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ABSTRACT

A dynamic graph is built from a Cartesian set V (t)×E(t) where V (t) andE(t) denote the

set of vertices and edges at time t, respectively. Since changes often happen at massive

local parts of the graph, it is difficult to capture and understand them. Visualization of

dynamic graphs can alleviate the difficulty as it maps changes to graphics that can be

better perceived by people.

In visualization, graphs are usually drawn as node-link or matrix diagrams, and the

temporal dimension is represented by timelines or animations. Based on these visualiza-

tion techniques, various developments have been made, from providing a layout algorithm

that optimizes the visual stability to applying analysis to real-world datasets of different

disciplines. This thesis aims at investigating previous work in the area of visualizing dy-

namic graphs, and then concentrating on discovering structural and semantical patterns

from dynamic graphs. Specific contributions are as follows.

First, we provide a method of searching large graphs for special topologies. The

method conducts Community Detection to obtain components of manageable sizes, then

classifies them according to their structures. Second, we investigate the dynamics of at-

tributes of graph entities. Specifically, we implement an application of deriving function-

alities of geographical regions by analysing a temporal network constructed from geo-

textual data. Natural Language Processing techniques are used to deal with the textual

part of attributes. Third, we improve the usability of traditional animations and time-

lines. To help users compare adjacent frames of the animation, glyphs of two timestamps

are placed concentrically in one view. Meanwhile, visual changes caused by the glyph

transformation is minimized by a pentagonal design. In timelines, identical objects at

all timestamps are identified and linked chronologically to facilitate the tracing of object

evolution.
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CHAPTER 1

INTRODUCTION

Data visualization is a broad field that involves two main streams: information visualiza-

tion and scientific visualization [1]. Scientific visualization is primarily about rendering

scientific phenomena. It emphasizes factors like volumes and surfaces. This thesis fo-

cuses on information visualization which aims at representing abstract data by specially

designed visual encodings. Through visual cognition, users can easily obtain an under-

standing of data, and they can further perform analysis with the help of interactive tools.

The target data of this thesis are dynamic graphs, which are also known as time-

varying graphs. We note that we interchangeably use one of the following pairs of terms:

(graph, network), (node, vertex) and (link, edge). A graph is an important structure that

models the relationship between objects. Data collected from different sources like soft-

ware systems and social media applications can be abstracted as dynamic graphs. For

example, we can map Facebook users and their real-time interactions to graph vertices

and edges, respectively.

Dynamic graphs can be depicted by the snapshot or temporal models [2]. For the

temporal model, no aggregation of time is performed, and nodes and links are labeled

by timestamps indicating when they appear and disappear. For the snapshot model, a
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snapshot either stands for the graph state at a specific time or the aggregation of multiple

states during a period. Hence, there is an information loss because changes that happen

within the period are concealed. The time granularity between snapshots is often decided

by contextual needs and it affects the result of analysis. For example, by categorizing

events by hour, day or week, security management officers can inspect their occurrence

at different frequencies. This thesis adopts the snapshot model, because it reduces the

complexity of analysis and allows for parallel processing. A dynamic graph G in the

snapshot model can be defined as an ordered set: {G1, G2, ..., Gn}, where each snapshot

Gi = (Vi, Ei) is identified by the sets of nodes Vi and edges Ei, and Ei ⊆ Vi × Vi.

Graph dynamics represent the dynamic phenomena that occur on graphs. For simple

graphs [3], the insertion and deletion of vertices and edges makes the graph topology vary

over time as shown in the example in Figure 1.1. Small circles in the node-link diagrams

denote vertices and the straight lines represent connections between vertices. For real-

world networks, dynamic phenomena may also include the variation of the attributes of

vertices and edges. For example, the interaction frequency between social media applica-

tion users changes at different time. Our goal is to reveal the evolutionary patterns of both

graph entities and their attributes by graphical representations.

1.1 Objectives

In the context of visual analytics of complex graphs, there exist various challenges, and

we are interested in providing solutions to two of them. First, how to satisfy the specific
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Figure 1.1: Snapshots of a dynamic graph at three time steps.

goal of analysis in different scenarios? For example, security engineers wish to find the

vulnerabilities of the computer systems, while biologists might be interested in detecting

the anomalies from cell communications. Second, how to interpret the result of analysis?

Especially when users lack expertise.

Figure 1.2: The pipeline of building a visual system.

Our solution is to build various visual systems that fulfill the requirements of specific

exploration tasks. As shown in Figure 1.2, the building procedure involves a few essential

stages. These systems incorporate powerful techniques from data mining, machine learn-

ing and other disciplines. They also represent data by well-designed visual encodings that

are easier to perceive than abstract numbers or descriptions. The specific objectives of this
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thesis are as follows:

1. To expose the structural similarities between graph components. We divide graphs

by grouping closely related entities into components. Then, we can focus on local

patterns that are easier to analyse due to the smaller scale. However, it is also

important to discover how those components interact with each other. We want to

inspect whether some of them possess similar structures and expose the evolutionary

patterns of the similarity;

2. To search for the topologies of interest from large graphs. Based on the same idea of

dividing graphs into components, we aim at making the topologies of these compo-

nents searchable so that users can quickly locate the patterns they are interested in.

Meanwhile, it will be convenient to track the structural evolution of components;

3. To represent the dynamics of attributed graphs. Entities have intrinsic character-

istics in attributed graphs. For example, in peoples’ mobility graphs, vertices that

denote geographical venues have longitude-latitude coordinates. To learn the evo-

lution of graphs, we can analyse different types of characteristics and their changes

by effective tools;

4. To improve the usability of traditional representations for dynamic graphs. Due to

the limited space of the display, static node-link diagrams suffer from overlapping

issues when there are too many vertices and edges. The temporal dimension of

dynamic graphs can be mapped to timelines or animations that both have pros and
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cons. For animations, users can hardly remember continuous frames, not to mention

comparing them. For timelines, they are often criticized for the poor scalability. Our

mission is to integrate traditional methods and exploit their strengths. Meanwhile,

we need to provide a rich set of interactive features to facilitate the data exploration.

1.2 Contributions

We established a cloud platform to promote the efficient data processing [4, 5, 6]. We clas-

sified graph components based on their structures so that users can search for topologies of

interest [7, 8]. The traditional animated representations were improved to facilitate visual

comparisons [9]. By studying the semantics of dynamic networks that are constructed

from temporal geo-textual data, we were able to track the evolution of geographical re-

gions [10, 11, 12]. Detailed contributions are as follows:

• A framework for exposing the structual similarities between graphs. The framework

consists of three main modules, which are community detection, graph vectorization

and visualization. Each module offers multiple advanced methods for implementa-

tion. We map the similarities between communities to the distances between nodes

in graph drawings so as to let users obtain a visual understanding about which com-

munities have similar structures;

• Classification of complex graph structures. We reduce the diversity of graph struc-

tures by classifying them to topological patterns. Two methods are available for
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classification. The first one relies on computing a set of topological properties. We

represent graphs by the aggregation of the properties, and then compute the struc-

tural similarities based on these new representations. The second method is based

on the fact that a determinate layout algorithm generates similar appearances for

graphs having similar structures. We take layout images rather than original graphs

as the input and train a classification model. Consequently, the topological pattern

of an arbitrary graph can be predicted without exhaustive searches and calculations;

• Learning semantics from dynamic geo-textual graphs. We apply the frequently used

techniques in graph visualizations to solving problems in the geographical domain.

Firstly, graphs are constructed from discrete data items. These graphs encode both

the spatial and semantic information of venues. We then conduct community de-

tection algorithms on graphs to delimit functional regions. To present the evolution

of regions, we integrate two complementray views, one for displaying animations

and the other for showing juxtaposed snapshots. Study results demonstrate that our

method successfully helps users to capture a few types of regional events, such as

appear, disappear, expand, shrink, etc;

• Smooth and simplified visualizations of large dynamic graphs. For the purpose of

visual simplicity, our graph visualizations are based on the collapsed node-link dia-

grams where a single node represents a cluster of entities. However, such diagrams

hide the local connectivity information from view. Therefore, we enrich the visual

design of the collapsed nodes by embedding simple glyphs that indicate the topo-
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logical patterns of subgraphs induced by clusters. Visual smoothness is achieved

differently for animations and timelines. For timelines, we link identical objects

across consecutive time steps so as to obtain a fluent tracking of the evolution of a

certain object. In animations, frames are played in sequence, which makes it hard to

maintain the mental map and compare different snapshots. Hence, we improve their

visual stability from two aspects. One is the graph layout. We build a Super Graph

by aggregating all snapshots and then compute node positions by applying the force-

directed algorithm at a global level. The other aspect is the design of glyphs that

denote the topological patterns. Visual changes caused by the inter-transformation

of glyphs are minimized by adopting a pentagonal design. In one frame, we place

previous and current glyphs concentrically to help users do comparisons.

1.3 Thesis Structure

The remaining part of this thesis is organized as follows. In Chapter 2, we carry out a sur-

vey on previous work related to dynamic graph visualizations. In Chapter 3, we introduce

how to visualize the similarities between graph communities based on a comprehensive

framework. Chapter 4 is about representing large dynamic graphs by smooth and simpli-

fied animations. In Chapter 5, we describe modeling the relationship between geo-textual

data as time-varying graphs and carrying out urban analysis on such graphs. The thesis

ends with Chapter 6 that covers the conclusions and the future work.

7



CHAPTER 2

LITERATURE REVIEW

It is difficult to visualize dynamic graphs because we need to consider a lot of require-

ments, from the perspective of not only aesthetics but the effectiveness in analysis. Fre-

quently asked questions include: in what forms should the graph nodes and their relation-

ship be presented? how to project the temporal dimension to the visual space? what are the

effective ways to navigate users through complex graphs? To find answers to these ques-

tions, we review existing development on illustrating static graphs, revealing evolutionary

patterns and extending the visual scalability, as well as the techniques for evaluating the

effectiveness of visualizations.

2.1 Requirements and Methods for Visualizing Dynamic

Graphs

Aesthetic Criteria

A good visual design should be beautiful and attractive so as to evoke users’ interests

in exploring the data. Meanwhile, it also needs to be effective to raise the speed and

accuracy of exploration [13]. Lau and Moere [14] build a model that takes data focus
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and mapping technique as the two key factors of aesthetic criteria. They judge the quality

of aesthetics according to the purpose of applications: acquiring knowledge or designing

visual mappings. Elements that are frequently used for mapping include color, position,

size, typography, conveyance and interaction [15]. They often work together to enhance

the functionality and reliability of visualizations [16].

The primary decision of drawing graphs is what glyphs to use to represent graph enti-

ties, i.e., vertices and their connections. Then, we should consider where to place them on

the display. Given a dynamic graph, another step of graph drawing is to reduce the visual

movement of identical entities across time so as to obtain a stable result. According to

Beck et al [17], aesthetic issues are raised by following aspects:

• Graph drawings: representations such as the node-link and matrix diagrams shown

in Figure 2.1 have different properties, and thus cause various issues. With the

growth of graph size, node-link diagrams may suffer from clutter due to the limited

space of display. It will be difficult for users to recognize entities. Well-designed

layout algorithms might relieve the problem. By using the matrix representations,

we do not need to worry about the graph layout. Matrix representations are suitable

for dense graphs and good at solving problems like finding the shortest path [18]. An

important requirement for drawing matrices is to increase the visual compactness.

• Temporal representations: the requirement is to preserve users’ mental map [19].

Namely, the visual outlook of the graph is not supposed to change suddenly be-

tween two subsequent time steps. Otherwise, tasks like finding differences become
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impossible because of too many varying elements. To do so, visual properties such

as shapes and positions should not change considerably, especially for identical

graph entities.

(a) Node-Link diagram. (b) Adjacency Matrix.

Figure 2.1: A node-link diagram explicitly shows the graph topology and in the corre-

sponding matrix representation, intersection entries are colored if the end nodes are con-

nected.

Researches on aesthetics often focus on graph-theoretical properties and rarely con-

sider the semantics associated with the data [20]. They aim to obtain pleasant layout

generated by complying with heuristics that have perceptual basis such as the Gestalt

principles and Norman’s emotional design framework [21]. Based on node-link diagrams,

aesthetic requirements include [22]:

• Minimize edge crossings: if there are too many intersections of edges, it will put a

lot visual burden on users. They can hardly identify a specific edge, and crossings

may even overlap nodes.
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• Minimize node and edge overlap: minimize ambiguity by avoiding over-clustered

nodes or edges.

• Maximize symmetry: a symmetric layout can help users to understand the graph

structure better.

• Uniform edge lengths: they might be helpful to prevent the graph being distorted.

• Uniform node distribution: alleviate the visual clutter problem to some extent.

• Separate non-adjacent nodes: separate nodes by their connectivity, and adjacent

nodes appear to be more related.

An ideal layout algorithm is supposed to satisfy these requirements as many as possi-

ble. However, due to the competitive nature of the aesthetic criteria, we have to achieve a

balance between them in certain contexts.

Graph Layout

Graph layout algorithms calculate the node positions on the display according to the afore-

mentioned aesthetic metrics, or based on the information that we want to highlight.

Currently, the force-directed [23] algorithms are widely adopted. The idea is to treat

the graph like a physical system where simulated forces are assigned to nodes and links.

Attractive forces pull endpoints of edges together, while repulsive forces push all pairs

of nodes apart. Forces can be analogies to different physical behaviors like springs and

11



particles [24], or gravity [25]. The ultimate goal is to make edges have approximately

equal lengths and to minimize crossings between them.

P. Eades [26] create the pioneering work in force-directed layout. A spring-electrical

system is used to achieve a balance state where each node bears zero-force. Based on

Eades’ approach, another type of method aims at minimizing the energy by solving a

cost function. Kamada and Kawai [27] assumes that the Euclidean distances between

nodes should approximate their graph-theoretic distances. The cost function is the squared

difference between these two. Indeed, it implies the extend of asymmetry. The difference

between energy-based algorithms is that they use different strategies to establish and solve

objective functions. They are likely to get stuck in local optima. Figure 2.2 displays the

Les Misérables dataset, using variants of the force-directed algorithm.

(a) (b) (c)

Figure 2.2: Graph layouts generated by three force-directed layout algorithms. (a)

ForceAtlas algorithm tends to keep the nodes that have higher degrees in the center. (b)

Frunchterman’s algorithm always keeps the symmetrical sphere shape. (c) Yifan Hu’s

method pushes nodes with low link counts to the periphery.

Eades’ algorithm and its variants suffer from scalability issues. Poor layouts are gen-
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erated and time costs become unacceptable, when dealing with graphs of massive nodes

and dense structures. The GEM (Graph Embedder) [28] algorithm introduces a gravita-

tional force to pull nodes to the barycenter of their neighborhoods. It runs faster and is

able to handle larger graphs. Multi-level algorithms [29] are also used to improve the

efficiency. They partition graph nodes into groups, then conduct layout algorithms at the

coarsest level of groups. Finally, the layout is propagated iteratively back to the original

graph. Multi-level algorithms are different at the coarsening schemes. For example, Topo-

Layout [30] detects topological features, such as trees and complete graphs and collapses

these components into a single node.

Special layout strategies are available for other graph drawing techniques. Spectral-

based drawings use eigenvectors of the adjacency or laplacian matrix to compute node

coordinates. Tree layouts are suitable for graphs with tree structures. Arc diagrams place

nodes along an axis and connect them with curves. Algorithms designed to serve extreme

conditions are also in use. For example, the space filling curves generate layouts with no

overlapping between nodes [31].

Graph layout can be affected by the properties of entities. Bezerianos et al. build a

two-view visual system as shown in Figure 2.3 for analysing multivariate graphs [32].

One view displays a scatter matrix which provides exhaustive combinations of pairs of

attributes. The other view represents different graph layouts when any two attributes are

selected. Hosobe [33] computes high-dimensional layouts by eigenvalue-based scaling

techniques. Then, 2D layouts that are adaptive to user interactions are obtained by satis-
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fying certain constraints.

Figure 2.3: Use GraphDice to visualize the co-author dataset in InfoVis 2004 Contest.

Timeline Versus Animation

There are two streams of approaches to depicting the temporal dimension of dynamic

graphs, one is animation and the other is timeline that contains a sequence of small multi-

ples.

Animation

The evolution time of dynamic graphs is mapped to the visual time of animations [34].

An important task is to preserve the mental map that refers to a user’s abstraction of

structural information when looking at the graph layout [35]. A stable layout helps users

to acquire a consistent understanding of the graph evolution. To achieve the goal, visual
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differences between consecutive frames of the animation should be minimized. Frishman

et al. [36] proposed an incremental method of drawing dynamic clustered graphs. It aims

at maintaining the size and position of clusters as much as possible. They use invisible

occupiers to save space for new nodes so that the animation will not be interrupted by

sudden changes.

Animations can be categorized into online and offline techniques, depending on the

available time steps:

• Online: only past time steps are available. Gorochowski et al. keep local structures

relatively stable by using the concept of aging [37]. Lee et al. [38] implement a

simulated annealing with a cost function assembling a group of weighted drawing

criteria. The optimization result then helps to derive a stable layout.

• Offline: both past and future time steps are considered. Feng et al. [39] achieve

the spatiotemporal coherence through the concept of Super Graph. Individual time

steps are assigned an importance score to control the playing speed of animation.

Diehl et al. [40] focus on node groups and reuse group positions to achieve stability.

Generally, online animations are more flexible as they do not necessarily require for

the knowledge of the entire evolution. Hence, they are suitable for real-time applications.

By contrast, offline approaches tend to generate optimal layouts and preserve the visual

stability better.
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Timeline

The time dimension is mapped to the space in timelines. Snapshots at individual time

steps are sequentially displayed in one view. Timelines make it convenient to compare

different snapshots. Users do not need to keep previous steps in mind. However, due to

the limited space of display, timelines are criticized for the poor scalability of showing an

increasing number of time steps.

Visual consistency can be maintained differently according to how graphs are pre-

sented in snapshots. For node-link diagrams, positions of identical nodes are expected to

keep unchanged over time, as shown in Figure 2.4. In Figure 2.5 (a), nodes are stacked

along vertical axes denoting timestamps and edges are drawn between two neighboring

axes [41]. Similarly, edges in Figure 2.5 (b) are drawn as curves at individual time

points [42]. Axis-based representations get node positions fixed, but they do not cater

to graphs where nodes come and go frequently because of the low utility of space.

