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ABSTRACT 

Pavements act as an essential component of civil infrastructure for supporting 

transportation, economic development, and improvement of life quality. With 

ever-increasing road mileages and emerging functional requirements, simple 

procedures and cumulative but unmethodical personnel experience that 

worked previously are no longer able to manage the continuous expansion of 

pavement networks. In addition, conventional approaches to maintaining 

huge pavement network in satisfactory condition inevitably result in 

considerable budget and environmental burdens. This exacerbates tensions 

between the multi-dimensional pillars of sustainability (environment, society, 

and economics) which decision-makers must balance. Consequently, it is a 

critical part for developing an effective and efficient pavement management 

system.  

 

The research in this dissertation proposes a methodological decision-support 

framework for sustainable pavement management and implements it in 

several emerging green pavement technologies (e.g. in-place recycling, 

rubberized asphalt, warm mix asphalt, and low-noise porous asphalt 

pavement). The entire framework comprises two general decision levels, 

namely project level and network level. Although the two decision levels 

differ in their system boundaries, they share the same ultimate principles 

oriented towards the selection of optimal alternatives among competitors.  

The sustainability targets identified through this study are destined to not 

merely achieve the best pavement utility, but also to minimize the influences 

on ecology that result from each decision made. To realize sustainable 

pavement management on two decision-making levels, several sustainable 

evaluation, integration, and optimization techniques have been developed and 

interconnected in the framework.  
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At the project level, after the life-cycle pavement-related sustainability 

indicators (e.g. environmental impact, cost and performance) have been 

identified and evaluated, the integration method to support final identification 

of alternatives was firstly realized by developing the single-dimensional 

integration (i.e., cost-benefit integration), and further improved by applying 

the concept of eco-efficiency as the multi-dimensional integration (i.e., eco-

efficiency integration). Uncertainty analysis was subsequently incorporated 

in the evaluation procedures to increase assessment reliability and avoid the 

likelihood of misunderstanding. The usability and capability of the above-

mentioned methods were verified by practical comparisons of competitive 

pavement rehabilitation techniques and asphalt materials.  

 

At the network level, decisions are required to consider both the degree of 

consumption and functional improvement as they relate to the adoptable 

projects, and the pavement function deterioration rates varying by time and 

space. As two critical components for network-level decision-making, the 

long-term performance prediction model and the multi-objective optimization 

model have been investigated and developed by two machine learning 

techniques (i.e., artificial neural network and support vector machine) and a 

multi-objective optimization algorithm (i.e., genetic algorithm). This research 

employed pavement acoustic performance as the functional performance to 

test the feasibility and applicability of the proposed modelling methods and 

provide complementary reference for decision-makers as well.  

 

The analysis outcomes at both the project and network levels could contribute 

to finding approaches to facilitate improvements in sustainable pavement 

management decision-making in three ways. First, multi-disciplinary 

cooperation in quantitative evaluation, sustainable integration, uncertainty 
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analysis, and multi-objective planning increases the approach capability and 

versatility in addressing complicated problems. Second, the innovative 

applications in the emerging pavement technologies could contribute as a 

quantitative and informative reference for agencies, pave a more sustainable 

and efficient way to improve current decision-making tools, and lay a rational 

basis for future resource allocation and policy planning. Finally, the 

successful implementation of the proposed decision-making framework in 

pavement infrastructure management in this study indicates its potentials for 

application to other types of civil infrastructure. 
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CHAPTER 1  INTRODUCTION 

1.1 Research Background 

Pavements act as an essential component of civil infrastructure, supporting 

over nine trillion ton-km of freight and fifteen trillion km of passenger 

transportation around the globe annually (IRF, 2010). It also plays a 

significant role in economic development and improving quality of life. 

Figure 1-1 (Meijer et al., 2018) illustrates the world distribution of road 

mileages that have reached more than 21 million km in total. This signifies 

that high-density road networks are always accompanied by densely 

populated and more affluent areas. With the ever-increasing road mileages 

and emerging functional requirements of the road infrastructure, conventional 

approaches to maintaining huge pavement networks in satisfactory condition 

inevitably result in considerable budget and environmental burdens (IRF, 

2010; Wang & Gangaram, 2014; Zhou et al., 2012).  

 

 

Figure 1-1 Global distribution of road mileages 
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China (142,500 km) and the United States (108,394 km) are the World’s Top 

two countries in the length of expressways (IRF, 2019b). In 2016, global 

transportation infrastructure investment and maintenance spending was over 

$940 billion, where China and the United States accounted for 63.8% and 

10.7% of this spending, respectively (IRF, 2019a). According to the data from 

the Asia Sustainable and Alternative Energy Program (2009), greenhouse gas 

(GHG) emissions from transport sector accounted for 12.5% to 13% of global 

total emissions, about 72% of which was attributed to road construction, 

maintenance, and usage activities. In China, 50 million tons of rocks were 

consumed for annual highway maintenance, which resulted in approximately 

1.1 million tons of carbon dioxide emissions annually (Zhou et al., 2012). In 

the United States, maintenance and rehabilitation (M&R) of existing 

pavement and construction of new pavement for the highway system are 

estimated to consume about 320 to 780 million metric tons of raw materials 

annually (Holtz & Eighmy, 2000).  

 

Sustainability has gained fast-growing attention and awareness since the 

twenty-first century. Brundtland Report (Brundtland, 1987) defined 

sustainability as that “meets the needs of the present without compromising 

the ability of future generations to meet their own needs”, which reveals the 

essential contradiction between the ecological disruption due to economic 

growth and the inevitable requirements for such growth to get rid of poverty. 

The core thinking of sustainability has been broadly accepted as a trade-off 

in three ‘pillars’: environment, economics and society (Adams, 2006). The 

International Union for Conservation of Nature programme 2005-2008 

(IUCN, 2004) illustrated the relationship among the three sustainability 

dimensions using interlocked circles (Figure 1-2). Although the imbalanced 

situations of the three dimensions have been identified since 2004, the trade-

off requirement in management among all three pillars is never out of date as 

the accelerated urbanization process. 
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Figure 1-2 The three pillars of sustainability and the need to correct in future 

 

Given the great challenges posed by the construction and maintenance of the 

ever-increasing number of pavement networks while also aiming for 

sustainable development, various sustainability enhancing solutions 

associated with pavement engineering have been developed (Ali et al., 2013; 

Kristjánsdóttir et al., 2007; Leng et al., 2017b; Lodico & Donavan, 2018; Yu 

et al., 2018b), such as in-place recycling rehabilitation techniques, reuse of 

recycled materials (e.g., reclaimed asphalt pavements and crumb rubber from 

end-of-life tyre), and development of low-construction-temperature, low-

noise, and high-permeability pavement designs (e.g., porous asphalt 

pavement and warm mix asphalt). Despite the aforementioned efforts, a 

decision support system that could both systematically quantify and 

effectively balance the conflicting sustainability goals remains needed by 

pavement administrative agencies. 

 

To be more specific, the major challenge involved in managing pavements in 

conformance with sustainability is the tension between the constant demands 

of maintaining pavement function to meet society’s transport needs and the 

unavoidable adverse effects on nature from such fundamental requirements. 

Consequently, a sustainable pavement management system needs to provide 

conscientious strategies in sustainability evaluation, integration and 

optimization for final decision-making. The evaluation would start from 
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determining the time horizon and space scope first, as the implementation of 

sustainable development is not only for nature, but also for pavement service.  

 

For the time horizon, pavement life cycle has been widely used by 

administrative agencies in the management process (Santero et al., 2011b). 

The associated life-cycle approaches include life cycle cost analysis (LCCA) 

and life cycle assessment (LCA), which evaluate the economic and 

environmental impacts, respectively, have been established as part of several 

professional guidance and international standards (FHWA, 2014; Harvey et 

al., 2016; ISO, 2006a, 2006b; Walls & Smith, 1998).  

 

For the space scope, selection of pavement scale would determine the 

management decision-making levels, which can be generally categorized into 

project and network levels (AASHTO, 1985). The project level handles the 

lower-level (bottom-up) decisions for specific pavement projects, such as 

pavement material selection, maintenance treatment comparison, and 

construction technique determination, while the network level considers the 

pavement network as a whole and deals with higher-level (top-down) 

decisions about network-wide planning, policy and budget.  

 

The ultimate decision made at project level heavily relies on the approach 

integrating multi-dimensional sustainability indicators. However, the network 

level complicates the decision-making process and requires more powerful 

techniques to realize multi-objective optimization. Either integration or 

optimization would conclusively affect the implementation and achievement 

of sustainable development principles in pavement management. Although 

the two decision levels differ in space boundary and complexity, their ultimate 

principles that are oriented towards optimal selection of sustainable 

alternative schemes among competitors remain the same.  
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1.2 Research Aim and Objectives 

Although sustainable development principles have been broadly recognized, 

the outcomes of the implementations vary by different decision-making levels 

and methods in terms of interrelation and multi-dimensionality. Due to the 

dynamic interaction among the three sustainable pillars, the problem cannot 

be addressed by just improving single dimension, which emphasizes the 

significance in applying integration technology to conduct trade-off.  

 

In addition, the capacities of decision-support techniques required for 

different decision-making levels have their own particular focuses. The 

purpose for a pavement project can be summarized as improvement of 

specific function or performance. The improvement level could often be 

affected by material types and construction behavior. Thus, the decisions 

related to pavement project mainly deal with the improvement. For a 

pavement network, when doing nothing, the network would deteriorate. The 

deterioration rate would depend on the traffic condition, climate condition, 

material types and construction behavior. Therefore, the improvement 

intervention by project is required in order to maintain an acceptable service 

function. Therefore, the network-level decisions need to concern both 

improvement and deterioration. Based on the above, compared to relatively 

simpler bottom-up integrations for project-level management, the higher 

complexity of network-level management requires more capable tools to 

conduct top-down planning.  

 

Therefore, the overall aim of this research is to establish more systematic 

sustainable decision-making frameworks for both project-level and network-

level pavement management, along with innovative case studies. This aim is 

achieved by following the objectives that serve both management levels. 
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For project-level decision-making: 

(1) To establish a single-dimensional integration framework with multi-

dimensional sustainability indicators and verify its usability and 

capability through case study.  

 

(2) To establish a multi-dimensional integration framework with multi-

dimensional sustainability indicators and verify its usability and 

capability by case study. 

 

(3) To incorporate uncertainty analysis into the evaluation procedure and 

verify its usability and capability by case study. 

 

For network-level decision-making: 

(4) To establish an empirical pavement functional performance longevity 

model and verify its usability and capability with real data.  

 

(5) To establish a sustainable multi-objective optimization framework and 

verify its usability and capability by case study. 

 

1.3 Research Significance 

The outcomes of this research are expected to contribute to the improvement 

of sustainable pavement management in terms of both theorey and practical 

application. First, the established methodology framework that can 

effectively evaluate sustainability and optimally support decision-making at 

both project and network levels would help pavement management decision-

makers to find ways to facilitate sustainability improvements. Second, 

incorporation of multi-disciplinary knowledge in the framework, such as 

pavement engineering, environmental science, statistics, and computer 

science, would considerably enhance the capability and efficiency of the 
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decision-making procedures. Third, the novel applications in this research 

would not merely verify the feasibility of the proposed framework, but also 

serve as quantitative references for pavement administrators for 

corresponding decision-making. Finally, the findings of this research have 

several policy implications for pavement management.  

 

1.4 Thesis Outline 

The thesis is comprised of eight chapters. The organization of the thesis is 

illustrated in Figure 1-3. The methods applied for project-level and network-

level decision-making are not competing relationship and could work 

together to solve the practical pavement management problems. 

 

 

Figure 1-3 Organization of chapters in this thesis 

 

Chapter 1: Introduction. This chapter introduces the general background 

with problem statements, research objectives, expected contributions, and 

thesis outline. 
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Chapter 2: Literature Review. Both the methodology and application parts 

in this dissertation involve a range of research fields. This chapter starts with 

an introduction to the pavement life cycle, which assists in identifying 

potential critical issues that could influence the sustainability of pavement. 

Then sustainability measurements are explored and discussed according to 

pavement performance, cost, and environmental perspectives. Finally, 

project-level and network-level management with attention to associated 

decision-support tools and criteria are presented.  

 

Chapter 3: Cost-Benefit Integration. This chapter employs the cost-benefit 

approach to develop a single-dimensional integration framework that 

evaluates sustainability during a pavement life cycle considering 

environmental, economic, and social impacts, followed by a monetized 

integration of these multi-dimensional indicators. Meanwhile, the usability of 

the proposed methodology framework is embodied in the comparison of two 

flexible pavement designs, namely 10mm Asphalt Rubber Stone Matrix 

Asphalt (ARSMA10) and 10mm Polymer Modified Stone Matrix Asphalt 

(PMSMA10). 

 

Chapter 4: Eco-Efficiency Integration. As a solution to address the 

monetary transformation limitations of the Cost-Benefit Integration in 

Chapter 3, this chapter presents an eco-efficiency integration framework that 

synthesizes the different sustainability indicators in multi-dimensional ways. 

With this framework, two pavement rehabilitation techniques, namely 

milling-and-filling (M&F) and hot in-place recycling (HIPR), are 

systematically evaluated and compared in terms of environmental impacts, 

economic performance, and life extension capacity by identifying the trade-

off eco-efficiency position.  
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Chapter 5: Uncertainty Consideration. To improve the result reliability and 

generalization, this chapter introduces uncertainty analysis into the evaluation 

procedure by considering the propagation of various uncertainties 

(probability distribution), which substantially improves the reliability and 

objectivity of the methodology by providing more information for decision-

makers. Based on this, the energy-saving role of three different warm mix 

additives (zeolite, organic wax, and surfactant) in the asphalt rubber (AR) 

pavement is further explored. 

 

Chapter 6: Modeling Performance Longevity. When taking the decision to 

the higher network level, the primary concern is the degradation of the 

specific function as pavement ages. This chapter takes emerging pavement 

acoustic performance as the major consideration, and to model the long-term 

performance by utilizing two well-established machine learning algorithms, 

namely artificial neural network (ANN) and support vector machine (SVM). 

The models are intended to serve as the essential component to support the 

final decision-making by combining with intervention information and multi-

objective optimization module. In addition, the longevity of pavement 

acoustic performance is originally modelled and explored as one of the 

pavement functional performance by using local tyre-pavement noise data.  

 

Chapter 7: Multi-Objective Optimization. Based on the performance 

longevity model developed in Chapter 7, This chapter proceeds with 

establishing a multi-objective optimization (MOO) model for maintaining a 

low-noise pavement network. In accordance with multi-dimensional 

sustainability goals, the trade-off is made between maximizing the low-noise 

function demand and the minimizing the investments and environmental 

impacts due to such demand. The solutions are specifically searched by 

applying a heuristic optimization algorithm, namely the non-dominated 

sorting genetic algorithm II (NSGA-II). The selection of optimal strategies 

javascript:;
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associated with conflicting objectives would be based on the posteriori 

articulation of preferences of local decision-makers that varies by different 

societal situations, budget restrictions and policy requirements. 

 

Chapter 8: Conclusions and Recommendations. This chapter summarizes 

the major research findings, contributions, and limitations, as well as provides 

recommendations for future work.  
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CHAPTER 2  LITERATURE REVIEW 

2.1  Overview  

In this chapter, the findings from the empirical literature are reviewed, which 

serves to increase the understanding of the current research status, identify 

the research gaps that need to fill in, and lay the foundations for the 

subsequent studies. The summary starts from the introduction of the 

pavement life cycle, which provides the basic knowledge to identify the 

potential sustainability issues related to pavement. Then, the sustainability 

measurements associated with pavement in three aspects are explored and 

discussed. Finally, in relation to different decision-support tools and criteria, 

the review of decision-making in both project- and network-level 

management is subsequently presented. Based on the thorough understanding 

of the existing literature, this study can be further proposed and developed. 

 

2.2  Pavement Life Cycle 

Pavement life cycle is a “cradle to grave” process that has been increasingly 

researched and applied by either administrative agencies or academic scholars 

for more effective and efficient pavement management (Chong, 2015; Labi 

& Sinha, 2005). For a well-designed pavement, its life cycle is generally 

divided into material production, construction (e.g., new construction, 

preservation, maintenance, and rehabilitation), use, and end-of-life stages 

(Harvey et al., 2016; Wang et al., 2012a). Figure 2-1 (Wang et al., 2012a) 

elaborates the typical components and activities of each stage. Material 

production stage refers to all the procedures to acquire and process the 

required materials for pavement, such as the stone mining, crude oil 

extraction, asphalt refinery, and material mixing. Construction stage 
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includes all the activities and equipment employed to provide and sustain the 

pavement. Use stage refers to the pavement in-service period that is often 

involved with the interaction between vehicles and environment. End-of-life 

stage includes all the processes to deal with the pavement that has reached its 

service life, such as landfill, reused, and recycled activities. 

 

 

Figure 2-1 Pavement life cycle stages 

 

Wide participation of multitudinous processes in pavement life cycle stages 

signifies the individual potential to affect the whole. To be more specific, from 

the additive of asphalt mixture to the selection of maintenance and 

rehabilitation (M&R) treatments, the decisions related to any process may 

influence the entire pavement life cycle. For instance, addition of cumber 

rubber modifier (CRM) to asphalt could improve the rutting and cracking 

resistance of pavement (Lee et al., 2008; Oliveira et al., 2013), which 

therefore extends the pavement service life and quality. Besides, studies have 

also shown that timely and appropriate M&R interventions could not only 

shortly improve the pavement condition but also influence the future 

deterioration rate (Dong & Huang, 2012; Labi & Sinha, 2003; Labi & Sinha, 
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2005). 

 

2.3  Sustainability Measurement for Pavement 

Sustainability measurement is the initial step for any sustainable decision-

making associated with pavement management. As the concept of 

sustainability requires multi-dimensional (social, economic, and 

environmental) achievements, the three major measurements for pavement 

corresponding to each dimension are described in the following sections. 

 

2.3.1 Performance Assessment 

The social role of a pavement is to provide smooth, safe, comfortable, and 

efficient drive of vehicles. Therefore, number of pavement characteristics are 

favorable, such as skid resistance, rolling resistance, rutting resistance, low-

noise generation, durability, and drainage etc. (Sandberg, 2008). The 

realization of specific functions could be tackled with engineering 

specifications and standards. Pavement performance assessment is to evaluate 

the performance of the intended pavement functions, which is also connected 

with specific attributions, such as material property, construction behavior 

and distress measurement (Harvey et al., 2016). 

 

The performances linked to the abovementioned three attributions have been 

considered and evaluated in a wide range of studies. To be more precise, for 

the attribution of material property, the researches endeavored in developing 

the combination complexity and diversity of the pavement material, such as 

the styrene butadiene styrene (SBS) polymer modifier (Airey, 2004), crumb 

rubber modifier (Lee et al., 2008), warm mix agent (Kristjánsdóttir et al., 

2007), rejuvenator of reclaimed asphalt pavement (RAP) (Zaumanis et al., 

2014), and porous asphalt pavement (Sandberg, 2008), were all intended to 
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strengthen the inherent properties and create new characteristics that directly 

linked to the improvement of either pavement service quality or durability. In 

addition, construction behavior is the second attribution connected with 

pavement performance. It mainly includes construction techniques and 

timings, which result in various effectiveness in performance change. The 

quantification of changing effectiveness should not merely consider the short 

change of the pavement performance after completion (Labi & Sinha, 2003), 

but also involve the effect in future deterioration rate and service life (Dong 

& Huang, 2012; Labi & Sinha, 2005). Thirdly, distress measurement is the 

most direct link with pavement performance, including cracking, rutting, and 

mega-texture roughness (AASHTO, 2008). Different pavement distress 

forms reflect the performance in varying aspects. Among multifarious 

pavement distress indicators, the international roughness index (IRI) is 

prevalent applied as the performance indicator in pavement management 

decision-making (Dong & Huang, 2012; Labi & Sinha, 2005; Yu et al., 2015), 

while the pavement condition index (PCI) (AASHTO, 1993) with more 

comprehensive distress description and higher computation requirement has 

drawn much attentions as well (Elhadidy et al., 2015). 

 

Long-term retention of the measured performance data could serve for trend 

analysis and help administrative agencies to preview the patterns that can be 

applied to prevent problems in the future. There are various tools to obtain 

long-term performance patterns, such as regression techniques (Kim & Kim, 

2006; Pan et al., 2011), Markov process (Butt et al., 1987; Elhadidy et al., 

2015), calibration of existing deterioration model (Hall et al., 2011; Li et al., 

2009a), and Pavement Mechanistic-Empirical Design (ME-PDG) software 

(AASHTO, 2008; Noshadravan et al., 2013). The former three techniques 

require adequate long-term performance data to support the computation, 

while the later one only needs pavement design, material property, traffic 

loading, and climate information.  
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2.3.2 Life Cycle Cost Analysis 

In addition to ensuring the qualified pavement performance, the long-term 

cost performance is another major consideration for agencies in planning and 

budgeting investment. Therefore, the guidance of life cycle cost analysis 

(LCCA) for pavement was established by the Federal Highway 

Administration (FHWA) to systematically estimate the impacts in the 

economic dimension (Walls & Smith, 1998). As the name implies, LCCA 

contains all the cost items occurred during the lifetime of the pavement 

system, which is classified into agency costs and user costs. Agency costs 

typically include initial construction costs, construction administration and 

supervision, and associated future M&R costs. For ex-post evaluation, the 

agency cost can be obtained through the executed contracts. For ex-ante 

evaluation, the entire accounting of the current price for each item by 

specialized tools or experts is required, such as the RealCost software 

developed by FHWA (2011). User costs focus more on the user delay costs 

(UDC) and vehicle operating costs (VOC), which are severely affected by the 

current and future characteristics traffic operations, such as traffic demand, 

volume and composition. As illustration in equation 2-1, the net present value 

(NPV) that discounts all future costs with real discount rates is applied as the 

indicator to show the conclusive economic efficiency. 

 

NPV = ICC + UCC +  ∑ (𝑀𝐶 𝑡 + 𝑈𝑀𝐶 𝑡) [
1

(1+𝑟)𝑛𝑡
]𝑁

𝑡=1                (2-1) 

 

where, ICC = initial construction costs; 

UCC = user costs due to initial construction; 

MC = future maintenance (incl. presentation, rehabilitation & 

reconstruction) costs; 

UMC  = user costs due to future maintenance (incl. presentation, 

rehabilitation & reconstruction); 
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𝑁 = analysis periods; 

𝑟 = discount rate; 

𝑛𝑡 = year of expenditure. 

 

The original intention of LCCA is to evaluate the entire economic efficiency 

and identify the most valuable investment option among the competitive 

alternatives. A number of good practices have been made beyond that. Wilde 

et al. (1999) integrated various LCCA models, programmes, and spreadsheets 

to establish a more comprehensive assessment framework for Portland 

cement concrete pavements with incorporating the pavement performance 

models. Abaza (2002) applied the concept of “life-cycle disutility” to connect 

the life cycle cost and performance to figure out the optimum plan with 

minimum disutility value. Lamptey et al. (2005) enhanced the conventional 

LCCA methodology in treatment types, strategies, costs and effectiveness to 

determine the optimal mix of pavement design and preservation strategy for 

the Indiana Department of Transportation (INDOT). Labi & Sinha (2005) 

further investigated the effects of preventive treatment timing and types on 

the cost-effectiveness through the life cycle evaluation. Santos & Ferreira 

(2013) applied the LCCA-based optimization model to evaluate the pavement 

structure designs in serviceability and found that the pavement structures 

recommended by the Portuguese manual were not always the optimum 

solutions.  

 

Although previous LCCA-based procedures could systematically estimate the 

cost during pavement life cycle, the potential benefits brought by the more 

expensive investment options have not been fully considered (Harvey et al., 

2016), which signified the need to set up more systematic evaluation. 
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2.3.3 Life Cycle Assessment  

As increasing awareness of environment, the life cycle assessment (LCA) 

began to be applied in the pavement management decision-making. LCA is a 

method that provides systematic procedures to quantify the environmental 

impacts of a product, system, or process with evaluating all the input and 

output environmental burdens during the life cycle. The general processes for 

LCA have been well-defined in the International Organization for 

Standardization (ISO, 2006a, 2006b), which includes four major processes: 

goal & scope definition, life cycle inventory (LCI) analysis, life cycle impact 

assessment (LCIA), and interpretation (Figure 2-2).  

 

 

Figure 2-2 Life cycle assessment framework 

 

Among them, the LCI analysis is the most appreciated phase for providing 

the methodology in estimating the input resource consumption and output 

emissions during the life cycle (Rebitzer et al., 2004). Many pavement LCA 

studies only conduct LCI analysis without further transferring the inventory 

data to various potential impacts through indicators, as LCI could control the 

full LCA implementation  based on the ISO guidelines as an independent 

study (Santero et al., 2011b). In general, there are three approaches to conduct 

LCI in LCA: process-based method, economic input-output (EIO) method, 

and hybrid method, which are different in the data source, flow unit, level of 
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detail, and covered life cycle stage (Rebitzer et al., 2004). In pavement field, 

process-based approach is more favored (Santero et al., 2011b), as collecting 

the environment-related data in industry wide is more challenging than 

obtaining the process-unit data. 

 

The application of LCA in pavement has started since 1990s (Berthiaume & 

Bouchard, 1999; Häkkinen & Mäkelä, 1996; Horvath & Hendrickson, 1998). 

The theme of the early application revolved round the environmental impact 

comparison between rigid and flexible pavement (Athena, 2006; Nisbet et al., 

2001; Stripple, 2001; White et al., 2010; Zapata & Gambatese, 2005). Along 

with the emergency of the new pavement technologies, the applications in 

topic diversity have been extended, such as comparation of warm mix 

technologies (Rodríguez-Alloza et al., 2015; Tatari et al., 2012; Vidal et al., 

2013), evaluation of asphalt rubber with recycled end-of-life tyre (Bartolozzi 

et al., 2014; Farina et al., 2017), and investigation of the environmental 

benefit of in-place recycling techniques (Santos et al., 2014; Turk et al., 2016). 

By following the broad ISO standard, a pavement-specific LCA framework 

has been established by the FHWA (2014) with elaborating the precise 

materials and processes related to the environmental impacts of pavement life 

cycle, which further certifies the transformation of LCA from an 

environmental evaluation approach to a decision-making tool.  

 

Although the extensive applications have attested its value in identifying and 

improving the environmental impacts, the pavement LCA is still an evolving 

field. The environmental impacts from the usage of pavement have been 

neglected by most of the pavement LCA studies (Santero et al., 2011a), which 

could be prominent and go far beyond the impacts of other stages especially 

for the roads with high-volume traffic (Araújo et al., 2014; Wang et al., 2012b). 

In addition, the LCA results are sensitive to many uncertainties, such as 

system boundary, data appropriateness, region, transportation distance and 
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pavement performance model (Tatari et al., 2012; Wang et al., 2012b). 

Although incorporation of uncertainty analysis into LCA has been suggested 

by many literature (Huijbregts, 1998a, 1998b; Noshadravan et al., 2013; 

Weidema et al., 2013; Yu et al., 2018a), very limited studies could be found 

for pavements. 

 

2.4  Pavement Management Decision-Making 

After thorough review about sustainability assessments associated with 

pavement issues, the implementations of pavement management concepts 

would be systematically reviewed as follows. Since 1960s, pavement 

management has been developed and updated to an integrated technology in 

order to meet the increasing demands of pavement functions (Haas & Hudson, 

1978). Table 2-1 lists the evolution of pavement management concepts in 

chronological order. 

