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Abstract 

 

This dissertation examined the effects of phonological neighborhood and homophone 

mates on spoken word recognition in Mandarin. Phonological neighbors are words 

that sound similar, and homophones are words with exactly the same pronunciation. 

Neighborhood density (number of phonological neighbors) and neighbor frequency 

(average frequency of the neighbors) are the main measures of a phonological 

neighborhood. Homophone density (number of homophones) and homophone 

frequency (average frequency of the homophone mates) are the main measure of a 

homophone family.   

 

A lot of research has been devoted to phonological neighborhood effects in English 

and other European languages, and found overall inhibitory effects of phonological 

neighborhoods. Words with many neighbors and high frequency neighbors are 

responded with more errors and longer response time as compared to words with 

fewer neighbors and lower-frequency neighbors, respectively. But there has not been 

much research on tone languages. On the other hand, much less is known about the 

effects of homophone mates on spoken word recognition, probably because most 

languages like English do not have a large number of homophones in the lexicon.  

                 

In this thesis, the language under investigation is Mandarin, a tonal language with a 

high density of homophone mates. The main goal of the current research is to 

compare the roles of phonological neighbors and homophone mates in the process of 

Mandarin spoken word recognition. I conducted two experiments: an auditory lexical 

decision experiment and an auditory naming experiment. Mixed-effects regression 
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analyses of auditory lexical decision results showed facilitatory effects of 

phonological neighbor frequency, homophone density, and homophone frequency 

for real monosyllables and inhibitory effects of neighborhood density for pseudo-

syllables. In addition, the models also showed a significant interaction of homophone 

density and homophone frequency for real monosyllables. The results from the 

auditory naming experiment showed no significant effects of either phonological 

neighborhoods or homophone mates.     

   

Taken together, the current research showed both similarity and differences between 

phonological neighbors and homophone mates in the processing of spoken Chinese 

words. Implications for models of Mandarin lexicon are discussed.
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Chapter 1: Introduction 

 

1.1 Introduction to the study 

 

Spoken word recognition is a process of recognizing words via auditory modality. 

This process is very short but complicated. When we hear a word, acoustics of the 

word activates the sound. The activated sounds further activate word candidates in 

the mental lexicon. The word candidate that surpasses the threshold activation level 

gets selected. If the selected word candidate is the target word, successful 

recognition process completes. On the contrary, if the selected word is not the target 

word, then the recognition process fails. The recognition performance can be 

evaluated in terms of accuracy (i.e. whether or not the recognition process is 

successful) and speed (i.e. how long it takes to complete the recognition process). 

The speed and accuracy of spoken word recognition may be influenced by a variety 

of factors. For example, when the listener is in a noisy environment, his or her ability 

to recognize spoken words will in general deteriorate. On the other hand, the ease or 

difficulty of recognizing a spoken word may also be influenced by properties of the 

word. The most well-known example is the effect of word frequency. High 

frequency words are recognized faster and more accurately than low frequency 

words (Luce & Pisoni, 1998).  

 

Another type of lexical effects has to do with the presence of words that are 

somehow similar or related to the target word in the same lexicon. As mentioned 

above, in the process of spoken word recognition, along with the target word, a 

group of other non-target words are also activated to different extents. In the case of 
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a failed recognition process, it is one of the non-target co-activated candidates that 

somehow gets the highest activation (higher than the target word) and therefore is 

(wrongly) selected as the word spoken. These co-activated words typically share 

some properties with the target word, in terms of meaning, spelling, or pronunciation. 

In other words, the lexicon can be viewed as an interconnected network, where 

words that share properties are connected to each other. These co-activated words 

influence the processing of the spoken word by either helping or by impeding the 

target word via the connections. 

 

One of the possible ways to connect related words is through phonological similarity 

(i.e. similarity in pronunciation). Words with high phonological similarity, i.e. 

similar-sounding words, are known as phonological neighbors. In practice, 

phonological neighbors are most commonly defined by the one-phoneme difference 

rule (Luce & Pisoni, 1998), that is, any two words that differ by one and only one 

phoneme, by addition, deletion or substitution. For example, cat and mat are 

phonological neighbors as they share the phonemes in medial and final positions, and 

only differ in the initial position. The phonological neighborhood of a word is the set 

of phonological neighbors the word has. A phonological neighborhood can be 

measured by neighborhood density and neighborhood frequency (Luce & Pisoni 

1998). Neighborhood density is the number of neighbors; neighborhood frequency is 

the average frequency of the neighbors (Luce & Pisoni, 1998). Thus, a word with 

many neighbors is in a dense neighborhood, while a word with few neighbors is in a 

sparse neighborhood. 
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Previous research has shown that phonological neighbors can influence the process 

of word recognition. Usually, Luce and Pisoni (1998), and Vitevitch and Luce (1999) 

found that words from dense neighborhoods take more time and are recognized less 

accurately as compared to words from sparse neighborhoods. This shows that there is 

more competition from neighbors in a dense neighborhood than from neighbors in a 

sparse neighborhood; in other words, neighborhood density has an inhibitory effect 

on spoken word recognition. Similarly, these studies also show that words with high 

neighborhood frequency are recognized slower and less accurately than words with 

low neighborhood frequency, suggesting that high frequency neighbors introduce 

more competition compared to low frequency neighbors. In other words, 

neighborhood frequency also has an inhibitory effect on spoken word recognition.  

 

However, these effects of phonological neighborhood on spoken word recognition 

are not consistent across languages. The seminal works on phonological 

neighborhoods as reviewed above (Luce & Pisoni, 1998; Vitevitch & Luce, 1999) 

are all focused on English. Much less is known about how neighborhood effects 

work in other languages. In fact, previous studies have shown that phonological 

neighborhood may have different effects in non-English languages, such as Japanese 

(Amano & Kondo, 2000; Yoneyama, 2002), French (Dufour & Frauenfelder, 2010; 

Ziegler, Muneaux, & Grainger, 2003), and Spanish (Vitevitch & Rodríguez, 2005). 

For example, Vitevitch and Rodriguez (2005) studied the effects of phonological 

neighborhood in Spanish. They found facilitatory effects of neighborhood density 

and neighborhood frequency. These findings are in contradiction to the results found 

in English. These conflicting effects could be due to language specific properties of 

the neighborhood structure, morphology, and the structure of word in the language.  
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Furthermore, previous studies on neighborhood effects have, in general, only 

examined non-tonal languages. What will happen in a tonal language? The crucial 

feature of a tonal language is the use of pitch patterns to distinguish word meanings 

(i.e. lexical tones). The presence of lexical tones raises an important question, that is, 

how to define a phonological neighborhood in a tonal language? Should tone be 

considered in the evaluation of phonological similarity? If so, how should the 

consideration of tones be integrated with the consideration of segments?  Take 

Chinese as an example. Lexical tones are used in all the varieties of Chinese. The 

most widely-studied Chinese varieties are Mandarin, which has four lexical tones 

(Duanmu, 2007), and Cantonese, which has six lexical tones (Yip, 2002). Previous 

studies have shown that tones and segments are equally important for Chinese 

spoken word recognition (Malins & Joanisse, 2012; McBride-Chang et al., 2008). A 

small number of studies have examined the effects of phonological neighborhoods in 

Mandarin (Neergaard, 2018; Tsai, 2007) and Cantonese (Kirby & Yu, 2007). But 

these studies used different definitions of phonological neighborhoods, and reported 

mixed results regarding the effects of phonological neighborhoods on Chinese word 

recognition.  

 

In this dissertation, I further the investigation of phonological neighborhood effects 

in Mandarin, following Neergaard’s (2018) general methods, I test multiple possible 

definitions of phonological neighborhoods with two spoken word recognition tasks: 

auditory lexical decision and auditory word naming. However, both experimental 

design and statistical analysis are significantly improved in my study. Instead of 

using a small set of word stimuli, I use the complete set of possible syllables that are 
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available in the language, so that the experimental results paint a more 

comprehensive picture of the effects under investigation. The statistical analysis used 

in this dissertation is carefully planned to control for all the factors that may affect 

the spoken word recognition process, so that the critical effects can be interpreted 

unambiguously.   

 

In addition to phonological neighbors, this thesis will also include a discussion of the 

effects of homophones.  In the existing literature of phonological neighborhoods 

(Luce & Pisoni, 1998; Vitevitch & Luce, 1999), the focus has always been on words 

that sound similar but not exactly the same. What about words that sound exactly the 

same as the target word? Do homophones also play a role in the process of spoken 

word recognition? These questions are difficult to discuss with data from English (or 

many other languages), because there are, in general, not many homophones in the 

language. Mandarin provides a rare opportunity to address these questions. With a 

small syllable inventory of only around 1300 monosyllables with tone gives rise to a 

lot of homophones in the language. Mandarin has a wide range of homophones 

ranging till 40 homophones. For comparison, English words have around 2-4 

homophones. There have been few studies in Mandarin looking at the effects of 

homophones that found inhibitory effects on spoken word recognition (Wang, Li, 

Ning, & Zhang, 2012; Zhou, 2015). Further, there have been few studies that have 

examined the effects of homophone density and its interactions within the frequency, 

in Mandarin (Li, Fang, & Lou, 2011; Zhou, 2015). These studies suggest interactions 

between homophone density, and frequency. However, these interactions are not 

very well understood. Therefore, to contribute to this set of literature and further the 
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investigation on the effects of homophones using an exhaustive dataset of 1259 

Mandarin monosyllables, the current study was conducted.  

 

In sum, this dissertation addresses: First, how to define phonological neighborhoods 

for a tonal language like Mandarin and what are the effects of phonological 

neighbors on Mandarin spoken word recognition? Second, what are the effects of 

homophones on Mandarin spoken word recognition? Do homophone mates have the 

same effects as phonological neighbors? Third, how to explain the effects of 

phonological neighbors and homophone mates in Mandarin in theoretical models of 

spoken word recognition?  

 

1.2 Dissertation outline 

 

This dissertation is organized as follows: Chapter 2: Literature Review, reviews the 

relevant literature on models of spoken word recognition and the effects of 

phonological neighborhood and homophones on spoken word recognition. Chapter 

3: Research Methods, introduces the general methods (e.g. stimuli preparation, 

procedures of model building and analysis) that are shared by both experimental 

studies. Chapter 4: Auditory lexical decision, presents the detailed experimental 

procedure and results of the auditory lexical decision experiment. Chapter 5: 

Auditory naming, presents the detailed experimental procedure and results of the 

auditory naming experiment. Chapter 6: Discussion and conclusion, contains a 

general discussion of the experimental results and the theoretical implications. 

Limitations of the current study and future directions are also discussed towards the 

end of Chapter 6: Discussion and conclusion. 
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1.3 Significance of the dissertation 

 

The significance of this dissertation lies in three aspects. First, this dissertation will 

provide a comprehensive view of the effects of phonological neighborhoods on 

spoken word recognition in Mandarin. In the current dissertation, I report results 

from well-controlled experiments and well-grounded data analysis.  Findings from 

this dissertation will illuminate the nature of phonological neighborhood effects in 

Mandarin; they will also extend the existing literature on phonological 

neighborhoods by contributing valuable insight from lexical processing in a tonal 

language.   

 

Second, this dissertation will provide important insights into the effects of 

homophones on spoken word recognition. This issue is rarely addressed in the 

literature, because most of the commonly researched languages like English do not 

have many homophones. Mandarin, which has an abundance of homophones, gives a 

unique opportunity to investigate this issue. 

 

Last but not the least, this dissertation explores the continuum of phonological 

similarity and how different degrees of similarity may affect lexical processing. This 

dissertation investigates both similar-sounding neighbors and same-sounding 

homophones.  To the best of my knowledge, this is the first study that compared the 

effects of these two types of phonological similarity in spoken word recognition. 

Based on the nature of effects of phonological neighbors and homophones, this 

dissertation tries to associate the experiment results with the existing theoretical 
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models of spoken word recognition to provide theoretical explanation to the effects 

found in the current dissertation.
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Chapter 2: Literature Review 

 

The process of recognizing words is known as spoken word recognition. In the 

recognition process, the incoming auditory information is mapped onto the word 

representations stored in the listener’s mental lexicon. This mapping of auditory 

input onto mental lexicon would have been done very easily if we lived in an ideal 

world with no noise, no variation in speech across people. However, that’s not the 

case. Although, this process is done effortlessly by the listener, but the underlying 

mechanism is quite complex. there have been several theoretical models of the 

underlying mechanisms of spoken word recognition. In this chapter, I review the 

main theoretical models of spoken word recognition in Section 2.1 (Models of 

spoken word recognition). There are many factors that can influence the speed and 

accuracy of spoken word recognition. The most relevant factors for this dissertation 

are the effects of phonological neighborhoods and the effects of homophones. In 

Sections 2.2 (Phonological neighborhood) and 2.3 (Homophones), I review the 

relevant literature of these effects.  

 

2.1 Models of spoken word recognition 

 

There have been several models and/or theories that have attempted to explain the 

process of spoken word recognition. These models lay foundation on how acoustic 

signals are perceived as words in the mental lexicon. Some of the seminal models of 

spoken word recognition are Logogen model (Morton, 1969), Cohort theory 

(Marslen-Wilson, 1987), Shortlist model (Norris, 1994), TRACE model (McClelland 

& Elman, 1986), neighborhood activation model (Luce & Pisoni, 1998) etc.  
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Morton (1969) proposed Logogen Model of word recognition. This model was based 

on the assumption that each word is associated with a logogen. Logogens are units 

that contain information about a word in terms of phonetics, semantics, and syntax. 

When a word is presented, logogens that matches information with the input gets 

activated. With more match between the input speech and the logogen, the activation 

level of the logogen rises. This activation was also enhanced by the context. The first 

logogen that reaches the threshold of activation is recognized. The threshold of 

recognition varies depending on various factors. For example, word frequency: high 

frequency words have lower threshold compared to low frequency words. This 

results in faster recognition of high frequency words because the raise in activation 

required to reach the threshold is less compared to low frequency words. The model 

does consider the effects of context and word frequency on the word recognition 

process. However, the model strictly depends on the activation levels. It does not 

matter if there are other words possible or not. Word is only recognized when the 

activation reaches the threshold. Also, the model only talks about the uni-directional 

rise in the activation level. This indicates that a non-word will only be realized by the 

end of the input signal, which is usually not the case. 

 

Later, Marslen-Wilson (1987) introduced the Cohort model of spoken word 

recognition. This model is based on three stages of processing, namely access, 

selection, and integration. During access stage, acoustic-phonetic features of the 

input speech signal activate a group of word candidates in the mental lexicon 

referred to as cohort. In the selection stage, words that differ from the input speech 

signal by more than a one feature gets eliminated from the cohort. Syntactic and 
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semantic properties are incorporated by the integration function. For example, words 

that mismatch in context get eliminated from the cohort. The words in each cohort 

compete with one another until only one word is left in the mental lexicon. This 

model emphasizes on the early recognition of words. Recognition of a word occurs 

at the point at which a word is uniquely different from rest of the words in the 

cohort. Therefore, the word can be recognized before the word ends based on their 

uniqueness points.  This model also supports the word frequency aspect that implies 

a faster recognition for high frequency words. However, the model suggests that 

context does not play a role in the formation of cohort. Only when a cohort of word 

is selected, contextual information helps in cutting down the candidates.  Also, the 

model is based strictly on the sequence of input signal from initial to final position. 

The model fails to account for misperceptions, i.e. when the correct word candidate 

gets eliminated or fails to make an entry in the selected cohort. Also, the selection 

process does not make use of contextual information in the selection of cohort of 

words, which also leads to misperceptions. 

 

TRACE model (McClellland & Elman, 1986) was the first computational model of 

word recognition. This model was based on the interactive-activation framework. 

This means that the higher levels of contextual information can interact with the 

lower processing levels at all times. The model comprises of three levels, (1) feature 

level, (2) phoneme level, and (3) word level. Feature level consists of information 

about various speech characteristics such as voicing, burst, etc. Phoneme level and 

word level represents various phonemes and words respectively. Among these levels 

there were two types of connections: excitatory connections, and inhibitory 

connections. The excitatory connections run across the three levels while the 
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inhibitory connections are active within the level. The excitatory connections 

transmit information from one level to another. When a word is presented, the 

incoming speech signal activates corresponding speech features in the feature level. 

The activated features activate phonemes in the phoneme level, which in turn 

activates the word in the word level through the excitatory connections. 

Simultaneous to this process, inhibitory connections within the levels inhibit or 

restrict the activation of certain phonemes and word at their respective levels via 

inhibitory connections. Since the model is not strictly sequential like the cohort 

model, this allows the model to use context to recognize correct word candidates. It 

should be noted that the model assumes all the features at the feature level to be 

equally important for identification and classifies all the features on a same rating 

scale. Also, the model indulges in unreasonable duplication of network at each level 

of processing, which can be handled only by a small lexicon. 

 

Shortlist model by Norris (1994) was developed with an aim to instill the merits of 

TRACE. It consists of two stages. In the first stage, based on the input information 

word candidates were selected or shortlisted. In the second stage, selected candidate 

competes with each other. The process of shortlisting the word candidates is entirely 

based on the information provided by the input speech signal. The word candidates 

with lowest activation get eliminated to make space for the higher activated 

candidates in case there are many candidates. So, the process of updating activation 

scores is a continuous process to maintain the size. This makes it possible to consider 

a realistic size of lexicon. The shortlisted word candidates are wired with the 

overlapping word candidates through inhibitory links. These shortlisted candidates 
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then compete with each other. The word with highest level of activation gets 

identified. The model does account for word frequency effect.  

 

Neighborhood Activation Model (NAM; Luce & Pisoni, 1998) of spoken word 

recognition is based on acoustic processing as well as processing due to formation of 

groups of identical words. According to NAM, when a word is heard, a set of 

acoustic-phonetic patterns that represents a word gets activated. These set of words 

are similar sounding that differs maximally by one-phoneme from the input word. 

The activation level depends on the match with the input signal. These activation 

levels then activate word decision units. The activation of word decision unit 

depends on the acoustic-phonetic patterns and higher-level lexical information like 

word frequency. A word is recognized when the decision unit crosses certain 

threshold level. The model explains the structural organization of acoustic stimulus 

and the role of neighborhood structures and word frequency in word recognition in 

the mental lexicon. Most of the previous models on spoken word recognition 

considered word frequency effects intrinsic to activation process and thus could not 

fully explain these effects. However, NAM suggests frequency bias on the decision 

unit to explain the effects of frequency on spoken word recognition. Also, none of 

the previous models on spoken word recognition discuss about the structural 

organization of the mental lexicon and the influence it has on the processing of 

words. 

 

All the theoretical models reviewed above recognize that multiple word candidates 

are activated in the process of recognition. The terms used for the candidates may be 

different across models (e.g. cohort in the cohort model, and neighbor in the NAM), 
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but all the models agree that the candidates usually share something in common with 

the target word, in one or more lexical aspects (pronunciation, spelling, meaning, 

etc.). In this dissertation, I focus on the aspect of pronunciation and the effects of co-

activated phonologically similar word candidates in the process of spoken word 

recognition. For this purpose, I adopt a model that is most similar to NAM. In the 

next two Sections, I will review relevant empirical evidence for the effects of 

phonologically similar or even identical word candidates.    

 

2.2 Phonological neighborhood 

 

2.2.1 Quantifying phonological neighborhood 

 

As shown in the discussion above, many models of spoken word recognition assume 

the co-activation of a group of words along with the stimulus word. These co-

activated words are often phonologically similar to the stimulus word. These 

phonologically similar words are also known as phonological neighbors. But, how to 

define phonological neighbors and how to quantify the amount of co-activation 

produced by these co-activated phonological neighbors is quite difficult. There are 

several ways or rules proposed to define similarity of sounds. Some of the commonly 

used rules are neighborhood word probability rule (Luce & Pisoni, 1998), phi-square 

rule (Iverson, Bernstein, & Auer Jr, 1998) and one-phoneme difference rule (Luce & 

Pisoni, 1998). Luce and Pisoni (1998) proposed the neighborhood probability rule, 

which describes the amount of influence from the neighbors based on the 

confusability of sounds in the presence of noise. The more similar two words sounds, 

the more confusing they are. Neighborhood probability rule provides a measure to 
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predict the probability of identifying the stimulus word, given all other words in the 

lexicon. The calculation of neighborhood probability involves two formulas. 

Formula (1) calculates the confusability between the stimulus word and any other 

given word in the lexicon by multiplying the conditional probabilities of recognizing 

every phoneme in the stimulus word as the phoneme in the corresponding position in 

the non-stimulus word. In Luce and Pisoni’s work, the word-based confusability 

measure is referred to as neighborhood word probability (NWP). The more 

confusable the stimulus word is with the neighbor word, the higher the NWP. In the 

most extreme case, the NWP can be as high as 1, when the stimulus word is always 

mis-recognized as the neighbor word. 

 

(1)  

 

 

where PNi is the ith phoneme of the neighbor, PSi is the ith phoneme of the stimulus 

word and n is the number of phonemes. 

 

 For example, the probability of recognizing the stimulus word “cat” as “bad” can be 

calculated by multiplying the probability of identifying /k/ as /b/, the probability of 

identifying /æ/ as /æ/, and the probability of identifying /t/ as /d/. See formula (2). 

 

(2)     p(bæd|kæt) = p(b|k) * p(æ|æ) * p(d|t) 
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 The calculation of neighborhood probability involves another formula (see formula 

(3)), which computes the amount of overall competition posed by the lexicon onto 

the stimulus word by summing the NWPs with all other words in the lexicon (i.e. the 

complete set of possible neighbor words). Here, for simplicity, we refer to this sum 

of NWPs as NWP density. It should be noted that neighborhood probability rule does 

not make categorical distinction between neighbors and non-neighbors. Instead all 

the words in the lexicon are considered as potential neighbors, but the amount of 

influence of each word to the stimulus word may vary depending upon the similarity 

a word shares with the stimulus word. For example, in a lexicon of N words, the 

overall completion on stimulus word can be expressed as given in formula (3).  

 

         (3) NWP density = p(word1|stimulusword) + p(word2|stimulusword) 

+…+ p(wordN|stimulusword) 

 

As shown above, NWP density gives the overall probability of a stimulus word being 

misrecognized when only phonemic content is being considered. This measure does 

not consider the possible influence of word frequency or the relative; neither does it 

compare the probability of correctly identifying the stimulus word (stimulus word 

probability (SWP); see formula (4)). Luce and Pisoni proposed a more 

comprehensive measure, the frequency-weighted neighborhood probability rule 

(FWNPR), which calculates the overall probability of a word being correctly 

identified (i.e. p(ID)) given all other words in the lexicon.  In order to capture the 

potentially higher influence from frequently-used neighbors, one can calculate 

frequency-weighted neighborhood probability rule (FWNPR) by weighting the 
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individual SWP and NWP with the frequency of the stimulus word and the frequency 

of the neighbor word respectively (see formula (5)).  

 

(4) 

 

 

(5) 

 

 

where PSi is the probability of the ith phoneme of the stimulus word, PNij is the 

probability of the ith phoneme of the jth neighbor, n is the number of phonemes in 

the stimulus words and the neighbor word, Freqs is the frequency of the stimulus 

words, FreqNj is the frequency of the jth neighbor, and nn is the number of neighbors.  

 

Both NWP density and FWNPR have been used in the literature. Luce and Pisoni 

(1998) tested the effectiveness of FWNPR in their investigation of phonological 

neighborhood effects in spoken word recognition in English. They conducted a 

perceptual identification experiment with 918 three-phoneme monosyllables. The 

auditory stimuli were embedded in white noise at +15 dB, +5 dB, and -5 dB signal to 

noise ratios, in order to increase the level of difficulty of the identification task and 

the chance of observing perceptual errors. Ninety participants participated in this 

experiment, where the participants were asked to provide their best guess for each 

word they heard in a typed response. The participant’s performance was evaluated in 
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terms of accuracy. FWNPR was calculated for each stimulus word, following the 

formula in (5); usage frequency of words was collected from Kucera and Francis 

(1967). Results from this experiment revealed that FWNPR significantly correlated 

with identification scores on all three SNR conditions. Identification scores were 

high (mean = 64.03%) when frequency-weighted neighborhood word probability 

was low and frequency-weighted stimulus word probability was high. While 

identification scores were low (mean = 37.76%) when frequency-weighted 

neighborhood word probability was high and frequency-weighted stimulus word 

probability was low. Results from this study show that FWNPR does predict effects 

of phonological neighborhood on word recognition. 

 

NWP density has also been shown to be effective for predicting phonological 

neighborhood effects (e.g. Strand & Sommers (2011)). Strand and Sommers (2011) 

tested neighborhood probability measures along with other neighborhood measures 

in auditory spoken word recognition. The stimuli were 180 CVC words randomly 

selected from English lexicon project (Balota et al., 2007). Two tasks were 

conducted: phoneme identification and word naming. In phoneme identification, 

participants were presented with series of audio clips of a phoneme and they were 

instructed to identify the phoneme in a forced-choice task. In word naming task, 

participants were presented audio clips of word and they were asked to repeat the 

word. The authors used NWP density as a measure to quantify neighborhood. 

Seventy-two participants took part in this study. There was a significant negative 

correlation between recognition accuracy and density measures (r = -0.16, p < 0.05). 

Words with less lexical competition were identified more accurately compared to 

words with higher lexical competition. This study also tested other neighborhood 
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measures, which will be discussed in later parts of this Section. 

 

Although both NWP density and FWNPR are effective measures to predict the 

effects of word recognition, they pose a few limitations in its use of phoneme-based 

conditional probability as a means to estimate perceptual similarity. Most 

importantly, while these conditional probabilities do capture the similarity between 

two sounds, the exact value of the conditional probability also depends on how many 

other perceptually similar phonemes there are.  For example, if /f/ and /v/ are a pair 

of highly similar phonemes that are hard to distinguish, then the identification 

accuracy will be around 50% if listeners are guessing at the chance level (see Table 

1). However, if /tʃ/, /dʒ/, /ʃ/ and /ʒ/ are highly similar to one another, then the 

identification accuracy will be around 25% if the listeners are guessing at the chance 

level (see Table 1) due to four perceptually similar options available. In other words, 

it may seem that, /f/ and /v/ are twice as confusing as /tʃ/ and /dʒ/, or /ʃ/ and /ʒ/, or 

/tʃ/ and /ʃ/, or /dʒ/ and /ʒ/. But in fact, all these pairs are at the highest level of 

similarity that causes total confusion.  

 

Another limitation in conditional probability is the influence of response bias. As 

mentioned before that conditional probabilities capture similarity between two 

sounds, however, if participant response is biased towards a certain phoneme, it 

would appear that this phoneme is highly confusable with many other phonemes in 

the language. If that happens, then many phonemes in the language appear to be 

highly confusable with this phoneme. As a resultant, confusability among truly 

confusable phonemes will not be observed. In other words, the confusability among 

these other phonemes will be masked. For example, in a language people tend to 
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select phoneme /h/ more often for unknown reason. When that happens, it becomes 

difficult to observe similarity between truly perceptually similar phonemes like /f/ 

and /v/. In that case, the conditional probability of /f/ and /v/ gets masked due to the 

response bias of participants to choose /h/ over truly perceptual phonemes like /f/ and 

/v/.  

 

On the other hand, phi-square statistics that compares the response distributions of 

each response (entire row of Table 1) remains unaffected by frequency of each 

phoneme (individual cell of Table 1) that overcomes the problem of response bias. 

 

Table 1: A toy confusion matrix. 
 m l f v tʃ ʃ dʒ ʒ h Total 

m 95 2 0 3 0 0 0 0 0 100 

l 2 85 4 8 0 0 0 0 1 100 

f 0 0 50 50 0 0 0 0 0 100 

v 0 0 50 50 0 0 0 0 0 100 

tʃ 0 0 0 0 25 25 25 25 0 100 

ʃ 0 0 0 0 25 25 25 25 0 100 

dʒ 0 0 0 0 25 25 25 25 0 100 

ʒ 0 0 0 0 25 25 25 25 0 100 

h 0 0 5 0 0 2 2 1 90 100 

 

 

In order to overcome the limitation of conditional probability used in neighborhood 

word probability rule, Iverson et al. (1998) proposed a phi-square rule (based on phi-

square statistic). As the phi-square statistic compares response distribution across all 
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response options (entire row of Table 1) instead of individual responses (each cell in 

Table 1), the resultant is said to be unaffected by response percentages (individual 

cell of Table 1) and response bias (individual cell of Table 1).  

 

The calculation of phi-square statistic involves three formulas. The first formula 

estimates the similarity for each pair of phonemes. This similarity estimate is done 

by calculating the phi-square statistic on the distribution of responses given to these 

two phonemes (see formula (6)).  

 

(6)      

 

 

Where, xi and yi are the frequencies of identification of phonemes x and y as response 

category i, E(xi) and E(yi) are the expected frequencies of response for xi and yi if 

phonemes x and y are identical as category i, and N is the total of all responses to 

phoneme x and y.  

 

The expected values, E(xi) and E(yi), are determined by summing the frequency with 

which phoneme x was identified as category i and the frequency with which 

phoneme y was identified as category i, divided by 2. Therefore, E(xi) and E(yi) are 

always identical. The idea behind this being that phoneme x and y should be 

identified as the members of a given category with equal frequency if they are 

perceptually identical.  The phi-square value equals 0, when the distribution of 



  22 

response to two phonemes is identical i.e. participants select each response 

alternative equally for both phonemes x and y. For example, phonemes /f/ and /v/ in 

Table 1. The phi-square statistic equals 1, when there is no overlap in the response 

distribution of two phonemes i.e. participants do not make use of the same response 

categories for phonemes x and y. For example, phonemes /f/ and /tʃ/ in Table 1. 

Unlike phoneme-based conditional probabilities that estimates the confusion 

between tow phonemes, the phi-square value estimates the similarity in pattern of 

responses to the two phonemes. 