Figure 2.4: In the timeline of node-link diagrams, the positions of identical nodes at con-

secutive snapshots are supposed to keep the same to achieve the best visual stability.
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(a) (b)

Figure 2.5: Stacking nodes along the vertical axes to improve the visual stability. The

vertical positions of nodes are fixed, and edges exist: (a) during a period; (b) at certain

time steps.

The timeline itself can be drawn in different shapes. The most widely adopted is a

straight line with the reading direction from left to right. In Figure 2.6, TimelineJS marks

timelines to show the occurrences of events.

Figure 2.6: Use TimelineJS to demonstrate the life of Mandela. Each life event is further

explained in a slide-show styled figure1.
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Non-linear timelines can be radial, spiral and even arbitrary lines [43]. Radial time-

lines reflect the periodic nature of time. RJ Andrews use them to reveal how celebrities

spent their daily time [44], as shown in Figure 2.7. It is straightforward to find the habit

of individual celebrities. A high space-filling approach is to draw timelines as spirals [45]

that are both aesthetic and suitable for displaying dense time events. Arbitrary representa-

tions are similar to spirals except that their shapes are arbitrary instead of spinning around

a center [46]. It sometimes causes heavy visual burdens, because their reading directions

may change back and forth.

Figure 2.7: The radial timeline to represent the daily routine of a celebrity. Each time

period is accompanied by some explanation words2.

1https://timeline.knightlab.com/.

2http://www.infowetrust.com/navigating-data/.
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Besides the line-based representations, grid diagrams can also be used to display mul-

tiple snapshots. One typical example is calendar [47]. As the interval between cells has

uniform granularity, such as day, month, year, space will be largely wasted if the data is not

evenly distributed. To deal with the uneven distribution of data items, non-chronological

time scales need to be used.

We compare the foregoing representations in Table 2.1. Generally, straight lines and

grid diagrams are convenient for observation, and radial and spiral timelines are more

space-efficient. We can use arbitrary shapes to expose representative states by placing

similar snapshots closer [48].

Representation Advantages Disadvantages

Linear intuitive perception low scalability

Radial periodic time low space-filling

Spiral high space-filling, scalable difficult to compare

Arbitrary flexible mussy reading directions

Table 2.1: Comparisons between different shapes of timelines.

In case that multiple timelines appear in one view, we need to align them to expose

significant patterns. Individual timelines may depict different categorical attributes like

topics of news [49], different streams of events [50]. Or, each timeline corresponds to

a temporal division, e.g., year and month [51]. The juxtaposed placement of timelines

makes it convenient to detect concurrency and overlaps. To show transitions between

different timelines, animation techniques might be helpful [52].
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Compound

Animations and timelines both have pros and cons. The selection criteria should be based

on data types and the requirements of applications. We prefer animations to show graphs

that expand over a long time span. However, complicated exploration tasks are better

served by timelines [53]. In some circumstances, it is better to combine the two techniques

and exploit their strength.

Hadlak et al. provide an approach that adapts the visualization locally so that different

facets of data can be displayed [54]. The system conforms to an iterative loop of analysis

and allows users to select a subgraph so as to embed different visualizations. DiffAni

aggregates parts of the timeline into animations [55]. It consists of three tiles. Diff-

tiles show difference maps over certain time period, animation-tiles represent the graph

evolution, and small-multiple-tiles display graph states at specific time points. Based on

the edge-splatting technique [41], Beck et al. focus on animating timelines to improve the

scalability of visualization with respect to time steps [56].

Interaction

Interaction and navigation facilities are essential in visualizations, because the layout al-

gorithms cannot solve all problems caused by the large size and complex structures of

graphs [57]. Interaction techniques can provide users with multiple levels of details and

increase the visual scalability to some extent. Navigation tools help to locate entities

quickly by different rules. Commonly used interaction and navigation techniques are as
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follows [58]:

• Overview: provides a sketch of data without showing details. It allows users to

have an overall concept of the objects and helps them to decide which targets are of

interest;

• Zooming: includes zoom-in and out. The former supports browsing details in high

resolutions and the later fits data of larger scales and thus extends the scalability of

visualizations;

• Selection: reduces the number of entities to be displayed. It often implements by

complying with a few filtering rules;

• Highlighting: distinguishes important patterns or phenomena from less important

ones. It attracts peoples’ attentions through special colors, shapes and so on;

• Brushing: interactively selects data from a visual representation. Users are allowed

to apply the operation multiple times, and the brushed parts can be used for com-

parison;

• Focus+Context: deforms the visualization by enlarging the component of interest

while contracting the remaining part. Meanwhile, the context information is pre-

served;

• Incremental Exploration: displays a small portion of data and the rest are available

as needed. To explore the whole set, the visible window slides along a predefined

path.
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It remains an open question of how to effectively couple diverse interaction tools.

Keefe and Isenberg [59] raise six challenges that have to be solved in order to achieve

a good combination of interactions and natural human-computer interfaces. Integrating

more interactive features into the system does not mean that a higher usability can be

achieved. One practical way is to optimize the combination by collecting feedbacks from

users.

2.2 Simplifying the Representation of Large Graphs

With the increase of graph size, we need solutions like the abstraction and compression

to reduce the complexity of visualizations without affecting the exposure of significant

patterns [60]. Because placing an enormous number of nodes and edges in one view either

exceeds the limit of the screen or causes severe clutter problems for both animations and

timelines. Existing techniques can be categorized by whether they manipulate the original

data (e.g., sampling, clustering) or the visual encodings (e.g., edge bundling).

Graph Sampling

Sampling aims at decreasing the number of elements that need to be presented to a man-

ageable size. Techniques can be categorized according to the targets to sample, i.e., nodes,

edges and paths. Representative methods [61] are:
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• Random node sampling: randomly select nodes with uniform probability. The sam-

pling result is the subgraph induced by the set of selected nodes;

• Random edge sampling: randomly select edges with uniform probability. The sam-

pling result is the subgraph induced by the set of selected edges;

• Random walk sampling: randomly select a node at the beginning, and iteratively

select the next node from neighbors of the current node until reaches the sampling.

We evaluate these techniques by validating the preservation of structural properties,

such as the degree distribution and clustering coefficient. Leskovec and Faloutsos claim

that 15% sample is usually enough to match these properties with the original graph [61].

When investigating the impact that sampling has on visualization results, Nguyen et al. [62]

put forward a list of metrics to measure the visual quality. Wu et al. [63] found that differ-

ent sampling strategies preserve different visual features.

Node Clustering

Representing a cluster of similar nodes by a new single node may profoundly reduce the

number of visual elements. We can also gain insights at a higher level. In fact, the incident

edges are also clustered. Here we mainly consider methods that are based on measuring

the node similarity.

Spectral methods take the laplacian matrix as the input and calculate eigenvectors that

each denote a graph node. Using a traditional clustering technique like k-means, nodes
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are clustered based on similarities computed in a vector space [64]. Before using such

kind of method, we have to decide the number of clusters so that nodes within the same

cluster are mostly related.

Community detection techniques do not require prior knowledge on the number of

clusters. They return natural node groups with dense intra-connections and sparse inter-

connections. We call these groups communities, and it is essentially an optimization prob-

lem to find them. Different implementations have their own objective functions and then

apply approximation algorithms or heuristics to solve the function [65].

There have been several algorithms that prove to have a good performance [66]. The

algorithm invented by Blondel et al. [67] aims at maximizing the modularity. Modular-

ity is a scalar value which measures the density of links inside communities as com-

pared to links between communities. The algorithm executes iteratively until modularity

does not increase any more. The running time is linear to the number of links. The

Girvan–Newman algorithm repeatedly removes edges with highest betweenness central-

ity until only communities are left. It takes O(nm2) on a graph with n vertices and m

edges [68]. Rosvall and Bergstrom [69] convert the community detection into an infor-

mation compressing problem. The key point is that one can always recover as much

as possible the graph structure when decoding the compressed information. The quality

function is solved by combining the greedy search and simulated annealing [70]. The

algorithm proposed by Ronhovde et al. minimizes the Hamiltonian of a Potts-like spin

model. The spin state denotes the membership of a node in a specific community. Com-
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munity scales are allowed to span according to the value of a resolution parameter. This

algorithm runs fast with a super-linear complexity in the number of graph links. Fortunato

and Barthelemy [71] found that modularity-based approaches may always fail to detect

communities smaller than certain scales. Hence, they suggest to check the structure of

all detected modules. Based on a concept called resolution limit, they make a trade-off

between the number of modules and the value of terms.

A node may belong to multiple communities in certain cases, which is a common

phenomenon in social networks. Approaches for detecting such overlapping commu-

nities [72] include clique percolation [73], line graph and link partitioning [74], local

expansion and optimization[75], fuzzy detection[76], and agent-based and dynamical

algorithms[77].

Multi-level or hierarchical methods are helpful to control the extent of clustering. With

the growth of hierarchy, a graph is more deeply clustered. Clémençon et al. suggest that

we should validate the significance of clusters by comparing their modularities with that

of a random graph [78].

Edge Bundling

The foregoing methods tend to realize visual simplification by reducing the number of ele-

ments to be represented. However, edge bundling directly operates on node-link diagrams

and returns optimized results. The goal is to remove visual clutter as much as possible and

reveal high-level edge patterns. Close edges are deformed and are bound in groups.
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Bundling techniques can be geometry-based, cost-based and image-based [79]. Ge-

ometries like trees [80] and grids are used to decide the shape of edges. Grids can be uni-

form or non-uniform. Triangulation is a typical way to produce a non-uniform mesh [81].

Intersections of mesh edges and graph edges are control points that segment graph edges

into connected paths. Edge bundling is then converted to a procedure of merging control

points. However, curvatures along the bundling direction might vary a lot. To minimize

the variation, Holten et al. model edges as springs that have attractive forces between

each other [82]. The energy generated by the simulated system is minimized to obtain a

bundling result. Ink used to draw edges can also be taken as a cost to minimize [83].

To summarize, we have reviewed the methods that facilitate the visualization of large

graphs by reducing or aggregating visual elements. Other techniques may also serve the

purpose of visual simplification. Landesberger et al. aggregate mobility graphs spatially

and temporally [84]. Instead of showing all snapshots, they cluster similar graphs and

leave a few representatives to demonstrate the evolution of human mobility. Dwyer et al.

use a module to replace a set of nodes that have common neighbours, then a link con-

nected to the module implies connections to all members inside [85]. Another way to

group nodes is to inspect their membership of a particular topology like a clique. Then,

visual complexity is reduced by using specially designed motifs to substitute the nodes

that contribute to the same topology [86].
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2.3 Revealing the Evolution of Dynamic Graphs

The objective is to explore the trend of graph changes. For simple graphs, changes include

the insertion and deletion of nodes and links. For attributed graphs, changes can also be

the increase and decrease of attribute values. It is infeasible to visualize all low-level

changes becuase the obtained visualizations will overwhelm users and make it difficult to

find useful information. Therefore, we focus on changes that occur to mesoscopic objects

such as communities.

2.3.1 Dynamic Community Detection

Regarding dynamic networks, we need to expose the consistency between communities

that are detected at consecutive time steps. According to Rossetti et al. [87], there are

three types of methods:

• Instant Optimal: calculate communities independently for each graph. Connections

between communities at consecutive time steps are decided by their overlaps;

• Temporal Trade-Off : communities detected at the next time step depend on com-

munities found at last timestamp;

• Cross-Time: consider graphs at all time steps and compute communities at a global

level.

Shang et al. [88] put forward a real-time algorithm aiming at tracking communities on
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a fine-grained level. The algorithm takes the result of the Louvain method [67] at the first

time stamp as an initial input, and updates it at following time stamps. Increased edges are

classified into four types, each corresponding to different operations on previous commu-

nities, including keeping unchanged, combining and so on. However, the algorithm only

deals with frequent and incremental changes and lacks the processing of the decrease of

edges. By optimizing multiple objectives simultaneously with genetic algorithms, Folino

et al. get communities that trade off between the clustering accuracy and the deviation

between time steps [89]. In terms of streaming data, strategies of locally updating com-

munities that are affected by adding or removing nodes or links are adopted [90]. The

objective is to smooth the evolution of communities while avoiding external matching.

Accordingly, a label propagation procedure broadcasts the changes to the neighbors of

the node and adjust the local community memberships. This method largely decreases

the running time of dynamic community detection. Zakrzewska and Bader dynamically

expand the seed set when graph changes and the community that each seed belongs to

is updated. The algorithm also supports parallel processing. Gauvin et al. [91] factorize

tensors that take time as one dimension. Graph structures are represented by adjacency

matrices. The temporal activity patterns of communities can be extracted after factoriza-

tion.
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Figure 2.8: Visual analytics involve iterative acquisitions of knowledge from the percep-

tion [94].

2.3.2 Analytic Tasks of Graph Evolution

Visual analytics can be regarded as a supporting process for decision making. Traditional

visualization researches do not necessarily deal with visual tasks nor use advanced data

analysis algorithms [92]. The objective of analysing graph evolution is to track the chang-

ing trend of graph structures and properties. Studies on graph structures focus on both the

overall scale and the local components [93]. For many real-world networks, vertices and

edges have intrinsic attributes. Analysing such attributes may promote applications like

discovering influential entities and predicting the occurrence of events.

A generic process of visual analytics [94] is illustrated in Figure2.8. The loop denotes

the iteration of knowledge discovery until we obtain the maximal information.

Exploration procedures are driven by a set of well-designed tasks. Common tasks

include: viewing, filtering, zooming, manipulation, querying and so on. Visual tasks
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can be categorized on different facets such as data types, transformation operators and

function queries. After inspecting 53 visual systems, Ahn et al. come up with a more

comprehensive approach for classifying tasks [95] based on three dimensions:

• Entities: not only refer to nodes and links but also groups and the whole graph.

Sometimes, users are interested in node or link groups such as clusters and commu-

nities [96]. The groups can be generated by either position or attribute information;

• Properties: include the structural property and the domain property. Structural prop-

erty reflect the topology information of the graph, which may include degree, cen-

trality and so on [97]. Domain properties add up the complexity of analyzing the

dynamic graph, because usually domain properties need to be correlated with the

structural properties;

• Temporal features: indicate the way for users to observe and compare the states

of entities and properties over time. State transformation of the graph is caused

by different types of events. These events can be simple addition or deletion of

nodes and edges at a specific time. Or they can be the aggregation of simple events

over a period. Aggregated events uncover the change of properties and the change

itself can be demonstrated qualitatively (stable, convergent, grow) or quantitatively

(speed, acceleration) [98].

One frequently executed task is comparing graph snapshots so as to find changes that

happen at different time steps, or to summarize graph states during a period. Abello

30



et al. [99] detect graph discrepancies by marking each edge with a sequence of time la-

bels when two endpoints communicated, and turn the time-varying graph into a collec-

tion of time-stamped communication pairs based on the concept of set-system. The key

component in their algorithm is using combinatorial discrepancy [100] to isolate char-

acteristic patterns from time-varying graphs. Nesbitt and Friedrich applied the Gestalt

Principle [101] to animations of dynamic graphs to help users understand the changes that

happened in the graph layouts [102]. The Gestalt Principle considers several aspects about

how peoples’ perceptual systems organize disjoint visual elements into groups. GraphDi-

aies [103] was designed for identifying, tracking and understanding changes happened in

animated node-link graphs. Exploration tasks help in time reducing and error minimiza-

tion by supporting multiple navigation features, such as inter and intra navigation between

and within staged transitions and the non-linear navigation over time. Wongsuphasawat

and Shneiderman applied a Match & Mismatch method to categorical data so that users

can effectively find similar items [104]. Before matching and comparing entities, users

are allowed to align the sentinel categories.

2.3.3 Visualizing Structure and Property Changes

To show the structural changes of communities, Reda et al. create interactive visualiza-

tions [105]. Individuals are depicted as threads that enter different communities to show

the temporal change of memberships. Similarly, Vehlow et al. [106] represent the dynamic

communities together with the topology of original graphs as references. They provide a
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SankyFlow-liked diagram with optimized ordering of vertices, so that users can intuitively

trace the movement of vertices across communities. An example of SankeyFlow is given

in Figure 2.9. Wu et al. analyse time-varying egocentric graphs and build a three-layer

interface for displaying patterns [107]. Users can have an overview of the entire graph

dataset at the macroscopic level and the evolution of an individual researcher’s egocentric

graph is accessible at the mesoscopic level. The microscopic level reveals the temporal

information of egos and alters.

Figure 2.9: The Sankey diagram3is suitable for showing the flow of data proportions.

Based on the properties of graph entities, Yuru et al. find dynamic multi-relational

clusters [108]. They firstly generate soft clusters by picking important entities and com-

puting their similarities. The clusters are measured by calculating the probability of an

entity transiting from one cluster to another. Their method acquires a good performance

in tracking evolution and revealing contextual transitions. EgoNetCloud [109] is imple-

3https://bost.ocks.org/mike/sankey/.
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Figure 2.10: Use EgoNetCloud to show the co-authorship of a researcher from year 2003

to year 2013 [109]. Multiple interaction features are provided in the left panel.

mented to support the exploration of event-based egocentric graphs. Data-driven simplifi-

cations are applied to obtain small but salient abstractions of large graphs. A novel layout

algorithm constraints the positions of nodes, so that similar nodes are placed closely with

less visual clutter. Figure 2.10 is an example showing the evolution of co-authorship ego-

centric graphs.

2.4 Evaluation Methods

We evaluate a visual system to prove its effectiveness in helping users to gain insights into

the data. The general procedure of evaluation can be concluded as follows:

1. Clarify the goals of evaluation. For example, evaluating the performance of a visual

system with respect to a specific data set;

2. Determine the metrics for evaluation. The metrics can be qualitative or quantitative.
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Details of these two types of metrics are listed separately in following parts;

3. Decide the approaches of evaluation. This process should include at least two com-

ponents, choosing testers (whether they are experts in one area or ordinary users)

and selecting the form of evaluation (e.g., interview or questionnaire);

4. Design a questionnaire. List all the questions that are required to be answered by

target users. The questions are supposed to cover all aspects of the visualization

system as much as possible;

5. Demonstrate and analyze the results of evaluation. With the combination of quanti-

tative measurements and feedback from target users, researchers can draw a conclu-

sion about which part of the system has been relatively desirable, while other parts

may need improvement.