 

The highlighted differences of the various above-mentioned interpretations of 

pavement management reasonably formed the current understanding of 

pavement management system (PMS). Generally, most of the official 

definitions in pavement management agreed on the three major involved 

components: data inventory development, criterion establishment, analysis 

scheme (Haas et al., 1994), which concerns multi-disciplinary knowledge and 

has been parallelly investigated by a number of studies all over the world 

(Amin, 2015). For decision criteria, previous studies have been attaching the 

primary importance to economic performance. However, as a further 

improvement by this study, the multi-dimensional sustainability criteria 

would be considered. Besides, the required data and analysis scheme are 

varied by the management structure. The structure of pavement management 

is generally categorized into project level and network level (Horton, 1990; 
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Lamptey et al., 2005; Mbwana, 2001; Smith et al., 2001; Zhang, 2009), which 

is extensively reviewed and discussed in the two subsequent sections. 

 

Table 2-1 Evolution of pavement management concept 

Reference Definition Description 

Haas & 

Hudson 

(1978) 

Systematically integrates the activities including identification of 

data requirements; determination of current and future needs; 

development of rehabilitation and maintenance programs; and 

implementation. 

Hudson et 

al. (1979) 

A set of tools or methods that assist decision-makers in finding 

optimum strategies for providing and maintaining pavements in a 

serviceable condition over a given period of time. 

AASHTO 

(1985) 

The effective and efficient directing of various activities involved 

in providing and sustaining pavements in a condition acceptable to 

the travelling public at the least life cycle cost. 

AASHTO  

(1986) 

Encompasses all the activities involved in the planning, design, 

construction, maintenance, and rehabilitation of the pavement 

portion of a public works program. 

OECD 

(1987) 

A system of decision support tools for the entire range of activities 

involved in providing and maintaining pavements. 

APWA 

(1993) 

A systematic method for routinely collecting, storing, and retrieving 

the kind of decision-making information needed to make maximum 

use of limited maintenance (and construction) dollars. 

Ouertani et 

al. (2008) 

An approach that incorporates the economic assessment of trade-

offs between competing alternatives at both network and project 

levels. 

 

2.4.1 Project-Level Management  

The project-level management is a bottom-up approach that deals with the 

lower level decision in selecting the optimal design for new construction, 

reconstruction and rehabilitation of a specific pavement segment (Horton, 

1990), such as determination of pavement structure (Athena, 2006; Häkkinen 

& Mäkelä, 1996; Nisbet et al., 2001), comparison of mixture type (Farina et 

al., 2017; Rodríguez-Alloza et al., 2015; Vidal et al., 2013), and arrangement 
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of construction or rehabilitation activities (Huang et al., 2009; Yu & Lu, 2012; 

Zhang et al., 2010). Furthermore, the effects introduced by the corresponding 

selections would be propagated and accumulated along the pavement life 

cycle (Lamptey et al., 2005; Santero, 2009). Thus, various evaluation tools 

with life cycle consideration have been included in a large number of studies 

in order to provide more comprehensive project-level decisions.  

 

As reviewed previously, LCCA was the most frequently employed technique 

for pavement project options. Markow (1990) initially applied LCCA to 

testify the economic benefit of routine prevention of pavement with indicating 

its importance in improving the maintenance inspection, materials, equipment, 

and quality control. The up-to-date studies showed the improvement in LCCA 

methodology as well as its gradual popularization. Rister and Graves (2002) 

reviewed three computer programs in relation to quantifying road user cost of 

LCCA and compared the tools with field measured data to further elaborate 

the computation process of various parameters. Jung et al. (2002) utilized 

LCCA to compare the economic impacts of asphalt rubber (AR) pavement 

and conventional hot mix asphalt (HMA) pavement and claimed that AR 

pavement performed more cost-effectively. Gransberg and Molenaar (2004) 

developed a best-value award procurement algorithm based on LCCA method 

for highway pavement projects. Ferreira and Santos (2012) proposed a life 

cycle cost analysis system named OPTIPAV to serve for the Portuguese 

flexible pavement structure design and found that the capacity of optimum 

pavement structure always remains unchanged or declined with the increase 

of applied discount rate. Babashamsi et al. (2016) extensively reviewed the 

international applications of LCCA to further confirm its essential role in 

practice.  

 

Since the dramatic increase in environmental consumption and emissions due 

to the pavement-related activities has been widely recognized, LCA method 
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started to be applied by many recent studies to provide more sustainable 

decision direction. The initial purpose of LCA is to quantify and evaluate 

environmental performance and consequently identify the improving 

opportunities. Loijos et al. (2013) comprehensively quantified the life cycle 

GHG emissions for the concrete pavement in the United States and signified 

its large contributions in the total national GHG emission. In addition, the 

most frequent utilization of LCA is intended to make comparisons, which is 

often related to the adoption of typical green techniques, such as recycled 

material, warm mix asphalt (WMA), and in-place recycling. Huang et al. 

(2009) applied LCA on the real case in London Heathrow Airport to quantify 

and compare the CO2 emissions of the pavement materials where nature 

aggregates were replaced with waste glass, incinerator bottom ash and 

reclaimed asphalt pavement (RAP). Giustozzi et al. (2012) studied the life 

cycle carbon footprint of the airfield pavement reconstruction by comparing 

the rehabilitation alternatives between using only virgin materials and using 

85% of recycled materials. Hassan (2010) found that the use of WMA could 

provide 15% reduction on the environmental impacts of HMA though 

comparative estimation by LCA. Rodríguez-Alloza et al. (2015) applied 

hybrid input-output LCA to investigate relative environmental benefits of 

WMA with Fischer-Tropsch wax and found WMA could save 18% energy 

and reduce 20% GHG emissions. Santos et al. (2014) compared the life cycle 

environmental performance of full depth patch, mill and replace and cold in-

place recycling (CIPR) maintenance methods and showed the environmental 

advantage of CIPR. In generally, all the above-mentioned comparative 

studies indicated the superior environmental performance by applying the 

green techniques. However, some studies concluded that there was significant 

variability in evaluating environmental performance when considering the 

different impact categories (Tatari et al., 2012; Vidal et al., 2013). 

Furthermore, in order to enhance the result generalization, several studies 

incorporated the sensitivity analysis into the LCA framework. Thenoux et al. 
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(2007) considered the energy consumption of three different pavement 

rehabilitation alternatives under different ESALs and material haulage 

distances. Turk et al. (2016) compared the conventional pavement 

reconstruction with the CIRP with additional sensitivity analysis on the 

material delivery distances. Huang et al. (2012) conducted the sensitivity 

analysis of the LCA allocation methods and the results showed a high 

variation. Bloom et al. (2017) compared the prior planned data and post 

construction data in the LCA calculation for evaluating the environmental 

impacts of the recycling-based and virgin-material-based rehabilitation 

techniques and specified the importance of data quality. Noshadravan et al. 

(2013) employed more comprehensive uncertainty analysis with combining 

the data quality and data variance in the comparative LCA of asphalt 

pavement and Portland concrete pavement.  

 

Nevertheless, in practical decision-making, the sustainable objectives in 

multi-dimensions are conflicting and always required to be balanced (Zhang, 

2009). Several studies established multi-objective optimization framework to 

trade off the multi-objectives. The typical application is to determine the 

optimal maintenance and rehabilitation (M&R) strategies during the 

pavement life cycle. Chikezie et al. (2013) proposed a bi-objective 

optimization model to arrange the maintenance treatments in 20-year period 

with maximized pavement serviceability index (PSI) and minimized 

maintenance cost. Zhang et al. (2010) and Santos et al. (2017b) further 

integrated the LCA and LCCA methods to determine the optimal M&R 

interval at the minimized life-cycle GHG emissions and life-cycle cost. 

Santos et al. (2017b) extended the single life-cycle cost objective to the user 

cost and agency cost objectives respectively in optimization. User cost 

included user delay costs and extra vehicle operating cost, which contributes 

to solving the trade-off between pavement maintenance activities and traffic 

delays that might result. For the same research aim, Yu et al. (2015) conducted 
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a tri-objective optimization with maximizing pavement performance, 

minimizing life cycle cost, and minimizing environmental impacts. Yet these 

studies still have some limitations. The final optimal strategies are heavily 

relied on the prediction accuracy of pavement performance model and were 

varied due to the different performance indicators.  

 

Furthermore, the implementation of project-level management typically 

involves specific technical consideration and detailed information associated 

with each alternative selection (Haas et al., 1994), such as the specific 

material property, potential change in pavement-vehicle interaction, and 

effect on the deterioration rate. For the purpose of accurately connecting the 

specific selection to the potential effects in technical view, various studies and 

models have been engaged in addressing the requirements. Fwa & Sinha 

(1991) quantified the relationship between pavement performance and the 

cost for each life-cycle stage to emphasize the significance of performance 

incorporation. Jung et al. (2002) developed an IRI prediction model of AR 

and HMA pavement based on fitting the 11-year measured data to an 

exponential function in order to evaluate the user costs due to the pavement 

degradation. Wu et al. (2010) investigated the life extension of 20 types of 

pavement preservation based on the field tests to assist to find optimum 

preservation strategies. Dong and Huang (2012) further developed an 

empirical model of maintenance effectiveness based on the long-term 

performance (LTPP) database. Noshadravan et al. (2013) incorporated the 

MEPDG predictive model and calibrated HMM-4 models to transfer the 

pavement roughness change into the extra fuel consumption of vehicles. 

Similarly, Santos et al. (2014) and Wang et al. (2012b) combined the vehicle 

emissions model MOVES with the calibrated HDM-4 rolling resistance 

model to quantify the additional fuel consumption and consequent 

environmental impacts resulting due to the pavement deterioration. Yang et 

al. (2015) developed a progression model of international roughness index 
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(IRI) in the LCA to compute the GHG emissions and energy consumption of 

vehicles. 

 

In general, the project-level management for pavement is featured with life-

cycle time horizon, relatively simpler models, fewer data requirements, less 

data integration, and more independent of calibration. 

 

2.4.2 Network-Level Management  

The network-level management is a top-down approach that handles the 

pavement network as an integral and concerns high-level decision associated 

with the network-wide planning, policy and budget (Smith et al., 2001). At 

this level, the pavement segment priority, maintenance alternatives, time 

horizon, budget allocation and environmental implication are determined. To 

be more preciously, the network-level decisions generally deal with the 

questions about which section, what treatment, and when under the given 

criteria.  

 

Running a pavement network system requires the cooperation of manpower 

and material resources and the collaboration of hardware and software. As the 

information about current and future pavement condition is the primary 

requirement for identifying the priorities to receive treatments for pavement 

segments, collecting condition data is the fundamental preparation for either 

developing empirical models or calibrating mechanical models. There is a 

large-scale range of survey equipment and techniques for condition 

measurement for road network under given specifications (Bennett et al., 

2006; Pierce et al., 2013). In addition, the development of the image 

recognition technologies, such as filtering approach (Salman et al., 2013; 

Wang, 2013), neural network (Chen et al., 2001; Xu et al., 2008), and support 

vector machine (Li et al., 2009b; Lin & Liu, 2010), provides opportunities to 
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improve the efficiency and accuracy of surface condition detection. Under the 

corresponding assistants, the collection methods have been transferred from 

the conventional visual and manual approaches to the more automatic and 

intelligent fashion.  

 

Once the qualified data have been well-prepared, the pavement performance 

prediction models are established as the basis of management system. 

Reliability of the performance prediction heavily relies on the modeling 

methods, as well as the selected performance indicators. According to the 

previously used prediction techniques and considered indicators, the 

performance models for network-level management could be generally 

categorized as probabilistic models, structure performance models, functional 

performance models (Lytton, 1987). Some selected example studies are 

summarized in Table 2-2, which lists the applied modeling techniques in 

relation to each model category above.  
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Table 2-2 Summary of pavement performance prediction models 

Model Type Technique Reference Performance Indicator 

Proabilistic 

Models 

Markov 

process 

Butt et al. (1994) PCI(a) 

Mbwana and Turnquist (1996) PSR(b) 

Li et al. (1997) PCI 

Medury and Madanat (2013) Nework Capacity 

Abaza (2014) PDR(c) 

Elhadidy et al. (2015) PCI 

Structure 

Performance 

Model  

Mechanistic-

empirical 

method 

Ali and Tayabji (1998) Fatige cracking 

Von et al. (2007) Cracking, rutting 

Li et al. (2009) Cracking, rutting, IRI(d) 

Hall et al. (2011) Cracking, rutting, 

Jorge and Ferreira (2012) 
Cracking, rutting, 

disintegration, IRI 

Moghadas Nejad et al. (2013) Rutting 

Artificial 

neural 

network 

Attoh-Okine (1994) IRI 

Attoh-Okine (1999) Cracking, rutting, IRI 

Mazari and Rodriguez (2016) IRI 

Regression 

analysis 

Kim and Kim (2006) Rutting 

Luo (2013) PCR(e) 

Functional 

Performance 

Model  

Mechanistic-

empirical 

method 

Jung et al. (1975) RCI(f) 

Abaza (2004) PSI(g) 

Jorge and Ferreira (2012) PSI 

Pereira and Pais (2018) Skid resistance 

Artificial 

neural 

network 

Roberts and Attoh ‐ Okine 

(1998) 

PSR 

Bianchini and Bandini (2010) PSI 

Freitas et al. (2015) Noise reduction 

Regression 

analysis 

Pan et al. (2011) PSI 

Lee et al. (2015) Crash severity level 

Notes: PCI(a): pavement condition index; PSR(b): pavement surface rating; PDR(c): 

pavement distress rating; IRI(d): international roughness index; PCR(e): pavement 

condition rating; RCI(f): riding comfort index; PSI(g): pavement serviceability index;  

 

The different models showed the preference option of performance indicators 

for different model types. Markov process is typical probabilistic model that 

presented the probability of the condition transition of a pavement ‘family’ to 
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another within a specified time horizon based on the specific assumptions 

(Butt et al., 1987). Through this method, both pavement condition index and 

functional index could be modeled. The structure performance models 

primarily predict the distress (e.g., rutting, cracking, IRI) and condition index 

in the components of pavement, while the functional performance models are 

intended to predict the index that reflects the pavement function level in 

supporting the comfort and safety of mobility, such as serviceability index, 

skid resistance, noise reduction, and safety index. Either mechanistic-

empirical or empirical (e.g., artificial neural network and regression analysis) 

methods could be applied to develop the latter two deterministic models. The 

mechanistic-empirical models could be established through either self-

development (Jung et al., 1975) or calibration of the existing models (Hall et 

al., 2011), which confines to modeling distress-related indicators. However, 

for the empirical models, the selection of performance indicators is more 

flexible as enough data and sufficient computational power have been given. 

Besides, it is worth to be noticed that there is no purely mechanistic pavement 

performance model in current literature.  

 

As another significant part in the pavement management scheme, the 

optimization-based tools have played a conclusive role in controlling the 

decision-making by following the corresponding criteria. Optimization is to 

formulate the objective into an evaluation function and then apply a search 

algorithm to find the solution that can minimize or maximize the objective 

function (Burke & Kendall, 2014). In the context of sustainable development, 

the three-pillar criteria in social, environmental, and economic have been 

clearly identified (IUCN, 2004), which requires to consider multiple and 

conflicting sustainability objectives in the optimization process for pavement 

management decision-making. The multi-objective optimization problem is 

generally defined as the following expressions: 
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Minimize F(x) =  [𝐹1(𝑥), 𝐹2(𝑥), … , 𝐹𝑘(𝑥)]                       (2-2) 

 subject to 𝑔𝑖(𝑥) ≤ 0,     𝑖 = 1,2, … , 𝑚 

 

where, F(x) = set of objective functions; 

       𝑘 = the number of objective function; 

       𝑔(𝑥) = set of constriants; 

       𝑚 = the number of contraints. 

 

Compared with single-objective, multi-objective optimization has higher 

complexity in the searching space and convergence requirements, which has 

more than one cardinality of the optimal set, called Pareto optimality (Deb, 

2014). The definition is described as: “A point 𝑥∗ ∈ 𝑋, is Pareto optimal if 

there does not exist another point, x ∈ X , such that 𝐹(𝑥) ≤ 𝐹(𝑥∗) , and 

𝐹𝐼(𝑥) ≤ 𝐹𝐼(𝑥∗) for at lease one function” (Marler & Arora, 2004). In order 

to search the Pareto Optimality efficiently, various approaches have been 

proposed, which are generally classified into the methods with priori and 

posteriori articulation of decision-maker’s preferences (Marler & Arora, 

2004). Both methods have been extensively applied in developing multi-

objective optimization for pavement management. Wu et al. (2012) reviewed 

the various applications of multi-objective optimization (MOO) techniques in 

road asset management and concluded their theoretical advantages and 

complexity in mathematical formulation. Based on that, Table 2-3 updated 

the summary of MOO applications with additional studies and methods by 

identifying the considered objectives in decision-making.  
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Table 2-3 Summary of MOO applications in pavement management 

 Technique Reference Objectives 

P
ri

o
ri

 A
rt

ic
u

la
ti

o
n

 o
f 

P
re

fe
re

n
ce

s 

Weighted sum 

method 

Dissanayake et al. 

(1999) 

(1). Nighttime visability; (2). Congestion; 

(3). Freeway driving; (4). Maneuvering 

curves; (5). Deficiencies in driving 

knowlwdge; (6). Location of traffic signs; 

(7). Gap acceptance 

Wang et al. (2003) (1). Min. Cost; (2). Max. M&R effectiveness 

Wu and Flintsch 

(2009) 
(1). Min. Cost; (2). Max. Network condition 

Torres-Machí et al. 

(2015) 

(1). Min. Cost; (2). Max. Treatment 

effectiveness; (3). Min. CO2 emissions 

Multi-attribute 

utility theory 

Davis and 

Campbell (1995) 

(1). Max. Safety; (2). Min. Cost; (3). Max. 

Convenience 

Li and Sinha 

(2004) 

(1). System preservation; (2). Agency cost; 

(3). User cost; (4). Mobility; (5).Safety 

Gao et al. (2012) 
(1). Min. Cost; (2). Max. Proportion of road 

network in “very good” condition statte 

Bryce et al. (2014) 
(1). Min. Cost; (2). Max. Condition; (3). 

Min. Energy 

Goal 

programming 

Sinha et al. (1981) 

(1). Max. System condition; (2). Max. 

Service level; (3). Max. System safety; (4). 

Min. Energy consumption 

Ravirala and 

Grivas (1995) 

(1). Min. Capital investment; (2). Max. 

Condition improvement 

Wu et al. (2008) 
(1). Min. Cost; (2). Max. Total system age 

gain 

Anastasopoulos et 

al. (2016) 

(1). Min. Cost; (2). Max. Service life; (3). 

Min. Accident rates 

P
o

st
er

io
ri

 A
rt

ic
u

la
ti

o
n

 o
f 

P
re

fe
re

n
ce

s 

ε-constraint 

method 

Chowdhury et al. 

(2000) 

(1). Min. Probability of crash; (2). 

Probability of injury level; (3). Min. 

disutility loss 

Genetic 

algorithm 

Fwa et al. (2000) (1). Min. Cost; (2). Max. Network condition 

Herabat and 

Tangphaisankun 

(2005) 

(1). Min. Vehicle operating cost; (2). Min. 

Average IRI 

El-Rayes and 

Kandil (2005) 

(1). Min. Project time; (2). Max. Project cost; 

(3). Max. Project quality 

Deshpande et al. 

(2010) 

(1). Min. Cost; (2). Max. Pavement 

reliability 

Bai et al. (2012) 

(1). Min. Average IRI; (2). Max. Bridge 

condition index; (3). Max. Remaining service 

life; (4). Min. Crash rate; (5). Max. Travel 
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speed 

Chikezie et al. 

(2013) 

(1). Min. Cost; (2). Max. Network 

performance 

Gosse et al. (2013) 
(1). Min. Cost; (2). Max. Segement 

condition; (3). Min. Annual GHG emissions 

Meneses and 

Ferreira (2013) 
(1). Min. Agency cost; (2). Min. User cost 

Heuristic greedy 

algorithm 

Torres-Machi et al. 

(2017) 

(1). Min. Cost; (2). Max. Maintennace 

effectiveness; (3). Min. GHG emission 

Particle swarm 

algorithm 

Chou and Le 

(2011) 

(1). Min. Cost; (2). Max. Performance 

reliability 

 

Among the various applied approaches, the weighted sum method was most 

widely used due to its simple procedure, which combines multiple objective 

functions into a single objective function by assigning user-defined weighting 

factors (Meneses & Ferreira, 2013). The further application of multi-attribute 

utility theory could both capture the preferences of decision-maker and 

alleviate the subjectivity in setting objective weight (Wu et al., 2012). Goal 

programming is another popular priori articulation of preferences method in 

minimizing the sum of underachievements and overachievements of 

objectives with or without setting goal’s priorities (Marler & Arora, 2004). In 

the absence of information from decision-makers, heuristic-based searching 

algorithms were applied, such as genetic algorithm, particle swarm algorithm, 

and heuristic greedy algorithm. Among them, the genetic algorithm has 

attracted great interest as its capability in solving non-linear optimization 

problems, and its capability continued to be enhanced along with the 

evolutionary in the simplicity and efficiency of algorithms (Konak et al., 

2006). The ε-constraint method was rarely used due to its limitation in the 

constraint setting (Wu et al., 2012). It was agreed that no single approach is 

superior to others, and the method selection would largely depend on the 

information completeness, solution requirements, and user preference 

(Meneses & Ferreira, 2013; Wu et al., 2012). In relation to the estimated 

objectives, the cost and pavement structure performance were basically 
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considered by extensive studies which seldom involved environmental 

impact indicators and functional performance.  

 

Beyond that, the volume, variaty and geometric characteristics of network-

level data suggested the employment of geographic information system (GIS) 

to store, integrate, and analysis in a visualised manner (Golabi & Pereira, 

2003). GIS platform could graphically identify the pavement segments with 

corresponding pavement conditions, traffic information, and auxiliary data 

and allows engineers and administrators to query, examine, manage, and plan 

on a visual basis (Zhang, 2009). A number of applications have been made by 

both researchers and agencies to strengthen the pavement management 

system (Bham et al., 2001; Medina et al., 1999; Parida et al., 2005; Zhang, 

2009; Zhou et al., 2009). 

 

In general, compared with project-level approach, the characters of the 

network-level management are identified as the network topology with more 

sophisticated models, larger data requirement, higher integration and 

optimization capability.  

 

2.5  Summary 

This chapter provides a thorough review of literature related to the critical 

issues in pavement sustainability measurements, project-level and network-

level management decision-making. The three measurements are both 

independent in different dimensions and correlated with one another to 

constitute the entirety of sustainability. The approaches to pavement 

management are inclined to either project-level dealing from bottom up or 

network-level allocating from top down. Both the two management structures 

have their specific objectives, requirements, and analytical capabilities. 
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Therefore, toward sustainable development, a pavement management 

decision-making always needs new attempts to improve both systematisms of 

multi-dimensional integration methods and exert the potential applications of 

various decision-support methods in emerging pavement functions.  
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CHAPTER 3  COST-BENEFIT INTEGRATION 

3.1 Introduction 

Although the environmental impact variables in a pavement life cycle are 

complicated, various efforts have been undertaken to minimize 

environmental burdens from pavement project activities. For example, many 

recycled materials, such as waste tyre rubber, are now being used in pavement 

construction to conserve raw material resources without compromising 

pavement performance. Asphalt rubber (AR), which is composed of raw 

asphalt and at least of 15% of waste tire rubber as modifier, is one good 

example of using waste materials in pavement. However, AR has received 

different popularities in different areas around the world, because on one hand 

it provides various benefits, such as recycling waste tires, enhancing 

pavement performance, and reducing tire-road noise (Lo Presti, 2013; RAP, 

1999; SCDER, 1999), while on the other hand, it requires higher construction 

temperature and cost.  

 

As previously reviewed, life cycle assessment (LCA) provides a systematic 

procedure to quantify the environmental performance of products throughout 

their life cycles. Pavement LCA studies have been documented in many 

literature since 1996 (Häkkinen & Mäkelä, 1996). Although recent researches 

have combined LCA with other analytical methods to achieve more extensive 

results, the research focus and result still differs in various studies. Besides, 

noise, on which AR pavement can provide significant benefit, is often 

regarded as one of the social-economic impacts and has not been included 

and defined in the staple life cycle inventories (LCI). Therefore, multi-

dimensional sustainable criteria require the more effective and 

comprehensive integration method for decision-making. Cost-Benefit 
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integration (CBI) is an efficient method to quantify and synthesize the 

sustainable impacts from different dimensions into single monetary values.  

 

This chapter compared the Asphalt Rubber Stone Matrix Asphalt with 10 mm 

maximized aggregate size (ARSMA10) and Polymer Modified Stone Matrix 

Asphalt with 10 mm maximized aggregate size (PMSMA10), which is 

presented as a case study to originally achieve the more comprehensive 

sustainability evaluation and integration of pavement mixture designs by CBI 

method. This chapter is organized into five sections. After introduction of 

background, the methodology section identifies the detailed CBI procedures 

along with the required inventory analysis. Then, case study section lists the 

detailed design information for evaluation. The fourth section illustrates and 

discusses the results corresponding to the processes in methodology. 

Ultimately, the summary section concludes the major findings of this chapter. 

 

3.2 Methodology 

This study applies the cost-benefit concept to integrate the multi-dimensional 

sustainability indicators into single-dimensional monetary value. The 

methodology involves miscellaneous tools and techniques, such as MEPDG 

software, life cycle analysis (LCA), life cycle costing analysis (LCCA), 

monetary transformation and cost-benefit integration. For the two compared 

pavement materials, i.e., ARSMA10 and PMSMA10, all calculations were 

conducted under the same traffic, structure design and climate condition. The 

method can be further divided into five steps:  

 

1) Determine the maintenance plans for the two comparison materials 

according to the performance modeling results of the MEPDG;  

2) Perform LCA to acquire the environmental impacts;  
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3) Conduct the LCCA to quantify the life-cycle agency cost; 

4) Convert the GHG emission and noise reduction to corresponding 

monetary value; and  

5) Integrate the overall cost and benefit based on the evaluation results of 

the former four steps. 

 

3.2.1 Goal and Scope Definition 

The goal of this study is to evaluate the life cycle environmental, economic 

and social impacts of two pavement materials (ARSMA10 and PMSMA10) 

through cost-benefit integration and compare the overall sustainability of the 

two mixtures based on their estimated performance in the life cycle view. The 

functional unit of this study is the square meter (m2) of 40 mm wearing course 

throughout the 56-year analysis period. The system boundary determination 

will have significant influence on the results when considering the 

environmental impacts. In this study, four life-cycle stages were considered, 

including: material production, construction, usage and end-of-life (EOL). 

The examining processes of ARSMA10 in each stage are illustrated in Figure 

3-1.  
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Figure 3-1 Life cycle phase and system boundary of ARSMA10 

 

Three things are noticeable for the system boundary. Firstly, the processes of 

the two asphalt mixtures are almost identical except for the difference in the 

material production phase, where ARSMA10 includes an additional process 

of producing crumb rubber modifier from EOL tires. Secondly, the pavement 

distress performance is predicted by the MEPDG software based on the 

material property data from several lab tests. Thirdly, the only variable in this 

comparison study is the asphalt mixture and other parameters (i.e., traffic 

loading, climate, construction and maintenance methods) were fixed and 

assumed as invariable. 

