

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

LEARNING DEEP NEURAL NETWORKS FOR IMAGE

COMPRESSION

MU LI

PhD

The Hong Kong Polytechnic University

2020

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

Learning Deep Neural Networks for Image

Compression

Mu Li

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

September 2019

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

(Signature)

Mu Li (Name of Student)

i

ABSTRACT

Data compression is a very basic problem in computer science and has been studied for

decades. The contradiction between the increasing amount of data and the limited saving

space arises soon after the invention of the computer and has never been completely solved

until today. After the population of the Internet, the limited bandwidth and the increasing

data to be transported became another significant contradiction. With the limited saving

space and bandwidth, a method to compress the data into a smaller size is very valuable to

the whole computer society. Recently, social media becomes a hot topic in our daily life.

Media like image and video is now a major data type. Besides, the deep learning methods

have shown unprecedented success and powerful fitting ability in many computer vision and

natural language processing problems. In this thesis, we choose to develop better image

compression methods with powerful deep learning toolkits.

Image compression methods are divided according to the decoded images. One

branch is the lossless image compression method which requires the decompressed images to

be the same as the original images. The other branch is the lossy image compression method

that allows the decompressed images to be different from the original images. With small

scarification on the image quality, the lossy image compression methods could compress the

image into a much smaller size. In practice, most of the popular image compression stan-

dards are lossy image compression methods. Lossy image compression methods usually are

modeled as a rate-distortion optimization problem. Two issues should be considered when

building a deep image compression method. The first issue is quantization. Quantization

functions are generally step functions with zero gradients at almost all the regions except for

several points where the gradient is infinite. All the neural networks before the quantization

operation could not be optimized with the back-propagation algorithm. Another issue is how

ii

to model the discrete entropy of the codes.

In the first job, we analyze the informative content in the image and build a content

weighted lossy image compression framework with deep networks. Considering that in an

image with an eagle flying in the blue sky, the informative part, i.e., the eagle, should be

more important than the sky. Thus, when the bits used to code the image are limited, it is

reasonable to allocate more bits to the informative important parts and fewer bits to code the

unimportant parts instead of allocating the same bits for all the parts evenly. We introduce

a side information network to summarize the informative importance of different parts of

the image as the importance map and allocate the different number of bits to different parts

correspondingly. And the sum of the importance map is adopted as the upper bound of

the discrete entropy of the codes. For the quantization, a binarization function is adopted.

And a continuous proxy function of quantization function is introduced for back-propagation

to tackle the gradient problem. The whole framework consists of an analysis transform,

a synthesis transform, and a side importance map network. The analysis transform takes

the image as input and generates the code representations which are further quantized into

discrete codes. And the codes are decoded by the synthesis transform to produce the decoded

image. The model is end-to-end optimized on a subset of the ImageNet dataset and tested

on Kodak dataset where it outperforms the image compression standards like JPEG and

JPEG2O0O by SSIM index and generates better visual results.

The first job is still inferior to the state-of-art image compression standards like BPG.

We analyze the shortcomings of the first job and improve it as follows. First, a DenseBlock is

introduced to build the encoder and decoder. Secondly, a channel-wise learnable quantization

function is introduced by minimizing the quantization error between the proxy function and

the quantization function. With smaller quantization error, the gradient produced by the

proxy function would be more accurate. Especially, when the quantization error is 0, the

quantization function is the same as the proxy function. The gradient estimated by the proxy

function is the real gradient. Finally, we introduce a 3D mask convolutional network for post

iii

entropy coding. In the previous job, a small 3D block around a target code is extracted as

the context to predict the discrete probability table of the code. Compared to the previous

job, the mask CNN could employ a larger context and is computational more efficient due to

the share computation. With the above improvements, our job could outperform the state-of-

art image compression methods especially at low bit rates and achieve visually much better

results. And we further apply the framework for task-driven image compression with task-

driven distortion loss.

In the third job, we focus on entropy modeling, generalize the mask CNN proposed

in the second job, and introduce a general context-based convolutional network (CCN) for

efficient and effective context-based entropy modeling. The CCN is more general and can be

applied for any context and coding order with the given property. The previous mask CNN

could predict the probability of all the codes in parallel in encoding but have to process the

codes in serial order in decoding due to the limitation of the context. For better efficiency in

decoding, we proposed a 3D zigzag scanning order for the 3D code block generated by anal-

ysis transform together with a code dividing technique to cut the codes into different groups.

By removing the dependency among the code in the same group, the introduce context can be

used in CCNs for parallel decoding. Without a clear drop in the effectiveness, the proposed

special context-based CCN can speed up the decoding process by a lot. We test the CCN

for lossy and lossless image compression. For lossy image compression, we directly apply a

CCN on binarized grayscale image planes to predict the Bernoulli distribution of each code.

For lossy image compression, without further hypothesis on the probabilistic distribution of

the codes, we adopt a mixture of Gaussian (MoG) distributions to predict the distribution

of the codes whose parameters are estimated with CCNs. The discrete entropy built on the

MoGs is further used as the rate loss to guide the end-to-end optimization of the transforms

and the CCN based entropy model. On both lossy image compressions, the proposed CCN

based entropy modeling outperforms all the current lossless image compression standards.

As for lossy image compression, the proposed methods achieve state-of-art performance in

iv

low bit rate region.

The traditional convolutional networks could only adopt some local information in

its receptive filed for computation, and the information outside the receptive filed is usually

ignored. Due to the structural limitation, the CCN can only apply local context for en-

tropy modeling. The global context and non-local similarity are naturally discarded. In the

fourth job, we dig out the non-local similarity of the codes inner the context and exploit this

prior in context-based entropy modeling. The CCNs proposed in the third job are adopted

to handle the local context. And a non-local attention block is introduced to combine the

local representation produced by the CCNs and the non-local estimation generated by the

content related weights from the global context. Also, a UnetBlock is introduced for the

synthesis and analysis transforms. The width of the network, i.e., the minimum number of

filters in the network, is supposed to be important in determining the performance for low

distortion models. The introduced UnetBlock can help increase the width of the transforms

with manageable computational consumption and time complexity. With the UnetBlock and

the context-based non-local entropy modeling, the model is end-to-end optimized on images

collected from the Flickr. We test the model on Kodak and Tecnick datasets and find that

both of the non-local entropy modeling and the UnetBlock are effective in improving the

performance and the whole model can achieve the state-of-art performance not only at low

bit rate region but also high bit rate region. Among the four jobs, the fourth job achieves the

best performance.

To summarize, we have done four jobs for lossy image compression with deep con-

volutional networks. The first two of them focus on the content variant image compression

framework. And the last two jobs are more general and aim to build better entropy modeling

which could be used for any other image compression jobs. With the four jobs, we have

achieved state-of-art performance on lossy image compression tasks.

Keywords: Image Compression, Importance Map, Convolutional Networks, Context-based

v

Entropy Modelling, Non-local.

vi

PUBLICATIONS ARISING FROM THE THESIS

Published Papers

1. Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao, and David Zhang, Learning con-

volutional networks for content-weighted image compression, In Proc. of IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2018. (Citation: 121)

Unpublished Papers

1. Mu Li, Kede Ma, Jane You, David Zhang, and Wangmeng Zuo, Efficient and Effective

Context-Based Convolutional Entropy Modelling for Image Compression, submitted

to IEEE Transactions on Image Processing (TIP).Under Minor revision

2. Mu Li, Wangmeng Zuo, Shuhang Gu, Jane You, and David Zhang. Learning Content-

Weighted Deep Image Compression, submitted to IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (TPAMI). Under Minor revision.

3. Mu Li, Wangmeng Zuo, Bob Zhang, Jane You, and David Zhang. Learning Context-

Based Non-local Entropy Modelling for Image Compression, submitted to IEEE Trans-

actions on Image Processing (TIP).

vii

ACKNOWLEDGEMENTS

First and foremost, I want to thank my supervisors, Prof. David Zhang and Prof. Jane You,

for their guidance, support and encouragement in my study. They taught me not only how to

become a good researcher but also how to be a good person.

I would like to express my gratitude to Prof. Wangmeng Zuo, from whom I learnt

the whole process of doing research. He also help me a lot in revising my papers.

I also want to give my thanks to Jinxing LI, Hongwei Yong, Keze Wang, Kede Ma,

Shuhang Gu, Lingxiao Yang, Xixi Jia, and Kai Zhang for the happy memories in the lab and

their kind support and meaningful suggestions in my research.

Finally, I want to specially appreciate my parents and my sister for their endless love,

sacrifice, support, and encouragement.

viii

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY . i

ABSTRACT . ii

PUBLICATIONS . vii

ACKNOWLEDGEMENTS . viii

LIST OF FIGURES . xii

LIST OF TABLES . xvii

CHAPTER 1. INTRODUCTION. 1

1.1 Lossy and Lossless Image Compression . 2

1.2 Transform Coding and Hybrid Coding . 3

1.3 Traditional Image Compression Methods . 4

1.3.1 JPEG . 4

1.3.2 JPEG2000 . 5

1.3.3 HEVC Intra Coding . 5

1.4 Deep Learning Based Image Compression Methods . 6

1.4.1 Quantization . 6

1.4.2 Entropy Modelling . 7

1.4.3 Overview . 7

1.5 Contributions . 8

1.6 Dataset . 9

1.7 Conclusion . 10

CHAPTER 2. LEARNING CONTENT-WEIGHTED DEEP IMAGE COMPRESSION 11

2.1 Introduction . 11

2.2 Content-weighted Image Compression . 14

2.2.1 Components and Gradient Computation . 15

2.2.2 Model formulation and learning . 18

2.3 Convolutional entropy encoder . 20

ix

2.3.1 Encoding binary code . 20

2.3.2 Encoding quantized importance map . 21

2.4 Experiments . 22

2.4.1 Parameter setting . 23

2.4.2 Quantitative evaluation. 23

2.4.3 Visual quality evaluation . 24

2.4.4 Experimental analyses on important map . 24

2.4.5 Entropy encoder evaluation . 26

2.5 Conclusion . 27

CHAPTER 3. IMPROVED CONTENT-WEIGHTED DEEP IMAGE COMPRESSION 28

3.1 Introduction . 28

3.2 Content-weighted Image Compression . 32

3.2.1 Network Architecture . 32

3.2.2 Loss Functions . 37

3.2.3 Relaxation of Quantization for Model Learning . 39

3.2.4 Implementation and Learning . 42

3.3 Trimmed Convolutional Network for Arithmetic Encoding . 42

3.3.1 Coding Schedule and Context of 3D Cuboid . 43

3.3.2 Trimmed Convolution . 44

3.3.3 TCAE and Learning Objective . 47

3.3.4 Inclined TCAE . 47

3.3.5 Implementation and Learning . 48

3.4 Experiments . 48

3.4.1 Experimental Setup . 48

3.4.2 Quantitative Evaluation . 49

3.4.3 Visual Quality Evaluation . 50

3.4.4 Ablation Studies . 54

3.5 Task Driven Image Compression . 60

3.5.1 Model the Task Driven Objective Function . 60

3.5.2 Experiments for Task Driven Image Compression . 62

3.6 Conclusion . 64

x

CHAPTER 4. EFFICIENT AND EFFECTIVE CONTEXT-BASED CONVOLUTIONAL
ENTROPY MODELING FOR IMAGE COMPRESSION 67

4.1 Introduction . 68

4.2 CCNs for Entropy modelling . 70

4.3 CCN-Based Entropy Models for Lossless Image Compression 75

4.4 CCN-Based Entropy Models for Lossy Image Compression . 77

4.5 Experiments . 79

4.5.1 Lossless Image Compression . 80

4.5.2 Lossy Image Compression . 85

4.6 Conclusion . 88

CHAPTER 5. LEARNING CONTEXT-BASED NON-LOCAL ENTROPY MODELLING
FOR IMAGE COMPRESSION . 90

5.1 Introduction . 90

5.2 Context Based Non-local Entropy modelling . 93

5.2.1 CCNs for Local Context Based Entropy modelling . 95

5.2.2 Context Based Non-local Operation . 97

5.3 Context Based Non-local Entropy Modelling for Lossy Image Compression 99

5.3.1 Network Structure for Transforms . 99

5.3.2 Adaptive Quantization Function . 100

5.3.3 Modelling the Objective Function . 101

5.3.4 Post Processing for Entropy Coding . 103

5.4 Experiments . 104

5.4.1 Experimental Setup . 104

5.4.2 Quantitative Evaluation . 105

5.4.3 Visual Quality Evaluation . 106

5.4.4 Ablation Experiments . 109

5.5 Conclusion . 113

CHAPTER 6. CONCLUSION AND FUTURE WORK. 114

6.1 Summary . 114

6.2 Future Work . 115

xi

LIST OF FIGURES

1.1 Illustration of the two image coding framework. (a) transform coding frame-
work. (b) hybrid coding framework. 3

2.1 Illustration of the CNN architecture for content-weighted image compression. 13

2.2 Illustration of importance map. The regions with sharp edges or rich textures
generally have higher values and should be allocated more bits. 17

2.3 The CNN for convolutional entropy encoder. The red block represents the bit
to predict; dark blocks mean unavailable bits; blue blocks represent available
bits. 20

2.4 Comparison of the rate-distortion curves by different methods: (a) PSNR, (b)
SSIM, and (c) MS-SSIM. ”Without IM” represents the proposed method
without importance map. 22

2.5 Images produced by different compression systems at different compression
rates. From the left to right: groundtruth, JPEG, JPEG 2000, Ballé [11], BPG
and ours. Our model achieves the best visual quality at each rate, demonstrat-
ing the superiority of our model in preserving both sharp edges and detailed
textures. (Best viewed on screen in color) . 25

2.6 The important maps obtained at different compression rates. The right color
bar shows the palette on the number of bits. 26

2.7 Performance of convolutional entropy encoder: (a) for encoding binary codes
and importance map, and (b) by comparing with tradition CABAC. 27

3.1 Decoding images of deep compression approach Ballé et al. [11] and our
content-weighted image compression method. 29

3.2 Illustration of our content weighted image compression model. The whole
framework involves an encoder, a learned channel-wise multi-valued quanti-
zation, an importance map subnet, and a decoder. The encoder produces 32
feature maps which are further quantized by the channel-wise multi-valued
quantization function to generate quantized codes. The importance map sub-
net estimates the informative importance of local image content and gener-
ate an importance map with only 1 channel. With the quantized importance
map, an importance mask is further generated for guiding spatially variant
bit rate allocation. By multiplying quantized codes with importance mask in
an element-wise manner, the trimmed quantized codes are produced as the
input of the decoder to generate the decoding image. 33

3.3 Illustration of the importance map. The regions with a sharp edge and rich
texture generally have higher values and should be allocated with more bits. . . 35

3.4 Coding schedule and context of 3D cuboid. The arrows indicate the encoding
order of the cuboid. The green areas are the fixed length context of the sym-
bol cr,p,q with ht = 2 and wt = 2. The red circle represents the current sym-
bol cr,p,q, and the gray (white) circles represent the encoded (non-encoded)
symbols. 43

xii

3.5 Mask planes with respect to wt for trimmed convolution kernels with the size
of 5 × 5. The gray value denotes 1 and the white value denotes 0. The blue
triangle represents the position of the codes to be encoded with respect to the
mask. (a) k < t, (b) k > t, (c) k = t for the input layer, (d) k = t for the
hidden layers. 45

3.6 Rate-distortion curves of different compression algorithms w.r.t. (a) PSNR
and (b) MS-SSIM on the Kodak PhotoCD image dataset. 50

3.7 Rate-distortion curves of different compression algorithms w.r.t. (a) PSNR
and (b) MS-SSIM on the Tecnick dataset. 51

3.8 Decoding images produced by different compression systems. From the
left to right: ground-truth, the results of Chapter 2, Ballé et al. [11], BPG
and Ours(MS-SSIM). In general, our model achieves the best visual quality,
demonstrating the superiority of our model in preserving both sharp edges
and detailed textures. (Best viewed on screen in color) . 52

3.9 Decoding images produced by our models optimized with MSE and MS-
SSIM, respectively. Ours(MS-SSIM) exhibits better textures at lower bpp
but may slightly obscure small sharp edges. 53

3.10 Rate-distortion curves for ablation studies on Kodak. (a) comparison of four
quantization variants, i.e., LCMQ, LMQ, FMQ and BIN. (b) comparison of
other variants of our method.. 55

3.11 Visualization of the importance maps at 6 kinds of bpps. Left: ground-truth.
Right: importance maps ranging from 0.151 to 0.814 bpp. 56

3.12 Lossless compression ratio of entropy prediction models. The data used to
test the entropy prediction models are generated by our CWIC with 7 dif-
ferent parameter sets. (a) and (c) respectively show the results of the four
entropy prediction models on the code o′ and the quantized importance map
p′. (b) and (d) respectively show the results of inclined TCAE with different
number of groups on o′ and p′. 56

3.13 Rate-Performance curve on kitti set. The rate is evaluated with bits per pixel
(bpp). And the detection performance is evaluated with average precision
(AP). We show performance on 8 separate main objects in the set and the
average of them. The blue curve represents BPG and the red curve is our
method. 61

3.14 High quality face image dataset collected from the Flickr. 63

3.15 Samples for generating the training set. 64

3.16 Rate-Performance curve on the collected dataset. The rate is evaluated with
bits per pixel (bpp). And the detection performance is evaluated with Face
recognition accuracy. We show performance on 9 separate thresholds for the
face recognition. The blue curve represents BPG and the red curve is our
method. 65

3.17 Visual quality of our model and BPG on three face images. 65

4.1 Illustration of 2D mask convolution in the input layer of the proposed CCN
for entropy modeling. A raster coding order (left to right, top to bottom)
and a convolution kernel size of 5 × 5 are assumed here. The orange and
blue dashed regions indicate the full context of the orange and blue codes,
respectively. In the right panel, we highlight the support sets of the two codes
in corresponding colors, which share the same mask. 71

xiii

4.2 Illustration of code dividing techniques in conjunction with different coding
orders for a 2D code block. The orange and blue dots represent two nearby
codes. The gray dots denote codes that have already been encoded, while
the white circles represent codes yet to be encoded. (a) Raster coding order
adopted in many compression methods. (b) Support sets of the orange and
blue codes, respectively. It is clear that the orange code is in the support
set of the blue one, and therefore should be decoded first. (c) Code dividing
scheme for the raster coding order. By removing the dependencies among
codes in each row, the orange and blue codes can be decoded in parallel.
However, the orange code is excluded from the support set of the blue one,
which may hinder entropy estimation accuracy. (d) Zigzag coding order and
its corresponding code dividing scheme. The two codes in the orange squares
that are important for the orange code in entropy prediction are retained in its
partial context. (e) Support sets of the orange and blue codes in compliance
with the zigzag coding order. 72

4.3 Illustration of the proposed 3D zigzag coding order and 3D code dividing
technique. (a) Each group in the shape of a diagonal plane is highlighted
in green. Specifically, GPk(y) = {yr(p, q)|r + p + q = k} are encoded
first, than GPk+1(y). Within GPk(y), we first process codes along the line
p + q = k by gradually decreasing p. We then process codes along the line
p+ q = k − 1 with the same order. The procedure continues until we sweep
codes along the last line p+ q = max(k − r, 0) in GPk(y). (b) Support sets
of the orange codes with a spatial filter size of 3× 3. 72

4.4 Illustration of masked codes with M = 6, r = 2, and a filter size of 3 × 3.
Blue dots represent codes activated by the mask and red dots indicate the
opposite. The only difference lies in the green diagonal plane. (a) Input
layer. (b) Hidden layer. 73

4.5 The proposed CCN-based entropy model for lossless image compression.
The grayscale image x is first converted to bit-plane representation y, which
is fed to the network to predict the mean estimates of Bernoulli distributions
P (yr(p, q)|SS(vr(p, q))). The size of convolution filters and the number of
feature blocks in intermediate layers are set to S × S and N , respectively.
Each convolution layer is followed by a parametric ReLU nonlinearity, ex-
cept for the last layer, where a sigmoid function is applied. From the mean
estimates, we find that for most significant bit-planes, our model makes more
confident predictions closely approaching local image structures. For least
significant bit-planes, our model is less confident, producing mean estimates
close to 0.5. 74

4.6 The architecture of the proposed lossy image compression method, which
consists of an analysis transform ga, a non-uniform and trainable quantizer
gd, a CCN-based entropy model, and a synthesis transform gs. Conv: regular
convolution with filter support (S×S) and number of channels (output×input).
Down-upsampling: implemented jointly with the adjacent convolution (also
referred to as stride convolution). DenseBlock: m matches the input channel
number of the preceding convolution. n is the channel number in Dense-
Block set empirically. MConv: mask convolution used in our CCNs with
filter support (S × S) and number of feature blocks (output×input). Note
that the number of channels is fixed in MConv, and is determined by that of ȳ. 76

4.7 Bit rates (in terms of bpp) of different DNN-based entropy models for loss-
less image compression on the Kodak dataset. SIN(M) refers to a side infor-
mation network that allocates M output channels to represent side informa-
tion. The orange and gray bars represent the bit rates from the image and the
side information, respectively. 79

xiv

4.8 Bit rates of CCN in comparison with lossless image compression standards
on the Kodak and Tecnick datasets. 81

4.9 Ablation study of CCN on the Kodak and Tecnick datasets. CCN(N ,S) de-
notes the CCN with N feature blocks and S×S filter size. CCNr represents
the CCN with the raster coding order and the corresponding code dividing
technique (see Fig. 4.2). 82

4.10 Visualization of the learned continuous MoG distributions of sample codes
before discretization. It is clear that most of them are multimodal and there-
fore cannot be well fit using a single Gaussian. 82

4.11 Rate-distortion curves of different compression methods on the Kodak dataset.
(a) PSNR. (b) MS-SSIM. Baseline denotes our method with separately opti-
mized transforms and entropy model for MSE.. 84

4.12 Rate-distortion curves of different compression methods on the Tecnick dataset.
(a) PSNR. (b) MS-SSIM. 84

4.13 Compressed images by different compression methods on the Kodak dataset.
The quantitative measures are in the format of “bpp / PSNR / MS-SSIM”. (a)
Uncompressed “Sailboat” image. (b) Ballé17 [11]. 0.209 / 31.81 / 0.962. (c)
Chapter 2. 0.244 / 31.97 / 0.966. (d) BPG. 0.220 / 33.19 / 0.963. (e) Ours
optimized for MS-SSIM. 0.209 / 31.01 / 0.978. (f) Uncompressed “Statue”
image. (g) Ballé17. 0.143 / 29.48 / 0.942. (h) Chapter 2. 0.115 / 29.35 /
0.938. (i) BPG. 0.119 / 29.77 / 0.935. (j) Ours optimized for MS-SSIM.
0.116 / 28.05 / 0.954. 85

4.14 Compressed images by different compression methods on the Tecnick dataset.
The quantitative measures are in the format of “bpp / PSNR / MS-SSIM”. (a)
Uncompressed “Bus” image. (b) JPEG2K. 0.199 / 24.41 / 0.914. (c) Chapter
2. 0.224 / 23.41 / 0.908. (d) BPG. 0.208 / 25.36 / 0.928. (e) Ours(MS-SSIM).
0.198 / 23.71 / 0.951. (f) Uncompressed “Toy train” image. (g) JPEG2K.
0.201 / 28.29 / 0.917. (h) Chapter2. 0.189 / 26.83 / 0.899. (i) BPG. 0.210 /
29.25 / 0.933. (j) Ours(MS-SSIM). 0.198 / 28.08 / 0.949. 86

5.1 Illustration for context-based non-local entropy modeling. (a) indicates the
non-local similarity among the codes generated by the analysis transform.
(b) shows the context of a target code in 3D code block y with a raster scan-
ning order. (c) gives the local context used in CNN-based entropy modeling.
(d) illustrates the non-local similarity in the context. 94

5.2 Illustration of the non-local similarity of the codes inner the special partial
context used in CCNs for entropy modelling. The red block is the target
code to be predicted. And the green region is the partial context for the
CCNs. Global similar code vectors as the target code vector is located by the
proxy similarity metric gd. And corresponding similar codes (blue blocks)
are adopted to predict the target code. The yellow plane indicates the code
plane in the context used in the non-local operation. 96

xv

5.3 The architecture of the proposed lossy image compression method, including
an analysis transform ga, an adaptive trainable quantizer gq, a context-based
non-local entropy model, and a synthesis transform gs. Conv: regular convo-
lution with filter support (kernel size× kernel size) and number of channels
(output×input). UnetBlock: a0, a1 and a2 are the downsampling multipli-
ers in the U-net structure. MConv: mask convolution used in our CCNs
with filter support (kernel size× kernel size) and number of feature blocks
(output×input). Note that the number of channels is fixed in MConv, and is
the same as the input of the entropy model, i.e., y. 98

5.4 Rate-distortion curves of different compression methods on the Kodak dataset.
(a) PSNR. (b) MS-SSIM. 105

5.5 Rate-distortion curves of different compression methods on the Tecnick dataset.
(a) PSNR. (b) MS-SSIM. 106

5.6 Compressed images by different compression methods on the Kodak dataset.
The quantitative measures are in the format of “bpp / PSNR / MS-SSIM”. (a)
Uncompressed “Motorcycle” image. (b) JPEG2K. 0.673 / 27.75 / 0.962. (c)
BPG. 0.712 / 29.65 / 0.973. (d) Chapter 4 optimized for MSE. 0.694 / 28.81 /
0.986. (e) Ours optimized for MSE. 0.670 / 30.53 / 0.984. (f) Uncompressed
“House” image. (g) JPEG2K. 0.879 / 31.52 / 0.972. (h) BPG. 0.877 / 32.64
/ 0.979. (i) Chapter 4 optimized for MSE. 0.871 / 29.99 / 0.988. (j) Ours
optimized for MSE. 0.865 / 33.04 / 0.989. 107

5.7 Compressed images by different compression methods on the Tecnick dataset.
The quantitative measures are in the format of “bpp / PSNR / MS-SSIM”. (a)
Uncompressed “Fruit” image. (b) JPEG2K. 0.137 / 24.95 / 0.890. (c) BPG.
0.136 / 25.58 / 0.901. (d) Chapter 4 optimized for MS-SSIM. 0.139 / 25.63
/ 0.938. (e) Ours optimized for MS-SSIM. 0.134 / 24.46 / 0.939. (f) Un-
compressed “Seafood” image. (g) JPEG2K. 0.137 / 25.52 / 0.882. (h) BPG.
0.135 / 26.42 / 0.905. (i) Chapter 4 optimized for MS-SSIM. 0.138 / 25.62 /
0.925. (j) Ours optimized for MS-SSIM. 0.133 / 25.03 / 0.932. 108

5.8 Rate-distortion curves of different variants of the proposed methods on the
Kodak dataset. (a) PSNR. (b) MS-SSIM. Baseline denotes our method with
unet blocks and normal entropy mdoel. 110

5.9 Visualization of the estimated probability for the context-based non-local
entropy modelling and the CCN-based entropy modelling. Each gray fig-
ure is a visualization of one code plane. The bright/dark color represents
large/small estimated discrete probability (small/large entropy) of the cor-
responding codes. The quantitative measures are in the format of channel
number of the code plane / bits per code. For simplification, ”NLC” repre-
sents the context-based non-local entropy modelling and ”LC” represents the
CCN-based entropy modelling. (a) Uncompressed ”Door” image. (b) LC. 1
/ 1.05. (c) LC. 7 / 1.16. (d) LC. 16 / 1.85. (e) LC. 27 / 2.40. (f) LC. 28 / 1.67.
(g) LC. 29 / 2.37. (h) LC. 30 / 2.37. (i) LC. 31 / 2.30. (j) NLC. 1 / 1.05. (k)
NLC. 7 / 1.14. (l) NLC. 16 / 1.75. (m) NLC. 27 / 2.11. (n) NLC. 28 / 1.21.
(o) NLC. 29 / 2.03. (p) NLC. 30 / 1.97. (q) NLC. 31 / 1.94. 111

xvi

LIST OF TABLES

3.1 Quantization error of four quantization functions, i.e., LCMQ, LMQ, FMQ
and BIN, on 7 parameter sets. 54

3.2 Running time (s) of different entropy prediction models on the codes and
quantized importance maps generated by CWIC trained on seven different
parameter sets. 59

4.1 Running time in seconds of different DNN-based entropy models on the Ko-
dak dataset with image size of 752× 496 . 81

4.2 Running time in second of our CCN-based entropy model at six bit rates on
the Kodak dataset . 85

5.1 Running time in seconds, GPU memory usage in GBs and distortion evalu-
ated with PSNR of three network structures. 109

5.2 Entropy coding for integer codes optimized by MSE and MS-SSIM. The
results are evaluted by bits per code. ȳa,i (ȳb,i) represents the interger code
of the i-th model optimized for the MSE(MS-SSIM). 110

xvii

CHAPTER 1

INTRODUCTION

Data compression [72] is a very basic topic in computer science. It aims to represent the

information of the data with fewer bits. Due to the insufficient storage of the computer

and the limited bandwidth of data link, how to compress the data into a smaller size is

a crucial problem at the very beginning of the emergence of the computer. Even though

the storage increase rapidly according to Moore’s law [49], the data needed to be saved or

transmitted also grows correspondingly. After the population of the personal computer, the

media, including digital images and videos, became a major data type for compression.

Digital images usually are very large. For example, a 4K color image without com-

pression, i.e., 4096 × 2160, would occupy 25, 920 KB for saving, which is even larger than

the size of all the text in a normal book. Considering that the spatially nearby pixels in-

ner an image are closely related to each other, the natural images have a lot of redundant

information which could be compressed by a lot. By analyzing the redundancy, a simple

image compression method could easily compress the images by 10 times without a clear

visual difference. Thus, image compression is very useful in saving storage and transmit

bandwidth.

Recently, the social media, like Facebook and YouTube, are very popular in our daily

life, the amount of media like image and videos are growing explosively. And another hot

topic, artificial intelligence, also depends on the images collected by cameras. With a large

number of images, better image compression methods are still needed. The last decade has

witnessed the unprecedented success of deep learning which shows to have powerful fitting

ability in many computer vision and natural language processing problems. In this thesis,

we aim to develop better image compression methods with deep neural networks.