The targets that we evaluate are mainly: the methods for analysing data and the visual

designs for presenting the results of analysis. We can justify the evaluation by setting a

ground truth which needs to work with visual tasks [110].

Evaluation metrics are categorised as objective or subjective. The former can be de-

scribed quantitatively while the latter are usually derived from users’ experience. Based

on the metrics proposed by Frishman and Tal [36] for assessing the performance of the

dynamic drawings of clustered graphs, we make complements, and list them as follows:

Quantitative:
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• Space Compactness: it measures the utilization of the display space. This is an

important measurement because with the fast growth of data size, how to display as

much information as possible in limited space becomes a primary issue;

• Run-time Efficiency: here we can take the graph layout algorithms as an example.

Most of the force-directed algorithms are relatively slow due to large numbers of

iterations. Hence, they can hardly be applied to large scaled datasets;

• Error Rate: it usually comes along with visual tasks. If a benchmark is available,

we can compare it with the result of tasks to calculate the error rate. Lower error

rates partially reflect the effectiveness of visualization tools;

• Frame Changes: changes between two adjacent time steps should not be sharp.

Otherwise, users’ mental map will be damaged. The number of nodes/edges added

to or removed from view, as well as the total movement of nodes can be used to

measure the changes;

• The number of edge crossings: it is a unique measurement for graph data. Fewer

edges crossings are often preferred, because the clutter caused by edge crossings

largely reduces the readability;

• Total edge length: related nodes are expected to be placed as close as possible, so

that users’ eyesight does not need to move across a long distance.

Qualitative:
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• Readability: affects how easily readers can understand the information that the sys-

tem tries to convey. It is often reflected by the aesthetic criteria as well as the

complexity of drawings. Therefore, this measurement is closely related to metrics

of edge crossings and edge lengths mentioned above;

• Stability: it shows the extend of mental map preservation. High stability might save

users from a sudden visual change, such as a noticeable movement of the node;

• Usability: the visual system should be easy to interact with and manipulate so that

even non-expert users can quickly get started.

Currently, most of the evaluation researches focus on controlled experiments, usability

assessments and case studies [111]. For any applications, it is desirable to incorporate both

the qualitative and the quantitative metrics. We can improve the system by getting users

involved and learning from their feedbacks.
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CHAPTER 3

REPRESENTING THE SIMILARITY

BETWEEN GRAPH COMMUNITIES

3.1 Introduction

As the number of graph entities increases, the readability of presenting graphs in a lim-

ited space decreases. Because it is difficult to avoid overlaps by isolating nodes, or to

reduce crossings by organising edges [60]. Consequently, users are hindered to perceive

significant information from graph drawings, such as the connectivity patterns.

To facilitate the visual understanding, one solution is to cluster nodes and links and

represent them by a new single node [112, 113]. The benefits of doing this include two

aspects: (1) elements that need to be presented on display become less, hence the visual

clutter is alleviated; (2) we can expose the graph structure at a higher level, as shown in

Figure 3.1, the level can be controlled by applying clustering operations iteratively.

In network analysis, the community structure is built by a cluster of nodes and their

incident edges. Nodes inside the same community are more densely connected than nodes

that reside in different communities. Similar communities can have various applications.

For example, in the context of social networks, we can carry out friendship recommenda-

tions, evaluate emotions, detect relationships, and predict events [114, 115, 116].
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(a) (b) (c)

Figure 3.1: Folding nodes and links at different levels. From (a) to (c), we lower the visual

complexity by hiding more details from view.

We refer to the graph whose nodes represent communities as the community graph. It

raises two issues: (1) users can no longer visually access the inner structures of commu-

nities; (2) the graph drawing is not informative. From Figure 3.1c, users can count the

communities and observe their relationship, but they are unable to recognize the topol-

ogy of graphs that are induced by communities, neither to tell if the graphs have similar

structures.

In this chapter, we put forward a framework to enrich community graphs with the

structural similarity information among communities. As shown in Figure 3.2, our frame-

work consists of three main modules. (a) and (b) are for detecting communities and cal-

culating structural similarities, respectively. They both incorporate multiple state-of-art

approaches, and users can select any of them according to their performance on different

datasets. (c) is for drawing community graphs by node-link diagrams. Meanwhile, nodes’

positions are decided by community similarities. Details of these modules can be found

in Section 3.2, Section 3.3 and Section 3.4, respectively. We further conduct two case

studies on real data by following the pipeline of the framework.
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Figure 3.2: The framework of visualizing the structural similarities between network com-

munities.

3.2 Community Detection

Methods for detecting communities from graphs have been extensively studied [117]. In

this section, we introduce three of them that are widely accepted for the following rea-

sons: first, they achieve good performance and high efficiency on large complex net-

works; second, they do not require prior knowledge, e.g., the number of communities.

These methods can be used interchangeably for obtaining non-overlapping communities

in the Community Detection module of our framework. The corresponding details can be

found in each of the subsequent sections.
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3.2.1 The Louvain Algorithm

This algorithm was proposed by Blondel et al. [67]. It aims to greedily maximize the

graph modularity:

Q =
1

2m

∑
uv

[
Auv −

kukv
2m

]
δ(cu, cv). (3.1)

Q is a scale value in the range of [−1, 1], measuring the density of edges inside communi-

ties compared to edges between communities. In Equation 3.1, 2m is the sum of all edge

weights; for nodes u and v,

Auv =

 1, G is unweighted

wuv, G is weighted
(3.2)

wuv is the weight of edge uv; ku and kv denote the sum of weights of edges attached to u

and v, respectively; cu and cv indicate the communities of u and v;

δ(·) =

0, cu 6= cv

1, cu = cv
(3.3)

To solve the optimization problem, nodes are assigned to their own communities ini-

tially. Then, the following steps are repeated until Q converges:

1. For each node, the change in Q is calculated for moving it from its original commu-

nity to the community of each of its neighbors, and the node is then moved to the

community which results in the largest modularity change. If the movement does
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not cause any increase of modularity, the node stays in the original community. Ac-

cording to Equation 3.1, for weighted graphs, nodes u and v are more likely to enter

the same community if wuv is larger;

2. Nodes of the same community are grouped and are replaced by a new single node.

The weight of edges between any two new nodes equals to the sum of weights of

the original edges that connect nodes now belonging to two different communities.

The time complexity of this algorithm is in O(|V | log |V |), and |V | is the number of

nodes in the graph.

3.2.2 The Infomap Algorithm

This is an approach based on information theory. A map describes the flow of information

across nodes and links [69]. Suppose the flow path is generated by a random walker. The

key to this algorithm is encoding the path with the shortest code length. Accordingly,

each community is given a unique code and the inner nodes are distinguished by different

Huffman codes. Besides, a Huffman code can be reused by nodes belonging to different

communities. For each community, a special code is reserved to denote that the walker

jumps out of it.

This algorithm maps the objective of community detection to seeking an efficient path

code. A better separation of communities results in a shorter code. The average length of
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code for each step is defined as:

L(M) = qH(Q) +

|C|∑
i=1

piH(P i), (3.4)

where q denotes the probability that community codes appear in the path code; pi equals

to the probability that the codes of nodes of community i appear in the path code; |C|

is the number of communities; H(Q) and H(P i) measure the average length of code for

naming all communities and nodes, respectively.

At the beginning, all nodes are initialized as their own communities. Then, in each

iteration the visiting order of nodes is determined by a random walk, and the community

of a node is updated by assigning it to its neighbor’s community which causes the largest

decrease in L(M). The algorithm stops until L(M) cannot be further optimized.

The complexity of this method is O(|E|), and |E| is the number of edges in the graph.

3.2.3 The Label Propagation Algorithm

In this algorithm, each node is initialized with a unique label. We then iteratively update

the label of each node with the most frequently occurring label in its neighborhood. [77].

At the beginning, since all nodes have different labels and the frequency of each label is 1,

we randomly select a neighbor’s label to update the label of the current node. The random

selection also applies, if there are multiple labels that have the same highest frequency in

the neighborhood. The algorithm stops when for every node, it has the same label that

most of neighbors have. At the end, nodes that possess the same label are assigned to the
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same community.

There are two modes available for updating labels: synchronous and asynchronous.

For the former, a node updates its label based on the labels of its neighbors in last iter-

ation, while for the latter, labels that are accessible to the current node are always the

newest. In the asynchronous mode, the updating order of nodes should be random. In this

chapter, we use a semi-synchronous implementation [118] which determines the visiting

order of nodes and the avaiable labels of neighbors by a coloring technique [119]. This

implementation is guaranteed to always converge to a stable labeling.

The complexity of label propagation is O(|E|).

3.2.4 Evaluation

It is still an open question to verify if one method is better than others at detecting commu-

nities in real applications, because there is no way to know the graph structure in advance.

Frequently used benchmarks include the GN (Girvan and Newman) [68] and the LFR

(Lancichinetti-Fortunato-Radicchi) [66] datasets. They consist of artificial graphs that are

generated by controlling a set of properties [120]. For example, the average degree of the

GN network is 16 and the nodes have approximately the same degree. However, these

benchmarks have limitations as they cannot take all graph properties into consideration

and simulate real networks. In this work, we decide to compare the three methods by

applying them on real network data in Section 3.5.

Suppose U and V are two partitioning results of communities. Normalized Mutual
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Information (NMI) is a metric that can be used to measure the similarity of U and V . It is

defined as follows:

NMI(U, V ) =
MI(U, V )√
H(U)H(V )

, (3.5)

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

P (i, j) log(
P (i, j)

P (i)P ′(j)
), (3.6)

H(U) =

|U |∑
i=1

P (i) log(P (i)), (3.7)

H(V ) =

|V |∑
j=1

P ′(j) log(P ′(j)), (3.8)

P (i) =
|Ui|
N

, (3.9)

P ′(j) =
|Vj|
N

, (3.10)

P (i, j) =
|Ui ∩ Vj|

N
. (3.11)

The NMI value is in the range of [0, 1], and a higher NMI implies that U and V are

more similar.

3.3 Measuring Graph Similarities

Graph similarity has a wide range of applications in the area of visualization. For example,

Kwon et al. [121] estimate the layout of a graph from the known layout of a similar graph.

They adopted a kernel-based method to calculate the graph similarity. Graph kernel can
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be defined as a distribution of a set of sub-structures, including random walks, graphlets,

the shortest path, etc. Using the persistent homology technique, Hajij et al. [122] quan-

tify structural changes in time-varying graphs, and they can successfully capture cyclic

patterns and one-time events.

In this section, we use two vectorization-based methods. Original graphs are trans-

formed into feature vectors and the similarity score is then computed on these vectors.

3.3.1 A Topological Features Based Method

Netsimile [123] is designed to convert graphs into vectors and is independent of graph

size. To do so, we need to compute |F | topological features for each node and construct a

|N | × |F | feature matrix which is defined as:

M =


f11 f12 ... f1|F |

f21 f22 ... f2|F |

... ... ... ...

f|N |1 f|N |2 ... f|N ||F |

 , (3.12)

where fij is the jth feature of node i. Features include:

• Node degree: the number of immediate neighbors of a node;

• Clustering coefficient: the ratio of the number of triangles connected to a node to

the number of triples centered at the node;

• Average number of a node’s two-hop away neighbors;
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• Average clustering coefficient of the immediate neighbors of a node;

• Number of edges in a node’s egonet: the egonet is a subgraph induced by the node

and its neighbors;

• Number of outgoing edges from a node’s egonet.

For undirected graphs, we can use less features, discarding the last one.

A feature matrix is then converted to a signature vector V by aggregating the values

of each feature:

V = [x(M1), y(M1), z(M1), . . . , x(M|F |), y(M|F |), z(M|F |)], (3.13)

where Mi, i ∈ [1, |F |] is the i-th column of M ; x(·), y(·) and z(·) represent the median,

mean and standard deviation aggregators, respectively.

The run time complexity of Netsimile is linear on the number of edges.

3.3.2 A Graph Convolutional Network Based Method

Node representations can also be acquired from learning the whole graph by a generalized

neural network model. The benefit is that we do not have to designate the appropriate

features to compute for each node. The GCN (Graph Convolutional Network) model

extracts graph features by conducting convolutions in the spectral domain [124].

We adopt an implemention proposed in [125]. The netwok structure is demonstrated

in Figure 3.3. By training this network, we aim to obtain node-level outputs of a function
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of the features of the input graph. In this context, the final outputs are labels that separate

nodes in to c classes. Graph features are represented as a |N | × |N | matrix. Each row

is the feature vector of a node that shows its one-hot occurrence. In every convolutional

layer, node features are updated, and the feature dimension at the last layer equals to c.

After applying the softmax operator to the output features, we can get the distributions of

probabilities that nodes are assigned to each type of classes.

Figure 3.3: The architecture of the Graph Convolutional Network.

Between every two convolutional layers i and i+ 1, we need to learn a weight matrix

W i that is shared by all nodes. Suppose Li and L(i+1) denote the output of the i-th and

(i+ 1)-th layer, respectively. Their relationship is defined as:

L(i+1) = f(Li, A) = σ(ALiW i), (3.14)

where A is the adjacency matrix of the graph; σ is an activation function and we often use

ReLU.
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Figure 3.4: Comparing the neighborhood of objects in: (a) low-dimensional regular grids

and (b) high-dimensional irregular structures. Neighbors of A, B, A′ and B′ are high-

lighted by the blue color.

The reason thatA is embodied in Equation 3.14 is because graphs are high-dimensional

irregular structures. As shown in Figure 3.4, objects in low-dimensional regular grids,

such as images, have a fixed number of neighbors while this is not the case for graph en-

tities. Figure 3.5 provides an example of calculation. The graph consists of three nodes,

and we assume each node has a three-dimensional feature vector at layer i, nxy denoting

the y-th feature component of the x-th node. W i is in the shape of 3 × 2, hence the new

node feature should be two-dimensional. We can see that without multiplying A, LiW i

does not update node features by considering the neighboring information. However, the

feature of the node itself is ignored in ALiW i. Therefore, following manipulations need

to be made:

• Add an |N | × |N | identity matrix I to A to take the node itself into consideration;

• Normalize A to balance the impact of features between high-degree and low-degree
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Figure 3.5: An example of calculating the output of a graph convolutional layer.

nodes.

Equation 3.14 should then be transformed into:

L(i+1) = f(Li, A) = σ(D̂−
1
2 ÂD̂−

1
2LiW i), (3.15)

where Â = A+ I and D̂ is the degree matrix of Â.

We use the output of the last convolutional layer as the vector representations of nodes

which are also known as embeddings. Each vector is c-dimensional. To get the graph-level

representation, we average all node vectors:

vG =
1

|N |

|N |∑
i=1

vi, (3.16)

here vG and vi represent the graph and vetex vectors, respectively.
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3.3.3 Similarity Measurement

The similarity between graph G1 and G2 can be reflected by the distance between their

corresponding vectors vG1 and vG2 that are obtained by using either of the foregoing meth-

ods. Following distance metrics can be used:

Cosine distance = 1− vG1 · vG2

||vG1||||vG2||
, (3.17)

Jaccard distance = 1− |vG1 ∩ vG2|
|vG1 ∪ vG2|

, (3.18)

Canberra distance =
n∑

i=1

|vG1i − vG2i|
|vG1i|+ |vG2i|

. (3.19)

The similarity score can be computed as the reciprocal value of the distance. We

use the cosine distance in this chapter. || · || in Equation 3.17 denotes the vector length.

The distance is 0 when vG1 and vG2 are the same, and 2 when vectors point to opposite

directions. The range of the Jaccard distance is [0, 1] and | · | in Equation 3.18 represents

the set size. Canberra distance is good at capturing tiny differences between vectors. | · |

in Equation 3.19 computes the absolute value and n is the number of components in each

vector. Each fraction component of this distance is in the range of [0, 1].
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3.4 Visualizing Community Graphs

The goal is to improve the expressiveness of community graphs so that users can achieve

a visual understanding of how similar the communities are. Graphs are drawn as node-

link diagrams where nodes represent communities. Edges between nodes imply that the

corresponding communities contain objects that are originally connected.

Since we regard a dynamic network as a sequence of chronologically ordered static

networks, we analyse the requirements of visualization from two perspectives:

• Spatial dimension: demonstrate the similarity between communities. How many

communities have the similar structures? Is the pair-wise similarity between com-

munities evenly distributed, or is there any community that is very dissimilar from

others?

• Temporal dimension: track the similarity changes between communities in con-

secutive snapshots. Is there any identical communities? Are they becoming more

similar/dissimilar to others?

For the first requirement, we map the similarity between communities to the distance

between node positions on the display. Instead of using the force-directed algorithms,

we calculate the graph layout by the MDS (Multi-dimensional Scaling) method so that

more closely located nodes indicate that the corresponding communities have more similar

structures.
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We use MDS as a dimension reduction technique for projecting data items from a high-

dimensional space to the Cartesian space, because it is easy to perceive and comprehend

the relationship between data items on the 2D display. MDS aims to ensure that the

distances between the displayed points reflect the similarities between the input data. The

extent to which MDS reaches the goal can be computed by a stress function [126]:

stress =

√∑∑
(f(xij)− dij)2∑∑

(dij)2
, (3.20)

where f(xij) and dij measure the distance between item i and j in the original space and

the space after transformation, respectively. In our implementation, we use the Euclidean

distance for both of them. The input data are vector representations of graphs. The lower

the stress, the more desirable the MDS result.

For the second requirement, we juxtapose snapshots horizontally along the timeline,

which is convenient for visual comparison. Each snapshot shows the MDS layout of

the community graph. To reveal graph evolution at the community level, we need to do

pair-wise comparisons between communities of every two consecutive snapshots, to see

if there are any identical communities. Community C1 and C2 are deemed as identical if

the ratio of their node intersection is greater than a threshold,

ratio = min(
|C1 ∩ C2|
|C1|

,
|C1 ∩ C2|
|C2|

), (3.21)

where |·| denotes the number of nodes of the community and the operator ∩ calculates the

common nodes among two communities.
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We use color mapping to show the temporal consistency of communities. Namely,

nodes corresponding to identical communities are filled with the same color across time

steps. Nodes representing different communities are distinguished by different colors.

3.5 Case Studies

We conduct two case studies to evaluate the modules of our framework. In the first case,

we focus on comparing the performance of the community detection methods on a static

network. In the second case, we present an application of the framework on a real dynamic

network.