3.2.2 Maintenance Strategy Determination 

The MEPDG methodology was adopted in order to predict pavement 

performance based on the traffic loading, material properties, and 

environmental data. The responses were utilized to predict incremental 

damage over designed lifetime (Baus & Stires, 2010). The MEPDG software 

applied in this study was AASHTOWare Pavement ME Design (Version 2.2), 

and its design methodology is documented in the Mechanistic-Empirical 

Pavement Design Guide, Manual of Practice, Interim Edition(AASHTO, 
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2008). There were two objectives of employing MEPDG: to make sure the 

pavement designs of the two materials can meet the performance criterion, 

and to predict the distress developing pattern of pavement material. 

 

Despite that both the polymer modified asphalt mixture and asphalt rubber 

mixture are new material technology and have not been calibrated well with 

the empirical part of the mechanistic-empirical models, the employment of 

MEPDG software still enabled to provide general information for comparison 

purposes. In addition, successful utilization of the prediction results would 

help to tell what kind of field data required, which could provide a direction 

for future data collection, otherwise the study would be hampered by lacking 

field data. Also, in order to get the results closer to Hong Kong’s scenario, the 

Hong Kong climate condition (e.g., wind speed, air temperature, and 

precipitation) and traffic condition were used as one of the input data.  

 

To predict the accumulated deterioration of the two materials, the laboratory 

measured material properties were used as the input variables. Specifically, 

the property input of ARSMA10 and PMSMA10 included unit weight, 

effective binder content, dynamic modulus of mixture, and Superpave 

performance grade of asphalt. The international roughness index (IRI) and 

rutting depth (RD) were selected as the distress measurement indicators in 

this study. The first index represents a standardized pavement unevenness 

(Sayers et al., 1986), while the second one refers to the accumulated pavement 

deformation (Simpson, 2003). Based on these two indicators, an effective 

pavement maintenance strategy was developed accordingly.  

 

Previous studies have shown that preventive maintenance may prevent a 

pavement from requiring corrective maintenance and can be six to ten times 

more cost-effective than a “do nothing” maintenance strategy (Johnson, 2000). 

Hence, preventive maintenance strategy was selected in this study. 
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Furthermore, among various candidates for the preventive maintenance 

treatments, micro-surfacing was selected in this study, considering that it is 

documented to be appropriate for most of the common distress types, such as 

roughness, rutting, cracking and raveling (Wilde et al., 2014). The 

maintenance frequency of pavements with the two asphalt mixtures was 

determined based on the accumulated deterioration predicted by the MEPDG 

software. Although the maintenance scenario that only considered the 

preventive maintenance may not be very practical, it could provide the 

general information for the comparison purpose. In addition, when the 

maintenance scenario involves rehabilitation or reconstruction treatment, the 

difference of the corresponding impacts between the two materials would get 

larger. 

 

3.2.3 Life Cycle Inventory Analysis 

Life cycle inventory (LCI) analysis is the most essential stage of LCA method 

(ISO, 2006a, 2006b). This stage is dedicated to present the major unit 

processes and relative calculation procedures within the considered life-cycle 

stage.  

 

The environmental impacts considered in the assessment included GHG 

emissions and energy consumption, as the effects of both two impacts on 

climate change and non-renewable resource shortage are of long-term and 

global importance. Although there are others impact types, like eco-toxicity 

and human health, their influence degree would be largely affected by the 

population density, population composition, and climate condition, which 

would introduce the variables that hard to be controlled.  

 

The material production phase included the extraction and initial processing 

of aggregates, asphalt, and other supplementary materials such as crumb 
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rubber (Wang et al., 2012b). The unit processes considered in this study 

included asphalt refinery, aggregate production, and mixture hot mixing. For 

ARSMA10, rubber powder production was also considered. The data with 

respect to the energy consumption factor and GHG emission factor of 

aggregate were obtained from the Chinese Life Cycle Database (CLCD, 

2010), and the relative factors of polymer modified asphalt were provided by 

the European Bitumen Association (Eurobitume, 2011). Besides, the process 

of manufacturing asphalt rubber included crumb rubber production and 

asphalt rubber production. The data for energy consumption and GHG 

emissions were calculated according to the survey results of Zhu et al. (2014). 

Reference inventory data of material production phase employed in this study 

are summarized in Table 3-1. 

 

The construction phase consisted of two parts: transportation of material and 

on-site construction. Thirty-tonne diesel truck was employed to transport raw 

materials and hot mixtures, and the corresponding energy consumption and 

emissions were calculated according to the database CLCD (2010). The 

construction schedule and equipment activities of ARSMA10 were 

formulated following the Asphalt Rubber Design and Construction 

Guidelines (Hicks, 2002), by only considering the paving and compacting. 

Furthermore, construction activities of PMSAM10 and ARSMA10 were 

assumed to be the same. The emission factors of the paving and compacting 

processes of the two materials were calculated according to the power of 

machines and production efficiency (Zhu et al., 2014). 

 

The usage phase primarily focused on the roughness effect on the additional 

fuel consumption and GHG emissions. The relationship between pavement 

smoothness and extra fuel consumption of vehicles has been studied in 

various literature. It was reported that from 60 to 123.4 inch/mile (0.95 to 1.95 

m/km), a 63.4 inch/mile (1 m/km) incremental change of IRI would increase 
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the energy consumption by 3.7% for passenger cars, 1.2% for small trucks, 

1.3% for medium trucks, and 0.9% for large trucks (Yang et al., 2015). 

According to Kalembo et al. (2012), the GHG emissions can increase 35,010 

kg annually for the traffic volume of 1,000 vehicles per hour when the IRI 

changes from the good (<95 inch/mile) to poor condition (>150 inch/mile). 

In this study, the IRI changes of ARSMA10 and PMSAM10 were predicted 

by MEPDG software, so the calculation of the GHG emissions and energy 

consumption in the functional unit should be consistent with the AADT, 

growth rate and the vehicle distribution used in the MEPDG. Furthermore, 

pavement maintenance work is necessary during the operation of the 

pavement system, and the corresponding emissions and energy required were 

also counted into the usage phase in this study. 

 

When a pavement reaches its service life, it can remain in place serving as 

support for a new pavement structure or be removed. By adopting a “cut-off” 

allocation method, no environmental impacts were assigned to the EOL phase 

in this study. 
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Table 3-1 GHG emission and energy consumption of pavement life cycle 

inventory 

Life Cycle Inventory 
Mixture Type Data Reference 

ARSMA10 PMSMA10 

CLCD (2010); 

Eurobitume 

(2011); Zhu et 

al. (2014) 

Material 

Production 

Asphalt 

Energy 

consumption(a) 
189.33 311.20 

Emissions(b) 21.42 18.57 

Aggregate 

Energy 

consumption 
29.99 29.99 

Emissions 2.29 2.99 

Transportation of Raw 

Materials (50km) 

Energy 

consumption 
40.20 

Emissions 3.74 

Asphalt Mixture Hot Mixing 

Energy 

consumption 
353.50 336.67 

Emissions 29.67 28.26 

Transportation of Hot Mixture 

(20km) 

Energy 

consumption 
16.08 

Emissions 1.50 

 

Pavement 

Construction 

Paving 

Energy 

consumption 
15.86 

Emissions 1.18 

Compaction 

Energy 

consumption 
18.60 

Emissions 1.38 

Pavement 

Usage 

Preservation 

Energy 

consumption 
6.50 

Chehovits and 

Galehouse 

(2010) Emissions 0.30 

Additional 

energy 

consumption 

and GHG 

emissions 

caused by IRI 

changes 

Energy 

consumption(c) 

Passenger 

car 
0.15 

Yang et al. 

(2015); Kang et 

al. (2014) 

Single-unit 

truck 
0.12 

Combination 

truck 
0.25 

GHG 

Emissions(d) 
0.004 

Kalembo et al. 

(2012) 

Note: (a) Unit = MJ/t; (b) Unit = CO2-e kg/t; (c)Unit = MJ/vehicle mile, under the condition that 

per 63.4 inch/mile (1m/km) increase of IRI; (d) Unit = CO2-e kg/vehicle hour, under the 

conditions that IRI increases from good condition (<95 inch/mile) to poor condition (>150 

inch/mile). 

 



43 
 

3.2.4 Cost-Benefit Integration 

The report by the World Conservation Union (2004) suggests that the three 

dimensions of sustainability: environmental, social and economic, are the 

mainstream sustainability thinking, which needs to be balanced and better 

integrated. In this study, all three dimensions were considered and expressed 

as the cost and benefit. The economic impacts were represented by the life 

cycle agency cost; the environmental impacts computed from LCA were 

converted to the environmental damage cost; and the social impacts of 

pavement materials mainly focused on the noise impact to people, which were 

presented as the noise reduction benefits. After the monetary process, the final 

step was to integrate the multi-dimensional impacts into a single-dimensional 

value so as to the more accessible comparison. 

 

The evaluated agency costs during life cycle consisted of the material cost, 

construction cost and maintenance cost, which were investigated according 

to the data from Asphalt Rubber Usage Guide (Caltrans, 2003), Rubber 

Asphalt Industrialization Feasibility Report in Guangdong Province 

(Guangzhou Municipal Industries Ltd., 2011), and Handbook on Asphalt 

Pavement Maintenance (Johnson, 2000). 

 

Environmental Damage Costs (EDC) are the costs for unit of air pollutants 

that people need to pay to offset the effects on environment. A statistical 

analysis was conducted by Yu et al. (2013) to find the mean values (50 $/t in 

2010) of the EDC for CO2 among the wide range from 5 $/t to 1667 $/t. 

 

The value of noise was calculated as the unit marginal cost per person exposed 

to a specified noise level (European Commission, 2014), which are provided 

in the Handbook on Estimation of External Costs in the Transport Sector 

(Maibach et al., 2008). The noise reduction benefit of asphalt mixtures is the 

difference between the noise costs of ARSMA10 and PMSAM10. According 
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to various global rubberized asphalt studies, the average noise reduction of 

asphalt rubber would be 2-3 dB and the noise of asphalt rubber overlay is 

measured and documented as 73.7 dB. Consequently, 3 dB was selected as 

the noise reduction when employing ARSMA10 in this evaluation, and 200 

persons were assumed to be directly exposed to the highway every year. The 

details of the life cycle costs are listed in Table 3-2. 

 

Table 3-2 Summary of monetary transformation 

Life Cycle Cost(a) ARSMA10 PMSMA10 Data Reference 

Construction 

Cost(b) 

Material ($/t) 87 68 Caltrans (2003) 

Equipment ($/m2) 0.17 
Guangzhou 

Municipal Industries 

Ltd. (2011) 

Fuel($/m2) 1.37 

Labor($/m2) 0.07 

Management($/m2) 0.04 

Maintenance Cost(c) ($/m2) 3.92 Johnson (2000) 

Environmental Damage Costs(d) 

($/t) 
63.27 Yu et al. (2013) 

Noise Costs ($/person year) 
510.86 

(>73dB) 

593.97 

(>76dB) 

Maibach et al. 

(2008), RAP (1999), 

SCDER (1999) 

Notes: (a) The costs have been converted to the present value (PV) according to the cost in the 

reference, and 4% was selected as the discount rate. 

(b) The thickness of pavement is 40mm 

(c) The maintenance refers to the pavement preservation treatment, micro-surfacing. 

(d) The air pollutant item considered is the mass of CO2 in the whole life cycle. 

 

3.3 Case Study 

This study is designed to compare the two flexible pavement materials, 

namely, ARSMA10 and PMSMA10. In order to estimate the effect of addition 

with recycled waste tyre rubber into asphalt mixture on the pavement life 

cycle sustainability, the structural design of the pavement with two materials 

kept consistent. Table 3-3 summarizes the overall pavement design 

information, which was assumed according to the common practice in Hong 

Kong. 
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Table 3-3 Summary of pavement design information 

General Information 

Pavement type Flexible Pavement 

Design life (years) 20 

Layer Thickness (mm) 40 

Length (m) 1000 

Lane width (m) 3.5 

Number of Lanes 4 

Discount Rate 4% 

Traffic Information 

AADT 10000 

Growth Rate 3% 

Growth Function  Linear 

 

 

Vehicle Distribution 

37.3% Passenger car 

23.2% Single-unit, short-haul truck 

37.2% Single-unit, long-haul truck 

1.8% Combination short-haul truck 

0.5% Combination long-haul truck, 

Operation Speed (km/h) 90 

Climate Information * 

Climate Station Hongkong, HK (99998) 

Mean annual Wind speed (kph) 9.31 

Mean annual Air temperature (deg C) 23.41 

Mean annual sun radiation 80.91% 

Mean annual precipitation (mm) 100.8 

Annual depth to water table (m) 6 

Note: *The climate data is time-related and dynamic, the values of climate information in 

the table were calculated based on the hourly climate data from Jan/2000 - Jan/2010 to 

reflect the average level. 

 

3.4 Results and Discussion 

3.4.1 Maintenance Strategy 

The results of the accumulated change of IRI and RD in 20-year design life 

predicted by the MEPDG software are illustrated in Figure 3-2. It is evident 

that the IRI values for the two materials stay within the permissible range of 

MEPDG during the design life. 
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Figure 3-2 Performances of the two materials predicted by the MEPDG 

software 

 

For ARSMA10, when it reaches approximately seven years, the predicted rut 

depth exceeds the threshold value, while for PMSMA10, it takes eight years. 

This indicates that the rutting resistance of selected polymer modified asphalt 

mixture is preferable to that of the asphalt rubber mixture in this study. 

Maintenance strategies were then determined according to the estimated 

development of rutting depth. The analysis period (56 years) is calculated as 

the least common multiple (LCM) of maintenance intervals (7 & 8 years) for 

the two materials based on the rut depth prediction. As depicted in Figure 3-

3, in the 56-year analysis period, the preservative maintenance (micro-

surfacing) would be conducted every eight years for PMSMA10, and every 

seven years for ARSMA10. 
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Figure 3-3 Maintenance plans for the two pavement material designs 

 

3.4.2 Environmental Performance 

The breakdowns of GHG emissions and energy consumption for the four 

major phases of the life cycle of the two mixtures are illustrated in Figure 3-

4 and Figure 3-5, respectively. In the 56-year analysis period, the dominant 

contributions were presented by the extra impacts caused by the pavement 

IRI change. In general, PMSMA10 has better environmental performance 

than ARSMA10 with regarding to both emissions and energy consumption. 

 

 

Figure 3-4 GHG emissions breakdown of the two pavement materials 

 

As shown in Figure 3-4, the percent distribution of the extra GHG emissions 

due to roughness change in the usage phase is especially overwhelming, 

approximately 242 and 214 kg/m2 for the two mixes, respectively, since the 

sum of emissions in the other life-cycle phases of ARSMA10 and PMSAM10 
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(3.37 and 3.35 kg/m2) are almost negligible in comparison. 

 

 

Figure 3-5 Energy consumption breakdown of the two pavement materials 

 

As the illustration in Figure 3-5, when the impact of IRI in the usage phase is 

ignored, the energy consumption by the function unit of ARSMA10 (46.5 

MJ/m2) is less than that of PMSMA10 (53.5 MJ/m2). Because of the better 

serviceability performance of PMSAM10 predicted by MEPDG, the extra 

energy consumed by vehicles on ARSMA10 pavement (209.8 MJ/m2) is 

estimated to be more than that by vehicles on PMSMA10 (185.7 MJ/m2), 

which leads to more overall life-cycle energy consumption of ARSMA10. 

 

3.4.3 Sustainability Performance 

When the environmental impact is considered as the only evaluation indicator, 

PMSAM10 is estimated to perform better because of its lower EDC (13.5 

$/m2). In addition, the investment cost of ARSMA10 (17.2 $/m2) is slightly 

higher than that of PMSMA10 (16.2 $/m2), as the asphalt rubber material had 

a higher price than the polymer modified asphalt. 

 

Nevertheless, when assuming that the ARSMA10 can contribute 3 dB noise 
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reduction from 76 dB noise of PMSMA10, the noise reduction benefit (29.1 

$/m2) of ARSAM10 in the 56-year analysis period is estimated to be able to 

offset the other cost expenditure (32.7 $/m2) in economic and environmental 

dimensions. 

 

 

Figure 3-6 Overall cost breakdown of the two pavement materials 

 

3.5 Summary 

In this chapter, comparative sustainability assessment and integration were 

conducted on two asphalt mixtures: ARSMA10 and PMSAM10, by 

converting their corresponding economic, environmental and social impacts 

to the monetary values with the cost-benefit concept. The following points 

summarize the main findings of this study: 

 

 In the 56-year analysis period, the dominating contributing factor for 

environmental impact is the extra GHG emissions and energy 

consumption of vehicles due to the pavement roughness change. Overall, 

PMSMA10 has better environmental performance than ARSMA10, in 
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terms of both emissions and energy. 

 

 When the noise impact is not taken into account, the overall long-term 

performance of PMSMA10 is better with lower agency investment cost 

and environmental damage cost.  

 

 The long-term accumulated noise impact is considerable assuming that 

ARSMA10 is able to decrease the noise by 4%, which can almost offset 

its higher agency investment cost and environmental damage cost. 

 

Based on the findings of this study, further research is recommended on the 

cost and benefit analysis of installing noise barrier to PMSMA10 pavement 

to achieve the same amount of noise reduction as the ARSMA10 pavement. 

It is also worth to mention that the land saving due to the recycling of End-

of-life tyre in ARSMA10 was not considered in this study, which is the factor 

that has potential to further improve the environmental performance of 

ARMSA10.  

 

Furthermore, this research was confined to specific standard, condition, and 

guidance: the cost benefit calculation process was adopted from European 

standards; Pavement material design and performance prediction was 

conducted based on Hong Kong traffic and climate condition; and the data 

from the regions in United States (U.S.) and China was accessed as reference. 

To fully explore the research limitations, the potential effects from this multi-

standard employment would be discussed through comparing the energy 

structure and regional characteristics of Hong Kong with other regions (e.g. 

China, U.S., and Europe).  

 

For the LCA part, when assuming the same decisions in selecting construction 

equipment and techniques, the GHG emissions would be greatly affected the 
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energy type and distribution. According to Hong Kong Energy Statistics 

(C&SD, 2015), Hong Kong derives its energy supplies almost entirely from 

external sources. Energy is either imported directly or produced through some 

intermediate transformation processes using imported fuel input. In the 

contrary, both China and U.S. can self-supply to satisfy the domestic energy 

demands (CEG, 2014; Ratner & Glover, 2014). In this sense, when the energy 

demands are same, the energy costs and environmental impacts in Hong Kong 

would be evidently larger than the other two regions.  

 

Besides, the cost-benefit transformation of non-monetary sustainability 

indicators may create deviation due to the influences of various regional 

features. For monetization of noise reduction, the cost factors are investigated 

as willing-to-pay (WTP) for reducing annoyance based on stated preference 

studies and quantifiable costs of health effects in Europe. It is hard to say that 

the WTP in Hong Kong would be higher than Europe. Nonetheless, the 

regional uniqueness of Hong Kong (e.g. hot climate, topography, dense 

population, high-rise buildings and intensive bus traffic) is most likely to 

create more serious noise impacts.  

 

In general, the variables brought by the different standard, condition, and 

guidance would indeed cause some effects on the overall impacts, however, 

from the perspective of comparison, simultaneous increase or decrease would 

not greatly affect the relative results from the two comparative objects. In 

addition, this chapter investigated and compared the ARSMA10 and 

PMSMA10 as a case study, sensitivity analysis is recommended in the future 

study to take into consideration of the effects of uncertainties in various 

variables, such as the material composition and performance, time period, 

system boundaries, transportation distance, and treatment of refinery 

allocation. 
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CHAPTER 4  ECO-EFFICIENCY INTEGRATION 

4.1 Introduction 

Cost-benefit concept could effectively integrate the multi-dimensional 

sustainability performance through monetizing all related impacts. However, 

some challenges have been recognized when applying this cost-benefit 

transformation (Harvey et al., 2016), such as the potential for double counting 

the overlapped part of the impacts, the accuracy in expressing the irreversible 

impacts, and the variation resulting from monetary value identification. 

Therefore, in this chapter, a multi-dimensional integration method, named 

Eco-efficiency integration (EEI) is further proposed to address the above-

mentioned concerns.  

 

EEI is an emerging sustainability evaluation tool for pavement project 

alternatives by quantifying and integrating the cost-effective and 

environmental-friendly performance during life-cycle phases (i.e., raw 

material extraction, construction, transportation, and end-of-life). This rising 

sustainability decision-support tool could be regarded as an extension of life 

cycle assessment (LCA) by combining the environmental impact with 

economic performance (Saling et al., 2002). In this chapter, the primary 

objective is to build a pavement eco-efficiency integration framework 

through incorporating LCA and life cycle cost analysis (LCCA), which 

provides the methodology for systematically evaluating life-cycle 

environmental and cost performances.  

 

As previously reviewed, timely maintenance and rehabilitation (M&R) of 

existing asphalt pavements with appropriate technologies is of crucial 

importance not only in terms of economics but also environmental impacts. 
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As a conventional rehabilitation technique, milling-and-filling (M&F) 

technique has been prevalently applied on various the asphalt pavement 

distresses, which is carried out by employing the handheld breakers and cold 

milling machines to break and remove distressed pavement materials and 

replacing the virgin bituminous materials to recreate a smooth road surface 

(FHWA, 2015). It is recorded that M&F can extend the service life of existing 

roadways by approximately 15 to 18 years (LEGCO, 2012). However, a 

noteworthy disadvantage of the conventional M&F technique is the 

inefficiency caused by the process of hauling away the milled materials and 

the greater demand in the virgin materials. As a consequence, various 

recycling techniques for pavement rehabilitation have been developed to 

improve the efficiency of road maintenance and maximize the material 

utilization in the burgeoning pavement network (Giustozzi et al., 2012; Santos 

et al., 2014). Among these recycled techniques, hot in-place recycling (HIPR), 

has gained growing interests among pavement engineers and researchers. As 

an alternative to M&F, HIPR is carried out through remixing the heated 

existing pavement material with added virgin asphalt materials and 

rejuvenator. Compared to M&F, HIPR has the advantage of eliminating the 

trucking and handling of the reclaimed asphalt pavement (RAP) by 

completing the whole process on site. It is documented that HIPR can restore 

the pavement surface to its original condition and prolong the average service 

life of roadway from 8 to 12 years (Ali et al., 2013; Caltrans, 2008). 

 

However, very few literatures quantifying and comparing the sustainability 

performance of HIPR with other rehabilitation techniques. The effects of 

corresponding life extensions, as the one of the most significant performance 

evaluations of a rehabilitation technique, have been missed in previous 

studies as well. Therefore, the two prevalent resurfacing techniques, namely 

M&F and HIPR, were evaluated not only for illustrating the EEI framework 

as a case study but also for the purpose of comparing and serving as the more 
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comprehensive reference for decision-makers. Furthermore, the trade-off 

point among environmental impact, economic performance and life extension 

due to maintenance was explored based on the sensitivity analysis of 

functional performance of alternatives. 

 

The organization of this chapter is presented into five sections. After a brief 

introduction, the system scope and functional unit were identified and defined 

in the methodology section with elaborating the concepts, equations and 

impact categories. The case study that evaluated the sustainability of HIPR 

and M&F with a sensitivity analysis of rehabilitated life extensions is the third 

section. The next section presents and discusses the comparison results 

including the normalized environmental impacts, normalized economic 

performances and the overall eco-efficiencies of the two resurfacing 

alternatives for different service life scenarios of HIPR. Finally, the major 

findings of this study are summarized. 

 

4.2 Methodology 

The eco-efficiency concept was originally developed by the German 

chemicals company BASF and used to identify the best alternative in 

competing products, processes or services. In pavement field, this method has 

not been fully excavated for decision-support purpose. The ecological impact 

and economic performance were evaluated by calculating “the ratio of 

economic creation to ecological destruction from the perspective of the end 

consumer” (Bengtsson, 2004; Saling et al., 2002). In addition to addressing 

the monetized challenges from the single-dimensional CBI method, another 

strength in applying eco-efficiency is that the relative portfolio position 

plotted enables easy visual comparison and communication. The evaluation 

categories could involve both the environmental impacts as well as cost on 
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account of the combination of LCA (Harvey et al., 2016; ISO, 2006a, 2006b) 

and LCCA (Walls & Smith, 1998).  

 

Figure 4-1 illustrates the general EEI procedure applied which firstly defines 

the goal and scope. The LCA and LCCA are jointly employed to evaluate the 

relative environmental and economic impacts of the two rehabilitation 

alternatives. Then, eco-efficiency integration is conducted on the basis of 

normalization, weighting and portfolio position calculation. 

 

 

Figure 4-1 The general framework of Eco-Efficiency Integration 

 

4.2.1 Goal and Scope Definition 

The functional unit was determined as 1 m2 of the rehabilitated pavement. 

Considering that there are multiple scenarios of life extensions in this study, 

the project analysis period was selected as the least common multiple (LCM) 

of the life extensions of HIPR and M&F techniques.  

 

The life cycle of a pavement is generally divided into the following five stages: 

materials extraction and production, construction, usage, M&R and end-of-

life (EOL) phase. The impacts of the usage phase resulted from the tyre/road 
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interaction were often considered as the additional fuel consumption and 

emissions of vehicles due to the pavement roughness change. These 

additional impacts were highly dependent on the intensity of traffic loads, the 

performance characteristics of materials, and local weather conditions 

(Gransberg et al., 2014). Although it was reported that these additional 

environmental impacts accounted for the greatest proportion (80-90%) in the 

entire pavement life cycle (Santos et al., 2014), when the two rehabilitation 

alternatives were compared under the same material, climate and traffic 

conditions, there would be no expectation on much differences of the usage 

phase impacts between them. Instead, the pavement performance 

improvement (life extensions) determined by the rehabilitation techniques 

would be considered as a sensitivity indicator in this study. Therefore, the 

defined system boundary covered raw material production, transportation, 

construction, and EOL phase. Meanwhile, the energy and raw materials (i.e., 

crude oil, coal, rock) as the input would be distributed to each phase of life 

cycle boundary. 

 

The detailed processes considered in each life cycle stage have been 

illustrated in Figure 4-2. Material production phase focused on the extraction 

of aggregates and asphalt and processing of hot mixture. Its unit processes 

considered in this study involve asphalt refinery, aggregate production, and 

mixture hot mixing; The transportation phase referred to the hauling 

processes of required materials to mixing plant, construction site. For the 

M&F method, it included the additional distance to haul the milled pavement 

material to the disposal site. The dominating environmental impacts arose in 

the transportation phase were due to the emissions released by the hauling 

vehicles. For the construction phase, the most noticeable difference between 

the two alternative resurfacing techniques is the in-place recycling process of 

RAP for HIPR; When the service life of a pavement has been reached, it could 

serve as the new pavement supporting structure or be removed. A “cut-off” 
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allocation method was suggested to be adopted (Santos et al., 2014), which 

signified that no ecological impact was allocated to the end-of-life phase. 

Consequently, the environmental burdens resulting from the four 

aforementioned life cycle phases could be primarily quantified and 

categorized as raw material consumption, fuel consumption and emissions 

released by either on-road or non-road equipment. 