 

Just like NWP (see formula (2)), the second formula calculates the similarity 

between the stimulus word and another word in the lexicon by multiplying the phi-

square values of recognizing a phoneme in the stimulus word as the phoneme in the 

same position in the non-stimulus word (see the formula in (7)). Formula (7) gives 

the expression of computing phi-square value of the stimulus word to another word 

in the lexicon.  

 

For example, the phi-square similarity of “cat” and “bad” can be calculated by 

multiplying the phi-square value of identifying /k/ as /b/ with phi-square value of 

identifying /æ/ as /æ/ with phi-square value of identifying /t/ as /d/. See formula (7) 

 

(7) φ (bæd|kæt) = φ (b|k) * φ (æ|æ) * φ (d|t) 

 

Just like NWP density, the last formula (see formula (8)) calculate the overall 

competition posed by the lexicon onto the stimulus word i.e. phi-square density. All 

words in the lexicon are considered as potential neighbors. For a given stimulus 



  23 

word, its overall competition in the lexicon can be quantified by summing the phi-

square values of stimulus word to all the other words in the lexicon. For example, in 

a lexicon of N words, the overall completion on stimulus word can be expressed as 

given in formula (8).   

 

(8) phi-square density = φ (word1|stimulusword) + φ (word2|stimulusword) +…+ 

φ (wordN|stimulusword) 

 

Strand (2014) provides an online Phi-square lexical competition database (Phi-Lex) 

that gives access to auditory and visual lexical competition in English. Phi-Lex 

database contains three and four-phoneme English words extracted from English 

Lexicon Project (Balota et al., 2007). The phi- square values in the database were 

based on the confusion matrix data from Luce (1986).  

 

There are similarities between Luce and Pisoni’s neighborhood probability rule and 

Iverson’s phi-square rule. Both the rules are based on perceptual confusability of 

sounds. Both the rules do not make a binary distinction between neighbors and non-

neighbors. The main difference between neighborhood probability rule and phi-

square rule is that neighborhood probability rule describes the confusion between 

two phonemes on how likely these two phonemes are confused between each other 

whereas phi-square rule compares the responses to the two phonemes and describes 

how similar the response patterns are.  

 

Strand and Sommers (2011) tested phi-square measures along with other 

neighborhood measures in auditory spoken word recognition. Similar to the results 
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with NWP density reviewed above, phi-square density also proved to be significant 

predictor of word identification accuracy. Specifically, there was a significant 

negative correlation between recognition accuracy and density measures (r - -0.32, p 

<0.01). In other words, words with less lexical competition were identified more 

accurately compared to words with higher lexical competition. 

 

In addition to neighborhood probability rule, Luce and Pisoni (1998) also introduced 

one-phoneme difference rule. One-phoneme difference rule is the most commonly 

and widely used working definition of phonological neighbors. According to one-

phoneme difference rule, any two words that differ by one phoneme, by addition, 

deletion, or substitution, are considered phonological neighbors. For example, /bæt/, 

/kæp/, /æt/, /kæst/ and /kit/ are phonological neighbors of /kæt/, as they differ only by 

one phoneme. /bæt/, /kit/ and /kæp/ differs from /kæt/ by one phoneme via 

substitution at initial, medial and final position respectively; /æt/ and /kæt/ differs by 

deletion of a phoneme; /kæst/ and /kæt/ differ by addition of a phoneme. Webster’s 

Pocket dictionary (Webster’s Seventh Collegiate Dictionary, 1967) was used to 

estimate the neighborhood measures. Luce and Pisoni (1998) used only familiar 

words to estimate phonological neighborhood using one-phoneme difference rule in 

order to exclude words that are very infrequent. The frequency count was based on 

Kucera and Francis corpus (Francis & Kucera, 1967). Familiarity rating were 

obtained from Nusbaum et al.’s study (Nusbaum, Pisoni, & Davis, 1984) where 

subjects rated familiarity on a seven-point scale, ranging from “don’t know the word 

(1) to “know the word and know its meaning” (7). Luce and Pisoni (1998) chose 

words with familiarity rating of 5.5 or above to estimate neighborhood. The 

neighborhood metrics used in many English studies is from Hoosier mental lexicon 
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(Nusbaum et al., 1984). Neighborhood matrix in Hoosier mental lexicon is based on 

20,000 words from Webster’s pocket dictionary (Webster’s Seventh Collegiate 

Dictionary, 1967). 

 

Apart from English, there are lexical database in other languages too. The lexical 

database for monosyllabic French words is LEXOP (Peereman, 1999). LEXOP 

contains 2449 monosyllabic word forms extracted from BRULEX (Content, Mousty, 

& Radeau, 1990), a psycholinguistic database of 35,746 words for French. LEXOP 

database constitutes details on phonological and orthographical characteristics. The 

phonological and orthographical neighborhood in LEXOP was defined by one-

phoneme/letter substitution. This database does not mention anything about 

familiarity ratings. The lexical database in Spanish is LEXESP: Léxico 

informatizado del español (Sebastián-Gallés, 2000). The lexical database in Japanese 

is the NTT database (Amano & Kondo, 2003) that does consider the familiarity 

ratings. 

 

In NWP density and phi-square density, the amount of influence by neighbors is 

quantified by the conditional probabilities and phi-square values respectively, as 

given in formula (3) and (6). Under the one-phoneme difference rule, which makes 

categorical distinction between neighbor and non-neighbors, the two most often used 

ways to quantify the amount of influence from the neighbors are neighborhood 

density (i.e. the number of neighbors in the neighborhood) and neighborhood 

frequency (i.e. the average frequency of neighbors). A word with many neighbors is 

said to be in a dense neighborhood, while a word with few neighbors is said to be in 

a sparse neighborhood. 
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Luce and Pisoni (1998) examined the effects of one-phoneme difference rule in 

auditory lexical decision and auditory naming (the same study also examined 

neighborhood probability rule in perceptual identification in noise, which has been 

reviewed earlier under neighborhood probability rule). In their auditory lexical 

decision task, participants were presented with auditory stimulus and were asked to 

decide whether the stimulus was a real word or a non-word as quick and accurately 

as possible. In this task both accuracy as well as speed of response were measured. 

918 monosyllabic real words (same set as the stimuli word in perceptual 

identification task) along with 304 three-phoneme non-words were used as stimuli. 

The real words were divided into high (mean = 254.12) and low frequency (mean = 

5.22), high (mean = 21.92) and low neighborhood density (mean = 11.07), and high 

(mean = 370.32) and low neighborhood frequency (mean = 46.29). Non-words were 

divided into high (mean = 17.78) and low neighborhood density (mean = 8.10), and 

high (mean = 156.96) and low neighborhood frequency (mean = 11.84). Three 

stimulus files were constructed with 306 real words and 304 non-words. Each set of 

stimulus file was present to 10 participants. In total, thirty participants took part in 

this experiment. Results from real words suggest faster and more accurate responses 

for high frequency real words (mean reaction time = 390 ms; mean accuracy = 

93.43%) than low frequency real words (mean reaction time = 445 ms; mean 

accuracy = 86.03%); words with high neighborhood frequency were responded 

slower and less accurately (mean reaction time = 426.25 ms; mean accuracy = 

89.04%) than words with low neighborhood frequency (mean reaction time = 408.75 

ms; mean accuracy = 90.42%); and words with high neighborhood density were 

responded more accurately and slowly (mean reaction time = 424.25 ms; mean 
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accuracy = 91.4%) compared to words with low neighborhood density(mean reaction 

time = 410.75 ms; mean accuracy = 88.04%). Results from non-words suggest 

significant phonological neighborhood effects. Non-words with high neighborhood 

density were responded slowly and less accurately (mean reaction time = 451 ms; 

mean accuracy = 86.55%) compared to non-words with low neighborhood density 

(mean reaction time = 411.5 ms; mean accuracy = 90.03%). Similar effects were 

seen for neighborhood frequency. Non-words with high neighborhood frequency 

were responded slowly and less accurately (mean reaction time = 437 ms; mean 

accuracy = 86.85%) compared to non-words with low neighborhood frequency 

(mean reaction time = 425.5 ms; mean accuracy = 89.74%). 

 

In their auditory naming task, participants were presented with auditory stimulus and 

were asked to repeat the word as quick and accurately as possible. 400 CVC 

monosyllabic words were chosen from their real-word stimuli used in auditory 

lexical decision task.  They selected words to construct 8 cells with 50 words in each 

cell. These eight cells were orthogonally constructed combining high and low levels 

of word frequency, neighborhood density and neighborhood frequency. They 

selected stimuli words on the basis of an algorithm that first rank-ordered each of the 

918 real words on each of their three independent variables. Further, in order to 

ensure that cells that were matched on a given variable (e.g. both high neighborhood 

density) were maximally alike and that cells intend to differ on a given variable (e.g. 

one high and one low neighborhood density) were maximally different, they 

employed a method that used minimized and maximized squared deviations of 

successively ranked words. The words were divided into high (mean = 145.95) and 

low frequency (mean = 4.33), high (mean = 22.12) and low neighborhood density 
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(mean = 11.44), and high (mean = 245.17) and low neighborhood frequency (mean = 

60.50). Eighteen participants took part in this experiment. Results showed that words 

with high neighborhood density were named slowly and less accurately (mean 

reaction time = 822 ms; mean accuracy = 97.8%) than words with low neighborhood 

density (mean reaction time = 720 ms; mean accuracy = 98.08%). No effects of 

neighborhood frequency and word frequency were found.  

 

Overall, it was found that words from dense neighborhood had lower accuracy rates 

and took longer to respond compared to words from sparse neighborhood. This 

indicated that phonological neighbors act like competitors and pose competition to 

the stimulus word during word recognition process. Therefore, words with high 

neighborhood density face more competition due to more competitors resulting in 

lower accuracy and longer latency. Similar effect was found for neighborhood 

frequency i.e. words with higher neighborhood frequency were responded slower 

and less accurately compared to words with lower neighborhood frequency. Luce 

and Pisoni (1998) found that results from frequency weighted neighborhood 

probability rule and one-phoneme difference rule showed similar effects. The results 

were comparable and they did not differ significantly between the two measures of 

defining neighborhood. 

 

Strand and Sommer (2011) also examined the effects of neighborhood measures 

under the one-phoneme difference rule. They found that one-phoneme difference 

rule significantly predicts the effects of phonological neighborhood (r = -0.20, p < 

0.05). In general, they found that neighborhood measures from all the three rules, 

neighborhood probability rule (r = -0.16, p < 0.01), phi-square rule (r = -0.32, p < 
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0.05) and one-phoneme difference rule (r = -0.20, p < 0.05), are significantly 

effective in predicting the effects of phonological neighborhood. Phi-square density 

accounted for an additional variance compared to NWP density and neighborhood 

density. In general, all measures of neighborhood density significantly predicted the 

effects of phonological neighborhood. 

 

So far one-phoneme difference rule is the most often used neighborhood definition in 

the literature, due to its simplicity and effectiveness. In this dissertation, I use a 

modified version of one-phoneme difference rule for investigating the effects of 

similar-sounding words on Chinese word recognition, taking into consideration the 

syllable structure of Chinese lexical items. Details on the modified version of one-

phoneme difference rule used in this dissertation are presented in Chapter 3: 

Research Methods. In the next Section (Section 2.2.2 Phonological neighborhood 

effects), I am going to review additional experimental evidence on phonological 

neighborhood assuming the one-phoneme difference rule. 

 

2.2.2 Phonological neighborhood effects 

 

There has been a voluminous body of literature on the effect of phonological 

neighborhood on spoken word recognition (Amano & Kondo, 2000; Dufour & 

Frauenfelder, 2010; Luce & Pisoni, 1998; Vitevitch, 2002; Vitevitch & Luce, 1998, 

1999; Vitevitch & Rodríguez, 2005; Vitevitch, Stamer, & Sereno, 2008; Yoneyama, 

2002; Ziegler et al., 2003). Most of these studies have used one-phoneme difference 

rule to define phonological neighborhood. In this Section, I am reviewing studies 

using one-phoneme difference rule to define phonological neighborhood. 
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Apart from the seminal work by Luce and Pisoni (1998) that suggested that words 

from sparse neighborhood are recognized faster and with less errors compared to 

words from dense neighborhood, their group has published a few more studies along 

these lines using different experiment paradigms. Studies from their research group 

reinforced their previous findings via auditory naming task (Vitevitch & Luce, 

1998), speeded-match, auditory lexical decision, and semantic categorization task 

(Vitevitch & Luce, 1999).  In all these studies, words with high neighborhood 

density were found to have longer reaction times and lower accuracy rates than 

words with low neighborhood density. 

 

Nevertheless, the investigation of neighborhood density effects is often complicated 

by the correlation between neighborhood density and other lexical measures. The 

most highly correlated variable with neighborhood density is phonotactic probability. 

Phonotactic probability is the frequency with which a segment or a sequence of 

segments occurs at a particular position in a word. Positional segment frequency and 

positional biphone frequency are the most commonly used measures to determine 

phonotactic probability: Positional segment frequency is the frequency of occurrence 

of a particular segment in a given position in a word, while positional biphone 

frequency is the segment-to-segment co-occurrence probability. Phonotactic 

probability has been shown to positively correlate with neighborhood density (for 

example, Vitevitch, Luce, Pisoni and Auer (1999) found r = 0.61, p < 0.0001 for the 

English lexicon), because words that have a lot of neighbors have segments or 

biphones that occur frequently in the lexicon. 

 



  31 

Vitevitch and Luce (1998) investigated the effects of phonological neighborhood and 

phonotactic probability. Two-hundred forty nonwords and one-hundred fifty real 

words (3-phoneme) divided into high neighborhood density, high probability real-

words (mean frequency weighted neighborhood density = 56.43) and nonwords 

(mean frequency weighted neighborhood density = 44.61), and low neighborhood 

density, low probability real-words (mean frequency weighted neighborhood density 

= 40.00) and nonwords (mean frequency weighted neighborhood density = 13.46) 

were used as stimuli. Thirty native English speakers participated in a standard 

auditory naming task. The authors found that overall real words were responded 

faster (F1(1,28) = 17.76, p < 0.001; F2(1,386) = 447.04, p < 0.001) than nonwords. 

Furthermore, the authors also looked at words and nonwords separately and found 

opposite effects. Among real words, low-probability and low-density words were 

responded faster (F1(1,14) = 16.40, p < 0.001; F2(1,148) = 3.89, p < 0.05) than high-

probability and high-density words; but for nonwords, high-probability and high-

density words were responded faster (F1(1,14) = 4.56, p < 0.05; F2(1,238) = 3.80, p < 

0.05) than low-probability and low-density words.  To explain these results, the 

authors proposed that real word processing is mainly affected by neighborhood 

density, in an inhibitory manner as shown in previous research (Luce & Pisoni, 

1998); on the other hand, nonword processing is mainly affected by phonotactic 

probability, which acted in a facilitative manner as shown in (Vitevitch, Luce, 

Charles-Luce, & Kemmerer, 1997). As a result, words with high-density (also high-

probability) have greater processing difficulty than words with low-density (also 

low-probability); while nonwords with high-probability (also high-density) are easier 

to process than nonwords with low-probability (also low-density).  
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However, the account proposed by Vitevitch and Luce (1998) may be limited to the 

task of auditory naming. Evidence from other tasks suggested that inhibitory 

neighborhood effects are evident in both words and nonwords. As discussed above in 

Section 2.2.1, Luce and Pisoni (1998) found significant inhibitory effects of 

neighborhood density for both words and nonwords in lexical decision. It is possible 

that tasks like auditory naming used only word stimuli; while for other task like an 

auditory lexical decision task, both nonwords and words were used as stimuli and in 

order to successfully identify a non-word, one has to reject all the neighbor words 

that gets activated when a non-word is heard. 

 

A major caveat of Vitevitch and Luce’s study is that neighborhood density and 

phonotactic probability covary in the experiment design, therefore it’s not easy to 

differentiate the effects of neighborhood density and phonotactic probability. There 

has been some effort to tease apart the effects of neighborhood density and 

phonotactic probability, but the evidence comes from the study of speech production. 

Storkel, Armbrüster and Hogan (2006) conducted a picture naming experiment with 

16 CVC novel words with English-speaking participants. The stimuli follow a 2-by-2 

design of phonotactic probability (high, low) × neighborhood density (high, low). 

Overall, as suggested by Vitevitch and Luce (1998), the results showed that these 

two measures do have opposite effects on word processing, in spite of the high 

correlation between neighborhood density and phonotactic probability. Specifically, 

phonotactic probability has a inhibitory effect (i.e. stimuli with high phonotactic 

probability were less accurately named compared to the stimuli with low phonotactic 

probability), whereas neighborhood density showed facilitatory effects (i.e. stimuli 

with high neighborhood density were more accurately named than those with low 
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neighborhood density). One might notice that these effects are in the opposite 

directions of the corresponding effects in word recognition. The notable contrast in 

effect direction has been attributed to differences between spoken word recognition 

and production (Peramunage, Blumstein, Myers, Goldrick, & Baese-Berk, 2011; 

Vitevitch, 2002; Vitevitch & Sommers, 2003). A production task is driven by 

semantics because of which sematic neighbors are strongly activated. While 

phonological neighbors will be co-activated but are weakly activated (Chen & 

Mirman, 2012) as they do not match the idea or semantics. According to Chen and 

Mirman (2012), weak neighbors lead to a facilitative effect of phonological 

neighbors on production task. Since the focus of this dissertation is on spoken word 

recognition, details on the aspects of speech production is beyond the scope of the 

current dissertation.  

 

Apart from phonotactic probabilities, neighborhood density is also correlated with 

word length, at least for the English lexicon. Charles-Luce and Luce (1990) reported 

that neighborhood density decreases with increase in word length. Three-phoneme 

words have neighborhood density that goes till forty neighbors while the maximum 

neighborhood density for four- and five- phoneme words decreases to eighteen and 

twelve, respectively. Furthermore, 97% of three-phoneme words have more than five 

neighbors. Therefore, as the word length increases, neighborhood density decreases. 

As a result, majority of studies use three-phoneme monosyllables. Along with this, 

another reason to choose monosyllables as stimuli was probably to avoid the possible 

complication arising from lexical stress. (I will be talking more about 

suprasegmentals later in this Section.) 
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Despite the trend of focusing on shorter, monosyllabic words, there are a few studies 

that have investigated the effects of phonological neighborhood on longer words. 

Among others, Vitevitch, Stamer and  Sereno (2008) investigated the effects of 

neighborhood density in bisyllablic English words. In this study, 56 bisyllablic words 

with strong-weak stress patterns were divided into dense (mean = 11.72; SD = 1.58) 

and sparse neighborhood (mean = 4.43; SD = 1.99). The stimuli were controlled for 

word frequency and neighborhood frequency. They conducted two experiments: (1) 

perceptual identification in noise, and (2) auditory lexical decision. In perceptual 

identification task, stimuli were presented at +12 dB signal-to-noise ratio. Thirty-

seven participants participated in this task. Results from perceptual identification 

experiment showed that words from dense neighborhood were identified 

significantly less accurately (mean accuracy = 77.1%; SD= 7.5) compared to words 

from sparse neighborhood (mean accuracy = 80.3%; SD = 9.2). In auditory lexical 

decision experiment, same set of bisyllabic words were used along with 56 bisyllabic 

nonwords. Forty right-handed participants participated in this experiment. Results 

from lexical decision experiment showed that words with sparse neighborhood were 

responded faster and more accurately (mean reaction time = 833 ms; mean accuracy 

= 94.3%) than the words from dense neighborhood (mean reaction time = 846 ms; 

mean accuracy = 92.0%). Taken together, bisyllabic English words were identified 

more accurately and quickly when they belonged to sparse neighborhood than their 

counterparts i.e. words from dense neighborhood. These findings were in agreement 

with the previous findings (Luce & Pisoni, 1998). Although Vitevitch and Luce 

(1999) confirmed the effects of neighborhood density in bisyllablic English words, 

however in this study, stress was controlled by using words with strong-weak stress 

pattern only. Thus, the study avoided potential effects of stress pattern on the 
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calculation of neighborhood matrix. Note that the definition of neighborhood does 

not say anything about stress, therefore it is unclear how to define the neighborhood 

for words with stress on one of the syllables (e.g. are SUBject and subJECT 

neighbors because they differ in stress pattern?)  Overall, there is little discussion 

about the effects of suprasegmentals on the definition of neighborhood in the 

literature from English. 

 

Besides the studies in English, studies have also been conducted in other languages 

including French (Dufour & Frauenfelder, 2010; Ziegler et al., 2003), Spanish 

(Vitevitch & Rodríguez, 2005), and Japanese (Amano & Kondo, 2000; Yoneyama, 

2002). Ziegler et al. (2003) examined the effects of phonological neighborhood in 

French word recognition while controlling for word frequency, phonotactic 

probability, orthographic neighborhood density (i.e. the number of words that differ 

the target word by one letter). The stimuli words were 2-5 phonemes long (mean 

word length = 3.3 phonemes) monosyllables, and both auditory lexical decision, and 

auditory naming task were used. In order to control for orthographic neighborhood, 

the authors used phonological neighbors that differ by one-phoneme through 

substitution alone. Eighty monosyllabic words and eighty monosyllabic nonwords, 

balanced across phonological neighborhood density (mean high = 28.8; mean low = 

13.5) were used as stimuli. LEXOP (Peereman, 1999) lexical database was used to 

obtain neighborhood measures. Overall, they found an inhibitory effect of 

neighborhood density on response time and accuracy (F1(1,31) = 206.9, p < 0.0001; 

F2(1,74) = 8.01, p < 0.01). In the naming task, forty-six participants were recruited. 

Same set of eighty real words monosyllables as used in auditory lexical decision task 

were used in this experiment. The results echoed the findings from their auditory 
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lexical decision experiment. Phonological neighborhood showed an inhibitory effect 

on response time (F1(1,45) = 35.1, p < 0.0001; F2(1,74) = 2.89, p < 0.10). It can be 

observed that the effects for auditory naming was weaker as evident from the 

marginally significant main effects in the auditory naming task (F1(1,45) = 35.1, p < 

0.0001; F2(1,74) = 2.89, p < 0.10) compared to the effects seen in auditory lexical 

decision task (F1(1,31) = 206.9, p < 0.0001; F2(1,74) = 8.01, p < 0.01). In order to 

balance phonological neighborhood and orthographical neighborhood, Ziegler et 

al.’s choice of stimuli was based on substitution neighbors alone in the calculation of 

phonological neighborhood. Therefore, words that differ by deletion or addition were 

not considered as phonological neighbors. 

 

Later, Dufour and Frauenfelder (2010) examined the effects of phonological 

neighborhood using one-phoneme difference rule that includes phonological 

neighbors by substitution, addition and deletion. They found similar effects of 

neighborhood density and neighbor frequency in French spoken word recognition 

using a lexical decision task. Thirty-six (phoneme length ranging from three-to-four 

phonemes) monosyllabic French words, with high-density words (mean = 13.08) and 

low-density words (mean = 4.17); and thirty-six nonwords were selected as stimuli. 

Brulex database was used to calculate neighborhood measures. As observed in 

English, neighborhood density showed a significant inhibitory effect (F1(1,22) = 

26.12, p < 0.0001; F2(1,32) = 4.33, p < 0.05) on reaction time in French 

monosyllables. Words from the sparse neighborhood were responded faster and more 

accurately (mean RT = 759 ms; error rate = 2.90%) compared to the words from 

dense neighborhood (mean RT = 826 ms; error rate = 5.98%). When words from low 

density neighborhoods were varied in neighborhood frequency, significant inhibitory 
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effects of neighborhood frequency were observed on reaction time (F1(1,25) = 

113.30, p < 0.0001; F2(1,17) = 6.18, p < 0.05). Words with no high frequency 

neighbor were responded more quickly and more accurately (mean RT = 817 ms; 

error rate = 2.31%) compared to words with high frequency neighbors (mean RT = 

892 ms; error rate = 5.00%). It can be noted here that the effects of neighborhood 

frequency were more pronounced for sparse neighborhood. Overall, the effects of 

phonological neighborhood were similar to that seen in English, when focused on 

monosyllables. 

 

Neighborhood effects were also investigated in Spanish, but the results were 

contradictory. Vitevitch and Rodriguez (2005) examined the effects of neighborhood 

density and neighborhood frequency in Spanish using an auditory lexical decision 

task. Eighty bisyllabic real words and eighty bisyllabic nonwords were used as 

stimuli in the experiment. The stimuli were categorized into high (log-transformed 

mean = 2.3) and low (log-transformed mean =1.3) word frequency (log-

transformed), dense (mean = 15) and sparse (mean = 6.9) neighborhood, and high 

(log-transformed mean = 2.2) and low (log-transformed mean = 1.6) neighborhood 

frequency. Thirty-eight native Spanish speakers participated in this experiment. 

Results indicated that high frequency words were responded more quickly and 

accurately (mean reaction time = 932 ms; mean accuracy = 94%) than low frequency 

words (mean reaction time = 979 ms; mean accuracy = 87%); words from dense 

neighborhood were responded faster and more accurately (mean reaction time = 945 

ms; mean accuracy = 93%) compared to words from sparse neighborhood (mean 

reaction time = 966 ms; mean accuracy = 88%); and words with high neighborhood 

frequency were responded more quickly and accurately (mean reaction time = 942 
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ms; mean accuracy = 92%) than words with low neighborhood frequency (mean 

reaction time = 968 ms; mean accuracy = 89%). These findings were in opposite 

direction compared to the earlier findings in English, in that both neighborhood 

density and neighborhood frequency showed facilitatory effects in Spanish word 

recognition (e.g. words with high neighborhood density were responded faster and 

more accurately than words with low neighborhood density). Similarly, words with 

high neighborhood frequency were responded faster and more accurately than words 

with low neighborhood frequency. The authors suggested that the opposite effects of 

phonological neighborhood as seen in Spanish could have been due to language-

specific properties of the lexicon. For example, Spanish words tend to be longer than 

English words. Weiner and Miller (1946) reported that longer words were identified 

more accurately compared to shorter words. This could be one of the reasons why 

Spanish language showed opposite effects. In addition, Spanish words are more 

heavily inflected than English words, with the use of affixes indicating gender, 

number and tense. As a result, there are more words in Spanish that are both 

phonologically and semantically similar than in English. For example, the Spanish 

words nino and nina mean “male child” and “female child”, respectively. The 

confluence of phonological similarity and semantic similarity in Spanish words may 

have caused the overall facilitatory effects observed in Spanish. 

 

Although, Vitevitch and Rodriguez’s (2005) results suggested cross-linguistic 

differences in the effects of phonological neighborhood. Previous studies, as 

discussed above, have mostly focused on European languages like English (Luce & 

Pisoni, 1998; Vitevitch & Luce, 1999), French (Dufour & Frauenfelder, 2010; 

Ziegler, Muneaux, & Grainger, 2003), and Spanish (Vitevitch & Rodríguez, 2005). 
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Therefore, there are relatively few studies that have examined the effects of 

phonological neighborhood in non-European languages except a few in Japanese 

(Amano & Kondo, 2000; Yoneyama, 2002). Yoneyama (2002) investigated the 

effects of phonological neighborhood via a series of word recognition experiments 

that included auditory naming, word identification in noise, and semantic 

categorization in Japanese. Seven-hundred trisyllabic CVCVCV Japanese words 

extracted from the NTT database (Amano & Kondo, 2003) were used as stimuli. 

Also, they evaluated the three different measures of computing phonological 

neighborhood: First, based on one-phoneme difference rule; Second, based on 

modified version of one-phoneme difference rule, where pitch accent was taken into 

consideration. Any two words that differ either by one phoneme or by pitch accent 

by addition, substitution or deletion were neighbors (e.g. ana and a’na are neighbors 

that differ in initial pitch accent); Third, based on auditory similarity between two 

words by mapping each word of the lexicon onto psychological mental space. This is 

done by mapping word onto time-frequency representation for each word in the 

lexicon. All three measures of computing neighborhood showed significant results. 

Interestingly, the results are mixed. On one hand, similar to English and French, 

results from word identification experiment showed inhibitory effects of 

neighborhood density on accuracy scores. On the other hand, similar to Spanish, 

results from auditory naming, and word identification experiment showed facilitatory 

effect of neighborhood density on reaction time. Interestingly, for semantic 

categorization task, the two types of neighborhood density effects coexisted. 

Neighborhood density based on auditory similarity rule showed inhibitory effects 

while neighborhood density based on one phoneme difference rule and one-

phoneme/pitch-accent rule showed facilitative effects on reaction time. In a semantic 
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categorization task, the authors reported that the two types of effects (inhibitory for 

auditory similarity rule and facilitative for one-phoneme difference and one-

phoneme/pitch accent difference rule) on neighborhood density coexist. The authors 

speculated that the two types of effects (inhibitory and facilitative) on semantic 

categorization can coexist based on previous literature on phonotactic probability 

(Vitevitch et al., 1997). The facilitative effects can be interpreted as effects of 

phonotactic probability while the inhibitory effects are indicative of neighborhood 

density effects 

 

As earlier mentioned, studies in European languages did not take suprasegmentals 

into account. Since Japanese is a pitch-accent language, contribution of 

suprasegmentals is inevitable. Therefore, as discussed above, Yoneyama (2002) 

proposed a rule that incorporates pitch-accent to define neighborhood measures. 

Moreover 70% of the world’s languages are tone languages (Yip, 2002), therefore, 

use of suprasegmentals is of key importance to the majority of human languages. 

Thus, examining the role of suprasegmentals in phonological neighborhood becomes 

utmost necessary.  

 

Majority of research has focused on spoken word recognition in English or other 

European languages. Thus, the exact patterns of phonological neighborhood effects 

in tone languages is still unclear. A tone language makes use of pitch patterns (i.e. 