3.5.1 The Experiment Platform

We carry out experiments on a private cloud platform, and the benefits include:

• Resource pooling: a cluster of physical machines provide combined capabilities for

efficient data processing;

• Scalability: the system accommodates to heavier loads by flexibly embodying new

servers;

• Sharing: various tools are installed and multiple users can access them simultane-

ously without worrying about the configuration.
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3.5.2 The Hardware Platform

The cloud platform is deployed on OpenStack [127] with seven machines, including two

PC towers and five Zotac devices. All these machines can access a high bandwidth router

through a Dell switch. As shown in Figure 3.6a, the PC with 8 GB of RAM acts as

the hypervisor, while the one with 16 GB of RAM plays the role of a controller. we

install basic Openstack services on the controller node, such as Keystone for identification,

Glance for image storage and Horizon for dashboard access. The controller also manages

the schedule of tasks. The cloud compute nodes are four Zotac i7 machines plus one Zotac

steam machine with a high-performance GPU. The Zotac i7 machines are individually

equipped with 8 cores and 16 GB RAM, and the steam machine has 4 cores and 16 GB

RAM. Figure 3.6b presents the real demo.

A virtual machine (VM) has the following resource setting by default: 4 GB RAM, 2

VCPUs, and 5 GB of disk space. VMs are the access points through which users interact

with the cloud system. Users can freely create, configure or delete one or multiple VMs.

They can also establish VM clusters with diverse topologies.

Regarding softwares, we use python with NetworkX to manipulate and analyse graph

data. The deep learning platform we use is Pytorch. Visualizations of community graphs

are drawn by JavaScript and D3.
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(a) (b)

Figure 3.6: The cloud platform infrastructure

3.5.3 Case 1: Static Network

We downloaded the Amazon product co-purchasing network data [128] from the SNAP

website [129]. The network depicts the relationship of which products are frequently co-

purchased by customers. The data package also contains the ground-truth communities.

Based on the product category provided by Amazon, each connected component in a

category is regarded as a ground-truth community.

Data processing. The dataset provides 5000 high-quality communities, but many of

them turn out to be duplicates. After removing all duplicates, we have 1517 of them left,

and we also find that these are overlapping communities. Since we are only interested
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in non-overlapping communities, we assign each node uniquely to the largest one of the

communities that it has involved with. This operation causes certain small communities

disappear. Finally, we have 1163 communities left as the ground truth.

Our objective of study is to compare the result of the three community detection meth-

ods with the benchmark. Therefore, we retrieve the sub-network induced by the nodes of

the 1163 ground-truth communities, and apply those methods to this sub-network which

contains 16 716 nodes and 48 739 edges.

Comparative analysis. The statistics about the detection results of the three meth-

ods are displayed in Table 3.1. We can see that the Louvain method obtains the most

approximate number of communities (i.e., 1121) to the ground truth, while the label prop-

agation method returns the largest number of communities (i.e., 1753). Meanwhile, we

find that the former method achieves the highest NMI (i.e., 0.9906) and the latter method

has the lowest (i.e., 0.9507). Given that the range of NMI is [0, 1], all these methods

have achieved good results as their NMI values exceed 0.9. In terms of the time cost, the

Louvain method is the most time-consuming, and the label propagation method almost

finishes immediately. The Infomap algorithm achieves moderate performance among all

metrics.

Figure 3.7 contains the histograms showing the size distribution of communities. Rugs

on the horizontal axis denote the size of individual communities. We set the number of

bins to 20. Like the benchmark, most of the communities detected by the algorithms have

less than 50 members. In the benchmark, there are two communities whose sizes are larger
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than 300. The Louvain algorithm finds a community which has about 230 members, but

the Infomap and label propagation method fail to find large communities. Therefore, we

believe that the Louvain algorithm achieves the best performance in this case.

Louvain Infomap Label propagation

|C| 1121 1424 1753

Time 4.42 0.50 1.59e−5

NMI 0.9906 0.9655 0.9507

Table 3.1: The number of detected communities (|C|), time cost (second) and NMI based

on the benchmark of the three community detection methods.

3.5.4 Case 2: Dynamic Network

We retrieve the revision records of Wikipedia during January to December, 2007. Each

record is described by a timestamp, an article ID and an editor ID. The time interval is set

to one month. Two editors are assumed related if they ever worked on the same article. For

each month, editors are ranked by their contribution to different articles. The constructed

network at one time step consists of top 1600 editors, and the average number of edges is

41 609.

Figure 3.8 displays the original graphs and these drawings are generated by Gephi [130]

with a force-directed layout algorithm [131]. Due to the large number of nodes and dense

connections, visual overlapping becomes an outstanding problem. Besides, it is impossi-

ble to recognize the structural changes by observation.
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(a) ground-truth (b) louvain

(c) infomap (d) propagation

Figure 3.7: The histogram of the distribution of community size.

We adopt the Louvain method for detecting communities at every time step, and the

force-directed layout of community graphs are shown in Figure 3.9. Communities are

numbered randomly, without suggesting any relationship between communities at differ-

ent time steps.

Figure. 3.10 shows the matching relationship between communities at consecutive

time steps. Corresponding communities can be found in Figure 3.9 through the numbers

in the circles. We identify matched communities by applying pair-wise comparisons based

on Equation 3.21. The threshold of similarity is set to 0.25. With the increase of time, the
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Drawings of the original networks at six time steps. Small blue circles and

curves denote nodes and connections, respectively.

number of matched communities decreases. There are 8 matching pairs between step 1

and 2, but none is found between step 4 and 5. Community 1 is the most endurable and its

existence spans four time steps.

The GCN model is then used for obtaining vector representations for the subgraphs in-

duced by communities. We construct a network that consists of two convolutional layers,

which means every graph node will learn information from its second-order neighbor-

hood. The number of units in these two layers are 16 and 15, respectively. We train the

network repetitively at every time step and the input is the original graph at that time.

Graph nodes are labeled by their community indexes. The learning rate is 0.01 and the

dropout rate is 0.5. Figure 3.11 shows the accuracy of the model.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Reduce the visual complexity of original graphs by displaying them at the

community level. Circles represent communities.

Figure 3.11: The accuracy of the GCN model in 200 epochs.
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Figure 3.10: The matching relationship between communities at different time steps that

are denoted by circles.

After the accomplishment of training, we use the model to get the 15-dimensional

node embeddings. To verify if they truely represent the nodes, we project them to 2-

dimensional space as shown in Figure 3.12. We can see that nodes belonging to different

communities can be well separated.
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Figure 3.12: The scatter plot of nodes whose coordinates are decided by their two-dimen-

sional embeddings. Different colors are used to differentiate nodes of different communi-

ties.

We then compute the community embeddings according to Equation 3.16. The community-

level MDS visualization is shown in Figure 3.13. To show the evolution of communities,

we fill circles based on the matching relationship demonstrated in Figure 3.10 with the

same color scheme [132]. Other circles are filled with the steel blue color by default.
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(a) (b) (c)

(d) (e) (f)

Figure 3.13: Visualizing community graphs by MDS. Circles denote communities. The

closer the circles, the more similar the corresponding communities.

We find that, from step 1 to step 4, most of the communities are similar, because circles

representing them gather together. However, their similarity decreases at step 5 and 6, as

the distance between circles increases. The two communities marked by dashed lines in

Figure 3.13a, 3.13b and 3.13c remain stable and keep having very different structures.

3.6 Conclusion

In this chapter, we present a framework for visualizing the similarities between graph

communities. In the three main modules of the framework, we integrate multiple ad-

vanced methods for detecting communities and calculating graph similarities. To evaluate

the effectiveness of these methods, we conduct two case studies on real data. The similar-

ities between communities are mapped to the distances between nodes in graph drawings
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so as to let users obtain a visual understanding about which communities have similar

structures. However, in current visualizations, community structures are still hidden from

view. Hence, for the future work, we plan to provide visual encodings for such structural

information.
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CHAPTER 4

VISUAL SIMPLIFICATION BY

CLASSIFYING GRAPH STRUCTURES

In last chapter, we discuss how to reveal the structural similarities between communities

based on the vectorization of graphs. Though users can identify which communities are

more similar by viewing their distances in our visualizations, they still lack information

about the individual structures of communities. In this chapter, we solve this problem by

a classification-based method introduced in Section 4.3. Besides, we realize the smooth

animation of graph evolution by detecting communities at a global level, and the details

can be found in Section 4.4.

4.1 Introduction

The visual clutter arises when drawing large graphs in a limited display space. Therefore,

it is desirable to cluster entities into groups and represent them by single nodes so that

we can achieve visual simplicity. Given these simplified node-link diagrams, users can

no longer access the topologies of clusters because they have been concealed. We aim to

solve this problem by classifying the structures of clusters into user-defined topological

patterns. Then, we embed glyphs denoting those patterns into the simplified visualization.
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This approach makes it convenient to understand the local structures, search for specific

topologies, and capture the structural differences.

Community detection algorithms can be used to cluster densely connected vertices.

Extensive researches have been conducted on static graphs [68, 67]. According to Ros-

setti et al. [2], dynamic community detection techniques are categorized into three main

types: (1) Instant Optimal [133], (2) Temporal Trade-off [88] and (3) Cross Time [134].

From (1) to (3), the optimality of the community structures decreases while the temporal

stability increases. We propose a cross-time algorithm based on the concept of the Super-

Graph [40]. The communities detected from the SuperGraph are used as references for

retrieving communities at individual time steps. Using this approach, we can achieve high

temporal consistency at a low time cost.

We provide topological patterns to approximate the original community structures,

and they imply the backbone shapes of graphs. Li et. al defined several topological pat-

terns [135]. Similar to their work, we adopt four patterns: chain, loop, clique, and ego-

centric, based on the prevalent topologies in graph theory.

To classify graph structures into topological patterns, we take graph layouts rather than

the original graphs as the input and train a multi-class model for prediction. Because we

find that a determined layout algorithm generates similar drawings for graphs of similar

structures, as shown in Figure 4.1. The benefit of this approach is that we can eliminate

the exhaustive calculations involved in traditional methods. Notably, the layout algorithm

and its configurations must remain constant regardless of the training or prediction stage.
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Graph drawings vary considerably when using different layout algorithms or parameters,

which might reduce the classification accuracy.

Figure 4.1: Using the same parameters, the Fruchterman-Reingold layout algorithm gen-

erates similar layouts for graphs of similar structures. From (a) to (c), we create the graph

data by removing a certain number of edges from a complete graph on 30 vertices.

We design compact glyphs to represent the topological patterns and integrate them into

the node-link diagrams. Node positions are computed at a global level so as to achieve

the visual smoothness. We use animations to display the evolution of time-varying graphs.

Since animations do not provide good support for comparing different snapshots, we place

the previous and current topological patterns concentrically in one animation frame. The

results of the case studies show that our method produces animations that result in min-

imum visual discontinuities. Meanwhile, users can identify both the global and local

structural changes. Specifically, our contributions are as follows:

• We map graph communities to topological patterns, which is an efficient way to

navigate users through diverse graph structures. In this work, we define four pat-
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terns. However, new patterns can be easily added by re-training the classification

model;

• We propose a layout-based classification method and train a model by learning the

visual characteristics of the layout images. The model can then be used to predict

the topological patterns of arbitrary graphs;

• We improve the visual stability by determining the layout of graph drawings at a

global level. Thus, no abrupt changes occur between consecutive snapshots. Pen-

tagonal glyphs represent the topological patterns, and their inter-transformation pro-

cedure keeps steady.

• We implement the exploration of graph structures based on simplified node-link

diagrams. It is convenient to locate communities that have similar structures and

make comparisons between different snapshots.

4.2 System Overview

We build a visual system that provides simplified representations of large and complex

time-varying graphs. This system aims to assist users in tracking the evolution of graph

structures and in searching for topologies of interest. We reduce the complexity of visual-

ization and analysis by focusing on graph communities. Figure. 4.2 shows the main stages

of our work.
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Figure 4.2: The pipeline of implementing the visual system. It consists of four stages:

data processing, graph partitioning, structure classification and visual simplification.

In the data processing procedure, we apply temporal aggregation to obtain the desired

time granularity (e.g., a year).

In the graph partitioning step, we construct a SuperGraph (SG) by combining the snap-

shots at all timestamps. The Super Community (SC) is a set of communities detected from

the SG. Taking the communities in SC as nodes, the corresponding layout determined by a

force-directed algorithm [136] is called the Super Layout (SL). At individual timestamps,

we compute the communities and their positions on the display by referencing the SC and

SL, respectively. SG, SC and SL are the key to producing smooth animations. The details

of this process are explained in Section 4.4.1.

It is worth noting that calculating SG, SC and SL results in a smooth animation. We

do not apply community detection and force-directed layout repeatedly to each snapshot.

The algorithms need to be executed only once at the global level. To detect communities,

we adopt the Louvain algorithm [67], which is one of the fastest implementations, with a
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complexity of O(n log n), where n is the number of vertices.

The classification of structures depends on layout images. However, graph drawings

of large communities are likely to suffer from visual overlaps, and machines may fail to

distinguish them. We solve this problem by adding an optional sampling step for commu-

nities whose sizes exceed the limit.

In Section 4.5, we realize the simplification of visualizations by regarding communi-

ties as the minimum visual unit. However the local information is lost. Therefore, we

enrich the node representations with glyphs that denote the topological patterns. Conse-

quently, users can still compare different communities and capture their structural changes.

4.3 Structural Classification

4.3.1 Pattern Description

A topological pattern represents a specific type of graphs from which we can easily per-

ceive the connectivity features. Suppose n is the number of graph vertices, we define four

types of patterns:

• chain: n vertices are linearly connected by (n− 1) edges;

• loop: a n-path of n vertices with two end-vertices connected;

• clique: n vertices are fully connected;
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• egocentric: a vertex is located in the center and all the remaining vertices connect

to it.

In the chain pattern, vertices are connected in a sequence, and they potentially reflect

the ordering information. The loop pattern contains a closed path, and the connectivity is

sparse. Conversely, vertices are densely connected in the clique pattern. The egocentric

pattern has been extensively studied in the context of social networks [107, 109]. It leads

us to find dominant entities.

We define the patterns according to the graph structures that researchers are usually

interested in [137]. Meanwhile, they are very different in topology, making their layouts

easy to distinguish. The shapes of the patterns are illustrated in the left column of Fig-

ure 4.3, using five or six nodes for simplicity. Alternative patterns can be the ones shown

in Figure 4.4.
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Figure 4.3: Pattern drawings (left column) and variants of the clique (first row), (b) ego-

centric (second row), (c) loop (third row) and (d) chain (last row) pattern.

Figure 4.4: Alternative topological patterns.
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4.3.2 Sampling

We limit the size of communities by carrying out random sampling strategies on vertices,

edges, and explorations [62]. There are two reasons: first, large graphs cause the visual

clutter, and the layout-based classification might fail; second, users can hardly verify the

classification result by observing the complex graph drawing.

Following sampling methods are available. Users can compare their results and select

one of them:

Random Vertex Sampling: randomly select a set of vertices from the graph and return

the subgraph induced by these vertices;

Induced Random Edge Sampling: randomly select a set of edges from the graph and

return the induced subgraph on vertices incident to at least one of the selected edges;

Random Walk Sampling: randomly select a starting vertex and then simulate a ran-

dom walk. The sampling result includes all visited vertices and edges.

Sampling results are evaluated by comparing their structures with that of the original

graphs. A higher structural similarity suggests a better result. The similarity score can

be calculated by using the method proposed in Netsimile [123]. We have introduced the

implementation of Netsimile in Section 3.3.1 of Chapter 3. It converts a graph into a

signature vector that encodes the structural characteristics of the graph.

The similarity score equals to the reciprocal of the Canberra distance between two
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graph signature vectors V and V ′:

Canberra distance(V, V ′) =
n∑

i=1

|Vi − V ′i |
|Vi|+ |V ′i |

, (4.1)

where n denotes the number of components in vectors, and | · | calculates the absolute

value. The run time complexity of Netsimile is linear on the number of edges, and the

score value lies in [0,1], where 0 suggests totally different structures, and 1 means that the

graph structures are the same.

4.3.3 Classification Model

We classify graphs induced by all communities into four types as we defined in Sec-

tion 4.3.1. Graphs that belong to the same class may vary a little in the structure, but they

all have similar skeletons.

Traditional solutions to graph classification need to transform graphs to numeric rep-

resentations that facilitate the execution of machine learning tasks [121, 123]. However,

they involve calculations of many topological properties and require for iterative graph

searches. Hence, these methods are time-consuming and not applicable to large graphs.

Kwon et al. [121] pointed out that, given a determinate layout method, topological sim-

ilarities contribute to perceptual similarities. Hence, the classification result of layouts

should be consistent with the classification result of the corresponding structures.

Our method predicts the class label of a community by passing its layout image to

the classification model. During the implementation of our system, the force-directed
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algorithm [136] and the involved parameters such as attractive and repulsive forces remain

the same.

Model: the multi-class model is built on top of a pre-trained neural network, the

ResNet-18 [138]. It optimizes a residual mapping instead of an identity mapping. Apart

from the basic building blocks, there are bottleneck modules, reducing the dimensions of

deeper networks. ResNet-18 is a stack of basic building blocks. Cross-entropy is used to

calculate the loss. The learning rate is 0.001 for the stochastic gradient descent optimizer.

We add a softmax layer to normalize the output to a probability distribution over the four

classes and choose the class with the highest probability to label the input sample.

Training Set: Initially, we build the training set with graphs that have the rigorously

same structures with the topological patterns. We call these graphs as templates. The

number of vertices ranges from 5 to 100. So, there are 384 (i.e., (100 − 5 + 1) × 4)

templates in total. To expand the training set, we use these templates as seeds, and create

their variants by running the following operations:

• clique: randomly remove existing edges (Q1) or add periphery vertices to templates

(Q2);

• egocentric: randomly connect existing alter vertices (E1) or add periphery vertices

to templates (E2);

• loop: randomly add edges between existing vertices (R1) or add periphery vertices

to templates (R2);
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• chain: add periphery vertices and connect them to non-endpoint vertices (C1).

The foregoing operations are executed multiple times until we get 2000 samples for

each pattern. Examples of variants are given in Figure 4.3. We obtain graph layouts by

using the D3 library [139] and train the classification model on the Pytorch platform [140].

Figure 4.5 shows the accuracy of the model.

Figure 4.5: The accuracy of the classification model in 50 epochs.

