after 
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coalescence and measured the angle of rotation as a function of time and impact 

parameter. Ashgriz and Poo[14] proposed the schematic of reflexive separation for the 

off-center droplet collision by considering the droplet spin after coalescence. 

Rotational energy[24, 30] has been considered in various models for predicting 

outcomes of off-center droplet collisions. The fact that spinning motion of a droplet 

can take part of energy from its translational motion and has not been considered in 

the previous models. It is apparent that the spinning droplets can collide with each 

other because subsequent collisions are probable in practical dense sprays[38, 111, 

123]. However, the collision dynamics between spinning droplets has not been 

reported in the literature. 

The single spinning droplet have only been investigated by a few studies. The 

shape of a weightless spinning liquid droplet is governed by the balance between the 

surface tension and centrifugal forces[124]. The spinning droplet shows axisymmetric 

shape with slow rotations and becomes unstable to various shapes with specific range 

of critical angular velocity. Brown and Scriven[125] used finite-element method to 

trace the equilibrium state of axisymmetric, two-, three- and four-lobed drop shape for 

rotating droplets with increasing the angular momentum, and analyzed the critical 

transition between different drop shapes. The droplet distortion and spinning can also 

be induced by the rotating environmental flows[126]. Kitahata et al.[127] proposed a 
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simple mechanical model to measure the liquid surface tension by the relation of 

oscillation frequency varying with the rotational speed and oscillation amplitude of a 

levitated rotating droplet. The phenomena of droplet spinning can be further enriched 

by considering the influence of external fields. Janiaud et al.[128] experimentally 

investigated the behavior of microscopic ferrofluid droplets under the rotating 

external magnetic field, and presented the fascinating drop shapes such as starfish, 

rod-like or pancake shape, co-rotating, creeping snakes, swirling loops and rings, in a 

phase diagram. Bernando et al.[129] experimentally investigated the shape of rotating 

superfluid helium nanodroplets and confirmed the existence of oblate metastable 

superfluid droplets with large angular momenta beyond the classical bifurcation 

threshold. The binary collision between spinning droplets has however not been 

reported in the literature.  

It is noted that, owing to the existence of symmetry (x-z) plane, the off-center 

droplet collision can be separately described as the translational movement of droplets’ 

mass centers on the x-z plane and the rotation motion of each droplet based on their 

rotation axes parallel to y-axis. Thus, the total angular momentum in y-direction can 

be divided into two parts of orbital and spin angular momentum. The orbital angular 

momentum loss in the droplet collision modeling can be considered by introducing a 

factor of 𝑓𝑃 (Page 99 of[38]) that describes the angular momentum that goes into 
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rotational motion of the droplet after collisions. The droplet rotations after collisions 

can take a part of energy from the translational kinetic energy, and thereby the kinetic 

energy dissipation factor in the simplified modeling is generally underestimated if not 

considering the droplet rotation effects. In practical dense sprays involving large 

amount of binary droplet collisions, the post-collision droplet is very likely spinning 

rapidly to participate in another binary collision process, in which the droplet 

deformation and internal flow can be influenced significantly accordingly.  

Vortex dynamics has been demonstrated to be of unique significance in 

understanding the physics of droplet collision, for example, vortex ring formation[130] 

in the coalescence of a droplet into a liquid pool[131] and vortex-induced internal 

mixing[23] upon the coalescence of two droplets. It is expected that the collision 

between spinning droplets accompanied with initially nonzero vorticity would enrich 

the understanding of droplet collision substantially. The vortex-dynamical 

interpretation of the spinning effects on the droplet deformation and energy transfer 

can be obtained by the viscous dissipation, helicity, and enstrophy analysis.  

Generally, the arbitrary binary collision between two identical droplets free of 

rotations is “point reflection” based on the original point in the mass center coordinate. 

Regardless of the size disparity of droplets, the spinning effects of droplets before 

collisions can break such symmetry in complex manners. Specially, the collision 
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dynamics between two spinning droplets are influenced by the direction of rotation, 

the amplitude of spinning, and the droplet shape upon the initial contact for both 

droplets undergoing head-on or off-center collisions. Consequently, the interactions 

between binary droplets become more significant and it is worthy to study each 

droplet separately during the collision process. In order to emphasize the spinning 

effects of droplets before collisions, the present study limits its scope to the head-on 

collision of bouncing between droplets of equal size only, so that to void possible 

complexity introduced by the geometrical asymmetry of varying impact parameters 

and droplet size disparity, although the off-center collision[21, 70, 91, 132] and size 

ratio effects[15, 20, 22, 23, 43, 46, 108, 118] have been demonstrated to be important 

to droplet collision in other studies. The study starts from the head-on collision 

between one spinning droplet and another rotation-free droplet, and then extends to 

the collision between droplets with same or opposite spinning direction and 

amplitude.  

The present work seeks to numerically investigate the collision of two spinning 

droplets of equal size, and particularly focuses on the vortex-dynamical interpretation 

of the spinning effects on the viscous dissipation energy and vortex interactions. The 

numerical specifications are presented in Section 5.2, followed by the results and 

discussions in Section 5.3.  
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5.2 Evaluation of collision-induced droplet rotation  

It has not been seen in the literature on the experimental measurement of the 

rotational speed of droplets after collisions, which is probably attributed to the 

difficulty of experimentally resolving the droplet spinning motion under the sub-mini 

scales of length and time. To setup the present computations of spinning droplet 

collision, we must first estimate what is the physically realistic range of the rotational 

speed for a droplet that is made to spin as the result of a preceding collision. Thus, it 

is worthy to analyze the previous numerical results of off-center bouncing droplets[21] 

in order to quantify the collision-induced droplet rotation. 

We choose two representative cases of off-center droplet bouncing at 𝐵 = 0.4 

and 𝑂ℎ = 2.8 × 10−2 and at 𝑊𝑒 = 9.3 and 𝑊𝑒 = 20, respectively, as shown in 

Figure 5.1, to characterize the rotational deformation and angular velocity 𝜔 of 

droplets.  In the figure, the solid point and line are the center of mass and initial 

intersecting plane, which change with the droplet deformation and rotational motion. 

It is seen that the bouncing droplets revolve about 90 degrees for each image during a 

period of nondimensional time T from 0.4 to 1.6, as shown in Figure 5.1. 

Consequently, the angular velocity of bouncing droplets can be estimated as 

𝜔 =
𝑁

T ∗ 𝑡𝑜𝑠𝑐
=

0.25

0.4 × 1.06 × 10−3 s
≈ 3700 rad s⁄  (5.1) 
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where the characteristic oscillation time is 𝑡𝑜𝑠𝑐 = 1.06 ms. The non-dimensional 

time is defined as T = 𝑡 𝑡osc⁄ , where 𝑡 is the physical time and 𝑡𝑜𝑠𝑐 = √𝜌𝑙𝐷𝑙
3/𝜎𝑙 is 

proportional to the natural oscillation time of droplet, in which 𝜌𝑙, 𝐷𝑙 and 𝜎𝑙 are 

density, diameter and surface tension of liquid droplet, respectively.  

 

 
Figure 5.1 Evolution of droplet deformation and rotational motion for bouncing 
droplets undergoing off-center collisions at 𝐵 = 0.4  and 𝑂ℎ = 2.8 × 10−2  for 
different 𝑊𝑒 = 9.3  and 𝑊𝑒 = 20 . The characteristic oscillation time is 𝑡𝑜𝑠𝑐 =

1.06 ms. 
 

We note that the angular velocity can also be determined by 𝜔 = 𝜔𝑐
𝑀s

𝐼
, where 

𝑀s is the dimensionless spinning angular momentum, 𝐼 is the dimensionless inertia 

of moment for an approximately spherical droplet, and 𝜔𝑐  is the characteristic 

angular velocity given as  

 𝜔𝑐 =
2𝑉𝑙

𝐷𝑙
= 2√𝜎𝑙/𝜌𝑙𝐷𝑙

3 = 1886 s−1. (5.2) 

Thereby, as shown in Figure 5.2(a), 𝜔 increases rapidly at early stage from T=0.0 to 

about 0.5 and then remains unchanged during late stages. Droplet rotation after 

off-center collisions favors larger 𝑊𝑒, with approximate 3768 s−1 and 2512 s−1 
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for 𝑊𝑒 = 20 and 𝑊𝑒 = 9.3, respectively, which is consistent with the approximate 

estimation in Figure 5.1.  

 

 
Figure 5.2 Evolution of (a) angular velocity 𝜔 at 𝐵 = 0.4 and 𝑂ℎ = 2.8 × 10−2 
for different 𝑊𝑒 = 9.3  and 𝑊𝑒 = 20 , and (b) comparison of 𝜔  with impact 
parameter for bouncing droplets undergoing off-center collisions.  

 

For arbitrary two-body problem of binary droplet collision that specified in 

Chapter 4, owing to the existence of symmetry plane, the initial angular momentum 

has only one component in y-direction. With the reduced mass 𝜇 =
1

2
𝑚, the inertia of 

moment 𝐼 = 𝜇𝐷2 , and the angular velocity upon droplet contact is 𝑈𝐵 𝐷⁄ , the 

dimensionless total angular momentum (TAM) can be calculated as 𝑀 =
1

2
𝑚𝐷𝑈𝐵 =

1

12
𝜋𝜌𝐷4√𝑊𝑒𝜎 𝜌𝐷⁄ 𝐵 =

1

12
𝜋√𝑊𝑒𝐵 . We noted that the TAM in y-direction 

(perpendicular to x-z plane) for the off-center droplet collision consists of two parts: 

namely the orbital angular momentum (OAM) of liquid droplets on the x-z plane and 

the spinning angular momentum (SAM) with respect to the rotation axis that across 

the mass center and being perpendicular to x-z plane. Both the TAM, OAM and SAM 

are vanishing for the head-on droplet collision. Whereas for the off-center collision, 

the initial TAM (OAM) can be partially transferred to SAM, which is normally 
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ignored in the simplified modelling of binary droplet collision, but can be included in 

a more complete modelling involving droplet rotation by introducing an OAM loss 

factor of 𝑓M (Page 99 of[38]).  

Figure 5.2(b) shows the angular velocity 𝜔 of bouncing droplets after off-center 

collisions at different 𝑊𝑒 and 𝑂ℎ. It is seen that 𝜔 increases with 𝑊𝑒 but is 

slightly influenced by 𝑂ℎ , and varies non-monotonically with 𝐵 . This can be 

understood as a synergistic consequence by the shear effects increasing with 𝐵 and 

the interaction time (or droplet deformation) decreasing with 𝐵  to rotate the 

bouncing droplets.  

Considering that the critical 𝑊𝑒  of bouncing-coalescence transition can be 

increased for the droplet collision at elevated pressure environment[133, 134], or for 

example, the critical 𝑊𝑒 of bouncing-coalescence transition for off-center collisions 

between tetradecane droplets in gaseous environment is about 25 at 𝐵 = 0.4[134], 

which implies the increased 𝑊𝑒 would induce a larger droplet rotation speed that as 

high as 6000 s−1. The approximate angular velocity of spinning droplets after the 

off-center collision, at least in the present study, is in the rage of 500~6000 s−1.  

5.3 Problem description and numerical specifications 

The 3D schematic of the head-on collision between a spinning droplet and a 

non-spinning droplet is illustrated in Figure 5.3. The similar 3D computational 

domain in the previous work[21] was applied in the present study, which is 6𝐷 in 

length and 4𝐷 in both width and height with all boundaries specified with the free 

outflow boundary conditions. Two droplets of diameter 𝐷 are specified to collide 

along the x- direction with a relative velocity, 𝑈, and zero velocities in the y- and z- 
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directions. The x- velocity component for each droplet has the same magnitude of 

𝑈/2 but opposite sign so that the linear momentum of the entire system remains zero. 

The x-y plane is established by the mass center connection line denoted as 𝑂1𝑂2 (or 

equivalent to the relative velocity direction for the head-on droplet collision) of x-axis 

and the arbitrary primary spinning axis of 𝑙𝑂1
, in which 𝑂1 and 𝑂2 are the mass 

centers of the colliding droplets. he midpoint of 𝑂1𝑂2 is located at the origin of the 

Cartesian coordinate system. The droplet spinning direction is defaulted as clockwise 

from positive of x-direction, and thereby 0° ≤ 𝜃 ≤ 90°  represents all collision 

possibilities owing to the intrinsic axial symmetry of the head-on collision between 

two identical droplets.  

 

 
Figure 5.3 Schematic of (a) three-dimensional computational domain and (b) setup of 
rotation axis for the head-on collision between a spinning droplet 𝑂1  and a 
non-spinning droplet 𝑂2.  
 

In the present study concerning the head-on collision between identical spinning 

droplets, the non-dimensional parameters discussed in previous work[21] can be 
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reduced to only 𝑊𝑒 and 𝑂ℎ, which are the Weber number, 𝑊𝑒 = 𝜌𝑙𝐷𝑈2/𝜎 and 

the Ohnesorge number, 𝑂ℎ = 𝜇𝑙/√𝜌𝑙𝜎𝐷. To avoid the unnecessary complexity of 

phenomenological description and to facilitate the comparison of varying spinning 

effects, the present numerical study focuses on the representative situation at fixed 

𝑊𝑒 = 9.3, 𝑂ℎ = 2.8 × 10−2, and 𝜔0 = √𝑊𝑒 = 5800s−1 with 𝑊𝑒 = 9.3 because 

𝜔0 is in the reasonable range of angular velocity evaluated in Section 5.2. The initial 

velocity vector of spinning droplet 𝑂1 is the sum of �⃗� (𝑢0, 𝑣0, 𝑤0) − (𝑈 2⁄ , 0,0), 

where the components of �⃗�  in x-, y-, and z- directions, respectively, varies in space 

and can be initialized as  

[

𝑢0

𝑣0

𝑤0

] =

[
 
 
 √𝑊𝑒

2
− 𝑧𝜔0sin𝜃

𝑧𝜔0cos𝜃

𝜔0(𝑥sin𝜃 − 𝑦cos𝜃)]
 
 
 

 (0 ≤ 𝜃 ≤ 90°)                 (5.3). 

Whereas, the initial velocity vector of non-spinning droplet 𝑂2 is a constant of 

(𝑈 2⁄ , 0,0). The numerical validations and grid-independence analysis have been 

performed in the previous study[21]. Consequently, as a balance between 

computational cost and accuracy, the intermediate mesh refinement level of (3, 5, 7) 

has been used for all simulations in the following sections.  
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Figure 5.4 Comparison of droplet deformation, pressure profiles, and streamlines for 
the head-on collision between identical droplets of (a) rotation free with 𝜔0 = 0, (b) 
spinning with 𝜔 = 𝜔0 and 𝜃 = 0°, and (c) spinning with 𝜔 = 𝜔0 and 𝜃 = 90°. 
The results are shown on the x-z plane only for (a) and (b) because they are 
axisymmetric, but both on the x-z plane at first two rows and on the plane 𝑌𝑂1𝑂2 
consisting of y-axis and 𝑂1𝑂2 at the last row. The initially spinning droplet is 
denoted as “D1” while the other droplet with no rotation is denoted as “D2”。 
 

5.4 Preliminary analysis 

5.4.1 Phenomenological description 

Figure 5.4 phenomenologically describes the deformation of the head-on 

collision between a spinning droplet and a non-spinning droplet with different rotation 

axis, by the representative case with fixed 𝑊𝑒 = 9.3, 𝑂ℎ = 2.8 × 10−2, and 𝜔 =

𝜔0. Two rotation axes of 𝜃 = 0° and 𝜃 = 90° are chosen and shown in Figure 5.4(b) 
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and 5.4(c), respectively, and compared with the collision between two non-spinning 

droplets shown in Figure 5.4(a). It is noted that only droplet “D1” is specified as 

spinning while droplet “D2” is non-spinning for case (b) and (c) so that to clearly 

show the interactions between spinning and non-spinning droplets by breaking the 

symmetry between two identical droplets. The results on the symmetry (x-z) plane are 

only shown for case (a) and (b) whereas both on the symmetry (x-z) plane and on the 

𝑌𝑂1𝑂2 plane, where the y-axis and the line 𝑂1𝑂2 lie, are shown for case (c). 