1

1.1 Lossy and Lossless Image Compression

According to the decoded image, image compression methods are divided into two branches.

One branch is the lossless image compression method which can perfectly reconstruct the

original image from the codes. The other branch is the lossy image compression method

where the decoded image is allowed to be different from the original image. And the differ-

ence between the original image and the decoded image is defined as distortion.

Rate is one of the important metric to evaluate the image compression methods. Usu-

ally, the rate is evaluated by compression ratio or bits per pixel (bpp). The compression ratio

is defined as,

Compression Ratio =
Size of the uncompressed image

Size of the compressed file
, (1.1)

and the bits per pixel is defined as,

bpp =
Size of the compressed file in bits

Number of pixels of the uncopmressed image
. (1.2)

For lossless image compression methods, bigger compression ratio (small bits per pixel)

indicates better image compression methods. For lossy image compression methods, things

are a little complex in evaluating the performance of the methods. Besides the rate, another

important metric, distortion should also be considered. A most simple and widely used

metric for distortion is mean square error, which is defined as,

MSE =
1

HW
‖x− y‖2

2, (1.3)

where xi,j and yi,j are separately the pixel of the input image and the decoded image at the

2D location of (i, j). Corresponding to MSE, another metric Peak Signal-to-Noise Ratio

(PSNR) is also a common distortion metric.

PSNR = 10log10

2552

MSE
. (1.4)

However, the above distortion metrics are simple but fail to consider the character-

istics of the human visual system. As a result, such metrics can not perfectly indicate the

visual quality of the image. Some better metrics like structural similarity index (SSIM) [76]

2

Input Image Transform

Inverse

Transform

Decoded

Image

Quantization

De-

quantization

Bitstream

Entropy

Encoding

Entropy

Decoding

(a)

Input Image
 Predictive

Coding

 Predictive

Decoding

Decoded

Image

Residue

Reconstructed

Residue

Bitstream

Transform

Encoding

Transform

Decoding

(b)

Figure 1.1: Illustration of the two image coding framework. (a) transform coding framework.
(b) hybrid coding framework.

and multi-scale structural similarity index (MS-SSIM) [77] which are more consistent with

the human visual system are introduced to evaluate the distortion.

Taking both the rate and distortion into account, the lossy image compression meth-

ods are usually evaluated by a joint rate-distortion curve. Without noticeable distortion, lossy

image compression methods can achieve a much larger compression ratio than the lossless

image compression methods can do. Thus, lossy image compression standards, such as JPEG

and JPEG2000, are widely used in our daily life.

1.2 Transform Coding and Hybrid Coding

For image compression methods, the goal is to remove the redundant information in the im-

age. With different strategies, mainly two frameworks are designed for image compression.

The first and most adopted framework is the transform coding framework, which usually fol-

lows the pipeline of transforming, quantization, entropy encoding to generate the bitstream

for the compressed file, and decodes the compressed file to get the decompressed image with

entropy decoding, inverse transforming. Figure 1.1 (a) shows the framework of the transform

3

coding framework. Most of the well-known image coding standards, including JPEG [73]

and JPEG2000 [64], adopted the transform coding framework.

As illustrated in Figure 1.1 (b), another framework, hybrid coding framework, is a

mixture of predictive coding and transforming coding. Firstly, a predictive coding step is

adopted to predict the pixels from context and then code the residue between the input image

and the prediction with the transform coding system. The first step aims to remove the

redundancy of the image and the second step aims to remove the redundancy of the residue.

The image coding system, BPG (HEVC intra coding) [13], follows this framework, and

produce overwhelm performance compared with JPEG and JPEG2000.

1.3 Traditional Image Compression Methods

As a very basic problem in computer science, image compression has been studied for

decades. And many well-know image compression standards have been proposed for better

performance. In this thesis, we choose to briefly review three representative methods, i.e.,

JPEG, JPEG2000 and BPG (HEVC Intra Coding).

1.3.1 JPEG

The JPEG standard [73] is designed by the Joint Photographic Expert Group for still image

compression. It included several models including baseline model, lossless model, progres-

sive model, and hierarchical model. Among the models, the most popular model is the base-

line model, which is even the most popular still image compression standard. The baseline

model follows the transform coding framework. It first divides the images into 8× 8 patches

and adopts the DCT transform [6] to process the 8 × 8 image patches. The 64 DCT coeffi-

cients after transformation are further quantized with a uniform scalar quantizer. Finally, the

Huffman coding [31] is adopted to mapping the coefficients to bitstreams for saving. The

lossless model is quite different, which makes use of a predictive coding scheme based on

the nearest neighbors and 7 different predictors. The residue is directly entropy coded with

the Huffman coding.

4

1.3.2 JPEG2000

JPEG2000 is another popular image compression standard designed for improved compres-

sion performance. Compared with JPEG, JPEG2000 has properties including progressive

decoding, random access, lossless to lossy compression, and tolerance for errors. JPEG 2000

also follows the transform coding framework. Instead of using DCT transform, JPEG2000

adopts the discrete wavelet transform (DWT) [1, 8]. Besides, context modeling together with

the arithmetic coding [79] is introduced for entropy coding. And a post-compression rate al-

location scheme is designed for better compression performance. With the DWT transform

and the efficient code-stream organization scheme, JPEG2000 can do progressive decoding,

which means that JPEG2000 can construct a lower quality version image with only a smaller

part of the whole image. With more parts of the file received, the quality of the decoded im-

age will increase correspondingly. Another significant feature is the ROI image compression

scheme. With a given ROI map, the regions of interest are coded with better quality than the

other parts of the image.

1.3.3 HEVC Intra Coding

BPG [13], also known as the HEVC intra coding [35], follows the hybrid coding framework

which consists of predictive coding built on spatial sample prediction, transform coding and

post-processing. Different from the block dividing scheme in JPEG, BPG adopts a quadtree-

based coding structure for block dividing. Besides, the agnostic angular prediction based on

33 prediction directions and planar prediction for smooth sample surfaces is jointly adopted

to predict the image blocks. After predictive coding, the residue will be further compressed

with the transform coding which shares the same transform coding pipeline as HEVC inter

coding. This pipeline consists of transform, quantization, entropy coding, removing blocking

effects, and applying sample adaptive offsets.

5

1.4 Deep Learning Based Image Compression Methods

As a popular tool-kit in recent years, deep learning have been well investigated in com-

puter vision problems including image classification [34], visual tracking [74], object de-

tection [57], denoising [81, 83], and super-resolution [20], and natural language processing

problems including machine translation [16], question answering [42, 50], and speech recog-

nition [25, 29]. The unprecedented success of deep learning throws light on designing better

image compression methods. Currently, nearly all the deep learning methods follow the

transform coding framework and adopt deep networks as transforms which is further opti-

mized for a joint rate-distortion objective loss function. In designing a deep image compres-

sion framework, two issues, i.e., quantization, and entropy modeling, should be considered.

In this section, we will first explore the quantization and entropy modeling strategies used

in deep image compression methods and then briefly review the deep image compression

methods.

1.4.1 Quantization

A major problem in end-to-end lossy image compression is that the gradients of the quan-

tization function are zeros almost everywhere, making gradient descent-based optimization

ineffective. Based on the strategies of alleviating the zero-gradient problem of quantization,

DNN-based lossy image compression methods can be divided into different categories.

From a signal processing perspective, the quantizer can be approximated with an

additive i.i.d. uniform noise, which has the same width as the quantization bin [26]. The

desired property of this approximation is that the resulting density function is a continuous

relaxation of the probability mass function of y [11]. Given the features to be quantized

denoted as z, the quantization operation Q(z) is defined as

Q(z) = z + u. (1.5)

Here, u is sampled from a uniform noise distribution. In testing, z is directly rounded to its

nearest integer.

6

Another line of research introduced more continuous functions (without the zero-

gradient problem) to approximate the quantization function. The step quantizer is used in

the forward pass, while its continuous proxy is used in the backward pass [67]. For example,

Q(z) = [z] is used for forward-propagation and Q̂(z) = z is adopted for back-propagation.

Here, [.] is the round operation.

1.4.2 Entropy Modelling

Learnt DNN-Based lossy image compression methods are usually modeled as a joint rate-

distortion optimization problem. Estimating the entropy of the codes which depend on cer-

tain potential probabilistic distribution functions (PDFs) is one of the most important issues

in building a deep image compression framework. Early methods [2, 11, 58, 67] only adopt

DNNs for transforms and directly suppose that all the codes are independent and follows the

same PDF for easy to handle entropy models. Without accurate estimation of the entropy,

the performance of these methods is not satisfactory enough compared with traditional image

compression standards like JPEG2000 and BPG. It is known to all that natural images have

continuous prior. The codes generated from the image with a non-linear analysis transform

still keep some strong statistical redundancies, which leave a lot of space for better entropy

modeling with extra information, i.e., context [37, 38, 46, 48, 69] or hyperprior [12] of the

codes. For better entropy modeling, DNNs started to be used to estimate the PDFs of the

codes from code context or hyperprior summarized from the code.

1.4.3 Overview

In the encoder-decoder framework, both recurrent neural network (RNN) and conventional

network (CNN) based models have been developed for lossy image compression. In [68],

Toderici et al. suggest a RNN architecture to compress the residual of a 32 × 32 images

progressively. Subsequently, they [69] present a new variant of a gated recurrent unit (GRU)

as well as content-based residual scaling for RNN-based full-resolution image compression.

Three improvements are further introduced in [32], i.e., improved network architecture, spa-

tially adaptive bit allocation, and SSIM-weighted loss. In contrast to our pioneer work as

7

shown in chapter 2 and 3, they [32] simply adopt a handcrafted spatially adaptive bit alloca-

tion post-processing scheme.

Using variational auto-encoder (VAE), Ballé et al. [11] adopt a uniform noise approx-

imation for modeling quantization error, and present a continuous and differentiable proxy

of the rate-distortion loss. Supposing that all the codes in one feature map are independent, a

linear piece-wise probability density function (PDF) is learned for each channel to estimate

the entropy of the codes. In [12], they further introduce a scale hyperprior as side informa-

tion for capturing spatial dependency and then model the entropy of the codes conditioned on

the learned hyperprior. Furthermore, Minnen et al. [48] utilize a single PixelCNN layer for

modeling autoregressive priors and combine it with hyperprior for boosting rate-distortion

performance.

Convolutional auto-encoders have also been studied and applied to lossy image com-

pression. Theis et al. [67] provide a continuous upper bound of entropy rate and replace

rounding function with its smooth approximation in backward propagation. For modeling

the distribution of encoder features, they adopt Gaussian scale mixtures. Agustsson et al. [2]

introduce a soft relaxation of the quantization and entropy, and adopt a soft-to-hard anneal-

ing scheme in training. Rippel et al. [58] incorporate a deep auto-encoder with pyramidal

decomposition and adaptive code length regularization to develop a real-time high perfor-

mance compression system. Adversarial loss [24] is also considered in [4, 58] to generate

visually realistic decoding images for low bit rates. Soon after our pioneer work as shown

in chapter 2 and concurrently with our work in chapter 3, Mentzer et al. [46] introduce a

masked convolutional network for capturing spatial dependency in entropy model, and sug-

gest a learning scheme by alternatingly updating the entropy network and auto-encoder in

training.

1.5 Contributions

• As the first several jobs on deep image compression framework, we introduce a deep

framework to learn content weighted spatially variant transformations. Different from

8

the traditional transform coding framework, the deep transforms modeled with convo-

lutional networks is inevitable. Distortion arises from the transform. As each channel

in the code is a representation of the input image, stacking more channels will help

reduce the distortion brought by the deep transforms. We propose to learn a content

related importance map from the image for a joint rate-distortion optimization. The

learned importance map allocates more channels for the informative important regions

to help reduce the extra distortion and keep important details such as edges. With the

whole number of codes is limited, our scheme could allocate more channels for the

informative important region and few channels for flattening regions.

• Better network structure, learnable multi-value adaptive quantization function, better

learning strategy for importance map, and a mask convolutional network for context-

based entropy modeling are introduced to improve the learned content weighted image

compression framework. And the framework is further used for task-driven image

compression.

• A general context-based convolutional network (CCN) is proposed for context model-

ing. Any contexts and scanning orders that fulfill with the requirement can be modeled

with the CCNs. And a special code dividing scheme together with a partial context is

introduced to accelerate the decoding efficiency by a lot without a noticeable perfor-

mance drop.

• We introduce non-local similarity in the code representations for context modeling and

get state-of-art image compression performance.

1.6 Dataset

In chapter 2, we follow Ballé et al. [11], adopts images from the ImageNet as the training

data for optimizing the deep image compression framework. However, the images from the

ImageNet are compressed with JPEG standard with a low quality. Compression artifacts

such as ringing, blurring, and blocking, are witnessed in the training data. To remove the

effection from the compression artifacts, we crawled 10,000 high-quality images from the

9

photo-sharing website Flickr and downsample the image for 3 times and save them with

the lossless image compression standard, PNG. The collected images are used in the last

three chapters. For evaluating the performance of the proposed methods, we adopt Kodak

Photo CD dataset and the Tecnick dataset. There are 24 images with the size of 752 × 496

(496× 752) in Kodak and 100 images with the size of 1200× 1200 in Tecnick

1.7 Conclusion

The rest of the thesis is organized as follows. In Chapter 2, we propose a content weight

image compression framework. And in Chapter 3, the framework is extended with several

improvements, which is further applied for task-driven image compression where the special

tasks also contribute to the learning of importance map. In Chapter 4, a general context-based

deep entropy model and an accelerating strategy are proposed for modeling the entropy of

image compression frameworks. In Chapter 5, we introduce the non-local similarity of the

codes and a U-net structure. The thesis is concluded in Chapter 6.

10

CHAPTER 2

LEARNING CONTENT-WEIGHTED DEEP IMAGE COMPRESSION

Lossy image compression is generally formulated as a joint rate-distortion optimization

problem to learn encoder, quantizer, and decoder. Due to the non-differentiable quantizer

and discrete entropy estimation, it is very challenging to develop a convolutional network

(CNN)-based image compression system. In this chapter, motivated by that the local infor-

mation content is spatially variant in an image, we suggest that: (i) the bit rate of the different

parts of the image is adapted to local content, and (ii) the content-aware bit rate is allocated

under the guidance of a content-weighted importance map. The sum of the importance map

can thus serve as a continuous alternative of discrete entropy estimation to control the com-

pression rate. The binarizer is adopted to quantize the output of the encoder and a proxy

function is introduced for approximating binary operation in backward propagation to make

it differentiable. The encoder, decoder, binarizer and importance map can be jointly opti-

mized in an end-to-end manner. And a convolutional entropy encoder is further presented

for lossless compression of importance map and binary codes. In low bit-rate image com-

pression, experiments show that our system significantly outperforms JPEG and JPEG 2000

by structural similarity (SSIM) index, and can produce the much better visual result with

sharp edges, rich textures, and fewer artifacts.

2.1 Introduction

Image compression is a fundamental problem in computer vision and image processing.

With the development and popularity of high-quality multimedia content, lossy image com-

pression has been becoming more and more essential in saving transmission bandwidth

and hardware storage. An image compression system usually includes three components,

i.e.encoder, quantizer, and decoder, to form the codec. The typical image encoding stan-

11

dards, e.g., JPEG [73], and JPEG 2000 [64], generally rely on handcrafted image transfor-

mation and separate optimization on codecs and thus are suboptimal for image compression.

Moreover, JPEG and JPEG 2000 perform poor for low rate image compression and may

introduce visible artifacts such as blurring, ringing, and blocking [64, 73].

Recently, deep convolutional networks (CNNs) have achieved unprecedented suc-

cess in versatile vision tasks [3, 20, 23, 34, 40, 53, 81, 83]. As to image compression,

CNN is also expected to be more powerful than JPEG and JPEG 2000 by considering the

following reasons. First, for image encoding and decoding, flexible nonlinear analysis and

synthesis transformations can be easily deployed by stacking multiple convolution layers.

Second, it allows us to jointly optimize the nonlinear encoder and decoder in an end-to-end

manner. Several recent advances also validate the effectiveness of deep learning in image

compression [11, 67, 68, 69]. However, there are still several issues to be addressed in CNN-

based image compression. In general, lossy image compression can be formulated as a joint

rate-distortion optimization to learn encoder, quantizer, and decoder. Even the encoder and

decoder can be represented as CNNs and optimized via back-propagation, the learning with

non-differentiable quantizer is still a challenging issue. Moreover, the whole compression

system aims to jointly minimize both the compression rate and distortion, where the entropy

rate should also be estimated and minimized in learning. As a result of quantization, the

entropy rate defined on discrete codes is also a discrete function and requires continuous

approximation.

In this chapter, we present a novel CNN-based image compression framework to

address the issues raised by quantization and entropy rate estimation. The existing deep

learning-based compression models [11, 68, 69] allocate the same number of codes for each

spatial position, and the discrete code used for decoder has the same length with the encoder

output. That is, the length of the discrete code is spatially invariant. However, it is generally

known that the local informative content is spatially variant in an image or video [82]. Thus,

the bit rate should also be spatially variant to adapt to local informative content. To this

end, we introduce a content-weighted importance map to guide the allocation of local bit

rate. Given an input image x, let e = E(x) ∈ Rn×h×w be the output of encoder network,

12

Figure 2.1: Illustration of the CNN architecture for content-weighted image compression.

which includes n feature maps with size of h × w. p = P (x) denotes the h × w non-

negative importance map. Specifically, when l−1
L
≤ pi,j <

l
L

, we will only encode and

save the first nl
L

-th bits {e1ij, ..., enl
L
ij} at spatial location (i, j). Here, L is the number of

the importance level, and n
L

is the number of bits for each importance level. The other bits

{e(nl
L

+1)ij, ..., enij} at (i, j) are automatically set to 0 and need not to be saved into the codes.

In this way, we can allocate more bits to the region with rich content, which is very helpful in

preserving texture details with less sacrifice of bit rate. Moreover, the sum of the importance

map
∑

i,j pi,j naturally serves as a continuous estimation of the compression rate and can be

directly adopted as a compression rate controller.

Benefited from the importance map, we do not require to use any entropy rate estima-

tion in training the encoder and decoder, and can adopt a simple binarizer for quantization.

The binarizer sets those features with the sigmoid outputs which are higher than 0.5 to 1

and the others to 0. Inspired by the binarized CNN [17, 55, 86], we introduce a proxy func-

tion to approximate the binary operation in backward propagation. As shown in Figure 2.1,

our compression framework consists of four major components: convolutional encoder, im-

portance map network, binarizer, and convolutional decoder. With the introduction of the

continuous importance map and proxy function, all the components can be jointly optimized

in an end-to-end manner.

Note that we do not include any entropy rate estimates in the training of the compres-

13

sion system. And the local spatial context of the codes is not utilized. Therefore, we design

a convolutional entropy coder to predict the current code from its context, and apply it to the

context-adaptive binary arithmetic coding (CABAC) framework [44] to further compress the

binary codes and importance map.

Our whole framework is trained on a subset of the ImageNet database [19] and tested

on the Kodak dataset. In low bit-rate image compression, our system achieves much better

rate-distortion performance than JPEG and JPEG 2000 in terms of both SSIM metric and

visual quality. More remarkably, the compressed images by our system are visually more

pleasing with sharp edges, rich textures, and fewer artifacts. Compared with other CNN-

based systems [11], ours performs favorably in retaining texture details while suppressing

visual artifacts.

To sum up, the main contribution of this chapter is to introduce the content-weighted

importance map and binary quantization into the image compression system. The impor-

tance map not only can be used to substitute the entropy rate estimate in joint rate-distortion

optimization but also can be adopted to guide the local bit rate allocation. With binary quanti-

zation and the proxy function, our compression system can be end-to-end trained, and obtain

notable improvement on visual quality over JPEG and JPEG 2000.

2.2 Content-weighted Image Compression

As illustrated in Figure 2.1, our content-weighted image compression framework is com-

posed of four components, i.e.convolutional encoder, binarizer, importance map network,

and convolutional decoder. Given an input image x, the convolutional encoder defines a

nonlinear analysis transformation by stacking convolution layers and outputs E(x). The bi-

narizer B(E(x)) assigns 1 to the encoder outputs which are higher than 0.5, and 0 to the

others. The importance map network takes the intermediate feature maps of the encoder as

an input and yields the content-weighted importance map P (x). The rounding function is

adopted to quantize P (x) and then a mask M(P (x)) which has the same size of B(E(x)) is

generated with the guidance of the quantized P (x). The binary code is then trimmed based

14

on M(P (x)). Finally, the decoder defines a nonlinear synthesis transformation to produce

a decoding result of x̂. In the following, we first introduce the four components and then

present the formulation and learning of our model.

2.2.1 Components and Gradient Computation

Convolutional encoder and decoder

Both the encoder and decoder in our framework are fully convolutional networks and can be

trained by back-propagation. The encoder network consists of three convolution layers and

three residual blocks. Following [27], each residual block has two convolution layers. Analo-

gous to [40] in single-image super-resolution, we remove the batch normalization operations

from the residual blocks, and empirically find that it helps suppress visual compression arti-

facts in smooth areas. The input image x is first convolved with 128 filters with size 8 × 8

and stride 4 and followed by one residual block. The feature maps are then convolved with

256 filters with size 4 × 4 and stride 2 and followed by two residual blocks to output the

intermediate feature maps F (x). Finally, F (x) is convolved with m filters with size 1× 1 to

yield the encoder output E(x). It should be noted that we set n = 64 for low compression

rate models with less than 0.5 bpp, and n = 128 otherwise.

The network architecture of decoder D(c) is symmetric to that of the encoder, where

c is the code of an image x. To upsample the feature maps, we adopt the depth to space

operation mentioned in [69]. Please refer to our project webpage1 for more details on the

network architecture of the encoder and decoder.

Binarizer

Since sigmoid nonlinearity is adopted in the last convolution layer of the encoder, the encoder

output e = E(x) should be in the range of [0, 1]. eijk denotes an element in e. The binarizer

is defined as

B(eijk) =

{
1, if eijk > 0.5,

0, if eijk ≤ 0.5.
(2.1)

1http://www2.comp.polyu.edu.hk/∼15903062r/content-weighted-image-compression.html

15

http://www2.comp.polyu.edu.hk/~15903062r/content-weighted-image-compression.html

However, the gradient of the binarizer functionB(eijk) is zero almost everywhere except that

it is infinite when eijk = 0.5. In the back-propagation algorithm, the gradient is computed

layer by layer with the chain rule. Thus, such setting makes any layers before the binarizer

(i.e., the whole encoder) never be updated during training.

Fortunately, some recent works on binarized neural networks (BNN) [17, 55, 86]

have studied the issue of propagating gradient through binarization. Based on the straight-

through estimator on the gradient [17], we introduce a proxy function B̃(eijk) to approximate

B(eijk). Here, B(eijk) is still used in forward propagation calculation, while B̃(eijk) is used

in back-propagation. Inspired by BNN, we adopt a piecewise linear function B̃(eijk) as the

proxy of B(eijk),

B̃(eijk) =


1, if eijk > 1,

eijk, if 1 ≤ eijk ≤ 0,

0, if eijk < 0.

(2.2)

Then, the gradient of B̃(eijk) can be easily obtained by,

B̃′(eijk) =

{
1, if 1 ≤ eijk ≤ 0,

0, otherwise.
(2.3)

Importance map

In [11, 67], the code length after quantization is spatially invariant, and entropy coding is

then used to further compression the code. The difficulty in compressing different parts of

an image should be different. The smooth regions in an image are easier to be compressed

than those with salient objects or rich textures. Thus, fewer bits should be allocated to the

smooth regions while more bits should be allocated to the regions with complex structures

and details. For example, given an image with an eagle flying in the blue sky in Figure 2.2,

it is reasonable to allocate more bits to the eagle and fewer bits to the blue sky. Moreover,

when the whole code length for an image is limited, such an allocation scheme can also be

used for rate control.

We introduce a content-weighted importance map for bit allocation and compression

rate control. It is a feature map with only one channel, and its size should be the same as

that of the encoder output. The value of the importance map is in the range of (0, 1). An

16

Figure 2.2: Illustration of importance map. The regions with sharp edges or rich textures
generally have higher values and should be allocated more bits.

importance map network is deployed to learn the importance map from an input image of

x. It takes the intermediate feature maps F (x) from the last residual block of the encoder

as input, and uses a network of three convolution layers to produce the importance map

p = P (x).

Denote by h×w the size of the importance map p, and n the number of feature maps

of the encoder output. In order to guide the bit allocation, we should first quantize each

element in p to an integer no more than n, and then generate an importance mask m with the

size of n× h×w. Given an element pij in p, the quantizer to importance map is defined as,

Q(pij) = l − 1, if
l − 1

L
≤ pij <

l

L
, l = 1, . . . , L. (2.4)

where L is the importance levels and (n mod L) = 0. Each important level is corresponding

to n
L

bits. As mentioned above, pij ∈ (0, 1). Thus, Q(pij) has only L types of different

quantity values i.e., 0, . . . , L − 1. It should be noted that, Q(pij) = 0 indicates that zero bit

will be allocated to this location, and all its information can be reconstructed based on its

context in the decoding stage. In this way, the importance map can not only be treated as an

alternative of entropy rate estimation but also naturally take the context into account.

17

With Q(p), the importance mask m = M(p) can then be obtained by,

mkij =

{
1, if k ≤ n

L
Q(pij),

0, else.
(2.5)

The final coding result of the image x can then be represented as c = M(p) ◦ B(e), where

◦ denotes the element-wise multiplication operation. Note that the quantized importance

map Q(p) should also be considered in the code. Thus all the bits with mkij = 0 can be

safely excluded from B(e). Therefore, instead of n, only n
L
Q(pij) bits are needed for each

location (i, j). Besides, in video coding, just noticeable distortion (JND) models [82] have

also been suggested for spatially variant bit allocation and rate control. Different from [82],

the importance map is learned from training data via joint rate-distortion optimization.

Finally, in back-propagation, the gradient m with respect to pij should be computed.

Unfortunately, due to the quantization operation and mask function, the gradient is zero

almost everywhere. To address this issue, we rewrite the importance map m as a function of

p,

mkij =

{
1, if dkL

n
e < Lpij,

0, else
(2.6)

where d.e is the ceiling function. Analogous to binarizer, we also adopt a straight-through

estimator of the gradient,

∂mkij

∂pij
=

{
L, if Lpij − 1 ≤ dkL

n
e < Lpij + 1,

0, else.
(2.7)

2.2.2 Model formulation and learning

Model formulation

In general, the proposed content-weighted image compression system can be formulated as

a rate-distortion optimization problem. Our objective is to minimize the combination of the

distortion loss and rate loss. A tradeoff parameter γ is introduced for balancing compression

rate and distortion. Let X be a set of training data, and x ∈ X be an image from the set.

Therefore, the objective function our model is defined as

L =
∑
x∈X

{LD(c,x) + γLR(x)} (2.8)

18

where c is the code of the input image x. LD(c,x) denotes the distortion loss and LR(x)

denotes the rate loss, which will be further explained as follows.

Distortion loss. Distortion loss is used to evaluate the distortion between the original

image and the decoding result. Although better results may be obtained by assessing the

distortion in the perceptual space, we simply use the squared `2 error to define the distortion

loss,

LD(c,x) = ‖D(c)− x‖2
2. (2.9)

Rate loss. Instead of entropy rate, we define the rate loss directly on the continuous

approximation of the code length. Suppose the size of encoder output E(x) is n × h × w.

The code by our model includes two parts: (i) the quantized importance map Q(p) with the

fixed size h×w; (ii) the trimmed binary code with the size n
L

∑
i,j Q(pij). Note that the size

of Q(p) is constant to the encoder and importance map network. Thus n
L

∑
i,j Q(pij) can be

used as rate loss.

Due to the effect of quantization Q(pij), the function n
L

∑
i,j Q(pij) cannot be opti-

mized by back-propagation. Thus, we relax Q(pij) to its continuous form, and use the sum

of the importance map p = P (x) as rate loss,

L0
R(x) =

∑
i,j

(P (x))ij. (2.10)

For better rate control, we can select a threshold r, and penalize the rate loss in Eqn. (2.10)

only when it is higher than r. Then we define the rate loss in our model as,

LR(x)=

{∑
i,j(P (x))ij−r, if

∑
i,j(P (x))ij>r

0, otherwise.
(2.11)

The threshold r can be set based on the code length for a given compression rate. By this way,

our rate loss will penalize the code length higher than r, and makes the learned compression

system achieve the comparable compression rate around the given one.

Learning

Benefited from the relaxed rate loss and the straight-through estimator of the gradient, the

whole compression system can be trained in an end-to-end manner with an ADAM solver [33].

19

Figure 2.3: The CNN for convolutional entropy encoder. The red block represents the bit to
predict; dark blocks mean unavailable bits; blue blocks represent available bits.

We initialize the model with the parameters pre-trained on the training set X without the im-

portance map. The model is further trained with the learning rate of 1e−4, 1e−5 and 1e−6. In

each learning rate, the model is trained until the objective function does not decrease.

2.3 Convolutional entropy encoder

Due to no entropy constraint is included, the entropy of the code generated by the compres-

sion system in Sec. 2.2 is not maximal. This provides some leeway to further compress the

code with lossless entropy coding. Generally, there are two kinds of entropy compression

methods, i.e.Huffman tree, and arithmetic coding [79]. Among them, arithmetic coding can

exhibit a better compression rate with a well-defined context and is adopted in this work.

2.3.1 Encoding binary code

The binary arithmetic coding is applied according to the CABAC [44] framework. Note that

CABAC is originally proposed for video compression. Let c be the code of n binary bitmaps,

and m be the corresponding importance mask. To encode c, we modify the coding schedule,

redefine the context, and use CNN for probability prediction. As to the coding schedule, we

simply code each binary bit map from left to right and row by row and skip those bits with

the corresponding important mask value of 0.

Context modeling. Denote by ckij a binary bit of the code c. We define the context

of ckij as CNTX(ckij) by considering the binary bits both from its neighborhood and from

20

the neighboring binary code maps. Specifically, CNTX(ckij) is a 5 × 5 × 4 cuboid. We

further divide the bits in CNTX(ckij) into two groups: the available and unavailable ones.