“lexical tones”) to differentiate word meanings. Therefore, the existence of lexical 

tones in tone languages gives rise to an important question on how to define 

phonological neighborhood in tone languages? Whether or not lexical tones should 

be included in the calculation of phonological neighbors? Previous studies have 



  41 

shown that tones and segments are equally important for Chinese spoken word 

recognition (Malins & Joanisse, 2012; McBride-Chang et al., 2008). Malins and 

Joanisse (2010) who studied the spoken word recognition in Mandarin using eye 

tracking found that tones and segments are processed simultaneously. Their findings 

suggest that tone plays an equally important role as segments and cannot be ignored. 

McBride-Chang et al. (2008) compared word recognition in English and Chinese for 

Cantonese-speaking children learning English. They found that in recognition of 

Chinese characters, lexical tones played a significant role, while in English, only 

phonemes were found to be essential. Cutler and Chen (1995) studied phonological 

similarity effects in Cantonese for spoken word recognition lexical decision task. 

They found that lexical tones and segments were processed similarly. Lee and 

Nusbaum (1993) studied interactions in processing of segmental and suprasegmental 

information in English and Mandarin. English does not have meaning attached to the 

suprasegmentals as compared to Mandarin and thus the processing takes place in a 

different manner for the two languages. The authors suggested that a comprehensive 

theory is needed to account for segmental and suprasegmental information 

processing of the acoustic stimulus in comprehending spoken language. Zhao, Guo, 

Zhou and Shu (2011) studied the time course of processing of spoken words in 

Chinese with monosyllabic words using N400. They found that Chinese was more 

sensitive to complete syllable in comparison to segments. Also, rime and tone both 

were found to be equally important. They also reported time differences in 

processing English and Chinese that could be due to structural differences in the two 

languages. Based on this evidence, it can be observed that lexical tone plays a 

quintessential role in spoken word recognition and thus, cannot be ignored.  
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Furthermore, there is a dearth of literature on phonological neighborhood in tone 

languages. Among the few studies on phonological neighborhood in tone languages 

that have used one-phoneme difference rule, either tone has been suggested to be 

processed similar to a phoneme (Kirby & Yu, 2007) or has completely been ignored 

with the focus mostly on segments (Tsai, 2007). Kirby and Yu (2007) used one-

phoneme difference rule to define phonological neighborhood in Cantonese. They 

conducted a word likeliness judgement task where participants judge how likely the 

stimuli are a word on a 7-point scale where “1” indicated highly unlikely to be a 

Cantonese word and “7” indicates highly likely to be a Cantonese word. They found 

a positive correlation between neighborhood density and well-formedness (R2 = 

0.3277, F (1, 430) = 166, p < 0.01) for both words and non-words. In other words, 

words and non-words with many neighbors sounded more like real words to 

Cantonese speakers. It should be noted that in this study the authors completely 

ignored tone in defining phonological neighborhood in Cantonese. 

 

As lexical tone modulates the meaning of words in tone languages, it is a very 

important aspect that needs further investigation to determine whether or not lexical 

tones should be considered, or it can be ignored while defining neighbors in spoken 

word recognition. Tsai (2007) studied the effect of neighborhood density in 

Mandarin monosyllables using an auditory naming task. Phonological neighborhood 

measures were obtained from the Guoyu Cidian Jianbianben Bianjitzliau Tztspin 

Baugau (Word Frequency Statistic Report of the Database for National Language 

Concise Lexicon) and Frequency Statistics of the Academia Sinica Balanced Corpus 

of Modern Chinese (Academia Sinica, 1997). In this study, phonological neighbors 

were defined as syllables that differ from target syllable in one of the three phoneme 
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position (initial, nucleus and coda). This study calculated neighborhood density 

using one-phoneme difference rule that does not consider the contribution of lexical 

tone towards neighborhood. Ninety-one monosyllables were used as stimuli. The 

stimuli were divided into three-word sets based on type of neighbors and 

neighborhood density: Nasal-final neighbors, vowel-final neighbors, and large 

density difference neighbors. Nasal-final neighbors were words with nasal-final 

consonant neighbors e.g., /li/ and /lin/. Words were categorized into high (mean = 

27.94) and low (mean = 25.94) neighborhood density. Vowel-final neighbors were 

words that did not have any nasal-final neighbors. Words were divided into high 

(mean = 28) and low (mean = 26.19) neighborhood density.  In the large difference 

condition, words had greater difference between high (mean = 24.63) and low (mean 

= 16.75) neighborhood density. Twenty-six participants were recruited in this study. 

This study revealed an inhibitory effect of neighborhood density on reaction time (t 

(25) = 3, p<0.01). Monosyllables from dense neighborhood were responded slower 

compared to monosyllables from sparse neighborhood. This significant inhibitory 

effect of neighborhood density was seen only in condition with vowel-final neighbor. 

There are two major concerns regarding this study. First, the difference in high and 

low neighborhood density in vowel-final neighbor condition, that showed significant 

results, was relatively low (average high-low difference = 1.81). Surprisingly, no 

significant effect of neighborhood density was found for large density difference 

condition (average high-low difference = 7.88). If the effects of neighborhood 

density exist, it should be evident on large density difference condition. However, 

this was not the case. Second, the authors did not consider lexical tones in defining 

neighborhood.  
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Quite recently, Neergaard and colleagues (Neergaard, Xu, & Huang, 2016) have also 

worked in this line of research. In particular, Neergaard, Xu and Huang (2016) 

generated a database of Mandarin neighborhood statistics, using lexical information 

from SUBTLEX-CH corpus (Cai & Brysbaert, 2010). The database provides lexical 

statistics for words and nonwords. The database contains information on 

phonological neighborhood density, neighborhood frequency, homophone density, 

word frequency, and homophone density of words and neighborhood density and 

neighborhood frequency of nonwords in Mandarin. Along with lexical statistics, the 

database also provides description of words that includes pinyin, phoneme length, 

lexical tone, syllable structure, etc. This database used multiple measures to calculate 

neighborhood density based on different ways of segmenting a word. These 

segmentation schemes were based on modified one-phoneme difference rule where 

instead of phoneme difference, a unit difference is considered as a neighbor. This 

unit can be a phoneme or a group of phonemes. The segmentation schemes used 

were C_V_C, C_VVX, C_V_V_X, C_V_VX, CV_V_X, CV_VX, and CVVX where 

C stands for consonant, V for vowel, X for second vowel of diphthong or glide and 

the underscore defines the unit of segmentation. For example, in C_V_C scheme, 

word that differs in consonant or vowel by addition substitution or deletion are 

neighbors while in C_VVX scheme, words that differ either by consonant or rhyme 

by addition substitution or deletion are neighbors. The segmentation schemes are 

broadly classified as one that considered lexical tone in the calculation of 

phonological neighborhood (7 schemes) and others that did not consider lexical tone 

in in the calculation of phonological neighborhood (7 schemes). For example, 

C_V_C scheme considers neighbors that differ in consonant or vowel by addition 

substitution or deletion while C_V_C_T scheme consider neighbors that differ in 



  45 

consonant or vowel or tone by addition, substitution or deletion.  

 

Later, Neergaard (2018) examined the effects of phonological neighborhood in 

Mandarin by 16 different definitions of phonological neighborhood (using database 

reported in Neergaard, Xu and Huang (2016) in an auditory naming and an auditory 

lexical decision task. However, there are multiple issues about the study that 

undermine the reliability of the results. The first major issue is with experimental 

design. The auditory naming task used one-hundred fifty-four mono- and bisyllablic 

words, and auditory lexical decision task used seventy-five monosyllables as stimuli, 

but it is unclear how these stimuli were selected and what factors were considered or 

controlled. Possible differences in the stimuli (e.g. word frequency, stimulus 

duration, etc.) that might affect naming performance were not addressed in either 

stimuli selection or data analysis (see below).  

 

The second issue has to do with data analysis. To test the effects of different 

neighborhood measures, Neergaard constructed 144 models (9 predictors X 16 

definitions of neighborhood), presumably with only one fixed-effect predictor (e.g. 

neighborhood density, or word frequency) in each model. It is unclear why it was 

necessary to build separate models for the same non-neighborhood-related predictor 

(e.g. word frequency), as the predictor does not change with the neighborhood 

definition. A more serious problem is the practice of modeling different predictors 

separately, which fails to control for potential interaction and interference. 

Furthermore, some critical control variables (such as stimulus duration, length of 

word in syllables) that are known to affect perceptual recognition were completely 

missing from their models. In addition, in auditory lexical decision task, 11.82% of 
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the data were excluded from analysis without a credible explanation. Furthermore, he 

results were analyzed on reaction time alone and no analysis was conducted for 

accuracy scores while it has been shown in multiple previous studies that accuracy 

scores are sensitive to neighborhood effects (Luce & Pisoni, 1998). Neergaard 

reported that the best-fitted model was the one that considered both tone and 

segments in defining phonological neighbors in Mandarin, and that the neighborhood 

effect was facilitatory. However, given the serious concerns about the methodology, 

the reliability of these results is called into question.    

 

Overall, it is quite evident that there is relatively small number of studies that have 

examined the effects of phonological neighborhood in Mandarin. Moreover, it can be 

elucidated from the review of these studies that there are mixed findings on the 

effects of phonological neighborhood in Mandarin. This dissertation would focus on 

portraying a complete picture of the effects of phonological neighborhood on spoken 

word recognition using a complete set of Mandarin monosyllables in Mandarin. An 

exhaustive set of statistical analyses controlling for factors that affects spoken word 

recognition like word frequency, stimulus duration etc. will be conducted in order to 

avoid any errors while interpreting critical effects. 

 

2.2.3 Summary 

 

In the above Section, I have reviewed the literature on effects of phonological 

neighborhood across languages. As described above, most of the studies conducted 

in this area converge to a common finding that dense phonological neighborhood and 

higher neighborhood frequency lead to inhibitory effects in spoken word recognition. 
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However, it should be noted that there is a great amount of variability associated 

with the effects of phonological neighborhood. First of all, there is a variability in the 

effect of phonological neighborhood across languages. Most of the studies 

examining the effects of phonological neighborhood have been conducted in English 

or other European languages (Dufour & Frauenfelder, 2010; Luce & Pisoni, 1998; 

Vitevitch & Rodríguez, 2005; Ziegler et al., 2003). Vitevitch et al. (2004) suggests 

that the effects of phonological neighborhood vary across languages. These 

differences in findings from studies conducted in different languages could be 

attributed to language-specific properties of the lexicon. Therefore, the manner in 

which words are processed in different languages may depend on specific features of 

that language. Majority of previous research was focused on English or other non-

tone languages like French and Spanish. However, majority of the languages in the 

world are tone languages. Earlier studies in European languages did not take 

suprasegmentals into account.  The most widely accepted definition of neighborhood 

based on one-phoneme difference rule (Luce & Pisoni, 1998) do not consider 

suprasegmentals in the calculation of neighborhood. However, suprasegmental 

features like pitch, stress and intonation are of high importance that cannot be 

avoided or ignored as 70% of the world languages are dominated by suprasegmental 

features.  

 

Not just across languages, the effects of phonological neighborhood tend to vary 

across tasks. Phonological neighborhood influence word processing either by posing 

competition to the target word or by helping the target word depending on the type of 

the task involved. In speech perception, the effects of phonological neighborhood on 

spoken word recognition are predominantly inhibitory (Luce & Pisoni, 1998; 
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Vitevitch & Luce, 1999). Words from dense neighborhood are recognized less 

accurately and take longer due to more competition compared to words from sparse 

neighborhood. In comparison, during word production, the presence of neighbor aids 

in processing by passing on their activation to the target word, in other words, 

facilitating the process of word production (Peramunage et al., 2011; Vitevitch, 

2002; Vitevitch, Armbrüster, & Chu, 2004; Vitevitch & Sommers, 2003). Words 

with high neighborhood density show facilitatory effect compared to words with low 

neighborhood density. In sum, words in a dense neighborhood are difficult to 

perceive but easier to produce.  

 

Apart from cross-linguistic and across-task differences, another important issue is 

that some languages are richer than others in the number of homophones (i.e. similar 

sounding words with different meaning). However, most of the investigated 

languages are European languages that do not have enough homophones. In 

comparison, Mandarin, a tone language is known to have abundant homophones. 

Therefore, it is important to not to ignore the effects of homophones on spoken word 

recognition. In the next Section, I will be reviewing literature on the effects of 

homophones on spoken word recognition. 

 

2.3 Homophones 

 

As discussed above in the neighborhood model, phonological neighbors are similar 

sounding words, and they affect each other in lexical processing. An additional issue 

is whether words that sound the same, i.e. homophones, are phonological neighbors 

as well. Homophones are words with same phonological form but with different 
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meaning and spelling, e.g. new and knew are homophones in English. This issue is 

interesting because on one hand, homophones are similar to phonological neighbors 

in terms of phonological similarity, given that homophones are phonologically same 

words. On the other hand, homophones are different from phonological neighbors as 

homophonous words have the exact same phonological form while phonological 

neighbors are similar sounding words with different phonological form. This issue 

has not been fully explored mainly because of paucity of homophones in the 

languages that were studied. In this Section, I will first discuss the representation of 

homophones in the mental lexicon, and then review previous literature on the effects 

of homophones. 

 

Based on previous studies, there are two types of model of homophones. The first 

type of model of homophones is the shared lexical representations of homophones 

(Dell, 1990; Jescheniak & Levelt, 1994) where homophonous words share a common 

phonological form. Henceforth, I will be calling this type of homophone 

representation in the lexicon as shared representation. All the models reviewed in 

Section 2.1 Models of spoken word recognition (Luce & Pisoni, 1998; McClelland & 

Elman, 1986; Norris, 1994) represent shared representation. Under shared 

representation, homophone mates have a common phonological form (at lexeme 

level) but separate representations at the lemma level (see Figure 1). This is in 

contrast to phonological neighbors, which have separate representations at both the 

lemma level and the lexeme level. For example, as shown in Figure 1, bear and bare 

are homophones, and they have separate representation at lemma level but common 

representation at lexeme level. On the other hand, beer and hear are phonological 

neighbors, which have separate representation at both lexeme level and lemma level. 
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In this model, homophone relationship and phonological neighborhood are 

represented differently, therefore the model allows for the possibility that 

homophones may have different effects than phonological neighbors on the target 

word.  

 

Figure 1: The shared lexical representation of homophonous words where solid line 
represents the connection between levels, and dotted line represents connections 
within lexeme level among phonologically similar words. The general structure of 
the model follows NAM (Luce & Pisoni, 1998). 
  

     

The second type of representation of homophonic relationship assumes independent 

lexical representations of homophones (Caramazza, Costa, Miozzo, & Bi, 2001). In 

this model, each member of the homophone family is associated with a unique 

phonological form (see Figure 2). Henceforth, I will be calling this type of 

homophone representation as independent representation. Under independent 

representation, homophone mates have separate representations at both the lexeme 
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and the lemma level. This makes the representation of homophone mates similar to 

that of phonological neighbors, which also have separate representations at both the 

lemma level and the lexeme level. As shown in Figure 2, bear and bare are 

homophone mates, and they have separate representation (different from Figure 1) at 

both lexeme and lemma levels, just like phonological neighbors beer and hear. The 

words bear and bare have the same phonemic sequence, but their phonetic 

realizations may not be exactly the same, due to differences in duration, vowel 

targets, or other aspects of phonetic detail (e.g. Gahl (2008); see the discussion 

below). The fact that they are phonetically different makes them a type of 

phonological neighbors, in the broad sense as words that sound similar to each other. 

Furthermore, compared to the canonical phonological neighbors, which have 

different phonemic sequences, homophone mates enjoy higher similarity in 

pronunciation because their differences are sub-phonemic. In other words, in the 

independent representation model, homophone mates should produce similar effects 

on lexical processing as canonical phonological neighbors, and to a greater extent 

than canonical phonological neighbors.  
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Figure 2: The independent lexical representation of homophonous words where solid 
line represents the connection between levels and dotted line represents connections 
within lexeme level. The general structure of the model follows NAM (Luce & 
Pisoni, 1998). 
 

 

As discussed above, the shared representation model assumes that homophone 

mates, unlike phonological neighbors, share lexical representation at lexeme level, 

and hence allows the possibility for homophones to have different effects than 

phonological neighbors; in contrast, the independent representation model assumes 

that homophone mates have separate lexical representation at lexeme and lemma 

level, just like phonological neighbors, and thus predicts that homophones have 

similar effects as phonological neighbors. There is evidence for both types of 

homophone representations in the lexicon. The evidence for shared representation of 

homophones comes from frequency inheritance, which is the phenomena of low 

frequency homophone mates behaving similar to high frequency homophone mates. 
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Jescheniak and Levelt (1994) found that low frequency homophone mates have 

similar naming latency as high frequency homophone mates in a production task. 

They examined the naming latency of homophonous words in a translation task. The 

participants were presented with English words visually, and were asked to produce 

their Dutch translations. In this study, low frequency words with high frequency 

homophones were used as experimental condition, and low frequency words without 

homophones and high frequency words without homophones as control condition. 

The stimuli constituted of 11 items in experimental condition items and 33 items as 

fillers for control condition. Dutch being very transparent language has homophones 

with same spelling but different meaning, e.g. bos in Dutch means “forest” and 

“bunch”. The authors reported that low frequency words with high frequency 

homophones (mean RT = 796 ms) were produced faster than low frequency control 

words (mean RT = 888 ms) but comparable to high frequency control words (mean 

RT = 765 ms). In other words, these findings suggest that the naming latencies 

cannot be explained by lemma frequency. Therefore, they can only be explained by 

lexeme frequency. These findings would be possible only if low frequency 

homophone mates can inherit the frequency of their high frequency homophone 

mates. In the two models of homophone representation discussed above, the shared 

model makes it possible for these low frequency homophone mates to share the 

frequency of their high frequency mates. In fact, in the shared model, all the 

homophone mates share representation at the lexeme level, their lexeme would have 

the cumulative frequency of all the homophone mates. As a result, the naming 

latencies of high frequency homophone and low frequency homophone of the word 

with the same phonological form would not differ because the cumulative frequency 

of the common phonological form remain the same. Therefore, these results provide 
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support for a shared representation at the lexeme level of homophone mates.  

 

As for the evidence for the independent representation model of homophones, Gahl 

(2008) showed that homophone mates are indeed phonetically different. According 

to Gahl (2008), there are word duration differences among homophone mates. The 

author analyzed the word durations of around 90,000 English homophones from the 

Switchboard corpus. The author found that high frequency homophonous words 

were significantly shorter in duration compared to its low frequency counterparts, 

after controlling for speaking rate, syntactic category, bigram probability, proximity 

to pauses, and orthography. This difference in word durations of high frequency 

homophonous words and low frequency homophonous words is suggestive of 

separate representation of homophones in the mental lexicon, providing support for 

the independent representation model of homophones. 

 

More importantly, the main evidence for the independent representation model of 

homophones comes from the absence of frequency inheritance. Caramazza et al. 

(2001) replicated the experiment of Jescheniak and Levelt (1994) and found opposite 

results. Caramazza and colleagues conducted a series of experiments with picture 

naming and translation tasks for English, Chinese and Spanish.  In the English 

picture naming task, low frequency words with high frequency homophones (N=26) 

were used as critical words, compared to control words that were either low 

frequency words without homophones (N=26) or high frequency words without 

homophones (N=26). The authors reported that the naming latency of critical words 

(mean RT = 764 ms) was much longer than that of high frequency control words 

(mean RT = 714 ms, p < 0.005) in both by-subject and by-item analyses. This 
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finding suggests a lack of frequency inheritance. If there were frequency inheritance, 

then we expect to see critical words to inherit the cumulative frequency of the 

homophone family which is comparable to the high frequency control words.  

Therefore, we would expect these critical words to have similarly short naming 

latency as high frequency control words. In fact, the naming latency of critical words 

is closer to the low frequency control words than the high frequency control words. 

These results suggest a lack of frequency inheritance. In the two models of 

homophone representation discussed earlier, the shared representation model would 

predict frequency inheritance while the independent representation model does not. 

Thus, these results provide evidence for the independent representation model of 

homophones but not for the shared representation model. The support also comes 

from similar experiments with Mandarin and Spanish. The picture naming 

experiment with Mandarin also found that that critical words (N = 32) had 

significantly longer naming latencies (mean RT = 783 ms) than high frequency 

control words (N= 32, mean RT = 717 ms, p < 0.002), in both by-item and by-

subject analyses. This again provides evidence of lack of frequency inheritance. The 

third experiment was a translation task from Spanish-to-English, similar to the 

English-to-Dutch translation task used in Jescheniak and Levelt (1994). The results 

showed that the translation latency of low frequency words with high frequency 

homophones was significantly longer than that of (mean RT = 1058 ms) high 

frequency control words (mean RT = 852 ms, p < 0.001).  

 

However, what Caramazza and colleagues did not discuss in these studies is the 

possible difference between critical words (low frequency words with high 

frequency homophone mates) and low frequency control words (low frequency 
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words with no homophone mates). In the English picture naming task, the average 

naming latency of critical words (mean RT = 764 ms) was longer than that of the low 

frequency control words (mean RT = 752 ms), but only significant in the by-subject 

analysis (p < 0.004) and not in the by-item analysis (Fs < 1). Similarly, in the 

Mandarin picture naming task, the critical words (mean RT = 783 ms) had longer 

naming latencies than low frequency control words (N=32, mean RT = 749 ms), but 

the difference was only significant in the by-subject analysis (p < 0.001), but not in 

the by-item analysis (p = 0.10). In the Spanish task, however, there was no difference 

in naming latency between the critical words and low frequency control words (mean 

RT for critical words = 1058 ms; mean RT for low frequency control words = 1060 

ms; Fs < 1). Overall, it is fair to say that there also seems to be a slight trend for the 

critical words to have longer naming latency than low frequency control words, 

although the trend is not always significant. How to interpret such results? They 

seem to suggest that there may be some competition from high frequency 

homophone mates in the processing of the critical words, which is not present in the 

processing of low frequency control words. Neither model of homophone 

representation directly predicts the inhibition among homophone mates in production 

tasks, however, it is also true that neither model rules out inhibition among 

homophone mates. In the shared representation model, interaction among 

homophone mates may arise through shared phonological forms (see Figure 1). 

Similarly, in the independent representation model, interaction may arise through 

shared phonemes (see Figure 2). Neither model specifically predicts that the 

interaction should be inhibitory (i.e. competition). In fact, at least in the independent 

representation model, one may argue that the interaction among homophone mates 

may be facilitative in speech production tasks such as picture naming, because 



  57 

homophone mates have the same representations as phonological neighbors, which 

according to Vitevitch and colleagues (Vitevitch & Luce, 1999) facilitate each other 

in speech production (however, see Sadat, Martin, Costa and Alario (2014) for 

different opinions on this). This raises a question of whether there are interactions 

among homophone mates during lexical processing? If so, are the interactions 

facilitative or inhibitory? On a related note, are the interactions among homophone 

mates similar to the interactions among phonological neighbors? These are all 

questions that I will address in the current thesis. In particular, I will be using speech 

perception tasks, for which the effects of phonological neighbors are better 

understood.  

 

 Initially the difference between the results from Caramazza et al. (2001) and 

Jescheniak and Levelt (1994) were attributed to cross linguistic differences between 

Dutch, and English and Chinese. Dutch has homophones with identical spellings (but 

different meanings) while the homophones in English and Chinese have different 

orthographic forms. For example, bos “bunch” and bos “forest” are homophone 

mates in Dutch, whereas nun and none are homophones in English. As a result, 

homophones with the same spelling may facilitate frequency inheritance, leading to 

the observation of frequency inheritance for Dutch but not for other languages. To 

test this hypothesis, Caramazza et al. (2001) compared same-spelling homophones 

with different-spelling homophones in English. If orthography played a role then 

same spelling homophones were expected to be named faster compared to different 

spelling homophones. However, the authors found no significant difference in 

naming latency between the two groups of words, failing to support the hypothesis of 

orthographic influence. Caramazza and colleagues also suggested that the 
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discrepancy between the studies could be due to the size of the stimuli set. 

Jescheniak and Levelt (1994) study had only 11 items per group, whereas Caramazza 

et al.’s studies had 22-32 items per group. However, it is unclear whether a size 

difference of this scale could result in opposite effects of frequency inheritance since 

this has not been tested with larger stimuli sets. 

 

As mentioned above, there are two hypotheses regarding homophone 

representations: (1) assuming the shared representation model of homophones 

(Jescheniak & Levelt, 1994), and (2) assuming independent representation model of 

homophones (Caramazza et al., 2001). They both have some support from empirical 

research from production studies: evidence for shared representation comes from 

frequency inheritance in Dutch (Jescheniak & Levelt, 1994); evidence for 

independent representation comes from frequency non-inheritance in English, 

Mandarin and Spanish (Caramazza et al., 2001), and pronunciation variation among 

homophone mates in English (Gahl, 2008). Overall, there is more evidence for 

independent representation of homophones based on multiple evidence provided by 

Caramazza et al. (2001) in three different languages. However, neither of the models 

on homophone representation specifically addresses the nature of interaction among 

homophone mates, even though interaction among homophone mates is suggested in 

some of these studies (Caramazza et al., 2001). In addition, it should also be noted 

that the stimuli set used in previous behavioral experiments were in general quite 

small (Caramazza et al., 2001; Jescheniak & Levelt, 1994). This is partly due to the 

fact that most of the examined languages, e.g. English and other European 

languages, do not have many homophones (even when Caramazza et al. (2001) used 

Mandarin, which has a high density of homophones (see Section 2.4 Background on 
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Mandarin), they only used 32 homophone pairs in the stimuli set).  

 

In this thesis, I am going to focus on Mandarin and include a much larger set of 

homophones in the experimental stimuli. Mandarin provides an ideal testing ground 

for homophone effects, because of the high density of homophones in the lexicon. It 

is estimated that Mandarin has an average homophone density of 5 characters per 

syllable (Duanmu, 2007) i.e. each syllable in Mandarin has 5 homophones on an 

average. A monosyllable with same phonological form and same lexical tone can be 

represented by up to 40 characters in Mandarin. For example, the syllable /i/ with a 

Tone 4 (falling) can have up to 39 characters. This makes Mandarin a suitable tool to 

test the effect of homophones (more details on Mandarin phonology in Section 2.4). 

In the following, I will review a few studies that investigate the homophone effects 

in Mandarin (Fang, Li, & Luo, 2014; Li, Fang, & Lou, 2011; Li, Wang, & Li, 2011; 

Wang, Li, Ning, & Zhang, 2012; Zhou, 2015). Also, these studies are mostly focused 

on word recognition, which is less investigated than word production in the 

homophone research. As reviewed in Section 2.2.2 Phonological neighborhood 

effects, canonical phonological neighbors inhibit spoken word recognition. 

Therefore, based on the assumptions of the two models, the shared representation 

model would predict that the effects of homophone mates are different from 

phonological neighbors on spoken word recognition, and the independent 

representation model would predict inhibitory effects of homophone mates, probably 

even stronger than phonological neighbors on spoken word recognition. In general, 

the studies on Chinese homophone effects in word recognition found evidence for 

independent representation model and more importantly, interactions between 

homophone effects and word frequency. 
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Wang et al. (2012) investigated the effect of homophones using an auditory lexical 

decision task in Mandarin. Most commonly used measure of homophones is 

homophone density that refers to the number of words that share same phonological 

form with the target word. In this study, the authors used thirty monosyllabic words 

with high homophone density (more than 9 homophones, mean = 13.3), thirty with 

low homophone density (less than 9 homophones, mean = 4.9), and sixty non-words 

as stimuli. All lexical measures of stimulus words were obtained from Dictionary of 

frequently used words (Yuan, Ci, & Dian, 1990). In their study, they controlled for 

syllable frequency, frequency of the highest homophone in the homophone family, 

salience (ratio of highest homophone frequency to the second highest homophone 

frequency), and strokes frequency. All stimuli used in this study were high frequency 

monosyllables. The authors reported significant inhibitory effects of homophone 

density. Reaction times were longer and accuracy scores were poorer for words with 

high homophone density (mean reaction time = 836 ms; mean accuracy = 92.4%) 

than the words with low homophone density (mean reaction time = 794 ms; mean 

accuracy = 94.9%). Based on these findings, the authors suggested that words with 

more homophone mates pose stronger competition than words with lesser 

homophone mates in lexical processing. This evidence suggests that the nature of 

interaction among homophone mates is competition. It should be noted that the 

observed effects of homophone density in Wang et al.’s research strongly reminds us 

of the well-established inhibitory effects of phonological neighborhood density. As 

discussed in Section 2.2.2 (Phonological neighborhood effects), phonological 

neighbors have an inhibitory effect on spoken word recognition. This suggest that 

there is seemingly parallel similarity between homophone mates and phonological 
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neighbors in spoken word recognition. 

 

Later, Zhou (2015) conducted an eye-tracking experiment to investigate the effect of 

homophone density on word recognition while controlling for syllable frequency 

(cumulative frequency of the homophone family), and tonal probability. In this 

study, 32 monosyllables were used as critical items and 64 monosyllables as fillers. 

In each trail, participants were presented a slide with four characters. Participants 

were asked to identify the heard target word by clicking the character on the slide. 

Fixation data was collected continuously throughout the experiment. Two mixed 

effects models were used to analyze the data, one on reaction time in identification 

responses and the other on reaction time in fixation responses. Model results reveal 

no significant main effects of homophone density, syllable frequency, and tonal 

probability in either model. Although words with high homophone density (mean RT 

= 1231.88 ms) were longer than words with low homophone density (mean RT = 

1089.33 ms). However, the model on reaction time in identification responses (but 

not the model on reaction time in fixation responses) shows a significant 3-way 

interaction among homophone density, syllable frequency, and tonal probability (β = 

810.39, t = 2.361, p <0.05).  The direction of the interaction indicates that when all 

three variables are high, the reaction time becomes longer, although the authors did 

not go into detail of the patterns underlying the interaction effect. By contrast, Wang 

et al.’s study only used high frequency stimuli. 