 

 

Figure 4-2 The system boundary involved in the HIPR and M&F techniques 

 

4.2.2 Evaluation Category 

(1) Environmental Impacts 

In this study, the impacts in environmental dimension are determined based 

on five major categories: raw material consumption, energy consumption, 

emissions, toxicity potential, and risk potential. 

 

Energy consumption is the consumption of primary energy over the entire life 

cycle phase, such as nature gas, crude oil and coal. Beyond that, energy 

production that also consumes resources will influence the category of “raw 

material consumption”. 

 

In the raw material consumption category, the mass of the required raw 

materials due to relevant processes should be firstly determined. Then, the 
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quantitative material was weighted based on their individual reserve status 

(Saling et al., 2002). The weighting factors shown in Table 4-1 are inversely 

proportional to the sizes of the reserves.  

 

Table 4-1 Weighting factors and years of reserve for some common nature 

resources 

Raw Materials Years of reserves Factor 

Coal 160 6.3 

Oil 42 24 

Gas 63 16 

Rockstone 1000 1 

Sand 500 2 

Limestone 500 2 

 

Emissions to air are evaluated depending on their weighted contributions to 

four impact potentials: Global Warming Potential (GWP), Ozone Depletion 

Potential (ODP), Photochemical Ozone Creation Potential (POCP), and 

Acidification Potential (AP). The factors applied to calculate the four 

potential categories are listed in Table 4-2 (Saling et al., 2002). 

 

Table 4-2 Arithmetic values for impact potentials in the case of emissions to 

air 

Air emission GWP ODP POCP AP 

CO2 1.0 - - - 

SO2 - - - 1.0 

NOx - - - 0.7 

CH4 11 - 0.007 - 

 

Toxicity considered by EEI is primarily human toxicity. To determine toxicity 

potential, the evaluation followed the guideline of the German Chemicals Act 

(Saling et al., 2002). The hazard symbols are specified numerical factors 

based on the classification-relevant values such as half lethal dose (LD50) 

values.  
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Risk potential is defined by Bengtsson (2004) as the product of the severity 

of consequences and the probability of occurrence. The possible hazards refer 

to any accident or misuse that might cause damage to environment and human 

health (Bengtsson, 2004). Due to the data limitation, this study presumed the 

same toxicity potential and risk potential levels for the two alternative 

techniques. 

 

(2) Economic Performance 

The economic performance was measured by the costs in the EEI framework, 

which includes any costs that arise when a product is produced, used and 

disposed (Saling et al., 2002), which was determined as life cycle cost. It 

implies an accounting for the present values (PV) of costs generated 

throughout the entire life cycle of a product or process (Kicherer et al., 2007). 

After normalization, the rescaled LCC value is integrated with the overall 

environmental impacts to generate an eco-efficiency portfolio position in one 

coordinate system.  

4.2.3 Integration Procedure 

The EEI method combines the ecological parameters and ultimately plots the 

results as an individual position in a coordinate system with providing only 

comparative information instead of absolute values (Kicherer et al., 2007; 

Saling et al., 2002). It implies that the conclusive eco-efficient level reflects 

the relative status among the multiple competitive alternatives.  

 

The integration procedure involves two major steps: data processing (i.e., 

normalization and weighting) and data visualization. Normalization serves to 

compress the environmental and cost data. More specifically, the least 

favorable alternative is set to be the value of 1 on its corresponding impact 

category and the rest of alternatives are awarded the values from 0 to 1 
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depending on their relative performance. The overall weighting scheme 

(Figure 4-3) employed in this study is a combination of “relevance weighting 

factor” and “societal weighting factor” investigated and derived by Saling et 

al. (2002). The “Relevance” weighting factors signify the importance or 

contribution of the individual ecology category impact to the total impact of 

corresponding category of the investigated field. The “societal” weighting 

factors reflect social view of the corresponding ecologic category, and was 

jointly decided by management consultants Roland Berger and BASF via 

survey, public opinion polling, expert interview, etc. 

 

 

Figure 4-3 Overall weighting scheme in EEI 

 

Data visualization is realized through the calculation of the eco-efficiency 

portfolio position. The Environmental Impact (EI) and the Normalization 

Factor for the Costs (NFC) are used to calculate the portfolio point in 

accordance with the following equations (Kicherer et al., 2007).  

 

PPE,α =
𝐸𝐼𝛼

(ΣEI)/j
                                              (4-1) 

PPC,α =
𝑁𝐹𝐶,𝛼

(Σ𝑁𝐹𝐶)/j
                                              (4-2) 

 

where PPE,α= Environmental impact portfolio position for product α; 

PPC,α = Cost impact portfolio position for product α; 
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𝐸𝐼𝑎 = Environmental impact of product α; 

NFC,α= Normalization factor for the costs of product system α; 

𝒋 = Number of products under consideration. 

 

The overall numerical calculation procedure of the EEI method is 

summarized in Figure 4-4. In the eco-efficiency portfolio plot, the most 

satisfactory alternatives are located in the top-right corner while the least 

favorable selections are distributed in the bottom-left side.  

 

 

Figure 4-4 Integration procedure of EEI 
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4.3 Case Study 

4.3.1 Case Information 

The case investigated in this study is a project that rehabilitated the Yingbin 

Avenue located in Shaanxi Province of China (Figure 4-5), which is a two-

way six-lane road section connecting the Wen Lin road and the Xianyang 

International Airport. The total length and area for rehabilitation are 3.8 km 

and 87,400 m2, respectively. According to the project report, the HIPR 

construction scheme employed half range closure construction by adding 

20mm new asphalt mixture to renew the original top layer of pavement from 

AC-10 to AC-13. Existing road dimensions were used to calculate the volume 

of the pavement materials. During the construction phase, the traffic of other 

lanes is kept as usual, since only the operation lane of the construction is 

closed. In the premise of completing on schedule, the smooth flow and safety 

of pedestrian and traffic should be ensured.  

 

 

Figure 4-5 Geographic information of road 

 

Correspondingly, the construction scheme of the M&F is modeled based on 

the same pavement and traffic conditions according to three Chinese 

Standards (Ministry of Transportation, 2004, 2006, 2007): Specifications for 
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Design of Highway Asphalt Pavement (JTG-D50-2006), Technical 

specification for highway asphalt pavement construction (JTG-F40-2004) 

and Budgetary Norm of Highway Project (JTG/T B06-02-2007). In other 

words, the HIPR case is a real case, while the M&F case is a mock case for 

the same project for comparison purpose. Table 4-3 summarized the basic 

information of the two cases. 

 

Table 4-3 Summary of general information 

 HIPR M&F 

 

Construction 

Scheme 

 

 

Adding 20 mm new asphalt 

mixture 

Milling 30 mm old mixture 

Filling 40 mm new mixture 

Half Range Closure Half Range Closure 

Reference Construction Report from the 

Freetech Technology Ltd. 

JTG-D50-2006 

JTG-F40-2004 

JTG/T B06-02-2007 

Service life 11-15 years (Assumption) 15 years (Assumption) 

 

4.3.2 Data Collection and Processing 

(1) Environmental Impact Data 

Before merging into the eco-efficiency impact categories, the background 

LCA data source was decomposed into the process-based level of the entire 

life cycle. The corresponding estimation and computation tools employed in 

each life cycle phase are listed in Table 4-4.  

 

Table 4-4 Environmental computation tools for each phase 

Life Cycle Phase Software Developer 

Material production phase Simapro 7.0 PRe Consultants 

Transportation phase MOVES 2014a  US EPA  

Construction phase NONROAD US EPA 

End-of-life phase “Cut-off” allocation method 

 

Wearing course: AC-10 30mm 

Base course: AC-25 50mm Base course: AC-25 50mm 

Wearing course: AC-13 40mm 
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To be specific, Simapro 7.0 was applied to estimate the GHGs, energy and 

consumed raw material in the material production phase. MOVES 2014a was 

employed to evaluate the GHGs from vehicles during the transportation 

processes (Figure 4-6), which involved hauling raw materials to the plant (40 

km), hauling manufactured materials to the construction site (0.5 km), and 

hauling milled asphalt mixture to the scrap yard (15 km). 

 

 

Figure 4-6 Transportation diagram 

 

For the construction phase, the priority should be first given to clarify the 

specific construction schedule and equipment activities of the corresponding 

rehabilitation alternatives (Appendix 1). The duration of construction and 

maintenance activities were estimated according to the project report and 

Chinese Specifications for Design of Highway Asphalt Pavement (JTG-D50-

2006). Then, NONROAD software was used to calculate emissions based on 

the provided emission factors for various ranges of horsepower of different 

construction equipment. Finally, in accordance with the previously defined 

system boundary and “Cut-off” allocation method, there would be no 

environmental impacts in the end-of-life phase. 

 

(2) Cost Data 

The life-cycle cost is the sum of agency and user costs over all the life cycle 

phases. Analogously, the cost figures related to the project is in the same 

system boundaries as that of LCA, while focusing on its monetary impacts 
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(Rebitzer, 2002). Due to data availability, the agency costs in this study only 

included the costs of main construction processes of the two rehabilitation 

methods and energy consumption costs. Besides, under the same condition, 

the results are relative normalized values, which can eliminate some error 

caused by the absolute values. For user costs, the traffic delay costs were 

estimated according to a FHWA’s LCCA software, which was under the 

assumption that the Average Annual Daily Traffic (AADT) was about 15,000 

and the speed limit was reduced from 90 km/h to a work zone speed of 60 

km/h. Table 4-5 listed the breakdown of the item price for the cost evaluation. 

The data was collected from the real Chinese projects, which may bring some 

limitations in result generalization due to regional factors. However, in the 

consideration of comparison, the results could provide the general 

information by identifying the relative better alternative. 

 

Table 4-5 Price list 

Treatment Type Item Unit Price (CNY) 

HIPR   

Material 

Petroleum Asphalt t 122.536 

Mineral filler t 128.404 

Crush rocks (<15mm) m3 723.22 

Crush rocks (2-10mm) m3 261.18 

Rejuvenate agent kg 11 

Construction  

Hot mixing Asphalt 

concrete（Incl. human, 

material and machinery） 

1000m3 634,685 

HM16 Heater machine-team 13,921.88 

RM6800 Hot-in-place 

recycling machine 

machine-team 25,794.17 

EM6500 Lifting and 

remixing machine 

machine-team 30,214.07 

Paver (<4.5m) machine-team 680.97 

Steel Road Roller (<12t) machine-team 610.79 

rubber-tyred roller(20-25t) machine-team 760.27 

Fuel 
Diesel kg 5.3 

Liquefied petroleum gas kg 3.2 

Electricity kwh 0.75 

Transportation Dump truck (20t) (New 

HMA) 

1000 m3 5,148 (<1 km) 

M&F 

Material 

Petroleum Asphalt t 122.536 

Mineral filler t 128.404 

Crush rocks(<15mm) m3 723.22 

Crush rocks(2-10mm) m3 261.18 

Construction  

Hot mixing Asphalt 

concrete（Incl. human, 

material and machinery） 

1000 m3 634,685 

W2100 Milling machine 1000 m2 3,970 

Paving machine (<4.5m) machine-team 680.97 

Steel Road Roller (<12t) machine-team 610.79 

Rubber-tyred roller (20-25t) machine-team 760.27 
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Fuel 
Diesel kg 5.3 

Electricity kwh 0.75 

Transportation 

Dump truck (20t) (New 

HMA) 

1000 m3 5,148(<1 km) 

Dump truck (20t) (Milled 

HMA) 

1000 m3 11,053 (20 km) 

 

4.3.3 Sensitivity Analysis of Life Extension 

The environmental impacts and economic costs are not only directly resulted 

from the material consumption and fuel combustion of on-road and non-road 

vehicles, but also indirectly associated with the frequency of maintenance and 

rehabilitation activities and effectiveness of maintenance techniques. The life 

extension ability is often regarded as one of the parameters to evaluate the 

long-term maintenance effectiveness (Mamlouk & Dosa, 2014), 

Consequently, a sensitivity analysis was conducted in this study to explore 

the eco-efficiency performance of the two alternatives under different 

treatment service life scenarios. 

 

As illustrated in Figure 4-7, the five different scenarios (Scenario A to E) were 

created to show the life extension situations. The lives extended by HIPR 

treatment were decreased progressively from fifteen years by one year for 

each scenario. The environmental impacts and cost performance were 

computed accumulatively based on the lowest common multiple of the two 

alternatives’ service lives.  
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Figure 4-7 The five analysis scenarios 

 

Three hypotheses were made during the sensitivity analysis process:  

 

1). Whenever the road service reaches its end, the same rehabilitation 

techniques would be applied continuously;  

 

2). The impacts brought by the life extension variable only considered as the 

environmental and cost burdens due to the repeated maintenance times of the 

corresponding rehabilitation techniques in the analysis period;  

 

3). When comparing, the baseline life extension is set to be 15 years with the 

descending durability of hot in-place recycling are from 15 to 11 years.  

 

4.4 Results and Discussion 

4.4.1 Eco-efficiency Performances under the Same Life Extension 

The normalized results of environmental impacts and cost performance of the 

two rehabilitation alternatives were illustrated in Table 4-6, under the equal 

consideration of life extension for the two rehabilitation techniques.  

 

It can be obtained that HIPR reduced 28% air emission and saved 48% raw 

material than conventional M&F, while M&F saved 7% energy than HIPR 

mainly due to the additional heating energy required by HIPR in the 

construction phase. The toxicity potential and risk potential were set to be the 

same for both techniques, resulting in the equivalent normalized value of 1 

for both. In the monetary aspect, 29% agency cost was saved by HIPR 

compared with M&F, since M&F requires higher raw material and 

transportation cost. The user costs for both were almost same for the same 
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road closure method and traffic flow assumption, the slight difference was 

resulted from the construction period difference. The overall results in Table 

4-6 implied that HIPR can reduce approximately 16% environmental impacts 

and save 5% costs than those of M&F.  

 

Table 4-6 Normalized numerical results under the same service life 

Normalized results HIPR M&F 

Environmental 

Impacts 

Emissions (20%) 0.72 

GWP 

(50%) 
0.51 

 

1 

GWP 

(50%) 
1 

ODP 

(20%) 
1 

ODP 

(20%) 
1 

POCP 

(20%) 
0.5 

POCP 

(20%) 
1 

AP 

(10%) 
1 

AP 

(10%) 
0.16 

Energy consumption (25%) 1 0.93 

Raw material consumption (25%) 0.52 1 

Toxicity potential (20%) 1 1 

Risk potential (10%) 1 1 

Overall environmental impact 0.82 0.98 

Cost Performance 
Agency cost (50%) 0.71 1 

User cost (50%) 1 0.99 

Total Cost performance 0.95 1 

PPE 0.91 1.09 

PPC 0.97 1.03 
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Figure 4-8 Graphical results under the same service life 
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As illustration in Figure 4-8, the environmental results were visualized into a 

spider diagram to reflect relative impacts of HIPR and M&F techniques in 

each subcategory. Beyond that, the ultimate eco-efficiency portfolio was 

plotted in a coordinate system according to the value of PPE and PPC. It is 

clear to signify that HIPR located in the upper right corner and was more eco-

efficient than M&F when the life extensions of the two were same. This result 

conformed to the conclusions of existing studies (Louhghalam et al., 2017; 

Noshadravan et al., 2013; Wang et al., 2012b) about ecological benefits of the 

cold in-place recycling due to its lower trucking demands and material saving, 

and additionally provided the quantified comparative data of hot in-place 

recycling and milling-and-filling as supplement. 

 

4.4.2 Eco-efficiency Performances under Different Service Lives 

When the HIPR and M&F have the same durability extension, the HIPR has 

already performed better in the both overall ecology and cost aspects. If the 

HIPR had the longer life extension (i.e., durability extension of M&F lower 

than that of HIPR), to reach the same life cycle analysis period, the frequency 

to conduct M&F would be higher than HIPR, which leads to the obviously 

same conclusion with the scenario under the same durability. Furthermore, 

the ability of HIPR to extend service life documented in the previous 

literatures was ranged from 3 to 12 years (Ali et al., 2013; Anderson et al., 

2016; Caltrans, 2008; Wu et al., 2010), which was less likely to achieve the 

same intervention effects as M&F: 6 to 18 years (Anderson et al., 2016; 

LEGCO, 2012; Speight, 2015; Wu et al., 2010). Therefore, based on the 

above-mentioned literatures, we first selected 15 years as a compromised 

durability of M&F with subtracting 3 margin years from the maximum, and 

then employed the descending durability from 15 years of HIPR to find the 

trade-off point between life extension and eco-efficiency.  
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Figure 4-9 presents the relative environmental performances and their 

variation tendencies of two M&R alternatives under different life extension 

of HIPR. It can be observed that the colors of Scenarios A to E are changed 

from dark to light for both alternatives. This implied that with the service life 

reduction of HIPR, the environmental impacts of M&F are diminishing 

(shrinking trend), while those of HIPR become more serious (expanding 

trend). 

 

Figure 4-9 Environmental performance under the different service life 

 

 

Figure 4-10 Eco-efficient performance under the different service life 
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As illustrated in Figure 4-10, along with the decreasing life extension of HIPR, 

the eco-efficiency positions of HIPR move from the higher efficiency to the 

lower direction. On the contrary, the trajectory of M&F moves towards the 

opposite direction correspondingly. More precisely, HIPR shows its strength 

in both environmental and cost performance when it has the same treatment 

effectiveness (i.e., life extension) with M&F (Scenario A). After one-year 

reduction in the service life of HIPR (Scenario B), the cost performances of 

both become the same, but the HIPR is still more favorable due to its 

persistently better environmental performance compared to M&F. In the 

circumstance of Scenario C, the cost performance of M&F wins the more 

satisfactions, while the HIPR is still more environmental-friendly. When the 

service-life ratio of HIPR and M&F is 12/15, the environmental impacts of 

two alternatives get to be equivalent, while M&F remains more cost efficient 

When there is a four-year gap between them, M&F starts to show its 

advantages in both environmental and monetary aspects. 

 

A previous investigation (Anderson et al., 2016) about long-term performance 

of hot in-place recycling project also reflected the importance of the life 

extension in the life cycle cost: the shorter life of the HIPR (9 years) results 

in an annual per lane mile cost that is $3,700 higher than the HMA mill and 

fill (15 years). Beyond that, according to the report of FHWA (Wu et al., 2010), 

based on the survey of 3 practical projects, HIPR could extend pavement 

service life ranging from 3 to 8 years, while M&F could extend pavement 

service life ranges from 6 to 17 years according to the summary of 9 related 

projects. Combining this with the analysis results of this study, even both the 

techniques could reach the above maximum life extensions, HIPR still lose 

its ecological benefits in the long-term perspective, even though hot-in place 

recycling has been promoted to be cost effective and low carbon emissions 

for years (Watson, 2011). Thus, it can be seen that in addition to involving 
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different abilities in life extension into the eco-efficiency consideration of 

M&R techniques, the different system boundaries and analysis periods may 

further lead to the inconsistent results with previous studies. 

 

4.5 Summary 

This chapter proposed an eco-efficiency integration framework for pavement 

M&R alternatives with sensitivity analysis of maintenance effectiveness. To 

further verify the usability of the framework, two prevalent rehabilitation 

alternatives, namely HIPR (real project) and M&F (mock case), was 

systematically evaluated and compared as case study in relation to eco-

efficiency and maintenance effectiveness. 

 

Under the situation with the same life extension ability, the environmental 

impacts and economic performance of HIPR technique and conventional 

M&F approach have been quantified and visualized. For the rehabilitation 

cases presented in this study, HIPR is more favorable in terms of its eco-

efficiency location, because it is plotted in the upper right corner, while M&F 

is positioned in the opposite corner. More preciously, HIPR could reduce 

approximately 16% environmental impacts and save 5% costs than those of 

M&F. 

 

However, it should be noted that the results are quite sensitive to the treatment 

effectiveness of rehabilitation techniques. Therefore, the life extension, as one 

of effective parameters, was involved into this study. The sensitivity analysis 

concluded that the decreasing life extension of HIPR witnessed its eco-

efficiency reduction compared with M&F technique. When the life extension 

ratio of the two alternatives was up to 12/15 (HIPR/M&F), the M&F started 

to show it advantages. In the five different scenarios, the “worst case” 
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(scenario E) would suggest that when maintenance effectiveness ratio of 

HIPR/M&F reduced to a threshold (11/15), both environmental and cost 

benefits of HIPR will lose. This signifies the importance of guaranteeing the 

construction quality and effectiveness of rehabilitation techniques. 

 

Even though the eco-efficiency analysis method showed its high potential and 

good visuality as an effective and more systematic sustainability assessment 

tool for comparing asphalt pavement rehabilitation alternatives, there are two 

unavoidable limitations in this study. First, because of the data limitation, the 

value assignment of the life extensions of the two rehabilitation techniques 

are considered on the basis of the investigations by previous technical 

documents or literatures (Ali et al., 2013; Anderson et al., 2016; Caltrans, 

2008; LEGCO, 2012; Speight, 2015; Wu et al., 2010). In the view of statistics, 

there is always a probability distribution of life extension for specific 

treatments. The extension year applied in this case just offered a reasonable 

entry to find the potential trade-off point between the eco-efficiency and life 

extension of corresponding treatment. For future studies, the application of 

more accurate life extension prediction models, either empirical or 

mechanistic-empirical models, were recommended.  

 

Second, the data uncertainty due to the regional or geographic factors as an 

inherent attribute of life cycle assessment, to some extent, might affect the 

quantified results of the life cycle assessment impacts. According to the 

investigation by Santero et al. (2011b) in 15 LCA studies from 1996 to 2010, 

the energy consumption of cement production could range from 4.6 to 7.3 

MJ/kg, and the energy consumption range of asphalt production is 0.7-6.0 

MJ/kg. The uncertainties could be discussed in two data types in the life cycle 

assessment system: foreground data and background data (EC, 2010). The 

foreground data (case data) including the scope definition, processes of life-

cycle phase, pavement design information, material type, equipment model 
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and productivity, etc., were all come from the real Chinese project report or 

Chinese specification standards. The foreground uncertainties are primarily 

due to the different choices. The background data connected with the 

foreground data through various professional LCA data sources (Table 4-4), 

which is the significantly part affected by the regional uncertainty factor. 

These factors involved crude source distribution, refinery allocation and the 

national energy structure etc. Therefore, it is hard to estimate the result 

generalization by simply subjective judgment. In order to obtain more general 

and applicable results, a recommendation to filled in this gap in the future 

pavement life cycle evaluation is to apply the uncertainty analysis, such as 

Monte Carlo simulation (Huijbregts, 1998a, 1998b) and pedigree matrix 

approach (Weidema et al., 2013). 

 

In general, the eco-efficiency integration framework and case study results in 

this chapter could support as reference to the agencies or decision-makers to 

identify the advantages and disadvantages of the two rehabilitation techniques 

(HIPR and M&F) under the gradually decreasing life extension of HIPR. The 

concluded trade-off point between the eco-efficiency and life extension 

parameter could help to find ways to facilitate improvements. 
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CHAPTER 5  UNCERTAINTY ANALYSIS 

5.1 Introduction 

As one of major limitations of the LCA-based studies, the conclusions were 

generally drawn from single or multiple case studies. It may lead to 

inconsistent findings due to different assumptions and uncertainty factors, 

such as system boundary, data appropriateness, region, transportation 

distance and pavement performance model (Tatari et al., 2012; Wang et al., 

2012a). Although the uncertainty analysis in LCA has been suggested by 

many literatures (Huijbregts, 1998a, 1998b; Noshadravan et al., 2013; 

Weidema et al., 2013; Yu et al., 2016a), very limited studies could be found 

on considering these uncertainties in the pavement life cycle. Therefore, the 

major objective of this chapter is to include the uncertainty consideration into 

the evaluation framework to decrease the likelihood of misunderstanding or 

negative effect on external interest. In this context, the incorporation of 

uncertainty was originality implemented in comparing the life-cycle energy 

consumption of warm asphalt rubber (WAR) pavements built with three 

typical warm additives: organic wax, surfactant additive, and zeolite, as the 

research on identifying the long-term energy-saving role of WMA 

technologies in Asphalt rubber (AR) pavement is still very limited.  

 

AR pavement, which is incorporated with more than 15% of waste tire rubber 

by weight of asphalt binder, has received growing attention in the past years 

because of its various advantages, such as potential energy recovery from 

end-of-life tires, excellent durability and lower tire-road noise (Rodríguez-

Alloza et al., 2015). The environmental benefits of AR mixture because of 

using waste material have been studied and reported by many researchers 

(Bartolozzi et al., 2014; Farina et al., 2017; Wang et al., 2012a). However, the 
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construction temperature of AR mixture would be 86 - 122 ℉ (30 - 50 ℃) 

higher than conventional hot mix asphalt (Yu et al., 2017), which results in 

more energy consumption and emission during the construction process. As a 

solution, warm mix asphalt (WMA) technologies can be applied to reduce the 

construction temperature of AR mixture with the assistance of various WMA 

additives (Kristjánsdóttir et al., 2007). These additives can be generally 

classified into three categories based on their working mechanisms (D'Angelo, 

2008; Rubio et al., 2012; Yu et al., 2016b): organic additives (e.g., organic 

wax), chemical additives (e.g., surfactant additive) and foaming additives 

(e.g., zeolite). Several field trials and life cycle assessment (LCA) studies 

have been conducted to evaluate the environmental effects of WMA 

technologies (Hassan, 2010; Hicks et al., 2010; Hurley et al., 2009; 

Kristjánsdóttir et al., 2007; Rodríguez-Alloza et al., 2015; Tatari et al., 2012; 

Vidal et al., 2013). Some of them indicated an evident energy saving and 

environmental impact reduction by using WMA (Harvey et al., 2016; Hicks 

et al., 2010; Hurley et al., 2009; Kristjánsdóttir et al., 2007; Rodríguez-Alloza 

et al., 2015), while the other evaluation studies (Tatari et al., 2012; Vidal et 

al., 2013) found that there was significant variability among different WMA 

technologies, and the reduction in the impacts of WMA resulting from the 

lower mixing temperature was offset by the greater impacts of the materials 

used. 

 

This chapter is composed of five major sections. The first section briefly 

introduces the background, research gap, and chapter outline. The second 

section focuses on the methodology development. More specifically, along 

with the LCA of the four comparative mixtures, the uncertainty was 

quantified by either basic uncertainty or additional uncertainty. The basic 

uncertainty expressed the variation potentially due to the measurement error, 

activity specific variations, temporal variations, use of assumption, lacking 

verification, sample incompleteness etc. (Weidema et al., 2013). The 

additional uncertainty referred to the uncertainty introduced by the data 
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quality and appropriateness. The Monte Carlo simulation was performed 

based on the characterized distributions and propagated the uncertainties into 

the life cycle energy consumption of the selected warm AR mixtures. Then, 

the third section present the detailed information of the case study in mixture 

design, performance prediction, and involved uncertainties. After the 

discussion, the major findings are summarized finally. By incorporating 

uncertainty analysis, more comprehensive information could be provided for 

decision-making compared with the conventional deterministic assessment 

results.  

 

5.2 Methodology 

Three major processes were involved in the methodology part, including the 

definition of the system boundary and life cycle inventory (LCI) data 

collection, incorporation of the uncertainty factors and corresponding 

probability distributions into LCA, and integration of the uncertainties with 

the LCA through Monte Carlo simulation. 