The available ones represent those can be used to predict ckij . While the unavailable ones

include: (i) the bit to be predicted ckij , (ii) the bits with the importance map value 0, (iii)

the bits out of boundary and (iv) the bits currently not coded due to the coding order. Here

we redefine CNTX(ckij) by: (1) assigning 0 to the unavailable bits, (2) assigning 1 to the

available bits with value 0, and (3) assigning 2 to the available bits with value 1.

Probability prediction. One usual method for probability prediction is to build and

maintain a frequency table. As to our task, the size of the cuboid is too large to build the

frequency table. Instead, we introduce a CNN model for probability prediction. As shown

in Figure 2.3, the convolutional entropy encoder En(CNTX(ckij)) takes the cuboid as input,

and outputs the probability that the bit ckij is 1. Thus, the loss for learning the entropy

encoder can be written as,

LE =
∑
i,j,k

mkij {ckij log2(En(CNTX(ckij)))

+(1− ckij) log2(1− En(CNTX(ckij)))} . (2.12)

where m is the importance mask. The convolutional entropy encoder is trained using the

ADAM solver on the contexts of binary codes extracted from the binary feature maps gener-

ated by the trained encoder. The learning rate decreases from 1e−4 to 1e−6 as we do in Sec.

2.2.

2.3.2 Encoding quantized importance map

We also extend the convolutional entropy encoder to the quantized importance map. To

utilize binary arithmetic coding, several binary code maps are adopted to represent the quan-

tized importance map. The convolutional entropy encoder is then trained to compress the

binary code maps.

21

Figure 2.4: Comparison of the rate-distortion curves by different methods: (a) PSNR, (b)
SSIM, and (c) MS-SSIM. ”Without IM” represents the proposed method without impor-
tance map.

2.4 Experiments

Our content-weighted image compression models are trained on a subset of ImageNet [19]

with about 10, 000 high quality images. We crop these images into 128 × 128 patches and

make use of these patches to train the network. After training, we test our model on the Ko-

dak PhotoCD image dataset with the metrics for lossy image compression. The compression

rate of our model is evaluated by the metric bits per pixel (bpp), which is calculated as the

total amount of bits used to code the image divided by the number of pixels. The image dis-

tortion is evaluated with Multi-Scale Structure Similarity (MS-SSIM), Peak Signal-to-Noise

Ratio (PSNR), and the structural similarity (SSIM) index. For the time complexity, it takes

about 0.48 second to compress an image in Kodak dataset.

In the following, we first introduce the parameter setting of our compression system.

Then both quantitative metrics and visual quality evaluation are provided. Finally, we further

analyze the effect of importance map and convolutional entropy encoder on the compression

system.

22

2.4.1 Parameter setting

In our experiments, we set the number of binary feature maps n according to the compression

rate, i.e.64, when the compression rate is less than 0.5 bpp and 128 otherwise. Then, the

number of importance levels is chosen based on m. For n = 64 and n = 128, we set the

number of importance level L to be 16 and 32, respectively. Moreover, different values of

the tradeoff parameter γ in the range [0.0001, 0.2] are chosen to get different compression

rates. We note that, γ larger than 0.2 will lead to models with quit large distortions, which

are meaning less in real applications. For the choice of the threshold value r, we just set it

as r0hw for n = 64 and 0.5r0hw for n = 128. r0 is the wanted compression rate represented

with bit per pixel (bpp).

2.4.2 Quantitative evaluation

For quantitative evaluation, we compare our model with JPEG [73], JPEG 2000 [64], BPG

and the CNN-based method by Ballé et al. [11]. Among the different variants of JPEG,

the optimized JPEG with 4:2:0 chroma sub-sampling is adopted. For a fair comparison, all

the results by Ballé [11], JPEG, and JPEG2000 on the Kodak dataset are downloaded from

http://www.cns.nyu.edu/˜lcv/iclr2017/.

Using MS-SSIM [77], SSIM [76] and PSNR as performance metrics, Figure 2.4 gives

the rate-distortion curves of these five methods. In terms of PSNR, BPG has the best per-

formance. And the results by JPEG 2000, Ballé [11] and ours are very similar but are much

higher than that by JPEG. In terms of SSIM and MS-SSIM, our system has similar perfor-

mance with BPG and outperforms all the other three competing methods, including JPEG,

JPEG 2000, and Ballé [11]. Due to SSIM and MS-SSIM is more consistent with human

visual perception than PSNR, these results indicate that our system performs favorably in

terms of visual quality.

23

 http://www.cns.nyu.edu/~lcv/iclr2017/

2.4.3 Visual quality evaluation

We further compare the visual quality of the results by JPEG, JPEG 2000, Ballé [11], BPG

and our system in low compression rate setting. Figure 2.5 shows the original images and

the results produced by the five compression systems. Visual artifacts, e.g., blurring, ringing,

and blocking, usually are inevitable in the compressed images by traditional image compres-

sion standards such as JPEG and JPEG 2000, while blurring and ringing effect can still be

observed from the results by BPG. And these artifacts can also be perceived in the second

and third columns of Figure 2.5. Even Ballé [11] is effective in suppressing these visual

artifacts. In Figure 2.5, from the results produced by Ballé [11], we can observe the blurring

artifacts in row 1, 2, 3, and 5, the color distortion in row 2 and 5, and the ringing artifacts in

row 2. By contrast, the results produced by our system exhibit much less noticeable artifacts

and are visually much more pleasing.

From Figure 2.5, Ballé [11] usually produces the results by blurring the strong edges

or over-smoothing the small-scale textures. Specifically, in row 5 most details of the necklace

have been removed by Ballé [11]. One possible explanation may be that before entropy

encoding it adopts a spatially invariant bit allocation scheme. It is natural to see that more

bits should be allocated to the regions with strong edges or detailed textures while less to

the smooth regions. By contrast, an importance map is introduced in our system to guide

spatially variant bit allocation. Moreover, instead of handcrafted engineering, the importance

map is end-to-end learned to minimize the rate-distortion loss. As a result, our model is very

promising in keeping perceptual structures, such as sharp edges and detailed textures.

2.4.4 Experimental analyses on important map

To assess the role of importance map, we train a baseline model by removing the importance

map network from our framework. Both entropy and importance map based rate loss are not

included in the baseline model. Thus, the compression rate is controlled by modifying the

number of binary feature maps. Figure 2.4 also provides the ratio-distortion curves of the

baseline model. We can see that, the baseline model is inferior to JPEG 2000 and Ballé [11]

24

Figure 2.5: Images produced by different compression systems at different compression
rates. From the left to right: groundtruth, JPEG, JPEG 2000, Ballé [11], BPG and ours.
Our model achieves the best visual quality at each rate, demonstrating the superiority of our
model in preserving both sharp edges and detailed textures. (Best viewed on screen in color)

25

Figure 2.6: The important maps obtained at different compression rates. The right color bar
shows the palette on the number of bits.

in terms of MS-SSIM, PSNR, and SSIM, thereby validating the necessity of importance map

for our model. Using the image in row 5 of Figure 2.5, the compressed images by our model

with and without importance map are also shown on our project webpage. More detailed

textures and better visual quality can be obtained by using the importance map.

Figure 2.6 shows the importance map obtained at different compression rates. We can

see that when the compression rate is low, due to the overall bit length is very limited, the

importance map only allocates more bits to salient edges. With the increasing of compression

rate, more bits will be allocated to weak edges and mid-scale textures. Finally, when the

compression rate is high, small-scale textures will also be allocated with more bits. Thus,

the importance map learned in our system is consistent with human visual perception, which

may also explain the superiority of our model in preserving the structure, edges, and textures.

2.4.5 Entropy encoder evaluation

The model in Sec. 2.2 does not consider the entropy of the codes, allowing us to further

compress the code with a convolutional entropy encoder. Here, two groups of experiments

are conducted. First, we compare four variants of our model: (i) the full model, (ii) the

model without entropy coding, (iii) the model by only encoding binary codes, and (iv) the

model by only encoding importance map. From Figure 2.7(a), both the binary codes and im-

portance map can be further compressed by using our convolutional entropy encoder. And

our full model can achieve the best performance among the four variants. Second, we com-

26

Figure 2.7: Performance of convolutional entropy encoder: (a) for encoding binary codes
and importance map, and (b) by comparing with tradition CABAC.

pare our convolutional entropy encoder with the traditional content-based arithmetic coding

(CABAC) with a small context (i.e.the 5 bits near the bit to encode). As shown in Fig-

ure 2.7(b), our entropy encoder can take larger context into account and performs better

than CABAC. Besides, we also note that our method with either CABAC or convolutional

encoder can outperform JPEG 2000 in terms of SSIM.

2.5 Conclusion

A CNN-based system is developed for content weighted image compression. With the im-

portance map, we suggest a non-entropy based loss for rate control. Spatially variant bit

allocation is also allowed to emphasize the salient regions. Using the straight-through bi-

nary estimator, our model can be trained in an end-to-end manner. A convolutional entropy

encoder is introduced to further compress the binary codes and the importance map. Ex-

periments clearly show the superiority of our model in retaining structures and removing

artifacts, leading to favorably visual quality.

27

CHAPTER 3

IMPROVED CONTENT-WEIGHTED DEEP IMAGE COMPRESSION

In this chapter, we extend the content-weighted image compression framework with the fol-

lowing improvements: improved network structure for the transforms, learnable multi-value

adaptive quantization function, better learning strategy for importance map, and a novel con-

volutional network for post entropy coding. With the improvement, the proposed framework

can produce much better results than that of chapter 2. Furthermore, we imply the framework

for task-driven image compression, where the importance map is only related to the content

of the image but also the performance of the specific tasks, such as objective detection or

face recognition.

3.1 Introduction

Inspired by the unprecedented success of deep learning, deep image compression models re-

cently have received considerable attention from the vision and learning communities. Tradi-

tional image encoding standards, e.g., JPEG [73], JPEG 2000 [64], and BPG (intra-frame en-

coding of HEVC) [65], generally adopt handcrafted transform and separate optimization on

codecs, thus are limited in compression performance and are inflexible in adapting to image

content and tasks. In comparison, deep networks provide a flexible and end-to-end manner

to learn nonlinear analysis and synthesis transforms jointly by optimizing rate-distortion per-

formance, thereby expectantly surpassing existing codecs by compression performance and

visual quality. Moreover, recent years have witnessed the consistent progress and pursuit for

the acquisition and sharing of higher definition images and videos. And the population of

smartphones and the Internet increases the burden on storage and network bandwidth, which

further makes it demanding to develop better image compression methods.

28

bpp / PSNR (dB) / MS-SSIM 0.217 / 31.41 / 0.956 0.208 / 32.69 / 0.968

(a) Original (b) Ballé et al. [11] (c) Ours(MSE) (d) Importance map

Figure 3.1: Decoding images of deep compression approach Ballé et al. [11] and our content-
weighted image compression method.

Learning-based lossy image compression is usually formulated as a joint rate-distortion

optimization problem, and cannot be readily solved by deep networks. On the one hand, the

quantization operation generally is indispensable to generate discrete codes. However, its

gradient is zero almost everywhere except it is infinite for several threshold points, making

it challenging to jointly optimize encoder and decoder via back-propagation. To handle this

issue, several continuous proxy methods have been presented, including variational relax-

ation [11, 68], smoothed [67] and soft-to-hard approximation [2]. On the other hand, for

joint rate-distortion optimization, a rate loss usually is introduced for modeling the entropy

of quantized codes, and also requires continuous approximation [2, 11, 67].

Albeit their significant progress, existing learning-based image compression methods

are still limited in modeling and exploiting spatial variation and dependency of image con-

tent. First, spatially invariant bit length allocation is generally adopted in existing methods,

whereas undoubtedly the content of an image is spatially variant. That is, the regions with

complex and salient structures generally are more essential to constitute an image. For exam-

ple, it can be seen from Fig. 3.1 that Ballé et al. [11] fail to recover the details of the mouth

and sweater at lower bits per pixel (bpp). With the guidance of the importance map (see Fig.

3.1(d)) learned from the image content, our method can assign more bits to encode the areas

with more details and structural information and thus can generate visually better outputs

(see Fig. 3.1(c)). Second, the entropy is usually calculated by assuming that quantized codes

follow some specific form of distribution. The mismatch between the assumption and the

real distribution will inevitably hurt compression performance. Last but not least, the codes

after quantization are still spatially dependent. Ballé et al. [11] simply adopt the context-

29

based adaptive binary arithmetic coding framework (CABAC) [44] for entropy encoding.

Considering the practical feasibility of maintaining conditional probability tables, CABAC

only exploits the two nearest codes as context. Nonetheless, better compression performance

can be attained by incorporating a larger context in entropy encoding.

To address the above issues, we in this chapter take both spatial variation and depen-

dency of image content into account and present a content-weighted encoder-decoder model

for deep image compression (i.e., CWIC). For handling spatially variant image content, the

encoder of our CWIC involves an encoder subnet, a learned quantization operation, and an

importance map subnet. In particular, the quantization operation is learned to quantize each

element from one of the n feature maps into T discrete levels by minimizing the quantization

error. And the importance map subnet is deployed to estimate the informative importance

pi,j of local image content at location (i, j). Specifically, when l
L
≤ pi,j <

l+1
L

, we only

encode and save the first nl
L

channels at spatial location (i, j), where L is the number of the

importance level. The learned importance map can be exploited to produce the importance

masks m for guiding locally adaptive bit rate allocation. Codes with the importance mask

mkij = 1 are saved, while those mkij = 0 are ignored. Thus, we can allocate more codes

to the region with rich and salient structures and less codes to the smooth region, thereby

benefiting the reconstruction of texture details with less sacrifice of bit rate (see Fig. 3.1(c)).

Moreover, the summation of importance map
∑

k,i,jmkij naturally serves as an estimation

of the compression rate, and our CWIC model can be learned without any assumption on the

distribution of quantized codes.

For exploiting local spatial context, we adopt the arithmetic coding framework, and

present a convolutional entropy prediction model to predict the current symbol from its con-

text for quantized codes as well as importance map. Existing methods generally suffer from

either storage or computational burden, and are limited in large context modeling and com-

pression performance. To tackle this dilemma, we present a trimmed convolutional network

for arithmetic encoding (TCAE), where convolutional kernels are specially trimmed to re-

spect the compression order and context dependency. Then, the probability prediction of all

symbols can be efficiently performed in one single forward pass via a fully convolutional

30

network. By stacking several trimmed convolution layers, TCAE can model a large context

while maintaining computational efficiency. Furthermore, an inclined TCAE model is pre-

sented to divide the codes from a 3D code map into several inclined planes. Parallel decoding

can then be safely conducted to the symbols inner each inclined plane, thereby significantly

speeding up the decoding process.

Experiments are conducted to evaluate our CWIC model on the Kodak PhotoCD

image dataset1 and the Tecnick dataset2. In terms of MS-SSIM, our CWIC clearly outper-

forms existing image encoding standards, i.e., JPEG [64], JPEG 2000 [73] and BPG [65],

and several deep image compression methods, e.g., [11, 32, 46, 58]. In terms of PSNR, our

CWIC performs on par with BPG [65] and surpasses the other competing methods. As for

visual quality, our CWIC is promising in retaining fine salient details and suppressing visual

artifacts in comparison to the competing methods.

This chapter is a substantial extension of our pioneer work in chapter 2 [38]. Com-

pared with [38], an improved network structure combining dense blocks is introduced in

encoder and decoder. And binary quantization is substituted by a learned channel-wise

multi-value quantization for adaptive discretion of encoder feature. Moreover, a two-stage

relaxation scheme is adopted for better learning of the importance map subnet. Finally, we

introduce a TCAE as well as an inclined TCAE to effectively and efficiently model large

context in arithmetic coding. The contributions of this work are summarized as follows:

• A content-weighted encoder-decoder model is introduced for lossy image compres-

sion. Here, a learned channel-wise quantization is deployed for the discretion of the

encoder features, an importance map subnet is introduced to guide locally adaptive

bit allocation, the summation of the generated importance mask is used as an estima-

tion of compression rate, and a two-stage relaxation scheme is deployed for learning

importance map subnet.

1http://r0k.us/graphics/kodak/
2https://testimages.org/

31

• A TCAE network is presented for large context modeling in arithmetic encoding. With

trimmed convolution, the conditional probability of quantized codes can be efficiently

predicted via the fully convolutional network. And an inclined TCAE model is further

introduced to accelerate the decoding process.

• Experiments show that our method is effective in recovering salient structures and rich

details while suppressing visual artifacts at lower bpp. Moreover, our method performs

favorably in comparison to existing image encoding standards [64, 65, 73] and deep

models [11, 32, 46, 58].

The remainder of this chapter is organized as follows. Sections 3.2 and 3.3 respec-

tively present our CWIC and TCAE models for handling the spatial variation and depen-

dency issues in image compression. Section 3.4 gives the experimental results, and Section

3.6 provides some concluding remarks.

3.2 Content-weighted Image Compression

In this section, we present a content-weighted encoder-decoder network for image com-

pression (i.e., CWIC). To begin with, we first describe the network structure of our CWIC,

including encoder, decoder, and importance map subnets. Then, distortion and rate losses

are defined on the decoding image as well as importance map. Finally, to ease the diffi-

culty caused by quantization in CWIC, continuous relaxations are introduced for learning

the encoder and importance map subnets.

3.2.1 Network Architecture

As illustrated in Fig. 3.2, our CWIC network consists of three subnetworks, i.e., encoder,

importance map and decoder subnets. In particular, the encoder is further divided into the

shared and encoding-specific parts. To generate discrete codes, quantization operations are

deployed to the outputs of encoder and importance map subnets. In the following, we intro-

duce the main network components, quantization operations, and encoding/decoding proce-

dure.

32

Input Image

Decoder
Decoding Image

Importance Map Subnet Importance Mask

Quantized Codes

Trimmed Quantized

Codes

Encoder

C
o
n
v

6
4
×

3
×

3
 /

 P
 /

 2

↓

D
en

se
B

lo
ck

D
en

se
B

lo
ck

C
o
n
v
 2

5
6
×

3
×

3
 /

 P

C
o
n
v
 1

×
3
×

3
 /

 S

C
o
n
v
 3

×
3
×

3

U
p
sa

m
p
le

 /
 2

↑

D
en

se
B

lo
ck

C
o
n
v
 6

4
×

3
×

3
 /

 P

U
p
sa

m
p
le

 /

2

↑

D
en

se
B

lo
ck

C
o
n
v
 1

2
8
×

3
×

3
 /

 P

U
p
sa

m
p
le

 /
 2

↑

D
en

se
B

lo
ck

C
o
n
v
 2

5
6
×

3
×

3
 /

 P

D
en

se
B

lo
ck

C
o
n
v
 2

5
6
×

3
×

3
 /

 P

C
o
n
v
 2

5
6
×

3
×

3
 /

 P

C
o
n
v
 2

5
6
×

3
×

3
 /

 P

C
o
n
v
 3

2
×

3
×

3
 /

 S

C
o
n
v

6
4
×

3
×

3
 /

 P
 /

 2

↓

C
o
n
v

6
4
×

3
×

3
 /

 P
 /

 2

↓

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

C
o
n
v
 n

×
3
×

3
 /

 P

+ +

Channel-wise Quantization

Importance Map

. / P PReLU
Element-wise

Product
+

Element-wise

Addition
. / S Sigmoid . / 2↓ 2 × Downsampling Convolution . / 2 ↑ 2 × Upsampling DenseBlock

Figure 3.2: Illustration of our content weighted image compression model. The whole frame-
work involves an encoder, a learned channel-wise multi-valued quantization, an importance
map subnet, and a decoder. The encoder produces 32 feature maps which are further quan-
tized by the channel-wise multi-valued quantization function to generate quantized codes.
The importance map subnet estimates the informative importance of local image content and
generate an importance map with only 1 channel. With the quantized importance map, an
importance mask is further generated for guiding spatially variant bit rate allocation. By
multiplying quantized codes with importance mask in an element-wise manner, the trimmed
quantized codes are produced as the input of the decoder to generate the decoding image.

Encoder and decoder subnets

Given an image x, the encoder subnetE(x) is comprised of a shared partEs and an encoding-

specific part Ep. Concretely, Es has three convolution layers with stride 2. And the feature

map channels of the three layers are 64, 128, and 256, respectively. Moreover, a dense

block is deployed right after each of the first two strided convolution layers to increase the

nonlinearity of the encoder. For Ep, it only contains one dense block. From Fig. 3.2, each

dense block involves three sub-blocks, where the first sub-block consists of three convolu-

tion layers and each of the other two sub-blocks consists of two convolution layers. Fol-

lowing DenseNet [30], skip connections are introduced from any sub-block to all successive

sub-blocks to improve information flow and ease the training of deep networks, thereby

benefiting compression performance. Analogous to [40] in SISR, we remove the batch nor-

33

malization operations from the sub-blocks and empirically find that it helps suppress visual

compression artifacts in smooth areas. After the dense block in Ep, we further add an extra

convolution layer with sigmoid nonlinearity to reduce the channels to 32 and constrain the

output within the interval (0, 1). For simplicity, 3× 3 convolution is adopted in all convolu-

tion layers.

The structure of the decoder subnet D(c) is a mirror of the encoder. In particular,

the convolution layer with stride 2 in the encoder subnet is substituted by an upsampling

convolution layer, which involves a basic convolution layer followed by a depth-to-width

operation [69] in the decoder. And the last convolution layer produces the decoding image

with 3 channels and linear activation is used.

Importance map subnet

In general, an image conveys spatially variant informative content. From Fig. 3.3, the regions

with the house are more salient and content-intensive, while the regions with the sky are

simple and contain little informative content. Most deep image compression methods [2, 11,

67] allocate spatially invariant code length and exploit entropy coding to further compress the

codes. Although entropy coding can encode quantized codes into bit streams with different

length, it is deployed after quantization operation, and cannot recover the information loss

caused by spatially invariant bit allocation in quantization. As a result, such solutions usually

are inferior in preserving the salient structure and fine details at lower bpp.

To alleviate this issue, we suggest utilizing spatially variant bit allocation which can

be more advantageous by emphasizing salient structures of the image. As shown in Fig. 3.3,

it is reasonable to allocate more bits to region house and fewer bits to region sky. Therefore,

we introduce an importance map subnet to produce importance map from the input image.

It can be seen from Fig. 3.3(b) that, the importance map provides a reasonable estimation

of the informative importance of local image content, and can be exploited to guide locally

adaptive bit rate allocation. In comparison to spatially invariant bit rate allocation, we can

add more channels of feature maps and incorporate with importance map to preserve the

more salient structure and fine details without the increase of code length. Note that the

34

(a) Original image (b) Importance map (0.213 bpp)

Figure 3.3: Illustration of the importance map. The regions with a sharp edge and rich texture
generally have higher values and should be allocated with more bits.

code length at each position is controlled by the importance map. Thus, the summation of

quantized importance map, i.e., importance mask, can serve as an estimation of compression

rate, and be computed without any assumption on the distribution of quantized codes. It is

worth noting that just noticeable distortion (JND) models [82] have also been suggested for

spatially variant bit allocation and rate control in video coding. In contrast to JND [82], the

importance map is learned from training data via rate-distortion optimization.

The architecture of the importance map subnet is shown in Fig. 3.2. In particular, it

takes the intermediate feature map Es(x) as input, involves two residual blocks [28] and an

extra convolution layer with sigmoid nonlinearity to produce the 1-channel importance map

p = P (Es(x)) which has the same spatial size, i.e., h × w, as the encoder feature map e

with the values in the range (0, 1).

Quantization

Both the encoder feature map e and importance map p are continuous values in the range

(0, 1), and quantization is required. For e, we adopt the channel-wise multi-valued quan-

tization Q parameterized by Θk = {sk,0, . . . , sk,t, . . . , sk,T−1}, where the sk,t denotes non-

35

negative weights representing a quantization interval, and T is the number of quantization

levels. With Θk, the t-th quantization center qk,t of the k-th channel is defined as,

qk,t =
∑t

t′=0
sk,t′ . (3.1)

The quantized level t∗(ekij) of an element ekij of the k-th channel can be obtained by,

t∗ = arg min
t
‖ekij − qk,t‖2, t = 0, . . . , T − 1. (3.2)

Then, ekij is discretely represented as Q(ekij) = qk,t∗ , and its quantization index is repre-

sented as QL(ekij) = t∗.

As for importance map p, we define the following quantization function to quantize

the importance value pij at position (i, j),

QI(pij) = l, such as
l

L
≤ pij <

l + 1

L
, l ∈ {0, . . . , L− 1}, (3.3)

where L is the number of quantization levels for importance map. We note that the quantized

importance map is also required to be stored in our encoding scheme. Denote by n the

number of channels of encoder feature map e. Without loss of generality, we assume that (n

mod L) = 0.

For guiding spatially variant bit allocation, we further introduce a binary importance

mask M(p) with the same size as the quantized encoder feature map Q(e). In particular, the

(k, i, j)-th element mkij of m = M(p) is defined as,

mkij =

{
1, if k < n

L
QI(pij),

0, otherwise.
(3.4)

Guided by M(p), all the codes with mkij = 0 are discarded from Q(e). When QI(pij) = 0,

no code needs to be stored at position (i, j), and all of its information is predicted from

its context. To sum up, instead of n × h × w, only
∑

i

∑
j
n
L
QI(pij) =

∑
k,i,jmkij codes

from Q(e) need to be stored, and the summation of importance mask can thus be used as an

indicator of compression rate.

36

Procedure of encoding and decoding

Finally, we summarize the procedure of encoding and decoding based on the encoder, im-

portance map, and decoder subnets. Given an input image x, the shared part of encoder

subnet is first deployed to generate intermediate feature map Es(x). Then, both the encoder-

specific part of encoder subnet and the importance map subnet takeEs(x) as input to produce

encoder feature map e = Ep(Es(x)) and importance map p = P (Es(x)), respectively.

By quantizing e and p, we obtain the discrete encoder representationQ(e), quantized

importance map QI(p), and binary importance mask M(p). The encoding result of x can

then be represented as z = M(p) ◦ Q(e), where ◦ denotes the element-wise product. The

corresponding quantization index of z is represented as o = M(p) ◦ QL(e). Then o and

QI(p) are stored as the codes of x. In the decoding stage, z is reconstructed by zkij = qk,okij

if mkij = 1, otherwise zkij = 0. and the decoder subnet takes z as input to obtain the

decoding image D(z).

3.2.2 Loss Functions

In general, both distortion and rate losses should be included in modeling the objective of

content-weighted image compression. Moreover, a quantization loss is also introduced to

guide the learning of channel-wise multi-valued quantization. In the following, we explain

these loss functions and give the overall model objective.

Distortion loss. Distortion loss is used to measure the distortion between the input

image and decoding image. Concretely, we consider two types of distortion metrics. The

first is based on the mean squared error (MSE),

LMSE(z,x) =
1

3HW
‖D(z)− x‖2

2 , (3.5)

where H and W are the height and width of x, respectively. The other is based on the

multi-scale structural similarity (MS-SSIM) [77],

LMS-SSIM(z,x) = 100 (1−MS-SSIM (D(z),x)) . (3.6)

37

In our implementation, LMS-SSIM is adopted as the default distortion loss LD, and we denote

our method with LMSE as Ours(MSE).

Rate loss. Benefited from importance map subnet, we define the rate loss directly

on approximate code length. Suppose the size of encoder feature map E(x) is n × h × w.

The code by our model includes two parts: (i) quantized importance map QI(p) with the

size h × w; (ii) the trimmed code with the size n
L

∑
i,j QI(pij). Note that the size of QI(p)

is constant given an image size. Thus n
L

∑
i,j QI(pij) can be used as an indicator of code

length.

For better rate control, we introduce a threshold r based on the expected code length

for a given compression rate, and penalize the rate loss only when it is higher than r. Then,

we define the rate loss in our model as,

LR(x)=max
{

0, (
n

L

∑
i,j
QI(pij)− r · nhw)

}
. (3.7)

By this way, rate loss only penalizes the code length higher than r · nhw, making the learnt

compression system exhibit a comparable compression rate around the given one.

Considering that the number of trimmed codes is exactly equal to the number of 1s

in the importance mask, the ratio loss can be equivalently rewritten as:

LR(x)=max
{

0, (
∑

k,i,j
mkij − r · nhw)

}
. (3.8)

Quantization loss. For better quantization of encoder feature map, we employ Θk to

parameterize the multi-valued quantization for the k-th channel and incorporate a quantiza-

tion loss for minimizing the squared `2 error caused by quantization,

LQuant =
1

nhw

∑
k,i,j
‖Q(ekij)− ekij‖2. (3.9)

Model objective. Let X be a set of training data, and x ∈ X be an image from the

set. The overall learning objective is then defined as the combination of distortion, rate, and

quantization losses,

L =
∑
x∈X

{LD(z,x) + γLR(x) + ηLQuant}, (3.10)

38

where γ and η are tradeoff parameters for balancing the three loss terms. Considering that

quantization loss is not directly related with the rate-distortion performance, we empirically

set η = 1 and LQuant is deployed to only update quantization parameters in training.

3.2.3 Relaxation of Quantization for Model Learning

As noted above, due to the quantization operations, the conventional back-propagation al-

gorithm is not applicable to learn the encoder and importance map subnets. To circumvent

this issue, two relaxation approaches are presented. To relax the quantization of the feature

map, a proxy function based on a straight-through estimator is introduced to approximate the

channel-wise quantization in backward propagation. To relax the quantization of importance

map, a two-stage relaxation scheme is adopted to train importance map subnet.

Relaxation and learning of channel-wise multi-valued quantization

The gradients of the learned channel-wise multi-valued quantization function are zeros al-

most everywhere and are infinite at several threshold points. Being non-differentiable in-

evitably restricts the backward propagation of gradients from the decoder to encoder and

gives rise to the difficulty in learning the deep image compression system. As a result, any

layers before the quantization function (i.e., the whole encoder) are never updated during

training.