A prominent similarity of axisymmetric deformation is observed for case (a) and 

(b). The “squeeze” of two droplets results in the locally enhanced capillary pressure 

around the rim of the formed interaction region where curvature is large. As shown in 

Figure 5.4(b), the spinning effect of droplet “D1” breaks the minor symmetry to that 

of droplet “D2”, in which “D1” shows a larger radial expansion than “D2”. This is 

because the centrifugal force induced by spinning effects based on x-axis (𝜃 = 0°) is 

also in radial direction and thereby promote the droplet deformation. Once the inertia 

responsible for the “squeezing” is depleted, the deformed droplets are driven by the 

capillary pressure difference to bounce back, meanwhile converting the surface 

energy back to the kinetic energy. Subsequently, the droplets experience several 

oscillation periods before completely recovering their original spherical shape, which 
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happens at later times beyond those of Figure 5.4. It is seemingly that “D1” with 

spinning is earlier in recovering to the spherical shape than “D2”.  

 

 
Figure 5.5 Interchange between orbital angular momentum (OAM), 𝑀𝑜, and spin 
angular momentum (SAM), 𝑀𝑠, for the head-on collision between a spinning droplet 
“D1” and a non-spinning droplet “D2” at 𝜔 = 𝜔0 and 𝜃 = 90° as shown in Figure 
5.4(c), in which TAM, 𝑀𝑡, refers to the total angular momentum and subscript “1” 
and “2” refer to droplet “D1” and “D2”, respectively.  
 

For case (c) with spinning droplet “D1” based on y-axis (𝜃 = 90° ), the 

axisymmetric deformation has been broken with the mass center connection line 𝑂1𝑂2 

deviated from x-axis, in which “D1” is stretched on the x-z plane, as shown in Figure 

5.4(c). It is seen that the initial head-on collision between two spinning droplets can 

appear of the similar phenomena of the off-center droplet collision[21]. This is 

because the interchange between OAM and SAM, as shown in Figure 5.5. 

Specifically, the initial 𝑀𝑠1 decreases and would be converted to a small amount of 

𝑀𝑠2 and prominent 𝑀𝑜1 and 𝑀𝑜2. It indicates that the spinning droplet “D1” could 
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slightly rotate the non-spinning droplet “D2” even by means of the head-on collision. 

The obtained 𝑀𝑜1  and 𝑀𝑜2  are equal because the zero linear momentum as 

specified should be maintained in the mass center coordinate system. Furthermore, the 

𝑀𝑡 during the entire process equals to the initial 𝑀𝑠1, which indicates the calculation 

of angular momentum in the present study is correct, where the slight increase of 𝑀𝑡 

is probably attributed to the numerical errors. 

5.4.2 Energy budget  

The entire collision process can be divided into three stages, namely impacting, 

bouncing, and oscillating stages, which has been defined in great details in[21]. In this 

section, the impacting and bouncing stages are mainly concerned because both cases 

show no apparent oscillating stage. The energy budget analysis is conduced based on 

each liquid droplet separately, denoted as “D1” and “D2”, as shown in Figure 5.6, in 

which the effects of ambient gas is insignificant to the droplet collision that has been 

studied in[21]. The initial total energy (TE) is defined as 𝐸𝑘0
trans + 𝐸𝑘0

rot + 𝜎𝑆0, in 

which 𝐸𝑘0
trans = 𝜋𝑊𝑒 24⁄  is the initial translational kinetic energy, 𝐸𝑘0

rot = 0.4𝐸𝑘0
trans 

is the initial rotational energy because 𝜔 = 𝜔0 in the present case, and 𝑆0 = 2𝜋 is 

the initial surface energy.  

To facilitate the comparison of spinning effects on droplet collision, the head-on 

collision between two droplets without rotations that shown in Figure 5.6(a) has been 
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included. However, the total energy (TE) and kinetic energy (KE) for D1 with 𝜔 = 0 

have been added a value of the initial rotational energy of 0.4𝐸𝑘0
trans so that to let the 

TE lines for all cases collapse together. Furthermore, additional three cases with 𝜔 =

𝜔0 for three principle axes of 𝜃 = 30°, 𝜃 = 45°, and 𝜃 = 60° are used to analyze 

the transition between the specific cases shown in Figure 5.6.  

During droplet impacting stage, as shown in Figure 5.6(a), both the total 

increment of SE1 and total decrement of KE1 decrease monotonically whereas the 

total increment of TVDE1 shows an increase, with increasing 𝜃 from 0 to 90 degree. 

It is seemingly contradicted to the previous understanding that the larger droplet 

deformation with more KE transferred to SE should invoke larger TVDE owing to the 

enhanced intensity of internal flow. This can be understood as that, for the droplet 

spinning with a small value of angle between the principle axis and the mass center 

connection line, the radial centrifugal force acts as a “spring effect” that promotes the 

interaction between KE and SE but would not cause larger velocity gradient 

accounting for the viscous dissipation. As shown in Figure 5.6(b), the total increment 

of SE2 and total increment of TVDE2 are consistently increase monotonically, 

whereas the KE2 is however nearly uninfluenced, with increasing 𝜃 from 0 to 90 

degree. During droplet bouncing stage, the droplets start to bounce back with a 

decrease in SE and an increase in KE. As shown in Figure 5.6(a), the evolution 
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tendency has been reversed that SE1 and KE1 for 𝜃 = 90° become maximum and 

minimum, respectively, among all cases, which is different from that in droplet 

impacting stage. As shown in Figure 5.6(b), the KE2 for 𝜃 = 90° is minimum while 

the SE2 is uninfluenced, with increasing 𝜃 from 0 to 90 degree.  

 

 
Figure 5.6 Evolution of energy budget analysis for a spinning droplet of “D1” and a 
non-spinning droplet of “D2” for the representative case at 𝑊𝑒 = 9.3 and 𝑂ℎ =

2.8 × 10−2. The total energy (TE), the surface energy (SE), the kinetic energy (KE), 
and the total viscous dissipation energy (TVDE) of the liquid droplets have been 
nondimensionalized, in which the subscripts “1” and “2” are for D1 and D2 
respectively. 
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It is interesting to find that for the case with 𝜃 = 0°, the line of TVDE1 is 

approximately collapsed on that line for D1 without rotations, whereas the line 

TVDE2 is below that line for D2 without rotation. Consequently, the total TVDE = 

TVDE1 + TVDE2 for 𝜔 = 𝜔0 and 𝜃 = 0° is smaller than that of 𝜔 = 0, which 

indicates that the spinning effects of D1 do not always invoke the enhanced intensity 

of internal flow and thereby the enhanced viscous dissipation. Furthermore, although 

the total TE = TE1 + TE2 is conserved during the entire collision process, the 

separated TE1 or TE2 show that the energy is transferred from D2 to D1 with 𝜃 less 

than 45°  while be reversed with 𝜃  larger than 45° . The total kinetic energy 

recovery for the head-on collision between spinning droplets shows a monotonically 

decrease with increasing 𝜃 from 0 to 90 degree, which can be explained by the 

monotonic increase of the viscous dissipation energy and the enhanced viscous 

dissipation rate (TVDR), as shown in Figure 5.6.   

5.4.3 Total and local viscous dissipation rate 

To further understand the viscous dissipation of the head-on collision between 

spinning droplets, the total viscous dissipation rate (TVDR) and the contours of local 

VDR at three chosen time instants corresponding to the three local maxima of TVDR 

are denoted as T1, T2, and T3, are illustrated in Figure 5.6 and Figure 5.7.  
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Figure 5.7 Comparison of the contour for the local viscous dissipation rate (VDR) at 
three chosen time instants, T1, T2, and T3, shown in Figure 5.6. The contours have 
been blanked with a low threshold value of 0.5 for clear comparison of the VDR 
concentration.  
 

Similar to the head-on collision between two identical droplets without initial 

spinning that discussed in previous work[21], as shown by the VDR contours at T1 in 

Figure 5.7, the local VDR is mainly distributed around the droplet interaction region 

where the liquid is both expanded radially by the compression along the 𝑂1𝑂2 

direction and the rotating flow owing to droplet spinning, displaying a boundary 

layer-like internal flow. Although the local VDR for 𝜔 = 0 in Figure 5.7(a) and 
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𝜔 = 𝜔0  with 𝜃 = 0°  in Figure 5.7(b) show quite similar distributions, the 

counterintuitively reduced VDR for the collision between spinning droplets can be 

manifested by the relatively small area of VDR concentration. This can be further 

understood as that, the centrifugal force attributed by the spinning effects can 

overcome the viscous force to drive the boundary layer-like internal flow expanding 

radially during the droplet impacting stage, and thereby reduce the viscous dissipation 

because the TVDE in droplet impact stage contributes to the majority of the overall 

viscous dissipation. As shown in Figure 5.7(c), the either area or the concentration of 

local VDR for 𝜔 = 𝜔0 and 𝜃 = 90° is enlarged by spinning effects during the 

entire collision process, which is attributed to the rotating flow interacting with the 

radical expansion flow.  

In the present section of preliminary results, it focuses on the influences of the 

angle between the principle axis and mass center connection line on the collision 

between spinning droplets. Besides, the influences of the intensity of angular velocity 

and the initial shape upon the droplet collision. i.e. phase difference, are significant in 

the practical sprays involving large amount of binary collision between spinning 

droplets are attempted to be studied in the future work.  

 



123 

5.5 Helicity and vortex line 

For the collision between two droplets, as discussed in the Background, the total 

angular momentum 𝐽  is the sum of an orbital angular momentum �⃗�  and a spinning 

angular momentum 𝑆  by the self-rotation, in which  

�⃗� = 𝑟 × 𝑝                                                            (5.4) 

where 𝑝  is the linear momentum along the translational movement of mass center 

and 𝑟  is position vector of mass center. Thus, in particle physics[135], 𝑆  can be 

described by the helicity that defined as the projection of the spin onto the direction of 

linear momentum 𝑝 .  

 Motivated by the helicity characterizing the spinning effects of particles, the 

definition of helicity in fluid mechanics can be introduced and defined as  

𝐻 = ∫�⃗� ∙ �⃗⃗� 𝑑𝑉
 

 

                                                (5.5) 

to describe the “non-orthogonality” of the velocity and vorticity vectors for droplet 

translational movement and spinning effects, respectively, where �⃗� = (𝑢, 𝑣, 𝑤) is the 

velocity vector and �⃗⃗�  is the vorticity vector given by 

�⃗⃗� = ∇ × �⃗� = (
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
,
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
).                      (5.6) 

Evidently, for the head-on collision between two dropelts without rotations, �⃗� ∙ �⃗⃗�  

remains zero everywhere in the flow field because the axisymmetric flow has only 

one vorticity component normal to the velocity plane. 
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Figure 5.8 Evolution of helicity for the head-on collision between initially spinning 
droplets. 
 

 While for the head-on collision between two spinning dropelts concerned in the 

present study, the “non-orthogonality” of the velocity and vorticity vectors has been 

broken, as the helicity shown in Figure 5.8. With increasing 𝜃, the amplitude of 

helicity decreases monotonically and finally vanish at 𝜃 = 90°. The zero integral 

helicity denotes the droplet spin is always perpendicular to the plane that the droplets 

mass center trajectory lies, in which the plane must be a symmetry (x-z) plane[21]. 

That is because the velocity components and the velocity derivatives are reversed on 

the both sides of the x-z plane, expressed as 𝑣+ = −(𝑣−)  and (𝜕 𝜕𝑦⁄ )+ =

−(𝜕 𝜕𝑦⁄ )− where the positive and negative symbol denote two sides of x-z plane, 

respectively. Thus, we have 

(�⃗� − ∙ �⃗⃗� −) = (𝑢,−𝑣,𝑤) ∙ (−
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
,
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
,−

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) = −(�⃗� + ∙ �⃗⃗� +)   (5.7) 
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and 𝐻 = 𝐻+ + 𝐻− = 0  for the entire droplets. The integral helicity describing 

droplet spinning can be either positive or negative, which is attributed to the change 

of velocity vectors during droplet impacting and bouncing stage but not the significant 

change of droplet spinning direction.  

 

 

Figure 5.9 Evolution of vortex lines for the head-on collision between initially 
spinning droplets. 
 

Figure 5.9 shows a qualitative comparison of vortex lines of the head-on 

collision between droplets with or without spinning effects. It is seen that the vortex 

lines for the head-on collision between two rotation-free droplets are a series of 

concentric circles, as shown in Figure 5.9(a), which are centered along the line 

connecting the mass centers of the droplets, indicating that the flow is purely 
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axisymmetric, and the vortices are in the ring shape. These ring-shaped vortices 

should be attributed to the shear flow formed by compression in the axial direction 

and expansion in the radial direction. While for the head-on collision between one 

spinning droplet and one rotation-free droplet, it presents the interaction between 

“line-shaped” vortex lines and “ring-shaped” vortex lines. The axisymmetric flow is 

influenced by the initial droplet rotation, except for a specific case of the “line-shaped” 

vortex lines are perpendicular to “ring-shaped” vortex lines, as shown in Figure 5.9(b). 

The internal flow in Figure 5.9(c) becomes chaos and the symmetry plane in Figure 

5.9(d) can be still observed. Their interactions are reflected by the strong linkage or 

knotedness of the vortical strucutres, which translates into strong helicity in the 

current context. We can further observe that both ends of a “line-shaped” vortex line 

stem from the droplet surface. This can be explained by that, in a finite vorticity field, 

a vortex filament must either form a closed vortex ring or terminate on the fluid 

boundaries where the flux of vorticity is not zero[136]. 

Regardless of the specific cases of the head-on collision considered in the present 

study, it is noted that the helicity can also be conserved to zero for the previous 

work[21] of off-center collision with a symmetry plane. It indicates that the lines for 

the relative velocity direction before and after droplet collision, and the mass center 

connection line are always located on a same plane with the presence of symmetry 
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flow, which is important to the modelling simplification of binary droplet collision 

into the collision between two mass points by ignoring the droplet spinning effects.  

5.6 Concluding remarks 

The head-on collision between one spinning droplet and one rotation free droplet 

is numerically investigated in the present study. The numerical method has been 

validated by the previous work[21], and the simulation of droplet deformation and 

instability analysis of a single spinning droplet in the present study, which 

successfully traces the two-lobed and four-lobed shapes with increasing the spinning 

angular velocity.   