4.4 Smooth Animations

We measure the smoothness of animations by calculating the visual differences between

every two consecutive frames. Frequently used metrics include the Mean Squared Error

(MSE) and the Structural Similarity Index Metric (SSIM). In this section, we implement

smooth animations by: first, preserving the consistency of graph layouts; second, optimiz-
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ing the visual design of pattern glyphs.

We give mathematical definitions of terminologies that will be used later.

Definition 4.4.1. Time-Varying Graph: GT = {G1, G2, . . . , Gt}, where t is the number

of time steps. For 1 ≤ i ≤ t, Gi = (Vi, Ei), representing the snapshot at time i. Vi and Ei

are the set of vertices and edges, respectively.

Definition 4.4.2. SuperGraph: SG = (VS, ES), where VS = V1 ∪ V2 ∪ · · · ∪ Vt and

ES = E1 ∪ E2 ∪ · · · ∪ Et.

Definition 4.4.3. Super Community: SC = {C1, C2, . . . , Ck} is the set of communities

detected from SG, where k is the number of communities.

Definition 4.4.4. Super Layout: SL is the force-directed layout of C1, C2, . . . , Ck, con-

sisting of the screen positions of nodes that represent super communities.

4.4.1 Stable Layout

SC and SL are the references for obtaining the communities and the layout of

G1, G2, . . . , Gt. As shown in Figure 4.6, we firstly compare the set of vertices in SG

and Gi, and they are denoted by Vs and Vi respectively. For each vertex in Vi, we then

extract the corresponding communities and their positions from SC and SL. Hence, Gi

has two communities, C ′
1 and C ′

2. Also, |C ′
1| = |C1|, |C

′
2| < |C2| and | · | denotes the

number of inner vertices. Despite the size difference between C ′
2 and C2, they are at the

same position on the display. Hence, our method can produce animations that seldom suf-

77



fer from abrupt visual changes, except that adjacent snapshots have substantially different

membership of communities.

Figure 4.6: For individual snapshots, we extract communities and their positions from SC

and SL.

The community detection and the layout algorithms only run on SG and SC. For each

snapshot, the calculation time is linear to the number of vertices. Hence, the total run time

complexity is O(|VS| log(|VS|) + |VS|).

4.4.2 Pattern Transformation

At each time step, we use the classification model to assign topological patterns to com-

munities. Consequently, diverse structures are reduced to four comparable patterns, each

represented by a glyph. Users can observe the distribution of the patterns from the sim-
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plified visualizations. Besides, it becomes easier to identify communities of similar struc-

tures and monitor the evolution of the whole graph.

We use five nodes as the base of a glyph drawing to achieve compactness and aesthet-

ics. Provided that three nodes were used, it would be impossible to distinguish between

loop and clique. Also, it is not impressive to demonstrate the dense connectivity of clique

by four nodes. Using more than five nodes might increase the visual clutter and decrease

the readability.

We improve the visual smoothness by controlling the transformation of glyphs.

Glyphs are attached to the circles that denote communities. When the community pat-

tern changes, we do not want to get sharp visual differences. To achieve this goal, we

bend the drawing of the chain pattern so as to make the four types of glyphs fit a pentag-

onal form. During the transformation, five peripheral nodes remain static and only edges

change.
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Figure 4.7: The chain pattern smoothly transforms to other patterns. Emerging edges are

marked by blue halos and orange halos represent disappearing edges.

As shown in Figure. 4.7, if the chain pattern transforms to a loop pattern, only the

bottom edge needs to be added. However, if the target pattern is egocentric, several edges

need to be added and removed simultaneously. The transformations between other pairs

of patterns are implemented similarly as shown in Figure 4.8. From the egocentric pattern

to other patterns, the central node should also be removed. The pentagonal appearance of

pattern glyphs allows us to have a fluid visual perception when watching the animation.
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Figure 4.8: The manipulation of glyphs shows the transformations from the loop, clique

and egocentric pattern to other patterns.

4.5 Visualization

Our visual analytic system aims at assisting users to perform the following visual tasks

that are related to exploring the structural changes of graphs:

• Graph composition (T1): discover the graph evolution at a high level. How many

communities does the graph have at each time step? Are they densely connected or

not?

• Community importance (T2): measure the importance of a community by count-

ing the number of vertices belonging to it and the total weight of its edges connected

to other communities.
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• Community duration (T3): find stable and dynamic communities. More stable

communities stay longer during the whole period?

• Community evolution (T4): discover the graph evolution at a local level. How does

the size and structure of a community change temporally? What is the topological

pattern that a community matches most of the time? At what time points does a

pattern transformation occur?

• Topological distribution (T5): find communities with similar/different structures.

What is the distribution of topological patterns in one snapshot? How does the

distribution evolve temporally? Are the patterns always evenly distributed, or some

of them dominate?
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Figure 4.9: The interface of the visual analytic system. The data in use is from the DBLP

dataset. (A) represents the change centrality of communities, which quantitatively mea-

sures the structural changes between consecutive snapshots. (B) plays the smooth anima-

tion of time-varying graphs. (C) presents the temporal information of graph statistics. (D)

shows the distribution of topological patterns at a specific time. (E) reveals the community

details with multiple metrics.

Figure. 4.9 shows the interface of our system that is implemented by using JavaScript

and D3.js [139]. The animation is played in (B). Rich statistic information of the graph

and communities is provided to support visual analysis. Tables and charts in (D) and (E)

can be updated when users select a certain time step. Specifically, users can access the

distribution of the four topological patterns and the membership of communities in (D). In

(E), multiple metrics are used to describe the characteristics of communities including the

duration of communities’ existence, the type of the topological patterns, the total weight

of the inner connections, etc. As Parallel Coordinates (PC) are effective visualization tools

for analyzing multivariate data, we use them to present these characteristics. PC consist
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of multiple parallel axes, each denoting a characteristic. A community is represented

by a polygonal line that connects the vertices on axes. The vertices correspond to the

characteristic values of the community. By inspecting the intersection of the polygonal

lines and the individual axes, users can easily understand the value distribution of each

characteristic. Besides, users can perform queries on different ranges of one or multiple

characteristics by brushing on the axes. The explanation of the change centrality in (A)

can be found in Section 4.5.1.

4.5.1 Variation Trend

We can locate fundamental changes of community structures by capturing the visual trans-

formation of topological patterns. But it is difficult to perceive the extent of variation by

observation. Besides, minor changes may not trigger the transformation. Therefore, we

provide view (A) in Figure 4.9 to show the quantitative measurement of variation.

The metric we use is Change centrality [141]. It measures the topological changes and

the temporal changes of a vertex i simultaneously. From time t1 to t2, the calculations are

done by:

rnt1,t2(i) =

∣∣Nn
t1

(i)∆Nn
t2

(i)
∣∣∣∣Nn

t1(i) ∪Nn
t2(i)

∣∣ , (4.2)

cct1,t2(i) =
1

2

ei∑
n=0

1

2(n+1)
rnt1,t2(i), (4.3)

where ei is the maximum graph distance from i to any other vertices; rnt1,t2 is the change
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ratio defined in Equation 4.2; Nn
t1

(i) is the set of neighbours that are n steps away from i

at time t1; | · ∆ · | calculates the number of nodes that are added to or removed from the

n-step neighbors of vertex i; | · ∪ · | calculates the number of nodes in the union of two

sets. The change centrality cct1,t2(i) of a vertex i is defined as a weighted summation of

the changes of the adjacent neighbours, the adjacent neighbours of the latter and so on.

The weight is defined as:

weight =
1

2(n+1)
. (4.4)

The weight decreases quickly with the increase of n, hence we make farther neighbours

play a less important role in the metric by multiplying the weight. Besides, with the

weight definition in Equation 4.5, the change centrality converges with its value in the

range of [0, 1]. We then define the change centrality of a community as the summation of

the changes of all its members:

cct1,t2(community) =

|C|∑
i=1

cct1,t2(i), (4.5)

where |C| is the number of members.

85



Figure 4.10: Circles mark the change centrality values of communities. A curved line

shows the changing trend of a community’s change centrality. The data in use is from the

Wikipedia dataset.

In Figure 4.10, the x-axis and the y-axis denote time and change centrality respec-

tively.The centrality value at x = t represent the extent of changes from t to t + 1. The

larger the centrality value, the more changes occur to the entities of a community. We

use curved lines to connect circles denoting the same community so that it would be

convenient to observe and compare the changing trend. For example, the community rep-

resented by the red line in Figure 4.10 experiences much more changes than others. But,

it tends to be stable because the centrality value decreases. The green line implies that the

corresponding community is becoming more dynamic.

4.5.2 Community Evolution

As frames are displayed one by one in animations, it is difficult to compare the differ-

ences between them. To alleviate this problem, we place two topological patterns of a

community concentrically in a circle, one is for the previous time step, and the other is

for the current step. As a result, the visualization maintains compactness, and users can

directly perform visual comparisons. We assume that the current patterns should attract
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more attention. So they are placed in outer circles and occupy larger space. The previous

pattern is half the size of the current one. As shown in Figure 4.11, previous patterns

locate in inner circles. It is worth noting that though clique and egocentric patterns are

partly covered by the inner area, we can still recognize them.

Figure 4.11: Pattern comparisons of two consecutive time steps. Current patterns are

placed in outer circles, and previous ones are in inner circles. In this example, current

patterns are (a) chain, (b) loop, (c) clique and (d) egocentric, and all previous patterns are

loop.

Changes might happen to multiple communities at the same time. For example, new

communities appear, and old ones disappear. Even if the glyph remains at the same screen

position across continuous time steps, the corresponding community may still involve ex-

pansion, contraction, and pattern transformations. To highlight different types of changes,

we map them to the visual encodings listed in Table 4.1.
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Table 4.1: Visual encodings of the community changes. Emerging communities have no

previous patterns. We remove vanishing communities from the visualization. The size

increase and decrease are illustrated by solid and dashed circle borders, respectively. The

white filling of inner circles indicates the pattern transformation.

Existence
appear

disappear remove from display

Size
increase

decrease

Structure
unchanged

changed

Generally, there are three categories of changes, in terms of the community’s exis-

tence, size, and structure. Different types of changes can happen to a community at the

same time. If a community newly appears, it does not have previous patterns, and we

regard that its size is increased. Hence, we remove the inner circle of the glyph and

adopt a thick solid border. Conversely, if a community disappears, we wipe it out from

the display. The size of a community equals to the number of the inside vertices. If the

size is unchanged or increased, we use solid circle borders. Otherwise, we use dashed

borders instead. The white color is reserved for filling the inner circles of glyphs which

denote communities that undertake pattern transformations. If the topological pattern of a

community is unchanged, then the outer and inner circles of the glyph are filled with the

same color. In this work, we use different types of lines and colors to distinguish various

88



changes. As the background color of circles might make the lines difficult to read, we

can decrease the opacity of colors to increase the contrast. Though alternative shapes for

nodes in node-link diagrams can be triangles, squares and so on, we choose circles be-

cause we can draw them as circumcircles of pentagons so as to improve the aesthetics and

compactness of visualizations.

4.6 Case Studies

To evaluate the performance of our method, we conduct case studies on two datasets. For

the Wikipedia Edit History dataset [142, 143], we focus on measuring the time cost of

classifying community structures and the visual differences between animation frames.

For the DBLP dataset [128], we discover significant findings from the visualizations.

4.6.1 Wikipedia Edit History Data

We retrieved the complete Wikipedia revisions data from January to December 2007, and

the time interval was a month. We focused on the relationship between different editors.

Two editors were connected if they had ever worked on the same article. Specifically,

for each snapshot, top k editors were abstracted as vertices of the network. In this case,

k equals to 1600. We ranked editors by the number of different revisions that they had

made.

The first row of Figure 4.12 contains node-link diagrams of the constructed networks.

They were generated by using Gephi [130] with the same force-directed layout algo-
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rithm [131]. We can see that severe visual clutter problems prevent users from identifying

network changes.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 4.12: Graph drawings of the Wikipedia data in five months, from January to May.

The first row shows the original graphs. Nodes and links denote editors and their co-au-

thorship, respectively. For the second and third row, nodes represent communities. Com-

munities and their positions in the second row are computed independently for each time

step. The third row presents the visualization results generated by our method.

The third row of Figure 4.12 shows the result of our method. We convert the represen-

tations of complex networks to much simpler forms, by clustering closely related vertices

into communities and substituting them by a single node. Since the structural information
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is hidden from view, we attach pattern glyphs for compensation. Table 4.2 lists the calcu-

lation time of community detection, layout, and classification. The classification time is a

summation of the time taken to classify all communities at each time step. According to

Figure 4.12, there are about 17 communities in each snapshot. The time cost of training

the classification model is about 44 minutes and 43 seconds.

Table 4.2: The time cost (in seconds) of community detection, layout and classification.

detection layout classification

Jan. 0.12 0.004 1.23

Feb. 0.13 0.007 1.87

Mar. 0.18 0.009 1.38

Apr. 0.20 0.007 1.15

We set the size limit of communities to be 100. Users are allowed to select a sampling

technique: RV, RE, or RW to reduce the community size. The performance of differ-

ent sampling methods vary on graphs of different structures. We measure the structural

similarity between sampling results and the original graph by Netsimile [123]. Users are

suggested to select the sampling method that achieves the highest similarity score. We

take one community as an example. It contains about 150 vertices. Figure 4.13 shows its

sampling results by RV, RE, and RW in February and the similarity scores from February

to May. We can see that for this community, RV achieves the best result.
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Figure 4.13: Sampling results of a graph by RV, RE and RW. Their structural similarities

to the original graph is measured by Netsimile.

To measure the visual smoothness of the animation, we compared every two consecu-

tive frame images by MSE and SSIM. When MSE equals to 0, it implies that two frames

are the same. Higher MSE values indicate bigger dissimilarities between frames. The

SSIM value lies in [−1, 1], and it reaches to 1 when two frames are the same. Figure 4.14

shows the measurement of visual similarity. s12 indicate the value between January and

February, and s23, s34, and s45 are likewise. We compared our smooth animation with

the animation where community detection and graph layout were conducted separately

for individual frames. It is clear that our method produces less visual artifacts.
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(a) MSE measures the perceived changes. (b) SSIM reflects the structural changes.

Figure 4.14: Measuring the visual smoothness of animations with (blue) and without

(orange) calculating SG, SC and SL.

4.6.2 DBLP Data

The DBLP dataset contains the co-authorship between researchers in computer science.

We selected an active researcher (i.e., the ego) and built an egocentric network by retriev-

ing all other researchers (i.e., the alters) who had ever cooperated with him from the year

2006 to 2015. The connections between alters were also considered. There were about

515 authors and 3268 co-authorships involved in 10 years. Our objective was to perform

visual tasks and explore significant patterns.

We merged data at all time steps and built a SuperGraph. Then the community detec-

tion and force-directed layout algorithms were performed. Figure 4.15 shows the result.

There were 17 communities in total, and they provided a reference for the graph parti-

tioning. At each time step, an extracted community had an equal or smaller size than the
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corresponding community in SC. In Figure 4.15, we show the correspondence by labeling

communities with indices from 0 to 16. We made a comparison between our SL-based

layout and the layout obtained by independent calculations at each timestamp. For the

former, identical communities such as community 1 remain at the same locations during

the animation. However, community positions are quite random for the latter. Therefore,

our method is better at preserving the mental map.

Figure 4.15: Comparison of the layout generated with and without SL. The super-layout

row consists of layouts extractd from SL. Layouts in the force-directed row are calculated

independently.

Figure 4.16 shows the snapshots in four years. The first row consists of the force-

directed drawings of the original graph. The second row lists the frames of the animation

generated by our method. Due to the stable membership of communities and the static
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Figure 4.16: Comparison of the original graph drawings (first row) and the simplified

drawings with topological pattern glyphs (second row).

positions of identical communities, the animation was quite smooth. Factors that caused

visual variations included the connections between communities, the size changes of com-

munities, and the transformation of topological patterns. We assumed that the year 2006

was the beginning point. Hence, all communities had no previous patterns, and the inner

circles were empty.

We evaluated the visualization by carrying out the tasks proposed in Section 4.5. By

observing the original graphs, we found the year 2007 had the least number of authors.

Correspondingly, in the second frame of the animation as shown in Figure 4.16, there are

fewer communities and sparser connections than those in other frames (T1). We also no-

ticed that the connectivity of communities was more complicated and denser in the year

2006. From year 2006 to 2007, community 9, 10, 11 disappeared. Though a new commu-

nity 16 appeared, most of the communities (i.e., 1, 2, 4, 6, 8) experienced a size decrease
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(T4). By measuring the community size, the number of connections to others, and the

total weight of connections, community 1, 4, 7, 8 were believed to be more important

(T2). They stayed for four years and barely had a contraction. Besides, their topological

patterns remained unchanged (T3, T4). Conversely, community 5 had a relatively small

size. It made no sense to classify its structure. Hence we did not draw the pattern glyphs

and treated Community 5 as a potential anomaly. After looking into the statistics, we dis-

covered that only one author belonged to this community. We deduced that this author

did not have close cooperation with others. By inspecting the community structures and

their temporal evolution, we found that community 2, 6 were relatively dynamic because

their patterns changed at every step. Most of the time, their patterns switched between

chain and clique, implying that the collaboration between authors changed dramatically

from sparse to dense. In fact, chain and clique were the two most frequently appeared

patterns in this case. It is worth noting that community 1 was persistent and it kept the

egocentric pattern (T3, T4, T5). So we looked into the inside authors and found that it

always contained the ego node. Given the characteristic of egocentric networks, it is not

difficult to explain the existence of community 1.

We obtained the findings mentioned above by observations, and we could confirm

them by investigating the statistics of communities. Usually, there were 10 to 12 com-

munities in each year (T1). Figure 4.9 (D) shows that, in year 2006, 5 communities had

the loop pattern and 4 communities had the clique pattern. Only one community had the

egocentric pattern (T5). By comparing Figure 4.9 (A) and Figure 4.10, we discovered
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that most of the communities in the DBLP dataset were more dynamic than those in the

Wikipedia dataset, because the change centrality curves of the former are more fluctuant

than those of the latter.

4.7 Discussion

Although our method is effective at visualizing large dynamic graphs and displaying their

structural evolution, there is still room for improvement.