 

5.2.1 Life Cycle Assessment 

LCA is a systematic environmental impact evaluation tool for a product, 

technique or service in its defined lifetimes. A pavement life cycle analysis 

framework involving the cradle-to-grave stages of pavement, has been 

established by the Federal Highway Administration (FHWA) (Harvey et al., 

2016). The LCA in this study followed the FHWA guideline in accordance 

with ISO 14040 and 14044 (ISO, 2006a, 2006b). 

 

A comparative attributional LCA incorporated with uncertainty analysis is 

used to identify the superior probabilities of the four rubber asphalt pavement 

mixtures based on the estimated input uncertainty factors under the equitable 

functional unit (FU), system boundary, and allocation rule. The functional 
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unit is defined in accordance to the functional outputs of the life cycle system. 

In this study, the considered FU was 1 km-lane pavement area with 20-year 

analysis period. The system boundary considered five main stages as shown 

in Figure 5-1: (1) material extraction and production stage, (2) transportation 

stage, (3) construction stage, (4) usage stage, and (5) end-of-life (EOL) stage. 

 

The material extraction and production stage quantified the energy 

consumption in the asphalt refinery, aggregate mining and crushing, crumb 

rubber recycled from end-of-life tires (ELTs), the production of WMA 

additives, and plant mixing process. The transportation stage computed the 

energy consumption related to the processes to transport materials: transport 

of asphalt binder from refinery site to the mixing plant, transport of 

aggregates from local quarry to the mixing plant, transport of ELTs from 

initial collection site to the crumb rubber processing site, transport of crumb 

rubber powder to the mixing plant, and transport of asphalt mixtures from 

mixing plant to construction site. The construction stage calculated the energy 

burdens from the construction activities, including laying mixture, paving, 

compacting, sweeping, and lighting, assuming the same compaction efforts 

between AR and WAR mixtures. The usage stage quantified the extra energy 

consumption associated with the vehicle operation due to the pavement 

deterioration. At the end-of-life stage, the typical scenarios may include full-

depth reclamation, recycled materials, and landfilling (Harvey et al., 2016). 

In this study, it was assumed that the EOL pavement surface would be 

completely reclaimed on site as part of new pavement surface material and 

serve for the next life cycle system. Thus, no environmental impact would be 

assigned to the EOL stage. The energy burden associated with recycling ELTs 

was ascribed to crumb rubber production, and no virgin material would be 

associated with the crumb rubber creation. The fate of co-product was also 

excluded in the evaluation. For the asphalt refinery in the system (multi-

output situations), though the physical-based (mass) allocation rule was the 
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basically applied in the data sources, the refining crude oil is a complex 

process and hard to be properly allocated.  

 

 

Therefore, to characterize the uncertainty in the LCI data sources, the life 

cycle inventory analysis would follow the above-defined system boundary 

together with the available primary data from various sources (Appendix 2). 

A range of energy consumption in the asphalt binder, crumb rubber and 

aggregate production, transportation and construction equipment, and 

corresponding transportation distances were extracted and collected from the 

relative studies and databases. As different types of energy/fuel consumption 

(e.g., crude oil, diesel, gasoline, natural gas, and electricity etc.) was 

calculated in different energy units, the total energy consumption is converted 

and integrated into a uniform unit (megajoule) based on the corresponding 

energy contents (Weidema et al., 2013). 

 

Among the three evaluated WMA additives, the water contained in the zeolite 

would be released during the asphalt mixture mixing process to create a 

foamed asphalt and improve the mixture workability (Yu et al., 2016b); the 

organic wax additive could reduce the viscosity of asphalt binder at the 

asphalt mixture construction temperature (Leng et al., 2017b); and the 

Figure 5-1 System boundary for warm mix asphalt rubber pavement 
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surfactant warm mix additive employs the chemistry packages including the 

emulsification agents and adhesion promoters to enhance the mixture 

workability (Yu et al., 2017). The environmental burden in manufacturing the 

WMA additives was often ignored by the previous studies due to the limited 

available information provided by the manufactures. In this study, the LCI 

data of synthetic zeolites from the study by Fawer et al. (1998) were used for 

the evaluation for zeolite production, and the evaluation of organic wax 

production employed the LCI data of paraffin wax from the study by 

Tufvesson and Börjesson (2008). Considering the detailed components of 

surfactant additive varied, the LCI data of asphalt emulsion and polymer 

modified additive (Wang & Gangaram, 2014) were used to calculate the 

environmental burden to produce surfactant additive. Since this substitution 

may introduce unreliability in the results, a high data quality variance was 

considered in the later uncertainty analysis.  

 

For the mixing plant evaluation, a linear relationship ranged from 480 to 1100 

BTU/°F/ton (Prowell et al., 2014; West et al., 2014) between the mixing 

temperature and energy consumption was employed. This thermodynamic 

model was calibrated by real data with regarding to aggregate moisture 

content, casing losses and mix and stack temperatures (Prowell et al., 2014; 

Rodríguez-Alloza et al., 2015; West et al., 2014). 

 

In the pavement usage stage, the pavement roughness acts as a major function, 

which is closely linked to the fuel efficiency of vehicles (Chatti & Zaabar, 

2012; Harvey et al., 2014). Therefore, the corresponding impact was 

considered as the extra energy consumption by vehicles due to the pavement 

deterioration. International roughness index (IRI) was employed to 

characterize the pavement roughness level. Since the parallel LCAs of the 

four mixtures were supposed to serve in the planning stage, the prediction of 

IRI trend over time was achieved by using the pavement performance 
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prediction model. Despite many tools and models have been applied with 

regarding to the pavement roughness prediction (Bryce et al., 2014; Santos et 

al., 2017a), the Mechanistic Empirical Pavement Design Guide (MEPDG) 

software (AASHTO, 2008; NCHRP, 2004) was employed in this work, as it 

could provide the prescribed level of IRI prediction reliability with an 

underlying probabilistic model. The uncertainty in IRI evolution was 

propagated through the quantification of extra fuel consumption in the 

pavement-vehicle interaction model. The effects of the uncertainties would 

vary depending on the pavement materials and their deviations in the time-

related roughness curve. Figure 5-2 (AASHTO, 2008) illustrates the 

uncertainty characterization by the IRI prediction curves at different 

reliability levels, where the upper limit reliability (1-α) curve and the lower 

limit reliability α curve constitute the pavement IRI uncertainty band. 

 

 

The extra fuel consumption was then translated from the increasing IRI via a 

mechanistic model developed as part of the Highway Development and 

Management software (HDM-4) with the parameters calibrated by Zaabar 

and Chatti (2010), Akbarian and Ulm (2012), and Jiao and Bienvenu (2015). 

Figure 5-2 Schema of MEPDG IRI prediction over pavement age at 

50% (mean), α and (1-α) reliability levels  
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The uncertainty in the IRI evolution associated with the extra vehicle fuel 

consumption was propagated by the Monte Carlo simulation, employing the 

IRI evolution curves in different reliability levels under the MEPDG 

prediction.  

 

5.2.2 Uncertainty Analysis 

Uncertainty is a statistical term defined by ISO 3534-1 (ISO, 2006c) to cover 

any distribution of data within a population, caused by either random 

variation or bias (Weidema et al., 2013). The classification of uncertainties 

was varied in different uncertainty typology researches (Heijungs & 

Huijbregts, 2004; Weidema et al., 2013), which may occur in any life-cycle 

step or stage. In this study, two types of uncertainties were estimated: basic 

uncertainty and additional uncertainty. 

 

The basic uncertainty can be ideally modeled by a probability distribution and 

incorporated into the LCA framework by the Monte Carlo simulation method. 

The choice of distribution has limited influence on the overall uncertainty of 

system, since the aggregation of a large number of independent variables each 

with their distribution will always approach a result with normal distribution, 

which is called “central limit theorem”. In this study, the lognormal 

distribution defined as the “probability distribution where the nature 

logarithm of the observed values that are normally distributed” (Weidema et 

al., 2013), was characterized by the variances of underlying normal 

distributions that describe the collected LCI input sample data. There are three 

reasons to employ it. First, many real-life effects are multiplicative rather than 

additive. Second, most parameters for real life populations are always positive. 

Thirdly, the standard deviation of the underlying normal distribution is scale 

independent.  

 

For the additional uncertainty, the pedigree matrix approach established by 
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Weidema and Wesnaes (1996) was used to quantify the data quality indicators 

(DQIs), which was incorporated to the underlying lognormal distribution 

derived from the above-mentioned basic uncertainty. The five independent 

indicators of pedigree matrix include “reliability”, “completeness”, “temporal 

correlation”, “geographical correlation”, “further technological correlation”, 

and each of them are classified into five levels with a pedigree score 

(Weidema et al., 2013). The pedigree scores were then transferred to the 

statistical variances of underlying normal distribution. The relationship of the 

scores and variances was specified by Weidema et al. (2013a), with the higher 

scores reflecting the higher variance and lower data quality. In this study, the 

data quality of the collected LCI sample data was quantified with regarding 

to the five independent quality variances. Considering the covariance equals 

zero for their independent relationships, when the variance of the underlying 

normal distribution of basic uncertainties was donated as 𝜎𝑏
2, the variance of 

the overall variance 𝜎𝑡
2  with the five additional uncertainties 𝜎𝑖

2  can be 

calculated using the following equation: 

 

𝜎𝑡
2 = 𝜎𝑏

2 + ∑ 𝜎𝑖
25

𝑖=1                                          (5-1) 

 

5.2.3 Monte Carlo Simulation 

Figure 5-3 summarizes the Monte Carlo simulation procedures in this study. 

After the LCA input uncertainty factors had been characterized by quantifying 

either basic or additional variances, the simulation was performed to 

propagate the uncertainty factors into the life cycle energy consumption 

estimation. Based on this purpose, numerical values of all the uncertainty 

factors were randomly sampled with following their characterized 

distributions. For each sampled set, the inputs were delivered into the 

predefined LCA system to compute the corresponding energy consumption 

of single life stages and whole life cycle. Then, the energy consumption 
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samples were obtained by applying n repetitions of the above computation 

process. Finally, the probability distributions of these samples can be 

estimated. 

 

 

The simulation results present the probability distribution of the life cycle 

energy consumption of the alternative mixtures. The comparative indicator, 

defined as the rate of the life-cycle energy consumption of the two compared 

mixtures, was used to describe the relative differences in the view of statistics. 

At each Monte Carlo iteration, the comparative indicators were calculated and 

stored. For the four AR mixtures in this study, a matrix consisting of 

corresponding comparative indicators (Table 5-1) was generated and 

analyzed, which intend to signify the superiority likelihood that one 

Figure 5-3 LCA Monte Carlo Simulation Schematic Diagram 
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alternative than the other one. For instance, the term P(EB/EA<1) represents 

the probability of the events that the life-cycle energy consumption of mixture 

B was less than that of mixture A involving all computing iterations, and vice 

versa. Then, a decision regarding to the energy-saving superiority of mixture 

A over mixture B can be made accordingly. 

 

Table 5-1 Comparative indicator matrix of the four designed pavement 

materials 

Mixture A B C D 

A - P(EA/EB<1) P(EA/EC<1) P(EA/ED<1) 

B P(EB/EA<1) - P(EB/EC<1) P(EB/ED<1) 

C P(EC/EA<1) P(EC/EB<1) - P(EC/ED<1) 

D P(ED/EA<1) P(ED/EB<1) P(ED/EC<1) - 

 

5.3 Case Study 

The four mixtures evaluated in the case study are the asphalt rubber mixture 

without WMA additive (AR), the warm AR mixture with surfactant additive 

(ARS), the warm AR mixture with organic wax additive (ARW), and the 

warm AR mixture with zeolite additive (ARZ), which represent control 

mixture and the mixtures with three common warm additives – chemical, 

organic, and foaming additives, respectively. Table 5-2 summarizes the 

formula of the four estimated wearing course mixtures, including the 

percentage of crumb rubber modifier (CRM), the type and dosages of warm 

technologies, the binder content, and the unit weight of each mixture. 

 

Table 5-2 Summary of AR and WAR mix formula 

Mixture CRM 

content(a) 

Warm 

Additives 

Additive 

Content(a) 

Binder 

Content(b) 

Unit 

Weight(c) 

AR 18 N/A N/A 6.7 2320 

ARS 18 Surfactant 5 6.7 2298 

ARW 18 Wax 3 6.7 2315 

ARZ 18 Zeolite 5 6.7 2352 
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Note: (a) Unit: wt% of AR; (b) Unit: wt% of mix; (c) Unit: kg/m3 

 

The essential input for the MEPDG model included structures of pavement, 

material properties, traffic information and climate information. The structure 

and material information from a series of rheological and mechanical 

experiments (Yu, 2017) were used as the input parameters, including binder 

complex modulus, dynamic modulus, stage angle, mixture gradation, and air 

void. The climate condition including the temperature, wind speed, humidity, 

and cloud amount were collected from the Hong Kong Weather Observatory. 

For the traffic loading condition, the 9,355 annual average daily traffic with 

70% for car and 30% for truck was employed based on the recorded maximum 

traffic volume by the Hong Kong Highway Department (HyD). The MEPDG 

software modeled their IRIs at 50% reliability and 90% reliability (Figure 5-

4), where the initial IRIs of the four mixtures were assumed to be 1m/km. The 

prediction results showed an acceptable smoothness within the 20-year design 

life. 

 

 

Figure 5-4 The MEPDG IRI prediction curves of the four mixtures in 20-

year design life 
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Based on the above-mentioned methods and collected LCI sample data, the 

uncertainty factors were classified into four categories: energy consumption 

in material production, mixing temperature reduction and corresponding 

energy saving, transportation distance, and energy consumption of 

construction equipment. Table 5-2 summarized the computed uncertainty 

formula parameters (e.g., mean: μ and standard deviation: σ) for the involved 

uncertainty factors based on the addition variance (DQI) and basic variance 

of inventory data presented in the Appendix 2.  

 

Table 5-3 Summary of uncertainty factors 

Uncertainty Factors Uncertainty type Parameters (formula)* 

Material 

production 

energy 

consumption 

(MJ/kg) 

Aggregate  Lognormal μ = -2.7489, σ = 0.8526 

Asphalt  Lognormal μ = 1.0383, σ = 1.2487 

Crumb rubber  Lognormal μ = 0.5288, σ= 0.6751 

AR mixture  Lognormal μ = 0.5938, σ = 0.6625 

Surfactant additive  Lognormal μ = 1.3536, σ = 0.4583 

Organic wax Lognormal μ = 4.6151, σ = 0.2159 

Zeolite  Lognormal μ = 3.2753, σ = 0.2126 

Mixing process 

Unit mixing energy saving (MJ/℉/ton) Uniform lower=0.51, upper=1.15 

Surfactant temperature reduction (℉) Uniform lower = 100, upper = 130 

Organic wax temperature reduction 

(℉) 
Uniform lower = 32, upper = 97 

Transportation 

distance (km) 

Transport crumb rubber powder  Lognormal μ = 4.1349, σ= 1.2461 

Transport asphalt  Lognormal μ = 4.7536, σ = 0.6682 

Transport aggregates Lognormal μ = 3.0784, σ = 1.5764 

Transport asphalt mixture  Lognormal μ = 3.9666, σ = 0.3626 

Energy 

consumption of 

construction 

equipment (L/h) 

Road sweeper  Lognormal μ = 3.2943, σ = 0.1436 

Paving machine Lognormal μ = 3.1532, σ =0.5014 

Steel roller Lognormal μ = 2.8364, σ = 0.4713 

Pneumatic roller Lognormal μ = 2.7526, σ = 0.4459 

Generator Lognormal μ = 3.9485, σ = 0.1217 

Note: * μ and σ were the parameters of corresponding underlying normal distribution. 

 

5.4 Results and Discussion 

The comparation in this study was carried out under the equivalent functional 
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unit, system boundary, allocation methods, data type identification, 

performance considerations and energy evaluating methods as stated in the 

LCA method section. The effects provided by the data variations and data 

quality were estimated and integrated into the LCA calculation processes 

through the Monte Carlo simulation. After 1 million operations of the Monte 

Carlo simulations, the statistics distributions of energy consumption for the 

comparative material sets were formulated. The comparative matrix that 

reflects the superior probability was also computed. 

 

5.4.1 Monte Carlo Simulation Results 

The breakdowns of the energy consumption in MJ/km-lane associated with 

the life cycle stages of the compared pavement mixtures are shown in Figure 

5. The 5th, 25th, 50th (median), 75th, 95th percentiles and the mean of the 

data are indicated in the box-plots. The blue colors varying from dark to light 

in the plots distinguish the AR, ARS, ARW, and ARZ mixtures in turn.  

 

In Figure 5-5, from the view of energy consumption contribution level, the 

order-of-magnitudes of the energy consumption values were varied in 

different stages. The construction stage contributes the minimum energy 

consumption, while the usage stage consumption accounts for the dominant 

portion. Considering such huge disparity in energy consumption (4-5 

magnitudes) between the usage stage consumption and the other stages, the 

accuracy of the MEPDG prediction results plays foundational role in 

evaluating the energy consumption of different pavements in their life cycles.  

 

Visible differences could be observed in the plotted results of material 

production stage. The main contribution for these differences was due to their 

varied energy saving potentials and different energy demands in producing 

additives. While for the usage stage, it is hard to catch the differences directly 

in the box-plots due to the close proximities in the predicted effects of WMA 
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technologies on the pavement roughness. Nonetheless, these slight 

differences are still worth to be noted because their large orders of magnitude. 

Even the difference is 0.0001, after multiplying it by 109, the final amount is 

still large enough to easily affect the overall life-cycle energy consumption 

results. Such significant impact of the pavement-vehicle interaction in the 

usage stage has also been in line with the conclusions of the previous studies 

(Louhghalam et al., 2017; Noshadravan et al., 2013; Wang et al., 2012a). 

 

The corresponding sensitivity analysis of the predicted IRI value on the final 

fuel consumption showed that every 0.1 m/km deviation of the predicted IRI 

values would lead to 7.6 ml/vehicle-km difference of fuel consumption for 

heavy trucks and 1.6 ml/vehicle-km difference for passenger cars. This 

deviation would be considerably amplified by traffic volume and percentage 

of heavy truck. Therefore, the accuracy of the IRI prediction would be the 

critical consideration in the future evaluation and improvement of the 

pavement life cycle performance, especially for the roads with great traffic 

volume and high percentage of heavy truck. 

 

 

Figure 5-5 Estimated contributions of energy consumption breakdown 

 

Although the system boundaries without usage stage was also the most 

frequent consideration by the previous pavement LCA studies (Hassan, 2010; 
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Tatari et al., 2012; Vidal et al., 2013), it can be seen from the results of this 

study that compared with the contribution of the usage stage, the total energy 

consumption in other stages can be almost negligible. Therefore, the overall 

life-cycle energy consumption both with and without usage stage were 

determined as presented in Figure 5-6. The significant differences among the 

four mixtures could be observed for the overall energy consumption without 

usage stage. When the system boundary includes the pavement-vehicle 

interaction, the differences of life cycle energy consumption among the 

compared mixtures have largely melted away, which is attributed to their 

close roughness performances predicted by the MEPDG software. Based on 

the existing input data, very limited effects of WMA technologies on the 

pavement roughness change were identified. Thus, the dominant energy 

consumption in the usage stage offset the conspicuous variability in the 

material production stage. 

 

 

Figure 5-6 Estimated life-cycle energy consumption with and without usage 

stage 

 

5.4.2 Comparative Matrix 

In order to prevent the best-case representation of LCA commissioning party 
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and worst-case representation of the compared alternatives in the comparison 

study, the corresponding comparative indicators were also calculated and 

stored to compute the overall comparative matrix for the four mixtures. Table 

5-4 presents the comparative indicators (probabilities) for the overall energy 

consumption with and without considering usage stage.  

 

Without considering the pavement-vehicle interaction in the usage stage, all 

the three warm AR mixtures provide the probabilities with lower energy 

consumption compared with the conventional AR mixture. Among different 

warm AR mixtures, ARW has the best performance for its highest estimated 

probability of the events with lower energy consumption. However, it is worth 

noting that the energy consumption in production of surfactant warm mix 

additive has the potential to be underestimated, because the detailed 

components of the corresponding commercial products are confidential and 

only asphalt emulsion and polymer modifiers were assumed as the substitutes. 

Under this circumstance, ARS mixture has higher likelihood to have lower 

energy consumption than ARZ mixture, which is also consistent with the 

conclusion drawn by Tatari et al. (2012). When the extra IRI-induced energy 

consumption in the usage stage is considered, the energy-saving advantages 

of the WMA technologies becomes negligible in the life cycle point of view, 

which also signifies the importance of both the effect of pavement roughness 

and the roughness prediction accuracy. 

 

Table 5-4 Comparative matrix 

Without usage stage With usage stage 

 AR ARS ARW ARZ  AR ARS ARW ARZ 

AR - 0.44 0.43 0.48 AR - 0.5008 0.4995 0.5001 

ARS 0.56 - 0.49 0.54 ARS 0.4993 - 0.4986 0.4981 

ARW 0.57 0.51 - 0.55 ARW 0.5005 0.5014 - 0.5001 

ARZ 0.52 0.46 0.45 - ARZ 0.4999 0.5019 0.4999 - 
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5.5 Summary 

This chapter evaluated the energy-saving performances of three WMA 

technologies (zeolite, organic wax, and surfactant) in AR pavements through 

LCA incorporated with uncertainty consideration. The probability 

distribution of energy consumption for each life cycle stage was characterized, 

which followed the comparative matrix to illustrate effects of the different 

WMA technologies on energy saving.  

 

Among all the life cycle stages, the use stage contributed dominant energy 

consumption, which almost covered up the energy-saving advantages of the 

three WMA technologies in the material production stage. This indicates the 

significance in ensuring the long-term pavement performance for any 

application of warm mix technologies. The results with and without 

considering the usage stage showed clear differences for the four considered 

AR mixtures, which signifies the great influence provided by the life cycle 

system boundary definition on the LCA results.  

 

Among the three warm mix technologies, ARW mixture stayed in the greater 

probabilities in reducing the energy consumption compared with other 

mixtures for the life cycle whether involved usage stage or not. Whereas, the 

energy-saving probabilities of ARZ and ARS mixtures tended to be less than 

the probabilities of traditional AR mixture after the usage stage was 

considered. The consideration of probability in the comparative LCA study 

could decrease the likelihood of misunderstanding or negative effect on 

external interest. 

 

In addition to the energy-saving performance, more environmental impact 

categories were recommended to be considered in the future study. As the 

ranking was also influenced by the involved impact categories. For example, 
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it was found that ARS mixture showed an increase in the production 

emissions and relied highly on limited non-renewable resources, while ARZ 

was less sustainable in terms of renewable ecological resources consumption 

(Hurley et al., 2009; Tatari et al., 2012). Furthermore, the maintenance 

scenario in this study is “do-nothing” in the 20-year design life, compared 

with the routine maintenance schedule. This scenario may bring more serious 

pavement deterioration situation and the IRI-induced energy consumption 

might be overestimated to some extent. The maintenance stage was also 

suggested to be included in future studies. 

 

In general, the more comprehensive results of this study could improve the 

reference quality for decision-making. Besides, the breakdown of the 

estimated energy consumption in each life cycle stage could also help to 

identify the issues that have potentials to enhance the pavement sustainability. 
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CHAPTER 6  MODELING PERFORMANCE 

LONGEVITY 

6.1 Introduction 

In the previous chapter, the life cycle results showed the huge disparity in 

environmental impacts between the use stage and the other stages, which 

verified the significance of pavement long-term performance as well as the 

prediction accuracy in project-level decision-making. In addition, for 

network-level planning, pavement performance prediction model is also an 

indispensable component in the analysis scheme. As reviewed in Chapter 2, 

compared with mechanistic-empirical approaches, empirical methods could 

provide more flexible options in predicting either pavement condition 

performance or functional performance.  

 

As a new vision in empirical methods, data mining (DM) is a robust technique 

that can be utilized to obtain data-driven knowledge and retrieve patterns or 

models from the complex correlations between the variables by applying 

specific algorithms (Domingos, 2012). Among the many DM algorithms and 

methods, artificial neural networks (ANN) and support vector machine (SVM) 

are most commonly applied in solving the nonlinear regression problems 

(Lagat et al., 2018; Naguib & Darwish, 2012; Tinoco et al., 2011). In 

pavement research field, DM techniques have been successfully applied in 

various modeling, such as predicting the energy consumption due to tyre-

pavement interaction (Araújo et al., 2019), forecasting energy consumption 

in hot mix asphalt (HMA) production (Androjić & Dolaček-Alduk, 2018), 

modeling tyre-pavement noise (Freitas et al., 2015), predicting rolling 

resistance in clay loam soil (Taghavifar et al., 2013), prevising the 
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performance of stabilized aggregate bases subjected to wet-dry cycles 

(Maalouf et al., 2012), and predicting HMA stiffness (Gopalakrishnan & Kim, 

2011). 

 

As an increasingly significant pavement functional performance, traffic noise 

emission has grown to be a pervasive problem, especially in the metropolitan 

cities with large-scale traffic network and high population density. The tyre-

pavement noise has been proven to be one of the major noise contribution 

sources when the vehicle speed is greater than 48 km/h (30 mph) (Lodico & 

Donavan, 2018), as the vehicle propulsion noise is being controlled by the 

vehicle design process. Although noise barrier is an effective method to 

reduce traffic noise, due to the limited land space and large number of high-

rise building in Hong Kong, it could be less effective for covering a 

considerable part of the road width. Instead, low noise road surface (LNRS), 

which reduces tyre-pavement noise at the source, could be an optimal solution 

(Sandberg, 2008). The generation of tyre-pavement noise is a complex 

process with various contributing factors, such as tyre radial vibrations, air 

pumping, stick-slip, and stick-snap (Lodico & Donavan, 2018). Many studies 

(Beckenbauer et al., 2008; Chen et al., 2018; Ding & Wang, 2017; Freitas et 

al., 2015; Klein et al., 2008; Rochat & Donavan, 2018; Sandberg & Ejsmont, 

2002) have been conducted to build tyre-pavement noise prediction models 

based on pavement surface characteristics and pavement materials properties. 

Although these tyre-pavement noise models have good modeling 

performance, the acoustic durability as one of the primary concerns for noise 

abatement has been largely ignored. Several studies have attempted applying 

traditional statistical method to model the acoustical durability as the constant 

linear trends (Blokland et al., 2016; Rasmussen et al., 2007). However, the 

correlation coefficients from 0.01 to 1 showed high model instability owing 

to the insufficient data analysis techniques.  
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This chapter illustrated and compared the two long-term performance 

prediction approaches, namely ANN and SVM, in modeling the pavement 

acoustic longevity based on the long-term tyre-road noise data collected from 

270 asphalt pavement sections in Hong Kong. Meanwhile, the global 

sensitiviy analysis (GSA) was conducted to explore the dual effects of 

pavement age and vehicle speed on the acoustic performance. Four steps were 

bound to reach the target. First, the research scope was identified based on the 

dependent and independent variables selection. Second, the long-term 

acoustic performance data were collected by an at-source-measurement 

method, namely close proximity (CPX). Third, the obtained data were applied 

for training the longevity model by the ANN and SVM algorithms, and three 

metrics were used to evaluate and compare the model performance. Finally, a 

two-dimensional sensitivity analysis (2D-SA) was conducted to visualize and 

interpret the relative importance of age and vehicle speed variables and reveal 

the inter-relationships among the variables in the two models. 