The phenomenological description and energy budget present the viscous 

dissipation and energy transfer for each droplet, showing that the total kinetic energy 

recovery for the head-on collision between spinning droplets decrease monotonically 

with increasing 𝜃 from 0 to 90 degree, which can be explained by the monotonic 

increase of the viscous dissipation energy and the enhanced viscous dissipation rate 

(TVDR).  

In the modelling of binary droplet collision, the orbital angular momentum �⃗�  

and the spinning angular momentum 𝑆  are under mutual transformation during the 

droplet collision although the total angular momentum is conserved. The zero helicity 

indicates that the translational and spinning movement of droplets are always 
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orthogonal before and after droplet collision, which is the key assumption of the 

modeling simplification of binary droplet collision into the collision between two 

mass points by ignoring the droplet spinning effects.  

Furthermore, the influences of other parameters such as the size disparity, impact 

parameter, chirality of colliding droplets, the initial droplet shape relevant to the phase 

difference before the collision, and the intensity of spinning are excluded deliberately 

from the preliminary study, however they are of significance in the real sprays and 

merited the further investigations.  

 
  



129 

6 Mass interminglement and hypergolic ignition 

of TMEDA and WFNA droplets by off-center 

collision 

6.1 Background and objectives 

Hypergolic propellants have received lasting attentions in the past decades for 

their applications in rocket propulsion, in which the spontaneous ignition occurs upon 

their contact without an external source of energy[80, 132, 137, 138]. Unlike the 

auto-ignition of a homogeneous gaseous mixture of non-hypergolic reactants, 

hypergolic ignition is intrinsically heterogeneous as it involves mixing and reaction of 

initially separated propellants in both liquid phase and gas phase[138-140].  

The previous studies have observed that the ignition delay time (IDT) is closely 

related to the initial contact and subsequent liquid-phase mass interminglement 

between hypergolic fuel and oxidizer droplets. Recently, Zhang et al.[80] 

experimentally studied the head-on collision between binary droplets of N,N,N’,N’- 

tetramethylethylenediamine (referred to as TMEDA hereinafter) and white fuming 

nitric acid (referred to as WFNA hereinafter) in atmospheric environment. The most 

notable experimental discovery in the study is the non-monotonic variation of 

hypergolic IDT with increasing 𝑊𝑒. The underlying physics is the non-monotonic 

emergence of a “jet-like” internal mixing within the coalesced droplet with increasing 
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𝑊𝑒, a fluid dynamical phenomenon that was recently identified by Tang et al.[15] in 

unequal-size droplet collision. The “jet-like” internal mixing facilitates the exothermic 

liquid-phase reaction, TMEDA + 2HNO3 → TMEDADN, whose heat release is 

crucial to the subsequent droplet heating and vaporization, the decomposition of the 

propellants, and eventually the gas-phase ignition[139]. 

In spite of the above findings about the hypergolic ignition by the head-on 

collision of TMEDA and WFNA droplets, it should be recognized that the head-on 

collision is a rare event and that the off-center collision occurs frequently in reality. 

However, hypergolic ignition by off-center droplet collisions has not been sufficiently 

studied, probably because the characterization and quantification of its intrinsically 

three-dimensional nature is challenging for both experiment and simulation.  

In the early experimental study of Ashgriz and Poo[14], the inter-droplet mass 

exchange was observed after the stretching separation of off-center collisions. 

Inamuro et al.[141] used the lattice Boltzmann method (LBM) to numerically find the 

non-monotonical internal mixing with 𝐵 for the off-center collision between droplets 

of equal size, in which the mixing rate was defined as the percentage of the number of 

particles of a color in the total number of particles in a droplet, and the maximum 

mixing rate is about 30% at about 𝐵 = 0.2. Sun et al.[142] numerically studied the 

off-center collision of two identical droplets by using the moving particle 
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semi-implicit method. Although their results show significant discrepancies compared 

with the previous experiments on collision outcomes, the non-monotonic variation of 

the mixing rate with 𝐵  was observed at 𝑊𝑒 = 1.5. A similar result was also 

obtained in the Volume-of-Fluid (VOF) simulation of Chen et al.[104] on the energy 

and mass transfer between two equal-size droplets with 𝑊𝑒  being up to 70. 

Particularly, they found that the maximum mass transfer rate appears at about 𝐵 =

0.3~0.4, being consistent with Inamuro et al.’s[141] results.  

Motivated by the previous understanding of non-monotonic droplet mixing with 

varying 𝐵 and its correlation with the hypergolic IDT, in the present work, we 

attempt to verify the internal-mixing-induced non-monotonical hypergolic IDT with 

varying 𝐵 for the off-center collision between TMEDA and WFNA droplets of 

unequal sizes by conducting both experimental and numerical studies. The 

experimental part was conducted by my cooperator, Dr. Zhang, to whom I am very 

grateful, and the details can be find in[132]. The numerical simulation based on VOF 

method was mainly focused on the off-center collision of non-reacting droplets, with 

emphasis on investigating the influence of 𝐵 on droplet mixing.  

Based on the above considerations, we present the present study as follows. The 

numerical methods and experimental validations are described in Section 6.2, 

followed by the numerical interpretation on the mixing enhancement by slightly 
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off-center droplet collision in Section 6.3. Finally, the correlation between the 

quantitative mixing index and the IDT is presented in Section 6.4. 

6.2 Numerical methods and experimental validations 

6.2.1 Problem definition and simplification 

It should be noted that we had no an ambition to simulate the extremely complex 

and tangled physicochemical processes of hypergolic ignition of TMEDA and WFNA 

droplets, including the fluid-dynamical processes of droplet collision and mixing, the 

transport processes of mass diffusion and droplet heating, the phase change process of 

droplet vaporization, and the chemical processes in liquid and gas phases. The present 

VOF simulation, which has been sufficiently validated against available experiments 

in literature, is able to provide useful information about the early stage of droplet 

interaction, when the physical transport, phase change and chemical reactions have 

not fully emerged yet.   

 
Table 6.1 Physical properties of various liquids 

Liquids 
Surface tension, 𝜎 
(10-2 N·m-1) 

Viscosity, 𝜇 
(10-3 N·s·m-2) 

Density, 𝜌 
(103 kg·m-3) 

TMEDA 2.65 0.90 0.78 
WFNA 5.86 0.89 1.50 
Water 7.29 1.00 1.00 

 



133 

The physical properties of the liquid propellants are given in Table 6.1 in 

comparison with those of water. Several assumptions and simplifications were made 

in the simulation and are expatiated as follows.  

First, the liquid-phase and gas-phase reactions, the droplet heating, and the 

droplet vaporization are negligible in the early stage. This is because the early stage 

lasts for about a few milliseconds and is significantly shorter than the hypergolic IDT, 

which is typical of some tens of milliseconds. As a result, the present simulation 

problem can be first simplified as the off-center collision of two unlike droplets, 

where the flows in both liquid- and gas-phases are incompressible, non-reactive, and 

isothermal. The flow incompressibility for liquid-phase droplets is self-evident. The 

gas-phase flow due to vaporization (Stefan’s flow), the heat and mass transport, and 

the flame propagation are sufficiently slow so that the compressibility effect is 

negligible. Dimension analysis indicates that a physical quantity of interest, denoted 

by �̃�, depends on nine non-dimensional parameters as 

�̃� = 𝑓 (𝑊𝑒, 𝐵, 𝛥, 𝑂ℎ,
𝜌𝑆

𝜌𝐿
,
𝜇𝑆

𝜇𝐿
,
𝜎𝑆

𝜎𝐿
,
𝜌𝑔

𝜌𝐿
,
𝜇𝑔

𝜇𝐿
)                              (6.1) 

Second, the effects of the density difference and the viscosity difference between 

the droplets can be neglected. Because the Peclet number, 𝑃𝑒 = 𝑈𝐷𝐿/𝛼, is as large as 

𝑂(106) in the present problem, the droplet mixing in the early stage is dominated by 
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collision-induced flow convection in lieu of the liquid-phase mass diffusion. It is also 

noted that TMEDA and WFNA has very similar viscosity so that 𝜇𝑆/𝜇𝐿 ≈ 1. 

Third, the droplet mixing induced by the surface tension variation, also known as 

the Marangoni effect, can be neglected. This is because the capillary pressure driven 

by the surface tension difference, |𝜎𝑆 − 𝜎𝐿|/𝐷𝐿 , is substantially smaller than the 

droplet dynamic pressure, 𝜌𝐿𝑈
2. The ratio of these two pressures yields  

|𝜎𝑆 − 𝜎𝐿|/𝐷𝐿

𝜌𝐿𝑈2
~ 

|𝜎𝑆/𝜎𝐿 − 1|

𝑊𝑒
~𝑂(10−2)                                (6.2) 

 Finally, 𝜌𝑔/𝜌𝐿~𝑂(10−3) , 𝜇𝑔/𝜇𝐿~𝑂(10−2), and 𝑂ℎ = 2.5 × 10−3 are fixed 

in the present problem because we considered the collisions between TMEDA 

droplets of varying diameters with WFNA droplets of a fixed diameter of 1.45mm in 

atmospheric air. Previous studies[15, 20, 22, 23, 104] have proved that the small 

gas-liquid density and viscosity ratios have negligible influence on the droplet internal 

flow. 

 With the above simplifications and assumptions, the present simulation problem 

is further simplified as the off-center collision of two droplets of the same liquid, 

leading to only three controlling non-dimensional parameters, namely, 𝑊𝑒, 𝛥 and 

𝐵. The simulation results are the same for any fluids as long as their physicochemical 

properties satisfy the above approximations and they have the same set of the 

non-dimensional parameters. As will be proved in the following section, the 
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simulation can produce qualitative description to the droplet deformation and mass 

interminglement, which helps understand the experimental observations.  

 

 
Figure 6.1 Schematic of the three-dimensional computational domain and the adaptive 
mesh for the VOF simulation. 
 

6.2.2 Numerical specifications 

The schematic of the three-dimensional computational domain and the adaptive 

mesh for the present VOF simulation are shown in Figure 6.1. The domain is 10𝐷𝐿 

in height and 4𝐷𝐿 in both width and depth. The density and viscosity are 𝜌𝑙 and 

𝜇𝑙 for the liquid, and 𝜌𝑔  and 𝜇𝑔  for the gas, respectively. The surface tension 

coefficient of the gas-liquid surface is denoted by 𝜎. The two droplets colliding along 
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the 𝑥-direction have zero velocity components in the 𝑦- and 𝑧-directions. Their 

velocity components in the 𝑥 -direction are 𝑈𝑆 = −∆3𝑈 (1 + ∆3)⁄  and 𝑈𝐿 =

𝑈 (1 + ∆3)⁄  so that the relative velocity is 𝑈 and the momentum of the entire 

collision system remains zero. The natural oscillation time of the large droplet is 

𝑡osc = √𝜌𝐿𝐷𝐿
3/𝜎𝐿, by which the non-dimensional time can be defined as T = 𝑡 𝑡osc⁄ . 

The outflow boundary conditions are specified on all the boundaries.  

The conventional VOF method with one marker function[18, 19] was applied in 

the present study, which has been discussed in great detail in Chapter 3. To resolve 

both the droplet interface and the droplet internal flow, the computational domain is 

divided into three physical zones, such as the gas, the droplet interior, and the droplet 

interface. Each zone has its own mesh refinement level 𝑅, and the minimum mesh 

size in each zone is of 𝑂(2−𝑁). Accordingly, we can use (𝑁𝑔, 𝑁𝑑, 𝑁𝑖) to describe the 

refinement levels in corresponding physical zones. A typical simulation run with the 

mesh refinement (5, 6, 7) results in maximally 5957272 grid points, which is 

equivalent to about 3.35 × 108 grid points on a uniform mesh and takes about 86 

hours of real time for a computational time of T = 2.0 on two Intel Xeon E5-2692 

processors with 48 cores on Tianhe-2 supercomputer.  
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6.2.3 Experimental validations 

To validate the present numerical methods for head-on collision (𝐵 = 0), the 

coalescence and reflexive separation of two water droplets of unequal sizes were 

simulated and compared with Ashgriz and Poo’s experiment[14], as shown in Figure 

6.2. It is noted that the Weber number and Ohnesorge number reported in the 

experiment are defined based on the smaller droplet and have been converted to on 

the present definitions as 𝑊𝑒 = 112 and 𝛥 = 2.0 . Tanguy and Berlemont[84] 

simulated the experiment by using the Level-set method and based on an estimated 

𝐷𝑆 = 400 𝜇𝑚, leading to 𝑂ℎ = 4.15 × 10−3. However, we could not reproduce the 

experimental images by using their parameters. After reanalyzing the experimental 

images, as shown in Figure 6.2(a), we found that the exact size ratio is 𝛥 = 1.82 and 

using 𝑊𝑒 = 102 and 𝑂ℎ = 5.10 × 10−3 enabled us to quantitatively reproduce all 

the collision characteristics. More details about the analysis of the experimental 

images are given in Supplementary Material of [132].  

To examine the grid-dependence of the present simulation, we used three sets of 

mesh refinement levels, such as (5, 6, 7), (5, 6, 8) and (5, 7, 8), which result in 

maximally 5719053, 6712558 and 6874396 grid points, respectively. As shown in 

Figure 6.2, these meshes produce almost the same results compared with the 

experimental images in terms of droplet deformation, internal mixing pattern, and 
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stretching separation. As a balance of computational cost and accuracy, the 

intermediate level of (5, 6, 8) were used to reproduce all the simulation results in the 

following sections.  

 

 
Figure 6.2 Experimental validation and grid independence analysis of the head-on 
collision (𝐵 = 0) of unequal-size water droplets at 𝑊𝑒 = 102, 𝛥 = 1.82 and 𝑂ℎ =

5.10 × 10−3[14]. (a) Ashgriz and Poo’s experiment[14], and three sets of mesh 
refinement levels with (b) (5, 6, 7), (c) (5, 6, 8) and (d) (5, 7, 8), respectively。 
 

To further validate the present numerical methods for off-center collisions, the 

coalescence and stretching separation of two identical water droplets[14] with 𝑊𝑒 =

90, 𝛥 = 1.0 and 𝑂ℎ = 6.89 × 10−3 were simulated and shown in Figure 6.3. Again, 

the simulation satisfactorily reproduces the complex three-dimensional droplet 
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deformation and accurately predicts the number of satellite droplets after stretching 

separation. It is noted that we could not reproduce the experimental results by using 

𝑊𝑒 = 83 reported in Ref.[14], which might not be accurate due to the uncertainty of 

droplet sizes in the early experimental measurement. The uncertainty of the Weber 

numbers is 8%, which is about the same as that of the measured size ratio.    

 

 

Figure 6.3 Experimental validation of the off-center collision of identical water 
droplets with (a) one satellite droplet at 𝑊𝑒 = 90  and 𝐵 = 0.34  and (b) two 
satellite droplets at 𝑊𝑒 = 90 and 𝐵 = 0.43[14]. 
 

6.3 Interpretation on the mixing enhancement by slightly off-center droplet 

collision 

Phenomenological description and quantitative grayscale levels analysis on the 

experimental shadowgraph images of the hypergolic ignition for a representative case 
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of 𝑊𝑒 = 60.9, 𝛥 = 1.6 at 𝐵 = 0.0 and 𝐵 = 0.3 have been presented in [80, 132]. 