To help users identify the community changes, we provide multiple visual encodings

that indicate the size variations and the structural transformations. Encodings can be com-

bined to show the concurrency of different types of changes. However, when dozens or

even hundreds of communities simultaneously appear on the screen, users will be over-

whelmed in their efforts to capture and interpret all these encodings. One potential solu-

tion is to control the number of communities, which can be achieved by hierarchical clus-

tering methods. Alternatively, we can use other graph partitioning methods rather than

detecting communities based on modularity maximization. For example, METIS [144]

divides graphs into a designated number of components while minimizing the edge cuts.

The foundation of our method is the construction of a SuperGraph. We achieve smooth

animations and reduce the time cost by conducting calculations at the global level. How-

ever, our method cannot guarantee the preservation of the optimal community structures,

because we compute communities by extracting subsets from SC rather than by consid-

ering the unique connectivity at individual time steps. To obtain better community struc-
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tures, we can apply the Temporal Trade-off method [88]. But such method produces an

incontrollable membership of communities which may decrease the smoothness of visu-

alizations.

We now utilize change centrality and NetSimile to quantify the difference between

graph structures. The statistics are displayed along with the simplified visualizations. In

this way, users can conduct both visual explorations and numeric investigations.

4.8 Conclusions

We build a visual system for presenting the structural evolution of large time-varying

graphs. A simplified form of graph drawing is adopted and a single node now represents

a community instead of a vertex. We also improve the layout consistency by conducting

calculations on a SuperGraph. Our method makes the visual understanding of complex

graph structures feasible after mapping them to the topological patterns. Based on the

transformable glyphs, users can easily identify the structural changes from the collapsed

node-link diagrams. In addition, visual encodings make it convenient to compare the

structures of different communities. For the future work, we plan to apply and compare

different metrics to quantify the differences between graph structures. We also want to en-

code information concerning the classification uncertainty into the visual representations.
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CHAPTER 5

VISUALIZING REGION DYNAMICS

THROUGH A GEO-SEMANTIC GRAPH

BASED METHOD

In this chapter, we extend the foregoing techniques of visualizing dynamic networks to

the geographical domain. By using graph structure to model the relationship of data,

we can map the problem of finding functional regions to the problem of detecting graph

communities. Details about the problem transformation can be found in Section 5.3 and

Section 5.4. We also establish a visual system to facilitate region analysis. Visual designs

are introduced in Section 5.6.2. In Section 5.7, we evaluate the effectiveness of our method

by two real applications and a user study.

5.1 Introduction

Understanding the dynamics of urban activity in large cities and highly developed areas

can be a daunting task due to a large number of parameters and the complexity of inter-

actions between structure, accessibility, and the movement of people and vehicles. This

complexity increases substantially when additional time constraints are imposed as com-

peting agendas for resource allocation arise and fade over shorter time periods. In order
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to reduce this complexity in urban analysis, we propose to segment the larger areas into

smaller components and focus on their dominant functional units, one at a time.

There are various segmentation criteria available. For example, based on physical

characteristics, the surface of our planet can be largely divided into continents and oceans.

As people predominantly shape the large features of our planet, we can think of adminis-

trative divisions, transportation, tourism, restricted areas, and so on. For consistency, we

use the term region to denote non-overlapping sub-areas, and venue to indicate the loca-

tion of designated social activities. The feature that a region carries is called a function.

Functions reflect the context of human activities.

Region segmentation allows for the overall understanding of the influence or action

that a specific function has over a certain geographical area. From this segmentation,

urban planners can learn about land uses [145], retailers can decide where to set up adver-

tisements and warehouses [146], and law enforcement officers can rank locations by their

security risks [147].

Existing researches on region segmentation rely on various approaches and data

sources. Yuan et al. [148] treat the space separated by main roads as regions, and they

require extra information like the statistics of POI (Points of Interest), to interpret region

functions. However, since road networks update slowly, their segmentation can hardly

demonstrate changes of region shapes in real time. Wu et al. build a system called Mo-

biseg [149] that splits regions by interactively clustering local districts that have similar

activity patterns. The patterns are extracted from mobility data, and they vary across time.
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Hence, the segmentation can be updated accordingly. But, Mobiseg lacks the exposure

of the relationship between regions at different time steps, and does not differentiate be-

tween types of regional transformations. This makes it difficult to analyze the evolution

of various regions and their functional characteristics over time.

In this chapter, we describe the implementation of a visualization system for present-

ing and exploring region evolution. The system consists of two collaborating views, the

overall view and the comparison view.

The overall view supports the interactions on the entire map. It shows the region

centroids at different time steps. From time t to t + 1, our matching algorithm aims

to find pairs of centroids and their successors that belong to identical regions. Then,

the migration trajectories of centroids are displayed by animated sequences. We also

demonstrate evolutionary patterns obtained by summarizing all trajectories. From the

patterns, we may find that some regions only exist at one time step, which promotes

our conjecture that some temporary events reshape these regions but do not have a large

impact over the evolution of the regions. Some regions involve only small changes and

their centroids shift within a limited area. It is likely that these regions contain stable

infrastructures like educational institutes and commercial buildings.

The comparison view consists of multiple snapshots from which users can observe

region territories. We calculate territories as the minimum geographical area that cov-

ers closely located venues where similar human activities occur. Links between snap-

shots connect matched pairs of region centroids, and they pass through a stack chart that
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shows the statistics of the region transformations. We categorize transformations into

seven types: appear, disappear, expand, shrink, remain, merge, and split, all indicating

changes in territory. Topic changes can be identified by comparing keywords.

The overall view and the comparison view are complementary to each other. The

former outperforms the latter in visual scalability. Users can access long-term evolution of

regions and roughly judge their stability. The latter integrates multiple visual techniques,

and it is more suitable for comparing tasks and inspections of details of an AOI (Area of

Interest).

Our main contributions are as follows:

• Region delimitation: we put forward a graph-based method to delimit functional

regions. Based on geo-textual data, we construct graphs that encode the information

about the density of population and the consistency of activities. We take communi-

ties detected from the social graph as the reference for calculating region territories.

• Evolution interpretation: we propose a matching algorithm to expose region trans-

formations between consecutive time steps. Transformations are categorized into

seven types. The evolution of a region can then be interpreted by a series of trans-

formations in chronological order.

• Evolutionary patterns: we obtain migration trajectories by connecting region cen-

troids, and abstract them as graphs. By clustering graphs of similar topologies, we

reduce the diversity of trajectories and reveal representative patterns of evolution.
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Figure 5.1: The overview of the visual system implementation.

• Visualization system: we represent the evolution of a region by using a rich set

of visual designs. Animations show coherent transformations, and snapshots depict

different region segmentation across time. We evaluate the system by two applica-

tion scenarios and a study on users’ performance of conducting analytic tasks.

5.2 System Overview

As shown in Figure 5.1, we build latent graphs on discrete geographical venues. Close

venues are linked. Through textual analysis, the link weight is measured by the similarity

score of semantics of end venues. In the procedure of region delimitation, dense venues

that also have similar semantics are grouped to form disjoint regions. Applying above

steps repeatedly to each snapshot of geo-textual data, we can get independent region dis-

tributions. Furthermore, the trend of evolution is exposed by mapping regions at different

snapshots. Details can be found in Section 5.3 and Section 5.4.
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5.3 Region Delimitation

Our objective is to separate regions that reflect the natural gathering of people and dis-

tinguish from each other by the theme of inside activities. Density-based algorithms like

DBSCAN can be used to cluster venues by their spatial closeness, but the correspond-

ing activities in one cluster do not necessarily have similar semantics. Many previous

work employed mobility data such as taxi routes and commuting flows [150, 151, 149].

However, extra information like POI statistics were needed for region interpretation. We

propose a graph-based method. It encodes the spatial and semantic proximity of venues

simultaneously. With geo-textual data, we can directly learn topics to characterise regions.

5.3.1 Data Description

We use a four-tuple < time, venue, text,meta data > to depict a geo-textual item,

where time and venue denote when and where an activity happens and text describes

the context of the activity. A venue is identified by a coordinate of longitude and latitude,

and text consists of a list of words. meta data include supplementary information, such

as a photo taken at the venue. During the pre-processing stage, we aggregate data items

by uniform time intervals, e. g., day, month or year, for the ease of analysis.

5.3.2 Semantics Extraction

The words that people use to describe activities are highly diverse and are likely to be

meaningless, such as stop words. We reduce the difficulty of analysis by extracting in-
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sightful semantics and then calculating their similarities. Specifically, the LDA (Latent

Dirichlet Allocation) model is adopted, because it returns interpretable topics distributed

at all venues.

LDA represents a document as a probabilistic mixture of topics learnt from the corpus.

A topic corresponds to a cluster of words. At one time step, the corpus is composed of

words collected from the text component of all geo-textual items, excluding meaningless

words. The text component of each data item is regarded as a single document. Assuming

that there are n topics {t1, t2, . . . , tn} in the corpus, we compute:

• Venue Topics: the topic distribution at a venue v, denoted by Tv = [pt1 , pt2 , . . . , ptn ].∑n
i=1 pti = 1, where pti is the probability of topic ti.

• Region Topics: the average topic distribution of all venues within a region r, repre-

sented by Tr = 1
|Vr|
∑|Vr|

i=1 Ti, and |Vr| is the number of venues inside r.

For venues that associate with multiple items, Tv is an averaged topic distribution of

these items. To update topics, we conduct LDA repeatedly for each time step.

We can measure the extent of consistency of activities in r by the information entropy

of Tr, which is defined as:

Er = −
n∑

i=1

pi log pi, (5.1)

where pi is the averaged probability of topic ti of all |Vr| venues. A low entropy value

implies that the region tends to have an explicit function that can be interpreted by a
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dominate topic in Tr. Otherwise, we can find various types of activities involved in the

region.

5.3.3 Geo-Semantic Graph

We abstract venues as graph vertexes and each venue only connects with its k nearest

neighbors. The weight of connections is equal to the similarity score between topic dis-

tributions of two end venues vi and vj , which is defined by the reciprocal of symmetric

Kullback-Leibler divergence:

KL(Tvi , Tvj) =
n∑

t=1

Tvi,t ·
Tvi,t
Tvj ,t

, (5.2)

KLsym(Tvi , Tvj) =
1

2
· (KL(Tvi , Tvj) +KL(Tvj , Tvi)). (5.3)

Then, we cluster venues by applying the Louvain method [67] which aims at maximiz-

ing the graph modularity. Modularity measures the ratio of connections between venues

in same clusters to connections between venues in different clusters. Initially, to rep-

resent region territories, we encompass venues belonging to same clusters with convex

hulls. Later in Section 5.6.2, we refine visual aesthetics by tiling convex polygons with

hexagonal grids.

An example is shown in Figure 5.2. Given the same set of venues, we can generate

graphs with different k values. Normally, a lower value results in a sparser graph and more

regions. Besides, regions are relatively smaller and less overlapped. With the increase of
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(a) k=5 (b) k=10 (c) k=20

(d) k=5 (e) k=10 (f) k=20

Figure 5.2: Given an identical set of venues, the latent geo-semantic graphs (first row) and

the obtained regions (second row).

k, each venue gets connected to more neighbors that are further away. An extreme case is

that the graph is fully connected, and we get only one region covering all venues.

Based on the way of graph construction, closely located venues are more densely

connected, as we can see in the first row of Figure 5.2. Hence they are more likely to be in

the same cluster. Besides, if a link has a heavier weight, then its incident vertexes are also
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more likely to be assigned to the same cluster. In summary, we consider both the density

of population and the consistency of activities to separate regions.

The graph is latent because it is invisible to users. We repeat the graph construction

for individual time steps to update the region segmentation. Venues are organized into

a k-d tree to speed up the search for nearest neighbors. Due to the sparsity of data at

specific areas, a venue might be far away from its neighbors. In case of getting large

regions with few venues inside, we can remove those connections whose end-venues have

a geographical distance that exceeds the limitation.

Besides the Louvain method for clustering graph vertexes, a lot of other approaches

are also available [117], such as the traditional partitioning methods [152, 153], spectral

clustering methods [154], etc. The Girvan and Newman algorithm is the first modern tech-

nique of community detection. It is implemented by iteratively removing links based on

their betweenness. However, it has a high computational complexity (O(n3) on a sparse

graph, and n is the number of nodes). We chose the Louvain algorithm because of its

high efficiency in processing large graphs. It runs in time O(n log n). Also, it can find

communities that contribute to a high modularity without knowing their count in advance.

According to the comparison made by Lancichinetti and Fortunato [66], the Infomap [69]

and the multi-resolutional method [155] can be alternatives that have a similar perfor-

mance.
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5.4 Region Matching

To understand how a region evolves from time t to t+ 1, we need to find its target regions

after transformation, and then decide the type of transformation. Hence, we propose a

matching algorithm as shown in Algorithm 1. The output are two sets of matching results

S and S ′ for regions at t and t + 1, respectively. M and M ′ denote the set of matched

regions. By applying matching operations to a sequence of snapshots, we can track the

temporal changes of regions.

For two regions to be matched, they need to fulfill the following conditions: first, their

areas overlap; second, they should have a certain proportion of designated venues inside

the overlapping area. The second condition refines the matching result by inspecting the

importance of the overlapping area. The importance depends on the density of venues

rather than the area size, because a large area containing only a few venues is perceived to

be less important.

In line 2, we firstly build a k-d tree in O(n log n) time to organise centroids of all

regions in Rt and Rt+1, and n is the total number of regions. Then, searching the nearest

region is an O(log n) operation on average. In line 4-5, we calculate o by adopting the

Weiler-Atherton clipping algorithm [156]. In line 6-7, we use the ray casting method [157]

to determine if venues are inside o. Increasing the threshold in line 8 will decrease the

number of matched regions.

To accelerate the matching procedure, we reduce the candidate targets twice. First, in
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line 2, ri is only compared to its k nearest rather than all regions in Rt+1. Because the

probability that two regions are overlapped decreases when their distance increases. In

our tests we find that a region rarely overlaps with more than 6 other regions, i.e., k = 6.

Algorithm 1 Matching Regions
Input:

Rt, Rt+1: the set of regions at time t and t + 1, respectively; Rt = {r1, r2, · · · , rm},

Rt+1 = {r′1, r′2, · · · , r′n}.

Output:

S = {(r,Mr)|∀r ∈ Rt,Mr ⊆ Rt+1};

S ′ = {(r′,M ′
r′)|∀r′ ∈ Rt+1,M

′
r′ ⊆ Rt}

1: for ri ∈ Rt do

2: NRi ⇐ k nearest regions to ri in Rt+1;

3: for nri ∈ NRi do

4: if Overlapped(ri, nri) = True then

5: o⇐ overlapping area of ri and nri

6: vi ⇐ venues within ri and also locate in o;

7: nvi ⇐ venues within nri and also locate in o;

8: if ( |vi||ri| > threshold) and |nvi||nri| > threshold) then

9: add nri to Mri;

10: add ri to M ′
nri

;

11: end if

12: else

13: break;

14: end if

15: end for

16: end for
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The distance between regions is measured by the distance between their centroids that are

obtained by averaging all venue coordinates. Second, we sort regions inNRi in ascending

order based on their distances to ri. In line 12, the matching process stops once a candidate

does not overlap ri. It is noteworthy that acceleration might compromise the matching

accuracy in that certain regions probably overlap with more than k neighbors. Also, we

should have used the single-linkage criteria [158] to measure the distance between region

borders, but it takes too many calculations.

The algorithm is applicable to any region sets, no matter they are adjacent in time or

not. Matching results can be categorized into five different types, and their relationship

to region transformations are as follows. For the ease of explanation, we use s1 and s2 to

denote the former and latter set of regions, respectively. Region r1 belongs to s1 and r2 is

in s2.

• One-to-Zero: no regions in s2 match with r1. r1 disappears;

• Zero-to-One: no regions in s1 match with r2. r2 appears;

• One-to-One: only r1 matches r2 in s1 and vice versa. The region territory may

expand, shrink, or remain;

• One-to-Multi: r1 matches with more than one region in s2. r1 is split into multiple

regions;

• Multi-to-One: r2 matches with more than one region in s1. Multiple regions merge

into r2.

111



5.5 Evolution Patterns

We create migration trajectories based on the temporal matching results which can be

obtained by repeatedly applying matching operations to regions at every two consecutive

time steps. A trajectory represents the connections between centroids of a region, but

embodies no information about the differences in size and function.

Many regions often undergo similar transitions of evolution. This can be exposed via

representative evolution patterns by abstracting trajectories as graphs. Region centroids

are then mapped to graph vertexes which are stamped by their time steps. Graph edges

indicate the original connections between centroids. Figure 5.3 shows an example. R1

and R2 have only one-to-one transformations, hence their corresponding graphs have the

same topology. Two transformations, a split and a merge transformation, are applied to

R3, so there is a cycle in the graph.

Graph abstraction simplifies trajectories by ignoring details such as the spatial location

of centroids and the distance between them. Then, we can easily find regions that undergo

similar evolution procedures by clustering abstract graphs based on topology. Netsim-

ile [159] is an approach for quantifying the similarity between size-independent graphs.

It firstly converts graphs into signature vectors by aggregating topological attributes of

vertexes, including degree, clustering coefficient, etc. Then, we can apply a standard clus-

tering method (e.g., k-means) on these vectors with the cosine distance. Evolution patterns

are revealed by randomly choosing a representative graph from each cluster.
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Figure 5.3: Conversion from migration trajectories to graphs. Nodes represent region

centroids and they are stamped with time steps.

5.6 Visualization

We build a visual system to facilitate the exploration of region evolution. The system con-

sists of an overall view where users can access details of venues, like their descriptions and

distributions, and a comparison view that displays results of dynamic region segmentation.

5.6.1 Requirement Analysis

Our region delimitation method is based on discrete venues, along with their contextual

information. Therefore, we focus on representing both low-level (i.e., venues) and high-

level (i.e., regions) geographical elements. Their visualization requirements are as fol-

lows:

• Venues: mark their locations on the map, and allow users to interactively select
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venues and investigate the meta data, such as time, photos, comments, etc.

• Regions: improve aesthetics of the representations, and make regions visually com-

parable.

Based on the visual task model proposed by Andrienko et al. [160], our system pro-

vides static and dynamic information. At a specific time step, static information includes:

• Venue distribution (S1): Which part has a higher density of venues within the focal

area? Where is the centroid of venues?

• Region distribution (S2): How many regions does the focal area possess? How

large is the territory of a region? What is the relationship between the region seg-

mentation and the venue distribution?