 

To summarize, some similarity between homophone mates (homophone density) and 

phonological neighbors (phonological neighborhood density) has been observed, 

mostly in spoken word recognition and less clear in speech production. To my best 
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knowledge, the observed interactions among homophone mates are all inhibitory in 

nature. Furthermore, the research on Mandarin spoken word recognition suggested 

an interaction between frequency and homophone density, in that when frequency is 

higher, the inhibitory effect of homophone density is higher. But this research has 

overall focused more on the high frequency range of the lexicon. What is lacking is a 

comprehensive investigation of the full scale of the phenomenon. In this dissertation, 

I will fill this gap by examining the complete continua of frequency and homophone 

density in the Mandarin lexicon.  

 

Before I go into the details of my study, I will first provide a brief description of the 

phonological system of Mandarin. 

 

2.4 Background on Mandarin 

 

Mandarin is a tone language spoken mainly in China. Monosyllables are considered 

as the building blocks in the Mandarin lexicon. In Mandarin, there are 24 onset 

including null onset. The structure of rime is a bit complex. Rime consists of a vowel 

or a diphthong with or without coda. There are 33 rimes in Mandarin. Onset and rime 

are also referred to as initial and final respectively, but in this dissertation, I am using 

onset and rime. Table 2 lists all the onset and rimes in Mandarin. Further, there are 

four lexical tones in Mandarin: high-level (Tone 1), high-rising (Tone 2), dipping 

(Tone 3), and high-falling (Tone 4).  Tone is a lexical entity in Mandarin in the sense 

that a syllable in combination with different tones mean different. For example, 

syllable /ma/ when spoken with high-level tone (Tone 1) /ma1/ means ‘mother’ vs. 

high-rising tone (Tone 2) /ma2/ means ‘hemp’ vs. dipping tone (Tone 3) /ma3/ 
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means ‘horse’ vs. high-falling tone (Tone 4) /ma4/ means ‘to scold’. Therefore, a 

legal monosyllable in Mandarin is a combination of onset, rime, and lexical tone. A 

Mandarin monosyllable can be represented as CGVVT or CGVTC, where C is a 

consonant, G is a glide, VV is either a vowel or a diphthong, and T is a lexical tone 

(Duanmu, 2007). 

 

Table 2: List of all the onset and rime (in IPA) in Mandarin. 
Onset Rime 

p, ph, m, f, t, th, n, l, ts, tsh, s, tʂ, tʂh, ʂ, ʐ, tɕ, tɕh, 

ɕ, k, kh, x, w, y, 0 (null)  

a, ɔ, γ, i, ɚ, ai, ei, αʊ, oʊ, an, ən, 

αŋ, əŋ, ʊŋ, ja, jαʊ, jε, joʊ, jεn, 

in, jαŋ, iŋ, jʊŋ, u, wa, wɔ, waI, 

weI, чεn, yn, wαŋ, v, чœ 

 

 

Due to phonotactic constraints, not all the combinations of onset and rime are 

possible. In addition, there are also accidental gaps in the combination of onset, rime, 

and tone. For the purpose of this study, we divide gaps in the syllable inventory into 

two types: segmental gaps and tonal gaps. Segmental gaps are impossible 

combinations of onset and rime. For example, the combination of onset sound /ʂ/ and 

rime /joʊ/ is not possible in Mandarin for any of the lexical tones. Therefore, 

monosyllables /ʂjoʊ1/, /ʂjoʊ2/, /ʂjoʊ3/, and /ʂjoʊ4/ do not exist in Mandarin. Tonal 

gaps, on the other hand, are impossible combinations of onset, rime, and tone, where 

the combination of onset and rime may occur with other tones. For example, 

monosyllables /an1/ /an3/, and /an4/ exist in Mandarin, but /an2/ does not, which 

makes /an2/ a tonal gap. Given the existence of these gaps, Mandarin has an 

inventory of around 1300 (tonal) monosyllables (Duanmu, 2007).  



  64 

 

In Mandarin morphology, most of the words consist of one or two monosyllables, 

where each syllable representing a morpheme. Due to the small size of syllable 

inventory, each monosyllable may correspond to multiple morphemes, where each 

morpheme has a unique meaning and a unique orthographic form (i.e. character). In 

other words, each monosyllable can be written with a number of different characters 

representing different meanings. As a result, there is a high density of homophones 

in Mandarin, to the extent that a monosyllable can correspond to up to 40 

morphemes. On average, each monosyllable corresponds to a homophone family 

with 5 members (Duanmu, 2007), and according to my calculation, 77.2% of the 

monosyllables have at least 2 homophone mates in the family. For example, the 

monosyllable /kaɪ4/ correspond to 5 characters � “beggar”, � “general”, � 

“irrigation”, � “cover”, and � “calcium”. 

 

It is quite evident that the structure of Mandarin is quite different from English and 

other European languages. All the spoken word recognition models reviewed earlier 

in Section 2.1 (Models of spoken word recognition) hold good for English and other 

European languages. To understand the underlying mechanism of spoken word 

recognition in Mandarin, Zhou and Marslen-Wilson (1994, 2009) proposed a multi-

level model for word recognition in Mandarin. The model postulates an existence of 

highly interconnected three levels of processing towards word recognition: syllable 

level, morpheme level, and word level. Syllable level represents the phonological 

forms while morpheme and word levels represent morphemes and word forms, 

respectively. There exist connections both between and within these levels of 

processing. Between the levels, the processing takes place in a hierarchical manner 
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from syllable to morpheme to word while within each level, there exist weaker links 

between forms that share some features. Morphemes and words that has same first 

syllables are connected within level. Although there is no direct connection between 

words that share same morpheme at word level, but they are indirectly connected 

through connection within morpheme level. During the process of word recognition, 

there is a spread of activation along the connections at different levels and within 

levels that influence the word recognition process in Mandarin. Figure 3 shows a 

pictorial representation of the lexicon adapted from Zhou and Marslen-Wilson 

(1994) model. In Figure 3, connections within syllable level indicate phonological 

similarity. 

 

As discussed earlier in Section 2.3 (Homophones), there are two types of lexical 

representation of homophones: (1) Shared representation, and (2) Independent 

representation. Given Zhou and Marslen-Wilson (1994, 2009) multi-level model for 

Mandarin, Figure 4 and Figure 5 depict the revised models for the two types of 

representations specifically for Mandarin. Homophones are words that share the 

phoneme sequence and tone but are not exactly the same, based on the assumption of 

independent model. As shown in Figures 4 and 5, the key difference between the two 

models is whether homophones have shared representation (as seen in Figure 4) or 

independent representation (as seen in Figure 5) at syllable level. Since the stimuli 

used in this dissertation are monosyllabic morphemes so I will only be focusing on 

the interactions among the units at or below morpheme level.  

 



  66 

 

Figure 3: Lexical representation model adapted from Zhou and Marslen-Wilson 
(1994) multi-level model for word recognition in Mandarin. Here solid line indicates 
connections between levels, dashed line indicates connections within level, S stands 
for syllable, and M stands for morpheme. Homophones are connected through dotted 
lines, while phonological neighbors are connected through dashed lines. Please note 
that in the original model there are also connections at the word level among words 
that share the first syllable. However, this is not the focus of the current study, thus, 
these connections are not included. 
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Figure 4:  Adapted shared representation model for Mandarin. Here solid line 
indicates connections between levels. Homophones are connected through dotted 
lines, while phonological neighbors are connected through dashed lines. Please note 
segments and tones are both represented (separately) in the phoneme/toneme level. 
This is only for the purpose of indicating that both segments and tones are important 
components of a Mandarin syllable; whether or not segments and tones are both 
included in the measures of phonological similarity will be explored in the main 
study. The dashed-dotted rectangle refers to level focused in this dissertation. 
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Figure 5: Adapted independent representation model for Mandarin. Here solid line 
indicates connections between levels. Homophones are connected through dotted 
lines, while phonological neighbors are connected through dashed lines. Please note 
segments and tones are both represented (separately) in the phoneme/toneme level. 
This is only for the purpose of indicating that both segments and tones are important 
components of a Mandarin syllable; whether or not segments and tones are both 
included in the measures of phonological similarity will be explored in the main 
study. The dashed-dotted rectangle refers to level focused in this dissertation. 
 

 

2.5 Current study 

 

To summarize, the goals of the present dissertation are two-fold: First, to provide a 

comprehensive view of the effects of phonological neighborhood and homophones 

on spoken word recognition in Mandarin; Second, this dissertation focuses on 

exploring whether or not phonological neighbors and homophones have similar 

effects on spoken word recognition. As discussed in Section 2.3 (Homophones), 

there are two types of homophone representations i.e. shared and independent. Based 
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on shared homophone representation (Jescheniak & Levelt, 1994), the answer to this 

question would be that phonological neighbors and homophones have different 

effects. However, based on independent representation (Caramazza et al., 2001), the 

answer would be that phonological neighbors and homophones have similar or 

stronger effects in the same direction. In addition, neither of the models on 

homophone representation predicts possible interactions among homophone mates 

nor do they negate the possibility of interaction among homophone mates. Given 

Wang et al.’s and Zhou’s results it seems that homophone density does affect speech 

perception and possibly interacts with frequency. Therefore, there can be two sets of 

hypotheses:  

 

(1) Hypothesis 1A: 

Given the independent representation model, homophone mates and phonological 

neighbors should have similar effects on the recognition of spoken real 

monosyllables in Mandarin. In other words, either both are inhibitory, or both are 

facilitative, or both have null effects on spoken word recognition. Given previous 

findings for both English and Mandarin (Luce & Pisoni, 1998; Wang et al., 2012), 

the most likely pattern is for both phonological neighbors and homophone mates to 

be inhibitory. Furthermore, the two should also have the same interaction patterns 

with word frequency. Given previous studies on Chinese homophone effects (Wang 

et al., 2012; Zhou, 2015), I predict that homophone mates have stronger influence for 

high frequency words than for low frequency words. Thus, phonological neighbors 

are predicted to show the same interaction with frequency.  
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Hypothesis 1B: 

Given the shared representation model, homophone mates and phonological 

neighbors may not have similar effects on the recognition of spoken real 

monosyllables in Mandarin. In other words, either they will have opposite effects i.e, 

inhibitory for one and facilitatory for other, or one is inhibitory or facilitaotory while 

the other has null effects on spoken word recognition. Given previous findings in 

Mandarin (Wang et al., 2012; Zhou, 2015), the most likely pattern for homophone 

mates is inhibitory. So, phonological neighbors might have facilitative or null effects 

in Mandarin. Furthermore, the two should not have the same interaction patterns 

with syllable frequency. Given previous studies on Chinese homophone effects 

(Wang et al., 2012; Zhou, 2015), I predict that homophone mates have stronger 

influence for high frequency syllables than for low frequency syllables. Thus, 

phonological neighbors are predicted to have no interaction with syllable frequency.  

 

(2) Hypothesis 2: 

Following from Luce and Pisoni (1998), I predict inhibitory effects of phonological 

neighbors on the identification of pseudo-syllables. In other words, pseudo-syllables 

with many similar-sounding real monosyllables and high neighborhood frequency 

will be recognized as pseudo-syllables slower and less accurately than pseudo-

syllables with fewer similar-sounding real monosyllables and low neighborhood 

frequency.  

 

In order to achieve these aims, I am conducting two experiments: auditory lexical 

decision experiment, and auditory naming experiment. These two experiments share 

stimuli and statistical analysis. Therefore, in the next chapter (Chapter 3: Research 
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Methods), I am discussing the common features of both the experiments before 

going into the details of each experiment in Chapter 4: Auditory lexical decision, and 

Chapter 5: Auditory naming.
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Chapter 3: Research Methods 

 

As described in Chapter 2, the goal of this dissertation is to investigate the 

effects of phonological neighborhoods and homophones on spoken word 

recognition in Mandarin. To achieve this goal, two experiments were conducted: 

an auditory lexical decision experiment and an auditory naming experiment. This 

chapter describes the common aspects of the methodology of these two 

experiments, in terms of stimuli, lexical measures, and methods of statistical 

analysis. Methodological differences between the two experiments (for example, 

the auditory lexical decision task uses both real monosyllables and pseudo-

syllables while the auditory naming experiment only uses real monosyllables) are 

mentioned in this chapter and further explained, together with other detail of 

experimental methods and results in Chapter 4 and Chapter 5, respectively. 

 

3.1 Stimuli and recording  

 

As described in Chapter 2 Section 2.4, monosyllabic morphemes (with tone), 

which are mapped to orthographic forms (i.e. characters), are the building blocks 

of the Mandarin lexicon. The segmental structure of a tonal monosyllable can be 

expressed as (C)(G)V(V)T or (C)(G)V(C)T where C is a consonant, G is a glide, 

V is a monophthong, VV is a diphthong, and T is a lexical tone. In the onset-

rime (or initial-final) structure, the initial C is the onset, and the rest (G)V(V) or 

(G)V(C) is the rime. As mentioned in Chapter 2 Section 2.4, there are total 24 

onset, 33 rimes, and 4 tones in Mandarin, and the complete inventory of 
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monosyllables consists of around 1200 unique monosyllables (not all possible 

combinations of onset, rime, and tone are attested).  

 

In this dissertation, I started with the exhaustive set of tonal monosyllables in 

Mandarin when constructing the stimuli set of real monosyllables. A total of 

1,259 monosyllables attested in Xinhua dictionary (5th edition) were included in 

the set. Complete list of real monosyllables used in the study can be found in 

Appendix A.  

 

The set of pseudo-syllables consisted of 768 unique syllables, all of which are 

accidental gaps given the Mandarin syllable inventory. Accidental gaps are 

lexical gaps that are phonotactically legal but do not occur in Mandarin due to 

unknown reasons, in contrast with systematic gaps, which are phonotactically 

illegal (for example, the CV sequence in /ʃi/ is not allowed by Mandarin 

phonotactic rules; Kirby & Yu, 2007). I further divide accidental gaps into tonal 

gaps and segmental gaps. Tonal gaps are illegal syllables due to a gap in tone; in 

other words, the same segmental composition is attested in Mandarin lexicon 

with a different tone. For example, /tsweɪ2/ is not attested in Mandarin but 

/tsweɪ4/ is; thus /tsweɪ2/ is a tonal gap. Segmental gaps, on the other hand, are 

illegal syllables that are not attested in any tone although the segmental 

composition conforms to the phonotactic rules, e.g. /mʊŋ1/, /mʊŋ2/, /mʊŋ3/ and 

/mʊŋ4/ are all segmental gaps. In the set of pseudo-syllables used in this study, 

356 are tonal gaps, and 412 are segmental gaps. Systematic gaps are intentionally 

avoided when designing the stimuli set because phonotactically illegal segmental 

sequences are too difficult to pronounce for native speakers, which makes it hard 
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to produce natural-sounding auditory stimuli for the experiments. Complete list 

of pseudo-syllables used in this study can be found in Appendix B.  

 

While both auditory lexical decision and auditory naming experiments used real 

monosyllable stimuli, only the auditory lexical decision experiment used pseudo-

syllables in the stimuli. All the auditory stimuli (both real monosyllables and 

pseudo-syllables) were recorded by a female native Mandarin speaker in her late 

20s. The speaker has extensive training in Mandarin phonetics and has 

previously worked in the profession of teaching Chinese as a foreign language. 

The recording took place in a sound-attenuated room using a uni-directional 

microphone that was routed to Digi design recording system. Each item was 

produced three times, each time preceded by a carrier phrase (“item number”). 

For each item, the token with the best sound quality—typically the second 

production—was chosen as a stimulus of the experiments. All the stimuli were 

intensity-normalized at 70 dB in Praat (Boersma & Weenink, 2010).  

 

The duration of the stimulus ranged from 0.35s to 0.99s for real monosyllables 

and 0.35s to 0.86s for pseudo-syllables. The mean stimulus duration for real 

monosyllables were 0.62s (SD = 0.1) and for pseudo-syllables were 0.58s (SD = 

0.09). Figure 6 and Figure 7 shows the distribution of raw and log-transformed 

stimulus duration for real monosyllables and pseudo-syllables.  
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Figure 6: Distribution of raw and log-transformed stimulus duration (StimDur) 
for real monosyllables. X-axis indicates syllable duration in s. 
 

 
Figure 7: Distribution of raw and log-transformed stimulus duration for pseudo-
syllables. X-axis indicates syllable duration in s. 
 

3.2 Lexical measures 

 

A number of lexical measures were compiled for each stimulus item. Given the 

goals of this study, the critical lexical measures are related to phonological 
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neighborhood (neighborhood density and neighbor frequency) and homophone 

families (homophone density and frequency of homophone mates). While 

neighborhood measures are available for both real monosyllables and pseudo-

syllables (since pseudo-syllables may sound similar to real syllables), 

homophone-related measures are only available for real monosyllables. In 

addition, a small number of real monosyllables do not have entries in the lexical 

database I used (see detail below), probably due to extremely low frequency of 

occurrence in everyday use of the language. As a result, the total number of 

items with lexical measures varies slightly from 1,259.  

 

3.2.1 Neighborhood measures 

 

The two key measures of phonological neighborhoods are neighborhood density 

and neighborhood frequency. Neighborhood density refers to the number of 

neighbors of the target monosyllable, and neighborhood frequency refers to the 

frequency of the neighbors, which is usually calculated as either the sum or 

average of neighbor frequency. In this study, I use average neighbor frequency, 

because it is not as correlated with neighborhood density as neighborhood 

density is.  

 

What is less clear, however, is the definition of neighborhood. As discussed in 

Chapter 2, multiple versions of neighborhood definition have been proposed, 

ranging from neighborhood probability rules, the phi-square rule, to the one-

phoneme difference rule. In the current literature on phonological neighborhood 

effects, the most widely used definition of phonological neighborhood is the one-
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phoneme difference rule, according to which any words that differ by one 

phoneme due to addition, deletion or substitution of a phoneme are considered as 

phonological neighbors.  

 

While the one-phoneme difference rule has achieved much success in the study 

of English and other European languages, it remains to be seen whether it can be 

applied to the study of a tonal language. As discussed in Chapter 2 Section 2.2.2, 

previous studies of Mandarin have generally applied the one-phoneme difference 

rule, but differed in whether tone was ignored or treated with the same status as a 

phoneme. Furthermore, if the one-phoneme difference rule is construed as a one-

unit difference rule in general, there should be at least two ways of applying the 

rule to Mandarin monosyllables, in accordance with the two ways of segmenting 

a Mandarin monosyllable (Duanmu, 2007), i.e. at the phoneme level and the 

component level (onset, rime), respectively.  

 

In this dissertation, I consider a total of four possibilities of defining a 

phonological neighborhood for Mandarin monosyllables (i.e. four neighborhood 

schemes): (1) one-segment/tone difference rule, (2) one-segment difference rule, 

(3) one-component/tone difference rule, and (4) one-component difference rule. 

Overall, all four rules follow the general spirit of the one-unit difference rule, but 

differ in terms of (1) whether tone is considered as a unit or not, and (2) whether 

the unit for segmental sequence is segment or component. Specifically, under the 

one-segment/tone difference rule, monosyllables that differ in one and only one 

segment (phoneme) or tone via addition, deletion or substitution are considered 

neighbors. For example, /ɕjaʊ3/, /laʊ3/, /ljaŋ 3/ and /ljaʊ2/ are all neighbors of 
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/ljaʊ3/, but /ɕjaʊ1/ is not.  Under the one-segment difference rule, monosyllables 

that differ in one and only one segment through addition, deletion or substitution 

are considered neighbors. For example, /ɕjaʊ2/, /laʊ3/, /ljaŋ3/, and /ɕjaʊ1/ are all 

neighbors of /ljaʊ3/.  Under the one-component/tone difference rule, 

monosyllables that differ by one and only one component (onset or rime) or tone 

via addition, deletion or substitution are considered neighbors. For example, 

/laŋ3/, /mjaʊ3/ and ljaʊ2/ are all neighbors of /ljaʊ3/. Lastly, under the one-

component difference rule, monosyllables that differ by one and only one 

component (onset or rime) via addition, deletion or substitution are considered 

neighbors. For example, /laʊ/, /lu/, /pjaʊ/ are neighbors of /ljaʊ/.  

The rationale for considering four different neighborhood schemes is twofold. 

First, for the current study, it is important to clarify whether any observed 

neighborhood effects on spoken word recognition are only specific to a certain 

definition of neighborhood or whether the effects are robust enough to be 

observed across different ways of defining the neighborhood. Secondly, 

comparing neighborhood measures from four different neighborhood schemes 

also gives us insight on the relative fitness of the neighborhood definitions.   

 

To be sure, there is a couple of existing databases that provide phonological 

neighborhood measures, such as Neergaard, Xu and Huang (2016) and Sun, 

Hendrix, Ma and Baayen (2018) databases. Neergaard et al.’s database included 

neighborhood measures under various definitions of phonological neighborhood, 

including some similar to the four listed in Table 3. However, the entries in 

Neergaard et al.’s database are words—which may be monosyllabic, disyllabic 

or multisyllabic—instead of monosyllabic morphemes. In other words, 
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Neergaard et al.’s database is word-based, and monosyllabic morphemes that are 

not used as standalone words (i.e. bound morphemes) will not be listed in the 

database; neither will monosyllabic bound morphemes be included for the 

calculation of neighborhood measures. By contrast, the current study is focused 

on lexical effects at the morpheme level, thus the phonological neighborhoods 

concerned in this study are constructed by all monosyllabic morphemes.   

 

Sun et al.’s Chinese lexical database provides neighborhood measures for both 

words and morphemes. However, Sun et al.’s database only provides 

neighborhood measures for one neighborhood scheme, which is based on the 

one-segment/tone difference rule. As mentioned above, including four different 

neighborhood schemes in the current study will shed light on the robustness of 

neighborhood effects (if any) and the relative fitness of the neighborhood 

definition for modeling neighborhood effects in Mandarin.  

 

In view of the limitations of existing neighborhood measure databases, I 

calculated the neighborhood measures used in this study separately, based on 

character-based usage frequency counts from the SUBTLEX-CH corpus (Cai & 

Brysbaert, 2010). The SUBTLEX-CH corpus is a corpus of film and television 

subtitles of around 47 million characters. The authors of the SUBTLEX-CH 

corpus also published, based on the corpus data, a list of character frequency 

counts that includes 5936 unique characters. I used the character frequency list 

from SUBTLEX-CH to calculate four sets of neighborhood measures, one for 

each neighborhood scheme. Probably due to extremely low usage frequency, 

there are 123 monosyllables that are in the Xinhua dictionary that did not appear 
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in the SUBTLEX-CH corpus, and are therefore excluded from the calculation of 

both neighborhood density and neighbor frequency in all four neighborhood 

schemes. The same methods of calculating neighborhood measures for real 

monosyllables are applied to the calculation of neighborhood measures for 

pseudo-syllables.  

 

Table 3: Neighborhood measures under four neighborhood schemes. 
Neighborhood scheme Neighborhood 

density (ND) 
measure 

Neighbor 
frequency (NF) 
measure 

One-segment/tone difference 
rule 

ND_SegT NF_SegT 

One-segment difference rule ND_Seg NF_Seg 
One-component/tone difference 
rule 

ND_CompT NF_CompT 

One-component difference rule ND_Comp NF_Comp 
 

 

Figure 8 and Figure 9 shows the distribution of ND measures across 

neighborhood schemes for real monosyllables and pseudo-syllables.  Figure 10 

and Figure 11 shows the distribution of NF measures across neighborhood 

schemes for real monosyllables and pseudo-syllables. Because frequency 

measures are highly skewed, they are log-transformed before being entered into 

regression models. Table 4 and Table 5 lists the summary statistics of NF 

measures across neighborhood schemes.  
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Figure 8: Distribution of ND across different neighborhood schemes for real 
monosyllables.  

 

 

Figure 9: Distribution of ND across different neighborhood schemes for pseudo-
syllables.  
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Figure 10: Distribution of raw and log-transformed neighborhood frequency 
across different neighborhood schemes for real monosyllables. X-axis indicates 
number of occurrences per million.  
 



  83 

 

 

Figure 11: Distribution of raw and log-transformed neighborhood frequency 
across different neighborhood schemes for pseudo-syllables. X-axis indicates 

number of occurrences per million. 
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3.2.2 Homophone measures  

 

Critical homophone measures include homophone density and homophone 

frequency. Homophone density refers to the number of homophone mates in a 

homophone family. Homophone frequency describes the usage frequency of the 

homophone mates in a homophone family. Unlike the definition of 

neighborhood, the definition of homophone family is much clearer: only items 

that are identical in pronunciation are considered as homophones.  

 

There are multiple ways of estimating homophone frequency: sum homophone 

frequency (i.e. total frequency of the monosyllable), maximum homophone 

frequency (i.e. the frequency of the highest-frequency homophone mate), and 

average homophone frequency (i.e. sum homophone frequency divided by 

homophone density). In my dataset, all three frequency measures are quite highly 

correlated (correlation coefficient r > 0.9 among log-transformed homophone 

frequency measures). In addition, both sum homophone frequency and maximum 

homophone frequency are also highly correlated with homophone density (r > 

0.9) while average homophone frequency is much less correlated with 

homophone density (r = 0.1). To avoid having highly correlated variables in the 

regression models, I use average homophone frequency as a measure of the 

frequency of homophone mates in the family.  

 

Both homophone density (HD) and homophone frequency (HF) are calculated 

from the character frequency list from the SUBTLEX-CH corpus (Cai & 

Brysbaert, 2010). A total of 287 monosyllables out of 1259 real monosyllables 
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have only one homophone mate in the homophone family (for example, / kən2, / 

liɛ1/, / paɪ2/ etc.), and the remaining real monosyllables have at least two 

homophone mates in the family. Figure 12 shows the distribution of HD. Figure 

13 shows the distribution of raw and log-transformed HF. Summary statistics of 

HD and HF are included in Table 4. 

 

Figure 12: Distribution of raw and log-transformed homophone density.  
 

 

Figure 13: Distribution of raw and log-transformed HF. 
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Table 4: Summary statistics of lexical measures for real monosyllables. The unit 
of NF and HF measures is number of occurrences per million. 
 Minimum Maximum Mean  Median  SD 

ND_SegT 3.00 35.00 15.89 15.00 5.48 

NF_SegT 19.52 7708.19 885.39 609.81 881.82 

ND_Seg 1.00 37.00 18.02 18.00 6.03 

NF_Seg 328.60 13088.21 2631.52 2090.81 2119.27 

ND_CompT 7.00 50.00 25.76 26.00 6.66 

NF_CompT 91.14 4853.71 887.80 688.02 668.13 

ND_Comp 8.00 50.00 30.89 32.00 6.70 

NF_Comp 450.11 9017.82 2602.18 2261.01 1377.63 

HD 1.00 37.00 4.19 3.00 3.85 

HF 0.09 43956.70 269.51 51.85 1476.39 

 

 

Table 5: Summary statistics of lexical measures for pseudo-syllables. The unit of 
NF measures is number of occurrences per million. 
 Minimum Maximum Mean  Median  SD 

ND_SegT 0.00 25.00 9.79 9.00 5.05 

NF_SegT 0.00 11429.53 781.62 518.01 975.62 

ND_Seg 0.00 28.00 13.69 13.00 6.09 

NF_Seg 0.00 13589.81 2313.20 1846.38 2331.91 

ND_CompT 3.00 44.00 18.67 18.00 6.26 

NF_CompT 8.93 6650.76 860.79 585.63 878.90 

ND_Comp 8.00 51.00 27.49 28.00 6.47 

NF_Comp 520.43 9777.48 2369.82 2037.16 1394.38 
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3.2.3. Other lexical measures 

 

In addition to neighborhood and homophone measures, I also included Tone (T1, 

T2, T3, T4) as a control variable in the regression analysis.  

 

3.3 Statistical analysis  

 

The complete set of real monosyllables and pseudo-syllables ranged in syllable 

length (i.e. number of phonemes) from 1 to 4 phonemes. As previous research 

has pointed out, neighborhood density decreases significantly when syllable 

length increases. In other words, shorter monosyllables naturally have higher 

neighborhood density compared to longer syllables, and it will be unfair to 

compare neighborhood density across syllable lengths. The same correlation 

pattern is observed in the current stimuli set, regardless of which neighborhood 

scheme is used (see Figure 14). Thus, to control for syllable length, the statistical 

analysis in this dissertation only examines 3-phoneme syllables (N = 677 for real 

monosyllables, N = 387 for pseudo-syllables), which comprises the largest group 

in the stimuli set, for both real monosyllables and pseudo-syllables.  
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Figure 14: Mean neighborhood density by syllable length (i.e. number of 
phonemes in the syllable) by neighborhood scheme, based on the stimuli set of 
real monosyllables. 
 

Data from both auditory lexical decision experiment and auditory word naming 

experiment were analyzed by mixed-effect regression models. In this Section, I 

describe the common methods of constructing, trimming and selecting the 

mixed-effect models that are shared by the two experimental studies. 

 

3.3.1 Model construction 

 

Both studies made use of two types of mixed effect models: linear mixed-effects 

models and generalized linear mixed-effects models and. Both models contain 

fixed-effects predictors and random-effects predictors, but in a linear mixed-

effects model is used to describe variation in a continuous variable while a 

generalized linear mixed-effects model is used to describe variation in a binary 

outcome variable.  
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In this dissertation, linear mixed-effects models were used to model reaction time 

(RT), while generalized linear mixed-effects models were used to model 

response accuracy (Accuracy; “0” = incorrect, “1” = correct). All models were 

constructed in using lmer function in the lme4 package (Bates, Maechler, Bolker, 

Walker, & others, 2014) in R (Team, 2014). Reaction time was log-transformed 

before being entered into the model.  