 

6.2 Methodology 

6.2.1 Model Variable Selection 

Tyre-pavement noise is generated by the superimposed interaction 

mechanisms. Vehicle travel speed is one of the significant impact factors 

(Freitas et al., 2015; Sandberg, 2008). From the perspective of pavement, the 

intrinsic properties to influence the noise generation and propagation include 

pavement layer stiffness, surface texture and pavement layer acoustic 

absorption (Ding & Wang, 2017). Nevertheless, these properties are 

fundamentally affected by the interaction among the pavement surface 

thickness, binder content, aggregate size, and air void content (Roberts et al., 

1996). Therefore, when the target variable is tyre-pavement noise, age of 

surface (age – t), vehicle’s travel speed (speed – V), and surface design 
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features (maximum aggregate size – Amax, layer thickness – Th, target air 

void – Av., mix binder content – Pb), were selected as the independent 

variables and recorded in each tyre-pavement noise measurement in this study. 

 

Table 6-1 Summary of surface designs 

Surface 

material 
Surface image 

Maximum 

aggregate 

size (mm) 

Binder 

content 

(%) 

Target 

air void 

content 

(%) 

Reference 
Thickness 

(mm) 

WC 

 

10 6.0 3.8 
HKHyD 

(2018a) 
20 

20 5.0 4.4 
HKHyD 

(2018a) 
40, 45 

FC 

 

10 4.5 20.0 
HKHyD 

(2018b) 
30 

PMFC 

 

10 5.5 20.8 
HKHyD 

(2018a) 
30, 50 

20 4.5 21.3 
Sandberg 

(2008) 
30, 50 

SMA 

 

10 6.0 4.5 
HKHyD 

(2018a) 
45, 50 

20 6.3 4.4 
HKHyD 

(2018a) 
45, 50 

PMSMA 

 

10 6.0 4.5 
HKHyD 

(2018a) 
30 

6 6.5 7.4 
HKHyD 

(2018a) 
25, 30, 50 

 

The pavement surfaces monitored in this study covered five major flexible 

pavement surface types in Hong Kong, including dense-graded wearing 

course (WC), gap-graded stone mastic asphalt (SMA), open-graded friction 

course (FC), open-graded polymer modified friction course (PMFC), and 

gap-graded polymer modified stone mastic asphalt (PMSMA). The porous 

PMFC applied as the typical LNRS has covered a considerable length of high-

speed expressways in Hong Kong. Table 6-1 summarizes the 16 design 
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schemes involved in the five aforementioned pavement surfaces. 

 

6.2.2 Acoustic Performance Measurement 

Although the influence levels of traffic noise could be affected by the distance 

from the receptor to the noise source and the propagation path, the application 

of low-noise pavement reduces traffic noise levels at the source of tire-road 

interface. The CPX method was applied to collect the pavement acoustic 

performance data, which is an at-the-source method for measuring the tyre-

pavement noise in isolation of other sources and allowing the acoustics 

performance of the pavements over time to be compared. Following the 

standard method specified by ISO 11819-2 (ISO, 2017), it provides an 

opportunity to obtain reliable large volume of data for developing statistical 

pavement acoustic longevity model. 

 

The certified CPX trailer with complete measurement system (Hung et al., 

2008; Mak, 2014) was employed to collect long-term data in the urban areas 

of Hong Kong. The system was equipped with four Type 1 microphones  

(IEC, 2013), a third-octave band filter software (IEC, 2014), a Class 1 sound 

level calibrators (IEC, 2017), a microwave speed sensor, a tyre load 

measurement equipment, and an inflation pressure measurement equipment. 

The acoustical enclosure with sound absorption material inside was towed by 

a 5.5-ton light goods vehicle to conduct surveys on the road segments. Inside 

the acoustical enclosure, the standard reference test tyre (SRTT) specified by 

ASTM standard and four mandatory microphones were placed as depicted as 

in Figure 6-1. Four microphones were fixed at 100mm (± 20mm) above the 

pavement level and 200mm (± 20mm) from the tyre sidewall, and two 

microphones were distributed on the two sides of the tyre. The “front” 

microphones (M1) were mounted at an angle of 45º ± 5º to the rolling 

direction, and the “rear” microphones (M2) were mounted at an angle of 135º 

± 5º to the rolling direction. 



99 
 

 

In this study, all the CPX measurements were carried out in at-least 200-m 

road section for at least four runs with the same starting/stopping spots. The 

sound level recording, editing and analysis from National Instruments (NI) 

were used for tyre-pavement noise data collection and analysis. The noise is 

quantified as the “close-proximity sound index for passenger cars and light 

traffic” (CPXP) according to ISO 11819-2 (ISO, 2017). This index represents 

the sound pressure level (SPL) in A-frequency and FAST time weighted 

under the condition of passenger car tyre (Goubert et al., 2014).  

 

 
Figure 6-1 Microphones positions in CPX measurement (Mak, 2014) 

 

6.2.3 Modelling and Evaluation 

As tyre-pavement noise is generated by superimposed interaction 

mechanisms, allowed nonlinearities and no prior knowledge required about 

natural relationships among data (Stulp & Sigaud, 2015) are the primary 

reasons that enable the Support Vector Machine (SVM) and Artificial Neural 

Network (ANN) methods to be suitable for defining new models from the 

data collected by the CPX method. As a baseline comparison, the Multiple 
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Linear Regression (MLR) was performed as well. The models were generated 

by using Matlab R2018b (https://www.mathworks.com/) and the 

corresponding code scripts are listed in Appendix 3 and 4. 

 

6.2.3.1 Artificial Neural Network 

ANN is a computational technique that simulates the human nervous system 

structure (Kenig et al., 2001). This technique has been proved to be robust in 

modelling complex nonlinearity, which is particularly helpful for the 

problems without analytical formulation (Freitas et al., 2015). The ANN used 

in the present work was implemented by a fully connected multilayer 

perception (MLP) (Figure 6-2), with 6 nodes in input layer, 10 nodes in one 

hidden layer, one node in output layer, bias connections (b), and hyperbolic 

tangent sigmoid (tansig) activation functions. 

 

 

Figure 6-2 Scheme of the multilayer perceptron applied 

 

Equation 6-1 denotes the general model of MLP applied in this study (Hastie 

et al., 2017).  

 

�̂� = 𝑏𝑂
(3)

+ ∑ (∑ 𝑥𝑖,𝑗 ∙ 𝑊𝑖,𝑗
(1,2)𝐼

𝑖=1 + 𝑏𝑗
(2)

)𝐻
𝑗=1 ∙ 𝑊𝑗,𝑂

(2,3)
                 (6-1) 

 

where 𝐼, 𝐻, and 𝑂 refer to the number of nodes in the input layer (1), hidden 

layer (2), and output layer (3), respectively (in this study: 𝐼 = 6, 𝐻 = 10,

https://www.mathworks.com/
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𝑂 = 1); 𝑊𝑖,𝑗
(1,2)

represents the weight of the connection from node 𝑖 in layer 

1 to the node 𝑗 in layer 2; and 𝑏 corresponds to the bias units. 

 

To find the optimum solution, the backpropagation Lenvenberg-Marquardt 

algorithm was employed to minimize the sum-of-square error function. The 

weights of the network were randomly initialized. The errors computed at the 

output were allocated backwards through the network. Then the initial 

weights could be corrected based on the gradient of the error function. The 

training automatically stopped at the trade-off point of generalization and 

improving, which was identified when the computed mean square error (MSE) 

of the validation dataset has continuously increased in 6 runs. 

 

6.2.3.2 Support Vector Machine 

SVM is a machine learning technique that can be employed for both 

classification and regression problems. Its nonparametric advantage could 

avoid the need to specify the basic functions in priority. The universal 

approximation capability of SVM was realized through various kernel 

functions (Peng & Bai, 2018). The kernel functions transform the data into a 

higher dimensional feature space to make it possible to find the best 

hyperplane to make linear separation (Figure 6-3). 

 

 
Figure 6-3 Scheme of transformation and epsilon (ε) band with slack 

variables (ξ) 
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As illustration in Figure 6-3, the input x is first mapped on to a higher 

dimensional feature space through a nonlinear transformation φ , then the 

linear model was established in the transformed feature space. Regression 

was implemented through minimizing the epsilon (ε) intensive loss function 

that ignored the errors locating within the ε band (Vapnik et al., 1997). The 

deviation of training samples outside ε-intensive band was also minimized 

by introducing the slack variables ξ . Using this method, the optimization 

problem can be transformed into the dual problem, and the optimal solution 

function in the transformed predictor space is given by the following equation: 

 

𝑓(𝑥) =  ∑ (𝑎𝑖 − 𝑎𝑖
∗)𝑘(𝑥𝑖, 𝑥) + 𝑏𝐼

𝑖=1                              (6-2) 

 

where  𝐼 is the number of Support Vectors; b is the ‘bias’ term, which could 

be dropped when the data was preprocessed to be zero mean; 𝛼𝑖 and 𝛼𝑖
∗ are 

the Lagrange multipliers should satisfy the constraints 0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ C, and 

C is called box constraint, a positive numeric value that controls the penalty 

imposed on observations that lie outside the ε  band and helps to prevent 

overfitting; and 𝑘(𝑥𝑖 , 𝑥)  is a nonlinear kernel function. In this study, the 

Gaussian kernel as shown below was applied: 

 

𝑘(𝑥𝑖, 𝑥) = 𝑒(−𝛾×‖𝑥𝑖−𝑥‖2
, 𝛾 > 0                                  (6-3) 

 

The 𝛾 is the kernel scale parameter. Considering its potential impact on the 

SVM performance, a heuristic procedure with subsampling was employed to 

select 𝛾.  

 

The sequential minimal optimization (SMO) algorithm was applied to solve 

the SVM training. The meta-parameters were treated by the default input. The 

box constraint parameter C was set as 𝑖𝑞𝑟(𝑌)/1.349, where 𝑖𝑞𝑟(𝑌) is the 
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interquartile range of the target variable 𝑌 . The ε  tolerance was set as 

𝑖𝑞𝑟(𝑌)/13.49, which is an estimate of a tenth of the standard deviation using 

the interquartile range of 𝑌. The 5-fold cross validation was performed in 

order to evaluate the effectiveness of the SVMs with the selected meta-

parameters, which is training 5 SVMs with different subsets of the entire 

dataset. 

 

6.2.3.3 Evaluation Metric 

The main goal of this study is to train a model that minimizes the error 

measurement between observed and predicted values. Thus, three common 

metrics were calculated in order to evaluate the model performance (Tinoco 

et al., 2011): the coefficient of determination (R2), the root mean square error 

(RMSE), and the mean absolute deviation (MAD), as shown in the equations 

below. 

 

MAD =  
∑ |𝑦𝑖−�̂�𝑖|𝑛

𝑖=1

𝑛
                                          (6-4) 

RMSE =  √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
                                       (6-5) 

𝑅2 =  1 − FVU = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑ (𝑦𝑖−�̂�𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

                     (6-6) 

where n is the number of data; 𝑦𝑖  represents the observe value; �̂�𝑖 

corresponds to the predicted value; �̅�𝑖 is the mean of the observe data; 𝐹𝑉𝑈 

is the fraction of variance unexplained; 𝑆𝑆𝐸 is the error sum of squares; and 

𝑆𝑆𝑇 is the total sum of squares. 

 

6.2.4 Global Sensitivity Analysis 

To increase the interpretability of the “black box” of the ANN and SVM 

models, the Global Sensitivity Analysis (GSA) algorithm was applied as it 

could capture the relative importance of parameters in influencing the 

acoustic level and the interaction between input parameters (Kewley et al., 

2000). This method uses F features varying with L levels simultaneously. The 
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number of simultaneous sensitivity variables can range from 1 (1D-SA) to M 

dimensionality (MD-SA) (Cortez & Embrechts, 2013). In this study, the 

sensitivity of pavement age and speed variables was computed in pair (M=2) 

to explore the interaction of them, as the other design variables could be 

determined at the beginning. The sensitivity was measured by the gradient 

(𝑆𝑔). For the L-level input variable 𝑥𝑎, the gradient is expressed as following 

equation (Cortez & Embrechts, 2013).  

 

𝑆𝑔,𝑎 = ∑
|�̂�𝑎𝑖

−�̂�𝑎𝑖−1
|

𝐿−1

𝐿
𝑖=2                                         (6-7) 

 

The relative importance of a variable (age, speed) was measured using the 

global range of the output responses. Let {�̂�(𝐴𝑖,𝑉𝑖): 𝑖 ∈ {1, ⋯ , 𝐿}} denote the 

sensitivity responses related with L×L changes of input pair (𝑥𝐴, 𝑥𝑉) . Let 

𝑆𝑔,𝐴𝑖
 and 𝑆𝑔,𝑉𝑖

 represent the gradient computed based on �̂�𝐴𝑖
 and �̂�𝑉𝑖

. The 

higher the gradient value, the more interrelated is the input. Therefore, the 

relative importance 𝑅𝑎  of input variable 𝑥𝑎  could be given by the 

following equation (Cortez & Embrechts, 2013). 

 

𝑅𝑎 =
𝑆𝑔,𝑎

∑ 𝑆𝑔,𝑚
𝑀
𝑚=1

 × 100%                                       (6-8) 

 

In this study, the importance values are denoted by the M×L matrix R = 

(𝑅𝐴, 𝑅𝑉) (M = 2), where 𝑅𝐴 represents the relative importance vector of the 

age variables, and 𝑅𝑉 represents the relative importance vector of the speed 

variables. 

 

6.3 Data Characterization 

In this study, the noise dataset with 270 records from 2010 to 2017 in Hong 
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Kong was used as input. All the involved pavement segments associated with 

their CPX noise levels are highlighted in the Hong Kong road network 

geographic information system (GIS) map, as shown in Figure 6-4. The 

corresponding descriptive statistics (average, maximum, minimum, standard 

deviation, and skewness) of the analyzed variables are presented in Table 6-

2.  

 

 

Figure 6-4 Hong Kong GIS map of CPX level distribution 

  



106 
 

Table 6-2 Descriptive statistics of quantitative variables 

Statistic 
Amax 

(mm) 

Th 

(mm) 

Pb 

(%) 

Av. 

(%) 

t 

(month) 

V 

(km/h) 

CPXP 

(dB) 

Av. 11.49 35.76 5.60 14.52 51.56 52.67 91.21 

Max. 20.00 50.00 6.50 21.30 234.00 105.30 99.40 

Min. 6.00 20.00 4.50 3.80 0.03 38.80 86.20 

Std. 4.34 8.87 0.54 7.67 49.13 9.91 2.46 

Skew 1.22 0.71 -0.14 -0.44 1.37 2.41 0.66 

 

Table 6-3 summarizes the correlation matrix between all variables examined 

in this study. On the right side of the figure, the correlation coefficients were 

indicated, and on the left side the corresponding graphs were plotted. The 

correlation coefficient shows the degree of the two variables that are related 

to each other. The positive correlation value indicates the response Y 

increases as the variable X increases, and vice versa. A coefficient of 0 

indicates no correlation. According to Table 3, a relatively strong correlation 

(0.5848) between V and CPXP could be observed as expected, while the 

remining variables show relatively weak correlations. Therefore, all variables 

were used in training models in the following sections. Before training 

through the ANN and SVM, the data variables were standardized to zero 

mean and one standard deviation. Then, the inverse transformation (Hastie et 

al., 2017) was post-processed before analyzing the predictions. 
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Table 6-3 Correlation matrix between all variables used in this study 

 Amax (mm) Th (mm) Pb (%) Av. (%) Age (month) V (km/h) CPXP (dB) 

Amax (mm) 1 0.4970 0.2589 0.3828 0.1993 0.1055 0.2641 

Th (mm) 

 

1 0.1716 0.5234 0.2676 0.0338 -0.0090 

Pb (%) 

 

 

1 0.5095 0.3245 0.3010 -0.2666 

Av. (%) 

  

 

1 0.1667 0.0100 -0.0226 
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Age (month) 

 

  

 

1 0.0026 0.2706 

V (km/h) 

     

1 0.5848 

CPXP (dB) 
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6.4 Results and Discussion 

6.4.1 Model Performance Evaluation 

In this study, the Hong Kong pavement acoustic degradation was modelled 

though ANN and SVM techniques according to the measured CPX data. As a 

baseline comparison, the training results of MLR method showed relatively 

poor performance (MAD=0.7648, RMSE=0.9780, R2=0.7012), which was 

therefore excluded in the subsequent discussion. The performances of the 

ANN and SVM models were evaluated and compared by the model metrics 

in Table 6-4. High-quality regression (R2>0.9) was achieved by both the ANN 

(0.9431) and SVM (0.9617) models, as the higher R2 value means the higher 

fraction of the variance explained by the model function. The SVM model 

showed lower RMSE (0.3760), while the ANN model provided lower MAD 

value (0.1874). MAD measures the average magnitude of the prediction 

errors without considering directions. Although RMSE also measures the 

average magnitude of errors, its quadratic scoring rule squares the errors 

before they are averaged, which highlights the undesired large errors. 

Therefore, the prediction of the SVM model was closer to the data feed into 

for the lower RMSE value, while the prediction performance of the ANN 

model was generally satisfactory because of the lower MAD value. The 

relatively better results in the performance evaluation of the SVM model 

could be traced to its theoretical advantages over ANN (Tinoco et al., 2011), 

as the model always converges to the optimal solutions rather than the local 

minimum in the learning phase. 

 

Table 6-4 Training performance metrics and plots of the ANN and SVM 

 ANN SVM 

MAD 0.1874 0.2039 

RMSE 0.4187 0.3760 

R2 0.9431 0.9617 
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6.4.2 Case Interpretation 

Although the error metrics could evaluate the performance of the regression 

models, the estimation on the superiority of a model should not be determined 

on performance metrics only. Besides, these measurements could not identify 

the deep fundamental connection or mechanisms among pavement acoustic 

level and input variables. Therefore, to examine the two data-driven models, 

the predicted acoustic trends along vehicle speed and pavement age were 

visualized and compared with the general mechanisms in previous literature. 

In this work, the case employed to interpret the two machine learning models 

is the PMFC pavement surface with 10 mm maximum aggregate size and 30 

mm thickness (PMFC10/30) (Sandberg, 2008), as it was the major mitigation 

measure and widely used in reducing the tyre-pavement noise in Hong Kong 

(HKHyD, 2016). After the acoustic performance along the pavement age and 

vehicle speed has been predicted and visualized, the relative importance of 
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vehicle speed and pavement age variables could reveal the inter-relationships.  

 

6.4.2.1 Prediction Visualization 

For PMFC10/30, both techniques could provide the nonlinear acoustic 

prediction trends along pavement age and vehicle speed (Figure 6-5). 

Although the SVM model showed better training performance metrics, the 

predicted trend by the ANN model was more aligned with the general aging 

mechanisms of porous road surface (Männel & Altreuther, 2016) compared 

with the more complex responses in the SVM model. 

 

In the ANN prediction pattern (Figure 6-5-a), the changing trend could be 

mapped to the general aging mechanism of porous road surface which 

interprets each aging period (Männel & Altreuther, 2016). In Figure 4a, the 

noise level consolidates in the initial period (40-70 months) for all speed level. 

This tendency conformed to the initial metastable equilibrium between 

clogging and self-cleaning of the open pores in the road surface. Once 

reaching the “acoustic lifetime”, the noise level would increase rapidly due to 

the accumulated clogging of the pores and the initial aggregate loss. This 

increase followed the initial equilibrium period and could be found in the 

prediction pattern. The increase rates and durability varied depending on the 

vehicle speed. Finally, the increase rate would slow down, when the noise 

level reached a limit. The metastable equilibrium periods in the lower speed 

levels (< 50km/h) were shorter than that in the higher speed level (> 50km/h). 

The fast clogging on the low speed roads is partly due to the relative 

unsatisfied drainage on the low speed road in Hong Kong (Sandberg, 2008) : 

the water with dirt pollutant flow from the pedestrian areas of low speed road 

will accelerate the spread out and clogging of the PMFC carriageway rather 

than directly draining away. 
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In the SVM prediction pattern (Figure 6-5-b), although the prediction trend 

showed more complex behaviour with the depression rather than simply 

going up along variables, the metastable equilibrium periods (40-70 months) 

and the following pore clogging period were still generally identifiable. Since 

the model trained highly depended on the training data, the lower RMSE of 

the SVM model showed higher accuracy to translate the rules of the input 

data. The variance in the collected data would be consequently reflected in 

the prediction rule to some extent. The records in other pavement acoustic 

ageing investigations (Bendtsen et al., 2010; Blokland et al., 2016; Sandberg, 

2008) also showed some depression in the largely growing trend. 

 

  

(a). ANN prediction (b)  SVM prediction 

Figure 6-5 The predicted acoustic performance of PMFC10/30 

 

6.4.2.2 Sensitivity Analysis 

The 2D-SA on age and speed variables was performed to increase the model 

interpretability. The acoustic gradients along the age and speed directions of 

the ANN and SVM models were plotted in Figure 6-6, and the relative 

importance change of age and speed variables is illustrated in Figure 6-6. 

 

For the gradient in the age dimension (Figure 6-6-a and 6-6-c), the acoustic 

gradient could be identified as the acoustic deterioration rate. Many studies 

simplified the pavement acoustic deterioration as the constant linear increase 

within a certain analysis period (Bendtsen et al., 2010; Blokland et al., 2016; 
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Sandberg, 2008), with a rate ranging from 0 to 1 dB(A)/year. Based on the 

models obtained from the ANN and SVM techniques, the predicted acoustic 

aging rate of PMFC10/30 surface could vary from -0.1 to 0.28 dB(A)/month 

depending on the different aging periods and vehicle speed levels. 

 

The initial metastable equilibrium state of the acoustic deterioration 

consolidated at 0 – 0.05 dB(A)/month for the ANN model and -0.1 – 0.02 

dB(A)/month for the SVM model. The later increasing clogging of pores 

resulted in the noticeably rise from 0.05 to 0.23 dB(A)/month for ANN model 

and from 0.02 to 0.25 dB(A)/month for the SVM model. Both the ANN and 

SVM models can identify the upper limits where the acoustic deterioration 

rate started to level off and even decline. Moreover, the predicted acoustic 

deterioration rate at high-speed level is relatively lower than that on the low-

speed road, which also testified the view of Sandberg (2008) that the acoustic 

service life of PMFC on the high-speed roads is longer than low-speed roads. 

 

The significance of speed influence in the tyre-pavement noise has been 

explored by many studies (Hanson et al., 2004). From Figure 6-6-b and 6-6-

d, it can be observed that the noise increasing rates obtained by the two 

models follow the same pattern, which is accelerating first until attaining the 

turning speed (55 km/h) and slowing down afterwards. This predicted turning 

speed in this study conformed with the national average value (50km/h) from 

the FHWA’s Traffic Noise Model (Hanson et al., 2004). 
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(a) ANN model: gradient along age 

dimension 

(b) ANN model: gradient along speed 

dimension 

 

 

(c) SVM model: gradient along age 

dimension 

(d) SVM model: gradient along speed 

dimension 

Figure 6-6 Acoustic gradient along the age and speed directions of the ANN 

and SVM models 

 

The relative importance in Figure 6-7 revealed the non-constant interactions 

between the pavement age and vehicle speed variables in controlling the 

output acoustic level. For the ANN model, the blue trendline showed a 

decreasing importance of the age variable when the vehicle speed increased, 

and an increasing importance of the vehicle speed when the pavement ages. 

It is worth mentioning that, when the vehicle speed is low enough (< 37km/h), 

the pavement age is the major control variable as its relative importance is 

95%. Meanwhile, a more complicated interaction was provided by the SVM 

model by introducing the turning points. As the speed increased, the relative 

importance of the age variable started to ascend after it bottomed out (45%). 

Correspondingly, along with the increase of pavement age, the relative 

importance of speed variable showed an opposite trend that begined to decline 
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after peaking at 55%. Compared with the monotonic increasing or decreasing 

in the ANN model, the variable relative importance in the SVM model 

fluctuated at generally equivalent importance with the growth in both speed 

and age dimensions. This higher flexibility of the SVM technique enables the 

lower interpretability and makes it hard to fully understand the internal 

behavior (Tinoco et al., 2011), although the SVM model showed excellent 

performance in training accuracy. 

 

  

(a) Relative importance of age variable along 

speed direction 

(b) Relative importance of speed variable 

along age direction 

Figure 6-7 Relative importance of age and speed variables for ANN and 

SVM model 

 

6.5 Summary 

In this chapter, two data mining techniques, ANN and SVM, were first 

employed to model the asphalt pavement acoustic longevity with the data 

collected in Hong Kong, as the function of the surface thickness, binder 

content, maximum aggregate size, air void content, and age of the pavement, 

as well as the vehicle speed. Then, the models were implemented to the PMFC 

material as a case study, which allowed to verify the applicability of the 

empirical models in consideration of the acoustic aging mechanism of the 

porous road surface. The model performance metrics provided preliminary 

insight of the roles of ANN and SVM in the data-driven modelling. The 2D-
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SA of pavement age and vehicle speed variables revealed their inter-

relationships in the models.  

 

It was found that both the SVM and ANN models could successfully model 

the acoustic longevity of five selected asphalt pavement surfaces in Hong 

Kong with acceptable model performance metrics (R2, MAD, RMSE). The 

acoustic changing rates varied in a range rather than keeping a constant value, 

depending on pavement ageing periods and vehicle speed levels. Both 

empirical models could serve for the purpose of decision-making in 

developing pavement system management strategies.  

 

The comparison of ANN and SVM techniques was conducted in two aspects, 

model performance and model interpretability. For the model performance, 

SVM model showed better performance in term of regression coefficient (R2) 

and higher accuracy in responding to the target value of the input data 

variables (RMSE). For the model interpretability, although the SVM model 

had better training performance metrics, the predicted acoustic trend of the 

ANN model was more aligned with the acoustic deterioration mechanism. 

Sensitivity considerations of the pavement age and vehicle speed variables 

further revealed their different control capacities and non-constant 

relationships in the two models. The comparation in either pavement age and 

vehicle speed suggested the significance in incorporating the implementation 

verification and interpretability instead of looking at the model performance 

metrics only. 

 

It is worth noting that the empirical models developed in this study were 

based on the long-term CPX tyre-road noise data collected in Hong Kong. 

Therefore, the findings of this study are confined to Hong Kong’s climate and 

pavement design specification, and light vehicle condition. In future study, 

javascript:;
javascript:;
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more CPX data from different countries in the world are advised to be used 

to further improve the capability of the models developed in this study and 

draw more generally applicable conclusions. 
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CHAPTER 7  MULTI-OBJECTIVE OPTIMIZATION 

7.1 Introduction 

Running a pavement network system poses a challenge for decision-makers 

in not only the selection and prioritization of individual pavement segment, 

but also the trade-off determination of time horizon and intervention timing. 

To promote sustainable development, the objectives that could target the 

sustainable strategies need to be initially settled. On the other side, these 

objectives considered in real life may conflict with each other that cannot be 

achieved simultaneously, such as concurrently minimizing maintenance cost 

and maximizing pavement system condition. To solve this, a reasonable 

solution set for the multi-objective optimization (MOO) problem would be 

searched, and each solution is non-dominated by others (Censor, 1977). A 

final trade-off and compromising decision could be made among the non-

dominated solution set by decision-makers according to the corresponding 

social situation, budget restriction and policy requirement. 