• Region semantics (S3): What is the entropy level of region topics? Does a region

have an explicit function? What are the regions that have similar functions?

During a period, dynamic information includes:

• Territory transformation (S4): How does a region territory change over time? Does

it remain stable, become larger/smaller, or even split/merge into other regions?

• Semantic transition (S5): What is the difference of topic distribution between con-

secutive time steps, regarding individual regions?

• Area dynamics (S6): How many regions contribute to each type of transformations,

within an area of interest?
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5.6.2 Visual Design

Figure 5.4 shows the interface of the visual system. We have two collaborating views,

each characterised by animations and small-multiple representations. The overall view

provides both static and dynamic information at a global level. It plays animations of

the movement of region centroids. Animations are effective in solving the scalability

issues of visualizing temporal data. However, users may suffer from visual clutter due to

trajectory crossings [161]. Also, it is difficult to show region territories at different time

steps on the same map because of visual overlaps. Therefore, we allow users to select an

AOI and perform further explorations in the comparison view. A sequence of snapshots

are juxtaposed along the timeline, each exposing region details at a specific time step.

Adjacent snapshots are connected by links that demonstrate the matching relationship

between regions.

Overall View

In this view, we provide utilities for users to access low-level static information. A scat-

ter plot is used to display the geographical distribution of discrete venues and a heatmap

shows the density distribution. Our concerns of visualizing high-level information are:

first, what is the aesthetic way to illustrate regions that are derived by applying the delim-

itation method introduced in Section 5.3; second, how to make region evolution straight-

forward to users.

Using convex hulls to represent regions is not a good option, because their irregular
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Figure 5.4: Interface of the visual system. (a) Overall view: plays the animation of region

evolution; (b) Comparison view: contains snapshots of region distributions in an AOI.

shapes are hard to compare and they might overlap slightly at borders. The overlapping

is caused by peripheral venues, and we later measure their importance to decide if they

should be treated as outliers. In this work, we adopt the tiling techniques [162, 163]

to convert convex polygons to hexagonal grids. Besides, we achieve non-overlapping

representations by exclusively assigning grid cells to a region.

Region tiling facilitates visual comparisons by making the territory size countable, but

it is difficult to preserve the boundary of convex polygons and minimize the time cost of

116



(a) (b) (c)

Figure 5.5: Problematic situations of assigning cells at the borders of regions. (a) The

hexagon (blue) is inside both region A and B; (b) Hexagons (green) are inside one region

and intersect with another; (c) Hexagons (orange) intersect with both region A and B.

tiling. In general, smaller hexagons can be aggregated into arbitrary polygon shapes while

maintaining uniform convexity internally and the topic entropy in one cell is lower. But

the time cost may increase as more hexagons need to be calculated for the same region.

The primary operation of tiling is using the ScanLine method [164] to determine if a

cell completely resides in a region polygon. The procedure can be accelerated by indexing

grid cells with an r-tree. Meanwhile, we have to deal with some ambiguous situations at

boundaries. As shown in Figure 5.5, cells might intersect with or belong to multiple

polygons simultaneously. Let R be the set of regions involved with a cell c. For r ∈ R,

vrc is the set of venues inside the overlapping area of r and c. |r| is the total number of

venues in r, and cr is the centroid of r; dist(·) returns the distance between two venues.
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The contentious cell c will be allocated to the region which satisfies:

r = arg max
r∈R

1

|r|
∑
v∈vrc

1

1 + dist(v, cr)
. (5.4)

Equation 5.4 implies the impact that venues inside the overlapping area have on the whole

region. If the impact is negligible, we skip c as a part of the tiling. Also, for reducing

holes in the tiling, we prefer to assign c to regions that totally cover rather then intersect

with c.

Figure 5.6(a) shows an example of the original polygonal representations of regions,

and in Figure 5.6(b), we can see the tiling result based on the strategy defined in Equa-

tion 5.4. It is worthy noting that, in Figure 5.6(b), cell A is inside r6 and intersects with

r8, and it is finally allocated to r6. Cell B intersects with both r5 and r6, and it finally goes

to r5. Cell C intersects with r4, but its inner venues have weak impact on r4, hence it is

discarded.

Alternative geometries include squares and triangles. In Figure 5.7, we compare the

three types of tiling given an identical region. Single cells of each grid have the same size,

and the ratio of the side length of cells is approximately 24:15:10. According to Chen

et al [165], the triangle grid introduces visual ambiguities, because it consists of triangles

oriented in two directions. The square grid brings illusions of stretching along the vertical

and horizontal levels. Hence, we choose the hexagonal grid for obtaining better aesthetics

and visual compactness.

An animation that shows the movement of region centroids helps users to understand
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Figure 5.6: Region tiling with hexagonal cells. (a) Polygonal region representations; (b)

Hexagonal tiling. Different regions are distinguished by using a ColorBrewer platte [132].

(a) (b) (c)

Figure 5.7: Tiling a region by (a) triangles, (b) squares and (c) hexagons.

the region evolution. We take centroids as the delegates of regions, because directly draw-

ing region territories causes visual overlaps on a single map, like the example in Fig-

ure 5.8. Users are still allowed to inspect the underlying territory by clicking a centroid.
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We map the chronological order to the opacity of inner circles of centroids and the curved

links. The higher the opacity, the closer the timestamp of a centroid to the current time.

Alternatively, arrows can represent the order. But when centroids are close to each other,

the links are short and inserting arrows to such kind of links increases the visual clutter.

The default color of inner circles and curved links is black. Outer circles of centroids are

filled according to the linear gradient of color shown in the top-left corner of Figure 5.8.

The warmer the color, the higher the topic entropy of the region in all regions.

Comparison View

In the overall view, users can select a rectangular AOI by dragging. Then, they can access

and compare the details of multiple snapshots simultaneously in the comparison view,

without being interrupted by the visual clutter caused by territory overlaps. Figure 5.9

shows an example of the comparison view that contains two snapshots, each representing

the region delimitation result at a specific time.

We use various visual designs to encode the statistics of venues and regions. Thick

lines highlight the boundaries of regions. The opacity of region fillings indicates the

number of inner venues, and the default color is black. The darker the filling, the more

venues the region contains. Heatmaps located at the horizontal and vertical axes reflect the

distribution of venues along the longitude (green) and latitude (magenta) directions, re-

spectively. Besides, the graduated axes are helpful in calculating the migration distances.

Users can switch between different regions by clicking their centroids which are drawn as
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Figure 5.8: The migration trajectory of a region. Each centroid is denoted by two con-

centric circles. The opacity of inner circles indicate the chronological order and the color

of outer circles reflect the entropy level of region topics. Territories in the year 2009 and

2010 are represented by blue and green hexagonal grids, respectively, and their overlap-

ping area is marked by a dashed rectangle.

small circles. The circle fillings reveal the entropy level of region topics and they follow

the same color scheme adopted in Figure 5.8. An arc diagram at the bottom of each snap-
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Figure 5.9: Two snapshots from the comparison view, each displaying the distribution of

regions at a specific timestamp. Snapshots are connected by links showing the matching

results of regions.

shot depicts the similarity of topic distributions between each pair of regions. Nodes in

the diagram are projections of centroids to the bottom axis. The range of similarity values

is [0, 1], and users can decide the number of visible arcs by controlling the threshold.

Adjacent snapshots are connected by links whose end points are centroids of matched

regions. Then, it becomes convenient to track the temporal transformation of regions.

Links are categorized according to different types of matching results defined in Sec-

tion 5.4. Among them, the One-to-One type is divided into increase and decrease cate-

gories, indicating the size change of regions. The six categories are denoted by stacked

rectangles whose width is proportional to the number of regions belonging to that cate-

122



gory. We note that a link is invisible if any of its end centroids goes out of the AOI. When

clicking on a link, it is highlighted with a thicker stroke. Meanwhile, the keywords of

topics of two end regions are listed separately in the boxes that are located at the top and

bottom space between snapshots.

5.7 Evaluation

We demonstrate the effectiveness of our methods by presenting two application cases and

a user study. All experiments were conducted on a desktop machine with 2.20GHz, Intel

Core i5 CPU, 16.0 GB RAM and 1680×1050 pixel resolution. The visual system was

built by using JavaScript and D3, and interactions on the map were supported by Leaflet.

5.7.1 Case 1: Flickr

YFCC100M dataset [166] contains records of photos or videos uploaded by Flickr users

during the year 2004 to 2014. In this case, we focused on the period from the year 2008 to

2012 and filtered out the records whose textual descriptions and geo-locations were both

available. The focal area was bounded to New York City.

Data items were manipulated to fit the format that we defined in Section 5.3.1. We then

aggregated items based on the time interval of 1 year. By doing experiments with different

k values, we decided to connect each venue to its 20 nearest neighbors. Consequently,

region overlaps were minimized. Statistic samples of the venues and regions can be found

in Table 5.1.
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2008 2009 2010 2011

|V | 26 784 30 771 35 459 43 321

k=5 85 061/384 97 517/465 112 520/502 137 007/586

k=10 166 696/168 190 491/187 220 187/214 268 422/228

k=20 329 901/99 377 000/112 435 585/124 531 500/137

Table 5.1: For the Flickr dataset, given the number of venues (|V |) for each year from the

year 2008 to 2011, we show the ratio of the number of edges of the latent graph to the

number of regions (|E|/|R|) for each of the three values of k=5, 10, and 20.

We allowed users to view the information of individual venues. Figure 5.10(a) is a

scatter plot of venues. When clicking on a venue, a popup window displays the corre-

sponding media object. Figure 5.10(b) shows a heatmap of the venue distribution. The

warmer the color, the denser the venues. We found that most of the blocks in New York

City were crowded with Flickr users, especially in midtown and downtown (S1).

One significant discovery was that our region delimitation procedure successfully lo-

cated landmarks in New York City (S3). The LDA model extracted 12 topics at each time

step. With the help of topic keywords listed in Table 5.2, we identified regions covering

landmarks, such as Times Square and The Empire State Building. The result is shown in

Figure 5.11. These regions were detected mostly because people tended to add the name

of landmarks in textual descriptions. Most of the corresponding evolution trajectories

only involved with One-to-One transformations. However, the trajectory of the Central

Park region experienced a few times of split. An explanation could be that, within the vast

area, people were more likely to move around and gather at different locations. Based
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(a) (b)

Figure 5.10: Within an area of NYC in the year 2008, (a) a scatter plot in which blue

circles denote venues, and (b) the corresponding heatmap that reflects the popularity of

different places.

on the topic keywords, we also inferred that the assembly locations could be the baseball

fields. We then confirmed the inference by Google Maps API.

We set the threshold in Algorithm 1 to 0.6 to get a balanced distribution of different

types of transformations. Some regions remained stable across time. Their evolution

trajectories did not embody split or merge transformations. Besides, region centroids

shifted within a limited area (S4), and the entropy of the topic distributions remained at a

low level. We conclude that such regions provide constant utilities and services, like the

Museum in Figure 5.11. Conversely, regions without an explicit function were potentially

more dynamic and their evolution trajectories contained more types of transformations.

By clustering the trajectories, we revealed the evolution patterns and the representatives

were shown in Figure 5.12. Patterns 1, 2 and 3 vary in duration. In fact, many regions

appeared at only one timestamp, and the trajectory graph contained only a single node.
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Topic Index Keywords Landmark

t10(41%)
brooklyn, times, bridge, east, art,

street, square, manhattan

Times

Square

t4(23%)

st, college, years, day, natural, fair,

benoit, amnh, history, american,

parade, museum

American

Museum of

Natural

History

t1(52%)

central, building, park, baseball,

stadium, manhattan, city, states,

yankee

Central

Park

t12(44%)

street, manhattan, state, building,

center, avenue, empire, governors,

nuev, apple, big

The Empire

State

Building

Table 5.2: Keywords of the dominating topics in four landmark regions. The first column

lists the index and the probability of topics.

Figure 5.12 also displays the spatial distribution of regions that match the patterns 3, 4

and 5 (S2). In this case, a majority of regions contributed to pattern 3. Regions that were

assigned pattern 4 were more likely to be detected around transportation hubs. A minority

of regions went through a combination of transformations, and their evolution trajectories

did not match with any of the five patterns, such as the Central Park region shown in

Figure 5.11.

We selected an AOI with diagonal corners at [-74.0012, 40.7822] and [-73.9599,

40.7562]. The radius of hexagonal cells was set to 100 meters, and the unit of longi-

tude and latitude axes was set to 350 meters. The comparison view shown in Figure 5.13
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Figure 5.11: Four landmark regions in the year 2008. Their evolution trajectories are

shown in the enlarged rectangles.

contains four snapshots from the year 2008 to 2012. Between the first two snapshots,

thick links represent a split transformation from one region to two regions. The stacked

rectangles in the middle space indicate that no regions involve with merge and increase

transformations (S6). In fact, the merge transformation is missing during the whole pe-

riod. The orange link suggests that a region appears, and it is invisible by default because

there is no matched centroid in the first snapshot. Users can inspect the hidden links

by clicking on rectangles. Among the last three snapshots, thick links demonstrate the
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Figure 5.12: Representative patterns of region evolution. Three map views show the

spatial distribution of regions that contribute to pattern 3, 4 and 5, respectively.

evolution of regions in Central Park. From the opacity of fillings, we can see that the

popularity of regions does not vary dramatically. The split transformation happens twice.

One descendant region is beyond the range of AOI in the fourth snapshot. In the last snap-

shot, the two descendant regions have similar topics and possess a communal segment of

boundary. The reason of their separation is probably because region centroids are far from

each other, and few venues locate at the periphery. We can confirm the inference of venue

distributions by observing heatmaps along the graduated axes (S1).
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Figure 5.13: Five snapshots of an AOI in NYC. The pattern graph depicts the evolution of

regions in Central Park.

5.7.2 Case 2: Yelp

We collected the reviews of businesses in Las Vegas from Yelp Dataset Challenge [167].

Data items went through a pre-processing stage. The time interval was one month. Ta-

ble 5.3 lists statistic samples of the dataset.

There are two notable distinctions between the Yelp and Flickr datasets. First, the tem-

poral distribution of venues in the Yelp dataset is more stable. Because venues in the Flickr

dataset are arbitrary places where people may take photos on a whim. However, in this

case, business venues are fixed. The difference between venues at different timestamps

mainly reflects the establishment of new businesses or the termination of old businesses.

Second, the Yelp dataset has less topic varieties as the comments are all about the busi-

nesses. Therefore, regions detected in this case are supposed to have stable territories and

consistent topic themes over time.

We tested different k values when constructing latent graphs and the final value was
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Jan. Feb. Mar. Apr.

|V | 6802 6792 7249 7199

k=5 21 709/156 21 581/148 23 211/162 22 948/155

k=15 63 230/57 63 283/57 67 541/54 66 999/57

k=25

(distnbr < ∞) 105 062/38 104 928/41 112 044/40 111 416/40

k=25

(distnbr < 1.5km) 100 949/57 100 962/55 107 728/56 107 368/53

Table 5.3: The number of venues (|V |) in the Yelp dataset. When k=5, 15, 25, the ratio of

the number of edges of latent graphs to the number of regions (|E|/|R|). distnbr denotes

the distance between connected venues.

25. Besides, we compared the region delimitation results when the distance between

connected venues was or was not constrained. The heatmap in Figure 5.15 shows the

uneven distribution of businesses. We can see that businesses are only crowded in two

areas (red color). If there was no distance limitation, venues in sparse areas would find

neighbors in far places. Then, we would obtain large regions in low-density areas, such

as R1 and R2 in Figure 5.14(a). When we set the threshold to 1500 meters, the number

of edges in latent graphs decreased as shown in the last row of Table 5.3. In addition, we

eliminated the impact of isolated venues that were marked by rectangles in Figure 5.14(b).

Tiny regions were ignored. We also found that the distance limitation did not drastically

affect the region delimitation in high-density areas marked by ellipses in Figure 5.14.

We compared the region evolution of two AOIs. One was the high-density area B in
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(a) (b)

Figure 5.14: Convex polygons (red) represent regions that are detected when the distance

between connected venues (distnbr) is: (a) not limited; (b) shorter than 1500m.

Figure 5.15. It located at the center of Las Vegas. The other one was the low-density area

A. A and B had the same size. Their snapshots at four timestamps are displayed. From the

opacity of region fillings, we see that most of the regions in B encompass more venues than

regions in A, even though they have smaller territories. Besides, there are more regions

in B and the stacked rectangles indicate that these regions involve with higher dynamics

that are caused by various types of transformations. However, regions in A are relatively

stable except the size changes.

A majority of regions in Las Vegas had the same evolution pattern as the representative

shown in Figure 5.15. It reflected the stable distribution of venues and regions. However,

outlier patterns such as the one in Figure 5.15, were found especially at high-density areas

like B. Frequent split and merge transformations occurred to the corresponding regions.

Venue descriptions had similar semantics because they were about the characteristics of
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Figure 5.15: A and B are AOIs of the same size. Venues are sparse in A and dense in

B. Snapshots of A and B from January to April are displayed in the up and bottom rows,

respectively.

businesses, such as the quality of service. Hence, edges of individual latent graphs had

similar weights. Region delimitation depended more on the closeness of venues than the

proximity of semantics (S2). The boxplot in Figure 5.16 represents the entropy of region

topics. We extracted 6 topics at each time step. When comparing region topics in the

Yelp and Flickr cases, the former have lower entropy levels and smaller variation ranges

of entropy values. It implies that Yelp regions have more explicit and consistent topics,

while Flickr regions possess multiple topics and none of them plays a dominant role.

Table 5.4 lists the time cost of the main procedures in our method. Areas considered

for the Flickr and Yelp cases are NYC and Las Vegas, respectively. The graph construction

procedure includes calculations of k nearest neighbors and semantic similarities between

venues. The second column shows the running time of our delimitation algorithm. The

most time-consuming part of tiling is generating a hexagonal grid for the whole city area,

and the tool we use is Turf.

132



Figure 5.16: Statistics of topic entropy among all regions. Yelp regions have lower-level

entropy, implying that they embody more explicit topics.

Graph

Construction

Region

Delimitation
Matching Tiling

Yelp 0.03 0.44 1.01 0.21

Flickr 0.21 2.37 2.49 0.83

Table 5.4: Among all time steps, the average time cost of main procedures (second). The

average number of vertexes and links of latent graphs are 7,000 and 108,360 in the Yelp

case, and 34,002 and 418,370 in the Flickr case.