 

In the auditory lexical decision experiment, data from real monosyllables and 

data from pseudo-syllables are modelled separately (among other things, pseudo-

syllables do not have lexical measures such as homophone density or 

homophone frequency). The auditory naming experiment only had real 

monosyllables, but the experiment consisted of two different tasks: instantaneous 

naming and delayed naming. Data from instantaneous naming and data from 

delayed naming are modelled separately.  

 

According to the hypotheses laid out in Chapter 2 Section 2.5 the critical effects 

under investigation for real monosyllables are the main effects of neighborhood 

density, neighbor frequency, homophone density, and homophone frequency as 

well as the interaction of neighborhood density and syllable frequency and the 

interaction of homophone density and syllable frequency. To avoid the high 

correlation between syllable frequency and homophone density, I used 

homophone frequency (i.e. syllable frequency divided by homophone density) as 

a proxy for syllable frequency. In addition, all the models on real monosyllables 

also included log-transformed stimulus duration (StimDur) and Tone as control 

predictors, as well as intercepts for Subject and Item as random effects to control 
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for individual differences across subjects and items. Furthermore, the models for 

delayed naming task in the auditory naming experiment also included Delay 

condition (600ms, 1200ms) as a control predictor.   

 

(9) and (10) below give the general initial formula for models on real 

monosyllables in the auditory lexical decision experiment and the instantaneous 

naming task in the auditory naming experiment. ND and NF refer to measure of 

the neighborhood density and neighbor frequency.   

 

(9) log(RT) ~ ND +log(NF) + log(HD) + log(HF) + ND:log(HF) + 

log(HD):log(HF) + log(StimDur) + Tone + (1|Subject) + (1|Item) 

 

(10) Accuracy ~ ND + log(NF) + log(HD) + log(HF) + ND:log(HF) + 

log(HD):log(HF) + log(StimDur) + Tone + (1|Subject) + (1|Item) 

 

(11) and (12) below give the initial model formula for models on the delayed 

naming task in the auditory naming experiment. 

 

(11) Accuracy ~ ND +log(NF) + log(HD) + log(HF) + ND:log(HF) + 

log(HD):log(HF) + Delay + log(StimDur) + Tone + (1|Subject) + (1|Item) 

 

(12) log(RT) ~ ND +log(NF) + log(HD) + log(HF) + ND:log(HF) + 

log(HD):log(HF) + Delay + log(StimDur) + Tone + (1|Subject) + (1|Item) 
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As shown in the model formulas above, in addition to RT, StimDur and all the 

frequency-related measures are also log-transformed. Furthermore, all numerical 

predictors were centered before being entering into the models in order to reduce 

collinearity. Effectiveness of different neighborhood schemes was compared by 

using neighborhood measures from the four different neighborhood schemes (see 

below for model trimming and selection detail). Table 6 gives the correlations 

among all numeric fixed-effects predictors for real monosyllables under each 

neighborhood scheme.  

 

Models for the data from pseudo-syllables (in auditory lexical decision only) 

have much simply structure, since pseudo-syllables do not have HD and HF 

measures. Critical fixed-effects predictors include only ND and log(NF). Similar 

to models for real monosyllables, the models for pseudo-syllables also include 

log(StimDur) and Tone as control predictors, as well as an additional control 

predictor, ItemType, which indicates the type of lexical gaps (segmental gap vs. 

tonal gap). The models for pseudo-syllables also include random intercepts for 

Subject and Item to control for individual differences across subjects and items. 

The general initial model formula is given below in (13) and (14). Correlation 

coefficients among numeric fixed-effects predictors under each neighborhood 

scheme are given in Table 7.  

 

(13) log(RT) ~ ND +log(NF) + ItemType + log(StimDur) + Tone + 

(1|Subject) + (1|Item) 
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(14) Accuracy ~ ND + log(NF) + ItemType + log(StimDur) + Tone + 

(1|Subject) + (1|Item) 
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Table 6: Correlation coefficients among numeric fixed predictors for real monosyllables, under each neighborhood scheme. 
 One-segment/tone 

difference rule 

One-segment 

difference rule 

One-component/tone 

difference rule 

One-component 

difference rule 

log(H

D) 

log(Sti

mDur) 

Log(H

F) 

 ND_SegT log(NF_

SegT) 

ND_Seg log(NF_

Seg) 

ND_CompT log(NF_Co

mpT) 

ND_Comp log(NF_C

omp) 

ND_SegT - 0.41* 0.87* - 0.70* - 0.61* - 0.05 -0.16* 0.01 

log(NF_Seg

T) 

- - - 0.62* - 0.74* - 0.45* 0.27* -0.22* 0.14* 

ND_Seg - - - 0.46* 0.55* - 0.71* - -0.06* -0.11* -0.01 

log(NF_Seg

) 

- - - - - 0.45* - 0.67* 0.20* -0.11* 0.12* 

ND_CompT - - - - - 0.46* 0.79* - 0.13* -0.32* 0.03 

log(NF_Co

mpT) 

- - - - - - - 0.60* 0.30* -0.29* 0.03 
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ND_Comp - - - - - - - 0.51* -0.05 -0.26* -0.01 

log(NF_Co

mp) 

- - - - - - - - 0.22* -0.25* 0.15* 

log(HD) - - - - - - - - - -0.16* 0.16* 

log(StimDu

r) 

- - - - - - - - - - -0.02 
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Table 7: Correlation coefficient among numeric fixed predictors for pseudo-syllables, under each neighborhood scheme. 
 

 One-segment/tone 

difference rule 

One-segment 

difference rule 

One-component/tone 

difference rule 

One-component 

difference rule 

 

log(StimD

ur)  ND_SegT log(NF_Seg

T) 

ND_Seg log(NF_

Seg) 

ND_CompT log(NF_Com

pT) 

ND_Comp log(NF_Co

mp) 

ND_SegT - 0.56*  -  -  - -0.003 

log(NF_SegT) - - -  -  -  -0.18* 

ND_Seg - - - 0.57*     0.03 

log(NF_Seg) - - - -     -0.04 

ND_CompT - - - - - 0.51*   -0.14* 

log(NF_CompT) - - - - - -   -0.24* 

ND_Comp - - - - - - - 0.55* -0.12* 

log(NF_Comp) - - - - - - - - -0.26* 
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3.3.2 Model trimming and selection 

 

As mentioned above, data from auditory lexical decision and auditory naming are 

modelled separately. Furthermore, for auditory lexical decision, data for real 

monosyllables and pseudo-syllables are modelled separately; for auditory naming, 

which only included real monosyllables in the stimuli, data from instantaneous and 

delayed naming tasks are modelled separately. On top of this, for each sub-group of 

data, response accuracy (Accuracy) and reaction time (RT) are modelled separately.  

 

For each line of modelling (i.e. Accuracy/RT on a specific sub-group of data), four 

initial models are built, each using a different neighborhood scheme, following the 

initial model formulas described in (9) – (14) in the Section above. Each initial 

model then undergoes a procedure of backward elimination in order to trim off non-

significant predictors. In each round of backward elimination, the significance of one 

fixed-effects predictor is tested by comparing the model fit of the current model and 

a reference model where the predictor under testing is removed. If the change in 

model fit is not significant (p > .05 in the anova test that compares model fit), the 

predictor under testing will be deemed non-significant and trimmed out. The 

backward elimination procedure starts with testing the predictor with the lowest t 

value in the initial model, and proceeds until all remaining predictors are significant.  

Remaining predictors in general have t values no less than 2, which roughly 

corresponds to p values under 0.05 given a data size of more than 10000 data points 

(Krajewski & Matthews, 2010).  
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After applying backward elimination to all four initial models, each line of modelling 

has four final models. I then compare the model fit (AIC values) of the four final 

models, and select the model with the lowest AIC as the best-fit model for the 

specific line of modelling (Anderson & Burnham, 2004). In the following two 

chapters, I report the results from the final models of each neighborhood scheme, and 

the analysis is based on results from the best-fitting final model. 
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Chapter 4: Auditory lexical decision 

 

This chapter brings forth the first experimental study of the current dissertation. This 

experiment examines the effect of phonological neighborhood and homophones 

using an auditory lexical decision task.  

 

4.1 Auditory lexical decision experiment 

 

To testify the aims of the current dissertation, auditory lexical decision was selected 

as one of the spoken word recognition task. In a regular auditory lexical decision 

task, participants hear speech stimuli and their task is to categorize the heard stimuli 

as words or non-words as quickly as possible. The concept of word is a bit vague in 

Chinese (see Section 2.4 Background on Mandarin). Monosyllabic morphemes form 

the building block of Mandarin, where each monosyllabic morpheme corresponds to 

a Chinese character (orthographic form). Therefore, the task of this experiment was 

not exactly the same as in a canonical auditory lexical decision task. The participants 

were asked to decide whether or not they could associate the heard monosyllable 

(stimulus) to at least one character in Chinese. The stimuli of this experiment consist 

of two groups: real monosyllables (i.e. syllables that can be associated with at least 

one real characters) and pseudo-syllables (i.e. syllables that cannot be associated 

with any real character).  
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4.2 Method 

 

4.2.1 Participants  

 

Seventy-eight participants took part in this experiment (49M, 29F, mean age = 23.4 

years, SD = 4.26). All participants were recruited from the Hong Kong Polytechnic 

University and were native speakers of Mandarin, born and raised in Mainland 

China. All participants were right-handed and reported no speech and hearing 

problem. 

 

4.2.2 Stimuli 

 

1259 real monosyllables and 768 monosyllabic pseudo-syllables were used in the 

experiment. All pseudo-syllables were accidental gaps that are either tonal gaps (N = 

356) or segmental gaps (N = 412). See Chapter 3, Section 3.1 Stimuli and recording 

for details. 

 

4.2.3 Design and procedure 

 

Due to the large number of stimuli (i.e. 1259 real monosyllables and 768 pseudo-

syllables), it is impossible to include all the stimuli in one experimental session 

without making the experiment too demanding for the participant. Therefore, I 

divided the stimuli into 6 sub-lists, each with. 425 unique stimulus items (50% real 

monosyllables and 50% pseudo-syllables). Each stimulus item was presented twice 

in a sub-list, resulting in a total of 850 stimulus tokens per sub-list, with a completely 
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randomized order of presentation. Each participant worked on only one sub-list, and 

each sub-list was presented to 13 participants. To evaluate cross-group differences, 

12 stimulus items (6 real monosyllables and 6 pseudo-syllables) were shared by all 

sub-lists; apart from that, all other real monosyllables only appeared in one sub-list 

and all other pseudo-syllables appeared in one or two sub-lists.  

 

The experiment was designed and conducted using E-Prime version 2.0 (Schneider, 

Eschman, & Zuccolotto, 2007) on a Lenovo laptop. The laptop was connected to a 

set of headphones and Chronos response box. The experiment was conducted in a 

sound-treated room. Each participant was comfortably seated before the start of the 

experiment. Each trial proceeded as follows: a fixation-cross appeared at the center 

at the beginning of the trial for 500 ms, followed by the auditory stimulus. 

Participants had 4000 ms from the onset of stimulus to respond by pressing the 

relevant key on the response box: if the stimulus could be associated with at least one 

Chinese character (i.e. real monosyllable), the participant would press the key “5”, 

the rightmost key on the response box; if the stimulus could not be associated with 

any character (i.e. pseudo-syllable), the participant would press the leftmost key “1”. 

If the participant did not respond within 4000 ms of the stimulus onset, the 

experiment will proceed to the next trial. Participants were instructed to make a 

judgment as quickly and accurately as possible, and reaction times were measured 

from the onset of the stimulus to the button-press response. Figure 15 shows a 

diagram of the experimental trial. 
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Figure 15: Diagram of an experimental trial of auditory lexical decision task. 

 
 
 
Before the test session began, the participant would first have a practice session with 

30 practice items. Feedback was provided for the practice trials only. None of the 

syllables presented during the practice trial of the experiment appeared in the main 

experiment. A complete experimental session lasted no more than 30 minutes for all 

the participants, with one mandatory break in between. 

 

4.2.4 Analysis 

 

As mentioned above, in this thesis, statistical analysis focused on the performance 

from 3-phoneme monosyllables (N = 677) and pseudo-syllables (N = 387). The 

experimental data were analyzed in terms of both accuracy (incorrect = “0”, correct 
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= “1”) and reaction time (RT; measured from the onset of the stimulus to the button-

press response). Furthermore, the reaction time analysis is only applied to trials with 

correct responses. 

 

General modeling methods are described in Chapter 3 Section 3.3. Neighborhood 

density (ND), neighborhood frequency (NF), homophone density (HD), homophone 

frequency (HF), interaction between HD and HF, and interaction between ND and 

HF were critical fixed-effects predictors in models for real monosyllables. In 

addition, the models for real monosyllables had stimulus duration (StimDur) and 

Tone as control fixed-effects predictors as well as intercepts for Subject and Item as 

random effects. Models for pseudo-syllables only had ND and NF as critical fixed-

effects predictors (since pseudo-syllables do not have HF or HD measures). In 

addition to StimDur and Tone, the models for pseudo-syllables also had an additional 

control variable of item type (ItemType), which encoded the type of gap (tonal gap, 

segmental gap). The models for pseudo-syllables also had random intercepts for 

Subject and Item.  

 

Four neighborhood schemes, each associated with a set of ND and NF measures, 

were tested in the models. Model trimming and selection followed the procedure 

described in Chapter 3 Section 3.3. In the next Section, I report the results of the 

final models with each set of ND and NF measures and focus the discussion on the 

best-fitting models selected from the four neighborhood schemes.  
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4.3 Results 

 

4.3.1 Real monosyllables 

 

The mean RT for the lexical decision task was 1023.22 ms (SD = 373.58 ms) and the 

mean accuracy rate was 84%. Before doing further analysis, data were trimmed for 

outliers. Two types of outliers were removed: (1) items with accuracy rate less than 

20%, and (2) trials that were 2 SD above and below the mean RT. Altogether, 6.89% 

of the trials were excluded.  

 

As mentioned in Section 2.5 Current study, here is the hypotheses for real 

monosyllables. 

 

(1) Hypothesis 1A: 

Given the independent representation model, homophone mates and phonological 

neighbors should have similar effects on the recognition of spoken real 

monosyllables in Mandarin. In other words, either both are inhibitory, or both are 

facilitative, or both have null effects on spoken word recognition. Given previous 

findings for both English and Mandarin (Luce & Pisoni, 1998; Wang et al., 2012), 

the most likely pattern is for both phonological neighbors and homophone mates to 

be inhibitory. Furthermore, the two should also have the same interaction patterns 

with word frequency. Given previous studies on Chinese homophone effects (Wang 

et al., 2012; Zhou, 2015), I predict that homophone mates have stronger influence for 

high frequency words than for low frequency words. Thus, phonological neighbors 

are predicted to show the same interaction with frequency.  
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Hypothesis 1B: 

Given the shared representation model, homophone mates and phonological 

neighbors may not have similar effects on the recognition of spoken real 

monosyllables in Mandarin. In other words, either they will have opposite effects i.e, 

inhibitory for one and facilitatory for other, or one is inhibitory or facilitaotory while 

the other has null effects on spoken word recognition. Given previous findings in 

Mandarin (Wang et al., 2012; Zhou, 2015), the most likely pattern for homophone 

mates is inhibitory. So, phonological neighbors might have facilitative or null effects 

in Mandarin. Furthermore, the two should not have the same interaction patterns 

with syllable frequency. Given previous studies on Chinese homophone effects 

(Wang et al., 2012; Zhou, 2015), I predict that homophone mates have stronger 

influence for high frequency syllables than for low frequency syllables. Thus, 

phonological neighbors are predicted to have no interaction with syllable frequency.  

 

4.3.1.1 Accuracy analysis 

 

The dataset for the models on accuracy consisted of 15508 trials of 598 item types. 

Four separate models were constructed, each representing neighborhood measures 

from a different scheme: (1) models with neighborhood measures from one-

segment/tone difference scheme (ND_SegT, NF_SegT); (2) models with 

neighborhood measures from one-segment difference scheme (ND_Seg, NF_Seg); 

(3) models with neighborhood measures from one-component/tone difference 

scheme (ND_CompT, NF_CompT); (4) models with neighborhood measures from 

one-component difference scheme (ND_Comp, NF_Comp). All the initial models 
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follow the same formula (10) from chapter 3, repeated below), although the 

neighborhood measures were calculated using different schemes. 

  

(10) Accuracy ~ ND + log(NF) + log(HD) + log(HF) + ND:log(HF) + 

log(HD):log(HF) + log(StimDur) + Tone + (1|Subject) + (1|Item) 

 

All four initial models underwent a backward elimination procedure (as described in 

Chapter 3, Section 3.3.2 Model construction) so that only significant predictors 

remain. Only results from the final models are reported here. Table 8 summarizes the 

model fit (AIC) and all fixed effects in all four final models. AIC values were used to 

decide the best neighborhood scheme: the lower the AIC, the better the model fit 

(Anderson & Burnham, 2004). As shown in Table 8, all four models have the same 

AIC (9048.9) because none of the models showed significant effects of any of the 

neighborhood measures (ND and NF; p > 0.05). In all the four models, there was 

significant facilitative effect of HD (β = 0.45, z = 6.06, p < 0.001), and HF (β = 0.27, 

z = 10.12, p < 0.001) on accuracy. In other words, syllables with many homophones 

and higher frequency were responded more accurately than syllables with fewer 

homophones and lower frequency. Also, the interactions between HD and HF (p = 

0.7) had no significant effect on accuracy. 
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Table 8: Summary of fixed effects in the accuracy models for real-syllables across all 
neighborhood schemes. The model contains15508 trials from 598 item types. 
Model with neighborhood measures based on the one-segment/tone difference 

scheme 

AIC = 9048.9 

Fixed effects  

Predictor β Standard 

Error 

z-value p-value 

Intercept 2.733 0.13883 19.686 <2.00E-16 

log(HD) 0.45088 0.07432 6.067 1.30E-09 

log(HF) 0.27135 0.0268 10.126 <2.00E-16 

log(StimDur) -0.48844 0.46884 -1.042 0.297 

Tone = T2 0.02834 0.15953 0.178 0.859 

Tone = T3 0.17585 0.16935 1.038 0.299 

Tone = T4 0.07533 0.16276 0.463 0.643 

Model with neighborhood measures based on the one-segment difference 

scheme 

AIC = 9048.9 

Fixed effects  

Predictor β Standard 

Error 

z-value p-value 

Intercept 2.733 0.13883 19.686 <2.00E-16 

log(HD) 0.45088 0.07432 6.067 1.30E-09 

log(HF) 0.27135 0.0268 10.126 <2.00E-16 

log(StimDur) -0.48844 0.46884 -1.042 0.297 

Tone = T2 0.02834 0.15953 0.178 0.859 
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Tone = T3 0.17585 0.16935 1.038 0.299 

Tone = T4 0.07533 0.16276 0.463 0.643 

Model with neighborhood measures based on the one-component /tone 

difference scheme 

AIC = 9048.9 

Fixed effects  

Predictor β Standard 

Error 

z-value p-value 

Intercept 2.733 0.13883 19.686 <2.00E-16 

log(HD) 0.45088 0.07432 6.067 1.30E-09 

log(HF) 0.27135 0.0268 10.126 <2.00E-16 

log(StimDur) -0.48844 0.46884 -1.042 0.297 

Tone = T2 0.02834 0.15953 0.178 0.859 

Tone = T3 0.17585 0.16935 1.038 0.299 

Tone = T4 0.07533 0.16276 0.463 0.643 

Model with neighborhood measures based on the one-component difference 

scheme 

AIC = 9048.9 

Fixed effects  

Predictor β Standard 

Error 

z-value p-value 

(Intercept) 2.733 0.13883 19.686 <2.00E-16 

log(HD) 0.45088 0.07432 6.067 1.30E-09 

log(HF) 0.27135 0.0268 10.126 <2.00E-16 
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log(StimDur) -0.48844 0.46884 -1.042 0.297 

Tone = T2 0.02834 0.15953 0.178 0.859 

Tone = T3 0.17585 0.16935 1.038 0.299 

Tone = T4 0.07533 0.16276 0.463 0.643 

 

 

 

Figure 16: A. Scatterplot of log(HD) across accuracy; B. Scatterplot of log(HF) 
across accuracy. 
 

 

Overall, the model on accuracy of real monosyllables showed significant effects of 

homophone measures (HD and HF) alone. Figure 16 shows scatterplot of log (HD) 

and log(HF) across accuracy. No significant effects of neighborhood measures (ND 

and NF) on accuracy of real monosyllables were observed. These results lend 

support to hypothesis 1B, which predicted that neighborhood effects and homophone 

effects based on shared representation model can be different. Having null effects for 

neighborhood measures and facilitatory effects for homophone measures shows that 
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they do not have similar effects on spoken word recognition on accuracy of real 

monosyllables. 

 

4.3.1.2 RT analysis 

 

Analysis for RT was only conducted on correctly identified trials. The dataset for the 

models on RT consisted of 13797 trials from 598 item types. Four separate models 

were constructed, each representing neighborhood measures from a different scheme. 

All the initial models follow the formula (9) from Chapter 3, repeated below), 

although the neighborhood measures were calculated using different schemes.  

 

(9) log(RT) ~ ND +log(NF) + log(HD) + log(HF) + ND:log(HF) + 

log(HD):log(HF) + log(StimDur) + Tone + (1|Subject) + (1|Item) 

 

All four initial models underwent a backward elimination procedure (as described in 

Chapter 3, Section 3.3.2 Model construction) so that only significant predictors 

remain. Only results from the final models are reported here. Table 9 summarize the 

model fit (AIC) and all fixed effects in all four final models. Again, AIC values were 

used to decide the best neighborhood scheme. As shown in Table 9, the model with 

one-component/tone difference scheme has the lowest AIC (-5566.5) among all four 

models, and its AIC is lower than the second-best model, i.e. the model with one-

segment/tone difference (AIC = -5562.0), by 4.5. According to Anderson and 

Burnham (2004) a difference of 2 in AIC indicates that the model with higher AIC is 

0.368 times probable as the model with the lower AIC. Therefore, the model with 
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one-component/tone difference scheme is significantly better than all the other three 

models.  

 

Table 9: Summary of fixed effects in the RT models for real-syllables across all 
neighborhood schemes. The model contains 13797 trials from 598 item types.  
Model with neighborhood measures based on the one-segment/tone difference 

scheme 

AIC = -5562.0 

Fixed effects  

Predictor β Standard Error t-value 

Intercept 6.822379 0.011585 588.9 

log(NF_SegT) -0.015851 0.005213 -3 

log(HD) -0.009374 0.004402 -2.1 

log(HF) -0.013123 0.001898 -6.9 

log(StimDur) 0.547436 0.027759 19.7 

Tone = T2 0.008816 0.009642 0.9 

Tone = T3 -0.028263 0.010263 -2.8 

Tone = T4 0.061349 0.009985 6.1 

HD:HF 0.004979 0.002376 2.1 

Model with neighborhood measures based on the one-segment difference scheme 

AIC = -5559.8 

Fixed effects  

Predictor  β Standard Error t-value 

Intercept 6.825523 0.011541 591.4 

log(NF_Seg) -0.021313 0.008018 -2.7 

log(HD) -0.009647 0.004412 -2.2 
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log(HF) -0.013279 0.001903 -7 

log(StimDur) 0.548953 0.02782 19.7 

Tone = T2 0.006028 0.009619 0.6 

Tone = T3 -0.030816 0.010232 -3 

Tone = T4 0.053993 0.009722 5.6 

HD:HF 0.004664 0.002383 2 

Model with neighborhood measures based on the one-component /tone 

difference scheme 

AIC = -5566.5 

Fixed effects  

Predictor β Standard Error t-value 

Intercept 6.820454 0.011602 587.9 

log(NF_CompT) -0.021012 0.00565 -3.7 

log(HD) -0.007373 0.004458 -1.7 

log(HF) -0.013178 0.001891 -7 

log(StimDur) 0.54332 0.02772 19.6 

Tone = T2 0.0093 0.009603 1 

Tone = T3 -0.024705 0.010339 -2.4 

Tone = T4 0.064312 0.010044 6.4 

HD:HF 0.005077 0.002368 2.1 

Model with neighborhood measures based on the one-component difference 

scheme 

AIC = -5559.9 

Fixed effects  
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Predictor β Standard Error t-value 

Intercept 6.825897 0.011549 591 

log(NF_Comp) -0.0209 0.007806 -2.7 

log(HD) -0.008512 0.004474 -1.9 

log(HF) -0.012832 0.00191 -6.7 

log(StimDur) 0.538166 0.028306 19 

Tone = T2 0.004499 0.009631 0.5 

Tone = T3 -0.028782 0.010287 -2.8 

Tone = T4 0.051825 0.009757 5.3 

HD:HF 0.004812 0.002382 2 

 

 

 

Figure 17: A. Scatterplot of log(HD) across RT; B. Scatterplot of log(HF) across RT; 
C. Scatterplot of log(NF) across RT. 
 

 

The model with one-component/tone difference scheme showed significant 

facilitative effect NF (β = -0.02, t = -3.7), HD (β = -0.007, t = -1.7), and HF (β = -

0.01, t = -7.0). In other words, syllables with high neighborhood frequency, were 

responded faster compared to syllables with low neighborhood frequency. Also, 

syllables with more homophones and higher frequency were responded faster than 
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syllables with fewer homophones and lower frequency. Figure 17 shows scatterplot 

of log (HD), log(HF), and log(NF) across RT.  In addition, there was a significant 

negative interaction between HD and HF (β = 0.005, t = 2.1). That is to say, a 

syllable with high homophone frequency which is associated with many 

homophones, is responded slower compared to syllable with high homophone 

frequency with fewer homophones. Figure 18 depicts the interaction between HD 

and HF on RT. There was no significant effect of ND on RT (p = 0.2). 

 

 

Figure 18: Interaction between log(HD) and log(HF) on RT. 

  

In order to further investigate the results of interaction, the data were split into high-

frequency dataset and low-frequency dataset using quantile-split. High frequency 

dataset comprised of data points from top 25% of the HF while low-frequency 

dataset comprised of data points from bottom 25% of the HF. The effect of HD was 

examined for high-frequency dataset and low-frequency dataset using separate mixed 

effect models. The model on low-frequency dataset showed significant facilitative 

effect (β = -0.02, t = -2.9) of HD. In other words, syllables with low HF but many 
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homophone mates were responded to faster as compared to syllables with fewer 

homophone mates. Table 10 shows model results from low-frequency dataset. 

 The model on high-frequency dataset showed no significant effect of HD (β = 0.01, t 

= 1.1) but a trend towards inhibitory effects. In other words, in high-HF syllables, 

syllable with many homophone mates were responded slower to as compared to 

syllables with fewer homophone mates. Table 11 shows model results from high-

frequency dataset. 

 

Table 10: Summary of fixed effects in the RT models for real-syllables with low HF. 
The model contains 3449 trials from 169 item types. 
Predictor β Standard Error t-value 

Intercept 6.86535 0.01603 428.2 

log(HD) -0.029 0.01004 -2.9 

log(NF_CompT) -0.01592 0.01156 -1.4 

log(StimDur) 0.52062 0.0595 8.7 

Tone = T2 -0.01201 0.0203 -0.6 

Tone = T3 -0.01658 0.02126 -0.8 

Tone = T4 0.07442 0.02023 3.7 

 

 

Table 11: Summary of fixed effects in the RT models for real-syllables with high 
HF. The model contains 3453 trials from 143 item types. 
Predictor β Standard Error t-value 

Intercept 6.785101 0.017406 389.8 

log(HD) 0.010567 0.009472 1.1 

log(NF_CompT) -0.049187 0.012296 -4 

log(StimDur) 0.551247 0.053783 10.2 
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Tone = T2 0.024827 0.021153 1.2 

Tone = T3 -0.01722 0.02119 -0.8 

Tone = T4 0.075578 0.022271 3.4 

 

 

In addition to the critical effects, the model also shows significant effects from 

control variables: syllables with longer stimulus duration (StimDur) were responded 

slower (β = 0.54, t = 19.6); T3 syllables were responded faster than T2 and T4 (β = -

0.02, t = -2.4), which could be attributed to the dipping tonal trajectory of T3 

syllables that could have resulted in early recognition.  

 

It should be noted that although the model with one-component/tone difference 

scheme produced the best model fit, the results of this model are highly similar to 

those from the other three models. Overall, the other three models also showed (1) 

significant facilitatory effects of NF (in the model with one-segment/tone difference 

scheme: β = -0.015, t = -3; one-segment difference scheme: β = -0.021, t = -2.7; one-

component difference scheme: β = -0.020, t = -2.7), (2) significant facilitatory effects 

of HD (in the model with one-segment/tone difference: β = -0.009, t = -2.1; one-

segment difference scheme: β = -0.009, t = -2.2; one-component difference scheme: 

β = -0.008, t = -1.9), (2) significant facilitatory effects of HF (in the model with one-

segment/tone difference: β = -0.01, t = -6.9; one-segment difference scheme: β = -

0.01, t = -7.0; one-component difference scheme: β = -0.01, t = -6.7), (4) significant 

inhibitory interaction of HD and HF (in the model with one-segment/tone difference: 

β = 0.004, t = 2.1; one-segment difference scheme: β = 0.004, t = 2.0; one-

component difference scheme: β = 0.004, t = 2.0). In addition, all the alternative 
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models show the same effects regarding control variables (StimDur, Tone) as the 

best-fitting model.  

 

Overall, the model on RT of real monosyllables provide support to both hypothesis 

1A and 1B. According to hypothesis 1A, both phonological neighbors and 

homophone mates should have similar effects on spoken word recognition. 