Fortunately, some recent works on binarized neural networks (BNN) [17, 55, 86] have

studied the issue of propagating gradient through binarization, which can also be extended to

relax multi-valued quantization. Based on the straight-through estimator on the gradient [17],

we introduce a linear proxy Q̃(ekij) to approximate Q(ekij),

Q̃(ekij) = ekij. (3.11)

In particular, Q(ekij) is still adopted in forward propagation, while Q̃(ekij) is only used in

backward-propagation. The gradient of Q̃(ekij) can then be easily obtained by,

Q̃′(ekij) = 1. (3.12)

39

Albeit that the proxy function can ease the difficulty of model learning, its effective-

ness actually depends on the values of ekijs in training. When the quantization error is 0,

Q(ekij) equals to Q̃(ekij), and it is safe to use Q̃(ekij) as proxy function. Moreover, even

the equality does not hold, the quantization loss in Eqn. (3.9) can constrain that Q̃(ekij) ap-

proximates Q(ekij). Thus, it is reasonable to use Q̃(ekij) as proxy of the learnt quantization

function in practice.

Initialization and re-initialization in learning. By assuming that encoder feature

follows a uniform distribution in the range [0, 1], we simply initialize sk,ts as sk,0 = 1
2T

and

sk,t = 1
T

for t > 0. However, we empirically find that such initialization scheme may suffer

from the dead point problem. For example, when all Q(ekij)s from the k-th channel are

lower than qk,t0 , the gradients with respect to sk,t0 , . . . , sk,T−1 will be always zero, and the

last few quantization levels, i.e., qk,t0 , . . . , qk,T−1, will never be optimized and used during

training. For handling this issue, we store the histogram of qk,ts of each mini-batch. When

all the counts of qk,ts with t ≥ t0 are zero in 50 successive mini-batches, we re-initialize the

weights sk,t =
sk,t0−1

T−t0+1
for t = t0 − 1, . . . , T − 1. As a result, Q(ekij)s with ekij > qk,t0−2

are more likely to be quantized to the last few quantization levels in future training, and the

non-increasing quantization loss can also be guaranteed.

Relaxation and learning of importance map

Analogous to channel-wise quantization, a straight-through estimator can also be used to

relax the quantization of importance map which includes the generation of both quantized

importance map and binarized importance mask. However, we empirically find that such a

solution works well only when binarization is adopted to quantize the encoder feature map.

For better learning importance map subnet in a general setting, we introduce a two-stage

relaxation scheme, Here, an alternative loss is used in the first stage to update QI(pij), and

another alternative loss is adopted in the second stage to update the importance map subnet.

In the first stage, given the current code z∗, by approximating Q(ekij)−Q(e∗kij) with

40

ekij − e∗kij , the distortion loss LD is relaxed with its Taylor expansion w.r.t. z∗,

L′D = LD(z∗) +
∑
k,i,j

mkij
∂LD
∂zkij

|z=z∗(ekij − e∗kij)

s.t. |ekij − e∗kij| ≤ ξ (3.13)

where ξ is a small positive value, and it is empirically set as ξ = 0.1. By replacing the LD
with the proxy L′D, we define the proxy function for QI(p) as,

L′(QI(p)) = L′D + γLR. (3.14)

It is worth noting that, the minimization of L′(QI(p)) w.r.t. QI(p) can be decomposed into

h× w subproblems on QI(pij). The loss function for each QI(pij) can be represented as,

L′ij =

{∑n−1
k=0 mkijtkij, if

∑
k,i,jmkij < r · nhw∑n−1

k=0 mkij(tkij + γ)− r · n, otherwise
(3.15)

where tkij = (ekij − e∗kij)
∂LD
∂zkij
|z=z∗ with |ekij − e∗kij| ≤ ξ. Note that L′ij is a function of

both ekij and QI(pij). First, we only consider L′ij w.r.t. ekij . Due to that mkij is non-

negative, it is obvious that the minimum of tkij should be −ξ
∣∣∣ ∂LD∂zkij

|z=z∗

∣∣∣. Then, given tkij =

−ξ
∣∣∣ ∂LD∂zkij

|z=z∗

∣∣∣, the minimization of L′ij w.r.t. QI(pij) can be rewritten as:

L′ij=

−ξ
∑n−1

k=0 mkij

∣∣∣ ∂LD∂zkij
|z=z∗

∣∣∣ , if
∑

k,i,jmkij<r·nhw
−ξ∑n−1

k=0 mkij(
∣∣∣ ∂LD∂zkij

|z=z∗

∣∣∣− γ
ξ
)− r · n, otherwise

(3.16)

It is noted that QI(pij) only has L possible values, i.e., QI(pij) ∈ {0, . . . , L− 1}. Then, we

define the L different importance masks as {sl = (1, . . . , 1︸ ︷︷ ︸
nl/L

, 0, . . . , 0︸ ︷︷ ︸
n−nl/L

) | l = 0, . . . , L − 1}.

Thus, we simply test all possible QI(pij) values to find the optimal one for minimizing L′ij ,

l∗ = arg min
l
L′ij. (3.17)

In the second stage, we introduce a continuous proxy based on l∗ for updating impor-

tance map subnet,

Limp = α|l∗ − pi,j · L|, (3.18)

where α is a trade-off parameter and we set it to be 0.001 in our implementation. Thus, the

gradient w.r.t. pi,j can be obtained by,

∂Limp
∂pi,j

=


−α, if pi,j < l∗/L

α, if pi,j > l∗/L

0, otherwise.
(3.19)

41

3.2.4 Implementation and Learning

In our implementation, we set the channel number of code maps n = 32. For the learnt

channel-wise quantization function, we set the number of quantized values T = 8. As for

the importance map, the number quantization levels L is set to 16. Without importance

map and entropy coding, the whole code maps corresponds to a compression rate of 1.5

bpp. By setting specific threshold value r, our CWIC framework can be adapted to different

compression rates without changing the network structure. For the setting of r, we simply

let r = 2
3
r0, where r0 ∈ {0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.00} is the expected compression rate.

The parameter γ controls the tradeoff between distortion and rate losses. According to r0 ∈

{0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.00}, we set γ ∈ {1× 10−3, 5× 10−4, 2× 10−4, 1× 10−4, 5×

10−5, 2 × 10−5, 1 × 10−5} to make the gradient of LR term comparable to that of LD term

during training.

The whole CWIC model is trained using the ADAM solver [33]. We initialize the

model with the parameters pre-trained on the training set X without the importance map

subnet. The model is further trained with the learning rate of 1 × 10−4, 1 × 10−5 and 1 ×

10−6. The smaller learning rate is adopted until the objective with the larger one keeps

non-decreasing in five successive epochs.

3.3 Trimmed Convolutional Network for Arithmetic Encoding

The code o and quantized importance map QI(p) by the above CWIC model are still spa-

tially dependent and can be further losslessly compressed. For the code o, there are two kinds

of 0s, i.e., the 0 in the quantization index and the 0 generated by the element-wise product

with importance mask. Nonetheless, the former 0s are informative, while the later should be

ignored in entropy prediction but still can be used as the context of the other symbols. To

distinguish these two kinds of 0s, we simply adopt o′ = (o + 1) ◦m in our implementation.

For lossless compression, arithmetic coding [79] predicts the probability of the cur-

rent symbol to be encoded from its context and is proved to be the optimal coding in ap-

proximating entropy-based compression rate [60]. Thus, we adopt the arithmetic coding

42

Current symbol

Encoded symbols

None-encoded symbols

Fixed length context

Current symbol

Encoded symbols

None-encoded symbols

Fixed length context

Figure 3.4: Coding schedule and context of 3D cuboid. The arrows indicate the encoding
order of the cuboid. The green areas are the fixed length context of the symbol cr,p,q with
ht = 2 and wt = 2. The red circle represents the current symbol cr,p,q, and the gray (white)
circles represent the encoded (non-encoded) symbols.

framework, and present a trimmed convolutional network model for efficient modeling of

large context.

3.3.1 Coding Schedule and Context of 3D Cuboid

To begin with, we note that both o′ and QI(p) can be represented as a 3D cuboid C =

{ck,i,j|0 ≤ k ≤ n − 1, 0 ≤ i ≤ h − 1, and 0 ≤ j ≤ w − 1}. Before TCAE, we first

introduce the coding schedule and two types of context based on C. As illustrated in Fig. 3.4,

beginning at c0,0,0, we adopt the following order to encode C: (i) ck,i,j+1 is encoded after ck,i,j

until j = w − 1; (ii) when j = w − 1, ck,i+1,0 is encoded after ck,i,w−1 until i = h − 1; (iii)

when j = w − 1 and i = h− 1, ck+1,0,0 is encoded after ck,h−1,w−1.

For a position (r, p, q), we define its full context as, CTX(cr,p,q) = {ck,i,j|{k <

43

r}∨{k = r, i < p}∨{k = r, i = p, j < q}}, i.e., all the gray circle in Fig. 3.4. Unfortunately,

the length of the full context CTX(cr,p,q) is unfixed and varies by the position (r, p, q), making

it difficult to learn a CNN-based probability prediction model based on CTX(cr,p,q).

Naturally, the context spatially close to the current symbol cr,p,q plays a more impor-

tant role in probability prediction. Taking these aspects into account, we give a fixed length

context defined as CTXf (cr,p,q) = {ck,i,j|{r− ct ≤ k < r, |i− p| ≤ ht, |j− q| ≤ wt}∨{k =

r, p−ht ≤ i < p, |j−q| ≤ wt}∨{k = r, i = p, q−wt ≤ j < q}}. Furthermore, considering

that different channels are not totally independent, we empirically suggest to set a larger ct

or even include all channels in context modeling. Fig. 3.4 gives an example of CTXf (cr,p,q)

with ht = 2 and wt = 2 for intuitive illustration.

In our pioneer work [38], we extract a (ct + 1) × (2ht + 1) × (2wt + 1) cuboid

CTX′f (cr,p,q) = {ck,i,j|{r−ct ≤ k ≤ r, |i−p| ≤ wt, |j−q| ≤ ht}with ct = 3, ht = 2, wt = 2.

For context modeling, the non-encoded symbols in CTX′f (cr,p,q) are replaced with 0s. Then,

a convolutional entropy prediction model of three convolution layers followed by three fully

connected layers is introduced to predict cr,p,q from its context cuboid CTX′f (cr,p,q).

In [38], the contexts and non-encoded symbols are dynamically changed along with

the encoding process. Thus, convolutional entropy prediction model requires to perform

probability prediction independently without shared computation, thereby remaining com-

putationally expensive. Consequently, even though the introduction of non-encoded symbols

is necessary for context modeling, it also brings new difficulties to exploit fully convolutional

network (FCN) for shared computation. Next, we will present a group of trimmed convolu-

tions to circumvent the inefficiency issue.

3.3.2 Trimmed Convolution

The fixed-length context in convolutional entropy encoder has two appealing properties,

which can be exploited to perform probability prediction via trimmed convolutions. (i) Given

the current symbol cr,p,q, the positions of all non-encoded symbols are fixed. (ii) The default

value for all non-encoded symbols is also a fixed number, and without loss of generality, we

44

(b) (b) (c) (d)

Figure 3.5: Mask planes with respect to wt for trimmed convolution kernels with the size of
5× 5. The gray value denotes 1 and the white value denotes 0. The blue triangle represents
the position of the codes to be encoded with respect to the mask. (a) k < t, (b) k > t, (c)
k = t for the input layer, (d) k = t for the hidden layers.

can set it to be 0.

We first begin with the definition and analysis of standard convolution operator. De-

note by w0 a group of n convolution kernels w0 = {wt,k,i,j| − w0 ≤ j ≤ w0,−h0 ≤ i ≤

h0, 0 ≤ k < n, 0 ≤ t < n}. Then the convolution result (C ∗w0) at the location (r, p, q) can

be written as,

(C ∗w0)(r, p, q) =
∑

k,l−i=p,m−j=q

ck,l,mw
0
r,k,i,j. (3.20)

where ∗ denotes the convolution operator. However, such convolution treats the context and

non-encoded symbols equally and cannot be applicable to context modeling.

We then present our trimmed convolution by taking the properties of non-encoded

symbols into account. From Property (ii), we can keep voxel values unchanged, and in-

troduce zeros in convolutional kernel w0 to exclude the effect of non-encoded symbols in

convolution. From Property (i), the positions of non-encoded symbols are fixed and pre-

defined w.r.t. w0, thereby allowing us to employ a mask m̂ of {0, 1} for correctly setting

zeros. Here, m̂k,i,j is defined as 1 if ck,p+i,q+j is encoded before ck,p,q, and 0 otherwise.

Trimmed convolution is then defined as,

C1 = C ∗ (m̂ ◦w0), (3.21)

where ◦ denotes the element-wise product. With trimmed convolution, we can safely exclude

the effect of non-encoded symbols in context modeling while maintaining the efficiency of

FCN for predicting probabilities of all voxels.

45

In the following, we first use single convolution kernel as an example to explain the

settings of m̂, which are different for the input layer and the hidden layers. For the input

layer, when predicting the probability of cr,p,q, both cr,p,q and the symbols encoded after cr,p,q

should be masked out in trimmed convolution. Following the definition of context, we define

the mask m̂0 for the input layer as,

m̂0
tkij =

{
1, if {k<t}∨{k= t, i<0}∨{k= t, i=0, j <0} ,
0, otherwise .

(3.22)

When it comes to the hidden layer Cd (d ≥ 1), we note that the feature cdr,p,q only conveys the

context information of cr,p,q and should not be excluded in the successive context modeling.

Therefore, we modify the definition of the mask m̂d (d ≥ 1) for hidden layer as,

m̂d
tkij =

{
1, if {k<t}∨{k= t, i<0}∨{k= t, i=0, j≤0} ,
0, otherwise.

(3.23)

Using the convolution kernel w with the size of 5×5×n as an example, Fig. 3.5 illus-

trates the representative mask planes w.r.t. the kernel planes wt,k,·,·. As shown in Fig. 3.5(a)

(Fig. 3.5(b)), when k < t (k > t), the k-th mask plane is a matrix of 1s (0s) for both the input

and hidden layers. When k = t, the center position should be masked out in the mask plane

for the input layer (see Fig. 3.5(c)), but can be retained for the hidden layers (see Fig. 3.5(d)).

Multi-group trimmed convolution. The trimmed convolution in Eqn. (3.21) only

uses one group of convolution kernels in each layer, which is still limited in complicated

probability prediction. Thus, we extend the trimmed convolution to the multi-group form.

Suppose there are gin groups of feature maps Cd = {Cd,0, ...,Cd,gin−1} in the d-th layer

and gout groups of feature maps Cd+1 = {Cd+1,0, ...,Cd+1,gout−1} in the (d + 1)-th layer.

Each group of feature map has the same size with the input cuboid C. The group trimmed

convolution is defined as,

Cd+1,g′ =

gin−1∑
g=0

Cd,g ∗ (m̂d ◦wd,g,g′), (3.24)

where Cd,g denotes the g-th group of feature map in Cd, Cd+1,g′ denotes the g′-th group of

feature map in Cd+1. m̂d is the mask for the d-th layer, and wd,g,g′ is the convolution kernel

to connect Cd,g and Cd+1,g′ .

46

3.3.3 TCAE and Learning Objective

Our proposed TCAE is constructed by stacking several 5× 5 trimmed convolution layers to

enlarge the context and increase the nonlinearity of the model. Given all the model parame-

tersW = {wd,g,g′} , the output of TCAE can be written as F (C;W) = {(F (C;W))br,p,q |b =

0, . . . ,m− 1}. Here, (F (C;W))br,p,q denotes the predicted probability of cr,p,q = b, and m is

the number of quantization levels of the input code map. Using o′ as an example, we adopt

the code length after arithmetic encoding as the learning objective,

`(W ;C) =
∑
r,p,q

m−1∑
b=0

−mrpqs(cr,p,q, b) log2 (F (C;W))br,p,q (3.25)

where s(cr,p,q, b) = 1 when cr,p,q = b, and s(cr,p,q, b) = 0 otherwise. mrpq is an importance

mask to exclude those codes with the mrpq = 0 according to Eqn. (3.4) during training.

3.3.4 Inclined TCAE

The above TCAE can only accelerate the encoding process. In the decoding stage, the codes

should still be decoded in a sequential order and cannot be speeded up with GPU and parallel

computation. To alleviate this issue, we present an inclined TCAE model by introducing

another kind of coding schedule and context. Concretely, we divide the 3D cuboid C into

n + h + w − 2 inclined planes, where the t-th inclined plane is defined as CBt(C) =

{ck,i,j|k+i+j = t} (t = 0, 1, . . . , n+h+w−3). In inclined TCAE, the context of the current

symbol cr,p,q is then defined as CTXb(cr,p,q) = {CB0(C), CB1(C), . . . , CBr+p+q−1(C)}. In

terms of coding schedule, we simply begin withCB0(C) and then gradually encodeCBt(C)

after CBt−1(C).

To accelerate the encoding process, we define the mask for the input and hidden

layers as follows,

m̂0
tkij =

{
1, if i+ k + j < 0 ,

0, otherwise .
(3.26)

m̂d
tkij =

{
1, if i+ k + j ≤ 0,

0, otherwise .
(3.27)

Benefited from the new coding schedule and context, all cr,p,qs in CBt(C) share the same

47

context and can be decoded in parallel, which can then be utilized to speed up decoding

process with GPU parallel computation.

3.3.5 Implementation and Learning

Two inclined TCAE models are deployed for context modeling of the code o′ and quantized

importance map QI(p), respectively.

As for network structure, our inclined TCAE is comprised of 2 trimmed convolution

layers, 3 residual blocks with each consisting of 2 trimmed convolution layers, and a final

trimmed convolution layer followed by a softmax function. For context modeling of o′, 8

groups are used for the first 8 trimmed convolution layers and 9 groups are used for the last

layer. For context modeling of QI(p), 32 groups are used for the first 8 layers and 16 groups

for the last layer.

To train inclined TCAE, we adopt the ADAM solver [33]. The model is trained with

the learning rate of 3× 10−4, 1× 10−4, 3.33× 10−5 and 1.11× 10−5. The smaller learning

rate is adopted until the objective with the larger learning rate keeps non-decreasing in five

successive epochs.

3.4 Experiments

In this section, we compare our full CWIC method with both existing image encoding stan-

dards and state-of-the-art deep image compression models. Several ablation studies are also

given to assessing the effect of importance map, channel-wise multi-valued quantization,

and inclined TCAE. The pre-trained models will be available at https://github.com/

limuhit/CWIC.

3.4.1 Experimental Setup

By setting different r values, we train 7 models based on MS-SSIM distortion loss and 7

models based on MSE loss. All the models are trained with 10,000 high-quality images

crawled from the photo-sharing website Flickr. Each image is downsampled to its 1/3 size

48

https://github.com/limuhit/CWIC
https://github.com/limuhit/CWIC

for removing the possible compression artifacts caused by JPEG compression and save the

downsampled image with the lossless PNG format. Finally, 500,000 patches with a size

of 384 × 384 are randomly cropped from the 10,000 images for training. For performance

evaluation, we adopt two datasets, i.e., Kodak PhotoCD and Tecnick. The compression rate

of our model is evaluated by bits per pixel (bpp), which is calculated as the total amount

of bits used to code the image divided by the number of pixels. The image distortion is

evaluated by the Multi-Scale Structural Similarity (MS-SSIM) and the Peak Signal-to-Noise

Ratio (PSNR).

3.4.2 Quantitative Evaluation

Using MS-SSIM and PSNR as performance metrics, we evaluate the rate-distortion perfor-

mance of our CWIC, existing image encoding standards, and state-of-the-art deep image

compression models. In terms of image encoding standards, we consider JPEG [73], JPEG

2000 [64], and BPG [13]. Among different variants of JPEG, the optimized JPEG with 4:2:0

chroma subsampling is adopted1. JPEG 2000 is based on the optimized implementation in

MATLAB 2015, and the implemented BPG is based on the 4:2:0 chroma format2. In terms

of deep image compression models, their source codes generally are not available. Following

the strategy adopted in [46], we carefully digitalize and collect rate-distortion curves from

the related literatures [2, 58, 67] in our comparative experiments.

Fig. 3.6 shows the rate-distortion curves of competing methods on the Kodak datasets.

In terms of MS-SSIM, we compare our method with JPEG, JPEG 2000, BPG, Ballé et

al. [11], Rippel et al. [58], Theis et al. [67], Johnston et al. [32], Toderici et al. [68], Agusts-

son et al. [2] and Mentzer et al. [46]. In terms of PSNR, we exclude Rippel et al. and Mentzer

et al. due to that the PSNR result is not reported in their paper [46, 58]. From Fig. 3.6(a),

Ours(MS-SSIM) performs on par with Rippel et al. [58] and outperforms the other meth-

ods by MS-SSIM. It is worth noting that, Ours(MSE) also exhibits competitive MS-SSIM

performance, which is only inferior to Rippel et al. [58] and Mentzer et al. [46] among

1http://libjpeg.sourceforge.net/
2https://bellard.org/bpg/

49

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

22

24

26

28

30

32

34

36
P

S
N

R
(d

B
)

XVC
BPG (4:2:0)
JPEG
JPEG 2000
Agustsson et al.
Theis et al.
Toderici et al.
Ballé et al.
Li et al.
Ours (MS-SSIM)
Ours (MSE)

(a) PSNR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
S

-S
S

IM

XVC
BPG (4:2:0)
JPEG
JPEG 2000
Agustsson et al.
Theis et al.
Toderici et al.
Rippel et al.
Mentzer et al.
Johnston et al.
Ballé et al.
Li et al.
Ours (MS-SSIM)
Ours (MSE)

(b) MS-SSIM

Figure 3.6: Rate-distortion curves of different compression algorithms w.r.t. (a) PSNR and
(b) MS-SSIM on the Kodak PhotoCD image dataset.

the competing methods, probably being explained by that the use of importance map bene-

fits the reconstruction of salient and structural information at lower bpp. From Fig. 3.6(b),

Ours(MSE) is comparable with BPG, and is much better than the other methods. Further-

more, we give the rate-distortion curves of competing methods on Tecnick [9, 10] in Fig. 3.7,

and get the similar observations with the Kodak dataset. It is noted that the results of Rippel

et al. [58], Theis et al. [67], Agustsson et al. [2] and Mentzer et al. [46] are unavailable on

Tecnick.

3.4.3 Visual Quality Evaluation

Quantitative evaluation is conducted to assess the visual quality of decoding images by dif-

ferent methods. Among deep models, most existing methods except Ballé et al. [11] do not

provide either source codes or decoding images. Among image coding standards, JPEG 2000

and BPG are superior to JPEG by quantitative metrics. Thus, we compare Ours(MS-SSIM)

with JPEG 2000, BPG, Ballé et al. [11] in our experiment.

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

26

28

30

32

34

36

38

P
S

N
R

(d
B

)

XVC
BPG (4:2:0)
JPEG
JPEG 2000
Agustsson et al.
Theis et al.
Ballé et al.
Li et al.
Ours (MS-SSIM)
Ours (MSE)

(a) PSNR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

0.90

0.92

0.94

0.96

0.98

1.00

M
S

-S
S

IM

XVC
BPG (4:2:0)
JPEG
JPEG 2000
Agustsson et al.
Theis et al.
Ballé et al.
Li et al.
Ours (MS-SSIM)
Ours (MSE)

(b) MS-SSIM

Figure 3.7: Rate-distortion curves of different compression algorithms w.r.t. (a) PSNR and
(b) MS-SSIM on the Tecnick dataset.

Fig. 3.8 shows the decoding images of competing methods on five Kodak images.

Visual artifacts, e.g., blurring and ringing, can still be observed from the results of JPEG

2000 and BPG. Ballé et al. [11] is effective in suppressing ringing artifacts, but is limited

in handling small-scale details, and also suffers from blurring and smoothing effect at lower

bpp. In contrast, the results by our method exhibit much less noticeable artifacts and are

visually much more pleasing. More importantly, due to the introduction of importance map

based bit length allocation, our method is more effective in retaining the salient structure and

fine details in comparison to the competing methods.

Fig. 3.9 shows the visual comparison between the proposed methods optimized by

MS-SSIM and MSE, respectively. At lower bpp, Ours(MSE) performs well in preserving

sharp strong edges and smooth textures, while Ours(MS-SSIM) is superior in keeping small-

scale textures and weak edges. However, at higher bpp, Ours(MS-SSIM) fails to reconstruct

parts of small-scale edges, e.g., the eyelash in the bottom-right of Fig. 3.9. One possible ex-

planation is that MS-SSIM is designed for measuring multi-scale similarity. As a result, the

51

Original Chapter 2 Ballé et al. BPG Ours

bpp / PSNR / MS-SSIM 0.106 / 30.27 / 0.910 0.107 / 29.83 / 0.899 0.093 / 30.62 / 0.900 0.091 / 29.39 / 0.924

bpp / PSNR / MS-SSIM 0.196 / 24.62 / 0.945 0.203 / 22.44 / 0.919 0.192 / 23.74 / 0.921 0.180 / 24.21 / 0.955

bpp / PSNR / MS-SSIM 0.120 / 29.21 / 0.956 0.113 / 28.34 / 0.942 0.101 / 28.79 / 0.946 0.092 / 27.38 / 0.957

bpp / PSNR / MS-SSIM 0.184 / 22.47 / 0.855 0.163 / 21.59 / 0.835 0.186 / 22.45 / 0.831 0.191 / 22.09 / 0.896

bpp / PSNR / MS-SSIM 0.122 / 23.82 / 0.852 0.137 / 24.10 / 0.889 0.119 / 24.70 / 0.869 0.105 / 23.26 / 0.912

Figure 3.8: Decoding images produced by different compression systems. From the left to
right: ground-truth, the results of Chapter 2, Ballé et al. [11], BPG and Ours(MS-SSIM).
In general, our model achieves the best visual quality, demonstrating the superiority of our
model in preserving both sharp edges and detailed textures. (Best viewed on screen in color)

52

Original Ours(MSE) Ours(MS-SSIM)

bpp / PSNR / MS-SSIM 0.104 / 24.29 / 0.876 0.107 /23.35 / 0.892

bpp / PSNR / MS-SSIM 0.560 / 34.11 / 0.979 0.527 / 33.08 / 0.984

Figure 3.9: Decoding images produced by our models optimized with MSE and MS-SSIM,
respectively. Ours(MS-SSIM) exhibits better textures at lower bpp but may slightly obscure
small sharp edges.

53

small edges are usually ignored at a large scale, which inevitably diminishes the contribution

of small-scale edges in the metric.

3.4.4 Ablation Studies

In this section, we separately test the effect of three components, i.e., the channel-wise

multi-valued quantization, importance map, and TCAE, with ablation studies. For a fair

comparison, we simply reuse all the parameters for training the 7 CWIC model in Sec. 3.4.1.

S = {γ, r,w0
e ,w

0
d} denotes a set of parameters to train a CWIC. Here, w0

e and w0
d are sepa-

rately the initial weights of encoder and decoder. In the experiments, all the ablation variant

models are trained on the 7 parameter sets, i.e. S1, . . . ,S7, by MS-SSIM distortion loss and

tested on Kodak dataset.

Channel-wise multi-valued quantization

We consider three other variants for the learnt channel-wise multi-valued quantization (LCMQ),

i.e., (1) the learnt multi-value quantization (LMQ) with all the channels sharing the same

quantization function, (2) the fixed multi-valued quantization (FMQ) with all the quantiza-

tion levels are fixed and (3) the binarization function (BIN) used in [38]. The quantization

levels for all the variants except for BIN are set to be 8. For FMQ, we adopt the uniform

multi-valued quantization used to initialize LCMQ in Sec. 3.2.3. For BIN, 1 bit instead of

3 bits is used to represent code in c before entropy coding, and we increase the number of

channels of o from 32 to 96 to compensate for the total number of bits to represent o.

Table 3.1: Quantization error of four quantization functions, i.e., LCMQ, LMQ, FMQ and
BIN, on 7 parameter sets.

Set LCMQ LMQ FMQ BIN
S1 0.97× 10−3 1.12× 10−3 2.21× 10−3 3.29× 10−2

S2 0.92× 10−3 1.01× 10−3 1.78× 10−3 3.13× 10−2

S3 0.79× 10−3 1.03× 10−3 1.93× 10−3 3.24× 10−2

S4 0.78× 10−3 0.93× 10−3 2.09× 10−3 3.15× 10−2

S5 0.92× 10−3 1.00× 10−3 1.89× 10−3 3.07× 10−2

S6 1.01× 10−3 1.20× 10−3 2.08× 10−3 3.21× 10−2

S7 0.93× 10−3 1.03× 10−3 1.81× 10−3 3.18× 10−2

AVE 0.90× 10−3 1.05× 10−3 1.97× 10−3 3.18× 10−2

By replacing LCMQ with each of the three other variants, we re-train the CWIC

54

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

M
S

-S
S

IM

BPG
Ours with BIN
Ours with FMQ
Ours with LMQ
Ours with LCMQ

(a) Quantization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

M
S

-S
S

IM

Ours with importance map
Ours with Inclined TCAE
Ours without importance map
Ours with residue blocks
BPG

(b) Others

Figure 3.10: Rate-distortion curves for ablation studies on Kodak. (a) comparison of four
quantization variants, i.e., LCMQ, LMQ, FMQ and BIN. (b) comparison of other variants of
our method.

model on the 7 parameter sets with the MS-SSIM distortion loss. Two metrics, i.e., dis-

tortion of the decoding images and quantization error, are reported based on the Kodak

dataset. The quantization error is defined as the MSE between the output of encoder e

and the quantized code Q(e). Table 3.1 lists the quantization error of the four quantization

functions. Unsurprisingly, the BIN in [38] obtains the largest quantization error due to that

it has only two quantization levels. Among the multi-valued quantization functions, LCMQ

and LMQ get much lower quantization error than FQM, indicating that the learning of quan-

tization is indeed helpful in decreasing quantization error when the quantization levels are

the same. Nonetheless, LCMQ achieves the lowest quantization error on all the 7 parameter

sets, demonstrating the usefulness of the learned quantization function for each channel.