5.7.3 User Study

Our objective is to compare users’ performance on conducting the same visual tasks in

two views (view 1: the overall view; view 2: the comparison view). We invited 12 users

to attend the study. One of them was an male expert of geographical information systems.
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Two female graduate students had knowledge about visual analytics, and the remaining

users were undergraduate students (6 males) with diverse majors.

Users were given a standard laptop (1.1GHz Intel Core M3 CPU and 8GB memory)

and the system interface was presented in the Google’s Chrome browser. Animations in

view 1 were played region by region. The playing time was not recorded. Users could

start a replay if needed, and they were allowed to take simple notes during the test.

At the beginning, we gave a brief tutorial on the visual designs and the usage of the

system. Then, users conducted the visual tasks listed in Table 5.5. The study was based

on experiments of both Flickr and Yelp datasets, and we focused on region B in the Yelp

case.

Each user needed to complete 40 tasks (10 for each view, 20 for each dataset). We

designed the tasks according to the requirements introduced in Section 5.6.1. For a pair of

inverse transformations, we chose one of them as a representative. Therefore, alternative

tasks for T8-T10 could be: How many regions disappear/expand/merge between two time

steps? Considering that the impression on one view will affect the answers of another

view, we asked users to finish all tasks for both datasets in view 1, and then repeat the

procedure in view 2. We anticipated that users’ performance would be different in two

views but similar for two datasets.

Results. We recorded the accuracy and time cost of each task, and the results are

presented in Table 5.6. We find that T1-T4 have lower accuracy and longer response time

in view 2, and the same applies to T6-T9 in view 1. The reason might be that T1-T4
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require users to have an overall understanding of the evolution. We can observe that view

1 outperforms view 2 in these tasks because animations will not be affected by the growth

of time. However, in timeline representations, we need to take time to view long-term

information by scrolling which causes interruptions in the mental map. T6-T9 associate

with comparisons of region territories. In view 1, some users provided wrong answers

as they did comparisons by observation. Others compared the number of hexagonal cells

and obtained accurate answers. In view 2, tasks can be easily completed by inspecting the

width of the stacked rectangles.

Feedback. All users thought the system was helpful. It was easy to use and the two

views complemented each other. Some undergraduate students said that, even if they did

not have any experience in urban analysis, they could quickly understand what the system

presented and start exploring interesting patterns. The graduate students liked the aesthetic

representations and the interactive features. They also agreed that links between snapshots

were essential as they led the movement of eyes when tracking the evolution of regions.

The expert made the following comment: I can clearly see the difference between region

distributions at different time steps, and the categorization of region transformations is

especially helpful. He also pointed out that it took some time to figure out the usage of

widgets. We then attached hint texts to these widgets.
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T1 What is the duration of a region?

T2 What kind of transformations does a region involve?

T3 Which region experiences only one-to-one transformations?

T4 Which region has its centroids move across the largest area?

T5 How many regions does the AOI consist of at a time step?

T6 Which region has the largest territory at a time step?

T7 Which region has a higher venue density at a time step?

T8 How many new regions appear at a time step?

T9 How many regions shrink between two time steps?

T10 How many regions split between two time steps?

Table 5.5: Visual tasks that need to be conducted in both the overall view and the compar-

ison view.

5.8 Discussion and Limitations

The studies have shown that our methods are effective in discovering dynamic regions,

and the visual system is helpful in assisting users with exploration tasks. However, there

are limitations. First, users need to choose a sufficient k for constructing latent graphs.

As we mentioned in Section 5.3.3, a larger k corresponds to less regions with more over-

laps. Conversely, we obtain a greater portion of tiny regions (e.g., the area is less than 100

square meters) with a smaller k. To decide on a value, we can progressively increase k

until the number of tiny regions (Rt) and the size of the overlapping areas (Ao) are both

minimized, but the calculations are time-consuming. Therefore, we provide several k val-

ues that have achieved good results in our experiments, and their correspondingRt andAo

on the current datasets have been calculated. Users can compare them and select the most
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Accuracy Time (s)

Flickr Yelp Flickr Yelp

view 1 view 2 view 1 view 2 view 1 view 2 view 1 view 2

T1 100% 75% 91.7% 75% 5.5 12.3 4.8 10.6

T2 83.3% 75% 91.7% 83.3% 6.1 13.5 5.9 11.2

T3 100% 83.3% 100% 66.7% 4.8 19.9 4.7 20.3

T4 91.7% 41.7% 83.3% 33.3% 5.6 36.5 6.4 39.8

T5 100% 100% 91.7% 100% 8.3 5.4 8.8 5.2

T6 50% 100% 33.3% 83.3% 38.6 5.5 43.2 8.1

T7 58.3% 91.7% 58.3% 83.3% 7.5 4.6 8.8 5.4

T8 91.7% 100% 100% 100% 6.2 4.2 6.3 4.5

T9 41.7% 91.7% 41.7% 100% 55.7 4.2 64.5 4.1

T10 100% 100% 91.7% 100% 5.8 4.3 7.9 5.7

Table 5.6: The accuracy and the average time cost of visual tasks. The better performance

achieved from the two views is highlighted.

satisfying one. Second, we need to determine the number of topics for the LDA model.

The hierarchical Dirichlet process (HDP) [168] is helpful, but it might be infeasible on

large corpuses. Similar to the way of k selection, we train models on varying number of

topics, and choose the one with the best performance. A model works better if it causes

a lower perplexity on a test set of documents. Third, there is no guarantee that venues

belonging to the same region are mutually accessible. For the ease of data processing,

we use the Eclidean distance to measure the geographical proximity of venues. However,

a topological network-based distance, such as the length of the shortest path on a street

network, would be a better option.
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The reason that we propose a graph-based method rather than using the traditional

density-based methods like DBSCAN to cluster venues is two-fold. First, we need to con-

sider two similarity metrics at the same time, one is in geographical space and the other

is in semantic space. In the graph-based method, we can conveniently map them to the

connectivity of venues and the weight of connections, respectively. Whereas in DBSCAN,

we have to design a distance measure that combines the two metrics, like the implemen-

tation of ST-DBSCAN (Spatial–Temporal DBSCAN) [169]. Second, DBSCAN requires

two parameters, ε (the maximum distance between points in a cluster) and MinPts (the

minimum number of points required to form a cluster) [170]. It is non-trivial to estimate

them. In our method, we only need to determine a k value for constructing graphs, and

the frequently adopted values such as 10 and 20 suit most of the scenarios in our tests.

Besides, we can extend our work on revealing evolution patterns by abstracting mi-

gration trajectories as attributed graphs. For example, node attributes may include the

number of venues, the entropy of topics, and edge attributes can be the distance between

region centroids. By applying clustering methods for attributed graphs [171], we are able

to find regions that have similar evolution procedures more precisely.

Our method is applicable to the analysis of any spatio-temporal data, e. g., telecommu-

nication records and commuting flows. Such kind of data might be inherently related, and

their connection weights should be measured differently, rather than by calculating the se-

mantic similarity of topics. For example, the vertexes of graphs that are constructed from

commuting flows can be the departure and destination venues of commuters and edges
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can be the routes connecting them. The edge weight denotes the number of trips between

two end-venues [84]. Regions that are detected from the graphs are not necessarily areas

that provide specific functions, but areas that cover a group of closely related venues and

also reflect a high frequency of human activities. Our matching algorithm can expose the

popularity of regions at different time and the migration of activity centers.

5.9 Conclusion

We propose a new visual system for analysing the evolution of geographical regions. It

consists of two interactive visualization views, one for displaying the animated region mi-

grations and the other for showing the differences and connections between a sequence

of snapshots. Compared to conventional methods of urban analysis, we leverage dynamic

geo-textual data and update region divisions by employing a graph-based method. Fur-

thermore, the matching algorithm aims to identify different types of region transforma-

tions. Users can further explore whether regions have similar evolution patterns. We have

conducted two case studies and a user study on real datasets. The results show that the

system can effectively assist users in analyzing dynamic features of regions. In the future,

we plan to enhance the visual system by automating the selection of parameter values and

also apply our methods to exploring more geographical data.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The methods introduced in this thesis aim at achieving the following goals: (1) exposing

the structural similarities between graph communities, (2) searching for graph compo-

nents that have the topological patterns of interest, (3) representing the dynamics of graph

properties and (4) improving the usability of the traditional timeline and animation repre-

sentations.

6.1 Summarizations and Limitations

Chapter 3. We establish a framework for presenting the dynamic relationship between

graph communities. Communities can be found by a few state-out-art techniques such as

the Louvain algorithm and the Infomap approach. To measure how similar the structures

of communities are, we can learn vectorized representations of the corresponding sub-

graphs by extracting topological features or by Graph Convolutional Networks (GCN).

Then the similarity score can be calculated based on the vectors. We use the Multidimen-

sional Scaling technique to decide the spatial proximity of community nodes on the 2D

display. For dynamic graphs, a sequence of snapshots are juxtaposed along the timeline.
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Consequently, users can easily discern similar communities, and by comparing consecu-

tive snapshots, they can identify communities that involve remarkable changes.

Limitations. We do not consider the attribute of vertices. Hence, vector representa-

tions only encode the structural information. If two communities are placed more closely

on the display, it only implies that they have similar structures.

Chapter 4. Graph components are classified into topological patterns that users are

interested in. Consequently, the diversity of graph structures is reduced. Users can easily

locate all components of a specific class. We use animations to show the evolution of

graph. The visual stability is improved by generating the layout of components at a global

level. Meanwhile, the inner connectivity of components are implied by glyphs that denote

the topological patterns. Normally, it is impractical to compare frames as the animation

plays. However, we combine snapshots at two consecutive timestamps in one frame, then

users can conveniently capture significant graph changes by viewing the transformation

of visual encodings.

Limitations. First, the topological patterns only approximate the real structures of

graphs. To inspect the details, users still have to expand the collapsed components. Sec-

ond, the topological patterns have to be determined in advance. Because we have to

re-train the classification model after adding or removing patterns. However, changing

patterns is totally feasible as long as users do not mind the time cost of training.

Chapter 5. We build a visual system that helps geographical researchers to study the

evolution of functional regions. The evolution can be described by a sequence of life states
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including the birth, death, expansion and contraction of regions. To delimit functional

regions, we construct a dynamic network based on the temporal geo-textual data. Each

node of the network represents a venue with attached descriptions of the human activities.

Communities detected from the network correspond to regions. Functional regions are

then interpreted by the aggregation of activities at all inside venues.

Limitations. To alleviate the problem of data sparsity, we have to fuse the data col-

lected from multiple sources. However, the time cost of pre-processing increases, because

we have to manipulate the datasets differently. Currently, the timeline representation is

used to show the evolution of regions, but we have to compensate for its poor scalability

by adding more interactive features.

6.2 Future Work

6.2.1 Visualizing Multivariate Dynamic Networks

Entities of multivariate networks may possess a large number of attributes which can be

intrinsic or induced by topological properties. In social networks, intrinsic attributes could

be users’ age, gender or the frequency of interaction. Topological attributes include the

node centrality, the degree distribution and the clustering coefficient.

Typically, Parallel Coordinates (PC) are used to present multivariate data. As shown

in Figure 6.1, vertical axes denote attributes. An object is represented by a polygonal line

that connects the vertices on axes. Each vertex corresponds to the attribute value of the
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Figure 6.1: Juxtaposed parallel coordinates can potentially be used to represent multivari-

ate dynamic networks.

object. If we further consider the temporal dimension, an intuitive representation is to

juxtapose PC for multiple timestamps. But this representation is not scalable along both

the horizontal and the vertical directions.

We are planning to use PC-based visualizations to represent the multivariate dynamic

networks. Each network node is depicted by a polygonal line, and each axis denotes a

variable that is associated with the nodes. The connections between nodes can be demon-

strated by linking the corresponding vertices on each vertical axis. Consequently, users

can view the density of connections regarding the value distribution of individual vari-

ables. Problems that need to be solved include improving the compactness and the scala-

bility of visual representations.

143



Figure 6.2: Retrieve original data from graph visualizations.

6.2.2 Reverse Engineering

Given static graph drawings without interactive features, users are unable to make changes

even if they are not satisfied with the color, shape or layout. Furthermore, it is impossible

to automatically obtain the statistical data of the graph.

To add interactive features to static visualizations, the key is to retrieve the original

data. Namely, we need to identify vertices and their connectivity. As shown in Figure 6.2,

our method takes a graph drawing as the input and the output is a list of connected entities.

Initially, we would like to focus on graph drawings where nodes and links are repre-

sented by circles and straight lines, respectively. So, we need to find all graphical ele-

ments and their positions. A potential solution is to apply the target detection algorithms

that have been well developed in computer vision [172]. But the difficulty substantially

increases if there are too many node overlappings and edge crossings in the input.
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6.2.3 Story Telling

Many visual systems require users to have the domain knowledge. Otherwise, users have

to follow complex instructions to start the exploration. Hence, these systems are not user-

friendly to people who are not experts. To let users get a basic understanding of the

visualized data, it is necessary to interpret complex visual cues as brief descriptions.

Our objective is to learn stories from the visual system. Stories [173] can be short texts

that summarize the statistics of charts and tables. Then, users do not have to know what

a symbol denotes in the diagram, such as the quartile segment in box plots. Furthermore,

by ranking stories based on their importance, users can quickly capture what they need.
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[57] Ivan Herman, Guy Melançon, and M Scott Marshall. Graph visualization and nav-

igation in information visualization: A survey. IEEE Transactions on visualization

and computer graphics, 6(1):24–43, 2000.

[58] Ji Soo Yi, Youn ah Kang, John Stasko, and Julie Jacko. Toward a deeper under-

standing of the role of interaction in information visualization. IEEE transactions

on visualization and computer graphics, 13(6):1224–1231, 2007.

[59] Daniel F Keefe and Tobias Isenberg. Reimagining the scientific visualization inter-

action paradigm. IEEE COMPUTER, 46(5):51–57, 2013.

[60] Yifan Hu, Lei Shi, Farid Aadil, Latif Izdihar, and Carol A. Fernando. Visualizing

large graphs. 2015.

[61] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings

of the 12th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 631–636. ACM, 2006.

[62] Quan Hoang Nguyen, Seok-Hee Hong, Peter Eades, and Amyra Meidiana. Proxy

graph: Visual quality metrics of big graph sampling. IEEE Transactions on Visual-

ization and Computer Graphics, 23(6):1600–1611, 2017.

[63] Yanhong Wu, Nan Cao, Daniel Archambault, Qiaomu Shen, Huamin Qu, and Wei-

154



wei Cui. Evaluation of graph sampling: A visualization perspective. IEEE trans-

actions on visualization and computer graphics, 23(1):401–410, 2017.

[64] Christos Gkantsidis, Milena Mihail, and Ellen Zegura. Spectral analysis of internet

topologies. In IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of

the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428),

volume 1, pages 364–374. IEEE, 2003.

[65] Jure Leskovec, Kevin J Lang, and Michael Mahoney. Empirical comparison of

algorithms for network community detection. In Proceedings of the 19th interna-

tional conference on World wide web, pages 631–640. ACM, 2010.

[66] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: a

comparative analysis. Physical review E, 80(5):056117, 2009.

[67] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of statistical me-

chanics: theory and experiment, 2008(10):P10008, 2008.

[68] Michelle Girvan and Mark EJ Newman. Community structure in social and biologi-

cal networks. Proceedings of the national academy of sciences, 99(12):7821–7826,

2002.

[69] Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex networks

reveal community structure. Proceedings of the National Academy of Sciences,

105(4):1118–1123, 2008.

155



[70] Emile Aarts and Jan Korst. Simulated annealing and boltzmann machines. 1988.

[71] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection.

Proceedings of the National Academy of Sciences, 104(1):36–41, 2007.

[72] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. Overlapping community

detection in networks: The state-of-the-art and comparative study. ACM Comput-

ing Surveys (csur), 45(4):43, 2013.

[73] Cfinder:. http://www.cfinder.org/, November 2016.

[74] Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. Link communities reveal

multiscale complexity in networks. Nature, 466(7307):761–764, 2010.

[75] Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlap-

ping and hierarchical community structure in complex networks. New Journal of

Physics, 11(3):033015, 2009.

[76] Steve Gregory. Finding overlapping communities in networks by label propagation.

New Journal of Physics, 12(10):103018, 2010.
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[78] Stéphan Clémençon, Hector De Arazoza, Fabrice Rossi, and Viet Chi Tran. Hier-

archical clustering for graph visualization. arXiv preprint arXiv:1210.5693, 2012.

156

http://www.cfinder.org/


[79] Hong Zhou, Panpan Xu, Xiaoru Yuan, and Huamin Qu. Edge bundling in informa-

tion visualization. Tsinghua Science and Technology, 18(2):145–156, 2013.

[80] Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations

in hierarchical data. IEEE Transactions on visualization and computer graphics,

12(5):741–748, 2006.

[81] Huamin Qu, Hong Zhou, and Yingcai Wu. Controllable and progressive edge clus-

tering for large networks. In International Symposium on Graph Drawing, pages

399–404. Springer, 2006.

[82] Danny Holten and Jarke J Van Wijk. Force-directed edge bundling for graph visu-

alization. In Computer graphics forum, volume 28, pages 983–990. Wiley Online

Library, 2009.

[83] Emden R Gansner and Yehuda Koren. Improved circular layouts. In International

Symposium on Graph Drawing, pages 386–398. Springer, 2006.

[84] Tatiana Von Landesberger, Felix Brodkorb, Philipp Roskosch, Natalia Andrienko,

Gennady Andrienko, and Andreas Kerren. Mobilitygraphs: Visual analysis of mass

mobility dynamics via spatio-temporal graphs and clustering. IEEE transactions on

visualization and computer graphics, 22(1):11–20, 2016.

[85] Tim Dwyer, Christopher Mears, Kerri Morgan, Todd Niven, Kim Marriott, and

Mark Wallace. Improved optimal and approximate power graph compression for

157



clearer visualisation of dense graphs. In 2014 IEEE Pacific Visualization Sympo-

sium, pages 105–112. IEEE, 2014.

[86] Cody Dunne and Ben Shneiderman. Motif simplification: improving network visu-

alization readability with fan, connector, and clique glyphs. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pages 3247–3256.

ACM, 2013.
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