Based on the shadowgraph images, the entire collision process can be divided into 

five distinct stages, namely Stage I: droplet coalescence and deformation; Stage II: 

droplet heating and vaporization; Stage III: rapid vaporization and reactions; Stage IV: 

ignition in gas phase and flame propagation; Stage V: combustion and flame 

extinction. As expatiated in the previous study[80, 132], the analysis of the grayscale 

levels of the shadowgraph images can be used to systematically determine the IDT 

with reduced uncertainty. Overall, compared with the head-on collision, the slightly 

off-center collision results in faster droplet heating and vaporization, and thereby 

leading to a shorter IDT. It was hypothesized that this is caused by the enhanced 

internal mixing by droplet stretching.  

Figure 6.4 shows three sets of experimental shadowgraph images and simulation 

results that were selected and compared at three representative moments, indicated by 

“R” for 𝐵 = 0.3 and “S” for 𝐵 = 0.0. The column (a) is the experimental images 

amplified for a clearer illustration, in which the droplet surface contours (on the x-z 

plane) are delineated in red. The columns (b)-(d) are the corresponding simulation 

results viewed from three different directions, where the red denotes the fluid mass 

from the TMEDA droplet and the gray the WFNA droplet. The column (e) shows 

pressure contours and streamlines on the slices cut by the x-z plane. It is reemphasized 
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that the impact velocity is along the x-direction and the droplets deviate from head-on 

situation in the z-direction, thus the x-z plane is the symmetric plane of the collision 

system.  

 

 

Figure 6.4 Comparison between 𝐵 = 0.3 (denoted by “R”) and 𝐵 = 0.0 (denoted 
by “S”) for three representative moments: (a) the experimental shadowgraph images, 
(b)-(d) the simulation results viewed from three different directions, and (e) the 
pressure contours and streamlines. The experimental times are 2.4ms, 7.0ms, and 
13ms, respectively; the computational time T are 0.25, 0.57, and 0.84, respectively, 
corresponding to the physical times (𝑡 = T ∗ 𝑡osc) that are 2.2ms, 5.0ms, and 7.4ms, 
respectively. 𝑡osc = 8.83 ms. 
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The first representative instant, indicated as “R1” for 𝐵 = 0.3 and “S1” for 

𝐵 = 0.0, was selected from their corresponding Stage I. The agreement between the 

experimental time (2.4 ms) and the computational time (2.2 ms) are very good, 

substantiating the quantitative prediction of the present simulation on droplet collision 

dynamics. The slightly off-center collision causes the merged droplet to rotate and 

stretch so that the droplet resembles an asymmetric “spoon”, while the head-on 

collision results in an axisymmetric saucer-like droplet shape. The enhanced 

stretching effects around the contact surface of two droplets can be further verified by 

the streamline in Figure 6.4(e).  

The second representative instant, indicated as “R2” for 𝐵 = 0.3 and “S2” for 

𝐵 = 0.0, was selected from their corresponding Stage II. There is a slight discrepancy 

between the experimental time (7.0 ms) and the computational time (5.0 ms). This is 

because Stage II involves droplet heating and slight vaporization, the increased 

droplet surface temperature reduces the surface tension and hence prolongs the 

droplet oscillation time, 𝑡osc = √𝜌𝐿𝐷𝐿
3/𝜎𝐿, which is fixed in the present simulation. 

The direct observation indicates that the mass interminglement at “R2” seems 

stronger than that at “S2”, because mass is spread out close to the droplet surface in 

addition to the bulge-like internal mixing pattern emerged in both cases. 



143 

The third representative instant “R3” for 𝐵 = 0.3 was selected form Stage III, 

while “S3” for 𝐵 = 0.0 was still in Stage II. There is a moderate discrepancy 

between the experimental time (13.0 ms) and the computational time (7.4 ms) because 

the droplet is affected by rapid liquid-phase reactions and vaporizations. Considering 

the mass interminglement during Stage I and Stage II is the controlling mechanism 

responsible for the non-monotonic ignition delays, the discrepancy does not affect the 

present conclusions. It is noted that the merged droplet has been completely concealed 

by the opaque vapor at “R3” while it can be seen at “S3”. The bulge-like internal 

mixing pattern can still be seen clearly in both cases. For the slightly off-center 

collision at 𝐵 = 0.3, the evidently intense interminglement of the liquid mass within 

the merged droplet could lead to a more uniform droplet vaporization. For the head-on 

collision at 𝐵 = 0.0, as indicated by the streamlines shown in Figure 6.4(e), the 

separation tendency could suppress the mass interminglement between two droplets.  

To facilitate the recognition in the first place of the correlation between the mass 

interminglement and the hypergolic ignition, we calculated the temporal area changes 

of the colored contact surface of the droplets. The contact surface area 𝐴(𝑡) of the 

droplets is normalized by the initial surface area 𝐴0 of the droplets. Because the 

mesh resolutions on the gas-liquid interface and inside the droplet are the same in the 
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present simulation setup, the normalized colored contact surface area 𝐴(𝑡)/𝐴0 can 

be approximately calculated by  

𝐴(𝑡)

𝐴0
=

𝑁[0 < 𝜙(𝑡) < 1]𝐻[𝑓(𝑡) − 1]

𝑁[0 < 𝑓(0) < 1]
                                (6.3) 

where 𝑁 is the number of the meshes in which the VOF function 𝑓(𝑡) or the 

mass dye (color) function 𝜙(𝑡) take certain values, and thus it can be treated as 

functionals of 𝑓(𝑡)  or 𝜙(𝑡) . The VOF function 𝑓(𝑡) = 1  denotes the droplet 

interior, 0 < 𝑓(𝑡) < 1  the gas-liquid interface, and  𝑓(𝑡) = 0  the gas; the color 

function 𝜙(𝑡) = 1 denotes the smaller droplet interior, 0 < 𝜙(𝑡) < 1 the contact 

surface of the droplets, and 𝜙(𝑡) = 0 the larger droplet interior. In the above 

expression, the Heaviside step function ensures only those meshes within the droplet 

interior to be counted for calculating the colored contact surface. The results show 

that the evolutions of 𝐴(𝑡) 𝐴0⁄  for 𝐵 = 0.3  is faster than that of 𝐵 = 0.0 , 

indicating the mass interminglement for slightly off-center droplet collision is indeed 

enhanced and critical to the hypergolic ignition.  

6.4 Correlation between mass interminglement and ignition delay time  

Based on the experimental observation of a non-monotonic variation of IDT with 

varying impact parameter[132] and the numerical interpretation of the mixing 

enhancement by slightly off-center collision in Section 6.3, a qualitative correlation 

can be obtained between the varying degree of mass interminglement and the IDT. As 
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can be further seen in Figure 6.5(a), the VOF simulations for five cases at fixed 𝑊𝑒 =

60.9 and  𝛥 = 1.6 but varying 𝐵  from 0.0 to 0.9, supplement the experimental 

shadowgraph images by providing useful information about the internal flow and 

mass interminglement of droplet. It is clearly seen that, the droplet mass is 

increasingly intermingled with increasing 𝐵  from 0.0 to 0.3, where the droplet 

remains coalesced. This enhanced mass interminglement can be attributed to the 

better droplet mixing and the shorter IDT at 𝐵 = 0.3. Further increasing 𝐵 to 0.6 

and higher values, the droplet stretching deformation becomes more intense but the 

coalesced droplet eventually separates into two major masses with a certain number of 

satellite droplets. Although the enhanced mass interminglement facilitate droplet 

mixing and hence liquid-phase reactions, the amount of mass participating in the 

reactions is however reduced due to the droplet separation. This explains the 

elongation of IDT at 𝐵 = 0.6  compared with that at 𝐵 = 0.3 , and the 

non-ignitability of the system at 𝐵 = 0.9. 

For a quantitative correlation between the IDTs and the mass interminglement, a 

time-dependent “mixing index”[15, 143], 𝑀 ∈ [0,1] , whose variants have been 

proposed and used in previous studies[15, 23], was adopted by the present study. The 

index can be defined by 

𝑀 = 1 −
∫ |𝐶 − 𝐶∞|
𝑉

𝐻(𝑓 − 1)d𝑉

∫ |𝐶0 − 𝐶∞|
𝑉

𝐻(𝑓 − 1)d𝑉
                                   (6.4) 
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where 𝑓 is the spatially and temporally VOF function with 𝑓 = 1 in droplet interior, 

𝑓 = 0 in gas, and 0 < 𝑓 < 1 on the droplet interface; 𝐻(𝑓 − 1) is the Heaviside 

step function restraining the volumetric integrations within the droplets. 𝐶 is the 

spatially and temporally varying “concentration” function measuring the degree of 

“mixing”, or more rigorously, mass interminglement. 𝐶0  and 𝐶∞  are the 

“concentrations” defined in the initially unmixed droplets and for an ideal situation of 

“well-mixing”, respectively. These “concentration” functions are defined by 

𝐶0 = {
0, 𝜙 = 0
1, 𝜙 > 0

} , 𝐶∞ = 1 (1 + 𝛥3)⁄ , 𝐶 =
|𝜙 − 0.5|

0.5
𝐶0                (6.5) 

where 𝜙 is the mass dye function with 𝜙 = 1 in the smaller droplet, as seen by the 

red dye in Figure 6.5(a), and 𝜙 = 0 otherwise.  

The “mixing indices” for the five cases of Figure 6.5(a) are shown in Figure 

6.5(b) for comparison. It is seen that 𝑀 for 𝐵 = 0.3 is larger than that for 𝐵 = 0.0 

during almost the entire collision process except in the early stage between “R1” (or 

“S1”) and “R2” (or “S2”), when the coalesced droplet has reached the maximum 

deformation and starts to contract under surface tension. This demonstrates that the 

mass interminglement and therefore the “droplet mixing” and liquid-phase reactions 

are indeed enhanced by slightly off-center collision at 𝐵 = 0.3.  
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Figure 6.5 Variation of (a) droplet collision outcomes and (b) “mixing index” for 
various impact parameters with 𝐵 = 0.0, 0.3, 0.6, 0.7 and 0.9 at 𝑊𝑒 = 60.9 and 
𝛥 = 1.6. 
 

For the moderately off-center droplet collision at 𝐵 = 0.6, the rapid increase of 

𝑀 during the early stages attributes to the formed filament and satellite droplets, 

where mass interminglement is enhanced. However, the increase of 𝑀 becomes 

slower in the later stages because of the occurrence of stretching separation 

suppresses the further mass interminglement, as seen in Figure 6.5(a) the large portion 
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of the larger droplet remaining intact. Consequently, the IDT for 𝐵 = 0.6 becomes 

larger than that for 𝐵 = 0.3 because a smaller amount of liquid mass participates in 

the exothermic liquid-phase reactions and thereby the droplet requires a longer time to 

produce sufficient gas-phase species for ignition.  

The additional case at 𝐵 = 0.7 was added to show the transition to the nearly 

grazing droplet collision at 𝐵 = 0.9. The “mixing index” for the case at 𝐵 = 0.7 is 

almost the same with that for the case at 𝐵 = 0.6 in the early stages, but it only 

slightly increases in the late stages, resulting evidently smaller 𝑀. As discussed 

above, the stretching separation occurs increasingly earlier with increasing 𝐵, and a 

decreasing amount of mass participates in the following interminglement and mixing. 

This trend is more notable for the case at 𝐵 = 0.9, where 𝑀 remains almost a small 

constant after the initial increase for a short period of time.  

Although Figure 6.5 shows the correlation between the non-monotonic variations 

of 𝑀 and IDT with increasing impact parameters, we noted some discrepancies 

between the experimental and simulation results about the droplet deformation, 

especially for the moderately off-center collisions at 𝐵 = 0.6 and 0.7 involving 

filament separation. The underlying reason is that the local physical properties of the 

locally formed filament, such as viscosity and surface tension, might have been 

changed because of the chemical heat release from the liquid-phase reactions. 
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Although such a local variation of physical properties would not be significant for the 

whole droplet, but it can substantially change the subsequent fluid dynamics of the 

thin filament, particularly its separation tendency. Regardless of the deficiency of the 

present simulation in predicting the filament separation and the number of resulting 

satellite droplets, which is a challenging task even for non-reacting, isothermal droplet 

collision, the controlling physics of the mass interminglement is correctly captured by 

the simulation.  

6.5 Concluding remarks  

In the previous study on the hypergolic ignition of the head-on collision between 

a smaller TMEDA and a larger WFNA droplet at various 𝑊𝑒s and 𝛥s[80], the 

ignitability and IDT critically rely on the heat release from the liquid-phase reactions, 

which in turn is determined by the effective droplet internal mixing during earlier 

stages. The present study has extended our understanding from the rare event of 

head-on collision to more frequently seen off-center collision, as summarized in the 

following.  

The impact parameter effects on IDT were first studied for a representative case 

at 𝑊𝑒 = 60.9, 𝛥 = 1.6 and 𝑂ℎ = 2.5 × 10−3. Compared with the head-on collision, 

the IDT for the slightly off-center collision is shorter because of the promoted mass 

interminglement owing to the enhanced droplet stretching deformation, which is 
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characterized by the formation of thin liquid filament. However, the filament tends to 

break up with increasing 𝐵, resulting in a smaller amount of liquid mass participating 

in the liquid-phase reactions, less vaporized gas-phase species, and prolonged ignition 

delay (for moderately off-center collision) or even non-ignitability (for nearly grazing 

collision).  

The non-monotonic influences of 𝐵 on the hypergolic ignition can be correlated 

with the non-monotonic effects of 𝐵 on the mass interminglement of colliding 

droplets. Specifically, for slightly off-center collision, the droplet stretching leads to 

the more intense interminglement of the liquid mass within the merged droplet, which 

is computationally verified by evident mass spreading out close to the droplet surface 

in addition to the bulge-like internal mixing pattern. To further increase 𝐵, the 

substantial stretching effect results in stretching separation, which suppresses the 

mass interminglement between the droplets. Consequently, only portions of TMEDA 

and WFNA mass participate in the liquid-phase reactions, rendering less heat release 

and gas-phase species for ignition. The correlation between the mass interminglement 

and IDT has been quantitatively verified by examining the defined “mixing index”. 

Although the present simulation captured the important physics of droplet mass 

interminglement that is crucial to the subsequent droplet behaviors, the simulation 

cannot capture the entire hypergolic ignition process due to the lack in heating and 



151 

reactions. These absent physical effects should be accounted for in our future studies, 

including the transport phenomena and chemical reactions in the present VOF 

simulation. 
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7 Vortex-ring-induced internal mixing upon the 

coalescence of initially stationary droplets 
7.1 Background and objectives 

Droplet coalescence is a frequent event in many natural and industrial processes 

involving dispersed two-phase system[11, 12, 77]. The “internal mixing” after droplet 

coalescence has been paid increasingly attentions to understand its significance of 

fuel-oxidizer mixing in rocket engine systems and reactants mixing based on 

micro-droplet reactors in bioengineering[4, 5]. It is noted that the referred “internal 

mixing” hereinafter is not the physically mixing involving mass diffusion, but more 

accurately is the mass interminglement that represents the degree of contact between 

the liquid mass from initially small or large droplets.  