Fig. 3.10(a) shows the rate-distortion curves of our CWIC with the four quantization

variants on the Kodak dataset. It can be seen that LCMQ gets the best performance followed

by LMQ, while BIN exhibits the worst performance. We note that the rate-distortion results

are consistent with the quantization error, where lower quantization error corresponds to

55

Original

0.151 bpp 0.239 bpp 0.347 bpp

0.510 bpp 0.639 bpp 0.814 bpp

Figure 3.11: Visualization of the importance maps at 6 kinds of bpps. Left: ground-truth.
Right: importance maps ranging from 0.151 to 0.814 bpp.

S1 S2 S3 S4 S5 S6 S7

Set

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

C
om

pr
es

si
on

R
at

io

Modified CABAC

Li et al.

TCAE

Inclined TCAE

(a) o′

S1 S2 S3 S4 S5 S6 S7

Set

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

C
om

pr
es

si
on

R
at

io

Inclined TCAE (8 groups)

Inclined TCAE (4 groups)

Inclined TCAE (2 groups)

Inclined TCAE (1 group)

(b) o′
S1 S2 S3 S4 S5 S6 S7

Set

2.5

3.0

3.5

4.0

4.5

5.0

5.5

C
om

pr
es

si
on

R
at

io

Modified CABAC

Li et al.

TCAE

Inclined TCAE

(c) p′

S1 S2 S3 S4 S5 S6 S7

Set

2.5

3.0

3.5

4.0

4.5

5.0

5.5

C
om

pr
es

si
on

R
at

io

Inclined TCAE (32 groups)

Inclined TCAE (16 groups)

Inclined TCAE (8 groups)

Inclined TCAE (4 groups)

(d) p′

Figure 3.12: Lossless compression ratio of entropy prediction models. The data used to test
the entropy prediction models are generated by our CWIC with 7 different parameter sets.
(a) and (c) respectively show the results of the four entropy prediction models on the code o′

and the quantized importance map p′. (b) and (d) respectively show the results of inclined
TCAE with different number of groups on o′ and p′.

56

lower distortion. Therefore, the quantization loss in Sec. 3.2.2, which is introduced to min-

imize quantization error, can be expectantly beneficial to rate-distortion performance and to

ease the gradient issue of quantization in back-propagation.

Dense block

To assess the effect of dense blocks, we compare our method with its counterpart by re-

placing each dense block with three residual blocks. To keep the same network depth, the

first residual block has three convolution layers and the following two residual blocks have

two convolution layers. As shown in Fig. 3.10(b), our method exhibits better compression

performance than the counterpart with residual blocks, especially at higher bit rates.

Importance map

To assess the effect of importance map, we introduce a baseline model by removing the

importance map subnet from CWIC, and set the compression rate by adjusting the number

of channels n in the code c. In the experiments, we adopt n = 4, 8, 12, 16, 20, 24. As shown

in Fig. 3.10 (b), the introduction of importance map can result in much better performance,

clearly demonstrating the effectiveness of the spatially variant bit length allocation scheme.

It is also interesting to note that, due to the learned channel-wise multi-valued quantization,

our CWIC can also outperform BPG by MS-SSIM.

To reveal the role of importance map, we visualize the importance maps of a repre-

sentative image at 6 kinds of bpps. The importance maps are mapped from the range of [0,1]

to [0,255] and shown as gray images. From Fig. 3.11, it can be observed that at lower bpp

the learned importance map only allocates more codes to the strong edges. Along with the

increase of bit rate, more codes will be allocated to weak edges and mid-scale textures. With

the further increase of bit rate, small-scale textures such as the wave start to be allocated

with more codes. Thus, the learned importance map is consistent with human visual percep-

tion, which also explains the superiority of our model in preserving the structure, edges, and

textures.

57

Inclined TCAE for encoding and decoding

For entropy modeling, we compare TCAE and inclined TCAE with two counterparts, i.e., our

pioneer work (convolutional entropy prediction model) [38] and a modified CABAC [44] to

compress the code o′ = (1+o)◦m and the quantized importance map p′ = QI(p). In [38],

a 4 × 5 × 5 cuboid is extracted for the symbol o′r,p,q with the importance mask mr,p,q = 1,

while a 1× 5× 5 cuboid is extracted for symbols in p′. For CABAC [44], only two nearby

symbols, i.e., o′k,i−1,j and o′k,i,j−1, are considered as the context of o′k,i,j . In our modification,

we further consider the relation across channels and also include the symbol o′k−1,i,j into the

context. For the quantized importance map with only 1 channel, the context is kept the same

as CABAC.

Fig. 3.12 (a) and (c) show the lossless compression ratios of the four context mod-

eling methods on o′ and the quantized importance map p′. In particular, our TCAE and

inclined TCAE achieve comparable compression ratio and outperform the two counterparts.

Moreover, convolutional entropy prediction [38] is also superior to modified CABAC. Using

the code o′ as an example, the context sizes of TCAE, inclined TCAE, convolutional entropy

prediction [38], and modified CABAC are k× 37× 37, k× 37× 37, 4× 5× 5 and 3, respec-

tively. Here, k is the channel index of o′. By comparing the four context modeling methods,

it can be seen that larger context generally is beneficial to better entropy prediction.

In Fig. 3.12 (b) and (d), we test inclined TCAE with different number of groups of

feature maps, i.e., 1, 2, 4 and 8 groups for the code o′ and 4, 8, 16 and 32 groups for the

quantized importance map p′. Naturally, more groups do benefit the performance of inclined

TCAE but also increase the model parameters and running time. In our implementation, we

adopt 8 groups for o′ and 32 groups for p′. It is worth noting that, on the parameter sets S1

and S2, the symbols in the quantized importance maps mainly are some small values, i.e., 0,

1, 2, 3. Consequently, the quantized importance map is small by entropy and results in larger

compression ratio.

58

Table 3.2: Running time (s) of different entropy prediction models on the codes and quan-
tized importance maps generated by CWIC trained on seven different parameter sets.

Set Task Modified CABAC Chapter 2 TCAE Inclined TCAE

o′ p′ o′ p′ o′ p′ o′ p′

S1
Encoding 0.001 0.00003 0.092 0.021 0.021 0.005 0.021 0.005
Decoding 0.001 0.00003 32.3 6.73 202.8 6.58 0.923 0.161

S2
Encoding 0.001 0.00003 0.178 0.021 0.021 0.005 0.021 0.005
Decoding 0.001 0.00003 58.5 6.73 202.8 6.58 0.923 0.161

S3
Encoding 0.001 0.00003 0.368 0.021 0.021 0.005 0.021 0.005
Decoding 0.001 0.00003 123.2 6.73 202.8 6.58 0.923 0.161

S4
Encoding 0.001 0.00003 0.483 0.021 0.021 0.005 0.021 0.005
Decoding 0.001 0.00003 163.5 6.73 202.8 6.58 0.923 0.161

S5
Encoding 0.001 0.00003 0.665 0.021 0.021 0.005 0.021 0.005
Decoding 0.001 0.00003 225.1 6.731 202.8 6.58 0.923 0.161

S6
Encoding 0.001 0.00003 0.782 0.021 0.021 0.005 0.021 0.005
Decoding 0.001 0.00003 250.6 6.73 202.8 6.58 0.923 0.161

S7
Encoding 0.001 0.00003 0.931 0.021 0.021 0.005 0.021 0.005
Decoding 0.001 0.00003 288.2 6.73 202.8 6.58 0.923 0.161

Running time

Using a computer with a Intel(R) Xeon(R) Processor E5-2620 v4, 64 GB of RAM and a

NVIDIA TITAN Xp GPU, we test the running time (in seconds, s) of our method on the

Kodak dataset with the image size 752 × 496 (or 496 × 752). The running time to generate

the code o and to reconstruct input image from o are 0.024 and 0.032 s, respectively.

We further test the running time of lossless encoding and decoding of the code o′

and the quantized importance map p′. In particular, we consider four models, i.e., modified

CABAC, convolutional entropy prediction model [38], TCAE, and inclined TCAE. The run-

ning time of modified CABAC is tested on CPU, while the running time of the other three

models is accelerated with GPU in the caffe framework.

Table 3.2 lists the running time of the 4 lossless compression models. For both encod-

ing and decoding, modified CABAC is the fastest model, but fails to exploit large context. In

terms of encoding, TCAE and inclined TCAE are the second-fastest methods and are effec-

tive in large context modeling. However, when taking decoding into account, TCAE should

decode the symbols in a sequential order and remains computationally inefficient. Benefited

from the inclined plane based context, inclined TCAE is able to parallel decode the symbols

within each inclined planes, and thus can be more than 100× faster than TCAE for decod-

ing. In comparison, convolutional entropy prediction model [38] only utilizes limited size of

59

context (i.e., 4 × 5 × 5), is much inefficient for encoding, and is only comparable to TCAE

for decoding. Furthermore, the running time of convolutional entropy prediction model [38]

gradually increases from S1 to S7 when encoding and decoding o′ but keeps the same when

encoding and decoding p′. This result can be ascribed to that convolutional entropy predic-

tion model [38] independently handles each symbol to encode. From S1 to S7, more and

more 1s are generated in the importance mask, which indicates that more symbols in o′ are

required to be processed by convolutional entropy prediction model [38]. As for p′, all the

symbols should be processed, and thus the parameter set does not affect running time.

3.5 Task Driven Image Compression

3.5.1 Model the Task Driven Objective Function

The proposed lossy image compression framework aims to do spatially variant bit allocation

for different parts of the image with a leaned content weighted importance map. Without

further constraints, the importance map is learned to the distortion of the decoded image.

However, for some specific tasks, such as object detection [22, 23, 56, 57, 71] and human

face recognition [7, 14, 70, 80, 85], the distortion is not the only metric. We further consider

the region of interest (ROI) into account and modify the proposed content weighted image

compression for task-driven image compression.

For the task-driven image compression, the regions related to detection or recognition

performance are much more important than others and should be allocated more bites. Two

constraints are introduced in this thesis to increase the importance of the ROI region in the

importance map. The first constraint is strait-forward and modeled on the image space. We

directly adopt a weighted mean square error distortion loss with a larger weight for the ROI

region. The modified distortion loss is defined as,

LWMSE(z,x) =
1

3HW
‖ω · (D(z)− x)‖2

2, (3.28)

where ω is the ROI related weight with the same size of the input image x. ω is a H ×W

2D ROI map. For the RGB color image, each channel of x shares the same ω. The value

60

Figure 3.13: Rate-Performance curve on kitti set. The rate is evaluated with bits per pixel
(bpp). And the detection performance is evaluated with average precision (AP). We show
performance on 8 separate main objects in the set and the average of them. The blue curve
represents BPG and the red curve is our method.

61

of ROI map is set as follows. For the ROI region, ω is set to be 3; otherwise, ω is 1.

Considering that the surrounding parts of the ROI region may also make an influence on

the performance of a specific task, we expend the ROI region by a little. In detail, we

expend the width and the height of the ROI bounding box by 1/8. Besides, we also model

the importance of the ROI region in the importance map space and consider it in the rate

loss. Since the importance maps are much smaller than the input images, we first down-

sample the ROI map ω to the same size of importance map with a nearest neighbor down-

sampling algorithm. In application, the ROI map is down-sampled by 8 times. Denoted

by ω̂, the down-sampled ROI map is used to build a task-driven ratio loss. Different from

the distortion loss, a smaller weight should be given to encourage allocating more bits to

task-related regions. For convenience, we directly imply the inverse of ω̂ in building the

task-driven rate loss.

LWR(x) = max

{
0,

(
n

L

∑
i,j

p′i,j
ω̂i,j
− r.nhw

)}
(3.29)

3.5.2 Experiments for Task Driven Image Compression

With the modified task-related distortion and rate loss, the content weighted image com-

pression framework can be directly optimized for task-driven image compression. We test

the task-driven image compression framework on two tasks, i.e., object detection, and face

recognition. For training the model for a specific task, we should first collect enough high

quality and definition images and corresponding ROI bounding boxes. A poor quality image

will bring compression artifacts for training. For the task of object detection, we adopt the

kitti dataset. It offers 7, 481 lossless compressed image with corresponding bounding boxes.

Due to the unavailable test set, we cut the image into two sets. The first 6,400 images are

used for training and the last 1081 images are adopted for testing. To evaluate the detection

performance. We choose a classic model, i.e., faster RCNN, and train it on kitti. Then, the

faster RCNN is used to test the compressed images on the test set and the popular metric for

detection, i.e., AP (Average Precision), is used as the performance metric. Due to unavail-

62

Figure 3.14: High quality face image dataset collected from the Flickr.

able codes, we fail to compare with other deep learning-based methods and only compare

our task-driven model with the state-of-art image compression.

Figure 3.13 gives the performance of our method and BPG on kitti set on 8 main ob-

jects. On most of the objects, our model has significantly better object detection performance

than the counterpart. On average, our model can save 46.7% bits with AP ranges from 0.4 to

0.65.

For the face recognition task, there is not such a high-quality face image dataset for

training. We collect some high quality and definition images from the Flickr and down-

sample the image by 3 times to remove compression artifacts brought by JPEG compression.

Then, we detect the faces and generate the ROI bounding boxes of human faces in the images

with the toolkit dlib. Then, we look through all the data and the corresponding bounding

boxes carefully. The images with a poor visual quality or incorrect bounding boxes are

removed. We collected 2,646 high-quality images with faces on different scales and different

backgrounds. All the faces have corresponding ROI bounding boxes. Figure 3.14 gives the

example of the collected dataset.

For training the task-driven compression framework, we sample 600,000 image patches

63

Figure 3.15: Samples for generating the training set.

with a size of 656 and corresponding bounding boxes. As shown in Figure 3.15, three con-

ditions are considered in generating the patches. (i) Patches with a single face in different

scales; (ii) Patches without faces; (iii) Patches with multiple faces.

For testing the models for face recognition or verification, we should collect another

test set with the identity of the faces. Different from the training set, we first collected

the names of 55 celebrities from the LFW dataset and then collected corresponding high-

resolution images from Flickr for each person. Finally, we collect 742 images for testing. To

evaluate the identification performance, the face tool-kit dlib is used to extract the features

from the face images. The extracted feature is further compared with the reference feature

of each person. If the distance between two features is less than a given threshold, the two

faces are believed to belong to the same person. We compare the proposed model with BPG

and give the results of face recognition accuracy with a different threshold. Figure 3.16 gives

the results. With all the given thresholds, our model shows to have better performance than

BPG.

Figure 3.17 shows the visual results of our model and BPG on three face images.

Clear artifacts such as blurring can be observed in BPG results. With the guidance of the

importance map, our method is more able to generate visually better face images.

3.6 Conclusion

In this chapter, we improved the learning-based content-weighted image compression frame-

work with a better network structure for transforms, learned channel-wise multi-valued quan-

64

Figure 3.16: Rate-Performance curve on the collected dataset. The rate is evaluated with bits
per pixel (bpp). And the detection performance is evaluated with Face recognition accuracy.
We show performance on 9 separate thresholds for the face recognition. The blue curve
represents BPG and the red curve is our method.

Figure 3.17: Visual quality of our model and BPG on three face images.

65

tization, and better context modeling. A better strategy is designed to optimize the impor-

tance map to the rate-distortion loss in end-to-end training of the whole framework. For

modeling the context, TCAE is introduced to enlarge the context while maintaining the ef-

ficiency of the entropy prediction, and inclined TCAE is further presented to accelerate the

decoding process. Experimental results show that our CWIC performs favorably in compar-

ison to the state-of-the-art deep image compression methods and traditional image compres-

sion standards, and is effective in recovering salient structures and rich details, especially

at lower bpp. We further extend the CWIC to task-driven image compression task and get

extremely better performance not only on the performance of specified tasks but also on the

visual quality.

66

CHAPTER 4

EFFICIENT AND EFFECTIVE CONTEXT-BASED CONVOLUTIONAL
ENTROPY MODELING FOR IMAGE COMPRESSION

Precise estimation of the probabilistic structure of natural images, i.e., entropy modeling,

plays an essential role for both lossless and lossy image compression. Despite the remarkable

success of recent end-to-end optimized image compression, the latent code representation is

usually assumed to be fully statistically factorized to simplify entropy modeling. However,

such an assumption generally does not hold and is unbeneficial to compression performance.

In this work, we present context-based convolutional networks (CCNs) that exploit statis-

tical redundancies in the codes for effective entropy modeling. In particular, a 3D zigzag

coding order, as well as a 3D code dividing technique, are respectively introduced to de-

fine a proper context and to achieve parallel entropy decoding for efficiency, both of which

boil down to place translation-invariant binary masks on convolution filters of CCNs. We

demonstrate the power of CCNs for entropy modeling in both lossless and lossy image com-

pression. For the former, we directly apply a CCN to the binarized plane representation of

an image for estimating the Bernoulli distribution of each code. For the latter, the categorical

distribution of each code is represented by a discretized mixture of Gaussian distributions,

whose parameters are estimated by three CCNs. And the CCN-based entropy model can

be jointly learned with analysis and synthesis transforms for optimized rate-distortion per-

formance. Experiments on the Kodak and Tecnick datasets show that the proposed lossless

and lossy image compression methods based on CCNs generally achieve better compression

performance than existing methods with manageable computational complexity.

67

4.1 Introduction

Data compression has played a significant role in engineering for centuries [78]. Compres-

sion can be either lossless or lossy. Lossless compression allows perfect data reconstruction

from compressed bitstreams to assign shorter codewords to more “probable” codes. Typi-

cal examples include Huffman coding [31], arithmetic coding [79], and range coding [45].

Lossy compression discards “unimportant” information and the definition of importance is

application-dependent. For example, if the data (such as images and videos) are meant to

be consumed by the human visual system, importance should be measured in accordance

with human perception, discarding perceptually redundant data, while keeping those that are

most visually noticeable. In lossy compression, one must face the rate-distortion trade-off,

where the rate is computed by the entropy of the discrete codes [62] and the distortion is

measured by a signal fidelity metric. A prevailing scheme in the context of lossy image com-

pression is transform coding, which consists of three operations - transform, quantization,

and entropy coding. Transforms are designed to be better-suited for exploiting aspects of hu-

man perception and map an image to a latent code space with several statistical advantages.

Early transforms [5] are linear, invertible, and fixed for all bit rates; errors arise only from

quantization. Recent transforms take the form of deep neural networks (DNNs) [11], aiming

for more comprehensible and nonlinear representations. DNN-based transforms are mostly

non-invertible, which, however, may encourage discarding perceptually less important im-

age features during transformation. This gives us an opportunity to learn different transforms

at different bit rates for better rate-distortion performance. Entropy coding is responsible for

losslessly compressing the quantized codes into bitstreams for storage and transmission.

In either lossless or lossy image compression, a discrete probability distribution of

the latent codes shared by the encoder and the decoder (i.e., the entropy model) is essential

in determining the compression performance. According to Shannon’s source coding theo-

rem [62], given a vector of code intensities y = {y0, . . . , yM}, the optimal code length of

y should be d− log2 P (y)e, where binary symbols are assumed to construct the codebook.

Without further constraints, the general problem of estimating P (y) in high-dimensional

spaces is intractable, a problem commonly known as the curse of dimensionality. For this

68

reason, most entropy coding schemes assume y is fully statistically factorized with the same

marginal distribution, leading to a code length of d−∑M
i=0 log2 P (yi)e. Alternatively, the

chain rule in probability theory offers a more accurate approximation

P (y) ≈
M∏
i=0

P (yi|PTX(yi,y)), (4.1)

where PTX(yi,y) ⊂ {y0, . . . , yi−1} represents the partial context of yi coded before it in y.

A representative example is the context-based adaptive binary arithmetic coding (CABAC) [44]

in H.264/AVC, which considers the two nearest codes as the context and obtains noticeable

improvements over previous image/video compression standards. As the size of PTX(yi,y)

becomes large, it is difficult to estimate this conditional probability by constructing his-

tograms. For modelling the estimation of P (yi|PTX(yi,y)) with larger partial contexts,

Recent methods such as PixelRNN [51] and PixelCNN [52] take advantage of DNNs in

modeling long-range relations among pixels, but inevitably are computationally intensive.

In this work, we present context-based convolutional networks (CCNs) for effective

and efficient parallel entropy modeling. Given y, we specify a 3D zigzag coding order so that

the most relevant codes of yi can be included in its context. Parallel computation during en-

tropy encoding is straightforward as the context of each code is known and readily available.

However, this is not always the case during entropy decoding because the context of yi is not

ready for probability estimation until all codes in PTX(yi,y) have been decoded sequen-

tially, which is prohibitively slow. To address this issue, we introduce a 3D code dividing

technique, which partitions y into multiple groups in compliance with the proposed coding

order. The codes within each group are assumed to be conditionally independent given their

respective contexts, and therefore can be decoded in parallel. In the context of CCNs, this

amounts to applying properly designed translation-invariant masks to convolutional filters.

To validate the proposed CCNs, we combine them with arithmetic coding [79] for

entropy coding. For lossless image compression, we convert the input grayscale image into

eight binary planes and train a CCN to predict the Bernoulli distribution of yi, optimizing for

the entropy loss in information theory [18]. For lossy image compression, we parameterize

the categorical distribution of yi with a discretized mixture of Gaussian (MoG) distributions,

69

whose parameters (i.e., mixture weights, means, and variances) are estimated by three CCNs,

depending on its context. The CCN-based entropy model is jointly optimized with analysis

and synthesis transforms (i.e., mappings between raw pixel space and latent code space) over

a database of training images for the tradeoff of rate-distortion performance. Experiments

on the Kodak and Tecnick datasets show that our methods for lossless and lossy image com-

pression perform favorably against image compression standards and DNN-based methods,

especially at low bit rates.

4.2 CCNs for Entropy modelling

In this section, we present in detail the construction of CCNs for entropy modelling. We

start with a fully convolutional network, consisting of T layers of convolutions followed by

point-wise nonlinear activation functions. In order to perform efficient context-based entropy

modelling, three assumptions are made on the network architecture:

• For a code block y ∈ RM×H×W , where M , H , and W denote channel, height, and

width, respectively, the output of the t-th layer convolution v(t) ∈ RM×H×W×Nt , where

Nt denotes the number of feature blocks to represent y. By doing so, we are able to

associate the feature point v(t)
i,j (p, q) in i-th channel and j-th feature block at spatial

location (p, q) with yi(p, q) uniquely.

• Let CTX(yi(p, q),y) be the set of codes encoded before yi(p, q) (full context), and

SS(v
(t)
i,j (p, q)) be the set of codes in the receptive field of v(t)

i,j (p, q) that contributes to

its computation (support set), respectively. Then, SS(v
(t)
i,j (p, q)) ⊂ CTX(yi(p, q),y).

• For y′ ⊂ y and yi(p, q) ∈ y′, CTX(yi(p, q),y
′) ⊂ CTX(yi(p, q),y).

Assumption I establishes a one-to-many correspondence between the input code

block y and the output feature representation v(T). Assumption II ensures that the com-

putation of v(t)
i (p, q) depends only on a subset of CTX(yi(p, q),y). Together, the two

assumptions guarantee the legitimacy of context-based entropy modeling in fully convo-

lutional networks, which can be achieved by placing binary masks to convolution filters.

70

Figure 4.1: Illustration of 2D mask convolution in the input layer of the proposed CCN for
entropy modeling. A raster coding order (left to right, top to bottom) and a convolution
kernel size of 5 × 5 are assumed here. The orange and blue dashed regions indicate the
full context of the orange and blue codes, respectively. In the right panel, we highlight the
support sets of the two codes in corresponding colors, which share the same mask.

Then, P (yi(p, q)|CTX(yi(p, q),y)) can be computed from {(v(T)
ij (p, q)}, which specify the

parameters of the conditional distribution. Assumption III allows the masks to be translation-

invariant, which can be achieved by properly designed coding orders. Specifically, we start

with the case of a 2D code block, where y ∈ RH×W , and define mask convolution at the t-th

layer as

v
(t)
i (p, q) =

Nt∑
j=1

(
u

(t)
j ∗

(
m(t) � w(t)

i,j

))
(p, q) + b

(t)
i , (4.2)

where ∗ and � denote 2D convolution and Hadamard product, respectively. w(t)
ij is a 2D

convolution filter and m(t) is the corresponding 2D binary mask. According to Assumption

I, the input u(t)
i and the output v(t)

i are of the same size as y. The input code block y

corresponds to u(0)
0 .

For the input layer of a fully convolutional network, the codes to produce v(0)
i (p, q)

is Ωp,q = {y(p+ u, q + v)}(u,v)∈Ψ, where Ψ is the set of local indexes centered at (0, 0). We

choose

SS(v
(0)
i (p, q)) = CTX(y(p, q),Ωp,q) ⊂ CTX(y(p, q),y), (4.3)

71

v

q

p

(a) (b) (c) (d) (e)

Figure 4.2: Illustration of code dividing techniques in conjunction with different coding
orders for a 2D code block. The orange and blue dots represent two nearby codes. The
gray dots denote codes that have already been encoded, while the white circles represent
codes yet to be encoded. (a) Raster coding order adopted in many compression methods. (b)
Support sets of the orange and blue codes, respectively. It is clear that the orange code is
in the support set of the blue one, and therefore should be decoded first. (c) Code dividing
scheme for the raster coding order. By removing the dependencies among codes in each row,
the orange and blue codes can be decoded in parallel. However, the orange code is excluded
from the support set of the blue one, which may hinder entropy estimation accuracy. (d)
Zigzag coding order and its corresponding code dividing scheme. The two codes in the
orange squares that are important for the orange code in entropy prediction are retained in its
partial context. (e) Support sets of the orange and blue codes in compliance with the zigzag
coding order.

p

q

r

(a)

p

q

r

(b)

Figure 4.3: Illustration of the proposed 3D zigzag coding order and 3D code dividing tech-
nique. (a) Each group in the shape of a diagonal plane is highlighted in green. Specifically,
GPk(y) = {yr(p, q)|r + p + q = k} are encoded first, than GPk+1(y). Within GPk(y), we
first process codes along the line p+q = k by gradually decreasing p. We then process codes
along the line p + q = k − 1 with the same order. The procedure continues until we sweep
codes along the last line p + q = max(k − r, 0) in GPk(y). (b) Support sets of the orange
codes with a spatial filter size of 3× 3.

72

p

q

r

(a)

p

q

r

(b)

Figure 4.4: Illustration of masked codes with M = 6, r = 2, and a filter size of 3 × 3.
Blue dots represent codes activated by the mask and red dots indicate the opposite. The only
difference lies in the green diagonal plane. (a) Input layer. (b) Hidden layer.

which can be achieved by setting

m(0)(u, v) =

{
1, if Ωp,q(u, v) ∈ CTX(y(p, q),y)

0, otherwise.
(4.4)

Fig. 4.1 illustrates the concepts of full context CTX(y(p, q),y), support set SS(v(0)(p, q)),

and translation-invariant mask m(0), respectively. At the t-th layer, if a code y(p+u, q+v) ∈

CTX(y(p, q),y), we have

SS(u
(t)
j (p+ u, q + v)) ⊂CTX(y(p+ u, q + v),y)

⊂CTX(y(p, q),y), (4.5)

where the first line follows by induction and the second line follows from the definition of

context. That is, as long as y(p+u, q+v) is in the context of y(p, q), we are able to compute

v
(t)
i (p, q) from u

(t)
j (p + u, q + v) without violating Assumption II. Unlike the input layer,

u
(t)
j (p, q) with t > 0 is also generated from CTX(y(p, q),y), and can be used to compute

v
(t)
i (p, q). Therefore, the mask at the t-th layer can be defined as

m(t)(u, v) =

{
m(0)(u, v), if (u, v) 6= (0, 0)

1, otherwise.
(4.6)

With the proposed CCN with translation-invariant masks in Eqn. (4.4) and Eqn. (4.6),

y can be efficiently encoded by exploiting fully convolutional network for shared computa-

tion. However, it remains very difficult for shared and parallel computation in the entropy

73

 M
as

k
 C

o
n

v
o

lu
ti

o
n

 M
as

k
 C

o
n

v
o

lu
ti

o
n

 M
as

k
 C

o
n
v
o
lu

ti
o
n

 M
as

k
 C

o
n

v
o

lu
ti

o
n

 M
as

k
 C

o
n
v
o
lu

ti
o
n

 M
as

k
 C

o
n

v
o

lu
ti

o
n

 M
as

k
 C

o
n

v
o

lu
ti

o
n

 M
as

k
 C

o
n
v
o
lu

ti
o
n

 M
as

k
 C

o
n

v
o

lu
ti

o
n

 M
as

k
 C

o
n

v
o

lu
ti

o
n

 M
as

k
 C

o
n
v
o
lu

ti
o
n

Grayscale Image Binarized Image Planes Context-Based Convolutional Network
Mean Estimates of

Bernoulli Distributions

Figure 4.5: The proposed CCN-based entropy model for lossless image compression. The
grayscale image x is first converted to bit-plane representation y, which is fed to the network
to predict the mean estimates of Bernoulli distributions P (yr(p, q)|SS(vr(p, q))). The size of
convolution filters and the number of feature blocks in intermediate layers are set to S × S
and N , respectively. Each convolution layer is followed by a parametric ReLU nonlinearity,
except for the last layer, where a sigmoid function is applied. From the mean estimates,
we find that for most significant bit-planes, our model makes more confident predictions
closely approaching local image structures. For least significant bit-planes, our model is less
confident, producing mean estimates close to 0.5.

decoding phase. As shown in Fig. 4.2 (a) and (b), the two nearby codes in the same row

(highlighted in orange and blue, respectively) cannot be decoded simultaneously because

the orange code is in the support set (or context) of the blue code given the raster coding

order. To speed up entropy decoding with parallel computation, we may further remove de-

pendencies among codes at the risk of model accuracy. Specifically, we partition y into K

groups, namely, GP0(y), . . . ,GPK(y), and remove dependencies among the codes within

the same group, resulting a partial context PTX(y(p, q),y) = {GP0(y), . . . ,GPk−1(y)} for

y(p, q) ∈ GPk(y). As a result, all codes in the k-th group share the same partial context, and

can be decoded in parallel. Note that code dividing schemes are largely constrained by the

pre-specified coding order. For example, if we use a raster coding order, it is straightforward

to divide y by row. In this case, y(p, q− 1) (p and q index vertical and horizontal directions,

respectively), which is extremely important in predicting the probability of y(p, q) according

to CABAC [44], has been excluded from its partial context. To make a good trade-off be-

tween modelling efficiency and accuracy, we adopt a zigzag coding order as shown in Fig. 4.2

(d), where GPk(y) = {y(p, q)|p + q = k} and PTX(y(p, q),y) = {y(p′, q′)|p′ + q′ < k}.