According to models on RT for real monosyllables, it can be observed that both 

neighborhood measures (NF) and homophone measures (HD and HF) showed 

significant facilitatory effects on spoken word recognition. Having similar 

facilitatory effects for both phonological neighbors and homophone mates lends 

evidence for hypothesis 1A. However, the model on RT also reported significant 

interaction between HD and HF. But no significant interactions were observed for 

ND and HF. This in turn provides an evidence for hypothesis 1B that suggests that 

the interaction between HD and frequency, and ND and frequency can be different. 

Overall, the model results on RT provides some evidence to hypothesis 1A and some 

evidence to hypothesis 1B.  

 

4.3.2 Pseudo-syllables 

 

The overall mean RT of pseudo-syllables was 1087.95 ms (SD = 447.95 ms) and 

mean accuracy rate was 86%. The mean RT of tonal gaps was 1142.97 ms (SD = 

474.32) and mean accuracy rate was 84%. The mean RT of segmental gaps was 

1011.89 ms (SD = 396.37 ms) and mean accuracy rate was 88%. As compared to 

segmental gaps, tonal gaps demonstrated slower RT and lower accuracy rates. This 

could be because tonal gaps are pseudo-syllables that exist with other lexical tones, 
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which makes them difficult to recognize in a time-bound task. Therefore, participants 

took longer to recognize tonal gaps and the accuracy rates were also low. Segmental 

gaps are pseudo-syllables that do not exist with any lexical tone. This makes 

segmental gaps easier to recognize in comparison to tonal gaps resulting in lower RT 

and higher accuracy rates. 

 

Before conducting further analysis, data were trimmed for outliers. Similar to the 

analysis of real monosyllables, two types of outliers were removed: (1) items with 

accuracy rate less than 20%, and (2) trials that were 2 SD above and below the mean 

RT. Altogether, 6.1 % of trials were excluded.  

As mentioned in Section 2.5 (Current study), here is the hypotheses for pseudo-

syllables. 

 

(1) Hypothesis 2: 

Following from Luce and Pisoni (1998), I predict inhibitory effects of phonological 

neighbors on the identification of pseudo-syllables. In other words, pseudo-syllables 

with many similar-sounding real monosyllables and high neighborhood frequency 

will be recognized as pseudo-syllables slower and less accurately than pseudo-

syllables with fewer similar-sounding real monosyllables and low neighborhood 

frequency.  

 

4.3.2.1 Accuracy analysis 

 

The dataset for the models on accuracy consisted of 14881 trials of 358 item types. 

Again, all four-neighborhood schemes were tested in separate models. All the initial 
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models follow the same formula (13) from Chapter 3, repeated below), although the 

neighborhood measures were calculated using different schemes.  

 

(13) Accuracy ~ ND + log(NF) + ItemType + log(StimDur) + Tone + (1|Subject) 

+ (1|Item) 

 

All four initial models underwent a backward elimination procedure. Table 12 

summarizes the model fit (AIC) and all fixed effects in all four final models. Based 

on the AIC values mentioned in Table 12, neighborhood measures based on one-

segment/tone difference scheme best predicted the accuracy scores (AIC = 9587.6).  

The second-best model was with neighborhood measures from one-segment 

difference scheme (AIC = 9673.1) whose AIC differs from the best model by 85.5.  

Therefore, the model with one-segment/tone difference scheme is significantly better 

than all the other three models.  

 

Table 12: Summary of fixed effects in the accuracy models for pseudo-syllables 
across all neighborhood schemes. The model contains14881 trials from 358 item 
types. 
Model with neighborhood measures based on the one-segment /tone difference 

scheme 

AIC = 9587.6 

Fixed effects  

Predictor β Standard 

Error 

z-value p-value 

Intercept 2.67933 0.21255 12.606 <2.00E-16 

ND_SegT -0.07194 0.01974 -3.644 0.000269 
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ItemType = 

Tonal gap -0.48238 0.18291 -2.637 0.008356 

log(StimDur) 1.92038 0.65619 2.927 0.003427 

Tone = T2 0.65052 0.22101 2.943 0.003246 

Tone = T3 -0.16032 0.25887 -0.619 0.53571 

Tone = T4 0.25991 0.25297 1.027 0.304217 

Model with neighborhood measures based on the one-segment difference 

scheme 

AIC = 9673.1 

Fixed effects  

Predictor β Standard 

Error 

z-value p-value 

Intercept 2.74686 0.2133 12.878 <2.00E-16 

ND_Seg -0.03801 0.01533 -2.48 0.01314 

log(NF_Seg) 0.32989 0.14541 2.269 0.023283 

ItemType = 

Tonal gap  

-0.67546 0.17669 -3.823 0.000132 

log(StimDur) 2.09817 0.6616 3.171 0.001517 

Tone = T2 0.81887 0.21891 3.741 0.000184 

Tone = T3 -0.15152 0.25847 -0.586 0.557725 

Tone = T4 0.22508 0.25171 0.894 0.371213 

Model with neighborhood measures based on the one-component /tone 

difference scheme 

AIC = 9978.6 

Fixed effects  
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Predictor β Standard 

Error 

z-value p-value 

Intercept 2.7582 0.20051 13.756 <2.00E-16 

ND_CompT -0.07784 0.01452 -5.359 8.36E-08 

ItemType = 

Tonal gap  -0.57144 0.16362 -3.492 0.000479 

log(StimDur) 1.13258 0.63684 1.778 0.075329 

Tone = T2 0.47737 0.21195 2.252 0.024308 

Tone = T3 0.06604 0.24799 0.266 0.789999 

Tone = T4 0.29776 0.24137 1.234 0.21734 

Model with neighborhood measures based on the one-component difference 

scheme 

AIC = 9995.2 

Fixed effects  

Predictor β Standard 

Error 

z-value p-value 

Intercept 2.79551 0.20714 13.496 <2.00E-16 

ND_Comp -0.03921 0.01345 -2.916 0.003546 

log(NF_Comp) 0.42077 0.17007 2.474 0.013357 

ItemType = 

Tonal gap 

-0.67425 0.17577 -3.836 0.000125 

log(StimDur) 1.79478 0.69062 2.599 0.009355 

Tone = T2 0.71303 0.21269 3.352 0.000801 

Tone = T3 -0.09844 0.2559 -0.385 0.700473 

Tone = T4 0.16552 0.24858 0.666 0.505518 
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Figure 19: A. Scatterplot of ND across accuracy; B. Bar graph depicting accuracy of 
pseudosyllables. 
 

 

In the model with one-segment/tone difference scheme, there was significant 

inhibitory effect of ND on accuracy (β = -0.07, z = -3.64, p < 0.001). In other words, 

pseudo-syllables from dense neighborhood were responded less accurately compared 

to pseudo-syllables from sparse neighborhood (see figure 19A for scatterplot of ND 

across accuracy). In addition, ItemType emerged as a significant predictor (β = -0.48, 

z = -2.63, p < 0.01) (See figure 19B). In other words, segmental gaps were responded 

more accurately than tonal gaps. NF did not appear as a significant predictor of 

accuracy (p = 0.5).  In addition to the critical effects, the model also shows 

significant effects from control variables: syllables with longer stimulus duration 

were responded more accurately (β = 1.92, z = 2.92, p < 0.01); T2 syllables were 

responded more accurately than T3 and T4 (β = 0.65, z = 2.94, p < 0.01).  

 

It should be noted that although the model with one-segment/tone difference scheme 

produced the best model fit, the results of this model are largely similar to those from 
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the other three models. Overall, the other three models also showed (1) significant 

inhibitory effects of ND (one-segment difference scheme: β = -0.03, z = -2.48, p = 

0.01; in the model with one-component/tone difference: β = -0.07, z = -5.3, p < 

0.001; one-component difference scheme: β = -0.03, z = -2.9, p = 0.003), (2)  

significant facilitatory effects of NF on two out of three models (one-segment 

difference scheme: β = 0.32, z = 2.26, p = 0.02; one-component difference scheme: β 

= 0.42, z = 2.47, p = 0.01), (3) significant effects of ItemType (one-segment 

difference scheme: β = -0.67, z = -3.82, p < 0.001; in the model with one-

component/tone difference: β = -0.57, z = -3.49, p < 0.001; one-component 

difference scheme: β = -0.67, z = -3.83, p < 0.001). In addition, all the alternative 

models show the same effects regarding control variables (StimDur, Tone) as the 

best-fitting model.  

 

Overall, the model on accuracy of pseudo-syllables showed significant inhibitory 

effect of ND on spoken word recognition. This shows support to hypothesis 2, which 

predicts inhibitory effects for neighborhood measures.   

 

4.3.2.2 RT analysis 

 

Analysis of RT was only conducted for correctly identified trials. The models on RT 

were built on a dataset consisting of 12829 trials of 358 item types. All the four 

neighborhood measures were tested in separate models. Again, all the initial models 

follow the formula (12) from Chapter 3, repeated below), although the neighborhood 

measures were calculated using different schemes.  
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(12) log(RT) ~ ND +log( NF) + ItemType + log(StimDur) + Tone + (1|Subject) + 

(1|Item) 

 

All four initial models underwent a backward elimination procedure. Table 13 

summarizes the model fit (AIC) and all fixed effects in all four final models. Based 

on the AIC values mentioned in Table 13, neighborhood measures based on one-

component/tone difference scheme best predicted the RT (AIC = -655.9).  The 

second-best model was with neighborhood measures from one-component difference 

scheme (AIC = -627.9) whose AIC differs from the best model by 28.0.  Therefore, 

the model with one-component/tone difference scheme is significantly better than all 

the other three models.  

 

Table 13: Summary of fixed effects in the RT models for pseudo-syllables across all 
neighborhood schemes. The model contains12829 trials from 358 item types. 
Model with neighborhood measures based on the one-segment /tone difference 

scheme 

AIC = -510.7 

Fixed effects  

Predictor β Standard Error t-value 

Intercept 6.859919 0.016243 422.3 

ND_SegT 0.00518 0.001014 5.1 

log(NF_SegT) -0.010451 0.004894 -2.1 

ItemType = Tonal 

gap 

0.055163 0.009437 5.8 

log(StimDur) 0.325409 0.034354 9.5 

Tone = T2 -0.007246 0.011314 -0.6 
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Tone = T3 0.001256 0.013424 0.1 

Tone = T4 0.051952 0.013266 3.9 

Model with neighborhood measures based on the one-segment difference 

scheme 

AIC = -473.4 

Fixed effects  

Predictor β Standard Error t-value 

Intercept 6.8610346 0.0162784 421.5 

ND_Seg 0.0030352 0.0007959 3.8 

ItemType = Tonal 

gap 0.0603581 0.0089927 6.7 

log(StimDur) 0.3366353 0.0346122 9.7 

Tone = T2 -0.0171573 0.0114397 -1.5 

Tone = T3 -0.0037205 0.013663 -0.3 

Tone = T4 0.0532947 0.0134399 4 

Model with neighborhood measures based on the one-component /tone 

difference scheme 

AIC = -655.9 

Fixed effects  

Predictor β Standard Error t-value 

Intercept 6.8454032 0.0159609 428.9 

ND_CompT 0.0052645 0.0007768 6.8 

log(NF_CompT) -0.0108241 0.00507 -2.1 

ItemType = Tonal 0.0677787 0.0086291 7.9 
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gap 

log(StimDur) 0.3859443 0.0343656 11.2 

Tone = T2 0.0017367 0.011334 0.2 

Tone = T3 -0.0169294 0.0133855 -1.3 

Tone = T4 0.0467728 0.0131231 3.6 

Model with neighborhood measures based on the one-component difference 

scheme 

AIC = -627.9 

Fixed effects  

Predictor β Standard Error t-value 

Intercept 6.8480849 0.0162029 422.6 

ND_Comp 0.0025396 0.0007183 3.5 

log(NF_Comp) -0.023571 0.0093074 -2.5 

ItemType = Tonal 

gap 

0.0724307 0.0094269 7.7 

log(StimDur) 0.3646805 0.0370731 9.8 

Tone = T2 -0.0167993 0.0114636 -1.5 

Tone = T3 -0.0116205 0.0138473 -0.8 

Tone = T4 0.0538906 0.0136271 4 
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Figure 20: A. Scatterplot of ND across RT; B. Scatterplot of log(NF) across RT; C. 
Bar graph depicting RT of pseudosyllables. 
 

 

In the model with one-component/tone difference scheme, there was significant 

inhibitory effect of ND on RT (β = 0.005, t = 6.8) (see figure 20A). In other words, 

pseudo-syllables from dense neighborhood were responded slowly compared to 

pseudo-syllables from sparse neighborhood. In addition, significant facilitative effect 

of NF (β = -0.01, t = -2.1) on RT was also observed (see figure 20B).  Pseudo-

syllables with high neighborhood frequency were responded faster compared to 

pseudo-syllables with low neighborhood frequency. Also, ItemType emerged as 

significant predictors ((β = 0.06, t = 7.9) (see figure 20C). In other words, segmental 

gaps were responded faster than tonal gaps. Apart from critical effects, the model 

also shows significant effects from control variables: syllables with shorter stimulus 

duration were responded faster (β = 0.38, t = 11.2); T4 syllables were responded 

more slowly than T3 and T4 (β = 0.04, t = 3.6).  

Overall, the model on RT of pseudo-syllables supports the prediction that ND has an 

inhibitory effect on RT. However, the model does not support the prediction for NF.  

 

It should be noted that although the model with one-component/tone difference 

scheme produced the best model fit, the results of this model are largely similar to 



  127 

those from the other three models. Overall, the other three models also showed (1) 

significant inhibitory effects of ND (in the model with one-segment/tone difference 

scheme: β = 0.005, t = 5.1; one-segment difference scheme: β = 0.003, t = 3.8; one-

component difference scheme: β = 0.002, t = 3.5), (2) significant facilitative effects 

of NF on  two out of three models (in the model with one-segment/tone difference 

scheme: β = -0.01, t = -2.1; one-component difference scheme: β = -0.02, t = -2.5), 

(3) significant effects of ItemType (in the model with one-segment/tone difference 

scheme: β = 0.05, t = 5.8; one-segment difference scheme: β = 0.06, t = 6.7; one-

component difference scheme: β = 0.07, t = 7.7). In addition, all the alternative 

models show the same effects regarding control variables (StimDur, Tone) as the 

best-fitting model.  

 

Overall, the model on RT of pseudo-syllables showed significant inhibitory effect of 

ND but also facilitatory effect of NF on spoken word recognition. Specifically, the 

inhibitory effects of ND support hypothesis 2, but the facilitative effects of NF do 

not. It is unclear why there is faciltitative effect of NF, I will discuss more in Chapter 

6.  

 

4.4 Summary 

 

The lexical decision task was aimed at investigating the effects of phonological 

neighbors and homophones on spoken word recognition. From the results, it can be 

inferred that phonological neighbors as well as homophones predict participants’ 

performance in an auditory lexical decision task.  
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To summarize results from real monosyllables, both neighborhood measures and 

homophone measures significantly affect processing of spoken words. Among 

neighborhood measures, ND had no significant effect on RT and accuracy. However, 

NF showed a significant facilitative effect on RT alone. Syllables with higher NF 

were responded faster as compared to syllables with lower NF. Among homophone 

measures, HD and HF showed significant effects on RT and accuracy of lexical 

decision task. Both HD and HF exhibited significant facilitative effect on spoken 

word recognition. In other words, syllables with more homophone and higher 

homophone frequency were responded faster and more accurately compared to 

syllables with less homophones and lower homophone frequency. In addition to 

fixed effects, HD and HF showed significant interactions on RT alone. Interestingly, 

the interactions were in opposite direction of the fixed effects of HD and HF. Based 

on fixed effects, if a syllable has high HD, RT decreases. Also, when a syllable is 

associated with a high HF, RT reduces. However, there is a bit of adjustment because 

of the interactions between HD and HF. If a spoken syllable with high HF is also 

associated with many homophones, then the RT gets longer. In general, 

neighborhood measures mainly affect the speed while homophones affect speed and 

accuracy of processing real monosyllables.  

 

Pseudo-syllables were also analyzed to investigate the effects neighborhood 

measures and pseudo-syllable type (segmental gap or tonal gap). Among 

neighborhood measures, ND showed significant inhibitory effects on RT and 

accuracy. However, significant effect of NF was observed in RT model alone where 

NF showed a facilitatory effect on RT. Pseudo-syllables with more neighbors face 

more competition due to the activation of a greater number of neighbors resulting in 
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longer RT and lower accuracy scores compared to pseudo-syllables with lesser 

number of neighbors. However, pseudo-syllables with high NF result in shorter RT 

as compared to pseudo-syllables with low NF. ItemType also emerged as a 

significant predictor for both RT and accuracy models. As expected, segmental gaps 

were responded significantly faster compared to tonal gaps. Overall, the inhibitory 

effects of ND are stronger as it is seen in both models on accuracy and RT. But the 

facilitation of NF is only seen in model on RT. 

 

Neighborhood measures based on one-component/tone difference scheme best 

predicts the RT of real monosyllables. However, for pseudo-syllables, neighborhood 

measures based on one-component/tone difference scheme best predicts the RT 

while neighborhood measures based on one-segment/tone difference scheme best 

predicts the accuracy of pseudo-syllables. Even though the neighborhood scheme for 

accuracy of pseudo-syllables is different but the results from neighborhood scheme 

based on one-segment/tone difference is similar to the results from neighborhood 

scheme based on one-component/tone difference. In any case, the result emphasizes 

on the importance of tone in spoken word recognition. 
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Chapter 5: Auditory naming 

 

This chapter brings forth the second experimental study of this dissertation. The aim 

of this experiment was to confirm the results obtained with the auditory lexical 

decision experiment (Chapter 4: Auditory lexical decision). This task is different 

from auditory lexical decision task as it examines the phenomenon of spoken word 

recognition from a different perspective. While auditory lexical decision task 

involves more complicated processing, including distinction between words and 

nonwords, auditory naming is a less complicated task that involves only words. In 

addition, auditory lexical decision task may be more affected by frequency while 

auditory naming task is less affect by frequency (Balota, 1980).  

 

In an auditory naming task, participants hear real monosyllables and repeat them as 

quickly as possible. In this experiment, two tasks were conducted: (1) Instantaneous 

naming, and (2) Delayed naming. As the name suggests, in the instantaneous naming 

task, the participants repeat the stimuli as soon as possible from the time they hear 

the stimuli. In comparison, in the delayed naming, a delay (or a pause) is provided 

after stimulus presentation for the participants to prepare their response. The 

participants are prompted to repeat the stimulus after the delay, as quickly as 

possible.  

 

The purpose of using a delayed naming task was to control for possible effects of 

articulatory planning on auditory naming performance. In an instantaneous naming 

task, the participants are doing both perception and production. Therefore, the 

reaction time (RT i.e. the time between hearing the onset of the stimulus to the 
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moment of beginning the articulation) includes the time for both perceiving the 

stimulus and preparing for the articulation. By contrast, in a delayed naming task, the 

RT (i.e. the time between the onset of prompt to the onset of beginning the 

articulation) only includes the time for preparing the articulation. By using both 

instantaneous naming and delayed naming, we can control for possible effects of 

articulatory effect. The focus of the current study is on lexical effects on spoken 

word recognition. So, if there are lexical effects (neighborhood effects or homophone 

effects) on spoken word perception, they should be evident in instantaneous naming 

but not delayed naming. 

 

In the current experiment, delay of 600 ms and 1200 ms were used. These delays 

were chosen based on the experimental results of the auditory lexical decision task 

(see Chapter 4). The mean RT for the auditory lexical decision task was 1023.22 ms 

(SD = 373.58 ms). To ensure that the lexical processing has taken place, a delay of 

1200 ms was used. Another delay was 600 ms, which is half the time of 1200 ms, 

was also included so that participants cannot anticipate the delay. 

 

5.1 Method 

 

5.1.1 Participants  

 

One hundred thirty Mandarin speakers, born and raised in mainland China, 

participated in this study. None of the participants reported any speech and hearing 

problems. Written informed consents were obtained from all the participants prior to 

the experiment. A group of 130 participants, separated from those who participated 
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in the auditory lexical decision experiment, participated in the auditory naming 

experiment. Specifically, 65 (35M, 30F, mean age 20.65; SD= 2.78) subjects 

participated in the instantaneous naming task, and the other 65 (13M, 52F, mean age 

= 23.46 years; SD = 4.16) participated in the delayed naming task. 

 

5.1.2 Stimuli  

 

1259 real monosyllables were used in the experiment. See Chapter 3, Section 3.1 

(Stimuli and recording) for details. 

 

5.1.3 Design and procedure 

 

It is impossible to include all the stimuli (n= 1259) in one experimental session 

without making the experiment too demanding for the participant. Therefore, the 

stimuli were divided into 5 sub-lists, each with 256 unique stimulus items. Each 

stimulus item was presented twice in a sub-list, resulting in a total of 512 stimulus 

tokens per sub-list, with a completely randomized order of presentation. Each 

participant worked on only one sub-list, and each sub-list was presented to 13 

participants. To evaluate cross group differences, 5 stimulus items were shared by all 

sub-list; apart from that, all other real monosyllables appeared in one sub-list. 

 

 The experiment was designed and conducted using Opensesame version 3.1 

(Mathôt, Schreij, & Theeuwes, 2011) on a Philips desktop connected to M-audio 

interface. A multi-channel recorder TASCAM DR-44WL was connected to M-audio 

interface. Channel 1 of the multi-channel recorder was connected to the headphones 
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through which the stimulus was presented as well as recorded for later analysis.  

Channel 2 was internally connected to microphone. Channel 2 recorded participants 

responses. The experiment was conducted in a quiet room. Each participant was 

seated comfortably before beginning the experiment. Each experiment session 

consisted of 15 practice trials followed by a block of test items presented in a random 

order. None of the practice items were repeated in the main experiment.  No 

feedback was provided in this experiment. Figure 21 shows a diagram of the 

experimental setup. 

 

5.1.3.1 Instantaneous naming task 

 

In an instantaneous naming task, each trial started with a button-press followed by a 

fixation-cross for 500 ms followed by the auditory stimulus. Participants were 

instructed to repeat the stimuli as quickly and accurately as possible. After 

participants’ response, the experiment proceeded to next trial with a button press. 

Each session lasted for not more than 30 minutes for all the participants, including 

one mandatory break in between. Figure 22 shows a diagram of the instantaneous 

naming task trial. 
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Figure 21: Experimental set up for auditory naming experiment. 

 

 

 

 

Figure 22: Diagram of the instantaneous naming task trial.  
 

 

5.1.3.2 Delayed naming task 

 

In the delayed naming task, each trial started with a button-press followed by a 
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fixation-cross for 500 ms followed by the auditory stimulus. After the stimulus 

appeared, there was a delay of 600 ms or 1200 ms. After the delay, a 1000 Hz pure-

tone was presented for 250 ms to alert the participants to respond. After participants 

responded, the experiment went to next trial with a button press. The participants 

were instructed that they will hear Mandarin monosyllables. After the stimulus, there 

was a delay (or pause) so that they can prepare the heard stimulus. They were asked 

to repeat the stimuli as quickly and accurately as possible, as soon as they heard a 

pure-tone. Each item was presented with a delay of 600 ms and 1200 ms, randomly. 

Each session lasted for not more than 40 minutes, including a mandatory break in 

between. Figure 23 shows a diagram of the delayed naming task trial. 

 

 

Figure 23: Diagram of delayed naming task trial. 
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5.2 Analysis  

 

Data extracted from each participant contained 2 audio files: (1) Stimuli from 

Channel 1, and (2) Participant’s production from Channel 2. The two files were 

combined as a stereo recording using audacity freeware (Mazzoni & Dannenberg, 

2000). Further, Praat scripts were used to put onset boundaries at the beginning of 

the stimulus and at the onset of participants’ production. Each file was manually 

corrected for any errors in placing onset boundaries. Once all the files were 

corrected, another Praat script was used to extract the duration between the onset of 

the stimuli and the onset of the participants’ production. This duration was referred 

to as RT (ms) in instantaneous naming task. In case of delayed naming, the RT was 

measured from the onset of 1000 Hz pure-tone to the onset of participants’ 

production. For accuracy, 5 audio files were randomly selected from the naming 

experiment to calculate accuracy scores. As expected, the mean accuracy score was 

at ceiling (~99%). As a result, accuracy data were not considered for further analyses 

and statistical models were only constructed with RT as the outcome variable. 

 

General modeling methods as described in Chapter 3, Section 3.3 were used. 

Separate mixed-effect models were built with RT as the outcome variable for 

instantaneous naming and delayed naming task. In both instantaneous naming and 

delayed naming task, neighborhood density (ND), neighborhood frequency (NF), 

homophone density (HD), homophone frequency (HF), interaction between HD and 

HF, and interaction between ND and HF were critical fixed-effects predictors in 

models. In addition, the models had stimulus duration (StimDur) and Tone as control 

fixed-effects predictors as well as intercepts for Subject and Item as random effects. 
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In addition to StimDur and Tone, the models for delayed naming task also had an 

additional control variable of delay (Delay), which encoded the type of delay (600 

ms, 1200 ms). 

 

 To summarize, all four measures of neighborhood schemes, each associated with a 

set of ND and NF were tested in the models. Model trimming and selection followed 

the procedure described in Chapter 3, Section 3.3. In the following Section, I report 

result from the best-fitted model selected from the four neighborhood schemes. 

 

5.3 Results 

 

5.3.1 Instantaneous naming task 

 

The mean RT for the instantaneous naming task was 701.56 ms (SD = 157.95). The 

data were trimmed for trials that were 2 SD above and below the mean RT. As a 

result, 7.22% data were excluded from the analysis.  

 

As already mentioned in Section 2.5, I repeat the hypotheses below. 

 

(1) Hypothesis 1A: 

Given the independent representation model, homophone mates and phonological 

neighbors should have similar effects on the recognition of spoken real 

monosyllables in Mandarin. In other words, either both are inhibitory, or both are 

facilitative, or both have null effects on spoken word recognition. Given previous 

findings for both English and Mandarin (Luce & Pisoni, 1998; Wang et al., 2012), 
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the most likely pattern is for both phonological neighbors and homophone mates to 

be inhibitory. Furthermore, the two should also have the same interaction patterns 

with word frequency. Given previous studies on Chinese homophone effects (Wang 

et al., 2012; Zhou, 2015), I predict that homophone mates have stronger influence for 

high frequency words than for low frequency words. Thus, phonological neighbors 

are predicted to show the same interaction with frequency.  

 

Hypothesis 1B: 

Given the shared representation model, homophone mates and phonological 

neighbors may not have similar effects on the recognition of spoken real 

monosyllables in Mandarin. In other words, either they will have opposite effects i.e, 

inhibitory for one and facilitatory for other, or one is inhibitory or facilitatory while 

the other has null effects on spoken word recognition. Given previous findings in 

Mandarin (Wang et al., 2012; Zhou, 2015), the most likely pattern for homophone 

mates is inhibitory. So, phonological neighbors might have facilitative or null effects 

in Mandarin. Furthermore, the two should not have the same interaction patterns 

with syllable frequency. Given previous studies on Chinese homophone effects 

(Wang et al., 2012; Zhou, 2015), I predict that homophone mates have stronger 

influence for high frequency syllables than for low frequency syllables. Thus, 

phonological neighbors are predicted to have no interaction with syllable frequency.  

 

The dataset for the models on RT consisted of 14908 trials and 602 items types. Four 

separate models were constructed with (log-transformed) RT as the outcome 

variable, each representing neighborhood measures from a different neighborhood 

scheme : (1) model with neighborhood measures from one-segment/tone difference 
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scheme (ND_SegT, NF_SegT); (2) model with neighborhood measures from one-

segment difference scheme (ND_Seg, NF_Seg); (3) model with neighborhood 

measures from one-component/tone difference scheme (ND_CompT, NF_CompT); 

(4) model with neighborhood measures from one-component difference scheme 

(ND_Comp, NF_Comp). Similar to auditory lexical decision, all the initial models 

for naming experiment follow the same formula (9) from Chapter 3, repeated below), 

although the neighborhood measures were calculated using different schemes:  

 

(9) log(RT) ~ ND +log(NF) + log(HD) + log(HF) + ND:log(HF) + 

log(HD):log(HF) + log(StimDur) + Tone + (1|Subject) + (1|Item) 

 

All four initial models underwent a backward elimination procedure. Table 14 

summarizes the model fit (AIC) and all fixed effects in all four final models. AIC 

values were used to decide the best neighborhood scheme. As shown in Table 14, all 

four models have the same AIC (-24339.4) because none of the models showed 

significant effects of any of the neighborhood measures (ND and NF; p > 0.05) or 

homophone measures (HD and HF; p > 0.05). In other words, none of the 

neighborhood measures and homophone measures showed any significant effect in 

predicting RT of an instantaneous naming task. Among the control variables, 

StimDur and Tone showed significant effects on RT. Syllables with longer stimulus 

duration were responded slowly.  
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Table 14: Summary of fixed effects in the RT models for real-syllables across all 
neighborhood schemes. The model contains 14908 trials from 602 item types. 
Model with neighborhood measures based on the one-segment /tone difference 

scheme 

AIC = -24339.4 

Fixed effects  

Predictor b Standard Error t-value 

Intercept 6.512706 0.017077 381.4 

log(StimDur) 0.365775 0.013118 27.9 

Tone = T2 0.012082 0.004464 2.7 

Tone = T3 0.044618 0.0048 9.3 

Tone = T4 0.030795 0.00455 6.8 

Model with neighborhood measures based on the one-segment difference scheme 

AIC = -24339.4 

Fixed effects  

Predictor b Standard Error t-value 

Intercept 6.512706 0.017077 381.4 

log(StimDur) 0.365775 0.013118 27.9 

Tone = T2 0.012082 0.004464 2.7 

Tone = T3 0.044618 0.0048 9.3 

Tone = T4 0.030795 0.00455 6.8 

Model with neighborhood measures based on the one-component /tone 

difference scheme 

AIC = -24339.4 

Fixed effects  
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Predictor b Standard Error t-value 

Intercept 6.512706 0.017077 381.4 

log(StimDur) 0.365775 0.013118 27.9 

Tone = T2 0.012082 0.004464 2.7 

Tone = T3 0.044618 0.0048 9.3 

Tone = T4 0.030795 0.00455 6.8 

Model with neighborhood measures based on the one-component difference 

scheme 

AIC = -24339.4 

Fixed effects  

Predictor b Standard Error t-value 

Intercept 6.512706 0.017077 381.4 

log(StimDur) 0.365775 0.013118 27.9 

Tone = T2 0.012082 0.004464 2.7 

Tone = T3 0.044618 0.0048 9.3 

Tone = T4 0.030795 0.00455 6.8 

 

 

Overall, the model on RT of instantaneous naming task showed no significant effects 

of neighborhood measures or homophone measures. The results from this experiment 

provides no evidence to any of the hypothesis (1A and 1B). 
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5.3.2 Delayed naming task 

 

The mean RT for the delayed naming task was 446.35 ms (SD = 271.04 ms). The 

data were trimmed for trials 2 SD above the mean RT. As a result, 1.42 % of the data 

was rejected. The dataset for the model on RT consisted of 14403 trials and 602 

items types. Similar to instantaneous naming task, all four-neighborhood schemes 

were tested in separate models. All the initial models for delayed naming task follow 

the same formula (11) from Chapter 3 (repeated below), although the neighborhood 

measures were calculated using different schemes. 