Among previous droplet coalescence studies, a majority of the effort has been 

dedicated to the theoretical and experimental investigations of the evolution of the 

neck or bridge between two identical merging droplets, which is significant to the 

subsequent development of internal mixing. Because the internal mixing after 

coalescence is minimal for two identical droplets due to the intrinsic symmetry, it can 

be enhanced only by breaking the symmetry. Regardless of the symmetry breaking by 

such as the difference of surface tension[56] and viscosity, the most common method 

is the size disparity. Anilkumar et al.[44] experimentally observed a jet-like mixing 



153 

after the coalescence between two initially stationary water–glycerin solution droplets 

of unequal sizes. For the highly viscous droplets, noticeable mixing was however not 

observed in their experiments, and instead, the smaller droplet simply lodges onto the 

larger droplet after coalescence.  

To understand the internal mixing associated with the jet-like structure, Nobari 

and Tryggvason[144] employed the front-tracking method to simulate the coalescence 

between two stationary droplets. Their results suggest that the penetration depth of the 

fluid from the small drop monotonically changes with the size ratio in a very viscous 

drop where no internal jet forms, and that this monotonicity however does not hold 

for small viscosity drops where internal jet could appear. Later, Liu et al.[22] 

simulated the mixing of unequal-size droplets with emphasis on elucidating the 

important role of the surface energy of the merged interface in forming the jet-like 

mixing. They found that increasing the droplet viscosity suppresses the mixing and 

increasing the size disparity promotes the mixing. Recently, Tang et al.[15] 

experimentally investigated the coalescence between two unequal-sized droplets with 

nonzero Weber numbers and observed the non-monotonic emergence of the jet-like 

mixing with increasing 𝑊𝑒. The jet-like internal mixing was also reported in several 

other numerical studies employing the volume of fluid (VOF) method and the lattice 
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Boltzmann method[72, 73, 141]. Nevertheless, physical interpretation of the internal 

jet and its effect on mixing have not been adequately addressed in these studies. 

Similar internal-mixing phenomenon has also been observed in the coalescence of 

a droplet into a liquid pool[130, 131]. A mechanism based on the generation of 

vorticity by accelerated flows at curved liquid free surfaces was proposed to explain 

the formation of the vortex ring. Specifically, in a homogeneous fluid without body 

force (or with conservative body force), which is the fluid in either the droplets or the 

ambient gas, the rate of change of vorticity, 𝝎, associated with a fluid element is 

given by the vorticity transport equation (also known as the Helmholtz vorticity 

equation)[145], 

𝑫𝝎 𝑫𝑡⁄ = 𝝎 ∙ 𝛁𝒖 + 𝜈𝛁𝟐𝝎                                        (7.1)                                                                    

where 𝒖 is the velocity and 𝜈 is the kinematic viscosity. The first term on the 

right-hand side of Equation (7.1) represents the stretching and tilting effect of the 

vortex-line, which is balanced by the change of vortex strength caused by the changes 

in the area and direction of the fluid element surface (p. 268-269 of Ref.[145]); the 

second term is the vorticity diffusion term, which by nature only causes the 

redistribution of vorticity in the presence of vorticity gradient. Equation (7.1) 

mathematically dictates that vorticity is only a transport quantity, meaning no 

vorticity can be created inside a homogeneous fluid. This interpretation, although 
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elucidatetd by Batchelor[145] and Cresswell and Morton[130], has not been 

sufficiently recognized probably because of its non-intuitive differential form. Similar 

conclusion can also be deduced from an integral form of Equation (7.1), known as the 

Kelvin’s circulation theorem[136] (or equivalently the Helmholtz’s theorems[136]). 

Although the Kelvin’s circulation theorem was originally derived for inviscid flows, 

Batchelor[145] extended it to viscous flows by deriving the total change of the 

circulation (𝛤 ) around an arbitrary material contour in the form (Eq. 5.2.7 of 

Ref.[145]), 

d𝛤

d𝑡
= −𝜈 ∮(𝛁 × 𝝎) ∙ d𝒍                                           (7.2)                                                        

where d𝒍 is a material line element along the integration contour. Equation (7.2) can 

be viewed as the equivalent form of the Kelvin’s circulation theorem for viscous 

flows. It clearly indicates that the vortex strength of any material volume does not 

change unless vorticity diffusion happens at the boundary by means of viscosity. 

Since diffusion is a transport phenomenon which does not introduce new quantity into 

the global system, vorticity must be generated at the boundaries where the 

homogeneous condition breaks or special boundary condition is in force. For 

inertialess drop coalescence with no initial vorticity and in the absence of rigid 

boundaries, the only source of vorticity must be the liquid–gas interface[130]. As the 

liquid–gas interface can be approximated by a free surface of a viscous fluid, the 
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vanishing shear stress requires a nonzero jump in velocity gradients and therefore 

generates a finite vorticity[130, 146]. The vortex ring formation after coalescence is a 

synergic consequence of the vorticity generation on the liquid-gas interface, the 

vorticity transport (including accumulation and advection) to the droplet interior, and 

the vorticity diffusion within the droplet. To the knowledge of the authors, no 

attempts have been made to describe such a vorticity evolution for binary droplet 

coalescence. 

In the present study, we aim to numerically investigate the coalescence of 

initially stationary droplets of unequal sizes. The first focus of the study is the jet-like 

internal mixing upon the droplet coalescence and its parametric dependence on liquid 

viscosity, surface tension and size differential. The second is to analyze the evolution 

of concomitant vorticity and its interrelation with the internal mixing. Regardless of 

the fact that droplet collision with increasing 𝑊𝑒 may enhance the internal mixing, 

only initially stationary droplets (i.e. with a zero Weber number) was considered in 

the study based on the following considerations. First, the coalescence of initially 

stationary droplets can be treated as a leading order approximation to that with small  

𝑊𝑒. More importantly, the coalescence of initially stationary droplets occurs at the 

contact point of two spherical droplets, which do not deform prior to coalescence[17]. 

At non-zero 𝑊𝑒, the complicated phenomena of draining the intervening gas film out 
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of the gap between two colliding droplets[17] and the succeeding interface merging at 

the length scales of the van der Waals force pose great challenges to numerical 

simulation. The additional difficulty of dealing with droplet coalescence at non-zero 

Weber numbers will be avoided in the present study although it merits future studies. 

The structure of the paper is organized as follows: the numerical specifications 

and validations are presented in Section 7.2, followed by the phenomenological 

description of the jet-like mixing for three representative liquids such as water, 

n-decane and n-tetradecane are discussed in Section 7.3. An analysis of vorticity 

evolution is presented in Section 7.4 to substantiate that the internal jet formation 

correlates with the vortex ring generated after droplet coalescence. The essential 

mechanism for internal jet formation is further elucidated through the quantitative 

analysis of the vorticity generation at the gas–liquid interface, and the subsequent 

formation, growth, and detachment of the main vortex ring. In Section 7.5, a 

vortex-ring-based Reynolds number, characterizing the strength of the detached main 

vortex ring relative to the viscosity, is proposed as the criterion for the internal jet 

formation. Finally, the internal mixing is quantified in Section 7.6 by using a mixing 

index, and the resultant mixing rates are compared among different cases to 

demonstrate the crucial impact of the internal jet on the mixing performance of the 

merged droplet. 
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7.2 Numerical specifications and validations 

We consider two initially stationary droplets, i.e. 𝑊𝑒 = 0 and 𝐵 = 0, which are 

made to coalesce with each other at the point of contact at time 𝑡 = 0, as illustrated in 

Figure 7.1. For the concerned problem that is intrinsic axisymmetric, a cylindrical 

coordinate is established so that the line connecting the mass centers of the two 

spherical droplets forms the axial (z-) direction. The computational domain is an 

axisymmetric cylinder of 7𝐷𝑆 in length and 3𝐷𝑆 in radius. Further extension of the 

domain has negligible influence on the results. The axisymmetric boundary condition 

(𝜕𝑢 𝜕𝑟⁄ = 0, 𝑣 = 0) is enforced at the z-axis. At all the other boundaries, the flow is 

assumed to approach the condition in the far field, so the outflow boundary condition 

(𝜕𝒖 𝜕𝑛⁄ = 0, 𝑝 = 0) is specified. The diameters of the smaller and the larger droplets 

are 𝐷𝑆 and 𝐷𝐿, respectively. The flows in both gas and liquid droplets are viscous 

and incompressible. The density and viscosity are 𝜌𝑙 and 𝜇𝑙  for the liquid, and 𝜌𝑔 

and 𝜇𝑔 for the gas, respectively. The surface tension coefficient of the gas–liquid 

surface is 𝜎. The tangential and normal directions in a local coordinate system 

established on the droplet interface are denoted by �̂� and �̂�, respectively.  

Under the conditions that concern the present study, the gas–liquid density ratio 

𝜌𝑔 𝜌𝑙⁄  is of 𝑂(10−3) and gas-liquid viscosity ratio 𝜇𝑔 𝜇𝑙⁄  is of 𝑂(10−2) so that 

they are assumed to have insignificant influence on the problem, as substantiated in 
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the previous studies[15, 20, 22, 104]. Consequently, only 𝑂ℎ and 𝛥 are considered 

in the present study, in which 𝑂ℎ is in the range of 8.310-3 ~3.610-2 and 𝛥 varies 

from 1.0 to 3.2, which are similar to those considered in the experiments of Zhang et 

al.[46]. The characteristic time is 𝑡𝑐 = √𝜌𝑙𝐷𝑆
3 𝜎⁄ , which is slightly larger than the 

natural oscillation time of the smaller droplet,  (𝜋/4)√𝜌𝑙𝐷𝑆
3 𝜎⁄ . Based on these 

characteristic physical quantities, the Reynolds number can be defined as 𝑅𝑒 =

√𝜌𝑙𝜎𝐷𝑆/𝜇𝑙 , which is the reciprocal of 𝑂ℎ . Thus, 𝑅𝑒  is of the order between 

𝑂(101) and 𝑂(102), indicating that the droplet coalescence cases of the current 

study belong to the inertial-dominant and the inertial-viscous regimes. 

 

 

Figure 7.1 Computational domain and adaptive mesh for the current droplet 
coalescence study. The symmetry boundary condition is specified on the axis of 
symmetry and free outflow boundary conditions are specified on the other three 
boundaries. The zoomed-in window shows the grid configuration of the interface at 
the initial time of contact。 
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In order to resolve the droplet interface and the internal flow within the droplet, 

the computational domain is divided into three zones, namely the gas, the droplet 

interior and the interface zone. The mesh for each zone can be adaptively refined to a 

prescribed level, denoted by an integer 𝑁, at which the minimum cell size in the zone 

is of  𝑂(2−𝑁)  of the zone dimension. Accordingly, we can use  (𝑁𝑔, 𝑁𝑑 , 𝑁𝑖)  to 

describe the refinement levels in all the three zones. As an example, Figure 7.1 shows 

an initial mesh at the refinement levels (5, 6, 7), in which the number of grid points is 

13,851, equivalent to about 50,000 grid points in a uniform mesh system.  

 

 

Figure 7.2 Grid independence study for the simulation. (a) Comparison of droplet 
deformation and internal mixing pattern among different mesh levels, (4, 5, 6), (4, 6, 
7), (4, 7, 8), and (4, 8, 9), where the three numbers in parenthesis are the mesh levels 
for the gas zone, the fluid zone, and the interface zone, respectively; (b) Comparison 
of the total kinetic energy, 𝐸𝐾, normalized by the initial surface energy, 𝐸𝑆0, for the 
different meshes presented in (a). 
 

The grid independence of the computational results was examined in Figure 7.2. 

Figure 7.2(a) shows the comparison of droplet deformation and internal mixing 
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pattern for the coalescence of water droplets with 𝑂ℎ = 8.28 × 10−3 and 𝛥 = 2.0. 

Four different mesh refinement levels, (4, 5, 6), (4, 6, 7), (4, 7, 8), and (4, 8, 9), were 

employed, which correspond to 5,351, 12,878, 40,180, and 142,897 grid points, 

respectively. The maximal grid points on equivalent uniform meshes are 86,016, 

344,064, 1,376,256, 5,505,024, respectively. It is seen that all results in Figure 7.2(a) 

are qualitatively similar to each other, although the mesh (4, 5, 6) seems to render a 

slightly different internal jet pattern than the rest three finer meshes. For quantitative 

justification, Figure 7.2(b) further compares the evolution of the total kinetic energy 

(𝐸𝐾) of the droplet, normalized by its initial surface energy (𝐸𝑆0), for the same four 

meshes. The results are consistent with Figure 7.2(a) that the latter three meshes tend 

to share an identical curve, which slightly deviates from the first mesh (4, 5, 6). The 

above discussions suggest that the mesh (4, 6, 7) is sufficient for the current study. 

For a balance between accuracy and computational cost, the refinement level (4, 6, 8) 

were used in all the following computations. A typical simulation run up to T = 4.0 

takes approximately five hours of real time on two Intel Xeon E5-2630 processors 

with 12 cores.  

The initial condition of the simulation set-up is illustrated in the zoomed-in plot of 

Figure 7.1. Because the interface constructed by the VOF method intrinsically has a 

finite thickness, the initial merging between the front surfaces of two drops inevitably 
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causes a finite radius of the neck region as shown in the figure. This initial neck can 

be slightly adjusted by changing the local grid resolution around the initial contact 

point. To study the impact of the initial neck, three different initial radii, 0.035𝐷𝑆, 

0.048𝐷𝑆, and 0.060𝐷𝑆, are simulated. Similar analysis to the grid independence study 

were performed, and no notable difference was observed among the different cases. 

The results are not presented here because they are almost identical to Figure 7.2. 

Thus, the initial neck radius has negligible effect on the long-term process of drop 

coalescence. In practice, the initial neck radius of 0.048𝐷𝑆 was applied for all the 

following simulations.  

 

 

Figure 7.3 Comparison of the droplet mixing patterns between experiment[44] and 
simulation. (a) jet forming for a mixture of silicone oil and bromobenzene (3.3 CP 
measured viscosity), 𝑊𝑒 = 0.0, 𝑂ℎ = 0.012, 𝛥 = 2.08 and  𝑡𝑐 = 20.2ms, (b) no jet 
for a high viscous silicone oil (99.0CP measured viscosity), 𝑊𝑒 = 0.0, 𝑂ℎ =

0.203, 𝛥 = 1.75 and 𝑡𝑐 = 57.5ms. 
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To validate the present numerical methods, the coalescence of two initially 

stationary droplets made of a mixture of silicon oil and bromobenzene in the 

environment of water was first simulated and compared with the experiment of 

Anilkumar et al.[44], as shown in Figure 7.3(a). It is seen that the simulation results 

are in good agreement with the experimental images in terms of the evolution of 

droplet deformation and that of the jet-like internal mixing. Furthermore, as shown in 

Figure 7.3(b), the jet-like mixing is absent because of the significantly increased 

droplet viscosity. The simulation results also reproduce the experimental observation 

in that the smaller droplet lodges on the larger one to form a dome shape. 