As such, we retain the most relevant codes in the partial context for better entropy modelling

(see Fig. 4.9 for quantitative results). Accordingly, the mask at the t-th layer becomes

m(t)(u, v) =

{
m(0)(u, v), if u+ v 6= 0

1, otherwise.
(4.7)

74

Now, we extend our discussion to a 3D code block, where y ∈ RM×H×W . Fig. 4.3

(a) shows the proposed 3D zigzag coding order and 3D code dividing technique (zoom in for

improved visibility). Specifically, y is divided intoK = M+H+W −3 groups in the shape

of diagonal planes, where the k-th one is specified by GPk(y) = {yr(p, q)|r + p + q = k}.

The partial context of yr(p, q) ∈ GPk(y) is defined as PTX(yr(p, q),y) = {yr′(p′, q′)|r′ +

p′ + q′ < k}. We then write mask convolution in the 3D case as

v
(t)
i,r (p, q) =

Nt∑
j=1

M∑
s=1

(
u

(t)
j,s ∗

(
m(t)
r,s � w(t)

i,j,r,s

))
(p, q) + b

(t)
i , (4.8)

where {i, j} and {r, s} are indexes for the feature block and channel dimensions, respec-

tively. For the 2D case, each layer shares the same mask (M = 1). When extending to 3D

code blocks, each channel in a layer shares a mask, and there are a total of M 3D masks. For

the input layer, the codes to produce v(0)
i,r (p, q) is Ωp,q = {ys(p+ u, q + v)}(u,v)∈Ψ,0≤s<M ,

based on which we define the mask as

m(0)
r,s (u, v) =

{
1, if Ωp,q(u, v) ∈ PTX(yr(p, q),y)

0, otherwise.
(4.9)

For the t-th layer, we modify the mask to include the current diagonal plane

m(t)
r,s(u, v) =

{
m

(0)
r,s (u, v), if s+ u+ v 6= r

1, otherwise,
(4.10)

as shown in Fig. 4.4, where we highlight the difference in the green diagonal plane.

4.3 CCN-Based Entropy Models for Lossless Image Compression

In this section, we combine our CCN-based entropy model with the arithmetic coding algo-

rithm for lossless image compression.

As a starting point, we binarize the grayscale image x ∈ RH×W to obtain a 3D code

block

yr(p, q) =

⌊
x(p, q)

27−r

⌋
mod 2, r = 0, 1, . . . , 7, (4.11)

where we index the most significant bit-plane with r = 0.

75

Quantizer
Variance

Estimates
MoG

Compressed

Image

Input

Image

Analysis Transform

Synthesis Transform

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n
v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n
v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n
v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

M
C

o
n

v
 |

5
×

5
 |
 3

×
3

C
o

n
v

 |
 3

×
3

 |
6

4
×

3

D
en

se
B

lo
c
k

 |
6

4

D
en

se
B

lo
c
k
 |

1
2
8

D
en

se
B

lo
c
k
 |

6
4

C
o

n
v

 |
 3

×
3

 |
5

1
2

×
6

4
0

C
o
n
v
 |
 3

×
3
 |

1
2
8
×

2
5
6

C
o

n
v

 |
 3

×
3

 |
2

5
6

×
3

2
0

CCN-Based Entropy Model

C
o
n
v
 |
 3

×
3
 |

n
×

m

C
o

n
v

 |
 3

×
3

 |
n

×
n

C
o

n
v

 |
 3

×
3

 |
n

×
n

C
o
n
v
 |
 3

×
3
 |

n
×

(n
+

m
)

C
o
n
v
 |
 3

×
3
 |

n
×

n

C
o

n
v

 |
 3

×
3

 |
n

×
(2

n
+

m
)

C
o
n
v
 |
 3

×
3
 |

n
×

n

C
o
n
v
 |
 3

×
3
 |

n
×

m

C
o

n
v

 |
 3

×
3

 |
n

×
n

C
o

n
v

 |
 3

×
3

 |
n

×
n

C
o
n
v
 |
 3

×
3
 |

n
×

(n
+

m
)

C
o
n
v
 |
 3

×
3
 |

n
×

n

C
o

n
v

 |
 3

×
3

 |
n

×
(2

n
+

m
)

C
o
n
v
 |
 3

×
3
 |

n
×

n

C
o

n
v

 |
 3

×
3

 |
M

×
5

1
2

D
o

w
n

sa
m

p
li

n
g

 b
y

 2

D
o

w
n

sa
m

p
li

n
g

 b
y

 2

D
o

w
n

sa
m

p
li

n
g

 b
y

 2

C
o

n
v

 |
 3

×
3

 |
3

×
1

6

D
en

se
B

lo
c
k

 |
6

4

D
en

se
B

lo
c
k
 |

1
2
8

D
en

se
B

lo
c
k

 |
6

4

C
o

n
v

 |
 3

×
3

 |
1

2
8

×
2

5
6

C
o
n
v
 |
 3

×
3
 |

2
5
6
×

8
9
6

C
o

n
v

 |
 3

×
3

 |
5

1
2

×
M

U
p

sa
m

p
li

n
g

 b
y

 2

U
p
sa

m
p
li

n
g
 b

y
 2

U
p

sa
m

p
li

n
g

 b
y

 2

C
o

n
v

 |
 3

×
3

 |
6

4
×

2
2

4

Mean

Estimates

Weight

Estimates

m

n

m m m

n

n

n

n
n

Figure 4.6: The architecture of the proposed lossy image compression method, which con-
sists of an analysis transform ga, a non-uniform and trainable quantizer gd, a CCN-based
entropy model, and a synthesis transform gs. Conv: regular convolution with filter sup-
port (S × S) and number of channels (output×input). Down-upsampling: implemented
jointly with the adjacent convolution (also referred to as stride convolution). DenseBlock: m
matches the input channel number of the preceding convolution. n is the channel number in
DenseBlock set empirically. MConv: mask convolution used in our CCNs with filter support
(S × S) and number of feature blocks (output×input). Note that the number of channels is
fixed in MConv, and is determined by that of ȳ.

Our CCN takes y as input and produces a feature block v (the superscript (T) is omit-

ted for notation convenience) of the same size to compute the mean estimates of Bernoulli

distributions P (yr(p, q)|SS(vr(p, q)). Fig. 4.5 shows the network architecture, which consists

of eleven mask convolution layers with parametric ReLU nonlinearities in between. The last

convolution responses undergo a sigmoid nonlinearity to constrain the dynamic range within

[0, 1]. We make four residual connections as suggested in [27] to accelerate training. We will

experiment with two hyper-parameters in CCN: the size of convolution filters for all layers

S and the number of feature blocks in hidden layers N .

To optimize the network parameters, which are collectively denoted by θ, we adopt

the expected code length as the empirical loss

`(θ) = Ey

[
−
∑
r,p,q

(
1(yr(p, q) = 1) log2(vr(p, q))

− 1(yr(p, q) = 0) log2(1− vr(p, q))
)]
, (4.12)

where 1(·) is an indicator function and the expectation may be approximated by averaging

over a mini-batch of training images. Finally, we implement our own arithmetic coding with

76

the learned CCN-based entropy model to compress y to bitstreams, and report performance

using actual bit rates. This facilitates comparison against widely used image compression

standards.

4.4 CCN-Based Entropy Models for Lossy Image Compression

In lossy image compression, our objective is to minimize a weighted sum of rate and distor-

tion, `r+λ`d, where λ governs the trade-off between the two terms. As illustrated in Fig. 4.6,

our compression method consists of four components: an analysis transform ga, a quantizer

gd, a CCN-based entropy model, and a synthesis transform gs. The analysis transform ga

takes a color image x as input and produces the latent code representation y. ga consists

of three convolutions, each of which is followed by down-sampling with a factor of two. A

dense block [30] comprised of seven convolutions is employed after each down-sampling.

After the last dense block, we add another convolution layer with M filters to produce y.

Empirically, the parameter M sets the upper bound of the bit rate that a general DNN-based

compression method can achieve. The parameters of ga constitute the parameter vector φ to

be optimized.

The synthesis transform gs is a mirror of the analysis transform. Particularly, the

depth-to-space reshaping [63, 69] is adopted to up-sample the feature maps. The last con-

volution layer with three filters is responsible for producing the compressed image in RGB

space. The parameters of gs constitute the parameter vector ψ to be optimized.

For the quantizer gd, we parameterize its quantization centers for the r-th channel by

{ωr,0, . . . , ωr,L−1}, where L is the number of quantization centers and ωr,0 ≤ . . . ≤ ωr,L−1.

The monotonicity of ω can be enforced by a simple re-parameterization based on cumulative

functions. Given a fixed set of ω, we perform quantization by mapping yr(p, q) to its nearest

center that minimizes the quantization error

ȳr(p, q) = gd(yr(p, q)) = arg min
{ωr,l}

‖yr(p, q)− ωr,l‖2
2. (4.13)

gd has zero gradients almost everywhere, which hinders training via back-propagation. Tak-

ing inspirations from binarized neural networks [17, 55, 86], we make use of an identify

77

mapping ĝd(yr(p, q)) = yr(p, q) as a more continuous proxy to the step quantization func-

tion. During training, we use gd and ĝd in the forward and backward passes, respectively.

The quantization centers ω should be optimized by minimizing the mean squared

error (MSE),

`q(ω) =
1

MHW

∑
r,p,q

‖yr(p, q)− ȳr(p, q))‖2
2, (4.14)

which is essentially a k-means clustering problem, and can be solved efficiently by the

Lloyd’s algorithm [41]. Specifically, we initialize ω using uniform quantization, which

appears to work well in all experiments. To make parameter learning of the entire model

smoother, we adjust ω using stochastic gradient descent instead of a closed-form update.

Without prior knowledge of the categorical distributions of the quantized codes ȳ,

we choose to work with discretized MoG distributions, whose parameters are predicted by

the proposed CCNs. We write the differentiable MoG distribution with C components as

ȳr(p, q) ∼
C−1∑
i=0

πiN (ȳr(p, q);µi, σ
2
i), (4.15)

where πi, µi and δ2
i are the mixture weight, mean, and variance of the i-th component,

respectively. Then,

P (ȳr(p, q)) =

∫
∆

C−1∑
i=0

πiN (ξ;µi, σ
2
i)dξ. (4.16)

where ∆ is the quantization bin that ȳr(p, q) lies in.

Next, we describe the proposed entropy model in lossy image compression, which is

comprised of three CCNs with the same structure, as shown in Fig. 4.6. Each CCN consists of

nine mask convolutions with three residual connections to produce C feature blocks, match-

ing the number of components in MoG. They separately output mixture weights, means and

variances to build the discretized MoG distributions. The network parameters of our CCNs

constitute the parameter vector θ to be optimized.

Finally, we are able to write the empirical rate-distortion objective for the parameters

78

0 1 2 3 4 5 6 7

Bits per pixel (bpp)

CCNlight

CCN

PixCNN++

MCN

SIN(48)

SIN(32)

SIN(16)

SIN(8)

SIN(4)

4.23

3.94

6.45

3.93

5.72

5.43

5.19

5.46

5.55

Figure 4.7: Bit rates (in terms of bpp) of different DNN-based entropy models for lossless
image compression on the Kodak dataset. SIN(M) refers to a side information network
that allocates M output channels to represent side information. The orange and gray bars
represent the bit rates from the image and the side information, respectively.

{φ,ψ,θ} as

`(φ,ψ,θ) = Ex

[
−
∑
i

log2 Pȳi

(
gd

(
ga(x;φ)

)
;θ

)

+ λ`d

(
gs

(
gd
(
ga(x;φ)

)
;ψ
)
,x

)]
. (4.17)

`d is the distortion term, which is more preferable to be assessed in perceptual space. In this

paper, we optimize and evaluate our lossy image compression methods using standard MSE

and a perceptual metric MS-SSIM [77]. Similar to lossless image compression, we combine

the optimized entropy model with arithmetic coding and measure the rate using actual bit

rates.

4.5 Experiments

In this section, we test the proposed CCN-based entropy models in the lossless and lossy

image by comparing it to state-of-the-art image coding standards and recent deep image

79

compression algorithms. We first collect 10, 000 high-quality and high-definition images

from Flickr, and down-sample them to further reduce possibly visible artifacts. We crop

1, 280, 000 grayscale patches of size 128× 128 and 640, 000 color patches of size 3× 256×

256 as the training sets for lossless and lossy image compression, respectively. We test

our models on two independent datasets - Kodak and Tecnick [9], which are widely used

to benchmark image compression performance. The Caffe implementations along with the

pre-trained models are made available at https://github.com/limuhit/SCAE.

4.5.1 Lossless Image Compression

We train our CCN-based entropy model using the Adam stochastic optimization package [33]

by minimizing the objective in Eqn. (4.12). We start with a learning rate of 10−4 and sub-

sequently lower it by a factor of 10 when the loss plateaus, until 10−6. The (actual) bit rate

in terms of bits per pixel (bpp) is used to quantify the compression performance, which is

defined as the ratio between the total amount of bits used to code the image and the num-

ber of pixels in the image. A smaller bpp indicates better performance. For example, an

uncompressed grayscale image has eight bpp.

We first compare the proposed CCNs with mask convolutional networks (MCNs) [36,

46], PixelCNN++ [61], and side information networks (SINs) [12] for entropy modelling.

As a special case of CCNs, MCNs specify the raster coding order without using any code di-

viding technique (see Fig. 4.2). We implement our version of MCN that inherits the network

architecture from the CCN with N = 16 (number of feature blocks) and S = 5 (filter sup-

port). PixelCNN++ [61] is originally designed for image inpainting as a generative model.

Here we adapt it for entropy modeling. Starting from a down-sampled grayscale image with

a factor of four, we use a DNN of similar model complexity compared with our CCN to pre-

dict the categorical distributions from the down-sampled image. SINs summarize the side

information of ȳ with a separate DNN, which is helpful in probability estimation. We adopt

a DNN-based autoencoder of similar model complexity as our CCN (including three stride

convolutions and two residual connections) to generate the side information, which is fur-

ther quantized and compressed with arithmetic coding for performance evaluation. We test

80

https://github.com/limuhit/SCAE

3 4 5 6 7 8

Bits per pixel (bpp)

CCNlight

CCN

JPEG2000-LS

BPG

JPEG-LS

GIF

TIFF

4.10
3.35

3.83
3.12

4.37
3.56

4.62
3.85

5.03
4.35

6.96
6.30

7.92
7.55

Kodak

Tecnick

Figure 4.8: Bit rates of CCN in comparison with lossless image compression standards on
the Kodak and Tecnick datasets.

Table 4.1: Running time in seconds of different DNN-based entropy models on the Kodak
dataset with image size of 752× 496

SIN MCN PixelCNN++ CCN CCNlight

Encoding 0.155 0.323 0.121 0.323 0.074
Decoding 0.155 3079.68 0.121 35.28 0.984

five variants of SINs with different amount of side information by changing the number of

output channels M . All competing models are trained on the same dataset described at the

beginning of Section 4.5. We also introduce a light-weight version of our method, which we

name CCNlight, by making the network architecture lighter (with N = 3 and S = 3) and by

dividing the input image into non-overlapping patches for parallel processing.

Fig. 4.7 shows the bit rates of the competing methods on the Kodak dataset. The

proposed CCN matches the best performing model MCN, which suggests that with the pro-

posed zigzag coding order and code dividing technique, CCN does not exclude the most

important codes from the partial context of the current code being processed. The bit rates

of SINs come from two parts - the image itself and the side information. It is clear from

the figure that increasing the amount of side information leads to bit savings of the image, at

the cost of additional bits introduced to code the side information. In general, it is difficult

to determine the amount of side information for optimal compression performance. Pixel-

81

2.5 3.0 3.5 4.0 4.5 5.0

Bits per pixel (bpp)

CCNr(16,5)

CCN(16,5)

CCN(16,3)

CCN(8,5)

CCN(8,3)

CCN(4,5)

CCN(4,3)

4.02
3.31

3.83
3.12

3.88
3.16

3.90
3.17

3.98
3.23

4.02
3.27

4.10
3.33 Kodak

Tecnick

Figure 4.9: Ablation study of CCN on the Kodak and Tecnick datasets. CCN(N ,S) denotes
the CCN with N feature blocks and S × S filter size. CCNr represents the CCN with the
raster coding order and the corresponding code dividing technique (see Fig. 4.2).

Figure 4.10: Visualization of the learned continuous MoG distributions of sample codes
before discretization. It is clear that most of them are multimodal and therefore cannot be
well fit using a single Gaussian.

82

CNN++ can also be regarded as a special case of SINs, whose side information is a small

image without further processing, leading to the worst performance.

We also compare CCN with the widely used lossless image compression standards,

including TIFF, GIF, PNG, JPEG-LS, JPEG2000-LS, and BPG. All test results are gener-

ated by MATLAB2017. From Fig. 4.8, we find that CCN (along with its light-weight ver-

sion CCNlight) overwhelms all competing methods on the Kodak/Tecnick dataset, achieving

more than 5.9%/6.2% bit savings compared to the best lossless image compression standard,

JPEG2000-LS.

The running time of the four types of DNN-based entropy models is tested on an

NVIDIA TITAN Xp machine, whose results on the Kodak dataset are listed in Table 4.1. For

encoding, CCNlight enjoys the fastest speed, followed by PixelCNN++ and SIN (the best per-

forming variant). Despite similar encoding time, they have substantially different decoding

complexities. PixelCNN++ has the fastest decoder, followed by SIN. Due to the sequential

decoding nature, MCN is the slowest, taking nearly one hour to decode a grayscale image of

size 752× 496. Our CCN achieves a significant improvement upon MCN with the proposed

code dividing technique, while maintaining nearly the same bit rates. Moreover, CCNlight

speeds up CCN more than 30 times, striking a good balance model between efficiency and

accuracy.

We conduct thorough ablation experiments to analyze the impact of individual com-

ponents to final compression performance. Fig. 4.9 shows the bit rates of CCNs with three

different numbers of feature blocks (N ∈ {4, 8, 16}) and two filter sizes (S ∈ {3, 5}). When

the filter size and the network depth are fixed, adding more feature blocks effectively in-

creases the model capability and thus boosts the compression performance. Similarly, using

a larger filter size with fixed network depth and feature block number increases the partial

context, leading to better entropy modeling. Moreover, we replace the proposed zigzag cod-

ing order in CCN with the raster coding order, whose model is denoted by CCNr. From

Fig. 4.9, we observe that the performance of CCNr drops significantly, only comparable

to the CCN with four feature blocks, which verifies the advantages of the proposed coding

83

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

22

24

26

28

30

32

34

36
P

S
N

R
(d

B
)

JPEG
JPEG 2000
BPG (4:2:0)
Agustsson17
Theis17
Toderici17
Johnston17
Li18
Ours (MSE)
Ours (MS-SSIM)
Baseline

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
S

-S
S

IM

JPEG
JPEG 2000
BPG (4:2:0)
Agustsson17
Theis17
Toderici17
Rippel17
Mentzer18
Johnston17
Ballé17
Li18
Ours (MSE)
Ours (MS-SSIM)

(b)

Figure 4.11: Rate-distortion curves of different compression methods on the Kodak dataset.
(a) PSNR. (b) MS-SSIM. Baseline denotes our method with separately optimized transforms
and entropy model for MSE.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

26

28

30

32

34

36

38

P
S

N
R

(d
B

)

JPEG
JPEG 2000
BPG (4:2:0)
Agustsson17
Theis17
Ballé17
Ours (MSE)
Ours (MS-SSIM)

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

0.90

0.92

0.94

0.96

0.98

1.00

M
S

-S
S

IM

JPEG
JPEG 2000
BPG (4:2:0)
Agustsson17
Theis17
Ballé17
Ours (MSE)
Ours (MS-SSIM)

(b)

Figure 4.12: Rate-distortion curves of different compression methods on the Tecnick dataset.
(a) PSNR. (b) MS-SSIM.

order.

84

Table 4.2: Running time in second of our CCN-based entropy model at six bit rates on the
Kodak dataset

Average bpp 0.100 0.209 0.362 0.512 0.671 0.794
Encoding 0.013 0.025 0.044 0.066 0.085 0.103
Decoding 0.116 0.227 0.457 0.735 1.150 1.232

(a) (b) (c) (d)

(e)

(f) (g) (h) (i)

(j)

Figure 4.13: Compressed images by different compression methods on the Kodak dataset.
The quantitative measures are in the format of “bpp / PSNR / MS-SSIM”. (a) Uncompressed
“Sailboat” image. (b) Ballé17 [11]. 0.209 / 31.81 / 0.962. (c) Chapter 2. 0.244 / 31.97 /
0.966. (d) BPG. 0.220 / 33.19 / 0.963. (e) Ours optimized for MS-SSIM. 0.209 / 31.01 /
0.978. (f) Uncompressed “Statue” image. (g) Ballé17. 0.143 / 29.48 / 0.942. (h) Chapter
2. 0.115 / 29.35 / 0.938. (i) BPG. 0.119 / 29.77 / 0.935. (j) Ours optimized for MS-SSIM.
0.116 / 28.05 / 0.954.

4.5.2 Lossy Image Compression

In lossy image compression, the analysis transform ga, the non-uniform quantizer gd, the

CCN-based entropy model, and the synthesis transform gs are jointly optimized for rate-

distortion performance. In the early stages of training, the probability P (ȳ) may change

rapidly, which makes it difficult to keep track of, causes instability in learning the entropy

model. We find that this issue can be alleviated by a simple warmup strategy. Specifically,

ga and gs are trained using the distortion term `d only for the first epoch. We then fix ga

and train the CCN-based entropy model until it reasonably fits the current distribution of the

codes. After that, we end-to-end optimize the entire method for the rest epochs. We use

85

(a) (b) (c) (d)

(e)

(f) (g) (h) (i)

(j)

Figure 4.14: Compressed images by different compression methods on the Tecnick dataset.
The quantitative measures are in the format of “bpp / PSNR / MS-SSIM”. (a) Uncompressed
“Bus” image. (b) JPEG2K. 0.199 / 24.41 / 0.914. (c) Chapter 2. 0.224 / 23.41 / 0.908. (d)
BPG. 0.208 / 25.36 / 0.928. (e) Ours(MS-SSIM). 0.198 / 23.71 / 0.951. (f) Uncompressed
“Toy train” image. (g) JPEG2K. 0.201 / 28.29 / 0.917. (h) Chapter2. 0.189 / 26.83 / 0.899.
(i) BPG. 0.210 / 29.25 / 0.933. (j) Ours(MS-SSIM). 0.198 / 28.08 / 0.949.

86

Adam with a learning rate of 10−5 and gradually lower it by a factor of 10, until 10−7. The

number of quantization centers is L = 8 and the number of Gaussian components in MoG

is C = 3. Fig. 4.10 shows the learned continuous distributions of some codes, which are

typically complex and multimodal. This optimization is performed separately for each λ

and each distortion measure. We optimize twelve models for six bitrates and two distortion

metrics (MSE and MS-SSIM). MSE is converted to the peak signal-to-noise ratio (PSNR)

for quantitative analysis.

We compare our methods with existing image coding standards and recent DNN-

based compression models. These include JPEG [73], JPEG2000 [64], BPG [13], Agusts-

son17 [2], Theis17 [67], Toderici17 [69], Rippel17 [58], Mentzer18 [46], Johnston17 [32],

Ballé17 [11], and the results of chapter 2. Both JPEG (with 4:2:0 chroma subsampling)

and JPEG2000 are based on the optimized implementations in MATLAB2017. For BPG,

we adopt the latest version from its official website with the default setting. When it comes

to DNN-based models for lossy image compression, the implementations are generally not

available. Therefore, we report the results from their respective papers.

Fig. 4.11 shows the rate-distortion curves on the Kodak dataset. We find that our

method optimized for MSE outperforms all competing methods at low bit rates (< 0.5 bpp),

except for BPG. When optimized for MS-SSIM, our method performs on par with Rip-

pel17 and is much better than the rest. Fig. 4.12 shows the rate-distortion curves on the

Tecnick dataset, where we observe similar trends for both PSNR and MS-SSIM. An inter-

esting observation is that when we continue increasing the bit rate, PSNR/MS-SSIM starts

to plateau, which may be due to the limited model capability. Without any constraint on

the rate (λ = ∞) and quantization (L = ∞), our method optimized for MSE only reaches

38.2dB on the Kodak dataset, which may be considered as an empirical upper-bound for our

network structure. Preliminary results indicate that increasing the depth and width of the

network leads to performance improvements at high bit rates.

We visually compare the compressed images by our method against Ballé17, results

from chapter 2, JPEG2K, and BPG. Fig. 4.13 and Fig. 4.14 show sample compressed results

87

on the Kodak and Tecnick datasets, respectively. JPEG2K and BPG exhibit artifacts (such

as blocking, ringing, blurring, and aliasing) that are common to all handcrafted transform

coding methods, reflecting the underlying linear basis functions. Ballé17 is effective at sup-

pressing ringing artifacts at the cost of over-smoothing fine structures. Chapter 2 allocates

more bits to preserve large-scale strong edges, while tends to eliminate small-scale localized

features (e.g., edges, contours, and textures). In contrast, our method generates compressed

images with more faithful details and less visible distortions. Also, we investigate the ef-

fectiveness of the joint optimization of the transforms and the CCN-based entropy model.

A baseline method is introduced, which first optimizes the transforms for MSE (λ = ∞),

and trains the CCN-based entropy model with learned (and fixed) transforms. As shown in

Fig. 4.11 (a), the baseline method underperforms the jointly optimized one by 1dB.

We report the running time of our method at six bit rates on the Kodak dataset using

the same machine. It takes 0.024 second to generate ȳ and 0.032 second to reconstruct the

image. The entropy coding time is listed in Table 4.2, which we see that more time is needed

to encode and decode images at higher bit rates. With the help of the proposed code dividing

technique, our method performs entropy decoding in around one second for images of size

752× 496.

4.6 Conclusion

We have introduced CCNs for context-based entropy modeling. Parallel entropy encoding

and decoding are achieved with the proposed coding order and code dividing technique,

which can be efficiently implemented using mask convolutions. We test the CCN-based

entropy model (combined with arithmetic coding) in both lossless and lossy image compres-

sion. For the lossless case, our method achieves the best compression performance, which

we believe arises from the more accurate estimation of the Bernoulli distributions of the bi-

nary codes. For the lossy case, our method offers improvements both visually and in terms

of rate-distortion performance over image compression standards and recent DNN-based

models.

88

The application scope of the proposed CCN is far beyond building the entropy model

in image compression. As a general probability model, CCN appears promising for several

image processing applications. For example, we may use CCN to learn a probability model

P (x) for natural images, and use it as a prior in Bayesian inference to solve various vi-

sion tasks such as image restoration [54, 83], image quality assessment [43, 75], and image

generation[15, 51].

89

CHAPTER 5

LEARNING CONTEXT-BASED NON-LOCAL ENTROPY MODELLING FOR
IMAGE COMPRESSION

Inspired by chapter 4, we further explore the entropy modeling of image compression. De-

spite the remarkable success of recent end-to-end optimized image compression, the code

representation is usually assumed to depend on some side information or local context. How-

ever, such an assumption fails to take the global similarity inner the context into account, and

thus hinders the estimation of the entropy. In this chapter, we introduce the non-local sim-

ilarity of the codes that exploit statistical redundancies in the context for effective entropy

modeling. Besides a mask convolutional network which focuses on the local context, a non-

local attention block is introduced to combine the local auto-regressive representation and

global content similarity weighted estimation in modeling the probability of the codes. Be-

sides, the width of the transforms defined as the minimum number of channels in the output

of each layer is essential in training low distortion models. An U-net block is proposed to

increase the width of the auto-encoder network with manageable network complexity. By

supposing each code follows a mixture of Gaussian distribution based on its context, the

analysis transform, synthesis transform, and the context-based non-local entropy model are

jointly optimized in an end-to-end manner. Experiments on the Kodak and Tecnick datasets

show that the proposed lossy image compression methods based on non-local entropy mod-

eling and U-net blocks generally achieve better compression performance.

5.1 Introduction

Image compression is a fundamental problem in engineering which has been studied for

centuries. With the population of artificial intelligence and social media, the requirement

of sharing and storing high-definition media also increases explosively, which places an ad-

90

ditional burden on the storage and the bandwidth of the Internet. To relieve the pressure

brought by a large amount of media data, more effective image compression methods are

still needed.

Deep learning has shown great power in fitting complex problems and achieved un-

precedented successes in various vision tasks like image restoration [20, 21, 81, 83], image

quality assessment [43], and image generation [51, 52], which throws light on designing bet-

ter lossy image compression methods with the deep learning toolkit. Since deep networks

are natural transforms, nearly all of the recent learned deep image compression frameworks

are transform coding frameworks and learned by optimizing a joint rate-distortion optimiza-

tion problem. The transform coding framework consists of three components, i.e., transform,

quantization, and entropy coding. Transforms aim to map the image into a latent code space

where the codes are easy to be compressed. For early transform coding frameworks such as

JPEG [73] and JPEG2000 [64], the transforms are linear, invertible and fixed for all bit rates.

Distortion only arises from the quantization. Differently, recent transforms are modeled with

deep neural networks (DNNs), which are non-linear and complex but non-invertible. DNN-

based transforms would indeed generate better codes, but extra distortion arises at the same

time. The lossy image compression models are a trade-off between rate and distortion. For

models in low bit rate region where the distortion are quite large, such extra distortion could

be ignored. But for models that aim for small distortion, a better network structure is needed

to reduce the extra distortion brought by DNN-based transforms.