 

(11) log(RT) ~ ND +log( NF) + log(HD) + log(HF) + ND:log(HF) + 

log(HD):log(HF) + Delay + log(StimDur) + Tone + (1|Subject) + (1|Item) 

 

All four initial models underwent a backward elimination procedure. Table 15 

summarizes the model fit (AIC) and all fixed effects in all four final models. AIC 

values were used to decide the best neighborhood scheme. As shown in Table 15, all 

four models have the same AIC (858.2) because none of the model showed 

significant effect of any of the neighborhood measures (ND and NF; p > 0.05) or 

homophone measures (HD and HF; p > 0.05). In other words, none of the 

neighborhood measures and homophone measures showed any significant effect in 

predicting RT of delayed naming task. Among the control variables, StimDur, Delay, 

and Tone had significant effects. Surprisingly, StimDur showed a facilitative effect 

on RT, i.e. syllables with longer stimulus duration were responded quickly compared 

to syllables with shorter stimulus duration. It is unclear as to why syllables with 

longer duration were responded faster.  Delay also significantly affected the RT i.e. 
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longer the delay, longer was the RT. In addition, T3 and T4 were produced with 

longer RT as compared to other tones. 

 

Table 15: Summary of fixed effects in the RT models for real-syllables across all 
neighborhood schemes. The model contains 14403 trials from 602 item types. 
Model with neighborhood measures based on the one-segment /tone difference 

scheme 

AIC = 858.2 

Fixed effects  

Predictor b Standard Error t-value 

Intercept 5.922488 0.044995 131.62 

Delay (600) 0.110531 0.004032 27.41 

log(StimDur) -0.45802 0.026168 -17.5 

Tone = T2 -0.015538 0.008907 -1.74 

Tone = T3 0.03331 0.009571 3.48 

Tone = T4 -0.052883 0.009079 -5.82 

Model with neighborhood measures based on the one-segment difference 

scheme 

AIC = 858.2 

Fixed effects  

Predictor b Standard Error t-value 

Intercept 5.922488 0.044995 131.62 

Delay (600) 0.110531 0.004032 27.41 

log(StimDur) -0.45802 0.026168 -17.5 

Tone = T2 -0.015538 0.008907 -1.74 
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Tone = T3 0.03331 0.009571 3.48 

Tone = T4 -0.052883 0.009079 -5.82 

Model with neighborhood measures based on the one-component /tone 

difference scheme 

AIC = 858.2 

Fixed effects  

Predictor b Standard Error t-value 

Intercept 5.922488 0.044995 131.62 

Delay (600) 0.110531 0.004032 27.41 

log(StimDur) -0.45802 0.026168 -17.5 

Tone = T2 -0.015538 0.008907 -1.74 

Tone = T3 0.03331 0.009571 3.48 

Tone = T4 -0.052883 0.009079 -5.82 

Model with neighborhood measures based on the one-component difference 

scheme 

AIC = 858.2 

Fixed effects  

Predictor b Standard Error t-value 

Intercept 5.922488 0.044995 131.62 

Delay (600) 0.110531 0.004032 27.41 

log(StimDur) -0.45802 0.026168 -17.5 

Tone = T2 -0.015538 0.008907 -1.74 

Tone = T3 0.03331 0.009571 3.48 

Tone = T4 -0.052883 0.009079 -5.82 
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Overall, the model on RT of delayed naming task showed no significant effects of 

neighborhood measures or homophone measures.   

 

5.4 Summary 

 

The auditory naming experiment was aimed at investigating the effects of 

phonological neighborhood and homophones on spoken word recognition. In this 

experiment there were to tasks: (1) Instantaneous naming, and (2) Delayed naming. 

The delayed naming task was conducted to control for any articulatory effects that 

might occur due to production in a naming experiment. Results from instantaneous 

naming task showed no significant effect of neighborhood measures (ND, NF, and 

interaction between ND and HF) or homophone measures (HD, HF, and interaction 

between HD and HF) on spoken word recognition. Among the control variables, 

both StimDur and Tone showed significant effects on RT. Syllables with longer 

duration were responded slowly. Results from delayed naming task were similar to 

instantaneous naming task. None of the critical predictors emerged as significant 

predictor of RT. The absence of any significant effects of the critical predictors on 

the RT of delayed naming task indicate that the effects observed in instantaneous 

task were based on perception and not production. Among the control variables, both 

StimDur and Tone showed significant effects on RT. Contrary to instantaneous 

naming task, syllables with longer duration were responded faster compared to 

syllables with shorter duration in delayed naming task.  
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Chapter 6: Discussion and conclusion 

 

The main goal of the current dissertation is to investigate the effects of phonological 

neighbors and homophone mates on spoken word recognition in Mandarin, focusing 

on whether phonological neighbors and homophone mates have similar effect. A 

secondary goal is to compare different ways of modeling phonological 

neighborhoods in Mandarin in terms of the effectiveness of predicting phonological 

neighborhood effects. To achieve these goals, two experimental studies were 

designed and conducted: an auditory lexical decision experiment and an auditory 

naming experiment. Experimental results were analyzed in a series of mixed effects 

models, where the critical fixed-effects predictors include neighborhood density 

(ND), neighborhood frequency (NF), homophone density (HD), homophone 

frequency (HF), the interactions between ND and HF and the interaction between 

HD and HF. To compare the effectiveness of different neighborhood schemes, 

separate models were built with neighborhood measures from four neighborhood 

schemes defined by (1) one-segment/tone difference rule, (2) one-segment difference 

rule, (3) one-component/tone difference rule, and (4) one-component difference rule, 

respectively.  

 

6.1 Discussion of results from auditory lexical decision 

 

6.1.1 Results from real monosyllables 

 

The mean accuracy in an auditory lexical decision experiment is 84%, and the 

average reaction time (RT) in correctly identified trials is 1023.33 ms. Previous 
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research on auditory lexical decision in Mandarin (Wang et al., 2012) typically 

reported an accuracy rate of over 90% and a mean RT in correctly identified trials 

around 800 ms. Compared with the previous results, performance in the current 

study were significantly less accurate and slower. This discrepancy can be explained 

by two differences between the current study and previous research: (1) difference in 

usage frequency of the stimuli, and (2) difference in stimulus duration. The 

monosyllabic stimuli in Wang et al.’s study was all high in usage frequency, whereas 

the monosyllabic stimuli in the current study cover a wide range of syllable 

frequency (see Table 4 for range of frequency used in current dissertation). It is well 

established that high frequency items are recognized faster and more accurately than 

low frequency items. Therefore, the higher accuracy and shorter RT observed in 

Wang et al.’s study could be attributed to the selective use of high frequency 

syllables as stimuli. Secondly, in both the current study and previous research, RT is 

measured from the onset of the stimuli to the input of the response. However, the 

auditory stimuli used in the current study were much longer (mean duration = 626 

ms) than that of the stimuli in Wang et al.’s study (mean duration = 430 ms), which 

may have led to a later recognition point (therefore longer RT) in the current study.   

 

It should also be noted that when compared with the performance in auditory lexical 

decision in other languages such as English (e.g. Luce and Pisoni (1998) reported a 

mean RT around 400ms), the performance in the current study seems to be even 

more impoverished. I argue that the seemingly large difference in performance is 

mainly due to the difference in the nature of the task. In a typical auditory lexical 

decision (such as the one for English), participants are asked to categorize an 

auditory stimulus as either a word or a non-word. This paradigm may not be viable 
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for Mandarin monosyllabic morphemes, which are the target items used in the 

current study, both because each Mandarin monosyllable may be mapped to multiple 

lexical items and because a Mandarin monosyllabic morpheme may not be 

understood as a “word” by Mandarin speakers (the concept of “word” in Chinese 

languages is highly ambiguous). As a result, in the auditory lexical decision 

experiment of the current study, participants were instead asked to decide whether or 

not they could associate the auditory stimulus to at least one Chinese character 

(representing a monosyllabic morpheme). In other words, if the participant can think 

of at least one character that can be associated with the auditory stimulus they have 

heard, they should give a “real” monosyllable response; otherwise, the participant 

should give a “non-exists” pseudo-syllable response. Compared to a typical lexical 

decision task, the task used in the current study is much more demanding, which in 

turn leads to much longer RT.  

 

In this study, four different neighborhood schemes (See Table 3), based on different 

neighborhood definitions, were tested and examined. Each neighborhood scheme 

gives a set of ND and NF measures. As mentioned in Chapter 3, neighborhood 

measures across schemes have a sizable correlation (r is between 0.4 -0.8, see Table 

6), and their effectiveness is tested in separate models. Overall, neighborhood 

measures from different neighborhood schemes produce highly similar modeling 

results regarding neighborhood effects. As shown in Table 16, none of the 

neighborhood measures had significant effects on the accuracy of identifying real 

monosyllables, but HD and HF both had facilitative effect on Accuracy. Meanwhile, 

all the models on RT showed significant facilitatory effects of NF, HD, and HF and 

an inhibitory interaction of HD and HF, in addition to highly similar control effects 
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of StimDur and Tone. Based on the comparison of AIC values, the RT models with 

neighborhood measures from the one-component/tone difference neighborhood 

scheme had the best model fit (AIC = -5566.5). The second-best model fit was based 

on one-segment/tone difference scheme (AIC = -5562.0). The difference between the 

best and the second-best model is 4.5. A difference of 2 in AIC indicates that the 

model with lower AIC is 0.368 times more probable as the model with the higher 

AIC (Anderson & Burnham, 2004). Therefore, it can be concluded that the 

neighborhood measures based on one-component/tone difference scheme best 

predicts the model results and its model fit is significantly better than the other 

alternative models.   

 

Taken together, the models for real monosyllables in auditory lexical decision 

showed that other things being equal, real monosyllables with many homophone 

mates and higher-frequency homophone mates were identified more accurately and 

faster than those with fewer homophone mates or lower-frequency homophone 

mates; real monosyllables with higher-frequency phonological neighbors are 

responded to faster than those with lower-frequency neighbors. Furthermore, the 

facilitation effect of homophone density was reduced for real monosyllables with 

high frequency homophone mates. 

 

Table 16: Summary result from real monosyllables on auditory lexical decision 
experiment with significant predictors only. Here + indicates a positive coefficient 
and - indicates a negative coefficient.   

Neighborhood Scheme Model on Accuracy Model on RT 

One-segment/tone 

difference rule 

HD (+)  

HF (+) 

NF (-), HD (-), HF (-), 

HD:HF (+), StimDur (+), 
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Tone 

One-segment difference 

rule 

NF (-), HD (-), HF (-), 

HD:HF (+), StimDur (+), 

Tone 

One-component/tone 

difference rule 

NF (-), HD (-), HF (-), 

HD:HF (+), StimDur (+), 

Tone 

One-component 

difference rule 

NF (-), HD (-), HF (-), 

HD:HF (+), StimDur (+), 

Tone 

 

 

How to account for the observed effects in the identification of real monosyllables in 

the current auditory lexical decision experiment? Obviously, the finding of inhibitory 

effects of phonological neighborhoods (mostly from neighbor frequency in the 

current study) do not agree with previously documented inhibitory effects of 

neighborhood density and frequency in English spoken word recognition. However, 

it should be noted that effects of phonological neighbors may very well be language-

specific. The research by Vitevitch and Rodríguez (2005) found significant 

facilitatory effects of both ND and NF on Spanish spoken word recognition. The 

authors suggested that the facilitatory effects of phonological neighborhood seen in 

Spanish could have been due to language-specific properties of the lexicon.  

 

In the current study, not only do we observe contrast with previous studies in terms 
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of neighborhood effects, we also see differences from previous research in the 

findings regarding homophone mates (HD and HF). As mentioned earlier, Wang et 

al. (2012) reported inhibitory effects of HD on Mandarin in auditory lexical decision 

(i.e. monosyllables with many homophone mates are more difficult to identify than 

those with fewer homophone mates), which is contrary to the present findings. I 

argue that this difference could be due to the difference in stimuli selection. As 

mentioned earlier, Wang et al.’s study only used high frequency monosyllables 

whereas the current experiment used both high- and low frequency syllables. As 

suggested in Zhou (2015), there is probably an interaction of homophone density and 

overall frequency, in the sense that the inhibitory effect of homophone mates is 

reduced for low frequency items than for high frequency items. In the current study, 

we also observe this interaction (HD:HF, where HF is a proxy for syllable frequency, 

since the two are highly correlated) in the same direction. That is to say, it is very 

likely that the inhibitory effects of HD observed in Wang et al.’s study is limited to 

high frequency items only. When the range of frequency is extended—as in the 

current study, the main effect of HD is no longer inhibitory.   

 

According to the current results, there is an overall facilitative effect of HD but a 

negative interaction of HD and HF on RT of spoken word recognition. In other 

words, the facilitation of HD is reduced when HF is high. How to interpret these 

findings? One possible explanation is to allude to the difference between strong co-

activated items and weak co-activated items. Chen and Mirman (2012) conducted a 

series of simulations for single word processing to investigate the dynamics of 

interactive activation and competition that could account for both facilitative and 

inhibitory effects of lexical neighbors. In their simulations, they used one of the 
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general principles in the theories of cognition i.e. selection of the right candidate via 

competition among parallelly activated multiple similar representations. They found 

that co-activated representations could have either facilitative or inhibitory effects, 

depending on the magnitude of their co-activations. Specifically, there may be a net 

inhibitory effect if the representations are strongly activated or a net facilitative 

effect if they are weakly activated. In other words, strongly activated items results in 

competition among the co-activated items resulting in inhibitory effects, while 

weakly activated items help each other when co-activated resulting in facilitatory 

effects.  

 

We can extend the contrast of strong vs. weak co-activated items to the current 

findings. In my dataset, HF is highly correlated with the presence of high-frequency 

homophone mates (r > 0.9). In other words, if a homophone family has overall high 

frequency, it is very likely that there are high frequency homophone mates in the 

family. In the current auditory lexical decision task, participants were asked to 

associate the heard stimuli with a character. Given the nature of task, the strongest 

competition is probably between the high-frequency homophone mates. According 

to Chen and Mirman (2012), strong co-activated items compete with each other. 

Therefore, high frequency homophone mates were strongly activated and competed 

with each other, resulting in a trend towards inhibition. This is most evident from the 

items with the top 25% of homophone frequency, which showed a trend of an 

inhibitory effect of higher HD. Conversely, items with the lowest 25% homophone 

frequency showed an overall facilitative effect of HD. 

 

Following the same reasoning, it is possible that in this task where participants were 
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asked to associate the auditory stimulus to a character, phonological neighbors were 

even more weakly activated compared to low-frequency homophone mates. This 

could have resulted in an overall minuscule effect of phonological neighbors on 

spoken word processing which was observed from the facilitative effects of NF on 

RT model alone.  

 

An alternative explanation for the facilitation of NF may also be attributed to 

possible false identification that inadvertently yielded correct responses. If a real 

monosyllable has some high frequency phonological neighbors, it is likely that the 

participant wrongly associates the auditory stimulus with a similar-sounding syllable, 

and produce the “real” monosyllable response, which is technically the correct 

answer although it arises from a false identification. Having high frequency 

neighbors may promote this type of responses, and thus contribute to the overall 

observation of “facilitation” of phonological neighborhoods.   

 

The results from auditory lexical decision experiment on real monosyllables provide 

some support to both hypothesis 1A and 1B. According to hypothesis 1A, 

phonological neighbors and homophone mates might have similar effects on spoken 

word recognition based on independent representation model. There is evidence for 

similar effects of phonological neighbors and homophone mates from the current 

results. Both phonological neighbors (NF) and homophone mates (HD and HF) have 

similar facilitative effects on spoken word recognition on RT model. According to 

hypothesis 1B, phonological neighbors and homophone mates might have different 

effects on spoken word recognition based on shared representation model. There is 

evidence for different effects of phonological neighbors and homophone mates from 
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the current results. Both HD and HF showed significant facilitative effects on spoken 

word recognition on RT and accuracy models while ND showed no effect on spoken 

word recognition on both RT and accuracy models. Also, NF showed no effect on 

accuracy model. Along with fixed effects, HD and HF showed significant interaction 

on RT model whereas ND and HF showed no interaction on RT and accuracy 

models. This indicates that the effects of phonological neighbors and homophone 

mates are not entirely the same. These differences provide some evidence for 

hypothesis 1B. Our findings lend more support to hypothesis 1B that supports shared 

representation model which suggests that phonological neighbors and homophone 

mates are represented differently in the mental lexicon resulting in different effects 

on spoken word recognition.   

 

 

6.1.2 Results from pseudo-syllables 

 

The mean accuracy of pseudo-syllables is 86% and the average RT incorrectly 

identified trials is 1087.95 ms. Although the difference was not much between RT 

and accuracy rate of real and pseudo-syllables (difference in mean RT = 64.62 ms, 

difference in mean accuracy rate = 2%), RT was longer, and the accuracy rate was 

higher in pseudo-syllables than real monosyllables. As discussed in the above 

Section, this could be attributed to the type of task involved. In this task, participants 

were asked to associate the heard stimulus to at least one character in Mandarin. 

Therefore, when the participant hears a stimulus, participant keeps searching for 

lexical units that match with the stimulus and finally decide that the stimulus does 

not match with anything in case of a pseudo-syllables. Two types of pseudo-syllables 
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were used: (1) Tonal gaps, and (2) Segmental gaps. Tonal gaps were responded 

slowly and less accurately as compared to segmental gaps (see Table 17).  

 

Table 17: Summary of mean RT and mean accuracy rate of pseudo-syllables. 
ItemType Mean RT (ms) Mean Accuracy rate (%) 

Tonal gaps 1142.97 84% 

Segmental gaps 1011.89 88% 

 

 

As described in Chapter 3, tonal gaps are pseudo-syllables that exist with other tones 

while segmental gaps do not exist with any tone. Therefore, when a stimulus is a 

tonal gap, the syllables that exist with other tones might get activated. In order to 

correctly identify the stimuli as pseudo-syllable, participants need to reject all the 

activated real monosyllables. This makes the process more competitive resulting in 

longer RT and lower accuracy rates. However, when a stimulus is a segmental gap, 

there are no real monosyllables that exist with other tones. So, the process of 

rejection and deciding it as a pseudo-syllable becomes easier and faster resulting 

shorter RT and higher accuracy. These results are similar to findings in (Neergaard, 

2018) where he reported that segmental gaps (mean RT = 1086 ms) were responded 

faster than tonal gaps (mean RT = 1176 ms). 

 

Since, pseudo-syllables are gaps in Mandarin that do not exist. Therefore, they do 

not have homophone mates or frequency. However, they can have phonological 

neighbors (i.e. real monosyllables) that sound similar to them. Thus, pseudo-

syllables were analyzed for neighborhood effects alone. Four different schemes of 

neighborhood based on different definitions of neighborhood were tested. Overall, 
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neighborhood measures across different schemes produced largely similar modelling 

results. As shown in Table 18, models of RT showed significant inhibitory effects of 

ND on all the four neighborhood schemes.  NF, on the other hand, showed 

facilitatory effects on three out of four schemes. In accuracy models, ND showed 

significant inhibitory effect on all four neighborhood schemes. While, NF showed 

significant facilitatory effect on two out of four neighborhood schemes.  

 

Table 18: Summary result from pseudo-syllables on auditory lexical decision 
experiment with significant predictors only. Here + indicates a positive coefficient 
and - indicates a negative coefficient. 
Neighborhood Scheme Model on accuracy Model on RT 

One-segment/tone 

difference rule 

ND (-), ItemType: Tonal 

gap (-), StimDur (+), 

Tone 

ND (+), NF (-), ItemType: 

Tonal gap (+), StimDur 

(+), Tone 

One-segment difference 

rule 

ND (-), NF (+), 

ItemType: Tonal gaps (-

), StimDur (+), Tone 

ND (+), ItemType: Tonal 

gap (+), StimDur (+), Tone 

One-component/tone 

difference rule 

ND (-), ItemType: Tonal 

gaps (-), StimDur (+), 

Tone 

ND (+), NF (-), ItemType: 

Tonal gap (+), StimDur 

(+), Tone 

One-component 

difference rule 

ND (-), NF (+), 

ItemType: Tonal gaps (-

), StimDur (+), Tone 

ND (+), NF (-), ItemType: 

Tonal gap (+), StimDur 

(+), Tone 

 

 

Based on the comparison of AIC values, accuracy model with neighborhood 

measures from one-segment/tone difference neighborhood scheme had the best 
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model fit (AIC = 9587.6). The second-best model was with neighborhood measures 

from one-segment difference scheme (AIC = 9673.1) whose AIC differs from the 

best model by 85.5.  Therefore, the model with neighborhood measures from one-

segment/tone difference scheme is significantly better than all the other three 

models. For RT models, neighborhood measures based on one-component/tone 

difference scheme had the best model fit (AIC = -655.9).  The second-best model 

was with neighborhood measures from one-component difference scheme (AIC = -

627.9) whose AIC differs from the best model by 28.0.  Therefore, the model with 

one-component/tone difference scheme was found to be significantly better than all 

the other alternative models of RT. 

 

Overall, pseudo-syllables with many real monosyllable neighbors were identified 

less accurately and slowly compared to pseudo-syllable with fewer real monosyllable 

neighbors. The inhibitory effects of ND are in line with the previously documented 

ND effects in English (Luce & Pisoni, 1998; Vitevitch & Luce, 1999) and Mandarin 

(Tsai, 2007). Similar inhibitory effects of ND were seen on a different task in 

Mandarin (Tsai, 2007). When a pseudo-syllable with many neighbors is heard, a 

greater number of real monosyllables those are neighbors to the target pseudo-

syllable are co-activated. In order to identify the target syllable as pseudo-syllable, 

participants need to reject all the strongly activated real monosyllables. This makes 

the process difficult, resulting in longer RT. Also, when there are more real 

monosyllable neighbors, it is more likely that the participants wrongly associate the 

target pseudo-syllable with a real monosyllable resulting in an incorrect response that 

leads to lower accuracy rates. 
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NF, on the other hand, showed a significant facilitative effect on RT. In simple 

words, pseudo-syllable with high frequency neighbors (real monosyllables) were 

responded faster compared to pseudo-syllables with low frequency neighbors. It is 

unclear, as to why NF has a facilitatory effect on RT in pseudo-syllables. In case of 

pseudo-syllables when high frequency real monosyllables are co-activated, an 

incorrect association with real monosyllables could result in incorrect responses. 

Thus, there should not be any effects of NF for pseudo-syllables because incorrect 

responses will be excluded from RT models. So, no effects should be found which is 

clearly not the case. Three out of four schemes of neighborhood showed significant 

faciliatory effects of NF on RT and two out of four schemes showed significant 

faciliatory for accuracy models. Therefore, it makes it hard to explain these 

consistent yet conflicting effects with the previous findings on NF. At this stage, it is 

difficult to say whether these effects were language-specific until more research is 

devoted to look at the NF effects. Is the effect specific to certain gap type (segmental 

gaps or tonal gaps) or only existent for certain neighborhood size (when ND is high 

vs. low)? More research is needed for further investigation.  

 

6.2 Discussion of results from auditory naming 

 

In the auditory naming experiment, two tasks were conducted: (1) Instantaneous 

naming, and (2) Delayed naming. The purpose of delayed naming task was to control 

for any articulatory effects due to production of the syllables.  In a naming task, 

along with perception of stimuli, production of the stimuli was also conducted.  To 

make sure that the effects seen were solely from perception and not affected by the 

production, delayed naming task was conducted. When a delay is used, it is assumed 
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that lexical access has already taken place and what is left are the effects that might 

have arisen from planning articulation of the stimuli. For the purpose of delay, 600 

ms and 1200 ms were used. The mean RT for instantaneous naming task was 701.56 

ms and for delayed naming task was 446.35 ms. Delay condition of 600 ms had a 

mean RT of 463.62 ms and a delay condition of 1200 ms had a mean RT of 429.07. 

RT in “no delay” was longer than RT in delay conditions, and RT in 600ms delay 

was longer to that in 1200ms condition. However, the difference in the RT is not 

huge (difference = 34.55 ms). 

 

Accuracy of five audio files randomly selected from the instantaneous naming task 

were calculated. The mean accuracy rate was 99%. Accuracy rate from a randomly 

selected sample was very high, suggesting ceiling effect in accuracy. As a result, 

accuracy data were not considered for further analyses and only RT data were further 

analyzed. 

 

The overall performance of the participants in the current task with no delay was 

slower (mean RT: 701.56 ms) as compared to a previous study (Tsai, 2007), that 

reported a mean RT of around 440 ms. But the accuracy rate was comparable to 

previous study (Tsai, 2007) that reported a mean accuracy rate of 98%. The slower 

performance in the current task can be explained on the basis of stimulus parameters 

mainly syllable frequency, and stimulus duration. In Tsai’s study (Tsai, 2007), only 

high frequency syllables were used, however, in the current study, a wide range of 

syllable frequency was used that consisted of both high and low frequency syllables. 

Therefore, based on the previous findings (Luce & Pisoni, 1998) on word frequency, 

it is known that high frequency words are recognized earlier as compared to low 
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frequency words. Therefore, the shorter RT in Tsai’s study can be attributed to the 

use of high frequency syllables as stimuli. However, in the current study, a wide 

range of syllable frequency has been used that could have resulted in longer RT. 

Secondly, the mean stimulus duration in Tsai’s study ranged from 332 ms -358 ms. 

However, the mean stimulus duration in the current study was 626 ms. A shorter 

stimulus duration in Tsai’s study could have resulted in earlier recognition resulting 

in shorter RT. In comparison, the stimulus duration in the current study was longer 

compared to Tsai’s study that would have contributed to longer RT.  

 

RT models were separated by delay condition (no delay vs. delay). Under no delay 

condition, none of the neighborhood measures and homophone measures showed any 

significant effect on the processing. All the four neighborhood scheme yielded same 

results as none of the neighborhood measures showed any significant effects, 

resulting in same AIC values. Similarly, in the delay condition, none of the 

neighborhood measures and homophone measures exhibited any significant effect 

(see Table 19). As a result, all four neighborhood scheme showed same result with 

same AIC values for model fit. 

 

Table 19: Summary result from auditory naming experiment with significant 
predictors only. Here + indicates a positive coefficient and - indicates a negative 
coefficient. 

Neighborhood Scheme Model on RT in 

instantaneous naming 

Model on RT in 

delayed naming 

One-segment/tone 

difference rule 

StimDur (+), Tone Delay: 600ms (+), 

StimDur (-), Tone 
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One-segment difference rule 

One-component/tone 

difference rule 

One-component difference 

rule 

 

 

Overall, null effects of neighborhood density, neighbor frequency, homophone 

density and frequency were observed. The findings from auditory naming 

experiment is in contradiction to earlier reported findings by Tsai (2007). Tsai (2007) 

reported inhibitory neighborhood density effect in auditory naming experiment. 

However, there were concerns with the method of the study. The significant 

inhibitory effect of neighborhood density was seen in condition where the difference 

in high and low neighborhood density was relatively low (difference between mean 

high and mean low ND = 1.81).  Surprisingly, no significant effect of neighborhood 

density was found when the difference in high and low neighborhood density was 

large (difference between mean high and mean low ND = 7.88). Assuming the effect 

of neighborhood density exists, it should also be visible in condition with large 

density difference, which was not the case. 

 

In general, it can be noted the effects are reduced in naming experiments. Balota and 

Chumbley (1984) compared naming task with lexical decision and found that the 

frequency effects were reduced in naming task. They also suggested that the effects 

were more reduced when the task modality is auditory. Therefore, finding no effects 
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on instantaneous naming task might be due to the reason that the effects were 

reduced due to the modality of task.  

 

Luce and Pisoni (1998) used both auditory lexical decision and auditory naming 

experiment to investigate the effects of phonological neighborhood and found that 

not just frequency effects were reduced, significant NF effects observed in auditory 

lexical decision were also absent in auditory naming experiment.  Therefore, the 

absence of effects could be attributed to task differences. In general, an auditory 

lexical decision is more difficult task that involves accessing the lexicon for making 

a decision, compared to a naming task where the participants need to repeat the heard 

stimuli, that might not involve the access to the lexicon. This difference in the task 

might result in having reduced effects for naming task that showed no significant 

effects for any of the critical predictors.  

 

Having no effects of critical variables on delayed naming suggests that the results of 

instantaneous naming were not affected by the production rather the results were 

solely based on perception. No significant effects of any of the critical variables on 

delayed naming task suggests the absence of neighborhood effects and homophone 

effects due to production.  