 

Besides, optimization techniques could also considerably determine the 

efficiency and effectiveness in arranging the intervention scheduling 

associated with the achieved degrees of the multiple objectives. As reviewed 

in Chapter 2, many planning techniques have been successfully applied to 

solve the conflicting MOO problems in pavement network-level management, 

such as weighted sum method (Torres-Machí et al., 2015; Wu & Flintsch, 

2009), goal programming (Anastasopoulos et al., 2016; Ravirala & Grivas, 

1995), and genetic algorithm (GA) (Chikezie et al., 2013; Elhadidy et al., 

2015; Fwa et al., 2000). Among them, the genetic algorithm as an 

unconventional heuristic method has gained great interest due to its robust 

problem-solving capability for a complex optimization problem (Wu et al., 
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2012). As an improved extension of GA, a fast and elitist multi-objective 

genetic algorithm (NSGA-II) was implemented in this study with lower 

computational complexity, faster non-dominated sorting speed, and higher 

diversity of solutions (Deb, 2002). 

 

As described in the previous chapter, the increased urbanization induced 

pavements to realize more functions beyond fundamentally carrying traffic 

loads. Low noise is one of a significant function to mitigate the urban traffic 

noise. Porous pavements have been identified as the typical low-noise 

pavement due to its air-pumping reduction and additional sound attenuation 

attributes (Lodico & Donavan, 2018). To meet the specification requirement 

of acoustic function, the construction and maintenance of porous pavement 

cost substantially more compared with the conventional dense asphalt 

pavement (Sandberg, 2008). Regarding the cost effectiveness of the function 

realization, the acoustic durability consequently becomes the major concern 

of low-noise porous pavement. As the previous pavement management 

systems (PMS) chiefly considered the basic mobility function and condition 

maintenance (Elhadidy et al., 2015; Wu et al., 2012; Yu et al., 2015), strategies 

for sustaining auxiliary function like low-noise function were rarely studied. 

It is increasingly significant as the growing demands in the transportation 

development especially when the pavement surface act as the only noise 

mitigation measure. 

 

Therefore, the primary objective of this chapter is to establish a MOO 

decision-making framework for sustaining acoustic function of porous 

pavement network. Finding effective strategies that could balance the 

interactions of acoustic deterioration and improvement in a sustainable way 

is the essential achievement of the framework (Amador-Jimenez, 2016). Prior 

to this, both acoustic-specific deterioration and improvement models need to 
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be identified in order to define the decision-making system. For the 

improvement, many acoustic-specific intervention options to maintain the 

acoustic function have been put forward, such as cleaning of porous structure, 

renewal, and winter salting (Morgan et al., 2007). The options were varied in 

the application condition, improved effectiveness, cost, and environmental 

impact in both long and short terms (Muirhead, 2014). For acoustic 

deterioration, the durability largely depends on retaining the porous structure 

open and keeping the surface detritus free (Morgan et al., 2007). A non-linear 

pattern with different growth rate periods was observed (Maennel & 

Altreuther, 2016), which means even the same intervention activity may still 

bring various improvement benefits depending on the timing and currently 

acoustic deterioration state of the porous surface.  

 

This chapter presents a MOO model to develop optimal intervention 

strategies that could sustain the noise reduction function of the porous 

pavement surface network in 5-year planning period. Three objectives are 

expected to be satisfied in the decision-making process: (1) maximizing the 

average noise reduction per segment per year; (2) minimizing the 

maintenance costs; and (3) minimizing the greenhouse gas (GHG) emissions 

due to the maintenance activities. Once the acoustic-specific deterioration and 

intervention options have been identified based on corresponding field data 

and literature, the NSGA-II algorithm was employed to search the Pareto 

optimal solutions associated with three proposed objectives. The specific 

MOO model of pavement low-noise sustainability proposed in this paper 

could serve as the complementary module of the entire pavement 

management system, and the output strategies from the case study in Hong 

Kong could provide more informative reference for decision-makers 
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7.2 Methodology 

To maintain the low-noise level of the network, the management system 

considers the acoustic deterioration and corresponding intervention 

improvement as one. Equation 7-1 combines the two possible patterns in an 

inter-dependent way, which is the core of the decision-making system that 

attempts to optimally balance in this study. As expression, pavement acoustic 

performance would experience deterioration annually if no intervention 

applied, otherwise improvement. 

 

𝑁𝑖,(𝑡+1) = (1 − 𝑥𝑖,𝑡,𝑗)(𝑁𝑖,𝑡 − 𝐷𝑖,𝑡) +  𝑥𝑖,𝑡,𝑗(𝑁𝑖,𝑡 + 𝐼𝑡,𝑗)              (7-1) 

 

where, 𝑥𝑖,𝑡,𝑗  is a binary decision variable that takes on the value of one 

whenever on year t segment j receives treatment i (otherwise zero); 𝐷𝑖,𝑡 is 

the acoustic deterioration of segment i at year t; 𝐼𝑡,𝑗  is the acoustic 

improvement of intervention j at year t; 𝑁𝑖,𝑡 is noise level of segment i at 

year t; 𝑁𝑖,(𝑡+1) is the noise level of segment i next year either improves or 

deteriorates.  

 

7.2.1 Pavement Acoustic Deterioration 

The acoustic performance of porous pavement surface is influenced by the 

material acoustic impedance and surface texture (Maennel & Altreuther, 

2016). Corresponding to the two influence factors, clogging of the open pores 

and aggregate loss are the two foremost acoustic deterioration reasons. The 

acoustic deterioration of porous surface followed a nonlinear trend being 

dependent upon the different degrees of clogging and aggregate loss. As 

illustration in Figure 7-1 (Maennel & Altreuther, 2016), the surface acoustic 

life was generally divided into three periods. After the slight initial increase 

period, the noise level consolidates in a “metastable equilibrium” period due 
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to self-cleaning effect (Maennel & Altreuther, 2016). During this period, the 

open pores are self-cleaned by the rolling pressure of fast traffic in wet 

conditions. After 3 to 4 years’ equilibrium (Nilsson et al., 2010), the voids in 

the porous surface gradually becomes compacted by traffic and clogged by 

accumulated dirt and detritus from both surface and vehicle tyres until the 

acoustic benefit is totally degraded (Morgan et al., 2007). Besides, increasing 

aggregate loss over time is another concern of porous pavement acoustic 

aging associated with surface texture change. 

 

 

Figure 7-1 Scheme of the porous asphalt pavement acoustic deterioration  

 

7.2.2 Pavement Acoustic Improvement 

To recover the low-noise function and durability of porous pavement surface, 

the specific improvement interventions need to be identified. In this study, 

cleaning of pores and resurfacing were the two major intervention options. 

Cleaning of porous structure is primarily targeted for tackling the clogging 

problem, which is accomplished through spraying high-pressure water/air by 

the cleaning machine in slow moving speed. The collected mass of dirt could 

range from 6 to 350 g/m2 depending on the different clogging states, cleaning 

techniques and moving speed (Morgan et al., 2007; Nilsson et al., 2010). 

When the surface aggregates loss extensively and cleaning of pores hardly 
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improves noise-reduction function, resurfacing of the top layer (30mm) could 

enable the initial noise level acquisition (87 to 89 dB) immediately after 

replacement (Nilsson et al., 2010). 

 

It is worth to be noted that the acoustic improvement brought by the 

interventions could benefit in all years of planning time horizon, not just the 

unique year when the intervention performed. To fully consider the 

improvement benefit of the interventions, the average noise reduction for per 

segment in each year due to the interventions compared with the do-nothing 

scenario were used to evaluate the sustainability of low-noise function. 

 

7.2.3 Multi-Objective Optimization Model 

Once the decision-making system has been identified and formulated, the 

multi-objective optimization (MOO) method was applied as the decision-

making tool to find the optimal maintenance strategies. 

 

7.2.3.1 Pareto Front 

Compared with single objective, multi-objective optimization (MOO) often 

involves conflicting objectives, which means that a solution may be the best 

for one objective but not the best or even the worst for the others. Thus, the 

solutions that cannot improve any objective without weakening any other 

objective, constitute a non-dominated solution set (Censor, 1977). Figure 7-2 

illustrated the Pareto optimality associated with two-objective minimization. 

Under this circumstance, among all the feasible solution points (dominated 

and non-dominated), the optimal solutions lie on the lower-left edge of the 

feasible region. This set of non-dominated solutions are generally called 

Pareto front (Elhadidy et al., 2015). 
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Figure 7-2 Pareto optimality 

 

7.2.3.2 Solving Algorithm 

In the absence of information from decision-makers, the heuristic-based 

searching algorithm with posteriori articulation of preferences was required. 

To solve the multi-objective problem, the non-dominated sorting genetic 

algorithm II (NSGA-II) was employed. It is an extension of genetic 

algorithms with lower computational complexity, faster non-dominated 

sorting speed, and higher diversity of solutions (Deb, 2002). 

 

Figure 7-3 (Deb, 2002) illustrated the general NSGA-II procedure. The N 

random population of input variables Pt was initially formed. The population 

Qt is the offspring of Pt that was created by basic genetic operators (selection, 

mutation and crossover) in size N. Population Rt (size = 2N) is composed by 

population Pt and population Qt. Then, the whole population Rt was evaluated 

by the objective (fitness) functions through the non-dominant procedures. 

Then all the populations in Rt are sorted based on the descending order of 

nondomination. This is the elitism operation. The solutions in F1 are the best 

non-dominant solutions in the entire population Rt, and the subsequent 

population classifications (e.g., F2 and F3) are in the same fashion. Based on 
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the ranking, the best N population was chosen to form the new parent 

population Pt+1 by rejecting the other half of the population, which would 

continually create new offspring population Qt+1 in size N for the next 

generation. This process would be continued until no more classification sets 

could be accommodated in the new parent population Pt+1. During this process, 

the crowed-comparison operator was employed as the selection criterion to 

recognize the enough number of fronts that have N population in Pt+1. The 

operator was determined as the crowding distance. The crowding distance of 

the specific solution in its front is the perimeter of the cuboid formed by the 

vertices that are the nearest neighbors. Therefore, the solution with smaller 

crowding distances signified its higher proximity extent with other solutions. 

When the two solutions belong to the same front, the solution with greater 

crowding distances is preferred. This operation could ensure the diversity of 

the solutions in their Pareto front. Finally, the NSGA-II algorithm would stop 

until the optimal Pareto front that had the solutions located in the less crowded 

area with better nondomination ranking was searched (Deb, 2002). 

 

 

Figure 7-3 NSGA-II procedure  

 

7.2.3.3 Solution Representation 
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The applied genetic algorithm required a chromosome structure to represent 

the solution variables, which is made of a string of decision variables. As 

illustration in Figure 7-4, the solution chromosome consists of a string of n×T 

decision variables, where n is equal to the number of pavement segments and 

T represents the planning time horizon (year). The values of each 

chromosome element varied from 1 to 3 to denote the decisions 

corresponding to the intervention options (1 = Do-nothing, 2 = Cleaning, 3 = 

Resurfacing). The decision variables contained the strategies that specified 

the selection of the intervention options for each segment in all planning years. 

 

 

Figure 7-4 Solution representation 

 

7.2.3.4 Objective Function Formulation 

In this study, in order to balance the acoustic deterioration and cost of 

improvement interventions in a sustainable way, three objectives are 

considered: (1) maximizing the average noise reduction per segment each 

planning year (Eq. 7-2); (2) minimizing the total maintenance costs in all 

planning years (Eq. 7-3); and (3) minimizing the GHG emissions due to the 

maintenance activities (Eq. 7-4), which are formulated as following equations: 

 

Max. Average Noise Reduction =
∑ ∑  (𝑁𝑖,𝑡+1,𝑤𝑜𝑟𝑠𝑡 − 𝑁𝑖,𝑡+1,𝑋)𝑇

𝑡=1
𝑛
𝑖=1

𝑇×𝑛
       (7-2) 

 

where, T is the planning time horizon (year); n is the number of pavement 

segments; 𝑁𝑖,𝑡+1,𝑤𝑜𝑟𝑠𝑡  is the next-year noise level of segment i under the 
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worst scenario that the intervention options for all are “Do-nothing”; 

𝑁𝑖,𝑡+1,𝑜𝑝𝑡  is the next-year noise level of segment i under the intervention 

option X. 

 

Min. Cost = ∑ ∑ 𝐴𝑖 × 𝐶𝑖,𝑗,𝑡 × (1 + 𝛾)𝑡 𝑇
𝑡=1

𝑛
𝑖=1                     (7-3) 

 

where, 𝐴𝑖 is the area of segment i; 𝐶𝑖,𝑗,𝑡 is the cost of intervention treatment 

j on the segment i at year t; 𝛾 is the discount rate. 

 

Min. GHG Emission = ∑ ∑ 𝐴𝑖 × 𝐸𝑖,𝑗,𝑡 𝑇
𝑡=1

𝑛
𝑖=1                      (7-4) 

 

where, 𝐸𝑖,𝑗,𝑡 is the GHG emission of intervention treatment j on the segment 

i at year t. 

 

7.3 Case Study 

The polymer modified friction course10 mm maximum aggregate size and 30 

mm thickness (PMFC10/30) as the typical porous road surface has been 

widely applied as major noise mitigation measure in Hong Kong since 2002 

(Sandberg, 2008). Maintaining the low-noise function of PMFC surface in a 

sustainable way has become equally important as creating new porous surface. 

A small-scale PMFC10/30 surface network was selected as a case study to 

implement the proposed multi-objective optimization model. Table 7-1 listed 

the road inventory including the road name, length, age, number segments 

divided for each road, and the A-frequency and FAST time weighted noise 

level tested by the close proximity method (ISO, 2017). Every 500 meters 

was separated as a segment with corresponding surface age and noise level. 
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Table 7-1 Road inventory definition 

Road Name 
Length 

(m) 

Age 

(year) 

Number of 

Segments 

Noise Level 

(dB(A)) 

Castle Peak Rd. 14,500 9 - 11 29 89.9 - 91.1 

Chiu Shun Rd. 2,000 11 4 90.6 

Chui Tin St. 1,000 11 2 90.5 

Chuk Yuen Rd. 2,500 3 5 90.3 

Long Ping Rd. 2,000 11 4 92.0 

Ngan Shing St. 1,000 1 2 90.6 

Pak Wo Rd. 3,000 5 6 91.7 

Sha Tin Wai Rd. 500 5 1 90.9 

Siu Lek Yuen Rd. 1,000 1 2 90.8 

Wang Tat Rd. 2,500 1 5 91.0 

 

As illustration in Chapter 6, the acoustic deterioration model utilized in this 

study was obtained through the Artificial Neural Network method. The 

measurement of acoustic durability of PMFC surfaces has been conducted in 

Hong Kong, which has shown a clear acoustic drop-off over their lifetime 

(Sandberg, 2008). The model was evaluated to have the acceptable 

performance in the coefficient of determination (R2=0.94), root mean square 

error (RMSE=0.42) and mean absolute deviation (MAD=0.19). Based on the 

prediction results, the annually acoustic deterioration degree of PMFC10/30 

under the vehicle speed of 50 km/h was illustrated in Figure 7-5. The 

predicted nonlinear trend was also consistent with the porous pavement 

acoustic aging mechanism (Maennel & Altreuther, 2016) with initial self-

cleaning equilibrium period (initial 3 years) and subsequent clogging periods 

(after 3 years). 
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Figure 7-5 The predicted annually acoustic deterioration rate of PMFC10/30 

 

The specific low-noise intervention options considered in this study were do-

nothing, cleaning of pore, and resurfacing. Table 2 listed the details in relation 

to the unit cost, GHG emissions and intervention effectiveness of each option, 

which is integrated from different data source specified as follows. The 

selection of do-nothing option signified the undergoing acoustic deterioration 

of segment in corresponding rate. For the cleaning intervention, the relevant 

effectiveness could reduce the noise level by 1.3 dB(A) compared to the non-

clean structure based on the test of Nilsson et al. (2010). Meanwhile, it was 

expected that self-cleaning effect was sufficient to keep the porous structure 

open. As a result, no cleaning intervention was performed during the first 

three years of the new PMFC surface. The GHG emissions due to the cleaning 

were mainly considered the cleaning machine operation emissions 

(Grigoratos et al., 2019) and the emissions of the collected dirt landfill (Lee 

et al., 2017). The unit cleaning cost (Nielsen et al., 2005) was updated to the 

2017 value based on 4% discount rate. For the resurfacing intervention, the 

initial noise level of PMFC was reset to be 89 dB(A) associated with age (1 

year) in this study. The resurfaced PMFC road would experience the self-

cleaning and clogging periods as new surface. The GHG emission (Torres-
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Machi et al., 2017) and updated 2017 unit cost value (Zhang et al., 2013) of 

resurfacing intervention were also summarized in Table 7-2 accordingly. 

 

Table 7-2 Summary of intervention information 

ID Intervention Cost 

(US$/m2) 

GHG emission (g 

CO2e/m2) 

Timing Improvement 

(dB(A)) 

1 Do-nothing 0 0 Anytime Deterioration 

2 Cleaning 13.69 86 Age>3 1.3 

3 Resurfacing 42.23 6750 Anytime Reset to 89 

 

7.4 Results and Discussion 

After operation of the proposed multi-objective optimization model, the 

Pareto optimal solution (non-dominated solution) set for the case study has 

been searched. Figure 7-6 plots the Pareto front in the three-objective space. 

Each point denotes an optimal solution with the specific decision variables. 

The color of each solution represents the average noise reduction per segment 

per year based on the corresponding decision variables. The value of average 

noise reduction is obtained by comparing the optimized strategies with the 

worst scenario, which means the zero average noise reduction equals to the 

do-nothing strategy for all 5 years. The maximized noise reduction could 

reach 3.14 dB(A) per segment per year through the optimized strategies. This 

would be equivalent to the effect that cutting traffic volume by 50%, which 

is extremely difficult to accomplish in other ways (Sandberg, 2008). 

Nevertheless, sustaining such an improvement signifies the huge cost 

consumption and GHG emissions. Therefore, more appropriate maintenance 

strategies need to be identified based on the trade-off evaluation among all 

the Pareto optimal solutions. 
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Figure 7-6 Pareto optimal solutions in objective space 

 

The final compromised solution always depends on the decision maker with 

considering the relevant policy and budget. On the premise of this, ten 

different intervention strategies of the non-dominant Pareto front were 

compared. Table 7-3 illustrates the detailed strategies for the 60 segments and 

5-year time horizon decision system, each intervention strategy included 300 

integer decision variables ranging from 1 to 3 (1 = Do-nothing, 2 = Cleaning, 

3 = Resurfacing) as described in the solution representation section. 

 

The corresponding objective values realized by the above solutions were 

summarized in Table 7-4. The quantitative interaction of the three objectives 

could be observed based on the solutions shown in table. Solution 4 and 5 are 

two extreme strategies that had maximum (3.14 dB(A)) and minimum (0.94 

dB(A)) average noise reduction respectively. Based on these results, there are 

opportunities to sustaining the noise-reduction function of the PMFC surface 

network in 0.94 to 3.14 dB(A) per segment per year. However, this additional 

2.2 dB(A) noise reduction would enable 3-time and 60-time increase in the 
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maintenance cost and GHG emissions. Although there is positive relationship 

between the objectives of cost and GHG emissions, the increase of GHG 

emissions is obviously more sensitive to the noise reduction objective. As the 

decisions need to be supported by posteriori articulation of preferences, the 

best-compromised strategy could be finally identified by decision maker 

based on the significance and constraint consideration of objectives 

accordingly. For instance, with permission of budget and policy, the road 

sections that are located in some special areas with schools or high-density 

residents may require lower noise influence. The noise reduction could be 

assigned higher user-defined weighting factors. While the road sections that 

are far from city or in rural areas would not have such high weighting 

requirement on acoustic performance. 
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Table 7-3 Optimal maintenance strategies 

Segment 1 2 3 4 … 59 60 

   Year 

Solution 
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 … 1 2 3 4 5 1 2 3 4 5 

1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 

… 

2 1 1 1 1 1 1 1 1 2 

2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 

3 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 2 

5 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 

6 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 

7 1 1 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 

8 1 1 1 1 1 1 1 1 2 1 1 1 1 1 3 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 

9 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 

10 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 3 1 1 1 2 1 1 1 1 1 1 1 1 2 
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Table 7-4 Pareto optimal objectives 

Solution 

Objectives 

Average noise reduction 

(dB(A)/Seg/Year) 

GHG emission 

(g CO2e/m2×106) 

Cost 

(US$×105) 

1 1.96 3.91 6.80 

2 1.84 2.86 4.96 

3 1.38 1.96 3.38 

4 3.14 61.77 8.70 

5 0.94 1.35  2.32 

6 1.20 1.51  2.61 

7 1.64 2.11 3.66 

8 2.54 49.36 6.89 

9 2.48 48.60 5.59 

10 2.98 61.47 8.15 

 

7.5 Summary 

This chapter proposes a multi-objective decision support system for 

sustaining the low-noise function of porous pavement network specifically. 

Both time horizon and network scale were involved in the system. A fast and 

elitist multi-objective genetic algorithm (NSGA-II) is applied to search the 

Pareto front solution sets, which could provide the decisions about the 

selections of segments, interventions, and conduct timings. The proposed 

low-noise sustainability model is implemented in a three-objective 

optimization case by maximizing the average noise reduction, minimizing the 

costs and GHG emissions due to the interventions. Field pavement acoustic 

data obtained based on the CPX test according to the process standardized by 

the ISO. The costs, GHG emissions and improvement effectiveness of the 

corresponding interventions were integrated based on various data sources. 

The major findings could be summarized in the model capability and output 

strategies two aspects. 

 

The implementation of the case study in Hong Kong showed the capability of 
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the proposed MOO model in supporting the three-objectives decision-making 

system to sustain the low-noise function for porous pavement system. It could 

serve as the complement of the traditional PMS system that only considered 

the mobility condition. In the long-term perspective, the potential significance 

and effectiveness of maintaining pavement acoustic performance could 

become greater, as the development of quieter power units of vehicles 

(Sandberg, 2008).  

 

The output strategies from the case study identified the optimal intervention 

actions on the appropriate pavement segments at right timings. The 

maximized average noise reduction is always accompanied with the 

maximum costs and GHG emissions due to interventions. The compromise is 

bound by the decision-maker according to the specific budget and policy 

priorities. Compared with converting the multi-objective into one, the 

searched Pareto optimal solution set provided more informative reference and 

selections for decision-maker. 
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CHAPTER 8  CONCLUSIONS AND 

RECOMMENDATIONS 

8.1 Findings and Conclusions  

This dissertation presents a methodological decision-making framework for 

sustainable pavement management accompanied by original case 

implementations. The framework is comprised of two pavement management 

levels, namely project level and network level. Although they differ in the 

system boundary and analysis approach, they share the same ultimate aims 

that are oriented towards the selection of optimally sustainable design or 

planning alternatives among competitors. Based on the findings of this thesis, 

the following major conclusions can be drawn. 

 

(1) Developing and applying decision-making methods to support 

sustainable pavement management requires the collaboration among 

different disciplines.  

 

Sustainability is a broad concept covering economic, environmental and 

social dimensions. Using appropriate assessment tools for precise evaluation 

of the impacts in each dimension is the initial step for sustainable 

management decision-making, which requires specialized knowledge and 

skills in the fields of environmental science, economics, and pavement 

engineering. Then, integration is the conclusive process to connect the 

evaluations in each dimension and realize the decision-making upon the 

required levels and objectives. The decision objectives in this research serve 

for improving sustainability of pavement infrastructure at either project or 

network level. However, the achievement degrees of these objectives would 
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be vitally affected by selection and implementation of the integration methods 

that have different applicability and specifications.  

 

For the project-level decision-making, CBI and EEI are the two relatively 

simple and efficient schemes for integrating the multiple objectives, however, 

result generalization is the major limitation. Collaboration with uncertainty 

analysis through applying statistics could exactly enhance the reliability of 

integration techniques and improve the decision value. For the network-level 

decision-making, integration process requires more sophisticated and 

powerful techniques to realize more complicated decision-making. In 

addition to the knowledge of pavement engineering, the realization of data 

inventory management, long-term performance modeling and multi-objective 

optimization requires incorporation of many advanced computer science 

techniques, such as geographic information system, machine learning and 

heuristic optimization algorithm.  

 

(2) The proposed methodological framework in this research has 

capability to effectively support sustainable decision-making at 

different pavement management levels.  

 

The capabilities of proposed method modules in the framework have been 

verified and identified through their applications on different case studies. At 

the project level, applications of CBI and EEI show their potentials to identify 

the most sustainable asphalt mixture designs and pavement M&R treatment 

among alternatives. In addition, incorporation of uncertainty analysis in the 

life cycle evaluation process can widen applicability of methodology and 

increase generalization of results. At the network level, validation of the 

developed ANN and SVM models with the real low-noise (PMFC) pavement 

data in Hong Kong not only verify the capability of applied techniques and 
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developed models, but also identify the significance of considering model 

interpretability instead of merely looking at the model performance metrics. 

Then, implementation of NSGA-II algorithm in practical pavement network 

management showed its capability in supporting multi-objective decision-

making. 

 

(3) Taking into consideration the multi-dimension and long-term 

significances can improve the completeness and appropriateness of 

decision-making framework.  

 

The comparison results of PMSMA10 and ARSMA10 reveals the significant 

effects that are engendered by the consideration of impact dimensions of 

sustainability in bottom-up decision-making. Besides, in developing top-

down planning strategies, the considered impact dimensions can affect the 

complexity and effectiveness of the trade-off algorithms. In addition, the 

comparative evaluations of HIPR and M&F and energy-saving assessement 

of WMA technologies highlightes the great influence yielded by long-term 

consideration as a component for completeness and appropriateness of an 

decision-making framework. 

 

(4) The proposed methods can provide quantitative reference and 

identify enhanced approaches to improve sustainability of pavement 

infrastructure.  

 

In pursuit of the research aim, the proposed methods were eventually applied 

in sustainable pavement management decision-making by providing 

quantitative reference and enhanced approaches. In this research, the specific 

improvement suggestions vary by different management levels and are on 

case-by-case basis. At project level, a quantitative trade-off point of the multi-
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objective integration was identified, such as the 4% noise decrease of 

ARSMA10 and 12/15 life extension ratio of HIPR and M&F. While for 

network level, a optimal solution set was searched, which included several 

trade-off points under the required objectives. The final compromise can be 

made by decision-maker according to the budget and policy priorities. 

 

8.2 Research Contributions  

8.2.1 Theoretical Contributions 

This dissertation established a theoretical framework for effectively 

evaluating sustainability and optimally supporting decision-making at both 

project and network levels. Based on the previously established assessment 

tools for either environmental or economic aspects, the framework creatively 

connects and integrates various methods and tools covering engineering, 

environmental science, statistics, computer science, and management science 

to meet the objectives of this research. Each presented methodology has its 

own contributions, which are described in corresponding chapters and 

summarized as follows.  

 

In Chapter 3, the proposed cost-benefit integration initially combines the 

sustainability indicators of all three dimensions through the monetization that 

additionally included potential benefit rather than solely considering cost as 

in previous studies. Subsequently, in order to address the challenges and 

underlying bias brought by this monetary transformation, Chapter 4 presents 

the eco-efficiency approach to multidirectionally integrate sustainable 

indicators without compromising each other. Then, as described in Chapter 5, 

the incorporation of uncertainty analysis effectively compensates for the 

inherent insufficiency of the previous evaluation tools in result specificity, 

and decreases the likelihood of misunderstanding or negative effect on 
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external interest. For the consolidation of higher-level decision-making, the 

proposed approach as discussed in Chapter 6 incorporates global sensitivity 

analysis into machine learning techniques, which contributes to not merely 

developing and comparing different pavement performance models, but also 

in identifying the deep connection between the training performance and 

model interpretability. Ultimately, by following the evolution of the multi-

objective optimization algorithm, the employment of the more efficient and 

capable genetic algorithms presented in Chapter 7 creates more possibilities 

in solving the complicated nonlinear problem and provided more sensible 

strategies in pavement management. 