 

 
Figure 7.4 Comparison of the droplet coalescence speed between experiment[147] 
and simulation. The controlling parameters are 𝑂ℎ = 2.5 × 10−3 and   𝛥 = 1.06. 
The red-dotted lines in the sub-images are droplet interfaces obtained from the present 
simulation. Note that although 𝛥 = 1.06 was reported in the original work, 𝛥 =

1.02 was measured from the experimental images and therefore adopted in the 
simulation. 
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Figure 7.4 compares the present simulation with the experiment by Thoroddsen et 

al.[147] for coalescence between two water droplets in atmospheric air with 𝑂ℎ =

2.5 × 10−3, 𝛥 = 1.06, 𝜌𝑔 𝜌𝑙⁄ = 1.23 × 10−3,  and 𝜇𝑔 𝜇𝑙⁄ = 1.83 × 10−2 . The six 

sub-images illustrate the experimental evolution of the droplet interface, which is 

compared with the simulated interface in red dotted lines. It is seen that the simulation 

results well predict the coalescence process. Quantitative comparison of the 

coalescence speed is shown in the main plot of Figure 7.4, where 𝑅 is the radius of 

the expanding neck (or bridge) between the two droplets and 𝑅𝑎𝑣𝑒 is the average 

radius of the two droplets. Again, the simulation results are in good agreement with 

the experiment data. The slight deviation could be attributed to the original 

experimental setup, where each droplet was either pendent or sessile in gravitational 

environment, with their far ends being attached to a tube, so that the two droplets are 

not strictly spherical. Before we proceed, it is noted that Figure 7.4 displays a scaling 

dependence of 𝑅~√𝑡, with the scaling coefficient being approximately 1.1(𝜎𝑅𝑎𝑣𝑔/

𝜌𝑙)
1/4. This is consistent with the scaling law for droplet coalescence dominated by 

inertia, which was proposed by Eggers et al.[148] and experimentally validated by 

Wu et al.[149] and Aarts et al.[150]. Thus, it justifies that the current droplet 

coalescence study belongs to the inertial regime.  
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7.3 Phenomenological description of internal jet-like mixing 

7.3.1 Representative case study 

As a representative case, the coalescence of n-decane droplets was first 

investigated for a fixed Ohnesorge number of 𝑂ℎ = 1.56 × 10−2 and various size 

ratios. To show the long-time behavior of the internal mixing, the simulation lasts 

until 𝑇 = 4.0. To facilitate our presentation, only three size ratios, namely, 𝛥 = 1.8, 

2.2 and 2.8 are shown in Figure 7.5(a). The mixing process is illustrated in the right 

half of each simulation image and the variation of local pressure, normalized 

by 3𝜎/𝐷𝑆, is shown in the left half image.  

Phenomenologically, the entire process from the commencement of droplet 

coalescence to 𝑇 = 4.0 can be divided into four stages according to the 

characteristics of droplet deformation and jet formation.  

1) Stage I (about 𝑇 = 0.00~0.20): upon the droplet coalescence at the contact 

point, an interfacial ring cusp is formed in the vicinity of the point and tends to be 

smoothed out under the high capillary pressure. This causes a rapid, radially outward 

movement of the ring interface at the beginning stage of droplet coalescence. In the 

meantime, most of the mass in the droplets do not have noticeable movement along 

the axial direction. As a result, away from the vicinity of the ring cusp, the droplets 

remain almost spherical and the local pressures do not vary significantly.   
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Figure 7.5 Deformation and mixing upon the coalescence of initially stationary 
droplets of (a) n-decane with 𝑡𝑐 = 0.50ms , (b) water with 𝑡𝑐 = 0.33ms, and (c) 
n-tetradecane with 𝑡𝑐 = 0.48ms, and for different 𝛥. The left contour shows the 
static pressure, with the magnitude ranging from 0.0 of blue to 2.0 of red. The right 
contour plots the tracer variable, with red and blue tracking the fluid initially from the 
small and large droplets, respectively. 
 

2) Stage II (about 𝑇 = 0.20~0.40): the mass in the smaller droplet is driven into 

the larger one under the capillary pressure difference of about 4𝜎(𝐷𝑆
−1 − 𝐷𝐿

−1). A 

finger-like bulge with a round head is consequently formed on the far side of the 

smaller droplet, as clearly seen at 𝑇 = 0.40. The radius of the round head of the 
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bulge, denoted by 𝐷𝐵, is smaller than that of the initial droplet, and thereby results in 

larger capillary pressure (shown in red) in the bulge than that in the large droplet. 

3) Stage III (about 𝑇 = 0.40~0.80): the bulge merges into the droplet under the 

capillary pressure difference of about 4𝜎(𝐷𝐵
−1 − 𝐷𝐿

−1). The mass of the bulge obtains 

an axial momentum in the vicinity of the axis as the result of the conversion of the 

surface energy of the bulge to its kinetic energy. After the bulge completely merges 

into the droplet, the pressure inside the droplet becomes almost uniform regardless of 

the slight local pressure variation due to the droplet oscillation. 

4) Stage IV (about  𝑇 = 0.80~4.00): the final stage is characterized by the 

long-time behavior of the jet-like mixing, which is affected by the viscous dissipation 

of the internal flow motion and the droplet oscillation. It is seen that all the cases 

show jet-like mixing patterns except the case of 𝛥 = 1.8, in which the merged 

smaller droplet lodges on the larger one to form a dome shape during the entire stage. 

7.3.2 Influence of 𝑶𝒉 and 𝜟 

For a comparative study of the phenomena, the above simulations were repeated 

for water and n-tetradecane, which provide experimentally realizable comparison with 

n-decane for studying the influences of surface tension and viscosity. Specifically, the 

viscosity of water (8.9 × 10−4𝑃𝑎 ∙ 𝑠) at room temperature is very close to that of 

n-decane (8.5 × 10−4𝑃𝑎 ∙ 𝑠), but the surface tension of water (7.29 × 10−2 𝑁 𝑚⁄ ) 
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is almost three times larger than that of n-decane (2.38 × 10−2 𝑁 𝑚⁄ ). The surface 

tension of n-tetradecane (2.65 × 10−2 𝑁 𝑚⁄ ) is similar to that of n-decane, but its 

viscosity (2.03 × 10−3𝑃𝑎 ∙ 𝑠) is substantially larger than that of n-decane. The 

simulation results for the coalescence of water droplets at various size ratios and with 

𝑂ℎ = 8.29 × 10−3, 𝜌𝑔 𝜌𝑙⁄ = 1.22 × 10−3 and  𝜇𝑔 𝜇𝑙⁄ = 1.80 × 10−2, are shown in 

Figure7.5(b). The results for the coalescence of n-tetradecane droplets with 𝑂ℎ =

3.62 × 10−2, 𝜌𝑔 𝜌𝑙⁄ = 1.61 × 10−3 and 𝜇𝑔 𝜇𝑙⁄ = 7.94 × 10−3 are shown in Figure 

7.5(c). Several observations can be made by comparing the results shown in Figure 

7.5, as follows. 

First, owing to the smaller 𝑂ℎ and thereby decreased viscous dissipation of water 

droplets, the mushroom-like jet emerges at 𝛥 = 1.8, as shown in Figure 7.5(b), but it 

is absent for either n-decane or n-tetradecane droplets at the same size ratio, as shown 

in Figure 7.5(a) and Figure 7.5(c), respectively. It is also noted that the jet-like mixing 

pattern is absent for n-tetradecane droplets at all the size ratios. These results accord 

with and extend the earlier experimental observation of Anikumar et al.[44] that the 

formation of “mushroom-like” jet is suppressed by increasing the droplet viscosity. 

Second, for the cases with the emergence of the distinct jet-like mixing, water 

droplets display enhanced and faster mixing compared with n-decane droplets, as 

shown in Figure 7.5(b) compared with Figure 7.5(a) for 𝛥 = 2.2. It is seen that the jet 
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penetrates the whole droplet and hits the bottom surface at 𝑇 = 2.0 for the water 

droplet, but the jet penetration is about a half of the droplet size for the n-decane 

droplet at the same time. In view of the characteristic time 𝑡𝑐 of the water droplet is 

smaller than that of the n-decane droplet of the same size, the evolution of the jet-like 

mixing in the former is even faster and more substantial. 

Third, an interesting albeit incidental phenomenon was observed for the water 

droplets of 𝛥 = 2.8, as shown in Figure 7.5(b). A thin neck forms on the bulge and 

pinches off the bulge to generate a satellite droplet, which subsequently re-merges 

into the "father" droplet, as shown at 𝑇 = 1.00. Although the jet-like mixing pattern 

still emerges, it is not as prominent as the case without the pinch-off. In the 

experimental study of the pinch-off phenomenon during the coalescence of 

unequal-size droplets, Zhang et al.[46] found that there exists a critical 𝛥𝑐𝑟 for the 

emergence of pinch-off and that 𝛥𝑐𝑟 increases monotonically with 𝑂ℎ. For 𝑂ℎ =

8.29 × 10−3, the predicted 𝛥𝑐𝑟 is about 2.6, which slightly overshoots 2.3 observed 

in Zhang et al.’s experiments[46]. The overshooting is caused by that the increasingly 

attenuated liquid neck is not sufficiently resolved in the present study. Physically, 

pinch-off occurs when two interfaces become sufficiently close to one another, being 

of 𝑂(10) nm , so that the van der Waals force triggers the interface collapse. 

Quantitatively predicting the pinch-off requires the numerical resolution of an 
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extremely thin liquid neck, which is computationally challenging and therefore 

bypassed in the present study by limiting out scope to the size ratios below the critical 

ones determined by Zhang et al.’s experiment[46]. 

7.3.3 Regime nomogram of jet-like mixing 

The above comparative study has suggested that 𝑂ℎ and 𝛥 are crucial to the 

appearance of the internal mixing. In order to further quantify the influences of 𝑂ℎ 

and 𝛥 on the formation of the jet-like mixing pattern, we extended the simulations to 

wider ranges of these two parameters. The resulting 𝛥 − 𝑂ℎ regime nomogram of the 

parametric study is shown in Figure 7.6. 

 

 
Figure 7.6 Regime nomogram of initially stationary droplet coalescence in the 𝛥 −

𝑂ℎ parametric space. The jet-like mixing is denoted by the square, the no-jet regime 
by the cross, and the transition by the circlet. The red-dashed fitting line is given by 
the fourth-order polynomial, 𝛥 = 1.3691 × 107𝑂ℎ4 − 4.6129 × 105𝑂ℎ3 +

6.4108 × 103𝑂ℎ2 + 25.0344𝑂ℎ + 1. The dashed area corresponds to the ranges of 
𝛥 and 𝑂ℎ effecting droplet pinch-off, experimentally given by Zhang et al.[46].  
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For a given 𝑂ℎ, the jet-like mixing occurs as 𝛥 is increased above a critical value 

indicated by the dashed line. Phenomenologically, the non-dimensional capillary 

pressure difference, 4(1 − 𝛥−1), between the small and large droplets, increases with 

𝛥 and could be a driving force for the jet formation. Furthermore, Figure 7.5 also 

shows that as increasing 𝛥  the coalescence-induced internal flow tends to be 

concentrated around the symmetry axis, which could serve as an additional source 

promoting the jet formation. It can be also observed that the critical 𝛥 for the 

emergence of the internal jet increases with 𝑂ℎ, which again verifies the observations 

from Figure 7.5 that larger 𝑂ℎ tends to suppress the jet formation. At this point, 

considering the trend of the red-dashed curve in Figure 7.6, one might be curious if 

there exists a threshold 𝑂ℎ beyond which jet formation is completely suppressed. 

Theoretically, this is highly possible since any jet is a convective phenomenonthat 

could be suppressed with sufficiently large viscosity. Realizing that such a threshold 

can be determined numerically by simulating the case with near-infinity size ratio, 

which is computational challenging, we instead simulate the limiting problem: an 

inertialess droplet merged into a liquid pool. The result is marked by 𝑂ℎjet in Figure 

7.6, which shows that the mushroom-like jet does not appear when 𝑂ℎ is increased 

above 0.035. The details about this simulation are not provided here for brevity. 

For a complete phenomenological description of the problem, Zhang et al.’s 
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experimental data on the emergence of droplet pinch-off are also plotted in Figure 7.6 

as a shadow regime. It is noted that pinch-off does not occur for 𝑂ℎ > 0.025 in their 

experiment. 

7.4 Main vortex ring and its role in internal jet-like mixing 

7.4.1 Identification of main vortex ring synchronized with internal jet-like 

mixing 

We have demonstrated the dependence of the emergence of the internal jet on 𝑂ℎ 

and 𝛥, however the basic mechanism of the jet formation still requires further 

investigation. As has been discussed in the Background, the generation of the jet-like 

mixing pattern should not be fundamentally different from other similar jetting 

phenomena, for example a starting vortex jet[151, 152] formed due to the self-induced 

motion of a single vortex ring. This conjecture is partly substantiated in Figure 7.7 by 

the similar appearance of the jet-like structure and the vortex ring inside the merged 

droplet, characterized by normalized vorticity, 𝜔∗ = 𝜔𝑡𝑐. From previous studies[151, 

152], the formation of a starting jet can be boiled down to two essential problems: 

what is the source of vorticity forming the vortex ring? and how does the vortex ring 

detach from its source to form the jet? Similarly, we can illustrate the two important 

processes, namely, the generation of vorticity and the detachment of the main vortex 

ring, for the distinct internal jet subsequent to the droplet coalescence. 
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          (a)                    (b)                   (c)                  

Figure 7.7 Comparison between the tracer variable distribution (left) and vorticity 
contour (right) at 𝑇 = 1.70  for the cases of (a) n-decane, (b) water, and (c) 
n-tetradecane with ∆ = 2.2. The color bar applies to the vorticity contours throughout 
the paper. 
 

In order to study the generation and evolution of the main vortex ring that is 

responsible for the formation of the internal jet, one needs to first identify and track 

the region of the vortex. For the present problem having axisymmetry, we employ a 

simple vorticity-contour approach and consider the vorticity contour, 𝜔 = 𝜔𝑣 , 

encircling the main vortex as the vortex boundary, where 𝜔𝑣 is a small threshold 

vorticity. The results for a representative case (n-decane droplets with 𝛥 = 2.2) are 

presented in Figure 7.8, where the green contour on the left side of the droplet 

represents the identified boundary of the main vortex. By comparing the green 

contour with the vorticity contour on the right side of the droplet, we indeed verify the 

vorticity-contour approach to be effective in capturing the main vortex among other 

vortices emerging at different stages of droplet coalescence. 
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Figure 7.8 The main plot shows the evolution of the non-dimensional circulation of 
the main vortex for n-decane droplet coalescence with 𝛥 = 2.2,  and 𝑂ℎ =

1.56 × 10−2. The subfigures (a)-(e) are the tracer variable plot (left) and vorticity 
contour (right) at the typical times (red circlets) on the vorticity evolution curve. In 
each subfigure, the green contour on the left side of the droplet represents the 
boundary of the main vortex identified through the vorticity-contour approach. The 
green cross marks the center of the main vortex corresponding to the local maximum 
vorticity. For clarity of illustration, positive and negative vortices in the vorticity 
contour are encircled by solid and dashed contour lines, respectively. 
 

The identification of the main vortex region also enables the estimation of the 

total vorticity within the main vortex. The total vorticity is evaluated by calculating 

the circulation 

𝛤𝑉 = ∫ 𝜔
 

𝐴𝑉

𝑑𝐴                                                     (7.3) 

where 𝐴𝑉 is the cross-section area of the main vortex. It should be noted that the 

volumetric integration over the volume, 𝑉𝑉, of the main vortex, ∫ 𝜔
 

𝑉𝑉
d𝑉, is not an 

appropriate quantity for measuring the total vorticity. This is because Kelvin’s 
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circulation theorem[136, 153] dictates that 𝛤𝑉 is a conserved quantity in an ideal 

axisymmetric flow, but the volumetric integration is dependent on the radial distance 

of the vortex from the axis (Saffman[136], Eq. 1.5.22). It is seen in Figure 7.8 that 𝛤𝑉 

first increases and then decreases at a slower rate, implying the existence of two 

physical processes: vorticity generation and vortex detachment, that will be discussed 

in detail in Section 7.4.2 and 7.4.3.  