 

6.3. Theoretical implications 

 

In this dissertation, I conducted two experiments, namely, auditory lexical decision 

and auditory naming for investigating the effects of lexical neighborhoods, 

consisting of both phonological neighbors and homophone mates, on spoken word 
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recognition in Mandarin. In the auditory lexical decision task, seventy-two 

participants were recruited, who had to hear a Mandarin syllable and associate it with 

a Chinese character to categorize it as a real monosyllable or pseudo-syllable as 

quickly and as accurately as possible. 1259 real monosyllables and 758 pseud-

syllables were used as stimuli. Both RT and accuracy were measured, and mixed-

models were built for RT and accuracy. Four neighborhood schemes were tested in 

separate models with neighborhood measures from each scheme. For real 

monosyllables, models on RT reflected significant facilitatory effects of homophone 

measures (HD and HF) and neighbor frequency (NF). In addition, significant 

inhibitory interaction between HD and HF were found. Neighborhood scheme based 

on one-component/tone scheme gave the best model fit. Models on accuracy showed 

significant facilitative effects of homophone measures (HD and HF) alone. None of 

the neighborhood measures nor the interactions between homophone measures 

showed any significant effects on accuracy models on real monosyllables. In case of 

pseudo-syllables, both accuracy and RT models showed significant inhibitory effects 

of ND. However, significant facilitative effect of NF was observed in the model on 

RT. AIC values gives the best fit on RT models for neighborhood measures based on 

one-component/tone difference scheme and best fit on accuracy models for 

neighborhood measures based on one-segment/tone scheme. In auditory naming 

experiment, 130 participants were recruited, who were instructed to repeat the heard 

real monosyllable as quickly and accurately as possible. Under naming experiment, 

65 participants took part in no delay condition and rest 65 participants took part in 

delayed condition. The purpose of delayed condition was to account for any 

articulatory effects related to production that might have occurred in the naming 

experiment. Neither naming task showed any significant effect of neighborhood 
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measures and homophone measures.    

 

My general hypothesis was regarding the similarity and differences between 

phonological neighbors and homophone mates in terms of their influence on spoken 

word recognition. Specifically, I hypothesized that phonological neighbors and 

homophone mates would have similar effects on the recognition of real 

monosyllables based on independent representation model.  Based on this 

hypothesis, either the effects could be inhibitory, or facilitative, or null effects for 

both homophone mates and phonological neighbors on spoken word recognition. In 

addition, both homophone mates and phonological neighbors were predicted to 

reveal similar interaction patterns with frequency (see Hypothesis 1A). However, 

based on shared representation model, phonological neighbors and homophone 

mates were hypothesized to have dissimilar effects on the recognition of real 

monosyllables in Mandarin. Based on this hypothesis, the effects were predicted to 

be either completely opposite i.e. inhibitory for one and facilitatory for other, or the 

effects would not be similar. Further, according to this hypothesis, the two 

(homophone mates and phonological neighbors) would not have the same interaction 

patterns with frequency (see Hypothesis 1B).  

 

Given the current results, there is some evidence for both hypotheses 1A and 1B. 

More specifically, the evidence emerges from the results from auditory lexical 

decision experiment for real monosyllables. Both neighborhood measures (NF) and 

homophone measures (HD and HF) showed significant facilitative effects on RT 

models of real monosyllables supporting hypothesis 1A. However, the significant 

interaction between homophone measures (HD and HF) and the absence of 
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interaction between neighborhood measures (ND and HF) lends support to 

hypothesis 1B. Also, there was an absence of significant effects of ND in real 

monosyllables and presence of significant inhibitory effects of ND in pseudo-

syllables. However, for NF, the effects were in opposite direction i.e. facilitatory for 

both real and pseudo-syllables.  This further supports hypothesis 1B.  

 

Can the current results be completely accommodated by either hypothesis? 

According to Hypothesis 1A - independent representation model, homophone mates 

and phonological neighbors share the same status in the lexicon as a result of which 

the two can be thought to have the similar effects in spoken word recognition. 

However, if we further enrich this model with the idea of strong versus weak 

activated items from Chen and Mirman (2012), it is possible to distinguish 

homophone mates as stronger lexical neighbors than phonological neighbors as 

homophone mates are more similar in the phonological form than phonological 

neighbors. In other words, it may be possible that while both phonological neighbors 

and homophone mates have the same representation/status in the lexicon, they may 

not exactly have the same effects on spoken word recognition. Due to the higher 

phonological similarity between homophone mates, they are more likely to exhibit 

competition effects (as in the inhibitory interaction of homophone density and 

homophone frequency) than phonological neighbors, even though both show overall 

facilitatory effects. 

 

Can the shared representation model accommodate all current results? According to 

Hypothesis 1B shared model, homophone mates and phonological neighbors are 

represented at different levels of the lexicon. While homophone mates are 
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distinguished at the lemma level and share a representation at the lexeme level, 

phonological neighbors are distinguished at both the lexeme level and the lemma 

level. The shared representation model does not exclude the possibility of 

phonological neighbors and homophone mates having similar effects; neither does it 

exclude the possibility of phonological neighbors and homophone mates having 

opposite effects. Overall, our findings show more support to shared representation 

model i.e. phonological neighbors and homophone mates have different 

representation in the mental lexicon. Further, it should be noted that the two 

hypotheses (hypothesis 1A and 1B) may not be totally mutually exclusive since 

hypothesis 1B does not totally exclude the possibility of phonological neighbors and 

homophone mates to behave in a similar manner. 

 

Another important question that was investigated in the current dissertation was 

regarding the role of lexical tone in defining phonological neighbors in tone 

languages. Neighborhood schemes that included tone, emerged as the best fitted 

models out of all the four neighborhood schemes that were tested. The current study 

is in agreement with the findings of Neergaard and Huang (2016) who tested 14 

schemes of defining phonological neighborhood, 7 included lexical tones and 7 

without lexical tones. They also found that the best-fitted model results were 

obtained for the schemes that included lexical tone. Therefore, it can be concluded 

that tone is an important unit in Mandarin that cannot be ignored. However, at this 

stage, it is difficult to say whether the segmentation of phonological neighbors is 

based on segments or components (onset, rime and tone) in Mandarin. According to 

the current results, one-component/tone rule is the best fit measure in RT model for 

real monosyllables and pseudo-syllables and one-segment/tone difference rule is the 
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best fit measure in accuracy model for pseudo-syllables. Segmentation based on 

components of syllables received more support from the experimental results 

compared to segmentation based on segments of syllables. Based on these results, it 

is evident that both one-component/tone rule and one-segment/tone rule provide a 

good fit for the results in comparison to the other two rules (one-component 

difference rule and one-segment difference rule). However, there is not enough 

evidence to ascertain whether it is the one-component/tone rule or one-segment/tone 

rule that provides the best fit. 

 

6.4 Limitations of the study 

 

In this dissertation, only one-unit difference rule was used to define phonological 

neighbors. One-unit difference rule states that any two words that differ by one unit, 

either by addition or deletion or substitution are phonological neighbors. The unit 

used in this dissertation was either segment or component. One-unit difference rule is 

a discrete measure to quantify phonological neighborhood based on perceptual 

similarity of words. All neighbors were treated equivalent according to this rule. But, 

all phonemes are not equally similar or confusable. All neighbors of a target word 

vary depending on the amount of confusability with the target word. Another 

limitation to this rule is that words that differ from the target word by two or more 

units were not included. There is a possibility that words that differ by multiple units 

are sometimes more confusing than words that differ by one unit.  
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6.5 Future directions 

 

In future, to tease apart shared versus independent representation, experiments that 

specifically examine whether different homophone mates from the same family 

behave similarly or differently in lexical processing. For example, comparing the 

high frequency homophone mates with low frequency homophone mates from the 

same family on identification tasks. In order to tease apart whether segment or 

component define neighborhood in Mandarin, experiments that allow participants to 

rate which one of the candidate syllables is more similar to the target stimulus, can 

be conducted. In order to define strong versus weak items, computational models can 

be designed in future studies. In future, other measures of perceptual similarity can 

be used to test the neighborhood measures can also be investigated. For example, phi 

square density (Iverson et al., 1998) can be calculated based on perceptual similarity 

of phonemes and can be tested along with one-unit difference measure to evaluate 

the best model-fit. Other spoken word recognition tasks can be further employed to 

further confirm the results derived in the current dissertation. Further, neural 

mechanisms of the effects of neighborhood on spoken word recognition can be 

explored using event related potentials. In addition, more research is needed to 

understand the effects of neighborhood frequency on spoken word recognition.  
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Appendices 

A. List of target monosyllables in pinyin(n=1259). 

a1, a2, a3, a4, ai1, ai2, ai3, ai4, an1, an3, an4, ang1, ang2, ang4, ao1, ao2, ao3, ao4, e1, 

e2, e3, e4, ei2, ei3, ei4, en1, en4, er2, er3, er4, o1, o2, o4, ou1, ou3, ou4, ba1, ba2, ba3, 

ba4, bai1, bai2, bai3, bai4, ban1, ban3, ban4, bang1, bang3, bang4, bao1, bao2, bao3, 

bao4, bei1, bei3, bei4, ben1, ben3, ben4, beng1, beng2, beng3, beng4, bi1, bi2, bi3, bi4, 

bian1, bian3, bian4, biao1, biao3, biao4, bie1, bie2, bie3, bie4, bin1, bin4, bing1, bing3, 

bing4, bo1, bo2, bo3, bo4, bu1, bu2, bu3, bu4, ca1, ca3, cai1, cai2, cai3, cai4, , can1, 

can2, can3, can4, cang1cang2, cao1, cao2, cao3, ce4, cen1, cen2, ceng1, ceng2, ceng4, 

cha1, cha2, cha3, cha4, chai1, chai2, chai4, chan1, chan2, chan3, chan4, chang1, chang2, 

chang3, chang4, chao1, chao2, chao3, chao4, che1, che3, che4, chen1, chen2, chen3, 

chen4, cheng1, cheng2, cheng3, cheng4, chi1, chi2, chi3, chi4, , chong1, chong2, chong3, 

chong4, chou1, chou2, chou3, chou4, chu1, chu2, chu3, chu4, chuai1, chuai3, chuai4, 

chuan1, chuan2, chuan3, chuan4, chuang1, chuang2, chuang3, chuang4, chui1, chui2, 

chun1, chun2, chun3, chuo1, chuo4, ci1, ci2, ci3, ci4, cong1, cong2, cou4, cu1, cu2, cu4, 

cuan1, cuan2, cuan4, cui1, cui3, cui4, cun1, cun2, cun3, cun4, cuo1, cuo2, cuo3, cuo4, 

da1, da2, da3, da4, dai1, dai3, dai4, dan1, dan3, dan4, dang1, dang3, dang4, dao1, dao2, 

dao3, dao4, de2, dei3, deng1, deng3, deng4, di1, di2, di3, di4, dia3, dian1, dian3, dian4, 

diao1, diao3, diao4, die1, die2, ding1, ding3, ding4, diu1, dong1, dong3, dong4, dou1, 

dou3, dou4, du1, du2, du3, du4, duan1, duan3, duan4, dui1, dui4, dun1, dun3, dun4, 

duo1, duo2, duo3, duo4, fa1, fa2, fa3, fa4, fan1, fan2, fan3, fan4, fang1, fang2, fang3, 
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fang4, fei1, fei2, fei3, fei4, fen1, fen2, fen3, fen4, feng1, feng2, feng3, feng4, fo2, fou3, 

fu1, fu2, fu3, fu4, ga1, ga2, ga3, ga4, gai1, gai3, gai4, gan1, gan3, gan4, gang1, gang3, 

gang4, gao1, gao3, gao4, ge1, ge2, ge3, ge4, gei3, gen1, gen2, gen3, gen4, geng1, geng3, 

geng4, gong1, gong3, gong4, gou1, gou3, gou4, gu1, gu2, gu3, gu4, gua1, gua3, gua4, 

guai1, guai3, guai4, guan1, guan3, guan4, guang1, guang3, guang4, gui1, gui3, gui4, 

gun3, gun4, guo1, guo2, guo3, guo4, ha1, ha2, ha3, ha4, hai1, hai2, hai3, hai4, han1, 

han2, han3, han4, hang1, hang2, hang4, hao1, hao2, hao3, hao4, he1, he2, he4, hei1, 

hen2, hen3, hen4, heng1, heng2, heng4, hong1, hong2, hong3, hong4, hou2, hou3, hou4, 

hu1, hu2, hu3, hu4, hua1, hua2, hua4, huai2, huai4, huan1, huan2, huan3, huan4, huang1, 

huang2, huang3, huang4, hui1, hui2, hui3, hui4, hun1, hun2, hun4, huo1, huo2, huo3, 

huo4, ji1, ji2, ji3, ji4, jia1, jia2, jia3, jia4, jian1, jian3, jian4, jiang1, jiang3, jiang4, jiao1, 

jiao2, jiao3, jiao4, jie1, jie2, jie3, jie4, jin1, jin3, jin4, jing1, jing3, jing4, jiong1, jiong3, 

jiu1, jiu3, jiu4, ju1, ju2, ju3, ju4, jun1, jun4, juan1, juan3, juan4, jue1, jue2, jue3, jue4, 

ka1, ka3, kai1, kai3, kai4, kan1, kan3, kan4, kang1, kang2, kang4, kao1, kao3, kao4, ke1, 

ke2, ke3, ke4, ken3, ken4, keng1, kong1, kong3, kong4, kou1, kou3, kou4, ku1, ku3, ku4, 

kua1, kua3, kua4, kuai3, kuai4, kuan1, kuan3, kuang1, kuang2, kuang3, kuang4, kui1, 

kui2, kui3, kui4, kun1, kun3, kun4, kuo4, la1, la2, la3, la4, lai2, lai4, lan2, lan3, lan4, 

lang1, lang2, lang3, lang4, lao1, lao2, lao3, lao4, le1, le4, lei1, lei2, lei3, lei4, leng1, 

leng2, leng3, leng4, li1, li2, li3, li4, lia3, lian2, lian3, lian4, liang2, liang3, liang4, liao1, 

liao2, liao3, liao4, lie1, lie3, lie4, lin2, lin3, lin4, ling1, ling2, ling3, ling4, liu1, liu2, liu3, 

liu4, long1, long2, long3, long4, lou1, lou2, lou3, lou4, lu1, lu2, lu3, lu4, luan2, luan3, 

luan4, lue3, lue4, lun1, lun2, lun4, luo1, luo2, luo3, luo4, lv3, lv4, m2, ma1, ma2, ma3, 

ma4, mai2, mai3, mai4, man1, man2, man3, man4, mang2, mang3, mao1, mao2, mao3, 
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mao4, mei2, mei3, mei4, men1, men2, men4, meng1, meng2, meng3, meng4, mi1, mi2, 

mi3, mi4, mian2, mian3, mian4, miao1, miao2, miao3, miao4, mie1, mie4, min2, min3, 

ming2, ming3, ming4, miu4, mo1, mo2, mo3, mo4, mou1, mou2, mou3, mu2, mu3, mu4, 

n2, n3, n4, na1, na2, na3, na4, nai3, nai4, nan1, nan2, nan3, nan4, nang1, nang2, nang3, 

nao1, nao2, nao3, nao4, ne2, ne4, nei3, nei4, nen4, neng2, ni1, ni2, ni3, ni4, nian1, nian2, 

nian3, nian4, niang2, niang4, niao3, niao4, nie1, nie4, nin2, ning2, ning3, ning4, niu1, 

niu2, niu3, niu4, nong2, nong4, nou4, nu2, nu3, nu4, nuan3, nue4, nuo2, nuo4, nv3, nv4, 

pa1, pa2, pa4, pai1, pai2, pai3, pai4, pan1, pan2, pan4, pang1, pang2, pang3, pang4, 

pao1, pao2, pao3, pao4, pei1, pei2, pei4, pen1, pen2, pen4, peng1, peng2, peng3, peng4, 

pi1, pi2, pi3, pi4, pian1, pian2, pian3, pian4, piao1, piao2, piao3, piao4, pie1, pie3, pin1, 

pin2, pin3, pin4, ping1, ping2, po1, po2, po3, po4, pou1, pou2, pou3, pu1, pu2, pu3, pu4, 

qi1, qi2, qi3, qi4, qia1, qia3, qia4, qian1, qian2, qian3, qian4, qiang1, qiang2, qiang3, 

qiang4, qiao1, qiao2, qiao3, qiao4, qie1, qie2, qie3, qie4, qin1, qin2, qin3, qin4, qing1, 

qing2, qing3, qing4, qiong2, qiu1, qiu2, qiu3, qu1, qu2, qu3, qu4, quan1, quan2, quan3, 

quan4, que1, que2, que4, qun1, qun2, ran2, ran3, rang1, rang2, rang3, rang4, rao2, rao3, 

rao4, re3, re4, ren2, ren3, ren4, reng1, reng2, ri4, rong2, rong3, rou2, rou4, ru2, ru3, ru4, 

ruan3, rui2, rui3, rui4, run4, ruo4, sa1, sa3, sa4, sai1, sai4, san1, san3, san4, sang1, sang3, 

sang4, sao1, sao3, sao4, se4, sen1, seng1, sha1, sha3, sha4, shai1, shai3, shai4, shan1, 

shan3, shan4, shang1, shang3, shang4, shao1, shao2, shao3, shao4, she1, she2, she3, 

she4, shei2, shen1, shen2, shen3, shen4, sheng1, sheng2, sheng3, sheng4, shi1, shi2, shi3, 

shi4, shou1, shou2, shou3, shou4, shu1, shu2, shu3, shu4, shua1, shua3, shua4, shuai1, 

shuai3, shuai4, shuan1, shuan4, shuang1, shuang3, shui2, shui3, shui4, shun3, shun4, 

shuo1, shuo4, si1, si3, si4, song1, song3, song4, sou1, sou3, sou4, su1, su2, su4, suan1, 
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suan4, sui1, sui2, sui3, sui4, sun1, sun3, suo1, suo3, ta1, ta3, ta4, tai1, tai2, tai3, tai4, 

tan1, tan2, tan3, tan4, tang1, tang2, tang3, tang4, tao1, tao2, tao3, tao4, te4, tei1, teng2, 

ti1, ti2, ti3, ti4, tian1, tian2, tian3, tian4, tiao1, tiao2, tiao3, tiao4, tie1, tie3, tie4, ting1, 

ting2, ting3, ting4, tong1, tong2, tong3, tong4, tou1, tou2, tou3, tou4, tu1, tu2, tu3, tu4, 

tuan1, tuan2, tuan3, tuan4, tui1, tui2, tui3, tui4, tun1, tun2, tun3, tun4, tuo1, tuo2, tuo3, 

tuo4, wa1, wa2, wa3, wa4, wai1, wai3, wai4, wan1, wan2, wan3, wan4, wang1, wang2, 

wang3, wang4, wei1, wei2, wei3, wei4, wen1, wen2, wen3, wen4, weng1, weng3, 

weng4, wo1, wo2, wo3, wo4, wu1, wu2, wu3, wu4, xi1, xi2, xi3, xi4, xia1, xia2, xia4, 

xian1, xian2, xian3, xian4, xiang1, xiang2, xiang3, xiang4, xiao1, xiao2, xiao3, xiao4, 

xie1, xie2, xie3, xie4, xin1, xin2, xin4, xing1, xing2, xing3, xing4, xiong1, xiong2, xiu1, 

xiu3, xiu4, xu1, xu2, xu3, xu4, xuan1, xuan2, xuan3, xuan4, xue1, xue2, xue3, xue4, 

xun1, xun2, xun4, ya1, ya2, ya3, ya4, yan1, yan2, yan3, yan4, yang1, yang2, yang3, 

yang4, yao1, yao2, yao3, yao4, ye1, ye2, ye3, ye4, yi1, yi2, yi3, yi4, yin1, yin2, yin3, 

yin4, ying1, ying2, ying3, ying4, yo1, yong1, yong2, yong3, yong4, you1, you2, you3, 

you4, yu1, yu2, yu3, yu4, yuan1, yuan2, yuan3, yuan4, yue1, yue4, yun1, yun2, yun3, 

yun4, za1, za2, za3, zai1, zai3, zai4, zan1, zan2, zan3, zan4, zang1, zang3, zang4, zao1, 

zao2, zao3, zao4, ze2, ze4, zei2, zen3, zen4, zeng1, zeng4, zha1, zha2, zha3, zha4, zhai1, 

zhai2, zhai3, zhai4, zhan1, zhan3, zhan4, zhang1, zhang3, zhang4, zhao1, zhao2, zhao3, 

zhao4, zhe1, zhe2, zhe3, zhe4, zhei4, zhen1, zhen3, zhen4, zheng1, zheng3, zheng4, zhi1, 

zhi2, zhi3, zhi4, zhong1, zhong3, zhong4, zhou1, zhou2, zhou3, zhou4, zhu1, zhu2, zhu3, 

zhu4, zhua1, zhua3, zhuai1, zhuai3, zhuai4, zhuan1, zhuan3, zhuan4, zhuang1, zhuang3, 

zhuang4, zhui1, zhui4, zhun1, zhun3, zhuo1, zhuo2, zi1, zi3, zi4, zong1, zong3, zong4, 
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zou1, zou3, zou4, zu1, zu2, zu3, zuan1, zuan3, zuan4, zui1, zui3, zui4, zun1, zun3, zuo1, 

zuo2, zuo3, zuo4. 

 

B.  List of pseudo-syllables in pinyin. 

Pseudo-syllables (n=758) 

Segmental gaps (n = 412) Tonal gaps (n = 356) 

bia1, bia2, bia3, bia4, biang1, biang2, 

biang3, biang4, biong1, biong2, biong3, 

biong4, biu1, biu2, biu3, biu4, bong1, 

bong2, bong3, bong4, bou1, bou2, bou3, 

bou4, cei1, cei2, cei3, cei4, chei1, chei2, 

chei3, chei4, cua1, cua2, cua3, cua4, 

chua1, chua2, chua3, chua4, cuai1, cuai2, 

cuai3, cuai4, cuang1, cuang2, cuang3, 

cuang4, den1, den2, den3, den4, dia1, 

dia2, dia3, dia4, diang1, diang2, diang3, 

diang4, din1, din2, din3, din4, diong1, 

diong2, diong3, diong4, dua1, dua2, dua3, 

dua4, duai1, duai2, duai3, duai4, duang1, 

duang2, duang3, duang4, dv1, dv2, dv3, 

dv4, due1, due2, due3, due4, eng1, eng2, 

eng3, eng4, fe1, fe2, fe3, fe4, fai1, fai2, 

fai3, fai4, fao1, fao2, fao3, fao4, fi1, fi2, 

an2, ang3, ben2, ban2, bang2, bei2, biao2, 

bian2, bin2, bin3, bing2, ce1, ce2, ce3, 

che2, cen3, cen4, ceng3, ca2, ca4, chai3, 

cang3, cang4, cong3, cong4, cou1, cou2, 

cou3, cu3, chuai2, cuan3, cui2, chui3, 

chui4, chun4, chuo2, chuo3, de1, de3, 

de4, deng2, dai2, dan2, dang2, dei1, dei2, 

dei4, dia1, dia2, dia4, diao2, die3, die4, 

dian2, ding2, diu2, diu3, diu4, dong2, 

dou2, duan2, dui2, dui3, dun2, ei1, en2, 

en3, er1, fo1, fo3, fo4, fou1, fou2, fou4, 

gai2, kai2, gan2, gang2, gao2, gei1, gei2, 

gei4, geng2, gong2, gou2, gua2, guai2, 

guan2, guang2, gui2, gun1, gun2,  he3, 

hen1, heng3, hang3, hei2, hei4, hei3, 

hou1, hua3, huai1, huai3, hun3, jiang2, 

jian2, jin2, jing2, jiong2, jiong4, jiu2, 



  185 

fi3, fi4, fia1, fia2, fia3, fia4,  fiang1, 

fiang2, fiang3, fiang4, fiao1, fiao2, fiao3, 

fiao4, fie1, fie2, fie3, fie4, fian1, fian2, 

fian3, fian4, fin1, fin2, fin3, fin4, fing1, 

fing2, fing3, fing4, fiong1, fiong2, fiong3, 

fiong4, fiu1, fiu2, fiu3, fiu4, fong1, fong2, 

fong3, fong4, gi1, gi2, gi3, gi4, gv1, gv2, 

gv3, gv4, gue1, gue2, gue3, gue4, hi1, 

hi2, hi3, hi4, hv1, hv2, hv3, hv4, hue1, 

hue2, hue3, hue4,  je1, je2, je3, je4, 

juang1, juang2, juang3, juang4, kei1, 

kei2, kei3, kei4, ki1, ki2, ki3, ki4, kv1, 

kv2, kv3, kv4, kue1, kue2, kue3, kue4, 

len1, len2, len3, len4, liong1, liong2, 

liong3, liong4, lua1, lua2, lua3, lua4, 

luai1, luai2, luai3, luai4, luang1, luang2, 

luang3, luang4, lui1, lui2, lui3, lui4, mia1, 

mia2, mia3, mia4, miang1, miang2, 

miang3, miang4, miong1, miong2, 

miong3, miong4, mong1, mong2, mong3, 

mong4, nia1, nia2, nia3, nia4, niong1, 

niong2, niong3, niong4, nun1, nun2, 

nun3, nun4, nua1, nua2, nua3, nua4, 

juan2, jun2, jun3, ken1, ken2, keng2, 

keng3, keng4, ka2, ka4, kan2, kang3, 

kao2, kong2, kou2, ku2, kua2, kuai1, 

kuai2, kuan2, kuan4, kun2, kuo1, kuo2, 

kuo3, le2, le3, lai1, lai3, lan1, lia1, lia2, 

lia4, liang1, lie2, lian1, lin1, luan1, lun3, 

lv1, lv2, lue1, lue2, men3, mai1, mang1, 

mang4, mei1, mie2, mie3, mian1, min1, 

min4, ming1, miu1, miu2, miu3, mou4, 

mu1, ne1, ne3, nen1, nen2, nen3, neng1, 

neng3, neng4, nai1, nai2, nang4, nei1, 

nei2, niang1, niang3, niao1, niao2, nie2, 

nie3, nin1, nin3, nin4, ning1, nong1, 

nong3, nou1, nou2, nou3, nu1, nuan1, 

nuan2, nuan4, nuo1, nuo3, nv1, nv2, 

nue1, nue2, nue3, ou2, pen3, pa3, pan3, 

pei3, pie2, pie4, ping3, ping4, pou4, qia2, 

qiong1, qiong3, qiong4, qiu4, que3, qun3, 

qun4, re1, re2, ren1, reng3, reng4, ri1, ri2, 

ri3, ran1, ran4, rao1, rong1, rong4, rou1, 

rou3, ru1, ruan1, ruan2, ruan4, rui1, run1, 

run2, run3, ruo1, ruo2, ruo3, se1, se2, se3, 

sen2, sen3, sen4, seng2, seng3, seng4, si2, 
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nuai1, nuai2, nuai3, nuai4, nuang1, 

nuang2, nuang3, nuang4, nui1, nui2, nui3, 

nui4, ong1, ong2, ong3, ong4, pia1, pia2, 

pia3, pia4, piang1, piang2, piang3, 

piang4, piong1, piong2, piong3, piong4, 

pong1, pong2, pong3, pong4, piu1, piu2, 

piu3, piu4, qe1, qe2, qe3, qe4, quang1, 

quang2, quang3, quang4, ra1, ra2, ra3, 

ra4, rai1, rai2, rai3, rai4, rei1, rei2, rei3, 

rei4, rua1, rua2, rua3, rua4, ruai1, ruai2, 

ruai3, ruai4, ruang1, ruang2, ruang3, 

ruang4, rv1, rv2, rv3, rv4, sei1, sei2, sei3, 

sei4, shong1, shong2, shong3, shong4, 

sua1, sua2, sua3, sua4, suai1, suai2, suai3, 

suai4, suang1, suang2, suang3, suang4, 

ten1, ten2, ten3, ten4, tei1, tei2, tei3, tei4, 

tia1, tia2, tia3, tia4, tiang1, tiang2, tiang3, 

tiang4, tin1, tin2, tin3, tin4, tiong1, 

tiong2, tiong3, tiong4, tiu1, tiu2, tiu3, 

tiu4, tua1, tua2, tua3, tua4, tuai1, tuai2, 

tuai3, tuai4, tuang1, tuang2, tuang3, 

tuang4, tv1, tv2, tv3, tv4, tue1, tue2, tue3, 

tue4, xe1, xe2, xe3, xe4, xuang1, xuang2, 

sa2, sha2, sai2, sai3, shai2, san2, sang2, 

shan2, shang2, sao2, shei1, shei3, shei4, 

song2, sou2, su3, shua2, shuai2, suan2, 

suan3, shuan2, shuan3, shuang2, shuang4, 

shui1, sun2, sun4, shun1, shun2, suo2, 

suo4, shuo2, shuo3, te1, te2, te3, teng1, 

teng3, teng4, ta2, tei2, tei3, tei4, tie2, 

weng2, wai2, xia3, xin3, xiong3, xiong4, 

xiu2, xun3, yue2, yue3, ze1, ze3, zen1, 

zen2, zeng2, zeng3, zhen2, zheng2, zi2, 

za4, zai2, zang2, zhan2, zhang2, zei1, 

zei3, zei4, zhei1, zhei2, zhei3, zong2, 

zhong2, zou2, zu4, zhua2, zhua4, zhuai2, 

zuan2, zhuan2, zhuang2, zui2, zhui2, 

zhui3, zun2, zun4, zhun2, zhun4, zhuo3, 

zhuo4 
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xuang3, xuang4, zua1, zua2, zua3, zua4, 

zuai1, zuai2, zuai3, zuai4, zuang1, 

zuang2, zuang3, zuang4 

 

 