To reduce the distortion introduced by the DNN-based transforms, the width of the

transforms, i.e., the minimum number of channels in the output of each layer, should be

increased to keep as much information from the input image. For a deep transform with hun-

dreds of layers, the growing of width will inevitably increase the computational complexity

and GPU memory consumption. An U-net like block is introduced to process features in

each scale and help reduce the time complexity and memory usage in the transforms. With

the paired downsampling, upsampling operations and skip connection, the U-net like archi-

tecture is not only able to speed up the transforms but also could combine the information in

different scales, facilitate the information propagation and ease the training of the transforms.

91

In lossy image compression, another important issue is to model the rate loss of

the learned framework. Building an accurate discrete probability distribution function for

each code is essential in determining the compression performance. According to Shan-

non’s source coding theorem [62], given a sequence of codes y = {y0, . . . , yM}, the optimal

code length of y should be d− log2 P (y)e with the codebook constructed by binary symbols.

Without further constraints, estimating P (y) in high-dimensional spaces is intractable and

surfers the curse of dimensionality. To relieve this problem, most entropy coding schemes

directly assume the codes in y are independent and follow the same marginal distribution,

resulting in a code length of d−∑M
i=0 log2 P (yi)e. Alternatively, a more accurate approxi-

mation could be given with the chain rule

P (y) ≈
M∏
i=0

P (yi|CTX(yi,y)), (5.1)

where CTX(yi,y) ⊂ {y0, . . . , yi−1} represents the context of yi, i.e., all the codes coded

before it in y. Taking the representative traditional method, context-based adaptive binary

arithmetic coding (CABAC) [44], as an example, it considers two nearest codes as the con-

text for entropy prediction and gets noticeable performance improvement over previous im-

age compression standards, which supports the effectiveness of the context in modeling the

probabilistic distribution of the codes.

As the possible conditions grow explosively with the increase of the size of CTX(yi,y),

it is hard to estimate the conditional probability with the traditional histogram-based meth-

ods. Recent deep autoregressive models including RNN [47], LSTM [66] in natural language

processing and PixelRNN [51], PixelCNN [52] for image generation, can model long-range

dependency among sequential data or pixels and employ much larger context for entropy

modeling but have to process the pixels/codes with a raster scanning order. The heavy com-

putational burden makes them not practical in many real applications. Taking both of the

effectiveness and efficiency into account, another general auto-regressive entropy model,

context-based convolutional networks (CCNs) [37], introduces a specially defined scanning

order and corresponding context. With a given code dividing scheme, the CCNs can perform

parallel decoding.

92

However, all of the CNN based entropy models have a definite receptive filed and

only take the local context inner the receptive filed into account. Besides, the CNN based

entropy models only fit the probabilistic distribution of the target code in a receptive filed

and the context with a large amount of training data. The content similarity of the codes for

a single image is usually ignored. Supposing the target code to be regressed yr(p, q) is in the

r-th channel and at the space of (p, q) in a 2D plane of a 3D code block y. Inspired by the

non-local means used in image denoising, we introduce non-local similarity into the context-

based entropy modeling by regressing a code, yr(p, q), with a weighted sum over all the codes

in the r-th channel of the context. And the weights are produced according to the content

similarity between these codes and the target code. Due to the definition of the context, the

target code, yr(p, q), is unknown and could not directly be adopted to evaluate the content

similarity.We alternatively adopt a weighed L2 distance among the available code vectors

with the same 2D position, i.e., (y0(p, q), . . . , yr−1(p, q)), as the proxy to evaluate the content

similarity. A context-based non-local attention block is further introduced to combine the

local auto-regressive representations and the global content weighted estimations.

Without too much hypothesis on the probabilistic distribution function of the codes,

the context-based entropy of the codes is estimated by parametrizing the distribution of each

code with a mixture of Gaussian (MoG) distribution, whose parameters are predicted with

context-based non-local entropy model. We jointly optimize transforms, i.e., analysis trans-

form and synthesis transform, with U-net blocks and the context-based non-local entropy

model to the trade-off of rate-distortion performance in an end-to-end manner. Experiments

on the Kodak and Tecnick datasets show that the proposed method can outperform state-of-

art lossy image compression standards.

5.2 Context Based Non-local Entropy modelling

Modeling the entropy of the code from its context is an auto-regression problem where

the probability distribution function (PDF) of the code is regressed from the code con-

text. In entropy coding, all the codes should be processed with a given scanning order.

93

CTX(yr(p, q),y) denoted by the context of the code yr(p, q), which is defined as all the

codes processed before yr(p, q) in entropy coding. Here, r indicates the channel of the code

and (p, q) is its position in the 2D code plane. Fig. 5.1 (b) gives an example of the context of

the red target code in the 3D code block with a raster scanning order.

Similar
patches

Similar
code vectors

Source image Analysis Transform Code vector

(a)

Target codeFull context

p

q

r

(b)

Target codeLocal context

p

q

r

(c)

Target code

Similar
code vectorsp

q

r

(d)

Figure 5.1: Illustration for context-based non-local entropy modeling. (a) indicates the non-
local similarity among the codes generated by the analysis transform. (b) shows the context
of a target code in 3D code block y with a raster scanning order. (c) gives the local context
used in CNN-based entropy modeling. (d) illustrates the non-local similarity in the context.

Due to the efficiency of CNNs in processing 2D and 3D data, the previous context-

based entropy modeling usually adopts mask CNNs to estimate the PDFs of the codes. As

shown in Fig. 5.1 (c), limited by the structure, CNNs can only focus on part of the context

in the receptive field, i.e., local context, to predict the PDFs. The content similarity of the

codes and global information are generally ignored in the CNN based entropy model. How

to introduce global information and content similarity for context-based entropy modeling?

Non-local is a good solution.

Non-local is a popular image prior which is adopted in many image restoration tasks

for making use of global information. As indicated in some low-level image processing

methods, like BM3D, there are many similar patches in the image. Thus, the codes generated

94

by an analysis transform with similar image patches in the receptive filed should also be

similar. In Fig. 5.1 (a), we visualize two code vectors, i.e., the vector of codes in the same

2D position, and the corresponding image patches for the generating the code vectors, which

clearly support our hypothesis that the non-local similarity prior holds for the code vectors

generated by the analysis transform. As shown in Fig. 5.1(d), if we could find similar code

vectors as the target code vector, it is reasonable to predict the unknown target code (red

block) with the corresponding known code (blue block).

In this chapter, we dig out the non-local similarity inner the context and introduce

a context-based non-local block into CNN based entropy models to combine the local and

global information for context-based entropy modeling. In the following, we will first intro-

duce the CCNs from chapter 4 for its efficiency and effectiveness in modeling local context

and then define the context-based non-local operation for exploiting global information in

the context.

5.2.1 CCNs for Local Context Based Entropy modelling

Denoted by y ∈ RM×H×W a 3D code block generated by the analysis transform. M , H , and

W separately are the channel, height, and width of the code block. The output of the t-th

CCN layer is a 4D tensor v(t) ∈ RM×H×W×Nt with Nt feature blocks to represent y. Each

feature v(t)
i,r (p, q) in r-th channel and i-th feature block at spatial location (p, q) is uniquely

connected with yr(p, q) and only convey information from the CTX(yr(p, q),y).

Due to the overlap of context, the codes inner the 3D code block should be processed

in the serial order in decoding, which greatly reduces the efficiency of the CNN based en-

tropy model. In CCNs, a 3D zigzag scanning order together with a novel code dividing

scheme is introduced to increase the parallel ability and result in a special partial context,

i.e., PTX(yr(p, q),y). In the partial context, codes are divided into K = M + H + W − 3

non-overlap groups with GPk(y) = {yr(p, q)|r + p+ q = k} denotes the k-th group. Then,

the partial context of yr(p, q) ∈ GPk(y) is defined as PTX(yr(p, q),y) = {yr′(p′, q′)|r′ +

p′ + q′ < k}. Codes inner the same group are supposed to be independent, share the same

95

Target code

Non-local simi-
lar code vectors

Context plane for
non-local operation

p

q

r
3D context of the code

Figure 5.2: Illustration of the non-local similarity of the codes inner the special partial con-
text used in CCNs for entropy modelling. The red block is the target code to be predicted.
And the green region is the partial context for the CCNs. Global similar code vectors as the
target code vector is located by the proxy similarity metric gd. And corresponding similar
codes (blue blocks) are adopted to predict the target code. The yellow plane indicates the
code plane in the context used in the non-local operation.

context and thus could be parallel processed in decoding. Without a clear drop in the en-

tropy prediction performance, the special partial context could dramatically accelerate the

decoding efficiency.

The CCNs are built with mask convolution layers and element-wise activation func-

tions. The mask convolution layer is defined as

v
(t)
i,r (p, q) =

Nt∑
j=1

M∑
s=1

(
u

(t)
j,s ∗

(
m(t)
r,s � w(t)

i,j,r,s

))
(p, q) + b

(t)
i , (5.2)

where {i, j} and {r, s} are indexes for the feature block and channel dimensions, respec-

tively. u(t) and v(t) are the input and output of the t-th convolution layer, respectively. A

nonlinear element-wise activation function is adopted to connect v(t−1) and u(t). For the

input layer, the codes to produce v(0)
i,r (p, q) is Ωp,q = {ys(p+ u, q + v)}(u,v)∈Ψ,0≤s<M . The

96

mask for the input layer is defined as

m(0)
r,s (u, v) =

{
1, if Ωp,q(u, v) ∈ PTX(yr(p, q),y)

0, otherwise.
(5.3)

For the t-th hidden layer, the mask is modified to include the codes in the same group

m(t)
r,s(u, v) =

{
m

(0)
r,s (u, v), if s+ u+ v 6= r

1, otherwise.
(5.4)

5.2.2 Context Based Non-local Operation

As the different code planes inner the 3D block are generated by different convolutional

filters, only the codes inner the same plane share the same transformation. The non-local

operation for the context-based autoregressive task is a weighted averaging on a 2D code

plane that the target code belongs to. And the weights are set according to the similarity

between the target code and the others. With the definition of the context, only the codes

included in the context can be adopted in the non-local operation. A location adaptive mask

ml(p, q, u, v) is introduced to exclude codes outside of the context. Set the target code to

be yr(p, q) in r-th channel at the 2D location (p, q). If another code in the same plane

yr(u, v) ∈ PTX(yr(p, q),y), i.e., v + v < p + q, the mask ml(p, q, u, v) is set to be 1;

otherwise, it is 0. The yellow plane in Fig. 5.2 indicates the plane of codes could be used

to predict the target code in non-local operation where the masks are 1s. Another thing is

that the target code to be predicted is unknown in the context. It is unable to directly build

a metric to evaluate the content similarity between the target codes and the others. As the

codes inner the same 2D position are generated from the same image patch in the receptive

field. If two codes yj(p, q) and yj(u, v) are similar, it is a high probability event the yr(p, q)

and yr(u, v) are still similar. We alternatively adopt a similarity metric gd(yr(p, q), yr(u, v))

based on the available codes in the context at the same 2D location as (u, v) and (p, q) to

evaluate the similarity.

gd(yr(p, q), yr(u, v)) =
r−1∑
j=0

wdr,j‖yj(p, q)− yj(u, v)‖2, (5.5)

where wr,j is a weight to balance the contribution of the codes in different code planes in

modelling the similarity metric. wdr,j is set to be 1/(r + 1) for even contribution and is

97

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

D
o
w

n
sa

m
p
li

n
g
 b

y

a

0

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

D
o
w

n
sa

m
p
li

n
g
 b

y

a

1

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

D
o
w

n
sa

m
p
li

n
g
 b

y

a

2

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

C
o

n
v

 |
 3

×
3

 |
3

8
4

×
1

9
2

U
p
sa

m
p
li

n
g
 b

y

a

2

C
o

n
v

 |
 3

×
3

 |

(
a

2
×

a
2
×

1
9

2
)

×
3

8
4

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
3

8
4

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

U
p

sa
m

p
li

n
g

 b
y

a

1

C
o
n
v
 |
 3

×
3
 |

(
a

1
×

a
1
×

1
9

2
)

×
1

9
2

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
3

8
4

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

U
p

sa
m

p
li

n
g

 b
y

a

0

C
o

n
v

 |
 3

×
3

 |

(
a

0
×

a
0
×

1
9

2
)

×
1

9
2

C
o
n
v
 |
 3

×
3
 |

1
9
2
×

3
8
4

C
o
n
v
 |
 3

×
3
 |

1
9
2
×

1
9
2

UnetBlock | (a0,a1,a2)

(a)

Quantizer
Variance

Estimates
MoG

M
C

o
n

v
 |

5
×

5
 |
 9

×
1

M
C

o
n

v
 |

5
×

5
 |
 9

×
1

8

M
C

o
n

v
 |

5
×

5
 |
 9

×
9

M
C

o
n

v
 |

5
×

5
 |
 9

×
9

M
C

o
n

v
 |

5
×

5
 |
 9

×
9

M
C

o
n

v
 |

5
×

5
 |
 9

×
9

M
C

o
n

v
 |

5
×

5
 |
 9

×
9

M
C

o
n

v
 |

5
×

5
 |
 9

×
9

M
C

o
n

v
 |

5
×

5
 |
 3

×
9

M
C

o
n

v
 |

5
×

5
 |
 9

×
1

M
C

o
n

v
 |

5
×

5
 |
 9

×
1

0

M
C

o
n

v
 |

5
×

5
 |
 9

×
9

M
C

o
n

v
 |

5
×

5
 |
 9

×
9

C
o

n
v

 |
 5

×
5

 |
1

9
2

×
3

U
n

et
B

lo
ck

 |
 (

2
,2

,2
)

U
n

et
B

lo
ck

 |
 (

1
,1

,2
)

U
n

et
B

lo
ck

 |
 (

1
,2

,2
)

C
o

n
v

 |
 5

×
5

 |
1

9
2

×
2

1
9

2

C
o

n
v

 |
 5

×
5

 |
1

9
2

×
1

9
2

C
o

n
v

 |
 3

×
3

 |
M

×
1

9
2

D
o

w
n

sa
m

p
li

n
g

 b
y

 2

D
o

w
n

sa
m

p
li

n
g

 b
y

 2

D
o

w
n

sa
m

p
li

n
g

 b
y

 2

C
o

n
v

 |
 3

×
3

 |
3

×
4

8

U
n

et
B

lo
ck

 |
 (

2
,2

,2
)

U
n

et
B

lo
ck

 |
 (

1
,1

,2
)

U
n

et
B

lo
ck

 |
 (

1
,2

,2
)

C
o

n
v

 |
 3

×
3

 |
7

6
8

×
1

9
2

C
o

n
v

 |
 3

×
3

 |
7

6
8

×
1

9
2

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
M

U
p

sa
m

p
li

n
g

 b
y

 2

U
p

sa
m

p
li

n
g

 b
y

 2

U
p

sa
m

p
li

n
g

 b
y

 2

C
o

n
v

 |
 3

×
3

 |
1

9
2

×
1

9
2

Mean

Estimates

Weight

Estimates

N
o

n
cl

o
a
l

E
st

im
at

io
n

M
C

o
n

v
 |

5
×

5
 |
 9

×
1

M
C

o
n

v
 |

5
×

5
 |
 9

×
9

M
C

o
n

v
 |

5
×

5
 |
 9

×
9

M
C

o
n

v
 |

5
×

5
 |
 3

×
9

M
C

o
n

v
 |

5
×

5
 |
 3

×
9

Analysis Transform

Synthesis Transform

Input
Image

Compressed
Image Context Based Non-local Entropy Model

Non-local Attention Block

(b)

Figure 5.3: The architecture of the proposed lossy image compression method, including
an analysis transform ga, an adaptive trainable quantizer gq, a context-based non-local en-
tropy model, and a synthesis transform gs. Conv: regular convolution with filter support
(kernel size × kernel size) and number of channels (output×input). UnetBlock: a0, a1 and
a2 are the downsampling multipliers in the U-net structure. MConv: mask convolution used
in our CCNs with filter support (kernel size× kernel size) and number of feature blocks
(output×input). Note that the number of channels is fixed in MConv, and is the same as the
input of the entropy model, i.e., y.

dynamically optimized in the training of the whole framework. gd is a proxy similarity

metric. With more available codes included in the computation, it will be more accurate in

approximate the real similarity metric. The context based non-local operation is defined as,

gnlc(yr(p, q)) =
∑
u,v

wsr(p, q, u, v)yr(u, v). (5.6)

where the content adaptive weight wsr(p, q, u, v) is defined as,

wsr(p, q, u, v) =
ml(p, q, u, v)e−gd(yr(p,q),yr(u,v))∑

u′,v′m
l(p, q, u′, v′)e−gd(yr(p,q),yr(u′,v′))

(5.7)

Different from traditional non-local operation, the target code itself is absent in computation.

There may not exists such content similar codes to estimate the target code. In such case,

the non-local estimation will be inaccurate. In order to indicate the confidence that the

98

target code is estimated by content similar codes, a confidence indicator is introduced as

the weighed similarity among the target code and the others.

gc(yr(p, q)) =
∑
u,v

wsr(p, q, u, v)gd(yr(p, q), yr(u, v)). (5.8)

The confidence indicators together and local context are further combined to generate the

attention weight for the non-local attention block proposed in this chapter. And an element-

wise multiplication operation is adopted for the attention weights and non-local estimation

results to produce the attention results, which are then merged with the local representations

with a concat operation. Fig. 5.3(b) gives the structure of the non-local attention block .

5.3 Context Based Non-local Entropy Modelling for Lossy Image Compression

To build a DNN-based lossy image compression framework, three key issues to be consid-

ered are the structure of the transforms, quantization operation, and the joint rate-distortion

objective function. Figure 5.3 gives a whole framework including the synthesis transform,

analysis transform, and the context-based non-local entropy model. In this chapter, we will

describe the transforms, quantization, and objective function in detail. Finally, a post entropy

model is introduced for simplifying the entropy coding process.

5.3.1 Network Structure for Transforms

CNN-based deep transforms are generally not non-invertible, and extra distortion arises in

the process of transforms. To get better performance, the extra distortion should be min-

imized especially for low distortion models. Empirically speaking, staking more different

feature maps at each layer of the transform, i.e., increasing the width of the network, will help

increase the invertible ability of the transform and reduce extra distortion. Notwithstanding,

such a strategy will inevitably increase the time complexity of the transforms and memory

consumption. A computationally efficient and wide enough network structure is needed.

U-net [39, 59] is a light structure proposed for medical image segmentation. With down-

sampling and skip connections, U-net is fast and can adopt multi-scale representation. And

the skip connection could facilitate the information propagation and the training of the net-

99

work [84]. As shown in Fig. 5.3(a), we adopt the U-net structure as a block, i.e., UnetBlock,

as a basic block to build the transforms. The UnetBlock could keep the width and reduce

the time complexity and memory consumption of the transforms. Each UnetBlock contains

3 downsampling and 3 upsampling convolution layers with the downsampling/upsampling

multipliers are determined by the 3 separate parameters, i.e., a0, a1 and a2. And skip connec-

tions are introduced to combine the features at each scale. The downsampling convolution

layer is conducted by stride convolution, while the upsampling convolution layer is a nor-

mal convolution to increase the channels of the feature maps followed by the depth-to-space

reshaping [63, 69]. Each convolution layer is followed by a PReLU nonlinearity.

The analysis transform ga takes the color image x as input and produces the latent

code representation z, which is further quantized to the discrete code block y. ga is com-

posed of 3 downsampling layer with each followed by a UnetBlock. And an additional

convolutional layer with sigmoid nonlinearity is adopted after the last UnetBlock to generate

z ∈ (0, 1) with M channels. And M determines the upper bound of the bit rate of a DNN

based compression framework with fixed quantization levels.The parameters of ga constitute

the parameter vector φ to be optimized.

The synthesis transform gs is a mirror of the analysis transform. And the upsampling

operation is the same as used in UnetBlock. The last convolution layer makes use of three fil-

ters to produce the RGB decompressed image. The parameters of gs constitute the parameter

vector ψ to be optimized.

5.3.2 Adaptive Quantization Function

The adaptive quantization function gq with L quantization levels maps the output of analy-

sis transform z to L discrete quantization centres in each channel and generates the quantized

code block y. We parametrize the quantization interval for the r-th channel by {σr,0, . . . , σr,L−1}.

Then, the quantization centres for r-th channel is represented as,

ωr,i =
i∑

j=0

eσr,j , for i = 0, . . . , L− 1. (5.9)

100

The output feature zr(p, q) is assigned to the ȳr(p, q)-th quantization center in r-th channel

by minimizing the quantization error

ȳr(p, q) = arg min
l
‖zr(p, q)− ωr,l‖2

2. (5.10)

Then, yr(p, q) = gq(zr(p, q)) = ωr,ȳr(p,q) is the quantized code and ȳr(p, q) is the correspond-

ing integer representation.

gq has zero gradients almost everywhere, which hinders training via back-propagation.

Inspired by the binarized neural networks [17, 55, 86] and the DNN based compression

framework [67], an identify mapping ĝq(zr(p, q)) = zr(p, q) is adopted as a continuous

proxy for the quantization function in back-propagation.

The quantization intervals σ are optimized and modified according to the distribution

of z by minimizing the mean squared error (MSE),

Lq(σ) =
1

MHW

∑
r,p,q

‖yr(p, q)− zr(p, q))‖2
2, (5.11)

Specifically, we initialize σ using uniform quantization, which appears to work well in all

experiments.

5.3.3 Modelling the Objective Function

The whole framework is optimized with a joint rate-distortion objective function. The dis-

tortion loss is directly modeled on the decompressed image x̂ and the original image x. In

this chapter two separate metrics, i.e., standard mean square error and the perceptual met-

ric MS-SSIM [77], are adopted as the distortion loss. The MSE distortion loss LMSE
d and

MS-SSIM distortion loss LMS-SSIM
d are defined as follows

LMSE
d (x̂,x) =

1

3HIWI

‖x̂− x‖2
2, (5.12)

and

LMS-SSIM
d (x̂,x) = 100

(
1−MS-SSIM(x̂,x

)
. (5.13)

101

Here, HI and WI are separately the height and width of the image x. We denote our method

with LMSE
d as Ours(MSE) and with LMS-SSIM

d as Ours(MS-SSIM).

Without prior knowledge of the PDFs of the quantized codes y, we approximate

them with discretized MoG distributions, whose parameters are predicted by the proposed

context-based non-local entropy model. The non-local entropy model consists of a non-local

attention block, several CCN residue blocks and three final CCN layers to separately produce

the mean estimates, variance estimates and weight estimates for the MoG distributions. The

network parameters of our context-based non-local entropy model constitute the parameter

vector θ to be optimized.

Fig. 5.3(b) shows the network structure of the proposed context-based non-local en-

tropy model. We write the differentiable MoG distribution with C components as

yr(p, q) ∼
C−1∑
i=0

πiN (yr(p, q);µi, σ
2
i), (5.14)

where πi, µi and δ2
i are the mixture weight, mean, and variance of the i-th component, re-

spectively. Then, we get the discrete probability by calculating the integral on a quantization

bin

P (yr(p, q); θ) =

∫
∆

C−1∑
i=0

πiN (ξ;µi, σ
2
i)dξ. (5.15)

where ∆ = [(ωr,ȳr(p,q)−1 + yr(p, q))/2, (ωr,ȳr(p,q)+1 + yr(p, q))/2] is the quantization bin that

yr(p, q) lies in. 0 ≤ ȳr(p, q) < L indexes the quantization centers ω. For ȳr(p, q) = 0

and ȳr(p, q) = L − 1, we separately set the nonexistent centers as ωr,ȳr(p,q)−1 = 0 and

ωr,ȳr(p,q)+1 = 1 according to yr(p, q) ∈ (0, 1).

Finally, we are able to write the empirical rate-distortion objective for the parameters

{φ,ψ,θ} as

L(φ,ψ,θ) = Ex

[
−
∑
i

log2 P

(
gq

(
ga(x;φ)

)
;θ

)

+ λLd
(
gs

(
gq
(
ga(x;φ)

)
;ψ
)
,x

)]
. (5.16)

102

Ld is the distortion term, which is more preferable to be assessed in a perceptual space. In

this chapter, we optimize and evaluate our lossy image compression methods using standard

MSE and a perceptual metric MS-SSIM [77].

5.3.4 Post Processing for Entropy Coding

For entropy coding, we choose arithmetic coding to compress the codes of the image into

a bitstream for saving. For arithmetic coding, the integer code and a corresponding proba-

bility table for each possible discrete value of the code are needed. With the context-based

non-local entropy model, we should first estimate the parameter for MoG distributions and

then cut the PDF into L intervals and get the discrete possibility table with an integral on

each interval. Considering a large amount of code to be processed, it will bring further com-

putational burden and slow down the entropy coding process. We simplify this process by

directly training a post entropy model which takes the integer representation of the codes,

i.e., the index of the quantization centers ȳ, as input and directly output the discrete proba-

bility table for each integer representation. For the post entropy model, it adopts a similar

structure as the context-based non-local entropy model, and the only difference is the last

CCN layer. Instead of taking three separate CCN layer to produce the mean, variance and

weight used in MoGs, it adopt only one CCN layer followed by a softmax nonlinearity to

produce the possibility table u with ui,r(p, q) represents the possibility that ȳr(p, q) = i. The

post entropy network parameters are optimized by minimizing the expected code length

Lpost(θ) = −Eȳ

[∑
r,p,q

∑
i

1(ȳr(p, q) = i) log2(ui,r(p, q))
]
, (5.17)

where 1(·) is an indicator function and the expectation may be approximated by averaging

over a mini-batch of integer representations of the code blocks. Finally, we implement our

own arithmetic coding with the context-based non-local entropy model to compress ȳ to

bitstreams, and report performance using actual bit rates.

103

5.4 Experiments

In this section, we test the proposed context-based non-local entropy models in the lossy

image compression by comparing it to state-of-the-art image coding standards and recent

deep image compression algorithms. 10, 000 high-quality and high-definition images are

collected from Flickr, and down-sampling operations are conducted on them to further reduce

possibly compression artifacts. We crop 640, 000 color patches of size 3× 256× 256 as the

training sets for lossy image compression. For the post entropy model, we first extract the

integer code block, i.e., ȳ, and then crop code patches of size M × 60× 60 for training. We

test our models on two independent datasets - Kodak and Tecnick [9], which are widely used

to benchmark image compression performance. The pre-trained models for testing are made

available at https://github.com/limuhit/Nonlocal-CCN.

5.4.1 Experimental Setup

We jointly optimize the analysis transform ga, the non-uniform quantizer gq, the context-

based non-local entropy model, and the synthesis transform gs by minimizing the rate-

distortion objective function in an end-to-end manner. And the same warmup strategy used

in [37] is used for initialization. Then, an Adam solver with a learning rate of 10−5 is adopted

to optimize the whole model. Smaller learning rates, i.e., 10−6 and 10−7, are adopted until

the objective function does not decrease for 5 successive epochs. The post entropy model

is also optimized with Adam solver in the same way. The number of quantization centers

is L = 8 and the number of Gaussian components in MoG is C = 3. This optimization is

performed separately for each λ and each distortion measure. We train 14 model models for

seven bit rates and two distortion metrics (MSE and MS-SSIM). For testing, the compression

rate is evaluated by bits per pixel (bpp), which is the total amount of bits used to compress

the image divided by the whole number of pixels in the image. Two quantitative metrics, i.e.,

Multi-Scale Structural Similarity (MS-SSIM) and the Peak Signal-to-Noise Ratio (PSNR),

are used to evaluate the image distortion.

104

https://github.com/limuhit/Nonlocal-CCN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

22

24

26

28

30

32

34

36

P
S

N
R

(d
B

)

JPEG
JPEG 2000
BPG (4:2:0)
Agustsson17
Theis17
Toderici17
Johnston17
Ballé17
Li18
Li19 (MS-SSIM)
Li19 (MSE)
Ours (MS-SSIM)
Ours (MSE)

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
S

-S
S

IM

JPEG
JPEG 2000
BPG (4:2:0)
Agustsson17
Theis17
Toderici17
Rippel17
Mentzer18
Johnston17
Ballé17
Li18
Li19 (MS-SSIM)
Li19 (MSE)
Ours (MS-SSIM)
Ours (MSE)

(b)

Figure 5.4: Rate-distortion curves of different compression methods on the Kodak dataset.
(a) PSNR. (b) MS-SSIM.

5.4.2 Quantitative Evaluation

Using MS-SSIM and PSNR as distortion metrics, we compare our methods with existing im-

age coding standards and recent DNN-based compression models in term of rate-distortion

curves. Image coding standards include JPEG [73], JPEG2000 [64], BPG [13], and the

DNN-based compression models include Agustsson17 [2], Theis17 [67], Toderici17 [69],

Rippel17 [58], Mentzer18 [46], Johnston17 [32], Ballé17 [11], our results in chapter 2 (Li18)

and chapter 4 (Li19). Both JPEG (with 4:2:0 chroma subsampling) and JPEG2000 are based

on the optimized implementations in MATLAB2017. For BPG, we adopt the latest version

from its official website with the default setting. When it comes to DNN-based lossy image

compression models, the implementations are generally not available. Therefore, we care-

fully digitalize the rate-distortion curves and report the results from their respective chapters.

Fig. 5.4 shows the rate-distortion curves on the Kodak dataset. In terms of PSNR, the

results of Rippel17 [58] and Mentzer18 [46] are missing due to that they do not report the

PSNR curve in the chapter. We find that both of our methods optimized for MSE and MS-

SSIM outperform all competing methods. Especially, compared with chapter 4 with local

105

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

26

28

30

32

34

36

38
P

S
N

R
(d

B
)

JPEG
JPEG 2000
BPG (4:2:0)
Agustsson17
Theis17
Ballé17
Li19 (MS-SSIM)
Li19 (MSE)
Ours (MS-SSIM)
Ours (MSE)

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

0.90

0.92

0.94

0.96

0.98

1.00

M
S

-S
S

IM

JPEG
JPEG 2000
BPG (4:2:0)
Agustsson17
Theis17
Ballé17
Li19 (MS-SSIM)
Li19 (MSE)
Ours (MS-SSIM)
Ours (MSE)

(b)

Figure 5.5: Rate-distortion curves of different compression methods on the Tecnick dataset.
(a) PSNR. (b) MS-SSIM.

context-based entropy modeling, our models with context-based non-local entropy modeling

are much better, which support the effectiveness of adopting context-based non-local estima-

tion in entropy modeling. And in the high bit rate region, our models outperform Li19 by a

lot, which also indicates the effectiveness of the proposed UnetBlock in reducing extra distor-

tion brought by transforms. Fig. 5.5 shows the rate-distortion curves on the Tecnick dataset,

where similar trends as Koadak dataset for both PSNR and MS-SSIM can be observed. We

fail to compare with Rippel17 [58], Theis17 [67], Agustsson17 [2] and Mentzer18 [46] on

Tecnick dataset due to the unavailable results in the chapters.