 

In general, the theoretical contributions of this research pave a more 

sustainable and efficient path to improving current decision-making tools for 

pavement management on both project and network levels. In addition, multi-

disciplinary synthesis and applications in this research increase the approach 

capability and versatility in addressing problems related to various issues in 

different areas.  

 

8.2.2 Application Contributions 

The methodological contributions provided by this research are also 

instantiated in specific applications, which not only prove the feasibility of 

the method, but also provide preliminary insights on the sustainable value of 

corresponding decision made. The applications in this research involved two-

level decision-making associated with several emerging sustainable 

pavement technologies, which include bottom-up evaluations for selection of 

the most sustainable material designs, M&R treatments, and material 

additives among competing alternatives, and top-down planning for 

sustainable maintenance strategy optimization.  
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On the project level, the implementation results could provide a quantitative 

and qualitative reference to agencies or decision-makers for identifying the 

best alternatives and determining ways to facilitate improvements in 

pavement sustainability. On the network level, the original application on 

maintaining the low-noise function could serve as a complement of the 

traditional PMS that only considered the pavement condition. From a long-

term perspective, the potential significance and effectiveness of maintaining 

pavement acoustic performance could become greater with the development 

of quieter vehicle power units. Furthermore, beyond pavement infrastructure, 

the proposed methods in this research also have great potential to be applied 

to other types of civil infrastructure. 

 

8.2.3 Policy Implications 

The policy implications of this research touch on updating pavement 

management criteria and improving management techniques. First, the 

findings of this research suggest the necessity of shifting management criteria 

from principally economic-based ones to more sustainable and 

comprehensive considerations. This shift entails the adoption of systematic 

sustainability evaluation and planning tools in order for agencies to make 

more optimal decisions. Second, as hardware and software tools continue to 

become more sophisticated, management approaches could also be further 

honed towards a more automatic and intelligent direction. Third, multi-

disciplinary approaches enable the development of more effective and 

efficient decision-support methods.  

 

8.3 Limitations  

This study has several limitations, which fall in the arenas of parameter, 

model, and data limitations, described as follows.  
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(1) Parameter limitations  

The methodologies of this research involve various parameters, including 

monetary conversion factors in CBI methods, weighting factors in the EEI 

method, the coefficients of the HDM-4 pavement-vehicle interaction model, 

training parameters of ANN and SVM algorithms, and searching parameters 

of NSGA-II algorithm. The corresponding parameter selections were based 

on the investigation, calibration, default values or values used by previous 

studies. The selection of parameter values may bring variances in results. 

Therefore, the outcomes were contingent upon the setting of the specific 

parameters in this research. 

 

(2) Model limitations  

Mechanistic-empirical and empirical models are the two major model types 

applied in this research. Both categories have their own limitations. The 

application of mechanistic-empirical models (i.e., MEPDG and HDM-4 

models) was limited to the calibration of the data in other studies, which may 

not fit employed data well. For the self-developed empirical models (i.e., 

ANN and SVM models) in this study, they were constrained by the specific 

data used to train and obtain the models.  

 

(3) Data limitations 

Data plays a central role in the management decision-making, which vary by 

different regions, measuring systems, climate conditions, and traffic 

conditions. Therefore, the findings of this research are limited by the 

corresponding data availability, volume, and quality.  
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8.4 Recommendations for Future Work  

The methodologies and models in this research are recommended to be 

strengthened or extended in the following directions.  

 

(1) System boundary extension 

The system boundary considered in future studies is suggested to be extended 

in either life-cycle stage or impact category, which could contribute to 

sufficiently capturing the wider impacts of alternatives for either pavement 

project or network throughout the entire life cycle and improving decision-

making processes. 

 

(2) Method comparison 

Research could be further extended through horizontal comparison of 

alternative methodologies, such as through comparing EIO-LCA and process-

based LCA, evaluating various pavement-vehicle interaction models, 

considering different data mining techniques, and examining different 

optimization algorithms.  

 

(3) Model improvement 

Future research could overcome model limitations in the present study in 

various ways. For eco-efficiency integration models, conducting local public 

survey in capturing the social views will help to eliminate the variances 

brought by region, state of the economy, and culture in the weighting scheme. 

For mechanistic-empirical models, calibration with local data will likely 

improve model fitness. For empirical models, more data from different 

countries are recommended to be used to further improve the models and 

draw more generally applicable conclusions. 

 

(4) Application extension 
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On the project level, other emerging sustainable pavement technologies such 

as the addition of waste plastic, replacement of aggregates with waste glass, 

and cold mix technology, could be incorporated and evaluated. On the 

network level, integration of more functional performance rather than 

condition performance, such as permeability, skid resistance, and rolling 

resistance performance, into the PMS for more up-to-date and comprehensive 

decision-making would be valuable. Moreover, broader applications to either 

pavement infrastructure or other long-lived civil infrastructure would likely 

enhance the research potential and capability of the proposed methods. 
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APPENDICES 

APPENDIX 1   Construction Equipment Information of HIPR and M&F Techniques 

 

HIPR Equipment Information 

Equipment Model Function Productivity for Single Lane (km/h) 
Fuel Economy 

LPG* Diesel Electricity 

Hot Mixing 

Plant 
Type 3000 asphalt mixing plant Mixing hot asphalt and aggregates 220 t/h N/A 7 kg/t 650 kwh 

Construction 

Equipment 

HM16 Heater Heating and softening pavement 1.75 km/machine-team 751.5 kg/ machine-team 85.7 kg/machine-team N/A 

RM6800 Hot-in-place recycling 

machine 

Heating, scarifying and rejuvenating, 

and leveling the pavement 
1.75 km/machine-team 727.6 kg/ machine-team 113.5 kg/ machine-team N/A 

EM6500 Lifting and remixing 

machine 

Adding new asphalt mix, lifting and 

Remixing new and recycled asphalt 
1.75 km/machine-team 882.2 kg/ machine-team 128.7 kg/ machine-team N/A 

Paver (<4.5m) Paving 0.18 km/h N/A 33.6 kg/h N/A 

YZ16 Steel Road Roller (10t) 
Compacting 

Initial compaction (Twice): 2km/h              

Final compaction (Twice): 3km/h  
N/A 13.2 kg/h N/A 

SSR260 rubber-tyred roller (25t) Second compaction (4 times): 5km/h  N/A 22 kg/h N/A 

Transportation 

Equipment 
Dump truck (20t) 

Carrying Hot Asphalt mixture from 

plant to construction site (0.5km) 

Full load:40km/h                

Empty load:60km/h  
N/A 

Full load: 40.4 kg/100km                

Empty load: 19.3 kg/100km 
N/A 
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M&F Equipment Information 

Equipment Model Function Productivity for Single Lane (km/h) 
Fuel Economy 

LPG Diesel Electricity 

Hot Mixing 

Plant 
Type 3000 asphalt mixing plant Mixing hot asphalt and aggregates 220 t/h N/A 7 kg/t 650 kwh 

Construction 

Equipment 

W2100 Milling machine Pavement Milling 5km/h N/A 61.4 kg/h N/A 

Paver (<4.5m) Paving 0.18km/h N/A 33.6 kg/h N/A 

YZ16 Steel Road Roller (10t) 
Compacting 

Initial compaction (Twice): 2km/h              

Final compaction (Twice): 3km/h  
N/A 13.2 kg/h N/A 

SSR260 rubber-tyred roller (25t) Second compaction (4 times): 5km/h  N/A 22 kg/h N/A 

Transportation 

Equipment 

Dump truck (20t) 

Transporting new asphalt mixture 

from plant to construction site 

(0.5km) 

Full load:40km/h                

Empty load:60km/h 
N/A 

Full load: 40.4 kg/100km                

Empty load: 19.3 kg/100km 
N/A 

Dump truck (20t) 
Carrying old asphalt mixture waste to 

scrap yard （15km) 

Full load:40km/h                  

Empty load:60km/h 
N/A 

Full load: 40.4 kg/100km                

Empty load: 19.3 kg/100km 
N/A 

Note: *LPG refers liquefied petroleum gas 
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APPENDIX 2   Supplementary Information for Summary of Uncertainty Factors 

Inventory Data source Pedigree scores(a) DQI(b) Basic variance PDF 

Material production energy consumption(c) (MJ/kg) 

Aggregate 

0.0296 Farina et al. (2017) [3,4,1,5,2] 0.0066 

0.4172 

 

0.0866 Stripple (2001) [2,3,5,5,2] 0.0438 

0.0936 Athena (2006) [2,3,4,4,2] 0.0104 

0.1990 Ecoinvent Database (2007) [3,3,4,5,2] 0.0132 

0.0957 U.S. Life Cycle Inventory Database (2012) [3,2,4,4,2] 0.0107 

0.0530 NCSA (1977) [2,4,5,5,2] 0.0452 

0.0222 Berthiaume and Bouchard (1999) [3,4,5,5,2] 0.0526 

0.0740 Stammer and Stodolsky (1995) [3,4,5,5,2] 0.0526 

0.0760 Häkkinen and Mäkelä (1996) [3,4,5,5,2] 0.0526 

0.0382 Butt (2014) [4,4,2,4,2] 0.0114 

Asphalt 

3.7783 Farina et al. (2017) [3,4,1,5,2] 0.0066 

1.3241 

 

2.8900 Stripple (2001) [2,3,5,5,2] 0.0438 

5.3200 Athena (2006) [2,3,4,4,2] 0.0104 

9.0000 Ecoinvent Database (2007) [3,3,4,5,2] 0.0132 

10.5000 U.S. Life Cycle Inventory Database (2012) [3,2,4,4,2] 0.0113 

0.6300 Stammer and Stodolsky (1995) [3,4,5,5,2] 0.0466 

0.4200 NCSA (1977) [2,4,5,5,2] 0.0452 

6.0000 Häkkinen and Mäkelä (1996) [3,4,5,5,2] 0.0466 
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1.3120 Butt (2014) [4,4,2,4,2] 0.0114 

Crumb rubber 

0.9360 Bartolozzi et al. (2014) [2,4,2,5,2] 0.0054 

0.4199 

 

1.4196 Farina et al. (2017) [3,4,1,5,2] 0.0066 

4.2700 Wang et al. (2012b) [4,2,3,4,2] 0.0167 

1.4616 Bartolozzi et al. (2012) [2,4,3,5,2] 0.0072 

AR mixture 

0.3180 Bartolozzi et al. (2014) [2,4,2,5,2] 0.0054 

0.3655 

 

0.8641 Farina et al. (2017) [3,4,1,5,2] 0.0066 

0.4040 Stripple (2001) [2,3,5,5,2] 0.0438 

0.3750 Athena (2006) [2,3,4,4,2] 0.0104 

1.2624 Bartolozzi et al. (2012) [2,4,3,5,2] 0.0072 

Surfactant additive 3.8715 Wang and Gangaram (2014) [5,5,5,5,5] 0.2100 - 

 



168 
 

Organic wax 101.0000 Tufvesson and Börjesson (2008) [3,4,5,5,2] 0.0466 - 

 

Zeolite 26.4500 Fawer et al. (1998) [2,4,5,5,2] 0.0452 - 

 

Mixing process  

Unit energy Saving 0.51 - 1.16 (MJ/℉/ton) 
Prowell et al. (2014) 

Rodríguez-Alloza et al. (2015) 
- - - 
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Surfactant temperature reduction 100 - 130 (℉) Kristjánsdóttir et al. (2007) - - - 

 

Organic wax temperature reduction 32 - 97 (℉) Kristjánsdóttir et al. (2007) - - - 

 

Transportation distance (km)  

Transport crumb rubber powder 

150 Bartolozzi et al. (2014) [2,4,2,5,2] 0.0054 

1.5223 

 

100 Farina et al. (2017) [4,2,1,5,2] 0.0107 

10 Bartolozzi et al. (2012) [2,4,3,5,2] 0.0072 

100 Bartolozzi et al. (2012) [2,4,3,5,2] 0.0072 

Transport asphalt 

100 Farina et al. (2017) [4,2,1,5,2] 0.0107 

0.3987 
100 Butt (2014) [4,4,2,4,2] 0.0114 

280 Vidal et al. (2013) [4,2,3,4,2] 0.0113 

50 Bartolozzi et al. (2012) [2,4,3,5,2] 0.0072 
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150 Bartolozzi et al. (2012) [2,4,3,5,2] 0.0072 

 

Transport aggregates 

2 Bartolozzi et al. (2014) [2,4,2,5,2] 0.0054 

2.4304 

 

5 Butt (2014) [4,4,2,4,2] 0.0114 

60 Farina et al. (2017) [4,2,1,5,2] 0.0107 

30 Bartolozzi et al. (2012) [2,4,2,5,2] 0.0072 

80 Bartolozzi et al. (2012) [2,4,2,5,2] 0.0072 

73 Vidal et al. (2013) [4,4,2,5,2] 0.0128 

Transport asphalt mixture 

50 Farina et al. (2014) [4,2,2,5,2] 0.0109 

0.0874 

 

60 Farina et al. (2017) [4,2,1,5,2] 0.0107 

72 Wang et al. (2012b) [4,2,3,4,2] 0.0113 

36.00 Leng et al. (2017a) [4,4,1,4,2] 0.0112 

Energy consumption of construction equipment (L/h)  

Road sweeper 26.67 Bartolozzi et al. (2012) [2,4,2,5,2] 0.0072 0.0002 
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25.25 Zapata and Gambatese (2005) [3,3,4,5,2] 0.0132 

 

Paving machine 

30.00 Farina et al. (2017) [2,4,3,5,2] 0.0072 

0.1093 

 

15.10 Zapata and Gambatese (2005) [3,3,4,5,2] 0.0132 

18.10 Bartolozzi et al. (2012) [2,4,2,5,2] 0.0072 

20.00 Stripple (2001) [2,4,5,5,2] 0.0452 

22.00 Stripple (2001) [2,4,5,5,2] 0.0452 

26.62 Vidal et al. (2013) [4,4,2,5,2] 0.0128 

40.13 Wang et al. (2012a) [4,2,3,4,2] 0.0113 

Steel roller 

30.67 Wang et al. (2012a) [4,2,3,4,3] 0.0187 

0.1102 

 

12.00 Stripple (2001) [2,4,5,5,3] 0.0526 

18.00 Stripple (2001) [2,4,5,5,3] 0.0526 

17.00 Zapata and Gambatese (2005) [3,3,4,5,2] 0.0132 

17.00 Farina et al. (2017) [2,4,3,5,3] 0.0128 

12.85 Bartolozzi et al. (2012) [2,4,2,5,3] 0.0146 

Pneumatic roller 

18.55 Wang et al. (2012a) [4,2,3,4,3] 0.0187 

0.0343 
12.00 Stripple (2001) [2,4,5,5,3] 0.0526 

18.00 Stripple (2001) [2,4,5,5,3] 0.0526 

17.00 Zapata and Gambatese (2005) [3,3,4,5,2] 0.0132 
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17.00 Farina et al. (2017) [2,4,3,5,3] 0.0128 

 

12.85 Bartolozzi et al. (2012) [2,4,2,5,3] 0.0146 

Note: (a)The set of five pedigree scores represents [“reliability”, “completeness”, “temporal correlation”, “geographical correlation”, “further technological 

correlation”]. 
(b)The additional variance was estimated as data quality indicator (DQI), which denotes the appropriateness that the data could be applied in this study. 
(c)The energy data extraction and integration process was based on the corresponding density and energy contents presented in Weidema et al. (2013a). 
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APPENDIX 3   MATLAB Scripts for ANN Regression Model 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Auto-generated by MATLAB, 19-Nov-2018 20:29:12. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = 6xQ matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = 1xQ matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

% Input 1 

x1_step1.xoffset = [-1.26733852209231;-1.77647115294255;-2.05820386749596;-

1.39846787288022;-1.04878374676157;-1.40020070355975]; 

x1_step1.gain = 

[0.619554422142857;0.5914068924;0.536426003;0.876454257485714;0.41999369047313

8;0.297932384962406]; 

x1_step1.ymin = -1; 

  

% Layer 1 

b1 = [-2.0437321253884461747;-1.4625444290636213651;2.5115682710096343122;-

1.0259061952360277736;1.4643619065684763125;0.1254414778185445889;-

1.1524039284351048629;-0.85870882401176129584;0.77096879189756029049;-

1.8465595942212693625]; 

IW1_1 = [-0.57655278377457253036 -0.99522628055196882269 

1.3266393498802304673 -1.4059403244464225846 -0.25952233228914345364 

0.49113671616006726595;1.6358018702034580194 -1.1237978449744314702 -

1.4500425392922957624 0.83217069983985214598 -0.52508980840545360635 

0.59401532790855071653;-0.86603456084442509422 1.6113363471942279137 

0.70622112527768199364 -1.2720828052421682131 0.48587996774009128975 -

0.22600543779006496137;-0.43258293854286272717 1.9385698064495786586 

1.0999823201204923517 -0.3507349560859863713 0.61235541325556142045 

1.2397371664072613928;-0.45613304151783889973 0.63112440151625681661 -

0.5769122628963209154 -1.5844544573508700935 -0.97315692462409419949 
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2.3963129505200124747;-2.1924388138039523355 -1.1018275545698115181 

0.15624294130045951468 0.59325231413806434055 -1.6032335016336671796 

0.48699319705293098171;-2.1820401039043959557 2.2920969211432504764 

0.11094251359004252133 1.1623897040092279198 -1.2542713390737283419 -

1.7244863383862971684;-0.51571509130746995275 0.61663896198335199639 -

0.51584674077808301274 0.73557772328437254217 -1.4047079387088035052 

0.63403288492552800637;0.76335009963231470476 0.71017618611669430795 

1.7468803886543873283 -2.7459280010056148491 -1.424668488933795496 

0.23532171787321171097;-0.54594035219641001699 -0.65674575271915958119 -

1.5146291154696009951 1.8070469680096130638 1.4044811001210695256 

0.092310322339517386636]; 

  

% Layer 2 

b2 = -1.1699703439799975513; 

LW2_1 = [-0.025441729180876029165 1.3050297527361420791 1.098801823704265157 

0.82350826189092884988 0.85641159761786234128 0.97010877811750240163 -

0.62796401163966641956 -1.5970302839991499244 -1.8615142525919463612 -

1.3419825117377075507]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 0.440388065181691; 

y1_step1.xoffset = -1.526417595605; 

  

% ===== SIMULATION ======== 

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX 

    X = {X}; 

end 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},2); % samples/series 

else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 
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    % Input 1 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX 

    Y = cell2mat(Y); 

end 

end 

  

% ===== MODULE FUNCTIONS ======== 

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 

y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 
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APPENDIX 4   MATLAB Scripts for SVM Regression Model 

 

function [trainedModel, validationRMSE] = trainRegressionModel(trainingData) 

% [trainedModel, validationRMSE] = trainRegressionModel(trainingData) 

% returns a trained regression model and its RMSE. This code recreates the model trained  

% in Regression Learner app. Use the generated code to automate training the same model  

% with new data, or to learn how to programmatically train models. 

%  Input: 

%  trainingData: a matrix with the same number of columns and data type 

% as imported into the app. 

%  Output: 

%      trainedModel: a struct containing the trained regression model. The 

%       struct contains various fields with information about the trained 

%       model. 

% 

%      trainedModel.predictFcn: a function to make predictions on new data. 

% 

%      validationRMSE: a double containing the RMSE. In the app, the 

%       History list displays the RMSE for each model. 

% 

% Use the code to train the model with new data. To retrain your model, call the function  

% from the command line with your original data or new data as the input argument  

% trainingData. 

% 

% For example, to retrain a regression model trained with the original data 

% set T, enter: 

%   [trainedModel, validationRMSE] = trainRegressionModel(T) 

% 

% To make predictions with the returned 'trainedModel' on new data T2, use 

%   yfit = trainedModel.predictFcn(T2) 

% 

% T2 must be a matrix containing only the predictor columns used for 

% training. For details, enter: 

%   trainedModel.HowToPredict 

 

% ===== EXTRACT PREDICTORS AND RESPONSE ======== 

% This code processes the data into the right shape for training the model. 

% Convert input to table 

inputTable = array2table(trainingData, 'VariableNames', {'column_1', 'column_2', 

'column_3', 'column_4', 'column_5', 'column_6', 'column_7'}); 

  

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 'column_5', 

'column_6'}; 

predictors = inputTable(:, predictorNames); 
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response = inputTable.column_7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

  

% ===== TRAIN A REGRESSION MODEL ======== 

% This code specifies all the model options and trains the model. 

responseScale = iqr(response); 

if ~isfinite(responseScale) || responseScale == 0.0 

    responseScale = 1.0; 

end 

boxConstraint = responseScale/1.349; 

epsilon = responseScale/13.49; 

regressionSVM = fitrsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 2.4, ... 

    'BoxConstraint', boxConstraint, ... 

    'Epsilon', epsilon, ... 

    'Standardize', true); 

  

% Create the result struct with predict function 

predictorExtractionFcn = @(x) array2table(x, 'VariableNames', predictorNames); 

svmPredictFcn = @(x) predict(regressionSVM, x); 

trainedModel.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

  

% Add additional fields to the result struct 

trainedModel.RegressionSVM = regressionSVM; 

trainedModel.About = 'This struct is a trained model exported from Regression Learner 

R2018b.'; 

trainedModel.HowToPredict = sprintf('To make predictions on a new predictor column 

matrix, X, use: \n  yfit = c.predictFcn(X) \nreplacing ''c'' with the name of the variable that 

is this struct, e.g. ''trainedModel''. \n \nX must contain exactly 6 columns because this 

model was trained using 6 predictors. \nX must contain only predictor columns in exactly 

the same order and format as your training \ndata. Do not include the response column or 

any columns you did not import into the app. \n \nFor more information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appregression_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

  

% Extract predictors and response 

% This code processes the data into the right shape for training the model. 

% Convert input to table 

inputTable = array2table(trainingData, 'VariableNames', {'column_1', 'column_2', 
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'column_3', 'column_4', 'column_5', 'column_6', 'column_7'}); 

  

predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 'column_5', 

'column_6'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.column_7; 

isCategoricalPredictor = [false, false, false, false, false, false]; 

  

% Perform cross-validation 

KFolds = 5; 

cvp = cvpartition(size(response, 1), 'KFold', KFolds); 

% Initialize the predictions to the proper sizes 

validationPredictions = response; 

for fold = 1:KFolds 

    trainingPredictors = predictors(cvp.training(fold), :); 

    trainingResponse = response(cvp.training(fold), :); 

    foldIsCategoricalPredictor = isCategoricalPredictor; 

     

    % Train a regression model 

    % This code specifies all the model options and trains the model. 

    responseScale = iqr(trainingResponse); 

    if ~isfinite(responseScale) || responseScale == 0.0 

        responseScale = 1.0; 

    end 

    boxConstraint = responseScale/1.349; 

    epsilon = responseScale/13.49; 

    regressionSVM = fitrsvm(... 

        trainingPredictors, ... 

        trainingResponse, ... 

        'KernelFunction', 'gaussian', ... 

        'PolynomialOrder', [], ... 

        'KernelScale', 2.4, ... 

        'BoxConstraint', boxConstraint, ... 

        'Epsilon', epsilon, ... 

        'Standardize', true); 

     

    % Create the result struct with predict function 

    svmPredictFcn = @(x) predict(regressionSVM, x); 

    validationPredictFcn = @(x) svmPredictFcn(x); 

     

    % Add additional fields to the result struct 

     

    % Compute validation predictions 

    validationPredictors = predictors(cvp.test(fold), :); 
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    foldPredictions = validationPredictFcn(validationPredictors); 

     

    % Store predictions in the original order 

    validationPredictions(cvp.test(fold), :) = foldPredictions; 

end 

  

% Compute validation RMSE 

isNotMissing = ~isnan(validationPredictions) & ~isnan(response); 

validationRMSE = sqrt(nansum(( validationPredictions - response ).^2) / 

numel(response(isNotMissing) )); 
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APPENDIX 5   MATLAB Scripts for MOO operation 

% ===== THREE OBJECTIVE FUNCTIONS ========  

function f1 = NoiseReductionBenefit(Choice) 

Choice_worst = ones (1,50*60);      % The worst case (Do-nothing) 

[Seg_N_con_worst,~] = DecisionChoice(Choice_worst);   % The worst situation 

[Seg_N_con,~] = DecisionChoice(Choice);         % Optimized situation 

f1 = sum(sum(Seg_N_con_worst-Seg_N_con))/(5*60);   

  

function f2 = GHG_Emission(Choice) 

GHG_treatment = [0 86 6750]*500*3.5; 

GHG_optimized = zeros(5,60); 

%GHG emission due to different choices 

for i=1:1:60 

 for t=1:1:5 

  switch round(Choice(i*t))     

    case 1 % Do-nothing 

    GHG_optimized(t,i) = GHG_treatment(1); 

     

    case 2 % Cleaning 

    GHG_optimized(t,i)=GHG_treatment(2); 

     

    case 3 % Resurfacing 

    GHG_optimized(t,i)=GHG_treatment(3); 

  end     

 end 

end 

f2 = sum(sum(GHG_optimized)); 

  

function f3 = Cost_Consumption(Choice) 

C_treatment = [0 13.69 42.23;0 14.2376 43.92; 0 14.807104 45.6768; 0 15.39938816 

47.503872; 0 16.01536369 49.40402688]*500*3.5; 

C_optimized = zeros(5,60); 

% Cost due to different choices 

for i=1:1:60 

 for t=1:1:5 

  switch round(Choice(i*t))     

    case 1 % Do-nothing 

    C_optimized(t,i) = C_treatment(t,1); 

     

    case 2 % Cleaning 

    C_optimized(t,i) = C_treatment(t,2); 

     

    case 3 % Resurfacing 

    C_optimized(t,i) = C_treatment(t,3); 
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  end     

 end 

end 

f3 = sum(sum(C_optimized)); 

 

% ===== MOO COMPUTATION========  

fitnessfcn = 

@(Choice)[NoiseReductionBenefit(Choice),GHG_Emission(Choice),Cost_Consumption(C

hoice)]; 

nvars = 300; 

lb=zeros(1,300)+0.5; 

ub=zeros(1,300)+3.4; 

options = optimoptions('gamultiobj','ParetoFraction',0.35); 

[s,fval] = gamultiobj(fitnessfcn,nvars,[],[],[],[],lb,ub,options);  % Objective function value 

means solutions 

f1 = fval(:,1); 

f2 = fval(:,2); 

f3 = fval(:,3); 

solution = round(s); 

% Plot pareto front 

c=-f1; 

h=80; 

scatter3(-f1,f2,f3,h ,c,'filled') 

xlabel('Average noise reduction') 

ylabel('GHG emssion') 

zlabel('Cost') 

grid on 

cb=colorbar; 

set(get(cb,'label'),'string','Average noise reduction (dB(A)/Seg)'); 

% title('Pareto Points in Objective Space') 

 