The calculation of the total vorticity provides further justification for the 

correlation between the main vortex ring and the internal jet-like mixing at different 

stages of droplet coalescence.  

1) Stage I: as the initial droplet coalescence occurs, it can be observed from 

Figure 7.8(a) that vorticity develops only in the vicinity of the initial coalescence 

point, where surface deformation and its induced flow start. The rapid, outward 

expansion of the contacting region between the two droplets causes dramatic changes 

in the droplet geometry and velocity, thereby contributing to a fast rate of vorticity 

generation. 

2) Stage II: when the initial coalescence region has sufficiently expanded as 

shown in Figure 7.8(b), the initial conversion from surface energy to kinetic energy 

gradually reaches stagnant. As a result, the velocity and the geometry of the droplet 

enter a slow-variation stage, causing a gradual vorticity generation inside the main 
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vortex. By the end of this stage, the remainder of the smaller droplet becomes an axial 

finger-like liquid bulge, forming a new neck which would lead to the next peak of 

surface energy discharge.  

3) Stage III: the fluid bulge collapses into the large droplet under surface tension 

as shown in Figure 7.8(c). Similar to Stage I, a substantial amount of surface energy 

of the merged interface is rapidly converted to the kinetic energy of the induced flow 

around the confined neck region of the small fluid bulge, resulting in massive 

vorticity production in the main vortex. 

4) Stage IV: after the complete merge of the fluid bulge into the large droplet, 

the main vortex ring starts to detach from the droplet surface and eventually forms the 

internal jet, as shown in Figure 7.8(d) and Figure 7.8(e). During this detaching 

process, the circulation of the main vortex ring first declines rapidly because of the 

diffusion of negative vorticity from the surface, and then drops gradually because of 

viscous dissipation after the complete detachment of the vortex ring. 

7.4.2 Formation and growth of main vortex ring in stage I and III 

In this section, we focus on the process of vorticity generation associated with the 

main vortex. As has been discussed in the Background, Batchelor[145] extended 

Helmholtz’s third theorem[136] or Kelvin’s circulation theorem[136] to the viscous 

flows, and summarized that “vorticity cannot be created or destroyed in the interior of 
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a homogeneous fluid under normal conditions, and is produced only at boundaries” (p. 

266 of Ref.[145]). Therefore, the initial generation of vorticity associated with the 

main vortex must happen at the gas–liquid interface. For the present problem, the 

significantly smaller density and viscosity of gas compared with those of liquid enable 

us to approximate the liquid-gas interface as a free surface with a vanishing shear 

stress[151, 154] on it. In the reference frame defined in Figure 7.1, the shear stress has 

the form 

𝜎 = �̂� ⋅ ∇𝒖 ⋅ �̂� + �̂� ⋅ ∇𝒖 ⋅ �̂� = 0                                     (7.4) 

and hence  

𝜔 = �̂� ⋅ ∇𝒖 ⋅ �̂� − �̂� ⋅ ∇𝒖 ⋅ �̂� = −2�̂� ⋅ ∇𝒖 ⋅ �̂� ≠ 0                    (7.5)              

According to Lundgren and Koumoutsakos[154], the interface vorticity in Equation 

(7.5) could be further decomposed into two parts by  

𝜔 = −2
𝜕𝒖

𝜕𝑠
⋅ �̂� = −2

𝜕𝑢𝑛

𝜕𝑠
+ 2 𝜅𝑢𝑡                                (7.6) 

where  𝜅 = �̂� ⋅ 𝜕�̂� 𝜕𝑠⁄  is the local curvature of the surface; 𝑢𝑛  and  𝑢𝑡 are the 

velocity components normal and tangential to the surface, respectively. Equation (7.6) 

means that the only source of vorticity for the current problem is the interfacial flow 

and is affected by both the interface geometry and the interfacial flow velocities 

(gradients). For steady flows where the free surface is stationary, 𝑢𝑛 becomes zero 

and the first term of Equation (7.6) could be dropped out. For the present problem that 
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is highly unsteady and involves significant deformation of the interface, both terms of 

Equation (7.6) individually affects the vorticity generation of the main vortex at 

different stages. Furthermore, Equation (7.6) can be interpreted that vorticity 

generation at a free surface is inevitable in the presence of either surface deformation 

or flow along curved surface. Due to the effect of viscosity, the vorticity generated at 

the interface would be diffused into the bulk fluid. In a low viscosity fluid, the 

diffusion mainly happens at a thin layer close to the interface, thus forming a 

surface-attached viscous shear layer or boundary layer, outside of which the flow is 

primarily convective. In this sense, the viscous shear layer should be considered more 

as an evidence of the diffusive vorticity transportation from the interface to the bulk 

fluid of low viscosity, rather than a source of vorticity itself. 

Figure 7.9 shows the distribution of vorticity at the gas–liquid interface where 

massive vorticity is being generated initially inside the main vortex at Stage I. We can 

observe that a main peak of positive vorticity is located between 𝑠2 and 𝑠3, which 

corresponds to the portion of the interface overlapping with the boundary of the main 

vortex. This verifies that the growth of the total vorticity inside the main vortex 

shown in Figure 7.8 is indeed related to the non-zero vorticity generation at the 

interface. Furthermore, the vorticity contributions from the two terms of Equation (7.6) 

are also plotted in Figure 7.9. It is seen that the first term, −2𝜕𝑢𝑛/𝜕𝑠, almost equals 
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the vorticity itself, and the second term, 2 𝜅𝑢𝑡, is negligible. This implies that the 

initial vortex generation in Stage I is mainly caused by the normal velocity gradient in 

the tangential direction of the outwardly moving surface, as the movement of surface 

is normal to the surface and 𝑢𝑛 decreases from 𝑠2 to 𝑠3. It is interesting to note that 

vorticity generation is approximately symmetric with respect to the contacting plane 

of the two droplets during Stage I. Specifically, a counter-rotating vortex is created on 

the large droplet side from the surface between 𝑠1 and 𝑠2, with the −2𝜕𝑢𝑛/𝜕𝑠 term 

again dominating the vorticity generation. Although this “negative” vortex is only 

slightly weaker than the main vortex, it gradually decays in later stages, whereas the 

main vortex will be further enhanced.  

 

 

              (a)                              (b) 
Figure 7.9 (a) The tracer variable plot (left) and vorticity contour (right) at a 
representative instant of Stage I [Figure 7.8(a)] for n-decane droplet coalescence with 
𝛥 = 2.2,  and 𝑂ℎ = 1.56 × 10−2. The green contour marks the boundary of the 
main vortex. (b) The vorticity distribution along the gas–liquid interface near the main 
vortex. The 𝑠∗ coordinate is along the surface of the droplet, as indicated by the 
black arrow in (a).  
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              (a)                            (b) 
Figure 7.10 (a) The tracer variable plot (left) and vorticity contour (right) for a 
representative instant of Stage III [Figure 7.8(c)] for n-decane droplet coalescence 
with 𝛥 = 2.2 and 𝑂ℎ = 1.56 × 10−2. (b) The corresponding vorticity distribution 
along the gas–liquid interface near the main vortex.  
 

In Section 7.4.1, we have seen that Stage III corresponds to the primary vorticity 

generation phase for the main vortex. To understand the underlying mechanism of 

vortex growth during this stage, Figure 7.10 plots the vorticity distribution along the 

gas–liquid interface at the instant corresponding to Figure 7.8(c). Here, the curve 

between 𝑠1 and 𝑠2 represents the portion of the gas–fluid interface associated with 

the main vortex. It can be observed that major vorticity generation occurs in the 

vicinity of the connecting point between the bulge and the main droplet. The two 

vorticity components in Equation (7.6) are also plotted in Figure 7.10, and their peaks 

are comparable to each other along the interface of the main vortex. This indicates 

that both the interface deformation and the large curvature equally contribute to the 

significant vorticity generation during this stage. It is also noted that, in the region 
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beyond the main vortex and towards the axis, the tangential velocity and curvature 

combined generate negative vorticity, which exceeds the positive vorticity generated 

by interface deformation, causing the emergence of a negative vortex inside the small 

bulge. 

7.4.3 Detachment of main vortex ring in stage IV 

The above analysis answers the question about where the vorticity inside the 

internal jet comes from, but it does not explain how the concentrated vorticity 

becomes a self-induced vortex ring that subsequently translates within the droplet to 

form an internal jet. In other words, the cumulation of vorticity inside a vortex ring 

does not guarantee the formation of a jet. Taking the starting jet problem as an 

example, the jet formation criterion requires that the non-dimensional formation time 

is larger than a certain value[151] (a typical number is 4), when the vortex ring is 

strong enough to “rip-off” its own vorticity-feeding shear layer; otherwise, the 

vorticity would keep growing inside the vortex ring without detachment and thereby 

no jet can be formed. 

For the formation of the internal jet due to droplet coalescence, we hypothesize 

that a similar mechanism exists such that the internal jet does not form until the main 

vortex ring detaches from the surface of the droplet. Consequently, there must be an 

additional mechanism that “peels” the original vortex ring off the surface. This 
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problem resembles that of flow separation on a smooth body, where vorticity inside 

the boundary layer detaches from the surface to become a free vortex in the wake. It is 

well-known that flow separation happens where the adverse pressure gradient is 

strong enough to generate vorticity opposite to the original shear layer. Analogically, 

we hypothesize that the emergence of negative vorticity at the liquid-gas interface 

would be responsible for the detachment of the main vortex ring. 

 

 

             (a)                                (b) 
Figure 7.11 (a) The tracer variable plot (left) and vorticity contour (right) for a 
representative instant of Stage IV [Figure 7.8(d)] for n-decane droplet coalescence 
with 𝛥 = 2.2 and 𝑂ℎ = 1.56 × 10−2. (b) The corresponding vorticity distribution 
along the gas–liquid interface near the main vortex. 
 

To verify this hypothesis, we plot the vorticity distribution along the surface of the 

droplet at the beginning of Stage IV, as shown in Figure 7.11. It is confirmed that the 

main vortex starts to detach from the central portion of the interface (𝑠∗ > 𝑠2) where 

significant negative vorticity is generated. Moreover, Figure 7.11 also shows that the 

negative vorticity generation near the axis is largely attributed to the first term of 
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Equation (7.6), −2𝜕𝑢𝑛/𝜕𝑠 . We further recognize that this negative vorticity 

generation actually corresponds to an outward retraction of the dented surface 

subsequent to the complete merge of the droplet. In analogy to flow separation, 𝑠2 

can be considered as a dynamic flow separation point, which moves in the radial 

direction as the negative vortex region expands out, and cut off the main vortex from 

the surface in a razor-like fashion. After the main vortex completely detaches from the 

surface, it becomes a free vortex ring translating with its self-induced velocity to form 

an internal jet. 

Here, the new information obtained in this section is emphasized. Ever since the 

phenomenon of the jet-like mixing following droplet coalescence was reported by 

Anilkumar et al.[44], researchers have been curious about its formation mechanism. 

Nobari and Tryggvason[144] calculated the evolutions of the surface and kinetic 

energies, and attributed the formation of the internal jet to a rapid release of surface 

energy during the injection of the small drop. This explanation is further substantiated 

by Liu et al.’s recent work[22]. We noted that, while this “surface energy” theory 

covers the fundamentals of the jet formation, it does not give the whole picture to the 

phenomenon as sufficient details about the process are still lacking. Specifically, from 

the vortex dynamics perspective, two conditions are necessary for a vortex ring to 

evolve into a jet: the accumulation of vorticity and the separation from the vorticity 
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source. Through the current analysis, we managed to trace the origination of the main 

vortex ring back to the initial coalescence stage. Furthermore, we found that the 

vortex ring grows substantially due to a combined effect of dramatical interface 

deformation and large interface curvature during the entry of the small droplet, which 

coincides with the period of rapid surface energy discharge found by Nobari and 

Tryggvason[144]. Finally, after the entry of the small droplet a reverse motion of the 

interface induces a negative shear layer, which facilitates the detachment of the main 

vortex ring from the liquid-gas and consequently initiates the formation of the internal 

jet.          

7.5 Vortex-ring-criterion for internal jet formation 

Previous sections have demonstrated that the emergence of the internal jet after 

droplet coalescence is closely related to the generation and detachment of the main 

vortex. In this section, we shall seek quantitative criterion of the internal jet based on 

the main vortex ring.  

We start by comparing the evolution of the main vortex between cases with the 

internal jet (water droplets with 𝛥 = 1.8, 2.2 and n-decane droplets with 𝛥 = 2.2) 

and those without the internal jet (n-decane droplets with 𝛥 = 1.8 and n-tetradecane 

droplets with 𝛥 = 1.8, 2.2), as shown in Figure 7.12. The droplet configurations and 

vorticity contours at the instant when the vortex ring completely detaches from the 
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droplet surface are also presented in the figure, with their corresponding total 

vorticities being marked on the circulation evolution curves, respectively. It is seen 

that, at the instant of vortex detachment, the cases without jet formation have 

significantly lower total vorticity compared with the cases with jet formation. 

Moreover, the lower circulation for the cases without jet formation should be 

attributed to either shorter period or smaller rate of vorticity generation during Stage 

III. It is noted that the less total vorticity generated during Stage III is related to the 

diminished bulge structure created at the end of Stage II, which does not possess 

enough surface energy to be converted during Stage III.  

 

 

Figure 7.12 Evolution of the non-dimensional circulation around the main vortex for 
different cases of droplet coalescence. The subfigures (a)-(f) present the tracer 
variable plot (left) and vorticity contour (right) for the instants when the main vortex 
completely detaches from the surface of the droplet. The circulations corresponding to 
these instants are also marked on the evolution curves. 
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The above analysis qualitatively indicates that the internal jet appears only if the 

vortex ring is strong enough by the end of the vortex detachment. Physically, an ideal 

free vortex ring would readily translate downstream and form a jet under its 

self-induced flow, unless the viscosity significantly dissipates the vortex ring. 

Consequently, the formation of the internal jet after the vortex detachment is 

determined by the competition between the advective momentum associated with the 

vortex ring and the momentum lost due to viscous diffusion. To characterize this 

competition, a Reynolds number can be defined by 

  𝑅𝑒𝐽 =
𝑈𝑉𝑟𝑉

𝜈
                                                          (7.7) 

where 𝑈𝑉 and 𝑟𝑉 are the characteristic translational velocity and the radius of the 

free vortex ring, respectively. Based on the dynamics of a vortex ring[136], 𝑈𝑉 can 

be expressed as 

 𝑈𝑉 =
𝛤𝑉

4𝜋𝑟𝑉
                                                           (7.8) 

Combining Equations (7.7) and (7.8) gives 

  𝑅𝑒𝐽 =
𝛤𝑉𝐷

4𝜋𝜈
=

𝛤𝑉𝐷
∗

4𝜋𝑂ℎ
                                                   (7.9) 

where 𝛤𝑉𝐷 (and its non-dimensional form 𝛤𝑉𝐷
∗ ) represents the circulation of the main 

vortex ring when it completely detaches from the droplet surface.  
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Figure 7.13 Validation of the vortex criterion for the jet formation for different cases 
of droplet coalescence. The slopes of the two dashed lines correspond to 𝑅𝑒𝐽 = 2.4 
and 𝑅𝑒𝐽 = 3.5, marking the transition from the no-jet regime to the mushroom-like 
jet regime. Here, all data points correspond to the cases of different 𝛥 and 𝑂ℎ 
plotted in Figure 7.6. 
 