5.4.3 Visual Quality Evaluation

We visually compare the decompressed images by our method against results from chapter

4, JPEG2K, and BPG. Fig. 5.6 and Fig. 5.7 show sample decompressed images and the un-

compressed images on the Kodak and Tecnick datasets, respectively. For images at low bit

rate, the methods optimized with MS-SSIM are visually much better due to that MS-SSIM

takes structural similarity in different scale into account and are more consistent with the

106

(a) (b) (c) (d)

(e)

(f) (g) (h) (i)

(j)

Figure 5.6: Compressed images by different compression methods on the Kodak dataset.
The quantitative measures are in the format of “bpp / PSNR / MS-SSIM”. (a) Uncompressed
“Motorcycle” image. (b) JPEG2K. 0.673 / 27.75 / 0.962. (c) BPG. 0.712 / 29.65 / 0.973. (d)
Chapter 4 optimized for MSE. 0.694 / 28.81 / 0.986. (e) Ours optimized for MSE. 0.670 /
30.53 / 0.984. (f) Uncompressed “House” image. (g) JPEG2K. 0.879 / 31.52 / 0.972. (h)
BPG. 0.877 / 32.64 / 0.979. (i) Chapter 4 optimized for MSE. 0.871 / 29.99 / 0.988. (j) Ours
optimized for MSE. 0.865 / 33.04 / 0.989.

human visual system. When it comes to the images at a high bit rate, the methods optimized

with MSE are better at keeping small scale details. Thus, we compare Ours(MS-SSIM)

with Li19(MS-SSIM) in low bit rate as shown in Fig. 5.7 and compare Ours(MSE) with

Li19(MSE) at high bit rate in Fig 5.6. In Fig. 5.7, JPEG2K and BPG exhibit artifacts (such

as blocking, ringing, blurring, and aliasing) that are common to all handcrafted transform

coding methods. Li19(MS-SSIM) is effective at suppressing most of the artifacts bus still

surfers from blurring in some parts of the image. In contrast, our method optimized for

MS-SSIM is more able to generate decompressed images with more faithful details and less

visible distortions. In Fig. 5.4, the whole visual quality is nearly the same. But when zoom-

ing into details, similar to BPG, our methods optimized for MSE shows to have better small

scale edges and textures. Li19(MSE) blurring the small edges and losing useful information,

such as small text.

107

(a) (b) (c) (d)

(e)

(f) (g) (h) (i)

(j)

Figure 5.7: Compressed images by different compression methods on the Tecnick dataset.
The quantitative measures are in the format of “bpp / PSNR / MS-SSIM”. (a) Uncompressed
“Fruit” image. (b) JPEG2K. 0.137 / 24.95 / 0.890. (c) BPG. 0.136 / 25.58 / 0.901. (d)
Chapter 4 optimized for MS-SSIM. 0.139 / 25.63 / 0.938. (e) Ours optimized for MS-SSIM.
0.134 / 24.46 / 0.939. (f) Uncompressed “Seafood” image. (g) JPEG2K. 0.137 / 25.52 /
0.882. (h) BPG. 0.135 / 26.42 / 0.905. (i) Chapter 4 optimized for MS-SSIM. 0.138 / 25.62
/ 0.925. (j) Ours optimized for MS-SSIM. 0.133 / 25.03 / 0.932.

108

Table 5.1: Running time in seconds, GPU memory usage in GBs and distortion evaluated
with PSNR of three network structures.

Network Structure
Running Time

(seconds)
GPU Memory

(GB)
Distortion

(dB)

DenseBlock [37] 0.025 0.86 35.54
ResidueBlock 0.136 2.65 36.34

UnetBlock 0.048 1.52 36.29

5.4.4 Ablation Experiments

We conduct thorough ablation experiments to analyze the impact of individual components,

i.e., the UnetBlock, and context-based non-local entropy modeling, to final compression

performance. For fair comparisons, we use the same set of parameters and training set for

all the competing models.

UnetBlock for analysis and synthesis transforms

The width of the transforms, i.e., the minimum number of channels in the output of each

layer, is supposed to have a significant influence on the performance of low distortion im-

age compression models. A narrow transform will inevitably lose necessary information

for reconstructing the decoding image and introduce extra distortion. To support this hy-

pothesis, we introduce a baseline model that adopts the entropy model from Chapter 4 and

transforms with UnetBlocks. The only difference between Chapter 4 and the baseline model

is the network structure of the transforms. Our baseline model adopts the analysis and syn-

thesis transforms with a width of 192. But for transforms in Li19, the width is 64. As the

DenseBlocks of Li19 concat all the output of each previous sub-blocks as the input for a new

sub-block, the computational consumption increase a lot with the growth of the width of the

input. In practice, limited by the hardware, i.e., GPU memory, it is unable to adopt a wide

input, i.e., 192, with a lot of feature maps for the DenseBlocks in Li19.

Fig. 5.8 shows the performance of the baseline models. We compare the baseline

models with Chapter 4 separately optimized with two distortion metrics, i.e.MS-SSIM and

MSE. In low bit rate region (< 0.4bpp), the baseline model optimized with MSE, i.e., Base-

line(MSE), and Li19(MSE) have nearly the same performance in both of the MS-SSIM and

109

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

22

24

26

28

30

32

34

36

P
S

N
R

(d
B

)

BPG (4:2:0)
Li19 (MS-SSIM)
Li19 (MSE)
Baseline (MS-SSIM)
Baseline (MSE)
Ours (MS-SSIM)
Ours (MSE)

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bits per pixel (bpp)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
S

-S
S

IM
BPG (4:2:0)
Li19 (MS-SSIM)
Li19 (MSE)
Baseline (MS-SSIM)
Baseline (MSE)
Ours (MS-SSIM)
Ours (MSE)

(b)

Figure 5.8: Rate-distortion curves of different variants of the proposed methods on the Kodak
dataset. (a) PSNR. (b) MS-SSIM. Baseline denotes our method with unet blocks and normal
entropy mdoel.

Table 5.2: Entropy coding for integer codes optimized by MSE and MS-SSIM. The results
are evaluted by bits per code. ȳa,i (ȳb,i) represents the interger code of the i-th model opti-
mized for the MSE(MS-SSIM).

Entropy coding for integer codes optimized by MSE

Code set ȳa,0 ȳa,1 ȳa,2 ȳa,3 ȳa,4 ȳa,5 ȳa,6

CCN [37] 1.65 1.56 1.45 1.45 1.43 1.46 1.58
Non-local 1.58 1.42 1.24 1.30 1.28 1.34 1.47

Entropy coding for integer codes optimized by MS-SSIM

Code set ȳb,0 ȳb,1 ȳb,2 ȳb,3 ȳb,4 ȳb,5 ȳb,6

CCN [37] 1.86 1.78 1.66 1.60 1.64 1.39 1.55
Non-local 1.84 1.67 1.53 1.54 1.48 1.26 1.43

110

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

(n) (o) (p) (q)

Figure 5.9: Visualization of the estimated probability for the context-based non-local entropy
modelling and the CCN-based entropy modelling. Each gray figure is a visualization of
one code plane. The bright/dark color represents large/small estimated discrete probability
(small/large entropy) of the corresponding codes. The quantitative measures are in the format
of channel number of the code plane / bits per code. For simplification, ”NLC” represents
the context-based non-local entropy modelling and ”LC” represents the CCN-based entropy
modelling. (a) Uncompressed ”Door” image. (b) LC. 1 / 1.05. (c) LC. 7 / 1.16. (d) LC. 16 /
1.85. (e) LC. 27 / 2.40. (f) LC. 28 / 1.67. (g) LC. 29 / 2.37. (h) LC. 30 / 2.37. (i) LC. 31 /
2.30. (j) NLC. 1 / 1.05. (k) NLC. 7 / 1.14. (l) NLC. 16 / 1.75. (m) NLC. 27 / 2.11. (n) NLC.
28 / 1.21. (o) NLC. 29 / 2.03. (p) NLC. 30 / 1.97. (q) NLC. 31 / 1.94.

MSE. But when the bit rate grows, the baseline model optimized with MSE has a signifi-

cant improvement, which supports the hypothesis about the width of the transforms. Similar

trends can be observed for our model optimized with MS-SSIM.

To support the effectiveness and efficiency of the proposed UnetBlock, we compare

the UnetBlock based network structure, including analysis transform, adaptive quantization

and synthesis transform, to a variant structure with only residue blocks in the transforms.

The variant network adopts several residue blocks to replace each UnetBlock. And the width

and the total number of layers in the variant structure is nearly the same as the UnetBlock

based network structure. Without the limitation of the entropy model (λ = ∞), we directly

optimize the UnetBlock based network, the residue block based network and the Dense-

Block based network [37] to the MSE distortion loss. Table 5.1 gives the results of the

three structures on running time, GPU memory usage and distortion performance. As the

ResidueBlock based network can not directly process the whole size image from the Kodak

dataset, the running time in seconds, the GPU memory evaluated by GB and the distortion

111

performance evaluated by PSNR are given on 256 × 256 patches sampled from the Kodak

dataset. As shown in the table, the UnetBlock base network performs on par with Residue-

Block based network on distortion performance and overwhelm the narrow network, i.e.,

DenseBlock based network. When it comes to efficiency, the UnetBlock based network is

much faster and needs less GPU memory in processing the images than the ResidueBlock

based network. Thus, UnetBlock is a good trade-off between efficiency and effectiveness.

Context based non-local entropy modelling

The context-base non-local entropy modeling exploits both of the non-local similarity among

the context and the local representations for the auto-regressive entropy modeling. We com-

pare it with the entropy model only adopts local representations use in Chapter 4. The same

baseline models as described above are used for comparison. Compared with our models

used in this chapter, the baseline models adopt the CCN-based entropy model focusing on

local representations. As shown in Fig. 5.8, both of our model optimized for MSE and our

model optimized for MS-SSIM outperform the counterpart baseline models by a large mar-

gin, which strongly support the effectiveness of the proposed non-local attention block in

context modeling.

To move the effectiveness of different initialization parameters and the training pro-

cess. We test the performance of the context-based non-local entropy modeling and the

CCN-based entropy modeling on the same set of integer codes generated by our models.

Seven code sets, i.e., ȳa,0, . . . , ȳa,6, are separately generated by Ours(MSE) at seven bit rate.

And another seven code sets denoted by ȳb,0, . . . , ȳb,6 are produced by Ours(MS-SSIM). The

performance of the two entropy models is evaluated as the number of bits used to coding one

code (bits per code). Table 5.2 shows the performance of the two entropy model, on the 14

code set, the context-based non-local entropy model is significantly better than the CCN-

based entropy model, which further supports the contribution of the introduced non-local

attention block in entropy modeling.

Besides, we further visualize the estimated probability for each code plane by map-

ping P (yr(p, q)) to an integer in the range of [0, 255] and shows each code plane as a gray

112

image in Fig. 5.9. Fig. 5.9 (a) gives the uncompressed image; (b)-(i) are the visualized proba-

bility of the CCN-based entropy model on 8 code planes; (j)-(q) are the corresponding results

of the context-based non-local entropy model. In bottom code planes, as shown in Fig. 5.9

(b), (c), (j) and (k), CCN-based entropy model has similar performance as the proposed non-

local entropy model. This can be illustrated by the proxy similarity function. The similarity

of codes inner one plane is estimated by all the bottom code planes. With few bottom code

planes available for estimation, the similarity is not accurate and thus lead to poor non-local

estimation. The non-local attention block tends to focus on the local feature representations

instead of the non-local estimation. As a result, the performance of the two competing en-

tropy models on the bottom code maps is similar. However, the context-based non-local

entropy modelling shows to have overwhelming performance in the top code plane as shown

in Fig. 5.9 (f), (g), (h), (i), (n), (o), (p) and (q). With the increasing number of planes in

the bottom, the proxy similarity begins more accurate and the non-local estimations star to

contribute to the performance.

5.5 Conclusion

In this chapter, we model the non-local similarity in the context and introduce a non-local

attention block to combine the context-based non-local estimation and local auto-regressive

representations for context-based entropy modeling. And an effective and efficient network

structure, i.e., UnetBlock, is introduced to build the analysis transform and synthesis trans-

form to help reduce the extra distortion brought by the non-invertible transforms. We test the

context-based non-local entropy model and the UnetBlock for lossy image compression. Our

model gets significant improvements over image compression standards and recent DNN-

based models. s

113

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary

As a very basic problem of computer science, image compression methods are studied for

decades. With the recent success of deep learning and the perfect match between the convo-

lutional networks and the transform coding framework, we proposed several deep network-

based image compression in this thesis for better image compression performance.

In chapter 2, we proposed a content weighed image compression framework to allo-

cate more bits to code the content important regions in the images and few bits to code the

less important regions with a learned importance map optimized to rate-distortion loss. The

sum of the importance map is adopted as a proxy of the rate loss. Finally, we extract a small

block around the code as its context and adopt a simple CNN for post entropy coding.

In chapter 3, we extend the job in chapter 2 with better deep network-based trans-

forms, better quantization functions, better optimization strategies for the importance map.

Furthermore, a trimmed convolutional network is introduced for parallel entropy prediction

without extract context for each code. Finally, we apply the content weighted image com-

pression framework for task-driven image compression by introducing region of interest of

specific tasks into the learning of importance map.

In chapter 4, we focus on entropy modeling of the deep image compression frame-

work and proposed a general entropy modeling framework with mask convolution opera-

tions. And a special code diving scheme together with its corresponding context is intro-

duced for the efficiency of entropy modeling without a clear drop in the performance. The

entropy modeling is further applied for lossless image compression and guiding the learning

of lossy image compression methods.

114

In chapter 5, we introduce the non-local similarity inner the codes generated by deep

networks for context-based entropy modeling. A non-local attention block that combines

the local auto-regressive representations and the global context based non-local estimation.

As the network-based transforms are inevitable and have internal distortion, a better net-

work structure with smaller distortion is also introduced for better performance. With the

improvements, we achieve state-of-art image compression performance.

6.2 Future Work

In future work, we plan to investigate the following three problems:

• Efficient deep image compression framework. Currently, the deep image compres-

sion framework is computational inefficiency which can not be applied on personal

devices without high-performance graphic cards. In future work, we would design

some light deep image compression framework with high efficiency.

• Task driven image compression. We have implied the content weighed image com-

pression framework for task-driven image compression. However, under the current

framework, we should decode the images first and then conduct a specific task on the

decoded image, which is not efficient. Also, we only adopt the ROI region in chapter

3 instead of task performance. A joint task-driven framework for the performance of

specific tasks instead of the ROI region would be better. And we will try to explore to

do the tasks on the codes of the images instead of the decoded image.

• Transparent image compression. The deep network-based transforms are inevitable,

which makes the deep network-based transform coding scheme can not be applied for

lossless or nearly lossless image compression. In the future, we would try to explore

this problem and design better networks for the transparent image compression task.

115

Bibliography

[1] M. D. Adams and R. Ward. Wavelet transforms in the JPEG-2000 standard. In 2001

IEEE Pacific Rim Conf. Commun., Comput. Signal Process., volume 1, pages 160–163

vol.1, Aug 2001.

[2] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Tim-

ofte, Luca Benini, and Luc V Gool. Soft-to-hard vector quantization for end-to-end

learning compressible representations. In Neural Inf. Process. Syst, pages 1141–1151,

2017.

[3] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-

resolution: Dataset and study. In IEEE Conf. Comput. Vis. Pattern Recog. Workshops,

volume 3, 2017.

[4] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, and Luc

Van Gool. Extreme learned image compression with GANs. In IEEE Conf. Comput.

Vis. Pattern Recog. Workshops, pages 2587–2590, 2018.

[5] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE Trans.

Comput., C-23(1):90–93, 1974.

[6] Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Discrete cosine transform. IEEE

Trans. Comput., 100(1):90–93, 1974.

[7] Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. Face description with local

binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach.

Intell., (12):2037–2041, 2006.

[8] Marc Antonini, Michel Barlaud, Pierre Mathieu, and Ingrid Daubechies. Image coding

using wavelet transform. IEEE Trans. Image Process., 1(2):205–220, 1992.

116

[9] Nicola Asuni and Andrea Giachetti. TESTIMAGES: A large data archive for display

and algorithm testing. Journal of Graphics Tools, 17(4):113–125, 2013.

[10] Nicola Asuni and Andrea Giachetti. Testimages: a large-scale archive for testing visual

devices and basic image processing algorithms. In STAG - Smart Tools & Apps Graph.

Conf., 2014.

[11] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image

compression. In Int. Conf. Learning Representations, 2017.

[12] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston.

Variational image compression with a scale hyperprior. In Int. Conf. Learning Repre-

sentations, 2018.

[13] Fabrice Bellard. BPG image format. https://bellard.org/bpg/, 2019.

[14] Vicki Bruce and Andy Young. Understanding face recognition. British journal of

psychology, 77(3):305–327, 1986.

[15] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural

ordinary differential equations. In Neural Inf. Process. Syst, pages 6571–6583, 2018.

[16] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. In Conf. Empirical Methods

Natural Language Process. (EMNLP 2014), 2014.

[17] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.

Binarized neural networks: Training deep neural networks with weights and activations

constrained to +1 or -1. arXiv:1602.02830, 2016.

[18] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series

in Telecommunications and Signal Processing). Wiley-Interscience, New York, NY,

USA, 2006.

117

https://bellard.org/bpg/

[19] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 248–255, 2009.

[20] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep con-

volutional network for image super-resolution. In Eur. Conf. Comput. Vis., pages 184–

199. 2014.

[21] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-

resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell.,

38(2):295–307, 2016.

[22] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object

detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal.

Mach. Intell., 32(9):1627–1645, 2009.

[23] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hier-

archies for accurate object detection and semantic segmentation. In IEEE Int. Conf.

Comput. Vis., pages 580–587, 2014.

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Neural Inf. Process. Syst, pages 2672–2680, 2014.

[25] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with

deep recurrent neural networks. In 2013 IEEE Int Conf. Acoustics, Speech Signal Pro-

cess., pages 6645–6649. IEEE, 2013.

[26] Robert M. Gray and David L. Neuhoff. Quantization. IEEE Trans. Inform. Theory,

44(6):2325–2383, 1998.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In IEEE Conf. Comput. Vis. Pattern Recog., pages 770–778, 2016.

118

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In IEEE Conf. Comput. Vis. Pattern Recog., pages 770–778, 2016.

[29] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep

Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al.

Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Pro-

cess. Mag., 29, 2012.

[30] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely

connected convolutional networks. In IEEE Conf. Comput. Vis. Pattern Recog., vol-

ume 1, pages 4700–4708, 2017.

[31] David A Huffman. A method for the construction of minimum-redundancy codes.

Proc. IRE, 40(9):1098–1101, 1952.

[32] Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh, Troy

Chinen, Sung Jin Hwang, Joel Shor, and George Toderici. Improved lossy image com-

pression with priming and spatially adaptive bit rates for recurrent networks. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 4385–4393, 2018.

[33] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Int.

Conf. Learning Representations, 2015.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Neural Inf. Process. Syst, pages 1097–1105,

2012.

[35] Jani Lainema, Frank Bossen, Woo-Jin Han, Junghye Min, and Kemal Ugur. Intra cod-

ing of the hevc standard. IEEE Trans. Circuits Syst. Video Technol., 22(12):1792–1801,

2012.

[36] Mu Li, Shuhang Gu, David Zhang, and Wangmeng Zuo. Efficient trimmed convolu-

tional arithmetic encoding for lossless image compression. arXiv:1801.04662, 2018.

119

[37] Mu Li, Kede Ma, Jane You, David Zhang, and Wangmeng Zuo. Efficient and effective

context-based convolutional entropy modeling for image compression. arXiv preprint

arXiv:1906.10057, 2019.

[38] Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao, and David Zhang. Learning con-

volutional networks for content-weighted image compression. In IEEE Conf. Comput.

Vis. Pattern Recog., pages 3214–3223, 2018.

[39] Xiaomeng Li, Hao Chen, Xiaojuan Qi, Qi Dou, Chi-Wing Fu, and Pheng-Ann Heng.

H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from

CT volumes. IEEE Trans. Medical Imaging, 37(12):2663–2674, 2018.

[40] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced

deep residual networks for single image super-resolution. In IEEE Conf. Comput. Vis.

Pattern Recog. Workshops, 2017.

[41] Stuart Lloyd. Least squares quantization in PCM. IEEE Trans. Inform. Theory,,

28(2):129–137, 1982.

[42] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-image

co-attention visual question answering. In Neural Inf. Process. Syst, pages 289–297,

2016.

[43] K. Ma, W. Liu, K. Zhang, Z. Duanmu, Z. Wang, and W. Zuo. End-to-end blind

image quality assessment using deep neural networks. IEEE Trans. Image Process.,

27(3):1202–1213, 2018.

[44] Detlev Marpe, Heiko Schwarz, and Thomas Wiegand. Context-based adaptive binary

arithmetic coding in the H. 264/AVC video compression standard. IEEE Trans. Circuits

Syst. Video Technol., 13(7):620–636, 2003.

[45] G.N.N. Martin. Range encoding: An algorithm for removing redundancy from a digi-

tised message. In Video & Data Recording Conf., pages 24–27, 1979.

120

[46] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc

Van Gool. Conditional probability models for deep image compression. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 4394–4402, 2018.

[47] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur.

Recurrent neural network based language model. In Int. Speech Commun. Assoc., 2010.

[48] David Minnen, Johannes Ballé, and George D Toderici. Joint autoregressive and hi-

erarchical priors for learned image compression. In Neural Inf. Process. Syst, pages

10794–10803. 2018.

[49] Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

[50] Boris Motik, Sergio Antonio Berná Niñerola, Pablo Castellanos Garcia, and Carlos

González-Cadenas. Natural language question answering system and method based on

deep semantics, 12 2011. US Patent App. 13/171,391.

[51] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural

networks. In Int. Conf. Machine Learning, pages 1747–1756, 2016.

[52] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves,

and Koray Kavukcuoglu. Conditional image generation with PixelCNN decoders. In

Neural Inf. Process. Syst, pages 4797–4805, 2016.

[53] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In British Machine

Vis. Conf., 2015.

[54] Javier Portilla, Vasily Strela, Martin J Wainwright, and Eero P Simoncelli. Image

denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image

Process., 12(11), 2003.

[55] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net:

Imagenet classification using binary convolutional neural networks. In Eur. Conf. Com-

put. Vis., pages 525–542, 2016.

121

[56] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:

Unified, real-time object detection. In IEEE Conf. Comput. Vis. Pattern Recog., pages

779–788, 2016.

[57] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks. In Neural Inf. Process. Syst, pages

91–99, 2015.

[58] Oren Rippel and Lubomir Bourdev. Real-time adaptive image compression. In Int.

Conf. Machine Learning, pages 2922–2930, 2017.

[59] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks

for biomedical image segmentation. In Int. Conf. Medical Image Computing Computer-

assisted Intervention, pages 234–241. Springer, 2015.

[60] Amir Said. Introduction to arithmetic coding-theory and practice. Hewlett Packard

Laboratories Rep., pages 1057–7149, 2004.

[61] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. PixelCNN++: A

PixelCNN implementation with discretized logistic mixture likelihood and other mod-

ifications. In Int. Conf. Learning Representations, 2017.

[62] Claude Elwood Shannon. A mathematical theory of communication. Bell System Tech.

J., 27(3):379–423, 1948.

[63] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken, Rob

Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image and video super-

resolution using an efficient sub-pixel convolutional neural network. In IEEE Conf.

Comput. Vis. Pattern Recog., 2016.

[64] Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi. The JPEG 2000

still image compression standard. IEEE Signal Process. Mag., 18(5):36–58, 2001.

122

[65] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand, et al. Overview

of the high efficiency video coding(HEVC) standard. IEEE Trans. Circuits Syst. Video

Technol., 22(12):1649–1668, 2012.

[66] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for

language modeling. In Int. Speech Commun. Assoc., 2012.

[67] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image

compression with compressive autoencoders. In Int. Conf. Learning Representations,

2017.

[68] George Toderici, Sean M O’Malley, Sung Jin Hwang, Damien Vincent, David Minnen,

Shumeet Baluja, Michele Covell, and Rahul Sukthankar. Variable rate image compres-

sion with recurrent neural networks. In Int. Conf. Learning Representations, 2016.

[69] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen,

Joel Shor, and Michele Covell. Full resolution image compression with recurrent neural

networks. In IEEE Conf. Comput. Vis. Pattern Recog., pages 5435–5443, 2017.

[70] Matthew A Turk and Alex P Pentland. Face recognition using eigenfaces. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 586–591. IEEE, 1991.

[71] Paul Viola, Michael Jones, et al. Rapid object detection using a boosted cascade of

simple features. In IEEE Conf. Comput. Vis. Pattern Recog., volume 1, page 3, 2001.

[72] Graham Wade. Signal coding and processing. Cambridge university press, 1994.

[73] Gregory K Wallace. The JPEG still picture compression standard. IEEE Trans. Con-

sumer Electron., 38(1):xviii–xxxiv, 1992.

[74] Naiyan Wang and Dit-Yan Yeung. Learning a deep compact image representation for

visual tracking. In Neural Inf. Process. Syst, pages 809–817, 2013.

[75] Zhou Wang and Al Bovik. Modern Image Quality Assessment. Morgan & Claypool

Publishers, 1st edition, 2006.

123

[76] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality

assessment: From error visibility to structural similarity. IEEE Trans. Image Process.,

13(4):600–612, 2004.

[77] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for

image quality assessment. In 37th Asilomar Conf. Signals, Syst. and Comput., pages

1398–1402, 2003.

[78] Wikipedia. Morse code. https://en.wikipedia.org/w/index.php?

title=Morse_code&oldid=895323877, 2019.

[79] Ian H Witten, Radford M Neal, and John G Cleary. Arithmetic coding for data com-

pression. Commun. ACM, 30(6):520–540, 1987.

[80] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, and Yi Ma. Robust

face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell.,

31(2):210–227, 2008.

[81] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with deep

neural networks. In Neural Inf. Process. Syst, pages 341–349, 2012.

[82] XK Yang, WS Ling, ZK Lu, Ee Ping Ong, and SS Yao. Just noticeable distortion model

and its applications in video coding. Signal Process. Image Commun., 20(7):662–680,

2005.

[83] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a

Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans.

Image Process., 26(7):3142–3155, 2017.

[84] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extraction by deep residual

U-Net. IEEE Geosci. Remote Sensing Lett., 15(5):749–753, 2018.

[85] Wenyi Zhao, Rama Chellappa, P Jonathon Phillips, and Azriel Rosenfeld. Face recog-

nition: A literature survey. ACM computing surveys (CSUR), 35(4):399–458, 2003.

124

https://en.wikipedia.org/w/index.php?title=Morse_code&oldid=895323877
https://en.wikipedia.org/w/index.php?title=Morse_code&oldid=895323877

[86] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.

DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth

gradients. arXiv:1606.06160, 2016.

125

	Certificate of Originality
	ABSTRACT
	PUBLICATIONS
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1. Introduction
	Lossy and Lossless Image Compression
	Transform Coding and Hybrid Coding
	Traditional Image Compression Methods
	JPEG
	JPEG2000
	HEVC Intra Coding

	Deep Learning Based Image Compression Methods
	Quantization
	Entropy Modelling
	Overview

	Contributions
	Dataset
	Conclusion

	CHAPTER 2. Learning Content-Weighted Deep Image Compression
	Introduction
	Content-weighted Image Compression
	Components and Gradient Computation
	Model formulation and learning

	Convolutional entropy encoder
	Encoding binary code
	Encoding quantized importance map

	Experiments
	Parameter setting
	Quantitative evaluation
	Visual quality evaluation
	Experimental analyses on important map
	Entropy encoder evaluation

	Conclusion

	CHAPTER 3. Improved Content-Weighted Deep Image Compression
	Introduction
	Content-weighted Image Compression
	Network Architecture
	Loss Functions
	Relaxation of Quantization for Model Learning
	Implementation and Learning

	Trimmed Convolutional Network for Arithmetic Encoding
	Coding Schedule and Context of 3D Cuboid
	Trimmed Convolution
	TCAE and Learning Objective
	Inclined TCAE
	Implementation and Learning

	Experiments
	Experimental Setup
	Quantitative Evaluation
	Visual Quality Evaluation
	Ablation Studies

	Task Driven Image Compression
	Model the Task Driven Objective Function
	Experiments for Task Driven Image Compression

	Conclusion

	CHAPTER 4. Efficient and Effective Context-Based Convolutional Entropy Modeling for Image Compression
	Introduction
	CCNs for Entropy modelling
	CCN-Based Entropy Models for Lossless Image Compression
	CCN-Based Entropy Models for Lossy Image Compression
	Experiments
	Lossless Image Compression
	Lossy Image Compression

	Conclusion

	CHAPTER 5. Learning Context-Based Non-local Entropy Modelling for Image Compression
	Introduction
	Context Based Non-local Entropy modelling
	CCNs for Local Context Based Entropy modelling
	Context Based Non-local Operation

	Context Based Non-local Entropy Modelling for Lossy Image Compression
	Network Structure for Transforms
	Adaptive Quantization Function
	Modelling the Objective Function
	Post Processing for Entropy Coding

	Experiments
	Experimental Setup
	Quantitative Evaluation
	Visual Quality Evaluation
	Ablation Experiments

	Conclusion

	CHAPTER 6. Conclusion and Future Work
	Summary
	Future Work