With 𝛤𝑉𝐷
∗  calculated in a similar approach to Figure 7.12 (circulations associated 

with the circlets), Equation (7.9) can be validated for different cases of droplet 

coalescence, as shown in the 𝑂ℎ − 𝛤𝑉𝐷
∗  regime nomogram in Figure 7.13. The 

mushroom-like jet formation occurs with about  𝑅𝑒𝐽 > 3.5, no jet formation with 

𝑅𝑒𝐽 < 2.4, and in-between is a transition regime. The transition from the “no-jet” 

regime to the “mushroom-like jet” regime with increasing 𝑅𝑒𝐽 is manifested by the 

five typical cases from 1 to 5, as shown in the subfigures of Figure 7.13. Thus, the jet 

number 𝑅𝑒𝐽 serves as a phenomenological criterion for jet formation subsequent to 

the coalescence of two initially stationary droplets. It is noted that the data points 

presented in Figure 7.13 were calculated from their corresponding simulation cases in 
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Figure 7.6. While Figure 7.6 introduces the phenomenological observation of the 

dependence of the internal jet on the initial conditions (𝛥 and 𝑂ℎ), Figure 7.13 

provides the fundamental mechanism explaining how the internal jet forms. Last, we 

emphasize that this jet-formation criterion does not depend on any presumption or 

initial condition of the merging droplets, indicating a prospect of extending this 

criterion to determining internal jet formation in more general situations, such as 

droplet collision and other microfluidic interactions. 

7.6 Correlation between vortex-induced jet and internal mixing  

As discussed in the Background, the present work was motivated to understand 

the influence of the jet-like structure on internal mixing. It is noted that the word 

“mixing” is used to describe the mass interminglement between two droplets. In 

general, the mass interminglement is twofold, namely, convective and diffusive. In 

the current study, the mass diffusion is neglected for two reasons. One is that the two 

droplets contain the same type of fluid, thus the concept of “mass diffusion” does not 

apply as there is no species concentration gradient. Second, even if two miscible 

fluids are considered, the Peclet number, which can be defined by 𝑃𝑒 =

√𝜎 𝐷𝑆 𝜌𝑙⁄ 𝐷𝑚⁄ , where 𝐷𝑚 is the mass diffusivity, is estimated to be greater than 

𝑂(102) for the current problem, meaning that the effect of convection significantly 



189 

overweighs the mass diffusion. Therefore, mixing in this study primarily reflect the 

effect of mass convection.     

The comparative study in Section 7.3 has qualitatively demonstrated that mixing 

between the two droplets is intimately related to the mushroom-like jet. Specifically, 

the occurrence of the jet seems to cause large stretching and roll-up of the interfaces 

of two droplets, thereby increasing the contacting surface and contributing to 

enhanced mixing performance. To further quantify this observation on the internal 

mixing within the merged droplet, a mixing index 𝑀 independent of 𝑂ℎ and 𝛥 can 

be defined as follows[15, 143],  

𝑀 = 1 −
∫ |𝐶 − 𝐶∞|𝐻(𝑓 − 1)𝑑𝑉

 

𝑉

∫ |𝐶0 − 𝐶∞|𝐻(𝑓 − 1)𝑑𝑉
 

𝑉

                                   (7.10) 

where the VOF function 𝑓 = 0 in the gas and 𝑓 = 1 in the droplets; the Heaviside 

step function 𝐻(𝑓 − 1) limits the integration domain to be within the droplets. 𝐶, 

𝐶0, and 𝐶∞ are the distribution functions of the time-dependent "concentration" of the 

small droplet liquid in the merged mass, in the unmixed droplets, and in the fully 

mixed mass, respectively, and are defined by 

𝐶 = |2𝜑 − 1|𝐶0,    𝐶0 = {
0, 𝜑 = 0
1, 𝜑 > 0

},    𝐶∞ =
1

1 + ∆3
                  (7.11) 

where 𝜑 is the spatially and temporally varying dye function, which is defined as 1 

in the small droplet and 0 in the large droplet. Therefore, 𝑀 varies between 0 and 1 

with larger value indicating better mixing. 
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Figure 7.14 Time evolution of the mixing index for n-decane (𝑂ℎ = 1.56 × 10−2), 
water ( 𝑂ℎ = 8.29 × 10−3 ), and n-tetradecane ( 𝑂ℎ = 3.62 × 10−2 ) droplets of 
various size ratios. 𝑅𝑒𝐽 for each case is presented in the parentheses to relate the 
performance of mixing to the formation of internal jet. 
 

The time evolution of the calculated 𝑀 for n-decane, water and n-tetradecane 

and for various 𝛥 are shown in Figure 7.14. The slope of the curves quantifies the 

rate of mixing at different times. Several observations can be made about the mixing 

processes. 

First, for all the cases, the mixing rate seems to be independent of 𝑂ℎ or 𝛥 at 

Stages I-III (up to around 𝑇 = 0.8), when the small droplet has not completely 

merged into the larger one. This is because mixing in the early stages are mostly 

caused by the geometrical changes of the two-droplet configuration. These changes 

are associated with the coalescence of interfaces around the initial contacting point 

(Stage I), the expansion of the contacting surface (Stage II), and the collapse of the 

liquid bulge (Stage III), which to a considerable extent are similar processes among 

cases with different 𝑂ℎ or 𝛥.  



191 

Second, the increase of 𝑀 during Stage IV substantially varies with 𝑂ℎ and 𝛥, 

suggesting the important role of the jet-like structure that does not present until this 

stage. The values of 𝑅𝑒𝐽 for different cases are presented in the parentheses to 

indicate the correlation between jet formation and internal mixing. It is seen that, for 

small 𝑅𝑒𝐽  cases where no internal jet is formed, the average mixing rate is 

approximately zero in Stage IV and is almost independent of 𝑅𝑒𝐽. Together with the 

above-discussed mixing independency during Stages I-III, it seems that mixing is 

intrinsically self-similar throughout the merging process if no internal jet presents. 

This, in turn, provides a direct evidence that the vortex-induced jet has a significant 

impact on the internal mixing of the merged droplet.    

Third, for those cases where mushroom-like jet forms, 𝑅𝑒𝐽 measures the relative 

strength of the vortex ring associated with the internal jet. Therefore, larger 𝑅𝑒𝐽 

corresponds to a stronger jet, and in turn indicates larger convective momentum or 

lower viscous dissipation or both; enhanced mixing rate is consequently expected. 

This can be readily verified by the n-decane cases shown in Figure 7.14(a), where the 

average mixing rate seems to monotonically increase with 𝑅𝑒𝐽 . Furthermore, 

comparing the n-decane cases with the water cases shown in Figure 7.14(b), we can 

also confirm that the water cases in general has larger mixing rates than the n-decane 

cases, as the water cases have larger 𝑅𝑒𝐽.  
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Fourth, it is noted that the monotonic dependence of the mixing rate on 𝑅𝑒𝐽 

seems to not hold exactly for the water cases. Specifically, the 𝛥 = 2.2 case has 

much larger mixing rate than the 𝛥 = 2.6 case, although 𝑅𝑒𝐽 for the two cases are 

nearly the same. This can be attributed to the tendency of droplet pinch-off for the 

water case with 𝛥 = 2.6, where the surface energy responsible for the interface 

oscillations at the later stage of internal mixing is significantly reduced. Moreover, for 

the cases with droplet pinch-off, the long-term mixing performance is also affected by 

the surface oscillations after the jet has penetrated through the merged droplet and hit 

the gas–liquid interface on the opposite side.  

Finally, for the cases with internal jet but without droplet pinch-off, the average 

mixing rate also monotonically increases with 𝛥 or decreases with 𝑂ℎ, which is 

consistent with our observation from Figure 7.5 that the jet-like mixing becomes more 

prominent with increasing 𝛥 or decreasing 𝑂ℎ. It should be mentioned that the 

penetration depth of the fluid from the small drop was analyzed by Nobari and 

Tryggvason[144] to provide an indicator for the mixing effect, which is reasonable 

considering that the penetration depth is closely related to the strength of the internal 

jet. Thus, their results also show a similar monotonicity of the penetration depth with 

𝛥 for small 𝑂ℎ cases where internal jet exists. However, they did not quantify the 

mixing preformation for the internal jets, which have penetrated through the large 
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drop and hit the surface of the other side. In this sense, the mixing index 𝑀 of the 

current study is an improved approach in quantifying the mixing performance of 

droplet coalescence.    

7.7 Concluding remarks 

The coalescence of two initially stationary droplets of unequal sizes was 

investigated numerically, with emphasis on two key problems: the formation of the 

internal jet and its effect on mixing between the two droplets. 

Phenomenologically, the jet-like mixing was perceived based on three 

representative fluids, water, n-decane, and n-tetradecane. It was found that both 

decreasing the fluid viscosity and increasing the size ratio would facilitate the 

emergence of the jet-like mixing. This observation was further justified by a regime 

nomogram describing the occurrence of the jet-like mixing with varying 𝛥 and 𝑂ℎ. 

The fundamental mechanism responsible for forming the internal jet was 

understood by first identifying the correlation between the jet-like structure and the 

main vortex ring inside the merged droplet. Based on the evolution of the main vortex 

ring, we identified three stages crucial to the jet formation, namely, vortex-ring 

formation, vortex-ring growth, and vortex-ring detachment. The initial vortex 

generation upon droplet coalescence, albeit being small in magnitude, is mainly 

caused by the normal velocity gradient in the tangential direction of the outwardly 
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merging surface around the coalescence point. The rapid collapse of the small bulge 

into the large droplet, which results in dramatic interface deformation and local 

large-curvature interface, causes massive vorticity generation and therefore 

vortex-ring growth. The outward retraction of the dented surface promotes the 

generation of negative vorticity that detaches the main vortex ring from the surface to 

form a self-induced jet. 

Furthermore, an analysis concerning the circulation of the main vortex ring was 

performed by comparing cases with and without the internal jet. The result points to a 

positive correlation between the occurrence of the internal jet and the circulation of 

the main vortex ring after its complete detachment. Recognizing that the formation of 

the internal jet is the outcome of a competition between the convective momentum 

carried with the vortex ring and the viscous dissipation, we defined a special Reynolds 

number, 𝑅𝑒𝐽, as the criterion for jet formation. It was verified through various droplet 

coalescence cases that 𝑅𝑒𝐽 > 3.5 approximately gives the mushroom-like jet and 

𝑅𝑒𝐽 < 2.4 predicts no jet formation, with in-between marking the transition regime. 

A mixing index was defined to quantify the effect of the internal jet on mixing. 

For the cases without internal jet formation, the average mixing rate has a minor 

dependence on 𝛥 or 𝑂ℎ, reflecting an intrinsic self-similarity associated with the 

configuration evolution of the two-droplet system during their coalescence. For the 
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cases with internal jet formation, the average mixing rates are however significantly 

enhanced and the mixing index tends to monotonically increase with increasing 𝛥 or 

decreasing 𝑂ℎ. 

Because 𝑅𝑒𝐽 physically characterizes the relative strength of the detached vortex 

ring, which controls the strength of the forming jet, we compared 𝑅𝑒𝐽 among cases 

of different 𝛥 or 𝑂ℎ to seek a direct correlation between the vortex-induced jet and 

internal mixing. It was confirmed that the average mixing rate of the vortex-ring 

detachment stage grows monotonically with 𝑅𝑒𝐽  for large 𝑅𝑒𝐽  cases with jet 

formation. It should be noted that the above observations and conclusions only hold 

for the cases without droplet pinch-off or the tendency of pinch-off, because pinch-off 

will dramatically reduce the surface energy driving the interface oscillation, which 

affects the mixing in the jet-formation stage. 

 

  



196 

8. Summary 

In the present thesis, four problem-oriented numerical studies have been 

conducted based on a VOF method, mainly focusing on the kinetic energy dissipation 

factor after off-center droplet bouncing for the practical binary droplet collision 

modelling, the improvement of modelling by considering droplet spinning before 

collisions, the mass interminglement between two droplets of unequal sizes 

undergoing off-center collisions and its correlation with the ignition delay time for 

hypergolic propellants, and vortex-dynamical interpretation of the jet-like “mixing” 

upon the coalescence between two initially stationary droplets. Specifically, the main 

conclusions can be summarized as follows: 

First, two droplets bouncing undergoing off-center collisions were simulated by 

using a modified VOF approach with two marker functions which avoids the 

unphysical numerical coalescence under relatively coarse mesh and increases the 

computational efficiency substantially. A non-monotonic kinetic energy recovery with 

varying impact parameter was observed, which is attributed to the enhanced viscous 

dissipation of moderately off-center collisions. A correlation formula has been 

proposed that could be useful for the droplet collision modeling in the Lagrangian 

simulation of sprays, particularly under the elevated gas pressure in the real 

combustion engines.  
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Second, by considering the spinning effects of droplets before collisions, the 

results show that the total kinetic energy recovery for the head-on collision between 

spinning droplets decrease monotonically with increasing 𝜃 from 0 to 90 degree. The 

helicity analysis was used to identify the “orthogonality” of the translational and 

spinning movement of droplets, which is the key assumption of the modeling 

simplification of binary droplet collision into the collision between two mass points 

by ignoring the droplet spinning effects.  

Third, a correlation between the mass interminglement and hypergolic ignition 

delay time has been established and quantitatively verified by examining the defined 

“mixing index”. Although the present simulation captured the important physics of 

droplet mass interminglement that is crucial to the subsequent droplet behaviors, the 

simulation cannot capture the entire hypergolic ignition process due to the lack in 

heating and reactions. These absent physical effects should be accounted for in our 

future studies, including the transport phenomena and chemical reactions in the 

present VOF simulation. 

Forth, a vortex-dynamical interpretation on the fundamental mechanism 

responsible for forming the internal jet was presented by the evolution of the main 

vortex ring under three stages of vortex-ring formation, vortex-ring growth, and 

vortex-ring detachment. The result points to a positive correlation between the 
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occurrence of the internal jet and the circulation of the main vortex ring after its 

complete detachment. A special Reynolds number, 𝑅𝑒𝐽, was defined as the criterion 

for jet formation.  

Regardless of the effects of size ratio, Weber number, Ohnesorge number, and 

impact parameter on the above four specific problems, it is noted that the binary 

droplet collision is a multi-physics, multi-scale, and non-linear problem that includes 

various other factors influencing the collision dynamics. The future research interests 

related to the present thesis can be extended to the pressure effects on the binary 

droplet bouncing, the collision between non-Newtonian droplets, the visualization of 

the internal mixing between two reactive droplets, and more practically the sprays 

dynamics involving large amount of binary droplet collision. The experimental 

technics are still challenging for the microscopic flow field visualization and analysis 

and merits further developments. Particularly, the highly efficient numerical methods 

are always desired on the prediction of droplet coalescence and bouncing from the 

first principle, which is of great significance to understand the fundamental physics of 

binary droplet collision. 
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